KVM: Cleanup the kvm_print functions and introduce pr_XX wrappers
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
6aa8b732
AK
93#define PT_FIRST_AVAIL_BITS_SHIFT 9
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
191
192void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193{
194 shadow_mmio_mask = mmio_mask;
195}
196EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199{
200 access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
4f022648 202 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
203 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204}
205
206static bool is_mmio_spte(u64 spte)
207{
208 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209}
210
211static gfn_t get_mmio_spte_gfn(u64 spte)
212{
213 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214}
215
216static unsigned get_mmio_spte_access(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219}
220
221static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222{
223 if (unlikely(is_noslot_pfn(pfn))) {
224 mark_mmio_spte(sptep, gfn, access);
225 return true;
226 }
227
228 return false;
229}
c7addb90 230
82725b20
DE
231static inline u64 rsvd_bits(int s, int e)
232{
233 return ((1ULL << (e - s + 1)) - 1) << s;
234}
235
7b52345e 236void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 237 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
238{
239 shadow_user_mask = user_mask;
240 shadow_accessed_mask = accessed_mask;
241 shadow_dirty_mask = dirty_mask;
242 shadow_nx_mask = nx_mask;
243 shadow_x_mask = x_mask;
244}
245EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
6aa8b732
AK
247static int is_cpuid_PSE36(void)
248{
249 return 1;
250}
251
73b1087e
AK
252static int is_nx(struct kvm_vcpu *vcpu)
253{
f6801dff 254 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
255}
256
c7addb90
AK
257static int is_shadow_present_pte(u64 pte)
258{
ce88decf 259 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
260}
261
05da4558
MT
262static int is_large_pte(u64 pte)
263{
264 return pte & PT_PAGE_SIZE_MASK;
265}
266
43a3795a 267static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 268{
439e218a 269 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
270}
271
43a3795a 272static int is_rmap_spte(u64 pte)
cd4a4e53 273{
4b1a80fa 274 return is_shadow_present_pte(pte);
cd4a4e53
AK
275}
276
776e6633
MT
277static int is_last_spte(u64 pte, int level)
278{
279 if (level == PT_PAGE_TABLE_LEVEL)
280 return 1;
852e3c19 281 if (is_large_pte(pte))
776e6633
MT
282 return 1;
283 return 0;
284}
285
35149e21 286static pfn_t spte_to_pfn(u64 pte)
0b49ea86 287{
35149e21 288 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
289}
290
da928521
AK
291static gfn_t pse36_gfn_delta(u32 gpte)
292{
293 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295 return (gpte & PT32_DIR_PSE36_MASK) << shift;
296}
297
603e0651 298#ifdef CONFIG_X86_64
d555c333 299static void __set_spte(u64 *sptep, u64 spte)
e663ee64 300{
603e0651 301 *sptep = spte;
e663ee64
AK
302}
303
603e0651 304static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 305{
603e0651
XG
306 *sptep = spte;
307}
308
309static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310{
311 return xchg(sptep, spte);
312}
c2a2ac2b
XG
313
314static u64 __get_spte_lockless(u64 *sptep)
315{
316 return ACCESS_ONCE(*sptep);
317}
ce88decf
XG
318
319static bool __check_direct_spte_mmio_pf(u64 spte)
320{
321 /* It is valid if the spte is zapped. */
322 return spte == 0ull;
323}
a9221dd5 324#else
603e0651
XG
325union split_spte {
326 struct {
327 u32 spte_low;
328 u32 spte_high;
329 };
330 u64 spte;
331};
a9221dd5 332
c2a2ac2b
XG
333static void count_spte_clear(u64 *sptep, u64 spte)
334{
335 struct kvm_mmu_page *sp = page_header(__pa(sptep));
336
337 if (is_shadow_present_pte(spte))
338 return;
339
340 /* Ensure the spte is completely set before we increase the count */
341 smp_wmb();
342 sp->clear_spte_count++;
343}
344
603e0651
XG
345static void __set_spte(u64 *sptep, u64 spte)
346{
347 union split_spte *ssptep, sspte;
a9221dd5 348
603e0651
XG
349 ssptep = (union split_spte *)sptep;
350 sspte = (union split_spte)spte;
351
352 ssptep->spte_high = sspte.spte_high;
353
354 /*
355 * If we map the spte from nonpresent to present, We should store
356 * the high bits firstly, then set present bit, so cpu can not
357 * fetch this spte while we are setting the spte.
358 */
359 smp_wmb();
360
361 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
362}
363
603e0651
XG
364static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365{
366 union split_spte *ssptep, sspte;
367
368 ssptep = (union split_spte *)sptep;
369 sspte = (union split_spte)spte;
370
371 ssptep->spte_low = sspte.spte_low;
372
373 /*
374 * If we map the spte from present to nonpresent, we should clear
375 * present bit firstly to avoid vcpu fetch the old high bits.
376 */
377 smp_wmb();
378
379 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 380 count_spte_clear(sptep, spte);
603e0651
XG
381}
382
383static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384{
385 union split_spte *ssptep, sspte, orig;
386
387 ssptep = (union split_spte *)sptep;
388 sspte = (union split_spte)spte;
389
390 /* xchg acts as a barrier before the setting of the high bits */
391 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
392 orig.spte_high = ssptep->spte_high;
393 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 394 count_spte_clear(sptep, spte);
603e0651
XG
395
396 return orig.spte;
397}
c2a2ac2b
XG
398
399/*
400 * The idea using the light way get the spte on x86_32 guest is from
401 * gup_get_pte(arch/x86/mm/gup.c).
402 * The difference is we can not catch the spte tlb flush if we leave
403 * guest mode, so we emulate it by increase clear_spte_count when spte
404 * is cleared.
405 */
406static u64 __get_spte_lockless(u64 *sptep)
407{
408 struct kvm_mmu_page *sp = page_header(__pa(sptep));
409 union split_spte spte, *orig = (union split_spte *)sptep;
410 int count;
411
412retry:
413 count = sp->clear_spte_count;
414 smp_rmb();
415
416 spte.spte_low = orig->spte_low;
417 smp_rmb();
418
419 spte.spte_high = orig->spte_high;
420 smp_rmb();
421
422 if (unlikely(spte.spte_low != orig->spte_low ||
423 count != sp->clear_spte_count))
424 goto retry;
425
426 return spte.spte;
427}
ce88decf
XG
428
429static bool __check_direct_spte_mmio_pf(u64 spte)
430{
431 union split_spte sspte = (union split_spte)spte;
432 u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434 /* It is valid if the spte is zapped. */
435 if (spte == 0ull)
436 return true;
437
438 /* It is valid if the spte is being zapped. */
439 if (sspte.spte_low == 0ull &&
440 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441 return true;
442
443 return false;
444}
603e0651
XG
445#endif
446
8672b721
XG
447static bool spte_has_volatile_bits(u64 spte)
448{
449 if (!shadow_accessed_mask)
450 return false;
451
452 if (!is_shadow_present_pte(spte))
453 return false;
454
4132779b
XG
455 if ((spte & shadow_accessed_mask) &&
456 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
457 return false;
458
459 return true;
460}
461
4132779b
XG
462static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463{
464 return (old_spte & bit_mask) && !(new_spte & bit_mask);
465}
466
1df9f2dc
XG
467/* Rules for using mmu_spte_set:
468 * Set the sptep from nonpresent to present.
469 * Note: the sptep being assigned *must* be either not present
470 * or in a state where the hardware will not attempt to update
471 * the spte.
472 */
473static void mmu_spte_set(u64 *sptep, u64 new_spte)
474{
475 WARN_ON(is_shadow_present_pte(*sptep));
476 __set_spte(sptep, new_spte);
477}
478
479/* Rules for using mmu_spte_update:
480 * Update the state bits, it means the mapped pfn is not changged.
481 */
482static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 483{
4132779b
XG
484 u64 mask, old_spte = *sptep;
485
486 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 487
1df9f2dc
XG
488 if (!is_shadow_present_pte(old_spte))
489 return mmu_spte_set(sptep, new_spte);
490
4132779b
XG
491 new_spte |= old_spte & shadow_dirty_mask;
492
493 mask = shadow_accessed_mask;
494 if (is_writable_pte(old_spte))
495 mask |= shadow_dirty_mask;
496
497 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 498 __update_clear_spte_fast(sptep, new_spte);
4132779b 499 else
603e0651 500 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
501
502 if (!shadow_accessed_mask)
503 return;
504
505 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
509}
510
1df9f2dc
XG
511/*
512 * Rules for using mmu_spte_clear_track_bits:
513 * It sets the sptep from present to nonpresent, and track the
514 * state bits, it is used to clear the last level sptep.
515 */
516static int mmu_spte_clear_track_bits(u64 *sptep)
517{
518 pfn_t pfn;
519 u64 old_spte = *sptep;
520
521 if (!spte_has_volatile_bits(old_spte))
603e0651 522 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 523 else
603e0651 524 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
525
526 if (!is_rmap_spte(old_spte))
527 return 0;
528
529 pfn = spte_to_pfn(old_spte);
530 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531 kvm_set_pfn_accessed(pfn);
532 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533 kvm_set_pfn_dirty(pfn);
534 return 1;
535}
536
537/*
538 * Rules for using mmu_spte_clear_no_track:
539 * Directly clear spte without caring the state bits of sptep,
540 * it is used to set the upper level spte.
541 */
542static void mmu_spte_clear_no_track(u64 *sptep)
543{
603e0651 544 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
545}
546
c2a2ac2b
XG
547static u64 mmu_spte_get_lockless(u64 *sptep)
548{
549 return __get_spte_lockless(sptep);
550}
551
552static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553{
c142786c
AK
554 /*
555 * Prevent page table teardown by making any free-er wait during
556 * kvm_flush_remote_tlbs() IPI to all active vcpus.
557 */
558 local_irq_disable();
559 vcpu->mode = READING_SHADOW_PAGE_TABLES;
560 /*
561 * Make sure a following spte read is not reordered ahead of the write
562 * to vcpu->mode.
563 */
564 smp_mb();
c2a2ac2b
XG
565}
566
567static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
568{
c142786c
AK
569 /*
570 * Make sure the write to vcpu->mode is not reordered in front of
571 * reads to sptes. If it does, kvm_commit_zap_page() can see us
572 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
573 */
574 smp_mb();
575 vcpu->mode = OUTSIDE_GUEST_MODE;
576 local_irq_enable();
c2a2ac2b
XG
577}
578
e2dec939 579static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 580 struct kmem_cache *base_cache, int min)
714b93da
AK
581{
582 void *obj;
583
584 if (cache->nobjs >= min)
e2dec939 585 return 0;
714b93da 586 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 587 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 588 if (!obj)
e2dec939 589 return -ENOMEM;
714b93da
AK
590 cache->objects[cache->nobjs++] = obj;
591 }
e2dec939 592 return 0;
714b93da
AK
593}
594
f759e2b4
XG
595static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
596{
597 return cache->nobjs;
598}
599
e8ad9a70
XG
600static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
601 struct kmem_cache *cache)
714b93da
AK
602{
603 while (mc->nobjs)
e8ad9a70 604 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
605}
606
c1158e63 607static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 608 int min)
c1158e63 609{
842f22ed 610 void *page;
c1158e63
AK
611
612 if (cache->nobjs >= min)
613 return 0;
614 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 615 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
616 if (!page)
617 return -ENOMEM;
842f22ed 618 cache->objects[cache->nobjs++] = page;
c1158e63
AK
619 }
620 return 0;
621}
622
623static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
624{
625 while (mc->nobjs)
c4d198d5 626 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
627}
628
2e3e5882 629static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 630{
e2dec939
AK
631 int r;
632
53c07b18 633 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 634 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
635 if (r)
636 goto out;
ad312c7c 637 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
638 if (r)
639 goto out;
ad312c7c 640 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 641 mmu_page_header_cache, 4);
e2dec939
AK
642out:
643 return r;
714b93da
AK
644}
645
646static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
647{
53c07b18
XG
648 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
649 pte_list_desc_cache);
ad312c7c 650 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
651 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
652 mmu_page_header_cache);
714b93da
AK
653}
654
655static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
656 size_t size)
657{
658 void *p;
659
660 BUG_ON(!mc->nobjs);
661 p = mc->objects[--mc->nobjs];
714b93da
AK
662 return p;
663}
664
53c07b18 665static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 666{
53c07b18
XG
667 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
668 sizeof(struct pte_list_desc));
714b93da
AK
669}
670
53c07b18 671static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 672{
53c07b18 673 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
674}
675
2032a93d
LJ
676static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
677{
678 if (!sp->role.direct)
679 return sp->gfns[index];
680
681 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
682}
683
684static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
685{
686 if (sp->role.direct)
687 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
688 else
689 sp->gfns[index] = gfn;
690}
691
05da4558 692/*
d4dbf470
TY
693 * Return the pointer to the large page information for a given gfn,
694 * handling slots that are not large page aligned.
05da4558 695 */
d4dbf470
TY
696static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
697 struct kvm_memory_slot *slot,
698 int level)
05da4558
MT
699{
700 unsigned long idx;
701
fb03cb6f 702 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 703 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
704}
705
706static void account_shadowed(struct kvm *kvm, gfn_t gfn)
707{
d25797b2 708 struct kvm_memory_slot *slot;
d4dbf470 709 struct kvm_lpage_info *linfo;
d25797b2 710 int i;
05da4558 711
a1f4d395 712 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
713 for (i = PT_DIRECTORY_LEVEL;
714 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
715 linfo = lpage_info_slot(gfn, slot, i);
716 linfo->write_count += 1;
d25797b2 717 }
332b207d 718 kvm->arch.indirect_shadow_pages++;
05da4558
MT
719}
720
721static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
722{
d25797b2 723 struct kvm_memory_slot *slot;
d4dbf470 724 struct kvm_lpage_info *linfo;
d25797b2 725 int i;
05da4558 726
a1f4d395 727 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
728 for (i = PT_DIRECTORY_LEVEL;
729 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
730 linfo = lpage_info_slot(gfn, slot, i);
731 linfo->write_count -= 1;
732 WARN_ON(linfo->write_count < 0);
d25797b2 733 }
332b207d 734 kvm->arch.indirect_shadow_pages--;
05da4558
MT
735}
736
d25797b2
JR
737static int has_wrprotected_page(struct kvm *kvm,
738 gfn_t gfn,
739 int level)
05da4558 740{
2843099f 741 struct kvm_memory_slot *slot;
d4dbf470 742 struct kvm_lpage_info *linfo;
05da4558 743
a1f4d395 744 slot = gfn_to_memslot(kvm, gfn);
05da4558 745 if (slot) {
d4dbf470
TY
746 linfo = lpage_info_slot(gfn, slot, level);
747 return linfo->write_count;
05da4558
MT
748 }
749
750 return 1;
751}
752
d25797b2 753static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 754{
8f0b1ab6 755 unsigned long page_size;
d25797b2 756 int i, ret = 0;
05da4558 757
8f0b1ab6 758 page_size = kvm_host_page_size(kvm, gfn);
05da4558 759
d25797b2
JR
760 for (i = PT_PAGE_TABLE_LEVEL;
761 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
762 if (page_size >= KVM_HPAGE_SIZE(i))
763 ret = i;
764 else
765 break;
766 }
767
4c2155ce 768 return ret;
05da4558
MT
769}
770
5d163b1c
XG
771static struct kvm_memory_slot *
772gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
773 bool no_dirty_log)
05da4558
MT
774{
775 struct kvm_memory_slot *slot;
5d163b1c
XG
776
777 slot = gfn_to_memslot(vcpu->kvm, gfn);
778 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
779 (no_dirty_log && slot->dirty_bitmap))
780 slot = NULL;
781
782 return slot;
783}
784
785static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
786{
a0a8eaba 787 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
788}
789
790static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
791{
792 int host_level, level, max_level;
05da4558 793
d25797b2
JR
794 host_level = host_mapping_level(vcpu->kvm, large_gfn);
795
796 if (host_level == PT_PAGE_TABLE_LEVEL)
797 return host_level;
798
878403b7
SY
799 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
800 kvm_x86_ops->get_lpage_level() : host_level;
801
802 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
803 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
804 break;
d25797b2
JR
805
806 return level - 1;
05da4558
MT
807}
808
290fc38d 809/*
53c07b18 810 * Pte mapping structures:
cd4a4e53 811 *
53c07b18 812 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 813 *
53c07b18
XG
814 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
815 * pte_list_desc containing more mappings.
53a27b39 816 *
53c07b18 817 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
818 * the spte was not added.
819 *
cd4a4e53 820 */
53c07b18
XG
821static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
822 unsigned long *pte_list)
cd4a4e53 823{
53c07b18 824 struct pte_list_desc *desc;
53a27b39 825 int i, count = 0;
cd4a4e53 826
53c07b18
XG
827 if (!*pte_list) {
828 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
829 *pte_list = (unsigned long)spte;
830 } else if (!(*pte_list & 1)) {
831 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
832 desc = mmu_alloc_pte_list_desc(vcpu);
833 desc->sptes[0] = (u64 *)*pte_list;
d555c333 834 desc->sptes[1] = spte;
53c07b18 835 *pte_list = (unsigned long)desc | 1;
cb16a7b3 836 ++count;
cd4a4e53 837 } else {
53c07b18
XG
838 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
839 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
840 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 841 desc = desc->more;
53c07b18 842 count += PTE_LIST_EXT;
53a27b39 843 }
53c07b18
XG
844 if (desc->sptes[PTE_LIST_EXT-1]) {
845 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
846 desc = desc->more;
847 }
d555c333 848 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 849 ++count;
d555c333 850 desc->sptes[i] = spte;
cd4a4e53 851 }
53a27b39 852 return count;
cd4a4e53
AK
853}
854
53c07b18
XG
855static void
856pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
857 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
858{
859 int j;
860
53c07b18 861 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 862 ;
d555c333
AK
863 desc->sptes[i] = desc->sptes[j];
864 desc->sptes[j] = NULL;
cd4a4e53
AK
865 if (j != 0)
866 return;
867 if (!prev_desc && !desc->more)
53c07b18 868 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
869 else
870 if (prev_desc)
871 prev_desc->more = desc->more;
872 else
53c07b18
XG
873 *pte_list = (unsigned long)desc->more | 1;
874 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
875}
876
53c07b18 877static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 878{
53c07b18
XG
879 struct pte_list_desc *desc;
880 struct pte_list_desc *prev_desc;
cd4a4e53
AK
881 int i;
882
53c07b18
XG
883 if (!*pte_list) {
884 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 885 BUG();
53c07b18
XG
886 } else if (!(*pte_list & 1)) {
887 rmap_printk("pte_list_remove: %p 1->0\n", spte);
888 if ((u64 *)*pte_list != spte) {
889 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
890 BUG();
891 }
53c07b18 892 *pte_list = 0;
cd4a4e53 893 } else {
53c07b18
XG
894 rmap_printk("pte_list_remove: %p many->many\n", spte);
895 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
896 prev_desc = NULL;
897 while (desc) {
53c07b18 898 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 899 if (desc->sptes[i] == spte) {
53c07b18 900 pte_list_desc_remove_entry(pte_list,
714b93da 901 desc, i,
cd4a4e53
AK
902 prev_desc);
903 return;
904 }
905 prev_desc = desc;
906 desc = desc->more;
907 }
53c07b18 908 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
909 BUG();
910 }
911}
912
67052b35
XG
913typedef void (*pte_list_walk_fn) (u64 *spte);
914static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
915{
916 struct pte_list_desc *desc;
917 int i;
918
919 if (!*pte_list)
920 return;
921
922 if (!(*pte_list & 1))
923 return fn((u64 *)*pte_list);
924
925 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
926 while (desc) {
927 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
928 fn(desc->sptes[i]);
929 desc = desc->more;
930 }
931}
932
9373e2c0 933static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 934 struct kvm_memory_slot *slot)
53c07b18 935{
53c07b18
XG
936 struct kvm_lpage_info *linfo;
937
53c07b18
XG
938 if (likely(level == PT_PAGE_TABLE_LEVEL))
939 return &slot->rmap[gfn - slot->base_gfn];
940
941 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
942 return &linfo->rmap_pde;
943}
944
9b9b1492
TY
945/*
946 * Take gfn and return the reverse mapping to it.
947 */
948static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
949{
950 struct kvm_memory_slot *slot;
951
952 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 953 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
954}
955
f759e2b4
XG
956static bool rmap_can_add(struct kvm_vcpu *vcpu)
957{
958 struct kvm_mmu_memory_cache *cache;
959
960 cache = &vcpu->arch.mmu_pte_list_desc_cache;
961 return mmu_memory_cache_free_objects(cache);
962}
963
53c07b18
XG
964static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
965{
966 struct kvm_mmu_page *sp;
967 unsigned long *rmapp;
968
53c07b18
XG
969 sp = page_header(__pa(spte));
970 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
971 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
972 return pte_list_add(vcpu, spte, rmapp);
973}
974
53c07b18
XG
975static void rmap_remove(struct kvm *kvm, u64 *spte)
976{
977 struct kvm_mmu_page *sp;
978 gfn_t gfn;
979 unsigned long *rmapp;
980
981 sp = page_header(__pa(spte));
982 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
983 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
984 pte_list_remove(spte, rmapp);
985}
986
1e3f42f0
TY
987/*
988 * Used by the following functions to iterate through the sptes linked by a
989 * rmap. All fields are private and not assumed to be used outside.
990 */
991struct rmap_iterator {
992 /* private fields */
993 struct pte_list_desc *desc; /* holds the sptep if not NULL */
994 int pos; /* index of the sptep */
995};
996
997/*
998 * Iteration must be started by this function. This should also be used after
999 * removing/dropping sptes from the rmap link because in such cases the
1000 * information in the itererator may not be valid.
1001 *
1002 * Returns sptep if found, NULL otherwise.
1003 */
1004static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1005{
1006 if (!rmap)
1007 return NULL;
1008
1009 if (!(rmap & 1)) {
1010 iter->desc = NULL;
1011 return (u64 *)rmap;
1012 }
1013
1014 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1015 iter->pos = 0;
1016 return iter->desc->sptes[iter->pos];
1017}
1018
1019/*
1020 * Must be used with a valid iterator: e.g. after rmap_get_first().
1021 *
1022 * Returns sptep if found, NULL otherwise.
1023 */
1024static u64 *rmap_get_next(struct rmap_iterator *iter)
1025{
1026 if (iter->desc) {
1027 if (iter->pos < PTE_LIST_EXT - 1) {
1028 u64 *sptep;
1029
1030 ++iter->pos;
1031 sptep = iter->desc->sptes[iter->pos];
1032 if (sptep)
1033 return sptep;
1034 }
1035
1036 iter->desc = iter->desc->more;
1037
1038 if (iter->desc) {
1039 iter->pos = 0;
1040 /* desc->sptes[0] cannot be NULL */
1041 return iter->desc->sptes[iter->pos];
1042 }
1043 }
1044
1045 return NULL;
1046}
1047
c3707958 1048static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1049{
1df9f2dc 1050 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1051 rmap_remove(kvm, sptep);
be38d276
AK
1052}
1053
a0ed4607 1054static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1055{
1e3f42f0
TY
1056 u64 *sptep;
1057 struct rmap_iterator iter;
a0ed4607 1058 int write_protected = 0;
374cbac0 1059
1e3f42f0
TY
1060 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
a0ed4607 1063
1e3f42f0
TY
1064 if (!is_writable_pte(*sptep)) {
1065 sptep = rmap_get_next(&iter);
a0ed4607 1066 continue;
1e3f42f0 1067 }
a0ed4607
TY
1068
1069 if (level == PT_PAGE_TABLE_LEVEL) {
1e3f42f0
TY
1070 mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071 sptep = rmap_get_next(&iter);
a0ed4607 1072 } else {
1e3f42f0
TY
1073 BUG_ON(!is_large_pte(*sptep));
1074 drop_spte(kvm, sptep);
a0ed4607 1075 --kvm->stat.lpages;
1e3f42f0 1076 sptep = rmap_get_first(*rmapp, &iter);
caa5b8a5 1077 }
a0ed4607
TY
1078
1079 write_protected = 1;
374cbac0 1080 }
855149aa 1081
a0ed4607
TY
1082 return write_protected;
1083}
1084
5dc99b23
TY
1085/**
1086 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087 * @kvm: kvm instance
1088 * @slot: slot to protect
1089 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090 * @mask: indicates which pages we should protect
1091 *
1092 * Used when we do not need to care about huge page mappings: e.g. during dirty
1093 * logging we do not have any such mappings.
1094 */
1095void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096 struct kvm_memory_slot *slot,
1097 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1098{
1099 unsigned long *rmapp;
a0ed4607 1100
5dc99b23
TY
1101 while (mask) {
1102 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1104
5dc99b23
TY
1105 /* clear the first set bit */
1106 mask &= mask - 1;
1107 }
374cbac0
AK
1108}
1109
95d4c16c
TY
1110static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1111{
1112 struct kvm_memory_slot *slot;
5dc99b23
TY
1113 unsigned long *rmapp;
1114 int i;
1115 int write_protected = 0;
95d4c16c
TY
1116
1117 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1118
1119 for (i = PT_PAGE_TABLE_LEVEL;
1120 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121 rmapp = __gfn_to_rmap(gfn, i, slot);
1122 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1123 }
1124
1125 return write_protected;
95d4c16c
TY
1126}
1127
8a8365c5
FD
1128static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1129 unsigned long data)
e930bffe 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
e930bffe
AA
1133 int need_tlb_flush = 0;
1134
1e3f42f0
TY
1135 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1138
1139 drop_spte(kvm, sptep);
e930bffe
AA
1140 need_tlb_flush = 1;
1141 }
1e3f42f0 1142
e930bffe
AA
1143 return need_tlb_flush;
1144}
1145
8a8365c5
FD
1146static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1147 unsigned long data)
3da0dd43 1148{
1e3f42f0
TY
1149 u64 *sptep;
1150 struct rmap_iterator iter;
3da0dd43 1151 int need_flush = 0;
1e3f42f0 1152 u64 new_spte;
3da0dd43
IE
1153 pte_t *ptep = (pte_t *)data;
1154 pfn_t new_pfn;
1155
1156 WARN_ON(pte_huge(*ptep));
1157 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1158
1159 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1162
3da0dd43 1163 need_flush = 1;
1e3f42f0 1164
3da0dd43 1165 if (pte_write(*ptep)) {
1e3f42f0
TY
1166 drop_spte(kvm, sptep);
1167 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1168 } else {
1e3f42f0 1169 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1170 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1171
1172 new_spte &= ~PT_WRITABLE_MASK;
1173 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1174 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1175
1176 mmu_spte_clear_track_bits(sptep);
1177 mmu_spte_set(sptep, new_spte);
1178 sptep = rmap_get_next(&iter);
3da0dd43
IE
1179 }
1180 }
1e3f42f0 1181
3da0dd43
IE
1182 if (need_flush)
1183 kvm_flush_remote_tlbs(kvm);
1184
1185 return 0;
1186}
1187
8a8365c5
FD
1188static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1189 unsigned long data,
3da0dd43 1190 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1191 unsigned long data))
e930bffe 1192{
be6ba0f0 1193 int j;
90bb6fc5 1194 int ret;
e930bffe 1195 int retval = 0;
bc6678a3 1196 struct kvm_memslots *slots;
be6ba0f0 1197 struct kvm_memory_slot *memslot;
bc6678a3 1198
90d83dc3 1199 slots = kvm_memslots(kvm);
e930bffe 1200
be6ba0f0 1201 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1202 unsigned long start = memslot->userspace_addr;
1203 unsigned long end;
1204
e930bffe
AA
1205 end = start + (memslot->npages << PAGE_SHIFT);
1206 if (hva >= start && hva < end) {
1207 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1208 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1209
90bb6fc5 1210 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1211
1212 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1213 struct kvm_lpage_info *linfo;
1214
1215 linfo = lpage_info_slot(gfn, memslot,
1216 PT_DIRECTORY_LEVEL + j);
1217 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1218 }
90bb6fc5
AK
1219 trace_kvm_age_page(hva, memslot, ret);
1220 retval |= ret;
e930bffe
AA
1221 }
1222 }
1223
1224 return retval;
1225}
1226
1227int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1228{
3da0dd43
IE
1229 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1230}
1231
1232void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1233{
8a8365c5 1234 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1235}
1236
8a8365c5
FD
1237static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1238 unsigned long data)
e930bffe 1239{
1e3f42f0
TY
1240 u64 *sptep;
1241 struct rmap_iterator iter;
e930bffe
AA
1242 int young = 0;
1243
6316e1c8 1244 /*
3f6d8c8a
XH
1245 * In case of absence of EPT Access and Dirty Bits supports,
1246 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1247 * an EPT mapping, and clearing it if it does. On the next access,
1248 * a new EPT mapping will be established.
1249 * This has some overhead, but not as much as the cost of swapping
1250 * out actively used pages or breaking up actively used hugepages.
1251 */
534e38b4 1252 if (!shadow_accessed_mask)
6316e1c8 1253 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1254
1e3f42f0
TY
1255 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1256 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1257 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1258
3f6d8c8a 1259 if (*sptep & shadow_accessed_mask) {
e930bffe 1260 young = 1;
3f6d8c8a
XH
1261 clear_bit((ffs(shadow_accessed_mask) - 1),
1262 (unsigned long *)sptep);
e930bffe 1263 }
e930bffe 1264 }
1e3f42f0 1265
e930bffe
AA
1266 return young;
1267}
1268
8ee53820
AA
1269static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270 unsigned long data)
1271{
1e3f42f0
TY
1272 u64 *sptep;
1273 struct rmap_iterator iter;
8ee53820
AA
1274 int young = 0;
1275
1276 /*
1277 * If there's no access bit in the secondary pte set by the
1278 * hardware it's up to gup-fast/gup to set the access bit in
1279 * the primary pte or in the page structure.
1280 */
1281 if (!shadow_accessed_mask)
1282 goto out;
1283
1e3f42f0
TY
1284 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1285 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1286 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1287
3f6d8c8a 1288 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1289 young = 1;
1290 break;
1291 }
8ee53820
AA
1292 }
1293out:
1294 return young;
1295}
1296
53a27b39
MT
1297#define RMAP_RECYCLE_THRESHOLD 1000
1298
852e3c19 1299static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1300{
1301 unsigned long *rmapp;
852e3c19
JR
1302 struct kvm_mmu_page *sp;
1303
1304 sp = page_header(__pa(spte));
53a27b39 1305
852e3c19 1306 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1307
3da0dd43 1308 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1309 kvm_flush_remote_tlbs(vcpu->kvm);
1310}
1311
e930bffe
AA
1312int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1313{
3da0dd43 1314 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1315}
1316
8ee53820
AA
1317int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1318{
1319 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1320}
1321
d6c69ee9 1322#ifdef MMU_DEBUG
47ad8e68 1323static int is_empty_shadow_page(u64 *spt)
6aa8b732 1324{
139bdb2d
AK
1325 u64 *pos;
1326 u64 *end;
1327
47ad8e68 1328 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1329 if (is_shadow_present_pte(*pos)) {
b8688d51 1330 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1331 pos, *pos);
6aa8b732 1332 return 0;
139bdb2d 1333 }
6aa8b732
AK
1334 return 1;
1335}
d6c69ee9 1336#endif
6aa8b732 1337
45221ab6
DH
1338/*
1339 * This value is the sum of all of the kvm instances's
1340 * kvm->arch.n_used_mmu_pages values. We need a global,
1341 * aggregate version in order to make the slab shrinker
1342 * faster
1343 */
1344static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1345{
1346 kvm->arch.n_used_mmu_pages += nr;
1347 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1348}
1349
bd4c86ea
XG
1350/*
1351 * Remove the sp from shadow page cache, after call it,
1352 * we can not find this sp from the cache, and the shadow
1353 * page table is still valid.
1354 * It should be under the protection of mmu lock.
1355 */
1356static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1357{
4db35314 1358 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1359 hlist_del(&sp->hash_link);
2032a93d 1360 if (!sp->role.direct)
842f22ed 1361 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1362}
1363
1364/*
1365 * Free the shadow page table and the sp, we can do it
1366 * out of the protection of mmu lock.
1367 */
1368static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1369{
1370 list_del(&sp->link);
1371 free_page((unsigned long)sp->spt);
e8ad9a70 1372 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1373}
1374
cea0f0e7
AK
1375static unsigned kvm_page_table_hashfn(gfn_t gfn)
1376{
1ae0a13d 1377 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1378}
1379
714b93da 1380static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1381 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1382{
cea0f0e7
AK
1383 if (!parent_pte)
1384 return;
cea0f0e7 1385
67052b35 1386 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1387}
1388
4db35314 1389static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1390 u64 *parent_pte)
1391{
67052b35 1392 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1393}
1394
bcdd9a93
XG
1395static void drop_parent_pte(struct kvm_mmu_page *sp,
1396 u64 *parent_pte)
1397{
1398 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1399 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1400}
1401
67052b35
XG
1402static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1403 u64 *parent_pte, int direct)
ad8cfbe3 1404{
67052b35
XG
1405 struct kvm_mmu_page *sp;
1406 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1407 sizeof *sp);
1408 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1409 if (!direct)
1410 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1411 PAGE_SIZE);
1412 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1413 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1414 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1415 sp->parent_ptes = 0;
1416 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1417 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1418 return sp;
ad8cfbe3
MT
1419}
1420
67052b35 1421static void mark_unsync(u64 *spte);
1047df1f 1422static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1423{
67052b35 1424 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1425}
1426
67052b35 1427static void mark_unsync(u64 *spte)
0074ff63 1428{
67052b35 1429 struct kvm_mmu_page *sp;
1047df1f 1430 unsigned int index;
0074ff63 1431
67052b35 1432 sp = page_header(__pa(spte));
1047df1f
XG
1433 index = spte - sp->spt;
1434 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1435 return;
1047df1f 1436 if (sp->unsync_children++)
0074ff63 1437 return;
1047df1f 1438 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1439}
1440
e8bc217a 1441static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1442 struct kvm_mmu_page *sp)
e8bc217a
MT
1443{
1444 return 1;
1445}
1446
a7052897
MT
1447static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1448{
1449}
1450
0f53b5b1
XG
1451static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1452 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1453 const void *pte)
0f53b5b1
XG
1454{
1455 WARN_ON(1);
1456}
1457
60c8aec6
MT
1458#define KVM_PAGE_ARRAY_NR 16
1459
1460struct kvm_mmu_pages {
1461 struct mmu_page_and_offset {
1462 struct kvm_mmu_page *sp;
1463 unsigned int idx;
1464 } page[KVM_PAGE_ARRAY_NR];
1465 unsigned int nr;
1466};
1467
cded19f3
HE
1468static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1469 int idx)
4731d4c7 1470{
60c8aec6 1471 int i;
4731d4c7 1472
60c8aec6
MT
1473 if (sp->unsync)
1474 for (i=0; i < pvec->nr; i++)
1475 if (pvec->page[i].sp == sp)
1476 return 0;
1477
1478 pvec->page[pvec->nr].sp = sp;
1479 pvec->page[pvec->nr].idx = idx;
1480 pvec->nr++;
1481 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1482}
1483
1484static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1485 struct kvm_mmu_pages *pvec)
1486{
1487 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1488
37178b8b 1489 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1490 struct kvm_mmu_page *child;
4731d4c7
MT
1491 u64 ent = sp->spt[i];
1492
7a8f1a74
XG
1493 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1494 goto clear_child_bitmap;
1495
1496 child = page_header(ent & PT64_BASE_ADDR_MASK);
1497
1498 if (child->unsync_children) {
1499 if (mmu_pages_add(pvec, child, i))
1500 return -ENOSPC;
1501
1502 ret = __mmu_unsync_walk(child, pvec);
1503 if (!ret)
1504 goto clear_child_bitmap;
1505 else if (ret > 0)
1506 nr_unsync_leaf += ret;
1507 else
1508 return ret;
1509 } else if (child->unsync) {
1510 nr_unsync_leaf++;
1511 if (mmu_pages_add(pvec, child, i))
1512 return -ENOSPC;
1513 } else
1514 goto clear_child_bitmap;
1515
1516 continue;
1517
1518clear_child_bitmap:
1519 __clear_bit(i, sp->unsync_child_bitmap);
1520 sp->unsync_children--;
1521 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1522 }
1523
4731d4c7 1524
60c8aec6
MT
1525 return nr_unsync_leaf;
1526}
1527
1528static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1529 struct kvm_mmu_pages *pvec)
1530{
1531 if (!sp->unsync_children)
1532 return 0;
1533
1534 mmu_pages_add(pvec, sp, 0);
1535 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1536}
1537
4731d4c7
MT
1538static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1539{
1540 WARN_ON(!sp->unsync);
5e1b3ddb 1541 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1542 sp->unsync = 0;
1543 --kvm->stat.mmu_unsync;
1544}
1545
7775834a
XG
1546static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1547 struct list_head *invalid_list);
1548static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1549 struct list_head *invalid_list);
4731d4c7 1550
f41d335a
XG
1551#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1552 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1553 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1554 if ((sp)->gfn != (gfn)) {} else
1555
f41d335a
XG
1556#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1557 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1558 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1559 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1560 (sp)->role.invalid) {} else
1561
f918b443 1562/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1563static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1564 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1565{
5b7e0102 1566 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1567 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1568 return 1;
1569 }
1570
f918b443 1571 if (clear_unsync)
1d9dc7e0 1572 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1573
a4a8e6f7 1574 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1575 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1576 return 1;
1577 }
1578
1579 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1580 return 0;
1581}
1582
1d9dc7e0
XG
1583static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1584 struct kvm_mmu_page *sp)
1585{
d98ba053 1586 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1587 int ret;
1588
d98ba053 1589 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1590 if (ret)
d98ba053
XG
1591 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1592
1d9dc7e0
XG
1593 return ret;
1594}
1595
e37fa785
XG
1596#ifdef CONFIG_KVM_MMU_AUDIT
1597#include "mmu_audit.c"
1598#else
1599static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1600static void mmu_audit_disable(void) { }
1601#endif
1602
d98ba053
XG
1603static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1604 struct list_head *invalid_list)
1d9dc7e0 1605{
d98ba053 1606 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1607}
1608
9f1a122f
XG
1609/* @gfn should be write-protected at the call site */
1610static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1611{
9f1a122f 1612 struct kvm_mmu_page *s;
f41d335a 1613 struct hlist_node *node;
d98ba053 1614 LIST_HEAD(invalid_list);
9f1a122f
XG
1615 bool flush = false;
1616
f41d335a 1617 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1618 if (!s->unsync)
9f1a122f
XG
1619 continue;
1620
1621 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1622 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1623 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1624 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1625 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1626 continue;
1627 }
9f1a122f
XG
1628 flush = true;
1629 }
1630
d98ba053 1631 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1632 if (flush)
1633 kvm_mmu_flush_tlb(vcpu);
1634}
1635
60c8aec6
MT
1636struct mmu_page_path {
1637 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1638 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1639};
1640
60c8aec6
MT
1641#define for_each_sp(pvec, sp, parents, i) \
1642 for (i = mmu_pages_next(&pvec, &parents, -1), \
1643 sp = pvec.page[i].sp; \
1644 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1645 i = mmu_pages_next(&pvec, &parents, i))
1646
cded19f3
HE
1647static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1648 struct mmu_page_path *parents,
1649 int i)
60c8aec6
MT
1650{
1651 int n;
1652
1653 for (n = i+1; n < pvec->nr; n++) {
1654 struct kvm_mmu_page *sp = pvec->page[n].sp;
1655
1656 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1657 parents->idx[0] = pvec->page[n].idx;
1658 return n;
1659 }
1660
1661 parents->parent[sp->role.level-2] = sp;
1662 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1663 }
1664
1665 return n;
1666}
1667
cded19f3 1668static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1669{
60c8aec6
MT
1670 struct kvm_mmu_page *sp;
1671 unsigned int level = 0;
1672
1673 do {
1674 unsigned int idx = parents->idx[level];
4731d4c7 1675
60c8aec6
MT
1676 sp = parents->parent[level];
1677 if (!sp)
1678 return;
1679
1680 --sp->unsync_children;
1681 WARN_ON((int)sp->unsync_children < 0);
1682 __clear_bit(idx, sp->unsync_child_bitmap);
1683 level++;
1684 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1685}
1686
60c8aec6
MT
1687static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1688 struct mmu_page_path *parents,
1689 struct kvm_mmu_pages *pvec)
4731d4c7 1690{
60c8aec6
MT
1691 parents->parent[parent->role.level-1] = NULL;
1692 pvec->nr = 0;
1693}
4731d4c7 1694
60c8aec6
MT
1695static void mmu_sync_children(struct kvm_vcpu *vcpu,
1696 struct kvm_mmu_page *parent)
1697{
1698 int i;
1699 struct kvm_mmu_page *sp;
1700 struct mmu_page_path parents;
1701 struct kvm_mmu_pages pages;
d98ba053 1702 LIST_HEAD(invalid_list);
60c8aec6
MT
1703
1704 kvm_mmu_pages_init(parent, &parents, &pages);
1705 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1706 int protected = 0;
1707
1708 for_each_sp(pages, sp, parents, i)
1709 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1710
1711 if (protected)
1712 kvm_flush_remote_tlbs(vcpu->kvm);
1713
60c8aec6 1714 for_each_sp(pages, sp, parents, i) {
d98ba053 1715 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1716 mmu_pages_clear_parents(&parents);
1717 }
d98ba053 1718 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1719 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1720 kvm_mmu_pages_init(parent, &parents, &pages);
1721 }
4731d4c7
MT
1722}
1723
c3707958
XG
1724static void init_shadow_page_table(struct kvm_mmu_page *sp)
1725{
1726 int i;
1727
1728 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1729 sp->spt[i] = 0ull;
1730}
1731
a30f47cb
XG
1732static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1733{
1734 sp->write_flooding_count = 0;
1735}
1736
1737static void clear_sp_write_flooding_count(u64 *spte)
1738{
1739 struct kvm_mmu_page *sp = page_header(__pa(spte));
1740
1741 __clear_sp_write_flooding_count(sp);
1742}
1743
cea0f0e7
AK
1744static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1745 gfn_t gfn,
1746 gva_t gaddr,
1747 unsigned level,
f6e2c02b 1748 int direct,
41074d07 1749 unsigned access,
f7d9c7b7 1750 u64 *parent_pte)
cea0f0e7
AK
1751{
1752 union kvm_mmu_page_role role;
cea0f0e7 1753 unsigned quadrant;
9f1a122f 1754 struct kvm_mmu_page *sp;
f41d335a 1755 struct hlist_node *node;
9f1a122f 1756 bool need_sync = false;
cea0f0e7 1757
a770f6f2 1758 role = vcpu->arch.mmu.base_role;
cea0f0e7 1759 role.level = level;
f6e2c02b 1760 role.direct = direct;
84b0c8c6 1761 if (role.direct)
5b7e0102 1762 role.cr4_pae = 0;
41074d07 1763 role.access = access;
c5a78f2b
JR
1764 if (!vcpu->arch.mmu.direct_map
1765 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1766 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1767 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1768 role.quadrant = quadrant;
1769 }
f41d335a 1770 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1771 if (!need_sync && sp->unsync)
1772 need_sync = true;
4731d4c7 1773
7ae680eb
XG
1774 if (sp->role.word != role.word)
1775 continue;
4731d4c7 1776
7ae680eb
XG
1777 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1778 break;
e02aa901 1779
7ae680eb
XG
1780 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1781 if (sp->unsync_children) {
a8eeb04a 1782 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1783 kvm_mmu_mark_parents_unsync(sp);
1784 } else if (sp->unsync)
1785 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1786
a30f47cb 1787 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1788 trace_kvm_mmu_get_page(sp, false);
1789 return sp;
1790 }
dfc5aa00 1791 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1792 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1793 if (!sp)
1794 return sp;
4db35314
AK
1795 sp->gfn = gfn;
1796 sp->role = role;
7ae680eb
XG
1797 hlist_add_head(&sp->hash_link,
1798 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1799 if (!direct) {
b1a36821
MT
1800 if (rmap_write_protect(vcpu->kvm, gfn))
1801 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1802 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1803 kvm_sync_pages(vcpu, gfn);
1804
4731d4c7
MT
1805 account_shadowed(vcpu->kvm, gfn);
1806 }
c3707958 1807 init_shadow_page_table(sp);
f691fe1d 1808 trace_kvm_mmu_get_page(sp, true);
4db35314 1809 return sp;
cea0f0e7
AK
1810}
1811
2d11123a
AK
1812static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1813 struct kvm_vcpu *vcpu, u64 addr)
1814{
1815 iterator->addr = addr;
1816 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1817 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1818
1819 if (iterator->level == PT64_ROOT_LEVEL &&
1820 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1821 !vcpu->arch.mmu.direct_map)
1822 --iterator->level;
1823
2d11123a
AK
1824 if (iterator->level == PT32E_ROOT_LEVEL) {
1825 iterator->shadow_addr
1826 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1827 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1828 --iterator->level;
1829 if (!iterator->shadow_addr)
1830 iterator->level = 0;
1831 }
1832}
1833
1834static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1835{
1836 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1837 return false;
4d88954d 1838
2d11123a
AK
1839 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1840 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1841 return true;
1842}
1843
c2a2ac2b
XG
1844static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1845 u64 spte)
2d11123a 1846{
c2a2ac2b 1847 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1848 iterator->level = 0;
1849 return;
1850 }
1851
c2a2ac2b 1852 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1853 --iterator->level;
1854}
1855
c2a2ac2b
XG
1856static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1857{
1858 return __shadow_walk_next(iterator, *iterator->sptep);
1859}
1860
32ef26a3
AK
1861static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1862{
1863 u64 spte;
1864
1865 spte = __pa(sp->spt)
1866 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1867 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1868 mmu_spte_set(sptep, spte);
32ef26a3
AK
1869}
1870
a3aa51cf
AK
1871static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1872{
1873 if (is_large_pte(*sptep)) {
c3707958 1874 drop_spte(vcpu->kvm, sptep);
6addd1aa 1875 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1876 kvm_flush_remote_tlbs(vcpu->kvm);
1877 }
1878}
1879
a357bd22
AK
1880static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1881 unsigned direct_access)
1882{
1883 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1884 struct kvm_mmu_page *child;
1885
1886 /*
1887 * For the direct sp, if the guest pte's dirty bit
1888 * changed form clean to dirty, it will corrupt the
1889 * sp's access: allow writable in the read-only sp,
1890 * so we should update the spte at this point to get
1891 * a new sp with the correct access.
1892 */
1893 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1894 if (child->role.access == direct_access)
1895 return;
1896
bcdd9a93 1897 drop_parent_pte(child, sptep);
a357bd22
AK
1898 kvm_flush_remote_tlbs(vcpu->kvm);
1899 }
1900}
1901
505aef8f 1902static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1903 u64 *spte)
1904{
1905 u64 pte;
1906 struct kvm_mmu_page *child;
1907
1908 pte = *spte;
1909 if (is_shadow_present_pte(pte)) {
505aef8f 1910 if (is_last_spte(pte, sp->role.level)) {
c3707958 1911 drop_spte(kvm, spte);
505aef8f
XG
1912 if (is_large_pte(pte))
1913 --kvm->stat.lpages;
1914 } else {
38e3b2b2 1915 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1916 drop_parent_pte(child, spte);
38e3b2b2 1917 }
505aef8f
XG
1918 return true;
1919 }
1920
1921 if (is_mmio_spte(pte))
ce88decf 1922 mmu_spte_clear_no_track(spte);
c3707958 1923
505aef8f 1924 return false;
38e3b2b2
XG
1925}
1926
90cb0529 1927static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1928 struct kvm_mmu_page *sp)
a436036b 1929{
697fe2e2 1930 unsigned i;
697fe2e2 1931
38e3b2b2
XG
1932 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1933 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1934}
1935
4db35314 1936static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1937{
4db35314 1938 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1939}
1940
31aa2b44 1941static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 1942{
1e3f42f0
TY
1943 u64 *sptep;
1944 struct rmap_iterator iter;
a436036b 1945
1e3f42f0
TY
1946 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1947 drop_parent_pte(sp, sptep);
31aa2b44
AK
1948}
1949
60c8aec6 1950static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1951 struct kvm_mmu_page *parent,
1952 struct list_head *invalid_list)
4731d4c7 1953{
60c8aec6
MT
1954 int i, zapped = 0;
1955 struct mmu_page_path parents;
1956 struct kvm_mmu_pages pages;
4731d4c7 1957
60c8aec6 1958 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1959 return 0;
60c8aec6
MT
1960
1961 kvm_mmu_pages_init(parent, &parents, &pages);
1962 while (mmu_unsync_walk(parent, &pages)) {
1963 struct kvm_mmu_page *sp;
1964
1965 for_each_sp(pages, sp, parents, i) {
7775834a 1966 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1967 mmu_pages_clear_parents(&parents);
77662e00 1968 zapped++;
60c8aec6 1969 }
60c8aec6
MT
1970 kvm_mmu_pages_init(parent, &parents, &pages);
1971 }
1972
1973 return zapped;
4731d4c7
MT
1974}
1975
7775834a
XG
1976static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1977 struct list_head *invalid_list)
31aa2b44 1978{
4731d4c7 1979 int ret;
f691fe1d 1980
7775834a 1981 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1982 ++kvm->stat.mmu_shadow_zapped;
7775834a 1983 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1984 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1985 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1986 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1987 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1988 if (sp->unsync)
1989 kvm_unlink_unsync_page(kvm, sp);
4db35314 1990 if (!sp->root_count) {
54a4f023
GJ
1991 /* Count self */
1992 ret++;
7775834a 1993 list_move(&sp->link, invalid_list);
aa6bd187 1994 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1995 } else {
5b5c6a5a 1996 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1997 kvm_reload_remote_mmus(kvm);
1998 }
7775834a
XG
1999
2000 sp->role.invalid = 1;
4731d4c7 2001 return ret;
a436036b
AK
2002}
2003
7775834a
XG
2004static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2005 struct list_head *invalid_list)
2006{
2007 struct kvm_mmu_page *sp;
2008
2009 if (list_empty(invalid_list))
2010 return;
2011
c142786c
AK
2012 /*
2013 * wmb: make sure everyone sees our modifications to the page tables
2014 * rmb: make sure we see changes to vcpu->mode
2015 */
2016 smp_mb();
4f022648 2017
c142786c
AK
2018 /*
2019 * Wait for all vcpus to exit guest mode and/or lockless shadow
2020 * page table walks.
2021 */
2022 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2023
7775834a
XG
2024 do {
2025 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2026 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2027 kvm_mmu_isolate_page(sp);
aa6bd187 2028 kvm_mmu_free_page(sp);
7775834a 2029 } while (!list_empty(invalid_list));
7775834a
XG
2030}
2031
82ce2c96
IE
2032/*
2033 * Changing the number of mmu pages allocated to the vm
49d5ca26 2034 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2035 */
49d5ca26 2036void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2037{
d98ba053 2038 LIST_HEAD(invalid_list);
82ce2c96
IE
2039 /*
2040 * If we set the number of mmu pages to be smaller be than the
2041 * number of actived pages , we must to free some mmu pages before we
2042 * change the value
2043 */
2044
49d5ca26
DH
2045 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2046 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2047 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2048 struct kvm_mmu_page *page;
2049
f05e70ac 2050 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2051 struct kvm_mmu_page, link);
80b63faf 2052 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2053 }
aa6bd187 2054 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2055 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2056 }
82ce2c96 2057
49d5ca26 2058 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2059}
2060
1cb3f3ae 2061int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2062{
4db35314 2063 struct kvm_mmu_page *sp;
f41d335a 2064 struct hlist_node *node;
d98ba053 2065 LIST_HEAD(invalid_list);
a436036b
AK
2066 int r;
2067
9ad17b10 2068 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2069 r = 0;
1cb3f3ae 2070 spin_lock(&kvm->mmu_lock);
f41d335a 2071 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2072 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2073 sp->role.word);
2074 r = 1;
f41d335a 2075 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2076 }
d98ba053 2077 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2078 spin_unlock(&kvm->mmu_lock);
2079
a436036b 2080 return r;
cea0f0e7 2081}
1cb3f3ae 2082EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2083
38c335f1 2084static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2085{
bc6678a3 2086 int slot = memslot_id(kvm, gfn);
4db35314 2087 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2088
291f26bc 2089 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2090}
2091
74be52e3
SY
2092/*
2093 * The function is based on mtrr_type_lookup() in
2094 * arch/x86/kernel/cpu/mtrr/generic.c
2095 */
2096static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2097 u64 start, u64 end)
2098{
2099 int i;
2100 u64 base, mask;
2101 u8 prev_match, curr_match;
2102 int num_var_ranges = KVM_NR_VAR_MTRR;
2103
2104 if (!mtrr_state->enabled)
2105 return 0xFF;
2106
2107 /* Make end inclusive end, instead of exclusive */
2108 end--;
2109
2110 /* Look in fixed ranges. Just return the type as per start */
2111 if (mtrr_state->have_fixed && (start < 0x100000)) {
2112 int idx;
2113
2114 if (start < 0x80000) {
2115 idx = 0;
2116 idx += (start >> 16);
2117 return mtrr_state->fixed_ranges[idx];
2118 } else if (start < 0xC0000) {
2119 idx = 1 * 8;
2120 idx += ((start - 0x80000) >> 14);
2121 return mtrr_state->fixed_ranges[idx];
2122 } else if (start < 0x1000000) {
2123 idx = 3 * 8;
2124 idx += ((start - 0xC0000) >> 12);
2125 return mtrr_state->fixed_ranges[idx];
2126 }
2127 }
2128
2129 /*
2130 * Look in variable ranges
2131 * Look of multiple ranges matching this address and pick type
2132 * as per MTRR precedence
2133 */
2134 if (!(mtrr_state->enabled & 2))
2135 return mtrr_state->def_type;
2136
2137 prev_match = 0xFF;
2138 for (i = 0; i < num_var_ranges; ++i) {
2139 unsigned short start_state, end_state;
2140
2141 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2142 continue;
2143
2144 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2145 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2146 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2147 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2148
2149 start_state = ((start & mask) == (base & mask));
2150 end_state = ((end & mask) == (base & mask));
2151 if (start_state != end_state)
2152 return 0xFE;
2153
2154 if ((start & mask) != (base & mask))
2155 continue;
2156
2157 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2158 if (prev_match == 0xFF) {
2159 prev_match = curr_match;
2160 continue;
2161 }
2162
2163 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2164 curr_match == MTRR_TYPE_UNCACHABLE)
2165 return MTRR_TYPE_UNCACHABLE;
2166
2167 if ((prev_match == MTRR_TYPE_WRBACK &&
2168 curr_match == MTRR_TYPE_WRTHROUGH) ||
2169 (prev_match == MTRR_TYPE_WRTHROUGH &&
2170 curr_match == MTRR_TYPE_WRBACK)) {
2171 prev_match = MTRR_TYPE_WRTHROUGH;
2172 curr_match = MTRR_TYPE_WRTHROUGH;
2173 }
2174
2175 if (prev_match != curr_match)
2176 return MTRR_TYPE_UNCACHABLE;
2177 }
2178
2179 if (prev_match != 0xFF)
2180 return prev_match;
2181
2182 return mtrr_state->def_type;
2183}
2184
4b12f0de 2185u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2186{
2187 u8 mtrr;
2188
2189 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2190 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2191 if (mtrr == 0xfe || mtrr == 0xff)
2192 mtrr = MTRR_TYPE_WRBACK;
2193 return mtrr;
2194}
4b12f0de 2195EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2196
9cf5cf5a
XG
2197static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2198{
2199 trace_kvm_mmu_unsync_page(sp);
2200 ++vcpu->kvm->stat.mmu_unsync;
2201 sp->unsync = 1;
2202
2203 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2204}
2205
2206static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2207{
4731d4c7 2208 struct kvm_mmu_page *s;
f41d335a 2209 struct hlist_node *node;
9cf5cf5a 2210
f41d335a 2211 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2212 if (s->unsync)
4731d4c7 2213 continue;
9cf5cf5a
XG
2214 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2215 __kvm_unsync_page(vcpu, s);
4731d4c7 2216 }
4731d4c7
MT
2217}
2218
2219static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2220 bool can_unsync)
2221{
9cf5cf5a 2222 struct kvm_mmu_page *s;
f41d335a 2223 struct hlist_node *node;
9cf5cf5a
XG
2224 bool need_unsync = false;
2225
f41d335a 2226 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2227 if (!can_unsync)
2228 return 1;
2229
9cf5cf5a 2230 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2231 return 1;
9cf5cf5a
XG
2232
2233 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2234 need_unsync = true;
2235 }
4731d4c7 2236 }
9cf5cf5a
XG
2237 if (need_unsync)
2238 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2239 return 0;
2240}
2241
d555c333 2242static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2243 unsigned pte_access, int user_fault,
640d9b0d 2244 int write_fault, int level,
c2d0ee46 2245 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2246 bool can_unsync, bool host_writable)
1c4f1fd6 2247{
b330aa0c 2248 u64 spte, entry = *sptep;
1e73f9dd 2249 int ret = 0;
64d4d521 2250
ce88decf
XG
2251 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2252 return 0;
2253
982c2565 2254 spte = PT_PRESENT_MASK;
947da538 2255 if (!speculative)
3201b5d9 2256 spte |= shadow_accessed_mask;
640d9b0d 2257
7b52345e
SY
2258 if (pte_access & ACC_EXEC_MASK)
2259 spte |= shadow_x_mask;
2260 else
2261 spte |= shadow_nx_mask;
1c4f1fd6 2262 if (pte_access & ACC_USER_MASK)
7b52345e 2263 spte |= shadow_user_mask;
852e3c19 2264 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2265 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2266 if (tdp_enabled)
4b12f0de
SY
2267 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2268 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2269
9bdbba13 2270 if (host_writable)
1403283a 2271 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2272 else
2273 pte_access &= ~ACC_WRITE_MASK;
1403283a 2274
35149e21 2275 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2276
2277 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2278 || (!vcpu->arch.mmu.direct_map && write_fault
2279 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2280
852e3c19
JR
2281 if (level > PT_PAGE_TABLE_LEVEL &&
2282 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2283 ret = 1;
c3707958 2284 drop_spte(vcpu->kvm, sptep);
be38d276 2285 goto done;
38187c83
MT
2286 }
2287
1c4f1fd6 2288 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2289
c5a78f2b 2290 if (!vcpu->arch.mmu.direct_map
411c588d 2291 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2292 spte &= ~PT_USER_MASK;
411c588d
AK
2293 /*
2294 * If we converted a user page to a kernel page,
2295 * so that the kernel can write to it when cr0.wp=0,
2296 * then we should prevent the kernel from executing it
2297 * if SMEP is enabled.
2298 */
2299 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2300 spte |= PT64_NX_MASK;
2301 }
69325a12 2302
ecc5589f
MT
2303 /*
2304 * Optimization: for pte sync, if spte was writable the hash
2305 * lookup is unnecessary (and expensive). Write protection
2306 * is responsibility of mmu_get_page / kvm_sync_page.
2307 * Same reasoning can be applied to dirty page accounting.
2308 */
8dae4445 2309 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2310 goto set_pte;
2311
4731d4c7 2312 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2313 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2314 __func__, gfn);
1e73f9dd 2315 ret = 1;
1c4f1fd6 2316 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2317 if (is_writable_pte(spte))
1c4f1fd6 2318 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2319 }
2320 }
2321
1c4f1fd6
AK
2322 if (pte_access & ACC_WRITE_MASK)
2323 mark_page_dirty(vcpu->kvm, gfn);
2324
38187c83 2325set_pte:
1df9f2dc 2326 mmu_spte_update(sptep, spte);
b330aa0c
XG
2327 /*
2328 * If we overwrite a writable spte with a read-only one we
2329 * should flush remote TLBs. Otherwise rmap_write_protect
2330 * will find a read-only spte, even though the writable spte
2331 * might be cached on a CPU's TLB.
2332 */
2333 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2334 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2335done:
1e73f9dd
MT
2336 return ret;
2337}
2338
d555c333 2339static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2340 unsigned pt_access, unsigned pte_access,
640d9b0d 2341 int user_fault, int write_fault,
b90a0e6c 2342 int *emulate, int level, gfn_t gfn,
1403283a 2343 pfn_t pfn, bool speculative,
9bdbba13 2344 bool host_writable)
1e73f9dd
MT
2345{
2346 int was_rmapped = 0;
53a27b39 2347 int rmap_count;
1e73f9dd
MT
2348
2349 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2350 " user_fault %d gfn %llx\n",
d555c333 2351 __func__, *sptep, pt_access,
1e73f9dd
MT
2352 write_fault, user_fault, gfn);
2353
d555c333 2354 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2355 /*
2356 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2357 * the parent of the now unreachable PTE.
2358 */
852e3c19
JR
2359 if (level > PT_PAGE_TABLE_LEVEL &&
2360 !is_large_pte(*sptep)) {
1e73f9dd 2361 struct kvm_mmu_page *child;
d555c333 2362 u64 pte = *sptep;
1e73f9dd
MT
2363
2364 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2365 drop_parent_pte(child, sptep);
3be2264b 2366 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2367 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2368 pgprintk("hfn old %llx new %llx\n",
d555c333 2369 spte_to_pfn(*sptep), pfn);
c3707958 2370 drop_spte(vcpu->kvm, sptep);
91546356 2371 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2372 } else
2373 was_rmapped = 1;
1e73f9dd 2374 }
852e3c19 2375
d555c333 2376 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2377 level, gfn, pfn, speculative, true,
9bdbba13 2378 host_writable)) {
1e73f9dd 2379 if (write_fault)
b90a0e6c 2380 *emulate = 1;
5304efde 2381 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2382 }
1e73f9dd 2383
ce88decf
XG
2384 if (unlikely(is_mmio_spte(*sptep) && emulate))
2385 *emulate = 1;
2386
d555c333 2387 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2388 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2389 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2390 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2391 *sptep, sptep);
d555c333 2392 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2393 ++vcpu->kvm->stat.lpages;
2394
ffb61bb3
XG
2395 if (is_shadow_present_pte(*sptep)) {
2396 page_header_update_slot(vcpu->kvm, sptep, gfn);
2397 if (!was_rmapped) {
2398 rmap_count = rmap_add(vcpu, sptep, gfn);
2399 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2400 rmap_recycle(vcpu, sptep, gfn);
2401 }
1c4f1fd6 2402 }
9ed5520d 2403 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2404}
2405
6aa8b732
AK
2406static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2407{
2408}
2409
957ed9ef
XG
2410static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2411 bool no_dirty_log)
2412{
2413 struct kvm_memory_slot *slot;
2414 unsigned long hva;
2415
5d163b1c 2416 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2417 if (!slot) {
fce92dce
XG
2418 get_page(fault_page);
2419 return page_to_pfn(fault_page);
957ed9ef
XG
2420 }
2421
2422 hva = gfn_to_hva_memslot(slot, gfn);
2423
2424 return hva_to_pfn_atomic(vcpu->kvm, hva);
2425}
2426
2427static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2428 struct kvm_mmu_page *sp,
2429 u64 *start, u64 *end)
2430{
2431 struct page *pages[PTE_PREFETCH_NUM];
2432 unsigned access = sp->role.access;
2433 int i, ret;
2434 gfn_t gfn;
2435
2436 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2437 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2438 return -1;
2439
2440 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2441 if (ret <= 0)
2442 return -1;
2443
2444 for (i = 0; i < ret; i++, gfn++, start++)
2445 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2446 access, 0, 0, NULL,
957ed9ef
XG
2447 sp->role.level, gfn,
2448 page_to_pfn(pages[i]), true, true);
2449
2450 return 0;
2451}
2452
2453static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2454 struct kvm_mmu_page *sp, u64 *sptep)
2455{
2456 u64 *spte, *start = NULL;
2457 int i;
2458
2459 WARN_ON(!sp->role.direct);
2460
2461 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2462 spte = sp->spt + i;
2463
2464 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2465 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2466 if (!start)
2467 continue;
2468 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2469 break;
2470 start = NULL;
2471 } else if (!start)
2472 start = spte;
2473 }
2474}
2475
2476static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2477{
2478 struct kvm_mmu_page *sp;
2479
2480 /*
2481 * Since it's no accessed bit on EPT, it's no way to
2482 * distinguish between actually accessed translations
2483 * and prefetched, so disable pte prefetch if EPT is
2484 * enabled.
2485 */
2486 if (!shadow_accessed_mask)
2487 return;
2488
2489 sp = page_header(__pa(sptep));
2490 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2491 return;
2492
2493 __direct_pte_prefetch(vcpu, sp, sptep);
2494}
2495
9f652d21 2496static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2497 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2498 bool prefault)
140754bc 2499{
9f652d21 2500 struct kvm_shadow_walk_iterator iterator;
140754bc 2501 struct kvm_mmu_page *sp;
b90a0e6c 2502 int emulate = 0;
140754bc 2503 gfn_t pseudo_gfn;
6aa8b732 2504
9f652d21 2505 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2506 if (iterator.level == level) {
612819c3
MT
2507 unsigned pte_access = ACC_ALL;
2508
612819c3 2509 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2510 0, write, &emulate,
2ec4739d 2511 level, gfn, pfn, prefault, map_writable);
957ed9ef 2512 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2513 ++vcpu->stat.pf_fixed;
2514 break;
6aa8b732
AK
2515 }
2516
c3707958 2517 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2518 u64 base_addr = iterator.addr;
2519
2520 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2521 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2522 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2523 iterator.level - 1,
2524 1, ACC_ALL, iterator.sptep);
2525 if (!sp) {
2526 pgprintk("nonpaging_map: ENOMEM\n");
2527 kvm_release_pfn_clean(pfn);
2528 return -ENOMEM;
2529 }
140754bc 2530
1df9f2dc
XG
2531 mmu_spte_set(iterator.sptep,
2532 __pa(sp->spt)
2533 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2534 | shadow_user_mask | shadow_x_mask
2535 | shadow_accessed_mask);
9f652d21
AK
2536 }
2537 }
b90a0e6c 2538 return emulate;
6aa8b732
AK
2539}
2540
77db5cbd 2541static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2542{
77db5cbd
HY
2543 siginfo_t info;
2544
2545 info.si_signo = SIGBUS;
2546 info.si_errno = 0;
2547 info.si_code = BUS_MCEERR_AR;
2548 info.si_addr = (void __user *)address;
2549 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2550
77db5cbd 2551 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2552}
2553
d7c55201 2554static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2555{
2556 kvm_release_pfn_clean(pfn);
2557 if (is_hwpoison_pfn(pfn)) {
bebb106a 2558 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2559 return 0;
d7c55201 2560 }
edba23e5 2561
d7c55201 2562 return -EFAULT;
bf998156
HY
2563}
2564
936a5fe6
AA
2565static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2566 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2567{
2568 pfn_t pfn = *pfnp;
2569 gfn_t gfn = *gfnp;
2570 int level = *levelp;
2571
2572 /*
2573 * Check if it's a transparent hugepage. If this would be an
2574 * hugetlbfs page, level wouldn't be set to
2575 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2576 * here.
2577 */
2578 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2579 level == PT_PAGE_TABLE_LEVEL &&
2580 PageTransCompound(pfn_to_page(pfn)) &&
2581 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2582 unsigned long mask;
2583 /*
2584 * mmu_notifier_retry was successful and we hold the
2585 * mmu_lock here, so the pmd can't become splitting
2586 * from under us, and in turn
2587 * __split_huge_page_refcount() can't run from under
2588 * us and we can safely transfer the refcount from
2589 * PG_tail to PG_head as we switch the pfn to tail to
2590 * head.
2591 */
2592 *levelp = level = PT_DIRECTORY_LEVEL;
2593 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2594 VM_BUG_ON((gfn & mask) != (pfn & mask));
2595 if (pfn & mask) {
2596 gfn &= ~mask;
2597 *gfnp = gfn;
2598 kvm_release_pfn_clean(pfn);
2599 pfn &= ~mask;
c3586667 2600 kvm_get_pfn(pfn);
936a5fe6
AA
2601 *pfnp = pfn;
2602 }
2603 }
2604}
2605
d7c55201
XG
2606static bool mmu_invalid_pfn(pfn_t pfn)
2607{
ce88decf 2608 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2609}
2610
2611static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2612 pfn_t pfn, unsigned access, int *ret_val)
2613{
2614 bool ret = true;
2615
2616 /* The pfn is invalid, report the error! */
2617 if (unlikely(is_invalid_pfn(pfn))) {
2618 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2619 goto exit;
2620 }
2621
ce88decf 2622 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2623 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2624
2625 ret = false;
2626exit:
2627 return ret;
2628}
2629
78b2c54a 2630static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2631 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2632
2633static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2634 bool prefault)
10589a46
MT
2635{
2636 int r;
852e3c19 2637 int level;
936a5fe6 2638 int force_pt_level;
35149e21 2639 pfn_t pfn;
e930bffe 2640 unsigned long mmu_seq;
612819c3 2641 bool map_writable;
aaee2c94 2642
936a5fe6
AA
2643 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2644 if (likely(!force_pt_level)) {
2645 level = mapping_level(vcpu, gfn);
2646 /*
2647 * This path builds a PAE pagetable - so we can map
2648 * 2mb pages at maximum. Therefore check if the level
2649 * is larger than that.
2650 */
2651 if (level > PT_DIRECTORY_LEVEL)
2652 level = PT_DIRECTORY_LEVEL;
852e3c19 2653
936a5fe6
AA
2654 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2655 } else
2656 level = PT_PAGE_TABLE_LEVEL;
05da4558 2657
e930bffe 2658 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2659 smp_rmb();
060c2abe 2660
78b2c54a 2661 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2662 return 0;
aaee2c94 2663
d7c55201
XG
2664 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2665 return r;
d196e343 2666
aaee2c94 2667 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2668 if (mmu_notifier_retry(vcpu, mmu_seq))
2669 goto out_unlock;
eb787d10 2670 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2671 if (likely(!force_pt_level))
2672 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2673 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2674 prefault);
aaee2c94
MT
2675 spin_unlock(&vcpu->kvm->mmu_lock);
2676
aaee2c94 2677
10589a46 2678 return r;
e930bffe
AA
2679
2680out_unlock:
2681 spin_unlock(&vcpu->kvm->mmu_lock);
2682 kvm_release_pfn_clean(pfn);
2683 return 0;
10589a46
MT
2684}
2685
2686
17ac10ad
AK
2687static void mmu_free_roots(struct kvm_vcpu *vcpu)
2688{
2689 int i;
4db35314 2690 struct kvm_mmu_page *sp;
d98ba053 2691 LIST_HEAD(invalid_list);
17ac10ad 2692
ad312c7c 2693 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2694 return;
aaee2c94 2695 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2696 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2697 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2698 vcpu->arch.mmu.direct_map)) {
ad312c7c 2699 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2700
4db35314
AK
2701 sp = page_header(root);
2702 --sp->root_count;
d98ba053
XG
2703 if (!sp->root_count && sp->role.invalid) {
2704 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2705 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2706 }
ad312c7c 2707 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2708 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2709 return;
2710 }
17ac10ad 2711 for (i = 0; i < 4; ++i) {
ad312c7c 2712 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2713
417726a3 2714 if (root) {
417726a3 2715 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2716 sp = page_header(root);
2717 --sp->root_count;
2e53d63a 2718 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2719 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2720 &invalid_list);
417726a3 2721 }
ad312c7c 2722 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2723 }
d98ba053 2724 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2725 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2726 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2727}
2728
8986ecc0
MT
2729static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2730{
2731 int ret = 0;
2732
2733 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2734 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2735 ret = 1;
2736 }
2737
2738 return ret;
2739}
2740
651dd37a
JR
2741static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2742{
2743 struct kvm_mmu_page *sp;
7ebaf15e 2744 unsigned i;
651dd37a
JR
2745
2746 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2747 spin_lock(&vcpu->kvm->mmu_lock);
2748 kvm_mmu_free_some_pages(vcpu);
2749 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2750 1, ACC_ALL, NULL);
2751 ++sp->root_count;
2752 spin_unlock(&vcpu->kvm->mmu_lock);
2753 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2754 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2755 for (i = 0; i < 4; ++i) {
2756 hpa_t root = vcpu->arch.mmu.pae_root[i];
2757
2758 ASSERT(!VALID_PAGE(root));
2759 spin_lock(&vcpu->kvm->mmu_lock);
2760 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2761 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2762 i << 30,
651dd37a
JR
2763 PT32_ROOT_LEVEL, 1, ACC_ALL,
2764 NULL);
2765 root = __pa(sp->spt);
2766 ++sp->root_count;
2767 spin_unlock(&vcpu->kvm->mmu_lock);
2768 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2769 }
6292757f 2770 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2771 } else
2772 BUG();
2773
2774 return 0;
2775}
2776
2777static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2778{
4db35314 2779 struct kvm_mmu_page *sp;
81407ca5
JR
2780 u64 pdptr, pm_mask;
2781 gfn_t root_gfn;
2782 int i;
3bb65a22 2783
5777ed34 2784 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2785
651dd37a
JR
2786 if (mmu_check_root(vcpu, root_gfn))
2787 return 1;
2788
2789 /*
2790 * Do we shadow a long mode page table? If so we need to
2791 * write-protect the guests page table root.
2792 */
2793 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2794 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2795
2796 ASSERT(!VALID_PAGE(root));
651dd37a 2797
8facbbff 2798 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2799 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2800 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2801 0, ACC_ALL, NULL);
4db35314
AK
2802 root = __pa(sp->spt);
2803 ++sp->root_count;
8facbbff 2804 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2805 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2806 return 0;
17ac10ad 2807 }
f87f9288 2808
651dd37a
JR
2809 /*
2810 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2811 * or a PAE 3-level page table. In either case we need to be aware that
2812 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2813 */
81407ca5
JR
2814 pm_mask = PT_PRESENT_MASK;
2815 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2816 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2817
17ac10ad 2818 for (i = 0; i < 4; ++i) {
ad312c7c 2819 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2820
2821 ASSERT(!VALID_PAGE(root));
ad312c7c 2822 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2823 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2824 if (!is_present_gpte(pdptr)) {
ad312c7c 2825 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2826 continue;
2827 }
6de4f3ad 2828 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2829 if (mmu_check_root(vcpu, root_gfn))
2830 return 1;
5a7388c2 2831 }
8facbbff 2832 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2833 kvm_mmu_free_some_pages(vcpu);
4db35314 2834 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2835 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2836 ACC_ALL, NULL);
4db35314
AK
2837 root = __pa(sp->spt);
2838 ++sp->root_count;
8facbbff
AK
2839 spin_unlock(&vcpu->kvm->mmu_lock);
2840
81407ca5 2841 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2842 }
6292757f 2843 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2844
2845 /*
2846 * If we shadow a 32 bit page table with a long mode page
2847 * table we enter this path.
2848 */
2849 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2850 if (vcpu->arch.mmu.lm_root == NULL) {
2851 /*
2852 * The additional page necessary for this is only
2853 * allocated on demand.
2854 */
2855
2856 u64 *lm_root;
2857
2858 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2859 if (lm_root == NULL)
2860 return 1;
2861
2862 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2863
2864 vcpu->arch.mmu.lm_root = lm_root;
2865 }
2866
2867 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2868 }
2869
8986ecc0 2870 return 0;
17ac10ad
AK
2871}
2872
651dd37a
JR
2873static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2874{
2875 if (vcpu->arch.mmu.direct_map)
2876 return mmu_alloc_direct_roots(vcpu);
2877 else
2878 return mmu_alloc_shadow_roots(vcpu);
2879}
2880
0ba73cda
MT
2881static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2882{
2883 int i;
2884 struct kvm_mmu_page *sp;
2885
81407ca5
JR
2886 if (vcpu->arch.mmu.direct_map)
2887 return;
2888
0ba73cda
MT
2889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2890 return;
6903074c 2891
bebb106a 2892 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2893 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2894 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2895 hpa_t root = vcpu->arch.mmu.root_hpa;
2896 sp = page_header(root);
2897 mmu_sync_children(vcpu, sp);
0375f7fa 2898 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2899 return;
2900 }
2901 for (i = 0; i < 4; ++i) {
2902 hpa_t root = vcpu->arch.mmu.pae_root[i];
2903
8986ecc0 2904 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2905 root &= PT64_BASE_ADDR_MASK;
2906 sp = page_header(root);
2907 mmu_sync_children(vcpu, sp);
2908 }
2909 }
0375f7fa 2910 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2911}
2912
2913void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2914{
2915 spin_lock(&vcpu->kvm->mmu_lock);
2916 mmu_sync_roots(vcpu);
6cffe8ca 2917 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2918}
2919
1871c602 2920static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2921 u32 access, struct x86_exception *exception)
6aa8b732 2922{
ab9ae313
AK
2923 if (exception)
2924 exception->error_code = 0;
6aa8b732
AK
2925 return vaddr;
2926}
2927
6539e738 2928static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2929 u32 access,
2930 struct x86_exception *exception)
6539e738 2931{
ab9ae313
AK
2932 if (exception)
2933 exception->error_code = 0;
6539e738
JR
2934 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2935}
2936
ce88decf
XG
2937static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2938{
2939 if (direct)
2940 return vcpu_match_mmio_gpa(vcpu, addr);
2941
2942 return vcpu_match_mmio_gva(vcpu, addr);
2943}
2944
2945
2946/*
2947 * On direct hosts, the last spte is only allows two states
2948 * for mmio page fault:
2949 * - It is the mmio spte
2950 * - It is zapped or it is being zapped.
2951 *
2952 * This function completely checks the spte when the last spte
2953 * is not the mmio spte.
2954 */
2955static bool check_direct_spte_mmio_pf(u64 spte)
2956{
2957 return __check_direct_spte_mmio_pf(spte);
2958}
2959
2960static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2961{
2962 struct kvm_shadow_walk_iterator iterator;
2963 u64 spte = 0ull;
2964
2965 walk_shadow_page_lockless_begin(vcpu);
2966 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2967 if (!is_shadow_present_pte(spte))
2968 break;
2969 walk_shadow_page_lockless_end(vcpu);
2970
2971 return spte;
2972}
2973
2974/*
2975 * If it is a real mmio page fault, return 1 and emulat the instruction
2976 * directly, return 0 to let CPU fault again on the address, -1 is
2977 * returned if bug is detected.
2978 */
2979int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2980{
2981 u64 spte;
2982
2983 if (quickly_check_mmio_pf(vcpu, addr, direct))
2984 return 1;
2985
2986 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2987
2988 if (is_mmio_spte(spte)) {
2989 gfn_t gfn = get_mmio_spte_gfn(spte);
2990 unsigned access = get_mmio_spte_access(spte);
2991
2992 if (direct)
2993 addr = 0;
4f022648
XG
2994
2995 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2996 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2997 return 1;
2998 }
2999
3000 /*
3001 * It's ok if the gva is remapped by other cpus on shadow guest,
3002 * it's a BUG if the gfn is not a mmio page.
3003 */
3004 if (direct && !check_direct_spte_mmio_pf(spte))
3005 return -1;
3006
3007 /*
3008 * If the page table is zapped by other cpus, let CPU fault again on
3009 * the address.
3010 */
3011 return 0;
3012}
3013EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3014
3015static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3016 u32 error_code, bool direct)
3017{
3018 int ret;
3019
3020 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3021 WARN_ON(ret < 0);
3022 return ret;
3023}
3024
6aa8b732 3025static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3026 u32 error_code, bool prefault)
6aa8b732 3027{
e833240f 3028 gfn_t gfn;
e2dec939 3029 int r;
6aa8b732 3030
b8688d51 3031 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3032
3033 if (unlikely(error_code & PFERR_RSVD_MASK))
3034 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3035
e2dec939
AK
3036 r = mmu_topup_memory_caches(vcpu);
3037 if (r)
3038 return r;
714b93da 3039
6aa8b732 3040 ASSERT(vcpu);
ad312c7c 3041 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3042
e833240f 3043 gfn = gva >> PAGE_SHIFT;
6aa8b732 3044
e833240f 3045 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3046 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3047}
3048
7e1fbeac 3049static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3050{
3051 struct kvm_arch_async_pf arch;
fb67e14f 3052
7c90705b 3053 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3054 arch.gfn = gfn;
c4806acd 3055 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3056 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3057
3058 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3059}
3060
3061static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3062{
3063 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3064 kvm_event_needs_reinjection(vcpu)))
3065 return false;
3066
3067 return kvm_x86_ops->interrupt_allowed(vcpu);
3068}
3069
78b2c54a 3070static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3071 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3072{
3073 bool async;
3074
612819c3 3075 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3076
3077 if (!async)
3078 return false; /* *pfn has correct page already */
3079
3080 put_page(pfn_to_page(*pfn));
3081
78b2c54a 3082 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3083 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3084 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3085 trace_kvm_async_pf_doublefault(gva, gfn);
3086 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3087 return true;
3088 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3089 return true;
3090 }
3091
612819c3 3092 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3093
3094 return false;
3095}
3096
56028d08 3097static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3098 bool prefault)
fb72d167 3099{
35149e21 3100 pfn_t pfn;
fb72d167 3101 int r;
852e3c19 3102 int level;
936a5fe6 3103 int force_pt_level;
05da4558 3104 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3105 unsigned long mmu_seq;
612819c3
MT
3106 int write = error_code & PFERR_WRITE_MASK;
3107 bool map_writable;
fb72d167
JR
3108
3109 ASSERT(vcpu);
3110 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3111
ce88decf
XG
3112 if (unlikely(error_code & PFERR_RSVD_MASK))
3113 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3114
fb72d167
JR
3115 r = mmu_topup_memory_caches(vcpu);
3116 if (r)
3117 return r;
3118
936a5fe6
AA
3119 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3120 if (likely(!force_pt_level)) {
3121 level = mapping_level(vcpu, gfn);
3122 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3123 } else
3124 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3125
e930bffe 3126 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3127 smp_rmb();
af585b92 3128
78b2c54a 3129 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3130 return 0;
3131
d7c55201
XG
3132 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3133 return r;
3134
fb72d167 3135 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3136 if (mmu_notifier_retry(vcpu, mmu_seq))
3137 goto out_unlock;
fb72d167 3138 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3139 if (likely(!force_pt_level))
3140 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3141 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3142 level, gfn, pfn, prefault);
fb72d167 3143 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3144
3145 return r;
e930bffe
AA
3146
3147out_unlock:
3148 spin_unlock(&vcpu->kvm->mmu_lock);
3149 kvm_release_pfn_clean(pfn);
3150 return 0;
fb72d167
JR
3151}
3152
6aa8b732
AK
3153static void nonpaging_free(struct kvm_vcpu *vcpu)
3154{
17ac10ad 3155 mmu_free_roots(vcpu);
6aa8b732
AK
3156}
3157
52fde8df
JR
3158static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3159 struct kvm_mmu *context)
6aa8b732 3160{
6aa8b732
AK
3161 context->new_cr3 = nonpaging_new_cr3;
3162 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3163 context->gva_to_gpa = nonpaging_gva_to_gpa;
3164 context->free = nonpaging_free;
e8bc217a 3165 context->sync_page = nonpaging_sync_page;
a7052897 3166 context->invlpg = nonpaging_invlpg;
0f53b5b1 3167 context->update_pte = nonpaging_update_pte;
cea0f0e7 3168 context->root_level = 0;
6aa8b732 3169 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3170 context->root_hpa = INVALID_PAGE;
c5a78f2b 3171 context->direct_map = true;
2d48a985 3172 context->nx = false;
6aa8b732
AK
3173 return 0;
3174}
3175
d835dfec 3176void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3177{
1165f5fe 3178 ++vcpu->stat.tlb_flush;
a8eeb04a 3179 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3180}
3181
3182static void paging_new_cr3(struct kvm_vcpu *vcpu)
3183{
9f8fe504 3184 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3185 mmu_free_roots(vcpu);
6aa8b732
AK
3186}
3187
5777ed34
JR
3188static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3189{
9f8fe504 3190 return kvm_read_cr3(vcpu);
5777ed34
JR
3191}
3192
6389ee94
AK
3193static void inject_page_fault(struct kvm_vcpu *vcpu,
3194 struct x86_exception *fault)
6aa8b732 3195{
6389ee94 3196 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3197}
3198
6aa8b732
AK
3199static void paging_free(struct kvm_vcpu *vcpu)
3200{
3201 nonpaging_free(vcpu);
3202}
3203
3241f22d 3204static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3205{
3206 int bit7;
3207
3208 bit7 = (gpte >> 7) & 1;
3241f22d 3209 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3210}
3211
ce88decf
XG
3212static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3213 int *nr_present)
3214{
3215 if (unlikely(is_mmio_spte(*sptep))) {
3216 if (gfn != get_mmio_spte_gfn(*sptep)) {
3217 mmu_spte_clear_no_track(sptep);
3218 return true;
3219 }
3220
3221 (*nr_present)++;
3222 mark_mmio_spte(sptep, gfn, access);
3223 return true;
3224 }
3225
3226 return false;
3227}
3228
6aa8b732
AK
3229#define PTTYPE 64
3230#include "paging_tmpl.h"
3231#undef PTTYPE
3232
3233#define PTTYPE 32
3234#include "paging_tmpl.h"
3235#undef PTTYPE
3236
52fde8df 3237static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3238 struct kvm_mmu *context)
82725b20 3239{
82725b20
DE
3240 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3241 u64 exb_bit_rsvd = 0;
3242
2d48a985 3243 if (!context->nx)
82725b20 3244 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3245 switch (context->root_level) {
82725b20
DE
3246 case PT32_ROOT_LEVEL:
3247 /* no rsvd bits for 2 level 4K page table entries */
3248 context->rsvd_bits_mask[0][1] = 0;
3249 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3250 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3251
3252 if (!is_pse(vcpu)) {
3253 context->rsvd_bits_mask[1][1] = 0;
3254 break;
3255 }
3256
82725b20
DE
3257 if (is_cpuid_PSE36())
3258 /* 36bits PSE 4MB page */
3259 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3260 else
3261 /* 32 bits PSE 4MB page */
3262 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3263 break;
3264 case PT32E_ROOT_LEVEL:
20c466b5
DE
3265 context->rsvd_bits_mask[0][2] =
3266 rsvd_bits(maxphyaddr, 63) |
3267 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3268 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3269 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3270 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3271 rsvd_bits(maxphyaddr, 62); /* PTE */
3272 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3273 rsvd_bits(maxphyaddr, 62) |
3274 rsvd_bits(13, 20); /* large page */
f815bce8 3275 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3276 break;
3277 case PT64_ROOT_LEVEL:
3278 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3279 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3280 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3281 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3282 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3283 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3284 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3285 rsvd_bits(maxphyaddr, 51);
3286 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3287 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3288 rsvd_bits(maxphyaddr, 51) |
3289 rsvd_bits(13, 29);
82725b20 3290 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3291 rsvd_bits(maxphyaddr, 51) |
3292 rsvd_bits(13, 20); /* large page */
f815bce8 3293 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3294 break;
3295 }
3296}
3297
52fde8df
JR
3298static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3299 struct kvm_mmu *context,
3300 int level)
6aa8b732 3301{
2d48a985 3302 context->nx = is_nx(vcpu);
4d6931c3 3303 context->root_level = level;
2d48a985 3304
4d6931c3 3305 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3306
3307 ASSERT(is_pae(vcpu));
3308 context->new_cr3 = paging_new_cr3;
3309 context->page_fault = paging64_page_fault;
6aa8b732 3310 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3311 context->sync_page = paging64_sync_page;
a7052897 3312 context->invlpg = paging64_invlpg;
0f53b5b1 3313 context->update_pte = paging64_update_pte;
6aa8b732 3314 context->free = paging_free;
17ac10ad 3315 context->shadow_root_level = level;
17c3ba9d 3316 context->root_hpa = INVALID_PAGE;
c5a78f2b 3317 context->direct_map = false;
6aa8b732
AK
3318 return 0;
3319}
3320
52fde8df
JR
3321static int paging64_init_context(struct kvm_vcpu *vcpu,
3322 struct kvm_mmu *context)
17ac10ad 3323{
52fde8df 3324 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3325}
3326
52fde8df
JR
3327static int paging32_init_context(struct kvm_vcpu *vcpu,
3328 struct kvm_mmu *context)
6aa8b732 3329{
2d48a985 3330 context->nx = false;
4d6931c3 3331 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3332
4d6931c3 3333 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3334
3335 context->new_cr3 = paging_new_cr3;
3336 context->page_fault = paging32_page_fault;
6aa8b732
AK
3337 context->gva_to_gpa = paging32_gva_to_gpa;
3338 context->free = paging_free;
e8bc217a 3339 context->sync_page = paging32_sync_page;
a7052897 3340 context->invlpg = paging32_invlpg;
0f53b5b1 3341 context->update_pte = paging32_update_pte;
6aa8b732 3342 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3343 context->root_hpa = INVALID_PAGE;
c5a78f2b 3344 context->direct_map = false;
6aa8b732
AK
3345 return 0;
3346}
3347
52fde8df
JR
3348static int paging32E_init_context(struct kvm_vcpu *vcpu,
3349 struct kvm_mmu *context)
6aa8b732 3350{
52fde8df 3351 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3352}
3353
fb72d167
JR
3354static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3355{
14dfe855 3356 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3357
c445f8ef 3358 context->base_role.word = 0;
fb72d167
JR
3359 context->new_cr3 = nonpaging_new_cr3;
3360 context->page_fault = tdp_page_fault;
3361 context->free = nonpaging_free;
e8bc217a 3362 context->sync_page = nonpaging_sync_page;
a7052897 3363 context->invlpg = nonpaging_invlpg;
0f53b5b1 3364 context->update_pte = nonpaging_update_pte;
67253af5 3365 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3366 context->root_hpa = INVALID_PAGE;
c5a78f2b 3367 context->direct_map = true;
1c97f0a0 3368 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3369 context->get_cr3 = get_cr3;
e4e517b4 3370 context->get_pdptr = kvm_pdptr_read;
cb659db8 3371 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3372
3373 if (!is_paging(vcpu)) {
2d48a985 3374 context->nx = false;
fb72d167
JR
3375 context->gva_to_gpa = nonpaging_gva_to_gpa;
3376 context->root_level = 0;
3377 } else if (is_long_mode(vcpu)) {
2d48a985 3378 context->nx = is_nx(vcpu);
fb72d167 3379 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3380 reset_rsvds_bits_mask(vcpu, context);
3381 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3382 } else if (is_pae(vcpu)) {
2d48a985 3383 context->nx = is_nx(vcpu);
fb72d167 3384 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3385 reset_rsvds_bits_mask(vcpu, context);
3386 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3387 } else {
2d48a985 3388 context->nx = false;
fb72d167 3389 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3390 reset_rsvds_bits_mask(vcpu, context);
3391 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3392 }
3393
3394 return 0;
3395}
3396
52fde8df 3397int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3398{
a770f6f2 3399 int r;
411c588d 3400 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3401 ASSERT(vcpu);
ad312c7c 3402 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3403
3404 if (!is_paging(vcpu))
52fde8df 3405 r = nonpaging_init_context(vcpu, context);
a9058ecd 3406 else if (is_long_mode(vcpu))
52fde8df 3407 r = paging64_init_context(vcpu, context);
6aa8b732 3408 else if (is_pae(vcpu))
52fde8df 3409 r = paging32E_init_context(vcpu, context);
6aa8b732 3410 else
52fde8df 3411 r = paging32_init_context(vcpu, context);
a770f6f2 3412
5b7e0102 3413 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3414 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3415 vcpu->arch.mmu.base_role.smep_andnot_wp
3416 = smep && !is_write_protection(vcpu);
52fde8df
JR
3417
3418 return r;
3419}
3420EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3421
3422static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3423{
14dfe855 3424 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3425
14dfe855
JR
3426 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3427 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3428 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3429 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3430
3431 return r;
6aa8b732
AK
3432}
3433
02f59dc9
JR
3434static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3435{
3436 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3437
3438 g_context->get_cr3 = get_cr3;
e4e517b4 3439 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3440 g_context->inject_page_fault = kvm_inject_page_fault;
3441
3442 /*
3443 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3444 * translation of l2_gpa to l1_gpa addresses is done using the
3445 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3446 * functions between mmu and nested_mmu are swapped.
3447 */
3448 if (!is_paging(vcpu)) {
2d48a985 3449 g_context->nx = false;
02f59dc9
JR
3450 g_context->root_level = 0;
3451 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3452 } else if (is_long_mode(vcpu)) {
2d48a985 3453 g_context->nx = is_nx(vcpu);
02f59dc9 3454 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3455 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3456 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3457 } else if (is_pae(vcpu)) {
2d48a985 3458 g_context->nx = is_nx(vcpu);
02f59dc9 3459 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3460 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3461 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3462 } else {
2d48a985 3463 g_context->nx = false;
02f59dc9 3464 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3465 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3466 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3467 }
3468
3469 return 0;
3470}
3471
fb72d167
JR
3472static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3473{
02f59dc9
JR
3474 if (mmu_is_nested(vcpu))
3475 return init_kvm_nested_mmu(vcpu);
3476 else if (tdp_enabled)
fb72d167
JR
3477 return init_kvm_tdp_mmu(vcpu);
3478 else
3479 return init_kvm_softmmu(vcpu);
3480}
3481
6aa8b732
AK
3482static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3483{
3484 ASSERT(vcpu);
62ad0755
SY
3485 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3486 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3487 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3488}
3489
3490int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3491{
3492 destroy_kvm_mmu(vcpu);
f8f7e5ee 3493 return init_kvm_mmu(vcpu);
17c3ba9d 3494}
8668a3c4 3495EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3496
3497int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3498{
714b93da
AK
3499 int r;
3500
e2dec939 3501 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3502 if (r)
3503 goto out;
8986ecc0 3504 r = mmu_alloc_roots(vcpu);
8facbbff 3505 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3506 mmu_sync_roots(vcpu);
aaee2c94 3507 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3508 if (r)
3509 goto out;
3662cb1c 3510 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3511 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3512out:
3513 return r;
6aa8b732 3514}
17c3ba9d
AK
3515EXPORT_SYMBOL_GPL(kvm_mmu_load);
3516
3517void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3518{
3519 mmu_free_roots(vcpu);
3520}
4b16184c 3521EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3522
0028425f 3523static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3524 struct kvm_mmu_page *sp, u64 *spte,
3525 const void *new)
0028425f 3526{
30945387 3527 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3528 ++vcpu->kvm->stat.mmu_pde_zapped;
3529 return;
30945387 3530 }
0028425f 3531
4cee5764 3532 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3533 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3534}
3535
79539cec
AK
3536static bool need_remote_flush(u64 old, u64 new)
3537{
3538 if (!is_shadow_present_pte(old))
3539 return false;
3540 if (!is_shadow_present_pte(new))
3541 return true;
3542 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3543 return true;
3544 old ^= PT64_NX_MASK;
3545 new ^= PT64_NX_MASK;
3546 return (old & ~new & PT64_PERM_MASK) != 0;
3547}
3548
0671a8e7
XG
3549static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3550 bool remote_flush, bool local_flush)
79539cec 3551{
0671a8e7
XG
3552 if (zap_page)
3553 return;
3554
3555 if (remote_flush)
79539cec 3556 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3557 else if (local_flush)
79539cec
AK
3558 kvm_mmu_flush_tlb(vcpu);
3559}
3560
889e5cbc
XG
3561static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3562 const u8 *new, int *bytes)
da4a00f0 3563{
889e5cbc
XG
3564 u64 gentry;
3565 int r;
72016f3a 3566
72016f3a
AK
3567 /*
3568 * Assume that the pte write on a page table of the same type
49b26e26
XG
3569 * as the current vcpu paging mode since we update the sptes only
3570 * when they have the same mode.
72016f3a 3571 */
889e5cbc 3572 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3573 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3574 *gpa &= ~(gpa_t)7;
3575 *bytes = 8;
3576 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3577 if (r)
3578 gentry = 0;
08e850c6
AK
3579 new = (const u8 *)&gentry;
3580 }
3581
889e5cbc 3582 switch (*bytes) {
08e850c6
AK
3583 case 4:
3584 gentry = *(const u32 *)new;
3585 break;
3586 case 8:
3587 gentry = *(const u64 *)new;
3588 break;
3589 default:
3590 gentry = 0;
3591 break;
72016f3a
AK
3592 }
3593
889e5cbc
XG
3594 return gentry;
3595}
3596
3597/*
3598 * If we're seeing too many writes to a page, it may no longer be a page table,
3599 * or we may be forking, in which case it is better to unmap the page.
3600 */
a138fe75 3601static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3602{
a30f47cb
XG
3603 /*
3604 * Skip write-flooding detected for the sp whose level is 1, because
3605 * it can become unsync, then the guest page is not write-protected.
3606 */
f71fa31f 3607 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3608 return false;
3246af0e 3609
a30f47cb 3610 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3611}
3612
3613/*
3614 * Misaligned accesses are too much trouble to fix up; also, they usually
3615 * indicate a page is not used as a page table.
3616 */
3617static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3618 int bytes)
3619{
3620 unsigned offset, pte_size, misaligned;
3621
3622 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3623 gpa, bytes, sp->role.word);
3624
3625 offset = offset_in_page(gpa);
3626 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3627
3628 /*
3629 * Sometimes, the OS only writes the last one bytes to update status
3630 * bits, for example, in linux, andb instruction is used in clear_bit().
3631 */
3632 if (!(offset & (pte_size - 1)) && bytes == 1)
3633 return false;
3634
889e5cbc
XG
3635 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3636 misaligned |= bytes < 4;
3637
3638 return misaligned;
3639}
3640
3641static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3642{
3643 unsigned page_offset, quadrant;
3644 u64 *spte;
3645 int level;
3646
3647 page_offset = offset_in_page(gpa);
3648 level = sp->role.level;
3649 *nspte = 1;
3650 if (!sp->role.cr4_pae) {
3651 page_offset <<= 1; /* 32->64 */
3652 /*
3653 * A 32-bit pde maps 4MB while the shadow pdes map
3654 * only 2MB. So we need to double the offset again
3655 * and zap two pdes instead of one.
3656 */
3657 if (level == PT32_ROOT_LEVEL) {
3658 page_offset &= ~7; /* kill rounding error */
3659 page_offset <<= 1;
3660 *nspte = 2;
3661 }
3662 quadrant = page_offset >> PAGE_SHIFT;
3663 page_offset &= ~PAGE_MASK;
3664 if (quadrant != sp->role.quadrant)
3665 return NULL;
3666 }
3667
3668 spte = &sp->spt[page_offset / sizeof(*spte)];
3669 return spte;
3670}
3671
3672void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3673 const u8 *new, int bytes)
3674{
3675 gfn_t gfn = gpa >> PAGE_SHIFT;
3676 union kvm_mmu_page_role mask = { .word = 0 };
3677 struct kvm_mmu_page *sp;
3678 struct hlist_node *node;
3679 LIST_HEAD(invalid_list);
3680 u64 entry, gentry, *spte;
3681 int npte;
a30f47cb 3682 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3683
3684 /*
3685 * If we don't have indirect shadow pages, it means no page is
3686 * write-protected, so we can exit simply.
3687 */
3688 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3689 return;
3690
3691 zap_page = remote_flush = local_flush = false;
3692
3693 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3694
3695 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3696
3697 /*
3698 * No need to care whether allocation memory is successful
3699 * or not since pte prefetch is skiped if it does not have
3700 * enough objects in the cache.
3701 */
3702 mmu_topup_memory_caches(vcpu);
3703
3704 spin_lock(&vcpu->kvm->mmu_lock);
3705 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3706 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3707
fa1de2bf 3708 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3709 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3710 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3711 detect_write_flooding(sp)) {
0671a8e7 3712 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3713 &invalid_list);
4cee5764 3714 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3715 continue;
3716 }
889e5cbc
XG
3717
3718 spte = get_written_sptes(sp, gpa, &npte);
3719 if (!spte)
3720 continue;
3721
0671a8e7 3722 local_flush = true;
ac1b714e 3723 while (npte--) {
79539cec 3724 entry = *spte;
38e3b2b2 3725 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3726 if (gentry &&
3727 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3728 & mask.word) && rmap_can_add(vcpu))
7c562522 3729 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3730 if (!remote_flush && need_remote_flush(entry, *spte))
3731 remote_flush = true;
ac1b714e 3732 ++spte;
9b7a0325 3733 }
9b7a0325 3734 }
0671a8e7 3735 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3736 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3737 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3738 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3739}
3740
a436036b
AK
3741int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3742{
10589a46
MT
3743 gpa_t gpa;
3744 int r;
a436036b 3745
c5a78f2b 3746 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3747 return 0;
3748
1871c602 3749 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3750
10589a46 3751 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3752
10589a46 3753 return r;
a436036b 3754}
577bdc49 3755EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3756
22d95b12 3757void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3758{
d98ba053 3759 LIST_HEAD(invalid_list);
103ad25a 3760
e0df7b9f 3761 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3762 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3763 struct kvm_mmu_page *sp;
ebeace86 3764
f05e70ac 3765 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3766 struct kvm_mmu_page, link);
e0df7b9f 3767 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3768 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3769 }
aa6bd187 3770 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3771}
ebeace86 3772
1cb3f3ae
XG
3773static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3774{
3775 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3776 return vcpu_match_mmio_gpa(vcpu, addr);
3777
3778 return vcpu_match_mmio_gva(vcpu, addr);
3779}
3780
dc25e89e
AP
3781int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3782 void *insn, int insn_len)
3067714c 3783{
1cb3f3ae 3784 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3785 enum emulation_result er;
3786
56028d08 3787 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3788 if (r < 0)
3789 goto out;
3790
3791 if (!r) {
3792 r = 1;
3793 goto out;
3794 }
3795
1cb3f3ae
XG
3796 if (is_mmio_page_fault(vcpu, cr2))
3797 emulation_type = 0;
3798
3799 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3800
3801 switch (er) {
3802 case EMULATE_DONE:
3803 return 1;
3804 case EMULATE_DO_MMIO:
3805 ++vcpu->stat.mmio_exits;
6d77dbfc 3806 /* fall through */
3067714c 3807 case EMULATE_FAIL:
3f5d18a9 3808 return 0;
3067714c
AK
3809 default:
3810 BUG();
3811 }
3812out:
3067714c
AK
3813 return r;
3814}
3815EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3816
a7052897
MT
3817void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3818{
a7052897 3819 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3820 kvm_mmu_flush_tlb(vcpu);
3821 ++vcpu->stat.invlpg;
3822}
3823EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3824
18552672
JR
3825void kvm_enable_tdp(void)
3826{
3827 tdp_enabled = true;
3828}
3829EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3830
5f4cb662
JR
3831void kvm_disable_tdp(void)
3832{
3833 tdp_enabled = false;
3834}
3835EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3836
6aa8b732
AK
3837static void free_mmu_pages(struct kvm_vcpu *vcpu)
3838{
ad312c7c 3839 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3840 if (vcpu->arch.mmu.lm_root != NULL)
3841 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3842}
3843
3844static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3845{
17ac10ad 3846 struct page *page;
6aa8b732
AK
3847 int i;
3848
3849 ASSERT(vcpu);
3850
17ac10ad
AK
3851 /*
3852 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3853 * Therefore we need to allocate shadow page tables in the first
3854 * 4GB of memory, which happens to fit the DMA32 zone.
3855 */
3856 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3857 if (!page)
d7fa6ab2
WY
3858 return -ENOMEM;
3859
ad312c7c 3860 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3861 for (i = 0; i < 4; ++i)
ad312c7c 3862 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3863
6aa8b732 3864 return 0;
6aa8b732
AK
3865}
3866
8018c27b 3867int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3868{
6aa8b732 3869 ASSERT(vcpu);
e459e322
XG
3870
3871 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3872 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3873 vcpu->arch.mmu.translate_gpa = translate_gpa;
3874 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3875
8018c27b
IM
3876 return alloc_mmu_pages(vcpu);
3877}
6aa8b732 3878
8018c27b
IM
3879int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3880{
3881 ASSERT(vcpu);
ad312c7c 3882 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3883
8018c27b 3884 return init_kvm_mmu(vcpu);
6aa8b732
AK
3885}
3886
90cb0529 3887void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3888{
4db35314 3889 struct kvm_mmu_page *sp;
6aa8b732 3890
f05e70ac 3891 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3892 int i;
3893 u64 *pt;
3894
291f26bc 3895 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3896 continue;
3897
4db35314 3898 pt = sp->spt;
8234b22e 3899 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3900 if (!is_shadow_present_pte(pt[i]) ||
3901 !is_last_spte(pt[i], sp->role.level))
3902 continue;
3903
3904 if (is_large_pte(pt[i])) {
c3707958 3905 drop_spte(kvm, &pt[i]);
8234b22e 3906 --kvm->stat.lpages;
da8dc75f 3907 continue;
8234b22e 3908 }
da8dc75f 3909
6aa8b732 3910 /* avoid RMW */
01c168ac 3911 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3912 mmu_spte_update(&pt[i],
3913 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3914 }
6aa8b732 3915 }
171d595d 3916 kvm_flush_remote_tlbs(kvm);
6aa8b732 3917}
37a7d8b0 3918
90cb0529 3919void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3920{
4db35314 3921 struct kvm_mmu_page *sp, *node;
d98ba053 3922 LIST_HEAD(invalid_list);
e0fa826f 3923
aaee2c94 3924 spin_lock(&kvm->mmu_lock);
3246af0e 3925restart:
f05e70ac 3926 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3927 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3928 goto restart;
3929
d98ba053 3930 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3931 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3932}
3933
3d56cbdf
JK
3934static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3935 struct list_head *invalid_list)
3ee16c81
IE
3936{
3937 struct kvm_mmu_page *page;
3938
3939 page = container_of(kvm->arch.active_mmu_pages.prev,
3940 struct kvm_mmu_page, link);
3d56cbdf 3941 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3942}
3943
1495f230 3944static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3945{
3946 struct kvm *kvm;
1495f230 3947 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3948
3949 if (nr_to_scan == 0)
3950 goto out;
3ee16c81 3951
e935b837 3952 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3953
3954 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3955 int idx;
d98ba053 3956 LIST_HEAD(invalid_list);
3ee16c81 3957
19526396
GN
3958 /*
3959 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3960 * here. We may skip a VM instance errorneosly, but we do not
3961 * want to shrink a VM that only started to populate its MMU
3962 * anyway.
3963 */
3964 if (kvm->arch.n_used_mmu_pages > 0) {
3965 if (!nr_to_scan--)
3966 break;
3967 continue;
3968 }
3969
f656ce01 3970 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3971 spin_lock(&kvm->mmu_lock);
3ee16c81 3972
19526396 3973 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 3974 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 3975
3ee16c81 3976 spin_unlock(&kvm->mmu_lock);
f656ce01 3977 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
3978
3979 list_move_tail(&kvm->vm_list, &vm_list);
3980 break;
3ee16c81 3981 }
3ee16c81 3982
e935b837 3983 raw_spin_unlock(&kvm_lock);
3ee16c81 3984
45221ab6
DH
3985out:
3986 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3987}
3988
3989static struct shrinker mmu_shrinker = {
3990 .shrink = mmu_shrink,
3991 .seeks = DEFAULT_SEEKS * 10,
3992};
3993
2ddfd20e 3994static void mmu_destroy_caches(void)
b5a33a75 3995{
53c07b18
XG
3996 if (pte_list_desc_cache)
3997 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3998 if (mmu_page_header_cache)
3999 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4000}
4001
4002int kvm_mmu_module_init(void)
4003{
53c07b18
XG
4004 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4005 sizeof(struct pte_list_desc),
20c2df83 4006 0, 0, NULL);
53c07b18 4007 if (!pte_list_desc_cache)
b5a33a75
AK
4008 goto nomem;
4009
d3d25b04
AK
4010 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4011 sizeof(struct kvm_mmu_page),
20c2df83 4012 0, 0, NULL);
d3d25b04
AK
4013 if (!mmu_page_header_cache)
4014 goto nomem;
4015
45bf21a8
WY
4016 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4017 goto nomem;
4018
3ee16c81
IE
4019 register_shrinker(&mmu_shrinker);
4020
b5a33a75
AK
4021 return 0;
4022
4023nomem:
3ee16c81 4024 mmu_destroy_caches();
b5a33a75
AK
4025 return -ENOMEM;
4026}
4027
3ad82a7e
ZX
4028/*
4029 * Caculate mmu pages needed for kvm.
4030 */
4031unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4032{
3ad82a7e
ZX
4033 unsigned int nr_mmu_pages;
4034 unsigned int nr_pages = 0;
bc6678a3 4035 struct kvm_memslots *slots;
be6ba0f0 4036 struct kvm_memory_slot *memslot;
3ad82a7e 4037
90d83dc3
LJ
4038 slots = kvm_memslots(kvm);
4039
be6ba0f0
XG
4040 kvm_for_each_memslot(memslot, slots)
4041 nr_pages += memslot->npages;
3ad82a7e
ZX
4042
4043 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4044 nr_mmu_pages = max(nr_mmu_pages,
4045 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4046
4047 return nr_mmu_pages;
4048}
4049
94d8b056
MT
4050int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4051{
4052 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4053 u64 spte;
94d8b056
MT
4054 int nr_sptes = 0;
4055
c2a2ac2b
XG
4056 walk_shadow_page_lockless_begin(vcpu);
4057 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4058 sptes[iterator.level-1] = spte;
94d8b056 4059 nr_sptes++;
c2a2ac2b 4060 if (!is_shadow_present_pte(spte))
94d8b056
MT
4061 break;
4062 }
c2a2ac2b 4063 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4064
4065 return nr_sptes;
4066}
4067EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4068
c42fffe3
XG
4069void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4070{
4071 ASSERT(vcpu);
4072
4073 destroy_kvm_mmu(vcpu);
4074 free_mmu_pages(vcpu);
4075 mmu_free_memory_caches(vcpu);
b034cf01
XG
4076}
4077
b034cf01
XG
4078void kvm_mmu_module_exit(void)
4079{
4080 mmu_destroy_caches();
4081 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4082 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4083 mmu_audit_disable();
4084}
This page took 1.619807 seconds and 5 git commands to generate.