KVM: MMU: Push trace_kvm_age_page() into kvm_age_rmapp()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
1df9f2dc 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
559 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
560 kvm_set_pfn_accessed(pfn);
561 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
562 kvm_set_pfn_dirty(pfn);
563 return 1;
564}
565
566/*
567 * Rules for using mmu_spte_clear_no_track:
568 * Directly clear spte without caring the state bits of sptep,
569 * it is used to set the upper level spte.
570 */
571static void mmu_spte_clear_no_track(u64 *sptep)
572{
603e0651 573 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
574}
575
c2a2ac2b
XG
576static u64 mmu_spte_get_lockless(u64 *sptep)
577{
578 return __get_spte_lockless(sptep);
579}
580
581static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
582{
c142786c
AK
583 /*
584 * Prevent page table teardown by making any free-er wait during
585 * kvm_flush_remote_tlbs() IPI to all active vcpus.
586 */
587 local_irq_disable();
588 vcpu->mode = READING_SHADOW_PAGE_TABLES;
589 /*
590 * Make sure a following spte read is not reordered ahead of the write
591 * to vcpu->mode.
592 */
593 smp_mb();
c2a2ac2b
XG
594}
595
596static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
597{
c142786c
AK
598 /*
599 * Make sure the write to vcpu->mode is not reordered in front of
600 * reads to sptes. If it does, kvm_commit_zap_page() can see us
601 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
602 */
603 smp_mb();
604 vcpu->mode = OUTSIDE_GUEST_MODE;
605 local_irq_enable();
c2a2ac2b
XG
606}
607
e2dec939 608static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 struct kmem_cache *base_cache, int min)
714b93da
AK
610{
611 void *obj;
612
613 if (cache->nobjs >= min)
e2dec939 614 return 0;
714b93da 615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 616 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 617 if (!obj)
e2dec939 618 return -ENOMEM;
714b93da
AK
619 cache->objects[cache->nobjs++] = obj;
620 }
e2dec939 621 return 0;
714b93da
AK
622}
623
f759e2b4
XG
624static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
625{
626 return cache->nobjs;
627}
628
e8ad9a70
XG
629static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
630 struct kmem_cache *cache)
714b93da
AK
631{
632 while (mc->nobjs)
e8ad9a70 633 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
634}
635
c1158e63 636static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 637 int min)
c1158e63 638{
842f22ed 639 void *page;
c1158e63
AK
640
641 if (cache->nobjs >= min)
642 return 0;
643 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 644 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
645 if (!page)
646 return -ENOMEM;
842f22ed 647 cache->objects[cache->nobjs++] = page;
c1158e63
AK
648 }
649 return 0;
650}
651
652static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
653{
654 while (mc->nobjs)
c4d198d5 655 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
656}
657
2e3e5882 658static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 659{
e2dec939
AK
660 int r;
661
53c07b18 662 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 663 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
664 if (r)
665 goto out;
ad312c7c 666 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
667 if (r)
668 goto out;
ad312c7c 669 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 670 mmu_page_header_cache, 4);
e2dec939
AK
671out:
672 return r;
714b93da
AK
673}
674
675static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
676{
53c07b18
XG
677 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
678 pte_list_desc_cache);
ad312c7c 679 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
680 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
681 mmu_page_header_cache);
714b93da
AK
682}
683
80feb89a 684static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
685{
686 void *p;
687
688 BUG_ON(!mc->nobjs);
689 p = mc->objects[--mc->nobjs];
714b93da
AK
690 return p;
691}
692
53c07b18 693static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 694{
80feb89a 695 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
696}
697
53c07b18 698static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 699{
53c07b18 700 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
701}
702
2032a93d
LJ
703static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
704{
705 if (!sp->role.direct)
706 return sp->gfns[index];
707
708 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
709}
710
711static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
712{
713 if (sp->role.direct)
714 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
715 else
716 sp->gfns[index] = gfn;
717}
718
05da4558 719/*
d4dbf470
TY
720 * Return the pointer to the large page information for a given gfn,
721 * handling slots that are not large page aligned.
05da4558 722 */
d4dbf470
TY
723static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
724 struct kvm_memory_slot *slot,
725 int level)
05da4558
MT
726{
727 unsigned long idx;
728
fb03cb6f 729 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 730 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
731}
732
733static void account_shadowed(struct kvm *kvm, gfn_t gfn)
734{
d25797b2 735 struct kvm_memory_slot *slot;
d4dbf470 736 struct kvm_lpage_info *linfo;
d25797b2 737 int i;
05da4558 738
a1f4d395 739 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
740 for (i = PT_DIRECTORY_LEVEL;
741 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
742 linfo = lpage_info_slot(gfn, slot, i);
743 linfo->write_count += 1;
d25797b2 744 }
332b207d 745 kvm->arch.indirect_shadow_pages++;
05da4558
MT
746}
747
748static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
749{
d25797b2 750 struct kvm_memory_slot *slot;
d4dbf470 751 struct kvm_lpage_info *linfo;
d25797b2 752 int i;
05da4558 753
a1f4d395 754 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
755 for (i = PT_DIRECTORY_LEVEL;
756 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
757 linfo = lpage_info_slot(gfn, slot, i);
758 linfo->write_count -= 1;
759 WARN_ON(linfo->write_count < 0);
d25797b2 760 }
332b207d 761 kvm->arch.indirect_shadow_pages--;
05da4558
MT
762}
763
d25797b2
JR
764static int has_wrprotected_page(struct kvm *kvm,
765 gfn_t gfn,
766 int level)
05da4558 767{
2843099f 768 struct kvm_memory_slot *slot;
d4dbf470 769 struct kvm_lpage_info *linfo;
05da4558 770
a1f4d395 771 slot = gfn_to_memslot(kvm, gfn);
05da4558 772 if (slot) {
d4dbf470
TY
773 linfo = lpage_info_slot(gfn, slot, level);
774 return linfo->write_count;
05da4558
MT
775 }
776
777 return 1;
778}
779
d25797b2 780static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 781{
8f0b1ab6 782 unsigned long page_size;
d25797b2 783 int i, ret = 0;
05da4558 784
8f0b1ab6 785 page_size = kvm_host_page_size(kvm, gfn);
05da4558 786
d25797b2
JR
787 for (i = PT_PAGE_TABLE_LEVEL;
788 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
789 if (page_size >= KVM_HPAGE_SIZE(i))
790 ret = i;
791 else
792 break;
793 }
794
4c2155ce 795 return ret;
05da4558
MT
796}
797
5d163b1c
XG
798static struct kvm_memory_slot *
799gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
800 bool no_dirty_log)
05da4558
MT
801{
802 struct kvm_memory_slot *slot;
5d163b1c
XG
803
804 slot = gfn_to_memslot(vcpu->kvm, gfn);
805 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
806 (no_dirty_log && slot->dirty_bitmap))
807 slot = NULL;
808
809 return slot;
810}
811
812static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
813{
a0a8eaba 814 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
815}
816
817static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
818{
819 int host_level, level, max_level;
05da4558 820
d25797b2
JR
821 host_level = host_mapping_level(vcpu->kvm, large_gfn);
822
823 if (host_level == PT_PAGE_TABLE_LEVEL)
824 return host_level;
825
878403b7
SY
826 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
827 kvm_x86_ops->get_lpage_level() : host_level;
828
829 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
830 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
831 break;
d25797b2
JR
832
833 return level - 1;
05da4558
MT
834}
835
290fc38d 836/*
53c07b18 837 * Pte mapping structures:
cd4a4e53 838 *
53c07b18 839 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 840 *
53c07b18
XG
841 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
842 * pte_list_desc containing more mappings.
53a27b39 843 *
53c07b18 844 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
845 * the spte was not added.
846 *
cd4a4e53 847 */
53c07b18
XG
848static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
849 unsigned long *pte_list)
cd4a4e53 850{
53c07b18 851 struct pte_list_desc *desc;
53a27b39 852 int i, count = 0;
cd4a4e53 853
53c07b18
XG
854 if (!*pte_list) {
855 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
856 *pte_list = (unsigned long)spte;
857 } else if (!(*pte_list & 1)) {
858 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
859 desc = mmu_alloc_pte_list_desc(vcpu);
860 desc->sptes[0] = (u64 *)*pte_list;
d555c333 861 desc->sptes[1] = spte;
53c07b18 862 *pte_list = (unsigned long)desc | 1;
cb16a7b3 863 ++count;
cd4a4e53 864 } else {
53c07b18
XG
865 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
866 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
867 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 868 desc = desc->more;
53c07b18 869 count += PTE_LIST_EXT;
53a27b39 870 }
53c07b18
XG
871 if (desc->sptes[PTE_LIST_EXT-1]) {
872 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
873 desc = desc->more;
874 }
d555c333 875 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 876 ++count;
d555c333 877 desc->sptes[i] = spte;
cd4a4e53 878 }
53a27b39 879 return count;
cd4a4e53
AK
880}
881
53c07b18
XG
882static void
883pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
884 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
885{
886 int j;
887
53c07b18 888 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 889 ;
d555c333
AK
890 desc->sptes[i] = desc->sptes[j];
891 desc->sptes[j] = NULL;
cd4a4e53
AK
892 if (j != 0)
893 return;
894 if (!prev_desc && !desc->more)
53c07b18 895 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
896 else
897 if (prev_desc)
898 prev_desc->more = desc->more;
899 else
53c07b18
XG
900 *pte_list = (unsigned long)desc->more | 1;
901 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
902}
903
53c07b18 904static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 905{
53c07b18
XG
906 struct pte_list_desc *desc;
907 struct pte_list_desc *prev_desc;
cd4a4e53
AK
908 int i;
909
53c07b18
XG
910 if (!*pte_list) {
911 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 912 BUG();
53c07b18
XG
913 } else if (!(*pte_list & 1)) {
914 rmap_printk("pte_list_remove: %p 1->0\n", spte);
915 if ((u64 *)*pte_list != spte) {
916 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
917 BUG();
918 }
53c07b18 919 *pte_list = 0;
cd4a4e53 920 } else {
53c07b18
XG
921 rmap_printk("pte_list_remove: %p many->many\n", spte);
922 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
923 prev_desc = NULL;
924 while (desc) {
53c07b18 925 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 926 if (desc->sptes[i] == spte) {
53c07b18 927 pte_list_desc_remove_entry(pte_list,
714b93da 928 desc, i,
cd4a4e53
AK
929 prev_desc);
930 return;
931 }
932 prev_desc = desc;
933 desc = desc->more;
934 }
53c07b18 935 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
936 BUG();
937 }
938}
939
67052b35
XG
940typedef void (*pte_list_walk_fn) (u64 *spte);
941static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
942{
943 struct pte_list_desc *desc;
944 int i;
945
946 if (!*pte_list)
947 return;
948
949 if (!(*pte_list & 1))
950 return fn((u64 *)*pte_list);
951
952 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
953 while (desc) {
954 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
955 fn(desc->sptes[i]);
956 desc = desc->more;
957 }
958}
959
9373e2c0 960static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 961 struct kvm_memory_slot *slot)
53c07b18 962{
77d11309 963 unsigned long idx;
53c07b18 964
53c07b18
XG
965 if (likely(level == PT_PAGE_TABLE_LEVEL))
966 return &slot->rmap[gfn - slot->base_gfn];
967
77d11309
TY
968 idx = gfn_to_index(gfn, slot->base_gfn, level);
969 return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
53c07b18
XG
970}
971
9b9b1492
TY
972/*
973 * Take gfn and return the reverse mapping to it.
974 */
975static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
976{
977 struct kvm_memory_slot *slot;
978
979 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 980 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
981}
982
f759e2b4
XG
983static bool rmap_can_add(struct kvm_vcpu *vcpu)
984{
985 struct kvm_mmu_memory_cache *cache;
986
987 cache = &vcpu->arch.mmu_pte_list_desc_cache;
988 return mmu_memory_cache_free_objects(cache);
989}
990
53c07b18
XG
991static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
992{
993 struct kvm_mmu_page *sp;
994 unsigned long *rmapp;
995
53c07b18
XG
996 sp = page_header(__pa(spte));
997 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
998 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
999 return pte_list_add(vcpu, spte, rmapp);
1000}
1001
53c07b18
XG
1002static void rmap_remove(struct kvm *kvm, u64 *spte)
1003{
1004 struct kvm_mmu_page *sp;
1005 gfn_t gfn;
1006 unsigned long *rmapp;
1007
1008 sp = page_header(__pa(spte));
1009 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1010 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1011 pte_list_remove(spte, rmapp);
1012}
1013
1e3f42f0
TY
1014/*
1015 * Used by the following functions to iterate through the sptes linked by a
1016 * rmap. All fields are private and not assumed to be used outside.
1017 */
1018struct rmap_iterator {
1019 /* private fields */
1020 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1021 int pos; /* index of the sptep */
1022};
1023
1024/*
1025 * Iteration must be started by this function. This should also be used after
1026 * removing/dropping sptes from the rmap link because in such cases the
1027 * information in the itererator may not be valid.
1028 *
1029 * Returns sptep if found, NULL otherwise.
1030 */
1031static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1032{
1033 if (!rmap)
1034 return NULL;
1035
1036 if (!(rmap & 1)) {
1037 iter->desc = NULL;
1038 return (u64 *)rmap;
1039 }
1040
1041 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1042 iter->pos = 0;
1043 return iter->desc->sptes[iter->pos];
1044}
1045
1046/*
1047 * Must be used with a valid iterator: e.g. after rmap_get_first().
1048 *
1049 * Returns sptep if found, NULL otherwise.
1050 */
1051static u64 *rmap_get_next(struct rmap_iterator *iter)
1052{
1053 if (iter->desc) {
1054 if (iter->pos < PTE_LIST_EXT - 1) {
1055 u64 *sptep;
1056
1057 ++iter->pos;
1058 sptep = iter->desc->sptes[iter->pos];
1059 if (sptep)
1060 return sptep;
1061 }
1062
1063 iter->desc = iter->desc->more;
1064
1065 if (iter->desc) {
1066 iter->pos = 0;
1067 /* desc->sptes[0] cannot be NULL */
1068 return iter->desc->sptes[iter->pos];
1069 }
1070 }
1071
1072 return NULL;
1073}
1074
c3707958 1075static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1076{
1df9f2dc 1077 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1078 rmap_remove(kvm, sptep);
be38d276
AK
1079}
1080
8e22f955
XG
1081
1082static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1083{
1084 if (is_large_pte(*sptep)) {
1085 WARN_ON(page_header(__pa(sptep))->role.level ==
1086 PT_PAGE_TABLE_LEVEL);
1087 drop_spte(kvm, sptep);
1088 --kvm->stat.lpages;
1089 return true;
1090 }
1091
1092 return false;
1093}
1094
1095static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1096{
1097 if (__drop_large_spte(vcpu->kvm, sptep))
1098 kvm_flush_remote_tlbs(vcpu->kvm);
1099}
1100
1101/*
49fde340
XG
1102 * Write-protect on the specified @sptep, @pt_protect indicates whether
1103 * spte writ-protection is caused by protecting shadow page table.
1104 * @flush indicates whether tlb need be flushed.
1105 *
1106 * Note: write protection is difference between drity logging and spte
1107 * protection:
1108 * - for dirty logging, the spte can be set to writable at anytime if
1109 * its dirty bitmap is properly set.
1110 * - for spte protection, the spte can be writable only after unsync-ing
1111 * shadow page.
8e22f955
XG
1112 *
1113 * Return true if the spte is dropped.
1114 */
49fde340
XG
1115static bool
1116spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1117{
1118 u64 spte = *sptep;
1119
49fde340
XG
1120 if (!is_writable_pte(spte) &&
1121 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1122 return false;
1123
1124 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1125
49fde340
XG
1126 if (__drop_large_spte(kvm, sptep)) {
1127 *flush |= true;
d13bc5b5 1128 return true;
49fde340 1129 }
d13bc5b5 1130
49fde340
XG
1131 if (pt_protect)
1132 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1133 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1134
1135 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1136 return false;
1137}
1138
49fde340
XG
1139static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1140 int level, bool pt_protect)
98348e95 1141{
1e3f42f0
TY
1142 u64 *sptep;
1143 struct rmap_iterator iter;
d13bc5b5 1144 bool flush = false;
374cbac0 1145
1e3f42f0
TY
1146 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1147 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1148 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1149 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1150 continue;
caa5b8a5 1151 }
a0ed4607 1152
d13bc5b5 1153 sptep = rmap_get_next(&iter);
374cbac0 1154 }
855149aa 1155
d13bc5b5 1156 return flush;
a0ed4607
TY
1157}
1158
5dc99b23
TY
1159/**
1160 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1161 * @kvm: kvm instance
1162 * @slot: slot to protect
1163 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1164 * @mask: indicates which pages we should protect
1165 *
1166 * Used when we do not need to care about huge page mappings: e.g. during dirty
1167 * logging we do not have any such mappings.
1168 */
1169void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1170 struct kvm_memory_slot *slot,
1171 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1172{
1173 unsigned long *rmapp;
a0ed4607 1174
5dc99b23
TY
1175 while (mask) {
1176 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
49fde340 1177 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
05da4558 1178
5dc99b23
TY
1179 /* clear the first set bit */
1180 mask &= mask - 1;
1181 }
374cbac0
AK
1182}
1183
2f84569f 1184static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1185{
1186 struct kvm_memory_slot *slot;
5dc99b23
TY
1187 unsigned long *rmapp;
1188 int i;
2f84569f 1189 bool write_protected = false;
95d4c16c
TY
1190
1191 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1192
1193 for (i = PT_PAGE_TABLE_LEVEL;
1194 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1195 rmapp = __gfn_to_rmap(gfn, i, slot);
49fde340 1196 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
5dc99b23
TY
1197 }
1198
1199 return write_protected;
95d4c16c
TY
1200}
1201
8a8365c5 1202static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1203 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1204{
1e3f42f0
TY
1205 u64 *sptep;
1206 struct rmap_iterator iter;
e930bffe
AA
1207 int need_tlb_flush = 0;
1208
1e3f42f0
TY
1209 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1210 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1211 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1212
1213 drop_spte(kvm, sptep);
e930bffe
AA
1214 need_tlb_flush = 1;
1215 }
1e3f42f0 1216
e930bffe
AA
1217 return need_tlb_flush;
1218}
1219
8a8365c5 1220static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1221 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1222{
1e3f42f0
TY
1223 u64 *sptep;
1224 struct rmap_iterator iter;
3da0dd43 1225 int need_flush = 0;
1e3f42f0 1226 u64 new_spte;
3da0dd43
IE
1227 pte_t *ptep = (pte_t *)data;
1228 pfn_t new_pfn;
1229
1230 WARN_ON(pte_huge(*ptep));
1231 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1232
1233 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1234 BUG_ON(!is_shadow_present_pte(*sptep));
1235 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1236
3da0dd43 1237 need_flush = 1;
1e3f42f0 1238
3da0dd43 1239 if (pte_write(*ptep)) {
1e3f42f0
TY
1240 drop_spte(kvm, sptep);
1241 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1242 } else {
1e3f42f0 1243 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1244 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1245
1246 new_spte &= ~PT_WRITABLE_MASK;
1247 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1248 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1249
1250 mmu_spte_clear_track_bits(sptep);
1251 mmu_spte_set(sptep, new_spte);
1252 sptep = rmap_get_next(&iter);
3da0dd43
IE
1253 }
1254 }
1e3f42f0 1255
3da0dd43
IE
1256 if (need_flush)
1257 kvm_flush_remote_tlbs(kvm);
1258
1259 return 0;
1260}
1261
84504ef3
TY
1262static int kvm_handle_hva_range(struct kvm *kvm,
1263 unsigned long start,
1264 unsigned long end,
1265 unsigned long data,
1266 int (*handler)(struct kvm *kvm,
1267 unsigned long *rmapp,
048212d0 1268 struct kvm_memory_slot *slot,
84504ef3 1269 unsigned long data))
e930bffe 1270{
be6ba0f0 1271 int j;
f395302e 1272 int ret = 0;
bc6678a3 1273 struct kvm_memslots *slots;
be6ba0f0 1274 struct kvm_memory_slot *memslot;
bc6678a3 1275
90d83dc3 1276 slots = kvm_memslots(kvm);
e930bffe 1277
be6ba0f0 1278 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
1279 unsigned long hva_start, hva_end;
1280 gfn_t gfn, gfn_end;
852e3c19 1281
84504ef3
TY
1282 hva_start = max(start, memslot->userspace_addr);
1283 hva_end = min(end, memslot->userspace_addr +
1284 (memslot->npages << PAGE_SHIFT));
1285 if (hva_start >= hva_end)
1286 continue;
1287 /*
1288 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1289 * {gfn, gfn+1, ..., gfn_end-1}.
1290 */
1291 gfn = hva_to_gfn_memslot(hva_start, memslot);
1292 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1293
1294 for (; gfn < gfn_end; ++gfn) {
9594a498
TY
1295 for (j = PT_PAGE_TABLE_LEVEL;
1296 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1297 unsigned long *rmapp;
d4dbf470 1298
9594a498 1299 rmapp = __gfn_to_rmap(gfn, j, memslot);
048212d0 1300 ret |= handler(kvm, rmapp, memslot, data);
852e3c19 1301 }
e930bffe
AA
1302 }
1303 }
1304
f395302e 1305 return ret;
e930bffe
AA
1306}
1307
84504ef3
TY
1308static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1309 unsigned long data,
1310 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1311 struct kvm_memory_slot *slot,
84504ef3
TY
1312 unsigned long data))
1313{
1314 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1315}
1316
e930bffe
AA
1317int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1318{
3da0dd43
IE
1319 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1320}
1321
b3ae2096
TY
1322int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1323{
1324 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1325}
1326
3da0dd43
IE
1327void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1328{
8a8365c5 1329 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1330}
1331
8a8365c5 1332static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1333 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1334{
1e3f42f0 1335 u64 *sptep;
79f702a6 1336 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1337 int young = 0;
1338
6316e1c8 1339 /*
3f6d8c8a
XH
1340 * In case of absence of EPT Access and Dirty Bits supports,
1341 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1342 * an EPT mapping, and clearing it if it does. On the next access,
1343 * a new EPT mapping will be established.
1344 * This has some overhead, but not as much as the cost of swapping
1345 * out actively used pages or breaking up actively used hugepages.
1346 */
f395302e
TY
1347 if (!shadow_accessed_mask) {
1348 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1349 goto out;
1350 }
534e38b4 1351
1e3f42f0
TY
1352 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1353 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1354 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1355
3f6d8c8a 1356 if (*sptep & shadow_accessed_mask) {
e930bffe 1357 young = 1;
3f6d8c8a
XH
1358 clear_bit((ffs(shadow_accessed_mask) - 1),
1359 (unsigned long *)sptep);
e930bffe 1360 }
e930bffe 1361 }
f395302e
TY
1362out:
1363 /* @data has hva passed to kvm_age_hva(). */
1364 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1365 return young;
1366}
1367
8ee53820 1368static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1369 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1370{
1e3f42f0
TY
1371 u64 *sptep;
1372 struct rmap_iterator iter;
8ee53820
AA
1373 int young = 0;
1374
1375 /*
1376 * If there's no access bit in the secondary pte set by the
1377 * hardware it's up to gup-fast/gup to set the access bit in
1378 * the primary pte or in the page structure.
1379 */
1380 if (!shadow_accessed_mask)
1381 goto out;
1382
1e3f42f0
TY
1383 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1384 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1385 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1386
3f6d8c8a 1387 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1388 young = 1;
1389 break;
1390 }
8ee53820
AA
1391 }
1392out:
1393 return young;
1394}
1395
53a27b39
MT
1396#define RMAP_RECYCLE_THRESHOLD 1000
1397
852e3c19 1398static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1399{
1400 unsigned long *rmapp;
852e3c19
JR
1401 struct kvm_mmu_page *sp;
1402
1403 sp = page_header(__pa(spte));
53a27b39 1404
852e3c19 1405 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1406
048212d0 1407 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1408 kvm_flush_remote_tlbs(vcpu->kvm);
1409}
1410
e930bffe
AA
1411int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1412{
f395302e 1413 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1414}
1415
8ee53820
AA
1416int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1417{
1418 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1419}
1420
d6c69ee9 1421#ifdef MMU_DEBUG
47ad8e68 1422static int is_empty_shadow_page(u64 *spt)
6aa8b732 1423{
139bdb2d
AK
1424 u64 *pos;
1425 u64 *end;
1426
47ad8e68 1427 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1428 if (is_shadow_present_pte(*pos)) {
b8688d51 1429 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1430 pos, *pos);
6aa8b732 1431 return 0;
139bdb2d 1432 }
6aa8b732
AK
1433 return 1;
1434}
d6c69ee9 1435#endif
6aa8b732 1436
45221ab6
DH
1437/*
1438 * This value is the sum of all of the kvm instances's
1439 * kvm->arch.n_used_mmu_pages values. We need a global,
1440 * aggregate version in order to make the slab shrinker
1441 * faster
1442 */
1443static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1444{
1445 kvm->arch.n_used_mmu_pages += nr;
1446 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1447}
1448
bd4c86ea
XG
1449/*
1450 * Remove the sp from shadow page cache, after call it,
1451 * we can not find this sp from the cache, and the shadow
1452 * page table is still valid.
1453 * It should be under the protection of mmu lock.
1454 */
1455static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1456{
4db35314 1457 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1458 hlist_del(&sp->hash_link);
2032a93d 1459 if (!sp->role.direct)
842f22ed 1460 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1461}
1462
1463/*
1464 * Free the shadow page table and the sp, we can do it
1465 * out of the protection of mmu lock.
1466 */
1467static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1468{
1469 list_del(&sp->link);
1470 free_page((unsigned long)sp->spt);
e8ad9a70 1471 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1472}
1473
cea0f0e7
AK
1474static unsigned kvm_page_table_hashfn(gfn_t gfn)
1475{
1ae0a13d 1476 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1477}
1478
714b93da 1479static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1480 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1481{
cea0f0e7
AK
1482 if (!parent_pte)
1483 return;
cea0f0e7 1484
67052b35 1485 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1486}
1487
4db35314 1488static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1489 u64 *parent_pte)
1490{
67052b35 1491 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1492}
1493
bcdd9a93
XG
1494static void drop_parent_pte(struct kvm_mmu_page *sp,
1495 u64 *parent_pte)
1496{
1497 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1498 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1499}
1500
67052b35
XG
1501static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1502 u64 *parent_pte, int direct)
ad8cfbe3 1503{
67052b35 1504 struct kvm_mmu_page *sp;
80feb89a
TY
1505 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1506 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1507 if (!direct)
80feb89a 1508 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1509 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1510 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1511 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1512 sp->parent_ptes = 0;
1513 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1514 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1515 return sp;
ad8cfbe3
MT
1516}
1517
67052b35 1518static void mark_unsync(u64 *spte);
1047df1f 1519static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1520{
67052b35 1521 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1522}
1523
67052b35 1524static void mark_unsync(u64 *spte)
0074ff63 1525{
67052b35 1526 struct kvm_mmu_page *sp;
1047df1f 1527 unsigned int index;
0074ff63 1528
67052b35 1529 sp = page_header(__pa(spte));
1047df1f
XG
1530 index = spte - sp->spt;
1531 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1532 return;
1047df1f 1533 if (sp->unsync_children++)
0074ff63 1534 return;
1047df1f 1535 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1536}
1537
e8bc217a 1538static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1539 struct kvm_mmu_page *sp)
e8bc217a
MT
1540{
1541 return 1;
1542}
1543
a7052897
MT
1544static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1545{
1546}
1547
0f53b5b1
XG
1548static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1549 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1550 const void *pte)
0f53b5b1
XG
1551{
1552 WARN_ON(1);
1553}
1554
60c8aec6
MT
1555#define KVM_PAGE_ARRAY_NR 16
1556
1557struct kvm_mmu_pages {
1558 struct mmu_page_and_offset {
1559 struct kvm_mmu_page *sp;
1560 unsigned int idx;
1561 } page[KVM_PAGE_ARRAY_NR];
1562 unsigned int nr;
1563};
1564
cded19f3
HE
1565static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1566 int idx)
4731d4c7 1567{
60c8aec6 1568 int i;
4731d4c7 1569
60c8aec6
MT
1570 if (sp->unsync)
1571 for (i=0; i < pvec->nr; i++)
1572 if (pvec->page[i].sp == sp)
1573 return 0;
1574
1575 pvec->page[pvec->nr].sp = sp;
1576 pvec->page[pvec->nr].idx = idx;
1577 pvec->nr++;
1578 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1579}
1580
1581static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1582 struct kvm_mmu_pages *pvec)
1583{
1584 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1585
37178b8b 1586 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1587 struct kvm_mmu_page *child;
4731d4c7
MT
1588 u64 ent = sp->spt[i];
1589
7a8f1a74
XG
1590 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1591 goto clear_child_bitmap;
1592
1593 child = page_header(ent & PT64_BASE_ADDR_MASK);
1594
1595 if (child->unsync_children) {
1596 if (mmu_pages_add(pvec, child, i))
1597 return -ENOSPC;
1598
1599 ret = __mmu_unsync_walk(child, pvec);
1600 if (!ret)
1601 goto clear_child_bitmap;
1602 else if (ret > 0)
1603 nr_unsync_leaf += ret;
1604 else
1605 return ret;
1606 } else if (child->unsync) {
1607 nr_unsync_leaf++;
1608 if (mmu_pages_add(pvec, child, i))
1609 return -ENOSPC;
1610 } else
1611 goto clear_child_bitmap;
1612
1613 continue;
1614
1615clear_child_bitmap:
1616 __clear_bit(i, sp->unsync_child_bitmap);
1617 sp->unsync_children--;
1618 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1619 }
1620
4731d4c7 1621
60c8aec6
MT
1622 return nr_unsync_leaf;
1623}
1624
1625static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1626 struct kvm_mmu_pages *pvec)
1627{
1628 if (!sp->unsync_children)
1629 return 0;
1630
1631 mmu_pages_add(pvec, sp, 0);
1632 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1633}
1634
4731d4c7
MT
1635static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1636{
1637 WARN_ON(!sp->unsync);
5e1b3ddb 1638 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1639 sp->unsync = 0;
1640 --kvm->stat.mmu_unsync;
1641}
1642
7775834a
XG
1643static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1644 struct list_head *invalid_list);
1645static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1646 struct list_head *invalid_list);
4731d4c7 1647
f41d335a
XG
1648#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1649 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1650 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1651 if ((sp)->gfn != (gfn)) {} else
1652
f41d335a
XG
1653#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1654 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1655 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1656 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1657 (sp)->role.invalid) {} else
1658
f918b443 1659/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1660static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1661 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1662{
5b7e0102 1663 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1664 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1665 return 1;
1666 }
1667
f918b443 1668 if (clear_unsync)
1d9dc7e0 1669 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1670
a4a8e6f7 1671 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1672 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1673 return 1;
1674 }
1675
1676 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1677 return 0;
1678}
1679
1d9dc7e0
XG
1680static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1681 struct kvm_mmu_page *sp)
1682{
d98ba053 1683 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1684 int ret;
1685
d98ba053 1686 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1687 if (ret)
d98ba053
XG
1688 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1689
1d9dc7e0
XG
1690 return ret;
1691}
1692
e37fa785
XG
1693#ifdef CONFIG_KVM_MMU_AUDIT
1694#include "mmu_audit.c"
1695#else
1696static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1697static void mmu_audit_disable(void) { }
1698#endif
1699
d98ba053
XG
1700static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1701 struct list_head *invalid_list)
1d9dc7e0 1702{
d98ba053 1703 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1704}
1705
9f1a122f
XG
1706/* @gfn should be write-protected at the call site */
1707static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1708{
9f1a122f 1709 struct kvm_mmu_page *s;
f41d335a 1710 struct hlist_node *node;
d98ba053 1711 LIST_HEAD(invalid_list);
9f1a122f
XG
1712 bool flush = false;
1713
f41d335a 1714 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1715 if (!s->unsync)
9f1a122f
XG
1716 continue;
1717
1718 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1719 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1720 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1721 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1722 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1723 continue;
1724 }
9f1a122f
XG
1725 flush = true;
1726 }
1727
d98ba053 1728 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1729 if (flush)
1730 kvm_mmu_flush_tlb(vcpu);
1731}
1732
60c8aec6
MT
1733struct mmu_page_path {
1734 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1735 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1736};
1737
60c8aec6
MT
1738#define for_each_sp(pvec, sp, parents, i) \
1739 for (i = mmu_pages_next(&pvec, &parents, -1), \
1740 sp = pvec.page[i].sp; \
1741 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1742 i = mmu_pages_next(&pvec, &parents, i))
1743
cded19f3
HE
1744static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1745 struct mmu_page_path *parents,
1746 int i)
60c8aec6
MT
1747{
1748 int n;
1749
1750 for (n = i+1; n < pvec->nr; n++) {
1751 struct kvm_mmu_page *sp = pvec->page[n].sp;
1752
1753 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1754 parents->idx[0] = pvec->page[n].idx;
1755 return n;
1756 }
1757
1758 parents->parent[sp->role.level-2] = sp;
1759 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1760 }
1761
1762 return n;
1763}
1764
cded19f3 1765static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1766{
60c8aec6
MT
1767 struct kvm_mmu_page *sp;
1768 unsigned int level = 0;
1769
1770 do {
1771 unsigned int idx = parents->idx[level];
4731d4c7 1772
60c8aec6
MT
1773 sp = parents->parent[level];
1774 if (!sp)
1775 return;
1776
1777 --sp->unsync_children;
1778 WARN_ON((int)sp->unsync_children < 0);
1779 __clear_bit(idx, sp->unsync_child_bitmap);
1780 level++;
1781 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1782}
1783
60c8aec6
MT
1784static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1785 struct mmu_page_path *parents,
1786 struct kvm_mmu_pages *pvec)
4731d4c7 1787{
60c8aec6
MT
1788 parents->parent[parent->role.level-1] = NULL;
1789 pvec->nr = 0;
1790}
4731d4c7 1791
60c8aec6
MT
1792static void mmu_sync_children(struct kvm_vcpu *vcpu,
1793 struct kvm_mmu_page *parent)
1794{
1795 int i;
1796 struct kvm_mmu_page *sp;
1797 struct mmu_page_path parents;
1798 struct kvm_mmu_pages pages;
d98ba053 1799 LIST_HEAD(invalid_list);
60c8aec6
MT
1800
1801 kvm_mmu_pages_init(parent, &parents, &pages);
1802 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1803 bool protected = false;
b1a36821
MT
1804
1805 for_each_sp(pages, sp, parents, i)
1806 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1807
1808 if (protected)
1809 kvm_flush_remote_tlbs(vcpu->kvm);
1810
60c8aec6 1811 for_each_sp(pages, sp, parents, i) {
d98ba053 1812 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1813 mmu_pages_clear_parents(&parents);
1814 }
d98ba053 1815 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1816 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1817 kvm_mmu_pages_init(parent, &parents, &pages);
1818 }
4731d4c7
MT
1819}
1820
c3707958
XG
1821static void init_shadow_page_table(struct kvm_mmu_page *sp)
1822{
1823 int i;
1824
1825 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1826 sp->spt[i] = 0ull;
1827}
1828
a30f47cb
XG
1829static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1830{
1831 sp->write_flooding_count = 0;
1832}
1833
1834static void clear_sp_write_flooding_count(u64 *spte)
1835{
1836 struct kvm_mmu_page *sp = page_header(__pa(spte));
1837
1838 __clear_sp_write_flooding_count(sp);
1839}
1840
cea0f0e7
AK
1841static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1842 gfn_t gfn,
1843 gva_t gaddr,
1844 unsigned level,
f6e2c02b 1845 int direct,
41074d07 1846 unsigned access,
f7d9c7b7 1847 u64 *parent_pte)
cea0f0e7
AK
1848{
1849 union kvm_mmu_page_role role;
cea0f0e7 1850 unsigned quadrant;
9f1a122f 1851 struct kvm_mmu_page *sp;
f41d335a 1852 struct hlist_node *node;
9f1a122f 1853 bool need_sync = false;
cea0f0e7 1854
a770f6f2 1855 role = vcpu->arch.mmu.base_role;
cea0f0e7 1856 role.level = level;
f6e2c02b 1857 role.direct = direct;
84b0c8c6 1858 if (role.direct)
5b7e0102 1859 role.cr4_pae = 0;
41074d07 1860 role.access = access;
c5a78f2b
JR
1861 if (!vcpu->arch.mmu.direct_map
1862 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1863 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1864 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1865 role.quadrant = quadrant;
1866 }
f41d335a 1867 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1868 if (!need_sync && sp->unsync)
1869 need_sync = true;
4731d4c7 1870
7ae680eb
XG
1871 if (sp->role.word != role.word)
1872 continue;
4731d4c7 1873
7ae680eb
XG
1874 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1875 break;
e02aa901 1876
7ae680eb
XG
1877 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1878 if (sp->unsync_children) {
a8eeb04a 1879 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1880 kvm_mmu_mark_parents_unsync(sp);
1881 } else if (sp->unsync)
1882 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1883
a30f47cb 1884 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1885 trace_kvm_mmu_get_page(sp, false);
1886 return sp;
1887 }
dfc5aa00 1888 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1889 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1890 if (!sp)
1891 return sp;
4db35314
AK
1892 sp->gfn = gfn;
1893 sp->role = role;
7ae680eb
XG
1894 hlist_add_head(&sp->hash_link,
1895 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1896 if (!direct) {
b1a36821
MT
1897 if (rmap_write_protect(vcpu->kvm, gfn))
1898 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1899 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1900 kvm_sync_pages(vcpu, gfn);
1901
4731d4c7
MT
1902 account_shadowed(vcpu->kvm, gfn);
1903 }
c3707958 1904 init_shadow_page_table(sp);
f691fe1d 1905 trace_kvm_mmu_get_page(sp, true);
4db35314 1906 return sp;
cea0f0e7
AK
1907}
1908
2d11123a
AK
1909static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1910 struct kvm_vcpu *vcpu, u64 addr)
1911{
1912 iterator->addr = addr;
1913 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1914 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1915
1916 if (iterator->level == PT64_ROOT_LEVEL &&
1917 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1918 !vcpu->arch.mmu.direct_map)
1919 --iterator->level;
1920
2d11123a
AK
1921 if (iterator->level == PT32E_ROOT_LEVEL) {
1922 iterator->shadow_addr
1923 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1924 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1925 --iterator->level;
1926 if (!iterator->shadow_addr)
1927 iterator->level = 0;
1928 }
1929}
1930
1931static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1932{
1933 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1934 return false;
4d88954d 1935
2d11123a
AK
1936 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1937 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1938 return true;
1939}
1940
c2a2ac2b
XG
1941static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1942 u64 spte)
2d11123a 1943{
c2a2ac2b 1944 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1945 iterator->level = 0;
1946 return;
1947 }
1948
c2a2ac2b 1949 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1950 --iterator->level;
1951}
1952
c2a2ac2b
XG
1953static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1954{
1955 return __shadow_walk_next(iterator, *iterator->sptep);
1956}
1957
32ef26a3
AK
1958static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1959{
1960 u64 spte;
1961
1962 spte = __pa(sp->spt)
1963 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1964 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1965 mmu_spte_set(sptep, spte);
32ef26a3
AK
1966}
1967
a357bd22
AK
1968static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1969 unsigned direct_access)
1970{
1971 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1972 struct kvm_mmu_page *child;
1973
1974 /*
1975 * For the direct sp, if the guest pte's dirty bit
1976 * changed form clean to dirty, it will corrupt the
1977 * sp's access: allow writable in the read-only sp,
1978 * so we should update the spte at this point to get
1979 * a new sp with the correct access.
1980 */
1981 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1982 if (child->role.access == direct_access)
1983 return;
1984
bcdd9a93 1985 drop_parent_pte(child, sptep);
a357bd22
AK
1986 kvm_flush_remote_tlbs(vcpu->kvm);
1987 }
1988}
1989
505aef8f 1990static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1991 u64 *spte)
1992{
1993 u64 pte;
1994 struct kvm_mmu_page *child;
1995
1996 pte = *spte;
1997 if (is_shadow_present_pte(pte)) {
505aef8f 1998 if (is_last_spte(pte, sp->role.level)) {
c3707958 1999 drop_spte(kvm, spte);
505aef8f
XG
2000 if (is_large_pte(pte))
2001 --kvm->stat.lpages;
2002 } else {
38e3b2b2 2003 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2004 drop_parent_pte(child, spte);
38e3b2b2 2005 }
505aef8f
XG
2006 return true;
2007 }
2008
2009 if (is_mmio_spte(pte))
ce88decf 2010 mmu_spte_clear_no_track(spte);
c3707958 2011
505aef8f 2012 return false;
38e3b2b2
XG
2013}
2014
90cb0529 2015static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2016 struct kvm_mmu_page *sp)
a436036b 2017{
697fe2e2 2018 unsigned i;
697fe2e2 2019
38e3b2b2
XG
2020 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2021 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2022}
2023
4db35314 2024static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2025{
4db35314 2026 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2027}
2028
31aa2b44 2029static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2030{
1e3f42f0
TY
2031 u64 *sptep;
2032 struct rmap_iterator iter;
a436036b 2033
1e3f42f0
TY
2034 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2035 drop_parent_pte(sp, sptep);
31aa2b44
AK
2036}
2037
60c8aec6 2038static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2039 struct kvm_mmu_page *parent,
2040 struct list_head *invalid_list)
4731d4c7 2041{
60c8aec6
MT
2042 int i, zapped = 0;
2043 struct mmu_page_path parents;
2044 struct kvm_mmu_pages pages;
4731d4c7 2045
60c8aec6 2046 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2047 return 0;
60c8aec6
MT
2048
2049 kvm_mmu_pages_init(parent, &parents, &pages);
2050 while (mmu_unsync_walk(parent, &pages)) {
2051 struct kvm_mmu_page *sp;
2052
2053 for_each_sp(pages, sp, parents, i) {
7775834a 2054 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2055 mmu_pages_clear_parents(&parents);
77662e00 2056 zapped++;
60c8aec6 2057 }
60c8aec6
MT
2058 kvm_mmu_pages_init(parent, &parents, &pages);
2059 }
2060
2061 return zapped;
4731d4c7
MT
2062}
2063
7775834a
XG
2064static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2065 struct list_head *invalid_list)
31aa2b44 2066{
4731d4c7 2067 int ret;
f691fe1d 2068
7775834a 2069 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2070 ++kvm->stat.mmu_shadow_zapped;
7775834a 2071 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2072 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2073 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2074 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2075 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2076 if (sp->unsync)
2077 kvm_unlink_unsync_page(kvm, sp);
4db35314 2078 if (!sp->root_count) {
54a4f023
GJ
2079 /* Count self */
2080 ret++;
7775834a 2081 list_move(&sp->link, invalid_list);
aa6bd187 2082 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2083 } else {
5b5c6a5a 2084 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2085 kvm_reload_remote_mmus(kvm);
2086 }
7775834a
XG
2087
2088 sp->role.invalid = 1;
4731d4c7 2089 return ret;
a436036b
AK
2090}
2091
7775834a
XG
2092static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2093 struct list_head *invalid_list)
2094{
2095 struct kvm_mmu_page *sp;
2096
2097 if (list_empty(invalid_list))
2098 return;
2099
c142786c
AK
2100 /*
2101 * wmb: make sure everyone sees our modifications to the page tables
2102 * rmb: make sure we see changes to vcpu->mode
2103 */
2104 smp_mb();
4f022648 2105
c142786c
AK
2106 /*
2107 * Wait for all vcpus to exit guest mode and/or lockless shadow
2108 * page table walks.
2109 */
2110 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2111
7775834a
XG
2112 do {
2113 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2114 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2115 kvm_mmu_isolate_page(sp);
aa6bd187 2116 kvm_mmu_free_page(sp);
7775834a 2117 } while (!list_empty(invalid_list));
7775834a
XG
2118}
2119
82ce2c96
IE
2120/*
2121 * Changing the number of mmu pages allocated to the vm
49d5ca26 2122 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2123 */
49d5ca26 2124void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2125{
d98ba053 2126 LIST_HEAD(invalid_list);
82ce2c96
IE
2127 /*
2128 * If we set the number of mmu pages to be smaller be than the
2129 * number of actived pages , we must to free some mmu pages before we
2130 * change the value
2131 */
2132
49d5ca26
DH
2133 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2134 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2135 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2136 struct kvm_mmu_page *page;
2137
f05e70ac 2138 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2139 struct kvm_mmu_page, link);
80b63faf 2140 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2141 }
aa6bd187 2142 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2143 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2144 }
82ce2c96 2145
49d5ca26 2146 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2147}
2148
1cb3f3ae 2149int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2150{
4db35314 2151 struct kvm_mmu_page *sp;
f41d335a 2152 struct hlist_node *node;
d98ba053 2153 LIST_HEAD(invalid_list);
a436036b
AK
2154 int r;
2155
9ad17b10 2156 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2157 r = 0;
1cb3f3ae 2158 spin_lock(&kvm->mmu_lock);
f41d335a 2159 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2160 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2161 sp->role.word);
2162 r = 1;
f41d335a 2163 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2164 }
d98ba053 2165 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2166 spin_unlock(&kvm->mmu_lock);
2167
a436036b 2168 return r;
cea0f0e7 2169}
1cb3f3ae 2170EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2171
38c335f1 2172static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2173{
bc6678a3 2174 int slot = memslot_id(kvm, gfn);
4db35314 2175 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2176
291f26bc 2177 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2178}
2179
74be52e3
SY
2180/*
2181 * The function is based on mtrr_type_lookup() in
2182 * arch/x86/kernel/cpu/mtrr/generic.c
2183 */
2184static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2185 u64 start, u64 end)
2186{
2187 int i;
2188 u64 base, mask;
2189 u8 prev_match, curr_match;
2190 int num_var_ranges = KVM_NR_VAR_MTRR;
2191
2192 if (!mtrr_state->enabled)
2193 return 0xFF;
2194
2195 /* Make end inclusive end, instead of exclusive */
2196 end--;
2197
2198 /* Look in fixed ranges. Just return the type as per start */
2199 if (mtrr_state->have_fixed && (start < 0x100000)) {
2200 int idx;
2201
2202 if (start < 0x80000) {
2203 idx = 0;
2204 idx += (start >> 16);
2205 return mtrr_state->fixed_ranges[idx];
2206 } else if (start < 0xC0000) {
2207 idx = 1 * 8;
2208 idx += ((start - 0x80000) >> 14);
2209 return mtrr_state->fixed_ranges[idx];
2210 } else if (start < 0x1000000) {
2211 idx = 3 * 8;
2212 idx += ((start - 0xC0000) >> 12);
2213 return mtrr_state->fixed_ranges[idx];
2214 }
2215 }
2216
2217 /*
2218 * Look in variable ranges
2219 * Look of multiple ranges matching this address and pick type
2220 * as per MTRR precedence
2221 */
2222 if (!(mtrr_state->enabled & 2))
2223 return mtrr_state->def_type;
2224
2225 prev_match = 0xFF;
2226 for (i = 0; i < num_var_ranges; ++i) {
2227 unsigned short start_state, end_state;
2228
2229 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2230 continue;
2231
2232 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2233 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2234 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2235 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2236
2237 start_state = ((start & mask) == (base & mask));
2238 end_state = ((end & mask) == (base & mask));
2239 if (start_state != end_state)
2240 return 0xFE;
2241
2242 if ((start & mask) != (base & mask))
2243 continue;
2244
2245 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2246 if (prev_match == 0xFF) {
2247 prev_match = curr_match;
2248 continue;
2249 }
2250
2251 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2252 curr_match == MTRR_TYPE_UNCACHABLE)
2253 return MTRR_TYPE_UNCACHABLE;
2254
2255 if ((prev_match == MTRR_TYPE_WRBACK &&
2256 curr_match == MTRR_TYPE_WRTHROUGH) ||
2257 (prev_match == MTRR_TYPE_WRTHROUGH &&
2258 curr_match == MTRR_TYPE_WRBACK)) {
2259 prev_match = MTRR_TYPE_WRTHROUGH;
2260 curr_match = MTRR_TYPE_WRTHROUGH;
2261 }
2262
2263 if (prev_match != curr_match)
2264 return MTRR_TYPE_UNCACHABLE;
2265 }
2266
2267 if (prev_match != 0xFF)
2268 return prev_match;
2269
2270 return mtrr_state->def_type;
2271}
2272
4b12f0de 2273u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2274{
2275 u8 mtrr;
2276
2277 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2278 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2279 if (mtrr == 0xfe || mtrr == 0xff)
2280 mtrr = MTRR_TYPE_WRBACK;
2281 return mtrr;
2282}
4b12f0de 2283EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2284
9cf5cf5a
XG
2285static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2286{
2287 trace_kvm_mmu_unsync_page(sp);
2288 ++vcpu->kvm->stat.mmu_unsync;
2289 sp->unsync = 1;
2290
2291 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2292}
2293
2294static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2295{
4731d4c7 2296 struct kvm_mmu_page *s;
f41d335a 2297 struct hlist_node *node;
9cf5cf5a 2298
f41d335a 2299 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2300 if (s->unsync)
4731d4c7 2301 continue;
9cf5cf5a
XG
2302 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2303 __kvm_unsync_page(vcpu, s);
4731d4c7 2304 }
4731d4c7
MT
2305}
2306
2307static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2308 bool can_unsync)
2309{
9cf5cf5a 2310 struct kvm_mmu_page *s;
f41d335a 2311 struct hlist_node *node;
9cf5cf5a
XG
2312 bool need_unsync = false;
2313
f41d335a 2314 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2315 if (!can_unsync)
2316 return 1;
2317
9cf5cf5a 2318 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2319 return 1;
9cf5cf5a
XG
2320
2321 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2322 need_unsync = true;
2323 }
4731d4c7 2324 }
9cf5cf5a
XG
2325 if (need_unsync)
2326 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2327 return 0;
2328}
2329
d555c333 2330static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2331 unsigned pte_access, int user_fault,
640d9b0d 2332 int write_fault, int level,
c2d0ee46 2333 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2334 bool can_unsync, bool host_writable)
1c4f1fd6 2335{
6e7d0354 2336 u64 spte;
1e73f9dd 2337 int ret = 0;
64d4d521 2338
ce88decf
XG
2339 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2340 return 0;
2341
982c2565 2342 spte = PT_PRESENT_MASK;
947da538 2343 if (!speculative)
3201b5d9 2344 spte |= shadow_accessed_mask;
640d9b0d 2345
7b52345e
SY
2346 if (pte_access & ACC_EXEC_MASK)
2347 spte |= shadow_x_mask;
2348 else
2349 spte |= shadow_nx_mask;
49fde340 2350
1c4f1fd6 2351 if (pte_access & ACC_USER_MASK)
7b52345e 2352 spte |= shadow_user_mask;
49fde340 2353
852e3c19 2354 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2355 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2356 if (tdp_enabled)
4b12f0de
SY
2357 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2358 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2359
9bdbba13 2360 if (host_writable)
1403283a 2361 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2362 else
2363 pte_access &= ~ACC_WRITE_MASK;
1403283a 2364
35149e21 2365 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2366
2367 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2368 || (!vcpu->arch.mmu.direct_map && write_fault
2369 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2370
852e3c19
JR
2371 if (level > PT_PAGE_TABLE_LEVEL &&
2372 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2373 ret = 1;
c3707958 2374 drop_spte(vcpu->kvm, sptep);
be38d276 2375 goto done;
38187c83
MT
2376 }
2377
49fde340 2378 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2379
c5a78f2b 2380 if (!vcpu->arch.mmu.direct_map
411c588d 2381 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2382 spte &= ~PT_USER_MASK;
411c588d
AK
2383 /*
2384 * If we converted a user page to a kernel page,
2385 * so that the kernel can write to it when cr0.wp=0,
2386 * then we should prevent the kernel from executing it
2387 * if SMEP is enabled.
2388 */
2389 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2390 spte |= PT64_NX_MASK;
2391 }
69325a12 2392
ecc5589f
MT
2393 /*
2394 * Optimization: for pte sync, if spte was writable the hash
2395 * lookup is unnecessary (and expensive). Write protection
2396 * is responsibility of mmu_get_page / kvm_sync_page.
2397 * Same reasoning can be applied to dirty page accounting.
2398 */
8dae4445 2399 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2400 goto set_pte;
2401
4731d4c7 2402 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2403 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2404 __func__, gfn);
1e73f9dd 2405 ret = 1;
1c4f1fd6 2406 pte_access &= ~ACC_WRITE_MASK;
49fde340 2407 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2408 }
2409 }
2410
1c4f1fd6
AK
2411 if (pte_access & ACC_WRITE_MASK)
2412 mark_page_dirty(vcpu->kvm, gfn);
2413
38187c83 2414set_pte:
6e7d0354 2415 if (mmu_spte_update(sptep, spte))
b330aa0c 2416 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2417done:
1e73f9dd
MT
2418 return ret;
2419}
2420
d555c333 2421static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2422 unsigned pt_access, unsigned pte_access,
640d9b0d 2423 int user_fault, int write_fault,
b90a0e6c 2424 int *emulate, int level, gfn_t gfn,
1403283a 2425 pfn_t pfn, bool speculative,
9bdbba13 2426 bool host_writable)
1e73f9dd
MT
2427{
2428 int was_rmapped = 0;
53a27b39 2429 int rmap_count;
1e73f9dd
MT
2430
2431 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2432 " user_fault %d gfn %llx\n",
d555c333 2433 __func__, *sptep, pt_access,
1e73f9dd
MT
2434 write_fault, user_fault, gfn);
2435
d555c333 2436 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2437 /*
2438 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2439 * the parent of the now unreachable PTE.
2440 */
852e3c19
JR
2441 if (level > PT_PAGE_TABLE_LEVEL &&
2442 !is_large_pte(*sptep)) {
1e73f9dd 2443 struct kvm_mmu_page *child;
d555c333 2444 u64 pte = *sptep;
1e73f9dd
MT
2445
2446 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2447 drop_parent_pte(child, sptep);
3be2264b 2448 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2449 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2450 pgprintk("hfn old %llx new %llx\n",
d555c333 2451 spte_to_pfn(*sptep), pfn);
c3707958 2452 drop_spte(vcpu->kvm, sptep);
91546356 2453 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2454 } else
2455 was_rmapped = 1;
1e73f9dd 2456 }
852e3c19 2457
d555c333 2458 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2459 level, gfn, pfn, speculative, true,
9bdbba13 2460 host_writable)) {
1e73f9dd 2461 if (write_fault)
b90a0e6c 2462 *emulate = 1;
5304efde 2463 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2464 }
1e73f9dd 2465
ce88decf
XG
2466 if (unlikely(is_mmio_spte(*sptep) && emulate))
2467 *emulate = 1;
2468
d555c333 2469 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2470 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2471 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2472 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2473 *sptep, sptep);
d555c333 2474 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2475 ++vcpu->kvm->stat.lpages;
2476
ffb61bb3
XG
2477 if (is_shadow_present_pte(*sptep)) {
2478 page_header_update_slot(vcpu->kvm, sptep, gfn);
2479 if (!was_rmapped) {
2480 rmap_count = rmap_add(vcpu, sptep, gfn);
2481 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2482 rmap_recycle(vcpu, sptep, gfn);
2483 }
1c4f1fd6 2484 }
9ed5520d 2485 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2486}
2487
6aa8b732
AK
2488static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2489{
e676505a 2490 mmu_free_roots(vcpu);
6aa8b732
AK
2491}
2492
957ed9ef
XG
2493static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2494 bool no_dirty_log)
2495{
2496 struct kvm_memory_slot *slot;
2497 unsigned long hva;
2498
5d163b1c 2499 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2500 if (!slot) {
fce92dce
XG
2501 get_page(fault_page);
2502 return page_to_pfn(fault_page);
957ed9ef
XG
2503 }
2504
2505 hva = gfn_to_hva_memslot(slot, gfn);
2506
2507 return hva_to_pfn_atomic(vcpu->kvm, hva);
2508}
2509
2510static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2511 struct kvm_mmu_page *sp,
2512 u64 *start, u64 *end)
2513{
2514 struct page *pages[PTE_PREFETCH_NUM];
2515 unsigned access = sp->role.access;
2516 int i, ret;
2517 gfn_t gfn;
2518
2519 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2520 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2521 return -1;
2522
2523 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2524 if (ret <= 0)
2525 return -1;
2526
2527 for (i = 0; i < ret; i++, gfn++, start++)
2528 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2529 access, 0, 0, NULL,
957ed9ef
XG
2530 sp->role.level, gfn,
2531 page_to_pfn(pages[i]), true, true);
2532
2533 return 0;
2534}
2535
2536static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2537 struct kvm_mmu_page *sp, u64 *sptep)
2538{
2539 u64 *spte, *start = NULL;
2540 int i;
2541
2542 WARN_ON(!sp->role.direct);
2543
2544 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2545 spte = sp->spt + i;
2546
2547 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2548 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2549 if (!start)
2550 continue;
2551 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2552 break;
2553 start = NULL;
2554 } else if (!start)
2555 start = spte;
2556 }
2557}
2558
2559static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2560{
2561 struct kvm_mmu_page *sp;
2562
2563 /*
2564 * Since it's no accessed bit on EPT, it's no way to
2565 * distinguish between actually accessed translations
2566 * and prefetched, so disable pte prefetch if EPT is
2567 * enabled.
2568 */
2569 if (!shadow_accessed_mask)
2570 return;
2571
2572 sp = page_header(__pa(sptep));
2573 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2574 return;
2575
2576 __direct_pte_prefetch(vcpu, sp, sptep);
2577}
2578
9f652d21 2579static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2580 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2581 bool prefault)
140754bc 2582{
9f652d21 2583 struct kvm_shadow_walk_iterator iterator;
140754bc 2584 struct kvm_mmu_page *sp;
b90a0e6c 2585 int emulate = 0;
140754bc 2586 gfn_t pseudo_gfn;
6aa8b732 2587
9f652d21 2588 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2589 if (iterator.level == level) {
612819c3
MT
2590 unsigned pte_access = ACC_ALL;
2591
612819c3 2592 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2593 0, write, &emulate,
2ec4739d 2594 level, gfn, pfn, prefault, map_writable);
957ed9ef 2595 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2596 ++vcpu->stat.pf_fixed;
2597 break;
6aa8b732
AK
2598 }
2599
c3707958 2600 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2601 u64 base_addr = iterator.addr;
2602
2603 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2604 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2605 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2606 iterator.level - 1,
2607 1, ACC_ALL, iterator.sptep);
2608 if (!sp) {
2609 pgprintk("nonpaging_map: ENOMEM\n");
2610 kvm_release_pfn_clean(pfn);
2611 return -ENOMEM;
2612 }
140754bc 2613
1df9f2dc
XG
2614 mmu_spte_set(iterator.sptep,
2615 __pa(sp->spt)
2616 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2617 | shadow_user_mask | shadow_x_mask
2618 | shadow_accessed_mask);
9f652d21
AK
2619 }
2620 }
b90a0e6c 2621 return emulate;
6aa8b732
AK
2622}
2623
77db5cbd 2624static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2625{
77db5cbd
HY
2626 siginfo_t info;
2627
2628 info.si_signo = SIGBUS;
2629 info.si_errno = 0;
2630 info.si_code = BUS_MCEERR_AR;
2631 info.si_addr = (void __user *)address;
2632 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2633
77db5cbd 2634 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2635}
2636
d7c55201 2637static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2638{
2639 kvm_release_pfn_clean(pfn);
2640 if (is_hwpoison_pfn(pfn)) {
bebb106a 2641 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2642 return 0;
d7c55201 2643 }
edba23e5 2644
d7c55201 2645 return -EFAULT;
bf998156
HY
2646}
2647
936a5fe6
AA
2648static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2649 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2650{
2651 pfn_t pfn = *pfnp;
2652 gfn_t gfn = *gfnp;
2653 int level = *levelp;
2654
2655 /*
2656 * Check if it's a transparent hugepage. If this would be an
2657 * hugetlbfs page, level wouldn't be set to
2658 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2659 * here.
2660 */
2661 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2662 level == PT_PAGE_TABLE_LEVEL &&
2663 PageTransCompound(pfn_to_page(pfn)) &&
2664 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2665 unsigned long mask;
2666 /*
2667 * mmu_notifier_retry was successful and we hold the
2668 * mmu_lock here, so the pmd can't become splitting
2669 * from under us, and in turn
2670 * __split_huge_page_refcount() can't run from under
2671 * us and we can safely transfer the refcount from
2672 * PG_tail to PG_head as we switch the pfn to tail to
2673 * head.
2674 */
2675 *levelp = level = PT_DIRECTORY_LEVEL;
2676 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2677 VM_BUG_ON((gfn & mask) != (pfn & mask));
2678 if (pfn & mask) {
2679 gfn &= ~mask;
2680 *gfnp = gfn;
2681 kvm_release_pfn_clean(pfn);
2682 pfn &= ~mask;
c3586667 2683 kvm_get_pfn(pfn);
936a5fe6
AA
2684 *pfnp = pfn;
2685 }
2686 }
2687}
2688
d7c55201
XG
2689static bool mmu_invalid_pfn(pfn_t pfn)
2690{
ce88decf 2691 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2692}
2693
2694static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2695 pfn_t pfn, unsigned access, int *ret_val)
2696{
2697 bool ret = true;
2698
2699 /* The pfn is invalid, report the error! */
2700 if (unlikely(is_invalid_pfn(pfn))) {
2701 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2702 goto exit;
2703 }
2704
ce88decf 2705 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2706 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2707
2708 ret = false;
2709exit:
2710 return ret;
2711}
2712
c7ba5b48
XG
2713static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2714{
2715 /*
2716 * #PF can be fast only if the shadow page table is present and it
2717 * is caused by write-protect, that means we just need change the
2718 * W bit of the spte which can be done out of mmu-lock.
2719 */
2720 if (!(error_code & PFERR_PRESENT_MASK) ||
2721 !(error_code & PFERR_WRITE_MASK))
2722 return false;
2723
2724 return true;
2725}
2726
2727static bool
2728fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2729{
2730 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2731 gfn_t gfn;
2732
2733 WARN_ON(!sp->role.direct);
2734
2735 /*
2736 * The gfn of direct spte is stable since it is calculated
2737 * by sp->gfn.
2738 */
2739 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2740
2741 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2742 mark_page_dirty(vcpu->kvm, gfn);
2743
2744 return true;
2745}
2746
2747/*
2748 * Return value:
2749 * - true: let the vcpu to access on the same address again.
2750 * - false: let the real page fault path to fix it.
2751 */
2752static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2753 u32 error_code)
2754{
2755 struct kvm_shadow_walk_iterator iterator;
2756 bool ret = false;
2757 u64 spte = 0ull;
2758
2759 if (!page_fault_can_be_fast(vcpu, error_code))
2760 return false;
2761
2762 walk_shadow_page_lockless_begin(vcpu);
2763 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2764 if (!is_shadow_present_pte(spte) || iterator.level < level)
2765 break;
2766
2767 /*
2768 * If the mapping has been changed, let the vcpu fault on the
2769 * same address again.
2770 */
2771 if (!is_rmap_spte(spte)) {
2772 ret = true;
2773 goto exit;
2774 }
2775
2776 if (!is_last_spte(spte, level))
2777 goto exit;
2778
2779 /*
2780 * Check if it is a spurious fault caused by TLB lazily flushed.
2781 *
2782 * Need not check the access of upper level table entries since
2783 * they are always ACC_ALL.
2784 */
2785 if (is_writable_pte(spte)) {
2786 ret = true;
2787 goto exit;
2788 }
2789
2790 /*
2791 * Currently, to simplify the code, only the spte write-protected
2792 * by dirty-log can be fast fixed.
2793 */
2794 if (!spte_is_locklessly_modifiable(spte))
2795 goto exit;
2796
2797 /*
2798 * Currently, fast page fault only works for direct mapping since
2799 * the gfn is not stable for indirect shadow page.
2800 * See Documentation/virtual/kvm/locking.txt to get more detail.
2801 */
2802 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2803exit:
a72faf25
XG
2804 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2805 spte, ret);
c7ba5b48
XG
2806 walk_shadow_page_lockless_end(vcpu);
2807
2808 return ret;
2809}
2810
78b2c54a 2811static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2812 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2813
c7ba5b48
XG
2814static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2815 gfn_t gfn, bool prefault)
10589a46
MT
2816{
2817 int r;
852e3c19 2818 int level;
936a5fe6 2819 int force_pt_level;
35149e21 2820 pfn_t pfn;
e930bffe 2821 unsigned long mmu_seq;
c7ba5b48 2822 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2823
936a5fe6
AA
2824 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2825 if (likely(!force_pt_level)) {
2826 level = mapping_level(vcpu, gfn);
2827 /*
2828 * This path builds a PAE pagetable - so we can map
2829 * 2mb pages at maximum. Therefore check if the level
2830 * is larger than that.
2831 */
2832 if (level > PT_DIRECTORY_LEVEL)
2833 level = PT_DIRECTORY_LEVEL;
852e3c19 2834
936a5fe6
AA
2835 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2836 } else
2837 level = PT_PAGE_TABLE_LEVEL;
05da4558 2838
c7ba5b48
XG
2839 if (fast_page_fault(vcpu, v, level, error_code))
2840 return 0;
2841
e930bffe 2842 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2843 smp_rmb();
060c2abe 2844
78b2c54a 2845 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2846 return 0;
aaee2c94 2847
d7c55201
XG
2848 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2849 return r;
d196e343 2850
aaee2c94 2851 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2852 if (mmu_notifier_retry(vcpu, mmu_seq))
2853 goto out_unlock;
eb787d10 2854 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2855 if (likely(!force_pt_level))
2856 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2857 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2858 prefault);
aaee2c94
MT
2859 spin_unlock(&vcpu->kvm->mmu_lock);
2860
aaee2c94 2861
10589a46 2862 return r;
e930bffe
AA
2863
2864out_unlock:
2865 spin_unlock(&vcpu->kvm->mmu_lock);
2866 kvm_release_pfn_clean(pfn);
2867 return 0;
10589a46
MT
2868}
2869
2870
17ac10ad
AK
2871static void mmu_free_roots(struct kvm_vcpu *vcpu)
2872{
2873 int i;
4db35314 2874 struct kvm_mmu_page *sp;
d98ba053 2875 LIST_HEAD(invalid_list);
17ac10ad 2876
ad312c7c 2877 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2878 return;
aaee2c94 2879 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2880 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2881 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2882 vcpu->arch.mmu.direct_map)) {
ad312c7c 2883 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2884
4db35314
AK
2885 sp = page_header(root);
2886 --sp->root_count;
d98ba053
XG
2887 if (!sp->root_count && sp->role.invalid) {
2888 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2889 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2890 }
ad312c7c 2891 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2892 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2893 return;
2894 }
17ac10ad 2895 for (i = 0; i < 4; ++i) {
ad312c7c 2896 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2897
417726a3 2898 if (root) {
417726a3 2899 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2900 sp = page_header(root);
2901 --sp->root_count;
2e53d63a 2902 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2903 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2904 &invalid_list);
417726a3 2905 }
ad312c7c 2906 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2907 }
d98ba053 2908 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2909 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2910 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2911}
2912
8986ecc0
MT
2913static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2914{
2915 int ret = 0;
2916
2917 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2918 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2919 ret = 1;
2920 }
2921
2922 return ret;
2923}
2924
651dd37a
JR
2925static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2926{
2927 struct kvm_mmu_page *sp;
7ebaf15e 2928 unsigned i;
651dd37a
JR
2929
2930 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2931 spin_lock(&vcpu->kvm->mmu_lock);
2932 kvm_mmu_free_some_pages(vcpu);
2933 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2934 1, ACC_ALL, NULL);
2935 ++sp->root_count;
2936 spin_unlock(&vcpu->kvm->mmu_lock);
2937 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2938 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2939 for (i = 0; i < 4; ++i) {
2940 hpa_t root = vcpu->arch.mmu.pae_root[i];
2941
2942 ASSERT(!VALID_PAGE(root));
2943 spin_lock(&vcpu->kvm->mmu_lock);
2944 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2945 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2946 i << 30,
651dd37a
JR
2947 PT32_ROOT_LEVEL, 1, ACC_ALL,
2948 NULL);
2949 root = __pa(sp->spt);
2950 ++sp->root_count;
2951 spin_unlock(&vcpu->kvm->mmu_lock);
2952 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2953 }
6292757f 2954 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2955 } else
2956 BUG();
2957
2958 return 0;
2959}
2960
2961static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2962{
4db35314 2963 struct kvm_mmu_page *sp;
81407ca5
JR
2964 u64 pdptr, pm_mask;
2965 gfn_t root_gfn;
2966 int i;
3bb65a22 2967
5777ed34 2968 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2969
651dd37a
JR
2970 if (mmu_check_root(vcpu, root_gfn))
2971 return 1;
2972
2973 /*
2974 * Do we shadow a long mode page table? If so we need to
2975 * write-protect the guests page table root.
2976 */
2977 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2978 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2979
2980 ASSERT(!VALID_PAGE(root));
651dd37a 2981
8facbbff 2982 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2983 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2984 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2985 0, ACC_ALL, NULL);
4db35314
AK
2986 root = __pa(sp->spt);
2987 ++sp->root_count;
8facbbff 2988 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2989 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2990 return 0;
17ac10ad 2991 }
f87f9288 2992
651dd37a
JR
2993 /*
2994 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2995 * or a PAE 3-level page table. In either case we need to be aware that
2996 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2997 */
81407ca5
JR
2998 pm_mask = PT_PRESENT_MASK;
2999 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3000 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3001
17ac10ad 3002 for (i = 0; i < 4; ++i) {
ad312c7c 3003 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3004
3005 ASSERT(!VALID_PAGE(root));
ad312c7c 3006 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3007 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3008 if (!is_present_gpte(pdptr)) {
ad312c7c 3009 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3010 continue;
3011 }
6de4f3ad 3012 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3013 if (mmu_check_root(vcpu, root_gfn))
3014 return 1;
5a7388c2 3015 }
8facbbff 3016 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3017 kvm_mmu_free_some_pages(vcpu);
4db35314 3018 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3019 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3020 ACC_ALL, NULL);
4db35314
AK
3021 root = __pa(sp->spt);
3022 ++sp->root_count;
8facbbff
AK
3023 spin_unlock(&vcpu->kvm->mmu_lock);
3024
81407ca5 3025 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3026 }
6292757f 3027 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3028
3029 /*
3030 * If we shadow a 32 bit page table with a long mode page
3031 * table we enter this path.
3032 */
3033 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3034 if (vcpu->arch.mmu.lm_root == NULL) {
3035 /*
3036 * The additional page necessary for this is only
3037 * allocated on demand.
3038 */
3039
3040 u64 *lm_root;
3041
3042 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3043 if (lm_root == NULL)
3044 return 1;
3045
3046 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3047
3048 vcpu->arch.mmu.lm_root = lm_root;
3049 }
3050
3051 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3052 }
3053
8986ecc0 3054 return 0;
17ac10ad
AK
3055}
3056
651dd37a
JR
3057static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3058{
3059 if (vcpu->arch.mmu.direct_map)
3060 return mmu_alloc_direct_roots(vcpu);
3061 else
3062 return mmu_alloc_shadow_roots(vcpu);
3063}
3064
0ba73cda
MT
3065static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3066{
3067 int i;
3068 struct kvm_mmu_page *sp;
3069
81407ca5
JR
3070 if (vcpu->arch.mmu.direct_map)
3071 return;
3072
0ba73cda
MT
3073 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3074 return;
6903074c 3075
bebb106a 3076 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3077 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3078 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3079 hpa_t root = vcpu->arch.mmu.root_hpa;
3080 sp = page_header(root);
3081 mmu_sync_children(vcpu, sp);
0375f7fa 3082 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3083 return;
3084 }
3085 for (i = 0; i < 4; ++i) {
3086 hpa_t root = vcpu->arch.mmu.pae_root[i];
3087
8986ecc0 3088 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3089 root &= PT64_BASE_ADDR_MASK;
3090 sp = page_header(root);
3091 mmu_sync_children(vcpu, sp);
3092 }
3093 }
0375f7fa 3094 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3095}
3096
3097void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3098{
3099 spin_lock(&vcpu->kvm->mmu_lock);
3100 mmu_sync_roots(vcpu);
6cffe8ca 3101 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3102}
3103
1871c602 3104static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3105 u32 access, struct x86_exception *exception)
6aa8b732 3106{
ab9ae313
AK
3107 if (exception)
3108 exception->error_code = 0;
6aa8b732
AK
3109 return vaddr;
3110}
3111
6539e738 3112static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3113 u32 access,
3114 struct x86_exception *exception)
6539e738 3115{
ab9ae313
AK
3116 if (exception)
3117 exception->error_code = 0;
6539e738
JR
3118 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3119}
3120
ce88decf
XG
3121static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3122{
3123 if (direct)
3124 return vcpu_match_mmio_gpa(vcpu, addr);
3125
3126 return vcpu_match_mmio_gva(vcpu, addr);
3127}
3128
3129
3130/*
3131 * On direct hosts, the last spte is only allows two states
3132 * for mmio page fault:
3133 * - It is the mmio spte
3134 * - It is zapped or it is being zapped.
3135 *
3136 * This function completely checks the spte when the last spte
3137 * is not the mmio spte.
3138 */
3139static bool check_direct_spte_mmio_pf(u64 spte)
3140{
3141 return __check_direct_spte_mmio_pf(spte);
3142}
3143
3144static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3145{
3146 struct kvm_shadow_walk_iterator iterator;
3147 u64 spte = 0ull;
3148
3149 walk_shadow_page_lockless_begin(vcpu);
3150 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3151 if (!is_shadow_present_pte(spte))
3152 break;
3153 walk_shadow_page_lockless_end(vcpu);
3154
3155 return spte;
3156}
3157
3158/*
3159 * If it is a real mmio page fault, return 1 and emulat the instruction
3160 * directly, return 0 to let CPU fault again on the address, -1 is
3161 * returned if bug is detected.
3162 */
3163int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3164{
3165 u64 spte;
3166
3167 if (quickly_check_mmio_pf(vcpu, addr, direct))
3168 return 1;
3169
3170 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3171
3172 if (is_mmio_spte(spte)) {
3173 gfn_t gfn = get_mmio_spte_gfn(spte);
3174 unsigned access = get_mmio_spte_access(spte);
3175
3176 if (direct)
3177 addr = 0;
4f022648
XG
3178
3179 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3180 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3181 return 1;
3182 }
3183
3184 /*
3185 * It's ok if the gva is remapped by other cpus on shadow guest,
3186 * it's a BUG if the gfn is not a mmio page.
3187 */
3188 if (direct && !check_direct_spte_mmio_pf(spte))
3189 return -1;
3190
3191 /*
3192 * If the page table is zapped by other cpus, let CPU fault again on
3193 * the address.
3194 */
3195 return 0;
3196}
3197EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3198
3199static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3200 u32 error_code, bool direct)
3201{
3202 int ret;
3203
3204 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3205 WARN_ON(ret < 0);
3206 return ret;
3207}
3208
6aa8b732 3209static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3210 u32 error_code, bool prefault)
6aa8b732 3211{
e833240f 3212 gfn_t gfn;
e2dec939 3213 int r;
6aa8b732 3214
b8688d51 3215 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3216
3217 if (unlikely(error_code & PFERR_RSVD_MASK))
3218 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3219
e2dec939
AK
3220 r = mmu_topup_memory_caches(vcpu);
3221 if (r)
3222 return r;
714b93da 3223
6aa8b732 3224 ASSERT(vcpu);
ad312c7c 3225 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3226
e833240f 3227 gfn = gva >> PAGE_SHIFT;
6aa8b732 3228
e833240f 3229 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3230 error_code, gfn, prefault);
6aa8b732
AK
3231}
3232
7e1fbeac 3233static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3234{
3235 struct kvm_arch_async_pf arch;
fb67e14f 3236
7c90705b 3237 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3238 arch.gfn = gfn;
c4806acd 3239 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3240 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3241
3242 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3243}
3244
3245static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3246{
3247 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3248 kvm_event_needs_reinjection(vcpu)))
3249 return false;
3250
3251 return kvm_x86_ops->interrupt_allowed(vcpu);
3252}
3253
78b2c54a 3254static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3255 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3256{
3257 bool async;
3258
612819c3 3259 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3260
3261 if (!async)
3262 return false; /* *pfn has correct page already */
3263
3264 put_page(pfn_to_page(*pfn));
3265
78b2c54a 3266 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3267 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3268 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3269 trace_kvm_async_pf_doublefault(gva, gfn);
3270 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3271 return true;
3272 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3273 return true;
3274 }
3275
612819c3 3276 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3277
3278 return false;
3279}
3280
56028d08 3281static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3282 bool prefault)
fb72d167 3283{
35149e21 3284 pfn_t pfn;
fb72d167 3285 int r;
852e3c19 3286 int level;
936a5fe6 3287 int force_pt_level;
05da4558 3288 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3289 unsigned long mmu_seq;
612819c3
MT
3290 int write = error_code & PFERR_WRITE_MASK;
3291 bool map_writable;
fb72d167
JR
3292
3293 ASSERT(vcpu);
3294 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3295
ce88decf
XG
3296 if (unlikely(error_code & PFERR_RSVD_MASK))
3297 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3298
fb72d167
JR
3299 r = mmu_topup_memory_caches(vcpu);
3300 if (r)
3301 return r;
3302
936a5fe6
AA
3303 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3304 if (likely(!force_pt_level)) {
3305 level = mapping_level(vcpu, gfn);
3306 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3307 } else
3308 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3309
c7ba5b48
XG
3310 if (fast_page_fault(vcpu, gpa, level, error_code))
3311 return 0;
3312
e930bffe 3313 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3314 smp_rmb();
af585b92 3315
78b2c54a 3316 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3317 return 0;
3318
d7c55201
XG
3319 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3320 return r;
3321
fb72d167 3322 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3323 if (mmu_notifier_retry(vcpu, mmu_seq))
3324 goto out_unlock;
fb72d167 3325 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3326 if (likely(!force_pt_level))
3327 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3328 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3329 level, gfn, pfn, prefault);
fb72d167 3330 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3331
3332 return r;
e930bffe
AA
3333
3334out_unlock:
3335 spin_unlock(&vcpu->kvm->mmu_lock);
3336 kvm_release_pfn_clean(pfn);
3337 return 0;
fb72d167
JR
3338}
3339
6aa8b732
AK
3340static void nonpaging_free(struct kvm_vcpu *vcpu)
3341{
17ac10ad 3342 mmu_free_roots(vcpu);
6aa8b732
AK
3343}
3344
52fde8df
JR
3345static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3346 struct kvm_mmu *context)
6aa8b732 3347{
6aa8b732
AK
3348 context->new_cr3 = nonpaging_new_cr3;
3349 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3350 context->gva_to_gpa = nonpaging_gva_to_gpa;
3351 context->free = nonpaging_free;
e8bc217a 3352 context->sync_page = nonpaging_sync_page;
a7052897 3353 context->invlpg = nonpaging_invlpg;
0f53b5b1 3354 context->update_pte = nonpaging_update_pte;
cea0f0e7 3355 context->root_level = 0;
6aa8b732 3356 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3357 context->root_hpa = INVALID_PAGE;
c5a78f2b 3358 context->direct_map = true;
2d48a985 3359 context->nx = false;
6aa8b732
AK
3360 return 0;
3361}
3362
d835dfec 3363void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3364{
1165f5fe 3365 ++vcpu->stat.tlb_flush;
a8eeb04a 3366 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3367}
3368
3369static void paging_new_cr3(struct kvm_vcpu *vcpu)
3370{
9f8fe504 3371 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3372 mmu_free_roots(vcpu);
6aa8b732
AK
3373}
3374
5777ed34
JR
3375static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3376{
9f8fe504 3377 return kvm_read_cr3(vcpu);
5777ed34
JR
3378}
3379
6389ee94
AK
3380static void inject_page_fault(struct kvm_vcpu *vcpu,
3381 struct x86_exception *fault)
6aa8b732 3382{
6389ee94 3383 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3384}
3385
6aa8b732
AK
3386static void paging_free(struct kvm_vcpu *vcpu)
3387{
3388 nonpaging_free(vcpu);
3389}
3390
3241f22d 3391static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3392{
3393 int bit7;
3394
3395 bit7 = (gpte >> 7) & 1;
3241f22d 3396 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3397}
3398
ce88decf
XG
3399static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3400 int *nr_present)
3401{
3402 if (unlikely(is_mmio_spte(*sptep))) {
3403 if (gfn != get_mmio_spte_gfn(*sptep)) {
3404 mmu_spte_clear_no_track(sptep);
3405 return true;
3406 }
3407
3408 (*nr_present)++;
3409 mark_mmio_spte(sptep, gfn, access);
3410 return true;
3411 }
3412
3413 return false;
3414}
3415
6aa8b732
AK
3416#define PTTYPE 64
3417#include "paging_tmpl.h"
3418#undef PTTYPE
3419
3420#define PTTYPE 32
3421#include "paging_tmpl.h"
3422#undef PTTYPE
3423
52fde8df 3424static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3425 struct kvm_mmu *context)
82725b20 3426{
82725b20
DE
3427 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3428 u64 exb_bit_rsvd = 0;
3429
2d48a985 3430 if (!context->nx)
82725b20 3431 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3432 switch (context->root_level) {
82725b20
DE
3433 case PT32_ROOT_LEVEL:
3434 /* no rsvd bits for 2 level 4K page table entries */
3435 context->rsvd_bits_mask[0][1] = 0;
3436 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3437 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3438
3439 if (!is_pse(vcpu)) {
3440 context->rsvd_bits_mask[1][1] = 0;
3441 break;
3442 }
3443
82725b20
DE
3444 if (is_cpuid_PSE36())
3445 /* 36bits PSE 4MB page */
3446 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3447 else
3448 /* 32 bits PSE 4MB page */
3449 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3450 break;
3451 case PT32E_ROOT_LEVEL:
20c466b5
DE
3452 context->rsvd_bits_mask[0][2] =
3453 rsvd_bits(maxphyaddr, 63) |
3454 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3455 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3456 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3457 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3458 rsvd_bits(maxphyaddr, 62); /* PTE */
3459 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3460 rsvd_bits(maxphyaddr, 62) |
3461 rsvd_bits(13, 20); /* large page */
f815bce8 3462 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3463 break;
3464 case PT64_ROOT_LEVEL:
3465 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3466 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3467 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3468 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3469 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3470 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3471 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3472 rsvd_bits(maxphyaddr, 51);
3473 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3474 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3475 rsvd_bits(maxphyaddr, 51) |
3476 rsvd_bits(13, 29);
82725b20 3477 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3478 rsvd_bits(maxphyaddr, 51) |
3479 rsvd_bits(13, 20); /* large page */
f815bce8 3480 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3481 break;
3482 }
3483}
3484
52fde8df
JR
3485static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3486 struct kvm_mmu *context,
3487 int level)
6aa8b732 3488{
2d48a985 3489 context->nx = is_nx(vcpu);
4d6931c3 3490 context->root_level = level;
2d48a985 3491
4d6931c3 3492 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3493
3494 ASSERT(is_pae(vcpu));
3495 context->new_cr3 = paging_new_cr3;
3496 context->page_fault = paging64_page_fault;
6aa8b732 3497 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3498 context->sync_page = paging64_sync_page;
a7052897 3499 context->invlpg = paging64_invlpg;
0f53b5b1 3500 context->update_pte = paging64_update_pte;
6aa8b732 3501 context->free = paging_free;
17ac10ad 3502 context->shadow_root_level = level;
17c3ba9d 3503 context->root_hpa = INVALID_PAGE;
c5a78f2b 3504 context->direct_map = false;
6aa8b732
AK
3505 return 0;
3506}
3507
52fde8df
JR
3508static int paging64_init_context(struct kvm_vcpu *vcpu,
3509 struct kvm_mmu *context)
17ac10ad 3510{
52fde8df 3511 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3512}
3513
52fde8df
JR
3514static int paging32_init_context(struct kvm_vcpu *vcpu,
3515 struct kvm_mmu *context)
6aa8b732 3516{
2d48a985 3517 context->nx = false;
4d6931c3 3518 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3519
4d6931c3 3520 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3521
3522 context->new_cr3 = paging_new_cr3;
3523 context->page_fault = paging32_page_fault;
6aa8b732
AK
3524 context->gva_to_gpa = paging32_gva_to_gpa;
3525 context->free = paging_free;
e8bc217a 3526 context->sync_page = paging32_sync_page;
a7052897 3527 context->invlpg = paging32_invlpg;
0f53b5b1 3528 context->update_pte = paging32_update_pte;
6aa8b732 3529 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3530 context->root_hpa = INVALID_PAGE;
c5a78f2b 3531 context->direct_map = false;
6aa8b732
AK
3532 return 0;
3533}
3534
52fde8df
JR
3535static int paging32E_init_context(struct kvm_vcpu *vcpu,
3536 struct kvm_mmu *context)
6aa8b732 3537{
52fde8df 3538 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3539}
3540
fb72d167
JR
3541static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3542{
14dfe855 3543 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3544
c445f8ef 3545 context->base_role.word = 0;
fb72d167
JR
3546 context->new_cr3 = nonpaging_new_cr3;
3547 context->page_fault = tdp_page_fault;
3548 context->free = nonpaging_free;
e8bc217a 3549 context->sync_page = nonpaging_sync_page;
a7052897 3550 context->invlpg = nonpaging_invlpg;
0f53b5b1 3551 context->update_pte = nonpaging_update_pte;
67253af5 3552 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3553 context->root_hpa = INVALID_PAGE;
c5a78f2b 3554 context->direct_map = true;
1c97f0a0 3555 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3556 context->get_cr3 = get_cr3;
e4e517b4 3557 context->get_pdptr = kvm_pdptr_read;
cb659db8 3558 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3559
3560 if (!is_paging(vcpu)) {
2d48a985 3561 context->nx = false;
fb72d167
JR
3562 context->gva_to_gpa = nonpaging_gva_to_gpa;
3563 context->root_level = 0;
3564 } else if (is_long_mode(vcpu)) {
2d48a985 3565 context->nx = is_nx(vcpu);
fb72d167 3566 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3567 reset_rsvds_bits_mask(vcpu, context);
3568 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3569 } else if (is_pae(vcpu)) {
2d48a985 3570 context->nx = is_nx(vcpu);
fb72d167 3571 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3572 reset_rsvds_bits_mask(vcpu, context);
3573 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3574 } else {
2d48a985 3575 context->nx = false;
fb72d167 3576 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3577 reset_rsvds_bits_mask(vcpu, context);
3578 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3579 }
3580
3581 return 0;
3582}
3583
52fde8df 3584int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3585{
a770f6f2 3586 int r;
411c588d 3587 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3588 ASSERT(vcpu);
ad312c7c 3589 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3590
3591 if (!is_paging(vcpu))
52fde8df 3592 r = nonpaging_init_context(vcpu, context);
a9058ecd 3593 else if (is_long_mode(vcpu))
52fde8df 3594 r = paging64_init_context(vcpu, context);
6aa8b732 3595 else if (is_pae(vcpu))
52fde8df 3596 r = paging32E_init_context(vcpu, context);
6aa8b732 3597 else
52fde8df 3598 r = paging32_init_context(vcpu, context);
a770f6f2 3599
5b7e0102 3600 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3601 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3602 vcpu->arch.mmu.base_role.smep_andnot_wp
3603 = smep && !is_write_protection(vcpu);
52fde8df
JR
3604
3605 return r;
3606}
3607EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3608
3609static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3610{
14dfe855 3611 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3612
14dfe855
JR
3613 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3614 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3615 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3616 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3617
3618 return r;
6aa8b732
AK
3619}
3620
02f59dc9
JR
3621static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3622{
3623 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3624
3625 g_context->get_cr3 = get_cr3;
e4e517b4 3626 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3627 g_context->inject_page_fault = kvm_inject_page_fault;
3628
3629 /*
3630 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3631 * translation of l2_gpa to l1_gpa addresses is done using the
3632 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3633 * functions between mmu and nested_mmu are swapped.
3634 */
3635 if (!is_paging(vcpu)) {
2d48a985 3636 g_context->nx = false;
02f59dc9
JR
3637 g_context->root_level = 0;
3638 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3639 } else if (is_long_mode(vcpu)) {
2d48a985 3640 g_context->nx = is_nx(vcpu);
02f59dc9 3641 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3642 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3643 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3644 } else if (is_pae(vcpu)) {
2d48a985 3645 g_context->nx = is_nx(vcpu);
02f59dc9 3646 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3647 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3648 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3649 } else {
2d48a985 3650 g_context->nx = false;
02f59dc9 3651 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3652 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3653 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3654 }
3655
3656 return 0;
3657}
3658
fb72d167
JR
3659static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3660{
02f59dc9
JR
3661 if (mmu_is_nested(vcpu))
3662 return init_kvm_nested_mmu(vcpu);
3663 else if (tdp_enabled)
fb72d167
JR
3664 return init_kvm_tdp_mmu(vcpu);
3665 else
3666 return init_kvm_softmmu(vcpu);
3667}
3668
6aa8b732
AK
3669static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3670{
3671 ASSERT(vcpu);
62ad0755
SY
3672 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3673 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3674 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3675}
3676
3677int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3678{
3679 destroy_kvm_mmu(vcpu);
f8f7e5ee 3680 return init_kvm_mmu(vcpu);
17c3ba9d 3681}
8668a3c4 3682EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3683
3684int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3685{
714b93da
AK
3686 int r;
3687
e2dec939 3688 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3689 if (r)
3690 goto out;
8986ecc0 3691 r = mmu_alloc_roots(vcpu);
8facbbff 3692 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3693 mmu_sync_roots(vcpu);
aaee2c94 3694 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3695 if (r)
3696 goto out;
3662cb1c 3697 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3698 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3699out:
3700 return r;
6aa8b732 3701}
17c3ba9d
AK
3702EXPORT_SYMBOL_GPL(kvm_mmu_load);
3703
3704void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3705{
3706 mmu_free_roots(vcpu);
3707}
4b16184c 3708EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3709
0028425f 3710static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3711 struct kvm_mmu_page *sp, u64 *spte,
3712 const void *new)
0028425f 3713{
30945387 3714 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3715 ++vcpu->kvm->stat.mmu_pde_zapped;
3716 return;
30945387 3717 }
0028425f 3718
4cee5764 3719 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3720 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3721}
3722
79539cec
AK
3723static bool need_remote_flush(u64 old, u64 new)
3724{
3725 if (!is_shadow_present_pte(old))
3726 return false;
3727 if (!is_shadow_present_pte(new))
3728 return true;
3729 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3730 return true;
3731 old ^= PT64_NX_MASK;
3732 new ^= PT64_NX_MASK;
3733 return (old & ~new & PT64_PERM_MASK) != 0;
3734}
3735
0671a8e7
XG
3736static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3737 bool remote_flush, bool local_flush)
79539cec 3738{
0671a8e7
XG
3739 if (zap_page)
3740 return;
3741
3742 if (remote_flush)
79539cec 3743 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3744 else if (local_flush)
79539cec
AK
3745 kvm_mmu_flush_tlb(vcpu);
3746}
3747
889e5cbc
XG
3748static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3749 const u8 *new, int *bytes)
da4a00f0 3750{
889e5cbc
XG
3751 u64 gentry;
3752 int r;
72016f3a 3753
72016f3a
AK
3754 /*
3755 * Assume that the pte write on a page table of the same type
49b26e26
XG
3756 * as the current vcpu paging mode since we update the sptes only
3757 * when they have the same mode.
72016f3a 3758 */
889e5cbc 3759 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3760 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3761 *gpa &= ~(gpa_t)7;
3762 *bytes = 8;
3763 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3764 if (r)
3765 gentry = 0;
08e850c6
AK
3766 new = (const u8 *)&gentry;
3767 }
3768
889e5cbc 3769 switch (*bytes) {
08e850c6
AK
3770 case 4:
3771 gentry = *(const u32 *)new;
3772 break;
3773 case 8:
3774 gentry = *(const u64 *)new;
3775 break;
3776 default:
3777 gentry = 0;
3778 break;
72016f3a
AK
3779 }
3780
889e5cbc
XG
3781 return gentry;
3782}
3783
3784/*
3785 * If we're seeing too many writes to a page, it may no longer be a page table,
3786 * or we may be forking, in which case it is better to unmap the page.
3787 */
a138fe75 3788static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3789{
a30f47cb
XG
3790 /*
3791 * Skip write-flooding detected for the sp whose level is 1, because
3792 * it can become unsync, then the guest page is not write-protected.
3793 */
f71fa31f 3794 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3795 return false;
3246af0e 3796
a30f47cb 3797 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3798}
3799
3800/*
3801 * Misaligned accesses are too much trouble to fix up; also, they usually
3802 * indicate a page is not used as a page table.
3803 */
3804static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3805 int bytes)
3806{
3807 unsigned offset, pte_size, misaligned;
3808
3809 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3810 gpa, bytes, sp->role.word);
3811
3812 offset = offset_in_page(gpa);
3813 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3814
3815 /*
3816 * Sometimes, the OS only writes the last one bytes to update status
3817 * bits, for example, in linux, andb instruction is used in clear_bit().
3818 */
3819 if (!(offset & (pte_size - 1)) && bytes == 1)
3820 return false;
3821
889e5cbc
XG
3822 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3823 misaligned |= bytes < 4;
3824
3825 return misaligned;
3826}
3827
3828static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3829{
3830 unsigned page_offset, quadrant;
3831 u64 *spte;
3832 int level;
3833
3834 page_offset = offset_in_page(gpa);
3835 level = sp->role.level;
3836 *nspte = 1;
3837 if (!sp->role.cr4_pae) {
3838 page_offset <<= 1; /* 32->64 */
3839 /*
3840 * A 32-bit pde maps 4MB while the shadow pdes map
3841 * only 2MB. So we need to double the offset again
3842 * and zap two pdes instead of one.
3843 */
3844 if (level == PT32_ROOT_LEVEL) {
3845 page_offset &= ~7; /* kill rounding error */
3846 page_offset <<= 1;
3847 *nspte = 2;
3848 }
3849 quadrant = page_offset >> PAGE_SHIFT;
3850 page_offset &= ~PAGE_MASK;
3851 if (quadrant != sp->role.quadrant)
3852 return NULL;
3853 }
3854
3855 spte = &sp->spt[page_offset / sizeof(*spte)];
3856 return spte;
3857}
3858
3859void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3860 const u8 *new, int bytes)
3861{
3862 gfn_t gfn = gpa >> PAGE_SHIFT;
3863 union kvm_mmu_page_role mask = { .word = 0 };
3864 struct kvm_mmu_page *sp;
3865 struct hlist_node *node;
3866 LIST_HEAD(invalid_list);
3867 u64 entry, gentry, *spte;
3868 int npte;
a30f47cb 3869 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3870
3871 /*
3872 * If we don't have indirect shadow pages, it means no page is
3873 * write-protected, so we can exit simply.
3874 */
3875 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3876 return;
3877
3878 zap_page = remote_flush = local_flush = false;
3879
3880 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3881
3882 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3883
3884 /*
3885 * No need to care whether allocation memory is successful
3886 * or not since pte prefetch is skiped if it does not have
3887 * enough objects in the cache.
3888 */
3889 mmu_topup_memory_caches(vcpu);
3890
3891 spin_lock(&vcpu->kvm->mmu_lock);
3892 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3893 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3894
fa1de2bf 3895 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3896 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3897 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3898 detect_write_flooding(sp)) {
0671a8e7 3899 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3900 &invalid_list);
4cee5764 3901 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3902 continue;
3903 }
889e5cbc
XG
3904
3905 spte = get_written_sptes(sp, gpa, &npte);
3906 if (!spte)
3907 continue;
3908
0671a8e7 3909 local_flush = true;
ac1b714e 3910 while (npte--) {
79539cec 3911 entry = *spte;
38e3b2b2 3912 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3913 if (gentry &&
3914 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3915 & mask.word) && rmap_can_add(vcpu))
7c562522 3916 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3917 if (!remote_flush && need_remote_flush(entry, *spte))
3918 remote_flush = true;
ac1b714e 3919 ++spte;
9b7a0325 3920 }
9b7a0325 3921 }
0671a8e7 3922 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3923 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3924 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3925 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3926}
3927
a436036b
AK
3928int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3929{
10589a46
MT
3930 gpa_t gpa;
3931 int r;
a436036b 3932
c5a78f2b 3933 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3934 return 0;
3935
1871c602 3936 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3937
10589a46 3938 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3939
10589a46 3940 return r;
a436036b 3941}
577bdc49 3942EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3943
22d95b12 3944void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3945{
d98ba053 3946 LIST_HEAD(invalid_list);
103ad25a 3947
e0df7b9f 3948 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3949 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3950 struct kvm_mmu_page *sp;
ebeace86 3951
f05e70ac 3952 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3953 struct kvm_mmu_page, link);
e0df7b9f 3954 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3955 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3956 }
aa6bd187 3957 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3958}
ebeace86 3959
1cb3f3ae
XG
3960static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3961{
3962 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3963 return vcpu_match_mmio_gpa(vcpu, addr);
3964
3965 return vcpu_match_mmio_gva(vcpu, addr);
3966}
3967
dc25e89e
AP
3968int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3969 void *insn, int insn_len)
3067714c 3970{
1cb3f3ae 3971 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3972 enum emulation_result er;
3973
56028d08 3974 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3975 if (r < 0)
3976 goto out;
3977
3978 if (!r) {
3979 r = 1;
3980 goto out;
3981 }
3982
1cb3f3ae
XG
3983 if (is_mmio_page_fault(vcpu, cr2))
3984 emulation_type = 0;
3985
3986 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3987
3988 switch (er) {
3989 case EMULATE_DONE:
3990 return 1;
3991 case EMULATE_DO_MMIO:
3992 ++vcpu->stat.mmio_exits;
6d77dbfc 3993 /* fall through */
3067714c 3994 case EMULATE_FAIL:
3f5d18a9 3995 return 0;
3067714c
AK
3996 default:
3997 BUG();
3998 }
3999out:
3067714c
AK
4000 return r;
4001}
4002EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4003
a7052897
MT
4004void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4005{
a7052897 4006 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4007 kvm_mmu_flush_tlb(vcpu);
4008 ++vcpu->stat.invlpg;
4009}
4010EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4011
18552672
JR
4012void kvm_enable_tdp(void)
4013{
4014 tdp_enabled = true;
4015}
4016EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4017
5f4cb662
JR
4018void kvm_disable_tdp(void)
4019{
4020 tdp_enabled = false;
4021}
4022EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4023
6aa8b732
AK
4024static void free_mmu_pages(struct kvm_vcpu *vcpu)
4025{
ad312c7c 4026 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4027 if (vcpu->arch.mmu.lm_root != NULL)
4028 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4029}
4030
4031static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4032{
17ac10ad 4033 struct page *page;
6aa8b732
AK
4034 int i;
4035
4036 ASSERT(vcpu);
4037
17ac10ad
AK
4038 /*
4039 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4040 * Therefore we need to allocate shadow page tables in the first
4041 * 4GB of memory, which happens to fit the DMA32 zone.
4042 */
4043 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4044 if (!page)
d7fa6ab2
WY
4045 return -ENOMEM;
4046
ad312c7c 4047 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4048 for (i = 0; i < 4; ++i)
ad312c7c 4049 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4050
6aa8b732 4051 return 0;
6aa8b732
AK
4052}
4053
8018c27b 4054int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4055{
6aa8b732 4056 ASSERT(vcpu);
e459e322
XG
4057
4058 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4059 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4060 vcpu->arch.mmu.translate_gpa = translate_gpa;
4061 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4062
8018c27b
IM
4063 return alloc_mmu_pages(vcpu);
4064}
6aa8b732 4065
8018c27b
IM
4066int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4067{
4068 ASSERT(vcpu);
ad312c7c 4069 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4070
8018c27b 4071 return init_kvm_mmu(vcpu);
6aa8b732
AK
4072}
4073
90cb0529 4074void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4075{
4db35314 4076 struct kvm_mmu_page *sp;
d13bc5b5 4077 bool flush = false;
6aa8b732 4078
f05e70ac 4079 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
4080 int i;
4081 u64 *pt;
4082
291f26bc 4083 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
4084 continue;
4085
4db35314 4086 pt = sp->spt;
8234b22e 4087 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
4088 if (!is_shadow_present_pte(pt[i]) ||
4089 !is_last_spte(pt[i], sp->role.level))
4090 continue;
4091
49fde340 4092 spte_write_protect(kvm, &pt[i], &flush, false);
8234b22e 4093 }
6aa8b732 4094 }
171d595d 4095 kvm_flush_remote_tlbs(kvm);
6aa8b732 4096}
37a7d8b0 4097
90cb0529 4098void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4099{
4db35314 4100 struct kvm_mmu_page *sp, *node;
d98ba053 4101 LIST_HEAD(invalid_list);
e0fa826f 4102
aaee2c94 4103 spin_lock(&kvm->mmu_lock);
3246af0e 4104restart:
f05e70ac 4105 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4106 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4107 goto restart;
4108
d98ba053 4109 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4110 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4111}
4112
3d56cbdf
JK
4113static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4114 struct list_head *invalid_list)
3ee16c81
IE
4115{
4116 struct kvm_mmu_page *page;
4117
4118 page = container_of(kvm->arch.active_mmu_pages.prev,
4119 struct kvm_mmu_page, link);
3d56cbdf 4120 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4121}
4122
1495f230 4123static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4124{
4125 struct kvm *kvm;
1495f230 4126 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4127
4128 if (nr_to_scan == 0)
4129 goto out;
3ee16c81 4130
e935b837 4131 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4132
4133 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4134 int idx;
d98ba053 4135 LIST_HEAD(invalid_list);
3ee16c81 4136
19526396
GN
4137 /*
4138 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4139 * here. We may skip a VM instance errorneosly, but we do not
4140 * want to shrink a VM that only started to populate its MMU
4141 * anyway.
4142 */
4143 if (kvm->arch.n_used_mmu_pages > 0) {
4144 if (!nr_to_scan--)
4145 break;
4146 continue;
4147 }
4148
f656ce01 4149 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4150 spin_lock(&kvm->mmu_lock);
3ee16c81 4151
19526396 4152 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4153 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4154
3ee16c81 4155 spin_unlock(&kvm->mmu_lock);
f656ce01 4156 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4157
4158 list_move_tail(&kvm->vm_list, &vm_list);
4159 break;
3ee16c81 4160 }
3ee16c81 4161
e935b837 4162 raw_spin_unlock(&kvm_lock);
3ee16c81 4163
45221ab6
DH
4164out:
4165 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4166}
4167
4168static struct shrinker mmu_shrinker = {
4169 .shrink = mmu_shrink,
4170 .seeks = DEFAULT_SEEKS * 10,
4171};
4172
2ddfd20e 4173static void mmu_destroy_caches(void)
b5a33a75 4174{
53c07b18
XG
4175 if (pte_list_desc_cache)
4176 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4177 if (mmu_page_header_cache)
4178 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4179}
4180
4181int kvm_mmu_module_init(void)
4182{
53c07b18
XG
4183 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4184 sizeof(struct pte_list_desc),
20c2df83 4185 0, 0, NULL);
53c07b18 4186 if (!pte_list_desc_cache)
b5a33a75
AK
4187 goto nomem;
4188
d3d25b04
AK
4189 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4190 sizeof(struct kvm_mmu_page),
20c2df83 4191 0, 0, NULL);
d3d25b04
AK
4192 if (!mmu_page_header_cache)
4193 goto nomem;
4194
45bf21a8
WY
4195 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4196 goto nomem;
4197
3ee16c81
IE
4198 register_shrinker(&mmu_shrinker);
4199
b5a33a75
AK
4200 return 0;
4201
4202nomem:
3ee16c81 4203 mmu_destroy_caches();
b5a33a75
AK
4204 return -ENOMEM;
4205}
4206
3ad82a7e
ZX
4207/*
4208 * Caculate mmu pages needed for kvm.
4209 */
4210unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4211{
3ad82a7e
ZX
4212 unsigned int nr_mmu_pages;
4213 unsigned int nr_pages = 0;
bc6678a3 4214 struct kvm_memslots *slots;
be6ba0f0 4215 struct kvm_memory_slot *memslot;
3ad82a7e 4216
90d83dc3
LJ
4217 slots = kvm_memslots(kvm);
4218
be6ba0f0
XG
4219 kvm_for_each_memslot(memslot, slots)
4220 nr_pages += memslot->npages;
3ad82a7e
ZX
4221
4222 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4223 nr_mmu_pages = max(nr_mmu_pages,
4224 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4225
4226 return nr_mmu_pages;
4227}
4228
94d8b056
MT
4229int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4230{
4231 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4232 u64 spte;
94d8b056
MT
4233 int nr_sptes = 0;
4234
c2a2ac2b
XG
4235 walk_shadow_page_lockless_begin(vcpu);
4236 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4237 sptes[iterator.level-1] = spte;
94d8b056 4238 nr_sptes++;
c2a2ac2b 4239 if (!is_shadow_present_pte(spte))
94d8b056
MT
4240 break;
4241 }
c2a2ac2b 4242 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4243
4244 return nr_sptes;
4245}
4246EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4247
c42fffe3
XG
4248void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4249{
4250 ASSERT(vcpu);
4251
4252 destroy_kvm_mmu(vcpu);
4253 free_mmu_pages(vcpu);
4254 mmu_free_memory_caches(vcpu);
b034cf01
XG
4255}
4256
b034cf01
XG
4257void kvm_mmu_module_exit(void)
4258{
4259 mmu_destroy_caches();
4260 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4261 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4262 mmu_audit_disable();
4263}
This page took 0.809194 seconds and 5 git commands to generate.