mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
311 /* Always populate low zones for address-contrained allocations */
312 if (zone_end < pgdat_end_pfn(pgdat))
313 return true;
314
315 /* Initialise at least 2G of the highest zone */
316 (*nr_initialised)++;
317 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
318 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
319 pgdat->first_deferred_pfn = pfn;
320 return false;
321 }
322
323 return true;
324}
325#else
326static inline void reset_deferred_meminit(pg_data_t *pgdat)
327{
328}
329
330static inline bool early_page_uninitialised(unsigned long pfn)
331{
332 return false;
333}
334
7e18adb4
MG
335static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
336{
337 return false;
338}
339
3a80a7fa
MG
340static inline bool update_defer_init(pg_data_t *pgdat,
341 unsigned long pfn, unsigned long zone_end,
342 unsigned long *nr_initialised)
343{
344 return true;
345}
346#endif
347
348
ee6f509c 349void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 350{
5d0f3f72
KM
351 if (unlikely(page_group_by_mobility_disabled &&
352 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
353 migratetype = MIGRATE_UNMOVABLE;
354
b2a0ac88
MG
355 set_pageblock_flags_group(page, (unsigned long)migratetype,
356 PB_migrate, PB_migrate_end);
357}
358
13e7444b 359#ifdef CONFIG_DEBUG_VM
c6a57e19 360static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 361{
bdc8cb98
DH
362 int ret = 0;
363 unsigned seq;
364 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 365 unsigned long sp, start_pfn;
c6a57e19 366
bdc8cb98
DH
367 do {
368 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
369 start_pfn = zone->zone_start_pfn;
370 sp = zone->spanned_pages;
108bcc96 371 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
372 ret = 1;
373 } while (zone_span_seqretry(zone, seq));
374
b5e6a5a2 375 if (ret)
613813e8
DH
376 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
377 pfn, zone_to_nid(zone), zone->name,
378 start_pfn, start_pfn + sp);
b5e6a5a2 379
bdc8cb98 380 return ret;
c6a57e19
DH
381}
382
383static int page_is_consistent(struct zone *zone, struct page *page)
384{
14e07298 385 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 386 return 0;
1da177e4 387 if (zone != page_zone(page))
c6a57e19
DH
388 return 0;
389
390 return 1;
391}
392/*
393 * Temporary debugging check for pages not lying within a given zone.
394 */
395static int bad_range(struct zone *zone, struct page *page)
396{
397 if (page_outside_zone_boundaries(zone, page))
1da177e4 398 return 1;
c6a57e19
DH
399 if (!page_is_consistent(zone, page))
400 return 1;
401
1da177e4
LT
402 return 0;
403}
13e7444b
NP
404#else
405static inline int bad_range(struct zone *zone, struct page *page)
406{
407 return 0;
408}
409#endif
410
d230dec1
KS
411static void bad_page(struct page *page, const char *reason,
412 unsigned long bad_flags)
1da177e4 413{
d936cf9b
HD
414 static unsigned long resume;
415 static unsigned long nr_shown;
416 static unsigned long nr_unshown;
417
2a7684a2
WF
418 /* Don't complain about poisoned pages */
419 if (PageHWPoison(page)) {
22b751c3 420 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
421 return;
422 }
423
d936cf9b
HD
424 /*
425 * Allow a burst of 60 reports, then keep quiet for that minute;
426 * or allow a steady drip of one report per second.
427 */
428 if (nr_shown == 60) {
429 if (time_before(jiffies, resume)) {
430 nr_unshown++;
431 goto out;
432 }
433 if (nr_unshown) {
ff8e8116 434 pr_alert(
1e9e6365 435 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
436 nr_unshown);
437 nr_unshown = 0;
438 }
439 nr_shown = 0;
440 }
441 if (nr_shown++ == 0)
442 resume = jiffies + 60 * HZ;
443
ff8e8116 444 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 445 current->comm, page_to_pfn(page));
ff8e8116
VB
446 __dump_page(page, reason);
447 bad_flags &= page->flags;
448 if (bad_flags)
449 pr_alert("bad because of flags: %#lx(%pGp)\n",
450 bad_flags, &bad_flags);
4e462112 451 dump_page_owner(page);
3dc14741 452
4f31888c 453 print_modules();
1da177e4 454 dump_stack();
d936cf9b 455out:
8cc3b392 456 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 457 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 458 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
459}
460
1da177e4
LT
461/*
462 * Higher-order pages are called "compound pages". They are structured thusly:
463 *
1d798ca3 464 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 465 *
1d798ca3
KS
466 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
467 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 468 *
1d798ca3
KS
469 * The first tail page's ->compound_dtor holds the offset in array of compound
470 * page destructors. See compound_page_dtors.
1da177e4 471 *
1d798ca3 472 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 473 * This usage means that zero-order pages may not be compound.
1da177e4 474 */
d98c7a09 475
9a982250 476void free_compound_page(struct page *page)
d98c7a09 477{
d85f3385 478 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
479}
480
d00181b9 481void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
482{
483 int i;
484 int nr_pages = 1 << order;
485
f1e61557 486 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
487 set_compound_order(page, order);
488 __SetPageHead(page);
489 for (i = 1; i < nr_pages; i++) {
490 struct page *p = page + i;
58a84aa9 491 set_page_count(p, 0);
1c290f64 492 p->mapping = TAIL_MAPPING;
1d798ca3 493 set_compound_head(p, page);
18229df5 494 }
53f9263b 495 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
496}
497
c0a32fc5
SG
498#ifdef CONFIG_DEBUG_PAGEALLOC
499unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
500bool _debug_pagealloc_enabled __read_mostly
501 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 502EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
503bool _debug_guardpage_enabled __read_mostly;
504
031bc574
JK
505static int __init early_debug_pagealloc(char *buf)
506{
507 if (!buf)
508 return -EINVAL;
509
510 if (strcmp(buf, "on") == 0)
511 _debug_pagealloc_enabled = true;
512
ea6eabb0
CB
513 if (strcmp(buf, "off") == 0)
514 _debug_pagealloc_enabled = false;
515
031bc574
JK
516 return 0;
517}
518early_param("debug_pagealloc", early_debug_pagealloc);
519
e30825f1
JK
520static bool need_debug_guardpage(void)
521{
031bc574
JK
522 /* If we don't use debug_pagealloc, we don't need guard page */
523 if (!debug_pagealloc_enabled())
524 return false;
525
e30825f1
JK
526 return true;
527}
528
529static void init_debug_guardpage(void)
530{
031bc574
JK
531 if (!debug_pagealloc_enabled())
532 return;
533
e30825f1
JK
534 _debug_guardpage_enabled = true;
535}
536
537struct page_ext_operations debug_guardpage_ops = {
538 .need = need_debug_guardpage,
539 .init = init_debug_guardpage,
540};
c0a32fc5
SG
541
542static int __init debug_guardpage_minorder_setup(char *buf)
543{
544 unsigned long res;
545
546 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
547 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
548 return 0;
549 }
550 _debug_guardpage_minorder = res;
551 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
552 return 0;
553}
554__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
555
2847cf95
JK
556static inline void set_page_guard(struct zone *zone, struct page *page,
557 unsigned int order, int migratetype)
c0a32fc5 558{
e30825f1
JK
559 struct page_ext *page_ext;
560
561 if (!debug_guardpage_enabled())
562 return;
563
564 page_ext = lookup_page_ext(page);
565 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
566
2847cf95
JK
567 INIT_LIST_HEAD(&page->lru);
568 set_page_private(page, order);
569 /* Guard pages are not available for any usage */
570 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
571}
572
2847cf95
JK
573static inline void clear_page_guard(struct zone *zone, struct page *page,
574 unsigned int order, int migratetype)
c0a32fc5 575{
e30825f1
JK
576 struct page_ext *page_ext;
577
578 if (!debug_guardpage_enabled())
579 return;
580
581 page_ext = lookup_page_ext(page);
582 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
583
2847cf95
JK
584 set_page_private(page, 0);
585 if (!is_migrate_isolate(migratetype))
586 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
587}
588#else
e30825f1 589struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
590static inline void set_page_guard(struct zone *zone, struct page *page,
591 unsigned int order, int migratetype) {}
592static inline void clear_page_guard(struct zone *zone, struct page *page,
593 unsigned int order, int migratetype) {}
c0a32fc5
SG
594#endif
595
7aeb09f9 596static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 597{
4c21e2f2 598 set_page_private(page, order);
676165a8 599 __SetPageBuddy(page);
1da177e4
LT
600}
601
602static inline void rmv_page_order(struct page *page)
603{
676165a8 604 __ClearPageBuddy(page);
4c21e2f2 605 set_page_private(page, 0);
1da177e4
LT
606}
607
1da177e4
LT
608/*
609 * This function checks whether a page is free && is the buddy
610 * we can do coalesce a page and its buddy if
13e7444b 611 * (a) the buddy is not in a hole &&
676165a8 612 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
613 * (c) a page and its buddy have the same order &&
614 * (d) a page and its buddy are in the same zone.
676165a8 615 *
cf6fe945
WSH
616 * For recording whether a page is in the buddy system, we set ->_mapcount
617 * PAGE_BUDDY_MAPCOUNT_VALUE.
618 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
619 * serialized by zone->lock.
1da177e4 620 *
676165a8 621 * For recording page's order, we use page_private(page).
1da177e4 622 */
cb2b95e1 623static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 624 unsigned int order)
1da177e4 625{
14e07298 626 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 627 return 0;
13e7444b 628
c0a32fc5 629 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
630 if (page_zone_id(page) != page_zone_id(buddy))
631 return 0;
632
4c5018ce
WY
633 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
634
c0a32fc5
SG
635 return 1;
636 }
637
cb2b95e1 638 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
639 /*
640 * zone check is done late to avoid uselessly
641 * calculating zone/node ids for pages that could
642 * never merge.
643 */
644 if (page_zone_id(page) != page_zone_id(buddy))
645 return 0;
646
4c5018ce
WY
647 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
648
6aa3001b 649 return 1;
676165a8 650 }
6aa3001b 651 return 0;
1da177e4
LT
652}
653
654/*
655 * Freeing function for a buddy system allocator.
656 *
657 * The concept of a buddy system is to maintain direct-mapped table
658 * (containing bit values) for memory blocks of various "orders".
659 * The bottom level table contains the map for the smallest allocatable
660 * units of memory (here, pages), and each level above it describes
661 * pairs of units from the levels below, hence, "buddies".
662 * At a high level, all that happens here is marking the table entry
663 * at the bottom level available, and propagating the changes upward
664 * as necessary, plus some accounting needed to play nicely with other
665 * parts of the VM system.
666 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
667 * free pages of length of (1 << order) and marked with _mapcount
668 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
669 * field.
1da177e4 670 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
671 * other. That is, if we allocate a small block, and both were
672 * free, the remainder of the region must be split into blocks.
1da177e4 673 * If a block is freed, and its buddy is also free, then this
5f63b720 674 * triggers coalescing into a block of larger size.
1da177e4 675 *
6d49e352 676 * -- nyc
1da177e4
LT
677 */
678
48db57f8 679static inline void __free_one_page(struct page *page,
dc4b0caf 680 unsigned long pfn,
ed0ae21d
MG
681 struct zone *zone, unsigned int order,
682 int migratetype)
1da177e4
LT
683{
684 unsigned long page_idx;
6dda9d55 685 unsigned long combined_idx;
43506fad 686 unsigned long uninitialized_var(buddy_idx);
6dda9d55 687 struct page *buddy;
d00181b9 688 unsigned int max_order = MAX_ORDER;
1da177e4 689
d29bb978 690 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 691 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 692
ed0ae21d 693 VM_BUG_ON(migratetype == -1);
3c605096
JK
694 if (is_migrate_isolate(migratetype)) {
695 /*
696 * We restrict max order of merging to prevent merge
697 * between freepages on isolate pageblock and normal
698 * pageblock. Without this, pageblock isolation
699 * could cause incorrect freepage accounting.
700 */
d00181b9 701 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 702 } else {
8f82b55d 703 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 704 }
ed0ae21d 705
3c605096 706 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
3c605096 711 while (order < max_order - 1) {
43506fad
KC
712 buddy_idx = __find_buddy_index(page_idx, order);
713 buddy = page + (buddy_idx - page_idx);
cb2b95e1 714 if (!page_is_buddy(page, buddy, order))
3c82d0ce 715 break;
c0a32fc5
SG
716 /*
717 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
718 * merge with it and move up one order.
719 */
720 if (page_is_guard(buddy)) {
2847cf95 721 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
722 } else {
723 list_del(&buddy->lru);
724 zone->free_area[order].nr_free--;
725 rmv_page_order(buddy);
726 }
43506fad 727 combined_idx = buddy_idx & page_idx;
1da177e4
LT
728 page = page + (combined_idx - page_idx);
729 page_idx = combined_idx;
730 order++;
731 }
732 set_page_order(page, order);
6dda9d55
CZ
733
734 /*
735 * If this is not the largest possible page, check if the buddy
736 * of the next-highest order is free. If it is, it's possible
737 * that pages are being freed that will coalesce soon. In case,
738 * that is happening, add the free page to the tail of the list
739 * so it's less likely to be used soon and more likely to be merged
740 * as a higher order page
741 */
b7f50cfa 742 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 743 struct page *higher_page, *higher_buddy;
43506fad
KC
744 combined_idx = buddy_idx & page_idx;
745 higher_page = page + (combined_idx - page_idx);
746 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 747 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
748 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
749 list_add_tail(&page->lru,
750 &zone->free_area[order].free_list[migratetype]);
751 goto out;
752 }
753 }
754
755 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
756out:
1da177e4
LT
757 zone->free_area[order].nr_free++;
758}
759
224abf92 760static inline int free_pages_check(struct page *page)
1da177e4 761{
d230dec1 762 const char *bad_reason = NULL;
f0b791a3
DH
763 unsigned long bad_flags = 0;
764
53f9263b 765 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
766 bad_reason = "nonzero mapcount";
767 if (unlikely(page->mapping != NULL))
768 bad_reason = "non-NULL mapping";
769 if (unlikely(atomic_read(&page->_count) != 0))
770 bad_reason = "nonzero _count";
771 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
772 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
773 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
774 }
9edad6ea
JW
775#ifdef CONFIG_MEMCG
776 if (unlikely(page->mem_cgroup))
777 bad_reason = "page still charged to cgroup";
778#endif
f0b791a3
DH
779 if (unlikely(bad_reason)) {
780 bad_page(page, bad_reason, bad_flags);
79f4b7bf 781 return 1;
8cc3b392 782 }
90572890 783 page_cpupid_reset_last(page);
79f4b7bf
HD
784 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
785 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
786 return 0;
1da177e4
LT
787}
788
789/*
5f8dcc21 790 * Frees a number of pages from the PCP lists
1da177e4 791 * Assumes all pages on list are in same zone, and of same order.
207f36ee 792 * count is the number of pages to free.
1da177e4
LT
793 *
794 * If the zone was previously in an "all pages pinned" state then look to
795 * see if this freeing clears that state.
796 *
797 * And clear the zone's pages_scanned counter, to hold off the "all pages are
798 * pinned" detection logic.
799 */
5f8dcc21
MG
800static void free_pcppages_bulk(struct zone *zone, int count,
801 struct per_cpu_pages *pcp)
1da177e4 802{
5f8dcc21 803 int migratetype = 0;
a6f9edd6 804 int batch_free = 0;
72853e29 805 int to_free = count;
0d5d823a 806 unsigned long nr_scanned;
5f8dcc21 807
c54ad30c 808 spin_lock(&zone->lock);
0d5d823a
MG
809 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
810 if (nr_scanned)
811 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 812
72853e29 813 while (to_free) {
48db57f8 814 struct page *page;
5f8dcc21
MG
815 struct list_head *list;
816
817 /*
a6f9edd6
MG
818 * Remove pages from lists in a round-robin fashion. A
819 * batch_free count is maintained that is incremented when an
820 * empty list is encountered. This is so more pages are freed
821 * off fuller lists instead of spinning excessively around empty
822 * lists
5f8dcc21
MG
823 */
824 do {
a6f9edd6 825 batch_free++;
5f8dcc21
MG
826 if (++migratetype == MIGRATE_PCPTYPES)
827 migratetype = 0;
828 list = &pcp->lists[migratetype];
829 } while (list_empty(list));
48db57f8 830
1d16871d
NK
831 /* This is the only non-empty list. Free them all. */
832 if (batch_free == MIGRATE_PCPTYPES)
833 batch_free = to_free;
834
a6f9edd6 835 do {
770c8aaa
BZ
836 int mt; /* migratetype of the to-be-freed page */
837
a16601c5 838 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
839 /* must delete as __free_one_page list manipulates */
840 list_del(&page->lru);
aa016d14 841
bb14c2c7 842 mt = get_pcppage_migratetype(page);
aa016d14
VB
843 /* MIGRATE_ISOLATE page should not go to pcplists */
844 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
845 /* Pageblock could have been isolated meanwhile */
8f82b55d 846 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 847 mt = get_pageblock_migratetype(page);
51bb1a40 848
dc4b0caf 849 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 850 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 851 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 852 }
c54ad30c 853 spin_unlock(&zone->lock);
1da177e4
LT
854}
855
dc4b0caf
MG
856static void free_one_page(struct zone *zone,
857 struct page *page, unsigned long pfn,
7aeb09f9 858 unsigned int order,
ed0ae21d 859 int migratetype)
1da177e4 860{
0d5d823a 861 unsigned long nr_scanned;
006d22d9 862 spin_lock(&zone->lock);
0d5d823a
MG
863 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
864 if (nr_scanned)
865 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 866
ad53f92e
JK
867 if (unlikely(has_isolate_pageblock(zone) ||
868 is_migrate_isolate(migratetype))) {
869 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 870 }
dc4b0caf 871 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 872 spin_unlock(&zone->lock);
48db57f8
NP
873}
874
81422f29
KS
875static int free_tail_pages_check(struct page *head_page, struct page *page)
876{
1d798ca3
KS
877 int ret = 1;
878
879 /*
880 * We rely page->lru.next never has bit 0 set, unless the page
881 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
882 */
883 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
884
885 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
886 ret = 0;
887 goto out;
888 }
9a982250
KS
889 switch (page - head_page) {
890 case 1:
891 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
892 if (unlikely(compound_mapcount(page))) {
893 bad_page(page, "nonzero compound_mapcount", 0);
894 goto out;
895 }
9a982250
KS
896 break;
897 case 2:
898 /*
899 * the second tail page: ->mapping is
900 * page_deferred_list().next -- ignore value.
901 */
902 break;
903 default:
904 if (page->mapping != TAIL_MAPPING) {
905 bad_page(page, "corrupted mapping in tail page", 0);
906 goto out;
907 }
908 break;
1c290f64 909 }
81422f29
KS
910 if (unlikely(!PageTail(page))) {
911 bad_page(page, "PageTail not set", 0);
1d798ca3 912 goto out;
81422f29 913 }
1d798ca3
KS
914 if (unlikely(compound_head(page) != head_page)) {
915 bad_page(page, "compound_head not consistent", 0);
916 goto out;
81422f29 917 }
1d798ca3
KS
918 ret = 0;
919out:
1c290f64 920 page->mapping = NULL;
1d798ca3
KS
921 clear_compound_head(page);
922 return ret;
81422f29
KS
923}
924
1e8ce83c
RH
925static void __meminit __init_single_page(struct page *page, unsigned long pfn,
926 unsigned long zone, int nid)
927{
1e8ce83c 928 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
929 init_page_count(page);
930 page_mapcount_reset(page);
931 page_cpupid_reset_last(page);
1e8ce83c 932
1e8ce83c
RH
933 INIT_LIST_HEAD(&page->lru);
934#ifdef WANT_PAGE_VIRTUAL
935 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
936 if (!is_highmem_idx(zone))
937 set_page_address(page, __va(pfn << PAGE_SHIFT));
938#endif
939}
940
941static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
942 int nid)
943{
944 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
945}
946
7e18adb4
MG
947#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
948static void init_reserved_page(unsigned long pfn)
949{
950 pg_data_t *pgdat;
951 int nid, zid;
952
953 if (!early_page_uninitialised(pfn))
954 return;
955
956 nid = early_pfn_to_nid(pfn);
957 pgdat = NODE_DATA(nid);
958
959 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
960 struct zone *zone = &pgdat->node_zones[zid];
961
962 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
963 break;
964 }
965 __init_single_pfn(pfn, zid, nid);
966}
967#else
968static inline void init_reserved_page(unsigned long pfn)
969{
970}
971#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
972
92923ca3
NZ
973/*
974 * Initialised pages do not have PageReserved set. This function is
975 * called for each range allocated by the bootmem allocator and
976 * marks the pages PageReserved. The remaining valid pages are later
977 * sent to the buddy page allocator.
978 */
7e18adb4 979void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
980{
981 unsigned long start_pfn = PFN_DOWN(start);
982 unsigned long end_pfn = PFN_UP(end);
983
7e18adb4
MG
984 for (; start_pfn < end_pfn; start_pfn++) {
985 if (pfn_valid(start_pfn)) {
986 struct page *page = pfn_to_page(start_pfn);
987
988 init_reserved_page(start_pfn);
1d798ca3
KS
989
990 /* Avoid false-positive PageTail() */
991 INIT_LIST_HEAD(&page->lru);
992
7e18adb4
MG
993 SetPageReserved(page);
994 }
995 }
92923ca3
NZ
996}
997
ec95f53a 998static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 999{
81422f29
KS
1000 bool compound = PageCompound(page);
1001 int i, bad = 0;
1da177e4 1002
ab1f306f 1003 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1005
b413d48a 1006 trace_mm_page_free(page, order);
b1eeab67 1007 kmemcheck_free_shadow(page, order);
b8c73fc2 1008 kasan_free_pages(page, order);
b1eeab67 1009
8dd60a3a
AA
1010 if (PageAnon(page))
1011 page->mapping = NULL;
81422f29
KS
1012 bad += free_pages_check(page);
1013 for (i = 1; i < (1 << order); i++) {
1014 if (compound)
1015 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1016 bad += free_pages_check(page + i);
81422f29 1017 }
8cc3b392 1018 if (bad)
ec95f53a 1019 return false;
689bcebf 1020
48c96a36
JK
1021 reset_page_owner(page, order);
1022
3ac7fe5a 1023 if (!PageHighMem(page)) {
b8af2941
PK
1024 debug_check_no_locks_freed(page_address(page),
1025 PAGE_SIZE << order);
3ac7fe5a
TG
1026 debug_check_no_obj_freed(page_address(page),
1027 PAGE_SIZE << order);
1028 }
dafb1367 1029 arch_free_page(page, order);
8823b1db 1030 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1031 kernel_map_pages(page, 1 << order, 0);
dafb1367 1032
ec95f53a
KM
1033 return true;
1034}
1035
1036static void __free_pages_ok(struct page *page, unsigned int order)
1037{
1038 unsigned long flags;
95e34412 1039 int migratetype;
dc4b0caf 1040 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1041
1042 if (!free_pages_prepare(page, order))
1043 return;
1044
cfc47a28 1045 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1046 local_irq_save(flags);
f8891e5e 1047 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1048 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1049 local_irq_restore(flags);
1da177e4
LT
1050}
1051
0e1cc95b 1052static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1053 unsigned long pfn, unsigned int order)
a226f6c8 1054{
c3993076 1055 unsigned int nr_pages = 1 << order;
e2d0bd2b 1056 struct page *p = page;
c3993076 1057 unsigned int loop;
a226f6c8 1058
e2d0bd2b
YL
1059 prefetchw(p);
1060 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1061 prefetchw(p + 1);
c3993076
JW
1062 __ClearPageReserved(p);
1063 set_page_count(p, 0);
a226f6c8 1064 }
e2d0bd2b
YL
1065 __ClearPageReserved(p);
1066 set_page_count(p, 0);
c3993076 1067
e2d0bd2b 1068 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1069 set_page_refcounted(page);
1070 __free_pages(page, order);
a226f6c8
DH
1071}
1072
75a592a4
MG
1073#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1074 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1075
75a592a4
MG
1076static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1077
1078int __meminit early_pfn_to_nid(unsigned long pfn)
1079{
7ace9917 1080 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1081 int nid;
1082
7ace9917 1083 spin_lock(&early_pfn_lock);
75a592a4 1084 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1085 if (nid < 0)
1086 nid = 0;
1087 spin_unlock(&early_pfn_lock);
1088
1089 return nid;
75a592a4
MG
1090}
1091#endif
1092
1093#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1094static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1095 struct mminit_pfnnid_cache *state)
1096{
1097 int nid;
1098
1099 nid = __early_pfn_to_nid(pfn, state);
1100 if (nid >= 0 && nid != node)
1101 return false;
1102 return true;
1103}
1104
1105/* Only safe to use early in boot when initialisation is single-threaded */
1106static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1107{
1108 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1109}
1110
1111#else
1112
1113static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1114{
1115 return true;
1116}
1117static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1118 struct mminit_pfnnid_cache *state)
1119{
1120 return true;
1121}
1122#endif
1123
1124
0e1cc95b 1125void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1126 unsigned int order)
1127{
1128 if (early_page_uninitialised(pfn))
1129 return;
1130 return __free_pages_boot_core(page, pfn, order);
1131}
1132
7cf91a98
JK
1133/*
1134 * Check that the whole (or subset of) a pageblock given by the interval of
1135 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1136 * with the migration of free compaction scanner. The scanners then need to
1137 * use only pfn_valid_within() check for arches that allow holes within
1138 * pageblocks.
1139 *
1140 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1141 *
1142 * It's possible on some configurations to have a setup like node0 node1 node0
1143 * i.e. it's possible that all pages within a zones range of pages do not
1144 * belong to a single zone. We assume that a border between node0 and node1
1145 * can occur within a single pageblock, but not a node0 node1 node0
1146 * interleaving within a single pageblock. It is therefore sufficient to check
1147 * the first and last page of a pageblock and avoid checking each individual
1148 * page in a pageblock.
1149 */
1150struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1151 unsigned long end_pfn, struct zone *zone)
1152{
1153 struct page *start_page;
1154 struct page *end_page;
1155
1156 /* end_pfn is one past the range we are checking */
1157 end_pfn--;
1158
1159 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1160 return NULL;
1161
1162 start_page = pfn_to_page(start_pfn);
1163
1164 if (page_zone(start_page) != zone)
1165 return NULL;
1166
1167 end_page = pfn_to_page(end_pfn);
1168
1169 /* This gives a shorter code than deriving page_zone(end_page) */
1170 if (page_zone_id(start_page) != page_zone_id(end_page))
1171 return NULL;
1172
1173 return start_page;
1174}
1175
1176void set_zone_contiguous(struct zone *zone)
1177{
1178 unsigned long block_start_pfn = zone->zone_start_pfn;
1179 unsigned long block_end_pfn;
1180
1181 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1182 for (; block_start_pfn < zone_end_pfn(zone);
1183 block_start_pfn = block_end_pfn,
1184 block_end_pfn += pageblock_nr_pages) {
1185
1186 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1187
1188 if (!__pageblock_pfn_to_page(block_start_pfn,
1189 block_end_pfn, zone))
1190 return;
1191 }
1192
1193 /* We confirm that there is no hole */
1194 zone->contiguous = true;
1195}
1196
1197void clear_zone_contiguous(struct zone *zone)
1198{
1199 zone->contiguous = false;
1200}
1201
7e18adb4 1202#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1203static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1204 unsigned long pfn, int nr_pages)
1205{
1206 int i;
1207
1208 if (!page)
1209 return;
1210
1211 /* Free a large naturally-aligned chunk if possible */
1212 if (nr_pages == MAX_ORDER_NR_PAGES &&
1213 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1214 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1215 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1216 return;
1217 }
1218
1219 for (i = 0; i < nr_pages; i++, page++, pfn++)
1220 __free_pages_boot_core(page, pfn, 0);
1221}
1222
d3cd131d
NS
1223/* Completion tracking for deferred_init_memmap() threads */
1224static atomic_t pgdat_init_n_undone __initdata;
1225static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1226
1227static inline void __init pgdat_init_report_one_done(void)
1228{
1229 if (atomic_dec_and_test(&pgdat_init_n_undone))
1230 complete(&pgdat_init_all_done_comp);
1231}
0e1cc95b 1232
7e18adb4 1233/* Initialise remaining memory on a node */
0e1cc95b 1234static int __init deferred_init_memmap(void *data)
7e18adb4 1235{
0e1cc95b
MG
1236 pg_data_t *pgdat = data;
1237 int nid = pgdat->node_id;
7e18adb4
MG
1238 struct mminit_pfnnid_cache nid_init_state = { };
1239 unsigned long start = jiffies;
1240 unsigned long nr_pages = 0;
1241 unsigned long walk_start, walk_end;
1242 int i, zid;
1243 struct zone *zone;
7e18adb4 1244 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1245 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1246
0e1cc95b 1247 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1248 pgdat_init_report_one_done();
0e1cc95b
MG
1249 return 0;
1250 }
1251
1252 /* Bind memory initialisation thread to a local node if possible */
1253 if (!cpumask_empty(cpumask))
1254 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1255
1256 /* Sanity check boundaries */
1257 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1258 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1259 pgdat->first_deferred_pfn = ULONG_MAX;
1260
1261 /* Only the highest zone is deferred so find it */
1262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1263 zone = pgdat->node_zones + zid;
1264 if (first_init_pfn < zone_end_pfn(zone))
1265 break;
1266 }
1267
1268 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1269 unsigned long pfn, end_pfn;
54608c3f 1270 struct page *page = NULL;
a4de83dd
MG
1271 struct page *free_base_page = NULL;
1272 unsigned long free_base_pfn = 0;
1273 int nr_to_free = 0;
7e18adb4
MG
1274
1275 end_pfn = min(walk_end, zone_end_pfn(zone));
1276 pfn = first_init_pfn;
1277 if (pfn < walk_start)
1278 pfn = walk_start;
1279 if (pfn < zone->zone_start_pfn)
1280 pfn = zone->zone_start_pfn;
1281
1282 for (; pfn < end_pfn; pfn++) {
54608c3f 1283 if (!pfn_valid_within(pfn))
a4de83dd 1284 goto free_range;
7e18adb4 1285
54608c3f
MG
1286 /*
1287 * Ensure pfn_valid is checked every
1288 * MAX_ORDER_NR_PAGES for memory holes
1289 */
1290 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1291 if (!pfn_valid(pfn)) {
1292 page = NULL;
a4de83dd 1293 goto free_range;
54608c3f
MG
1294 }
1295 }
1296
1297 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1298 page = NULL;
a4de83dd 1299 goto free_range;
54608c3f
MG
1300 }
1301
1302 /* Minimise pfn page lookups and scheduler checks */
1303 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1304 page++;
1305 } else {
a4de83dd
MG
1306 nr_pages += nr_to_free;
1307 deferred_free_range(free_base_page,
1308 free_base_pfn, nr_to_free);
1309 free_base_page = NULL;
1310 free_base_pfn = nr_to_free = 0;
1311
54608c3f
MG
1312 page = pfn_to_page(pfn);
1313 cond_resched();
1314 }
7e18adb4
MG
1315
1316 if (page->flags) {
1317 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1318 goto free_range;
7e18adb4
MG
1319 }
1320
1321 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1322 if (!free_base_page) {
1323 free_base_page = page;
1324 free_base_pfn = pfn;
1325 nr_to_free = 0;
1326 }
1327 nr_to_free++;
1328
1329 /* Where possible, batch up pages for a single free */
1330 continue;
1331free_range:
1332 /* Free the current block of pages to allocator */
1333 nr_pages += nr_to_free;
1334 deferred_free_range(free_base_page, free_base_pfn,
1335 nr_to_free);
1336 free_base_page = NULL;
1337 free_base_pfn = nr_to_free = 0;
7e18adb4 1338 }
a4de83dd 1339
7e18adb4
MG
1340 first_init_pfn = max(end_pfn, first_init_pfn);
1341 }
1342
1343 /* Sanity check that the next zone really is unpopulated */
1344 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1345
0e1cc95b 1346 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1347 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1348
1349 pgdat_init_report_one_done();
0e1cc95b
MG
1350 return 0;
1351}
7cf91a98 1352#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1353
1354void __init page_alloc_init_late(void)
1355{
7cf91a98
JK
1356 struct zone *zone;
1357
1358#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1359 int nid;
1360
d3cd131d
NS
1361 /* There will be num_node_state(N_MEMORY) threads */
1362 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1363 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1364 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1365 }
1366
1367 /* Block until all are initialised */
d3cd131d 1368 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1369
1370 /* Reinit limits that are based on free pages after the kernel is up */
1371 files_maxfiles_init();
7cf91a98
JK
1372#endif
1373
1374 for_each_populated_zone(zone)
1375 set_zone_contiguous(zone);
7e18adb4 1376}
7e18adb4 1377
47118af0 1378#ifdef CONFIG_CMA
9cf510a5 1379/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1380void __init init_cma_reserved_pageblock(struct page *page)
1381{
1382 unsigned i = pageblock_nr_pages;
1383 struct page *p = page;
1384
1385 do {
1386 __ClearPageReserved(p);
1387 set_page_count(p, 0);
1388 } while (++p, --i);
1389
47118af0 1390 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1391
1392 if (pageblock_order >= MAX_ORDER) {
1393 i = pageblock_nr_pages;
1394 p = page;
1395 do {
1396 set_page_refcounted(p);
1397 __free_pages(p, MAX_ORDER - 1);
1398 p += MAX_ORDER_NR_PAGES;
1399 } while (i -= MAX_ORDER_NR_PAGES);
1400 } else {
1401 set_page_refcounted(page);
1402 __free_pages(page, pageblock_order);
1403 }
1404
3dcc0571 1405 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1406}
1407#endif
1da177e4
LT
1408
1409/*
1410 * The order of subdivision here is critical for the IO subsystem.
1411 * Please do not alter this order without good reasons and regression
1412 * testing. Specifically, as large blocks of memory are subdivided,
1413 * the order in which smaller blocks are delivered depends on the order
1414 * they're subdivided in this function. This is the primary factor
1415 * influencing the order in which pages are delivered to the IO
1416 * subsystem according to empirical testing, and this is also justified
1417 * by considering the behavior of a buddy system containing a single
1418 * large block of memory acted on by a series of small allocations.
1419 * This behavior is a critical factor in sglist merging's success.
1420 *
6d49e352 1421 * -- nyc
1da177e4 1422 */
085cc7d5 1423static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1424 int low, int high, struct free_area *area,
1425 int migratetype)
1da177e4
LT
1426{
1427 unsigned long size = 1 << high;
1428
1429 while (high > low) {
1430 area--;
1431 high--;
1432 size >>= 1;
309381fe 1433 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1434
2847cf95 1435 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1436 debug_guardpage_enabled() &&
2847cf95 1437 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1438 /*
1439 * Mark as guard pages (or page), that will allow to
1440 * merge back to allocator when buddy will be freed.
1441 * Corresponding page table entries will not be touched,
1442 * pages will stay not present in virtual address space
1443 */
2847cf95 1444 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1445 continue;
1446 }
b2a0ac88 1447 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1448 area->nr_free++;
1449 set_page_order(&page[size], high);
1450 }
1da177e4
LT
1451}
1452
1da177e4
LT
1453/*
1454 * This page is about to be returned from the page allocator
1455 */
2a7684a2 1456static inline int check_new_page(struct page *page)
1da177e4 1457{
d230dec1 1458 const char *bad_reason = NULL;
f0b791a3
DH
1459 unsigned long bad_flags = 0;
1460
53f9263b 1461 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1462 bad_reason = "nonzero mapcount";
1463 if (unlikely(page->mapping != NULL))
1464 bad_reason = "non-NULL mapping";
1465 if (unlikely(atomic_read(&page->_count) != 0))
1466 bad_reason = "nonzero _count";
f4c18e6f
NH
1467 if (unlikely(page->flags & __PG_HWPOISON)) {
1468 bad_reason = "HWPoisoned (hardware-corrupted)";
1469 bad_flags = __PG_HWPOISON;
1470 }
f0b791a3
DH
1471 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1472 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1473 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1474 }
9edad6ea
JW
1475#ifdef CONFIG_MEMCG
1476 if (unlikely(page->mem_cgroup))
1477 bad_reason = "page still charged to cgroup";
1478#endif
f0b791a3
DH
1479 if (unlikely(bad_reason)) {
1480 bad_page(page, bad_reason, bad_flags);
689bcebf 1481 return 1;
8cc3b392 1482 }
2a7684a2
WF
1483 return 0;
1484}
1485
1414c7f4
LA
1486static inline bool free_pages_prezeroed(bool poisoned)
1487{
1488 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1489 page_poisoning_enabled() && poisoned;
1490}
1491
75379191
VB
1492static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1493 int alloc_flags)
2a7684a2
WF
1494{
1495 int i;
1414c7f4 1496 bool poisoned = true;
2a7684a2
WF
1497
1498 for (i = 0; i < (1 << order); i++) {
1499 struct page *p = page + i;
1500 if (unlikely(check_new_page(p)))
1501 return 1;
1414c7f4
LA
1502 if (poisoned)
1503 poisoned &= page_is_poisoned(p);
2a7684a2 1504 }
689bcebf 1505
4c21e2f2 1506 set_page_private(page, 0);
7835e98b 1507 set_page_refcounted(page);
cc102509
NP
1508
1509 arch_alloc_page(page, order);
1da177e4 1510 kernel_map_pages(page, 1 << order, 1);
8823b1db 1511 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1512 kasan_alloc_pages(page, order);
17cf4406 1513
1414c7f4 1514 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1515 for (i = 0; i < (1 << order); i++)
1516 clear_highpage(page + i);
17cf4406
NP
1517
1518 if (order && (gfp_flags & __GFP_COMP))
1519 prep_compound_page(page, order);
1520
48c96a36
JK
1521 set_page_owner(page, order, gfp_flags);
1522
75379191 1523 /*
2f064f34 1524 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1525 * allocate the page. The expectation is that the caller is taking
1526 * steps that will free more memory. The caller should avoid the page
1527 * being used for !PFMEMALLOC purposes.
1528 */
2f064f34
MH
1529 if (alloc_flags & ALLOC_NO_WATERMARKS)
1530 set_page_pfmemalloc(page);
1531 else
1532 clear_page_pfmemalloc(page);
75379191 1533
689bcebf 1534 return 0;
1da177e4
LT
1535}
1536
56fd56b8
MG
1537/*
1538 * Go through the free lists for the given migratetype and remove
1539 * the smallest available page from the freelists
1540 */
728ec980
MG
1541static inline
1542struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1543 int migratetype)
1544{
1545 unsigned int current_order;
b8af2941 1546 struct free_area *area;
56fd56b8
MG
1547 struct page *page;
1548
1549 /* Find a page of the appropriate size in the preferred list */
1550 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1551 area = &(zone->free_area[current_order]);
a16601c5 1552 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1553 struct page, lru);
a16601c5
GT
1554 if (!page)
1555 continue;
56fd56b8
MG
1556 list_del(&page->lru);
1557 rmv_page_order(page);
1558 area->nr_free--;
56fd56b8 1559 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1560 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1561 return page;
1562 }
1563
1564 return NULL;
1565}
1566
1567
b2a0ac88
MG
1568/*
1569 * This array describes the order lists are fallen back to when
1570 * the free lists for the desirable migrate type are depleted
1571 */
47118af0 1572static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1573 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1574 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1575 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1576#ifdef CONFIG_CMA
974a786e 1577 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1578#endif
194159fb 1579#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1580 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1581#endif
b2a0ac88
MG
1582};
1583
dc67647b
JK
1584#ifdef CONFIG_CMA
1585static struct page *__rmqueue_cma_fallback(struct zone *zone,
1586 unsigned int order)
1587{
1588 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1589}
1590#else
1591static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1592 unsigned int order) { return NULL; }
1593#endif
1594
c361be55
MG
1595/*
1596 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1597 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1598 * boundary. If alignment is required, use move_freepages_block()
1599 */
435b405c 1600int move_freepages(struct zone *zone,
b69a7288
AB
1601 struct page *start_page, struct page *end_page,
1602 int migratetype)
c361be55
MG
1603{
1604 struct page *page;
d00181b9 1605 unsigned int order;
d100313f 1606 int pages_moved = 0;
c361be55
MG
1607
1608#ifndef CONFIG_HOLES_IN_ZONE
1609 /*
1610 * page_zone is not safe to call in this context when
1611 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1612 * anyway as we check zone boundaries in move_freepages_block().
1613 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1614 * grouping pages by mobility
c361be55 1615 */
97ee4ba7 1616 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1617#endif
1618
1619 for (page = start_page; page <= end_page;) {
344c790e 1620 /* Make sure we are not inadvertently changing nodes */
309381fe 1621 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1622
c361be55
MG
1623 if (!pfn_valid_within(page_to_pfn(page))) {
1624 page++;
1625 continue;
1626 }
1627
1628 if (!PageBuddy(page)) {
1629 page++;
1630 continue;
1631 }
1632
1633 order = page_order(page);
84be48d8
KS
1634 list_move(&page->lru,
1635 &zone->free_area[order].free_list[migratetype]);
c361be55 1636 page += 1 << order;
d100313f 1637 pages_moved += 1 << order;
c361be55
MG
1638 }
1639
d100313f 1640 return pages_moved;
c361be55
MG
1641}
1642
ee6f509c 1643int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1644 int migratetype)
c361be55
MG
1645{
1646 unsigned long start_pfn, end_pfn;
1647 struct page *start_page, *end_page;
1648
1649 start_pfn = page_to_pfn(page);
d9c23400 1650 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1651 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1652 end_page = start_page + pageblock_nr_pages - 1;
1653 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1654
1655 /* Do not cross zone boundaries */
108bcc96 1656 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1657 start_page = page;
108bcc96 1658 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1659 return 0;
1660
1661 return move_freepages(zone, start_page, end_page, migratetype);
1662}
1663
2f66a68f
MG
1664static void change_pageblock_range(struct page *pageblock_page,
1665 int start_order, int migratetype)
1666{
1667 int nr_pageblocks = 1 << (start_order - pageblock_order);
1668
1669 while (nr_pageblocks--) {
1670 set_pageblock_migratetype(pageblock_page, migratetype);
1671 pageblock_page += pageblock_nr_pages;
1672 }
1673}
1674
fef903ef 1675/*
9c0415eb
VB
1676 * When we are falling back to another migratetype during allocation, try to
1677 * steal extra free pages from the same pageblocks to satisfy further
1678 * allocations, instead of polluting multiple pageblocks.
1679 *
1680 * If we are stealing a relatively large buddy page, it is likely there will
1681 * be more free pages in the pageblock, so try to steal them all. For
1682 * reclaimable and unmovable allocations, we steal regardless of page size,
1683 * as fragmentation caused by those allocations polluting movable pageblocks
1684 * is worse than movable allocations stealing from unmovable and reclaimable
1685 * pageblocks.
fef903ef 1686 */
4eb7dce6
JK
1687static bool can_steal_fallback(unsigned int order, int start_mt)
1688{
1689 /*
1690 * Leaving this order check is intended, although there is
1691 * relaxed order check in next check. The reason is that
1692 * we can actually steal whole pageblock if this condition met,
1693 * but, below check doesn't guarantee it and that is just heuristic
1694 * so could be changed anytime.
1695 */
1696 if (order >= pageblock_order)
1697 return true;
1698
1699 if (order >= pageblock_order / 2 ||
1700 start_mt == MIGRATE_RECLAIMABLE ||
1701 start_mt == MIGRATE_UNMOVABLE ||
1702 page_group_by_mobility_disabled)
1703 return true;
1704
1705 return false;
1706}
1707
1708/*
1709 * This function implements actual steal behaviour. If order is large enough,
1710 * we can steal whole pageblock. If not, we first move freepages in this
1711 * pageblock and check whether half of pages are moved or not. If half of
1712 * pages are moved, we can change migratetype of pageblock and permanently
1713 * use it's pages as requested migratetype in the future.
1714 */
1715static void steal_suitable_fallback(struct zone *zone, struct page *page,
1716 int start_type)
fef903ef 1717{
d00181b9 1718 unsigned int current_order = page_order(page);
4eb7dce6 1719 int pages;
fef903ef 1720
fef903ef
SB
1721 /* Take ownership for orders >= pageblock_order */
1722 if (current_order >= pageblock_order) {
1723 change_pageblock_range(page, current_order, start_type);
3a1086fb 1724 return;
fef903ef
SB
1725 }
1726
4eb7dce6 1727 pages = move_freepages_block(zone, page, start_type);
fef903ef 1728
4eb7dce6
JK
1729 /* Claim the whole block if over half of it is free */
1730 if (pages >= (1 << (pageblock_order-1)) ||
1731 page_group_by_mobility_disabled)
1732 set_pageblock_migratetype(page, start_type);
1733}
1734
2149cdae
JK
1735/*
1736 * Check whether there is a suitable fallback freepage with requested order.
1737 * If only_stealable is true, this function returns fallback_mt only if
1738 * we can steal other freepages all together. This would help to reduce
1739 * fragmentation due to mixed migratetype pages in one pageblock.
1740 */
1741int find_suitable_fallback(struct free_area *area, unsigned int order,
1742 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1743{
1744 int i;
1745 int fallback_mt;
1746
1747 if (area->nr_free == 0)
1748 return -1;
1749
1750 *can_steal = false;
1751 for (i = 0;; i++) {
1752 fallback_mt = fallbacks[migratetype][i];
974a786e 1753 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1754 break;
1755
1756 if (list_empty(&area->free_list[fallback_mt]))
1757 continue;
fef903ef 1758
4eb7dce6
JK
1759 if (can_steal_fallback(order, migratetype))
1760 *can_steal = true;
1761
2149cdae
JK
1762 if (!only_stealable)
1763 return fallback_mt;
1764
1765 if (*can_steal)
1766 return fallback_mt;
fef903ef 1767 }
4eb7dce6
JK
1768
1769 return -1;
fef903ef
SB
1770}
1771
0aaa29a5
MG
1772/*
1773 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1774 * there are no empty page blocks that contain a page with a suitable order
1775 */
1776static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1777 unsigned int alloc_order)
1778{
1779 int mt;
1780 unsigned long max_managed, flags;
1781
1782 /*
1783 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1784 * Check is race-prone but harmless.
1785 */
1786 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1787 if (zone->nr_reserved_highatomic >= max_managed)
1788 return;
1789
1790 spin_lock_irqsave(&zone->lock, flags);
1791
1792 /* Recheck the nr_reserved_highatomic limit under the lock */
1793 if (zone->nr_reserved_highatomic >= max_managed)
1794 goto out_unlock;
1795
1796 /* Yoink! */
1797 mt = get_pageblock_migratetype(page);
1798 if (mt != MIGRATE_HIGHATOMIC &&
1799 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1800 zone->nr_reserved_highatomic += pageblock_nr_pages;
1801 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1802 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1803 }
1804
1805out_unlock:
1806 spin_unlock_irqrestore(&zone->lock, flags);
1807}
1808
1809/*
1810 * Used when an allocation is about to fail under memory pressure. This
1811 * potentially hurts the reliability of high-order allocations when under
1812 * intense memory pressure but failed atomic allocations should be easier
1813 * to recover from than an OOM.
1814 */
1815static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1816{
1817 struct zonelist *zonelist = ac->zonelist;
1818 unsigned long flags;
1819 struct zoneref *z;
1820 struct zone *zone;
1821 struct page *page;
1822 int order;
1823
1824 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1825 ac->nodemask) {
1826 /* Preserve at least one pageblock */
1827 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1828 continue;
1829
1830 spin_lock_irqsave(&zone->lock, flags);
1831 for (order = 0; order < MAX_ORDER; order++) {
1832 struct free_area *area = &(zone->free_area[order]);
1833
a16601c5
GT
1834 page = list_first_entry_or_null(
1835 &area->free_list[MIGRATE_HIGHATOMIC],
1836 struct page, lru);
1837 if (!page)
0aaa29a5
MG
1838 continue;
1839
0aaa29a5
MG
1840 /*
1841 * It should never happen but changes to locking could
1842 * inadvertently allow a per-cpu drain to add pages
1843 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1844 * and watch for underflows.
1845 */
1846 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1847 zone->nr_reserved_highatomic);
1848
1849 /*
1850 * Convert to ac->migratetype and avoid the normal
1851 * pageblock stealing heuristics. Minimally, the caller
1852 * is doing the work and needs the pages. More
1853 * importantly, if the block was always converted to
1854 * MIGRATE_UNMOVABLE or another type then the number
1855 * of pageblocks that cannot be completely freed
1856 * may increase.
1857 */
1858 set_pageblock_migratetype(page, ac->migratetype);
1859 move_freepages_block(zone, page, ac->migratetype);
1860 spin_unlock_irqrestore(&zone->lock, flags);
1861 return;
1862 }
1863 spin_unlock_irqrestore(&zone->lock, flags);
1864 }
1865}
1866
b2a0ac88 1867/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1868static inline struct page *
7aeb09f9 1869__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1870{
b8af2941 1871 struct free_area *area;
7aeb09f9 1872 unsigned int current_order;
b2a0ac88 1873 struct page *page;
4eb7dce6
JK
1874 int fallback_mt;
1875 bool can_steal;
b2a0ac88
MG
1876
1877 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1878 for (current_order = MAX_ORDER-1;
1879 current_order >= order && current_order <= MAX_ORDER-1;
1880 --current_order) {
4eb7dce6
JK
1881 area = &(zone->free_area[current_order]);
1882 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1883 start_migratetype, false, &can_steal);
4eb7dce6
JK
1884 if (fallback_mt == -1)
1885 continue;
b2a0ac88 1886
a16601c5 1887 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1888 struct page, lru);
1889 if (can_steal)
1890 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1891
4eb7dce6
JK
1892 /* Remove the page from the freelists */
1893 area->nr_free--;
1894 list_del(&page->lru);
1895 rmv_page_order(page);
3a1086fb 1896
4eb7dce6
JK
1897 expand(zone, page, order, current_order, area,
1898 start_migratetype);
1899 /*
bb14c2c7 1900 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1901 * migratetype depending on the decisions in
bb14c2c7
VB
1902 * find_suitable_fallback(). This is OK as long as it does not
1903 * differ for MIGRATE_CMA pageblocks. Those can be used as
1904 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1905 */
bb14c2c7 1906 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1907
4eb7dce6
JK
1908 trace_mm_page_alloc_extfrag(page, order, current_order,
1909 start_migratetype, fallback_mt);
e0fff1bd 1910
4eb7dce6 1911 return page;
b2a0ac88
MG
1912 }
1913
728ec980 1914 return NULL;
b2a0ac88
MG
1915}
1916
56fd56b8 1917/*
1da177e4
LT
1918 * Do the hard work of removing an element from the buddy allocator.
1919 * Call me with the zone->lock already held.
1920 */
b2a0ac88 1921static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1922 int migratetype)
1da177e4 1923{
1da177e4
LT
1924 struct page *page;
1925
56fd56b8 1926 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1927 if (unlikely(!page)) {
dc67647b
JK
1928 if (migratetype == MIGRATE_MOVABLE)
1929 page = __rmqueue_cma_fallback(zone, order);
1930
1931 if (!page)
1932 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1933 }
1934
0d3d062a 1935 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1936 return page;
1da177e4
LT
1937}
1938
5f63b720 1939/*
1da177e4
LT
1940 * Obtain a specified number of elements from the buddy allocator, all under
1941 * a single hold of the lock, for efficiency. Add them to the supplied list.
1942 * Returns the number of new pages which were placed at *list.
1943 */
5f63b720 1944static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1945 unsigned long count, struct list_head *list,
b745bc85 1946 int migratetype, bool cold)
1da177e4 1947{
5bcc9f86 1948 int i;
5f63b720 1949
c54ad30c 1950 spin_lock(&zone->lock);
1da177e4 1951 for (i = 0; i < count; ++i) {
6ac0206b 1952 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1953 if (unlikely(page == NULL))
1da177e4 1954 break;
81eabcbe
MG
1955
1956 /*
1957 * Split buddy pages returned by expand() are received here
1958 * in physical page order. The page is added to the callers and
1959 * list and the list head then moves forward. From the callers
1960 * perspective, the linked list is ordered by page number in
1961 * some conditions. This is useful for IO devices that can
1962 * merge IO requests if the physical pages are ordered
1963 * properly.
1964 */
b745bc85 1965 if (likely(!cold))
e084b2d9
MG
1966 list_add(&page->lru, list);
1967 else
1968 list_add_tail(&page->lru, list);
81eabcbe 1969 list = &page->lru;
bb14c2c7 1970 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1971 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1972 -(1 << order));
1da177e4 1973 }
f2260e6b 1974 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1975 spin_unlock(&zone->lock);
085cc7d5 1976 return i;
1da177e4
LT
1977}
1978
4ae7c039 1979#ifdef CONFIG_NUMA
8fce4d8e 1980/*
4037d452
CL
1981 * Called from the vmstat counter updater to drain pagesets of this
1982 * currently executing processor on remote nodes after they have
1983 * expired.
1984 *
879336c3
CL
1985 * Note that this function must be called with the thread pinned to
1986 * a single processor.
8fce4d8e 1987 */
4037d452 1988void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1989{
4ae7c039 1990 unsigned long flags;
7be12fc9 1991 int to_drain, batch;
4ae7c039 1992
4037d452 1993 local_irq_save(flags);
4db0c3c2 1994 batch = READ_ONCE(pcp->batch);
7be12fc9 1995 to_drain = min(pcp->count, batch);
2a13515c
KM
1996 if (to_drain > 0) {
1997 free_pcppages_bulk(zone, to_drain, pcp);
1998 pcp->count -= to_drain;
1999 }
4037d452 2000 local_irq_restore(flags);
4ae7c039
CL
2001}
2002#endif
2003
9f8f2172 2004/*
93481ff0 2005 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2006 *
2007 * The processor must either be the current processor and the
2008 * thread pinned to the current processor or a processor that
2009 * is not online.
2010 */
93481ff0 2011static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2012{
c54ad30c 2013 unsigned long flags;
93481ff0
VB
2014 struct per_cpu_pageset *pset;
2015 struct per_cpu_pages *pcp;
1da177e4 2016
93481ff0
VB
2017 local_irq_save(flags);
2018 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2019
93481ff0
VB
2020 pcp = &pset->pcp;
2021 if (pcp->count) {
2022 free_pcppages_bulk(zone, pcp->count, pcp);
2023 pcp->count = 0;
2024 }
2025 local_irq_restore(flags);
2026}
3dfa5721 2027
93481ff0
VB
2028/*
2029 * Drain pcplists of all zones on the indicated processor.
2030 *
2031 * The processor must either be the current processor and the
2032 * thread pinned to the current processor or a processor that
2033 * is not online.
2034 */
2035static void drain_pages(unsigned int cpu)
2036{
2037 struct zone *zone;
2038
2039 for_each_populated_zone(zone) {
2040 drain_pages_zone(cpu, zone);
1da177e4
LT
2041 }
2042}
1da177e4 2043
9f8f2172
CL
2044/*
2045 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2046 *
2047 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2048 * the single zone's pages.
9f8f2172 2049 */
93481ff0 2050void drain_local_pages(struct zone *zone)
9f8f2172 2051{
93481ff0
VB
2052 int cpu = smp_processor_id();
2053
2054 if (zone)
2055 drain_pages_zone(cpu, zone);
2056 else
2057 drain_pages(cpu);
9f8f2172
CL
2058}
2059
2060/*
74046494
GBY
2061 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2062 *
93481ff0
VB
2063 * When zone parameter is non-NULL, spill just the single zone's pages.
2064 *
74046494
GBY
2065 * Note that this code is protected against sending an IPI to an offline
2066 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2067 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2068 * nothing keeps CPUs from showing up after we populated the cpumask and
2069 * before the call to on_each_cpu_mask().
9f8f2172 2070 */
93481ff0 2071void drain_all_pages(struct zone *zone)
9f8f2172 2072{
74046494 2073 int cpu;
74046494
GBY
2074
2075 /*
2076 * Allocate in the BSS so we wont require allocation in
2077 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2078 */
2079 static cpumask_t cpus_with_pcps;
2080
2081 /*
2082 * We don't care about racing with CPU hotplug event
2083 * as offline notification will cause the notified
2084 * cpu to drain that CPU pcps and on_each_cpu_mask
2085 * disables preemption as part of its processing
2086 */
2087 for_each_online_cpu(cpu) {
93481ff0
VB
2088 struct per_cpu_pageset *pcp;
2089 struct zone *z;
74046494 2090 bool has_pcps = false;
93481ff0
VB
2091
2092 if (zone) {
74046494 2093 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2094 if (pcp->pcp.count)
74046494 2095 has_pcps = true;
93481ff0
VB
2096 } else {
2097 for_each_populated_zone(z) {
2098 pcp = per_cpu_ptr(z->pageset, cpu);
2099 if (pcp->pcp.count) {
2100 has_pcps = true;
2101 break;
2102 }
74046494
GBY
2103 }
2104 }
93481ff0 2105
74046494
GBY
2106 if (has_pcps)
2107 cpumask_set_cpu(cpu, &cpus_with_pcps);
2108 else
2109 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2110 }
93481ff0
VB
2111 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2112 zone, 1);
9f8f2172
CL
2113}
2114
296699de 2115#ifdef CONFIG_HIBERNATION
1da177e4
LT
2116
2117void mark_free_pages(struct zone *zone)
2118{
f623f0db
RW
2119 unsigned long pfn, max_zone_pfn;
2120 unsigned long flags;
7aeb09f9 2121 unsigned int order, t;
86760a2c 2122 struct page *page;
1da177e4 2123
8080fc03 2124 if (zone_is_empty(zone))
1da177e4
LT
2125 return;
2126
2127 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2128
108bcc96 2129 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2131 if (pfn_valid(pfn)) {
86760a2c 2132 page = pfn_to_page(pfn);
7be98234
RW
2133 if (!swsusp_page_is_forbidden(page))
2134 swsusp_unset_page_free(page);
f623f0db 2135 }
1da177e4 2136
b2a0ac88 2137 for_each_migratetype_order(order, t) {
86760a2c
GT
2138 list_for_each_entry(page,
2139 &zone->free_area[order].free_list[t], lru) {
f623f0db 2140 unsigned long i;
1da177e4 2141
86760a2c 2142 pfn = page_to_pfn(page);
f623f0db 2143 for (i = 0; i < (1UL << order); i++)
7be98234 2144 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2145 }
b2a0ac88 2146 }
1da177e4
LT
2147 spin_unlock_irqrestore(&zone->lock, flags);
2148}
e2c55dc8 2149#endif /* CONFIG_PM */
1da177e4 2150
1da177e4
LT
2151/*
2152 * Free a 0-order page
b745bc85 2153 * cold == true ? free a cold page : free a hot page
1da177e4 2154 */
b745bc85 2155void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2156{
2157 struct zone *zone = page_zone(page);
2158 struct per_cpu_pages *pcp;
2159 unsigned long flags;
dc4b0caf 2160 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2161 int migratetype;
1da177e4 2162
ec95f53a 2163 if (!free_pages_prepare(page, 0))
689bcebf
HD
2164 return;
2165
dc4b0caf 2166 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2167 set_pcppage_migratetype(page, migratetype);
1da177e4 2168 local_irq_save(flags);
f8891e5e 2169 __count_vm_event(PGFREE);
da456f14 2170
5f8dcc21
MG
2171 /*
2172 * We only track unmovable, reclaimable and movable on pcp lists.
2173 * Free ISOLATE pages back to the allocator because they are being
2174 * offlined but treat RESERVE as movable pages so we can get those
2175 * areas back if necessary. Otherwise, we may have to free
2176 * excessively into the page allocator
2177 */
2178 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2179 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2180 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2181 goto out;
2182 }
2183 migratetype = MIGRATE_MOVABLE;
2184 }
2185
99dcc3e5 2186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2187 if (!cold)
5f8dcc21 2188 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2189 else
2190 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2191 pcp->count++;
48db57f8 2192 if (pcp->count >= pcp->high) {
4db0c3c2 2193 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2194 free_pcppages_bulk(zone, batch, pcp);
2195 pcp->count -= batch;
48db57f8 2196 }
5f8dcc21
MG
2197
2198out:
1da177e4 2199 local_irq_restore(flags);
1da177e4
LT
2200}
2201
cc59850e
KK
2202/*
2203 * Free a list of 0-order pages
2204 */
b745bc85 2205void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2206{
2207 struct page *page, *next;
2208
2209 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2210 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2211 free_hot_cold_page(page, cold);
2212 }
2213}
2214
8dfcc9ba
NP
2215/*
2216 * split_page takes a non-compound higher-order page, and splits it into
2217 * n (1<<order) sub-pages: page[0..n]
2218 * Each sub-page must be freed individually.
2219 *
2220 * Note: this is probably too low level an operation for use in drivers.
2221 * Please consult with lkml before using this in your driver.
2222 */
2223void split_page(struct page *page, unsigned int order)
2224{
2225 int i;
e2cfc911 2226 gfp_t gfp_mask;
8dfcc9ba 2227
309381fe
SL
2228 VM_BUG_ON_PAGE(PageCompound(page), page);
2229 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2230
2231#ifdef CONFIG_KMEMCHECK
2232 /*
2233 * Split shadow pages too, because free(page[0]) would
2234 * otherwise free the whole shadow.
2235 */
2236 if (kmemcheck_page_is_tracked(page))
2237 split_page(virt_to_page(page[0].shadow), order);
2238#endif
2239
e2cfc911
JK
2240 gfp_mask = get_page_owner_gfp(page);
2241 set_page_owner(page, 0, gfp_mask);
48c96a36 2242 for (i = 1; i < (1 << order); i++) {
7835e98b 2243 set_page_refcounted(page + i);
e2cfc911 2244 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2245 }
8dfcc9ba 2246}
5853ff23 2247EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2248
3c605096 2249int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2250{
748446bb
MG
2251 unsigned long watermark;
2252 struct zone *zone;
2139cbe6 2253 int mt;
748446bb
MG
2254
2255 BUG_ON(!PageBuddy(page));
2256
2257 zone = page_zone(page);
2e30abd1 2258 mt = get_pageblock_migratetype(page);
748446bb 2259
194159fb 2260 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2261 /* Obey watermarks as if the page was being allocated */
2262 watermark = low_wmark_pages(zone) + (1 << order);
2263 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2264 return 0;
2265
8fb74b9f 2266 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2267 }
748446bb
MG
2268
2269 /* Remove page from free list */
2270 list_del(&page->lru);
2271 zone->free_area[order].nr_free--;
2272 rmv_page_order(page);
2139cbe6 2273
e2cfc911 2274 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2275
8fb74b9f 2276 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2277 if (order >= pageblock_order - 1) {
2278 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2279 for (; page < endpage; page += pageblock_nr_pages) {
2280 int mt = get_pageblock_migratetype(page);
194159fb 2281 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2282 set_pageblock_migratetype(page,
2283 MIGRATE_MOVABLE);
2284 }
748446bb
MG
2285 }
2286
f3a14ced 2287
8fb74b9f 2288 return 1UL << order;
1fb3f8ca
MG
2289}
2290
2291/*
2292 * Similar to split_page except the page is already free. As this is only
2293 * being used for migration, the migratetype of the block also changes.
2294 * As this is called with interrupts disabled, the caller is responsible
2295 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2296 * are enabled.
2297 *
2298 * Note: this is probably too low level an operation for use in drivers.
2299 * Please consult with lkml before using this in your driver.
2300 */
2301int split_free_page(struct page *page)
2302{
2303 unsigned int order;
2304 int nr_pages;
2305
1fb3f8ca
MG
2306 order = page_order(page);
2307
8fb74b9f 2308 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2309 if (!nr_pages)
2310 return 0;
2311
2312 /* Split into individual pages */
2313 set_page_refcounted(page);
2314 split_page(page, order);
2315 return nr_pages;
748446bb
MG
2316}
2317
1da177e4 2318/*
75379191 2319 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2320 */
0a15c3e9
MG
2321static inline
2322struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2323 struct zone *zone, unsigned int order,
0aaa29a5 2324 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2325{
2326 unsigned long flags;
689bcebf 2327 struct page *page;
b745bc85 2328 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2329
48db57f8 2330 if (likely(order == 0)) {
1da177e4 2331 struct per_cpu_pages *pcp;
5f8dcc21 2332 struct list_head *list;
1da177e4 2333
1da177e4 2334 local_irq_save(flags);
99dcc3e5
CL
2335 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2336 list = &pcp->lists[migratetype];
5f8dcc21 2337 if (list_empty(list)) {
535131e6 2338 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2339 pcp->batch, list,
e084b2d9 2340 migratetype, cold);
5f8dcc21 2341 if (unlikely(list_empty(list)))
6fb332fa 2342 goto failed;
535131e6 2343 }
b92a6edd 2344
5f8dcc21 2345 if (cold)
a16601c5 2346 page = list_last_entry(list, struct page, lru);
5f8dcc21 2347 else
a16601c5 2348 page = list_first_entry(list, struct page, lru);
5f8dcc21 2349
b92a6edd
MG
2350 list_del(&page->lru);
2351 pcp->count--;
7fb1d9fc 2352 } else {
dab48dab
AM
2353 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2354 /*
2355 * __GFP_NOFAIL is not to be used in new code.
2356 *
2357 * All __GFP_NOFAIL callers should be fixed so that they
2358 * properly detect and handle allocation failures.
2359 *
2360 * We most definitely don't want callers attempting to
4923abf9 2361 * allocate greater than order-1 page units with
dab48dab
AM
2362 * __GFP_NOFAIL.
2363 */
4923abf9 2364 WARN_ON_ONCE(order > 1);
dab48dab 2365 }
1da177e4 2366 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2367
2368 page = NULL;
2369 if (alloc_flags & ALLOC_HARDER) {
2370 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2371 if (page)
2372 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2373 }
2374 if (!page)
6ac0206b 2375 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2376 spin_unlock(&zone->lock);
2377 if (!page)
2378 goto failed;
d1ce749a 2379 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2380 get_pcppage_migratetype(page));
1da177e4
LT
2381 }
2382
3a025760 2383 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2384 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2385 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2386 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2387
f8891e5e 2388 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2389 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2390 local_irq_restore(flags);
1da177e4 2391
309381fe 2392 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2393 return page;
a74609fa
NP
2394
2395failed:
2396 local_irq_restore(flags);
a74609fa 2397 return NULL;
1da177e4
LT
2398}
2399
933e312e
AM
2400#ifdef CONFIG_FAIL_PAGE_ALLOC
2401
b2588c4b 2402static struct {
933e312e
AM
2403 struct fault_attr attr;
2404
621a5f7a 2405 bool ignore_gfp_highmem;
71baba4b 2406 bool ignore_gfp_reclaim;
54114994 2407 u32 min_order;
933e312e
AM
2408} fail_page_alloc = {
2409 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2410 .ignore_gfp_reclaim = true,
621a5f7a 2411 .ignore_gfp_highmem = true,
54114994 2412 .min_order = 1,
933e312e
AM
2413};
2414
2415static int __init setup_fail_page_alloc(char *str)
2416{
2417 return setup_fault_attr(&fail_page_alloc.attr, str);
2418}
2419__setup("fail_page_alloc=", setup_fail_page_alloc);
2420
deaf386e 2421static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2422{
54114994 2423 if (order < fail_page_alloc.min_order)
deaf386e 2424 return false;
933e312e 2425 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2426 return false;
933e312e 2427 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2428 return false;
71baba4b
MG
2429 if (fail_page_alloc.ignore_gfp_reclaim &&
2430 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2431 return false;
933e312e
AM
2432
2433 return should_fail(&fail_page_alloc.attr, 1 << order);
2434}
2435
2436#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2437
2438static int __init fail_page_alloc_debugfs(void)
2439{
f4ae40a6 2440 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2441 struct dentry *dir;
933e312e 2442
dd48c085
AM
2443 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2444 &fail_page_alloc.attr);
2445 if (IS_ERR(dir))
2446 return PTR_ERR(dir);
933e312e 2447
b2588c4b 2448 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2449 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2450 goto fail;
2451 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2452 &fail_page_alloc.ignore_gfp_highmem))
2453 goto fail;
2454 if (!debugfs_create_u32("min-order", mode, dir,
2455 &fail_page_alloc.min_order))
2456 goto fail;
2457
2458 return 0;
2459fail:
dd48c085 2460 debugfs_remove_recursive(dir);
933e312e 2461
b2588c4b 2462 return -ENOMEM;
933e312e
AM
2463}
2464
2465late_initcall(fail_page_alloc_debugfs);
2466
2467#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2468
2469#else /* CONFIG_FAIL_PAGE_ALLOC */
2470
deaf386e 2471static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2472{
deaf386e 2473 return false;
933e312e
AM
2474}
2475
2476#endif /* CONFIG_FAIL_PAGE_ALLOC */
2477
1da177e4 2478/*
97a16fc8
MG
2479 * Return true if free base pages are above 'mark'. For high-order checks it
2480 * will return true of the order-0 watermark is reached and there is at least
2481 * one free page of a suitable size. Checking now avoids taking the zone lock
2482 * to check in the allocation paths if no pages are free.
1da177e4 2483 */
7aeb09f9
MG
2484static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2485 unsigned long mark, int classzone_idx, int alloc_flags,
2486 long free_pages)
1da177e4 2487{
d23ad423 2488 long min = mark;
1da177e4 2489 int o;
97a16fc8 2490 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2491
0aaa29a5 2492 /* free_pages may go negative - that's OK */
df0a6daa 2493 free_pages -= (1 << order) - 1;
0aaa29a5 2494
7fb1d9fc 2495 if (alloc_flags & ALLOC_HIGH)
1da177e4 2496 min -= min / 2;
0aaa29a5
MG
2497
2498 /*
2499 * If the caller does not have rights to ALLOC_HARDER then subtract
2500 * the high-atomic reserves. This will over-estimate the size of the
2501 * atomic reserve but it avoids a search.
2502 */
97a16fc8 2503 if (likely(!alloc_harder))
0aaa29a5
MG
2504 free_pages -= z->nr_reserved_highatomic;
2505 else
1da177e4 2506 min -= min / 4;
e2b19197 2507
d95ea5d1
BZ
2508#ifdef CONFIG_CMA
2509 /* If allocation can't use CMA areas don't use free CMA pages */
2510 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2511 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2512#endif
026b0814 2513
97a16fc8
MG
2514 /*
2515 * Check watermarks for an order-0 allocation request. If these
2516 * are not met, then a high-order request also cannot go ahead
2517 * even if a suitable page happened to be free.
2518 */
2519 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2520 return false;
1da177e4 2521
97a16fc8
MG
2522 /* If this is an order-0 request then the watermark is fine */
2523 if (!order)
2524 return true;
2525
2526 /* For a high-order request, check at least one suitable page is free */
2527 for (o = order; o < MAX_ORDER; o++) {
2528 struct free_area *area = &z->free_area[o];
2529 int mt;
2530
2531 if (!area->nr_free)
2532 continue;
2533
2534 if (alloc_harder)
2535 return true;
1da177e4 2536
97a16fc8
MG
2537 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2538 if (!list_empty(&area->free_list[mt]))
2539 return true;
2540 }
2541
2542#ifdef CONFIG_CMA
2543 if ((alloc_flags & ALLOC_CMA) &&
2544 !list_empty(&area->free_list[MIGRATE_CMA])) {
2545 return true;
2546 }
2547#endif
1da177e4 2548 }
97a16fc8 2549 return false;
88f5acf8
MG
2550}
2551
7aeb09f9 2552bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2553 int classzone_idx, int alloc_flags)
2554{
2555 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2556 zone_page_state(z, NR_FREE_PAGES));
2557}
2558
7aeb09f9 2559bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2560 unsigned long mark, int classzone_idx)
88f5acf8
MG
2561{
2562 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2563
2564 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2565 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2566
e2b19197 2567 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2568 free_pages);
1da177e4
LT
2569}
2570
9276b1bc 2571#ifdef CONFIG_NUMA
81c0a2bb
JW
2572static bool zone_local(struct zone *local_zone, struct zone *zone)
2573{
fff4068c 2574 return local_zone->node == zone->node;
81c0a2bb
JW
2575}
2576
957f822a
DR
2577static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2578{
5f7a75ac
MG
2579 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2580 RECLAIM_DISTANCE;
957f822a 2581}
9276b1bc 2582#else /* CONFIG_NUMA */
81c0a2bb
JW
2583static bool zone_local(struct zone *local_zone, struct zone *zone)
2584{
2585 return true;
2586}
2587
957f822a
DR
2588static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2589{
2590 return true;
2591}
9276b1bc
PJ
2592#endif /* CONFIG_NUMA */
2593
4ffeaf35
MG
2594static void reset_alloc_batches(struct zone *preferred_zone)
2595{
2596 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2597
2598 do {
2599 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2600 high_wmark_pages(zone) - low_wmark_pages(zone) -
2601 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2602 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2603 } while (zone++ != preferred_zone);
2604}
2605
7fb1d9fc 2606/*
0798e519 2607 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2608 * a page.
2609 */
2610static struct page *
a9263751
VB
2611get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2612 const struct alloc_context *ac)
753ee728 2613{
a9263751 2614 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2615 struct zoneref *z;
7fb1d9fc 2616 struct page *page = NULL;
5117f45d 2617 struct zone *zone;
4ffeaf35
MG
2618 int nr_fair_skipped = 0;
2619 bool zonelist_rescan;
54a6eb5c 2620
9276b1bc 2621zonelist_scan:
4ffeaf35
MG
2622 zonelist_rescan = false;
2623
7fb1d9fc 2624 /*
9276b1bc 2625 * Scan zonelist, looking for a zone with enough free.
344736f2 2626 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2627 */
a9263751
VB
2628 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2629 ac->nodemask) {
e085dbc5
JW
2630 unsigned long mark;
2631
664eedde
MG
2632 if (cpusets_enabled() &&
2633 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2634 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2635 continue;
81c0a2bb
JW
2636 /*
2637 * Distribute pages in proportion to the individual
2638 * zone size to ensure fair page aging. The zone a
2639 * page was allocated in should have no effect on the
2640 * time the page has in memory before being reclaimed.
81c0a2bb 2641 */
3a025760 2642 if (alloc_flags & ALLOC_FAIR) {
a9263751 2643 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2644 break;
57054651 2645 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2646 nr_fair_skipped++;
3a025760 2647 continue;
4ffeaf35 2648 }
81c0a2bb 2649 }
a756cf59
JW
2650 /*
2651 * When allocating a page cache page for writing, we
2652 * want to get it from a zone that is within its dirty
2653 * limit, such that no single zone holds more than its
2654 * proportional share of globally allowed dirty pages.
2655 * The dirty limits take into account the zone's
2656 * lowmem reserves and high watermark so that kswapd
2657 * should be able to balance it without having to
2658 * write pages from its LRU list.
2659 *
2660 * This may look like it could increase pressure on
2661 * lower zones by failing allocations in higher zones
2662 * before they are full. But the pages that do spill
2663 * over are limited as the lower zones are protected
2664 * by this very same mechanism. It should not become
2665 * a practical burden to them.
2666 *
2667 * XXX: For now, allow allocations to potentially
2668 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2669 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2670 * which is important when on a NUMA setup the allowed
2671 * zones are together not big enough to reach the
2672 * global limit. The proper fix for these situations
2673 * will require awareness of zones in the
2674 * dirty-throttling and the flusher threads.
2675 */
c9ab0c4f 2676 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2677 continue;
7fb1d9fc 2678
e085dbc5
JW
2679 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2680 if (!zone_watermark_ok(zone, order, mark,
a9263751 2681 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2682 int ret;
2683
5dab2911
MG
2684 /* Checked here to keep the fast path fast */
2685 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2686 if (alloc_flags & ALLOC_NO_WATERMARKS)
2687 goto try_this_zone;
2688
957f822a 2689 if (zone_reclaim_mode == 0 ||
a9263751 2690 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2691 continue;
2692
fa5e084e
MG
2693 ret = zone_reclaim(zone, gfp_mask, order);
2694 switch (ret) {
2695 case ZONE_RECLAIM_NOSCAN:
2696 /* did not scan */
cd38b115 2697 continue;
fa5e084e
MG
2698 case ZONE_RECLAIM_FULL:
2699 /* scanned but unreclaimable */
cd38b115 2700 continue;
fa5e084e
MG
2701 default:
2702 /* did we reclaim enough */
fed2719e 2703 if (zone_watermark_ok(zone, order, mark,
a9263751 2704 ac->classzone_idx, alloc_flags))
fed2719e
MG
2705 goto try_this_zone;
2706
fed2719e 2707 continue;
0798e519 2708 }
7fb1d9fc
RS
2709 }
2710
fa5e084e 2711try_this_zone:
a9263751 2712 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2713 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2714 if (page) {
2715 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2716 goto try_this_zone;
0aaa29a5
MG
2717
2718 /*
2719 * If this is a high-order atomic allocation then check
2720 * if the pageblock should be reserved for the future
2721 */
2722 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2723 reserve_highatomic_pageblock(page, zone, order);
2724
75379191
VB
2725 return page;
2726 }
54a6eb5c 2727 }
9276b1bc 2728
4ffeaf35
MG
2729 /*
2730 * The first pass makes sure allocations are spread fairly within the
2731 * local node. However, the local node might have free pages left
2732 * after the fairness batches are exhausted, and remote zones haven't
2733 * even been considered yet. Try once more without fairness, and
2734 * include remote zones now, before entering the slowpath and waking
2735 * kswapd: prefer spilling to a remote zone over swapping locally.
2736 */
2737 if (alloc_flags & ALLOC_FAIR) {
2738 alloc_flags &= ~ALLOC_FAIR;
2739 if (nr_fair_skipped) {
2740 zonelist_rescan = true;
a9263751 2741 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2742 }
2743 if (nr_online_nodes > 1)
2744 zonelist_rescan = true;
2745 }
2746
4ffeaf35
MG
2747 if (zonelist_rescan)
2748 goto zonelist_scan;
2749
2750 return NULL;
753ee728
MH
2751}
2752
29423e77
DR
2753/*
2754 * Large machines with many possible nodes should not always dump per-node
2755 * meminfo in irq context.
2756 */
2757static inline bool should_suppress_show_mem(void)
2758{
2759 bool ret = false;
2760
2761#if NODES_SHIFT > 8
2762 ret = in_interrupt();
2763#endif
2764 return ret;
2765}
2766
a238ab5b
DH
2767static DEFINE_RATELIMIT_STATE(nopage_rs,
2768 DEFAULT_RATELIMIT_INTERVAL,
2769 DEFAULT_RATELIMIT_BURST);
2770
d00181b9 2771void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2772{
a238ab5b
DH
2773 unsigned int filter = SHOW_MEM_FILTER_NODES;
2774
c0a32fc5
SG
2775 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2776 debug_guardpage_minorder() > 0)
a238ab5b
DH
2777 return;
2778
2779 /*
2780 * This documents exceptions given to allocations in certain
2781 * contexts that are allowed to allocate outside current's set
2782 * of allowed nodes.
2783 */
2784 if (!(gfp_mask & __GFP_NOMEMALLOC))
2785 if (test_thread_flag(TIF_MEMDIE) ||
2786 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2787 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2788 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2789 filter &= ~SHOW_MEM_FILTER_NODES;
2790
2791 if (fmt) {
3ee9a4f0
JP
2792 struct va_format vaf;
2793 va_list args;
2794
a238ab5b 2795 va_start(args, fmt);
3ee9a4f0
JP
2796
2797 vaf.fmt = fmt;
2798 vaf.va = &args;
2799
2800 pr_warn("%pV", &vaf);
2801
a238ab5b
DH
2802 va_end(args);
2803 }
2804
c5c990e8
VB
2805 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2806 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2807 dump_stack();
2808 if (!should_suppress_show_mem())
2809 show_mem(filter);
2810}
2811
11e33f6a
MG
2812static inline struct page *
2813__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2814 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2815{
6e0fc46d
DR
2816 struct oom_control oc = {
2817 .zonelist = ac->zonelist,
2818 .nodemask = ac->nodemask,
2819 .gfp_mask = gfp_mask,
2820 .order = order,
6e0fc46d 2821 };
11e33f6a
MG
2822 struct page *page;
2823
9879de73
JW
2824 *did_some_progress = 0;
2825
9879de73 2826 /*
dc56401f
JW
2827 * Acquire the oom lock. If that fails, somebody else is
2828 * making progress for us.
9879de73 2829 */
dc56401f 2830 if (!mutex_trylock(&oom_lock)) {
9879de73 2831 *did_some_progress = 1;
11e33f6a 2832 schedule_timeout_uninterruptible(1);
1da177e4
LT
2833 return NULL;
2834 }
6b1de916 2835
11e33f6a
MG
2836 /*
2837 * Go through the zonelist yet one more time, keep very high watermark
2838 * here, this is only to catch a parallel oom killing, we must fail if
2839 * we're still under heavy pressure.
2840 */
a9263751
VB
2841 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2842 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2843 if (page)
11e33f6a
MG
2844 goto out;
2845
4365a567 2846 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2847 /* Coredumps can quickly deplete all memory reserves */
2848 if (current->flags & PF_DUMPCORE)
2849 goto out;
4365a567
KH
2850 /* The OOM killer will not help higher order allocs */
2851 if (order > PAGE_ALLOC_COSTLY_ORDER)
2852 goto out;
03668b3c 2853 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2854 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2855 goto out;
9083905a 2856 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2857 if (!(gfp_mask & __GFP_FS)) {
2858 /*
2859 * XXX: Page reclaim didn't yield anything,
2860 * and the OOM killer can't be invoked, but
9083905a 2861 * keep looping as per tradition.
cc873177
JW
2862 */
2863 *did_some_progress = 1;
9879de73 2864 goto out;
cc873177 2865 }
9083905a
JW
2866 if (pm_suspended_storage())
2867 goto out;
4167e9b2 2868 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2869 if (gfp_mask & __GFP_THISNODE)
2870 goto out;
2871 }
11e33f6a 2872 /* Exhausted what can be done so it's blamo time */
5020e285 2873 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2874 *did_some_progress = 1;
5020e285
MH
2875
2876 if (gfp_mask & __GFP_NOFAIL) {
2877 page = get_page_from_freelist(gfp_mask, order,
2878 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2879 /*
2880 * fallback to ignore cpuset restriction if our nodes
2881 * are depleted
2882 */
2883 if (!page)
2884 page = get_page_from_freelist(gfp_mask, order,
2885 ALLOC_NO_WATERMARKS, ac);
2886 }
2887 }
11e33f6a 2888out:
dc56401f 2889 mutex_unlock(&oom_lock);
11e33f6a
MG
2890 return page;
2891}
2892
56de7263
MG
2893#ifdef CONFIG_COMPACTION
2894/* Try memory compaction for high-order allocations before reclaim */
2895static struct page *
2896__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2897 int alloc_flags, const struct alloc_context *ac,
2898 enum migrate_mode mode, int *contended_compaction,
2899 bool *deferred_compaction)
56de7263 2900{
53853e2d 2901 unsigned long compact_result;
98dd3b48 2902 struct page *page;
53853e2d
VB
2903
2904 if (!order)
66199712 2905 return NULL;
66199712 2906
c06b1fca 2907 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2908 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2909 mode, contended_compaction);
c06b1fca 2910 current->flags &= ~PF_MEMALLOC;
56de7263 2911
98dd3b48
VB
2912 switch (compact_result) {
2913 case COMPACT_DEFERRED:
53853e2d 2914 *deferred_compaction = true;
98dd3b48
VB
2915 /* fall-through */
2916 case COMPACT_SKIPPED:
2917 return NULL;
2918 default:
2919 break;
2920 }
53853e2d 2921
98dd3b48
VB
2922 /*
2923 * At least in one zone compaction wasn't deferred or skipped, so let's
2924 * count a compaction stall
2925 */
2926 count_vm_event(COMPACTSTALL);
8fb74b9f 2927
a9263751
VB
2928 page = get_page_from_freelist(gfp_mask, order,
2929 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2930
98dd3b48
VB
2931 if (page) {
2932 struct zone *zone = page_zone(page);
53853e2d 2933
98dd3b48
VB
2934 zone->compact_blockskip_flush = false;
2935 compaction_defer_reset(zone, order, true);
2936 count_vm_event(COMPACTSUCCESS);
2937 return page;
2938 }
56de7263 2939
98dd3b48
VB
2940 /*
2941 * It's bad if compaction run occurs and fails. The most likely reason
2942 * is that pages exist, but not enough to satisfy watermarks.
2943 */
2944 count_vm_event(COMPACTFAIL);
66199712 2945
98dd3b48 2946 cond_resched();
56de7263
MG
2947
2948 return NULL;
2949}
2950#else
2951static inline struct page *
2952__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2953 int alloc_flags, const struct alloc_context *ac,
2954 enum migrate_mode mode, int *contended_compaction,
2955 bool *deferred_compaction)
56de7263
MG
2956{
2957 return NULL;
2958}
2959#endif /* CONFIG_COMPACTION */
2960
bba90710
MS
2961/* Perform direct synchronous page reclaim */
2962static int
a9263751
VB
2963__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2964 const struct alloc_context *ac)
11e33f6a 2965{
11e33f6a 2966 struct reclaim_state reclaim_state;
bba90710 2967 int progress;
11e33f6a
MG
2968
2969 cond_resched();
2970
2971 /* We now go into synchronous reclaim */
2972 cpuset_memory_pressure_bump();
c06b1fca 2973 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2974 lockdep_set_current_reclaim_state(gfp_mask);
2975 reclaim_state.reclaimed_slab = 0;
c06b1fca 2976 current->reclaim_state = &reclaim_state;
11e33f6a 2977
a9263751
VB
2978 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2979 ac->nodemask);
11e33f6a 2980
c06b1fca 2981 current->reclaim_state = NULL;
11e33f6a 2982 lockdep_clear_current_reclaim_state();
c06b1fca 2983 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2984
2985 cond_resched();
2986
bba90710
MS
2987 return progress;
2988}
2989
2990/* The really slow allocator path where we enter direct reclaim */
2991static inline struct page *
2992__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2993 int alloc_flags, const struct alloc_context *ac,
2994 unsigned long *did_some_progress)
bba90710
MS
2995{
2996 struct page *page = NULL;
2997 bool drained = false;
2998
a9263751 2999 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3000 if (unlikely(!(*did_some_progress)))
3001 return NULL;
11e33f6a 3002
9ee493ce 3003retry:
a9263751
VB
3004 page = get_page_from_freelist(gfp_mask, order,
3005 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3006
3007 /*
3008 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3009 * pages are pinned on the per-cpu lists or in high alloc reserves.
3010 * Shrink them them and try again
9ee493ce
MG
3011 */
3012 if (!page && !drained) {
0aaa29a5 3013 unreserve_highatomic_pageblock(ac);
93481ff0 3014 drain_all_pages(NULL);
9ee493ce
MG
3015 drained = true;
3016 goto retry;
3017 }
3018
11e33f6a
MG
3019 return page;
3020}
3021
a9263751 3022static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3023{
3024 struct zoneref *z;
3025 struct zone *zone;
3026
a9263751
VB
3027 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3028 ac->high_zoneidx, ac->nodemask)
3029 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3030}
3031
341ce06f
PZ
3032static inline int
3033gfp_to_alloc_flags(gfp_t gfp_mask)
3034{
341ce06f 3035 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3036
a56f57ff 3037 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3038 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3039
341ce06f
PZ
3040 /*
3041 * The caller may dip into page reserves a bit more if the caller
3042 * cannot run direct reclaim, or if the caller has realtime scheduling
3043 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3044 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3045 */
e6223a3b 3046 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3047
d0164adc 3048 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3049 /*
b104a35d
DR
3050 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3051 * if it can't schedule.
5c3240d9 3052 */
b104a35d 3053 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3054 alloc_flags |= ALLOC_HARDER;
523b9458 3055 /*
b104a35d 3056 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3057 * comment for __cpuset_node_allowed().
523b9458 3058 */
341ce06f 3059 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3060 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3061 alloc_flags |= ALLOC_HARDER;
3062
b37f1dd0
MG
3063 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3064 if (gfp_mask & __GFP_MEMALLOC)
3065 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3066 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3067 alloc_flags |= ALLOC_NO_WATERMARKS;
3068 else if (!in_interrupt() &&
3069 ((current->flags & PF_MEMALLOC) ||
3070 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3071 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3072 }
d95ea5d1 3073#ifdef CONFIG_CMA
43e7a34d 3074 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3075 alloc_flags |= ALLOC_CMA;
3076#endif
341ce06f
PZ
3077 return alloc_flags;
3078}
3079
072bb0aa
MG
3080bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3081{
b37f1dd0 3082 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3083}
3084
d0164adc
MG
3085static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3086{
3087 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3088}
3089
11e33f6a
MG
3090static inline struct page *
3091__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3092 struct alloc_context *ac)
11e33f6a 3093{
d0164adc 3094 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3095 struct page *page = NULL;
3096 int alloc_flags;
3097 unsigned long pages_reclaimed = 0;
3098 unsigned long did_some_progress;
e0b9daeb 3099 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3100 bool deferred_compaction = false;
1f9efdef 3101 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3102
72807a74
MG
3103 /*
3104 * In the slowpath, we sanity check order to avoid ever trying to
3105 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3106 * be using allocators in order of preference for an area that is
3107 * too large.
3108 */
1fc28b70
MG
3109 if (order >= MAX_ORDER) {
3110 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3111 return NULL;
1fc28b70 3112 }
1da177e4 3113
d0164adc
MG
3114 /*
3115 * We also sanity check to catch abuse of atomic reserves being used by
3116 * callers that are not in atomic context.
3117 */
3118 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3119 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3120 gfp_mask &= ~__GFP_ATOMIC;
3121
9879de73 3122retry:
d0164adc 3123 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3124 wake_all_kswapds(order, ac);
1da177e4 3125
9bf2229f 3126 /*
7fb1d9fc
RS
3127 * OK, we're below the kswapd watermark and have kicked background
3128 * reclaim. Now things get more complex, so set up alloc_flags according
3129 * to how we want to proceed.
9bf2229f 3130 */
341ce06f 3131 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3132
f33261d7
DR
3133 /*
3134 * Find the true preferred zone if the allocation is unconstrained by
3135 * cpusets.
3136 */
a9263751 3137 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3138 struct zoneref *preferred_zoneref;
a9263751
VB
3139 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3140 ac->high_zoneidx, NULL, &ac->preferred_zone);
3141 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3142 }
f33261d7 3143
341ce06f 3144 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3145 page = get_page_from_freelist(gfp_mask, order,
3146 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3147 if (page)
3148 goto got_pg;
1da177e4 3149
11e33f6a 3150 /* Allocate without watermarks if the context allows */
341ce06f 3151 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3152 /*
3153 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3154 * the allocation is high priority and these type of
3155 * allocations are system rather than user orientated
3156 */
a9263751 3157 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3158 page = get_page_from_freelist(gfp_mask, order,
3159 ALLOC_NO_WATERMARKS, ac);
3160 if (page)
3161 goto got_pg;
1da177e4
LT
3162 }
3163
d0164adc
MG
3164 /* Caller is not willing to reclaim, we can't balance anything */
3165 if (!can_direct_reclaim) {
aed0a0e3 3166 /*
33d53103
MH
3167 * All existing users of the __GFP_NOFAIL are blockable, so warn
3168 * of any new users that actually allow this type of allocation
3169 * to fail.
aed0a0e3
DR
3170 */
3171 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3172 goto nopage;
aed0a0e3 3173 }
1da177e4 3174
341ce06f 3175 /* Avoid recursion of direct reclaim */
33d53103
MH
3176 if (current->flags & PF_MEMALLOC) {
3177 /*
3178 * __GFP_NOFAIL request from this context is rather bizarre
3179 * because we cannot reclaim anything and only can loop waiting
3180 * for somebody to do a work for us.
3181 */
3182 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3183 cond_resched();
3184 goto retry;
3185 }
341ce06f 3186 goto nopage;
33d53103 3187 }
341ce06f 3188
6583bb64
DR
3189 /* Avoid allocations with no watermarks from looping endlessly */
3190 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3191 goto nopage;
3192
77f1fe6b
MG
3193 /*
3194 * Try direct compaction. The first pass is asynchronous. Subsequent
3195 * attempts after direct reclaim are synchronous
3196 */
a9263751
VB
3197 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3198 migration_mode,
3199 &contended_compaction,
53853e2d 3200 &deferred_compaction);
56de7263
MG
3201 if (page)
3202 goto got_pg;
75f30861 3203
1f9efdef 3204 /* Checks for THP-specific high-order allocations */
d0164adc 3205 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3206 /*
3207 * If compaction is deferred for high-order allocations, it is
3208 * because sync compaction recently failed. If this is the case
3209 * and the caller requested a THP allocation, we do not want
3210 * to heavily disrupt the system, so we fail the allocation
3211 * instead of entering direct reclaim.
3212 */
3213 if (deferred_compaction)
3214 goto nopage;
3215
3216 /*
3217 * In all zones where compaction was attempted (and not
3218 * deferred or skipped), lock contention has been detected.
3219 * For THP allocation we do not want to disrupt the others
3220 * so we fallback to base pages instead.
3221 */
3222 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3223 goto nopage;
3224
3225 /*
3226 * If compaction was aborted due to need_resched(), we do not
3227 * want to further increase allocation latency, unless it is
3228 * khugepaged trying to collapse.
3229 */
3230 if (contended_compaction == COMPACT_CONTENDED_SCHED
3231 && !(current->flags & PF_KTHREAD))
3232 goto nopage;
3233 }
66199712 3234
8fe78048
DR
3235 /*
3236 * It can become very expensive to allocate transparent hugepages at
3237 * fault, so use asynchronous memory compaction for THP unless it is
3238 * khugepaged trying to collapse.
3239 */
d0164adc 3240 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3241 migration_mode = MIGRATE_SYNC_LIGHT;
3242
11e33f6a 3243 /* Try direct reclaim and then allocating */
a9263751
VB
3244 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3245 &did_some_progress);
11e33f6a
MG
3246 if (page)
3247 goto got_pg;
1da177e4 3248
9083905a
JW
3249 /* Do not loop if specifically requested */
3250 if (gfp_mask & __GFP_NORETRY)
3251 goto noretry;
3252
3253 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3254 pages_reclaimed += did_some_progress;
9083905a
JW
3255 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3256 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3257 /* Wait for some write requests to complete then retry */
a9263751 3258 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3259 goto retry;
1da177e4
LT
3260 }
3261
9083905a
JW
3262 /* Reclaim has failed us, start killing things */
3263 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3264 if (page)
3265 goto got_pg;
3266
3267 /* Retry as long as the OOM killer is making progress */
3268 if (did_some_progress)
3269 goto retry;
3270
3271noretry:
3272 /*
3273 * High-order allocations do not necessarily loop after
3274 * direct reclaim and reclaim/compaction depends on compaction
3275 * being called after reclaim so call directly if necessary
3276 */
3277 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3278 ac, migration_mode,
3279 &contended_compaction,
3280 &deferred_compaction);
3281 if (page)
3282 goto got_pg;
1da177e4 3283nopage:
a238ab5b 3284 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3285got_pg:
072bb0aa 3286 return page;
1da177e4 3287}
11e33f6a
MG
3288
3289/*
3290 * This is the 'heart' of the zoned buddy allocator.
3291 */
3292struct page *
3293__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3294 struct zonelist *zonelist, nodemask_t *nodemask)
3295{
d8846374 3296 struct zoneref *preferred_zoneref;
cc9a6c87 3297 struct page *page = NULL;
cc9a6c87 3298 unsigned int cpuset_mems_cookie;
3a025760 3299 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3300 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3301 struct alloc_context ac = {
3302 .high_zoneidx = gfp_zone(gfp_mask),
3303 .nodemask = nodemask,
3304 .migratetype = gfpflags_to_migratetype(gfp_mask),
3305 };
11e33f6a 3306
dcce284a
BH
3307 gfp_mask &= gfp_allowed_mask;
3308
11e33f6a
MG
3309 lockdep_trace_alloc(gfp_mask);
3310
d0164adc 3311 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3312
3313 if (should_fail_alloc_page(gfp_mask, order))
3314 return NULL;
3315
3316 /*
3317 * Check the zones suitable for the gfp_mask contain at least one
3318 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3319 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3320 */
3321 if (unlikely(!zonelist->_zonerefs->zone))
3322 return NULL;
3323
a9263751 3324 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3325 alloc_flags |= ALLOC_CMA;
3326
cc9a6c87 3327retry_cpuset:
d26914d1 3328 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3329
a9263751
VB
3330 /* We set it here, as __alloc_pages_slowpath might have changed it */
3331 ac.zonelist = zonelist;
c9ab0c4f
MG
3332
3333 /* Dirty zone balancing only done in the fast path */
3334 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3335
5117f45d 3336 /* The preferred zone is used for statistics later */
a9263751
VB
3337 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3338 ac.nodemask ? : &cpuset_current_mems_allowed,
3339 &ac.preferred_zone);
3340 if (!ac.preferred_zone)
cc9a6c87 3341 goto out;
a9263751 3342 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3343
3344 /* First allocation attempt */
91fbdc0f 3345 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3346 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3347 if (unlikely(!page)) {
3348 /*
3349 * Runtime PM, block IO and its error handling path
3350 * can deadlock because I/O on the device might not
3351 * complete.
3352 */
91fbdc0f 3353 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3354 ac.spread_dirty_pages = false;
91fbdc0f 3355
a9263751 3356 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3357 }
11e33f6a 3358
23f086f9
XQ
3359 if (kmemcheck_enabled && page)
3360 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3361
a9263751 3362 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3363
3364out:
3365 /*
3366 * When updating a task's mems_allowed, it is possible to race with
3367 * parallel threads in such a way that an allocation can fail while
3368 * the mask is being updated. If a page allocation is about to fail,
3369 * check if the cpuset changed during allocation and if so, retry.
3370 */
d26914d1 3371 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3372 goto retry_cpuset;
3373
11e33f6a 3374 return page;
1da177e4 3375}
d239171e 3376EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3377
3378/*
3379 * Common helper functions.
3380 */
920c7a5d 3381unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3382{
945a1113
AM
3383 struct page *page;
3384
3385 /*
3386 * __get_free_pages() returns a 32-bit address, which cannot represent
3387 * a highmem page
3388 */
3389 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3390
1da177e4
LT
3391 page = alloc_pages(gfp_mask, order);
3392 if (!page)
3393 return 0;
3394 return (unsigned long) page_address(page);
3395}
1da177e4
LT
3396EXPORT_SYMBOL(__get_free_pages);
3397
920c7a5d 3398unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3399{
945a1113 3400 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3401}
1da177e4
LT
3402EXPORT_SYMBOL(get_zeroed_page);
3403
920c7a5d 3404void __free_pages(struct page *page, unsigned int order)
1da177e4 3405{
b5810039 3406 if (put_page_testzero(page)) {
1da177e4 3407 if (order == 0)
b745bc85 3408 free_hot_cold_page(page, false);
1da177e4
LT
3409 else
3410 __free_pages_ok(page, order);
3411 }
3412}
3413
3414EXPORT_SYMBOL(__free_pages);
3415
920c7a5d 3416void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3417{
3418 if (addr != 0) {
725d704e 3419 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3420 __free_pages(virt_to_page((void *)addr), order);
3421 }
3422}
3423
3424EXPORT_SYMBOL(free_pages);
3425
b63ae8ca
AD
3426/*
3427 * Page Fragment:
3428 * An arbitrary-length arbitrary-offset area of memory which resides
3429 * within a 0 or higher order page. Multiple fragments within that page
3430 * are individually refcounted, in the page's reference counter.
3431 *
3432 * The page_frag functions below provide a simple allocation framework for
3433 * page fragments. This is used by the network stack and network device
3434 * drivers to provide a backing region of memory for use as either an
3435 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3436 */
3437static struct page *__page_frag_refill(struct page_frag_cache *nc,
3438 gfp_t gfp_mask)
3439{
3440 struct page *page = NULL;
3441 gfp_t gfp = gfp_mask;
3442
3443#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3444 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3445 __GFP_NOMEMALLOC;
3446 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3447 PAGE_FRAG_CACHE_MAX_ORDER);
3448 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3449#endif
3450 if (unlikely(!page))
3451 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3452
3453 nc->va = page ? page_address(page) : NULL;
3454
3455 return page;
3456}
3457
3458void *__alloc_page_frag(struct page_frag_cache *nc,
3459 unsigned int fragsz, gfp_t gfp_mask)
3460{
3461 unsigned int size = PAGE_SIZE;
3462 struct page *page;
3463 int offset;
3464
3465 if (unlikely(!nc->va)) {
3466refill:
3467 page = __page_frag_refill(nc, gfp_mask);
3468 if (!page)
3469 return NULL;
3470
3471#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3472 /* if size can vary use size else just use PAGE_SIZE */
3473 size = nc->size;
3474#endif
3475 /* Even if we own the page, we do not use atomic_set().
3476 * This would break get_page_unless_zero() users.
3477 */
3478 atomic_add(size - 1, &page->_count);
3479
3480 /* reset page count bias and offset to start of new frag */
2f064f34 3481 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3482 nc->pagecnt_bias = size;
3483 nc->offset = size;
3484 }
3485
3486 offset = nc->offset - fragsz;
3487 if (unlikely(offset < 0)) {
3488 page = virt_to_page(nc->va);
3489
3490 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3491 goto refill;
3492
3493#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3494 /* if size can vary use size else just use PAGE_SIZE */
3495 size = nc->size;
3496#endif
3497 /* OK, page count is 0, we can safely set it */
3498 atomic_set(&page->_count, size);
3499
3500 /* reset page count bias and offset to start of new frag */
3501 nc->pagecnt_bias = size;
3502 offset = size - fragsz;
3503 }
3504
3505 nc->pagecnt_bias--;
3506 nc->offset = offset;
3507
3508 return nc->va + offset;
3509}
3510EXPORT_SYMBOL(__alloc_page_frag);
3511
3512/*
3513 * Frees a page fragment allocated out of either a compound or order 0 page.
3514 */
3515void __free_page_frag(void *addr)
3516{
3517 struct page *page = virt_to_head_page(addr);
3518
3519 if (unlikely(put_page_testzero(page)))
3520 __free_pages_ok(page, compound_order(page));
3521}
3522EXPORT_SYMBOL(__free_page_frag);
3523
6a1a0d3b 3524/*
52383431 3525 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3526 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3527 * equivalent to alloc_pages.
6a1a0d3b 3528 *
52383431
VD
3529 * It should be used when the caller would like to use kmalloc, but since the
3530 * allocation is large, it has to fall back to the page allocator.
3531 */
3532struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3533{
3534 struct page *page;
52383431 3535
52383431 3536 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3537 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3538 __free_pages(page, order);
3539 page = NULL;
3540 }
52383431
VD
3541 return page;
3542}
3543
3544struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3545{
3546 struct page *page;
52383431 3547
52383431 3548 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3549 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3550 __free_pages(page, order);
3551 page = NULL;
3552 }
52383431
VD
3553 return page;
3554}
3555
3556/*
3557 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3558 * alloc_kmem_pages.
6a1a0d3b 3559 */
52383431 3560void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3561{
d05e83a6 3562 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3563 __free_pages(page, order);
3564}
3565
52383431 3566void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3567{
3568 if (addr != 0) {
3569 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3570 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3571 }
3572}
3573
d00181b9
KS
3574static void *make_alloc_exact(unsigned long addr, unsigned int order,
3575 size_t size)
ee85c2e1
AK
3576{
3577 if (addr) {
3578 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3579 unsigned long used = addr + PAGE_ALIGN(size);
3580
3581 split_page(virt_to_page((void *)addr), order);
3582 while (used < alloc_end) {
3583 free_page(used);
3584 used += PAGE_SIZE;
3585 }
3586 }
3587 return (void *)addr;
3588}
3589
2be0ffe2
TT
3590/**
3591 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3592 * @size: the number of bytes to allocate
3593 * @gfp_mask: GFP flags for the allocation
3594 *
3595 * This function is similar to alloc_pages(), except that it allocates the
3596 * minimum number of pages to satisfy the request. alloc_pages() can only
3597 * allocate memory in power-of-two pages.
3598 *
3599 * This function is also limited by MAX_ORDER.
3600 *
3601 * Memory allocated by this function must be released by free_pages_exact().
3602 */
3603void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3604{
3605 unsigned int order = get_order(size);
3606 unsigned long addr;
3607
3608 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3609 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3610}
3611EXPORT_SYMBOL(alloc_pages_exact);
3612
ee85c2e1
AK
3613/**
3614 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3615 * pages on a node.
b5e6ab58 3616 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3617 * @size: the number of bytes to allocate
3618 * @gfp_mask: GFP flags for the allocation
3619 *
3620 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3621 * back.
ee85c2e1 3622 */
e1931811 3623void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3624{
d00181b9 3625 unsigned int order = get_order(size);
ee85c2e1
AK
3626 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3627 if (!p)
3628 return NULL;
3629 return make_alloc_exact((unsigned long)page_address(p), order, size);
3630}
ee85c2e1 3631
2be0ffe2
TT
3632/**
3633 * free_pages_exact - release memory allocated via alloc_pages_exact()
3634 * @virt: the value returned by alloc_pages_exact.
3635 * @size: size of allocation, same value as passed to alloc_pages_exact().
3636 *
3637 * Release the memory allocated by a previous call to alloc_pages_exact.
3638 */
3639void free_pages_exact(void *virt, size_t size)
3640{
3641 unsigned long addr = (unsigned long)virt;
3642 unsigned long end = addr + PAGE_ALIGN(size);
3643
3644 while (addr < end) {
3645 free_page(addr);
3646 addr += PAGE_SIZE;
3647 }
3648}
3649EXPORT_SYMBOL(free_pages_exact);
3650
e0fb5815
ZY
3651/**
3652 * nr_free_zone_pages - count number of pages beyond high watermark
3653 * @offset: The zone index of the highest zone
3654 *
3655 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3656 * high watermark within all zones at or below a given zone index. For each
3657 * zone, the number of pages is calculated as:
834405c3 3658 * managed_pages - high_pages
e0fb5815 3659 */
ebec3862 3660static unsigned long nr_free_zone_pages(int offset)
1da177e4 3661{
dd1a239f 3662 struct zoneref *z;
54a6eb5c
MG
3663 struct zone *zone;
3664
e310fd43 3665 /* Just pick one node, since fallback list is circular */
ebec3862 3666 unsigned long sum = 0;
1da177e4 3667
0e88460d 3668 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3669
54a6eb5c 3670 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3671 unsigned long size = zone->managed_pages;
41858966 3672 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3673 if (size > high)
3674 sum += size - high;
1da177e4
LT
3675 }
3676
3677 return sum;
3678}
3679
e0fb5815
ZY
3680/**
3681 * nr_free_buffer_pages - count number of pages beyond high watermark
3682 *
3683 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3684 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3685 */
ebec3862 3686unsigned long nr_free_buffer_pages(void)
1da177e4 3687{
af4ca457 3688 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3689}
c2f1a551 3690EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3691
e0fb5815
ZY
3692/**
3693 * nr_free_pagecache_pages - count number of pages beyond high watermark
3694 *
3695 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3696 * high watermark within all zones.
1da177e4 3697 */
ebec3862 3698unsigned long nr_free_pagecache_pages(void)
1da177e4 3699{
2a1e274a 3700 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3701}
08e0f6a9
CL
3702
3703static inline void show_node(struct zone *zone)
1da177e4 3704{
e5adfffc 3705 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3706 printk("Node %d ", zone_to_nid(zone));
1da177e4 3707}
1da177e4 3708
d02bd27b
IR
3709long si_mem_available(void)
3710{
3711 long available;
3712 unsigned long pagecache;
3713 unsigned long wmark_low = 0;
3714 unsigned long pages[NR_LRU_LISTS];
3715 struct zone *zone;
3716 int lru;
3717
3718 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3719 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3720
3721 for_each_zone(zone)
3722 wmark_low += zone->watermark[WMARK_LOW];
3723
3724 /*
3725 * Estimate the amount of memory available for userspace allocations,
3726 * without causing swapping.
3727 */
3728 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3729
3730 /*
3731 * Not all the page cache can be freed, otherwise the system will
3732 * start swapping. Assume at least half of the page cache, or the
3733 * low watermark worth of cache, needs to stay.
3734 */
3735 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3736 pagecache -= min(pagecache / 2, wmark_low);
3737 available += pagecache;
3738
3739 /*
3740 * Part of the reclaimable slab consists of items that are in use,
3741 * and cannot be freed. Cap this estimate at the low watermark.
3742 */
3743 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3744 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3745
3746 if (available < 0)
3747 available = 0;
3748 return available;
3749}
3750EXPORT_SYMBOL_GPL(si_mem_available);
3751
1da177e4
LT
3752void si_meminfo(struct sysinfo *val)
3753{
3754 val->totalram = totalram_pages;
cc7452b6 3755 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3756 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3757 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3758 val->totalhigh = totalhigh_pages;
3759 val->freehigh = nr_free_highpages();
1da177e4
LT
3760 val->mem_unit = PAGE_SIZE;
3761}
3762
3763EXPORT_SYMBOL(si_meminfo);
3764
3765#ifdef CONFIG_NUMA
3766void si_meminfo_node(struct sysinfo *val, int nid)
3767{
cdd91a77
JL
3768 int zone_type; /* needs to be signed */
3769 unsigned long managed_pages = 0;
1da177e4
LT
3770 pg_data_t *pgdat = NODE_DATA(nid);
3771
cdd91a77
JL
3772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3773 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3774 val->totalram = managed_pages;
cc7452b6 3775 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3776 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3777#ifdef CONFIG_HIGHMEM
b40da049 3778 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3779 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3780 NR_FREE_PAGES);
98d2b0eb
CL
3781#else
3782 val->totalhigh = 0;
3783 val->freehigh = 0;
3784#endif
1da177e4
LT
3785 val->mem_unit = PAGE_SIZE;
3786}
3787#endif
3788
ddd588b5 3789/*
7bf02ea2
DR
3790 * Determine whether the node should be displayed or not, depending on whether
3791 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3792 */
7bf02ea2 3793bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3794{
3795 bool ret = false;
cc9a6c87 3796 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3797
3798 if (!(flags & SHOW_MEM_FILTER_NODES))
3799 goto out;
3800
cc9a6c87 3801 do {
d26914d1 3802 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3803 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3804 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3805out:
3806 return ret;
3807}
3808
1da177e4
LT
3809#define K(x) ((x) << (PAGE_SHIFT-10))
3810
377e4f16
RV
3811static void show_migration_types(unsigned char type)
3812{
3813 static const char types[MIGRATE_TYPES] = {
3814 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3815 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3816 [MIGRATE_RECLAIMABLE] = 'E',
3817 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3818#ifdef CONFIG_CMA
3819 [MIGRATE_CMA] = 'C',
3820#endif
194159fb 3821#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3822 [MIGRATE_ISOLATE] = 'I',
194159fb 3823#endif
377e4f16
RV
3824 };
3825 char tmp[MIGRATE_TYPES + 1];
3826 char *p = tmp;
3827 int i;
3828
3829 for (i = 0; i < MIGRATE_TYPES; i++) {
3830 if (type & (1 << i))
3831 *p++ = types[i];
3832 }
3833
3834 *p = '\0';
3835 printk("(%s) ", tmp);
3836}
3837
1da177e4
LT
3838/*
3839 * Show free area list (used inside shift_scroll-lock stuff)
3840 * We also calculate the percentage fragmentation. We do this by counting the
3841 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3842 *
3843 * Bits in @filter:
3844 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3845 * cpuset.
1da177e4 3846 */
7bf02ea2 3847void show_free_areas(unsigned int filter)
1da177e4 3848{
d1bfcdb8 3849 unsigned long free_pcp = 0;
c7241913 3850 int cpu;
1da177e4
LT
3851 struct zone *zone;
3852
ee99c71c 3853 for_each_populated_zone(zone) {
7bf02ea2 3854 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3855 continue;
d1bfcdb8 3856
761b0677
KK
3857 for_each_online_cpu(cpu)
3858 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3859 }
3860
a731286d
KM
3861 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3862 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3863 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3864 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3865 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3866 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3867 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3868 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3869 global_page_state(NR_ISOLATED_ANON),
3870 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3871 global_page_state(NR_INACTIVE_FILE),
a731286d 3872 global_page_state(NR_ISOLATED_FILE),
7b854121 3873 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3874 global_page_state(NR_FILE_DIRTY),
ce866b34 3875 global_page_state(NR_WRITEBACK),
fd39fc85 3876 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3877 global_page_state(NR_SLAB_RECLAIMABLE),
3878 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3879 global_page_state(NR_FILE_MAPPED),
4b02108a 3880 global_page_state(NR_SHMEM),
a25700a5 3881 global_page_state(NR_PAGETABLE),
d1ce749a 3882 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3883 global_page_state(NR_FREE_PAGES),
3884 free_pcp,
d1ce749a 3885 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3886
ee99c71c 3887 for_each_populated_zone(zone) {
1da177e4
LT
3888 int i;
3889
7bf02ea2 3890 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3891 continue;
d1bfcdb8
KK
3892
3893 free_pcp = 0;
3894 for_each_online_cpu(cpu)
3895 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3896
1da177e4
LT
3897 show_node(zone);
3898 printk("%s"
3899 " free:%lukB"
3900 " min:%lukB"
3901 " low:%lukB"
3902 " high:%lukB"
4f98a2fe
RR
3903 " active_anon:%lukB"
3904 " inactive_anon:%lukB"
3905 " active_file:%lukB"
3906 " inactive_file:%lukB"
7b854121 3907 " unevictable:%lukB"
a731286d
KM
3908 " isolated(anon):%lukB"
3909 " isolated(file):%lukB"
1da177e4 3910 " present:%lukB"
9feedc9d 3911 " managed:%lukB"
4a0aa73f
KM
3912 " mlocked:%lukB"
3913 " dirty:%lukB"
3914 " writeback:%lukB"
3915 " mapped:%lukB"
4b02108a 3916 " shmem:%lukB"
4a0aa73f
KM
3917 " slab_reclaimable:%lukB"
3918 " slab_unreclaimable:%lukB"
c6a7f572 3919 " kernel_stack:%lukB"
4a0aa73f
KM
3920 " pagetables:%lukB"
3921 " unstable:%lukB"
3922 " bounce:%lukB"
d1bfcdb8
KK
3923 " free_pcp:%lukB"
3924 " local_pcp:%ukB"
d1ce749a 3925 " free_cma:%lukB"
4a0aa73f 3926 " writeback_tmp:%lukB"
1da177e4
LT
3927 " pages_scanned:%lu"
3928 " all_unreclaimable? %s"
3929 "\n",
3930 zone->name,
88f5acf8 3931 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3932 K(min_wmark_pages(zone)),
3933 K(low_wmark_pages(zone)),
3934 K(high_wmark_pages(zone)),
4f98a2fe
RR
3935 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3936 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3937 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3938 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3939 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3940 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3941 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3942 K(zone->present_pages),
9feedc9d 3943 K(zone->managed_pages),
4a0aa73f
KM
3944 K(zone_page_state(zone, NR_MLOCK)),
3945 K(zone_page_state(zone, NR_FILE_DIRTY)),
3946 K(zone_page_state(zone, NR_WRITEBACK)),
3947 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3948 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3949 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3950 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3951 zone_page_state(zone, NR_KERNEL_STACK) *
3952 THREAD_SIZE / 1024,
4a0aa73f
KM
3953 K(zone_page_state(zone, NR_PAGETABLE)),
3954 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3955 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3956 K(free_pcp),
3957 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3958 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3959 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3960 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3961 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3962 );
3963 printk("lowmem_reserve[]:");
3964 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3965 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3966 printk("\n");
3967 }
3968
ee99c71c 3969 for_each_populated_zone(zone) {
d00181b9
KS
3970 unsigned int order;
3971 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3972 unsigned char types[MAX_ORDER];
1da177e4 3973
7bf02ea2 3974 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3975 continue;
1da177e4
LT
3976 show_node(zone);
3977 printk("%s: ", zone->name);
1da177e4
LT
3978
3979 spin_lock_irqsave(&zone->lock, flags);
3980 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3981 struct free_area *area = &zone->free_area[order];
3982 int type;
3983
3984 nr[order] = area->nr_free;
8f9de51a 3985 total += nr[order] << order;
377e4f16
RV
3986
3987 types[order] = 0;
3988 for (type = 0; type < MIGRATE_TYPES; type++) {
3989 if (!list_empty(&area->free_list[type]))
3990 types[order] |= 1 << type;
3991 }
1da177e4
LT
3992 }
3993 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3994 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3995 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3996 if (nr[order])
3997 show_migration_types(types[order]);
3998 }
1da177e4
LT
3999 printk("= %lukB\n", K(total));
4000 }
4001
949f7ec5
DR
4002 hugetlb_show_meminfo();
4003
e6f3602d
LW
4004 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4005
1da177e4
LT
4006 show_swap_cache_info();
4007}
4008
19770b32
MG
4009static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4010{
4011 zoneref->zone = zone;
4012 zoneref->zone_idx = zone_idx(zone);
4013}
4014
1da177e4
LT
4015/*
4016 * Builds allocation fallback zone lists.
1a93205b
CL
4017 *
4018 * Add all populated zones of a node to the zonelist.
1da177e4 4019 */
f0c0b2b8 4020static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4021 int nr_zones)
1da177e4 4022{
1a93205b 4023 struct zone *zone;
bc732f1d 4024 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4025
4026 do {
2f6726e5 4027 zone_type--;
070f8032 4028 zone = pgdat->node_zones + zone_type;
1a93205b 4029 if (populated_zone(zone)) {
dd1a239f
MG
4030 zoneref_set_zone(zone,
4031 &zonelist->_zonerefs[nr_zones++]);
070f8032 4032 check_highest_zone(zone_type);
1da177e4 4033 }
2f6726e5 4034 } while (zone_type);
bc732f1d 4035
070f8032 4036 return nr_zones;
1da177e4
LT
4037}
4038
f0c0b2b8
KH
4039
4040/*
4041 * zonelist_order:
4042 * 0 = automatic detection of better ordering.
4043 * 1 = order by ([node] distance, -zonetype)
4044 * 2 = order by (-zonetype, [node] distance)
4045 *
4046 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4047 * the same zonelist. So only NUMA can configure this param.
4048 */
4049#define ZONELIST_ORDER_DEFAULT 0
4050#define ZONELIST_ORDER_NODE 1
4051#define ZONELIST_ORDER_ZONE 2
4052
4053/* zonelist order in the kernel.
4054 * set_zonelist_order() will set this to NODE or ZONE.
4055 */
4056static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4057static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4058
4059
1da177e4 4060#ifdef CONFIG_NUMA
f0c0b2b8
KH
4061/* The value user specified ....changed by config */
4062static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4063/* string for sysctl */
4064#define NUMA_ZONELIST_ORDER_LEN 16
4065char numa_zonelist_order[16] = "default";
4066
4067/*
4068 * interface for configure zonelist ordering.
4069 * command line option "numa_zonelist_order"
4070 * = "[dD]efault - default, automatic configuration.
4071 * = "[nN]ode - order by node locality, then by zone within node
4072 * = "[zZ]one - order by zone, then by locality within zone
4073 */
4074
4075static int __parse_numa_zonelist_order(char *s)
4076{
4077 if (*s == 'd' || *s == 'D') {
4078 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4079 } else if (*s == 'n' || *s == 'N') {
4080 user_zonelist_order = ZONELIST_ORDER_NODE;
4081 } else if (*s == 'z' || *s == 'Z') {
4082 user_zonelist_order = ZONELIST_ORDER_ZONE;
4083 } else {
4084 printk(KERN_WARNING
4085 "Ignoring invalid numa_zonelist_order value: "
4086 "%s\n", s);
4087 return -EINVAL;
4088 }
4089 return 0;
4090}
4091
4092static __init int setup_numa_zonelist_order(char *s)
4093{
ecb256f8
VL
4094 int ret;
4095
4096 if (!s)
4097 return 0;
4098
4099 ret = __parse_numa_zonelist_order(s);
4100 if (ret == 0)
4101 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4102
4103 return ret;
f0c0b2b8
KH
4104}
4105early_param("numa_zonelist_order", setup_numa_zonelist_order);
4106
4107/*
4108 * sysctl handler for numa_zonelist_order
4109 */
cccad5b9 4110int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4111 void __user *buffer, size_t *length,
f0c0b2b8
KH
4112 loff_t *ppos)
4113{
4114 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4115 int ret;
443c6f14 4116 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4117
443c6f14 4118 mutex_lock(&zl_order_mutex);
dacbde09
CG
4119 if (write) {
4120 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4121 ret = -EINVAL;
4122 goto out;
4123 }
4124 strcpy(saved_string, (char *)table->data);
4125 }
8d65af78 4126 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4127 if (ret)
443c6f14 4128 goto out;
f0c0b2b8
KH
4129 if (write) {
4130 int oldval = user_zonelist_order;
dacbde09
CG
4131
4132 ret = __parse_numa_zonelist_order((char *)table->data);
4133 if (ret) {
f0c0b2b8
KH
4134 /*
4135 * bogus value. restore saved string
4136 */
dacbde09 4137 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4138 NUMA_ZONELIST_ORDER_LEN);
4139 user_zonelist_order = oldval;
4eaf3f64
HL
4140 } else if (oldval != user_zonelist_order) {
4141 mutex_lock(&zonelists_mutex);
9adb62a5 4142 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4143 mutex_unlock(&zonelists_mutex);
4144 }
f0c0b2b8 4145 }
443c6f14
AK
4146out:
4147 mutex_unlock(&zl_order_mutex);
4148 return ret;
f0c0b2b8
KH
4149}
4150
4151
62bc62a8 4152#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4153static int node_load[MAX_NUMNODES];
4154
1da177e4 4155/**
4dc3b16b 4156 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4157 * @node: node whose fallback list we're appending
4158 * @used_node_mask: nodemask_t of already used nodes
4159 *
4160 * We use a number of factors to determine which is the next node that should
4161 * appear on a given node's fallback list. The node should not have appeared
4162 * already in @node's fallback list, and it should be the next closest node
4163 * according to the distance array (which contains arbitrary distance values
4164 * from each node to each node in the system), and should also prefer nodes
4165 * with no CPUs, since presumably they'll have very little allocation pressure
4166 * on them otherwise.
4167 * It returns -1 if no node is found.
4168 */
f0c0b2b8 4169static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4170{
4cf808eb 4171 int n, val;
1da177e4 4172 int min_val = INT_MAX;
00ef2d2f 4173 int best_node = NUMA_NO_NODE;
a70f7302 4174 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4175
4cf808eb
LT
4176 /* Use the local node if we haven't already */
4177 if (!node_isset(node, *used_node_mask)) {
4178 node_set(node, *used_node_mask);
4179 return node;
4180 }
1da177e4 4181
4b0ef1fe 4182 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4183
4184 /* Don't want a node to appear more than once */
4185 if (node_isset(n, *used_node_mask))
4186 continue;
4187
1da177e4
LT
4188 /* Use the distance array to find the distance */
4189 val = node_distance(node, n);
4190
4cf808eb
LT
4191 /* Penalize nodes under us ("prefer the next node") */
4192 val += (n < node);
4193
1da177e4 4194 /* Give preference to headless and unused nodes */
a70f7302
RR
4195 tmp = cpumask_of_node(n);
4196 if (!cpumask_empty(tmp))
1da177e4
LT
4197 val += PENALTY_FOR_NODE_WITH_CPUS;
4198
4199 /* Slight preference for less loaded node */
4200 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4201 val += node_load[n];
4202
4203 if (val < min_val) {
4204 min_val = val;
4205 best_node = n;
4206 }
4207 }
4208
4209 if (best_node >= 0)
4210 node_set(best_node, *used_node_mask);
4211
4212 return best_node;
4213}
4214
f0c0b2b8
KH
4215
4216/*
4217 * Build zonelists ordered by node and zones within node.
4218 * This results in maximum locality--normal zone overflows into local
4219 * DMA zone, if any--but risks exhausting DMA zone.
4220 */
4221static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4222{
f0c0b2b8 4223 int j;
1da177e4 4224 struct zonelist *zonelist;
f0c0b2b8 4225
54a6eb5c 4226 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4227 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4228 ;
bc732f1d 4229 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4230 zonelist->_zonerefs[j].zone = NULL;
4231 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4232}
4233
523b9458
CL
4234/*
4235 * Build gfp_thisnode zonelists
4236 */
4237static void build_thisnode_zonelists(pg_data_t *pgdat)
4238{
523b9458
CL
4239 int j;
4240 struct zonelist *zonelist;
4241
54a6eb5c 4242 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4243 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4244 zonelist->_zonerefs[j].zone = NULL;
4245 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4246}
4247
f0c0b2b8
KH
4248/*
4249 * Build zonelists ordered by zone and nodes within zones.
4250 * This results in conserving DMA zone[s] until all Normal memory is
4251 * exhausted, but results in overflowing to remote node while memory
4252 * may still exist in local DMA zone.
4253 */
4254static int node_order[MAX_NUMNODES];
4255
4256static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4257{
f0c0b2b8
KH
4258 int pos, j, node;
4259 int zone_type; /* needs to be signed */
4260 struct zone *z;
4261 struct zonelist *zonelist;
4262
54a6eb5c
MG
4263 zonelist = &pgdat->node_zonelists[0];
4264 pos = 0;
4265 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4266 for (j = 0; j < nr_nodes; j++) {
4267 node = node_order[j];
4268 z = &NODE_DATA(node)->node_zones[zone_type];
4269 if (populated_zone(z)) {
dd1a239f
MG
4270 zoneref_set_zone(z,
4271 &zonelist->_zonerefs[pos++]);
54a6eb5c 4272 check_highest_zone(zone_type);
f0c0b2b8
KH
4273 }
4274 }
f0c0b2b8 4275 }
dd1a239f
MG
4276 zonelist->_zonerefs[pos].zone = NULL;
4277 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4278}
4279
3193913c
MG
4280#if defined(CONFIG_64BIT)
4281/*
4282 * Devices that require DMA32/DMA are relatively rare and do not justify a
4283 * penalty to every machine in case the specialised case applies. Default
4284 * to Node-ordering on 64-bit NUMA machines
4285 */
4286static int default_zonelist_order(void)
4287{
4288 return ZONELIST_ORDER_NODE;
4289}
4290#else
4291/*
4292 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4293 * by the kernel. If processes running on node 0 deplete the low memory zone
4294 * then reclaim will occur more frequency increasing stalls and potentially
4295 * be easier to OOM if a large percentage of the zone is under writeback or
4296 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4297 * Hence, default to zone ordering on 32-bit.
4298 */
f0c0b2b8
KH
4299static int default_zonelist_order(void)
4300{
f0c0b2b8
KH
4301 return ZONELIST_ORDER_ZONE;
4302}
3193913c 4303#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4304
4305static void set_zonelist_order(void)
4306{
4307 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4308 current_zonelist_order = default_zonelist_order();
4309 else
4310 current_zonelist_order = user_zonelist_order;
4311}
4312
4313static void build_zonelists(pg_data_t *pgdat)
4314{
c00eb15a 4315 int i, node, load;
1da177e4 4316 nodemask_t used_mask;
f0c0b2b8
KH
4317 int local_node, prev_node;
4318 struct zonelist *zonelist;
d00181b9 4319 unsigned int order = current_zonelist_order;
1da177e4
LT
4320
4321 /* initialize zonelists */
523b9458 4322 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4323 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4324 zonelist->_zonerefs[0].zone = NULL;
4325 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4326 }
4327
4328 /* NUMA-aware ordering of nodes */
4329 local_node = pgdat->node_id;
62bc62a8 4330 load = nr_online_nodes;
1da177e4
LT
4331 prev_node = local_node;
4332 nodes_clear(used_mask);
f0c0b2b8 4333
f0c0b2b8 4334 memset(node_order, 0, sizeof(node_order));
c00eb15a 4335 i = 0;
f0c0b2b8 4336
1da177e4
LT
4337 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4338 /*
4339 * We don't want to pressure a particular node.
4340 * So adding penalty to the first node in same
4341 * distance group to make it round-robin.
4342 */
957f822a
DR
4343 if (node_distance(local_node, node) !=
4344 node_distance(local_node, prev_node))
f0c0b2b8
KH
4345 node_load[node] = load;
4346
1da177e4
LT
4347 prev_node = node;
4348 load--;
f0c0b2b8
KH
4349 if (order == ZONELIST_ORDER_NODE)
4350 build_zonelists_in_node_order(pgdat, node);
4351 else
c00eb15a 4352 node_order[i++] = node; /* remember order */
f0c0b2b8 4353 }
1da177e4 4354
f0c0b2b8
KH
4355 if (order == ZONELIST_ORDER_ZONE) {
4356 /* calculate node order -- i.e., DMA last! */
c00eb15a 4357 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4358 }
523b9458
CL
4359
4360 build_thisnode_zonelists(pgdat);
1da177e4
LT
4361}
4362
7aac7898
LS
4363#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4364/*
4365 * Return node id of node used for "local" allocations.
4366 * I.e., first node id of first zone in arg node's generic zonelist.
4367 * Used for initializing percpu 'numa_mem', which is used primarily
4368 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4369 */
4370int local_memory_node(int node)
4371{
4372 struct zone *zone;
4373
4374 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4375 gfp_zone(GFP_KERNEL),
4376 NULL,
4377 &zone);
4378 return zone->node;
4379}
4380#endif
f0c0b2b8 4381
1da177e4
LT
4382#else /* CONFIG_NUMA */
4383
f0c0b2b8
KH
4384static void set_zonelist_order(void)
4385{
4386 current_zonelist_order = ZONELIST_ORDER_ZONE;
4387}
4388
4389static void build_zonelists(pg_data_t *pgdat)
1da177e4 4390{
19655d34 4391 int node, local_node;
54a6eb5c
MG
4392 enum zone_type j;
4393 struct zonelist *zonelist;
1da177e4
LT
4394
4395 local_node = pgdat->node_id;
1da177e4 4396
54a6eb5c 4397 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4398 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4399
54a6eb5c
MG
4400 /*
4401 * Now we build the zonelist so that it contains the zones
4402 * of all the other nodes.
4403 * We don't want to pressure a particular node, so when
4404 * building the zones for node N, we make sure that the
4405 * zones coming right after the local ones are those from
4406 * node N+1 (modulo N)
4407 */
4408 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4409 if (!node_online(node))
4410 continue;
bc732f1d 4411 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4412 }
54a6eb5c
MG
4413 for (node = 0; node < local_node; node++) {
4414 if (!node_online(node))
4415 continue;
bc732f1d 4416 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4417 }
4418
dd1a239f
MG
4419 zonelist->_zonerefs[j].zone = NULL;
4420 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4421}
4422
4423#endif /* CONFIG_NUMA */
4424
99dcc3e5
CL
4425/*
4426 * Boot pageset table. One per cpu which is going to be used for all
4427 * zones and all nodes. The parameters will be set in such a way
4428 * that an item put on a list will immediately be handed over to
4429 * the buddy list. This is safe since pageset manipulation is done
4430 * with interrupts disabled.
4431 *
4432 * The boot_pagesets must be kept even after bootup is complete for
4433 * unused processors and/or zones. They do play a role for bootstrapping
4434 * hotplugged processors.
4435 *
4436 * zoneinfo_show() and maybe other functions do
4437 * not check if the processor is online before following the pageset pointer.
4438 * Other parts of the kernel may not check if the zone is available.
4439 */
4440static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4441static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4442static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4443
4eaf3f64
HL
4444/*
4445 * Global mutex to protect against size modification of zonelists
4446 * as well as to serialize pageset setup for the new populated zone.
4447 */
4448DEFINE_MUTEX(zonelists_mutex);
4449
9b1a4d38 4450/* return values int ....just for stop_machine() */
4ed7e022 4451static int __build_all_zonelists(void *data)
1da177e4 4452{
6811378e 4453 int nid;
99dcc3e5 4454 int cpu;
9adb62a5 4455 pg_data_t *self = data;
9276b1bc 4456
7f9cfb31
BL
4457#ifdef CONFIG_NUMA
4458 memset(node_load, 0, sizeof(node_load));
4459#endif
9adb62a5
JL
4460
4461 if (self && !node_online(self->node_id)) {
4462 build_zonelists(self);
9adb62a5
JL
4463 }
4464
9276b1bc 4465 for_each_online_node(nid) {
7ea1530a
CL
4466 pg_data_t *pgdat = NODE_DATA(nid);
4467
4468 build_zonelists(pgdat);
9276b1bc 4469 }
99dcc3e5
CL
4470
4471 /*
4472 * Initialize the boot_pagesets that are going to be used
4473 * for bootstrapping processors. The real pagesets for
4474 * each zone will be allocated later when the per cpu
4475 * allocator is available.
4476 *
4477 * boot_pagesets are used also for bootstrapping offline
4478 * cpus if the system is already booted because the pagesets
4479 * are needed to initialize allocators on a specific cpu too.
4480 * F.e. the percpu allocator needs the page allocator which
4481 * needs the percpu allocator in order to allocate its pagesets
4482 * (a chicken-egg dilemma).
4483 */
7aac7898 4484 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4485 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4486
7aac7898
LS
4487#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4488 /*
4489 * We now know the "local memory node" for each node--
4490 * i.e., the node of the first zone in the generic zonelist.
4491 * Set up numa_mem percpu variable for on-line cpus. During
4492 * boot, only the boot cpu should be on-line; we'll init the
4493 * secondary cpus' numa_mem as they come on-line. During
4494 * node/memory hotplug, we'll fixup all on-line cpus.
4495 */
4496 if (cpu_online(cpu))
4497 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4498#endif
4499 }
4500
6811378e
YG
4501 return 0;
4502}
4503
061f67bc
RV
4504static noinline void __init
4505build_all_zonelists_init(void)
4506{
4507 __build_all_zonelists(NULL);
4508 mminit_verify_zonelist();
4509 cpuset_init_current_mems_allowed();
4510}
4511
4eaf3f64
HL
4512/*
4513 * Called with zonelists_mutex held always
4514 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4515 *
4516 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4517 * [we're only called with non-NULL zone through __meminit paths] and
4518 * (2) call of __init annotated helper build_all_zonelists_init
4519 * [protected by SYSTEM_BOOTING].
4eaf3f64 4520 */
9adb62a5 4521void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4522{
f0c0b2b8
KH
4523 set_zonelist_order();
4524
6811378e 4525 if (system_state == SYSTEM_BOOTING) {
061f67bc 4526 build_all_zonelists_init();
6811378e 4527 } else {
e9959f0f 4528#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4529 if (zone)
4530 setup_zone_pageset(zone);
e9959f0f 4531#endif
dd1895e2
CS
4532 /* we have to stop all cpus to guarantee there is no user
4533 of zonelist */
9adb62a5 4534 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4535 /* cpuset refresh routine should be here */
4536 }
bd1e22b8 4537 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4538 /*
4539 * Disable grouping by mobility if the number of pages in the
4540 * system is too low to allow the mechanism to work. It would be
4541 * more accurate, but expensive to check per-zone. This check is
4542 * made on memory-hotadd so a system can start with mobility
4543 * disabled and enable it later
4544 */
d9c23400 4545 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4546 page_group_by_mobility_disabled = 1;
4547 else
4548 page_group_by_mobility_disabled = 0;
4549
f88dfff5 4550 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4551 "Total pages: %ld\n",
62bc62a8 4552 nr_online_nodes,
f0c0b2b8 4553 zonelist_order_name[current_zonelist_order],
9ef9acb0 4554 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4555 vm_total_pages);
4556#ifdef CONFIG_NUMA
f88dfff5 4557 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4558#endif
1da177e4
LT
4559}
4560
4561/*
4562 * Helper functions to size the waitqueue hash table.
4563 * Essentially these want to choose hash table sizes sufficiently
4564 * large so that collisions trying to wait on pages are rare.
4565 * But in fact, the number of active page waitqueues on typical
4566 * systems is ridiculously low, less than 200. So this is even
4567 * conservative, even though it seems large.
4568 *
4569 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4570 * waitqueues, i.e. the size of the waitq table given the number of pages.
4571 */
4572#define PAGES_PER_WAITQUEUE 256
4573
cca448fe 4574#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4575static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4576{
4577 unsigned long size = 1;
4578
4579 pages /= PAGES_PER_WAITQUEUE;
4580
4581 while (size < pages)
4582 size <<= 1;
4583
4584 /*
4585 * Once we have dozens or even hundreds of threads sleeping
4586 * on IO we've got bigger problems than wait queue collision.
4587 * Limit the size of the wait table to a reasonable size.
4588 */
4589 size = min(size, 4096UL);
4590
4591 return max(size, 4UL);
4592}
cca448fe
YG
4593#else
4594/*
4595 * A zone's size might be changed by hot-add, so it is not possible to determine
4596 * a suitable size for its wait_table. So we use the maximum size now.
4597 *
4598 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4599 *
4600 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4601 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4602 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4603 *
4604 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4605 * or more by the traditional way. (See above). It equals:
4606 *
4607 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4608 * ia64(16K page size) : = ( 8G + 4M)byte.
4609 * powerpc (64K page size) : = (32G +16M)byte.
4610 */
4611static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4612{
4613 return 4096UL;
4614}
4615#endif
1da177e4
LT
4616
4617/*
4618 * This is an integer logarithm so that shifts can be used later
4619 * to extract the more random high bits from the multiplicative
4620 * hash function before the remainder is taken.
4621 */
4622static inline unsigned long wait_table_bits(unsigned long size)
4623{
4624 return ffz(~size);
4625}
4626
1da177e4
LT
4627/*
4628 * Initially all pages are reserved - free ones are freed
4629 * up by free_all_bootmem() once the early boot process is
4630 * done. Non-atomic initialization, single-pass.
4631 */
c09b4240 4632void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4633 unsigned long start_pfn, enum memmap_context context)
1da177e4 4634{
4b94ffdc 4635 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4636 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4637 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4638 unsigned long pfn;
3a80a7fa 4639 unsigned long nr_initialised = 0;
342332e6
TI
4640#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4641 struct memblock_region *r = NULL, *tmp;
4642#endif
1da177e4 4643
22b31eec
HD
4644 if (highest_memmap_pfn < end_pfn - 1)
4645 highest_memmap_pfn = end_pfn - 1;
4646
4b94ffdc
DW
4647 /*
4648 * Honor reservation requested by the driver for this ZONE_DEVICE
4649 * memory
4650 */
4651 if (altmap && start_pfn == altmap->base_pfn)
4652 start_pfn += altmap->reserve;
4653
cbe8dd4a 4654 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4655 /*
b72d0ffb
AM
4656 * There can be holes in boot-time mem_map[]s handed to this
4657 * function. They do not exist on hotplugged memory.
a2f3aa02 4658 */
b72d0ffb
AM
4659 if (context != MEMMAP_EARLY)
4660 goto not_early;
4661
4662 if (!early_pfn_valid(pfn))
4663 continue;
4664 if (!early_pfn_in_nid(pfn, nid))
4665 continue;
4666 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4667 break;
342332e6
TI
4668
4669#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4670 /*
4671 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4672 * from zone_movable_pfn[nid] to end of each node should be
4673 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4674 */
4675 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4676 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4677 continue;
342332e6 4678
b72d0ffb
AM
4679 /*
4680 * Check given memblock attribute by firmware which can affect
4681 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4682 * mirrored, it's an overlapped memmap init. skip it.
4683 */
4684 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4685 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4686 for_each_memblock(memory, tmp)
4687 if (pfn < memblock_region_memory_end_pfn(tmp))
4688 break;
4689 r = tmp;
4690 }
4691 if (pfn >= memblock_region_memory_base_pfn(r) &&
4692 memblock_is_mirror(r)) {
4693 /* already initialized as NORMAL */
4694 pfn = memblock_region_memory_end_pfn(r);
4695 continue;
342332e6 4696 }
a2f3aa02 4697 }
b72d0ffb 4698#endif
ac5d2539 4699
b72d0ffb 4700not_early:
ac5d2539
MG
4701 /*
4702 * Mark the block movable so that blocks are reserved for
4703 * movable at startup. This will force kernel allocations
4704 * to reserve their blocks rather than leaking throughout
4705 * the address space during boot when many long-lived
974a786e 4706 * kernel allocations are made.
ac5d2539
MG
4707 *
4708 * bitmap is created for zone's valid pfn range. but memmap
4709 * can be created for invalid pages (for alignment)
4710 * check here not to call set_pageblock_migratetype() against
4711 * pfn out of zone.
4712 */
4713 if (!(pfn & (pageblock_nr_pages - 1))) {
4714 struct page *page = pfn_to_page(pfn);
4715
4716 __init_single_page(page, pfn, zone, nid);
4717 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4718 } else {
4719 __init_single_pfn(pfn, zone, nid);
4720 }
1da177e4
LT
4721 }
4722}
4723
1e548deb 4724static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4725{
7aeb09f9 4726 unsigned int order, t;
b2a0ac88
MG
4727 for_each_migratetype_order(order, t) {
4728 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4729 zone->free_area[order].nr_free = 0;
4730 }
4731}
4732
4733#ifndef __HAVE_ARCH_MEMMAP_INIT
4734#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4735 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4736#endif
4737
7cd2b0a3 4738static int zone_batchsize(struct zone *zone)
e7c8d5c9 4739{
3a6be87f 4740#ifdef CONFIG_MMU
e7c8d5c9
CL
4741 int batch;
4742
4743 /*
4744 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4745 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4746 *
4747 * OK, so we don't know how big the cache is. So guess.
4748 */
b40da049 4749 batch = zone->managed_pages / 1024;
ba56e91c
SR
4750 if (batch * PAGE_SIZE > 512 * 1024)
4751 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4752 batch /= 4; /* We effectively *= 4 below */
4753 if (batch < 1)
4754 batch = 1;
4755
4756 /*
0ceaacc9
NP
4757 * Clamp the batch to a 2^n - 1 value. Having a power
4758 * of 2 value was found to be more likely to have
4759 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4760 *
0ceaacc9
NP
4761 * For example if 2 tasks are alternately allocating
4762 * batches of pages, one task can end up with a lot
4763 * of pages of one half of the possible page colors
4764 * and the other with pages of the other colors.
e7c8d5c9 4765 */
9155203a 4766 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4767
e7c8d5c9 4768 return batch;
3a6be87f
DH
4769
4770#else
4771 /* The deferral and batching of frees should be suppressed under NOMMU
4772 * conditions.
4773 *
4774 * The problem is that NOMMU needs to be able to allocate large chunks
4775 * of contiguous memory as there's no hardware page translation to
4776 * assemble apparent contiguous memory from discontiguous pages.
4777 *
4778 * Queueing large contiguous runs of pages for batching, however,
4779 * causes the pages to actually be freed in smaller chunks. As there
4780 * can be a significant delay between the individual batches being
4781 * recycled, this leads to the once large chunks of space being
4782 * fragmented and becoming unavailable for high-order allocations.
4783 */
4784 return 0;
4785#endif
e7c8d5c9
CL
4786}
4787
8d7a8fa9
CS
4788/*
4789 * pcp->high and pcp->batch values are related and dependent on one another:
4790 * ->batch must never be higher then ->high.
4791 * The following function updates them in a safe manner without read side
4792 * locking.
4793 *
4794 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4795 * those fields changing asynchronously (acording the the above rule).
4796 *
4797 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4798 * outside of boot time (or some other assurance that no concurrent updaters
4799 * exist).
4800 */
4801static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4802 unsigned long batch)
4803{
4804 /* start with a fail safe value for batch */
4805 pcp->batch = 1;
4806 smp_wmb();
4807
4808 /* Update high, then batch, in order */
4809 pcp->high = high;
4810 smp_wmb();
4811
4812 pcp->batch = batch;
4813}
4814
3664033c 4815/* a companion to pageset_set_high() */
4008bab7
CS
4816static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4817{
8d7a8fa9 4818 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4819}
4820
88c90dbc 4821static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4822{
4823 struct per_cpu_pages *pcp;
5f8dcc21 4824 int migratetype;
2caaad41 4825
1c6fe946
MD
4826 memset(p, 0, sizeof(*p));
4827
3dfa5721 4828 pcp = &p->pcp;
2caaad41 4829 pcp->count = 0;
5f8dcc21
MG
4830 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4831 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4832}
4833
88c90dbc
CS
4834static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4835{
4836 pageset_init(p);
4837 pageset_set_batch(p, batch);
4838}
4839
8ad4b1fb 4840/*
3664033c 4841 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4842 * to the value high for the pageset p.
4843 */
3664033c 4844static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4845 unsigned long high)
4846{
8d7a8fa9
CS
4847 unsigned long batch = max(1UL, high / 4);
4848 if ((high / 4) > (PAGE_SHIFT * 8))
4849 batch = PAGE_SHIFT * 8;
8ad4b1fb 4850
8d7a8fa9 4851 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4852}
4853
7cd2b0a3
DR
4854static void pageset_set_high_and_batch(struct zone *zone,
4855 struct per_cpu_pageset *pcp)
56cef2b8 4856{
56cef2b8 4857 if (percpu_pagelist_fraction)
3664033c 4858 pageset_set_high(pcp,
56cef2b8
CS
4859 (zone->managed_pages /
4860 percpu_pagelist_fraction));
4861 else
4862 pageset_set_batch(pcp, zone_batchsize(zone));
4863}
4864
169f6c19
CS
4865static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4866{
4867 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4868
4869 pageset_init(pcp);
4870 pageset_set_high_and_batch(zone, pcp);
4871}
4872
4ed7e022 4873static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4874{
4875 int cpu;
319774e2 4876 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4877 for_each_possible_cpu(cpu)
4878 zone_pageset_init(zone, cpu);
319774e2
WF
4879}
4880
2caaad41 4881/*
99dcc3e5
CL
4882 * Allocate per cpu pagesets and initialize them.
4883 * Before this call only boot pagesets were available.
e7c8d5c9 4884 */
99dcc3e5 4885void __init setup_per_cpu_pageset(void)
e7c8d5c9 4886{
99dcc3e5 4887 struct zone *zone;
e7c8d5c9 4888
319774e2
WF
4889 for_each_populated_zone(zone)
4890 setup_zone_pageset(zone);
e7c8d5c9
CL
4891}
4892
577a32f6 4893static noinline __init_refok
cca448fe 4894int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4895{
4896 int i;
cca448fe 4897 size_t alloc_size;
ed8ece2e
DH
4898
4899 /*
4900 * The per-page waitqueue mechanism uses hashed waitqueues
4901 * per zone.
4902 */
02b694de
YG
4903 zone->wait_table_hash_nr_entries =
4904 wait_table_hash_nr_entries(zone_size_pages);
4905 zone->wait_table_bits =
4906 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4907 alloc_size = zone->wait_table_hash_nr_entries
4908 * sizeof(wait_queue_head_t);
4909
cd94b9db 4910 if (!slab_is_available()) {
cca448fe 4911 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4912 memblock_virt_alloc_node_nopanic(
4913 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4914 } else {
4915 /*
4916 * This case means that a zone whose size was 0 gets new memory
4917 * via memory hot-add.
4918 * But it may be the case that a new node was hot-added. In
4919 * this case vmalloc() will not be able to use this new node's
4920 * memory - this wait_table must be initialized to use this new
4921 * node itself as well.
4922 * To use this new node's memory, further consideration will be
4923 * necessary.
4924 */
8691f3a7 4925 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4926 }
4927 if (!zone->wait_table)
4928 return -ENOMEM;
ed8ece2e 4929
b8af2941 4930 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4931 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4932
4933 return 0;
ed8ece2e
DH
4934}
4935
c09b4240 4936static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4937{
99dcc3e5
CL
4938 /*
4939 * per cpu subsystem is not up at this point. The following code
4940 * relies on the ability of the linker to provide the
4941 * offset of a (static) per cpu variable into the per cpu area.
4942 */
4943 zone->pageset = &boot_pageset;
ed8ece2e 4944
b38a8725 4945 if (populated_zone(zone))
99dcc3e5
CL
4946 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4947 zone->name, zone->present_pages,
4948 zone_batchsize(zone));
ed8ece2e
DH
4949}
4950
4ed7e022 4951int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4952 unsigned long zone_start_pfn,
b171e409 4953 unsigned long size)
ed8ece2e
DH
4954{
4955 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4956 int ret;
4957 ret = zone_wait_table_init(zone, size);
4958 if (ret)
4959 return ret;
ed8ece2e
DH
4960 pgdat->nr_zones = zone_idx(zone) + 1;
4961
ed8ece2e
DH
4962 zone->zone_start_pfn = zone_start_pfn;
4963
708614e6
MG
4964 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4965 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4966 pgdat->node_id,
4967 (unsigned long)zone_idx(zone),
4968 zone_start_pfn, (zone_start_pfn + size));
4969
1e548deb 4970 zone_init_free_lists(zone);
718127cc
YG
4971
4972 return 0;
ed8ece2e
DH
4973}
4974
0ee332c1 4975#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4976#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4977
c713216d
MG
4978/*
4979 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4980 */
8a942fde
MG
4981int __meminit __early_pfn_to_nid(unsigned long pfn,
4982 struct mminit_pfnnid_cache *state)
c713216d 4983{
c13291a5 4984 unsigned long start_pfn, end_pfn;
e76b63f8 4985 int nid;
7c243c71 4986
8a942fde
MG
4987 if (state->last_start <= pfn && pfn < state->last_end)
4988 return state->last_nid;
c713216d 4989
e76b63f8
YL
4990 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4991 if (nid != -1) {
8a942fde
MG
4992 state->last_start = start_pfn;
4993 state->last_end = end_pfn;
4994 state->last_nid = nid;
e76b63f8
YL
4995 }
4996
4997 return nid;
c713216d
MG
4998}
4999#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5000
c713216d 5001/**
6782832e 5002 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5003 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5004 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5005 *
7d018176
ZZ
5006 * If an architecture guarantees that all ranges registered contain no holes
5007 * and may be freed, this this function may be used instead of calling
5008 * memblock_free_early_nid() manually.
c713216d 5009 */
c13291a5 5010void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5011{
c13291a5
TH
5012 unsigned long start_pfn, end_pfn;
5013 int i, this_nid;
edbe7d23 5014
c13291a5
TH
5015 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5016 start_pfn = min(start_pfn, max_low_pfn);
5017 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5018
c13291a5 5019 if (start_pfn < end_pfn)
6782832e
SS
5020 memblock_free_early_nid(PFN_PHYS(start_pfn),
5021 (end_pfn - start_pfn) << PAGE_SHIFT,
5022 this_nid);
edbe7d23 5023 }
edbe7d23 5024}
edbe7d23 5025
c713216d
MG
5026/**
5027 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5028 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5029 *
7d018176
ZZ
5030 * If an architecture guarantees that all ranges registered contain no holes and may
5031 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5032 */
5033void __init sparse_memory_present_with_active_regions(int nid)
5034{
c13291a5
TH
5035 unsigned long start_pfn, end_pfn;
5036 int i, this_nid;
c713216d 5037
c13291a5
TH
5038 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5039 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5040}
5041
5042/**
5043 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5044 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5045 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5046 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5047 *
5048 * It returns the start and end page frame of a node based on information
7d018176 5049 * provided by memblock_set_node(). If called for a node
c713216d 5050 * with no available memory, a warning is printed and the start and end
88ca3b94 5051 * PFNs will be 0.
c713216d 5052 */
a3142c8e 5053void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5054 unsigned long *start_pfn, unsigned long *end_pfn)
5055{
c13291a5 5056 unsigned long this_start_pfn, this_end_pfn;
c713216d 5057 int i;
c13291a5 5058
c713216d
MG
5059 *start_pfn = -1UL;
5060 *end_pfn = 0;
5061
c13291a5
TH
5062 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5063 *start_pfn = min(*start_pfn, this_start_pfn);
5064 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5065 }
5066
633c0666 5067 if (*start_pfn == -1UL)
c713216d 5068 *start_pfn = 0;
c713216d
MG
5069}
5070
2a1e274a
MG
5071/*
5072 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5073 * assumption is made that zones within a node are ordered in monotonic
5074 * increasing memory addresses so that the "highest" populated zone is used
5075 */
b69a7288 5076static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5077{
5078 int zone_index;
5079 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5080 if (zone_index == ZONE_MOVABLE)
5081 continue;
5082
5083 if (arch_zone_highest_possible_pfn[zone_index] >
5084 arch_zone_lowest_possible_pfn[zone_index])
5085 break;
5086 }
5087
5088 VM_BUG_ON(zone_index == -1);
5089 movable_zone = zone_index;
5090}
5091
5092/*
5093 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5094 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5095 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5096 * in each node depending on the size of each node and how evenly kernelcore
5097 * is distributed. This helper function adjusts the zone ranges
5098 * provided by the architecture for a given node by using the end of the
5099 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5100 * zones within a node are in order of monotonic increases memory addresses
5101 */
b69a7288 5102static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5103 unsigned long zone_type,
5104 unsigned long node_start_pfn,
5105 unsigned long node_end_pfn,
5106 unsigned long *zone_start_pfn,
5107 unsigned long *zone_end_pfn)
5108{
5109 /* Only adjust if ZONE_MOVABLE is on this node */
5110 if (zone_movable_pfn[nid]) {
5111 /* Size ZONE_MOVABLE */
5112 if (zone_type == ZONE_MOVABLE) {
5113 *zone_start_pfn = zone_movable_pfn[nid];
5114 *zone_end_pfn = min(node_end_pfn,
5115 arch_zone_highest_possible_pfn[movable_zone]);
5116
2a1e274a
MG
5117 /* Check if this whole range is within ZONE_MOVABLE */
5118 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5119 *zone_start_pfn = *zone_end_pfn;
5120 }
5121}
5122
c713216d
MG
5123/*
5124 * Return the number of pages a zone spans in a node, including holes
5125 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5126 */
6ea6e688 5127static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5128 unsigned long zone_type,
7960aedd
ZY
5129 unsigned long node_start_pfn,
5130 unsigned long node_end_pfn,
d91749c1
TI
5131 unsigned long *zone_start_pfn,
5132 unsigned long *zone_end_pfn,
c713216d
MG
5133 unsigned long *ignored)
5134{
b5685e92 5135 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5136 if (!node_start_pfn && !node_end_pfn)
5137 return 0;
5138
7960aedd 5139 /* Get the start and end of the zone */
d91749c1
TI
5140 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5141 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5142 adjust_zone_range_for_zone_movable(nid, zone_type,
5143 node_start_pfn, node_end_pfn,
d91749c1 5144 zone_start_pfn, zone_end_pfn);
c713216d
MG
5145
5146 /* Check that this node has pages within the zone's required range */
d91749c1 5147 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5148 return 0;
5149
5150 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5151 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5152 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5153
5154 /* Return the spanned pages */
d91749c1 5155 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5156}
5157
5158/*
5159 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5160 * then all holes in the requested range will be accounted for.
c713216d 5161 */
32996250 5162unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5163 unsigned long range_start_pfn,
5164 unsigned long range_end_pfn)
5165{
96e907d1
TH
5166 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5167 unsigned long start_pfn, end_pfn;
5168 int i;
c713216d 5169
96e907d1
TH
5170 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5171 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5172 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5173 nr_absent -= end_pfn - start_pfn;
c713216d 5174 }
96e907d1 5175 return nr_absent;
c713216d
MG
5176}
5177
5178/**
5179 * absent_pages_in_range - Return number of page frames in holes within a range
5180 * @start_pfn: The start PFN to start searching for holes
5181 * @end_pfn: The end PFN to stop searching for holes
5182 *
88ca3b94 5183 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5184 */
5185unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5186 unsigned long end_pfn)
5187{
5188 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5189}
5190
5191/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5192static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5193 unsigned long zone_type,
7960aedd
ZY
5194 unsigned long node_start_pfn,
5195 unsigned long node_end_pfn,
c713216d
MG
5196 unsigned long *ignored)
5197{
96e907d1
TH
5198 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5199 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5200 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5201 unsigned long nr_absent;
9c7cd687 5202
b5685e92 5203 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5204 if (!node_start_pfn && !node_end_pfn)
5205 return 0;
5206
96e907d1
TH
5207 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5208 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5209
2a1e274a
MG
5210 adjust_zone_range_for_zone_movable(nid, zone_type,
5211 node_start_pfn, node_end_pfn,
5212 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5213 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5214
5215 /*
5216 * ZONE_MOVABLE handling.
5217 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5218 * and vice versa.
5219 */
5220 if (zone_movable_pfn[nid]) {
5221 if (mirrored_kernelcore) {
5222 unsigned long start_pfn, end_pfn;
5223 struct memblock_region *r;
5224
5225 for_each_memblock(memory, r) {
5226 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5227 zone_start_pfn, zone_end_pfn);
5228 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5229 zone_start_pfn, zone_end_pfn);
5230
5231 if (zone_type == ZONE_MOVABLE &&
5232 memblock_is_mirror(r))
5233 nr_absent += end_pfn - start_pfn;
5234
5235 if (zone_type == ZONE_NORMAL &&
5236 !memblock_is_mirror(r))
5237 nr_absent += end_pfn - start_pfn;
5238 }
5239 } else {
5240 if (zone_type == ZONE_NORMAL)
5241 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5242 }
5243 }
5244
5245 return nr_absent;
c713216d 5246}
0e0b864e 5247
0ee332c1 5248#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5249static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5250 unsigned long zone_type,
7960aedd
ZY
5251 unsigned long node_start_pfn,
5252 unsigned long node_end_pfn,
d91749c1
TI
5253 unsigned long *zone_start_pfn,
5254 unsigned long *zone_end_pfn,
c713216d
MG
5255 unsigned long *zones_size)
5256{
d91749c1
TI
5257 unsigned int zone;
5258
5259 *zone_start_pfn = node_start_pfn;
5260 for (zone = 0; zone < zone_type; zone++)
5261 *zone_start_pfn += zones_size[zone];
5262
5263 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5264
c713216d
MG
5265 return zones_size[zone_type];
5266}
5267
6ea6e688 5268static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5269 unsigned long zone_type,
7960aedd
ZY
5270 unsigned long node_start_pfn,
5271 unsigned long node_end_pfn,
c713216d
MG
5272 unsigned long *zholes_size)
5273{
5274 if (!zholes_size)
5275 return 0;
5276
5277 return zholes_size[zone_type];
5278}
20e6926d 5279
0ee332c1 5280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5281
a3142c8e 5282static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5283 unsigned long node_start_pfn,
5284 unsigned long node_end_pfn,
5285 unsigned long *zones_size,
5286 unsigned long *zholes_size)
c713216d 5287{
febd5949 5288 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5289 enum zone_type i;
5290
febd5949
GZ
5291 for (i = 0; i < MAX_NR_ZONES; i++) {
5292 struct zone *zone = pgdat->node_zones + i;
d91749c1 5293 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5294 unsigned long size, real_size;
c713216d 5295
febd5949
GZ
5296 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5297 node_start_pfn,
5298 node_end_pfn,
d91749c1
TI
5299 &zone_start_pfn,
5300 &zone_end_pfn,
febd5949
GZ
5301 zones_size);
5302 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5303 node_start_pfn, node_end_pfn,
5304 zholes_size);
d91749c1
TI
5305 if (size)
5306 zone->zone_start_pfn = zone_start_pfn;
5307 else
5308 zone->zone_start_pfn = 0;
febd5949
GZ
5309 zone->spanned_pages = size;
5310 zone->present_pages = real_size;
5311
5312 totalpages += size;
5313 realtotalpages += real_size;
5314 }
5315
5316 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5317 pgdat->node_present_pages = realtotalpages;
5318 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5319 realtotalpages);
5320}
5321
835c134e
MG
5322#ifndef CONFIG_SPARSEMEM
5323/*
5324 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5325 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5326 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5327 * round what is now in bits to nearest long in bits, then return it in
5328 * bytes.
5329 */
7c45512d 5330static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5331{
5332 unsigned long usemapsize;
5333
7c45512d 5334 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5335 usemapsize = roundup(zonesize, pageblock_nr_pages);
5336 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5337 usemapsize *= NR_PAGEBLOCK_BITS;
5338 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5339
5340 return usemapsize / 8;
5341}
5342
5343static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5344 struct zone *zone,
5345 unsigned long zone_start_pfn,
5346 unsigned long zonesize)
835c134e 5347{
7c45512d 5348 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5349 zone->pageblock_flags = NULL;
58a01a45 5350 if (usemapsize)
6782832e
SS
5351 zone->pageblock_flags =
5352 memblock_virt_alloc_node_nopanic(usemapsize,
5353 pgdat->node_id);
835c134e
MG
5354}
5355#else
7c45512d
LT
5356static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5357 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5358#endif /* CONFIG_SPARSEMEM */
5359
d9c23400 5360#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5361
d9c23400 5362/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5363void __paginginit set_pageblock_order(void)
d9c23400 5364{
955c1cd7
AM
5365 unsigned int order;
5366
d9c23400
MG
5367 /* Check that pageblock_nr_pages has not already been setup */
5368 if (pageblock_order)
5369 return;
5370
955c1cd7
AM
5371 if (HPAGE_SHIFT > PAGE_SHIFT)
5372 order = HUGETLB_PAGE_ORDER;
5373 else
5374 order = MAX_ORDER - 1;
5375
d9c23400
MG
5376 /*
5377 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5378 * This value may be variable depending on boot parameters on IA64 and
5379 * powerpc.
d9c23400
MG
5380 */
5381 pageblock_order = order;
5382}
5383#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5384
ba72cb8c
MG
5385/*
5386 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5387 * is unused as pageblock_order is set at compile-time. See
5388 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5389 * the kernel config
ba72cb8c 5390 */
15ca220e 5391void __paginginit set_pageblock_order(void)
ba72cb8c 5392{
ba72cb8c 5393}
d9c23400
MG
5394
5395#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5396
01cefaef
JL
5397static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5398 unsigned long present_pages)
5399{
5400 unsigned long pages = spanned_pages;
5401
5402 /*
5403 * Provide a more accurate estimation if there are holes within
5404 * the zone and SPARSEMEM is in use. If there are holes within the
5405 * zone, each populated memory region may cost us one or two extra
5406 * memmap pages due to alignment because memmap pages for each
5407 * populated regions may not naturally algined on page boundary.
5408 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5409 */
5410 if (spanned_pages > present_pages + (present_pages >> 4) &&
5411 IS_ENABLED(CONFIG_SPARSEMEM))
5412 pages = present_pages;
5413
5414 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5415}
5416
1da177e4
LT
5417/*
5418 * Set up the zone data structures:
5419 * - mark all pages reserved
5420 * - mark all memory queues empty
5421 * - clear the memory bitmaps
6527af5d
MK
5422 *
5423 * NOTE: pgdat should get zeroed by caller.
1da177e4 5424 */
7f3eb55b 5425static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5426{
2f1b6248 5427 enum zone_type j;
ed8ece2e 5428 int nid = pgdat->node_id;
718127cc 5429 int ret;
1da177e4 5430
208d54e5 5431 pgdat_resize_init(pgdat);
8177a420
AA
5432#ifdef CONFIG_NUMA_BALANCING
5433 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5434 pgdat->numabalancing_migrate_nr_pages = 0;
5435 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5436#endif
5437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5438 spin_lock_init(&pgdat->split_queue_lock);
5439 INIT_LIST_HEAD(&pgdat->split_queue);
5440 pgdat->split_queue_len = 0;
8177a420 5441#endif
1da177e4 5442 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5443 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5444#ifdef CONFIG_COMPACTION
5445 init_waitqueue_head(&pgdat->kcompactd_wait);
5446#endif
eefa864b 5447 pgdat_page_ext_init(pgdat);
5f63b720 5448
1da177e4
LT
5449 for (j = 0; j < MAX_NR_ZONES; j++) {
5450 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5451 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5452 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5453
febd5949
GZ
5454 size = zone->spanned_pages;
5455 realsize = freesize = zone->present_pages;
1da177e4 5456
0e0b864e 5457 /*
9feedc9d 5458 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5459 * is used by this zone for memmap. This affects the watermark
5460 * and per-cpu initialisations
5461 */
01cefaef 5462 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5463 if (!is_highmem_idx(j)) {
5464 if (freesize >= memmap_pages) {
5465 freesize -= memmap_pages;
5466 if (memmap_pages)
5467 printk(KERN_DEBUG
5468 " %s zone: %lu pages used for memmap\n",
5469 zone_names[j], memmap_pages);
5470 } else
5471 printk(KERN_WARNING
5472 " %s zone: %lu pages exceeds freesize %lu\n",
5473 zone_names[j], memmap_pages, freesize);
5474 }
0e0b864e 5475
6267276f 5476 /* Account for reserved pages */
9feedc9d
JL
5477 if (j == 0 && freesize > dma_reserve) {
5478 freesize -= dma_reserve;
d903ef9f 5479 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5480 zone_names[0], dma_reserve);
0e0b864e
MG
5481 }
5482
98d2b0eb 5483 if (!is_highmem_idx(j))
9feedc9d 5484 nr_kernel_pages += freesize;
01cefaef
JL
5485 /* Charge for highmem memmap if there are enough kernel pages */
5486 else if (nr_kernel_pages > memmap_pages * 2)
5487 nr_kernel_pages -= memmap_pages;
9feedc9d 5488 nr_all_pages += freesize;
1da177e4 5489
9feedc9d
JL
5490 /*
5491 * Set an approximate value for lowmem here, it will be adjusted
5492 * when the bootmem allocator frees pages into the buddy system.
5493 * And all highmem pages will be managed by the buddy system.
5494 */
5495 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5496#ifdef CONFIG_NUMA
d5f541ed 5497 zone->node = nid;
9feedc9d 5498 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5499 / 100;
9feedc9d 5500 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5501#endif
1da177e4
LT
5502 zone->name = zone_names[j];
5503 spin_lock_init(&zone->lock);
5504 spin_lock_init(&zone->lru_lock);
bdc8cb98 5505 zone_seqlock_init(zone);
1da177e4 5506 zone->zone_pgdat = pgdat;
ed8ece2e 5507 zone_pcp_init(zone);
81c0a2bb
JW
5508
5509 /* For bootup, initialized properly in watermark setup */
5510 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5511
bea8c150 5512 lruvec_init(&zone->lruvec);
1da177e4
LT
5513 if (!size)
5514 continue;
5515
955c1cd7 5516 set_pageblock_order();
7c45512d 5517 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5518 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5519 BUG_ON(ret);
76cdd58e 5520 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5521 }
5522}
5523
577a32f6 5524static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5525{
b0aeba74 5526 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5527 unsigned long __maybe_unused offset = 0;
5528
1da177e4
LT
5529 /* Skip empty nodes */
5530 if (!pgdat->node_spanned_pages)
5531 return;
5532
d41dee36 5533#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5534 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5535 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5536 /* ia64 gets its own node_mem_map, before this, without bootmem */
5537 if (!pgdat->node_mem_map) {
b0aeba74 5538 unsigned long size, end;
d41dee36
AW
5539 struct page *map;
5540
e984bb43
BP
5541 /*
5542 * The zone's endpoints aren't required to be MAX_ORDER
5543 * aligned but the node_mem_map endpoints must be in order
5544 * for the buddy allocator to function correctly.
5545 */
108bcc96 5546 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5547 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5548 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5549 map = alloc_remap(pgdat->node_id, size);
5550 if (!map)
6782832e
SS
5551 map = memblock_virt_alloc_node_nopanic(size,
5552 pgdat->node_id);
a1c34a3b 5553 pgdat->node_mem_map = map + offset;
1da177e4 5554 }
12d810c1 5555#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5556 /*
5557 * With no DISCONTIG, the global mem_map is just set as node 0's
5558 */
c713216d 5559 if (pgdat == NODE_DATA(0)) {
1da177e4 5560 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5561#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5562 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5563 mem_map -= offset;
0ee332c1 5564#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5565 }
1da177e4 5566#endif
d41dee36 5567#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5568}
5569
9109fb7b
JW
5570void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5571 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5572{
9109fb7b 5573 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5574 unsigned long start_pfn = 0;
5575 unsigned long end_pfn = 0;
9109fb7b 5576
88fdf75d 5577 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5578 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5579
3a80a7fa 5580 reset_deferred_meminit(pgdat);
1da177e4
LT
5581 pgdat->node_id = nid;
5582 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5583#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5584 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5585 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5586 (u64)start_pfn << PAGE_SHIFT,
5587 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5588#else
5589 start_pfn = node_start_pfn;
7960aedd
ZY
5590#endif
5591 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5592 zones_size, zholes_size);
1da177e4
LT
5593
5594 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5595#ifdef CONFIG_FLAT_NODE_MEM_MAP
5596 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5597 nid, (unsigned long)pgdat,
5598 (unsigned long)pgdat->node_mem_map);
5599#endif
1da177e4 5600
7f3eb55b 5601 free_area_init_core(pgdat);
1da177e4
LT
5602}
5603
0ee332c1 5604#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5605
5606#if MAX_NUMNODES > 1
5607/*
5608 * Figure out the number of possible node ids.
5609 */
f9872caf 5610void __init setup_nr_node_ids(void)
418508c1 5611{
904a9553 5612 unsigned int highest;
418508c1 5613
904a9553 5614 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5615 nr_node_ids = highest + 1;
5616}
418508c1
MS
5617#endif
5618
1e01979c
TH
5619/**
5620 * node_map_pfn_alignment - determine the maximum internode alignment
5621 *
5622 * This function should be called after node map is populated and sorted.
5623 * It calculates the maximum power of two alignment which can distinguish
5624 * all the nodes.
5625 *
5626 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5627 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5628 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5629 * shifted, 1GiB is enough and this function will indicate so.
5630 *
5631 * This is used to test whether pfn -> nid mapping of the chosen memory
5632 * model has fine enough granularity to avoid incorrect mapping for the
5633 * populated node map.
5634 *
5635 * Returns the determined alignment in pfn's. 0 if there is no alignment
5636 * requirement (single node).
5637 */
5638unsigned long __init node_map_pfn_alignment(void)
5639{
5640 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5641 unsigned long start, end, mask;
1e01979c 5642 int last_nid = -1;
c13291a5 5643 int i, nid;
1e01979c 5644
c13291a5 5645 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5646 if (!start || last_nid < 0 || last_nid == nid) {
5647 last_nid = nid;
5648 last_end = end;
5649 continue;
5650 }
5651
5652 /*
5653 * Start with a mask granular enough to pin-point to the
5654 * start pfn and tick off bits one-by-one until it becomes
5655 * too coarse to separate the current node from the last.
5656 */
5657 mask = ~((1 << __ffs(start)) - 1);
5658 while (mask && last_end <= (start & (mask << 1)))
5659 mask <<= 1;
5660
5661 /* accumulate all internode masks */
5662 accl_mask |= mask;
5663 }
5664
5665 /* convert mask to number of pages */
5666 return ~accl_mask + 1;
5667}
5668
a6af2bc3 5669/* Find the lowest pfn for a node */
b69a7288 5670static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5671{
a6af2bc3 5672 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5673 unsigned long start_pfn;
5674 int i;
1abbfb41 5675
c13291a5
TH
5676 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5677 min_pfn = min(min_pfn, start_pfn);
c713216d 5678
a6af2bc3
MG
5679 if (min_pfn == ULONG_MAX) {
5680 printk(KERN_WARNING
2bc0d261 5681 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5682 return 0;
5683 }
5684
5685 return min_pfn;
c713216d
MG
5686}
5687
5688/**
5689 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5690 *
5691 * It returns the minimum PFN based on information provided via
7d018176 5692 * memblock_set_node().
c713216d
MG
5693 */
5694unsigned long __init find_min_pfn_with_active_regions(void)
5695{
5696 return find_min_pfn_for_node(MAX_NUMNODES);
5697}
5698
37b07e41
LS
5699/*
5700 * early_calculate_totalpages()
5701 * Sum pages in active regions for movable zone.
4b0ef1fe 5702 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5703 */
484f51f8 5704static unsigned long __init early_calculate_totalpages(void)
7e63efef 5705{
7e63efef 5706 unsigned long totalpages = 0;
c13291a5
TH
5707 unsigned long start_pfn, end_pfn;
5708 int i, nid;
5709
5710 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5711 unsigned long pages = end_pfn - start_pfn;
7e63efef 5712
37b07e41
LS
5713 totalpages += pages;
5714 if (pages)
4b0ef1fe 5715 node_set_state(nid, N_MEMORY);
37b07e41 5716 }
b8af2941 5717 return totalpages;
7e63efef
MG
5718}
5719
2a1e274a
MG
5720/*
5721 * Find the PFN the Movable zone begins in each node. Kernel memory
5722 * is spread evenly between nodes as long as the nodes have enough
5723 * memory. When they don't, some nodes will have more kernelcore than
5724 * others
5725 */
b224ef85 5726static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5727{
5728 int i, nid;
5729 unsigned long usable_startpfn;
5730 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5731 /* save the state before borrow the nodemask */
4b0ef1fe 5732 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5733 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5734 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5735 struct memblock_region *r;
b2f3eebe
TC
5736
5737 /* Need to find movable_zone earlier when movable_node is specified. */
5738 find_usable_zone_for_movable();
5739
5740 /*
5741 * If movable_node is specified, ignore kernelcore and movablecore
5742 * options.
5743 */
5744 if (movable_node_is_enabled()) {
136199f0
EM
5745 for_each_memblock(memory, r) {
5746 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5747 continue;
5748
136199f0 5749 nid = r->nid;
b2f3eebe 5750
136199f0 5751 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5752 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5753 min(usable_startpfn, zone_movable_pfn[nid]) :
5754 usable_startpfn;
5755 }
5756
5757 goto out2;
5758 }
2a1e274a 5759
342332e6
TI
5760 /*
5761 * If kernelcore=mirror is specified, ignore movablecore option
5762 */
5763 if (mirrored_kernelcore) {
5764 bool mem_below_4gb_not_mirrored = false;
5765
5766 for_each_memblock(memory, r) {
5767 if (memblock_is_mirror(r))
5768 continue;
5769
5770 nid = r->nid;
5771
5772 usable_startpfn = memblock_region_memory_base_pfn(r);
5773
5774 if (usable_startpfn < 0x100000) {
5775 mem_below_4gb_not_mirrored = true;
5776 continue;
5777 }
5778
5779 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5780 min(usable_startpfn, zone_movable_pfn[nid]) :
5781 usable_startpfn;
5782 }
5783
5784 if (mem_below_4gb_not_mirrored)
5785 pr_warn("This configuration results in unmirrored kernel memory.");
5786
5787 goto out2;
5788 }
5789
7e63efef 5790 /*
b2f3eebe 5791 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5792 * kernelcore that corresponds so that memory usable for
5793 * any allocation type is evenly spread. If both kernelcore
5794 * and movablecore are specified, then the value of kernelcore
5795 * will be used for required_kernelcore if it's greater than
5796 * what movablecore would have allowed.
5797 */
5798 if (required_movablecore) {
7e63efef
MG
5799 unsigned long corepages;
5800
5801 /*
5802 * Round-up so that ZONE_MOVABLE is at least as large as what
5803 * was requested by the user
5804 */
5805 required_movablecore =
5806 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5807 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5808 corepages = totalpages - required_movablecore;
5809
5810 required_kernelcore = max(required_kernelcore, corepages);
5811 }
5812
bde304bd
XQ
5813 /*
5814 * If kernelcore was not specified or kernelcore size is larger
5815 * than totalpages, there is no ZONE_MOVABLE.
5816 */
5817 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5818 goto out;
2a1e274a
MG
5819
5820 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5821 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5822
5823restart:
5824 /* Spread kernelcore memory as evenly as possible throughout nodes */
5825 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5826 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5827 unsigned long start_pfn, end_pfn;
5828
2a1e274a
MG
5829 /*
5830 * Recalculate kernelcore_node if the division per node
5831 * now exceeds what is necessary to satisfy the requested
5832 * amount of memory for the kernel
5833 */
5834 if (required_kernelcore < kernelcore_node)
5835 kernelcore_node = required_kernelcore / usable_nodes;
5836
5837 /*
5838 * As the map is walked, we track how much memory is usable
5839 * by the kernel using kernelcore_remaining. When it is
5840 * 0, the rest of the node is usable by ZONE_MOVABLE
5841 */
5842 kernelcore_remaining = kernelcore_node;
5843
5844 /* Go through each range of PFNs within this node */
c13291a5 5845 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5846 unsigned long size_pages;
5847
c13291a5 5848 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5849 if (start_pfn >= end_pfn)
5850 continue;
5851
5852 /* Account for what is only usable for kernelcore */
5853 if (start_pfn < usable_startpfn) {
5854 unsigned long kernel_pages;
5855 kernel_pages = min(end_pfn, usable_startpfn)
5856 - start_pfn;
5857
5858 kernelcore_remaining -= min(kernel_pages,
5859 kernelcore_remaining);
5860 required_kernelcore -= min(kernel_pages,
5861 required_kernelcore);
5862
5863 /* Continue if range is now fully accounted */
5864 if (end_pfn <= usable_startpfn) {
5865
5866 /*
5867 * Push zone_movable_pfn to the end so
5868 * that if we have to rebalance
5869 * kernelcore across nodes, we will
5870 * not double account here
5871 */
5872 zone_movable_pfn[nid] = end_pfn;
5873 continue;
5874 }
5875 start_pfn = usable_startpfn;
5876 }
5877
5878 /*
5879 * The usable PFN range for ZONE_MOVABLE is from
5880 * start_pfn->end_pfn. Calculate size_pages as the
5881 * number of pages used as kernelcore
5882 */
5883 size_pages = end_pfn - start_pfn;
5884 if (size_pages > kernelcore_remaining)
5885 size_pages = kernelcore_remaining;
5886 zone_movable_pfn[nid] = start_pfn + size_pages;
5887
5888 /*
5889 * Some kernelcore has been met, update counts and
5890 * break if the kernelcore for this node has been
b8af2941 5891 * satisfied
2a1e274a
MG
5892 */
5893 required_kernelcore -= min(required_kernelcore,
5894 size_pages);
5895 kernelcore_remaining -= size_pages;
5896 if (!kernelcore_remaining)
5897 break;
5898 }
5899 }
5900
5901 /*
5902 * If there is still required_kernelcore, we do another pass with one
5903 * less node in the count. This will push zone_movable_pfn[nid] further
5904 * along on the nodes that still have memory until kernelcore is
b8af2941 5905 * satisfied
2a1e274a
MG
5906 */
5907 usable_nodes--;
5908 if (usable_nodes && required_kernelcore > usable_nodes)
5909 goto restart;
5910
b2f3eebe 5911out2:
2a1e274a
MG
5912 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5913 for (nid = 0; nid < MAX_NUMNODES; nid++)
5914 zone_movable_pfn[nid] =
5915 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5916
20e6926d 5917out:
66918dcd 5918 /* restore the node_state */
4b0ef1fe 5919 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5920}
5921
4b0ef1fe
LJ
5922/* Any regular or high memory on that node ? */
5923static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5924{
37b07e41
LS
5925 enum zone_type zone_type;
5926
4b0ef1fe
LJ
5927 if (N_MEMORY == N_NORMAL_MEMORY)
5928 return;
5929
5930 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5931 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5932 if (populated_zone(zone)) {
4b0ef1fe
LJ
5933 node_set_state(nid, N_HIGH_MEMORY);
5934 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5935 zone_type <= ZONE_NORMAL)
5936 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5937 break;
5938 }
37b07e41 5939 }
37b07e41
LS
5940}
5941
c713216d
MG
5942/**
5943 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5944 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5945 *
5946 * This will call free_area_init_node() for each active node in the system.
7d018176 5947 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5948 * zone in each node and their holes is calculated. If the maximum PFN
5949 * between two adjacent zones match, it is assumed that the zone is empty.
5950 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5951 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5952 * starts where the previous one ended. For example, ZONE_DMA32 starts
5953 * at arch_max_dma_pfn.
5954 */
5955void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5956{
c13291a5
TH
5957 unsigned long start_pfn, end_pfn;
5958 int i, nid;
a6af2bc3 5959
c713216d
MG
5960 /* Record where the zone boundaries are */
5961 memset(arch_zone_lowest_possible_pfn, 0,
5962 sizeof(arch_zone_lowest_possible_pfn));
5963 memset(arch_zone_highest_possible_pfn, 0,
5964 sizeof(arch_zone_highest_possible_pfn));
5965 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5966 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5967 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5968 if (i == ZONE_MOVABLE)
5969 continue;
c713216d
MG
5970 arch_zone_lowest_possible_pfn[i] =
5971 arch_zone_highest_possible_pfn[i-1];
5972 arch_zone_highest_possible_pfn[i] =
5973 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5974 }
2a1e274a
MG
5975 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5976 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5977
5978 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5979 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5980 find_zone_movable_pfns_for_nodes();
c713216d 5981
c713216d 5982 /* Print out the zone ranges */
f88dfff5 5983 pr_info("Zone ranges:\n");
2a1e274a
MG
5984 for (i = 0; i < MAX_NR_ZONES; i++) {
5985 if (i == ZONE_MOVABLE)
5986 continue;
f88dfff5 5987 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5988 if (arch_zone_lowest_possible_pfn[i] ==
5989 arch_zone_highest_possible_pfn[i])
f88dfff5 5990 pr_cont("empty\n");
72f0ba02 5991 else
8d29e18a
JG
5992 pr_cont("[mem %#018Lx-%#018Lx]\n",
5993 (u64)arch_zone_lowest_possible_pfn[i]
5994 << PAGE_SHIFT,
5995 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5996 << PAGE_SHIFT) - 1);
2a1e274a
MG
5997 }
5998
5999 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6000 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6001 for (i = 0; i < MAX_NUMNODES; i++) {
6002 if (zone_movable_pfn[i])
8d29e18a
JG
6003 pr_info(" Node %d: %#018Lx\n", i,
6004 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6005 }
c713216d 6006
f2d52fe5 6007 /* Print out the early node map */
f88dfff5 6008 pr_info("Early memory node ranges\n");
c13291a5 6009 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6010 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6011 (u64)start_pfn << PAGE_SHIFT,
6012 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6013
6014 /* Initialise every node */
708614e6 6015 mminit_verify_pageflags_layout();
8ef82866 6016 setup_nr_node_ids();
c713216d
MG
6017 for_each_online_node(nid) {
6018 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6019 free_area_init_node(nid, NULL,
c713216d 6020 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6021
6022 /* Any memory on that node */
6023 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6024 node_set_state(nid, N_MEMORY);
6025 check_for_memory(pgdat, nid);
c713216d
MG
6026 }
6027}
2a1e274a 6028
7e63efef 6029static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6030{
6031 unsigned long long coremem;
6032 if (!p)
6033 return -EINVAL;
6034
6035 coremem = memparse(p, &p);
7e63efef 6036 *core = coremem >> PAGE_SHIFT;
2a1e274a 6037
7e63efef 6038 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6039 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6040
6041 return 0;
6042}
ed7ed365 6043
7e63efef
MG
6044/*
6045 * kernelcore=size sets the amount of memory for use for allocations that
6046 * cannot be reclaimed or migrated.
6047 */
6048static int __init cmdline_parse_kernelcore(char *p)
6049{
342332e6
TI
6050 /* parse kernelcore=mirror */
6051 if (parse_option_str(p, "mirror")) {
6052 mirrored_kernelcore = true;
6053 return 0;
6054 }
6055
7e63efef
MG
6056 return cmdline_parse_core(p, &required_kernelcore);
6057}
6058
6059/*
6060 * movablecore=size sets the amount of memory for use for allocations that
6061 * can be reclaimed or migrated.
6062 */
6063static int __init cmdline_parse_movablecore(char *p)
6064{
6065 return cmdline_parse_core(p, &required_movablecore);
6066}
6067
ed7ed365 6068early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6069early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6070
0ee332c1 6071#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6072
c3d5f5f0
JL
6073void adjust_managed_page_count(struct page *page, long count)
6074{
6075 spin_lock(&managed_page_count_lock);
6076 page_zone(page)->managed_pages += count;
6077 totalram_pages += count;
3dcc0571
JL
6078#ifdef CONFIG_HIGHMEM
6079 if (PageHighMem(page))
6080 totalhigh_pages += count;
6081#endif
c3d5f5f0
JL
6082 spin_unlock(&managed_page_count_lock);
6083}
3dcc0571 6084EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6085
11199692 6086unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6087{
11199692
JL
6088 void *pos;
6089 unsigned long pages = 0;
69afade7 6090
11199692
JL
6091 start = (void *)PAGE_ALIGN((unsigned long)start);
6092 end = (void *)((unsigned long)end & PAGE_MASK);
6093 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6094 if ((unsigned int)poison <= 0xFF)
11199692
JL
6095 memset(pos, poison, PAGE_SIZE);
6096 free_reserved_page(virt_to_page(pos));
69afade7
JL
6097 }
6098
6099 if (pages && s)
11199692 6100 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6101 s, pages << (PAGE_SHIFT - 10), start, end);
6102
6103 return pages;
6104}
11199692 6105EXPORT_SYMBOL(free_reserved_area);
69afade7 6106
cfa11e08
JL
6107#ifdef CONFIG_HIGHMEM
6108void free_highmem_page(struct page *page)
6109{
6110 __free_reserved_page(page);
6111 totalram_pages++;
7b4b2a0d 6112 page_zone(page)->managed_pages++;
cfa11e08
JL
6113 totalhigh_pages++;
6114}
6115#endif
6116
7ee3d4e8
JL
6117
6118void __init mem_init_print_info(const char *str)
6119{
6120 unsigned long physpages, codesize, datasize, rosize, bss_size;
6121 unsigned long init_code_size, init_data_size;
6122
6123 physpages = get_num_physpages();
6124 codesize = _etext - _stext;
6125 datasize = _edata - _sdata;
6126 rosize = __end_rodata - __start_rodata;
6127 bss_size = __bss_stop - __bss_start;
6128 init_data_size = __init_end - __init_begin;
6129 init_code_size = _einittext - _sinittext;
6130
6131 /*
6132 * Detect special cases and adjust section sizes accordingly:
6133 * 1) .init.* may be embedded into .data sections
6134 * 2) .init.text.* may be out of [__init_begin, __init_end],
6135 * please refer to arch/tile/kernel/vmlinux.lds.S.
6136 * 3) .rodata.* may be embedded into .text or .data sections.
6137 */
6138#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6139 do { \
6140 if (start <= pos && pos < end && size > adj) \
6141 size -= adj; \
6142 } while (0)
7ee3d4e8
JL
6143
6144 adj_init_size(__init_begin, __init_end, init_data_size,
6145 _sinittext, init_code_size);
6146 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6147 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6148 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6149 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6150
6151#undef adj_init_size
6152
f88dfff5 6153 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6154 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6155 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6156#ifdef CONFIG_HIGHMEM
6157 ", %luK highmem"
6158#endif
6159 "%s%s)\n",
6160 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6161 codesize >> 10, datasize >> 10, rosize >> 10,
6162 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6163 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6164 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6165#ifdef CONFIG_HIGHMEM
6166 totalhigh_pages << (PAGE_SHIFT-10),
6167#endif
6168 str ? ", " : "", str ? str : "");
6169}
6170
0e0b864e 6171/**
88ca3b94
RD
6172 * set_dma_reserve - set the specified number of pages reserved in the first zone
6173 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6174 *
013110a7 6175 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6176 * In the DMA zone, a significant percentage may be consumed by kernel image
6177 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6178 * function may optionally be used to account for unfreeable pages in the
6179 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6180 * smaller per-cpu batchsize.
0e0b864e
MG
6181 */
6182void __init set_dma_reserve(unsigned long new_dma_reserve)
6183{
6184 dma_reserve = new_dma_reserve;
6185}
6186
1da177e4
LT
6187void __init free_area_init(unsigned long *zones_size)
6188{
9109fb7b 6189 free_area_init_node(0, zones_size,
1da177e4
LT
6190 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6191}
1da177e4 6192
1da177e4
LT
6193static int page_alloc_cpu_notify(struct notifier_block *self,
6194 unsigned long action, void *hcpu)
6195{
6196 int cpu = (unsigned long)hcpu;
1da177e4 6197
8bb78442 6198 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6199 lru_add_drain_cpu(cpu);
9f8f2172
CL
6200 drain_pages(cpu);
6201
6202 /*
6203 * Spill the event counters of the dead processor
6204 * into the current processors event counters.
6205 * This artificially elevates the count of the current
6206 * processor.
6207 */
f8891e5e 6208 vm_events_fold_cpu(cpu);
9f8f2172
CL
6209
6210 /*
6211 * Zero the differential counters of the dead processor
6212 * so that the vm statistics are consistent.
6213 *
6214 * This is only okay since the processor is dead and cannot
6215 * race with what we are doing.
6216 */
2bb921e5 6217 cpu_vm_stats_fold(cpu);
1da177e4
LT
6218 }
6219 return NOTIFY_OK;
6220}
1da177e4
LT
6221
6222void __init page_alloc_init(void)
6223{
6224 hotcpu_notifier(page_alloc_cpu_notify, 0);
6225}
6226
cb45b0e9 6227/*
34b10060 6228 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6229 * or min_free_kbytes changes.
6230 */
6231static void calculate_totalreserve_pages(void)
6232{
6233 struct pglist_data *pgdat;
6234 unsigned long reserve_pages = 0;
2f6726e5 6235 enum zone_type i, j;
cb45b0e9
HA
6236
6237 for_each_online_pgdat(pgdat) {
6238 for (i = 0; i < MAX_NR_ZONES; i++) {
6239 struct zone *zone = pgdat->node_zones + i;
3484b2de 6240 long max = 0;
cb45b0e9
HA
6241
6242 /* Find valid and maximum lowmem_reserve in the zone */
6243 for (j = i; j < MAX_NR_ZONES; j++) {
6244 if (zone->lowmem_reserve[j] > max)
6245 max = zone->lowmem_reserve[j];
6246 }
6247
41858966
MG
6248 /* we treat the high watermark as reserved pages. */
6249 max += high_wmark_pages(zone);
cb45b0e9 6250
b40da049
JL
6251 if (max > zone->managed_pages)
6252 max = zone->managed_pages;
a8d01437
JW
6253
6254 zone->totalreserve_pages = max;
6255
cb45b0e9
HA
6256 reserve_pages += max;
6257 }
6258 }
6259 totalreserve_pages = reserve_pages;
6260}
6261
1da177e4
LT
6262/*
6263 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6264 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6265 * has a correct pages reserved value, so an adequate number of
6266 * pages are left in the zone after a successful __alloc_pages().
6267 */
6268static void setup_per_zone_lowmem_reserve(void)
6269{
6270 struct pglist_data *pgdat;
2f6726e5 6271 enum zone_type j, idx;
1da177e4 6272
ec936fc5 6273 for_each_online_pgdat(pgdat) {
1da177e4
LT
6274 for (j = 0; j < MAX_NR_ZONES; j++) {
6275 struct zone *zone = pgdat->node_zones + j;
b40da049 6276 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6277
6278 zone->lowmem_reserve[j] = 0;
6279
2f6726e5
CL
6280 idx = j;
6281 while (idx) {
1da177e4
LT
6282 struct zone *lower_zone;
6283
2f6726e5
CL
6284 idx--;
6285
1da177e4
LT
6286 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6287 sysctl_lowmem_reserve_ratio[idx] = 1;
6288
6289 lower_zone = pgdat->node_zones + idx;
b40da049 6290 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6291 sysctl_lowmem_reserve_ratio[idx];
b40da049 6292 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6293 }
6294 }
6295 }
cb45b0e9
HA
6296
6297 /* update totalreserve_pages */
6298 calculate_totalreserve_pages();
1da177e4
LT
6299}
6300
cfd3da1e 6301static void __setup_per_zone_wmarks(void)
1da177e4
LT
6302{
6303 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6304 unsigned long lowmem_pages = 0;
6305 struct zone *zone;
6306 unsigned long flags;
6307
6308 /* Calculate total number of !ZONE_HIGHMEM pages */
6309 for_each_zone(zone) {
6310 if (!is_highmem(zone))
b40da049 6311 lowmem_pages += zone->managed_pages;
1da177e4
LT
6312 }
6313
6314 for_each_zone(zone) {
ac924c60
AM
6315 u64 tmp;
6316
1125b4e3 6317 spin_lock_irqsave(&zone->lock, flags);
b40da049 6318 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6319 do_div(tmp, lowmem_pages);
1da177e4
LT
6320 if (is_highmem(zone)) {
6321 /*
669ed175
NP
6322 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6323 * need highmem pages, so cap pages_min to a small
6324 * value here.
6325 *
41858966 6326 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6327 * deltas control asynch page reclaim, and so should
669ed175 6328 * not be capped for highmem.
1da177e4 6329 */
90ae8d67 6330 unsigned long min_pages;
1da177e4 6331
b40da049 6332 min_pages = zone->managed_pages / 1024;
90ae8d67 6333 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6334 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6335 } else {
669ed175
NP
6336 /*
6337 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6338 * proportionate to the zone's size.
6339 */
41858966 6340 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6341 }
6342
795ae7a0
JW
6343 /*
6344 * Set the kswapd watermarks distance according to the
6345 * scale factor in proportion to available memory, but
6346 * ensure a minimum size on small systems.
6347 */
6348 tmp = max_t(u64, tmp >> 2,
6349 mult_frac(zone->managed_pages,
6350 watermark_scale_factor, 10000));
6351
6352 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6353 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6354
81c0a2bb 6355 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6356 high_wmark_pages(zone) - low_wmark_pages(zone) -
6357 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6358
1125b4e3 6359 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6360 }
cb45b0e9
HA
6361
6362 /* update totalreserve_pages */
6363 calculate_totalreserve_pages();
1da177e4
LT
6364}
6365
cfd3da1e
MG
6366/**
6367 * setup_per_zone_wmarks - called when min_free_kbytes changes
6368 * or when memory is hot-{added|removed}
6369 *
6370 * Ensures that the watermark[min,low,high] values for each zone are set
6371 * correctly with respect to min_free_kbytes.
6372 */
6373void setup_per_zone_wmarks(void)
6374{
6375 mutex_lock(&zonelists_mutex);
6376 __setup_per_zone_wmarks();
6377 mutex_unlock(&zonelists_mutex);
6378}
6379
55a4462a 6380/*
556adecb
RR
6381 * The inactive anon list should be small enough that the VM never has to
6382 * do too much work, but large enough that each inactive page has a chance
6383 * to be referenced again before it is swapped out.
6384 *
6385 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6386 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6387 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6388 * the anonymous pages are kept on the inactive list.
6389 *
6390 * total target max
6391 * memory ratio inactive anon
6392 * -------------------------------------
6393 * 10MB 1 5MB
6394 * 100MB 1 50MB
6395 * 1GB 3 250MB
6396 * 10GB 10 0.9GB
6397 * 100GB 31 3GB
6398 * 1TB 101 10GB
6399 * 10TB 320 32GB
6400 */
1b79acc9 6401static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6402{
96cb4df5 6403 unsigned int gb, ratio;
556adecb 6404
96cb4df5 6405 /* Zone size in gigabytes */
b40da049 6406 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6407 if (gb)
556adecb 6408 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6409 else
6410 ratio = 1;
556adecb 6411
96cb4df5
MK
6412 zone->inactive_ratio = ratio;
6413}
556adecb 6414
839a4fcc 6415static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6416{
6417 struct zone *zone;
6418
6419 for_each_zone(zone)
6420 calculate_zone_inactive_ratio(zone);
556adecb
RR
6421}
6422
1da177e4
LT
6423/*
6424 * Initialise min_free_kbytes.
6425 *
6426 * For small machines we want it small (128k min). For large machines
6427 * we want it large (64MB max). But it is not linear, because network
6428 * bandwidth does not increase linearly with machine size. We use
6429 *
b8af2941 6430 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6431 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6432 *
6433 * which yields
6434 *
6435 * 16MB: 512k
6436 * 32MB: 724k
6437 * 64MB: 1024k
6438 * 128MB: 1448k
6439 * 256MB: 2048k
6440 * 512MB: 2896k
6441 * 1024MB: 4096k
6442 * 2048MB: 5792k
6443 * 4096MB: 8192k
6444 * 8192MB: 11584k
6445 * 16384MB: 16384k
6446 */
1b79acc9 6447int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6448{
6449 unsigned long lowmem_kbytes;
5f12733e 6450 int new_min_free_kbytes;
1da177e4
LT
6451
6452 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6453 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6454
6455 if (new_min_free_kbytes > user_min_free_kbytes) {
6456 min_free_kbytes = new_min_free_kbytes;
6457 if (min_free_kbytes < 128)
6458 min_free_kbytes = 128;
6459 if (min_free_kbytes > 65536)
6460 min_free_kbytes = 65536;
6461 } else {
6462 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6463 new_min_free_kbytes, user_min_free_kbytes);
6464 }
bc75d33f 6465 setup_per_zone_wmarks();
a6cccdc3 6466 refresh_zone_stat_thresholds();
1da177e4 6467 setup_per_zone_lowmem_reserve();
556adecb 6468 setup_per_zone_inactive_ratio();
1da177e4
LT
6469 return 0;
6470}
bc75d33f 6471module_init(init_per_zone_wmark_min)
1da177e4
LT
6472
6473/*
b8af2941 6474 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6475 * that we can call two helper functions whenever min_free_kbytes
6476 * changes.
6477 */
cccad5b9 6478int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6479 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6480{
da8c757b
HP
6481 int rc;
6482
6483 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6484 if (rc)
6485 return rc;
6486
5f12733e
MH
6487 if (write) {
6488 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6489 setup_per_zone_wmarks();
5f12733e 6490 }
1da177e4
LT
6491 return 0;
6492}
6493
795ae7a0
JW
6494int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6495 void __user *buffer, size_t *length, loff_t *ppos)
6496{
6497 int rc;
6498
6499 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6500 if (rc)
6501 return rc;
6502
6503 if (write)
6504 setup_per_zone_wmarks();
6505
6506 return 0;
6507}
6508
9614634f 6509#ifdef CONFIG_NUMA
cccad5b9 6510int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6511 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6512{
6513 struct zone *zone;
6514 int rc;
6515
8d65af78 6516 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6517 if (rc)
6518 return rc;
6519
6520 for_each_zone(zone)
b40da049 6521 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6522 sysctl_min_unmapped_ratio) / 100;
6523 return 0;
6524}
0ff38490 6525
cccad5b9 6526int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6527 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6528{
6529 struct zone *zone;
6530 int rc;
6531
8d65af78 6532 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6533 if (rc)
6534 return rc;
6535
6536 for_each_zone(zone)
b40da049 6537 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6538 sysctl_min_slab_ratio) / 100;
6539 return 0;
6540}
9614634f
CL
6541#endif
6542
1da177e4
LT
6543/*
6544 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6545 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6546 * whenever sysctl_lowmem_reserve_ratio changes.
6547 *
6548 * The reserve ratio obviously has absolutely no relation with the
41858966 6549 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6550 * if in function of the boot time zone sizes.
6551 */
cccad5b9 6552int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6553 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6554{
8d65af78 6555 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6556 setup_per_zone_lowmem_reserve();
6557 return 0;
6558}
6559
8ad4b1fb
RS
6560/*
6561 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6562 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6563 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6564 */
cccad5b9 6565int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6566 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6567{
6568 struct zone *zone;
7cd2b0a3 6569 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6570 int ret;
6571
7cd2b0a3
DR
6572 mutex_lock(&pcp_batch_high_lock);
6573 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6574
8d65af78 6575 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6576 if (!write || ret < 0)
6577 goto out;
6578
6579 /* Sanity checking to avoid pcp imbalance */
6580 if (percpu_pagelist_fraction &&
6581 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6582 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6583 ret = -EINVAL;
6584 goto out;
6585 }
6586
6587 /* No change? */
6588 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6589 goto out;
c8e251fa 6590
364df0eb 6591 for_each_populated_zone(zone) {
7cd2b0a3
DR
6592 unsigned int cpu;
6593
22a7f12b 6594 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6595 pageset_set_high_and_batch(zone,
6596 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6597 }
7cd2b0a3 6598out:
c8e251fa 6599 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6600 return ret;
8ad4b1fb
RS
6601}
6602
a9919c79 6603#ifdef CONFIG_NUMA
f034b5d4 6604int hashdist = HASHDIST_DEFAULT;
1da177e4 6605
1da177e4
LT
6606static int __init set_hashdist(char *str)
6607{
6608 if (!str)
6609 return 0;
6610 hashdist = simple_strtoul(str, &str, 0);
6611 return 1;
6612}
6613__setup("hashdist=", set_hashdist);
6614#endif
6615
6616/*
6617 * allocate a large system hash table from bootmem
6618 * - it is assumed that the hash table must contain an exact power-of-2
6619 * quantity of entries
6620 * - limit is the number of hash buckets, not the total allocation size
6621 */
6622void *__init alloc_large_system_hash(const char *tablename,
6623 unsigned long bucketsize,
6624 unsigned long numentries,
6625 int scale,
6626 int flags,
6627 unsigned int *_hash_shift,
6628 unsigned int *_hash_mask,
31fe62b9
TB
6629 unsigned long low_limit,
6630 unsigned long high_limit)
1da177e4 6631{
31fe62b9 6632 unsigned long long max = high_limit;
1da177e4
LT
6633 unsigned long log2qty, size;
6634 void *table = NULL;
6635
6636 /* allow the kernel cmdline to have a say */
6637 if (!numentries) {
6638 /* round applicable memory size up to nearest megabyte */
04903664 6639 numentries = nr_kernel_pages;
a7e83318
JZ
6640
6641 /* It isn't necessary when PAGE_SIZE >= 1MB */
6642 if (PAGE_SHIFT < 20)
6643 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6644
6645 /* limit to 1 bucket per 2^scale bytes of low memory */
6646 if (scale > PAGE_SHIFT)
6647 numentries >>= (scale - PAGE_SHIFT);
6648 else
6649 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6650
6651 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6652 if (unlikely(flags & HASH_SMALL)) {
6653 /* Makes no sense without HASH_EARLY */
6654 WARN_ON(!(flags & HASH_EARLY));
6655 if (!(numentries >> *_hash_shift)) {
6656 numentries = 1UL << *_hash_shift;
6657 BUG_ON(!numentries);
6658 }
6659 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6660 numentries = PAGE_SIZE / bucketsize;
1da177e4 6661 }
6e692ed3 6662 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6663
6664 /* limit allocation size to 1/16 total memory by default */
6665 if (max == 0) {
6666 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6667 do_div(max, bucketsize);
6668 }
074b8517 6669 max = min(max, 0x80000000ULL);
1da177e4 6670
31fe62b9
TB
6671 if (numentries < low_limit)
6672 numentries = low_limit;
1da177e4
LT
6673 if (numentries > max)
6674 numentries = max;
6675
f0d1b0b3 6676 log2qty = ilog2(numentries);
1da177e4
LT
6677
6678 do {
6679 size = bucketsize << log2qty;
6680 if (flags & HASH_EARLY)
6782832e 6681 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6682 else if (hashdist)
6683 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6684 else {
1037b83b
ED
6685 /*
6686 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6687 * some pages at the end of hash table which
6688 * alloc_pages_exact() automatically does
1037b83b 6689 */
264ef8a9 6690 if (get_order(size) < MAX_ORDER) {
a1dd268c 6691 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6692 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6693 }
1da177e4
LT
6694 }
6695 } while (!table && size > PAGE_SIZE && --log2qty);
6696
6697 if (!table)
6698 panic("Failed to allocate %s hash table\n", tablename);
6699
f241e660 6700 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6701 tablename,
f241e660 6702 (1UL << log2qty),
f0d1b0b3 6703 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6704 size);
6705
6706 if (_hash_shift)
6707 *_hash_shift = log2qty;
6708 if (_hash_mask)
6709 *_hash_mask = (1 << log2qty) - 1;
6710
6711 return table;
6712}
a117e66e 6713
835c134e
MG
6714/* Return a pointer to the bitmap storing bits affecting a block of pages */
6715static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6716 unsigned long pfn)
6717{
6718#ifdef CONFIG_SPARSEMEM
6719 return __pfn_to_section(pfn)->pageblock_flags;
6720#else
6721 return zone->pageblock_flags;
6722#endif /* CONFIG_SPARSEMEM */
6723}
6724
6725static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6726{
6727#ifdef CONFIG_SPARSEMEM
6728 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6729 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6730#else
c060f943 6731 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6732 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6733#endif /* CONFIG_SPARSEMEM */
6734}
6735
6736/**
1aab4d77 6737 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6738 * @page: The page within the block of interest
1aab4d77
RD
6739 * @pfn: The target page frame number
6740 * @end_bitidx: The last bit of interest to retrieve
6741 * @mask: mask of bits that the caller is interested in
6742 *
6743 * Return: pageblock_bits flags
835c134e 6744 */
dc4b0caf 6745unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6746 unsigned long end_bitidx,
6747 unsigned long mask)
835c134e
MG
6748{
6749 struct zone *zone;
6750 unsigned long *bitmap;
dc4b0caf 6751 unsigned long bitidx, word_bitidx;
e58469ba 6752 unsigned long word;
835c134e
MG
6753
6754 zone = page_zone(page);
835c134e
MG
6755 bitmap = get_pageblock_bitmap(zone, pfn);
6756 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6757 word_bitidx = bitidx / BITS_PER_LONG;
6758 bitidx &= (BITS_PER_LONG-1);
835c134e 6759
e58469ba
MG
6760 word = bitmap[word_bitidx];
6761 bitidx += end_bitidx;
6762 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6763}
6764
6765/**
dc4b0caf 6766 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6767 * @page: The page within the block of interest
835c134e 6768 * @flags: The flags to set
1aab4d77
RD
6769 * @pfn: The target page frame number
6770 * @end_bitidx: The last bit of interest
6771 * @mask: mask of bits that the caller is interested in
835c134e 6772 */
dc4b0caf
MG
6773void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6774 unsigned long pfn,
e58469ba
MG
6775 unsigned long end_bitidx,
6776 unsigned long mask)
835c134e
MG
6777{
6778 struct zone *zone;
6779 unsigned long *bitmap;
dc4b0caf 6780 unsigned long bitidx, word_bitidx;
e58469ba
MG
6781 unsigned long old_word, word;
6782
6783 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6784
6785 zone = page_zone(page);
835c134e
MG
6786 bitmap = get_pageblock_bitmap(zone, pfn);
6787 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6788 word_bitidx = bitidx / BITS_PER_LONG;
6789 bitidx &= (BITS_PER_LONG-1);
6790
309381fe 6791 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6792
e58469ba
MG
6793 bitidx += end_bitidx;
6794 mask <<= (BITS_PER_LONG - bitidx - 1);
6795 flags <<= (BITS_PER_LONG - bitidx - 1);
6796
4db0c3c2 6797 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6798 for (;;) {
6799 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6800 if (word == old_word)
6801 break;
6802 word = old_word;
6803 }
835c134e 6804}
a5d76b54
KH
6805
6806/*
80934513
MK
6807 * This function checks whether pageblock includes unmovable pages or not.
6808 * If @count is not zero, it is okay to include less @count unmovable pages
6809 *
b8af2941 6810 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6811 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6812 * expect this function should be exact.
a5d76b54 6813 */
b023f468
WC
6814bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6815 bool skip_hwpoisoned_pages)
49ac8255
KH
6816{
6817 unsigned long pfn, iter, found;
47118af0
MN
6818 int mt;
6819
49ac8255
KH
6820 /*
6821 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6822 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6823 */
6824 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6825 return false;
47118af0
MN
6826 mt = get_pageblock_migratetype(page);
6827 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6828 return false;
49ac8255
KH
6829
6830 pfn = page_to_pfn(page);
6831 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6832 unsigned long check = pfn + iter;
6833
29723fcc 6834 if (!pfn_valid_within(check))
49ac8255 6835 continue;
29723fcc 6836
49ac8255 6837 page = pfn_to_page(check);
c8721bbb
NH
6838
6839 /*
6840 * Hugepages are not in LRU lists, but they're movable.
6841 * We need not scan over tail pages bacause we don't
6842 * handle each tail page individually in migration.
6843 */
6844 if (PageHuge(page)) {
6845 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6846 continue;
6847 }
6848
97d255c8
MK
6849 /*
6850 * We can't use page_count without pin a page
6851 * because another CPU can free compound page.
6852 * This check already skips compound tails of THP
6853 * because their page->_count is zero at all time.
6854 */
6855 if (!atomic_read(&page->_count)) {
49ac8255
KH
6856 if (PageBuddy(page))
6857 iter += (1 << page_order(page)) - 1;
6858 continue;
6859 }
97d255c8 6860
b023f468
WC
6861 /*
6862 * The HWPoisoned page may be not in buddy system, and
6863 * page_count() is not 0.
6864 */
6865 if (skip_hwpoisoned_pages && PageHWPoison(page))
6866 continue;
6867
49ac8255
KH
6868 if (!PageLRU(page))
6869 found++;
6870 /*
6b4f7799
JW
6871 * If there are RECLAIMABLE pages, we need to check
6872 * it. But now, memory offline itself doesn't call
6873 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6874 */
6875 /*
6876 * If the page is not RAM, page_count()should be 0.
6877 * we don't need more check. This is an _used_ not-movable page.
6878 *
6879 * The problematic thing here is PG_reserved pages. PG_reserved
6880 * is set to both of a memory hole page and a _used_ kernel
6881 * page at boot.
6882 */
6883 if (found > count)
80934513 6884 return true;
49ac8255 6885 }
80934513 6886 return false;
49ac8255
KH
6887}
6888
6889bool is_pageblock_removable_nolock(struct page *page)
6890{
656a0706
MH
6891 struct zone *zone;
6892 unsigned long pfn;
687875fb
MH
6893
6894 /*
6895 * We have to be careful here because we are iterating over memory
6896 * sections which are not zone aware so we might end up outside of
6897 * the zone but still within the section.
656a0706
MH
6898 * We have to take care about the node as well. If the node is offline
6899 * its NODE_DATA will be NULL - see page_zone.
687875fb 6900 */
656a0706
MH
6901 if (!node_online(page_to_nid(page)))
6902 return false;
6903
6904 zone = page_zone(page);
6905 pfn = page_to_pfn(page);
108bcc96 6906 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6907 return false;
6908
b023f468 6909 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6910}
0c0e6195 6911
080fe206 6912#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6913
6914static unsigned long pfn_max_align_down(unsigned long pfn)
6915{
6916 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6917 pageblock_nr_pages) - 1);
6918}
6919
6920static unsigned long pfn_max_align_up(unsigned long pfn)
6921{
6922 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6923 pageblock_nr_pages));
6924}
6925
041d3a8c 6926/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6927static int __alloc_contig_migrate_range(struct compact_control *cc,
6928 unsigned long start, unsigned long end)
041d3a8c
MN
6929{
6930 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6931 unsigned long nr_reclaimed;
041d3a8c
MN
6932 unsigned long pfn = start;
6933 unsigned int tries = 0;
6934 int ret = 0;
6935
be49a6e1 6936 migrate_prep();
041d3a8c 6937
bb13ffeb 6938 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6939 if (fatal_signal_pending(current)) {
6940 ret = -EINTR;
6941 break;
6942 }
6943
bb13ffeb
MG
6944 if (list_empty(&cc->migratepages)) {
6945 cc->nr_migratepages = 0;
edc2ca61 6946 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6947 if (!pfn) {
6948 ret = -EINTR;
6949 break;
6950 }
6951 tries = 0;
6952 } else if (++tries == 5) {
6953 ret = ret < 0 ? ret : -EBUSY;
6954 break;
6955 }
6956
beb51eaa
MK
6957 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6958 &cc->migratepages);
6959 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6960
9c620e2b 6961 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6962 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6963 }
2a6f5124
SP
6964 if (ret < 0) {
6965 putback_movable_pages(&cc->migratepages);
6966 return ret;
6967 }
6968 return 0;
041d3a8c
MN
6969}
6970
6971/**
6972 * alloc_contig_range() -- tries to allocate given range of pages
6973 * @start: start PFN to allocate
6974 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6975 * @migratetype: migratetype of the underlaying pageblocks (either
6976 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6977 * in range must have the same migratetype and it must
6978 * be either of the two.
041d3a8c
MN
6979 *
6980 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6981 * aligned, however it's the caller's responsibility to guarantee that
6982 * we are the only thread that changes migrate type of pageblocks the
6983 * pages fall in.
6984 *
6985 * The PFN range must belong to a single zone.
6986 *
6987 * Returns zero on success or negative error code. On success all
6988 * pages which PFN is in [start, end) are allocated for the caller and
6989 * need to be freed with free_contig_range().
6990 */
0815f3d8
MN
6991int alloc_contig_range(unsigned long start, unsigned long end,
6992 unsigned migratetype)
041d3a8c 6993{
041d3a8c 6994 unsigned long outer_start, outer_end;
d00181b9
KS
6995 unsigned int order;
6996 int ret = 0;
041d3a8c 6997
bb13ffeb
MG
6998 struct compact_control cc = {
6999 .nr_migratepages = 0,
7000 .order = -1,
7001 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7002 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7003 .ignore_skip_hint = true,
7004 };
7005 INIT_LIST_HEAD(&cc.migratepages);
7006
041d3a8c
MN
7007 /*
7008 * What we do here is we mark all pageblocks in range as
7009 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7010 * have different sizes, and due to the way page allocator
7011 * work, we align the range to biggest of the two pages so
7012 * that page allocator won't try to merge buddies from
7013 * different pageblocks and change MIGRATE_ISOLATE to some
7014 * other migration type.
7015 *
7016 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7017 * migrate the pages from an unaligned range (ie. pages that
7018 * we are interested in). This will put all the pages in
7019 * range back to page allocator as MIGRATE_ISOLATE.
7020 *
7021 * When this is done, we take the pages in range from page
7022 * allocator removing them from the buddy system. This way
7023 * page allocator will never consider using them.
7024 *
7025 * This lets us mark the pageblocks back as
7026 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7027 * aligned range but not in the unaligned, original range are
7028 * put back to page allocator so that buddy can use them.
7029 */
7030
7031 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7032 pfn_max_align_up(end), migratetype,
7033 false);
041d3a8c 7034 if (ret)
86a595f9 7035 return ret;
041d3a8c 7036
8ef5849f
JK
7037 /*
7038 * In case of -EBUSY, we'd like to know which page causes problem.
7039 * So, just fall through. We will check it in test_pages_isolated().
7040 */
bb13ffeb 7041 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7042 if (ret && ret != -EBUSY)
041d3a8c
MN
7043 goto done;
7044
7045 /*
7046 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7047 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7048 * more, all pages in [start, end) are free in page allocator.
7049 * What we are going to do is to allocate all pages from
7050 * [start, end) (that is remove them from page allocator).
7051 *
7052 * The only problem is that pages at the beginning and at the
7053 * end of interesting range may be not aligned with pages that
7054 * page allocator holds, ie. they can be part of higher order
7055 * pages. Because of this, we reserve the bigger range and
7056 * once this is done free the pages we are not interested in.
7057 *
7058 * We don't have to hold zone->lock here because the pages are
7059 * isolated thus they won't get removed from buddy.
7060 */
7061
7062 lru_add_drain_all();
510f5507 7063 drain_all_pages(cc.zone);
041d3a8c
MN
7064
7065 order = 0;
7066 outer_start = start;
7067 while (!PageBuddy(pfn_to_page(outer_start))) {
7068 if (++order >= MAX_ORDER) {
8ef5849f
JK
7069 outer_start = start;
7070 break;
041d3a8c
MN
7071 }
7072 outer_start &= ~0UL << order;
7073 }
7074
8ef5849f
JK
7075 if (outer_start != start) {
7076 order = page_order(pfn_to_page(outer_start));
7077
7078 /*
7079 * outer_start page could be small order buddy page and
7080 * it doesn't include start page. Adjust outer_start
7081 * in this case to report failed page properly
7082 * on tracepoint in test_pages_isolated()
7083 */
7084 if (outer_start + (1UL << order) <= start)
7085 outer_start = start;
7086 }
7087
041d3a8c 7088 /* Make sure the range is really isolated. */
b023f468 7089 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7090 pr_info("%s: [%lx, %lx) PFNs busy\n",
7091 __func__, outer_start, end);
041d3a8c
MN
7092 ret = -EBUSY;
7093 goto done;
7094 }
7095
49f223a9 7096 /* Grab isolated pages from freelists. */
bb13ffeb 7097 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7098 if (!outer_end) {
7099 ret = -EBUSY;
7100 goto done;
7101 }
7102
7103 /* Free head and tail (if any) */
7104 if (start != outer_start)
7105 free_contig_range(outer_start, start - outer_start);
7106 if (end != outer_end)
7107 free_contig_range(end, outer_end - end);
7108
7109done:
7110 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7111 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7112 return ret;
7113}
7114
7115void free_contig_range(unsigned long pfn, unsigned nr_pages)
7116{
bcc2b02f
MS
7117 unsigned int count = 0;
7118
7119 for (; nr_pages--; pfn++) {
7120 struct page *page = pfn_to_page(pfn);
7121
7122 count += page_count(page) != 1;
7123 __free_page(page);
7124 }
7125 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7126}
7127#endif
7128
4ed7e022 7129#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7130/*
7131 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7132 * page high values need to be recalulated.
7133 */
4ed7e022
JL
7134void __meminit zone_pcp_update(struct zone *zone)
7135{
0a647f38 7136 unsigned cpu;
c8e251fa 7137 mutex_lock(&pcp_batch_high_lock);
0a647f38 7138 for_each_possible_cpu(cpu)
169f6c19
CS
7139 pageset_set_high_and_batch(zone,
7140 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7141 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7142}
7143#endif
7144
340175b7
JL
7145void zone_pcp_reset(struct zone *zone)
7146{
7147 unsigned long flags;
5a883813
MK
7148 int cpu;
7149 struct per_cpu_pageset *pset;
340175b7
JL
7150
7151 /* avoid races with drain_pages() */
7152 local_irq_save(flags);
7153 if (zone->pageset != &boot_pageset) {
5a883813
MK
7154 for_each_online_cpu(cpu) {
7155 pset = per_cpu_ptr(zone->pageset, cpu);
7156 drain_zonestat(zone, pset);
7157 }
340175b7
JL
7158 free_percpu(zone->pageset);
7159 zone->pageset = &boot_pageset;
7160 }
7161 local_irq_restore(flags);
7162}
7163
6dcd73d7 7164#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
7165/*
7166 * All pages in the range must be isolated before calling this.
7167 */
7168void
7169__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7170{
7171 struct page *page;
7172 struct zone *zone;
7aeb09f9 7173 unsigned int order, i;
0c0e6195
KH
7174 unsigned long pfn;
7175 unsigned long flags;
7176 /* find the first valid pfn */
7177 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7178 if (pfn_valid(pfn))
7179 break;
7180 if (pfn == end_pfn)
7181 return;
7182 zone = page_zone(pfn_to_page(pfn));
7183 spin_lock_irqsave(&zone->lock, flags);
7184 pfn = start_pfn;
7185 while (pfn < end_pfn) {
7186 if (!pfn_valid(pfn)) {
7187 pfn++;
7188 continue;
7189 }
7190 page = pfn_to_page(pfn);
b023f468
WC
7191 /*
7192 * The HWPoisoned page may be not in buddy system, and
7193 * page_count() is not 0.
7194 */
7195 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7196 pfn++;
7197 SetPageReserved(page);
7198 continue;
7199 }
7200
0c0e6195
KH
7201 BUG_ON(page_count(page));
7202 BUG_ON(!PageBuddy(page));
7203 order = page_order(page);
7204#ifdef CONFIG_DEBUG_VM
7205 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7206 pfn, 1 << order, end_pfn);
7207#endif
7208 list_del(&page->lru);
7209 rmv_page_order(page);
7210 zone->free_area[order].nr_free--;
0c0e6195
KH
7211 for (i = 0; i < (1 << order); i++)
7212 SetPageReserved((page+i));
7213 pfn += (1 << order);
7214 }
7215 spin_unlock_irqrestore(&zone->lock, flags);
7216}
7217#endif
8d22ba1b 7218
8d22ba1b
WF
7219bool is_free_buddy_page(struct page *page)
7220{
7221 struct zone *zone = page_zone(page);
7222 unsigned long pfn = page_to_pfn(page);
7223 unsigned long flags;
7aeb09f9 7224 unsigned int order;
8d22ba1b
WF
7225
7226 spin_lock_irqsave(&zone->lock, flags);
7227 for (order = 0; order < MAX_ORDER; order++) {
7228 struct page *page_head = page - (pfn & ((1 << order) - 1));
7229
7230 if (PageBuddy(page_head) && page_order(page_head) >= order)
7231 break;
7232 }
7233 spin_unlock_irqrestore(&zone->lock, flags);
7234
7235 return order < MAX_ORDER;
7236}
This page took 1.829665 seconds and 5 git commands to generate.