sched: Fix the place where group powers are updated
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
0986b11b 473 raw_spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491 527 /* runqueue lock: */
05fa785c 528 raw_spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
05fa785c 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 920 raw_spin_unlock_irq(&rq->lock);
4866cde0 921#else
05fa785c 922 raw_spin_unlock(&rq->lock);
4866cde0
NP
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
3a5c359a
AK
953 if (likely(rq == task_rq(p)))
954 return rq;
05fa785c 955 raw_spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
05fa785c 972 raw_spin_lock(&rq->lock);
3a5c359a
AK
973 if (likely(rq == task_rq(p)))
974 return rq;
05fa785c 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 984 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
05fa785c 990 raw_spin_unlock(&rq->lock);
b29739f9
IM
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
05fa785c 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
05fa785c 1009 raw_spin_lock(&rq->lock);
1da177e4
LT
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
05fa785c 1056 raw_spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1059 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
05fa785c 1072 raw_spin_lock(&rq->lock);
31656519
PZ
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
05fa785c 1075 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
05fa785c 1182 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
05fa785c 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1205 return;
1206 resched_task(cpu_curr(cpu));
05fa785c 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
ef12fefa
BR
1393/* Time spent by the tasks of the cpu accounting group executing in ... */
1394enum cpuacct_stat_index {
1395 CPUACCT_STAT_USER, /* ... user mode */
1396 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1397
1398 CPUACCT_STAT_NSTATS,
1399};
1400
d842de87
SV
1401#ifdef CONFIG_CGROUP_CPUACCT
1402static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1403static void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1405#else
1406static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1407static inline void cpuacct_update_stats(struct task_struct *tsk,
1408 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1409#endif
1410
18d95a28
PZ
1411static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1412{
1413 update_load_add(&rq->load, load);
1414}
1415
1416static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1417{
1418 update_load_sub(&rq->load, load);
1419}
1420
7940ca36 1421#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1422typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1423
1424/*
1425 * Iterate the full tree, calling @down when first entering a node and @up when
1426 * leaving it for the final time.
1427 */
eb755805 1428static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1429{
1430 struct task_group *parent, *child;
eb755805 1431 int ret;
c09595f6
PZ
1432
1433 rcu_read_lock();
1434 parent = &root_task_group;
1435down:
eb755805
PZ
1436 ret = (*down)(parent, data);
1437 if (ret)
1438 goto out_unlock;
c09595f6
PZ
1439 list_for_each_entry_rcu(child, &parent->children, siblings) {
1440 parent = child;
1441 goto down;
1442
1443up:
1444 continue;
1445 }
eb755805
PZ
1446 ret = (*up)(parent, data);
1447 if (ret)
1448 goto out_unlock;
c09595f6
PZ
1449
1450 child = parent;
1451 parent = parent->parent;
1452 if (parent)
1453 goto up;
eb755805 1454out_unlock:
c09595f6 1455 rcu_read_unlock();
eb755805
PZ
1456
1457 return ret;
c09595f6
PZ
1458}
1459
eb755805
PZ
1460static int tg_nop(struct task_group *tg, void *data)
1461{
1462 return 0;
c09595f6 1463}
eb755805
PZ
1464#endif
1465
1466#ifdef CONFIG_SMP
f5f08f39
PZ
1467/* Used instead of source_load when we know the type == 0 */
1468static unsigned long weighted_cpuload(const int cpu)
1469{
1470 return cpu_rq(cpu)->load.weight;
1471}
1472
1473/*
1474 * Return a low guess at the load of a migration-source cpu weighted
1475 * according to the scheduling class and "nice" value.
1476 *
1477 * We want to under-estimate the load of migration sources, to
1478 * balance conservatively.
1479 */
1480static unsigned long source_load(int cpu, int type)
1481{
1482 struct rq *rq = cpu_rq(cpu);
1483 unsigned long total = weighted_cpuload(cpu);
1484
1485 if (type == 0 || !sched_feat(LB_BIAS))
1486 return total;
1487
1488 return min(rq->cpu_load[type-1], total);
1489}
1490
1491/*
1492 * Return a high guess at the load of a migration-target cpu weighted
1493 * according to the scheduling class and "nice" value.
1494 */
1495static unsigned long target_load(int cpu, int type)
1496{
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long total = weighted_cpuload(cpu);
1499
1500 if (type == 0 || !sched_feat(LB_BIAS))
1501 return total;
1502
1503 return max(rq->cpu_load[type-1], total);
1504}
1505
ae154be1
PZ
1506static struct sched_group *group_of(int cpu)
1507{
1508 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1509
1510 if (!sd)
1511 return NULL;
1512
1513 return sd->groups;
1514}
1515
1516static unsigned long power_of(int cpu)
1517{
1518 struct sched_group *group = group_of(cpu);
1519
1520 if (!group)
1521 return SCHED_LOAD_SCALE;
1522
1523 return group->cpu_power;
1524}
1525
eb755805
PZ
1526static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527
1528static unsigned long cpu_avg_load_per_task(int cpu)
1529{
1530 struct rq *rq = cpu_rq(cpu);
af6d596f 1531 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1532
4cd42620
SR
1533 if (nr_running)
1534 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1535 else
1536 rq->avg_load_per_task = 0;
eb755805
PZ
1537
1538 return rq->avg_load_per_task;
1539}
1540
1541#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1542
4a6cc4bd 1543static __read_mostly unsigned long *update_shares_data;
34d76c41 1544
c09595f6
PZ
1545static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1546
1547/*
1548 * Calculate and set the cpu's group shares.
1549 */
34d76c41
PZ
1550static void update_group_shares_cpu(struct task_group *tg, int cpu,
1551 unsigned long sd_shares,
1552 unsigned long sd_rq_weight,
4a6cc4bd 1553 unsigned long *usd_rq_weight)
18d95a28 1554{
34d76c41 1555 unsigned long shares, rq_weight;
a5004278 1556 int boost = 0;
c09595f6 1557
4a6cc4bd 1558 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1559 if (!rq_weight) {
1560 boost = 1;
1561 rq_weight = NICE_0_LOAD;
1562 }
c8cba857 1563
c09595f6 1564 /*
a8af7246
PZ
1565 * \Sum_j shares_j * rq_weight_i
1566 * shares_i = -----------------------------
1567 * \Sum_j rq_weight_j
c09595f6 1568 */
ec4e0e2f 1569 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1570 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1571
ffda12a1
PZ
1572 if (abs(shares - tg->se[cpu]->load.weight) >
1573 sysctl_sched_shares_thresh) {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
c09595f6 1576
05fa785c 1577 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1578 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1579 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1580 __set_se_shares(tg->se[cpu], shares);
05fa785c 1581 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1582 }
18d95a28 1583}
c09595f6
PZ
1584
1585/*
c8cba857
PZ
1586 * Re-compute the task group their per cpu shares over the given domain.
1587 * This needs to be done in a bottom-up fashion because the rq weight of a
1588 * parent group depends on the shares of its child groups.
c09595f6 1589 */
eb755805 1590static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1591{
cd8ad40d 1592 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1593 unsigned long *usd_rq_weight;
eb755805 1594 struct sched_domain *sd = data;
34d76c41 1595 unsigned long flags;
c8cba857 1596 int i;
c09595f6 1597
34d76c41
PZ
1598 if (!tg->se[0])
1599 return 0;
1600
1601 local_irq_save(flags);
4a6cc4bd 1602 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1603
758b2cdc 1604 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1605 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1606 usd_rq_weight[i] = weight;
34d76c41 1607
cd8ad40d 1608 rq_weight += weight;
ec4e0e2f
KC
1609 /*
1610 * If there are currently no tasks on the cpu pretend there
1611 * is one of average load so that when a new task gets to
1612 * run here it will not get delayed by group starvation.
1613 */
ec4e0e2f
KC
1614 if (!weight)
1615 weight = NICE_0_LOAD;
1616
cd8ad40d 1617 sum_weight += weight;
c8cba857 1618 shares += tg->cfs_rq[i]->shares;
c09595f6 1619 }
c09595f6 1620
cd8ad40d
PZ
1621 if (!rq_weight)
1622 rq_weight = sum_weight;
1623
c8cba857
PZ
1624 if ((!shares && rq_weight) || shares > tg->shares)
1625 shares = tg->shares;
1626
1627 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1628 shares = tg->shares;
c09595f6 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1631 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1632
1633 local_irq_restore(flags);
eb755805
PZ
1634
1635 return 0;
c09595f6
PZ
1636}
1637
1638/*
c8cba857
PZ
1639 * Compute the cpu's hierarchical load factor for each task group.
1640 * This needs to be done in a top-down fashion because the load of a child
1641 * group is a fraction of its parents load.
c09595f6 1642 */
eb755805 1643static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1644{
c8cba857 1645 unsigned long load;
eb755805 1646 long cpu = (long)data;
c09595f6 1647
c8cba857
PZ
1648 if (!tg->parent) {
1649 load = cpu_rq(cpu)->load.weight;
1650 } else {
1651 load = tg->parent->cfs_rq[cpu]->h_load;
1652 load *= tg->cfs_rq[cpu]->shares;
1653 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1654 }
c09595f6 1655
c8cba857 1656 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1657
eb755805 1658 return 0;
c09595f6
PZ
1659}
1660
c8cba857 1661static void update_shares(struct sched_domain *sd)
4d8d595d 1662{
e7097159
PZ
1663 s64 elapsed;
1664 u64 now;
1665
1666 if (root_task_group_empty())
1667 return;
1668
1669 now = cpu_clock(raw_smp_processor_id());
1670 elapsed = now - sd->last_update;
2398f2c6
PZ
1671
1672 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1673 sd->last_update = now;
eb755805 1674 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1675 }
4d8d595d
PZ
1676}
1677
3e5459b4
PZ
1678static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1679{
e7097159
PZ
1680 if (root_task_group_empty())
1681 return;
1682
05fa785c 1683 raw_spin_unlock(&rq->lock);
3e5459b4 1684 update_shares(sd);
05fa785c 1685 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1686}
1687
eb755805 1688static void update_h_load(long cpu)
c09595f6 1689{
e7097159
PZ
1690 if (root_task_group_empty())
1691 return;
1692
eb755805 1693 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1694}
1695
c09595f6
PZ
1696#else
1697
c8cba857 1698static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1699{
1700}
1701
3e5459b4
PZ
1702static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703{
1704}
1705
18d95a28
PZ
1706#endif
1707
8f45e2b5
GH
1708#ifdef CONFIG_PREEMPT
1709
b78bb868
PZ
1710static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1711
70574a99 1712/*
8f45e2b5
GH
1713 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1714 * way at the expense of forcing extra atomic operations in all
1715 * invocations. This assures that the double_lock is acquired using the
1716 * same underlying policy as the spinlock_t on this architecture, which
1717 * reduces latency compared to the unfair variant below. However, it
1718 * also adds more overhead and therefore may reduce throughput.
70574a99 1719 */
8f45e2b5
GH
1720static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1721 __releases(this_rq->lock)
1722 __acquires(busiest->lock)
1723 __acquires(this_rq->lock)
1724{
05fa785c 1725 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1726 double_rq_lock(this_rq, busiest);
1727
1728 return 1;
1729}
1730
1731#else
1732/*
1733 * Unfair double_lock_balance: Optimizes throughput at the expense of
1734 * latency by eliminating extra atomic operations when the locks are
1735 * already in proper order on entry. This favors lower cpu-ids and will
1736 * grant the double lock to lower cpus over higher ids under contention,
1737 * regardless of entry order into the function.
1738 */
1739static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1740 __releases(this_rq->lock)
1741 __acquires(busiest->lock)
1742 __acquires(this_rq->lock)
1743{
1744 int ret = 0;
1745
05fa785c 1746 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1747 if (busiest < this_rq) {
05fa785c
TG
1748 raw_spin_unlock(&this_rq->lock);
1749 raw_spin_lock(&busiest->lock);
1750 raw_spin_lock_nested(&this_rq->lock,
1751 SINGLE_DEPTH_NESTING);
70574a99
AD
1752 ret = 1;
1753 } else
05fa785c
TG
1754 raw_spin_lock_nested(&busiest->lock,
1755 SINGLE_DEPTH_NESTING);
70574a99
AD
1756 }
1757 return ret;
1758}
1759
8f45e2b5
GH
1760#endif /* CONFIG_PREEMPT */
1761
1762/*
1763 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1764 */
1765static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766{
1767 if (unlikely(!irqs_disabled())) {
1768 /* printk() doesn't work good under rq->lock */
05fa785c 1769 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1770 BUG_ON(1);
1771 }
1772
1773 return _double_lock_balance(this_rq, busiest);
1774}
1775
70574a99
AD
1776static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1777 __releases(busiest->lock)
1778{
05fa785c 1779 raw_spin_unlock(&busiest->lock);
70574a99
AD
1780 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1781}
1e3c88bd
PZ
1782
1783/*
1784 * double_rq_lock - safely lock two runqueues
1785 *
1786 * Note this does not disable interrupts like task_rq_lock,
1787 * you need to do so manually before calling.
1788 */
1789static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1790 __acquires(rq1->lock)
1791 __acquires(rq2->lock)
1792{
1793 BUG_ON(!irqs_disabled());
1794 if (rq1 == rq2) {
1795 raw_spin_lock(&rq1->lock);
1796 __acquire(rq2->lock); /* Fake it out ;) */
1797 } else {
1798 if (rq1 < rq2) {
1799 raw_spin_lock(&rq1->lock);
1800 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1801 } else {
1802 raw_spin_lock(&rq2->lock);
1803 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1804 }
1805 }
1806 update_rq_clock(rq1);
1807 update_rq_clock(rq2);
1808}
1809
1810/*
1811 * double_rq_unlock - safely unlock two runqueues
1812 *
1813 * Note this does not restore interrupts like task_rq_unlock,
1814 * you need to do so manually after calling.
1815 */
1816static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1817 __releases(rq1->lock)
1818 __releases(rq2->lock)
1819{
1820 raw_spin_unlock(&rq1->lock);
1821 if (rq1 != rq2)
1822 raw_spin_unlock(&rq2->lock);
1823 else
1824 __release(rq2->lock);
1825}
1826
18d95a28
PZ
1827#endif
1828
30432094 1829#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1830static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1831{
30432094 1832#ifdef CONFIG_SMP
34e83e85
IM
1833 cfs_rq->shares = shares;
1834#endif
1835}
30432094 1836#endif
e7693a36 1837
dce48a84 1838static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1839static void update_sysctl(void);
acb4a848 1840static int get_update_sysctl_factor(void);
dce48a84 1841
cd29fe6f
PZ
1842static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1843{
1844 set_task_rq(p, cpu);
1845#ifdef CONFIG_SMP
1846 /*
1847 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1848 * successfuly executed on another CPU. We must ensure that updates of
1849 * per-task data have been completed by this moment.
1850 */
1851 smp_wmb();
1852 task_thread_info(p)->cpu = cpu;
1853#endif
1854}
dce48a84 1855
1e3c88bd 1856static const struct sched_class rt_sched_class;
dd41f596
IM
1857
1858#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1859#define for_each_class(class) \
1860 for (class = sched_class_highest; class; class = class->next)
dd41f596 1861
1e3c88bd
PZ
1862#include "sched_stats.h"
1863
c09595f6 1864static void inc_nr_running(struct rq *rq)
9c217245
IM
1865{
1866 rq->nr_running++;
9c217245
IM
1867}
1868
c09595f6 1869static void dec_nr_running(struct rq *rq)
9c217245
IM
1870{
1871 rq->nr_running--;
9c217245
IM
1872}
1873
45bf76df
IM
1874static void set_load_weight(struct task_struct *p)
1875{
1876 if (task_has_rt_policy(p)) {
dd41f596
IM
1877 p->se.load.weight = prio_to_weight[0] * 2;
1878 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1879 return;
1880 }
45bf76df 1881
dd41f596
IM
1882 /*
1883 * SCHED_IDLE tasks get minimal weight:
1884 */
1885 if (p->policy == SCHED_IDLE) {
1886 p->se.load.weight = WEIGHT_IDLEPRIO;
1887 p->se.load.inv_weight = WMULT_IDLEPRIO;
1888 return;
1889 }
71f8bd46 1890
dd41f596
IM
1891 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1892 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1893}
1894
2087a1ad
GH
1895static void update_avg(u64 *avg, u64 sample)
1896{
1897 s64 diff = sample - *avg;
1898 *avg += diff >> 3;
1899}
1900
8159f87e 1901static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1902{
831451ac
PZ
1903 if (wakeup)
1904 p->se.start_runtime = p->se.sum_exec_runtime;
1905
dd41f596 1906 sched_info_queued(p);
fd390f6a 1907 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1908 p->se.on_rq = 1;
71f8bd46
IM
1909}
1910
69be72c1 1911static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1912{
831451ac
PZ
1913 if (sleep) {
1914 if (p->se.last_wakeup) {
1915 update_avg(&p->se.avg_overlap,
1916 p->se.sum_exec_runtime - p->se.last_wakeup);
1917 p->se.last_wakeup = 0;
1918 } else {
1919 update_avg(&p->se.avg_wakeup,
1920 sysctl_sched_wakeup_granularity);
1921 }
2087a1ad
GH
1922 }
1923
46ac22ba 1924 sched_info_dequeued(p);
f02231e5 1925 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1926 p->se.on_rq = 0;
71f8bd46
IM
1927}
1928
1e3c88bd
PZ
1929/*
1930 * activate_task - move a task to the runqueue.
1931 */
1932static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1933{
1934 if (task_contributes_to_load(p))
1935 rq->nr_uninterruptible--;
1936
1937 enqueue_task(rq, p, wakeup);
1938 inc_nr_running(rq);
1939}
1940
1941/*
1942 * deactivate_task - remove a task from the runqueue.
1943 */
1944static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1945{
1946 if (task_contributes_to_load(p))
1947 rq->nr_uninterruptible++;
1948
1949 dequeue_task(rq, p, sleep);
1950 dec_nr_running(rq);
1951}
1952
1953#include "sched_idletask.c"
1954#include "sched_fair.c"
1955#include "sched_rt.c"
1956#ifdef CONFIG_SCHED_DEBUG
1957# include "sched_debug.c"
1958#endif
1959
14531189 1960/*
dd41f596 1961 * __normal_prio - return the priority that is based on the static prio
14531189 1962 */
14531189
IM
1963static inline int __normal_prio(struct task_struct *p)
1964{
dd41f596 1965 return p->static_prio;
14531189
IM
1966}
1967
b29739f9
IM
1968/*
1969 * Calculate the expected normal priority: i.e. priority
1970 * without taking RT-inheritance into account. Might be
1971 * boosted by interactivity modifiers. Changes upon fork,
1972 * setprio syscalls, and whenever the interactivity
1973 * estimator recalculates.
1974 */
36c8b586 1975static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1976{
1977 int prio;
1978
e05606d3 1979 if (task_has_rt_policy(p))
b29739f9
IM
1980 prio = MAX_RT_PRIO-1 - p->rt_priority;
1981 else
1982 prio = __normal_prio(p);
1983 return prio;
1984}
1985
1986/*
1987 * Calculate the current priority, i.e. the priority
1988 * taken into account by the scheduler. This value might
1989 * be boosted by RT tasks, or might be boosted by
1990 * interactivity modifiers. Will be RT if the task got
1991 * RT-boosted. If not then it returns p->normal_prio.
1992 */
36c8b586 1993static int effective_prio(struct task_struct *p)
b29739f9
IM
1994{
1995 p->normal_prio = normal_prio(p);
1996 /*
1997 * If we are RT tasks or we were boosted to RT priority,
1998 * keep the priority unchanged. Otherwise, update priority
1999 * to the normal priority:
2000 */
2001 if (!rt_prio(p->prio))
2002 return p->normal_prio;
2003 return p->prio;
2004}
2005
1da177e4
LT
2006/**
2007 * task_curr - is this task currently executing on a CPU?
2008 * @p: the task in question.
2009 */
36c8b586 2010inline int task_curr(const struct task_struct *p)
1da177e4
LT
2011{
2012 return cpu_curr(task_cpu(p)) == p;
2013}
2014
cb469845
SR
2015static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2016 const struct sched_class *prev_class,
2017 int oldprio, int running)
2018{
2019 if (prev_class != p->sched_class) {
2020 if (prev_class->switched_from)
2021 prev_class->switched_from(rq, p, running);
2022 p->sched_class->switched_to(rq, p, running);
2023 } else
2024 p->sched_class->prio_changed(rq, p, oldprio, running);
2025}
2026
1da177e4 2027#ifdef CONFIG_SMP
cc367732
IM
2028/*
2029 * Is this task likely cache-hot:
2030 */
e7693a36 2031static int
cc367732
IM
2032task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2033{
2034 s64 delta;
2035
e6c8fba7
PZ
2036 if (p->sched_class != &fair_sched_class)
2037 return 0;
2038
f540a608
IM
2039 /*
2040 * Buddy candidates are cache hot:
2041 */
f685ceac 2042 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2043 (&p->se == cfs_rq_of(&p->se)->next ||
2044 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2045 return 1;
2046
6bc1665b
IM
2047 if (sysctl_sched_migration_cost == -1)
2048 return 1;
2049 if (sysctl_sched_migration_cost == 0)
2050 return 0;
2051
cc367732
IM
2052 delta = now - p->se.exec_start;
2053
2054 return delta < (s64)sysctl_sched_migration_cost;
2055}
2056
dd41f596 2057void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2058{
e2912009
PZ
2059#ifdef CONFIG_SCHED_DEBUG
2060 /*
2061 * We should never call set_task_cpu() on a blocked task,
2062 * ttwu() will sort out the placement.
2063 */
077614ee
PZ
2064 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2065 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2066#endif
2067
de1d7286 2068 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2069
0c69774e
PZ
2070 if (task_cpu(p) != new_cpu) {
2071 p->se.nr_migrations++;
2072 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2073 }
dd41f596
IM
2074
2075 __set_task_cpu(p, new_cpu);
c65cc870
IM
2076}
2077
70b97a7f 2078struct migration_req {
1da177e4 2079 struct list_head list;
1da177e4 2080
36c8b586 2081 struct task_struct *task;
1da177e4
LT
2082 int dest_cpu;
2083
1da177e4 2084 struct completion done;
70b97a7f 2085};
1da177e4
LT
2086
2087/*
2088 * The task's runqueue lock must be held.
2089 * Returns true if you have to wait for migration thread.
2090 */
36c8b586 2091static int
70b97a7f 2092migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2093{
70b97a7f 2094 struct rq *rq = task_rq(p);
1da177e4
LT
2095
2096 /*
2097 * If the task is not on a runqueue (and not running), then
e2912009 2098 * the next wake-up will properly place the task.
1da177e4 2099 */
e2912009 2100 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2101 return 0;
1da177e4
LT
2102
2103 init_completion(&req->done);
1da177e4
LT
2104 req->task = p;
2105 req->dest_cpu = dest_cpu;
2106 list_add(&req->list, &rq->migration_queue);
48f24c4d 2107
1da177e4
LT
2108 return 1;
2109}
2110
a26b89f0
MM
2111/*
2112 * wait_task_context_switch - wait for a thread to complete at least one
2113 * context switch.
2114 *
2115 * @p must not be current.
2116 */
2117void wait_task_context_switch(struct task_struct *p)
2118{
2119 unsigned long nvcsw, nivcsw, flags;
2120 int running;
2121 struct rq *rq;
2122
2123 nvcsw = p->nvcsw;
2124 nivcsw = p->nivcsw;
2125 for (;;) {
2126 /*
2127 * The runqueue is assigned before the actual context
2128 * switch. We need to take the runqueue lock.
2129 *
2130 * We could check initially without the lock but it is
2131 * very likely that we need to take the lock in every
2132 * iteration.
2133 */
2134 rq = task_rq_lock(p, &flags);
2135 running = task_running(rq, p);
2136 task_rq_unlock(rq, &flags);
2137
2138 if (likely(!running))
2139 break;
2140 /*
2141 * The switch count is incremented before the actual
2142 * context switch. We thus wait for two switches to be
2143 * sure at least one completed.
2144 */
2145 if ((p->nvcsw - nvcsw) > 1)
2146 break;
2147 if ((p->nivcsw - nivcsw) > 1)
2148 break;
2149
2150 cpu_relax();
2151 }
2152}
2153
1da177e4
LT
2154/*
2155 * wait_task_inactive - wait for a thread to unschedule.
2156 *
85ba2d86
RM
2157 * If @match_state is nonzero, it's the @p->state value just checked and
2158 * not expected to change. If it changes, i.e. @p might have woken up,
2159 * then return zero. When we succeed in waiting for @p to be off its CPU,
2160 * we return a positive number (its total switch count). If a second call
2161 * a short while later returns the same number, the caller can be sure that
2162 * @p has remained unscheduled the whole time.
2163 *
1da177e4
LT
2164 * The caller must ensure that the task *will* unschedule sometime soon,
2165 * else this function might spin for a *long* time. This function can't
2166 * be called with interrupts off, or it may introduce deadlock with
2167 * smp_call_function() if an IPI is sent by the same process we are
2168 * waiting to become inactive.
2169 */
85ba2d86 2170unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2171{
2172 unsigned long flags;
dd41f596 2173 int running, on_rq;
85ba2d86 2174 unsigned long ncsw;
70b97a7f 2175 struct rq *rq;
1da177e4 2176
3a5c359a
AK
2177 for (;;) {
2178 /*
2179 * We do the initial early heuristics without holding
2180 * any task-queue locks at all. We'll only try to get
2181 * the runqueue lock when things look like they will
2182 * work out!
2183 */
2184 rq = task_rq(p);
fa490cfd 2185
3a5c359a
AK
2186 /*
2187 * If the task is actively running on another CPU
2188 * still, just relax and busy-wait without holding
2189 * any locks.
2190 *
2191 * NOTE! Since we don't hold any locks, it's not
2192 * even sure that "rq" stays as the right runqueue!
2193 * But we don't care, since "task_running()" will
2194 * return false if the runqueue has changed and p
2195 * is actually now running somewhere else!
2196 */
85ba2d86
RM
2197 while (task_running(rq, p)) {
2198 if (match_state && unlikely(p->state != match_state))
2199 return 0;
3a5c359a 2200 cpu_relax();
85ba2d86 2201 }
fa490cfd 2202
3a5c359a
AK
2203 /*
2204 * Ok, time to look more closely! We need the rq
2205 * lock now, to be *sure*. If we're wrong, we'll
2206 * just go back and repeat.
2207 */
2208 rq = task_rq_lock(p, &flags);
0a16b607 2209 trace_sched_wait_task(rq, p);
3a5c359a
AK
2210 running = task_running(rq, p);
2211 on_rq = p->se.on_rq;
85ba2d86 2212 ncsw = 0;
f31e11d8 2213 if (!match_state || p->state == match_state)
93dcf55f 2214 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2215 task_rq_unlock(rq, &flags);
fa490cfd 2216
85ba2d86
RM
2217 /*
2218 * If it changed from the expected state, bail out now.
2219 */
2220 if (unlikely(!ncsw))
2221 break;
2222
3a5c359a
AK
2223 /*
2224 * Was it really running after all now that we
2225 * checked with the proper locks actually held?
2226 *
2227 * Oops. Go back and try again..
2228 */
2229 if (unlikely(running)) {
2230 cpu_relax();
2231 continue;
2232 }
fa490cfd 2233
3a5c359a
AK
2234 /*
2235 * It's not enough that it's not actively running,
2236 * it must be off the runqueue _entirely_, and not
2237 * preempted!
2238 *
80dd99b3 2239 * So if it was still runnable (but just not actively
3a5c359a
AK
2240 * running right now), it's preempted, and we should
2241 * yield - it could be a while.
2242 */
2243 if (unlikely(on_rq)) {
2244 schedule_timeout_uninterruptible(1);
2245 continue;
2246 }
fa490cfd 2247
3a5c359a
AK
2248 /*
2249 * Ahh, all good. It wasn't running, and it wasn't
2250 * runnable, which means that it will never become
2251 * running in the future either. We're all done!
2252 */
2253 break;
2254 }
85ba2d86
RM
2255
2256 return ncsw;
1da177e4
LT
2257}
2258
2259/***
2260 * kick_process - kick a running thread to enter/exit the kernel
2261 * @p: the to-be-kicked thread
2262 *
2263 * Cause a process which is running on another CPU to enter
2264 * kernel-mode, without any delay. (to get signals handled.)
2265 *
2266 * NOTE: this function doesnt have to take the runqueue lock,
2267 * because all it wants to ensure is that the remote task enters
2268 * the kernel. If the IPI races and the task has been migrated
2269 * to another CPU then no harm is done and the purpose has been
2270 * achieved as well.
2271 */
36c8b586 2272void kick_process(struct task_struct *p)
1da177e4
LT
2273{
2274 int cpu;
2275
2276 preempt_disable();
2277 cpu = task_cpu(p);
2278 if ((cpu != smp_processor_id()) && task_curr(p))
2279 smp_send_reschedule(cpu);
2280 preempt_enable();
2281}
b43e3521 2282EXPORT_SYMBOL_GPL(kick_process);
476d139c 2283#endif /* CONFIG_SMP */
1da177e4 2284
0793a61d
TG
2285/**
2286 * task_oncpu_function_call - call a function on the cpu on which a task runs
2287 * @p: the task to evaluate
2288 * @func: the function to be called
2289 * @info: the function call argument
2290 *
2291 * Calls the function @func when the task is currently running. This might
2292 * be on the current CPU, which just calls the function directly
2293 */
2294void task_oncpu_function_call(struct task_struct *p,
2295 void (*func) (void *info), void *info)
2296{
2297 int cpu;
2298
2299 preempt_disable();
2300 cpu = task_cpu(p);
2301 if (task_curr(p))
2302 smp_call_function_single(cpu, func, info, 1);
2303 preempt_enable();
2304}
2305
970b13ba 2306#ifdef CONFIG_SMP
5da9a0fb
PZ
2307static int select_fallback_rq(int cpu, struct task_struct *p)
2308{
2309 int dest_cpu;
2310 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2311
2312 /* Look for allowed, online CPU in same node. */
2313 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2314 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2315 return dest_cpu;
2316
2317 /* Any allowed, online CPU? */
2318 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2319 if (dest_cpu < nr_cpu_ids)
2320 return dest_cpu;
2321
2322 /* No more Mr. Nice Guy. */
2323 if (dest_cpu >= nr_cpu_ids) {
2324 rcu_read_lock();
2325 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2326 rcu_read_unlock();
2327 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2328
2329 /*
2330 * Don't tell them about moving exiting tasks or
2331 * kernel threads (both mm NULL), since they never
2332 * leave kernel.
2333 */
2334 if (p->mm && printk_ratelimit()) {
2335 printk(KERN_INFO "process %d (%s) no "
2336 "longer affine to cpu%d\n",
2337 task_pid_nr(p), p->comm, cpu);
2338 }
2339 }
2340
2341 return dest_cpu;
2342}
2343
e2912009
PZ
2344/*
2345 * Called from:
2346 *
2347 * - fork, @p is stable because it isn't on the tasklist yet
2348 *
38022906 2349 * - exec, @p is unstable, retry loop
e2912009
PZ
2350 *
2351 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2352 * we should be good.
2353 */
970b13ba
PZ
2354static inline
2355int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2356{
e2912009
PZ
2357 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2358
2359 /*
2360 * In order not to call set_task_cpu() on a blocking task we need
2361 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2362 * cpu.
2363 *
2364 * Since this is common to all placement strategies, this lives here.
2365 *
2366 * [ this allows ->select_task() to simply return task_cpu(p) and
2367 * not worry about this generic constraint ]
2368 */
2369 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2370 !cpu_online(cpu)))
5da9a0fb 2371 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2372
2373 return cpu;
970b13ba
PZ
2374}
2375#endif
2376
1da177e4
LT
2377/***
2378 * try_to_wake_up - wake up a thread
2379 * @p: the to-be-woken-up thread
2380 * @state: the mask of task states that can be woken
2381 * @sync: do a synchronous wakeup?
2382 *
2383 * Put it on the run-queue if it's not already there. The "current"
2384 * thread is always on the run-queue (except when the actual
2385 * re-schedule is in progress), and as such you're allowed to do
2386 * the simpler "current->state = TASK_RUNNING" to mark yourself
2387 * runnable without the overhead of this.
2388 *
2389 * returns failure only if the task is already active.
2390 */
7d478721
PZ
2391static int try_to_wake_up(struct task_struct *p, unsigned int state,
2392 int wake_flags)
1da177e4 2393{
cc367732 2394 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2395 unsigned long flags;
f5dc3753 2396 struct rq *rq, *orig_rq;
1da177e4 2397
b85d0667 2398 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2399 wake_flags &= ~WF_SYNC;
2398f2c6 2400
e9c84311 2401 this_cpu = get_cpu();
2398f2c6 2402
04e2f174 2403 smp_wmb();
f5dc3753 2404 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2405 update_rq_clock(rq);
e9c84311 2406 if (!(p->state & state))
1da177e4
LT
2407 goto out;
2408
dd41f596 2409 if (p->se.on_rq)
1da177e4
LT
2410 goto out_running;
2411
2412 cpu = task_cpu(p);
cc367732 2413 orig_cpu = cpu;
1da177e4
LT
2414
2415#ifdef CONFIG_SMP
2416 if (unlikely(task_running(rq, p)))
2417 goto out_activate;
2418
e9c84311
PZ
2419 /*
2420 * In order to handle concurrent wakeups and release the rq->lock
2421 * we put the task in TASK_WAKING state.
eb24073b
IM
2422 *
2423 * First fix up the nr_uninterruptible count:
e9c84311 2424 */
eb24073b
IM
2425 if (task_contributes_to_load(p))
2426 rq->nr_uninterruptible--;
e9c84311 2427 p->state = TASK_WAKING;
efbbd05a
PZ
2428
2429 if (p->sched_class->task_waking)
2430 p->sched_class->task_waking(rq, p);
2431
ab19cb23 2432 __task_rq_unlock(rq);
e9c84311 2433
970b13ba 2434 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2435 if (cpu != orig_cpu)
5d2f5a61 2436 set_task_cpu(p, cpu);
ab19cb23
PZ
2437
2438 rq = __task_rq_lock(p);
2439 update_rq_clock(rq);
f5dc3753 2440
e9c84311
PZ
2441 WARN_ON(p->state != TASK_WAKING);
2442 cpu = task_cpu(p);
1da177e4 2443
e7693a36
GH
2444#ifdef CONFIG_SCHEDSTATS
2445 schedstat_inc(rq, ttwu_count);
2446 if (cpu == this_cpu)
2447 schedstat_inc(rq, ttwu_local);
2448 else {
2449 struct sched_domain *sd;
2450 for_each_domain(this_cpu, sd) {
758b2cdc 2451 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2452 schedstat_inc(sd, ttwu_wake_remote);
2453 break;
2454 }
2455 }
2456 }
6d6bc0ad 2457#endif /* CONFIG_SCHEDSTATS */
e7693a36 2458
1da177e4
LT
2459out_activate:
2460#endif /* CONFIG_SMP */
cc367732 2461 schedstat_inc(p, se.nr_wakeups);
7d478721 2462 if (wake_flags & WF_SYNC)
cc367732
IM
2463 schedstat_inc(p, se.nr_wakeups_sync);
2464 if (orig_cpu != cpu)
2465 schedstat_inc(p, se.nr_wakeups_migrate);
2466 if (cpu == this_cpu)
2467 schedstat_inc(p, se.nr_wakeups_local);
2468 else
2469 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2470 activate_task(rq, p, 1);
1da177e4
LT
2471 success = 1;
2472
831451ac
PZ
2473 /*
2474 * Only attribute actual wakeups done by this task.
2475 */
2476 if (!in_interrupt()) {
2477 struct sched_entity *se = &current->se;
2478 u64 sample = se->sum_exec_runtime;
2479
2480 if (se->last_wakeup)
2481 sample -= se->last_wakeup;
2482 else
2483 sample -= se->start_runtime;
2484 update_avg(&se->avg_wakeup, sample);
2485
2486 se->last_wakeup = se->sum_exec_runtime;
2487 }
2488
1da177e4 2489out_running:
468a15bb 2490 trace_sched_wakeup(rq, p, success);
7d478721 2491 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2492
1da177e4 2493 p->state = TASK_RUNNING;
9a897c5a 2494#ifdef CONFIG_SMP
efbbd05a
PZ
2495 if (p->sched_class->task_woken)
2496 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2497
2498 if (unlikely(rq->idle_stamp)) {
2499 u64 delta = rq->clock - rq->idle_stamp;
2500 u64 max = 2*sysctl_sched_migration_cost;
2501
2502 if (delta > max)
2503 rq->avg_idle = max;
2504 else
2505 update_avg(&rq->avg_idle, delta);
2506 rq->idle_stamp = 0;
2507 }
9a897c5a 2508#endif
1da177e4
LT
2509out:
2510 task_rq_unlock(rq, &flags);
e9c84311 2511 put_cpu();
1da177e4
LT
2512
2513 return success;
2514}
2515
50fa610a
DH
2516/**
2517 * wake_up_process - Wake up a specific process
2518 * @p: The process to be woken up.
2519 *
2520 * Attempt to wake up the nominated process and move it to the set of runnable
2521 * processes. Returns 1 if the process was woken up, 0 if it was already
2522 * running.
2523 *
2524 * It may be assumed that this function implies a write memory barrier before
2525 * changing the task state if and only if any tasks are woken up.
2526 */
7ad5b3a5 2527int wake_up_process(struct task_struct *p)
1da177e4 2528{
d9514f6c 2529 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2530}
1da177e4
LT
2531EXPORT_SYMBOL(wake_up_process);
2532
7ad5b3a5 2533int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2534{
2535 return try_to_wake_up(p, state, 0);
2536}
2537
1da177e4
LT
2538/*
2539 * Perform scheduler related setup for a newly forked process p.
2540 * p is forked by current.
dd41f596
IM
2541 *
2542 * __sched_fork() is basic setup used by init_idle() too:
2543 */
2544static void __sched_fork(struct task_struct *p)
2545{
dd41f596
IM
2546 p->se.exec_start = 0;
2547 p->se.sum_exec_runtime = 0;
f6cf891c 2548 p->se.prev_sum_exec_runtime = 0;
6c594c21 2549 p->se.nr_migrations = 0;
4ae7d5ce
IM
2550 p->se.last_wakeup = 0;
2551 p->se.avg_overlap = 0;
831451ac
PZ
2552 p->se.start_runtime = 0;
2553 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2554
2555#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2556 p->se.wait_start = 0;
2557 p->se.wait_max = 0;
2558 p->se.wait_count = 0;
2559 p->se.wait_sum = 0;
2560
2561 p->se.sleep_start = 0;
2562 p->se.sleep_max = 0;
2563 p->se.sum_sleep_runtime = 0;
2564
2565 p->se.block_start = 0;
2566 p->se.block_max = 0;
2567 p->se.exec_max = 0;
2568 p->se.slice_max = 0;
2569
2570 p->se.nr_migrations_cold = 0;
2571 p->se.nr_failed_migrations_affine = 0;
2572 p->se.nr_failed_migrations_running = 0;
2573 p->se.nr_failed_migrations_hot = 0;
2574 p->se.nr_forced_migrations = 0;
7793527b
LDM
2575
2576 p->se.nr_wakeups = 0;
2577 p->se.nr_wakeups_sync = 0;
2578 p->se.nr_wakeups_migrate = 0;
2579 p->se.nr_wakeups_local = 0;
2580 p->se.nr_wakeups_remote = 0;
2581 p->se.nr_wakeups_affine = 0;
2582 p->se.nr_wakeups_affine_attempts = 0;
2583 p->se.nr_wakeups_passive = 0;
2584 p->se.nr_wakeups_idle = 0;
2585
6cfb0d5d 2586#endif
476d139c 2587
fa717060 2588 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2589 p->se.on_rq = 0;
4a55bd5e 2590 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2591
e107be36
AK
2592#ifdef CONFIG_PREEMPT_NOTIFIERS
2593 INIT_HLIST_HEAD(&p->preempt_notifiers);
2594#endif
dd41f596
IM
2595}
2596
2597/*
2598 * fork()/clone()-time setup:
2599 */
2600void sched_fork(struct task_struct *p, int clone_flags)
2601{
2602 int cpu = get_cpu();
2603
2604 __sched_fork(p);
06b83b5f
PZ
2605 /*
2606 * We mark the process as waking here. This guarantees that
2607 * nobody will actually run it, and a signal or other external
2608 * event cannot wake it up and insert it on the runqueue either.
2609 */
2610 p->state = TASK_WAKING;
dd41f596 2611
b9dc29e7
MG
2612 /*
2613 * Revert to default priority/policy on fork if requested.
2614 */
2615 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2616 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2617 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2618 p->normal_prio = p->static_prio;
2619 }
b9dc29e7 2620
6c697bdf
MG
2621 if (PRIO_TO_NICE(p->static_prio) < 0) {
2622 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2623 p->normal_prio = p->static_prio;
6c697bdf
MG
2624 set_load_weight(p);
2625 }
2626
b9dc29e7
MG
2627 /*
2628 * We don't need the reset flag anymore after the fork. It has
2629 * fulfilled its duty:
2630 */
2631 p->sched_reset_on_fork = 0;
2632 }
ca94c442 2633
f83f9ac2
PW
2634 /*
2635 * Make sure we do not leak PI boosting priority to the child.
2636 */
2637 p->prio = current->normal_prio;
2638
2ddbf952
HS
2639 if (!rt_prio(p->prio))
2640 p->sched_class = &fair_sched_class;
b29739f9 2641
cd29fe6f
PZ
2642 if (p->sched_class->task_fork)
2643 p->sched_class->task_fork(p);
2644
5f3edc1b 2645#ifdef CONFIG_SMP
970b13ba 2646 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2647#endif
2648 set_task_cpu(p, cpu);
2649
52f17b6c 2650#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2651 if (likely(sched_info_on()))
52f17b6c 2652 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2653#endif
d6077cb8 2654#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2655 p->oncpu = 0;
2656#endif
1da177e4 2657#ifdef CONFIG_PREEMPT
4866cde0 2658 /* Want to start with kernel preemption disabled. */
a1261f54 2659 task_thread_info(p)->preempt_count = 1;
1da177e4 2660#endif
917b627d
GH
2661 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2662
476d139c 2663 put_cpu();
1da177e4
LT
2664}
2665
2666/*
2667 * wake_up_new_task - wake up a newly created task for the first time.
2668 *
2669 * This function will do some initial scheduler statistics housekeeping
2670 * that must be done for every newly created context, then puts the task
2671 * on the runqueue and wakes it.
2672 */
7ad5b3a5 2673void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2674{
2675 unsigned long flags;
dd41f596 2676 struct rq *rq;
1da177e4
LT
2677
2678 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2679 BUG_ON(p->state != TASK_WAKING);
2680 p->state = TASK_RUNNING;
a8e504d2 2681 update_rq_clock(rq);
cd29fe6f 2682 activate_task(rq, p, 0);
c71dd42d 2683 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2684 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2685#ifdef CONFIG_SMP
efbbd05a
PZ
2686 if (p->sched_class->task_woken)
2687 p->sched_class->task_woken(rq, p);
9a897c5a 2688#endif
dd41f596 2689 task_rq_unlock(rq, &flags);
1da177e4
LT
2690}
2691
e107be36
AK
2692#ifdef CONFIG_PREEMPT_NOTIFIERS
2693
2694/**
80dd99b3 2695 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2696 * @notifier: notifier struct to register
e107be36
AK
2697 */
2698void preempt_notifier_register(struct preempt_notifier *notifier)
2699{
2700 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2701}
2702EXPORT_SYMBOL_GPL(preempt_notifier_register);
2703
2704/**
2705 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2706 * @notifier: notifier struct to unregister
e107be36
AK
2707 *
2708 * This is safe to call from within a preemption notifier.
2709 */
2710void preempt_notifier_unregister(struct preempt_notifier *notifier)
2711{
2712 hlist_del(&notifier->link);
2713}
2714EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2715
2716static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2717{
2718 struct preempt_notifier *notifier;
2719 struct hlist_node *node;
2720
2721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2722 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2723}
2724
2725static void
2726fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next)
2728{
2729 struct preempt_notifier *notifier;
2730 struct hlist_node *node;
2731
2732 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2733 notifier->ops->sched_out(notifier, next);
2734}
2735
6d6bc0ad 2736#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2737
2738static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2739{
2740}
2741
2742static void
2743fire_sched_out_preempt_notifiers(struct task_struct *curr,
2744 struct task_struct *next)
2745{
2746}
2747
6d6bc0ad 2748#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2749
4866cde0
NP
2750/**
2751 * prepare_task_switch - prepare to switch tasks
2752 * @rq: the runqueue preparing to switch
421cee29 2753 * @prev: the current task that is being switched out
4866cde0
NP
2754 * @next: the task we are going to switch to.
2755 *
2756 * This is called with the rq lock held and interrupts off. It must
2757 * be paired with a subsequent finish_task_switch after the context
2758 * switch.
2759 *
2760 * prepare_task_switch sets up locking and calls architecture specific
2761 * hooks.
2762 */
e107be36
AK
2763static inline void
2764prepare_task_switch(struct rq *rq, struct task_struct *prev,
2765 struct task_struct *next)
4866cde0 2766{
e107be36 2767 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2768 prepare_lock_switch(rq, next);
2769 prepare_arch_switch(next);
2770}
2771
1da177e4
LT
2772/**
2773 * finish_task_switch - clean up after a task-switch
344babaa 2774 * @rq: runqueue associated with task-switch
1da177e4
LT
2775 * @prev: the thread we just switched away from.
2776 *
4866cde0
NP
2777 * finish_task_switch must be called after the context switch, paired
2778 * with a prepare_task_switch call before the context switch.
2779 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2780 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2781 *
2782 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2783 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2784 * with the lock held can cause deadlocks; see schedule() for
2785 * details.)
2786 */
a9957449 2787static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2788 __releases(rq->lock)
2789{
1da177e4 2790 struct mm_struct *mm = rq->prev_mm;
55a101f8 2791 long prev_state;
1da177e4
LT
2792
2793 rq->prev_mm = NULL;
2794
2795 /*
2796 * A task struct has one reference for the use as "current".
c394cc9f 2797 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2798 * schedule one last time. The schedule call will never return, and
2799 * the scheduled task must drop that reference.
c394cc9f 2800 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2801 * still held, otherwise prev could be scheduled on another cpu, die
2802 * there before we look at prev->state, and then the reference would
2803 * be dropped twice.
2804 * Manfred Spraul <manfred@colorfullife.com>
2805 */
55a101f8 2806 prev_state = prev->state;
4866cde0 2807 finish_arch_switch(prev);
cdd6c482 2808 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2809 finish_lock_switch(rq, prev);
e8fa1362 2810
e107be36 2811 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2812 if (mm)
2813 mmdrop(mm);
c394cc9f 2814 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2815 /*
2816 * Remove function-return probe instances associated with this
2817 * task and put them back on the free list.
9761eea8 2818 */
c6fd91f0 2819 kprobe_flush_task(prev);
1da177e4 2820 put_task_struct(prev);
c6fd91f0 2821 }
1da177e4
LT
2822}
2823
3f029d3c
GH
2824#ifdef CONFIG_SMP
2825
2826/* assumes rq->lock is held */
2827static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2828{
2829 if (prev->sched_class->pre_schedule)
2830 prev->sched_class->pre_schedule(rq, prev);
2831}
2832
2833/* rq->lock is NOT held, but preemption is disabled */
2834static inline void post_schedule(struct rq *rq)
2835{
2836 if (rq->post_schedule) {
2837 unsigned long flags;
2838
05fa785c 2839 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2840 if (rq->curr->sched_class->post_schedule)
2841 rq->curr->sched_class->post_schedule(rq);
05fa785c 2842 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2843
2844 rq->post_schedule = 0;
2845 }
2846}
2847
2848#else
da19ab51 2849
3f029d3c
GH
2850static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2851{
2852}
2853
2854static inline void post_schedule(struct rq *rq)
2855{
1da177e4
LT
2856}
2857
3f029d3c
GH
2858#endif
2859
1da177e4
LT
2860/**
2861 * schedule_tail - first thing a freshly forked thread must call.
2862 * @prev: the thread we just switched away from.
2863 */
36c8b586 2864asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2865 __releases(rq->lock)
2866{
70b97a7f
IM
2867 struct rq *rq = this_rq();
2868
4866cde0 2869 finish_task_switch(rq, prev);
da19ab51 2870
3f029d3c
GH
2871 /*
2872 * FIXME: do we need to worry about rq being invalidated by the
2873 * task_switch?
2874 */
2875 post_schedule(rq);
70b97a7f 2876
4866cde0
NP
2877#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2878 /* In this case, finish_task_switch does not reenable preemption */
2879 preempt_enable();
2880#endif
1da177e4 2881 if (current->set_child_tid)
b488893a 2882 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2883}
2884
2885/*
2886 * context_switch - switch to the new MM and the new
2887 * thread's register state.
2888 */
dd41f596 2889static inline void
70b97a7f 2890context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2891 struct task_struct *next)
1da177e4 2892{
dd41f596 2893 struct mm_struct *mm, *oldmm;
1da177e4 2894
e107be36 2895 prepare_task_switch(rq, prev, next);
0a16b607 2896 trace_sched_switch(rq, prev, next);
dd41f596
IM
2897 mm = next->mm;
2898 oldmm = prev->active_mm;
9226d125
ZA
2899 /*
2900 * For paravirt, this is coupled with an exit in switch_to to
2901 * combine the page table reload and the switch backend into
2902 * one hypercall.
2903 */
224101ed 2904 arch_start_context_switch(prev);
9226d125 2905
710390d9 2906 if (likely(!mm)) {
1da177e4
LT
2907 next->active_mm = oldmm;
2908 atomic_inc(&oldmm->mm_count);
2909 enter_lazy_tlb(oldmm, next);
2910 } else
2911 switch_mm(oldmm, mm, next);
2912
710390d9 2913 if (likely(!prev->mm)) {
1da177e4 2914 prev->active_mm = NULL;
1da177e4
LT
2915 rq->prev_mm = oldmm;
2916 }
3a5f5e48
IM
2917 /*
2918 * Since the runqueue lock will be released by the next
2919 * task (which is an invalid locking op but in the case
2920 * of the scheduler it's an obvious special-case), so we
2921 * do an early lockdep release here:
2922 */
2923#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2924 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2925#endif
1da177e4
LT
2926
2927 /* Here we just switch the register state and the stack. */
2928 switch_to(prev, next, prev);
2929
dd41f596
IM
2930 barrier();
2931 /*
2932 * this_rq must be evaluated again because prev may have moved
2933 * CPUs since it called schedule(), thus the 'rq' on its stack
2934 * frame will be invalid.
2935 */
2936 finish_task_switch(this_rq(), prev);
1da177e4
LT
2937}
2938
2939/*
2940 * nr_running, nr_uninterruptible and nr_context_switches:
2941 *
2942 * externally visible scheduler statistics: current number of runnable
2943 * threads, current number of uninterruptible-sleeping threads, total
2944 * number of context switches performed since bootup.
2945 */
2946unsigned long nr_running(void)
2947{
2948 unsigned long i, sum = 0;
2949
2950 for_each_online_cpu(i)
2951 sum += cpu_rq(i)->nr_running;
2952
2953 return sum;
2954}
2955
2956unsigned long nr_uninterruptible(void)
2957{
2958 unsigned long i, sum = 0;
2959
0a945022 2960 for_each_possible_cpu(i)
1da177e4
LT
2961 sum += cpu_rq(i)->nr_uninterruptible;
2962
2963 /*
2964 * Since we read the counters lockless, it might be slightly
2965 * inaccurate. Do not allow it to go below zero though:
2966 */
2967 if (unlikely((long)sum < 0))
2968 sum = 0;
2969
2970 return sum;
2971}
2972
2973unsigned long long nr_context_switches(void)
2974{
cc94abfc
SR
2975 int i;
2976 unsigned long long sum = 0;
1da177e4 2977
0a945022 2978 for_each_possible_cpu(i)
1da177e4
LT
2979 sum += cpu_rq(i)->nr_switches;
2980
2981 return sum;
2982}
2983
2984unsigned long nr_iowait(void)
2985{
2986 unsigned long i, sum = 0;
2987
0a945022 2988 for_each_possible_cpu(i)
1da177e4
LT
2989 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2990
2991 return sum;
2992}
2993
69d25870
AV
2994unsigned long nr_iowait_cpu(void)
2995{
2996 struct rq *this = this_rq();
2997 return atomic_read(&this->nr_iowait);
2998}
2999
3000unsigned long this_cpu_load(void)
3001{
3002 struct rq *this = this_rq();
3003 return this->cpu_load[0];
3004}
3005
3006
dce48a84
TG
3007/* Variables and functions for calc_load */
3008static atomic_long_t calc_load_tasks;
3009static unsigned long calc_load_update;
3010unsigned long avenrun[3];
3011EXPORT_SYMBOL(avenrun);
3012
2d02494f
TG
3013/**
3014 * get_avenrun - get the load average array
3015 * @loads: pointer to dest load array
3016 * @offset: offset to add
3017 * @shift: shift count to shift the result left
3018 *
3019 * These values are estimates at best, so no need for locking.
3020 */
3021void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3022{
3023 loads[0] = (avenrun[0] + offset) << shift;
3024 loads[1] = (avenrun[1] + offset) << shift;
3025 loads[2] = (avenrun[2] + offset) << shift;
3026}
3027
dce48a84
TG
3028static unsigned long
3029calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3030{
dce48a84
TG
3031 load *= exp;
3032 load += active * (FIXED_1 - exp);
3033 return load >> FSHIFT;
3034}
db1b1fef 3035
dce48a84
TG
3036/*
3037 * calc_load - update the avenrun load estimates 10 ticks after the
3038 * CPUs have updated calc_load_tasks.
3039 */
3040void calc_global_load(void)
3041{
3042 unsigned long upd = calc_load_update + 10;
3043 long active;
3044
3045 if (time_before(jiffies, upd))
3046 return;
db1b1fef 3047
dce48a84
TG
3048 active = atomic_long_read(&calc_load_tasks);
3049 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3050
dce48a84
TG
3051 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3052 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3053 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3054
3055 calc_load_update += LOAD_FREQ;
3056}
3057
3058/*
3059 * Either called from update_cpu_load() or from a cpu going idle
3060 */
3061static void calc_load_account_active(struct rq *this_rq)
3062{
3063 long nr_active, delta;
3064
3065 nr_active = this_rq->nr_running;
3066 nr_active += (long) this_rq->nr_uninterruptible;
3067
3068 if (nr_active != this_rq->calc_load_active) {
3069 delta = nr_active - this_rq->calc_load_active;
3070 this_rq->calc_load_active = nr_active;
3071 atomic_long_add(delta, &calc_load_tasks);
3072 }
db1b1fef
JS
3073}
3074
48f24c4d 3075/*
dd41f596
IM
3076 * Update rq->cpu_load[] statistics. This function is usually called every
3077 * scheduler tick (TICK_NSEC).
48f24c4d 3078 */
dd41f596 3079static void update_cpu_load(struct rq *this_rq)
48f24c4d 3080{
495eca49 3081 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3082 int i, scale;
3083
3084 this_rq->nr_load_updates++;
dd41f596
IM
3085
3086 /* Update our load: */
3087 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3088 unsigned long old_load, new_load;
3089
3090 /* scale is effectively 1 << i now, and >> i divides by scale */
3091
3092 old_load = this_rq->cpu_load[i];
3093 new_load = this_load;
a25707f3
IM
3094 /*
3095 * Round up the averaging division if load is increasing. This
3096 * prevents us from getting stuck on 9 if the load is 10, for
3097 * example.
3098 */
3099 if (new_load > old_load)
3100 new_load += scale-1;
dd41f596
IM
3101 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3102 }
dce48a84
TG
3103
3104 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3105 this_rq->calc_load_update += LOAD_FREQ;
3106 calc_load_account_active(this_rq);
3107 }
48f24c4d
IM
3108}
3109
dd41f596
IM
3110#ifdef CONFIG_SMP
3111
1da177e4 3112/*
38022906
PZ
3113 * sched_exec - execve() is a valuable balancing opportunity, because at
3114 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3115 */
38022906 3116void sched_exec(void)
1da177e4 3117{
38022906 3118 struct task_struct *p = current;
70b97a7f 3119 struct migration_req req;
38022906 3120 int dest_cpu, this_cpu;
1da177e4 3121 unsigned long flags;
70b97a7f 3122 struct rq *rq;
1da177e4 3123
38022906
PZ
3124again:
3125 this_cpu = get_cpu();
3126 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3127 if (dest_cpu == this_cpu) {
3128 put_cpu();
3129 return;
3130 }
3131
1da177e4 3132 rq = task_rq_lock(p, &flags);
38022906
PZ
3133 put_cpu();
3134
3135 /*
3136 * select_task_rq() can race against ->cpus_allowed
3137 */
96f874e2 3138 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3139 || unlikely(!cpu_active(dest_cpu))) {
3140 task_rq_unlock(rq, &flags);
3141 goto again;
3142 }
1da177e4
LT
3143
3144 /* force the process onto the specified CPU */
3145 if (migrate_task(p, dest_cpu, &req)) {
3146 /* Need to wait for migration thread (might exit: take ref). */
3147 struct task_struct *mt = rq->migration_thread;
36c8b586 3148
1da177e4
LT
3149 get_task_struct(mt);
3150 task_rq_unlock(rq, &flags);
3151 wake_up_process(mt);
3152 put_task_struct(mt);
3153 wait_for_completion(&req.done);
36c8b586 3154
1da177e4
LT
3155 return;
3156 }
1da177e4
LT
3157 task_rq_unlock(rq, &flags);
3158}
3159
1da177e4
LT
3160#endif
3161
1da177e4
LT
3162DEFINE_PER_CPU(struct kernel_stat, kstat);
3163
3164EXPORT_PER_CPU_SYMBOL(kstat);
3165
3166/*
c5f8d995 3167 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3168 * @p in case that task is currently running.
c5f8d995
HS
3169 *
3170 * Called with task_rq_lock() held on @rq.
1da177e4 3171 */
c5f8d995
HS
3172static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3173{
3174 u64 ns = 0;
3175
3176 if (task_current(rq, p)) {
3177 update_rq_clock(rq);
3178 ns = rq->clock - p->se.exec_start;
3179 if ((s64)ns < 0)
3180 ns = 0;
3181 }
3182
3183 return ns;
3184}
3185
bb34d92f 3186unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3187{
1da177e4 3188 unsigned long flags;
41b86e9c 3189 struct rq *rq;
bb34d92f 3190 u64 ns = 0;
48f24c4d 3191
41b86e9c 3192 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3193 ns = do_task_delta_exec(p, rq);
3194 task_rq_unlock(rq, &flags);
1508487e 3195
c5f8d995
HS
3196 return ns;
3197}
f06febc9 3198
c5f8d995
HS
3199/*
3200 * Return accounted runtime for the task.
3201 * In case the task is currently running, return the runtime plus current's
3202 * pending runtime that have not been accounted yet.
3203 */
3204unsigned long long task_sched_runtime(struct task_struct *p)
3205{
3206 unsigned long flags;
3207 struct rq *rq;
3208 u64 ns = 0;
3209
3210 rq = task_rq_lock(p, &flags);
3211 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3212 task_rq_unlock(rq, &flags);
3213
3214 return ns;
3215}
48f24c4d 3216
c5f8d995
HS
3217/*
3218 * Return sum_exec_runtime for the thread group.
3219 * In case the task is currently running, return the sum plus current's
3220 * pending runtime that have not been accounted yet.
3221 *
3222 * Note that the thread group might have other running tasks as well,
3223 * so the return value not includes other pending runtime that other
3224 * running tasks might have.
3225 */
3226unsigned long long thread_group_sched_runtime(struct task_struct *p)
3227{
3228 struct task_cputime totals;
3229 unsigned long flags;
3230 struct rq *rq;
3231 u64 ns;
3232
3233 rq = task_rq_lock(p, &flags);
3234 thread_group_cputime(p, &totals);
3235 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3236 task_rq_unlock(rq, &flags);
48f24c4d 3237
1da177e4
LT
3238 return ns;
3239}
3240
1da177e4
LT
3241/*
3242 * Account user cpu time to a process.
3243 * @p: the process that the cpu time gets accounted to
1da177e4 3244 * @cputime: the cpu time spent in user space since the last update
457533a7 3245 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3246 */
457533a7
MS
3247void account_user_time(struct task_struct *p, cputime_t cputime,
3248 cputime_t cputime_scaled)
1da177e4
LT
3249{
3250 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3251 cputime64_t tmp;
3252
457533a7 3253 /* Add user time to process. */
1da177e4 3254 p->utime = cputime_add(p->utime, cputime);
457533a7 3255 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3256 account_group_user_time(p, cputime);
1da177e4
LT
3257
3258 /* Add user time to cpustat. */
3259 tmp = cputime_to_cputime64(cputime);
3260 if (TASK_NICE(p) > 0)
3261 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3262 else
3263 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3264
3265 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3266 /* Account for user time used */
3267 acct_update_integrals(p);
1da177e4
LT
3268}
3269
94886b84
LV
3270/*
3271 * Account guest cpu time to a process.
3272 * @p: the process that the cpu time gets accounted to
3273 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3274 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3275 */
457533a7
MS
3276static void account_guest_time(struct task_struct *p, cputime_t cputime,
3277 cputime_t cputime_scaled)
94886b84
LV
3278{
3279 cputime64_t tmp;
3280 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3281
3282 tmp = cputime_to_cputime64(cputime);
3283
457533a7 3284 /* Add guest time to process. */
94886b84 3285 p->utime = cputime_add(p->utime, cputime);
457533a7 3286 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3287 account_group_user_time(p, cputime);
94886b84
LV
3288 p->gtime = cputime_add(p->gtime, cputime);
3289
457533a7 3290 /* Add guest time to cpustat. */
ce0e7b28
RO
3291 if (TASK_NICE(p) > 0) {
3292 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3293 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3294 } else {
3295 cpustat->user = cputime64_add(cpustat->user, tmp);
3296 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3297 }
94886b84
LV
3298}
3299
1da177e4
LT
3300/*
3301 * Account system cpu time to a process.
3302 * @p: the process that the cpu time gets accounted to
3303 * @hardirq_offset: the offset to subtract from hardirq_count()
3304 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3305 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3306 */
3307void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3308 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3309{
3310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3311 cputime64_t tmp;
3312
983ed7a6 3313 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3314 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3315 return;
3316 }
94886b84 3317
457533a7 3318 /* Add system time to process. */
1da177e4 3319 p->stime = cputime_add(p->stime, cputime);
457533a7 3320 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3321 account_group_system_time(p, cputime);
1da177e4
LT
3322
3323 /* Add system time to cpustat. */
3324 tmp = cputime_to_cputime64(cputime);
3325 if (hardirq_count() - hardirq_offset)
3326 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3327 else if (softirq_count())
3328 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3329 else
79741dd3
MS
3330 cpustat->system = cputime64_add(cpustat->system, tmp);
3331
ef12fefa
BR
3332 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3333
1da177e4
LT
3334 /* Account for system time used */
3335 acct_update_integrals(p);
1da177e4
LT
3336}
3337
c66f08be 3338/*
1da177e4 3339 * Account for involuntary wait time.
1da177e4 3340 * @steal: the cpu time spent in involuntary wait
c66f08be 3341 */
79741dd3 3342void account_steal_time(cputime_t cputime)
c66f08be 3343{
79741dd3
MS
3344 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3345 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3346
3347 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3348}
3349
1da177e4 3350/*
79741dd3
MS
3351 * Account for idle time.
3352 * @cputime: the cpu time spent in idle wait
1da177e4 3353 */
79741dd3 3354void account_idle_time(cputime_t cputime)
1da177e4
LT
3355{
3356 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3357 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3358 struct rq *rq = this_rq();
1da177e4 3359
79741dd3
MS
3360 if (atomic_read(&rq->nr_iowait) > 0)
3361 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3362 else
3363 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3364}
3365
79741dd3
MS
3366#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3367
3368/*
3369 * Account a single tick of cpu time.
3370 * @p: the process that the cpu time gets accounted to
3371 * @user_tick: indicates if the tick is a user or a system tick
3372 */
3373void account_process_tick(struct task_struct *p, int user_tick)
3374{
a42548a1 3375 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3376 struct rq *rq = this_rq();
3377
3378 if (user_tick)
a42548a1 3379 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3380 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3381 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3382 one_jiffy_scaled);
3383 else
a42548a1 3384 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3385}
3386
3387/*
3388 * Account multiple ticks of steal time.
3389 * @p: the process from which the cpu time has been stolen
3390 * @ticks: number of stolen ticks
3391 */
3392void account_steal_ticks(unsigned long ticks)
3393{
3394 account_steal_time(jiffies_to_cputime(ticks));
3395}
3396
3397/*
3398 * Account multiple ticks of idle time.
3399 * @ticks: number of stolen ticks
3400 */
3401void account_idle_ticks(unsigned long ticks)
3402{
3403 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3404}
3405
79741dd3
MS
3406#endif
3407
49048622
BS
3408/*
3409 * Use precise platform statistics if available:
3410 */
3411#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3412void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3413{
d99ca3b9
HS
3414 *ut = p->utime;
3415 *st = p->stime;
49048622
BS
3416}
3417
0cf55e1e 3418void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3419{
0cf55e1e
HS
3420 struct task_cputime cputime;
3421
3422 thread_group_cputime(p, &cputime);
3423
3424 *ut = cputime.utime;
3425 *st = cputime.stime;
49048622
BS
3426}
3427#else
761b1d26
HS
3428
3429#ifndef nsecs_to_cputime
b7b20df9 3430# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3431#endif
3432
d180c5bc 3433void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3434{
d99ca3b9 3435 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3436
3437 /*
3438 * Use CFS's precise accounting:
3439 */
d180c5bc 3440 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3441
3442 if (total) {
d180c5bc
HS
3443 u64 temp;
3444
3445 temp = (u64)(rtime * utime);
49048622 3446 do_div(temp, total);
d180c5bc
HS
3447 utime = (cputime_t)temp;
3448 } else
3449 utime = rtime;
49048622 3450
d180c5bc
HS
3451 /*
3452 * Compare with previous values, to keep monotonicity:
3453 */
761b1d26 3454 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3455 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3456
d99ca3b9
HS
3457 *ut = p->prev_utime;
3458 *st = p->prev_stime;
49048622
BS
3459}
3460
0cf55e1e
HS
3461/*
3462 * Must be called with siglock held.
3463 */
3464void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3465{
0cf55e1e
HS
3466 struct signal_struct *sig = p->signal;
3467 struct task_cputime cputime;
3468 cputime_t rtime, utime, total;
49048622 3469
0cf55e1e 3470 thread_group_cputime(p, &cputime);
49048622 3471
0cf55e1e
HS
3472 total = cputime_add(cputime.utime, cputime.stime);
3473 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3474
0cf55e1e
HS
3475 if (total) {
3476 u64 temp;
49048622 3477
0cf55e1e
HS
3478 temp = (u64)(rtime * cputime.utime);
3479 do_div(temp, total);
3480 utime = (cputime_t)temp;
3481 } else
3482 utime = rtime;
3483
3484 sig->prev_utime = max(sig->prev_utime, utime);
3485 sig->prev_stime = max(sig->prev_stime,
3486 cputime_sub(rtime, sig->prev_utime));
3487
3488 *ut = sig->prev_utime;
3489 *st = sig->prev_stime;
49048622 3490}
49048622 3491#endif
49048622 3492
7835b98b
CL
3493/*
3494 * This function gets called by the timer code, with HZ frequency.
3495 * We call it with interrupts disabled.
3496 *
3497 * It also gets called by the fork code, when changing the parent's
3498 * timeslices.
3499 */
3500void scheduler_tick(void)
3501{
7835b98b
CL
3502 int cpu = smp_processor_id();
3503 struct rq *rq = cpu_rq(cpu);
dd41f596 3504 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3505
3506 sched_clock_tick();
dd41f596 3507
05fa785c 3508 raw_spin_lock(&rq->lock);
3e51f33f 3509 update_rq_clock(rq);
f1a438d8 3510 update_cpu_load(rq);
fa85ae24 3511 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3512 raw_spin_unlock(&rq->lock);
7835b98b 3513
cdd6c482 3514 perf_event_task_tick(curr, cpu);
e220d2dc 3515
e418e1c2 3516#ifdef CONFIG_SMP
dd41f596
IM
3517 rq->idle_at_tick = idle_cpu(cpu);
3518 trigger_load_balance(rq, cpu);
e418e1c2 3519#endif
1da177e4
LT
3520}
3521
132380a0 3522notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3523{
3524 if (in_lock_functions(addr)) {
3525 addr = CALLER_ADDR2;
3526 if (in_lock_functions(addr))
3527 addr = CALLER_ADDR3;
3528 }
3529 return addr;
3530}
1da177e4 3531
7e49fcce
SR
3532#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3533 defined(CONFIG_PREEMPT_TRACER))
3534
43627582 3535void __kprobes add_preempt_count(int val)
1da177e4 3536{
6cd8a4bb 3537#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3538 /*
3539 * Underflow?
3540 */
9a11b49a
IM
3541 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3542 return;
6cd8a4bb 3543#endif
1da177e4 3544 preempt_count() += val;
6cd8a4bb 3545#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3546 /*
3547 * Spinlock count overflowing soon?
3548 */
33859f7f
MOS
3549 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3550 PREEMPT_MASK - 10);
6cd8a4bb
SR
3551#endif
3552 if (preempt_count() == val)
3553 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3554}
3555EXPORT_SYMBOL(add_preempt_count);
3556
43627582 3557void __kprobes sub_preempt_count(int val)
1da177e4 3558{
6cd8a4bb 3559#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3560 /*
3561 * Underflow?
3562 */
01e3eb82 3563 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3564 return;
1da177e4
LT
3565 /*
3566 * Is the spinlock portion underflowing?
3567 */
9a11b49a
IM
3568 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3569 !(preempt_count() & PREEMPT_MASK)))
3570 return;
6cd8a4bb 3571#endif
9a11b49a 3572
6cd8a4bb
SR
3573 if (preempt_count() == val)
3574 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3575 preempt_count() -= val;
3576}
3577EXPORT_SYMBOL(sub_preempt_count);
3578
3579#endif
3580
3581/*
dd41f596 3582 * Print scheduling while atomic bug:
1da177e4 3583 */
dd41f596 3584static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3585{
838225b4
SS
3586 struct pt_regs *regs = get_irq_regs();
3587
3df0fc5b
PZ
3588 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3589 prev->comm, prev->pid, preempt_count());
838225b4 3590
dd41f596 3591 debug_show_held_locks(prev);
e21f5b15 3592 print_modules();
dd41f596
IM
3593 if (irqs_disabled())
3594 print_irqtrace_events(prev);
838225b4
SS
3595
3596 if (regs)
3597 show_regs(regs);
3598 else
3599 dump_stack();
dd41f596 3600}
1da177e4 3601
dd41f596
IM
3602/*
3603 * Various schedule()-time debugging checks and statistics:
3604 */
3605static inline void schedule_debug(struct task_struct *prev)
3606{
1da177e4 3607 /*
41a2d6cf 3608 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3609 * schedule() atomically, we ignore that path for now.
3610 * Otherwise, whine if we are scheduling when we should not be.
3611 */
3f33a7ce 3612 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3613 __schedule_bug(prev);
3614
1da177e4
LT
3615 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3616
2d72376b 3617 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3618#ifdef CONFIG_SCHEDSTATS
3619 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3620 schedstat_inc(this_rq(), bkl_count);
3621 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3622 }
3623#endif
dd41f596
IM
3624}
3625
6cecd084 3626static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3627{
6cecd084
PZ
3628 if (prev->state == TASK_RUNNING) {
3629 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3630
6cecd084
PZ
3631 runtime -= prev->se.prev_sum_exec_runtime;
3632 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3633
3634 /*
3635 * In order to avoid avg_overlap growing stale when we are
3636 * indeed overlapping and hence not getting put to sleep, grow
3637 * the avg_overlap on preemption.
3638 *
3639 * We use the average preemption runtime because that
3640 * correlates to the amount of cache footprint a task can
3641 * build up.
3642 */
6cecd084 3643 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3644 }
6cecd084 3645 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3646}
3647
dd41f596
IM
3648/*
3649 * Pick up the highest-prio task:
3650 */
3651static inline struct task_struct *
b67802ea 3652pick_next_task(struct rq *rq)
dd41f596 3653{
5522d5d5 3654 const struct sched_class *class;
dd41f596 3655 struct task_struct *p;
1da177e4
LT
3656
3657 /*
dd41f596
IM
3658 * Optimization: we know that if all tasks are in
3659 * the fair class we can call that function directly:
1da177e4 3660 */
dd41f596 3661 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3662 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3663 if (likely(p))
3664 return p;
1da177e4
LT
3665 }
3666
dd41f596
IM
3667 class = sched_class_highest;
3668 for ( ; ; ) {
fb8d4724 3669 p = class->pick_next_task(rq);
dd41f596
IM
3670 if (p)
3671 return p;
3672 /*
3673 * Will never be NULL as the idle class always
3674 * returns a non-NULL p:
3675 */
3676 class = class->next;
3677 }
3678}
1da177e4 3679
dd41f596
IM
3680/*
3681 * schedule() is the main scheduler function.
3682 */
ff743345 3683asmlinkage void __sched schedule(void)
dd41f596
IM
3684{
3685 struct task_struct *prev, *next;
67ca7bde 3686 unsigned long *switch_count;
dd41f596 3687 struct rq *rq;
31656519 3688 int cpu;
dd41f596 3689
ff743345
PZ
3690need_resched:
3691 preempt_disable();
dd41f596
IM
3692 cpu = smp_processor_id();
3693 rq = cpu_rq(cpu);
d6714c22 3694 rcu_sched_qs(cpu);
dd41f596
IM
3695 prev = rq->curr;
3696 switch_count = &prev->nivcsw;
3697
3698 release_kernel_lock(prev);
3699need_resched_nonpreemptible:
3700
3701 schedule_debug(prev);
1da177e4 3702
31656519 3703 if (sched_feat(HRTICK))
f333fdc9 3704 hrtick_clear(rq);
8f4d37ec 3705
05fa785c 3706 raw_spin_lock_irq(&rq->lock);
3e51f33f 3707 update_rq_clock(rq);
1e819950 3708 clear_tsk_need_resched(prev);
1da177e4 3709
1da177e4 3710 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3711 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3712 prev->state = TASK_RUNNING;
16882c1e 3713 else
2e1cb74a 3714 deactivate_task(rq, prev, 1);
dd41f596 3715 switch_count = &prev->nvcsw;
1da177e4
LT
3716 }
3717
3f029d3c 3718 pre_schedule(rq, prev);
f65eda4f 3719
dd41f596 3720 if (unlikely(!rq->nr_running))
1da177e4 3721 idle_balance(cpu, rq);
1da177e4 3722
df1c99d4 3723 put_prev_task(rq, prev);
b67802ea 3724 next = pick_next_task(rq);
1da177e4 3725
1da177e4 3726 if (likely(prev != next)) {
673a90a1 3727 sched_info_switch(prev, next);
cdd6c482 3728 perf_event_task_sched_out(prev, next, cpu);
673a90a1 3729
1da177e4
LT
3730 rq->nr_switches++;
3731 rq->curr = next;
3732 ++*switch_count;
3733
dd41f596 3734 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3735 /*
3736 * the context switch might have flipped the stack from under
3737 * us, hence refresh the local variables.
3738 */
3739 cpu = smp_processor_id();
3740 rq = cpu_rq(cpu);
1da177e4 3741 } else
05fa785c 3742 raw_spin_unlock_irq(&rq->lock);
1da177e4 3743
3f029d3c 3744 post_schedule(rq);
1da177e4 3745
8f4d37ec 3746 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3747 goto need_resched_nonpreemptible;
8f4d37ec 3748
1da177e4 3749 preempt_enable_no_resched();
ff743345 3750 if (need_resched())
1da177e4
LT
3751 goto need_resched;
3752}
1da177e4
LT
3753EXPORT_SYMBOL(schedule);
3754
c08f7829 3755#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3756/*
3757 * Look out! "owner" is an entirely speculative pointer
3758 * access and not reliable.
3759 */
3760int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3761{
3762 unsigned int cpu;
3763 struct rq *rq;
3764
3765 if (!sched_feat(OWNER_SPIN))
3766 return 0;
3767
3768#ifdef CONFIG_DEBUG_PAGEALLOC
3769 /*
3770 * Need to access the cpu field knowing that
3771 * DEBUG_PAGEALLOC could have unmapped it if
3772 * the mutex owner just released it and exited.
3773 */
3774 if (probe_kernel_address(&owner->cpu, cpu))
3775 goto out;
3776#else
3777 cpu = owner->cpu;
3778#endif
3779
3780 /*
3781 * Even if the access succeeded (likely case),
3782 * the cpu field may no longer be valid.
3783 */
3784 if (cpu >= nr_cpumask_bits)
3785 goto out;
3786
3787 /*
3788 * We need to validate that we can do a
3789 * get_cpu() and that we have the percpu area.
3790 */
3791 if (!cpu_online(cpu))
3792 goto out;
3793
3794 rq = cpu_rq(cpu);
3795
3796 for (;;) {
3797 /*
3798 * Owner changed, break to re-assess state.
3799 */
3800 if (lock->owner != owner)
3801 break;
3802
3803 /*
3804 * Is that owner really running on that cpu?
3805 */
3806 if (task_thread_info(rq->curr) != owner || need_resched())
3807 return 0;
3808
3809 cpu_relax();
3810 }
3811out:
3812 return 1;
3813}
3814#endif
3815
1da177e4
LT
3816#ifdef CONFIG_PREEMPT
3817/*
2ed6e34f 3818 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3819 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3820 * occur there and call schedule directly.
3821 */
3822asmlinkage void __sched preempt_schedule(void)
3823{
3824 struct thread_info *ti = current_thread_info();
6478d880 3825
1da177e4
LT
3826 /*
3827 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3828 * we do not want to preempt the current task. Just return..
1da177e4 3829 */
beed33a8 3830 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3831 return;
3832
3a5c359a
AK
3833 do {
3834 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3835 schedule();
3a5c359a 3836 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3837
3a5c359a
AK
3838 /*
3839 * Check again in case we missed a preemption opportunity
3840 * between schedule and now.
3841 */
3842 barrier();
5ed0cec0 3843 } while (need_resched());
1da177e4 3844}
1da177e4
LT
3845EXPORT_SYMBOL(preempt_schedule);
3846
3847/*
2ed6e34f 3848 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3849 * off of irq context.
3850 * Note, that this is called and return with irqs disabled. This will
3851 * protect us against recursive calling from irq.
3852 */
3853asmlinkage void __sched preempt_schedule_irq(void)
3854{
3855 struct thread_info *ti = current_thread_info();
6478d880 3856
2ed6e34f 3857 /* Catch callers which need to be fixed */
1da177e4
LT
3858 BUG_ON(ti->preempt_count || !irqs_disabled());
3859
3a5c359a
AK
3860 do {
3861 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3862 local_irq_enable();
3863 schedule();
3864 local_irq_disable();
3a5c359a 3865 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3866
3a5c359a
AK
3867 /*
3868 * Check again in case we missed a preemption opportunity
3869 * between schedule and now.
3870 */
3871 barrier();
5ed0cec0 3872 } while (need_resched());
1da177e4
LT
3873}
3874
3875#endif /* CONFIG_PREEMPT */
3876
63859d4f 3877int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3878 void *key)
1da177e4 3879{
63859d4f 3880 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3881}
1da177e4
LT
3882EXPORT_SYMBOL(default_wake_function);
3883
3884/*
41a2d6cf
IM
3885 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3886 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3887 * number) then we wake all the non-exclusive tasks and one exclusive task.
3888 *
3889 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3890 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3891 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3892 */
78ddb08f 3893static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3894 int nr_exclusive, int wake_flags, void *key)
1da177e4 3895{
2e45874c 3896 wait_queue_t *curr, *next;
1da177e4 3897
2e45874c 3898 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3899 unsigned flags = curr->flags;
3900
63859d4f 3901 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3902 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3903 break;
3904 }
3905}
3906
3907/**
3908 * __wake_up - wake up threads blocked on a waitqueue.
3909 * @q: the waitqueue
3910 * @mode: which threads
3911 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3912 * @key: is directly passed to the wakeup function
50fa610a
DH
3913 *
3914 * It may be assumed that this function implies a write memory barrier before
3915 * changing the task state if and only if any tasks are woken up.
1da177e4 3916 */
7ad5b3a5 3917void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3918 int nr_exclusive, void *key)
1da177e4
LT
3919{
3920 unsigned long flags;
3921
3922 spin_lock_irqsave(&q->lock, flags);
3923 __wake_up_common(q, mode, nr_exclusive, 0, key);
3924 spin_unlock_irqrestore(&q->lock, flags);
3925}
1da177e4
LT
3926EXPORT_SYMBOL(__wake_up);
3927
3928/*
3929 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3930 */
7ad5b3a5 3931void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3932{
3933 __wake_up_common(q, mode, 1, 0, NULL);
3934}
3935
4ede816a
DL
3936void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3937{
3938 __wake_up_common(q, mode, 1, 0, key);
3939}
3940
1da177e4 3941/**
4ede816a 3942 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3943 * @q: the waitqueue
3944 * @mode: which threads
3945 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3946 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3947 *
3948 * The sync wakeup differs that the waker knows that it will schedule
3949 * away soon, so while the target thread will be woken up, it will not
3950 * be migrated to another CPU - ie. the two threads are 'synchronized'
3951 * with each other. This can prevent needless bouncing between CPUs.
3952 *
3953 * On UP it can prevent extra preemption.
50fa610a
DH
3954 *
3955 * It may be assumed that this function implies a write memory barrier before
3956 * changing the task state if and only if any tasks are woken up.
1da177e4 3957 */
4ede816a
DL
3958void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3959 int nr_exclusive, void *key)
1da177e4
LT
3960{
3961 unsigned long flags;
7d478721 3962 int wake_flags = WF_SYNC;
1da177e4
LT
3963
3964 if (unlikely(!q))
3965 return;
3966
3967 if (unlikely(!nr_exclusive))
7d478721 3968 wake_flags = 0;
1da177e4
LT
3969
3970 spin_lock_irqsave(&q->lock, flags);
7d478721 3971 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3972 spin_unlock_irqrestore(&q->lock, flags);
3973}
4ede816a
DL
3974EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3975
3976/*
3977 * __wake_up_sync - see __wake_up_sync_key()
3978 */
3979void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3980{
3981 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3982}
1da177e4
LT
3983EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3984
65eb3dc6
KD
3985/**
3986 * complete: - signals a single thread waiting on this completion
3987 * @x: holds the state of this particular completion
3988 *
3989 * This will wake up a single thread waiting on this completion. Threads will be
3990 * awakened in the same order in which they were queued.
3991 *
3992 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3993 *
3994 * It may be assumed that this function implies a write memory barrier before
3995 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3996 */
b15136e9 3997void complete(struct completion *x)
1da177e4
LT
3998{
3999 unsigned long flags;
4000
4001 spin_lock_irqsave(&x->wait.lock, flags);
4002 x->done++;
d9514f6c 4003 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4004 spin_unlock_irqrestore(&x->wait.lock, flags);
4005}
4006EXPORT_SYMBOL(complete);
4007
65eb3dc6
KD
4008/**
4009 * complete_all: - signals all threads waiting on this completion
4010 * @x: holds the state of this particular completion
4011 *
4012 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4013 *
4014 * It may be assumed that this function implies a write memory barrier before
4015 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4016 */
b15136e9 4017void complete_all(struct completion *x)
1da177e4
LT
4018{
4019 unsigned long flags;
4020
4021 spin_lock_irqsave(&x->wait.lock, flags);
4022 x->done += UINT_MAX/2;
d9514f6c 4023 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4024 spin_unlock_irqrestore(&x->wait.lock, flags);
4025}
4026EXPORT_SYMBOL(complete_all);
4027
8cbbe86d
AK
4028static inline long __sched
4029do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4030{
1da177e4
LT
4031 if (!x->done) {
4032 DECLARE_WAITQUEUE(wait, current);
4033
4034 wait.flags |= WQ_FLAG_EXCLUSIVE;
4035 __add_wait_queue_tail(&x->wait, &wait);
4036 do {
94d3d824 4037 if (signal_pending_state(state, current)) {
ea71a546
ON
4038 timeout = -ERESTARTSYS;
4039 break;
8cbbe86d
AK
4040 }
4041 __set_current_state(state);
1da177e4
LT
4042 spin_unlock_irq(&x->wait.lock);
4043 timeout = schedule_timeout(timeout);
4044 spin_lock_irq(&x->wait.lock);
ea71a546 4045 } while (!x->done && timeout);
1da177e4 4046 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4047 if (!x->done)
4048 return timeout;
1da177e4
LT
4049 }
4050 x->done--;
ea71a546 4051 return timeout ?: 1;
1da177e4 4052}
1da177e4 4053
8cbbe86d
AK
4054static long __sched
4055wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4056{
1da177e4
LT
4057 might_sleep();
4058
4059 spin_lock_irq(&x->wait.lock);
8cbbe86d 4060 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4061 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4062 return timeout;
4063}
1da177e4 4064
65eb3dc6
KD
4065/**
4066 * wait_for_completion: - waits for completion of a task
4067 * @x: holds the state of this particular completion
4068 *
4069 * This waits to be signaled for completion of a specific task. It is NOT
4070 * interruptible and there is no timeout.
4071 *
4072 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4073 * and interrupt capability. Also see complete().
4074 */
b15136e9 4075void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4076{
4077 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4078}
8cbbe86d 4079EXPORT_SYMBOL(wait_for_completion);
1da177e4 4080
65eb3dc6
KD
4081/**
4082 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4083 * @x: holds the state of this particular completion
4084 * @timeout: timeout value in jiffies
4085 *
4086 * This waits for either a completion of a specific task to be signaled or for a
4087 * specified timeout to expire. The timeout is in jiffies. It is not
4088 * interruptible.
4089 */
b15136e9 4090unsigned long __sched
8cbbe86d 4091wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4092{
8cbbe86d 4093 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4094}
8cbbe86d 4095EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4096
65eb3dc6
KD
4097/**
4098 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4099 * @x: holds the state of this particular completion
4100 *
4101 * This waits for completion of a specific task to be signaled. It is
4102 * interruptible.
4103 */
8cbbe86d 4104int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4105{
51e97990
AK
4106 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4107 if (t == -ERESTARTSYS)
4108 return t;
4109 return 0;
0fec171c 4110}
8cbbe86d 4111EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4112
65eb3dc6
KD
4113/**
4114 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4115 * @x: holds the state of this particular completion
4116 * @timeout: timeout value in jiffies
4117 *
4118 * This waits for either a completion of a specific task to be signaled or for a
4119 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4120 */
b15136e9 4121unsigned long __sched
8cbbe86d
AK
4122wait_for_completion_interruptible_timeout(struct completion *x,
4123 unsigned long timeout)
0fec171c 4124{
8cbbe86d 4125 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4126}
8cbbe86d 4127EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4128
65eb3dc6
KD
4129/**
4130 * wait_for_completion_killable: - waits for completion of a task (killable)
4131 * @x: holds the state of this particular completion
4132 *
4133 * This waits to be signaled for completion of a specific task. It can be
4134 * interrupted by a kill signal.
4135 */
009e577e
MW
4136int __sched wait_for_completion_killable(struct completion *x)
4137{
4138 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4139 if (t == -ERESTARTSYS)
4140 return t;
4141 return 0;
4142}
4143EXPORT_SYMBOL(wait_for_completion_killable);
4144
be4de352
DC
4145/**
4146 * try_wait_for_completion - try to decrement a completion without blocking
4147 * @x: completion structure
4148 *
4149 * Returns: 0 if a decrement cannot be done without blocking
4150 * 1 if a decrement succeeded.
4151 *
4152 * If a completion is being used as a counting completion,
4153 * attempt to decrement the counter without blocking. This
4154 * enables us to avoid waiting if the resource the completion
4155 * is protecting is not available.
4156 */
4157bool try_wait_for_completion(struct completion *x)
4158{
7539a3b3 4159 unsigned long flags;
be4de352
DC
4160 int ret = 1;
4161
7539a3b3 4162 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4163 if (!x->done)
4164 ret = 0;
4165 else
4166 x->done--;
7539a3b3 4167 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4168 return ret;
4169}
4170EXPORT_SYMBOL(try_wait_for_completion);
4171
4172/**
4173 * completion_done - Test to see if a completion has any waiters
4174 * @x: completion structure
4175 *
4176 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4177 * 1 if there are no waiters.
4178 *
4179 */
4180bool completion_done(struct completion *x)
4181{
7539a3b3 4182 unsigned long flags;
be4de352
DC
4183 int ret = 1;
4184
7539a3b3 4185 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4186 if (!x->done)
4187 ret = 0;
7539a3b3 4188 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4189 return ret;
4190}
4191EXPORT_SYMBOL(completion_done);
4192
8cbbe86d
AK
4193static long __sched
4194sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4195{
0fec171c
IM
4196 unsigned long flags;
4197 wait_queue_t wait;
4198
4199 init_waitqueue_entry(&wait, current);
1da177e4 4200
8cbbe86d 4201 __set_current_state(state);
1da177e4 4202
8cbbe86d
AK
4203 spin_lock_irqsave(&q->lock, flags);
4204 __add_wait_queue(q, &wait);
4205 spin_unlock(&q->lock);
4206 timeout = schedule_timeout(timeout);
4207 spin_lock_irq(&q->lock);
4208 __remove_wait_queue(q, &wait);
4209 spin_unlock_irqrestore(&q->lock, flags);
4210
4211 return timeout;
4212}
4213
4214void __sched interruptible_sleep_on(wait_queue_head_t *q)
4215{
4216 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4217}
1da177e4
LT
4218EXPORT_SYMBOL(interruptible_sleep_on);
4219
0fec171c 4220long __sched
95cdf3b7 4221interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4222{
8cbbe86d 4223 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4224}
1da177e4
LT
4225EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4226
0fec171c 4227void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4228{
8cbbe86d 4229 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4230}
1da177e4
LT
4231EXPORT_SYMBOL(sleep_on);
4232
0fec171c 4233long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4234{
8cbbe86d 4235 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4236}
1da177e4
LT
4237EXPORT_SYMBOL(sleep_on_timeout);
4238
b29739f9
IM
4239#ifdef CONFIG_RT_MUTEXES
4240
4241/*
4242 * rt_mutex_setprio - set the current priority of a task
4243 * @p: task
4244 * @prio: prio value (kernel-internal form)
4245 *
4246 * This function changes the 'effective' priority of a task. It does
4247 * not touch ->normal_prio like __setscheduler().
4248 *
4249 * Used by the rt_mutex code to implement priority inheritance logic.
4250 */
36c8b586 4251void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4252{
4253 unsigned long flags;
83b699ed 4254 int oldprio, on_rq, running;
70b97a7f 4255 struct rq *rq;
cb469845 4256 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4257
4258 BUG_ON(prio < 0 || prio > MAX_PRIO);
4259
4260 rq = task_rq_lock(p, &flags);
a8e504d2 4261 update_rq_clock(rq);
b29739f9 4262
d5f9f942 4263 oldprio = p->prio;
dd41f596 4264 on_rq = p->se.on_rq;
051a1d1a 4265 running = task_current(rq, p);
0e1f3483 4266 if (on_rq)
69be72c1 4267 dequeue_task(rq, p, 0);
0e1f3483
HS
4268 if (running)
4269 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4270
4271 if (rt_prio(prio))
4272 p->sched_class = &rt_sched_class;
4273 else
4274 p->sched_class = &fair_sched_class;
4275
b29739f9
IM
4276 p->prio = prio;
4277
0e1f3483
HS
4278 if (running)
4279 p->sched_class->set_curr_task(rq);
dd41f596 4280 if (on_rq) {
8159f87e 4281 enqueue_task(rq, p, 0);
cb469845
SR
4282
4283 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4284 }
4285 task_rq_unlock(rq, &flags);
4286}
4287
4288#endif
4289
36c8b586 4290void set_user_nice(struct task_struct *p, long nice)
1da177e4 4291{
dd41f596 4292 int old_prio, delta, on_rq;
1da177e4 4293 unsigned long flags;
70b97a7f 4294 struct rq *rq;
1da177e4
LT
4295
4296 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4297 return;
4298 /*
4299 * We have to be careful, if called from sys_setpriority(),
4300 * the task might be in the middle of scheduling on another CPU.
4301 */
4302 rq = task_rq_lock(p, &flags);
a8e504d2 4303 update_rq_clock(rq);
1da177e4
LT
4304 /*
4305 * The RT priorities are set via sched_setscheduler(), but we still
4306 * allow the 'normal' nice value to be set - but as expected
4307 * it wont have any effect on scheduling until the task is
dd41f596 4308 * SCHED_FIFO/SCHED_RR:
1da177e4 4309 */
e05606d3 4310 if (task_has_rt_policy(p)) {
1da177e4
LT
4311 p->static_prio = NICE_TO_PRIO(nice);
4312 goto out_unlock;
4313 }
dd41f596 4314 on_rq = p->se.on_rq;
c09595f6 4315 if (on_rq)
69be72c1 4316 dequeue_task(rq, p, 0);
1da177e4 4317
1da177e4 4318 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4319 set_load_weight(p);
b29739f9
IM
4320 old_prio = p->prio;
4321 p->prio = effective_prio(p);
4322 delta = p->prio - old_prio;
1da177e4 4323
dd41f596 4324 if (on_rq) {
8159f87e 4325 enqueue_task(rq, p, 0);
1da177e4 4326 /*
d5f9f942
AM
4327 * If the task increased its priority or is running and
4328 * lowered its priority, then reschedule its CPU:
1da177e4 4329 */
d5f9f942 4330 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4331 resched_task(rq->curr);
4332 }
4333out_unlock:
4334 task_rq_unlock(rq, &flags);
4335}
1da177e4
LT
4336EXPORT_SYMBOL(set_user_nice);
4337
e43379f1
MM
4338/*
4339 * can_nice - check if a task can reduce its nice value
4340 * @p: task
4341 * @nice: nice value
4342 */
36c8b586 4343int can_nice(const struct task_struct *p, const int nice)
e43379f1 4344{
024f4747
MM
4345 /* convert nice value [19,-20] to rlimit style value [1,40] */
4346 int nice_rlim = 20 - nice;
48f24c4d 4347
e43379f1
MM
4348 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4349 capable(CAP_SYS_NICE));
4350}
4351
1da177e4
LT
4352#ifdef __ARCH_WANT_SYS_NICE
4353
4354/*
4355 * sys_nice - change the priority of the current process.
4356 * @increment: priority increment
4357 *
4358 * sys_setpriority is a more generic, but much slower function that
4359 * does similar things.
4360 */
5add95d4 4361SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4362{
48f24c4d 4363 long nice, retval;
1da177e4
LT
4364
4365 /*
4366 * Setpriority might change our priority at the same moment.
4367 * We don't have to worry. Conceptually one call occurs first
4368 * and we have a single winner.
4369 */
e43379f1
MM
4370 if (increment < -40)
4371 increment = -40;
1da177e4
LT
4372 if (increment > 40)
4373 increment = 40;
4374
2b8f836f 4375 nice = TASK_NICE(current) + increment;
1da177e4
LT
4376 if (nice < -20)
4377 nice = -20;
4378 if (nice > 19)
4379 nice = 19;
4380
e43379f1
MM
4381 if (increment < 0 && !can_nice(current, nice))
4382 return -EPERM;
4383
1da177e4
LT
4384 retval = security_task_setnice(current, nice);
4385 if (retval)
4386 return retval;
4387
4388 set_user_nice(current, nice);
4389 return 0;
4390}
4391
4392#endif
4393
4394/**
4395 * task_prio - return the priority value of a given task.
4396 * @p: the task in question.
4397 *
4398 * This is the priority value as seen by users in /proc.
4399 * RT tasks are offset by -200. Normal tasks are centered
4400 * around 0, value goes from -16 to +15.
4401 */
36c8b586 4402int task_prio(const struct task_struct *p)
1da177e4
LT
4403{
4404 return p->prio - MAX_RT_PRIO;
4405}
4406
4407/**
4408 * task_nice - return the nice value of a given task.
4409 * @p: the task in question.
4410 */
36c8b586 4411int task_nice(const struct task_struct *p)
1da177e4
LT
4412{
4413 return TASK_NICE(p);
4414}
150d8bed 4415EXPORT_SYMBOL(task_nice);
1da177e4
LT
4416
4417/**
4418 * idle_cpu - is a given cpu idle currently?
4419 * @cpu: the processor in question.
4420 */
4421int idle_cpu(int cpu)
4422{
4423 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4424}
4425
1da177e4
LT
4426/**
4427 * idle_task - return the idle task for a given cpu.
4428 * @cpu: the processor in question.
4429 */
36c8b586 4430struct task_struct *idle_task(int cpu)
1da177e4
LT
4431{
4432 return cpu_rq(cpu)->idle;
4433}
4434
4435/**
4436 * find_process_by_pid - find a process with a matching PID value.
4437 * @pid: the pid in question.
4438 */
a9957449 4439static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4440{
228ebcbe 4441 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4442}
4443
4444/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4445static void
4446__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4447{
dd41f596 4448 BUG_ON(p->se.on_rq);
48f24c4d 4449
1da177e4
LT
4450 p->policy = policy;
4451 p->rt_priority = prio;
b29739f9
IM
4452 p->normal_prio = normal_prio(p);
4453 /* we are holding p->pi_lock already */
4454 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4455 if (rt_prio(p->prio))
4456 p->sched_class = &rt_sched_class;
4457 else
4458 p->sched_class = &fair_sched_class;
2dd73a4f 4459 set_load_weight(p);
1da177e4
LT
4460}
4461
c69e8d9c
DH
4462/*
4463 * check the target process has a UID that matches the current process's
4464 */
4465static bool check_same_owner(struct task_struct *p)
4466{
4467 const struct cred *cred = current_cred(), *pcred;
4468 bool match;
4469
4470 rcu_read_lock();
4471 pcred = __task_cred(p);
4472 match = (cred->euid == pcred->euid ||
4473 cred->euid == pcred->uid);
4474 rcu_read_unlock();
4475 return match;
4476}
4477
961ccddd
RR
4478static int __sched_setscheduler(struct task_struct *p, int policy,
4479 struct sched_param *param, bool user)
1da177e4 4480{
83b699ed 4481 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4482 unsigned long flags;
cb469845 4483 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4484 struct rq *rq;
ca94c442 4485 int reset_on_fork;
1da177e4 4486
66e5393a
SR
4487 /* may grab non-irq protected spin_locks */
4488 BUG_ON(in_interrupt());
1da177e4
LT
4489recheck:
4490 /* double check policy once rq lock held */
ca94c442
LP
4491 if (policy < 0) {
4492 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4493 policy = oldpolicy = p->policy;
ca94c442
LP
4494 } else {
4495 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4496 policy &= ~SCHED_RESET_ON_FORK;
4497
4498 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4499 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4500 policy != SCHED_IDLE)
4501 return -EINVAL;
4502 }
4503
1da177e4
LT
4504 /*
4505 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4506 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4507 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4508 */
4509 if (param->sched_priority < 0 ||
95cdf3b7 4510 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4511 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4512 return -EINVAL;
e05606d3 4513 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4514 return -EINVAL;
4515
37e4ab3f
OC
4516 /*
4517 * Allow unprivileged RT tasks to decrease priority:
4518 */
961ccddd 4519 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4520 if (rt_policy(policy)) {
8dc3e909 4521 unsigned long rlim_rtprio;
8dc3e909
ON
4522
4523 if (!lock_task_sighand(p, &flags))
4524 return -ESRCH;
4525 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4526 unlock_task_sighand(p, &flags);
4527
4528 /* can't set/change the rt policy */
4529 if (policy != p->policy && !rlim_rtprio)
4530 return -EPERM;
4531
4532 /* can't increase priority */
4533 if (param->sched_priority > p->rt_priority &&
4534 param->sched_priority > rlim_rtprio)
4535 return -EPERM;
4536 }
dd41f596
IM
4537 /*
4538 * Like positive nice levels, dont allow tasks to
4539 * move out of SCHED_IDLE either:
4540 */
4541 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4542 return -EPERM;
5fe1d75f 4543
37e4ab3f 4544 /* can't change other user's priorities */
c69e8d9c 4545 if (!check_same_owner(p))
37e4ab3f 4546 return -EPERM;
ca94c442
LP
4547
4548 /* Normal users shall not reset the sched_reset_on_fork flag */
4549 if (p->sched_reset_on_fork && !reset_on_fork)
4550 return -EPERM;
37e4ab3f 4551 }
1da177e4 4552
725aad24 4553 if (user) {
b68aa230 4554#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4555 /*
4556 * Do not allow realtime tasks into groups that have no runtime
4557 * assigned.
4558 */
9a7e0b18
PZ
4559 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4560 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4561 return -EPERM;
b68aa230
PZ
4562#endif
4563
725aad24
JF
4564 retval = security_task_setscheduler(p, policy, param);
4565 if (retval)
4566 return retval;
4567 }
4568
b29739f9
IM
4569 /*
4570 * make sure no PI-waiters arrive (or leave) while we are
4571 * changing the priority of the task:
4572 */
1d615482 4573 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4574 /*
4575 * To be able to change p->policy safely, the apropriate
4576 * runqueue lock must be held.
4577 */
b29739f9 4578 rq = __task_rq_lock(p);
1da177e4
LT
4579 /* recheck policy now with rq lock held */
4580 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4581 policy = oldpolicy = -1;
b29739f9 4582 __task_rq_unlock(rq);
1d615482 4583 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4584 goto recheck;
4585 }
2daa3577 4586 update_rq_clock(rq);
dd41f596 4587 on_rq = p->se.on_rq;
051a1d1a 4588 running = task_current(rq, p);
0e1f3483 4589 if (on_rq)
2e1cb74a 4590 deactivate_task(rq, p, 0);
0e1f3483
HS
4591 if (running)
4592 p->sched_class->put_prev_task(rq, p);
f6b53205 4593
ca94c442
LP
4594 p->sched_reset_on_fork = reset_on_fork;
4595
1da177e4 4596 oldprio = p->prio;
dd41f596 4597 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4598
0e1f3483
HS
4599 if (running)
4600 p->sched_class->set_curr_task(rq);
dd41f596
IM
4601 if (on_rq) {
4602 activate_task(rq, p, 0);
cb469845
SR
4603
4604 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4605 }
b29739f9 4606 __task_rq_unlock(rq);
1d615482 4607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4608
95e02ca9
TG
4609 rt_mutex_adjust_pi(p);
4610
1da177e4
LT
4611 return 0;
4612}
961ccddd
RR
4613
4614/**
4615 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4616 * @p: the task in question.
4617 * @policy: new policy.
4618 * @param: structure containing the new RT priority.
4619 *
4620 * NOTE that the task may be already dead.
4621 */
4622int sched_setscheduler(struct task_struct *p, int policy,
4623 struct sched_param *param)
4624{
4625 return __sched_setscheduler(p, policy, param, true);
4626}
1da177e4
LT
4627EXPORT_SYMBOL_GPL(sched_setscheduler);
4628
961ccddd
RR
4629/**
4630 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4631 * @p: the task in question.
4632 * @policy: new policy.
4633 * @param: structure containing the new RT priority.
4634 *
4635 * Just like sched_setscheduler, only don't bother checking if the
4636 * current context has permission. For example, this is needed in
4637 * stop_machine(): we create temporary high priority worker threads,
4638 * but our caller might not have that capability.
4639 */
4640int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4641 struct sched_param *param)
4642{
4643 return __sched_setscheduler(p, policy, param, false);
4644}
4645
95cdf3b7
IM
4646static int
4647do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4648{
1da177e4
LT
4649 struct sched_param lparam;
4650 struct task_struct *p;
36c8b586 4651 int retval;
1da177e4
LT
4652
4653 if (!param || pid < 0)
4654 return -EINVAL;
4655 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4656 return -EFAULT;
5fe1d75f
ON
4657
4658 rcu_read_lock();
4659 retval = -ESRCH;
1da177e4 4660 p = find_process_by_pid(pid);
5fe1d75f
ON
4661 if (p != NULL)
4662 retval = sched_setscheduler(p, policy, &lparam);
4663 rcu_read_unlock();
36c8b586 4664
1da177e4
LT
4665 return retval;
4666}
4667
4668/**
4669 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4670 * @pid: the pid in question.
4671 * @policy: new policy.
4672 * @param: structure containing the new RT priority.
4673 */
5add95d4
HC
4674SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4675 struct sched_param __user *, param)
1da177e4 4676{
c21761f1
JB
4677 /* negative values for policy are not valid */
4678 if (policy < 0)
4679 return -EINVAL;
4680
1da177e4
LT
4681 return do_sched_setscheduler(pid, policy, param);
4682}
4683
4684/**
4685 * sys_sched_setparam - set/change the RT priority of a thread
4686 * @pid: the pid in question.
4687 * @param: structure containing the new RT priority.
4688 */
5add95d4 4689SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4690{
4691 return do_sched_setscheduler(pid, -1, param);
4692}
4693
4694/**
4695 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4696 * @pid: the pid in question.
4697 */
5add95d4 4698SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4699{
36c8b586 4700 struct task_struct *p;
3a5c359a 4701 int retval;
1da177e4
LT
4702
4703 if (pid < 0)
3a5c359a 4704 return -EINVAL;
1da177e4
LT
4705
4706 retval = -ESRCH;
5fe85be0 4707 rcu_read_lock();
1da177e4
LT
4708 p = find_process_by_pid(pid);
4709 if (p) {
4710 retval = security_task_getscheduler(p);
4711 if (!retval)
ca94c442
LP
4712 retval = p->policy
4713 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4714 }
5fe85be0 4715 rcu_read_unlock();
1da177e4
LT
4716 return retval;
4717}
4718
4719/**
ca94c442 4720 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4721 * @pid: the pid in question.
4722 * @param: structure containing the RT priority.
4723 */
5add95d4 4724SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4725{
4726 struct sched_param lp;
36c8b586 4727 struct task_struct *p;
3a5c359a 4728 int retval;
1da177e4
LT
4729
4730 if (!param || pid < 0)
3a5c359a 4731 return -EINVAL;
1da177e4 4732
5fe85be0 4733 rcu_read_lock();
1da177e4
LT
4734 p = find_process_by_pid(pid);
4735 retval = -ESRCH;
4736 if (!p)
4737 goto out_unlock;
4738
4739 retval = security_task_getscheduler(p);
4740 if (retval)
4741 goto out_unlock;
4742
4743 lp.sched_priority = p->rt_priority;
5fe85be0 4744 rcu_read_unlock();
1da177e4
LT
4745
4746 /*
4747 * This one might sleep, we cannot do it with a spinlock held ...
4748 */
4749 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4750
1da177e4
LT
4751 return retval;
4752
4753out_unlock:
5fe85be0 4754 rcu_read_unlock();
1da177e4
LT
4755 return retval;
4756}
4757
96f874e2 4758long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4759{
5a16f3d3 4760 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4761 struct task_struct *p;
4762 int retval;
1da177e4 4763
95402b38 4764 get_online_cpus();
23f5d142 4765 rcu_read_lock();
1da177e4
LT
4766
4767 p = find_process_by_pid(pid);
4768 if (!p) {
23f5d142 4769 rcu_read_unlock();
95402b38 4770 put_online_cpus();
1da177e4
LT
4771 return -ESRCH;
4772 }
4773
23f5d142 4774 /* Prevent p going away */
1da177e4 4775 get_task_struct(p);
23f5d142 4776 rcu_read_unlock();
1da177e4 4777
5a16f3d3
RR
4778 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4779 retval = -ENOMEM;
4780 goto out_put_task;
4781 }
4782 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4783 retval = -ENOMEM;
4784 goto out_free_cpus_allowed;
4785 }
1da177e4 4786 retval = -EPERM;
c69e8d9c 4787 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4788 goto out_unlock;
4789
e7834f8f
DQ
4790 retval = security_task_setscheduler(p, 0, NULL);
4791 if (retval)
4792 goto out_unlock;
4793
5a16f3d3
RR
4794 cpuset_cpus_allowed(p, cpus_allowed);
4795 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4796 again:
5a16f3d3 4797 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4798
8707d8b8 4799 if (!retval) {
5a16f3d3
RR
4800 cpuset_cpus_allowed(p, cpus_allowed);
4801 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4802 /*
4803 * We must have raced with a concurrent cpuset
4804 * update. Just reset the cpus_allowed to the
4805 * cpuset's cpus_allowed
4806 */
5a16f3d3 4807 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4808 goto again;
4809 }
4810 }
1da177e4 4811out_unlock:
5a16f3d3
RR
4812 free_cpumask_var(new_mask);
4813out_free_cpus_allowed:
4814 free_cpumask_var(cpus_allowed);
4815out_put_task:
1da177e4 4816 put_task_struct(p);
95402b38 4817 put_online_cpus();
1da177e4
LT
4818 return retval;
4819}
4820
4821static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4822 struct cpumask *new_mask)
1da177e4 4823{
96f874e2
RR
4824 if (len < cpumask_size())
4825 cpumask_clear(new_mask);
4826 else if (len > cpumask_size())
4827 len = cpumask_size();
4828
1da177e4
LT
4829 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4830}
4831
4832/**
4833 * sys_sched_setaffinity - set the cpu affinity of a process
4834 * @pid: pid of the process
4835 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4836 * @user_mask_ptr: user-space pointer to the new cpu mask
4837 */
5add95d4
HC
4838SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4839 unsigned long __user *, user_mask_ptr)
1da177e4 4840{
5a16f3d3 4841 cpumask_var_t new_mask;
1da177e4
LT
4842 int retval;
4843
5a16f3d3
RR
4844 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4845 return -ENOMEM;
1da177e4 4846
5a16f3d3
RR
4847 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4848 if (retval == 0)
4849 retval = sched_setaffinity(pid, new_mask);
4850 free_cpumask_var(new_mask);
4851 return retval;
1da177e4
LT
4852}
4853
96f874e2 4854long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4855{
36c8b586 4856 struct task_struct *p;
31605683
TG
4857 unsigned long flags;
4858 struct rq *rq;
1da177e4 4859 int retval;
1da177e4 4860
95402b38 4861 get_online_cpus();
23f5d142 4862 rcu_read_lock();
1da177e4
LT
4863
4864 retval = -ESRCH;
4865 p = find_process_by_pid(pid);
4866 if (!p)
4867 goto out_unlock;
4868
e7834f8f
DQ
4869 retval = security_task_getscheduler(p);
4870 if (retval)
4871 goto out_unlock;
4872
31605683 4873 rq = task_rq_lock(p, &flags);
96f874e2 4874 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4875 task_rq_unlock(rq, &flags);
1da177e4
LT
4876
4877out_unlock:
23f5d142 4878 rcu_read_unlock();
95402b38 4879 put_online_cpus();
1da177e4 4880
9531b62f 4881 return retval;
1da177e4
LT
4882}
4883
4884/**
4885 * sys_sched_getaffinity - get the cpu affinity of a process
4886 * @pid: pid of the process
4887 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4888 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4889 */
5add95d4
HC
4890SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4891 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4892{
4893 int ret;
f17c8607 4894 cpumask_var_t mask;
1da177e4 4895
f17c8607 4896 if (len < cpumask_size())
1da177e4
LT
4897 return -EINVAL;
4898
f17c8607
RR
4899 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4900 return -ENOMEM;
1da177e4 4901
f17c8607
RR
4902 ret = sched_getaffinity(pid, mask);
4903 if (ret == 0) {
4904 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4905 ret = -EFAULT;
4906 else
4907 ret = cpumask_size();
4908 }
4909 free_cpumask_var(mask);
1da177e4 4910
f17c8607 4911 return ret;
1da177e4
LT
4912}
4913
4914/**
4915 * sys_sched_yield - yield the current processor to other threads.
4916 *
dd41f596
IM
4917 * This function yields the current CPU to other tasks. If there are no
4918 * other threads running on this CPU then this function will return.
1da177e4 4919 */
5add95d4 4920SYSCALL_DEFINE0(sched_yield)
1da177e4 4921{
70b97a7f 4922 struct rq *rq = this_rq_lock();
1da177e4 4923
2d72376b 4924 schedstat_inc(rq, yld_count);
4530d7ab 4925 current->sched_class->yield_task(rq);
1da177e4
LT
4926
4927 /*
4928 * Since we are going to call schedule() anyway, there's
4929 * no need to preempt or enable interrupts:
4930 */
4931 __release(rq->lock);
8a25d5de 4932 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4933 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4934 preempt_enable_no_resched();
4935
4936 schedule();
4937
4938 return 0;
4939}
4940
d86ee480
PZ
4941static inline int should_resched(void)
4942{
4943 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4944}
4945
e7b38404 4946static void __cond_resched(void)
1da177e4 4947{
e7aaaa69
FW
4948 add_preempt_count(PREEMPT_ACTIVE);
4949 schedule();
4950 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4951}
4952
02b67cc3 4953int __sched _cond_resched(void)
1da177e4 4954{
d86ee480 4955 if (should_resched()) {
1da177e4
LT
4956 __cond_resched();
4957 return 1;
4958 }
4959 return 0;
4960}
02b67cc3 4961EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4962
4963/*
613afbf8 4964 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4965 * call schedule, and on return reacquire the lock.
4966 *
41a2d6cf 4967 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4968 * operations here to prevent schedule() from being called twice (once via
4969 * spin_unlock(), once by hand).
4970 */
613afbf8 4971int __cond_resched_lock(spinlock_t *lock)
1da177e4 4972{
d86ee480 4973 int resched = should_resched();
6df3cecb
JK
4974 int ret = 0;
4975
f607c668
PZ
4976 lockdep_assert_held(lock);
4977
95c354fe 4978 if (spin_needbreak(lock) || resched) {
1da177e4 4979 spin_unlock(lock);
d86ee480 4980 if (resched)
95c354fe
NP
4981 __cond_resched();
4982 else
4983 cpu_relax();
6df3cecb 4984 ret = 1;
1da177e4 4985 spin_lock(lock);
1da177e4 4986 }
6df3cecb 4987 return ret;
1da177e4 4988}
613afbf8 4989EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4990
613afbf8 4991int __sched __cond_resched_softirq(void)
1da177e4
LT
4992{
4993 BUG_ON(!in_softirq());
4994
d86ee480 4995 if (should_resched()) {
98d82567 4996 local_bh_enable();
1da177e4
LT
4997 __cond_resched();
4998 local_bh_disable();
4999 return 1;
5000 }
5001 return 0;
5002}
613afbf8 5003EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5004
1da177e4
LT
5005/**
5006 * yield - yield the current processor to other threads.
5007 *
72fd4a35 5008 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5009 * thread runnable and calls sys_sched_yield().
5010 */
5011void __sched yield(void)
5012{
5013 set_current_state(TASK_RUNNING);
5014 sys_sched_yield();
5015}
1da177e4
LT
5016EXPORT_SYMBOL(yield);
5017
5018/*
41a2d6cf 5019 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5020 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5021 */
5022void __sched io_schedule(void)
5023{
54d35f29 5024 struct rq *rq = raw_rq();
1da177e4 5025
0ff92245 5026 delayacct_blkio_start();
1da177e4 5027 atomic_inc(&rq->nr_iowait);
8f0dfc34 5028 current->in_iowait = 1;
1da177e4 5029 schedule();
8f0dfc34 5030 current->in_iowait = 0;
1da177e4 5031 atomic_dec(&rq->nr_iowait);
0ff92245 5032 delayacct_blkio_end();
1da177e4 5033}
1da177e4
LT
5034EXPORT_SYMBOL(io_schedule);
5035
5036long __sched io_schedule_timeout(long timeout)
5037{
54d35f29 5038 struct rq *rq = raw_rq();
1da177e4
LT
5039 long ret;
5040
0ff92245 5041 delayacct_blkio_start();
1da177e4 5042 atomic_inc(&rq->nr_iowait);
8f0dfc34 5043 current->in_iowait = 1;
1da177e4 5044 ret = schedule_timeout(timeout);
8f0dfc34 5045 current->in_iowait = 0;
1da177e4 5046 atomic_dec(&rq->nr_iowait);
0ff92245 5047 delayacct_blkio_end();
1da177e4
LT
5048 return ret;
5049}
5050
5051/**
5052 * sys_sched_get_priority_max - return maximum RT priority.
5053 * @policy: scheduling class.
5054 *
5055 * this syscall returns the maximum rt_priority that can be used
5056 * by a given scheduling class.
5057 */
5add95d4 5058SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5059{
5060 int ret = -EINVAL;
5061
5062 switch (policy) {
5063 case SCHED_FIFO:
5064 case SCHED_RR:
5065 ret = MAX_USER_RT_PRIO-1;
5066 break;
5067 case SCHED_NORMAL:
b0a9499c 5068 case SCHED_BATCH:
dd41f596 5069 case SCHED_IDLE:
1da177e4
LT
5070 ret = 0;
5071 break;
5072 }
5073 return ret;
5074}
5075
5076/**
5077 * sys_sched_get_priority_min - return minimum RT priority.
5078 * @policy: scheduling class.
5079 *
5080 * this syscall returns the minimum rt_priority that can be used
5081 * by a given scheduling class.
5082 */
5add95d4 5083SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5084{
5085 int ret = -EINVAL;
5086
5087 switch (policy) {
5088 case SCHED_FIFO:
5089 case SCHED_RR:
5090 ret = 1;
5091 break;
5092 case SCHED_NORMAL:
b0a9499c 5093 case SCHED_BATCH:
dd41f596 5094 case SCHED_IDLE:
1da177e4
LT
5095 ret = 0;
5096 }
5097 return ret;
5098}
5099
5100/**
5101 * sys_sched_rr_get_interval - return the default timeslice of a process.
5102 * @pid: pid of the process.
5103 * @interval: userspace pointer to the timeslice value.
5104 *
5105 * this syscall writes the default timeslice value of a given process
5106 * into the user-space timespec buffer. A value of '0' means infinity.
5107 */
17da2bd9 5108SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5109 struct timespec __user *, interval)
1da177e4 5110{
36c8b586 5111 struct task_struct *p;
a4ec24b4 5112 unsigned int time_slice;
dba091b9
TG
5113 unsigned long flags;
5114 struct rq *rq;
3a5c359a 5115 int retval;
1da177e4 5116 struct timespec t;
1da177e4
LT
5117
5118 if (pid < 0)
3a5c359a 5119 return -EINVAL;
1da177e4
LT
5120
5121 retval = -ESRCH;
1a551ae7 5122 rcu_read_lock();
1da177e4
LT
5123 p = find_process_by_pid(pid);
5124 if (!p)
5125 goto out_unlock;
5126
5127 retval = security_task_getscheduler(p);
5128 if (retval)
5129 goto out_unlock;
5130
dba091b9
TG
5131 rq = task_rq_lock(p, &flags);
5132 time_slice = p->sched_class->get_rr_interval(rq, p);
5133 task_rq_unlock(rq, &flags);
a4ec24b4 5134
1a551ae7 5135 rcu_read_unlock();
a4ec24b4 5136 jiffies_to_timespec(time_slice, &t);
1da177e4 5137 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5138 return retval;
3a5c359a 5139
1da177e4 5140out_unlock:
1a551ae7 5141 rcu_read_unlock();
1da177e4
LT
5142 return retval;
5143}
5144
7c731e0a 5145static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5146
82a1fcb9 5147void sched_show_task(struct task_struct *p)
1da177e4 5148{
1da177e4 5149 unsigned long free = 0;
36c8b586 5150 unsigned state;
1da177e4 5151
1da177e4 5152 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5153 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5154 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5155#if BITS_PER_LONG == 32
1da177e4 5156 if (state == TASK_RUNNING)
3df0fc5b 5157 printk(KERN_CONT " running ");
1da177e4 5158 else
3df0fc5b 5159 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5160#else
5161 if (state == TASK_RUNNING)
3df0fc5b 5162 printk(KERN_CONT " running task ");
1da177e4 5163 else
3df0fc5b 5164 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5165#endif
5166#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5167 free = stack_not_used(p);
1da177e4 5168#endif
3df0fc5b 5169 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5170 task_pid_nr(p), task_pid_nr(p->real_parent),
5171 (unsigned long)task_thread_info(p)->flags);
1da177e4 5172
5fb5e6de 5173 show_stack(p, NULL);
1da177e4
LT
5174}
5175
e59e2ae2 5176void show_state_filter(unsigned long state_filter)
1da177e4 5177{
36c8b586 5178 struct task_struct *g, *p;
1da177e4 5179
4bd77321 5180#if BITS_PER_LONG == 32
3df0fc5b
PZ
5181 printk(KERN_INFO
5182 " task PC stack pid father\n");
1da177e4 5183#else
3df0fc5b
PZ
5184 printk(KERN_INFO
5185 " task PC stack pid father\n");
1da177e4
LT
5186#endif
5187 read_lock(&tasklist_lock);
5188 do_each_thread(g, p) {
5189 /*
5190 * reset the NMI-timeout, listing all files on a slow
5191 * console might take alot of time:
5192 */
5193 touch_nmi_watchdog();
39bc89fd 5194 if (!state_filter || (p->state & state_filter))
82a1fcb9 5195 sched_show_task(p);
1da177e4
LT
5196 } while_each_thread(g, p);
5197
04c9167f
JF
5198 touch_all_softlockup_watchdogs();
5199
dd41f596
IM
5200#ifdef CONFIG_SCHED_DEBUG
5201 sysrq_sched_debug_show();
5202#endif
1da177e4 5203 read_unlock(&tasklist_lock);
e59e2ae2
IM
5204 /*
5205 * Only show locks if all tasks are dumped:
5206 */
93335a21 5207 if (!state_filter)
e59e2ae2 5208 debug_show_all_locks();
1da177e4
LT
5209}
5210
1df21055
IM
5211void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5212{
dd41f596 5213 idle->sched_class = &idle_sched_class;
1df21055
IM
5214}
5215
f340c0d1
IM
5216/**
5217 * init_idle - set up an idle thread for a given CPU
5218 * @idle: task in question
5219 * @cpu: cpu the idle task belongs to
5220 *
5221 * NOTE: this function does not set the idle thread's NEED_RESCHED
5222 * flag, to make booting more robust.
5223 */
5c1e1767 5224void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5225{
70b97a7f 5226 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5227 unsigned long flags;
5228
05fa785c 5229 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5230
dd41f596 5231 __sched_fork(idle);
06b83b5f 5232 idle->state = TASK_RUNNING;
dd41f596
IM
5233 idle->se.exec_start = sched_clock();
5234
96f874e2 5235 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5236 __set_task_cpu(idle, cpu);
1da177e4 5237
1da177e4 5238 rq->curr = rq->idle = idle;
4866cde0
NP
5239#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5240 idle->oncpu = 1;
5241#endif
05fa785c 5242 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5243
5244 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5245#if defined(CONFIG_PREEMPT)
5246 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5247#else
a1261f54 5248 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5249#endif
dd41f596
IM
5250 /*
5251 * The idle tasks have their own, simple scheduling class:
5252 */
5253 idle->sched_class = &idle_sched_class;
fb52607a 5254 ftrace_graph_init_task(idle);
1da177e4
LT
5255}
5256
5257/*
5258 * In a system that switches off the HZ timer nohz_cpu_mask
5259 * indicates which cpus entered this state. This is used
5260 * in the rcu update to wait only for active cpus. For system
5261 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5262 * always be CPU_BITS_NONE.
1da177e4 5263 */
6a7b3dc3 5264cpumask_var_t nohz_cpu_mask;
1da177e4 5265
19978ca6
IM
5266/*
5267 * Increase the granularity value when there are more CPUs,
5268 * because with more CPUs the 'effective latency' as visible
5269 * to users decreases. But the relationship is not linear,
5270 * so pick a second-best guess by going with the log2 of the
5271 * number of CPUs.
5272 *
5273 * This idea comes from the SD scheduler of Con Kolivas:
5274 */
acb4a848 5275static int get_update_sysctl_factor(void)
19978ca6 5276{
4ca3ef71 5277 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5278 unsigned int factor;
5279
5280 switch (sysctl_sched_tunable_scaling) {
5281 case SCHED_TUNABLESCALING_NONE:
5282 factor = 1;
5283 break;
5284 case SCHED_TUNABLESCALING_LINEAR:
5285 factor = cpus;
5286 break;
5287 case SCHED_TUNABLESCALING_LOG:
5288 default:
5289 factor = 1 + ilog2(cpus);
5290 break;
5291 }
19978ca6 5292
acb4a848
CE
5293 return factor;
5294}
19978ca6 5295
acb4a848
CE
5296static void update_sysctl(void)
5297{
5298 unsigned int factor = get_update_sysctl_factor();
19978ca6 5299
0bcdcf28
CE
5300#define SET_SYSCTL(name) \
5301 (sysctl_##name = (factor) * normalized_sysctl_##name)
5302 SET_SYSCTL(sched_min_granularity);
5303 SET_SYSCTL(sched_latency);
5304 SET_SYSCTL(sched_wakeup_granularity);
5305 SET_SYSCTL(sched_shares_ratelimit);
5306#undef SET_SYSCTL
5307}
55cd5340 5308
0bcdcf28
CE
5309static inline void sched_init_granularity(void)
5310{
5311 update_sysctl();
19978ca6
IM
5312}
5313
1da177e4
LT
5314#ifdef CONFIG_SMP
5315/*
5316 * This is how migration works:
5317 *
70b97a7f 5318 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5319 * runqueue and wake up that CPU's migration thread.
5320 * 2) we down() the locked semaphore => thread blocks.
5321 * 3) migration thread wakes up (implicitly it forces the migrated
5322 * thread off the CPU)
5323 * 4) it gets the migration request and checks whether the migrated
5324 * task is still in the wrong runqueue.
5325 * 5) if it's in the wrong runqueue then the migration thread removes
5326 * it and puts it into the right queue.
5327 * 6) migration thread up()s the semaphore.
5328 * 7) we wake up and the migration is done.
5329 */
5330
5331/*
5332 * Change a given task's CPU affinity. Migrate the thread to a
5333 * proper CPU and schedule it away if the CPU it's executing on
5334 * is removed from the allowed bitmask.
5335 *
5336 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5337 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5338 * call is not atomic; no spinlocks may be held.
5339 */
96f874e2 5340int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5341{
70b97a7f 5342 struct migration_req req;
1da177e4 5343 unsigned long flags;
70b97a7f 5344 struct rq *rq;
48f24c4d 5345 int ret = 0;
1da177e4 5346
e2912009
PZ
5347 /*
5348 * Since we rely on wake-ups to migrate sleeping tasks, don't change
5349 * the ->cpus_allowed mask from under waking tasks, which would be
5350 * possible when we change rq->lock in ttwu(), so synchronize against
5351 * TASK_WAKING to avoid that.
5352 */
5353again:
5354 while (p->state == TASK_WAKING)
5355 cpu_relax();
5356
1da177e4 5357 rq = task_rq_lock(p, &flags);
e2912009
PZ
5358
5359 if (p->state == TASK_WAKING) {
5360 task_rq_unlock(rq, &flags);
5361 goto again;
5362 }
5363
6ad4c188 5364 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5365 ret = -EINVAL;
5366 goto out;
5367 }
5368
9985b0ba 5369 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5370 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5371 ret = -EINVAL;
5372 goto out;
5373 }
5374
73fe6aae 5375 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5376 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5377 else {
96f874e2
RR
5378 cpumask_copy(&p->cpus_allowed, new_mask);
5379 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5380 }
5381
1da177e4 5382 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5383 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5384 goto out;
5385
6ad4c188 5386 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5387 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5388 struct task_struct *mt = rq->migration_thread;
5389
5390 get_task_struct(mt);
1da177e4
LT
5391 task_rq_unlock(rq, &flags);
5392 wake_up_process(rq->migration_thread);
693525e3 5393 put_task_struct(mt);
1da177e4
LT
5394 wait_for_completion(&req.done);
5395 tlb_migrate_finish(p->mm);
5396 return 0;
5397 }
5398out:
5399 task_rq_unlock(rq, &flags);
48f24c4d 5400
1da177e4
LT
5401 return ret;
5402}
cd8ba7cd 5403EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5404
5405/*
41a2d6cf 5406 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5407 * this because either it can't run here any more (set_cpus_allowed()
5408 * away from this CPU, or CPU going down), or because we're
5409 * attempting to rebalance this task on exec (sched_exec).
5410 *
5411 * So we race with normal scheduler movements, but that's OK, as long
5412 * as the task is no longer on this CPU.
efc30814
KK
5413 *
5414 * Returns non-zero if task was successfully migrated.
1da177e4 5415 */
efc30814 5416static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5417{
70b97a7f 5418 struct rq *rq_dest, *rq_src;
e2912009 5419 int ret = 0;
1da177e4 5420
e761b772 5421 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5422 return ret;
1da177e4
LT
5423
5424 rq_src = cpu_rq(src_cpu);
5425 rq_dest = cpu_rq(dest_cpu);
5426
5427 double_rq_lock(rq_src, rq_dest);
5428 /* Already moved. */
5429 if (task_cpu(p) != src_cpu)
b1e38734 5430 goto done;
1da177e4 5431 /* Affinity changed (again). */
96f874e2 5432 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5433 goto fail;
1da177e4 5434
e2912009
PZ
5435 /*
5436 * If we're not on a rq, the next wake-up will ensure we're
5437 * placed properly.
5438 */
5439 if (p->se.on_rq) {
2e1cb74a 5440 deactivate_task(rq_src, p, 0);
e2912009 5441 set_task_cpu(p, dest_cpu);
dd41f596 5442 activate_task(rq_dest, p, 0);
15afe09b 5443 check_preempt_curr(rq_dest, p, 0);
1da177e4 5444 }
b1e38734 5445done:
efc30814 5446 ret = 1;
b1e38734 5447fail:
1da177e4 5448 double_rq_unlock(rq_src, rq_dest);
efc30814 5449 return ret;
1da177e4
LT
5450}
5451
03b042bf
PM
5452#define RCU_MIGRATION_IDLE 0
5453#define RCU_MIGRATION_NEED_QS 1
5454#define RCU_MIGRATION_GOT_QS 2
5455#define RCU_MIGRATION_MUST_SYNC 3
5456
1da177e4
LT
5457/*
5458 * migration_thread - this is a highprio system thread that performs
5459 * thread migration by bumping thread off CPU then 'pushing' onto
5460 * another runqueue.
5461 */
95cdf3b7 5462static int migration_thread(void *data)
1da177e4 5463{
03b042bf 5464 int badcpu;
1da177e4 5465 int cpu = (long)data;
70b97a7f 5466 struct rq *rq;
1da177e4
LT
5467
5468 rq = cpu_rq(cpu);
5469 BUG_ON(rq->migration_thread != current);
5470
5471 set_current_state(TASK_INTERRUPTIBLE);
5472 while (!kthread_should_stop()) {
70b97a7f 5473 struct migration_req *req;
1da177e4 5474 struct list_head *head;
1da177e4 5475
05fa785c 5476 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5477
5478 if (cpu_is_offline(cpu)) {
05fa785c 5479 raw_spin_unlock_irq(&rq->lock);
371cbb38 5480 break;
1da177e4
LT
5481 }
5482
5483 if (rq->active_balance) {
5484 active_load_balance(rq, cpu);
5485 rq->active_balance = 0;
5486 }
5487
5488 head = &rq->migration_queue;
5489
5490 if (list_empty(head)) {
05fa785c 5491 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5492 schedule();
5493 set_current_state(TASK_INTERRUPTIBLE);
5494 continue;
5495 }
70b97a7f 5496 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5497 list_del_init(head->next);
5498
03b042bf 5499 if (req->task != NULL) {
05fa785c 5500 raw_spin_unlock(&rq->lock);
03b042bf
PM
5501 __migrate_task(req->task, cpu, req->dest_cpu);
5502 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5503 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5504 raw_spin_unlock(&rq->lock);
03b042bf
PM
5505 } else {
5506 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5507 raw_spin_unlock(&rq->lock);
03b042bf
PM
5508 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5509 }
674311d5 5510 local_irq_enable();
1da177e4
LT
5511
5512 complete(&req->done);
5513 }
5514 __set_current_state(TASK_RUNNING);
1da177e4 5515
1da177e4
LT
5516 return 0;
5517}
5518
5519#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5520
5521static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5522{
5523 int ret;
5524
5525 local_irq_disable();
5526 ret = __migrate_task(p, src_cpu, dest_cpu);
5527 local_irq_enable();
5528 return ret;
5529}
5530
054b9108 5531/*
3a4fa0a2 5532 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5533 */
48f24c4d 5534static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5535{
70b97a7f 5536 int dest_cpu;
e76bd8d9
RR
5537
5538again:
5da9a0fb 5539 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5540
e76bd8d9
RR
5541 /* It can have affinity changed while we were choosing. */
5542 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5543 goto again;
1da177e4
LT
5544}
5545
5546/*
5547 * While a dead CPU has no uninterruptible tasks queued at this point,
5548 * it might still have a nonzero ->nr_uninterruptible counter, because
5549 * for performance reasons the counter is not stricly tracking tasks to
5550 * their home CPUs. So we just add the counter to another CPU's counter,
5551 * to keep the global sum constant after CPU-down:
5552 */
70b97a7f 5553static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5554{
6ad4c188 5555 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5556 unsigned long flags;
5557
5558 local_irq_save(flags);
5559 double_rq_lock(rq_src, rq_dest);
5560 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5561 rq_src->nr_uninterruptible = 0;
5562 double_rq_unlock(rq_src, rq_dest);
5563 local_irq_restore(flags);
5564}
5565
5566/* Run through task list and migrate tasks from the dead cpu. */
5567static void migrate_live_tasks(int src_cpu)
5568{
48f24c4d 5569 struct task_struct *p, *t;
1da177e4 5570
f7b4cddc 5571 read_lock(&tasklist_lock);
1da177e4 5572
48f24c4d
IM
5573 do_each_thread(t, p) {
5574 if (p == current)
1da177e4
LT
5575 continue;
5576
48f24c4d
IM
5577 if (task_cpu(p) == src_cpu)
5578 move_task_off_dead_cpu(src_cpu, p);
5579 } while_each_thread(t, p);
1da177e4 5580
f7b4cddc 5581 read_unlock(&tasklist_lock);
1da177e4
LT
5582}
5583
dd41f596
IM
5584/*
5585 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5586 * It does so by boosting its priority to highest possible.
5587 * Used by CPU offline code.
1da177e4
LT
5588 */
5589void sched_idle_next(void)
5590{
48f24c4d 5591 int this_cpu = smp_processor_id();
70b97a7f 5592 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5593 struct task_struct *p = rq->idle;
5594 unsigned long flags;
5595
5596 /* cpu has to be offline */
48f24c4d 5597 BUG_ON(cpu_online(this_cpu));
1da177e4 5598
48f24c4d
IM
5599 /*
5600 * Strictly not necessary since rest of the CPUs are stopped by now
5601 * and interrupts disabled on the current cpu.
1da177e4 5602 */
05fa785c 5603 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5604
dd41f596 5605 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5606
94bc9a7b
DA
5607 update_rq_clock(rq);
5608 activate_task(rq, p, 0);
1da177e4 5609
05fa785c 5610 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5611}
5612
48f24c4d
IM
5613/*
5614 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5615 * offline.
5616 */
5617void idle_task_exit(void)
5618{
5619 struct mm_struct *mm = current->active_mm;
5620
5621 BUG_ON(cpu_online(smp_processor_id()));
5622
5623 if (mm != &init_mm)
5624 switch_mm(mm, &init_mm, current);
5625 mmdrop(mm);
5626}
5627
054b9108 5628/* called under rq->lock with disabled interrupts */
36c8b586 5629static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5630{
70b97a7f 5631 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5632
5633 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5634 BUG_ON(!p->exit_state);
1da177e4
LT
5635
5636 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5637 BUG_ON(p->state == TASK_DEAD);
1da177e4 5638
48f24c4d 5639 get_task_struct(p);
1da177e4
LT
5640
5641 /*
5642 * Drop lock around migration; if someone else moves it,
41a2d6cf 5643 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5644 * fine.
5645 */
05fa785c 5646 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5647 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5648 raw_spin_lock_irq(&rq->lock);
1da177e4 5649
48f24c4d 5650 put_task_struct(p);
1da177e4
LT
5651}
5652
5653/* release_task() removes task from tasklist, so we won't find dead tasks. */
5654static void migrate_dead_tasks(unsigned int dead_cpu)
5655{
70b97a7f 5656 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5657 struct task_struct *next;
48f24c4d 5658
dd41f596
IM
5659 for ( ; ; ) {
5660 if (!rq->nr_running)
5661 break;
a8e504d2 5662 update_rq_clock(rq);
b67802ea 5663 next = pick_next_task(rq);
dd41f596
IM
5664 if (!next)
5665 break;
79c53799 5666 next->sched_class->put_prev_task(rq, next);
dd41f596 5667 migrate_dead(dead_cpu, next);
e692ab53 5668
1da177e4
LT
5669 }
5670}
dce48a84
TG
5671
5672/*
5673 * remove the tasks which were accounted by rq from calc_load_tasks.
5674 */
5675static void calc_global_load_remove(struct rq *rq)
5676{
5677 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5678 rq->calc_load_active = 0;
dce48a84 5679}
1da177e4
LT
5680#endif /* CONFIG_HOTPLUG_CPU */
5681
e692ab53
NP
5682#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5683
5684static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5685 {
5686 .procname = "sched_domain",
c57baf1e 5687 .mode = 0555,
e0361851 5688 },
56992309 5689 {}
e692ab53
NP
5690};
5691
5692static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5693 {
5694 .procname = "kernel",
c57baf1e 5695 .mode = 0555,
e0361851
AD
5696 .child = sd_ctl_dir,
5697 },
56992309 5698 {}
e692ab53
NP
5699};
5700
5701static struct ctl_table *sd_alloc_ctl_entry(int n)
5702{
5703 struct ctl_table *entry =
5cf9f062 5704 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5705
e692ab53
NP
5706 return entry;
5707}
5708
6382bc90
MM
5709static void sd_free_ctl_entry(struct ctl_table **tablep)
5710{
cd790076 5711 struct ctl_table *entry;
6382bc90 5712
cd790076
MM
5713 /*
5714 * In the intermediate directories, both the child directory and
5715 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5716 * will always be set. In the lowest directory the names are
cd790076
MM
5717 * static strings and all have proc handlers.
5718 */
5719 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5720 if (entry->child)
5721 sd_free_ctl_entry(&entry->child);
cd790076
MM
5722 if (entry->proc_handler == NULL)
5723 kfree(entry->procname);
5724 }
6382bc90
MM
5725
5726 kfree(*tablep);
5727 *tablep = NULL;
5728}
5729
e692ab53 5730static void
e0361851 5731set_table_entry(struct ctl_table *entry,
e692ab53
NP
5732 const char *procname, void *data, int maxlen,
5733 mode_t mode, proc_handler *proc_handler)
5734{
e692ab53
NP
5735 entry->procname = procname;
5736 entry->data = data;
5737 entry->maxlen = maxlen;
5738 entry->mode = mode;
5739 entry->proc_handler = proc_handler;
5740}
5741
5742static struct ctl_table *
5743sd_alloc_ctl_domain_table(struct sched_domain *sd)
5744{
a5d8c348 5745 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5746
ad1cdc1d
MM
5747 if (table == NULL)
5748 return NULL;
5749
e0361851 5750 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5751 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5752 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5753 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5754 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5755 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5756 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5757 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5758 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5759 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5760 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5761 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5762 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5763 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5764 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5765 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5766 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5767 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5768 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5769 &sd->cache_nice_tries,
5770 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5771 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5772 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5773 set_table_entry(&table[11], "name", sd->name,
5774 CORENAME_MAX_SIZE, 0444, proc_dostring);
5775 /* &table[12] is terminator */
e692ab53
NP
5776
5777 return table;
5778}
5779
9a4e7159 5780static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5781{
5782 struct ctl_table *entry, *table;
5783 struct sched_domain *sd;
5784 int domain_num = 0, i;
5785 char buf[32];
5786
5787 for_each_domain(cpu, sd)
5788 domain_num++;
5789 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5790 if (table == NULL)
5791 return NULL;
e692ab53
NP
5792
5793 i = 0;
5794 for_each_domain(cpu, sd) {
5795 snprintf(buf, 32, "domain%d", i);
e692ab53 5796 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5797 entry->mode = 0555;
e692ab53
NP
5798 entry->child = sd_alloc_ctl_domain_table(sd);
5799 entry++;
5800 i++;
5801 }
5802 return table;
5803}
5804
5805static struct ctl_table_header *sd_sysctl_header;
6382bc90 5806static void register_sched_domain_sysctl(void)
e692ab53 5807{
6ad4c188 5808 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5809 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5810 char buf[32];
5811
7378547f
MM
5812 WARN_ON(sd_ctl_dir[0].child);
5813 sd_ctl_dir[0].child = entry;
5814
ad1cdc1d
MM
5815 if (entry == NULL)
5816 return;
5817
6ad4c188 5818 for_each_possible_cpu(i) {
e692ab53 5819 snprintf(buf, 32, "cpu%d", i);
e692ab53 5820 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5821 entry->mode = 0555;
e692ab53 5822 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5823 entry++;
e692ab53 5824 }
7378547f
MM
5825
5826 WARN_ON(sd_sysctl_header);
e692ab53
NP
5827 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5828}
6382bc90 5829
7378547f 5830/* may be called multiple times per register */
6382bc90
MM
5831static void unregister_sched_domain_sysctl(void)
5832{
7378547f
MM
5833 if (sd_sysctl_header)
5834 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5835 sd_sysctl_header = NULL;
7378547f
MM
5836 if (sd_ctl_dir[0].child)
5837 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5838}
e692ab53 5839#else
6382bc90
MM
5840static void register_sched_domain_sysctl(void)
5841{
5842}
5843static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5844{
5845}
5846#endif
5847
1f11eb6a
GH
5848static void set_rq_online(struct rq *rq)
5849{
5850 if (!rq->online) {
5851 const struct sched_class *class;
5852
c6c4927b 5853 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5854 rq->online = 1;
5855
5856 for_each_class(class) {
5857 if (class->rq_online)
5858 class->rq_online(rq);
5859 }
5860 }
5861}
5862
5863static void set_rq_offline(struct rq *rq)
5864{
5865 if (rq->online) {
5866 const struct sched_class *class;
5867
5868 for_each_class(class) {
5869 if (class->rq_offline)
5870 class->rq_offline(rq);
5871 }
5872
c6c4927b 5873 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5874 rq->online = 0;
5875 }
5876}
5877
1da177e4
LT
5878/*
5879 * migration_call - callback that gets triggered when a CPU is added.
5880 * Here we can start up the necessary migration thread for the new CPU.
5881 */
48f24c4d
IM
5882static int __cpuinit
5883migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5884{
1da177e4 5885 struct task_struct *p;
48f24c4d 5886 int cpu = (long)hcpu;
1da177e4 5887 unsigned long flags;
70b97a7f 5888 struct rq *rq;
1da177e4
LT
5889
5890 switch (action) {
5be9361c 5891
1da177e4 5892 case CPU_UP_PREPARE:
8bb78442 5893 case CPU_UP_PREPARE_FROZEN:
dd41f596 5894 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5895 if (IS_ERR(p))
5896 return NOTIFY_BAD;
1da177e4
LT
5897 kthread_bind(p, cpu);
5898 /* Must be high prio: stop_machine expects to yield to it. */
5899 rq = task_rq_lock(p, &flags);
dd41f596 5900 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5901 task_rq_unlock(rq, &flags);
371cbb38 5902 get_task_struct(p);
1da177e4 5903 cpu_rq(cpu)->migration_thread = p;
a468d389 5904 rq->calc_load_update = calc_load_update;
1da177e4 5905 break;
48f24c4d 5906
1da177e4 5907 case CPU_ONLINE:
8bb78442 5908 case CPU_ONLINE_FROZEN:
3a4fa0a2 5909 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5910 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5911
5912 /* Update our root-domain */
5913 rq = cpu_rq(cpu);
05fa785c 5914 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5915 if (rq->rd) {
c6c4927b 5916 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5917
5918 set_rq_online(rq);
1f94ef59 5919 }
05fa785c 5920 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5921 break;
48f24c4d 5922
1da177e4
LT
5923#ifdef CONFIG_HOTPLUG_CPU
5924 case CPU_UP_CANCELED:
8bb78442 5925 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5926 if (!cpu_rq(cpu)->migration_thread)
5927 break;
41a2d6cf 5928 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5929 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5930 cpumask_any(cpu_online_mask));
1da177e4 5931 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5932 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5933 cpu_rq(cpu)->migration_thread = NULL;
5934 break;
48f24c4d 5935
1da177e4 5936 case CPU_DEAD:
8bb78442 5937 case CPU_DEAD_FROZEN:
470fd646 5938 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5939 migrate_live_tasks(cpu);
5940 rq = cpu_rq(cpu);
5941 kthread_stop(rq->migration_thread);
371cbb38 5942 put_task_struct(rq->migration_thread);
1da177e4
LT
5943 rq->migration_thread = NULL;
5944 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5945 raw_spin_lock_irq(&rq->lock);
a8e504d2 5946 update_rq_clock(rq);
2e1cb74a 5947 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5948 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5949 rq->idle->sched_class = &idle_sched_class;
1da177e4 5950 migrate_dead_tasks(cpu);
05fa785c 5951 raw_spin_unlock_irq(&rq->lock);
470fd646 5952 cpuset_unlock();
1da177e4
LT
5953 migrate_nr_uninterruptible(rq);
5954 BUG_ON(rq->nr_running != 0);
dce48a84 5955 calc_global_load_remove(rq);
41a2d6cf
IM
5956 /*
5957 * No need to migrate the tasks: it was best-effort if
5958 * they didn't take sched_hotcpu_mutex. Just wake up
5959 * the requestors.
5960 */
05fa785c 5961 raw_spin_lock_irq(&rq->lock);
1da177e4 5962 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5963 struct migration_req *req;
5964
1da177e4 5965 req = list_entry(rq->migration_queue.next,
70b97a7f 5966 struct migration_req, list);
1da177e4 5967 list_del_init(&req->list);
05fa785c 5968 raw_spin_unlock_irq(&rq->lock);
1da177e4 5969 complete(&req->done);
05fa785c 5970 raw_spin_lock_irq(&rq->lock);
1da177e4 5971 }
05fa785c 5972 raw_spin_unlock_irq(&rq->lock);
1da177e4 5973 break;
57d885fe 5974
08f503b0
GH
5975 case CPU_DYING:
5976 case CPU_DYING_FROZEN:
57d885fe
GH
5977 /* Update our root-domain */
5978 rq = cpu_rq(cpu);
05fa785c 5979 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5980 if (rq->rd) {
c6c4927b 5981 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5982 set_rq_offline(rq);
57d885fe 5983 }
05fa785c 5984 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5985 break;
1da177e4
LT
5986#endif
5987 }
5988 return NOTIFY_OK;
5989}
5990
f38b0820
PM
5991/*
5992 * Register at high priority so that task migration (migrate_all_tasks)
5993 * happens before everything else. This has to be lower priority than
cdd6c482 5994 * the notifier in the perf_event subsystem, though.
1da177e4 5995 */
26c2143b 5996static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5997 .notifier_call = migration_call,
5998 .priority = 10
5999};
6000
7babe8db 6001static int __init migration_init(void)
1da177e4
LT
6002{
6003 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6004 int err;
48f24c4d
IM
6005
6006 /* Start one for the boot CPU: */
07dccf33
AM
6007 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6008 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6009 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6010 register_cpu_notifier(&migration_notifier);
7babe8db 6011
a004cd42 6012 return 0;
1da177e4 6013}
7babe8db 6014early_initcall(migration_init);
1da177e4
LT
6015#endif
6016
6017#ifdef CONFIG_SMP
476f3534 6018
3e9830dc 6019#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6020
f6630114
MT
6021static __read_mostly int sched_domain_debug_enabled;
6022
6023static int __init sched_domain_debug_setup(char *str)
6024{
6025 sched_domain_debug_enabled = 1;
6026
6027 return 0;
6028}
6029early_param("sched_debug", sched_domain_debug_setup);
6030
7c16ec58 6031static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6032 struct cpumask *groupmask)
1da177e4 6033{
4dcf6aff 6034 struct sched_group *group = sd->groups;
434d53b0 6035 char str[256];
1da177e4 6036
968ea6d8 6037 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6038 cpumask_clear(groupmask);
4dcf6aff
IM
6039
6040 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6041
6042 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6043 printk("does not load-balance\n");
4dcf6aff 6044 if (sd->parent)
3df0fc5b
PZ
6045 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6046 " has parent");
4dcf6aff 6047 return -1;
41c7ce9a
NP
6048 }
6049
3df0fc5b 6050 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6051
758b2cdc 6052 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6053 printk(KERN_ERR "ERROR: domain->span does not contain "
6054 "CPU%d\n", cpu);
4dcf6aff 6055 }
758b2cdc 6056 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6057 printk(KERN_ERR "ERROR: domain->groups does not contain"
6058 " CPU%d\n", cpu);
4dcf6aff 6059 }
1da177e4 6060
4dcf6aff 6061 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6062 do {
4dcf6aff 6063 if (!group) {
3df0fc5b
PZ
6064 printk("\n");
6065 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6066 break;
6067 }
6068
18a3885f 6069 if (!group->cpu_power) {
3df0fc5b
PZ
6070 printk(KERN_CONT "\n");
6071 printk(KERN_ERR "ERROR: domain->cpu_power not "
6072 "set\n");
4dcf6aff
IM
6073 break;
6074 }
1da177e4 6075
758b2cdc 6076 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6077 printk(KERN_CONT "\n");
6078 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6079 break;
6080 }
1da177e4 6081
758b2cdc 6082 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6083 printk(KERN_CONT "\n");
6084 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6085 break;
6086 }
1da177e4 6087
758b2cdc 6088 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6089
968ea6d8 6090 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6091
3df0fc5b 6092 printk(KERN_CONT " %s", str);
18a3885f 6093 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6094 printk(KERN_CONT " (cpu_power = %d)",
6095 group->cpu_power);
381512cf 6096 }
1da177e4 6097
4dcf6aff
IM
6098 group = group->next;
6099 } while (group != sd->groups);
3df0fc5b 6100 printk(KERN_CONT "\n");
1da177e4 6101
758b2cdc 6102 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6103 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6104
758b2cdc
RR
6105 if (sd->parent &&
6106 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6107 printk(KERN_ERR "ERROR: parent span is not a superset "
6108 "of domain->span\n");
4dcf6aff
IM
6109 return 0;
6110}
1da177e4 6111
4dcf6aff
IM
6112static void sched_domain_debug(struct sched_domain *sd, int cpu)
6113{
d5dd3db1 6114 cpumask_var_t groupmask;
4dcf6aff 6115 int level = 0;
1da177e4 6116
f6630114
MT
6117 if (!sched_domain_debug_enabled)
6118 return;
6119
4dcf6aff
IM
6120 if (!sd) {
6121 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6122 return;
6123 }
1da177e4 6124
4dcf6aff
IM
6125 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6126
d5dd3db1 6127 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6128 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6129 return;
6130 }
6131
4dcf6aff 6132 for (;;) {
7c16ec58 6133 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6134 break;
1da177e4
LT
6135 level++;
6136 sd = sd->parent;
33859f7f 6137 if (!sd)
4dcf6aff
IM
6138 break;
6139 }
d5dd3db1 6140 free_cpumask_var(groupmask);
1da177e4 6141}
6d6bc0ad 6142#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6143# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6144#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6145
1a20ff27 6146static int sd_degenerate(struct sched_domain *sd)
245af2c7 6147{
758b2cdc 6148 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6149 return 1;
6150
6151 /* Following flags need at least 2 groups */
6152 if (sd->flags & (SD_LOAD_BALANCE |
6153 SD_BALANCE_NEWIDLE |
6154 SD_BALANCE_FORK |
89c4710e
SS
6155 SD_BALANCE_EXEC |
6156 SD_SHARE_CPUPOWER |
6157 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6158 if (sd->groups != sd->groups->next)
6159 return 0;
6160 }
6161
6162 /* Following flags don't use groups */
c88d5910 6163 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6164 return 0;
6165
6166 return 1;
6167}
6168
48f24c4d
IM
6169static int
6170sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6171{
6172 unsigned long cflags = sd->flags, pflags = parent->flags;
6173
6174 if (sd_degenerate(parent))
6175 return 1;
6176
758b2cdc 6177 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6178 return 0;
6179
245af2c7
SS
6180 /* Flags needing groups don't count if only 1 group in parent */
6181 if (parent->groups == parent->groups->next) {
6182 pflags &= ~(SD_LOAD_BALANCE |
6183 SD_BALANCE_NEWIDLE |
6184 SD_BALANCE_FORK |
89c4710e
SS
6185 SD_BALANCE_EXEC |
6186 SD_SHARE_CPUPOWER |
6187 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6188 if (nr_node_ids == 1)
6189 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6190 }
6191 if (~cflags & pflags)
6192 return 0;
6193
6194 return 1;
6195}
6196
c6c4927b
RR
6197static void free_rootdomain(struct root_domain *rd)
6198{
047106ad
PZ
6199 synchronize_sched();
6200
68e74568
RR
6201 cpupri_cleanup(&rd->cpupri);
6202
c6c4927b
RR
6203 free_cpumask_var(rd->rto_mask);
6204 free_cpumask_var(rd->online);
6205 free_cpumask_var(rd->span);
6206 kfree(rd);
6207}
6208
57d885fe
GH
6209static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6210{
a0490fa3 6211 struct root_domain *old_rd = NULL;
57d885fe 6212 unsigned long flags;
57d885fe 6213
05fa785c 6214 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6215
6216 if (rq->rd) {
a0490fa3 6217 old_rd = rq->rd;
57d885fe 6218
c6c4927b 6219 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6220 set_rq_offline(rq);
57d885fe 6221
c6c4927b 6222 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6223
a0490fa3
IM
6224 /*
6225 * If we dont want to free the old_rt yet then
6226 * set old_rd to NULL to skip the freeing later
6227 * in this function:
6228 */
6229 if (!atomic_dec_and_test(&old_rd->refcount))
6230 old_rd = NULL;
57d885fe
GH
6231 }
6232
6233 atomic_inc(&rd->refcount);
6234 rq->rd = rd;
6235
c6c4927b 6236 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6237 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6238 set_rq_online(rq);
57d885fe 6239
05fa785c 6240 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6241
6242 if (old_rd)
6243 free_rootdomain(old_rd);
57d885fe
GH
6244}
6245
fd5e1b5d 6246static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6247{
36b7b6d4
PE
6248 gfp_t gfp = GFP_KERNEL;
6249
57d885fe
GH
6250 memset(rd, 0, sizeof(*rd));
6251
36b7b6d4
PE
6252 if (bootmem)
6253 gfp = GFP_NOWAIT;
c6c4927b 6254
36b7b6d4 6255 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6256 goto out;
36b7b6d4 6257 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6258 goto free_span;
36b7b6d4 6259 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6260 goto free_online;
6e0534f2 6261
0fb53029 6262 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6263 goto free_rto_mask;
c6c4927b 6264 return 0;
6e0534f2 6265
68e74568
RR
6266free_rto_mask:
6267 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6268free_online:
6269 free_cpumask_var(rd->online);
6270free_span:
6271 free_cpumask_var(rd->span);
0c910d28 6272out:
c6c4927b 6273 return -ENOMEM;
57d885fe
GH
6274}
6275
6276static void init_defrootdomain(void)
6277{
c6c4927b
RR
6278 init_rootdomain(&def_root_domain, true);
6279
57d885fe
GH
6280 atomic_set(&def_root_domain.refcount, 1);
6281}
6282
dc938520 6283static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6284{
6285 struct root_domain *rd;
6286
6287 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6288 if (!rd)
6289 return NULL;
6290
c6c4927b
RR
6291 if (init_rootdomain(rd, false) != 0) {
6292 kfree(rd);
6293 return NULL;
6294 }
57d885fe
GH
6295
6296 return rd;
6297}
6298
1da177e4 6299/*
0eab9146 6300 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6301 * hold the hotplug lock.
6302 */
0eab9146
IM
6303static void
6304cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6305{
70b97a7f 6306 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6307 struct sched_domain *tmp;
6308
6309 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6310 for (tmp = sd; tmp; ) {
245af2c7
SS
6311 struct sched_domain *parent = tmp->parent;
6312 if (!parent)
6313 break;
f29c9b1c 6314
1a848870 6315 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6316 tmp->parent = parent->parent;
1a848870
SS
6317 if (parent->parent)
6318 parent->parent->child = tmp;
f29c9b1c
LZ
6319 } else
6320 tmp = tmp->parent;
245af2c7
SS
6321 }
6322
1a848870 6323 if (sd && sd_degenerate(sd)) {
245af2c7 6324 sd = sd->parent;
1a848870
SS
6325 if (sd)
6326 sd->child = NULL;
6327 }
1da177e4
LT
6328
6329 sched_domain_debug(sd, cpu);
6330
57d885fe 6331 rq_attach_root(rq, rd);
674311d5 6332 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6333}
6334
6335/* cpus with isolated domains */
dcc30a35 6336static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6337
6338/* Setup the mask of cpus configured for isolated domains */
6339static int __init isolated_cpu_setup(char *str)
6340{
bdddd296 6341 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6342 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6343 return 1;
6344}
6345
8927f494 6346__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6347
6348/*
6711cab4
SS
6349 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6350 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6351 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6352 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6353 *
6354 * init_sched_build_groups will build a circular linked list of the groups
6355 * covered by the given span, and will set each group's ->cpumask correctly,
6356 * and ->cpu_power to 0.
6357 */
a616058b 6358static void
96f874e2
RR
6359init_sched_build_groups(const struct cpumask *span,
6360 const struct cpumask *cpu_map,
6361 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6362 struct sched_group **sg,
96f874e2
RR
6363 struct cpumask *tmpmask),
6364 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6365{
6366 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6367 int i;
6368
96f874e2 6369 cpumask_clear(covered);
7c16ec58 6370
abcd083a 6371 for_each_cpu(i, span) {
6711cab4 6372 struct sched_group *sg;
7c16ec58 6373 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6374 int j;
6375
758b2cdc 6376 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6377 continue;
6378
758b2cdc 6379 cpumask_clear(sched_group_cpus(sg));
18a3885f 6380 sg->cpu_power = 0;
1da177e4 6381
abcd083a 6382 for_each_cpu(j, span) {
7c16ec58 6383 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6384 continue;
6385
96f874e2 6386 cpumask_set_cpu(j, covered);
758b2cdc 6387 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6388 }
6389 if (!first)
6390 first = sg;
6391 if (last)
6392 last->next = sg;
6393 last = sg;
6394 }
6395 last->next = first;
6396}
6397
9c1cfda2 6398#define SD_NODES_PER_DOMAIN 16
1da177e4 6399
9c1cfda2 6400#ifdef CONFIG_NUMA
198e2f18 6401
9c1cfda2
JH
6402/**
6403 * find_next_best_node - find the next node to include in a sched_domain
6404 * @node: node whose sched_domain we're building
6405 * @used_nodes: nodes already in the sched_domain
6406 *
41a2d6cf 6407 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6408 * finds the closest node not already in the @used_nodes map.
6409 *
6410 * Should use nodemask_t.
6411 */
c5f59f08 6412static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6413{
6414 int i, n, val, min_val, best_node = 0;
6415
6416 min_val = INT_MAX;
6417
076ac2af 6418 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6419 /* Start at @node */
076ac2af 6420 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6421
6422 if (!nr_cpus_node(n))
6423 continue;
6424
6425 /* Skip already used nodes */
c5f59f08 6426 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6427 continue;
6428
6429 /* Simple min distance search */
6430 val = node_distance(node, n);
6431
6432 if (val < min_val) {
6433 min_val = val;
6434 best_node = n;
6435 }
6436 }
6437
c5f59f08 6438 node_set(best_node, *used_nodes);
9c1cfda2
JH
6439 return best_node;
6440}
6441
6442/**
6443 * sched_domain_node_span - get a cpumask for a node's sched_domain
6444 * @node: node whose cpumask we're constructing
73486722 6445 * @span: resulting cpumask
9c1cfda2 6446 *
41a2d6cf 6447 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6448 * should be one that prevents unnecessary balancing, but also spreads tasks
6449 * out optimally.
6450 */
96f874e2 6451static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6452{
c5f59f08 6453 nodemask_t used_nodes;
48f24c4d 6454 int i;
9c1cfda2 6455
6ca09dfc 6456 cpumask_clear(span);
c5f59f08 6457 nodes_clear(used_nodes);
9c1cfda2 6458
6ca09dfc 6459 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6460 node_set(node, used_nodes);
9c1cfda2
JH
6461
6462 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6463 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6464
6ca09dfc 6465 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6466 }
9c1cfda2 6467}
6d6bc0ad 6468#endif /* CONFIG_NUMA */
9c1cfda2 6469
5c45bf27 6470int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6471
6c99e9ad
RR
6472/*
6473 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6474 *
6475 * ( See the the comments in include/linux/sched.h:struct sched_group
6476 * and struct sched_domain. )
6c99e9ad
RR
6477 */
6478struct static_sched_group {
6479 struct sched_group sg;
6480 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6481};
6482
6483struct static_sched_domain {
6484 struct sched_domain sd;
6485 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6486};
6487
49a02c51
AH
6488struct s_data {
6489#ifdef CONFIG_NUMA
6490 int sd_allnodes;
6491 cpumask_var_t domainspan;
6492 cpumask_var_t covered;
6493 cpumask_var_t notcovered;
6494#endif
6495 cpumask_var_t nodemask;
6496 cpumask_var_t this_sibling_map;
6497 cpumask_var_t this_core_map;
6498 cpumask_var_t send_covered;
6499 cpumask_var_t tmpmask;
6500 struct sched_group **sched_group_nodes;
6501 struct root_domain *rd;
6502};
6503
2109b99e
AH
6504enum s_alloc {
6505 sa_sched_groups = 0,
6506 sa_rootdomain,
6507 sa_tmpmask,
6508 sa_send_covered,
6509 sa_this_core_map,
6510 sa_this_sibling_map,
6511 sa_nodemask,
6512 sa_sched_group_nodes,
6513#ifdef CONFIG_NUMA
6514 sa_notcovered,
6515 sa_covered,
6516 sa_domainspan,
6517#endif
6518 sa_none,
6519};
6520
9c1cfda2 6521/*
48f24c4d 6522 * SMT sched-domains:
9c1cfda2 6523 */
1da177e4 6524#ifdef CONFIG_SCHED_SMT
6c99e9ad 6525static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6526static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6527
41a2d6cf 6528static int
96f874e2
RR
6529cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6530 struct sched_group **sg, struct cpumask *unused)
1da177e4 6531{
6711cab4 6532 if (sg)
1871e52c 6533 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6534 return cpu;
6535}
6d6bc0ad 6536#endif /* CONFIG_SCHED_SMT */
1da177e4 6537
48f24c4d
IM
6538/*
6539 * multi-core sched-domains:
6540 */
1e9f28fa 6541#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6542static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6543static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6544#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6545
6546#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6547static int
96f874e2
RR
6548cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6549 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6550{
6711cab4 6551 int group;
7c16ec58 6552
c69fc56d 6553 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6554 group = cpumask_first(mask);
6711cab4 6555 if (sg)
6c99e9ad 6556 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6557 return group;
1e9f28fa
SS
6558}
6559#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6560static int
96f874e2
RR
6561cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6562 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6563{
6711cab4 6564 if (sg)
6c99e9ad 6565 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6566 return cpu;
6567}
6568#endif
6569
6c99e9ad
RR
6570static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6571static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6572
41a2d6cf 6573static int
96f874e2
RR
6574cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6575 struct sched_group **sg, struct cpumask *mask)
1da177e4 6576{
6711cab4 6577 int group;
48f24c4d 6578#ifdef CONFIG_SCHED_MC
6ca09dfc 6579 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6580 group = cpumask_first(mask);
1e9f28fa 6581#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6582 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6583 group = cpumask_first(mask);
1da177e4 6584#else
6711cab4 6585 group = cpu;
1da177e4 6586#endif
6711cab4 6587 if (sg)
6c99e9ad 6588 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6589 return group;
1da177e4
LT
6590}
6591
6592#ifdef CONFIG_NUMA
1da177e4 6593/*
9c1cfda2
JH
6594 * The init_sched_build_groups can't handle what we want to do with node
6595 * groups, so roll our own. Now each node has its own list of groups which
6596 * gets dynamically allocated.
1da177e4 6597 */
62ea9ceb 6598static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6599static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6600
62ea9ceb 6601static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6602static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6603
96f874e2
RR
6604static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6605 struct sched_group **sg,
6606 struct cpumask *nodemask)
9c1cfda2 6607{
6711cab4
SS
6608 int group;
6609
6ca09dfc 6610 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6611 group = cpumask_first(nodemask);
6711cab4
SS
6612
6613 if (sg)
6c99e9ad 6614 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6615 return group;
1da177e4 6616}
6711cab4 6617
08069033
SS
6618static void init_numa_sched_groups_power(struct sched_group *group_head)
6619{
6620 struct sched_group *sg = group_head;
6621 int j;
6622
6623 if (!sg)
6624 return;
3a5c359a 6625 do {
758b2cdc 6626 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6627 struct sched_domain *sd;
08069033 6628
6c99e9ad 6629 sd = &per_cpu(phys_domains, j).sd;
13318a71 6630 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6631 /*
6632 * Only add "power" once for each
6633 * physical package.
6634 */
6635 continue;
6636 }
08069033 6637
18a3885f 6638 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6639 }
6640 sg = sg->next;
6641 } while (sg != group_head);
08069033 6642}
0601a88d
AH
6643
6644static int build_numa_sched_groups(struct s_data *d,
6645 const struct cpumask *cpu_map, int num)
6646{
6647 struct sched_domain *sd;
6648 struct sched_group *sg, *prev;
6649 int n, j;
6650
6651 cpumask_clear(d->covered);
6652 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6653 if (cpumask_empty(d->nodemask)) {
6654 d->sched_group_nodes[num] = NULL;
6655 goto out;
6656 }
6657
6658 sched_domain_node_span(num, d->domainspan);
6659 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6660
6661 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6662 GFP_KERNEL, num);
6663 if (!sg) {
3df0fc5b
PZ
6664 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6665 num);
0601a88d
AH
6666 return -ENOMEM;
6667 }
6668 d->sched_group_nodes[num] = sg;
6669
6670 for_each_cpu(j, d->nodemask) {
6671 sd = &per_cpu(node_domains, j).sd;
6672 sd->groups = sg;
6673 }
6674
18a3885f 6675 sg->cpu_power = 0;
0601a88d
AH
6676 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6677 sg->next = sg;
6678 cpumask_or(d->covered, d->covered, d->nodemask);
6679
6680 prev = sg;
6681 for (j = 0; j < nr_node_ids; j++) {
6682 n = (num + j) % nr_node_ids;
6683 cpumask_complement(d->notcovered, d->covered);
6684 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6685 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6686 if (cpumask_empty(d->tmpmask))
6687 break;
6688 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6689 if (cpumask_empty(d->tmpmask))
6690 continue;
6691 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6692 GFP_KERNEL, num);
6693 if (!sg) {
3df0fc5b
PZ
6694 printk(KERN_WARNING
6695 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6696 return -ENOMEM;
6697 }
18a3885f 6698 sg->cpu_power = 0;
0601a88d
AH
6699 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6700 sg->next = prev->next;
6701 cpumask_or(d->covered, d->covered, d->tmpmask);
6702 prev->next = sg;
6703 prev = sg;
6704 }
6705out:
6706 return 0;
6707}
6d6bc0ad 6708#endif /* CONFIG_NUMA */
1da177e4 6709
a616058b 6710#ifdef CONFIG_NUMA
51888ca2 6711/* Free memory allocated for various sched_group structures */
96f874e2
RR
6712static void free_sched_groups(const struct cpumask *cpu_map,
6713 struct cpumask *nodemask)
51888ca2 6714{
a616058b 6715 int cpu, i;
51888ca2 6716
abcd083a 6717 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6718 struct sched_group **sched_group_nodes
6719 = sched_group_nodes_bycpu[cpu];
6720
51888ca2
SV
6721 if (!sched_group_nodes)
6722 continue;
6723
076ac2af 6724 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6725 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6726
6ca09dfc 6727 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6728 if (cpumask_empty(nodemask))
51888ca2
SV
6729 continue;
6730
6731 if (sg == NULL)
6732 continue;
6733 sg = sg->next;
6734next_sg:
6735 oldsg = sg;
6736 sg = sg->next;
6737 kfree(oldsg);
6738 if (oldsg != sched_group_nodes[i])
6739 goto next_sg;
6740 }
6741 kfree(sched_group_nodes);
6742 sched_group_nodes_bycpu[cpu] = NULL;
6743 }
51888ca2 6744}
6d6bc0ad 6745#else /* !CONFIG_NUMA */
96f874e2
RR
6746static void free_sched_groups(const struct cpumask *cpu_map,
6747 struct cpumask *nodemask)
a616058b
SS
6748{
6749}
6d6bc0ad 6750#endif /* CONFIG_NUMA */
51888ca2 6751
89c4710e
SS
6752/*
6753 * Initialize sched groups cpu_power.
6754 *
6755 * cpu_power indicates the capacity of sched group, which is used while
6756 * distributing the load between different sched groups in a sched domain.
6757 * Typically cpu_power for all the groups in a sched domain will be same unless
6758 * there are asymmetries in the topology. If there are asymmetries, group
6759 * having more cpu_power will pickup more load compared to the group having
6760 * less cpu_power.
89c4710e
SS
6761 */
6762static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6763{
6764 struct sched_domain *child;
6765 struct sched_group *group;
f93e65c1
PZ
6766 long power;
6767 int weight;
89c4710e
SS
6768
6769 WARN_ON(!sd || !sd->groups);
6770
13318a71 6771 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6772 return;
6773
6774 child = sd->child;
6775
18a3885f 6776 sd->groups->cpu_power = 0;
5517d86b 6777
f93e65c1
PZ
6778 if (!child) {
6779 power = SCHED_LOAD_SCALE;
6780 weight = cpumask_weight(sched_domain_span(sd));
6781 /*
6782 * SMT siblings share the power of a single core.
a52bfd73
PZ
6783 * Usually multiple threads get a better yield out of
6784 * that one core than a single thread would have,
6785 * reflect that in sd->smt_gain.
f93e65c1 6786 */
a52bfd73
PZ
6787 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6788 power *= sd->smt_gain;
f93e65c1 6789 power /= weight;
a52bfd73
PZ
6790 power >>= SCHED_LOAD_SHIFT;
6791 }
18a3885f 6792 sd->groups->cpu_power += power;
89c4710e
SS
6793 return;
6794 }
6795
89c4710e 6796 /*
f93e65c1 6797 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6798 */
6799 group = child->groups;
6800 do {
18a3885f 6801 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6802 group = group->next;
6803 } while (group != child->groups);
6804}
6805
7c16ec58
MT
6806/*
6807 * Initializers for schedule domains
6808 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6809 */
6810
a5d8c348
IM
6811#ifdef CONFIG_SCHED_DEBUG
6812# define SD_INIT_NAME(sd, type) sd->name = #type
6813#else
6814# define SD_INIT_NAME(sd, type) do { } while (0)
6815#endif
6816
7c16ec58 6817#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6818
7c16ec58
MT
6819#define SD_INIT_FUNC(type) \
6820static noinline void sd_init_##type(struct sched_domain *sd) \
6821{ \
6822 memset(sd, 0, sizeof(*sd)); \
6823 *sd = SD_##type##_INIT; \
1d3504fc 6824 sd->level = SD_LV_##type; \
a5d8c348 6825 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6826}
6827
6828SD_INIT_FUNC(CPU)
6829#ifdef CONFIG_NUMA
6830 SD_INIT_FUNC(ALLNODES)
6831 SD_INIT_FUNC(NODE)
6832#endif
6833#ifdef CONFIG_SCHED_SMT
6834 SD_INIT_FUNC(SIBLING)
6835#endif
6836#ifdef CONFIG_SCHED_MC
6837 SD_INIT_FUNC(MC)
6838#endif
6839
1d3504fc
HS
6840static int default_relax_domain_level = -1;
6841
6842static int __init setup_relax_domain_level(char *str)
6843{
30e0e178
LZ
6844 unsigned long val;
6845
6846 val = simple_strtoul(str, NULL, 0);
6847 if (val < SD_LV_MAX)
6848 default_relax_domain_level = val;
6849
1d3504fc
HS
6850 return 1;
6851}
6852__setup("relax_domain_level=", setup_relax_domain_level);
6853
6854static void set_domain_attribute(struct sched_domain *sd,
6855 struct sched_domain_attr *attr)
6856{
6857 int request;
6858
6859 if (!attr || attr->relax_domain_level < 0) {
6860 if (default_relax_domain_level < 0)
6861 return;
6862 else
6863 request = default_relax_domain_level;
6864 } else
6865 request = attr->relax_domain_level;
6866 if (request < sd->level) {
6867 /* turn off idle balance on this domain */
c88d5910 6868 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6869 } else {
6870 /* turn on idle balance on this domain */
c88d5910 6871 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6872 }
6873}
6874
2109b99e
AH
6875static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6876 const struct cpumask *cpu_map)
6877{
6878 switch (what) {
6879 case sa_sched_groups:
6880 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6881 d->sched_group_nodes = NULL;
6882 case sa_rootdomain:
6883 free_rootdomain(d->rd); /* fall through */
6884 case sa_tmpmask:
6885 free_cpumask_var(d->tmpmask); /* fall through */
6886 case sa_send_covered:
6887 free_cpumask_var(d->send_covered); /* fall through */
6888 case sa_this_core_map:
6889 free_cpumask_var(d->this_core_map); /* fall through */
6890 case sa_this_sibling_map:
6891 free_cpumask_var(d->this_sibling_map); /* fall through */
6892 case sa_nodemask:
6893 free_cpumask_var(d->nodemask); /* fall through */
6894 case sa_sched_group_nodes:
d1b55138 6895#ifdef CONFIG_NUMA
2109b99e
AH
6896 kfree(d->sched_group_nodes); /* fall through */
6897 case sa_notcovered:
6898 free_cpumask_var(d->notcovered); /* fall through */
6899 case sa_covered:
6900 free_cpumask_var(d->covered); /* fall through */
6901 case sa_domainspan:
6902 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6903#endif
2109b99e
AH
6904 case sa_none:
6905 break;
6906 }
6907}
3404c8d9 6908
2109b99e
AH
6909static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6910 const struct cpumask *cpu_map)
6911{
3404c8d9 6912#ifdef CONFIG_NUMA
2109b99e
AH
6913 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6914 return sa_none;
6915 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6916 return sa_domainspan;
6917 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6918 return sa_covered;
6919 /* Allocate the per-node list of sched groups */
6920 d->sched_group_nodes = kcalloc(nr_node_ids,
6921 sizeof(struct sched_group *), GFP_KERNEL);
6922 if (!d->sched_group_nodes) {
3df0fc5b 6923 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6924 return sa_notcovered;
d1b55138 6925 }
2109b99e 6926 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6927#endif
2109b99e
AH
6928 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6929 return sa_sched_group_nodes;
6930 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6931 return sa_nodemask;
6932 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6933 return sa_this_sibling_map;
6934 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6935 return sa_this_core_map;
6936 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6937 return sa_send_covered;
6938 d->rd = alloc_rootdomain();
6939 if (!d->rd) {
3df0fc5b 6940 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6941 return sa_tmpmask;
57d885fe 6942 }
2109b99e
AH
6943 return sa_rootdomain;
6944}
57d885fe 6945
7f4588f3
AH
6946static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6947 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6948{
6949 struct sched_domain *sd = NULL;
7c16ec58 6950#ifdef CONFIG_NUMA
7f4588f3 6951 struct sched_domain *parent;
1da177e4 6952
7f4588f3
AH
6953 d->sd_allnodes = 0;
6954 if (cpumask_weight(cpu_map) >
6955 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6956 sd = &per_cpu(allnodes_domains, i).sd;
6957 SD_INIT(sd, ALLNODES);
1d3504fc 6958 set_domain_attribute(sd, attr);
7f4588f3
AH
6959 cpumask_copy(sched_domain_span(sd), cpu_map);
6960 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6961 d->sd_allnodes = 1;
6962 }
6963 parent = sd;
6964
6965 sd = &per_cpu(node_domains, i).sd;
6966 SD_INIT(sd, NODE);
6967 set_domain_attribute(sd, attr);
6968 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6969 sd->parent = parent;
6970 if (parent)
6971 parent->child = sd;
6972 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6973#endif
7f4588f3
AH
6974 return sd;
6975}
1da177e4 6976
87cce662
AH
6977static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6978 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6979 struct sched_domain *parent, int i)
6980{
6981 struct sched_domain *sd;
6982 sd = &per_cpu(phys_domains, i).sd;
6983 SD_INIT(sd, CPU);
6984 set_domain_attribute(sd, attr);
6985 cpumask_copy(sched_domain_span(sd), d->nodemask);
6986 sd->parent = parent;
6987 if (parent)
6988 parent->child = sd;
6989 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6990 return sd;
6991}
1da177e4 6992
410c4081
AH
6993static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6994 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6995 struct sched_domain *parent, int i)
6996{
6997 struct sched_domain *sd = parent;
1e9f28fa 6998#ifdef CONFIG_SCHED_MC
410c4081
AH
6999 sd = &per_cpu(core_domains, i).sd;
7000 SD_INIT(sd, MC);
7001 set_domain_attribute(sd, attr);
7002 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7003 sd->parent = parent;
7004 parent->child = sd;
7005 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7006#endif
410c4081
AH
7007 return sd;
7008}
1e9f28fa 7009
d8173535
AH
7010static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7011 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7012 struct sched_domain *parent, int i)
7013{
7014 struct sched_domain *sd = parent;
1da177e4 7015#ifdef CONFIG_SCHED_SMT
d8173535
AH
7016 sd = &per_cpu(cpu_domains, i).sd;
7017 SD_INIT(sd, SIBLING);
7018 set_domain_attribute(sd, attr);
7019 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7020 sd->parent = parent;
7021 parent->child = sd;
7022 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7023#endif
d8173535
AH
7024 return sd;
7025}
1da177e4 7026
0e8e85c9
AH
7027static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7028 const struct cpumask *cpu_map, int cpu)
7029{
7030 switch (l) {
1da177e4 7031#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7032 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7033 cpumask_and(d->this_sibling_map, cpu_map,
7034 topology_thread_cpumask(cpu));
7035 if (cpu == cpumask_first(d->this_sibling_map))
7036 init_sched_build_groups(d->this_sibling_map, cpu_map,
7037 &cpu_to_cpu_group,
7038 d->send_covered, d->tmpmask);
7039 break;
1da177e4 7040#endif
1e9f28fa 7041#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7042 case SD_LV_MC: /* set up multi-core groups */
7043 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7044 if (cpu == cpumask_first(d->this_core_map))
7045 init_sched_build_groups(d->this_core_map, cpu_map,
7046 &cpu_to_core_group,
7047 d->send_covered, d->tmpmask);
7048 break;
1e9f28fa 7049#endif
86548096
AH
7050 case SD_LV_CPU: /* set up physical groups */
7051 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7052 if (!cpumask_empty(d->nodemask))
7053 init_sched_build_groups(d->nodemask, cpu_map,
7054 &cpu_to_phys_group,
7055 d->send_covered, d->tmpmask);
7056 break;
1da177e4 7057#ifdef CONFIG_NUMA
de616e36
AH
7058 case SD_LV_ALLNODES:
7059 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7060 d->send_covered, d->tmpmask);
7061 break;
7062#endif
0e8e85c9
AH
7063 default:
7064 break;
7c16ec58 7065 }
0e8e85c9 7066}
9c1cfda2 7067
2109b99e
AH
7068/*
7069 * Build sched domains for a given set of cpus and attach the sched domains
7070 * to the individual cpus
7071 */
7072static int __build_sched_domains(const struct cpumask *cpu_map,
7073 struct sched_domain_attr *attr)
7074{
7075 enum s_alloc alloc_state = sa_none;
7076 struct s_data d;
294b0c96 7077 struct sched_domain *sd;
2109b99e 7078 int i;
7c16ec58 7079#ifdef CONFIG_NUMA
2109b99e 7080 d.sd_allnodes = 0;
7c16ec58 7081#endif
9c1cfda2 7082
2109b99e
AH
7083 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7084 if (alloc_state != sa_rootdomain)
7085 goto error;
7086 alloc_state = sa_sched_groups;
9c1cfda2 7087
1da177e4 7088 /*
1a20ff27 7089 * Set up domains for cpus specified by the cpu_map.
1da177e4 7090 */
abcd083a 7091 for_each_cpu(i, cpu_map) {
49a02c51
AH
7092 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7093 cpu_map);
9761eea8 7094
7f4588f3 7095 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7096 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7097 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7098 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7099 }
9c1cfda2 7100
abcd083a 7101 for_each_cpu(i, cpu_map) {
0e8e85c9 7102 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7103 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7104 }
9c1cfda2 7105
1da177e4 7106 /* Set up physical groups */
86548096
AH
7107 for (i = 0; i < nr_node_ids; i++)
7108 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7109
1da177e4
LT
7110#ifdef CONFIG_NUMA
7111 /* Set up node groups */
de616e36
AH
7112 if (d.sd_allnodes)
7113 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7114
0601a88d
AH
7115 for (i = 0; i < nr_node_ids; i++)
7116 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7117 goto error;
1da177e4
LT
7118#endif
7119
7120 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7121#ifdef CONFIG_SCHED_SMT
abcd083a 7122 for_each_cpu(i, cpu_map) {
294b0c96 7123 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7124 init_sched_groups_power(i, sd);
5c45bf27 7125 }
1da177e4 7126#endif
1e9f28fa 7127#ifdef CONFIG_SCHED_MC
abcd083a 7128 for_each_cpu(i, cpu_map) {
294b0c96 7129 sd = &per_cpu(core_domains, i).sd;
89c4710e 7130 init_sched_groups_power(i, sd);
5c45bf27
SS
7131 }
7132#endif
1e9f28fa 7133
abcd083a 7134 for_each_cpu(i, cpu_map) {
294b0c96 7135 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7136 init_sched_groups_power(i, sd);
1da177e4
LT
7137 }
7138
9c1cfda2 7139#ifdef CONFIG_NUMA
076ac2af 7140 for (i = 0; i < nr_node_ids; i++)
49a02c51 7141 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7142
49a02c51 7143 if (d.sd_allnodes) {
6711cab4 7144 struct sched_group *sg;
f712c0c7 7145
96f874e2 7146 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7147 d.tmpmask);
f712c0c7
SS
7148 init_numa_sched_groups_power(sg);
7149 }
9c1cfda2
JH
7150#endif
7151
1da177e4 7152 /* Attach the domains */
abcd083a 7153 for_each_cpu(i, cpu_map) {
1da177e4 7154#ifdef CONFIG_SCHED_SMT
6c99e9ad 7155 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7156#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7157 sd = &per_cpu(core_domains, i).sd;
1da177e4 7158#else
6c99e9ad 7159 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7160#endif
49a02c51 7161 cpu_attach_domain(sd, d.rd, i);
1da177e4 7162 }
51888ca2 7163
2109b99e
AH
7164 d.sched_group_nodes = NULL; /* don't free this we still need it */
7165 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7166 return 0;
51888ca2 7167
51888ca2 7168error:
2109b99e
AH
7169 __free_domain_allocs(&d, alloc_state, cpu_map);
7170 return -ENOMEM;
1da177e4 7171}
029190c5 7172
96f874e2 7173static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7174{
7175 return __build_sched_domains(cpu_map, NULL);
7176}
7177
acc3f5d7 7178static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7179static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7180static struct sched_domain_attr *dattr_cur;
7181 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7182
7183/*
7184 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7185 * cpumask) fails, then fallback to a single sched domain,
7186 * as determined by the single cpumask fallback_doms.
029190c5 7187 */
4212823f 7188static cpumask_var_t fallback_doms;
029190c5 7189
ee79d1bd
HC
7190/*
7191 * arch_update_cpu_topology lets virtualized architectures update the
7192 * cpu core maps. It is supposed to return 1 if the topology changed
7193 * or 0 if it stayed the same.
7194 */
7195int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7196{
ee79d1bd 7197 return 0;
22e52b07
HC
7198}
7199
acc3f5d7
RR
7200cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7201{
7202 int i;
7203 cpumask_var_t *doms;
7204
7205 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7206 if (!doms)
7207 return NULL;
7208 for (i = 0; i < ndoms; i++) {
7209 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7210 free_sched_domains(doms, i);
7211 return NULL;
7212 }
7213 }
7214 return doms;
7215}
7216
7217void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7218{
7219 unsigned int i;
7220 for (i = 0; i < ndoms; i++)
7221 free_cpumask_var(doms[i]);
7222 kfree(doms);
7223}
7224
1a20ff27 7225/*
41a2d6cf 7226 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7227 * For now this just excludes isolated cpus, but could be used to
7228 * exclude other special cases in the future.
1a20ff27 7229 */
96f874e2 7230static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7231{
7378547f
MM
7232 int err;
7233
22e52b07 7234 arch_update_cpu_topology();
029190c5 7235 ndoms_cur = 1;
acc3f5d7 7236 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7237 if (!doms_cur)
acc3f5d7
RR
7238 doms_cur = &fallback_doms;
7239 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7240 dattr_cur = NULL;
acc3f5d7 7241 err = build_sched_domains(doms_cur[0]);
6382bc90 7242 register_sched_domain_sysctl();
7378547f
MM
7243
7244 return err;
1a20ff27
DG
7245}
7246
96f874e2
RR
7247static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7248 struct cpumask *tmpmask)
1da177e4 7249{
7c16ec58 7250 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7251}
1da177e4 7252
1a20ff27
DG
7253/*
7254 * Detach sched domains from a group of cpus specified in cpu_map
7255 * These cpus will now be attached to the NULL domain
7256 */
96f874e2 7257static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7258{
96f874e2
RR
7259 /* Save because hotplug lock held. */
7260 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7261 int i;
7262
abcd083a 7263 for_each_cpu(i, cpu_map)
57d885fe 7264 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7265 synchronize_sched();
96f874e2 7266 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7267}
7268
1d3504fc
HS
7269/* handle null as "default" */
7270static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7271 struct sched_domain_attr *new, int idx_new)
7272{
7273 struct sched_domain_attr tmp;
7274
7275 /* fast path */
7276 if (!new && !cur)
7277 return 1;
7278
7279 tmp = SD_ATTR_INIT;
7280 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7281 new ? (new + idx_new) : &tmp,
7282 sizeof(struct sched_domain_attr));
7283}
7284
029190c5
PJ
7285/*
7286 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7287 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7288 * doms_new[] to the current sched domain partitioning, doms_cur[].
7289 * It destroys each deleted domain and builds each new domain.
7290 *
acc3f5d7 7291 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7292 * The masks don't intersect (don't overlap.) We should setup one
7293 * sched domain for each mask. CPUs not in any of the cpumasks will
7294 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7295 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7296 * it as it is.
7297 *
acc3f5d7
RR
7298 * The passed in 'doms_new' should be allocated using
7299 * alloc_sched_domains. This routine takes ownership of it and will
7300 * free_sched_domains it when done with it. If the caller failed the
7301 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7302 * and partition_sched_domains() will fallback to the single partition
7303 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7304 *
96f874e2 7305 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7306 * ndoms_new == 0 is a special case for destroying existing domains,
7307 * and it will not create the default domain.
dfb512ec 7308 *
029190c5
PJ
7309 * Call with hotplug lock held
7310 */
acc3f5d7 7311void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7312 struct sched_domain_attr *dattr_new)
029190c5 7313{
dfb512ec 7314 int i, j, n;
d65bd5ec 7315 int new_topology;
029190c5 7316
712555ee 7317 mutex_lock(&sched_domains_mutex);
a1835615 7318
7378547f
MM
7319 /* always unregister in case we don't destroy any domains */
7320 unregister_sched_domain_sysctl();
7321
d65bd5ec
HC
7322 /* Let architecture update cpu core mappings. */
7323 new_topology = arch_update_cpu_topology();
7324
dfb512ec 7325 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7326
7327 /* Destroy deleted domains */
7328 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7329 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7330 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7331 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7332 goto match1;
7333 }
7334 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7335 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7336match1:
7337 ;
7338 }
7339
e761b772
MK
7340 if (doms_new == NULL) {
7341 ndoms_cur = 0;
acc3f5d7 7342 doms_new = &fallback_doms;
6ad4c188 7343 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7344 WARN_ON_ONCE(dattr_new);
e761b772
MK
7345 }
7346
029190c5
PJ
7347 /* Build new domains */
7348 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7349 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7350 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7351 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7352 goto match2;
7353 }
7354 /* no match - add a new doms_new */
acc3f5d7 7355 __build_sched_domains(doms_new[i],
1d3504fc 7356 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7357match2:
7358 ;
7359 }
7360
7361 /* Remember the new sched domains */
acc3f5d7
RR
7362 if (doms_cur != &fallback_doms)
7363 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7364 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7365 doms_cur = doms_new;
1d3504fc 7366 dattr_cur = dattr_new;
029190c5 7367 ndoms_cur = ndoms_new;
7378547f
MM
7368
7369 register_sched_domain_sysctl();
a1835615 7370
712555ee 7371 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7372}
7373
5c45bf27 7374#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7375static void arch_reinit_sched_domains(void)
5c45bf27 7376{
95402b38 7377 get_online_cpus();
dfb512ec
MK
7378
7379 /* Destroy domains first to force the rebuild */
7380 partition_sched_domains(0, NULL, NULL);
7381
e761b772 7382 rebuild_sched_domains();
95402b38 7383 put_online_cpus();
5c45bf27
SS
7384}
7385
7386static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7387{
afb8a9b7 7388 unsigned int level = 0;
5c45bf27 7389
afb8a9b7
GS
7390 if (sscanf(buf, "%u", &level) != 1)
7391 return -EINVAL;
7392
7393 /*
7394 * level is always be positive so don't check for
7395 * level < POWERSAVINGS_BALANCE_NONE which is 0
7396 * What happens on 0 or 1 byte write,
7397 * need to check for count as well?
7398 */
7399
7400 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7401 return -EINVAL;
7402
7403 if (smt)
afb8a9b7 7404 sched_smt_power_savings = level;
5c45bf27 7405 else
afb8a9b7 7406 sched_mc_power_savings = level;
5c45bf27 7407
c70f22d2 7408 arch_reinit_sched_domains();
5c45bf27 7409
c70f22d2 7410 return count;
5c45bf27
SS
7411}
7412
5c45bf27 7413#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7414static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7415 char *page)
5c45bf27
SS
7416{
7417 return sprintf(page, "%u\n", sched_mc_power_savings);
7418}
f718cd4a 7419static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7420 const char *buf, size_t count)
5c45bf27
SS
7421{
7422 return sched_power_savings_store(buf, count, 0);
7423}
f718cd4a
AK
7424static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7425 sched_mc_power_savings_show,
7426 sched_mc_power_savings_store);
5c45bf27
SS
7427#endif
7428
7429#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7430static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7431 char *page)
5c45bf27
SS
7432{
7433 return sprintf(page, "%u\n", sched_smt_power_savings);
7434}
f718cd4a 7435static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7436 const char *buf, size_t count)
5c45bf27
SS
7437{
7438 return sched_power_savings_store(buf, count, 1);
7439}
f718cd4a
AK
7440static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7441 sched_smt_power_savings_show,
6707de00
AB
7442 sched_smt_power_savings_store);
7443#endif
7444
39aac648 7445int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7446{
7447 int err = 0;
7448
7449#ifdef CONFIG_SCHED_SMT
7450 if (smt_capable())
7451 err = sysfs_create_file(&cls->kset.kobj,
7452 &attr_sched_smt_power_savings.attr);
7453#endif
7454#ifdef CONFIG_SCHED_MC
7455 if (!err && mc_capable())
7456 err = sysfs_create_file(&cls->kset.kobj,
7457 &attr_sched_mc_power_savings.attr);
7458#endif
7459 return err;
7460}
6d6bc0ad 7461#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7462
e761b772 7463#ifndef CONFIG_CPUSETS
1da177e4 7464/*
e761b772
MK
7465 * Add online and remove offline CPUs from the scheduler domains.
7466 * When cpusets are enabled they take over this function.
1da177e4
LT
7467 */
7468static int update_sched_domains(struct notifier_block *nfb,
7469 unsigned long action, void *hcpu)
e761b772
MK
7470{
7471 switch (action) {
7472 case CPU_ONLINE:
7473 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7474 case CPU_DOWN_PREPARE:
7475 case CPU_DOWN_PREPARE_FROZEN:
7476 case CPU_DOWN_FAILED:
7477 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7478 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7479 return NOTIFY_OK;
7480
7481 default:
7482 return NOTIFY_DONE;
7483 }
7484}
7485#endif
7486
7487static int update_runtime(struct notifier_block *nfb,
7488 unsigned long action, void *hcpu)
1da177e4 7489{
7def2be1
PZ
7490 int cpu = (int)(long)hcpu;
7491
1da177e4 7492 switch (action) {
1da177e4 7493 case CPU_DOWN_PREPARE:
8bb78442 7494 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7495 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7496 return NOTIFY_OK;
7497
1da177e4 7498 case CPU_DOWN_FAILED:
8bb78442 7499 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7500 case CPU_ONLINE:
8bb78442 7501 case CPU_ONLINE_FROZEN:
7def2be1 7502 enable_runtime(cpu_rq(cpu));
e761b772
MK
7503 return NOTIFY_OK;
7504
1da177e4
LT
7505 default:
7506 return NOTIFY_DONE;
7507 }
1da177e4 7508}
1da177e4
LT
7509
7510void __init sched_init_smp(void)
7511{
dcc30a35
RR
7512 cpumask_var_t non_isolated_cpus;
7513
7514 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7515 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7516
434d53b0
MT
7517#if defined(CONFIG_NUMA)
7518 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7519 GFP_KERNEL);
7520 BUG_ON(sched_group_nodes_bycpu == NULL);
7521#endif
95402b38 7522 get_online_cpus();
712555ee 7523 mutex_lock(&sched_domains_mutex);
6ad4c188 7524 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7525 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7526 if (cpumask_empty(non_isolated_cpus))
7527 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7528 mutex_unlock(&sched_domains_mutex);
95402b38 7529 put_online_cpus();
e761b772
MK
7530
7531#ifndef CONFIG_CPUSETS
1da177e4
LT
7532 /* XXX: Theoretical race here - CPU may be hotplugged now */
7533 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7534#endif
7535
7536 /* RT runtime code needs to handle some hotplug events */
7537 hotcpu_notifier(update_runtime, 0);
7538
b328ca18 7539 init_hrtick();
5c1e1767
NP
7540
7541 /* Move init over to a non-isolated CPU */
dcc30a35 7542 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7543 BUG();
19978ca6 7544 sched_init_granularity();
dcc30a35 7545 free_cpumask_var(non_isolated_cpus);
4212823f 7546
0e3900e6 7547 init_sched_rt_class();
1da177e4
LT
7548}
7549#else
7550void __init sched_init_smp(void)
7551{
19978ca6 7552 sched_init_granularity();
1da177e4
LT
7553}
7554#endif /* CONFIG_SMP */
7555
cd1bb94b
AB
7556const_debug unsigned int sysctl_timer_migration = 1;
7557
1da177e4
LT
7558int in_sched_functions(unsigned long addr)
7559{
1da177e4
LT
7560 return in_lock_functions(addr) ||
7561 (addr >= (unsigned long)__sched_text_start
7562 && addr < (unsigned long)__sched_text_end);
7563}
7564
a9957449 7565static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7566{
7567 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7568 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7569#ifdef CONFIG_FAIR_GROUP_SCHED
7570 cfs_rq->rq = rq;
7571#endif
67e9fb2a 7572 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7573}
7574
fa85ae24
PZ
7575static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7576{
7577 struct rt_prio_array *array;
7578 int i;
7579
7580 array = &rt_rq->active;
7581 for (i = 0; i < MAX_RT_PRIO; i++) {
7582 INIT_LIST_HEAD(array->queue + i);
7583 __clear_bit(i, array->bitmap);
7584 }
7585 /* delimiter for bitsearch: */
7586 __set_bit(MAX_RT_PRIO, array->bitmap);
7587
052f1dc7 7588#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7589 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7590#ifdef CONFIG_SMP
e864c499 7591 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7592#endif
48d5e258 7593#endif
fa85ae24
PZ
7594#ifdef CONFIG_SMP
7595 rt_rq->rt_nr_migratory = 0;
fa85ae24 7596 rt_rq->overloaded = 0;
05fa785c 7597 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7598#endif
7599
7600 rt_rq->rt_time = 0;
7601 rt_rq->rt_throttled = 0;
ac086bc2 7602 rt_rq->rt_runtime = 0;
0986b11b 7603 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7604
052f1dc7 7605#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7606 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7607 rt_rq->rq = rq;
7608#endif
fa85ae24
PZ
7609}
7610
6f505b16 7611#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7612static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7613 struct sched_entity *se, int cpu, int add,
7614 struct sched_entity *parent)
6f505b16 7615{
ec7dc8ac 7616 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7617 tg->cfs_rq[cpu] = cfs_rq;
7618 init_cfs_rq(cfs_rq, rq);
7619 cfs_rq->tg = tg;
7620 if (add)
7621 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7622
7623 tg->se[cpu] = se;
354d60c2
DG
7624 /* se could be NULL for init_task_group */
7625 if (!se)
7626 return;
7627
ec7dc8ac
DG
7628 if (!parent)
7629 se->cfs_rq = &rq->cfs;
7630 else
7631 se->cfs_rq = parent->my_q;
7632
6f505b16
PZ
7633 se->my_q = cfs_rq;
7634 se->load.weight = tg->shares;
e05510d0 7635 se->load.inv_weight = 0;
ec7dc8ac 7636 se->parent = parent;
6f505b16 7637}
052f1dc7 7638#endif
6f505b16 7639
052f1dc7 7640#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7641static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7642 struct sched_rt_entity *rt_se, int cpu, int add,
7643 struct sched_rt_entity *parent)
6f505b16 7644{
ec7dc8ac
DG
7645 struct rq *rq = cpu_rq(cpu);
7646
6f505b16
PZ
7647 tg->rt_rq[cpu] = rt_rq;
7648 init_rt_rq(rt_rq, rq);
7649 rt_rq->tg = tg;
7650 rt_rq->rt_se = rt_se;
ac086bc2 7651 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7652 if (add)
7653 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7654
7655 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7656 if (!rt_se)
7657 return;
7658
ec7dc8ac
DG
7659 if (!parent)
7660 rt_se->rt_rq = &rq->rt;
7661 else
7662 rt_se->rt_rq = parent->my_q;
7663
6f505b16 7664 rt_se->my_q = rt_rq;
ec7dc8ac 7665 rt_se->parent = parent;
6f505b16
PZ
7666 INIT_LIST_HEAD(&rt_se->run_list);
7667}
7668#endif
7669
1da177e4
LT
7670void __init sched_init(void)
7671{
dd41f596 7672 int i, j;
434d53b0
MT
7673 unsigned long alloc_size = 0, ptr;
7674
7675#ifdef CONFIG_FAIR_GROUP_SCHED
7676 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7677#endif
7678#ifdef CONFIG_RT_GROUP_SCHED
7679 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7680#endif
7681#ifdef CONFIG_USER_SCHED
7682 alloc_size *= 2;
df7c8e84
RR
7683#endif
7684#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7685 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7686#endif
434d53b0 7687 if (alloc_size) {
36b7b6d4 7688 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7689
7690#ifdef CONFIG_FAIR_GROUP_SCHED
7691 init_task_group.se = (struct sched_entity **)ptr;
7692 ptr += nr_cpu_ids * sizeof(void **);
7693
7694 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7695 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7696
7697#ifdef CONFIG_USER_SCHED
7698 root_task_group.se = (struct sched_entity **)ptr;
7699 ptr += nr_cpu_ids * sizeof(void **);
7700
7701 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7702 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7703#endif /* CONFIG_USER_SCHED */
7704#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7705#ifdef CONFIG_RT_GROUP_SCHED
7706 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7707 ptr += nr_cpu_ids * sizeof(void **);
7708
7709 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7710 ptr += nr_cpu_ids * sizeof(void **);
7711
7712#ifdef CONFIG_USER_SCHED
7713 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7714 ptr += nr_cpu_ids * sizeof(void **);
7715
7716 root_task_group.rt_rq = (struct rt_rq **)ptr;
7717 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7718#endif /* CONFIG_USER_SCHED */
7719#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7720#ifdef CONFIG_CPUMASK_OFFSTACK
7721 for_each_possible_cpu(i) {
7722 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7723 ptr += cpumask_size();
7724 }
7725#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7726 }
dd41f596 7727
57d885fe
GH
7728#ifdef CONFIG_SMP
7729 init_defrootdomain();
7730#endif
7731
d0b27fa7
PZ
7732 init_rt_bandwidth(&def_rt_bandwidth,
7733 global_rt_period(), global_rt_runtime());
7734
7735#ifdef CONFIG_RT_GROUP_SCHED
7736 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7737 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7738#ifdef CONFIG_USER_SCHED
7739 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7740 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7741#endif /* CONFIG_USER_SCHED */
7742#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7743
052f1dc7 7744#ifdef CONFIG_GROUP_SCHED
6f505b16 7745 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7746 INIT_LIST_HEAD(&init_task_group.children);
7747
7748#ifdef CONFIG_USER_SCHED
7749 INIT_LIST_HEAD(&root_task_group.children);
7750 init_task_group.parent = &root_task_group;
7751 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7752#endif /* CONFIG_USER_SCHED */
7753#endif /* CONFIG_GROUP_SCHED */
6f505b16 7754
4a6cc4bd
JK
7755#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7756 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7757 __alignof__(unsigned long));
7758#endif
0a945022 7759 for_each_possible_cpu(i) {
70b97a7f 7760 struct rq *rq;
1da177e4
LT
7761
7762 rq = cpu_rq(i);
05fa785c 7763 raw_spin_lock_init(&rq->lock);
7897986b 7764 rq->nr_running = 0;
dce48a84
TG
7765 rq->calc_load_active = 0;
7766 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7767 init_cfs_rq(&rq->cfs, rq);
6f505b16 7768 init_rt_rq(&rq->rt, rq);
dd41f596 7769#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7770 init_task_group.shares = init_task_group_load;
6f505b16 7771 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7772#ifdef CONFIG_CGROUP_SCHED
7773 /*
7774 * How much cpu bandwidth does init_task_group get?
7775 *
7776 * In case of task-groups formed thr' the cgroup filesystem, it
7777 * gets 100% of the cpu resources in the system. This overall
7778 * system cpu resource is divided among the tasks of
7779 * init_task_group and its child task-groups in a fair manner,
7780 * based on each entity's (task or task-group's) weight
7781 * (se->load.weight).
7782 *
7783 * In other words, if init_task_group has 10 tasks of weight
7784 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7785 * then A0's share of the cpu resource is:
7786 *
0d905bca 7787 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7788 *
7789 * We achieve this by letting init_task_group's tasks sit
7790 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7791 */
ec7dc8ac 7792 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7793#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7794 root_task_group.shares = NICE_0_LOAD;
7795 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7796 /*
7797 * In case of task-groups formed thr' the user id of tasks,
7798 * init_task_group represents tasks belonging to root user.
7799 * Hence it forms a sibling of all subsequent groups formed.
7800 * In this case, init_task_group gets only a fraction of overall
7801 * system cpu resource, based on the weight assigned to root
7802 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7803 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 7804 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
7805 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7806 */
ec7dc8ac 7807 init_tg_cfs_entry(&init_task_group,
84e9dabf 7808 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
7809 &per_cpu(init_sched_entity, i), i, 1,
7810 root_task_group.se[i]);
6f505b16 7811
052f1dc7 7812#endif
354d60c2
DG
7813#endif /* CONFIG_FAIR_GROUP_SCHED */
7814
7815 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7816#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7817 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7818#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7819 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7820#elif defined CONFIG_USER_SCHED
eff766a6 7821 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7822 init_tg_rt_entry(&init_task_group,
1871e52c 7823 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
7824 &per_cpu(init_sched_rt_entity, i), i, 1,
7825 root_task_group.rt_se[i]);
354d60c2 7826#endif
dd41f596 7827#endif
1da177e4 7828
dd41f596
IM
7829 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7830 rq->cpu_load[j] = 0;
1da177e4 7831#ifdef CONFIG_SMP
41c7ce9a 7832 rq->sd = NULL;
57d885fe 7833 rq->rd = NULL;
3f029d3c 7834 rq->post_schedule = 0;
1da177e4 7835 rq->active_balance = 0;
dd41f596 7836 rq->next_balance = jiffies;
1da177e4 7837 rq->push_cpu = 0;
0a2966b4 7838 rq->cpu = i;
1f11eb6a 7839 rq->online = 0;
1da177e4 7840 rq->migration_thread = NULL;
eae0c9df
MG
7841 rq->idle_stamp = 0;
7842 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7843 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7844 rq_attach_root(rq, &def_root_domain);
1da177e4 7845#endif
8f4d37ec 7846 init_rq_hrtick(rq);
1da177e4 7847 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7848 }
7849
2dd73a4f 7850 set_load_weight(&init_task);
b50f60ce 7851
e107be36
AK
7852#ifdef CONFIG_PREEMPT_NOTIFIERS
7853 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7854#endif
7855
c9819f45 7856#ifdef CONFIG_SMP
962cf36c 7857 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7858#endif
7859
b50f60ce 7860#ifdef CONFIG_RT_MUTEXES
1d615482 7861 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7862#endif
7863
1da177e4
LT
7864 /*
7865 * The boot idle thread does lazy MMU switching as well:
7866 */
7867 atomic_inc(&init_mm.mm_count);
7868 enter_lazy_tlb(&init_mm, current);
7869
7870 /*
7871 * Make us the idle thread. Technically, schedule() should not be
7872 * called from this thread, however somewhere below it might be,
7873 * but because we are the idle thread, we just pick up running again
7874 * when this runqueue becomes "idle".
7875 */
7876 init_idle(current, smp_processor_id());
dce48a84
TG
7877
7878 calc_load_update = jiffies + LOAD_FREQ;
7879
dd41f596
IM
7880 /*
7881 * During early bootup we pretend to be a normal task:
7882 */
7883 current->sched_class = &fair_sched_class;
6892b75e 7884
6a7b3dc3 7885 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7886 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7887#ifdef CONFIG_SMP
7d1e6a9b 7888#ifdef CONFIG_NO_HZ
49557e62 7889 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7890 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7891#endif
bdddd296
RR
7892 /* May be allocated at isolcpus cmdline parse time */
7893 if (cpu_isolated_map == NULL)
7894 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7895#endif /* SMP */
6a7b3dc3 7896
cdd6c482 7897 perf_event_init();
0d905bca 7898
6892b75e 7899 scheduler_running = 1;
1da177e4
LT
7900}
7901
7902#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7903static inline int preempt_count_equals(int preempt_offset)
7904{
234da7bc 7905 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7906
7907 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7908}
7909
d894837f 7910void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7911{
48f24c4d 7912#ifdef in_atomic
1da177e4
LT
7913 static unsigned long prev_jiffy; /* ratelimiting */
7914
e4aafea2
FW
7915 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7916 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7917 return;
7918 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7919 return;
7920 prev_jiffy = jiffies;
7921
3df0fc5b
PZ
7922 printk(KERN_ERR
7923 "BUG: sleeping function called from invalid context at %s:%d\n",
7924 file, line);
7925 printk(KERN_ERR
7926 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7927 in_atomic(), irqs_disabled(),
7928 current->pid, current->comm);
aef745fc
IM
7929
7930 debug_show_held_locks(current);
7931 if (irqs_disabled())
7932 print_irqtrace_events(current);
7933 dump_stack();
1da177e4
LT
7934#endif
7935}
7936EXPORT_SYMBOL(__might_sleep);
7937#endif
7938
7939#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7940static void normalize_task(struct rq *rq, struct task_struct *p)
7941{
7942 int on_rq;
3e51f33f 7943
3a5e4dc1
AK
7944 update_rq_clock(rq);
7945 on_rq = p->se.on_rq;
7946 if (on_rq)
7947 deactivate_task(rq, p, 0);
7948 __setscheduler(rq, p, SCHED_NORMAL, 0);
7949 if (on_rq) {
7950 activate_task(rq, p, 0);
7951 resched_task(rq->curr);
7952 }
7953}
7954
1da177e4
LT
7955void normalize_rt_tasks(void)
7956{
a0f98a1c 7957 struct task_struct *g, *p;
1da177e4 7958 unsigned long flags;
70b97a7f 7959 struct rq *rq;
1da177e4 7960
4cf5d77a 7961 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7962 do_each_thread(g, p) {
178be793
IM
7963 /*
7964 * Only normalize user tasks:
7965 */
7966 if (!p->mm)
7967 continue;
7968
6cfb0d5d 7969 p->se.exec_start = 0;
6cfb0d5d 7970#ifdef CONFIG_SCHEDSTATS
dd41f596 7971 p->se.wait_start = 0;
dd41f596 7972 p->se.sleep_start = 0;
dd41f596 7973 p->se.block_start = 0;
6cfb0d5d 7974#endif
dd41f596
IM
7975
7976 if (!rt_task(p)) {
7977 /*
7978 * Renice negative nice level userspace
7979 * tasks back to 0:
7980 */
7981 if (TASK_NICE(p) < 0 && p->mm)
7982 set_user_nice(p, 0);
1da177e4 7983 continue;
dd41f596 7984 }
1da177e4 7985
1d615482 7986 raw_spin_lock(&p->pi_lock);
b29739f9 7987 rq = __task_rq_lock(p);
1da177e4 7988
178be793 7989 normalize_task(rq, p);
3a5e4dc1 7990
b29739f9 7991 __task_rq_unlock(rq);
1d615482 7992 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7993 } while_each_thread(g, p);
7994
4cf5d77a 7995 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7996}
7997
7998#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7999
8000#ifdef CONFIG_IA64
8001/*
8002 * These functions are only useful for the IA64 MCA handling.
8003 *
8004 * They can only be called when the whole system has been
8005 * stopped - every CPU needs to be quiescent, and no scheduling
8006 * activity can take place. Using them for anything else would
8007 * be a serious bug, and as a result, they aren't even visible
8008 * under any other configuration.
8009 */
8010
8011/**
8012 * curr_task - return the current task for a given cpu.
8013 * @cpu: the processor in question.
8014 *
8015 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8016 */
36c8b586 8017struct task_struct *curr_task(int cpu)
1df5c10a
LT
8018{
8019 return cpu_curr(cpu);
8020}
8021
8022/**
8023 * set_curr_task - set the current task for a given cpu.
8024 * @cpu: the processor in question.
8025 * @p: the task pointer to set.
8026 *
8027 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8028 * are serviced on a separate stack. It allows the architecture to switch the
8029 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8030 * must be called with all CPU's synchronized, and interrupts disabled, the
8031 * and caller must save the original value of the current task (see
8032 * curr_task() above) and restore that value before reenabling interrupts and
8033 * re-starting the system.
8034 *
8035 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8036 */
36c8b586 8037void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8038{
8039 cpu_curr(cpu) = p;
8040}
8041
8042#endif
29f59db3 8043
bccbe08a
PZ
8044#ifdef CONFIG_FAIR_GROUP_SCHED
8045static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8046{
8047 int i;
8048
8049 for_each_possible_cpu(i) {
8050 if (tg->cfs_rq)
8051 kfree(tg->cfs_rq[i]);
8052 if (tg->se)
8053 kfree(tg->se[i]);
6f505b16
PZ
8054 }
8055
8056 kfree(tg->cfs_rq);
8057 kfree(tg->se);
6f505b16
PZ
8058}
8059
ec7dc8ac
DG
8060static
8061int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8062{
29f59db3 8063 struct cfs_rq *cfs_rq;
eab17229 8064 struct sched_entity *se;
9b5b7751 8065 struct rq *rq;
29f59db3
SV
8066 int i;
8067
434d53b0 8068 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8069 if (!tg->cfs_rq)
8070 goto err;
434d53b0 8071 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8072 if (!tg->se)
8073 goto err;
052f1dc7
PZ
8074
8075 tg->shares = NICE_0_LOAD;
29f59db3
SV
8076
8077 for_each_possible_cpu(i) {
9b5b7751 8078 rq = cpu_rq(i);
29f59db3 8079
eab17229
LZ
8080 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8081 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8082 if (!cfs_rq)
8083 goto err;
8084
eab17229
LZ
8085 se = kzalloc_node(sizeof(struct sched_entity),
8086 GFP_KERNEL, cpu_to_node(i));
29f59db3 8087 if (!se)
dfc12eb2 8088 goto err_free_rq;
29f59db3 8089
eab17229 8090 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8091 }
8092
8093 return 1;
8094
dfc12eb2
PC
8095 err_free_rq:
8096 kfree(cfs_rq);
bccbe08a
PZ
8097 err:
8098 return 0;
8099}
8100
8101static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8102{
8103 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8104 &cpu_rq(cpu)->leaf_cfs_rq_list);
8105}
8106
8107static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8108{
8109 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8110}
6d6bc0ad 8111#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8112static inline void free_fair_sched_group(struct task_group *tg)
8113{
8114}
8115
ec7dc8ac
DG
8116static inline
8117int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8118{
8119 return 1;
8120}
8121
8122static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8123{
8124}
8125
8126static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8127{
8128}
6d6bc0ad 8129#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8130
8131#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8132static void free_rt_sched_group(struct task_group *tg)
8133{
8134 int i;
8135
d0b27fa7
PZ
8136 destroy_rt_bandwidth(&tg->rt_bandwidth);
8137
bccbe08a
PZ
8138 for_each_possible_cpu(i) {
8139 if (tg->rt_rq)
8140 kfree(tg->rt_rq[i]);
8141 if (tg->rt_se)
8142 kfree(tg->rt_se[i]);
8143 }
8144
8145 kfree(tg->rt_rq);
8146 kfree(tg->rt_se);
8147}
8148
ec7dc8ac
DG
8149static
8150int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8151{
8152 struct rt_rq *rt_rq;
eab17229 8153 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8154 struct rq *rq;
8155 int i;
8156
434d53b0 8157 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8158 if (!tg->rt_rq)
8159 goto err;
434d53b0 8160 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8161 if (!tg->rt_se)
8162 goto err;
8163
d0b27fa7
PZ
8164 init_rt_bandwidth(&tg->rt_bandwidth,
8165 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8166
8167 for_each_possible_cpu(i) {
8168 rq = cpu_rq(i);
8169
eab17229
LZ
8170 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8171 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8172 if (!rt_rq)
8173 goto err;
29f59db3 8174
eab17229
LZ
8175 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8176 GFP_KERNEL, cpu_to_node(i));
6f505b16 8177 if (!rt_se)
dfc12eb2 8178 goto err_free_rq;
29f59db3 8179
eab17229 8180 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8181 }
8182
bccbe08a
PZ
8183 return 1;
8184
dfc12eb2
PC
8185 err_free_rq:
8186 kfree(rt_rq);
bccbe08a
PZ
8187 err:
8188 return 0;
8189}
8190
8191static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8192{
8193 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8194 &cpu_rq(cpu)->leaf_rt_rq_list);
8195}
8196
8197static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8198{
8199 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8200}
6d6bc0ad 8201#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8202static inline void free_rt_sched_group(struct task_group *tg)
8203{
8204}
8205
ec7dc8ac
DG
8206static inline
8207int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8208{
8209 return 1;
8210}
8211
8212static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8213{
8214}
8215
8216static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8217{
8218}
6d6bc0ad 8219#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8220
d0b27fa7 8221#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8222static void free_sched_group(struct task_group *tg)
8223{
8224 free_fair_sched_group(tg);
8225 free_rt_sched_group(tg);
8226 kfree(tg);
8227}
8228
8229/* allocate runqueue etc for a new task group */
ec7dc8ac 8230struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8231{
8232 struct task_group *tg;
8233 unsigned long flags;
8234 int i;
8235
8236 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8237 if (!tg)
8238 return ERR_PTR(-ENOMEM);
8239
ec7dc8ac 8240 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8241 goto err;
8242
ec7dc8ac 8243 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8244 goto err;
8245
8ed36996 8246 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8247 for_each_possible_cpu(i) {
bccbe08a
PZ
8248 register_fair_sched_group(tg, i);
8249 register_rt_sched_group(tg, i);
9b5b7751 8250 }
6f505b16 8251 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8252
8253 WARN_ON(!parent); /* root should already exist */
8254
8255 tg->parent = parent;
f473aa5e 8256 INIT_LIST_HEAD(&tg->children);
09f2724a 8257 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8258 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8259
9b5b7751 8260 return tg;
29f59db3
SV
8261
8262err:
6f505b16 8263 free_sched_group(tg);
29f59db3
SV
8264 return ERR_PTR(-ENOMEM);
8265}
8266
9b5b7751 8267/* rcu callback to free various structures associated with a task group */
6f505b16 8268static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8269{
29f59db3 8270 /* now it should be safe to free those cfs_rqs */
6f505b16 8271 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8272}
8273
9b5b7751 8274/* Destroy runqueue etc associated with a task group */
4cf86d77 8275void sched_destroy_group(struct task_group *tg)
29f59db3 8276{
8ed36996 8277 unsigned long flags;
9b5b7751 8278 int i;
29f59db3 8279
8ed36996 8280 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8281 for_each_possible_cpu(i) {
bccbe08a
PZ
8282 unregister_fair_sched_group(tg, i);
8283 unregister_rt_sched_group(tg, i);
9b5b7751 8284 }
6f505b16 8285 list_del_rcu(&tg->list);
f473aa5e 8286 list_del_rcu(&tg->siblings);
8ed36996 8287 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8288
9b5b7751 8289 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8290 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8291}
8292
9b5b7751 8293/* change task's runqueue when it moves between groups.
3a252015
IM
8294 * The caller of this function should have put the task in its new group
8295 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8296 * reflect its new group.
9b5b7751
SV
8297 */
8298void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8299{
8300 int on_rq, running;
8301 unsigned long flags;
8302 struct rq *rq;
8303
8304 rq = task_rq_lock(tsk, &flags);
8305
29f59db3
SV
8306 update_rq_clock(rq);
8307
051a1d1a 8308 running = task_current(rq, tsk);
29f59db3
SV
8309 on_rq = tsk->se.on_rq;
8310
0e1f3483 8311 if (on_rq)
29f59db3 8312 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8313 if (unlikely(running))
8314 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8315
6f505b16 8316 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8317
810b3817
PZ
8318#ifdef CONFIG_FAIR_GROUP_SCHED
8319 if (tsk->sched_class->moved_group)
88ec22d3 8320 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8321#endif
8322
0e1f3483
HS
8323 if (unlikely(running))
8324 tsk->sched_class->set_curr_task(rq);
8325 if (on_rq)
7074badb 8326 enqueue_task(rq, tsk, 0);
29f59db3 8327
29f59db3
SV
8328 task_rq_unlock(rq, &flags);
8329}
6d6bc0ad 8330#endif /* CONFIG_GROUP_SCHED */
29f59db3 8331
052f1dc7 8332#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8333static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8334{
8335 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8336 int on_rq;
8337
29f59db3 8338 on_rq = se->on_rq;
62fb1851 8339 if (on_rq)
29f59db3
SV
8340 dequeue_entity(cfs_rq, se, 0);
8341
8342 se->load.weight = shares;
e05510d0 8343 se->load.inv_weight = 0;
29f59db3 8344
62fb1851 8345 if (on_rq)
29f59db3 8346 enqueue_entity(cfs_rq, se, 0);
c09595f6 8347}
62fb1851 8348
c09595f6
PZ
8349static void set_se_shares(struct sched_entity *se, unsigned long shares)
8350{
8351 struct cfs_rq *cfs_rq = se->cfs_rq;
8352 struct rq *rq = cfs_rq->rq;
8353 unsigned long flags;
8354
05fa785c 8355 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8356 __set_se_shares(se, shares);
05fa785c 8357 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8358}
8359
8ed36996
PZ
8360static DEFINE_MUTEX(shares_mutex);
8361
4cf86d77 8362int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8363{
8364 int i;
8ed36996 8365 unsigned long flags;
c61935fd 8366
ec7dc8ac
DG
8367 /*
8368 * We can't change the weight of the root cgroup.
8369 */
8370 if (!tg->se[0])
8371 return -EINVAL;
8372
18d95a28
PZ
8373 if (shares < MIN_SHARES)
8374 shares = MIN_SHARES;
cb4ad1ff
MX
8375 else if (shares > MAX_SHARES)
8376 shares = MAX_SHARES;
62fb1851 8377
8ed36996 8378 mutex_lock(&shares_mutex);
9b5b7751 8379 if (tg->shares == shares)
5cb350ba 8380 goto done;
29f59db3 8381
8ed36996 8382 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8383 for_each_possible_cpu(i)
8384 unregister_fair_sched_group(tg, i);
f473aa5e 8385 list_del_rcu(&tg->siblings);
8ed36996 8386 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8387
8388 /* wait for any ongoing reference to this group to finish */
8389 synchronize_sched();
8390
8391 /*
8392 * Now we are free to modify the group's share on each cpu
8393 * w/o tripping rebalance_share or load_balance_fair.
8394 */
9b5b7751 8395 tg->shares = shares;
c09595f6
PZ
8396 for_each_possible_cpu(i) {
8397 /*
8398 * force a rebalance
8399 */
8400 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8401 set_se_shares(tg->se[i], shares);
c09595f6 8402 }
29f59db3 8403
6b2d7700
SV
8404 /*
8405 * Enable load balance activity on this group, by inserting it back on
8406 * each cpu's rq->leaf_cfs_rq_list.
8407 */
8ed36996 8408 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8409 for_each_possible_cpu(i)
8410 register_fair_sched_group(tg, i);
f473aa5e 8411 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8412 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8413done:
8ed36996 8414 mutex_unlock(&shares_mutex);
9b5b7751 8415 return 0;
29f59db3
SV
8416}
8417
5cb350ba
DG
8418unsigned long sched_group_shares(struct task_group *tg)
8419{
8420 return tg->shares;
8421}
052f1dc7 8422#endif
5cb350ba 8423
052f1dc7 8424#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8425/*
9f0c1e56 8426 * Ensure that the real time constraints are schedulable.
6f505b16 8427 */
9f0c1e56
PZ
8428static DEFINE_MUTEX(rt_constraints_mutex);
8429
8430static unsigned long to_ratio(u64 period, u64 runtime)
8431{
8432 if (runtime == RUNTIME_INF)
9a7e0b18 8433 return 1ULL << 20;
9f0c1e56 8434
9a7e0b18 8435 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8436}
8437
9a7e0b18
PZ
8438/* Must be called with tasklist_lock held */
8439static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8440{
9a7e0b18 8441 struct task_struct *g, *p;
b40b2e8e 8442
9a7e0b18
PZ
8443 do_each_thread(g, p) {
8444 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8445 return 1;
8446 } while_each_thread(g, p);
b40b2e8e 8447
9a7e0b18
PZ
8448 return 0;
8449}
b40b2e8e 8450
9a7e0b18
PZ
8451struct rt_schedulable_data {
8452 struct task_group *tg;
8453 u64 rt_period;
8454 u64 rt_runtime;
8455};
b40b2e8e 8456
9a7e0b18
PZ
8457static int tg_schedulable(struct task_group *tg, void *data)
8458{
8459 struct rt_schedulable_data *d = data;
8460 struct task_group *child;
8461 unsigned long total, sum = 0;
8462 u64 period, runtime;
b40b2e8e 8463
9a7e0b18
PZ
8464 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8465 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8466
9a7e0b18
PZ
8467 if (tg == d->tg) {
8468 period = d->rt_period;
8469 runtime = d->rt_runtime;
b40b2e8e 8470 }
b40b2e8e 8471
98a4826b
PZ
8472#ifdef CONFIG_USER_SCHED
8473 if (tg == &root_task_group) {
8474 period = global_rt_period();
8475 runtime = global_rt_runtime();
8476 }
8477#endif
8478
4653f803
PZ
8479 /*
8480 * Cannot have more runtime than the period.
8481 */
8482 if (runtime > period && runtime != RUNTIME_INF)
8483 return -EINVAL;
6f505b16 8484
4653f803
PZ
8485 /*
8486 * Ensure we don't starve existing RT tasks.
8487 */
9a7e0b18
PZ
8488 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8489 return -EBUSY;
6f505b16 8490
9a7e0b18 8491 total = to_ratio(period, runtime);
6f505b16 8492
4653f803
PZ
8493 /*
8494 * Nobody can have more than the global setting allows.
8495 */
8496 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8497 return -EINVAL;
6f505b16 8498
4653f803
PZ
8499 /*
8500 * The sum of our children's runtime should not exceed our own.
8501 */
9a7e0b18
PZ
8502 list_for_each_entry_rcu(child, &tg->children, siblings) {
8503 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8504 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8505
9a7e0b18
PZ
8506 if (child == d->tg) {
8507 period = d->rt_period;
8508 runtime = d->rt_runtime;
8509 }
6f505b16 8510
9a7e0b18 8511 sum += to_ratio(period, runtime);
9f0c1e56 8512 }
6f505b16 8513
9a7e0b18
PZ
8514 if (sum > total)
8515 return -EINVAL;
8516
8517 return 0;
6f505b16
PZ
8518}
8519
9a7e0b18 8520static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8521{
9a7e0b18
PZ
8522 struct rt_schedulable_data data = {
8523 .tg = tg,
8524 .rt_period = period,
8525 .rt_runtime = runtime,
8526 };
8527
8528 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8529}
8530
d0b27fa7
PZ
8531static int tg_set_bandwidth(struct task_group *tg,
8532 u64 rt_period, u64 rt_runtime)
6f505b16 8533{
ac086bc2 8534 int i, err = 0;
9f0c1e56 8535
9f0c1e56 8536 mutex_lock(&rt_constraints_mutex);
521f1a24 8537 read_lock(&tasklist_lock);
9a7e0b18
PZ
8538 err = __rt_schedulable(tg, rt_period, rt_runtime);
8539 if (err)
9f0c1e56 8540 goto unlock;
ac086bc2 8541
0986b11b 8542 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8543 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8544 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8545
8546 for_each_possible_cpu(i) {
8547 struct rt_rq *rt_rq = tg->rt_rq[i];
8548
0986b11b 8549 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8550 rt_rq->rt_runtime = rt_runtime;
0986b11b 8551 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8552 }
0986b11b 8553 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8554 unlock:
521f1a24 8555 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8556 mutex_unlock(&rt_constraints_mutex);
8557
8558 return err;
6f505b16
PZ
8559}
8560
d0b27fa7
PZ
8561int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8562{
8563 u64 rt_runtime, rt_period;
8564
8565 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8566 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8567 if (rt_runtime_us < 0)
8568 rt_runtime = RUNTIME_INF;
8569
8570 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8571}
8572
9f0c1e56
PZ
8573long sched_group_rt_runtime(struct task_group *tg)
8574{
8575 u64 rt_runtime_us;
8576
d0b27fa7 8577 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8578 return -1;
8579
d0b27fa7 8580 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8581 do_div(rt_runtime_us, NSEC_PER_USEC);
8582 return rt_runtime_us;
8583}
d0b27fa7
PZ
8584
8585int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8586{
8587 u64 rt_runtime, rt_period;
8588
8589 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8590 rt_runtime = tg->rt_bandwidth.rt_runtime;
8591
619b0488
R
8592 if (rt_period == 0)
8593 return -EINVAL;
8594
d0b27fa7
PZ
8595 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8596}
8597
8598long sched_group_rt_period(struct task_group *tg)
8599{
8600 u64 rt_period_us;
8601
8602 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8603 do_div(rt_period_us, NSEC_PER_USEC);
8604 return rt_period_us;
8605}
8606
8607static int sched_rt_global_constraints(void)
8608{
4653f803 8609 u64 runtime, period;
d0b27fa7
PZ
8610 int ret = 0;
8611
ec5d4989
HS
8612 if (sysctl_sched_rt_period <= 0)
8613 return -EINVAL;
8614
4653f803
PZ
8615 runtime = global_rt_runtime();
8616 period = global_rt_period();
8617
8618 /*
8619 * Sanity check on the sysctl variables.
8620 */
8621 if (runtime > period && runtime != RUNTIME_INF)
8622 return -EINVAL;
10b612f4 8623
d0b27fa7 8624 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8625 read_lock(&tasklist_lock);
4653f803 8626 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8627 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8628 mutex_unlock(&rt_constraints_mutex);
8629
8630 return ret;
8631}
54e99124
DG
8632
8633int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8634{
8635 /* Don't accept realtime tasks when there is no way for them to run */
8636 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8637 return 0;
8638
8639 return 1;
8640}
8641
6d6bc0ad 8642#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8643static int sched_rt_global_constraints(void)
8644{
ac086bc2
PZ
8645 unsigned long flags;
8646 int i;
8647
ec5d4989
HS
8648 if (sysctl_sched_rt_period <= 0)
8649 return -EINVAL;
8650
60aa605d
PZ
8651 /*
8652 * There's always some RT tasks in the root group
8653 * -- migration, kstopmachine etc..
8654 */
8655 if (sysctl_sched_rt_runtime == 0)
8656 return -EBUSY;
8657
0986b11b 8658 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8659 for_each_possible_cpu(i) {
8660 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8661
0986b11b 8662 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8663 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8664 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8665 }
0986b11b 8666 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8667
d0b27fa7
PZ
8668 return 0;
8669}
6d6bc0ad 8670#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8671
8672int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8673 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8674 loff_t *ppos)
8675{
8676 int ret;
8677 int old_period, old_runtime;
8678 static DEFINE_MUTEX(mutex);
8679
8680 mutex_lock(&mutex);
8681 old_period = sysctl_sched_rt_period;
8682 old_runtime = sysctl_sched_rt_runtime;
8683
8d65af78 8684 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8685
8686 if (!ret && write) {
8687 ret = sched_rt_global_constraints();
8688 if (ret) {
8689 sysctl_sched_rt_period = old_period;
8690 sysctl_sched_rt_runtime = old_runtime;
8691 } else {
8692 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8693 def_rt_bandwidth.rt_period =
8694 ns_to_ktime(global_rt_period());
8695 }
8696 }
8697 mutex_unlock(&mutex);
8698
8699 return ret;
8700}
68318b8e 8701
052f1dc7 8702#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8703
8704/* return corresponding task_group object of a cgroup */
2b01dfe3 8705static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8706{
2b01dfe3
PM
8707 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8708 struct task_group, css);
68318b8e
SV
8709}
8710
8711static struct cgroup_subsys_state *
2b01dfe3 8712cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8713{
ec7dc8ac 8714 struct task_group *tg, *parent;
68318b8e 8715
2b01dfe3 8716 if (!cgrp->parent) {
68318b8e 8717 /* This is early initialization for the top cgroup */
68318b8e
SV
8718 return &init_task_group.css;
8719 }
8720
ec7dc8ac
DG
8721 parent = cgroup_tg(cgrp->parent);
8722 tg = sched_create_group(parent);
68318b8e
SV
8723 if (IS_ERR(tg))
8724 return ERR_PTR(-ENOMEM);
8725
68318b8e
SV
8726 return &tg->css;
8727}
8728
41a2d6cf
IM
8729static void
8730cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8731{
2b01dfe3 8732 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8733
8734 sched_destroy_group(tg);
8735}
8736
41a2d6cf 8737static int
be367d09 8738cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8739{
b68aa230 8740#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8741 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8742 return -EINVAL;
8743#else
68318b8e
SV
8744 /* We don't support RT-tasks being in separate groups */
8745 if (tsk->sched_class != &fair_sched_class)
8746 return -EINVAL;
b68aa230 8747#endif
be367d09
BB
8748 return 0;
8749}
68318b8e 8750
be367d09
BB
8751static int
8752cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8753 struct task_struct *tsk, bool threadgroup)
8754{
8755 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8756 if (retval)
8757 return retval;
8758 if (threadgroup) {
8759 struct task_struct *c;
8760 rcu_read_lock();
8761 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8762 retval = cpu_cgroup_can_attach_task(cgrp, c);
8763 if (retval) {
8764 rcu_read_unlock();
8765 return retval;
8766 }
8767 }
8768 rcu_read_unlock();
8769 }
68318b8e
SV
8770 return 0;
8771}
8772
8773static void
2b01dfe3 8774cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8775 struct cgroup *old_cont, struct task_struct *tsk,
8776 bool threadgroup)
68318b8e
SV
8777{
8778 sched_move_task(tsk);
be367d09
BB
8779 if (threadgroup) {
8780 struct task_struct *c;
8781 rcu_read_lock();
8782 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8783 sched_move_task(c);
8784 }
8785 rcu_read_unlock();
8786 }
68318b8e
SV
8787}
8788
052f1dc7 8789#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8790static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8791 u64 shareval)
68318b8e 8792{
2b01dfe3 8793 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8794}
8795
f4c753b7 8796static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8797{
2b01dfe3 8798 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8799
8800 return (u64) tg->shares;
8801}
6d6bc0ad 8802#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8803
052f1dc7 8804#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8805static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8806 s64 val)
6f505b16 8807{
06ecb27c 8808 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8809}
8810
06ecb27c 8811static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8812{
06ecb27c 8813 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8814}
d0b27fa7
PZ
8815
8816static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8817 u64 rt_period_us)
8818{
8819 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8820}
8821
8822static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8823{
8824 return sched_group_rt_period(cgroup_tg(cgrp));
8825}
6d6bc0ad 8826#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8827
fe5c7cc2 8828static struct cftype cpu_files[] = {
052f1dc7 8829#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8830 {
8831 .name = "shares",
f4c753b7
PM
8832 .read_u64 = cpu_shares_read_u64,
8833 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8834 },
052f1dc7
PZ
8835#endif
8836#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8837 {
9f0c1e56 8838 .name = "rt_runtime_us",
06ecb27c
PM
8839 .read_s64 = cpu_rt_runtime_read,
8840 .write_s64 = cpu_rt_runtime_write,
6f505b16 8841 },
d0b27fa7
PZ
8842 {
8843 .name = "rt_period_us",
f4c753b7
PM
8844 .read_u64 = cpu_rt_period_read_uint,
8845 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8846 },
052f1dc7 8847#endif
68318b8e
SV
8848};
8849
8850static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8851{
fe5c7cc2 8852 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8853}
8854
8855struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8856 .name = "cpu",
8857 .create = cpu_cgroup_create,
8858 .destroy = cpu_cgroup_destroy,
8859 .can_attach = cpu_cgroup_can_attach,
8860 .attach = cpu_cgroup_attach,
8861 .populate = cpu_cgroup_populate,
8862 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8863 .early_init = 1,
8864};
8865
052f1dc7 8866#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8867
8868#ifdef CONFIG_CGROUP_CPUACCT
8869
8870/*
8871 * CPU accounting code for task groups.
8872 *
8873 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8874 * (balbir@in.ibm.com).
8875 */
8876
934352f2 8877/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8878struct cpuacct {
8879 struct cgroup_subsys_state css;
8880 /* cpuusage holds pointer to a u64-type object on every cpu */
8881 u64 *cpuusage;
ef12fefa 8882 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8883 struct cpuacct *parent;
d842de87
SV
8884};
8885
8886struct cgroup_subsys cpuacct_subsys;
8887
8888/* return cpu accounting group corresponding to this container */
32cd756a 8889static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8890{
32cd756a 8891 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8892 struct cpuacct, css);
8893}
8894
8895/* return cpu accounting group to which this task belongs */
8896static inline struct cpuacct *task_ca(struct task_struct *tsk)
8897{
8898 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8899 struct cpuacct, css);
8900}
8901
8902/* create a new cpu accounting group */
8903static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8904 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8905{
8906 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8907 int i;
d842de87
SV
8908
8909 if (!ca)
ef12fefa 8910 goto out;
d842de87
SV
8911
8912 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8913 if (!ca->cpuusage)
8914 goto out_free_ca;
8915
8916 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8917 if (percpu_counter_init(&ca->cpustat[i], 0))
8918 goto out_free_counters;
d842de87 8919
934352f2
BR
8920 if (cgrp->parent)
8921 ca->parent = cgroup_ca(cgrp->parent);
8922
d842de87 8923 return &ca->css;
ef12fefa
BR
8924
8925out_free_counters:
8926 while (--i >= 0)
8927 percpu_counter_destroy(&ca->cpustat[i]);
8928 free_percpu(ca->cpuusage);
8929out_free_ca:
8930 kfree(ca);
8931out:
8932 return ERR_PTR(-ENOMEM);
d842de87
SV
8933}
8934
8935/* destroy an existing cpu accounting group */
41a2d6cf 8936static void
32cd756a 8937cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8938{
32cd756a 8939 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8940 int i;
d842de87 8941
ef12fefa
BR
8942 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8943 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8944 free_percpu(ca->cpuusage);
8945 kfree(ca);
8946}
8947
720f5498
KC
8948static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8949{
b36128c8 8950 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8951 u64 data;
8952
8953#ifndef CONFIG_64BIT
8954 /*
8955 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8956 */
05fa785c 8957 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8958 data = *cpuusage;
05fa785c 8959 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8960#else
8961 data = *cpuusage;
8962#endif
8963
8964 return data;
8965}
8966
8967static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8968{
b36128c8 8969 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8970
8971#ifndef CONFIG_64BIT
8972 /*
8973 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8974 */
05fa785c 8975 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8976 *cpuusage = val;
05fa785c 8977 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8978#else
8979 *cpuusage = val;
8980#endif
8981}
8982
d842de87 8983/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8984static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8985{
32cd756a 8986 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8987 u64 totalcpuusage = 0;
8988 int i;
8989
720f5498
KC
8990 for_each_present_cpu(i)
8991 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8992
8993 return totalcpuusage;
8994}
8995
0297b803
DG
8996static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8997 u64 reset)
8998{
8999 struct cpuacct *ca = cgroup_ca(cgrp);
9000 int err = 0;
9001 int i;
9002
9003 if (reset) {
9004 err = -EINVAL;
9005 goto out;
9006 }
9007
720f5498
KC
9008 for_each_present_cpu(i)
9009 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9010
0297b803
DG
9011out:
9012 return err;
9013}
9014
e9515c3c
KC
9015static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9016 struct seq_file *m)
9017{
9018 struct cpuacct *ca = cgroup_ca(cgroup);
9019 u64 percpu;
9020 int i;
9021
9022 for_each_present_cpu(i) {
9023 percpu = cpuacct_cpuusage_read(ca, i);
9024 seq_printf(m, "%llu ", (unsigned long long) percpu);
9025 }
9026 seq_printf(m, "\n");
9027 return 0;
9028}
9029
ef12fefa
BR
9030static const char *cpuacct_stat_desc[] = {
9031 [CPUACCT_STAT_USER] = "user",
9032 [CPUACCT_STAT_SYSTEM] = "system",
9033};
9034
9035static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9036 struct cgroup_map_cb *cb)
9037{
9038 struct cpuacct *ca = cgroup_ca(cgrp);
9039 int i;
9040
9041 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9042 s64 val = percpu_counter_read(&ca->cpustat[i]);
9043 val = cputime64_to_clock_t(val);
9044 cb->fill(cb, cpuacct_stat_desc[i], val);
9045 }
9046 return 0;
9047}
9048
d842de87
SV
9049static struct cftype files[] = {
9050 {
9051 .name = "usage",
f4c753b7
PM
9052 .read_u64 = cpuusage_read,
9053 .write_u64 = cpuusage_write,
d842de87 9054 },
e9515c3c
KC
9055 {
9056 .name = "usage_percpu",
9057 .read_seq_string = cpuacct_percpu_seq_read,
9058 },
ef12fefa
BR
9059 {
9060 .name = "stat",
9061 .read_map = cpuacct_stats_show,
9062 },
d842de87
SV
9063};
9064
32cd756a 9065static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9066{
32cd756a 9067 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9068}
9069
9070/*
9071 * charge this task's execution time to its accounting group.
9072 *
9073 * called with rq->lock held.
9074 */
9075static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9076{
9077 struct cpuacct *ca;
934352f2 9078 int cpu;
d842de87 9079
c40c6f85 9080 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9081 return;
9082
934352f2 9083 cpu = task_cpu(tsk);
a18b83b7
BR
9084
9085 rcu_read_lock();
9086
d842de87 9087 ca = task_ca(tsk);
d842de87 9088
934352f2 9089 for (; ca; ca = ca->parent) {
b36128c8 9090 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9091 *cpuusage += cputime;
9092 }
a18b83b7
BR
9093
9094 rcu_read_unlock();
d842de87
SV
9095}
9096
ef12fefa
BR
9097/*
9098 * Charge the system/user time to the task's accounting group.
9099 */
9100static void cpuacct_update_stats(struct task_struct *tsk,
9101 enum cpuacct_stat_index idx, cputime_t val)
9102{
9103 struct cpuacct *ca;
9104
9105 if (unlikely(!cpuacct_subsys.active))
9106 return;
9107
9108 rcu_read_lock();
9109 ca = task_ca(tsk);
9110
9111 do {
9112 percpu_counter_add(&ca->cpustat[idx], val);
9113 ca = ca->parent;
9114 } while (ca);
9115 rcu_read_unlock();
9116}
9117
d842de87
SV
9118struct cgroup_subsys cpuacct_subsys = {
9119 .name = "cpuacct",
9120 .create = cpuacct_create,
9121 .destroy = cpuacct_destroy,
9122 .populate = cpuacct_populate,
9123 .subsys_id = cpuacct_subsys_id,
9124};
9125#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9126
9127#ifndef CONFIG_SMP
9128
9129int rcu_expedited_torture_stats(char *page)
9130{
9131 return 0;
9132}
9133EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9134
9135void synchronize_sched_expedited(void)
9136{
9137}
9138EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9139
9140#else /* #ifndef CONFIG_SMP */
9141
9142static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9143static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9144
9145#define RCU_EXPEDITED_STATE_POST -2
9146#define RCU_EXPEDITED_STATE_IDLE -1
9147
9148static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9149
9150int rcu_expedited_torture_stats(char *page)
9151{
9152 int cnt = 0;
9153 int cpu;
9154
9155 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9156 for_each_online_cpu(cpu) {
9157 cnt += sprintf(&page[cnt], " %d:%d",
9158 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9159 }
9160 cnt += sprintf(&page[cnt], "\n");
9161 return cnt;
9162}
9163EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9164
9165static long synchronize_sched_expedited_count;
9166
9167/*
9168 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9169 * approach to force grace period to end quickly. This consumes
9170 * significant time on all CPUs, and is thus not recommended for
9171 * any sort of common-case code.
9172 *
9173 * Note that it is illegal to call this function while holding any
9174 * lock that is acquired by a CPU-hotplug notifier. Failing to
9175 * observe this restriction will result in deadlock.
9176 */
9177void synchronize_sched_expedited(void)
9178{
9179 int cpu;
9180 unsigned long flags;
9181 bool need_full_sync = 0;
9182 struct rq *rq;
9183 struct migration_req *req;
9184 long snap;
9185 int trycount = 0;
9186
9187 smp_mb(); /* ensure prior mod happens before capturing snap. */
9188 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9189 get_online_cpus();
9190 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9191 put_online_cpus();
9192 if (trycount++ < 10)
9193 udelay(trycount * num_online_cpus());
9194 else {
9195 synchronize_sched();
9196 return;
9197 }
9198 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9199 smp_mb(); /* ensure test happens before caller kfree */
9200 return;
9201 }
9202 get_online_cpus();
9203 }
9204 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9205 for_each_online_cpu(cpu) {
9206 rq = cpu_rq(cpu);
9207 req = &per_cpu(rcu_migration_req, cpu);
9208 init_completion(&req->done);
9209 req->task = NULL;
9210 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9211 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9212 list_add(&req->list, &rq->migration_queue);
05fa785c 9213 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9214 wake_up_process(rq->migration_thread);
9215 }
9216 for_each_online_cpu(cpu) {
9217 rcu_expedited_state = cpu;
9218 req = &per_cpu(rcu_migration_req, cpu);
9219 rq = cpu_rq(cpu);
9220 wait_for_completion(&req->done);
05fa785c 9221 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9222 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9223 need_full_sync = 1;
9224 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9225 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9226 }
9227 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9228 synchronize_sched_expedited_count++;
03b042bf
PM
9229 mutex_unlock(&rcu_sched_expedited_mutex);
9230 put_online_cpus();
9231 if (need_full_sync)
9232 synchronize_sched();
9233}
9234EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9235
9236#endif /* #else #ifndef CONFIG_SMP */
This page took 1.759693 seconds and 5 git commands to generate.