x86: replace NoRex64 on VEX-encoded insns
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
CommitLineData
b534c6d3 1/* tc-i386.c -- Assemble code for the Intel 80386
b3adc24a 2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
252b5132
RH
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
ec2655a6 8 the Free Software Foundation; either version 3, or (at your option)
252b5132
RH
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
4b4da160
NC
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
252b5132 20
47926f60
KH
21/* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
3e73aa7c 23 x86_64 support by Jan Hubicka (jh@suse.cz)
0f10071e 24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
47926f60
KH
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
252b5132 27
252b5132 28#include "as.h"
3882b010 29#include "safe-ctype.h"
252b5132 30#include "subsegs.h"
316e2c05 31#include "dwarf2dbg.h"
54cfded0 32#include "dw2gencfi.h"
d2b2c203 33#include "elf/x86-64.h"
40fb9820 34#include "opcodes/i386-init.h"
252b5132 35
41fd2579
L
36#ifdef HAVE_LIMITS_H
37#include <limits.h>
38#else
39#ifdef HAVE_SYS_PARAM_H
40#include <sys/param.h>
41#endif
42#ifndef INT_MAX
43#define INT_MAX (int) (((unsigned) (-1)) >> 1)
44#endif
45#endif
46
c3332e24 47#ifndef INFER_ADDR_PREFIX
eecb386c 48#define INFER_ADDR_PREFIX 1
c3332e24
AM
49#endif
50
29b0f896
AM
51#ifndef DEFAULT_ARCH
52#define DEFAULT_ARCH "i386"
246fcdee 53#endif
252b5132 54
edde18a5
AM
55#ifndef INLINE
56#if __GNUC__ >= 2
57#define INLINE __inline__
58#else
59#define INLINE
60#endif
61#endif
62
6305a203
L
63/* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
42164a71 67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
6305a203
L
68#define WAIT_PREFIX 0
69#define SEG_PREFIX 1
70#define ADDR_PREFIX 2
71#define DATA_PREFIX 3
c32fa91d 72#define REP_PREFIX 4
42164a71 73#define HLE_PREFIX REP_PREFIX
7e8b059b 74#define BND_PREFIX REP_PREFIX
c32fa91d 75#define LOCK_PREFIX 5
4e9ac44a
L
76#define REX_PREFIX 6 /* must come last. */
77#define MAX_PREFIXES 7 /* max prefixes per opcode */
6305a203
L
78
79/* we define the syntax here (modulo base,index,scale syntax) */
80#define REGISTER_PREFIX '%'
81#define IMMEDIATE_PREFIX '$'
82#define ABSOLUTE_PREFIX '*'
83
84/* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86#define WORD_MNEM_SUFFIX 'w'
87#define BYTE_MNEM_SUFFIX 'b'
88#define SHORT_MNEM_SUFFIX 's'
89#define LONG_MNEM_SUFFIX 'l'
90#define QWORD_MNEM_SUFFIX 'q'
6305a203
L
91/* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93#define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95#define END_OF_INSN '\0'
96
79dec6b7
JB
97/* This matches the C -> StaticRounding alias in the opcode table. */
98#define commutative staticrounding
99
6305a203
L
100/*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107typedef struct
108{
d3ce72d0
NC
109 const insn_template *start;
110 const insn_template *end;
6305a203
L
111}
112templates;
113
114/* 386 operand encoding bytes: see 386 book for details of this. */
115typedef struct
116{
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120}
121modrm_byte;
122
123/* x86-64 extension prefix. */
124typedef int rex_byte;
125
6305a203
L
126/* 386 opcode byte to code indirect addressing. */
127typedef struct
128{
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132}
133sib_byte;
134
6305a203
L
135/* x86 arch names, types and features */
136typedef struct
137{
138 const char *name; /* arch name */
8a2c8fef 139 unsigned int len; /* arch string length */
6305a203
L
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
8a2c8fef 142 unsigned int skip; /* show_arch should skip this. */
6305a203
L
143}
144arch_entry;
145
293f5f65
L
146/* Used to turn off indicated flags. */
147typedef struct
148{
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152}
153noarch_entry;
154
78f12dd3 155static void update_code_flag (int, int);
e3bb37b5
L
156static void set_code_flag (int);
157static void set_16bit_gcc_code_flag (int);
158static void set_intel_syntax (int);
1efbbeb4 159static void set_intel_mnemonic (int);
db51cc60 160static void set_allow_index_reg (int);
7bab8ab5 161static void set_check (int);
e3bb37b5 162static void set_cpu_arch (int);
6482c264 163#ifdef TE_PE
e3bb37b5 164static void pe_directive_secrel (int);
6482c264 165#endif
e3bb37b5
L
166static void signed_cons (int);
167static char *output_invalid (int c);
ee86248c
JB
168static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
a7619375 172static int i386_att_operand (char *);
e3bb37b5 173static int i386_intel_operand (char *, int);
ee86248c
JB
174static int i386_intel_simplify (expressionS *);
175static int i386_intel_parse_name (const char *, expressionS *);
e3bb37b5
L
176static const reg_entry *parse_register (char *, char **);
177static char *parse_insn (char *, char *);
178static char *parse_operands (char *, const char *);
179static void swap_operands (void);
4d456e3d 180static void swap_2_operands (int, int);
48bcea9f 181static enum flag_code i386_addressing_mode (void);
e3bb37b5
L
182static void optimize_imm (void);
183static void optimize_disp (void);
83b16ac6 184static const insn_template *match_template (char);
e3bb37b5
L
185static int check_string (void);
186static int process_suffix (void);
187static int check_byte_reg (void);
188static int check_long_reg (void);
189static int check_qword_reg (void);
190static int check_word_reg (void);
191static int finalize_imm (void);
192static int process_operands (void);
193static const seg_entry *build_modrm_byte (void);
194static void output_insn (void);
195static void output_imm (fragS *, offsetT);
196static void output_disp (fragS *, offsetT);
29b0f896 197#ifndef I386COFF
e3bb37b5 198static void s_bss (int);
252b5132 199#endif
17d4e2a2
L
200#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201static void handle_large_common (int small ATTRIBUTE_UNUSED);
b4a3a7b4
L
202
203/* GNU_PROPERTY_X86_ISA_1_USED. */
204static unsigned int x86_isa_1_used;
205/* GNU_PROPERTY_X86_FEATURE_2_USED. */
206static unsigned int x86_feature_2_used;
207/* Generate x86 used ISA and feature properties. */
208static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
17d4e2a2 209#endif
252b5132 210
a847613f 211static const char *default_arch = DEFAULT_ARCH;
3e73aa7c 212
43234a1e
L
213/* This struct describes rounding control and SAE in the instruction. */
214struct RC_Operation
215{
216 enum rc_type
217 {
218 rne = 0,
219 rd,
220 ru,
221 rz,
222 saeonly
223 } type;
224 int operand;
225};
226
227static struct RC_Operation rc_op;
228
229/* The struct describes masking, applied to OPERAND in the instruction.
230 MASK is a pointer to the corresponding mask register. ZEROING tells
231 whether merging or zeroing mask is used. */
232struct Mask_Operation
233{
234 const reg_entry *mask;
235 unsigned int zeroing;
236 /* The operand where this operation is associated. */
237 int operand;
238};
239
240static struct Mask_Operation mask_op;
241
242/* The struct describes broadcasting, applied to OPERAND. FACTOR is
243 broadcast factor. */
244struct Broadcast_Operation
245{
8e6e0792 246 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
43234a1e
L
247 int type;
248
249 /* Index of broadcasted operand. */
250 int operand;
4a1b91ea
L
251
252 /* Number of bytes to broadcast. */
253 int bytes;
43234a1e
L
254};
255
256static struct Broadcast_Operation broadcast_op;
257
c0f3af97
L
258/* VEX prefix. */
259typedef struct
260{
43234a1e
L
261 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
262 unsigned char bytes[4];
c0f3af97
L
263 unsigned int length;
264 /* Destination or source register specifier. */
265 const reg_entry *register_specifier;
266} vex_prefix;
267
252b5132 268/* 'md_assemble ()' gathers together information and puts it into a
47926f60 269 i386_insn. */
252b5132 270
520dc8e8
AM
271union i386_op
272 {
273 expressionS *disps;
274 expressionS *imms;
275 const reg_entry *regs;
276 };
277
a65babc9
L
278enum i386_error
279 {
86e026a4 280 operand_size_mismatch,
a65babc9
L
281 operand_type_mismatch,
282 register_type_mismatch,
283 number_of_operands_mismatch,
284 invalid_instruction_suffix,
285 bad_imm4,
a65babc9
L
286 unsupported_with_intel_mnemonic,
287 unsupported_syntax,
6c30d220
L
288 unsupported,
289 invalid_vsib_address,
7bab8ab5 290 invalid_vector_register_set,
43234a1e
L
291 unsupported_vector_index_register,
292 unsupported_broadcast,
43234a1e
L
293 broadcast_needed,
294 unsupported_masking,
295 mask_not_on_destination,
296 no_default_mask,
297 unsupported_rc_sae,
298 rc_sae_operand_not_last_imm,
299 invalid_register_operand,
a65babc9
L
300 };
301
252b5132
RH
302struct _i386_insn
303 {
47926f60 304 /* TM holds the template for the insn were currently assembling. */
d3ce72d0 305 insn_template tm;
252b5132 306
7d5e4556
L
307 /* SUFFIX holds the instruction size suffix for byte, word, dword
308 or qword, if given. */
252b5132
RH
309 char suffix;
310
47926f60 311 /* OPERANDS gives the number of given operands. */
252b5132
RH
312 unsigned int operands;
313
314 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
315 of given register, displacement, memory operands and immediate
47926f60 316 operands. */
252b5132
RH
317 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
318
319 /* TYPES [i] is the type (see above #defines) which tells us how to
520dc8e8 320 use OP[i] for the corresponding operand. */
40fb9820 321 i386_operand_type types[MAX_OPERANDS];
252b5132 322
520dc8e8
AM
323 /* Displacement expression, immediate expression, or register for each
324 operand. */
325 union i386_op op[MAX_OPERANDS];
252b5132 326
3e73aa7c
JH
327 /* Flags for operands. */
328 unsigned int flags[MAX_OPERANDS];
329#define Operand_PCrel 1
c48dadc9 330#define Operand_Mem 2
3e73aa7c 331
252b5132 332 /* Relocation type for operand */
f86103b7 333 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
252b5132 334
252b5132
RH
335 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
336 the base index byte below. */
337 const reg_entry *base_reg;
338 const reg_entry *index_reg;
339 unsigned int log2_scale_factor;
340
341 /* SEG gives the seg_entries of this insn. They are zero unless
47926f60 342 explicit segment overrides are given. */
ce8a8b2f 343 const seg_entry *seg[2];
252b5132 344
8325cc63
JB
345 /* Copied first memory operand string, for re-checking. */
346 char *memop1_string;
347
252b5132
RH
348 /* PREFIX holds all the given prefix opcodes (usually null).
349 PREFIXES is the number of prefix opcodes. */
350 unsigned int prefixes;
351 unsigned char prefix[MAX_PREFIXES];
352
50128d0c
JB
353 /* Register is in low 3 bits of opcode. */
354 bfd_boolean short_form;
355
6f2f06be
JB
356 /* The operand to a branch insn indicates an absolute branch. */
357 bfd_boolean jumpabsolute;
358
b4a3a7b4
L
359 /* Has MMX register operands. */
360 bfd_boolean has_regmmx;
361
362 /* Has XMM register operands. */
363 bfd_boolean has_regxmm;
364
365 /* Has YMM register operands. */
366 bfd_boolean has_regymm;
367
368 /* Has ZMM register operands. */
369 bfd_boolean has_regzmm;
370
e379e5f3
L
371 /* Has GOTPC or TLS relocation. */
372 bfd_boolean has_gotpc_tls_reloc;
373
252b5132 374 /* RM and SIB are the modrm byte and the sib byte where the
c1e679ec 375 addressing modes of this insn are encoded. */
252b5132 376 modrm_byte rm;
3e73aa7c 377 rex_byte rex;
43234a1e 378 rex_byte vrex;
252b5132 379 sib_byte sib;
c0f3af97 380 vex_prefix vex;
b6169b20 381
43234a1e
L
382 /* Masking attributes. */
383 struct Mask_Operation *mask;
384
385 /* Rounding control and SAE attributes. */
386 struct RC_Operation *rounding;
387
388 /* Broadcasting attributes. */
389 struct Broadcast_Operation *broadcast;
390
391 /* Compressed disp8*N attribute. */
392 unsigned int memshift;
393
86fa6981
L
394 /* Prefer load or store in encoding. */
395 enum
396 {
397 dir_encoding_default = 0,
398 dir_encoding_load,
64c49ab3
JB
399 dir_encoding_store,
400 dir_encoding_swap
86fa6981 401 } dir_encoding;
891edac4 402
a501d77e
L
403 /* Prefer 8bit or 32bit displacement in encoding. */
404 enum
405 {
406 disp_encoding_default = 0,
407 disp_encoding_8bit,
408 disp_encoding_32bit
409 } disp_encoding;
f8a5c266 410
6b6b6807
L
411 /* Prefer the REX byte in encoding. */
412 bfd_boolean rex_encoding;
413
b6f8c7c4
L
414 /* Disable instruction size optimization. */
415 bfd_boolean no_optimize;
416
86fa6981
L
417 /* How to encode vector instructions. */
418 enum
419 {
420 vex_encoding_default = 0,
42e04b36 421 vex_encoding_vex,
86fa6981
L
422 vex_encoding_vex3,
423 vex_encoding_evex
424 } vec_encoding;
425
d5de92cf
L
426 /* REP prefix. */
427 const char *rep_prefix;
428
165de32a
L
429 /* HLE prefix. */
430 const char *hle_prefix;
42164a71 431
7e8b059b
L
432 /* Have BND prefix. */
433 const char *bnd_prefix;
434
04ef582a
L
435 /* Have NOTRACK prefix. */
436 const char *notrack_prefix;
437
891edac4 438 /* Error message. */
a65babc9 439 enum i386_error error;
252b5132
RH
440 };
441
442typedef struct _i386_insn i386_insn;
443
43234a1e
L
444/* Link RC type with corresponding string, that'll be looked for in
445 asm. */
446struct RC_name
447{
448 enum rc_type type;
449 const char *name;
450 unsigned int len;
451};
452
453static const struct RC_name RC_NamesTable[] =
454{
455 { rne, STRING_COMMA_LEN ("rn-sae") },
456 { rd, STRING_COMMA_LEN ("rd-sae") },
457 { ru, STRING_COMMA_LEN ("ru-sae") },
458 { rz, STRING_COMMA_LEN ("rz-sae") },
459 { saeonly, STRING_COMMA_LEN ("sae") },
460};
461
252b5132
RH
462/* List of chars besides those in app.c:symbol_chars that can start an
463 operand. Used to prevent the scrubber eating vital white-space. */
86fa6981 464const char extra_symbol_chars[] = "*%-([{}"
252b5132 465#ifdef LEX_AT
32137342
NC
466 "@"
467#endif
468#ifdef LEX_QM
469 "?"
252b5132 470#endif
32137342 471 ;
252b5132 472
29b0f896
AM
473#if (defined (TE_I386AIX) \
474 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
3896cfd5 475 && !defined (TE_GNU) \
29b0f896 476 && !defined (TE_LINUX) \
8d63c93e 477 && !defined (TE_NACL) \
29b0f896 478 && !defined (TE_FreeBSD) \
5b806d27 479 && !defined (TE_DragonFly) \
29b0f896 480 && !defined (TE_NetBSD)))
252b5132 481/* This array holds the chars that always start a comment. If the
b3b91714
AM
482 pre-processor is disabled, these aren't very useful. The option
483 --divide will remove '/' from this list. */
484const char *i386_comment_chars = "#/";
485#define SVR4_COMMENT_CHARS 1
252b5132 486#define PREFIX_SEPARATOR '\\'
252b5132 487
b3b91714
AM
488#else
489const char *i386_comment_chars = "#";
490#define PREFIX_SEPARATOR '/'
491#endif
492
252b5132
RH
493/* This array holds the chars that only start a comment at the beginning of
494 a line. If the line seems to have the form '# 123 filename'
ce8a8b2f
AM
495 .line and .file directives will appear in the pre-processed output.
496 Note that input_file.c hand checks for '#' at the beginning of the
252b5132 497 first line of the input file. This is because the compiler outputs
ce8a8b2f
AM
498 #NO_APP at the beginning of its output.
499 Also note that comments started like this one will always work if
252b5132 500 '/' isn't otherwise defined. */
b3b91714 501const char line_comment_chars[] = "#/";
252b5132 502
63a0b638 503const char line_separator_chars[] = ";";
252b5132 504
ce8a8b2f
AM
505/* Chars that can be used to separate mant from exp in floating point
506 nums. */
252b5132
RH
507const char EXP_CHARS[] = "eE";
508
ce8a8b2f
AM
509/* Chars that mean this number is a floating point constant
510 As in 0f12.456
511 or 0d1.2345e12. */
252b5132
RH
512const char FLT_CHARS[] = "fFdDxX";
513
ce8a8b2f 514/* Tables for lexical analysis. */
252b5132
RH
515static char mnemonic_chars[256];
516static char register_chars[256];
517static char operand_chars[256];
518static char identifier_chars[256];
519static char digit_chars[256];
520
ce8a8b2f 521/* Lexical macros. */
252b5132
RH
522#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
523#define is_operand_char(x) (operand_chars[(unsigned char) x])
524#define is_register_char(x) (register_chars[(unsigned char) x])
525#define is_space_char(x) ((x) == ' ')
526#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
527#define is_digit_char(x) (digit_chars[(unsigned char) x])
528
0234cb7c 529/* All non-digit non-letter characters that may occur in an operand. */
252b5132
RH
530static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
531
532/* md_assemble() always leaves the strings it's passed unaltered. To
533 effect this we maintain a stack of saved characters that we've smashed
534 with '\0's (indicating end of strings for various sub-fields of the
47926f60 535 assembler instruction). */
252b5132 536static char save_stack[32];
ce8a8b2f 537static char *save_stack_p;
252b5132
RH
538#define END_STRING_AND_SAVE(s) \
539 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
540#define RESTORE_END_STRING(s) \
541 do { *(s) = *--save_stack_p; } while (0)
542
47926f60 543/* The instruction we're assembling. */
252b5132
RH
544static i386_insn i;
545
546/* Possible templates for current insn. */
547static const templates *current_templates;
548
31b2323c
L
549/* Per instruction expressionS buffers: max displacements & immediates. */
550static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
551static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
252b5132 552
47926f60 553/* Current operand we are working on. */
ee86248c 554static int this_operand = -1;
252b5132 555
3e73aa7c
JH
556/* We support four different modes. FLAG_CODE variable is used to distinguish
557 these. */
558
559enum flag_code {
560 CODE_32BIT,
561 CODE_16BIT,
562 CODE_64BIT };
563
564static enum flag_code flag_code;
4fa24527 565static unsigned int object_64bit;
862be3fb 566static unsigned int disallow_64bit_reloc;
3e73aa7c 567static int use_rela_relocations = 0;
e379e5f3
L
568/* __tls_get_addr/___tls_get_addr symbol for TLS. */
569static const char *tls_get_addr;
3e73aa7c 570
7af8ed2d
NC
571#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
572 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
573 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
574
351f65ca
L
575/* The ELF ABI to use. */
576enum x86_elf_abi
577{
578 I386_ABI,
7f56bc95
L
579 X86_64_ABI,
580 X86_64_X32_ABI
351f65ca
L
581};
582
583static enum x86_elf_abi x86_elf_abi = I386_ABI;
7af8ed2d 584#endif
351f65ca 585
167ad85b
TG
586#if defined (TE_PE) || defined (TE_PEP)
587/* Use big object file format. */
588static int use_big_obj = 0;
589#endif
590
8dcea932
L
591#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
592/* 1 if generating code for a shared library. */
593static int shared = 0;
594#endif
595
47926f60
KH
596/* 1 for intel syntax,
597 0 if att syntax. */
598static int intel_syntax = 0;
252b5132 599
4b5aaf5f
L
600static enum x86_64_isa
601{
602 amd64 = 1, /* AMD64 ISA. */
603 intel64 /* Intel64 ISA. */
604} isa64;
e89c5eaa 605
1efbbeb4
L
606/* 1 for intel mnemonic,
607 0 if att mnemonic. */
608static int intel_mnemonic = !SYSV386_COMPAT;
609
a60de03c
JB
610/* 1 if pseudo registers are permitted. */
611static int allow_pseudo_reg = 0;
612
47926f60
KH
613/* 1 if register prefix % not required. */
614static int allow_naked_reg = 0;
252b5132 615
33eaf5de 616/* 1 if the assembler should add BND prefix for all control-transferring
7e8b059b
L
617 instructions supporting it, even if this prefix wasn't specified
618 explicitly. */
619static int add_bnd_prefix = 0;
620
ba104c83 621/* 1 if pseudo index register, eiz/riz, is allowed . */
db51cc60
L
622static int allow_index_reg = 0;
623
d022bddd
IT
624/* 1 if the assembler should ignore LOCK prefix, even if it was
625 specified explicitly. */
626static int omit_lock_prefix = 0;
627
e4e00185
AS
628/* 1 if the assembler should encode lfence, mfence, and sfence as
629 "lock addl $0, (%{re}sp)". */
630static int avoid_fence = 0;
631
e379e5f3
L
632/* Type of the previous instruction. */
633static struct
634 {
635 segT seg;
636 const char *file;
637 const char *name;
638 unsigned int line;
639 enum last_insn_kind
640 {
641 last_insn_other = 0,
642 last_insn_directive,
643 last_insn_prefix
644 } kind;
645 } last_insn;
646
0cb4071e
L
647/* 1 if the assembler should generate relax relocations. */
648
649static int generate_relax_relocations
650 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
651
7bab8ab5 652static enum check_kind
daf50ae7 653 {
7bab8ab5
JB
654 check_none = 0,
655 check_warning,
656 check_error
daf50ae7 657 }
7bab8ab5 658sse_check, operand_check = check_warning;
daf50ae7 659
e379e5f3
L
660/* Non-zero if branches should be aligned within power of 2 boundary. */
661static int align_branch_power = 0;
662
663/* Types of branches to align. */
664enum align_branch_kind
665 {
666 align_branch_none = 0,
667 align_branch_jcc = 1,
668 align_branch_fused = 2,
669 align_branch_jmp = 3,
670 align_branch_call = 4,
671 align_branch_indirect = 5,
672 align_branch_ret = 6
673 };
674
675/* Type bits of branches to align. */
676enum align_branch_bit
677 {
678 align_branch_jcc_bit = 1 << align_branch_jcc,
679 align_branch_fused_bit = 1 << align_branch_fused,
680 align_branch_jmp_bit = 1 << align_branch_jmp,
681 align_branch_call_bit = 1 << align_branch_call,
682 align_branch_indirect_bit = 1 << align_branch_indirect,
683 align_branch_ret_bit = 1 << align_branch_ret
684 };
685
686static unsigned int align_branch = (align_branch_jcc_bit
687 | align_branch_fused_bit
688 | align_branch_jmp_bit);
689
79d72f45
HL
690/* Types of condition jump used by macro-fusion. */
691enum mf_jcc_kind
692 {
693 mf_jcc_jo = 0, /* base opcode 0x70 */
694 mf_jcc_jc, /* base opcode 0x72 */
695 mf_jcc_je, /* base opcode 0x74 */
696 mf_jcc_jna, /* base opcode 0x76 */
697 mf_jcc_js, /* base opcode 0x78 */
698 mf_jcc_jp, /* base opcode 0x7a */
699 mf_jcc_jl, /* base opcode 0x7c */
700 mf_jcc_jle, /* base opcode 0x7e */
701 };
702
703/* Types of compare flag-modifying insntructions used by macro-fusion. */
704enum mf_cmp_kind
705 {
706 mf_cmp_test_and, /* test/cmp */
707 mf_cmp_alu_cmp, /* add/sub/cmp */
708 mf_cmp_incdec /* inc/dec */
709 };
710
e379e5f3
L
711/* The maximum padding size for fused jcc. CMP like instruction can
712 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
713 prefixes. */
714#define MAX_FUSED_JCC_PADDING_SIZE 20
715
716/* The maximum number of prefixes added for an instruction. */
717static unsigned int align_branch_prefix_size = 5;
718
b6f8c7c4
L
719/* Optimization:
720 1. Clear the REX_W bit with register operand if possible.
721 2. Above plus use 128bit vector instruction to clear the full vector
722 register.
723 */
724static int optimize = 0;
725
726/* Optimization:
727 1. Clear the REX_W bit with register operand if possible.
728 2. Above plus use 128bit vector instruction to clear the full vector
729 register.
730 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
731 "testb $imm7,%r8".
732 */
733static int optimize_for_space = 0;
734
2ca3ace5
L
735/* Register prefix used for error message. */
736static const char *register_prefix = "%";
737
47926f60
KH
738/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
739 leave, push, and pop instructions so that gcc has the same stack
740 frame as in 32 bit mode. */
741static char stackop_size = '\0';
eecb386c 742
12b55ccc
L
743/* Non-zero to optimize code alignment. */
744int optimize_align_code = 1;
745
47926f60
KH
746/* Non-zero to quieten some warnings. */
747static int quiet_warnings = 0;
a38cf1db 748
47926f60
KH
749/* CPU name. */
750static const char *cpu_arch_name = NULL;
6305a203 751static char *cpu_sub_arch_name = NULL;
a38cf1db 752
47926f60 753/* CPU feature flags. */
40fb9820
L
754static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
755
ccc9c027
L
756/* If we have selected a cpu we are generating instructions for. */
757static int cpu_arch_tune_set = 0;
758
9103f4f4 759/* Cpu we are generating instructions for. */
fbf3f584 760enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
9103f4f4
L
761
762/* CPU feature flags of cpu we are generating instructions for. */
40fb9820 763static i386_cpu_flags cpu_arch_tune_flags;
9103f4f4 764
ccc9c027 765/* CPU instruction set architecture used. */
fbf3f584 766enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
ccc9c027 767
9103f4f4 768/* CPU feature flags of instruction set architecture used. */
fbf3f584 769i386_cpu_flags cpu_arch_isa_flags;
9103f4f4 770
fddf5b5b
AM
771/* If set, conditional jumps are not automatically promoted to handle
772 larger than a byte offset. */
773static unsigned int no_cond_jump_promotion = 0;
774
c0f3af97
L
775/* Encode SSE instructions with VEX prefix. */
776static unsigned int sse2avx;
777
539f890d
L
778/* Encode scalar AVX instructions with specific vector length. */
779static enum
780 {
781 vex128 = 0,
782 vex256
783 } avxscalar;
784
03751133
L
785/* Encode VEX WIG instructions with specific vex.w. */
786static enum
787 {
788 vexw0 = 0,
789 vexw1
790 } vexwig;
791
43234a1e
L
792/* Encode scalar EVEX LIG instructions with specific vector length. */
793static enum
794 {
795 evexl128 = 0,
796 evexl256,
797 evexl512
798 } evexlig;
799
800/* Encode EVEX WIG instructions with specific evex.w. */
801static enum
802 {
803 evexw0 = 0,
804 evexw1
805 } evexwig;
806
d3d3c6db
IT
807/* Value to encode in EVEX RC bits, for SAE-only instructions. */
808static enum rc_type evexrcig = rne;
809
29b0f896 810/* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
87c245cc 811static symbolS *GOT_symbol;
29b0f896 812
a4447b93
RH
813/* The dwarf2 return column, adjusted for 32 or 64 bit. */
814unsigned int x86_dwarf2_return_column;
815
816/* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
817int x86_cie_data_alignment;
818
252b5132 819/* Interface to relax_segment.
fddf5b5b
AM
820 There are 3 major relax states for 386 jump insns because the
821 different types of jumps add different sizes to frags when we're
e379e5f3
L
822 figuring out what sort of jump to choose to reach a given label.
823
824 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
825 branches which are handled by md_estimate_size_before_relax() and
826 i386_generic_table_relax_frag(). */
252b5132 827
47926f60 828/* Types. */
93c2a809
AM
829#define UNCOND_JUMP 0
830#define COND_JUMP 1
831#define COND_JUMP86 2
e379e5f3
L
832#define BRANCH_PADDING 3
833#define BRANCH_PREFIX 4
834#define FUSED_JCC_PADDING 5
fddf5b5b 835
47926f60 836/* Sizes. */
252b5132
RH
837#define CODE16 1
838#define SMALL 0
29b0f896 839#define SMALL16 (SMALL | CODE16)
252b5132 840#define BIG 2
29b0f896 841#define BIG16 (BIG | CODE16)
252b5132
RH
842
843#ifndef INLINE
844#ifdef __GNUC__
845#define INLINE __inline__
846#else
847#define INLINE
848#endif
849#endif
850
fddf5b5b
AM
851#define ENCODE_RELAX_STATE(type, size) \
852 ((relax_substateT) (((type) << 2) | (size)))
853#define TYPE_FROM_RELAX_STATE(s) \
854 ((s) >> 2)
855#define DISP_SIZE_FROM_RELAX_STATE(s) \
856 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
252b5132
RH
857
858/* This table is used by relax_frag to promote short jumps to long
859 ones where necessary. SMALL (short) jumps may be promoted to BIG
860 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
861 don't allow a short jump in a 32 bit code segment to be promoted to
862 a 16 bit offset jump because it's slower (requires data size
863 prefix), and doesn't work, unless the destination is in the bottom
864 64k of the code segment (The top 16 bits of eip are zeroed). */
865
866const relax_typeS md_relax_table[] =
867{
24eab124
AM
868 /* The fields are:
869 1) most positive reach of this state,
870 2) most negative reach of this state,
93c2a809 871 3) how many bytes this mode will have in the variable part of the frag
ce8a8b2f 872 4) which index into the table to try if we can't fit into this one. */
252b5132 873
fddf5b5b 874 /* UNCOND_JUMP states. */
93c2a809
AM
875 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
876 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
877 /* dword jmp adds 4 bytes to frag:
878 0 extra opcode bytes, 4 displacement bytes. */
252b5132 879 {0, 0, 4, 0},
93c2a809
AM
880 /* word jmp adds 2 byte2 to frag:
881 0 extra opcode bytes, 2 displacement bytes. */
252b5132
RH
882 {0, 0, 2, 0},
883
93c2a809
AM
884 /* COND_JUMP states. */
885 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
886 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
887 /* dword conditionals adds 5 bytes to frag:
888 1 extra opcode byte, 4 displacement bytes. */
889 {0, 0, 5, 0},
fddf5b5b 890 /* word conditionals add 3 bytes to frag:
93c2a809
AM
891 1 extra opcode byte, 2 displacement bytes. */
892 {0, 0, 3, 0},
893
894 /* COND_JUMP86 states. */
895 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
896 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
897 /* dword conditionals adds 5 bytes to frag:
898 1 extra opcode byte, 4 displacement bytes. */
899 {0, 0, 5, 0},
900 /* word conditionals add 4 bytes to frag:
901 1 displacement byte and a 3 byte long branch insn. */
902 {0, 0, 4, 0}
252b5132
RH
903};
904
9103f4f4
L
905static const arch_entry cpu_arch[] =
906{
89507696
JB
907 /* Do not replace the first two entries - i386_target_format()
908 relies on them being there in this order. */
8a2c8fef 909 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
293f5f65 910 CPU_GENERIC32_FLAGS, 0 },
8a2c8fef 911 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
293f5f65 912 CPU_GENERIC64_FLAGS, 0 },
8a2c8fef 913 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
293f5f65 914 CPU_NONE_FLAGS, 0 },
8a2c8fef 915 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
293f5f65 916 CPU_I186_FLAGS, 0 },
8a2c8fef 917 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
293f5f65 918 CPU_I286_FLAGS, 0 },
8a2c8fef 919 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
293f5f65 920 CPU_I386_FLAGS, 0 },
8a2c8fef 921 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
293f5f65 922 CPU_I486_FLAGS, 0 },
8a2c8fef 923 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
293f5f65 924 CPU_I586_FLAGS, 0 },
8a2c8fef 925 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
293f5f65 926 CPU_I686_FLAGS, 0 },
8a2c8fef 927 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
293f5f65 928 CPU_I586_FLAGS, 0 },
8a2c8fef 929 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
293f5f65 930 CPU_PENTIUMPRO_FLAGS, 0 },
8a2c8fef 931 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
293f5f65 932 CPU_P2_FLAGS, 0 },
8a2c8fef 933 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
293f5f65 934 CPU_P3_FLAGS, 0 },
8a2c8fef 935 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
293f5f65 936 CPU_P4_FLAGS, 0 },
8a2c8fef 937 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
293f5f65 938 CPU_CORE_FLAGS, 0 },
8a2c8fef 939 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
293f5f65 940 CPU_NOCONA_FLAGS, 0 },
8a2c8fef 941 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
293f5f65 942 CPU_CORE_FLAGS, 1 },
8a2c8fef 943 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
293f5f65 944 CPU_CORE_FLAGS, 0 },
8a2c8fef 945 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
293f5f65 946 CPU_CORE2_FLAGS, 1 },
8a2c8fef 947 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
293f5f65 948 CPU_CORE2_FLAGS, 0 },
8a2c8fef 949 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
293f5f65 950 CPU_COREI7_FLAGS, 0 },
8a2c8fef 951 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
293f5f65 952 CPU_L1OM_FLAGS, 0 },
7a9068fe 953 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
293f5f65 954 CPU_K1OM_FLAGS, 0 },
81486035 955 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
293f5f65 956 CPU_IAMCU_FLAGS, 0 },
8a2c8fef 957 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
293f5f65 958 CPU_K6_FLAGS, 0 },
8a2c8fef 959 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
293f5f65 960 CPU_K6_2_FLAGS, 0 },
8a2c8fef 961 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
293f5f65 962 CPU_ATHLON_FLAGS, 0 },
8a2c8fef 963 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
293f5f65 964 CPU_K8_FLAGS, 1 },
8a2c8fef 965 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
293f5f65 966 CPU_K8_FLAGS, 0 },
8a2c8fef 967 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
293f5f65 968 CPU_K8_FLAGS, 0 },
8a2c8fef 969 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
293f5f65 970 CPU_AMDFAM10_FLAGS, 0 },
8aedb9fe 971 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
293f5f65 972 CPU_BDVER1_FLAGS, 0 },
8aedb9fe 973 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
293f5f65 974 CPU_BDVER2_FLAGS, 0 },
5e5c50d3 975 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
293f5f65 976 CPU_BDVER3_FLAGS, 0 },
c7b0bd56 977 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
293f5f65 978 CPU_BDVER4_FLAGS, 0 },
029f3522 979 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
293f5f65 980 CPU_ZNVER1_FLAGS, 0 },
a9660a6f
AP
981 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
982 CPU_ZNVER2_FLAGS, 0 },
7b458c12 983 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
293f5f65 984 CPU_BTVER1_FLAGS, 0 },
7b458c12 985 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
293f5f65 986 CPU_BTVER2_FLAGS, 0 },
8a2c8fef 987 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
293f5f65 988 CPU_8087_FLAGS, 0 },
8a2c8fef 989 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
293f5f65 990 CPU_287_FLAGS, 0 },
8a2c8fef 991 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
293f5f65 992 CPU_387_FLAGS, 0 },
1848e567
L
993 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
994 CPU_687_FLAGS, 0 },
d871f3f4
L
995 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
996 CPU_CMOV_FLAGS, 0 },
997 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
998 CPU_FXSR_FLAGS, 0 },
8a2c8fef 999 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
293f5f65 1000 CPU_MMX_FLAGS, 0 },
8a2c8fef 1001 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
293f5f65 1002 CPU_SSE_FLAGS, 0 },
8a2c8fef 1003 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
293f5f65 1004 CPU_SSE2_FLAGS, 0 },
8a2c8fef 1005 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
293f5f65 1006 CPU_SSE3_FLAGS, 0 },
af5c13b0
L
1007 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1008 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1009 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
293f5f65 1010 CPU_SSSE3_FLAGS, 0 },
8a2c8fef 1011 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
293f5f65 1012 CPU_SSE4_1_FLAGS, 0 },
8a2c8fef 1013 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
293f5f65 1014 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1015 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
293f5f65 1016 CPU_SSE4_2_FLAGS, 0 },
8a2c8fef 1017 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
293f5f65 1018 CPU_AVX_FLAGS, 0 },
6c30d220 1019 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
293f5f65 1020 CPU_AVX2_FLAGS, 0 },
43234a1e 1021 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
293f5f65 1022 CPU_AVX512F_FLAGS, 0 },
43234a1e 1023 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
293f5f65 1024 CPU_AVX512CD_FLAGS, 0 },
43234a1e 1025 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
293f5f65 1026 CPU_AVX512ER_FLAGS, 0 },
43234a1e 1027 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
293f5f65 1028 CPU_AVX512PF_FLAGS, 0 },
1dfc6506 1029 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
293f5f65 1030 CPU_AVX512DQ_FLAGS, 0 },
1dfc6506 1031 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
293f5f65 1032 CPU_AVX512BW_FLAGS, 0 },
1dfc6506 1033 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
293f5f65 1034 CPU_AVX512VL_FLAGS, 0 },
8a2c8fef 1035 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
293f5f65 1036 CPU_VMX_FLAGS, 0 },
8729a6f6 1037 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
293f5f65 1038 CPU_VMFUNC_FLAGS, 0 },
8a2c8fef 1039 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
293f5f65 1040 CPU_SMX_FLAGS, 0 },
8a2c8fef 1041 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
293f5f65 1042 CPU_XSAVE_FLAGS, 0 },
c7b8aa3a 1043 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
293f5f65 1044 CPU_XSAVEOPT_FLAGS, 0 },
1dfc6506 1045 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
293f5f65 1046 CPU_XSAVEC_FLAGS, 0 },
1dfc6506 1047 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
293f5f65 1048 CPU_XSAVES_FLAGS, 0 },
8a2c8fef 1049 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
293f5f65 1050 CPU_AES_FLAGS, 0 },
8a2c8fef 1051 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
293f5f65 1052 CPU_PCLMUL_FLAGS, 0 },
8a2c8fef 1053 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
293f5f65 1054 CPU_PCLMUL_FLAGS, 1 },
c7b8aa3a 1055 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
293f5f65 1056 CPU_FSGSBASE_FLAGS, 0 },
c7b8aa3a 1057 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
293f5f65 1058 CPU_RDRND_FLAGS, 0 },
c7b8aa3a 1059 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
293f5f65 1060 CPU_F16C_FLAGS, 0 },
6c30d220 1061 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
293f5f65 1062 CPU_BMI2_FLAGS, 0 },
8a2c8fef 1063 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
293f5f65 1064 CPU_FMA_FLAGS, 0 },
8a2c8fef 1065 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
293f5f65 1066 CPU_FMA4_FLAGS, 0 },
8a2c8fef 1067 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
293f5f65 1068 CPU_XOP_FLAGS, 0 },
8a2c8fef 1069 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
293f5f65 1070 CPU_LWP_FLAGS, 0 },
8a2c8fef 1071 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
293f5f65 1072 CPU_MOVBE_FLAGS, 0 },
60aa667e 1073 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
293f5f65 1074 CPU_CX16_FLAGS, 0 },
8a2c8fef 1075 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
293f5f65 1076 CPU_EPT_FLAGS, 0 },
6c30d220 1077 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
293f5f65 1078 CPU_LZCNT_FLAGS, 0 },
272a84b1
L
1079 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1080 CPU_POPCNT_FLAGS, 0 },
42164a71 1081 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
293f5f65 1082 CPU_HLE_FLAGS, 0 },
42164a71 1083 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
293f5f65 1084 CPU_RTM_FLAGS, 0 },
6c30d220 1085 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
293f5f65 1086 CPU_INVPCID_FLAGS, 0 },
8a2c8fef 1087 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
293f5f65 1088 CPU_CLFLUSH_FLAGS, 0 },
22109423 1089 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
293f5f65 1090 CPU_NOP_FLAGS, 0 },
8a2c8fef 1091 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
293f5f65 1092 CPU_SYSCALL_FLAGS, 0 },
8a2c8fef 1093 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
293f5f65 1094 CPU_RDTSCP_FLAGS, 0 },
8a2c8fef 1095 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
293f5f65 1096 CPU_3DNOW_FLAGS, 0 },
8a2c8fef 1097 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
293f5f65 1098 CPU_3DNOWA_FLAGS, 0 },
8a2c8fef 1099 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
293f5f65 1100 CPU_PADLOCK_FLAGS, 0 },
8a2c8fef 1101 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
293f5f65 1102 CPU_SVME_FLAGS, 1 },
8a2c8fef 1103 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
293f5f65 1104 CPU_SVME_FLAGS, 0 },
8a2c8fef 1105 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
293f5f65 1106 CPU_SSE4A_FLAGS, 0 },
8a2c8fef 1107 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
293f5f65 1108 CPU_ABM_FLAGS, 0 },
87973e9f 1109 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
293f5f65 1110 CPU_BMI_FLAGS, 0 },
2a2a0f38 1111 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
293f5f65 1112 CPU_TBM_FLAGS, 0 },
e2e1fcde 1113 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
293f5f65 1114 CPU_ADX_FLAGS, 0 },
e2e1fcde 1115 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
293f5f65 1116 CPU_RDSEED_FLAGS, 0 },
e2e1fcde 1117 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
293f5f65 1118 CPU_PRFCHW_FLAGS, 0 },
5c111e37 1119 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
293f5f65 1120 CPU_SMAP_FLAGS, 0 },
7e8b059b 1121 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
293f5f65 1122 CPU_MPX_FLAGS, 0 },
a0046408 1123 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
293f5f65 1124 CPU_SHA_FLAGS, 0 },
963f3586 1125 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
293f5f65 1126 CPU_CLFLUSHOPT_FLAGS, 0 },
dcf893b5 1127 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
293f5f65 1128 CPU_PREFETCHWT1_FLAGS, 0 },
2cf200a4 1129 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
293f5f65 1130 CPU_SE1_FLAGS, 0 },
c5e7287a 1131 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
293f5f65 1132 CPU_CLWB_FLAGS, 0 },
2cc1b5aa 1133 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
293f5f65 1134 CPU_AVX512IFMA_FLAGS, 0 },
14f195c9 1135 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
293f5f65 1136 CPU_AVX512VBMI_FLAGS, 0 },
920d2ddc
IT
1137 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1138 CPU_AVX512_4FMAPS_FLAGS, 0 },
47acf0bd
IT
1139 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1140 CPU_AVX512_4VNNIW_FLAGS, 0 },
620214f7
IT
1141 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1142 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
53467f57
IT
1143 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1144 CPU_AVX512_VBMI2_FLAGS, 0 },
8cfcb765
IT
1145 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1146 CPU_AVX512_VNNI_FLAGS, 0 },
ee6872be
IT
1147 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1148 CPU_AVX512_BITALG_FLAGS, 0 },
029f3522 1149 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
293f5f65 1150 CPU_CLZERO_FLAGS, 0 },
9916071f 1151 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
293f5f65 1152 CPU_MWAITX_FLAGS, 0 },
8eab4136 1153 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
293f5f65 1154 CPU_OSPKE_FLAGS, 0 },
8bc52696 1155 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
293f5f65 1156 CPU_RDPID_FLAGS, 0 },
6b40c462
L
1157 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1158 CPU_PTWRITE_FLAGS, 0 },
d777820b
IT
1159 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1160 CPU_IBT_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1162 CPU_SHSTK_FLAGS, 0 },
48521003
IT
1163 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1164 CPU_GFNI_FLAGS, 0 },
8dcf1fad
IT
1165 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1166 CPU_VAES_FLAGS, 0 },
ff1982d5
IT
1167 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1168 CPU_VPCLMULQDQ_FLAGS, 0 },
3233d7d0
IT
1169 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1170 CPU_WBNOINVD_FLAGS, 0 },
be3a8dca
IT
1171 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1172 CPU_PCONFIG_FLAGS, 0 },
de89d0a3
IT
1173 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1174 CPU_WAITPKG_FLAGS, 0 },
c48935d7
IT
1175 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1176 CPU_CLDEMOTE_FLAGS, 0 },
c0a30a9f
L
1177 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1178 CPU_MOVDIRI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1180 CPU_MOVDIR64B_FLAGS, 0 },
d6aab7a1
XG
1181 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_BF16_FLAGS, 0 },
9186c494
L
1183 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
dd455cf5
L
1185 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1186 CPU_ENQCMD_FLAGS, 0 },
142861df
JB
1187 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1188 CPU_RDPRU_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1190 CPU_MCOMMIT_FLAGS, 0 },
a847e322
JB
1191 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1192 CPU_SEV_ES_FLAGS, 0 },
293f5f65
L
1193};
1194
1195static const noarch_entry cpu_noarch[] =
1196{
1197 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1848e567
L
1198 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1199 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1200 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
d871f3f4
L
1201 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1202 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
293f5f65
L
1203 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1204 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1848e567
L
1205 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1206 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
af5c13b0 1207 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1848e567
L
1208 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1209 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1210 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
af5c13b0 1211 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
293f5f65 1212 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1848e567 1213 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
144b71e2
L
1214 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1215 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1216 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1217 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1218 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1219 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1220 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1221 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1222 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
920d2ddc 1223 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
47acf0bd 1224 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
620214f7 1225 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
53467f57 1226 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
8cfcb765 1227 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
ee6872be 1228 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
d777820b
IT
1229 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1230 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
c0a30a9f
L
1231 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1232 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
d6aab7a1 1233 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
9186c494 1234 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
dd455cf5 1235 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
e413e4e9
AM
1236};
1237
704209c0 1238#ifdef I386COFF
a6c24e68
NC
1239/* Like s_lcomm_internal in gas/read.c but the alignment string
1240 is allowed to be optional. */
1241
1242static symbolS *
1243pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1244{
1245 addressT align = 0;
1246
1247 SKIP_WHITESPACE ();
1248
7ab9ffdd 1249 if (needs_align
a6c24e68
NC
1250 && *input_line_pointer == ',')
1251 {
1252 align = parse_align (needs_align - 1);
7ab9ffdd 1253
a6c24e68
NC
1254 if (align == (addressT) -1)
1255 return NULL;
1256 }
1257 else
1258 {
1259 if (size >= 8)
1260 align = 3;
1261 else if (size >= 4)
1262 align = 2;
1263 else if (size >= 2)
1264 align = 1;
1265 else
1266 align = 0;
1267 }
1268
1269 bss_alloc (symbolP, size, align);
1270 return symbolP;
1271}
1272
704209c0 1273static void
a6c24e68
NC
1274pe_lcomm (int needs_align)
1275{
1276 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1277}
704209c0 1278#endif
a6c24e68 1279
29b0f896
AM
1280const pseudo_typeS md_pseudo_table[] =
1281{
1282#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1283 {"align", s_align_bytes, 0},
1284#else
1285 {"align", s_align_ptwo, 0},
1286#endif
1287 {"arch", set_cpu_arch, 0},
1288#ifndef I386COFF
1289 {"bss", s_bss, 0},
a6c24e68
NC
1290#else
1291 {"lcomm", pe_lcomm, 1},
29b0f896
AM
1292#endif
1293 {"ffloat", float_cons, 'f'},
1294 {"dfloat", float_cons, 'd'},
1295 {"tfloat", float_cons, 'x'},
1296 {"value", cons, 2},
d182319b 1297 {"slong", signed_cons, 4},
29b0f896
AM
1298 {"noopt", s_ignore, 0},
1299 {"optim", s_ignore, 0},
1300 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1301 {"code16", set_code_flag, CODE_16BIT},
1302 {"code32", set_code_flag, CODE_32BIT},
da5f19a2 1303#ifdef BFD64
29b0f896 1304 {"code64", set_code_flag, CODE_64BIT},
da5f19a2 1305#endif
29b0f896
AM
1306 {"intel_syntax", set_intel_syntax, 1},
1307 {"att_syntax", set_intel_syntax, 0},
1efbbeb4
L
1308 {"intel_mnemonic", set_intel_mnemonic, 1},
1309 {"att_mnemonic", set_intel_mnemonic, 0},
db51cc60
L
1310 {"allow_index_reg", set_allow_index_reg, 1},
1311 {"disallow_index_reg", set_allow_index_reg, 0},
7bab8ab5
JB
1312 {"sse_check", set_check, 0},
1313 {"operand_check", set_check, 1},
3b22753a
L
1314#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1315 {"largecomm", handle_large_common, 0},
07a53e5c 1316#else
68d20676 1317 {"file", dwarf2_directive_file, 0},
07a53e5c
RH
1318 {"loc", dwarf2_directive_loc, 0},
1319 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
3b22753a 1320#endif
6482c264
NC
1321#ifdef TE_PE
1322 {"secrel32", pe_directive_secrel, 0},
1323#endif
29b0f896
AM
1324 {0, 0, 0}
1325};
1326
1327/* For interface with expression (). */
1328extern char *input_line_pointer;
1329
1330/* Hash table for instruction mnemonic lookup. */
1331static struct hash_control *op_hash;
1332
1333/* Hash table for register lookup. */
1334static struct hash_control *reg_hash;
1335\f
ce8a8b2f
AM
1336 /* Various efficient no-op patterns for aligning code labels.
1337 Note: Don't try to assemble the instructions in the comments.
1338 0L and 0w are not legal. */
62a02d25
L
1339static const unsigned char f32_1[] =
1340 {0x90}; /* nop */
1341static const unsigned char f32_2[] =
1342 {0x66,0x90}; /* xchg %ax,%ax */
1343static const unsigned char f32_3[] =
1344 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1345static const unsigned char f32_4[] =
1346 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
62a02d25
L
1347static const unsigned char f32_6[] =
1348 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1349static const unsigned char f32_7[] =
1350 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
62a02d25 1351static const unsigned char f16_3[] =
3ae729d5 1352 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
62a02d25 1353static const unsigned char f16_4[] =
3ae729d5
L
1354 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1355static const unsigned char jump_disp8[] =
1356 {0xeb}; /* jmp disp8 */
1357static const unsigned char jump32_disp32[] =
1358 {0xe9}; /* jmp disp32 */
1359static const unsigned char jump16_disp32[] =
1360 {0x66,0xe9}; /* jmp disp32 */
62a02d25
L
1361/* 32-bit NOPs patterns. */
1362static const unsigned char *const f32_patt[] = {
3ae729d5 1363 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
62a02d25
L
1364};
1365/* 16-bit NOPs patterns. */
1366static const unsigned char *const f16_patt[] = {
3ae729d5 1367 f32_1, f32_2, f16_3, f16_4
62a02d25
L
1368};
1369/* nopl (%[re]ax) */
1370static const unsigned char alt_3[] =
1371 {0x0f,0x1f,0x00};
1372/* nopl 0(%[re]ax) */
1373static const unsigned char alt_4[] =
1374 {0x0f,0x1f,0x40,0x00};
1375/* nopl 0(%[re]ax,%[re]ax,1) */
1376static const unsigned char alt_5[] =
1377 {0x0f,0x1f,0x44,0x00,0x00};
1378/* nopw 0(%[re]ax,%[re]ax,1) */
1379static const unsigned char alt_6[] =
1380 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1381/* nopl 0L(%[re]ax) */
1382static const unsigned char alt_7[] =
1383 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1384/* nopl 0L(%[re]ax,%[re]ax,1) */
1385static const unsigned char alt_8[] =
1386 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1387/* nopw 0L(%[re]ax,%[re]ax,1) */
1388static const unsigned char alt_9[] =
1389 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1390/* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1391static const unsigned char alt_10[] =
1392 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
3ae729d5
L
1393/* data16 nopw %cs:0L(%eax,%eax,1) */
1394static const unsigned char alt_11[] =
1395 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
62a02d25
L
1396/* 32-bit and 64-bit NOPs patterns. */
1397static const unsigned char *const alt_patt[] = {
1398 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
3ae729d5 1399 alt_9, alt_10, alt_11
62a02d25
L
1400};
1401
1402/* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1403 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1404
1405static void
1406i386_output_nops (char *where, const unsigned char *const *patt,
1407 int count, int max_single_nop_size)
1408
1409{
3ae729d5
L
1410 /* Place the longer NOP first. */
1411 int last;
1412 int offset;
3076e594
NC
1413 const unsigned char *nops;
1414
1415 if (max_single_nop_size < 1)
1416 {
1417 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1418 max_single_nop_size);
1419 return;
1420 }
1421
1422 nops = patt[max_single_nop_size - 1];
3ae729d5
L
1423
1424 /* Use the smaller one if the requsted one isn't available. */
1425 if (nops == NULL)
62a02d25 1426 {
3ae729d5
L
1427 max_single_nop_size--;
1428 nops = patt[max_single_nop_size - 1];
62a02d25
L
1429 }
1430
3ae729d5
L
1431 last = count % max_single_nop_size;
1432
1433 count -= last;
1434 for (offset = 0; offset < count; offset += max_single_nop_size)
1435 memcpy (where + offset, nops, max_single_nop_size);
1436
1437 if (last)
1438 {
1439 nops = patt[last - 1];
1440 if (nops == NULL)
1441 {
1442 /* Use the smaller one plus one-byte NOP if the needed one
1443 isn't available. */
1444 last--;
1445 nops = patt[last - 1];
1446 memcpy (where + offset, nops, last);
1447 where[offset + last] = *patt[0];
1448 }
1449 else
1450 memcpy (where + offset, nops, last);
1451 }
62a02d25
L
1452}
1453
3ae729d5
L
1454static INLINE int
1455fits_in_imm7 (offsetT num)
1456{
1457 return (num & 0x7f) == num;
1458}
1459
1460static INLINE int
1461fits_in_imm31 (offsetT num)
1462{
1463 return (num & 0x7fffffff) == num;
1464}
62a02d25
L
1465
1466/* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1467 single NOP instruction LIMIT. */
1468
1469void
3ae729d5 1470i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
62a02d25 1471{
3ae729d5 1472 const unsigned char *const *patt = NULL;
62a02d25 1473 int max_single_nop_size;
3ae729d5
L
1474 /* Maximum number of NOPs before switching to jump over NOPs. */
1475 int max_number_of_nops;
62a02d25 1476
3ae729d5 1477 switch (fragP->fr_type)
62a02d25 1478 {
3ae729d5
L
1479 case rs_fill_nop:
1480 case rs_align_code:
1481 break;
e379e5f3
L
1482 case rs_machine_dependent:
1483 /* Allow NOP padding for jumps and calls. */
1484 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1485 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1486 break;
1487 /* Fall through. */
3ae729d5 1488 default:
62a02d25
L
1489 return;
1490 }
1491
ccc9c027
L
1492 /* We need to decide which NOP sequence to use for 32bit and
1493 64bit. When -mtune= is used:
4eed87de 1494
76bc74dc
L
1495 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1496 PROCESSOR_GENERIC32, f32_patt will be used.
80b8656c
L
1497 2. For the rest, alt_patt will be used.
1498
1499 When -mtune= isn't used, alt_patt will be used if
22109423 1500 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
76bc74dc 1501 be used.
ccc9c027
L
1502
1503 When -march= or .arch is used, we can't use anything beyond
1504 cpu_arch_isa_flags. */
1505
1506 if (flag_code == CODE_16BIT)
1507 {
3ae729d5
L
1508 patt = f16_patt;
1509 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1510 /* Limit number of NOPs to 2 in 16-bit mode. */
1511 max_number_of_nops = 2;
252b5132 1512 }
33fef721 1513 else
ccc9c027 1514 {
fbf3f584 1515 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
ccc9c027
L
1516 {
1517 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1518 switch (cpu_arch_tune)
1519 {
1520 case PROCESSOR_UNKNOWN:
1521 /* We use cpu_arch_isa_flags to check if we SHOULD
22109423
L
1522 optimize with nops. */
1523 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1524 patt = alt_patt;
ccc9c027
L
1525 else
1526 patt = f32_patt;
1527 break;
ccc9c027
L
1528 case PROCESSOR_PENTIUM4:
1529 case PROCESSOR_NOCONA:
ef05d495 1530 case PROCESSOR_CORE:
76bc74dc 1531 case PROCESSOR_CORE2:
bd5295b2 1532 case PROCESSOR_COREI7:
3632d14b 1533 case PROCESSOR_L1OM:
7a9068fe 1534 case PROCESSOR_K1OM:
76bc74dc 1535 case PROCESSOR_GENERIC64:
ccc9c027
L
1536 case PROCESSOR_K6:
1537 case PROCESSOR_ATHLON:
1538 case PROCESSOR_K8:
4eed87de 1539 case PROCESSOR_AMDFAM10:
8aedb9fe 1540 case PROCESSOR_BD:
029f3522 1541 case PROCESSOR_ZNVER:
7b458c12 1542 case PROCESSOR_BT:
80b8656c 1543 patt = alt_patt;
ccc9c027 1544 break;
76bc74dc 1545 case PROCESSOR_I386:
ccc9c027
L
1546 case PROCESSOR_I486:
1547 case PROCESSOR_PENTIUM:
2dde1948 1548 case PROCESSOR_PENTIUMPRO:
81486035 1549 case PROCESSOR_IAMCU:
ccc9c027
L
1550 case PROCESSOR_GENERIC32:
1551 patt = f32_patt;
1552 break;
4eed87de 1553 }
ccc9c027
L
1554 }
1555 else
1556 {
fbf3f584 1557 switch (fragP->tc_frag_data.tune)
ccc9c027
L
1558 {
1559 case PROCESSOR_UNKNOWN:
e6a14101 1560 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
ccc9c027
L
1561 PROCESSOR_UNKNOWN. */
1562 abort ();
1563 break;
1564
76bc74dc 1565 case PROCESSOR_I386:
ccc9c027
L
1566 case PROCESSOR_I486:
1567 case PROCESSOR_PENTIUM:
81486035 1568 case PROCESSOR_IAMCU:
ccc9c027
L
1569 case PROCESSOR_K6:
1570 case PROCESSOR_ATHLON:
1571 case PROCESSOR_K8:
4eed87de 1572 case PROCESSOR_AMDFAM10:
8aedb9fe 1573 case PROCESSOR_BD:
029f3522 1574 case PROCESSOR_ZNVER:
7b458c12 1575 case PROCESSOR_BT:
ccc9c027
L
1576 case PROCESSOR_GENERIC32:
1577 /* We use cpu_arch_isa_flags to check if we CAN optimize
22109423
L
1578 with nops. */
1579 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1580 patt = alt_patt;
ccc9c027
L
1581 else
1582 patt = f32_patt;
1583 break;
76bc74dc
L
1584 case PROCESSOR_PENTIUMPRO:
1585 case PROCESSOR_PENTIUM4:
1586 case PROCESSOR_NOCONA:
1587 case PROCESSOR_CORE:
ef05d495 1588 case PROCESSOR_CORE2:
bd5295b2 1589 case PROCESSOR_COREI7:
3632d14b 1590 case PROCESSOR_L1OM:
7a9068fe 1591 case PROCESSOR_K1OM:
22109423 1592 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
80b8656c 1593 patt = alt_patt;
ccc9c027
L
1594 else
1595 patt = f32_patt;
1596 break;
1597 case PROCESSOR_GENERIC64:
80b8656c 1598 patt = alt_patt;
ccc9c027 1599 break;
4eed87de 1600 }
ccc9c027
L
1601 }
1602
76bc74dc
L
1603 if (patt == f32_patt)
1604 {
3ae729d5
L
1605 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1606 /* Limit number of NOPs to 2 for older processors. */
1607 max_number_of_nops = 2;
76bc74dc
L
1608 }
1609 else
1610 {
3ae729d5
L
1611 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1612 /* Limit number of NOPs to 7 for newer processors. */
1613 max_number_of_nops = 7;
1614 }
1615 }
1616
1617 if (limit == 0)
1618 limit = max_single_nop_size;
1619
1620 if (fragP->fr_type == rs_fill_nop)
1621 {
1622 /* Output NOPs for .nop directive. */
1623 if (limit > max_single_nop_size)
1624 {
1625 as_bad_where (fragP->fr_file, fragP->fr_line,
1626 _("invalid single nop size: %d "
1627 "(expect within [0, %d])"),
1628 limit, max_single_nop_size);
1629 return;
1630 }
1631 }
e379e5f3 1632 else if (fragP->fr_type != rs_machine_dependent)
3ae729d5
L
1633 fragP->fr_var = count;
1634
1635 if ((count / max_single_nop_size) > max_number_of_nops)
1636 {
1637 /* Generate jump over NOPs. */
1638 offsetT disp = count - 2;
1639 if (fits_in_imm7 (disp))
1640 {
1641 /* Use "jmp disp8" if possible. */
1642 count = disp;
1643 where[0] = jump_disp8[0];
1644 where[1] = count;
1645 where += 2;
1646 }
1647 else
1648 {
1649 unsigned int size_of_jump;
1650
1651 if (flag_code == CODE_16BIT)
1652 {
1653 where[0] = jump16_disp32[0];
1654 where[1] = jump16_disp32[1];
1655 size_of_jump = 2;
1656 }
1657 else
1658 {
1659 where[0] = jump32_disp32[0];
1660 size_of_jump = 1;
1661 }
1662
1663 count -= size_of_jump + 4;
1664 if (!fits_in_imm31 (count))
1665 {
1666 as_bad_where (fragP->fr_file, fragP->fr_line,
1667 _("jump over nop padding out of range"));
1668 return;
1669 }
1670
1671 md_number_to_chars (where + size_of_jump, count, 4);
1672 where += size_of_jump + 4;
76bc74dc 1673 }
ccc9c027 1674 }
3ae729d5
L
1675
1676 /* Generate multiple NOPs. */
1677 i386_output_nops (where, patt, count, limit);
252b5132
RH
1678}
1679
c6fb90c8 1680static INLINE int
0dfbf9d7 1681operand_type_all_zero (const union i386_operand_type *x)
40fb9820 1682{
0dfbf9d7 1683 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1684 {
1685 case 3:
0dfbf9d7 1686 if (x->array[2])
c6fb90c8 1687 return 0;
1a0670f3 1688 /* Fall through. */
c6fb90c8 1689 case 2:
0dfbf9d7 1690 if (x->array[1])
c6fb90c8 1691 return 0;
1a0670f3 1692 /* Fall through. */
c6fb90c8 1693 case 1:
0dfbf9d7 1694 return !x->array[0];
c6fb90c8
L
1695 default:
1696 abort ();
1697 }
40fb9820
L
1698}
1699
c6fb90c8 1700static INLINE void
0dfbf9d7 1701operand_type_set (union i386_operand_type *x, unsigned int v)
40fb9820 1702{
0dfbf9d7 1703 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1704 {
1705 case 3:
0dfbf9d7 1706 x->array[2] = v;
1a0670f3 1707 /* Fall through. */
c6fb90c8 1708 case 2:
0dfbf9d7 1709 x->array[1] = v;
1a0670f3 1710 /* Fall through. */
c6fb90c8 1711 case 1:
0dfbf9d7 1712 x->array[0] = v;
1a0670f3 1713 /* Fall through. */
c6fb90c8
L
1714 break;
1715 default:
1716 abort ();
1717 }
bab6aec1
JB
1718
1719 x->bitfield.class = ClassNone;
75e5731b 1720 x->bitfield.instance = InstanceNone;
c6fb90c8 1721}
40fb9820 1722
c6fb90c8 1723static INLINE int
0dfbf9d7
L
1724operand_type_equal (const union i386_operand_type *x,
1725 const union i386_operand_type *y)
c6fb90c8 1726{
0dfbf9d7 1727 switch (ARRAY_SIZE(x->array))
c6fb90c8
L
1728 {
1729 case 3:
0dfbf9d7 1730 if (x->array[2] != y->array[2])
c6fb90c8 1731 return 0;
1a0670f3 1732 /* Fall through. */
c6fb90c8 1733 case 2:
0dfbf9d7 1734 if (x->array[1] != y->array[1])
c6fb90c8 1735 return 0;
1a0670f3 1736 /* Fall through. */
c6fb90c8 1737 case 1:
0dfbf9d7 1738 return x->array[0] == y->array[0];
c6fb90c8
L
1739 break;
1740 default:
1741 abort ();
1742 }
1743}
40fb9820 1744
0dfbf9d7
L
1745static INLINE int
1746cpu_flags_all_zero (const union i386_cpu_flags *x)
1747{
1748 switch (ARRAY_SIZE(x->array))
1749 {
53467f57
IT
1750 case 4:
1751 if (x->array[3])
1752 return 0;
1753 /* Fall through. */
0dfbf9d7
L
1754 case 3:
1755 if (x->array[2])
1756 return 0;
1a0670f3 1757 /* Fall through. */
0dfbf9d7
L
1758 case 2:
1759 if (x->array[1])
1760 return 0;
1a0670f3 1761 /* Fall through. */
0dfbf9d7
L
1762 case 1:
1763 return !x->array[0];
1764 default:
1765 abort ();
1766 }
1767}
1768
0dfbf9d7
L
1769static INLINE int
1770cpu_flags_equal (const union i386_cpu_flags *x,
1771 const union i386_cpu_flags *y)
1772{
1773 switch (ARRAY_SIZE(x->array))
1774 {
53467f57
IT
1775 case 4:
1776 if (x->array[3] != y->array[3])
1777 return 0;
1778 /* Fall through. */
0dfbf9d7
L
1779 case 3:
1780 if (x->array[2] != y->array[2])
1781 return 0;
1a0670f3 1782 /* Fall through. */
0dfbf9d7
L
1783 case 2:
1784 if (x->array[1] != y->array[1])
1785 return 0;
1a0670f3 1786 /* Fall through. */
0dfbf9d7
L
1787 case 1:
1788 return x->array[0] == y->array[0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793}
c6fb90c8
L
1794
1795static INLINE int
1796cpu_flags_check_cpu64 (i386_cpu_flags f)
1797{
1798 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1799 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
40fb9820
L
1800}
1801
c6fb90c8
L
1802static INLINE i386_cpu_flags
1803cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1804{
c6fb90c8
L
1805 switch (ARRAY_SIZE (x.array))
1806 {
53467f57
IT
1807 case 4:
1808 x.array [3] &= y.array [3];
1809 /* Fall through. */
c6fb90c8
L
1810 case 3:
1811 x.array [2] &= y.array [2];
1a0670f3 1812 /* Fall through. */
c6fb90c8
L
1813 case 2:
1814 x.array [1] &= y.array [1];
1a0670f3 1815 /* Fall through. */
c6fb90c8
L
1816 case 1:
1817 x.array [0] &= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823}
40fb9820 1824
c6fb90c8
L
1825static INLINE i386_cpu_flags
1826cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
40fb9820 1827{
c6fb90c8 1828 switch (ARRAY_SIZE (x.array))
40fb9820 1829 {
53467f57
IT
1830 case 4:
1831 x.array [3] |= y.array [3];
1832 /* Fall through. */
c6fb90c8
L
1833 case 3:
1834 x.array [2] |= y.array [2];
1a0670f3 1835 /* Fall through. */
c6fb90c8
L
1836 case 2:
1837 x.array [1] |= y.array [1];
1a0670f3 1838 /* Fall through. */
c6fb90c8
L
1839 case 1:
1840 x.array [0] |= y.array [0];
40fb9820
L
1841 break;
1842 default:
1843 abort ();
1844 }
40fb9820
L
1845 return x;
1846}
1847
309d3373
JB
1848static INLINE i386_cpu_flags
1849cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1850{
1851 switch (ARRAY_SIZE (x.array))
1852 {
53467f57
IT
1853 case 4:
1854 x.array [3] &= ~y.array [3];
1855 /* Fall through. */
309d3373
JB
1856 case 3:
1857 x.array [2] &= ~y.array [2];
1a0670f3 1858 /* Fall through. */
309d3373
JB
1859 case 2:
1860 x.array [1] &= ~y.array [1];
1a0670f3 1861 /* Fall through. */
309d3373
JB
1862 case 1:
1863 x.array [0] &= ~y.array [0];
1864 break;
1865 default:
1866 abort ();
1867 }
1868 return x;
1869}
1870
6c0946d0
JB
1871static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1872
c0f3af97
L
1873#define CPU_FLAGS_ARCH_MATCH 0x1
1874#define CPU_FLAGS_64BIT_MATCH 0x2
1875
c0f3af97 1876#define CPU_FLAGS_PERFECT_MATCH \
db12e14e 1877 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
c0f3af97
L
1878
1879/* Return CPU flags match bits. */
3629bb00 1880
40fb9820 1881static int
d3ce72d0 1882cpu_flags_match (const insn_template *t)
40fb9820 1883{
c0f3af97
L
1884 i386_cpu_flags x = t->cpu_flags;
1885 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
40fb9820
L
1886
1887 x.bitfield.cpu64 = 0;
1888 x.bitfield.cpuno64 = 0;
1889
0dfbf9d7 1890 if (cpu_flags_all_zero (&x))
c0f3af97
L
1891 {
1892 /* This instruction is available on all archs. */
db12e14e 1893 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1894 }
3629bb00
L
1895 else
1896 {
c0f3af97 1897 /* This instruction is available only on some archs. */
3629bb00
L
1898 i386_cpu_flags cpu = cpu_arch_flags;
1899
ab592e75
JB
1900 /* AVX512VL is no standalone feature - match it and then strip it. */
1901 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1902 return match;
1903 x.bitfield.cpuavx512vl = 0;
1904
3629bb00 1905 cpu = cpu_flags_and (x, cpu);
c0f3af97
L
1906 if (!cpu_flags_all_zero (&cpu))
1907 {
a5ff0eb2
L
1908 if (x.bitfield.cpuavx)
1909 {
929f69fa 1910 /* We need to check a few extra flags with AVX. */
b9d49817
JB
1911 if (cpu.bitfield.cpuavx
1912 && (!t->opcode_modifier.sse2avx || sse2avx)
1913 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
929f69fa 1914 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
b9d49817
JB
1915 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1916 match |= CPU_FLAGS_ARCH_MATCH;
a5ff0eb2 1917 }
929f69fa
JB
1918 else if (x.bitfield.cpuavx512f)
1919 {
1920 /* We need to check a few extra flags with AVX512F. */
1921 if (cpu.bitfield.cpuavx512f
1922 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1923 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1924 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1925 match |= CPU_FLAGS_ARCH_MATCH;
1926 }
a5ff0eb2 1927 else
db12e14e 1928 match |= CPU_FLAGS_ARCH_MATCH;
c0f3af97 1929 }
3629bb00 1930 }
c0f3af97 1931 return match;
40fb9820
L
1932}
1933
c6fb90c8
L
1934static INLINE i386_operand_type
1935operand_type_and (i386_operand_type x, i386_operand_type y)
40fb9820 1936{
bab6aec1
JB
1937 if (x.bitfield.class != y.bitfield.class)
1938 x.bitfield.class = ClassNone;
75e5731b
JB
1939 if (x.bitfield.instance != y.bitfield.instance)
1940 x.bitfield.instance = InstanceNone;
bab6aec1 1941
c6fb90c8
L
1942 switch (ARRAY_SIZE (x.array))
1943 {
1944 case 3:
1945 x.array [2] &= y.array [2];
1a0670f3 1946 /* Fall through. */
c6fb90c8
L
1947 case 2:
1948 x.array [1] &= y.array [1];
1a0670f3 1949 /* Fall through. */
c6fb90c8
L
1950 case 1:
1951 x.array [0] &= y.array [0];
1952 break;
1953 default:
1954 abort ();
1955 }
1956 return x;
40fb9820
L
1957}
1958
73053c1f
JB
1959static INLINE i386_operand_type
1960operand_type_and_not (i386_operand_type x, i386_operand_type y)
1961{
bab6aec1 1962 gas_assert (y.bitfield.class == ClassNone);
75e5731b 1963 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 1964
73053c1f
JB
1965 switch (ARRAY_SIZE (x.array))
1966 {
1967 case 3:
1968 x.array [2] &= ~y.array [2];
1969 /* Fall through. */
1970 case 2:
1971 x.array [1] &= ~y.array [1];
1972 /* Fall through. */
1973 case 1:
1974 x.array [0] &= ~y.array [0];
1975 break;
1976 default:
1977 abort ();
1978 }
1979 return x;
1980}
1981
c6fb90c8
L
1982static INLINE i386_operand_type
1983operand_type_or (i386_operand_type x, i386_operand_type y)
40fb9820 1984{
bab6aec1
JB
1985 gas_assert (x.bitfield.class == ClassNone ||
1986 y.bitfield.class == ClassNone ||
1987 x.bitfield.class == y.bitfield.class);
75e5731b
JB
1988 gas_assert (x.bitfield.instance == InstanceNone ||
1989 y.bitfield.instance == InstanceNone ||
1990 x.bitfield.instance == y.bitfield.instance);
bab6aec1 1991
c6fb90c8 1992 switch (ARRAY_SIZE (x.array))
40fb9820 1993 {
c6fb90c8
L
1994 case 3:
1995 x.array [2] |= y.array [2];
1a0670f3 1996 /* Fall through. */
c6fb90c8
L
1997 case 2:
1998 x.array [1] |= y.array [1];
1a0670f3 1999 /* Fall through. */
c6fb90c8
L
2000 case 1:
2001 x.array [0] |= y.array [0];
40fb9820
L
2002 break;
2003 default:
2004 abort ();
2005 }
c6fb90c8
L
2006 return x;
2007}
40fb9820 2008
c6fb90c8
L
2009static INLINE i386_operand_type
2010operand_type_xor (i386_operand_type x, i386_operand_type y)
2011{
bab6aec1 2012 gas_assert (y.bitfield.class == ClassNone);
75e5731b 2013 gas_assert (y.bitfield.instance == InstanceNone);
bab6aec1 2014
c6fb90c8
L
2015 switch (ARRAY_SIZE (x.array))
2016 {
2017 case 3:
2018 x.array [2] ^= y.array [2];
1a0670f3 2019 /* Fall through. */
c6fb90c8
L
2020 case 2:
2021 x.array [1] ^= y.array [1];
1a0670f3 2022 /* Fall through. */
c6fb90c8
L
2023 case 1:
2024 x.array [0] ^= y.array [0];
2025 break;
2026 default:
2027 abort ();
2028 }
40fb9820
L
2029 return x;
2030}
2031
40fb9820
L
2032static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2033static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2034static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2035static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
bab6aec1
JB
2036static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2037static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
40fb9820 2038static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
43234a1e 2039static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
40fb9820
L
2040static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2041static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2042static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2043static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2044static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2045static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2046static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2047static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2048static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2049
2050enum operand_type
2051{
2052 reg,
40fb9820
L
2053 imm,
2054 disp,
2055 anymem
2056};
2057
c6fb90c8 2058static INLINE int
40fb9820
L
2059operand_type_check (i386_operand_type t, enum operand_type c)
2060{
2061 switch (c)
2062 {
2063 case reg:
bab6aec1 2064 return t.bitfield.class == Reg;
40fb9820 2065
40fb9820
L
2066 case imm:
2067 return (t.bitfield.imm8
2068 || t.bitfield.imm8s
2069 || t.bitfield.imm16
2070 || t.bitfield.imm32
2071 || t.bitfield.imm32s
2072 || t.bitfield.imm64);
2073
2074 case disp:
2075 return (t.bitfield.disp8
2076 || t.bitfield.disp16
2077 || t.bitfield.disp32
2078 || t.bitfield.disp32s
2079 || t.bitfield.disp64);
2080
2081 case anymem:
2082 return (t.bitfield.disp8
2083 || t.bitfield.disp16
2084 || t.bitfield.disp32
2085 || t.bitfield.disp32s
2086 || t.bitfield.disp64
2087 || t.bitfield.baseindex);
2088
2089 default:
2090 abort ();
2091 }
2cfe26b6
AM
2092
2093 return 0;
40fb9820
L
2094}
2095
7a54636a
L
2096/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2097 between operand GIVEN and opeand WANTED for instruction template T. */
5c07affc
L
2098
2099static INLINE int
7a54636a
L
2100match_operand_size (const insn_template *t, unsigned int wanted,
2101 unsigned int given)
5c07affc 2102{
3ac21baa
JB
2103 return !((i.types[given].bitfield.byte
2104 && !t->operand_types[wanted].bitfield.byte)
2105 || (i.types[given].bitfield.word
2106 && !t->operand_types[wanted].bitfield.word)
2107 || (i.types[given].bitfield.dword
2108 && !t->operand_types[wanted].bitfield.dword)
2109 || (i.types[given].bitfield.qword
2110 && !t->operand_types[wanted].bitfield.qword)
2111 || (i.types[given].bitfield.tbyte
2112 && !t->operand_types[wanted].bitfield.tbyte));
5c07affc
L
2113}
2114
dd40ce22
L
2115/* Return 1 if there is no conflict in SIMD register between operand
2116 GIVEN and opeand WANTED for instruction template T. */
1b54b8d7
JB
2117
2118static INLINE int
dd40ce22
L
2119match_simd_size (const insn_template *t, unsigned int wanted,
2120 unsigned int given)
1b54b8d7 2121{
3ac21baa
JB
2122 return !((i.types[given].bitfield.xmmword
2123 && !t->operand_types[wanted].bitfield.xmmword)
2124 || (i.types[given].bitfield.ymmword
2125 && !t->operand_types[wanted].bitfield.ymmword)
2126 || (i.types[given].bitfield.zmmword
2127 && !t->operand_types[wanted].bitfield.zmmword));
1b54b8d7
JB
2128}
2129
7a54636a
L
2130/* Return 1 if there is no conflict in any size between operand GIVEN
2131 and opeand WANTED for instruction template T. */
5c07affc
L
2132
2133static INLINE int
dd40ce22
L
2134match_mem_size (const insn_template *t, unsigned int wanted,
2135 unsigned int given)
5c07affc 2136{
7a54636a 2137 return (match_operand_size (t, wanted, given)
3ac21baa 2138 && !((i.types[given].bitfield.unspecified
af508cb9 2139 && !i.broadcast
3ac21baa
JB
2140 && !t->operand_types[wanted].bitfield.unspecified)
2141 || (i.types[given].bitfield.fword
2142 && !t->operand_types[wanted].bitfield.fword)
1b54b8d7
JB
2143 /* For scalar opcode templates to allow register and memory
2144 operands at the same time, some special casing is needed
d6793fa1
JB
2145 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2146 down-conversion vpmov*. */
3528c362 2147 || ((t->operand_types[wanted].bitfield.class == RegSIMD
1b54b8d7 2148 && !t->opcode_modifier.broadcast
3ac21baa
JB
2149 && (t->operand_types[wanted].bitfield.byte
2150 || t->operand_types[wanted].bitfield.word
2151 || t->operand_types[wanted].bitfield.dword
2152 || t->operand_types[wanted].bitfield.qword))
2153 ? (i.types[given].bitfield.xmmword
2154 || i.types[given].bitfield.ymmword
2155 || i.types[given].bitfield.zmmword)
2156 : !match_simd_size(t, wanted, given))));
5c07affc
L
2157}
2158
3ac21baa
JB
2159/* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2160 operands for instruction template T, and it has MATCH_REVERSE set if there
2161 is no size conflict on any operands for the template with operands reversed
2162 (and the template allows for reversing in the first place). */
5c07affc 2163
3ac21baa
JB
2164#define MATCH_STRAIGHT 1
2165#define MATCH_REVERSE 2
2166
2167static INLINE unsigned int
d3ce72d0 2168operand_size_match (const insn_template *t)
5c07affc 2169{
3ac21baa 2170 unsigned int j, match = MATCH_STRAIGHT;
5c07affc 2171
0cfa3eb3 2172 /* Don't check non-absolute jump instructions. */
5c07affc 2173 if (t->opcode_modifier.jump
0cfa3eb3 2174 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5c07affc
L
2175 return match;
2176
2177 /* Check memory and accumulator operand size. */
2178 for (j = 0; j < i.operands; j++)
2179 {
3528c362
JB
2180 if (i.types[j].bitfield.class != Reg
2181 && i.types[j].bitfield.class != RegSIMD
601e8564 2182 && t->opcode_modifier.anysize)
5c07affc
L
2183 continue;
2184
bab6aec1 2185 if (t->operand_types[j].bitfield.class == Reg
7a54636a 2186 && !match_operand_size (t, j, j))
5c07affc
L
2187 {
2188 match = 0;
2189 break;
2190 }
2191
3528c362 2192 if (t->operand_types[j].bitfield.class == RegSIMD
3ac21baa 2193 && !match_simd_size (t, j, j))
1b54b8d7
JB
2194 {
2195 match = 0;
2196 break;
2197 }
2198
75e5731b 2199 if (t->operand_types[j].bitfield.instance == Accum
7a54636a 2200 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
1b54b8d7
JB
2201 {
2202 match = 0;
2203 break;
2204 }
2205
c48dadc9 2206 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
5c07affc
L
2207 {
2208 match = 0;
2209 break;
2210 }
2211 }
2212
3ac21baa 2213 if (!t->opcode_modifier.d)
891edac4 2214 {
dc1e8a47 2215 mismatch:
3ac21baa
JB
2216 if (!match)
2217 i.error = operand_size_mismatch;
2218 return match;
891edac4 2219 }
5c07affc
L
2220
2221 /* Check reverse. */
f5eb1d70 2222 gas_assert (i.operands >= 2 && i.operands <= 3);
5c07affc 2223
f5eb1d70 2224 for (j = 0; j < i.operands; j++)
5c07affc 2225 {
f5eb1d70
JB
2226 unsigned int given = i.operands - j - 1;
2227
bab6aec1 2228 if (t->operand_types[j].bitfield.class == Reg
f5eb1d70 2229 && !match_operand_size (t, j, given))
891edac4 2230 goto mismatch;
5c07affc 2231
3528c362 2232 if (t->operand_types[j].bitfield.class == RegSIMD
f5eb1d70 2233 && !match_simd_size (t, j, given))
dbbc8b7e
JB
2234 goto mismatch;
2235
75e5731b 2236 if (t->operand_types[j].bitfield.instance == Accum
f5eb1d70
JB
2237 && (!match_operand_size (t, j, given)
2238 || !match_simd_size (t, j, given)))
dbbc8b7e
JB
2239 goto mismatch;
2240
f5eb1d70 2241 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
891edac4 2242 goto mismatch;
5c07affc
L
2243 }
2244
3ac21baa 2245 return match | MATCH_REVERSE;
5c07affc
L
2246}
2247
c6fb90c8 2248static INLINE int
40fb9820
L
2249operand_type_match (i386_operand_type overlap,
2250 i386_operand_type given)
2251{
2252 i386_operand_type temp = overlap;
2253
7d5e4556 2254 temp.bitfield.unspecified = 0;
5c07affc
L
2255 temp.bitfield.byte = 0;
2256 temp.bitfield.word = 0;
2257 temp.bitfield.dword = 0;
2258 temp.bitfield.fword = 0;
2259 temp.bitfield.qword = 0;
2260 temp.bitfield.tbyte = 0;
2261 temp.bitfield.xmmword = 0;
c0f3af97 2262 temp.bitfield.ymmword = 0;
43234a1e 2263 temp.bitfield.zmmword = 0;
0dfbf9d7 2264 if (operand_type_all_zero (&temp))
891edac4 2265 goto mismatch;
40fb9820 2266
6f2f06be 2267 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
891edac4
L
2268 return 1;
2269
dc1e8a47 2270 mismatch:
a65babc9 2271 i.error = operand_type_mismatch;
891edac4 2272 return 0;
40fb9820
L
2273}
2274
7d5e4556 2275/* If given types g0 and g1 are registers they must be of the same type
10c17abd 2276 unless the expected operand type register overlap is null.
5de4d9ef 2277 Some Intel syntax memory operand size checking also happens here. */
40fb9820 2278
c6fb90c8 2279static INLINE int
dc821c5f 2280operand_type_register_match (i386_operand_type g0,
40fb9820 2281 i386_operand_type t0,
40fb9820
L
2282 i386_operand_type g1,
2283 i386_operand_type t1)
2284{
bab6aec1 2285 if (g0.bitfield.class != Reg
3528c362 2286 && g0.bitfield.class != RegSIMD
10c17abd
JB
2287 && (!operand_type_check (g0, anymem)
2288 || g0.bitfield.unspecified
5de4d9ef
JB
2289 || (t0.bitfield.class != Reg
2290 && t0.bitfield.class != RegSIMD)))
40fb9820
L
2291 return 1;
2292
bab6aec1 2293 if (g1.bitfield.class != Reg
3528c362 2294 && g1.bitfield.class != RegSIMD
10c17abd
JB
2295 && (!operand_type_check (g1, anymem)
2296 || g1.bitfield.unspecified
5de4d9ef
JB
2297 || (t1.bitfield.class != Reg
2298 && t1.bitfield.class != RegSIMD)))
40fb9820
L
2299 return 1;
2300
dc821c5f
JB
2301 if (g0.bitfield.byte == g1.bitfield.byte
2302 && g0.bitfield.word == g1.bitfield.word
2303 && g0.bitfield.dword == g1.bitfield.dword
10c17abd
JB
2304 && g0.bitfield.qword == g1.bitfield.qword
2305 && g0.bitfield.xmmword == g1.bitfield.xmmword
2306 && g0.bitfield.ymmword == g1.bitfield.ymmword
2307 && g0.bitfield.zmmword == g1.bitfield.zmmword)
40fb9820
L
2308 return 1;
2309
dc821c5f
JB
2310 if (!(t0.bitfield.byte & t1.bitfield.byte)
2311 && !(t0.bitfield.word & t1.bitfield.word)
2312 && !(t0.bitfield.dword & t1.bitfield.dword)
10c17abd
JB
2313 && !(t0.bitfield.qword & t1.bitfield.qword)
2314 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2315 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2316 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
891edac4
L
2317 return 1;
2318
a65babc9 2319 i.error = register_type_mismatch;
891edac4
L
2320
2321 return 0;
40fb9820
L
2322}
2323
4c692bc7
JB
2324static INLINE unsigned int
2325register_number (const reg_entry *r)
2326{
2327 unsigned int nr = r->reg_num;
2328
2329 if (r->reg_flags & RegRex)
2330 nr += 8;
2331
200cbe0f
L
2332 if (r->reg_flags & RegVRex)
2333 nr += 16;
2334
4c692bc7
JB
2335 return nr;
2336}
2337
252b5132 2338static INLINE unsigned int
40fb9820 2339mode_from_disp_size (i386_operand_type t)
252b5132 2340{
b5014f7a 2341 if (t.bitfield.disp8)
40fb9820
L
2342 return 1;
2343 else if (t.bitfield.disp16
2344 || t.bitfield.disp32
2345 || t.bitfield.disp32s)
2346 return 2;
2347 else
2348 return 0;
252b5132
RH
2349}
2350
2351static INLINE int
65879393 2352fits_in_signed_byte (addressT num)
252b5132 2353{
65879393 2354 return num + 0x80 <= 0xff;
47926f60 2355}
252b5132
RH
2356
2357static INLINE int
65879393 2358fits_in_unsigned_byte (addressT num)
252b5132 2359{
65879393 2360 return num <= 0xff;
47926f60 2361}
252b5132
RH
2362
2363static INLINE int
65879393 2364fits_in_unsigned_word (addressT num)
252b5132 2365{
65879393 2366 return num <= 0xffff;
47926f60 2367}
252b5132
RH
2368
2369static INLINE int
65879393 2370fits_in_signed_word (addressT num)
252b5132 2371{
65879393 2372 return num + 0x8000 <= 0xffff;
47926f60 2373}
2a962e6d 2374
3e73aa7c 2375static INLINE int
65879393 2376fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2377{
2378#ifndef BFD64
2379 return 1;
2380#else
65879393 2381 return num + 0x80000000 <= 0xffffffff;
3e73aa7c
JH
2382#endif
2383} /* fits_in_signed_long() */
2a962e6d 2384
3e73aa7c 2385static INLINE int
65879393 2386fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
3e73aa7c
JH
2387{
2388#ifndef BFD64
2389 return 1;
2390#else
65879393 2391 return num <= 0xffffffff;
3e73aa7c
JH
2392#endif
2393} /* fits_in_unsigned_long() */
252b5132 2394
43234a1e 2395static INLINE int
b5014f7a 2396fits_in_disp8 (offsetT num)
43234a1e
L
2397{
2398 int shift = i.memshift;
2399 unsigned int mask;
2400
2401 if (shift == -1)
2402 abort ();
2403
2404 mask = (1 << shift) - 1;
2405
2406 /* Return 0 if NUM isn't properly aligned. */
2407 if ((num & mask))
2408 return 0;
2409
2410 /* Check if NUM will fit in 8bit after shift. */
2411 return fits_in_signed_byte (num >> shift);
2412}
2413
a683cc34
SP
2414static INLINE int
2415fits_in_imm4 (offsetT num)
2416{
2417 return (num & 0xf) == num;
2418}
2419
40fb9820 2420static i386_operand_type
e3bb37b5 2421smallest_imm_type (offsetT num)
252b5132 2422{
40fb9820 2423 i386_operand_type t;
7ab9ffdd 2424
0dfbf9d7 2425 operand_type_set (&t, 0);
40fb9820
L
2426 t.bitfield.imm64 = 1;
2427
2428 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
e413e4e9
AM
2429 {
2430 /* This code is disabled on the 486 because all the Imm1 forms
2431 in the opcode table are slower on the i486. They're the
2432 versions with the implicitly specified single-position
2433 displacement, which has another syntax if you really want to
2434 use that form. */
40fb9820
L
2435 t.bitfield.imm1 = 1;
2436 t.bitfield.imm8 = 1;
2437 t.bitfield.imm8s = 1;
2438 t.bitfield.imm16 = 1;
2439 t.bitfield.imm32 = 1;
2440 t.bitfield.imm32s = 1;
2441 }
2442 else if (fits_in_signed_byte (num))
2443 {
2444 t.bitfield.imm8 = 1;
2445 t.bitfield.imm8s = 1;
2446 t.bitfield.imm16 = 1;
2447 t.bitfield.imm32 = 1;
2448 t.bitfield.imm32s = 1;
2449 }
2450 else if (fits_in_unsigned_byte (num))
2451 {
2452 t.bitfield.imm8 = 1;
2453 t.bitfield.imm16 = 1;
2454 t.bitfield.imm32 = 1;
2455 t.bitfield.imm32s = 1;
2456 }
2457 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2458 {
2459 t.bitfield.imm16 = 1;
2460 t.bitfield.imm32 = 1;
2461 t.bitfield.imm32s = 1;
2462 }
2463 else if (fits_in_signed_long (num))
2464 {
2465 t.bitfield.imm32 = 1;
2466 t.bitfield.imm32s = 1;
2467 }
2468 else if (fits_in_unsigned_long (num))
2469 t.bitfield.imm32 = 1;
2470
2471 return t;
47926f60 2472}
252b5132 2473
847f7ad4 2474static offsetT
e3bb37b5 2475offset_in_range (offsetT val, int size)
847f7ad4 2476{
508866be 2477 addressT mask;
ba2adb93 2478
847f7ad4
AM
2479 switch (size)
2480 {
508866be
L
2481 case 1: mask = ((addressT) 1 << 8) - 1; break;
2482 case 2: mask = ((addressT) 1 << 16) - 1; break;
3b0ec529 2483 case 4: mask = ((addressT) 2 << 31) - 1; break;
3e73aa7c
JH
2484#ifdef BFD64
2485 case 8: mask = ((addressT) 2 << 63) - 1; break;
2486#endif
47926f60 2487 default: abort ();
847f7ad4
AM
2488 }
2489
9de868bf
L
2490#ifdef BFD64
2491 /* If BFD64, sign extend val for 32bit address mode. */
2492 if (flag_code != CODE_64BIT
2493 || i.prefix[ADDR_PREFIX])
3e73aa7c
JH
2494 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2495 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
fa289fb8 2496#endif
ba2adb93 2497
47926f60 2498 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
847f7ad4
AM
2499 {
2500 char buf1[40], buf2[40];
2501
2502 sprint_value (buf1, val);
2503 sprint_value (buf2, val & mask);
2504 as_warn (_("%s shortened to %s"), buf1, buf2);
2505 }
2506 return val & mask;
2507}
2508
c32fa91d
L
2509enum PREFIX_GROUP
2510{
2511 PREFIX_EXIST = 0,
2512 PREFIX_LOCK,
2513 PREFIX_REP,
04ef582a 2514 PREFIX_DS,
c32fa91d
L
2515 PREFIX_OTHER
2516};
2517
2518/* Returns
2519 a. PREFIX_EXIST if attempting to add a prefix where one from the
2520 same class already exists.
2521 b. PREFIX_LOCK if lock prefix is added.
2522 c. PREFIX_REP if rep/repne prefix is added.
04ef582a
L
2523 d. PREFIX_DS if ds prefix is added.
2524 e. PREFIX_OTHER if other prefix is added.
c32fa91d
L
2525 */
2526
2527static enum PREFIX_GROUP
e3bb37b5 2528add_prefix (unsigned int prefix)
252b5132 2529{
c32fa91d 2530 enum PREFIX_GROUP ret = PREFIX_OTHER;
b1905489 2531 unsigned int q;
252b5132 2532
29b0f896
AM
2533 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2534 && flag_code == CODE_64BIT)
b1905489 2535 {
161a04f6 2536 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
44846f29
JB
2537 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2538 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2539 || (i.prefix[REX_PREFIX] & prefix & REX_B))
c32fa91d 2540 ret = PREFIX_EXIST;
b1905489
JB
2541 q = REX_PREFIX;
2542 }
3e73aa7c 2543 else
b1905489
JB
2544 {
2545 switch (prefix)
2546 {
2547 default:
2548 abort ();
2549
b1905489 2550 case DS_PREFIX_OPCODE:
04ef582a
L
2551 ret = PREFIX_DS;
2552 /* Fall through. */
2553 case CS_PREFIX_OPCODE:
b1905489
JB
2554 case ES_PREFIX_OPCODE:
2555 case FS_PREFIX_OPCODE:
2556 case GS_PREFIX_OPCODE:
2557 case SS_PREFIX_OPCODE:
2558 q = SEG_PREFIX;
2559 break;
2560
2561 case REPNE_PREFIX_OPCODE:
2562 case REPE_PREFIX_OPCODE:
c32fa91d
L
2563 q = REP_PREFIX;
2564 ret = PREFIX_REP;
2565 break;
2566
b1905489 2567 case LOCK_PREFIX_OPCODE:
c32fa91d
L
2568 q = LOCK_PREFIX;
2569 ret = PREFIX_LOCK;
b1905489
JB
2570 break;
2571
2572 case FWAIT_OPCODE:
2573 q = WAIT_PREFIX;
2574 break;
2575
2576 case ADDR_PREFIX_OPCODE:
2577 q = ADDR_PREFIX;
2578 break;
2579
2580 case DATA_PREFIX_OPCODE:
2581 q = DATA_PREFIX;
2582 break;
2583 }
2584 if (i.prefix[q] != 0)
c32fa91d 2585 ret = PREFIX_EXIST;
b1905489 2586 }
252b5132 2587
b1905489 2588 if (ret)
252b5132 2589 {
b1905489
JB
2590 if (!i.prefix[q])
2591 ++i.prefixes;
2592 i.prefix[q] |= prefix;
252b5132 2593 }
b1905489
JB
2594 else
2595 as_bad (_("same type of prefix used twice"));
252b5132 2596
252b5132
RH
2597 return ret;
2598}
2599
2600static void
78f12dd3 2601update_code_flag (int value, int check)
eecb386c 2602{
78f12dd3
L
2603 PRINTF_LIKE ((*as_error));
2604
1e9cc1c2 2605 flag_code = (enum flag_code) value;
40fb9820
L
2606 if (flag_code == CODE_64BIT)
2607 {
2608 cpu_arch_flags.bitfield.cpu64 = 1;
2609 cpu_arch_flags.bitfield.cpuno64 = 0;
40fb9820
L
2610 }
2611 else
2612 {
2613 cpu_arch_flags.bitfield.cpu64 = 0;
2614 cpu_arch_flags.bitfield.cpuno64 = 1;
40fb9820
L
2615 }
2616 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
3e73aa7c 2617 {
78f12dd3
L
2618 if (check)
2619 as_error = as_fatal;
2620 else
2621 as_error = as_bad;
2622 (*as_error) (_("64bit mode not supported on `%s'."),
2623 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2624 }
40fb9820 2625 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
3e73aa7c 2626 {
78f12dd3
L
2627 if (check)
2628 as_error = as_fatal;
2629 else
2630 as_error = as_bad;
2631 (*as_error) (_("32bit mode not supported on `%s'."),
2632 cpu_arch_name ? cpu_arch_name : default_arch);
3e73aa7c 2633 }
eecb386c
AM
2634 stackop_size = '\0';
2635}
2636
78f12dd3
L
2637static void
2638set_code_flag (int value)
2639{
2640 update_code_flag (value, 0);
2641}
2642
eecb386c 2643static void
e3bb37b5 2644set_16bit_gcc_code_flag (int new_code_flag)
252b5132 2645{
1e9cc1c2 2646 flag_code = (enum flag_code) new_code_flag;
40fb9820
L
2647 if (flag_code != CODE_16BIT)
2648 abort ();
2649 cpu_arch_flags.bitfield.cpu64 = 0;
2650 cpu_arch_flags.bitfield.cpuno64 = 1;
9306ca4a 2651 stackop_size = LONG_MNEM_SUFFIX;
252b5132
RH
2652}
2653
2654static void
e3bb37b5 2655set_intel_syntax (int syntax_flag)
252b5132
RH
2656{
2657 /* Find out if register prefixing is specified. */
2658 int ask_naked_reg = 0;
2659
2660 SKIP_WHITESPACE ();
29b0f896 2661 if (!is_end_of_line[(unsigned char) *input_line_pointer])
252b5132 2662 {
d02603dc
NC
2663 char *string;
2664 int e = get_symbol_name (&string);
252b5132 2665
47926f60 2666 if (strcmp (string, "prefix") == 0)
252b5132 2667 ask_naked_reg = 1;
47926f60 2668 else if (strcmp (string, "noprefix") == 0)
252b5132
RH
2669 ask_naked_reg = -1;
2670 else
d0b47220 2671 as_bad (_("bad argument to syntax directive."));
d02603dc 2672 (void) restore_line_pointer (e);
252b5132
RH
2673 }
2674 demand_empty_rest_of_line ();
c3332e24 2675
252b5132
RH
2676 intel_syntax = syntax_flag;
2677
2678 if (ask_naked_reg == 0)
f86103b7
AM
2679 allow_naked_reg = (intel_syntax
2680 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
252b5132
RH
2681 else
2682 allow_naked_reg = (ask_naked_reg < 0);
9306ca4a 2683
ee86248c 2684 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
7ab9ffdd 2685
e4a3b5a4 2686 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
9306ca4a 2687 identifier_chars['$'] = intel_syntax ? '$' : 0;
e4a3b5a4 2688 register_prefix = allow_naked_reg ? "" : "%";
252b5132
RH
2689}
2690
1efbbeb4
L
2691static void
2692set_intel_mnemonic (int mnemonic_flag)
2693{
e1d4d893 2694 intel_mnemonic = mnemonic_flag;
1efbbeb4
L
2695}
2696
db51cc60
L
2697static void
2698set_allow_index_reg (int flag)
2699{
2700 allow_index_reg = flag;
2701}
2702
cb19c032 2703static void
7bab8ab5 2704set_check (int what)
cb19c032 2705{
7bab8ab5
JB
2706 enum check_kind *kind;
2707 const char *str;
2708
2709 if (what)
2710 {
2711 kind = &operand_check;
2712 str = "operand";
2713 }
2714 else
2715 {
2716 kind = &sse_check;
2717 str = "sse";
2718 }
2719
cb19c032
L
2720 SKIP_WHITESPACE ();
2721
2722 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2723 {
d02603dc
NC
2724 char *string;
2725 int e = get_symbol_name (&string);
cb19c032
L
2726
2727 if (strcmp (string, "none") == 0)
7bab8ab5 2728 *kind = check_none;
cb19c032 2729 else if (strcmp (string, "warning") == 0)
7bab8ab5 2730 *kind = check_warning;
cb19c032 2731 else if (strcmp (string, "error") == 0)
7bab8ab5 2732 *kind = check_error;
cb19c032 2733 else
7bab8ab5 2734 as_bad (_("bad argument to %s_check directive."), str);
d02603dc 2735 (void) restore_line_pointer (e);
cb19c032
L
2736 }
2737 else
7bab8ab5 2738 as_bad (_("missing argument for %s_check directive"), str);
cb19c032
L
2739
2740 demand_empty_rest_of_line ();
2741}
2742
8a9036a4
L
2743static void
2744check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
1e9cc1c2 2745 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
8a9036a4
L
2746{
2747#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2748 static const char *arch;
2749
2750 /* Intel LIOM is only supported on ELF. */
2751 if (!IS_ELF)
2752 return;
2753
2754 if (!arch)
2755 {
2756 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2757 use default_arch. */
2758 arch = cpu_arch_name;
2759 if (!arch)
2760 arch = default_arch;
2761 }
2762
81486035
L
2763 /* If we are targeting Intel MCU, we must enable it. */
2764 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2765 || new_flag.bitfield.cpuiamcu)
2766 return;
2767
3632d14b 2768 /* If we are targeting Intel L1OM, we must enable it. */
8a9036a4 2769 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
1e9cc1c2 2770 || new_flag.bitfield.cpul1om)
8a9036a4 2771 return;
76ba9986 2772
7a9068fe
L
2773 /* If we are targeting Intel K1OM, we must enable it. */
2774 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2775 || new_flag.bitfield.cpuk1om)
2776 return;
2777
8a9036a4
L
2778 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2779#endif
2780}
2781
e413e4e9 2782static void
e3bb37b5 2783set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
e413e4e9 2784{
47926f60 2785 SKIP_WHITESPACE ();
e413e4e9 2786
29b0f896 2787 if (!is_end_of_line[(unsigned char) *input_line_pointer])
e413e4e9 2788 {
d02603dc
NC
2789 char *string;
2790 int e = get_symbol_name (&string);
91d6fa6a 2791 unsigned int j;
40fb9820 2792 i386_cpu_flags flags;
e413e4e9 2793
91d6fa6a 2794 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
e413e4e9 2795 {
91d6fa6a 2796 if (strcmp (string, cpu_arch[j].name) == 0)
e413e4e9 2797 {
91d6fa6a 2798 check_cpu_arch_compatible (string, cpu_arch[j].flags);
8a9036a4 2799
5c6af06e
JB
2800 if (*string != '.')
2801 {
91d6fa6a 2802 cpu_arch_name = cpu_arch[j].name;
5c6af06e 2803 cpu_sub_arch_name = NULL;
91d6fa6a 2804 cpu_arch_flags = cpu_arch[j].flags;
40fb9820
L
2805 if (flag_code == CODE_64BIT)
2806 {
2807 cpu_arch_flags.bitfield.cpu64 = 1;
2808 cpu_arch_flags.bitfield.cpuno64 = 0;
2809 }
2810 else
2811 {
2812 cpu_arch_flags.bitfield.cpu64 = 0;
2813 cpu_arch_flags.bitfield.cpuno64 = 1;
2814 }
91d6fa6a
NC
2815 cpu_arch_isa = cpu_arch[j].type;
2816 cpu_arch_isa_flags = cpu_arch[j].flags;
ccc9c027
L
2817 if (!cpu_arch_tune_set)
2818 {
2819 cpu_arch_tune = cpu_arch_isa;
2820 cpu_arch_tune_flags = cpu_arch_isa_flags;
2821 }
5c6af06e
JB
2822 break;
2823 }
40fb9820 2824
293f5f65
L
2825 flags = cpu_flags_or (cpu_arch_flags,
2826 cpu_arch[j].flags);
81486035 2827
5b64d091 2828 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
5c6af06e 2829 {
6305a203
L
2830 if (cpu_sub_arch_name)
2831 {
2832 char *name = cpu_sub_arch_name;
2833 cpu_sub_arch_name = concat (name,
91d6fa6a 2834 cpu_arch[j].name,
1bf57e9f 2835 (const char *) NULL);
6305a203
L
2836 free (name);
2837 }
2838 else
91d6fa6a 2839 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
40fb9820 2840 cpu_arch_flags = flags;
a586129e 2841 cpu_arch_isa_flags = flags;
5c6af06e 2842 }
0089dace
L
2843 else
2844 cpu_arch_isa_flags
2845 = cpu_flags_or (cpu_arch_isa_flags,
2846 cpu_arch[j].flags);
d02603dc 2847 (void) restore_line_pointer (e);
5c6af06e
JB
2848 demand_empty_rest_of_line ();
2849 return;
e413e4e9
AM
2850 }
2851 }
293f5f65
L
2852
2853 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2854 {
33eaf5de 2855 /* Disable an ISA extension. */
293f5f65
L
2856 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2857 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2858 {
2859 flags = cpu_flags_and_not (cpu_arch_flags,
2860 cpu_noarch[j].flags);
2861 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2862 {
2863 if (cpu_sub_arch_name)
2864 {
2865 char *name = cpu_sub_arch_name;
2866 cpu_sub_arch_name = concat (name, string,
2867 (const char *) NULL);
2868 free (name);
2869 }
2870 else
2871 cpu_sub_arch_name = xstrdup (string);
2872 cpu_arch_flags = flags;
2873 cpu_arch_isa_flags = flags;
2874 }
2875 (void) restore_line_pointer (e);
2876 demand_empty_rest_of_line ();
2877 return;
2878 }
2879
2880 j = ARRAY_SIZE (cpu_arch);
2881 }
2882
91d6fa6a 2883 if (j >= ARRAY_SIZE (cpu_arch))
e413e4e9
AM
2884 as_bad (_("no such architecture: `%s'"), string);
2885
2886 *input_line_pointer = e;
2887 }
2888 else
2889 as_bad (_("missing cpu architecture"));
2890
fddf5b5b
AM
2891 no_cond_jump_promotion = 0;
2892 if (*input_line_pointer == ','
29b0f896 2893 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
fddf5b5b 2894 {
d02603dc
NC
2895 char *string;
2896 char e;
2897
2898 ++input_line_pointer;
2899 e = get_symbol_name (&string);
fddf5b5b
AM
2900
2901 if (strcmp (string, "nojumps") == 0)
2902 no_cond_jump_promotion = 1;
2903 else if (strcmp (string, "jumps") == 0)
2904 ;
2905 else
2906 as_bad (_("no such architecture modifier: `%s'"), string);
2907
d02603dc 2908 (void) restore_line_pointer (e);
fddf5b5b
AM
2909 }
2910
e413e4e9
AM
2911 demand_empty_rest_of_line ();
2912}
2913
8a9036a4
L
2914enum bfd_architecture
2915i386_arch (void)
2916{
3632d14b 2917 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4
L
2918 {
2919 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2920 || flag_code != CODE_64BIT)
2921 as_fatal (_("Intel L1OM is 64bit ELF only"));
2922 return bfd_arch_l1om;
2923 }
7a9068fe
L
2924 else if (cpu_arch_isa == PROCESSOR_K1OM)
2925 {
2926 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2927 || flag_code != CODE_64BIT)
2928 as_fatal (_("Intel K1OM is 64bit ELF only"));
2929 return bfd_arch_k1om;
2930 }
81486035
L
2931 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2932 {
2933 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2934 || flag_code == CODE_64BIT)
2935 as_fatal (_("Intel MCU is 32bit ELF only"));
2936 return bfd_arch_iamcu;
2937 }
8a9036a4
L
2938 else
2939 return bfd_arch_i386;
2940}
2941
b9d79e03 2942unsigned long
7016a5d5 2943i386_mach (void)
b9d79e03 2944{
351f65ca 2945 if (!strncmp (default_arch, "x86_64", 6))
8a9036a4 2946 {
3632d14b 2947 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 2948 {
351f65ca
L
2949 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2950 || default_arch[6] != '\0')
8a9036a4
L
2951 as_fatal (_("Intel L1OM is 64bit ELF only"));
2952 return bfd_mach_l1om;
2953 }
7a9068fe
L
2954 else if (cpu_arch_isa == PROCESSOR_K1OM)
2955 {
2956 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2957 || default_arch[6] != '\0')
2958 as_fatal (_("Intel K1OM is 64bit ELF only"));
2959 return bfd_mach_k1om;
2960 }
351f65ca 2961 else if (default_arch[6] == '\0')
8a9036a4 2962 return bfd_mach_x86_64;
351f65ca
L
2963 else
2964 return bfd_mach_x64_32;
8a9036a4 2965 }
5197d474
L
2966 else if (!strcmp (default_arch, "i386")
2967 || !strcmp (default_arch, "iamcu"))
81486035
L
2968 {
2969 if (cpu_arch_isa == PROCESSOR_IAMCU)
2970 {
2971 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2972 as_fatal (_("Intel MCU is 32bit ELF only"));
2973 return bfd_mach_i386_iamcu;
2974 }
2975 else
2976 return bfd_mach_i386_i386;
2977 }
b9d79e03 2978 else
2b5d6a91 2979 as_fatal (_("unknown architecture"));
b9d79e03 2980}
b9d79e03 2981\f
252b5132 2982void
7016a5d5 2983md_begin (void)
252b5132
RH
2984{
2985 const char *hash_err;
2986
86fa6981
L
2987 /* Support pseudo prefixes like {disp32}. */
2988 lex_type ['{'] = LEX_BEGIN_NAME;
2989
47926f60 2990 /* Initialize op_hash hash table. */
252b5132
RH
2991 op_hash = hash_new ();
2992
2993 {
d3ce72d0 2994 const insn_template *optab;
29b0f896 2995 templates *core_optab;
252b5132 2996
47926f60
KH
2997 /* Setup for loop. */
2998 optab = i386_optab;
add39d23 2999 core_optab = XNEW (templates);
252b5132
RH
3000 core_optab->start = optab;
3001
3002 while (1)
3003 {
3004 ++optab;
3005 if (optab->name == NULL
3006 || strcmp (optab->name, (optab - 1)->name) != 0)
3007 {
3008 /* different name --> ship out current template list;
47926f60 3009 add to hash table; & begin anew. */
252b5132
RH
3010 core_optab->end = optab;
3011 hash_err = hash_insert (op_hash,
3012 (optab - 1)->name,
5a49b8ac 3013 (void *) core_optab);
252b5132
RH
3014 if (hash_err)
3015 {
b37df7c4 3016 as_fatal (_("can't hash %s: %s"),
252b5132
RH
3017 (optab - 1)->name,
3018 hash_err);
3019 }
3020 if (optab->name == NULL)
3021 break;
add39d23 3022 core_optab = XNEW (templates);
252b5132
RH
3023 core_optab->start = optab;
3024 }
3025 }
3026 }
3027
47926f60 3028 /* Initialize reg_hash hash table. */
252b5132
RH
3029 reg_hash = hash_new ();
3030 {
29b0f896 3031 const reg_entry *regtab;
c3fe08fa 3032 unsigned int regtab_size = i386_regtab_size;
252b5132 3033
c3fe08fa 3034 for (regtab = i386_regtab; regtab_size--; regtab++)
252b5132 3035 {
5a49b8ac 3036 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
252b5132 3037 if (hash_err)
b37df7c4 3038 as_fatal (_("can't hash %s: %s"),
3e73aa7c
JH
3039 regtab->reg_name,
3040 hash_err);
252b5132
RH
3041 }
3042 }
3043
47926f60 3044 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
252b5132 3045 {
29b0f896
AM
3046 int c;
3047 char *p;
252b5132
RH
3048
3049 for (c = 0; c < 256; c++)
3050 {
3882b010 3051 if (ISDIGIT (c))
252b5132
RH
3052 {
3053 digit_chars[c] = c;
3054 mnemonic_chars[c] = c;
3055 register_chars[c] = c;
3056 operand_chars[c] = c;
3057 }
3882b010 3058 else if (ISLOWER (c))
252b5132
RH
3059 {
3060 mnemonic_chars[c] = c;
3061 register_chars[c] = c;
3062 operand_chars[c] = c;
3063 }
3882b010 3064 else if (ISUPPER (c))
252b5132 3065 {
3882b010 3066 mnemonic_chars[c] = TOLOWER (c);
252b5132
RH
3067 register_chars[c] = mnemonic_chars[c];
3068 operand_chars[c] = c;
3069 }
43234a1e 3070 else if (c == '{' || c == '}')
86fa6981
L
3071 {
3072 mnemonic_chars[c] = c;
3073 operand_chars[c] = c;
3074 }
252b5132 3075
3882b010 3076 if (ISALPHA (c) || ISDIGIT (c))
252b5132
RH
3077 identifier_chars[c] = c;
3078 else if (c >= 128)
3079 {
3080 identifier_chars[c] = c;
3081 operand_chars[c] = c;
3082 }
3083 }
3084
3085#ifdef LEX_AT
3086 identifier_chars['@'] = '@';
32137342
NC
3087#endif
3088#ifdef LEX_QM
3089 identifier_chars['?'] = '?';
3090 operand_chars['?'] = '?';
252b5132 3091#endif
252b5132 3092 digit_chars['-'] = '-';
c0f3af97 3093 mnemonic_chars['_'] = '_';
791fe849 3094 mnemonic_chars['-'] = '-';
0003779b 3095 mnemonic_chars['.'] = '.';
252b5132
RH
3096 identifier_chars['_'] = '_';
3097 identifier_chars['.'] = '.';
3098
3099 for (p = operand_special_chars; *p != '\0'; p++)
3100 operand_chars[(unsigned char) *p] = *p;
3101 }
3102
a4447b93
RH
3103 if (flag_code == CODE_64BIT)
3104 {
ca19b261
KT
3105#if defined (OBJ_COFF) && defined (TE_PE)
3106 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3107 ? 32 : 16);
3108#else
a4447b93 3109 x86_dwarf2_return_column = 16;
ca19b261 3110#endif
61ff971f 3111 x86_cie_data_alignment = -8;
a4447b93
RH
3112 }
3113 else
3114 {
3115 x86_dwarf2_return_column = 8;
3116 x86_cie_data_alignment = -4;
3117 }
e379e5f3
L
3118
3119 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3120 can be turned into BRANCH_PREFIX frag. */
3121 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3122 abort ();
252b5132
RH
3123}
3124
3125void
e3bb37b5 3126i386_print_statistics (FILE *file)
252b5132
RH
3127{
3128 hash_print_statistics (file, "i386 opcode", op_hash);
3129 hash_print_statistics (file, "i386 register", reg_hash);
3130}
3131\f
252b5132
RH
3132#ifdef DEBUG386
3133
ce8a8b2f 3134/* Debugging routines for md_assemble. */
d3ce72d0 3135static void pte (insn_template *);
40fb9820 3136static void pt (i386_operand_type);
e3bb37b5
L
3137static void pe (expressionS *);
3138static void ps (symbolS *);
252b5132
RH
3139
3140static void
2c703856 3141pi (const char *line, i386_insn *x)
252b5132 3142{
09137c09 3143 unsigned int j;
252b5132
RH
3144
3145 fprintf (stdout, "%s: template ", line);
3146 pte (&x->tm);
09f131f2
JH
3147 fprintf (stdout, " address: base %s index %s scale %x\n",
3148 x->base_reg ? x->base_reg->reg_name : "none",
3149 x->index_reg ? x->index_reg->reg_name : "none",
3150 x->log2_scale_factor);
3151 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
252b5132 3152 x->rm.mode, x->rm.reg, x->rm.regmem);
09f131f2
JH
3153 fprintf (stdout, " sib: base %x index %x scale %x\n",
3154 x->sib.base, x->sib.index, x->sib.scale);
3155 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
161a04f6
L
3156 (x->rex & REX_W) != 0,
3157 (x->rex & REX_R) != 0,
3158 (x->rex & REX_X) != 0,
3159 (x->rex & REX_B) != 0);
09137c09 3160 for (j = 0; j < x->operands; j++)
252b5132 3161 {
09137c09
SP
3162 fprintf (stdout, " #%d: ", j + 1);
3163 pt (x->types[j]);
252b5132 3164 fprintf (stdout, "\n");
bab6aec1 3165 if (x->types[j].bitfield.class == Reg
3528c362
JB
3166 || x->types[j].bitfield.class == RegMMX
3167 || x->types[j].bitfield.class == RegSIMD
00cee14f 3168 || x->types[j].bitfield.class == SReg
4a5c67ed
JB
3169 || x->types[j].bitfield.class == RegCR
3170 || x->types[j].bitfield.class == RegDR
3171 || x->types[j].bitfield.class == RegTR)
09137c09
SP
3172 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3173 if (operand_type_check (x->types[j], imm))
3174 pe (x->op[j].imms);
3175 if (operand_type_check (x->types[j], disp))
3176 pe (x->op[j].disps);
252b5132
RH
3177 }
3178}
3179
3180static void
d3ce72d0 3181pte (insn_template *t)
252b5132 3182{
09137c09 3183 unsigned int j;
252b5132 3184 fprintf (stdout, " %d operands ", t->operands);
47926f60 3185 fprintf (stdout, "opcode %x ", t->base_opcode);
252b5132
RH
3186 if (t->extension_opcode != None)
3187 fprintf (stdout, "ext %x ", t->extension_opcode);
40fb9820 3188 if (t->opcode_modifier.d)
252b5132 3189 fprintf (stdout, "D");
40fb9820 3190 if (t->opcode_modifier.w)
252b5132
RH
3191 fprintf (stdout, "W");
3192 fprintf (stdout, "\n");
09137c09 3193 for (j = 0; j < t->operands; j++)
252b5132 3194 {
09137c09
SP
3195 fprintf (stdout, " #%d type ", j + 1);
3196 pt (t->operand_types[j]);
252b5132
RH
3197 fprintf (stdout, "\n");
3198 }
3199}
3200
3201static void
e3bb37b5 3202pe (expressionS *e)
252b5132 3203{
24eab124 3204 fprintf (stdout, " operation %d\n", e->X_op);
b77ad1d4
AM
3205 fprintf (stdout, " add_number %ld (%lx)\n",
3206 (long) e->X_add_number, (long) e->X_add_number);
252b5132
RH
3207 if (e->X_add_symbol)
3208 {
3209 fprintf (stdout, " add_symbol ");
3210 ps (e->X_add_symbol);
3211 fprintf (stdout, "\n");
3212 }
3213 if (e->X_op_symbol)
3214 {
3215 fprintf (stdout, " op_symbol ");
3216 ps (e->X_op_symbol);
3217 fprintf (stdout, "\n");
3218 }
3219}
3220
3221static void
e3bb37b5 3222ps (symbolS *s)
252b5132
RH
3223{
3224 fprintf (stdout, "%s type %s%s",
3225 S_GET_NAME (s),
3226 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3227 segment_name (S_GET_SEGMENT (s)));
3228}
3229
7b81dfbb 3230static struct type_name
252b5132 3231 {
40fb9820
L
3232 i386_operand_type mask;
3233 const char *name;
252b5132 3234 }
7b81dfbb 3235const type_names[] =
252b5132 3236{
40fb9820
L
3237 { OPERAND_TYPE_REG8, "r8" },
3238 { OPERAND_TYPE_REG16, "r16" },
3239 { OPERAND_TYPE_REG32, "r32" },
3240 { OPERAND_TYPE_REG64, "r64" },
2c703856
JB
3241 { OPERAND_TYPE_ACC8, "acc8" },
3242 { OPERAND_TYPE_ACC16, "acc16" },
3243 { OPERAND_TYPE_ACC32, "acc32" },
3244 { OPERAND_TYPE_ACC64, "acc64" },
40fb9820
L
3245 { OPERAND_TYPE_IMM8, "i8" },
3246 { OPERAND_TYPE_IMM8, "i8s" },
3247 { OPERAND_TYPE_IMM16, "i16" },
3248 { OPERAND_TYPE_IMM32, "i32" },
3249 { OPERAND_TYPE_IMM32S, "i32s" },
3250 { OPERAND_TYPE_IMM64, "i64" },
3251 { OPERAND_TYPE_IMM1, "i1" },
3252 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3253 { OPERAND_TYPE_DISP8, "d8" },
3254 { OPERAND_TYPE_DISP16, "d16" },
3255 { OPERAND_TYPE_DISP32, "d32" },
3256 { OPERAND_TYPE_DISP32S, "d32s" },
3257 { OPERAND_TYPE_DISP64, "d64" },
3258 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3259 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3260 { OPERAND_TYPE_CONTROL, "control reg" },
3261 { OPERAND_TYPE_TEST, "test reg" },
3262 { OPERAND_TYPE_DEBUG, "debug reg" },
3263 { OPERAND_TYPE_FLOATREG, "FReg" },
3264 { OPERAND_TYPE_FLOATACC, "FAcc" },
21df382b 3265 { OPERAND_TYPE_SREG, "SReg" },
40fb9820
L
3266 { OPERAND_TYPE_REGMMX, "rMMX" },
3267 { OPERAND_TYPE_REGXMM, "rXMM" },
0349dc08 3268 { OPERAND_TYPE_REGYMM, "rYMM" },
43234a1e
L
3269 { OPERAND_TYPE_REGZMM, "rZMM" },
3270 { OPERAND_TYPE_REGMASK, "Mask reg" },
252b5132
RH
3271};
3272
3273static void
40fb9820 3274pt (i386_operand_type t)
252b5132 3275{
40fb9820 3276 unsigned int j;
c6fb90c8 3277 i386_operand_type a;
252b5132 3278
40fb9820 3279 for (j = 0; j < ARRAY_SIZE (type_names); j++)
c6fb90c8
L
3280 {
3281 a = operand_type_and (t, type_names[j].mask);
2c703856 3282 if (operand_type_equal (&a, &type_names[j].mask))
c6fb90c8
L
3283 fprintf (stdout, "%s, ", type_names[j].name);
3284 }
252b5132
RH
3285 fflush (stdout);
3286}
3287
3288#endif /* DEBUG386 */
3289\f
252b5132 3290static bfd_reloc_code_real_type
3956db08 3291reloc (unsigned int size,
64e74474
AM
3292 int pcrel,
3293 int sign,
3294 bfd_reloc_code_real_type other)
252b5132 3295{
47926f60 3296 if (other != NO_RELOC)
3956db08 3297 {
91d6fa6a 3298 reloc_howto_type *rel;
3956db08
JB
3299
3300 if (size == 8)
3301 switch (other)
3302 {
64e74474
AM
3303 case BFD_RELOC_X86_64_GOT32:
3304 return BFD_RELOC_X86_64_GOT64;
3305 break;
553d1284
L
3306 case BFD_RELOC_X86_64_GOTPLT64:
3307 return BFD_RELOC_X86_64_GOTPLT64;
3308 break;
64e74474
AM
3309 case BFD_RELOC_X86_64_PLTOFF64:
3310 return BFD_RELOC_X86_64_PLTOFF64;
3311 break;
3312 case BFD_RELOC_X86_64_GOTPC32:
3313 other = BFD_RELOC_X86_64_GOTPC64;
3314 break;
3315 case BFD_RELOC_X86_64_GOTPCREL:
3316 other = BFD_RELOC_X86_64_GOTPCREL64;
3317 break;
3318 case BFD_RELOC_X86_64_TPOFF32:
3319 other = BFD_RELOC_X86_64_TPOFF64;
3320 break;
3321 case BFD_RELOC_X86_64_DTPOFF32:
3322 other = BFD_RELOC_X86_64_DTPOFF64;
3323 break;
3324 default:
3325 break;
3956db08 3326 }
e05278af 3327
8ce3d284 3328#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
3329 if (other == BFD_RELOC_SIZE32)
3330 {
3331 if (size == 8)
1ab668bf 3332 other = BFD_RELOC_SIZE64;
8fd4256d 3333 if (pcrel)
1ab668bf
AM
3334 {
3335 as_bad (_("there are no pc-relative size relocations"));
3336 return NO_RELOC;
3337 }
8fd4256d 3338 }
8ce3d284 3339#endif
8fd4256d 3340
e05278af 3341 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
f2d8a97c 3342 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
e05278af
JB
3343 sign = -1;
3344
91d6fa6a
NC
3345 rel = bfd_reloc_type_lookup (stdoutput, other);
3346 if (!rel)
3956db08 3347 as_bad (_("unknown relocation (%u)"), other);
91d6fa6a 3348 else if (size != bfd_get_reloc_size (rel))
3956db08 3349 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
91d6fa6a 3350 bfd_get_reloc_size (rel),
3956db08 3351 size);
91d6fa6a 3352 else if (pcrel && !rel->pc_relative)
3956db08 3353 as_bad (_("non-pc-relative relocation for pc-relative field"));
91d6fa6a 3354 else if ((rel->complain_on_overflow == complain_overflow_signed
3956db08 3355 && !sign)
91d6fa6a 3356 || (rel->complain_on_overflow == complain_overflow_unsigned
64e74474 3357 && sign > 0))
3956db08
JB
3358 as_bad (_("relocated field and relocation type differ in signedness"));
3359 else
3360 return other;
3361 return NO_RELOC;
3362 }
252b5132
RH
3363
3364 if (pcrel)
3365 {
3e73aa7c 3366 if (!sign)
3956db08 3367 as_bad (_("there are no unsigned pc-relative relocations"));
252b5132
RH
3368 switch (size)
3369 {
3370 case 1: return BFD_RELOC_8_PCREL;
3371 case 2: return BFD_RELOC_16_PCREL;
d258b828 3372 case 4: return BFD_RELOC_32_PCREL;
d6ab8113 3373 case 8: return BFD_RELOC_64_PCREL;
252b5132 3374 }
3956db08 3375 as_bad (_("cannot do %u byte pc-relative relocation"), size);
252b5132
RH
3376 }
3377 else
3378 {
3956db08 3379 if (sign > 0)
e5cb08ac 3380 switch (size)
3e73aa7c
JH
3381 {
3382 case 4: return BFD_RELOC_X86_64_32S;
3383 }
3384 else
3385 switch (size)
3386 {
3387 case 1: return BFD_RELOC_8;
3388 case 2: return BFD_RELOC_16;
3389 case 4: return BFD_RELOC_32;
3390 case 8: return BFD_RELOC_64;
3391 }
3956db08
JB
3392 as_bad (_("cannot do %s %u byte relocation"),
3393 sign > 0 ? "signed" : "unsigned", size);
252b5132
RH
3394 }
3395
0cc9e1d3 3396 return NO_RELOC;
252b5132
RH
3397}
3398
47926f60
KH
3399/* Here we decide which fixups can be adjusted to make them relative to
3400 the beginning of the section instead of the symbol. Basically we need
3401 to make sure that the dynamic relocations are done correctly, so in
3402 some cases we force the original symbol to be used. */
3403
252b5132 3404int
e3bb37b5 3405tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
252b5132 3406{
6d249963 3407#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 3408 if (!IS_ELF)
31312f95
AM
3409 return 1;
3410
a161fe53
AM
3411 /* Don't adjust pc-relative references to merge sections in 64-bit
3412 mode. */
3413 if (use_rela_relocations
3414 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3415 && fixP->fx_pcrel)
252b5132 3416 return 0;
31312f95 3417
8d01d9a9
AJ
3418 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3419 and changed later by validate_fix. */
3420 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3421 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3422 return 0;
3423
8fd4256d
L
3424 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3425 for size relocations. */
3426 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3427 || fixP->fx_r_type == BFD_RELOC_SIZE64
3428 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
252b5132 3429 || fixP->fx_r_type == BFD_RELOC_386_GOT32
02a86693 3430 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
13ae64f3
JJ
3431 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3432 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3433 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3434 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
37e55690
JJ
3435 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3436 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
13ae64f3
JJ
3437 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3438 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
67a4f2b7
AO
3439 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3440 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3e73aa7c 3441 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
80b3ee89 3442 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
56ceb5b5
L
3443 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3444 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
bffbf940
JJ
3445 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3446 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3447 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
d6ab8113 3448 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
bffbf940
JJ
3449 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3450 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
d6ab8113
JB
3451 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3452 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
67a4f2b7
AO
3453 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3454 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
252b5132
RH
3455 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3456 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3457 return 0;
31312f95 3458#endif
252b5132
RH
3459 return 1;
3460}
252b5132 3461
b4cac588 3462static int
e3bb37b5 3463intel_float_operand (const char *mnemonic)
252b5132 3464{
9306ca4a
JB
3465 /* Note that the value returned is meaningful only for opcodes with (memory)
3466 operands, hence the code here is free to improperly handle opcodes that
3467 have no operands (for better performance and smaller code). */
3468
3469 if (mnemonic[0] != 'f')
3470 return 0; /* non-math */
3471
3472 switch (mnemonic[1])
3473 {
3474 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3475 the fs segment override prefix not currently handled because no
3476 call path can make opcodes without operands get here */
3477 case 'i':
3478 return 2 /* integer op */;
3479 case 'l':
3480 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3481 return 3; /* fldcw/fldenv */
3482 break;
3483 case 'n':
3484 if (mnemonic[2] != 'o' /* fnop */)
3485 return 3; /* non-waiting control op */
3486 break;
3487 case 'r':
3488 if (mnemonic[2] == 's')
3489 return 3; /* frstor/frstpm */
3490 break;
3491 case 's':
3492 if (mnemonic[2] == 'a')
3493 return 3; /* fsave */
3494 if (mnemonic[2] == 't')
3495 {
3496 switch (mnemonic[3])
3497 {
3498 case 'c': /* fstcw */
3499 case 'd': /* fstdw */
3500 case 'e': /* fstenv */
3501 case 's': /* fsts[gw] */
3502 return 3;
3503 }
3504 }
3505 break;
3506 case 'x':
3507 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3508 return 0; /* fxsave/fxrstor are not really math ops */
3509 break;
3510 }
252b5132 3511
9306ca4a 3512 return 1;
252b5132
RH
3513}
3514
c0f3af97
L
3515/* Build the VEX prefix. */
3516
3517static void
d3ce72d0 3518build_vex_prefix (const insn_template *t)
c0f3af97
L
3519{
3520 unsigned int register_specifier;
3521 unsigned int implied_prefix;
3522 unsigned int vector_length;
03751133 3523 unsigned int w;
c0f3af97
L
3524
3525 /* Check register specifier. */
3526 if (i.vex.register_specifier)
43234a1e
L
3527 {
3528 register_specifier =
3529 ~register_number (i.vex.register_specifier) & 0xf;
3530 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3531 }
c0f3af97
L
3532 else
3533 register_specifier = 0xf;
3534
79f0fa25
L
3535 /* Use 2-byte VEX prefix by swapping destination and source operand
3536 if there are more than 1 register operand. */
3537 if (i.reg_operands > 1
3538 && i.vec_encoding != vex_encoding_vex3
86fa6981 3539 && i.dir_encoding == dir_encoding_default
fa99fab2 3540 && i.operands == i.reg_operands
dbbc8b7e 3541 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
7f399153 3542 && i.tm.opcode_modifier.vexopcode == VEX0F
dbbc8b7e 3543 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
fa99fab2
L
3544 && i.rex == REX_B)
3545 {
3546 unsigned int xchg = i.operands - 1;
3547 union i386_op temp_op;
3548 i386_operand_type temp_type;
3549
3550 temp_type = i.types[xchg];
3551 i.types[xchg] = i.types[0];
3552 i.types[0] = temp_type;
3553 temp_op = i.op[xchg];
3554 i.op[xchg] = i.op[0];
3555 i.op[0] = temp_op;
3556
9c2799c2 3557 gas_assert (i.rm.mode == 3);
fa99fab2
L
3558
3559 i.rex = REX_R;
3560 xchg = i.rm.regmem;
3561 i.rm.regmem = i.rm.reg;
3562 i.rm.reg = xchg;
3563
dbbc8b7e
JB
3564 if (i.tm.opcode_modifier.d)
3565 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3566 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3567 else /* Use the next insn. */
3568 i.tm = t[1];
fa99fab2
L
3569 }
3570
79dec6b7
JB
3571 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3572 are no memory operands and at least 3 register ones. */
3573 if (i.reg_operands >= 3
3574 && i.vec_encoding != vex_encoding_vex3
3575 && i.reg_operands == i.operands - i.imm_operands
3576 && i.tm.opcode_modifier.vex
3577 && i.tm.opcode_modifier.commutative
3578 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3579 && i.rex == REX_B
3580 && i.vex.register_specifier
3581 && !(i.vex.register_specifier->reg_flags & RegRex))
3582 {
3583 unsigned int xchg = i.operands - i.reg_operands;
3584 union i386_op temp_op;
3585 i386_operand_type temp_type;
3586
3587 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3588 gas_assert (!i.tm.opcode_modifier.sae);
3589 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3590 &i.types[i.operands - 3]));
3591 gas_assert (i.rm.mode == 3);
3592
3593 temp_type = i.types[xchg];
3594 i.types[xchg] = i.types[xchg + 1];
3595 i.types[xchg + 1] = temp_type;
3596 temp_op = i.op[xchg];
3597 i.op[xchg] = i.op[xchg + 1];
3598 i.op[xchg + 1] = temp_op;
3599
3600 i.rex = 0;
3601 xchg = i.rm.regmem | 8;
3602 i.rm.regmem = ~register_specifier & 0xf;
3603 gas_assert (!(i.rm.regmem & 8));
3604 i.vex.register_specifier += xchg - i.rm.regmem;
3605 register_specifier = ~xchg & 0xf;
3606 }
3607
539f890d
L
3608 if (i.tm.opcode_modifier.vex == VEXScalar)
3609 vector_length = avxscalar;
10c17abd
JB
3610 else if (i.tm.opcode_modifier.vex == VEX256)
3611 vector_length = 1;
539f890d 3612 else
10c17abd 3613 {
56522fc5 3614 unsigned int op;
10c17abd 3615
c7213af9
L
3616 /* Determine vector length from the last multi-length vector
3617 operand. */
10c17abd 3618 vector_length = 0;
56522fc5 3619 for (op = t->operands; op--;)
10c17abd
JB
3620 if (t->operand_types[op].bitfield.xmmword
3621 && t->operand_types[op].bitfield.ymmword
3622 && i.types[op].bitfield.ymmword)
3623 {
3624 vector_length = 1;
3625 break;
3626 }
3627 }
c0f3af97
L
3628
3629 switch ((i.tm.base_opcode >> 8) & 0xff)
3630 {
3631 case 0:
3632 implied_prefix = 0;
3633 break;
3634 case DATA_PREFIX_OPCODE:
3635 implied_prefix = 1;
3636 break;
3637 case REPE_PREFIX_OPCODE:
3638 implied_prefix = 2;
3639 break;
3640 case REPNE_PREFIX_OPCODE:
3641 implied_prefix = 3;
3642 break;
3643 default:
3644 abort ();
3645 }
3646
03751133
L
3647 /* Check the REX.W bit and VEXW. */
3648 if (i.tm.opcode_modifier.vexw == VEXWIG)
3649 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3650 else if (i.tm.opcode_modifier.vexw)
3651 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3652 else
931d03b7 3653 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
03751133 3654
c0f3af97 3655 /* Use 2-byte VEX prefix if possible. */
03751133
L
3656 if (w == 0
3657 && i.vec_encoding != vex_encoding_vex3
86fa6981 3658 && i.tm.opcode_modifier.vexopcode == VEX0F
c0f3af97
L
3659 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3660 {
3661 /* 2-byte VEX prefix. */
3662 unsigned int r;
3663
3664 i.vex.length = 2;
3665 i.vex.bytes[0] = 0xc5;
3666
3667 /* Check the REX.R bit. */
3668 r = (i.rex & REX_R) ? 0 : 1;
3669 i.vex.bytes[1] = (r << 7
3670 | register_specifier << 3
3671 | vector_length << 2
3672 | implied_prefix);
3673 }
3674 else
3675 {
3676 /* 3-byte VEX prefix. */
03751133 3677 unsigned int m;
c0f3af97 3678
f88c9eb0 3679 i.vex.length = 3;
f88c9eb0 3680
7f399153 3681 switch (i.tm.opcode_modifier.vexopcode)
5dd85c99 3682 {
7f399153
L
3683 case VEX0F:
3684 m = 0x1;
80de6e00 3685 i.vex.bytes[0] = 0xc4;
7f399153
L
3686 break;
3687 case VEX0F38:
3688 m = 0x2;
80de6e00 3689 i.vex.bytes[0] = 0xc4;
7f399153
L
3690 break;
3691 case VEX0F3A:
3692 m = 0x3;
80de6e00 3693 i.vex.bytes[0] = 0xc4;
7f399153
L
3694 break;
3695 case XOP08:
5dd85c99
SP
3696 m = 0x8;
3697 i.vex.bytes[0] = 0x8f;
7f399153
L
3698 break;
3699 case XOP09:
f88c9eb0
SP
3700 m = 0x9;
3701 i.vex.bytes[0] = 0x8f;
7f399153
L
3702 break;
3703 case XOP0A:
f88c9eb0
SP
3704 m = 0xa;
3705 i.vex.bytes[0] = 0x8f;
7f399153
L
3706 break;
3707 default:
3708 abort ();
f88c9eb0 3709 }
c0f3af97 3710
c0f3af97
L
3711 /* The high 3 bits of the second VEX byte are 1's compliment
3712 of RXB bits from REX. */
3713 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3714
c0f3af97
L
3715 i.vex.bytes[2] = (w << 7
3716 | register_specifier << 3
3717 | vector_length << 2
3718 | implied_prefix);
3719 }
3720}
3721
e771e7c9
JB
3722static INLINE bfd_boolean
3723is_evex_encoding (const insn_template *t)
3724{
7091c612 3725 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
e771e7c9 3726 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
a80195f1 3727 || t->opcode_modifier.sae;
e771e7c9
JB
3728}
3729
7a8655d2
JB
3730static INLINE bfd_boolean
3731is_any_vex_encoding (const insn_template *t)
3732{
3733 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3734 || is_evex_encoding (t);
3735}
3736
43234a1e
L
3737/* Build the EVEX prefix. */
3738
3739static void
3740build_evex_prefix (void)
3741{
3742 unsigned int register_specifier;
3743 unsigned int implied_prefix;
3744 unsigned int m, w;
3745 rex_byte vrex_used = 0;
3746
3747 /* Check register specifier. */
3748 if (i.vex.register_specifier)
3749 {
3750 gas_assert ((i.vrex & REX_X) == 0);
3751
3752 register_specifier = i.vex.register_specifier->reg_num;
3753 if ((i.vex.register_specifier->reg_flags & RegRex))
3754 register_specifier += 8;
3755 /* The upper 16 registers are encoded in the fourth byte of the
3756 EVEX prefix. */
3757 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3758 i.vex.bytes[3] = 0x8;
3759 register_specifier = ~register_specifier & 0xf;
3760 }
3761 else
3762 {
3763 register_specifier = 0xf;
3764
3765 /* Encode upper 16 vector index register in the fourth byte of
3766 the EVEX prefix. */
3767 if (!(i.vrex & REX_X))
3768 i.vex.bytes[3] = 0x8;
3769 else
3770 vrex_used |= REX_X;
3771 }
3772
3773 switch ((i.tm.base_opcode >> 8) & 0xff)
3774 {
3775 case 0:
3776 implied_prefix = 0;
3777 break;
3778 case DATA_PREFIX_OPCODE:
3779 implied_prefix = 1;
3780 break;
3781 case REPE_PREFIX_OPCODE:
3782 implied_prefix = 2;
3783 break;
3784 case REPNE_PREFIX_OPCODE:
3785 implied_prefix = 3;
3786 break;
3787 default:
3788 abort ();
3789 }
3790
3791 /* 4 byte EVEX prefix. */
3792 i.vex.length = 4;
3793 i.vex.bytes[0] = 0x62;
3794
3795 /* mmmm bits. */
3796 switch (i.tm.opcode_modifier.vexopcode)
3797 {
3798 case VEX0F:
3799 m = 1;
3800 break;
3801 case VEX0F38:
3802 m = 2;
3803 break;
3804 case VEX0F3A:
3805 m = 3;
3806 break;
3807 default:
3808 abort ();
3809 break;
3810 }
3811
3812 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3813 bits from REX. */
3814 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3815
3816 /* The fifth bit of the second EVEX byte is 1's compliment of the
3817 REX_R bit in VREX. */
3818 if (!(i.vrex & REX_R))
3819 i.vex.bytes[1] |= 0x10;
3820 else
3821 vrex_used |= REX_R;
3822
3823 if ((i.reg_operands + i.imm_operands) == i.operands)
3824 {
3825 /* When all operands are registers, the REX_X bit in REX is not
3826 used. We reuse it to encode the upper 16 registers, which is
3827 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3828 as 1's compliment. */
3829 if ((i.vrex & REX_B))
3830 {
3831 vrex_used |= REX_B;
3832 i.vex.bytes[1] &= ~0x40;
3833 }
3834 }
3835
3836 /* EVEX instructions shouldn't need the REX prefix. */
3837 i.vrex &= ~vrex_used;
3838 gas_assert (i.vrex == 0);
3839
6865c043
L
3840 /* Check the REX.W bit and VEXW. */
3841 if (i.tm.opcode_modifier.vexw == VEXWIG)
3842 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3843 else if (i.tm.opcode_modifier.vexw)
3844 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3845 else
931d03b7 3846 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
43234a1e
L
3847
3848 /* Encode the U bit. */
3849 implied_prefix |= 0x4;
3850
3851 /* The third byte of the EVEX prefix. */
3852 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3853
3854 /* The fourth byte of the EVEX prefix. */
3855 /* The zeroing-masking bit. */
3856 if (i.mask && i.mask->zeroing)
3857 i.vex.bytes[3] |= 0x80;
3858
3859 /* Don't always set the broadcast bit if there is no RC. */
3860 if (!i.rounding)
3861 {
3862 /* Encode the vector length. */
3863 unsigned int vec_length;
3864
e771e7c9
JB
3865 if (!i.tm.opcode_modifier.evex
3866 || i.tm.opcode_modifier.evex == EVEXDYN)
3867 {
56522fc5 3868 unsigned int op;
e771e7c9 3869
c7213af9
L
3870 /* Determine vector length from the last multi-length vector
3871 operand. */
e771e7c9 3872 vec_length = 0;
56522fc5 3873 for (op = i.operands; op--;)
e771e7c9
JB
3874 if (i.tm.operand_types[op].bitfield.xmmword
3875 + i.tm.operand_types[op].bitfield.ymmword
3876 + i.tm.operand_types[op].bitfield.zmmword > 1)
3877 {
3878 if (i.types[op].bitfield.zmmword)
c7213af9
L
3879 {
3880 i.tm.opcode_modifier.evex = EVEX512;
3881 break;
3882 }
e771e7c9 3883 else if (i.types[op].bitfield.ymmword)
c7213af9
L
3884 {
3885 i.tm.opcode_modifier.evex = EVEX256;
3886 break;
3887 }
e771e7c9 3888 else if (i.types[op].bitfield.xmmword)
c7213af9
L
3889 {
3890 i.tm.opcode_modifier.evex = EVEX128;
3891 break;
3892 }
625cbd7a
JB
3893 else if (i.broadcast && (int) op == i.broadcast->operand)
3894 {
4a1b91ea 3895 switch (i.broadcast->bytes)
625cbd7a
JB
3896 {
3897 case 64:
3898 i.tm.opcode_modifier.evex = EVEX512;
3899 break;
3900 case 32:
3901 i.tm.opcode_modifier.evex = EVEX256;
3902 break;
3903 case 16:
3904 i.tm.opcode_modifier.evex = EVEX128;
3905 break;
3906 default:
c7213af9 3907 abort ();
625cbd7a 3908 }
c7213af9 3909 break;
625cbd7a 3910 }
e771e7c9 3911 }
c7213af9 3912
56522fc5 3913 if (op >= MAX_OPERANDS)
c7213af9 3914 abort ();
e771e7c9
JB
3915 }
3916
43234a1e
L
3917 switch (i.tm.opcode_modifier.evex)
3918 {
3919 case EVEXLIG: /* LL' is ignored */
3920 vec_length = evexlig << 5;
3921 break;
3922 case EVEX128:
3923 vec_length = 0 << 5;
3924 break;
3925 case EVEX256:
3926 vec_length = 1 << 5;
3927 break;
3928 case EVEX512:
3929 vec_length = 2 << 5;
3930 break;
3931 default:
3932 abort ();
3933 break;
3934 }
3935 i.vex.bytes[3] |= vec_length;
3936 /* Encode the broadcast bit. */
3937 if (i.broadcast)
3938 i.vex.bytes[3] |= 0x10;
3939 }
3940 else
3941 {
3942 if (i.rounding->type != saeonly)
3943 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3944 else
d3d3c6db 3945 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
43234a1e
L
3946 }
3947
3948 if (i.mask && i.mask->mask)
3949 i.vex.bytes[3] |= i.mask->mask->reg_num;
3950}
3951
65da13b5
L
3952static void
3953process_immext (void)
3954{
3955 expressionS *exp;
3956
c0f3af97 3957 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
65da13b5
L
3958 which is coded in the same place as an 8-bit immediate field
3959 would be. Here we fake an 8-bit immediate operand from the
3960 opcode suffix stored in tm.extension_opcode.
3961
c1e679ec 3962 AVX instructions also use this encoding, for some of
c0f3af97 3963 3 argument instructions. */
65da13b5 3964
43234a1e 3965 gas_assert (i.imm_operands <= 1
7ab9ffdd 3966 && (i.operands <= 2
7a8655d2 3967 || (is_any_vex_encoding (&i.tm)
7ab9ffdd 3968 && i.operands <= 4)));
65da13b5
L
3969
3970 exp = &im_expressions[i.imm_operands++];
3971 i.op[i.operands].imms = exp;
3972 i.types[i.operands] = imm8;
3973 i.operands++;
3974 exp->X_op = O_constant;
3975 exp->X_add_number = i.tm.extension_opcode;
3976 i.tm.extension_opcode = None;
3977}
3978
42164a71
L
3979
3980static int
3981check_hle (void)
3982{
3983 switch (i.tm.opcode_modifier.hleprefixok)
3984 {
3985 default:
3986 abort ();
82c2def5 3987 case HLEPrefixNone:
165de32a
L
3988 as_bad (_("invalid instruction `%s' after `%s'"),
3989 i.tm.name, i.hle_prefix);
42164a71 3990 return 0;
82c2def5 3991 case HLEPrefixLock:
42164a71
L
3992 if (i.prefix[LOCK_PREFIX])
3993 return 1;
165de32a 3994 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
42164a71 3995 return 0;
82c2def5 3996 case HLEPrefixAny:
42164a71 3997 return 1;
82c2def5 3998 case HLEPrefixRelease:
42164a71
L
3999 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4000 {
4001 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4002 i.tm.name);
4003 return 0;
4004 }
8dc0818e 4005 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
42164a71
L
4006 {
4007 as_bad (_("memory destination needed for instruction `%s'"
4008 " after `xrelease'"), i.tm.name);
4009 return 0;
4010 }
4011 return 1;
4012 }
4013}
4014
b6f8c7c4
L
4015/* Try the shortest encoding by shortening operand size. */
4016
4017static void
4018optimize_encoding (void)
4019{
a0a1771e 4020 unsigned int j;
b6f8c7c4
L
4021
4022 if (optimize_for_space
72aea328 4023 && !is_any_vex_encoding (&i.tm)
b6f8c7c4
L
4024 && i.reg_operands == 1
4025 && i.imm_operands == 1
4026 && !i.types[1].bitfield.byte
4027 && i.op[0].imms->X_op == O_constant
4028 && fits_in_imm7 (i.op[0].imms->X_add_number)
72aea328 4029 && (i.tm.base_opcode == 0xa8
b6f8c7c4
L
4030 || (i.tm.base_opcode == 0xf6
4031 && i.tm.extension_opcode == 0x0)))
4032 {
4033 /* Optimize: -Os:
4034 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4035 */
4036 unsigned int base_regnum = i.op[1].regs->reg_num;
4037 if (flag_code == CODE_64BIT || base_regnum < 4)
4038 {
4039 i.types[1].bitfield.byte = 1;
4040 /* Ignore the suffix. */
4041 i.suffix = 0;
7697afb6
JB
4042 /* Convert to byte registers. */
4043 if (i.types[1].bitfield.word)
4044 j = 16;
4045 else if (i.types[1].bitfield.dword)
4046 j = 32;
4047 else
4048 j = 48;
4049 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4050 j += 8;
4051 i.op[1].regs -= j;
b6f8c7c4
L
4052 }
4053 }
4054 else if (flag_code == CODE_64BIT
72aea328 4055 && !is_any_vex_encoding (&i.tm)
d3d50934
L
4056 && ((i.types[1].bitfield.qword
4057 && i.reg_operands == 1
b6f8c7c4
L
4058 && i.imm_operands == 1
4059 && i.op[0].imms->X_op == O_constant
507916b8 4060 && ((i.tm.base_opcode == 0xb8
b6f8c7c4
L
4061 && i.tm.extension_opcode == None
4062 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4063 || (fits_in_imm31 (i.op[0].imms->X_add_number)
72aea328
JB
4064 && ((i.tm.base_opcode == 0x24
4065 || i.tm.base_opcode == 0xa8)
b6f8c7c4
L
4066 || (i.tm.base_opcode == 0x80
4067 && i.tm.extension_opcode == 0x4)
4068 || ((i.tm.base_opcode == 0xf6
507916b8 4069 || (i.tm.base_opcode | 1) == 0xc7)
b8364fa7
JB
4070 && i.tm.extension_opcode == 0x0)))
4071 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4072 && i.tm.base_opcode == 0x83
4073 && i.tm.extension_opcode == 0x4)))
d3d50934
L
4074 || (i.types[0].bitfield.qword
4075 && ((i.reg_operands == 2
4076 && i.op[0].regs == i.op[1].regs
72aea328
JB
4077 && (i.tm.base_opcode == 0x30
4078 || i.tm.base_opcode == 0x28))
d3d50934
L
4079 || (i.reg_operands == 1
4080 && i.operands == 1
72aea328 4081 && i.tm.base_opcode == 0x30)))))
b6f8c7c4
L
4082 {
4083 /* Optimize: -O:
4084 andq $imm31, %r64 -> andl $imm31, %r32
b8364fa7 4085 andq $imm7, %r64 -> andl $imm7, %r32
b6f8c7c4
L
4086 testq $imm31, %r64 -> testl $imm31, %r32
4087 xorq %r64, %r64 -> xorl %r32, %r32
4088 subq %r64, %r64 -> subl %r32, %r32
4089 movq $imm31, %r64 -> movl $imm31, %r32
4090 movq $imm32, %r64 -> movl $imm32, %r32
4091 */
4092 i.tm.opcode_modifier.norex64 = 1;
507916b8 4093 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4094 {
4095 /* Handle
4096 movq $imm31, %r64 -> movl $imm31, %r32
4097 movq $imm32, %r64 -> movl $imm32, %r32
4098 */
4099 i.tm.operand_types[0].bitfield.imm32 = 1;
4100 i.tm.operand_types[0].bitfield.imm32s = 0;
4101 i.tm.operand_types[0].bitfield.imm64 = 0;
4102 i.types[0].bitfield.imm32 = 1;
4103 i.types[0].bitfield.imm32s = 0;
4104 i.types[0].bitfield.imm64 = 0;
4105 i.types[1].bitfield.dword = 1;
4106 i.types[1].bitfield.qword = 0;
507916b8 4107 if ((i.tm.base_opcode | 1) == 0xc7)
b6f8c7c4
L
4108 {
4109 /* Handle
4110 movq $imm31, %r64 -> movl $imm31, %r32
4111 */
507916b8 4112 i.tm.base_opcode = 0xb8;
b6f8c7c4 4113 i.tm.extension_opcode = None;
507916b8 4114 i.tm.opcode_modifier.w = 0;
b6f8c7c4
L
4115 i.tm.opcode_modifier.modrm = 0;
4116 }
4117 }
4118 }
5641ec01
JB
4119 else if (optimize > 1
4120 && !optimize_for_space
72aea328 4121 && !is_any_vex_encoding (&i.tm)
5641ec01
JB
4122 && i.reg_operands == 2
4123 && i.op[0].regs == i.op[1].regs
4124 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4125 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4126 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4127 {
4128 /* Optimize: -O2:
4129 andb %rN, %rN -> testb %rN, %rN
4130 andw %rN, %rN -> testw %rN, %rN
4131 andq %rN, %rN -> testq %rN, %rN
4132 orb %rN, %rN -> testb %rN, %rN
4133 orw %rN, %rN -> testw %rN, %rN
4134 orq %rN, %rN -> testq %rN, %rN
4135
4136 and outside of 64-bit mode
4137
4138 andl %rN, %rN -> testl %rN, %rN
4139 orl %rN, %rN -> testl %rN, %rN
4140 */
4141 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4142 }
99112332 4143 else if (i.reg_operands == 3
b6f8c7c4
L
4144 && i.op[0].regs == i.op[1].regs
4145 && !i.types[2].bitfield.xmmword
4146 && (i.tm.opcode_modifier.vex
7a69eac3 4147 || ((!i.mask || i.mask->zeroing)
b6f8c7c4 4148 && !i.rounding
e771e7c9 4149 && is_evex_encoding (&i.tm)
80c34c38 4150 && (i.vec_encoding != vex_encoding_evex
dd22218c 4151 || cpu_arch_isa_flags.bitfield.cpuavx512vl
80c34c38 4152 || i.tm.cpu_flags.bitfield.cpuavx512vl
7091c612 4153 || (i.tm.operand_types[2].bitfield.zmmword
dd22218c 4154 && i.types[2].bitfield.ymmword))))
b6f8c7c4
L
4155 && ((i.tm.base_opcode == 0x55
4156 || i.tm.base_opcode == 0x6655
4157 || i.tm.base_opcode == 0x66df
4158 || i.tm.base_opcode == 0x57
4159 || i.tm.base_opcode == 0x6657
8305403a
L
4160 || i.tm.base_opcode == 0x66ef
4161 || i.tm.base_opcode == 0x66f8
4162 || i.tm.base_opcode == 0x66f9
4163 || i.tm.base_opcode == 0x66fa
1424ad86
JB
4164 || i.tm.base_opcode == 0x66fb
4165 || i.tm.base_opcode == 0x42
4166 || i.tm.base_opcode == 0x6642
4167 || i.tm.base_opcode == 0x47
4168 || i.tm.base_opcode == 0x6647)
b6f8c7c4
L
4169 && i.tm.extension_opcode == None))
4170 {
99112332 4171 /* Optimize: -O1:
8305403a
L
4172 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4173 vpsubq and vpsubw:
b6f8c7c4
L
4174 EVEX VOP %zmmM, %zmmM, %zmmN
4175 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4176 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4177 EVEX VOP %ymmM, %ymmM, %ymmN
4178 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4179 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4180 VEX VOP %ymmM, %ymmM, %ymmN
4181 -> VEX VOP %xmmM, %xmmM, %xmmN
4182 VOP, one of vpandn and vpxor:
4183 VEX VOP %ymmM, %ymmM, %ymmN
4184 -> VEX VOP %xmmM, %xmmM, %xmmN
4185 VOP, one of vpandnd and vpandnq:
4186 EVEX VOP %zmmM, %zmmM, %zmmN
4187 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4188 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4189 EVEX VOP %ymmM, %ymmM, %ymmN
4190 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4191 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4192 VOP, one of vpxord and vpxorq:
4193 EVEX VOP %zmmM, %zmmM, %zmmN
4194 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4195 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
b6f8c7c4
L
4196 EVEX VOP %ymmM, %ymmM, %ymmN
4197 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
99112332 4198 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
1424ad86
JB
4199 VOP, one of kxord and kxorq:
4200 VEX VOP %kM, %kM, %kN
4201 -> VEX kxorw %kM, %kM, %kN
4202 VOP, one of kandnd and kandnq:
4203 VEX VOP %kM, %kM, %kN
4204 -> VEX kandnw %kM, %kM, %kN
b6f8c7c4 4205 */
e771e7c9 4206 if (is_evex_encoding (&i.tm))
b6f8c7c4 4207 {
7b1d7ca1 4208 if (i.vec_encoding != vex_encoding_evex)
b6f8c7c4
L
4209 {
4210 i.tm.opcode_modifier.vex = VEX128;
4211 i.tm.opcode_modifier.vexw = VEXW0;
4212 i.tm.opcode_modifier.evex = 0;
4213 }
7b1d7ca1 4214 else if (optimize > 1)
dd22218c
L
4215 i.tm.opcode_modifier.evex = EVEX128;
4216 else
4217 return;
b6f8c7c4 4218 }
f74a6307 4219 else if (i.tm.operand_types[0].bitfield.class == RegMask)
1424ad86
JB
4220 {
4221 i.tm.base_opcode &= 0xff;
4222 i.tm.opcode_modifier.vexw = VEXW0;
4223 }
b6f8c7c4
L
4224 else
4225 i.tm.opcode_modifier.vex = VEX128;
4226
4227 if (i.tm.opcode_modifier.vex)
4228 for (j = 0; j < 3; j++)
4229 {
4230 i.types[j].bitfield.xmmword = 1;
4231 i.types[j].bitfield.ymmword = 0;
4232 }
4233 }
392a5972 4234 else if (i.vec_encoding != vex_encoding_evex
97ed31ae 4235 && !i.types[0].bitfield.zmmword
392a5972 4236 && !i.types[1].bitfield.zmmword
97ed31ae 4237 && !i.mask
a0a1771e 4238 && !i.broadcast
97ed31ae 4239 && is_evex_encoding (&i.tm)
392a5972
L
4240 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4241 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
a0a1771e
JB
4242 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4243 || (i.tm.base_opcode & ~4) == 0x66db
4244 || (i.tm.base_opcode & ~4) == 0x66eb)
97ed31ae
L
4245 && i.tm.extension_opcode == None)
4246 {
4247 /* Optimize: -O1:
4248 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4249 vmovdqu32 and vmovdqu64:
4250 EVEX VOP %xmmM, %xmmN
4251 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4252 EVEX VOP %ymmM, %ymmN
4253 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4254 EVEX VOP %xmmM, mem
4255 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4256 EVEX VOP %ymmM, mem
4257 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4258 EVEX VOP mem, %xmmN
4259 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4260 EVEX VOP mem, %ymmN
4261 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
a0a1771e
JB
4262 VOP, one of vpand, vpandn, vpor, vpxor:
4263 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4264 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4265 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4266 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4267 EVEX VOP{d,q} mem, %xmmM, %xmmN
4268 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4269 EVEX VOP{d,q} mem, %ymmM, %ymmN
4270 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
97ed31ae 4271 */
a0a1771e 4272 for (j = 0; j < i.operands; j++)
392a5972
L
4273 if (operand_type_check (i.types[j], disp)
4274 && i.op[j].disps->X_op == O_constant)
4275 {
4276 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4277 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4278 bytes, we choose EVEX Disp8 over VEX Disp32. */
4279 int evex_disp8, vex_disp8;
4280 unsigned int memshift = i.memshift;
4281 offsetT n = i.op[j].disps->X_add_number;
4282
4283 evex_disp8 = fits_in_disp8 (n);
4284 i.memshift = 0;
4285 vex_disp8 = fits_in_disp8 (n);
4286 if (evex_disp8 != vex_disp8)
4287 {
4288 i.memshift = memshift;
4289 return;
4290 }
4291
4292 i.types[j].bitfield.disp8 = vex_disp8;
4293 break;
4294 }
4295 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4296 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
97ed31ae
L
4297 i.tm.opcode_modifier.vex
4298 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4299 i.tm.opcode_modifier.vexw = VEXW0;
79dec6b7
JB
4300 /* VPAND, VPOR, and VPXOR are commutative. */
4301 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4302 i.tm.opcode_modifier.commutative = 1;
97ed31ae
L
4303 i.tm.opcode_modifier.evex = 0;
4304 i.tm.opcode_modifier.masking = 0;
a0a1771e 4305 i.tm.opcode_modifier.broadcast = 0;
97ed31ae
L
4306 i.tm.opcode_modifier.disp8memshift = 0;
4307 i.memshift = 0;
a0a1771e
JB
4308 if (j < i.operands)
4309 i.types[j].bitfield.disp8
4310 = fits_in_disp8 (i.op[j].disps->X_add_number);
97ed31ae 4311 }
b6f8c7c4
L
4312}
4313
252b5132
RH
4314/* This is the guts of the machine-dependent assembler. LINE points to a
4315 machine dependent instruction. This function is supposed to emit
4316 the frags/bytes it assembles to. */
4317
4318void
65da13b5 4319md_assemble (char *line)
252b5132 4320{
40fb9820 4321 unsigned int j;
83b16ac6 4322 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
d3ce72d0 4323 const insn_template *t;
252b5132 4324
47926f60 4325 /* Initialize globals. */
252b5132
RH
4326 memset (&i, '\0', sizeof (i));
4327 for (j = 0; j < MAX_OPERANDS; j++)
1ae12ab7 4328 i.reloc[j] = NO_RELOC;
252b5132
RH
4329 memset (disp_expressions, '\0', sizeof (disp_expressions));
4330 memset (im_expressions, '\0', sizeof (im_expressions));
ce8a8b2f 4331 save_stack_p = save_stack;
252b5132
RH
4332
4333 /* First parse an instruction mnemonic & call i386_operand for the operands.
4334 We assume that the scrubber has arranged it so that line[0] is the valid
47926f60 4335 start of a (possibly prefixed) mnemonic. */
252b5132 4336
29b0f896
AM
4337 line = parse_insn (line, mnemonic);
4338 if (line == NULL)
4339 return;
83b16ac6 4340 mnem_suffix = i.suffix;
252b5132 4341
29b0f896 4342 line = parse_operands (line, mnemonic);
ee86248c 4343 this_operand = -1;
8325cc63
JB
4344 xfree (i.memop1_string);
4345 i.memop1_string = NULL;
29b0f896
AM
4346 if (line == NULL)
4347 return;
252b5132 4348
29b0f896
AM
4349 /* Now we've parsed the mnemonic into a set of templates, and have the
4350 operands at hand. */
4351
b630c145
JB
4352 /* All Intel opcodes have reversed operands except for "bound", "enter",
4353 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4354 intersegment "jmp" and "call" instructions with 2 immediate operands so
4355 that the immediate segment precedes the offset, as it does when in AT&T
4356 mode. */
4d456e3d
L
4357 if (intel_syntax
4358 && i.operands > 1
29b0f896 4359 && (strcmp (mnemonic, "bound") != 0)
30123838 4360 && (strcmp (mnemonic, "invlpga") != 0)
eedb0f2c
JB
4361 && (strncmp (mnemonic, "monitor", 7) != 0)
4362 && (strncmp (mnemonic, "mwait", 5) != 0)
b630c145
JB
4363 && (strcmp (mnemonic, "tpause") != 0)
4364 && (strcmp (mnemonic, "umwait") != 0)
40fb9820
L
4365 && !(operand_type_check (i.types[0], imm)
4366 && operand_type_check (i.types[1], imm)))
29b0f896
AM
4367 swap_operands ();
4368
ec56d5c0
JB
4369 /* The order of the immediates should be reversed
4370 for 2 immediates extrq and insertq instructions */
4371 if (i.imm_operands == 2
4372 && (strcmp (mnemonic, "extrq") == 0
4373 || strcmp (mnemonic, "insertq") == 0))
4374 swap_2_operands (0, 1);
4375
29b0f896
AM
4376 if (i.imm_operands)
4377 optimize_imm ();
4378
b300c311
L
4379 /* Don't optimize displacement for movabs since it only takes 64bit
4380 displacement. */
4381 if (i.disp_operands
a501d77e 4382 && i.disp_encoding != disp_encoding_32bit
862be3fb
L
4383 && (flag_code != CODE_64BIT
4384 || strcmp (mnemonic, "movabs") != 0))
4385 optimize_disp ();
29b0f896
AM
4386
4387 /* Next, we find a template that matches the given insn,
4388 making sure the overlap of the given operands types is consistent
4389 with the template operand types. */
252b5132 4390
83b16ac6 4391 if (!(t = match_template (mnem_suffix)))
29b0f896 4392 return;
252b5132 4393
7bab8ab5 4394 if (sse_check != check_none
81f8a913 4395 && !i.tm.opcode_modifier.noavx
6e3e5c9e 4396 && !i.tm.cpu_flags.bitfield.cpuavx
569d50f1 4397 && !i.tm.cpu_flags.bitfield.cpuavx512f
daf50ae7
L
4398 && (i.tm.cpu_flags.bitfield.cpusse
4399 || i.tm.cpu_flags.bitfield.cpusse2
4400 || i.tm.cpu_flags.bitfield.cpusse3
4401 || i.tm.cpu_flags.bitfield.cpussse3
4402 || i.tm.cpu_flags.bitfield.cpusse4_1
6e3e5c9e 4403 || i.tm.cpu_flags.bitfield.cpusse4_2
569d50f1 4404 || i.tm.cpu_flags.bitfield.cpusse4a
6e3e5c9e
JB
4405 || i.tm.cpu_flags.bitfield.cpupclmul
4406 || i.tm.cpu_flags.bitfield.cpuaes
569d50f1 4407 || i.tm.cpu_flags.bitfield.cpusha
6e3e5c9e 4408 || i.tm.cpu_flags.bitfield.cpugfni))
daf50ae7 4409 {
7bab8ab5 4410 (sse_check == check_warning
daf50ae7
L
4411 ? as_warn
4412 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4413 }
4414
40fb9820 4415 if (i.tm.opcode_modifier.fwait)
29b0f896
AM
4416 if (!add_prefix (FWAIT_OPCODE))
4417 return;
252b5132 4418
d5de92cf
L
4419 /* Check if REP prefix is OK. */
4420 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4421 {
4422 as_bad (_("invalid instruction `%s' after `%s'"),
4423 i.tm.name, i.rep_prefix);
4424 return;
4425 }
4426
c1ba0266
L
4427 /* Check for lock without a lockable instruction. Destination operand
4428 must be memory unless it is xchg (0x86). */
c32fa91d
L
4429 if (i.prefix[LOCK_PREFIX]
4430 && (!i.tm.opcode_modifier.islockable
c1ba0266
L
4431 || i.mem_operands == 0
4432 || (i.tm.base_opcode != 0x86
8dc0818e 4433 && !(i.flags[i.operands - 1] & Operand_Mem))))
c32fa91d
L
4434 {
4435 as_bad (_("expecting lockable instruction after `lock'"));
4436 return;
4437 }
4438
7a8655d2
JB
4439 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4440 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4441 {
4442 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4443 return;
4444 }
4445
42164a71 4446 /* Check if HLE prefix is OK. */
165de32a 4447 if (i.hle_prefix && !check_hle ())
42164a71
L
4448 return;
4449
7e8b059b
L
4450 /* Check BND prefix. */
4451 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4452 as_bad (_("expecting valid branch instruction after `bnd'"));
4453
04ef582a 4454 /* Check NOTRACK prefix. */
9fef80d6
L
4455 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4456 as_bad (_("expecting indirect branch instruction after `notrack'"));
04ef582a 4457
327e8c42
JB
4458 if (i.tm.cpu_flags.bitfield.cpumpx)
4459 {
4460 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4461 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4462 else if (flag_code != CODE_16BIT
4463 ? i.prefix[ADDR_PREFIX]
4464 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4465 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4466 }
7e8b059b
L
4467
4468 /* Insert BND prefix. */
76d3a78a
JB
4469 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4470 {
4471 if (!i.prefix[BND_PREFIX])
4472 add_prefix (BND_PREFIX_OPCODE);
4473 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4474 {
4475 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4476 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4477 }
4478 }
7e8b059b 4479
29b0f896 4480 /* Check string instruction segment overrides. */
51c8edf6 4481 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
29b0f896 4482 {
51c8edf6 4483 gas_assert (i.mem_operands);
29b0f896 4484 if (!check_string ())
5dd0794d 4485 return;
fc0763e6 4486 i.disp_operands = 0;
29b0f896 4487 }
5dd0794d 4488
b6f8c7c4
L
4489 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4490 optimize_encoding ();
4491
29b0f896
AM
4492 if (!process_suffix ())
4493 return;
e413e4e9 4494
bc0844ae
L
4495 /* Update operand types. */
4496 for (j = 0; j < i.operands; j++)
4497 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4498
29b0f896
AM
4499 /* Make still unresolved immediate matches conform to size of immediate
4500 given in i.suffix. */
4501 if (!finalize_imm ())
4502 return;
252b5132 4503
40fb9820 4504 if (i.types[0].bitfield.imm1)
29b0f896 4505 i.imm_operands = 0; /* kludge for shift insns. */
252b5132 4506
9afe6eb8
L
4507 /* We only need to check those implicit registers for instructions
4508 with 3 operands or less. */
4509 if (i.operands <= 3)
4510 for (j = 0; j < i.operands; j++)
75e5731b
JB
4511 if (i.types[j].bitfield.instance != InstanceNone
4512 && !i.types[j].bitfield.xmmword)
9afe6eb8 4513 i.reg_operands--;
40fb9820 4514
c0f3af97
L
4515 /* ImmExt should be processed after SSE2AVX. */
4516 if (!i.tm.opcode_modifier.sse2avx
4517 && i.tm.opcode_modifier.immext)
65da13b5 4518 process_immext ();
252b5132 4519
29b0f896
AM
4520 /* For insns with operands there are more diddles to do to the opcode. */
4521 if (i.operands)
4522 {
4523 if (!process_operands ())
4524 return;
4525 }
40fb9820 4526 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
29b0f896
AM
4527 {
4528 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4529 as_warn (_("translating to `%sp'"), i.tm.name);
4530 }
252b5132 4531
7a8655d2 4532 if (is_any_vex_encoding (&i.tm))
9e5e5283 4533 {
c1dc7af5 4534 if (!cpu_arch_flags.bitfield.cpui286)
9e5e5283 4535 {
c1dc7af5 4536 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
9e5e5283
L
4537 i.tm.name);
4538 return;
4539 }
c0f3af97 4540
9e5e5283
L
4541 if (i.tm.opcode_modifier.vex)
4542 build_vex_prefix (t);
4543 else
4544 build_evex_prefix ();
4545 }
43234a1e 4546
5dd85c99
SP
4547 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4548 instructions may define INT_OPCODE as well, so avoid this corner
4549 case for those instructions that use MODRM. */
4550 if (i.tm.base_opcode == INT_OPCODE
a6461c02
SP
4551 && !i.tm.opcode_modifier.modrm
4552 && i.op[0].imms->X_add_number == 3)
29b0f896
AM
4553 {
4554 i.tm.base_opcode = INT3_OPCODE;
4555 i.imm_operands = 0;
4556 }
252b5132 4557
0cfa3eb3
JB
4558 if ((i.tm.opcode_modifier.jump == JUMP
4559 || i.tm.opcode_modifier.jump == JUMP_BYTE
4560 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896
AM
4561 && i.op[0].disps->X_op == O_constant)
4562 {
4563 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4564 the absolute address given by the constant. Since ix86 jumps and
4565 calls are pc relative, we need to generate a reloc. */
4566 i.op[0].disps->X_add_symbol = &abs_symbol;
4567 i.op[0].disps->X_op = O_symbol;
4568 }
252b5132 4569
29b0f896
AM
4570 /* For 8 bit registers we need an empty rex prefix. Also if the
4571 instruction already has a prefix, we need to convert old
4572 registers to new ones. */
773f551c 4573
bab6aec1 4574 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
29b0f896 4575 && (i.op[0].regs->reg_flags & RegRex64) != 0)
bab6aec1 4576 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
29b0f896 4577 && (i.op[1].regs->reg_flags & RegRex64) != 0)
bab6aec1
JB
4578 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4579 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
29b0f896
AM
4580 && i.rex != 0))
4581 {
4582 int x;
726c5dcd 4583
29b0f896
AM
4584 i.rex |= REX_OPCODE;
4585 for (x = 0; x < 2; x++)
4586 {
4587 /* Look for 8 bit operand that uses old registers. */
bab6aec1 4588 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
29b0f896 4589 && (i.op[x].regs->reg_flags & RegRex64) == 0)
773f551c 4590 {
3f93af61 4591 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
29b0f896
AM
4592 /* In case it is "hi" register, give up. */
4593 if (i.op[x].regs->reg_num > 3)
a540244d 4594 as_bad (_("can't encode register '%s%s' in an "
4eed87de 4595 "instruction requiring REX prefix."),
a540244d 4596 register_prefix, i.op[x].regs->reg_name);
773f551c 4597
29b0f896
AM
4598 /* Otherwise it is equivalent to the extended register.
4599 Since the encoding doesn't change this is merely
4600 cosmetic cleanup for debug output. */
4601
4602 i.op[x].regs = i.op[x].regs + 8;
773f551c 4603 }
29b0f896
AM
4604 }
4605 }
773f551c 4606
6b6b6807
L
4607 if (i.rex == 0 && i.rex_encoding)
4608 {
4609 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
3f93af61 4610 that uses legacy register. If it is "hi" register, don't add
6b6b6807
L
4611 the REX_OPCODE byte. */
4612 int x;
4613 for (x = 0; x < 2; x++)
bab6aec1 4614 if (i.types[x].bitfield.class == Reg
6b6b6807
L
4615 && i.types[x].bitfield.byte
4616 && (i.op[x].regs->reg_flags & RegRex64) == 0
4617 && i.op[x].regs->reg_num > 3)
4618 {
3f93af61 4619 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
6b6b6807
L
4620 i.rex_encoding = FALSE;
4621 break;
4622 }
4623
4624 if (i.rex_encoding)
4625 i.rex = REX_OPCODE;
4626 }
4627
7ab9ffdd 4628 if (i.rex != 0)
29b0f896
AM
4629 add_prefix (REX_OPCODE | i.rex);
4630
4631 /* We are ready to output the insn. */
4632 output_insn ();
e379e5f3
L
4633
4634 last_insn.seg = now_seg;
4635
4636 if (i.tm.opcode_modifier.isprefix)
4637 {
4638 last_insn.kind = last_insn_prefix;
4639 last_insn.name = i.tm.name;
4640 last_insn.file = as_where (&last_insn.line);
4641 }
4642 else
4643 last_insn.kind = last_insn_other;
29b0f896
AM
4644}
4645
4646static char *
e3bb37b5 4647parse_insn (char *line, char *mnemonic)
29b0f896
AM
4648{
4649 char *l = line;
4650 char *token_start = l;
4651 char *mnem_p;
5c6af06e 4652 int supported;
d3ce72d0 4653 const insn_template *t;
b6169b20 4654 char *dot_p = NULL;
29b0f896 4655
29b0f896
AM
4656 while (1)
4657 {
4658 mnem_p = mnemonic;
4659 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4660 {
b6169b20
L
4661 if (*mnem_p == '.')
4662 dot_p = mnem_p;
29b0f896
AM
4663 mnem_p++;
4664 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
45288df1 4665 {
29b0f896
AM
4666 as_bad (_("no such instruction: `%s'"), token_start);
4667 return NULL;
4668 }
4669 l++;
4670 }
4671 if (!is_space_char (*l)
4672 && *l != END_OF_INSN
e44823cf
JB
4673 && (intel_syntax
4674 || (*l != PREFIX_SEPARATOR
4675 && *l != ',')))
29b0f896
AM
4676 {
4677 as_bad (_("invalid character %s in mnemonic"),
4678 output_invalid (*l));
4679 return NULL;
4680 }
4681 if (token_start == l)
4682 {
e44823cf 4683 if (!intel_syntax && *l == PREFIX_SEPARATOR)
29b0f896
AM
4684 as_bad (_("expecting prefix; got nothing"));
4685 else
4686 as_bad (_("expecting mnemonic; got nothing"));
4687 return NULL;
4688 }
45288df1 4689
29b0f896 4690 /* Look up instruction (or prefix) via hash table. */
d3ce72d0 4691 current_templates = (const templates *) hash_find (op_hash, mnemonic);
47926f60 4692
29b0f896
AM
4693 if (*l != END_OF_INSN
4694 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4695 && current_templates
40fb9820 4696 && current_templates->start->opcode_modifier.isprefix)
29b0f896 4697 {
c6fb90c8 4698 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2dd88dca
JB
4699 {
4700 as_bad ((flag_code != CODE_64BIT
4701 ? _("`%s' is only supported in 64-bit mode")
4702 : _("`%s' is not supported in 64-bit mode")),
4703 current_templates->start->name);
4704 return NULL;
4705 }
29b0f896
AM
4706 /* If we are in 16-bit mode, do not allow addr16 or data16.
4707 Similarly, in 32-bit mode, do not allow addr32 or data32. */
673fe0f0
JB
4708 if ((current_templates->start->opcode_modifier.size == SIZE16
4709 || current_templates->start->opcode_modifier.size == SIZE32)
29b0f896 4710 && flag_code != CODE_64BIT
673fe0f0 4711 && ((current_templates->start->opcode_modifier.size == SIZE32)
29b0f896
AM
4712 ^ (flag_code == CODE_16BIT)))
4713 {
4714 as_bad (_("redundant %s prefix"),
4715 current_templates->start->name);
4716 return NULL;
45288df1 4717 }
86fa6981 4718 if (current_templates->start->opcode_length == 0)
29b0f896 4719 {
86fa6981
L
4720 /* Handle pseudo prefixes. */
4721 switch (current_templates->start->base_opcode)
4722 {
4723 case 0x0:
4724 /* {disp8} */
4725 i.disp_encoding = disp_encoding_8bit;
4726 break;
4727 case 0x1:
4728 /* {disp32} */
4729 i.disp_encoding = disp_encoding_32bit;
4730 break;
4731 case 0x2:
4732 /* {load} */
4733 i.dir_encoding = dir_encoding_load;
4734 break;
4735 case 0x3:
4736 /* {store} */
4737 i.dir_encoding = dir_encoding_store;
4738 break;
4739 case 0x4:
42e04b36
L
4740 /* {vex} */
4741 i.vec_encoding = vex_encoding_vex;
86fa6981
L
4742 break;
4743 case 0x5:
4744 /* {vex3} */
4745 i.vec_encoding = vex_encoding_vex3;
4746 break;
4747 case 0x6:
4748 /* {evex} */
4749 i.vec_encoding = vex_encoding_evex;
4750 break;
6b6b6807
L
4751 case 0x7:
4752 /* {rex} */
4753 i.rex_encoding = TRUE;
4754 break;
b6f8c7c4
L
4755 case 0x8:
4756 /* {nooptimize} */
4757 i.no_optimize = TRUE;
4758 break;
86fa6981
L
4759 default:
4760 abort ();
4761 }
4762 }
4763 else
4764 {
4765 /* Add prefix, checking for repeated prefixes. */
4e9ac44a 4766 switch (add_prefix (current_templates->start->base_opcode))
86fa6981 4767 {
4e9ac44a
L
4768 case PREFIX_EXIST:
4769 return NULL;
4770 case PREFIX_DS:
d777820b 4771 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4e9ac44a
L
4772 i.notrack_prefix = current_templates->start->name;
4773 break;
4774 case PREFIX_REP:
4775 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4776 i.hle_prefix = current_templates->start->name;
4777 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4778 i.bnd_prefix = current_templates->start->name;
4779 else
4780 i.rep_prefix = current_templates->start->name;
4781 break;
4782 default:
4783 break;
86fa6981 4784 }
29b0f896
AM
4785 }
4786 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4787 token_start = ++l;
4788 }
4789 else
4790 break;
4791 }
45288df1 4792
30a55f88 4793 if (!current_templates)
b6169b20 4794 {
07d5e953
JB
4795 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4796 Check if we should swap operand or force 32bit displacement in
f8a5c266 4797 encoding. */
30a55f88 4798 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
64c49ab3 4799 i.dir_encoding = dir_encoding_swap;
8d63c93e 4800 else if (mnem_p - 3 == dot_p
a501d77e
L
4801 && dot_p[1] == 'd'
4802 && dot_p[2] == '8')
4803 i.disp_encoding = disp_encoding_8bit;
8d63c93e 4804 else if (mnem_p - 4 == dot_p
f8a5c266
L
4805 && dot_p[1] == 'd'
4806 && dot_p[2] == '3'
4807 && dot_p[3] == '2')
a501d77e 4808 i.disp_encoding = disp_encoding_32bit;
30a55f88
L
4809 else
4810 goto check_suffix;
4811 mnem_p = dot_p;
4812 *dot_p = '\0';
d3ce72d0 4813 current_templates = (const templates *) hash_find (op_hash, mnemonic);
b6169b20
L
4814 }
4815
29b0f896
AM
4816 if (!current_templates)
4817 {
dc1e8a47 4818 check_suffix:
1c529385 4819 if (mnem_p > mnemonic)
29b0f896 4820 {
1c529385
LH
4821 /* See if we can get a match by trimming off a suffix. */
4822 switch (mnem_p[-1])
29b0f896 4823 {
1c529385
LH
4824 case WORD_MNEM_SUFFIX:
4825 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
29b0f896
AM
4826 i.suffix = SHORT_MNEM_SUFFIX;
4827 else
1c529385
LH
4828 /* Fall through. */
4829 case BYTE_MNEM_SUFFIX:
4830 case QWORD_MNEM_SUFFIX:
4831 i.suffix = mnem_p[-1];
29b0f896 4832 mnem_p[-1] = '\0';
d3ce72d0 4833 current_templates = (const templates *) hash_find (op_hash,
1c529385
LH
4834 mnemonic);
4835 break;
4836 case SHORT_MNEM_SUFFIX:
4837 case LONG_MNEM_SUFFIX:
4838 if (!intel_syntax)
4839 {
4840 i.suffix = mnem_p[-1];
4841 mnem_p[-1] = '\0';
4842 current_templates = (const templates *) hash_find (op_hash,
4843 mnemonic);
4844 }
4845 break;
4846
4847 /* Intel Syntax. */
4848 case 'd':
4849 if (intel_syntax)
4850 {
4851 if (intel_float_operand (mnemonic) == 1)
4852 i.suffix = SHORT_MNEM_SUFFIX;
4853 else
4854 i.suffix = LONG_MNEM_SUFFIX;
4855 mnem_p[-1] = '\0';
4856 current_templates = (const templates *) hash_find (op_hash,
4857 mnemonic);
4858 }
4859 break;
29b0f896 4860 }
29b0f896 4861 }
1c529385 4862
29b0f896
AM
4863 if (!current_templates)
4864 {
4865 as_bad (_("no such instruction: `%s'"), token_start);
4866 return NULL;
4867 }
4868 }
252b5132 4869
0cfa3eb3
JB
4870 if (current_templates->start->opcode_modifier.jump == JUMP
4871 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
4872 {
4873 /* Check for a branch hint. We allow ",pt" and ",pn" for
4874 predict taken and predict not taken respectively.
4875 I'm not sure that branch hints actually do anything on loop
4876 and jcxz insns (JumpByte) for current Pentium4 chips. They
4877 may work in the future and it doesn't hurt to accept them
4878 now. */
4879 if (l[0] == ',' && l[1] == 'p')
4880 {
4881 if (l[2] == 't')
4882 {
4883 if (!add_prefix (DS_PREFIX_OPCODE))
4884 return NULL;
4885 l += 3;
4886 }
4887 else if (l[2] == 'n')
4888 {
4889 if (!add_prefix (CS_PREFIX_OPCODE))
4890 return NULL;
4891 l += 3;
4892 }
4893 }
4894 }
4895 /* Any other comma loses. */
4896 if (*l == ',')
4897 {
4898 as_bad (_("invalid character %s in mnemonic"),
4899 output_invalid (*l));
4900 return NULL;
4901 }
252b5132 4902
29b0f896 4903 /* Check if instruction is supported on specified architecture. */
5c6af06e
JB
4904 supported = 0;
4905 for (t = current_templates->start; t < current_templates->end; ++t)
4906 {
c0f3af97
L
4907 supported |= cpu_flags_match (t);
4908 if (supported == CPU_FLAGS_PERFECT_MATCH)
548d0ee6
JB
4909 {
4910 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4911 as_warn (_("use .code16 to ensure correct addressing mode"));
3629bb00 4912
548d0ee6
JB
4913 return l;
4914 }
29b0f896 4915 }
3629bb00 4916
548d0ee6
JB
4917 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4918 as_bad (flag_code == CODE_64BIT
4919 ? _("`%s' is not supported in 64-bit mode")
4920 : _("`%s' is only supported in 64-bit mode"),
4921 current_templates->start->name);
4922 else
4923 as_bad (_("`%s' is not supported on `%s%s'"),
4924 current_templates->start->name,
4925 cpu_arch_name ? cpu_arch_name : default_arch,
4926 cpu_sub_arch_name ? cpu_sub_arch_name : "");
252b5132 4927
548d0ee6 4928 return NULL;
29b0f896 4929}
252b5132 4930
29b0f896 4931static char *
e3bb37b5 4932parse_operands (char *l, const char *mnemonic)
29b0f896
AM
4933{
4934 char *token_start;
3138f287 4935
29b0f896
AM
4936 /* 1 if operand is pending after ','. */
4937 unsigned int expecting_operand = 0;
252b5132 4938
29b0f896
AM
4939 /* Non-zero if operand parens not balanced. */
4940 unsigned int paren_not_balanced;
4941
4942 while (*l != END_OF_INSN)
4943 {
4944 /* Skip optional white space before operand. */
4945 if (is_space_char (*l))
4946 ++l;
d02603dc 4947 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
29b0f896
AM
4948 {
4949 as_bad (_("invalid character %s before operand %d"),
4950 output_invalid (*l),
4951 i.operands + 1);
4952 return NULL;
4953 }
d02603dc 4954 token_start = l; /* After white space. */
29b0f896
AM
4955 paren_not_balanced = 0;
4956 while (paren_not_balanced || *l != ',')
4957 {
4958 if (*l == END_OF_INSN)
4959 {
4960 if (paren_not_balanced)
4961 {
4962 if (!intel_syntax)
4963 as_bad (_("unbalanced parenthesis in operand %d."),
4964 i.operands + 1);
4965 else
4966 as_bad (_("unbalanced brackets in operand %d."),
4967 i.operands + 1);
4968 return NULL;
4969 }
4970 else
4971 break; /* we are done */
4972 }
d02603dc 4973 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
29b0f896
AM
4974 {
4975 as_bad (_("invalid character %s in operand %d"),
4976 output_invalid (*l),
4977 i.operands + 1);
4978 return NULL;
4979 }
4980 if (!intel_syntax)
4981 {
4982 if (*l == '(')
4983 ++paren_not_balanced;
4984 if (*l == ')')
4985 --paren_not_balanced;
4986 }
4987 else
4988 {
4989 if (*l == '[')
4990 ++paren_not_balanced;
4991 if (*l == ']')
4992 --paren_not_balanced;
4993 }
4994 l++;
4995 }
4996 if (l != token_start)
4997 { /* Yes, we've read in another operand. */
4998 unsigned int operand_ok;
4999 this_operand = i.operands++;
5000 if (i.operands > MAX_OPERANDS)
5001 {
5002 as_bad (_("spurious operands; (%d operands/instruction max)"),
5003 MAX_OPERANDS);
5004 return NULL;
5005 }
9d46ce34 5006 i.types[this_operand].bitfield.unspecified = 1;
29b0f896
AM
5007 /* Now parse operand adding info to 'i' as we go along. */
5008 END_STRING_AND_SAVE (l);
5009
1286ab78
L
5010 if (i.mem_operands > 1)
5011 {
5012 as_bad (_("too many memory references for `%s'"),
5013 mnemonic);
5014 return 0;
5015 }
5016
29b0f896
AM
5017 if (intel_syntax)
5018 operand_ok =
5019 i386_intel_operand (token_start,
5020 intel_float_operand (mnemonic));
5021 else
a7619375 5022 operand_ok = i386_att_operand (token_start);
29b0f896
AM
5023
5024 RESTORE_END_STRING (l);
5025 if (!operand_ok)
5026 return NULL;
5027 }
5028 else
5029 {
5030 if (expecting_operand)
5031 {
5032 expecting_operand_after_comma:
5033 as_bad (_("expecting operand after ','; got nothing"));
5034 return NULL;
5035 }
5036 if (*l == ',')
5037 {
5038 as_bad (_("expecting operand before ','; got nothing"));
5039 return NULL;
5040 }
5041 }
7f3f1ea2 5042
29b0f896
AM
5043 /* Now *l must be either ',' or END_OF_INSN. */
5044 if (*l == ',')
5045 {
5046 if (*++l == END_OF_INSN)
5047 {
5048 /* Just skip it, if it's \n complain. */
5049 goto expecting_operand_after_comma;
5050 }
5051 expecting_operand = 1;
5052 }
5053 }
5054 return l;
5055}
7f3f1ea2 5056
050dfa73 5057static void
4d456e3d 5058swap_2_operands (int xchg1, int xchg2)
050dfa73
MM
5059{
5060 union i386_op temp_op;
40fb9820 5061 i386_operand_type temp_type;
c48dadc9 5062 unsigned int temp_flags;
050dfa73 5063 enum bfd_reloc_code_real temp_reloc;
4eed87de 5064
050dfa73
MM
5065 temp_type = i.types[xchg2];
5066 i.types[xchg2] = i.types[xchg1];
5067 i.types[xchg1] = temp_type;
c48dadc9
JB
5068
5069 temp_flags = i.flags[xchg2];
5070 i.flags[xchg2] = i.flags[xchg1];
5071 i.flags[xchg1] = temp_flags;
5072
050dfa73
MM
5073 temp_op = i.op[xchg2];
5074 i.op[xchg2] = i.op[xchg1];
5075 i.op[xchg1] = temp_op;
c48dadc9 5076
050dfa73
MM
5077 temp_reloc = i.reloc[xchg2];
5078 i.reloc[xchg2] = i.reloc[xchg1];
5079 i.reloc[xchg1] = temp_reloc;
43234a1e
L
5080
5081 if (i.mask)
5082 {
5083 if (i.mask->operand == xchg1)
5084 i.mask->operand = xchg2;
5085 else if (i.mask->operand == xchg2)
5086 i.mask->operand = xchg1;
5087 }
5088 if (i.broadcast)
5089 {
5090 if (i.broadcast->operand == xchg1)
5091 i.broadcast->operand = xchg2;
5092 else if (i.broadcast->operand == xchg2)
5093 i.broadcast->operand = xchg1;
5094 }
5095 if (i.rounding)
5096 {
5097 if (i.rounding->operand == xchg1)
5098 i.rounding->operand = xchg2;
5099 else if (i.rounding->operand == xchg2)
5100 i.rounding->operand = xchg1;
5101 }
050dfa73
MM
5102}
5103
29b0f896 5104static void
e3bb37b5 5105swap_operands (void)
29b0f896 5106{
b7c61d9a 5107 switch (i.operands)
050dfa73 5108 {
c0f3af97 5109 case 5:
b7c61d9a 5110 case 4:
4d456e3d 5111 swap_2_operands (1, i.operands - 2);
1a0670f3 5112 /* Fall through. */
b7c61d9a
L
5113 case 3:
5114 case 2:
4d456e3d 5115 swap_2_operands (0, i.operands - 1);
b7c61d9a
L
5116 break;
5117 default:
5118 abort ();
29b0f896 5119 }
29b0f896
AM
5120
5121 if (i.mem_operands == 2)
5122 {
5123 const seg_entry *temp_seg;
5124 temp_seg = i.seg[0];
5125 i.seg[0] = i.seg[1];
5126 i.seg[1] = temp_seg;
5127 }
5128}
252b5132 5129
29b0f896
AM
5130/* Try to ensure constant immediates are represented in the smallest
5131 opcode possible. */
5132static void
e3bb37b5 5133optimize_imm (void)
29b0f896
AM
5134{
5135 char guess_suffix = 0;
5136 int op;
252b5132 5137
29b0f896
AM
5138 if (i.suffix)
5139 guess_suffix = i.suffix;
5140 else if (i.reg_operands)
5141 {
5142 /* Figure out a suffix from the last register operand specified.
75e5731b
JB
5143 We can't do this properly yet, i.e. excluding special register
5144 instances, but the following works for instructions with
5145 immediates. In any case, we can't set i.suffix yet. */
29b0f896 5146 for (op = i.operands; --op >= 0;)
bab6aec1
JB
5147 if (i.types[op].bitfield.class != Reg)
5148 continue;
5149 else if (i.types[op].bitfield.byte)
7ab9ffdd 5150 {
40fb9820
L
5151 guess_suffix = BYTE_MNEM_SUFFIX;
5152 break;
5153 }
bab6aec1 5154 else if (i.types[op].bitfield.word)
252b5132 5155 {
40fb9820
L
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157 break;
5158 }
bab6aec1 5159 else if (i.types[op].bitfield.dword)
40fb9820
L
5160 {
5161 guess_suffix = LONG_MNEM_SUFFIX;
5162 break;
5163 }
bab6aec1 5164 else if (i.types[op].bitfield.qword)
40fb9820
L
5165 {
5166 guess_suffix = QWORD_MNEM_SUFFIX;
29b0f896 5167 break;
252b5132 5168 }
29b0f896
AM
5169 }
5170 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5171 guess_suffix = WORD_MNEM_SUFFIX;
5172
5173 for (op = i.operands; --op >= 0;)
40fb9820 5174 if (operand_type_check (i.types[op], imm))
29b0f896
AM
5175 {
5176 switch (i.op[op].imms->X_op)
252b5132 5177 {
29b0f896
AM
5178 case O_constant:
5179 /* If a suffix is given, this operand may be shortened. */
5180 switch (guess_suffix)
252b5132 5181 {
29b0f896 5182 case LONG_MNEM_SUFFIX:
40fb9820
L
5183 i.types[op].bitfield.imm32 = 1;
5184 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5185 break;
5186 case WORD_MNEM_SUFFIX:
40fb9820
L
5187 i.types[op].bitfield.imm16 = 1;
5188 i.types[op].bitfield.imm32 = 1;
5189 i.types[op].bitfield.imm32s = 1;
5190 i.types[op].bitfield.imm64 = 1;
29b0f896
AM
5191 break;
5192 case BYTE_MNEM_SUFFIX:
40fb9820
L
5193 i.types[op].bitfield.imm8 = 1;
5194 i.types[op].bitfield.imm8s = 1;
5195 i.types[op].bitfield.imm16 = 1;
5196 i.types[op].bitfield.imm32 = 1;
5197 i.types[op].bitfield.imm32s = 1;
5198 i.types[op].bitfield.imm64 = 1;
29b0f896 5199 break;
252b5132 5200 }
252b5132 5201
29b0f896
AM
5202 /* If this operand is at most 16 bits, convert it
5203 to a signed 16 bit number before trying to see
5204 whether it will fit in an even smaller size.
5205 This allows a 16-bit operand such as $0xffe0 to
5206 be recognised as within Imm8S range. */
40fb9820 5207 if ((i.types[op].bitfield.imm16)
29b0f896 5208 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
252b5132 5209 {
29b0f896
AM
5210 i.op[op].imms->X_add_number =
5211 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5212 }
a28def75
L
5213#ifdef BFD64
5214 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
40fb9820 5215 if ((i.types[op].bitfield.imm32)
29b0f896
AM
5216 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5217 == 0))
5218 {
5219 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5220 ^ ((offsetT) 1 << 31))
5221 - ((offsetT) 1 << 31));
5222 }
a28def75 5223#endif
40fb9820 5224 i.types[op]
c6fb90c8
L
5225 = operand_type_or (i.types[op],
5226 smallest_imm_type (i.op[op].imms->X_add_number));
252b5132 5227
29b0f896
AM
5228 /* We must avoid matching of Imm32 templates when 64bit
5229 only immediate is available. */
5230 if (guess_suffix == QWORD_MNEM_SUFFIX)
40fb9820 5231 i.types[op].bitfield.imm32 = 0;
29b0f896 5232 break;
252b5132 5233
29b0f896
AM
5234 case O_absent:
5235 case O_register:
5236 abort ();
5237
5238 /* Symbols and expressions. */
5239 default:
9cd96992
JB
5240 /* Convert symbolic operand to proper sizes for matching, but don't
5241 prevent matching a set of insns that only supports sizes other
5242 than those matching the insn suffix. */
5243 {
40fb9820 5244 i386_operand_type mask, allowed;
d3ce72d0 5245 const insn_template *t;
9cd96992 5246
0dfbf9d7
L
5247 operand_type_set (&mask, 0);
5248 operand_type_set (&allowed, 0);
40fb9820 5249
4eed87de
AM
5250 for (t = current_templates->start;
5251 t < current_templates->end;
5252 ++t)
bab6aec1
JB
5253 {
5254 allowed = operand_type_or (allowed, t->operand_types[op]);
5255 allowed = operand_type_and (allowed, anyimm);
5256 }
9cd96992
JB
5257 switch (guess_suffix)
5258 {
5259 case QWORD_MNEM_SUFFIX:
40fb9820
L
5260 mask.bitfield.imm64 = 1;
5261 mask.bitfield.imm32s = 1;
9cd96992
JB
5262 break;
5263 case LONG_MNEM_SUFFIX:
40fb9820 5264 mask.bitfield.imm32 = 1;
9cd96992
JB
5265 break;
5266 case WORD_MNEM_SUFFIX:
40fb9820 5267 mask.bitfield.imm16 = 1;
9cd96992
JB
5268 break;
5269 case BYTE_MNEM_SUFFIX:
40fb9820 5270 mask.bitfield.imm8 = 1;
9cd96992
JB
5271 break;
5272 default:
9cd96992
JB
5273 break;
5274 }
c6fb90c8 5275 allowed = operand_type_and (mask, allowed);
0dfbf9d7 5276 if (!operand_type_all_zero (&allowed))
c6fb90c8 5277 i.types[op] = operand_type_and (i.types[op], mask);
9cd96992 5278 }
29b0f896 5279 break;
252b5132 5280 }
29b0f896
AM
5281 }
5282}
47926f60 5283
29b0f896
AM
5284/* Try to use the smallest displacement type too. */
5285static void
e3bb37b5 5286optimize_disp (void)
29b0f896
AM
5287{
5288 int op;
3e73aa7c 5289
29b0f896 5290 for (op = i.operands; --op >= 0;)
40fb9820 5291 if (operand_type_check (i.types[op], disp))
252b5132 5292 {
b300c311 5293 if (i.op[op].disps->X_op == O_constant)
252b5132 5294 {
91d6fa6a 5295 offsetT op_disp = i.op[op].disps->X_add_number;
29b0f896 5296
40fb9820 5297 if (i.types[op].bitfield.disp16
91d6fa6a 5298 && (op_disp & ~(offsetT) 0xffff) == 0)
b300c311
L
5299 {
5300 /* If this operand is at most 16 bits, convert
5301 to a signed 16 bit number and don't use 64bit
5302 displacement. */
91d6fa6a 5303 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
40fb9820 5304 i.types[op].bitfield.disp64 = 0;
b300c311 5305 }
a28def75
L
5306#ifdef BFD64
5307 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
40fb9820 5308 if (i.types[op].bitfield.disp32
91d6fa6a 5309 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
b300c311
L
5310 {
5311 /* If this operand is at most 32 bits, convert
5312 to a signed 32 bit number and don't use 64bit
5313 displacement. */
91d6fa6a
NC
5314 op_disp &= (((offsetT) 2 << 31) - 1);
5315 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
40fb9820 5316 i.types[op].bitfield.disp64 = 0;
b300c311 5317 }
a28def75 5318#endif
91d6fa6a 5319 if (!op_disp && i.types[op].bitfield.baseindex)
b300c311 5320 {
40fb9820
L
5321 i.types[op].bitfield.disp8 = 0;
5322 i.types[op].bitfield.disp16 = 0;
5323 i.types[op].bitfield.disp32 = 0;
5324 i.types[op].bitfield.disp32s = 0;
5325 i.types[op].bitfield.disp64 = 0;
b300c311
L
5326 i.op[op].disps = 0;
5327 i.disp_operands--;
5328 }
5329 else if (flag_code == CODE_64BIT)
5330 {
91d6fa6a 5331 if (fits_in_signed_long (op_disp))
28a9d8f5 5332 {
40fb9820
L
5333 i.types[op].bitfield.disp64 = 0;
5334 i.types[op].bitfield.disp32s = 1;
28a9d8f5 5335 }
0e1147d9 5336 if (i.prefix[ADDR_PREFIX]
91d6fa6a 5337 && fits_in_unsigned_long (op_disp))
40fb9820 5338 i.types[op].bitfield.disp32 = 1;
b300c311 5339 }
40fb9820
L
5340 if ((i.types[op].bitfield.disp32
5341 || i.types[op].bitfield.disp32s
5342 || i.types[op].bitfield.disp16)
b5014f7a 5343 && fits_in_disp8 (op_disp))
40fb9820 5344 i.types[op].bitfield.disp8 = 1;
252b5132 5345 }
67a4f2b7
AO
5346 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5347 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5348 {
5349 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5350 i.op[op].disps, 0, i.reloc[op]);
40fb9820
L
5351 i.types[op].bitfield.disp8 = 0;
5352 i.types[op].bitfield.disp16 = 0;
5353 i.types[op].bitfield.disp32 = 0;
5354 i.types[op].bitfield.disp32s = 0;
5355 i.types[op].bitfield.disp64 = 0;
67a4f2b7
AO
5356 }
5357 else
b300c311 5358 /* We only support 64bit displacement on constants. */
40fb9820 5359 i.types[op].bitfield.disp64 = 0;
252b5132 5360 }
29b0f896
AM
5361}
5362
4a1b91ea
L
5363/* Return 1 if there is a match in broadcast bytes between operand
5364 GIVEN and instruction template T. */
5365
5366static INLINE int
5367match_broadcast_size (const insn_template *t, unsigned int given)
5368{
5369 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5370 && i.types[given].bitfield.byte)
5371 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5372 && i.types[given].bitfield.word)
5373 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5374 && i.types[given].bitfield.dword)
5375 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5376 && i.types[given].bitfield.qword));
5377}
5378
6c30d220
L
5379/* Check if operands are valid for the instruction. */
5380
5381static int
5382check_VecOperands (const insn_template *t)
5383{
43234a1e 5384 unsigned int op;
e2195274 5385 i386_cpu_flags cpu;
e2195274
JB
5386
5387 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5388 any one operand are implicity requiring AVX512VL support if the actual
5389 operand size is YMMword or XMMword. Since this function runs after
5390 template matching, there's no need to check for YMMword/XMMword in
5391 the template. */
5392 cpu = cpu_flags_and (t->cpu_flags, avx512);
5393 if (!cpu_flags_all_zero (&cpu)
5394 && !t->cpu_flags.bitfield.cpuavx512vl
5395 && !cpu_arch_flags.bitfield.cpuavx512vl)
5396 {
5397 for (op = 0; op < t->operands; ++op)
5398 {
5399 if (t->operand_types[op].bitfield.zmmword
5400 && (i.types[op].bitfield.ymmword
5401 || i.types[op].bitfield.xmmword))
5402 {
5403 i.error = unsupported;
5404 return 1;
5405 }
5406 }
5407 }
43234a1e 5408
6c30d220
L
5409 /* Without VSIB byte, we can't have a vector register for index. */
5410 if (!t->opcode_modifier.vecsib
5411 && i.index_reg
1b54b8d7
JB
5412 && (i.index_reg->reg_type.bitfield.xmmword
5413 || i.index_reg->reg_type.bitfield.ymmword
5414 || i.index_reg->reg_type.bitfield.zmmword))
6c30d220
L
5415 {
5416 i.error = unsupported_vector_index_register;
5417 return 1;
5418 }
5419
ad8ecc81
MZ
5420 /* Check if default mask is allowed. */
5421 if (t->opcode_modifier.nodefmask
5422 && (!i.mask || i.mask->mask->reg_num == 0))
5423 {
5424 i.error = no_default_mask;
5425 return 1;
5426 }
5427
7bab8ab5
JB
5428 /* For VSIB byte, we need a vector register for index, and all vector
5429 registers must be distinct. */
5430 if (t->opcode_modifier.vecsib)
5431 {
5432 if (!i.index_reg
6c30d220 5433 || !((t->opcode_modifier.vecsib == VecSIB128
1b54b8d7 5434 && i.index_reg->reg_type.bitfield.xmmword)
6c30d220 5435 || (t->opcode_modifier.vecsib == VecSIB256
1b54b8d7 5436 && i.index_reg->reg_type.bitfield.ymmword)
43234a1e 5437 || (t->opcode_modifier.vecsib == VecSIB512
1b54b8d7 5438 && i.index_reg->reg_type.bitfield.zmmword)))
7bab8ab5
JB
5439 {
5440 i.error = invalid_vsib_address;
5441 return 1;
5442 }
5443
43234a1e
L
5444 gas_assert (i.reg_operands == 2 || i.mask);
5445 if (i.reg_operands == 2 && !i.mask)
5446 {
3528c362 5447 gas_assert (i.types[0].bitfield.class == RegSIMD);
1b54b8d7
JB
5448 gas_assert (i.types[0].bitfield.xmmword
5449 || i.types[0].bitfield.ymmword);
3528c362 5450 gas_assert (i.types[2].bitfield.class == RegSIMD);
1b54b8d7
JB
5451 gas_assert (i.types[2].bitfield.xmmword
5452 || i.types[2].bitfield.ymmword);
43234a1e
L
5453 if (operand_check == check_none)
5454 return 0;
5455 if (register_number (i.op[0].regs)
5456 != register_number (i.index_reg)
5457 && register_number (i.op[2].regs)
5458 != register_number (i.index_reg)
5459 && register_number (i.op[0].regs)
5460 != register_number (i.op[2].regs))
5461 return 0;
5462 if (operand_check == check_error)
5463 {
5464 i.error = invalid_vector_register_set;
5465 return 1;
5466 }
5467 as_warn (_("mask, index, and destination registers should be distinct"));
5468 }
8444f82a
MZ
5469 else if (i.reg_operands == 1 && i.mask)
5470 {
3528c362 5471 if (i.types[1].bitfield.class == RegSIMD
1b54b8d7
JB
5472 && (i.types[1].bitfield.xmmword
5473 || i.types[1].bitfield.ymmword
5474 || i.types[1].bitfield.zmmword)
8444f82a
MZ
5475 && (register_number (i.op[1].regs)
5476 == register_number (i.index_reg)))
5477 {
5478 if (operand_check == check_error)
5479 {
5480 i.error = invalid_vector_register_set;
5481 return 1;
5482 }
5483 if (operand_check != check_none)
5484 as_warn (_("index and destination registers should be distinct"));
5485 }
5486 }
43234a1e 5487 }
7bab8ab5 5488
43234a1e
L
5489 /* Check if broadcast is supported by the instruction and is applied
5490 to the memory operand. */
5491 if (i.broadcast)
5492 {
8e6e0792 5493 i386_operand_type type, overlap;
43234a1e
L
5494
5495 /* Check if specified broadcast is supported in this instruction,
4a1b91ea 5496 and its broadcast bytes match the memory operand. */
32546502 5497 op = i.broadcast->operand;
8e6e0792 5498 if (!t->opcode_modifier.broadcast
c48dadc9 5499 || !(i.flags[op] & Operand_Mem)
c39e5b26 5500 || (!i.types[op].bitfield.unspecified
4a1b91ea 5501 && !match_broadcast_size (t, op)))
43234a1e
L
5502 {
5503 bad_broadcast:
5504 i.error = unsupported_broadcast;
5505 return 1;
5506 }
8e6e0792 5507
4a1b91ea
L
5508 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5509 * i.broadcast->type);
8e6e0792 5510 operand_type_set (&type, 0);
4a1b91ea 5511 switch (i.broadcast->bytes)
8e6e0792 5512 {
4a1b91ea
L
5513 case 2:
5514 type.bitfield.word = 1;
5515 break;
5516 case 4:
5517 type.bitfield.dword = 1;
5518 break;
8e6e0792
JB
5519 case 8:
5520 type.bitfield.qword = 1;
5521 break;
5522 case 16:
5523 type.bitfield.xmmword = 1;
5524 break;
5525 case 32:
5526 type.bitfield.ymmword = 1;
5527 break;
5528 case 64:
5529 type.bitfield.zmmword = 1;
5530 break;
5531 default:
5532 goto bad_broadcast;
5533 }
5534
5535 overlap = operand_type_and (type, t->operand_types[op]);
5536 if (operand_type_all_zero (&overlap))
5537 goto bad_broadcast;
5538
5539 if (t->opcode_modifier.checkregsize)
5540 {
5541 unsigned int j;
5542
e2195274 5543 type.bitfield.baseindex = 1;
8e6e0792
JB
5544 for (j = 0; j < i.operands; ++j)
5545 {
5546 if (j != op
5547 && !operand_type_register_match(i.types[j],
5548 t->operand_types[j],
5549 type,
5550 t->operand_types[op]))
5551 goto bad_broadcast;
5552 }
5553 }
43234a1e
L
5554 }
5555 /* If broadcast is supported in this instruction, we need to check if
5556 operand of one-element size isn't specified without broadcast. */
5557 else if (t->opcode_modifier.broadcast && i.mem_operands)
5558 {
5559 /* Find memory operand. */
5560 for (op = 0; op < i.operands; op++)
8dc0818e 5561 if (i.flags[op] & Operand_Mem)
43234a1e
L
5562 break;
5563 gas_assert (op < i.operands);
5564 /* Check size of the memory operand. */
4a1b91ea 5565 if (match_broadcast_size (t, op))
43234a1e
L
5566 {
5567 i.error = broadcast_needed;
5568 return 1;
5569 }
5570 }
c39e5b26
JB
5571 else
5572 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
43234a1e
L
5573
5574 /* Check if requested masking is supported. */
ae2387fe 5575 if (i.mask)
43234a1e 5576 {
ae2387fe
JB
5577 switch (t->opcode_modifier.masking)
5578 {
5579 case BOTH_MASKING:
5580 break;
5581 case MERGING_MASKING:
5582 if (i.mask->zeroing)
5583 {
5584 case 0:
5585 i.error = unsupported_masking;
5586 return 1;
5587 }
5588 break;
5589 case DYNAMIC_MASKING:
5590 /* Memory destinations allow only merging masking. */
5591 if (i.mask->zeroing && i.mem_operands)
5592 {
5593 /* Find memory operand. */
5594 for (op = 0; op < i.operands; op++)
c48dadc9 5595 if (i.flags[op] & Operand_Mem)
ae2387fe
JB
5596 break;
5597 gas_assert (op < i.operands);
5598 if (op == i.operands - 1)
5599 {
5600 i.error = unsupported_masking;
5601 return 1;
5602 }
5603 }
5604 break;
5605 default:
5606 abort ();
5607 }
43234a1e
L
5608 }
5609
5610 /* Check if masking is applied to dest operand. */
5611 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5612 {
5613 i.error = mask_not_on_destination;
5614 return 1;
5615 }
5616
43234a1e
L
5617 /* Check RC/SAE. */
5618 if (i.rounding)
5619 {
a80195f1
JB
5620 if (!t->opcode_modifier.sae
5621 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
43234a1e
L
5622 {
5623 i.error = unsupported_rc_sae;
5624 return 1;
5625 }
5626 /* If the instruction has several immediate operands and one of
5627 them is rounding, the rounding operand should be the last
5628 immediate operand. */
5629 if (i.imm_operands > 1
5630 && i.rounding->operand != (int) (i.imm_operands - 1))
7bab8ab5 5631 {
43234a1e 5632 i.error = rc_sae_operand_not_last_imm;
7bab8ab5
JB
5633 return 1;
5634 }
6c30d220
L
5635 }
5636
43234a1e 5637 /* Check vector Disp8 operand. */
b5014f7a
JB
5638 if (t->opcode_modifier.disp8memshift
5639 && i.disp_encoding != disp_encoding_32bit)
43234a1e
L
5640 {
5641 if (i.broadcast)
4a1b91ea 5642 i.memshift = t->opcode_modifier.broadcast - 1;
7091c612 5643 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
43234a1e 5644 i.memshift = t->opcode_modifier.disp8memshift;
7091c612
JB
5645 else
5646 {
5647 const i386_operand_type *type = NULL;
5648
5649 i.memshift = 0;
5650 for (op = 0; op < i.operands; op++)
8dc0818e 5651 if (i.flags[op] & Operand_Mem)
7091c612 5652 {
4174bfff
JB
5653 if (t->opcode_modifier.evex == EVEXLIG)
5654 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5655 else if (t->operand_types[op].bitfield.xmmword
5656 + t->operand_types[op].bitfield.ymmword
5657 + t->operand_types[op].bitfield.zmmword <= 1)
7091c612
JB
5658 type = &t->operand_types[op];
5659 else if (!i.types[op].bitfield.unspecified)
5660 type = &i.types[op];
5661 }
3528c362 5662 else if (i.types[op].bitfield.class == RegSIMD
4174bfff 5663 && t->opcode_modifier.evex != EVEXLIG)
7091c612
JB
5664 {
5665 if (i.types[op].bitfield.zmmword)
5666 i.memshift = 6;
5667 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5668 i.memshift = 5;
5669 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5670 i.memshift = 4;
5671 }
5672
5673 if (type)
5674 {
5675 if (type->bitfield.zmmword)
5676 i.memshift = 6;
5677 else if (type->bitfield.ymmword)
5678 i.memshift = 5;
5679 else if (type->bitfield.xmmword)
5680 i.memshift = 4;
5681 }
5682
5683 /* For the check in fits_in_disp8(). */
5684 if (i.memshift == 0)
5685 i.memshift = -1;
5686 }
43234a1e
L
5687
5688 for (op = 0; op < i.operands; op++)
5689 if (operand_type_check (i.types[op], disp)
5690 && i.op[op].disps->X_op == O_constant)
5691 {
b5014f7a 5692 if (fits_in_disp8 (i.op[op].disps->X_add_number))
43234a1e 5693 {
b5014f7a
JB
5694 i.types[op].bitfield.disp8 = 1;
5695 return 0;
43234a1e 5696 }
b5014f7a 5697 i.types[op].bitfield.disp8 = 0;
43234a1e
L
5698 }
5699 }
b5014f7a
JB
5700
5701 i.memshift = 0;
43234a1e 5702
6c30d220
L
5703 return 0;
5704}
5705
43f3e2ee 5706/* Check if operands are valid for the instruction. Update VEX
a683cc34
SP
5707 operand types. */
5708
5709static int
5710VEX_check_operands (const insn_template *t)
5711{
86fa6981 5712 if (i.vec_encoding == vex_encoding_evex)
43234a1e 5713 {
86fa6981 5714 /* This instruction must be encoded with EVEX prefix. */
e771e7c9 5715 if (!is_evex_encoding (t))
86fa6981
L
5716 {
5717 i.error = unsupported;
5718 return 1;
5719 }
5720 return 0;
43234a1e
L
5721 }
5722
a683cc34 5723 if (!t->opcode_modifier.vex)
86fa6981
L
5724 {
5725 /* This instruction template doesn't have VEX prefix. */
5726 if (i.vec_encoding != vex_encoding_default)
5727 {
5728 i.error = unsupported;
5729 return 1;
5730 }
5731 return 0;
5732 }
a683cc34 5733
9d3bf266
JB
5734 /* Check the special Imm4 cases; must be the first operand. */
5735 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
a683cc34
SP
5736 {
5737 if (i.op[0].imms->X_op != O_constant
5738 || !fits_in_imm4 (i.op[0].imms->X_add_number))
891edac4 5739 {
a65babc9 5740 i.error = bad_imm4;
891edac4
L
5741 return 1;
5742 }
a683cc34 5743
9d3bf266
JB
5744 /* Turn off Imm<N> so that update_imm won't complain. */
5745 operand_type_set (&i.types[0], 0);
a683cc34
SP
5746 }
5747
5748 return 0;
5749}
5750
d3ce72d0 5751static const insn_template *
83b16ac6 5752match_template (char mnem_suffix)
29b0f896
AM
5753{
5754 /* Points to template once we've found it. */
d3ce72d0 5755 const insn_template *t;
40fb9820 5756 i386_operand_type overlap0, overlap1, overlap2, overlap3;
c0f3af97 5757 i386_operand_type overlap4;
29b0f896 5758 unsigned int found_reverse_match;
dc2be329 5759 i386_opcode_modifier suffix_check;
40fb9820 5760 i386_operand_type operand_types [MAX_OPERANDS];
539e75ad 5761 int addr_prefix_disp;
45a4bb20 5762 unsigned int j, size_match, check_register;
5614d22c 5763 enum i386_error specific_error = 0;
29b0f896 5764
c0f3af97
L
5765#if MAX_OPERANDS != 5
5766# error "MAX_OPERANDS must be 5."
f48ff2ae
L
5767#endif
5768
29b0f896 5769 found_reverse_match = 0;
539e75ad 5770 addr_prefix_disp = -1;
40fb9820 5771
dc2be329 5772 /* Prepare for mnemonic suffix check. */
40fb9820 5773 memset (&suffix_check, 0, sizeof (suffix_check));
dc2be329
L
5774 switch (mnem_suffix)
5775 {
5776 case BYTE_MNEM_SUFFIX:
5777 suffix_check.no_bsuf = 1;
5778 break;
5779 case WORD_MNEM_SUFFIX:
5780 suffix_check.no_wsuf = 1;
5781 break;
5782 case SHORT_MNEM_SUFFIX:
5783 suffix_check.no_ssuf = 1;
5784 break;
5785 case LONG_MNEM_SUFFIX:
5786 suffix_check.no_lsuf = 1;
5787 break;
5788 case QWORD_MNEM_SUFFIX:
5789 suffix_check.no_qsuf = 1;
5790 break;
5791 default:
5792 /* NB: In Intel syntax, normally we can check for memory operand
5793 size when there is no mnemonic suffix. But jmp and call have
5794 2 different encodings with Dword memory operand size, one with
5795 No_ldSuf and the other without. i.suffix is set to
5796 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5797 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5798 suffix_check.no_ldsuf = 1;
83b16ac6
JB
5799 }
5800
01559ecc
L
5801 /* Must have right number of operands. */
5802 i.error = number_of_operands_mismatch;
5803
45aa61fe 5804 for (t = current_templates->start; t < current_templates->end; t++)
29b0f896 5805 {
539e75ad 5806 addr_prefix_disp = -1;
dbbc8b7e 5807 found_reverse_match = 0;
539e75ad 5808
29b0f896
AM
5809 if (i.operands != t->operands)
5810 continue;
5811
50aecf8c 5812 /* Check processor support. */
a65babc9 5813 i.error = unsupported;
45a4bb20 5814 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
50aecf8c
L
5815 continue;
5816
e1d4d893 5817 /* Check AT&T mnemonic. */
a65babc9 5818 i.error = unsupported_with_intel_mnemonic;
e1d4d893 5819 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
1efbbeb4
L
5820 continue;
5821
4b5aaf5f 5822 /* Check AT&T/Intel syntax. */
a65babc9 5823 i.error = unsupported_syntax;
5c07affc 5824 if ((intel_syntax && t->opcode_modifier.attsyntax)
4b5aaf5f 5825 || (!intel_syntax && t->opcode_modifier.intelsyntax))
1efbbeb4
L
5826 continue;
5827
4b5aaf5f
L
5828 /* Check Intel64/AMD64 ISA. */
5829 switch (isa64)
5830 {
5831 default:
5832 /* Default: Don't accept Intel64. */
5833 if (t->opcode_modifier.isa64 == INTEL64)
5834 continue;
5835 break;
5836 case amd64:
5837 /* -mamd64: Don't accept Intel64 and Intel64 only. */
5838 if (t->opcode_modifier.isa64 >= INTEL64)
5839 continue;
5840 break;
5841 case intel64:
5842 /* -mintel64: Don't accept AMD64. */
5990e377 5843 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
4b5aaf5f
L
5844 continue;
5845 break;
5846 }
5847
dc2be329 5848 /* Check the suffix. */
a65babc9 5849 i.error = invalid_instruction_suffix;
dc2be329
L
5850 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5851 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5852 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5853 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5854 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5855 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
83b16ac6 5856 continue;
29b0f896 5857
3ac21baa
JB
5858 size_match = operand_size_match (t);
5859 if (!size_match)
7d5e4556 5860 continue;
539e75ad 5861
6f2f06be
JB
5862 /* This is intentionally not
5863
0cfa3eb3 5864 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6f2f06be
JB
5865
5866 as the case of a missing * on the operand is accepted (perhaps with
5867 a warning, issued further down). */
0cfa3eb3 5868 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6f2f06be
JB
5869 {
5870 i.error = operand_type_mismatch;
5871 continue;
5872 }
5873
5c07affc
L
5874 for (j = 0; j < MAX_OPERANDS; j++)
5875 operand_types[j] = t->operand_types[j];
5876
45aa61fe
AM
5877 /* In general, don't allow 64-bit operands in 32-bit mode. */
5878 if (i.suffix == QWORD_MNEM_SUFFIX
5879 && flag_code != CODE_64BIT
5880 && (intel_syntax
3cd7f3e3 5881 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
625cbd7a 5882 && !t->opcode_modifier.broadcast
45aa61fe
AM
5883 && !intel_float_operand (t->name))
5884 : intel_float_operand (t->name) != 2)
3528c362
JB
5885 && ((operand_types[0].bitfield.class != RegMMX
5886 && operand_types[0].bitfield.class != RegSIMD)
5887 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5888 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
45aa61fe
AM
5889 && (t->base_opcode != 0x0fc7
5890 || t->extension_opcode != 1 /* cmpxchg8b */))
5891 continue;
5892
192dc9c6
JB
5893 /* In general, don't allow 32-bit operands on pre-386. */
5894 else if (i.suffix == LONG_MNEM_SUFFIX
5895 && !cpu_arch_flags.bitfield.cpui386
5896 && (intel_syntax
3cd7f3e3 5897 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
192dc9c6
JB
5898 && !intel_float_operand (t->name))
5899 : intel_float_operand (t->name) != 2)
3528c362
JB
5900 && ((operand_types[0].bitfield.class != RegMMX
5901 && operand_types[0].bitfield.class != RegSIMD)
5902 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5903 && operand_types[t->operands > 1].bitfield.class
5904 != RegSIMD)))
192dc9c6
JB
5905 continue;
5906
29b0f896 5907 /* Do not verify operands when there are none. */
50aecf8c 5908 else
29b0f896 5909 {
c6fb90c8 5910 if (!t->operands)
2dbab7d5
L
5911 /* We've found a match; break out of loop. */
5912 break;
29b0f896 5913 }
252b5132 5914
48bcea9f
JB
5915 if (!t->opcode_modifier.jump
5916 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5917 {
5918 /* There should be only one Disp operand. */
5919 for (j = 0; j < MAX_OPERANDS; j++)
5920 if (operand_type_check (operand_types[j], disp))
539e75ad 5921 break;
48bcea9f
JB
5922 if (j < MAX_OPERANDS)
5923 {
5924 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5925
5926 addr_prefix_disp = j;
5927
5928 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5929 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5930 switch (flag_code)
40fb9820 5931 {
48bcea9f
JB
5932 case CODE_16BIT:
5933 override = !override;
5934 /* Fall through. */
5935 case CODE_32BIT:
5936 if (operand_types[j].bitfield.disp32
5937 && operand_types[j].bitfield.disp16)
40fb9820 5938 {
48bcea9f
JB
5939 operand_types[j].bitfield.disp16 = override;
5940 operand_types[j].bitfield.disp32 = !override;
40fb9820 5941 }
48bcea9f
JB
5942 operand_types[j].bitfield.disp32s = 0;
5943 operand_types[j].bitfield.disp64 = 0;
5944 break;
5945
5946 case CODE_64BIT:
5947 if (operand_types[j].bitfield.disp32s
5948 || operand_types[j].bitfield.disp64)
40fb9820 5949 {
48bcea9f
JB
5950 operand_types[j].bitfield.disp64 &= !override;
5951 operand_types[j].bitfield.disp32s &= !override;
5952 operand_types[j].bitfield.disp32 = override;
40fb9820 5953 }
48bcea9f
JB
5954 operand_types[j].bitfield.disp16 = 0;
5955 break;
40fb9820 5956 }
539e75ad 5957 }
48bcea9f 5958 }
539e75ad 5959
02a86693
L
5960 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5961 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5962 continue;
5963
56ffb741 5964 /* We check register size if needed. */
e2195274
JB
5965 if (t->opcode_modifier.checkregsize)
5966 {
5967 check_register = (1 << t->operands) - 1;
5968 if (i.broadcast)
5969 check_register &= ~(1 << i.broadcast->operand);
5970 }
5971 else
5972 check_register = 0;
5973
c6fb90c8 5974 overlap0 = operand_type_and (i.types[0], operand_types[0]);
29b0f896
AM
5975 switch (t->operands)
5976 {
5977 case 1:
40fb9820 5978 if (!operand_type_match (overlap0, i.types[0]))
29b0f896
AM
5979 continue;
5980 break;
5981 case 2:
33eaf5de 5982 /* xchg %eax, %eax is a special case. It is an alias for nop
8b38ad71
L
5983 only in 32bit mode and we can use opcode 0x90. In 64bit
5984 mode, we can't use 0x90 for xchg %eax, %eax since it should
5985 zero-extend %eax to %rax. */
5986 if (flag_code == CODE_64BIT
5987 && t->base_opcode == 0x90
75e5731b
JB
5988 && i.types[0].bitfield.instance == Accum
5989 && i.types[0].bitfield.dword
5990 && i.types[1].bitfield.instance == Accum
5991 && i.types[1].bitfield.dword)
8b38ad71 5992 continue;
1212781b
JB
5993 /* xrelease mov %eax, <disp> is another special case. It must not
5994 match the accumulator-only encoding of mov. */
5995 if (flag_code != CODE_64BIT
5996 && i.hle_prefix
5997 && t->base_opcode == 0xa0
75e5731b 5998 && i.types[0].bitfield.instance == Accum
8dc0818e 5999 && (i.flags[1] & Operand_Mem))
1212781b 6000 continue;
f5eb1d70
JB
6001 /* Fall through. */
6002
6003 case 3:
3ac21baa
JB
6004 if (!(size_match & MATCH_STRAIGHT))
6005 goto check_reverse;
64c49ab3
JB
6006 /* Reverse direction of operands if swapping is possible in the first
6007 place (operands need to be symmetric) and
6008 - the load form is requested, and the template is a store form,
6009 - the store form is requested, and the template is a load form,
6010 - the non-default (swapped) form is requested. */
6011 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
f5eb1d70 6012 if (t->opcode_modifier.d && i.reg_operands == i.operands
64c49ab3
JB
6013 && !operand_type_all_zero (&overlap1))
6014 switch (i.dir_encoding)
6015 {
6016 case dir_encoding_load:
6017 if (operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6018 || t->opcode_modifier.regmem)
64c49ab3
JB
6019 goto check_reverse;
6020 break;
6021
6022 case dir_encoding_store:
6023 if (!operand_type_check (operand_types[i.operands - 1], anymem)
dfd69174 6024 && !t->opcode_modifier.regmem)
64c49ab3
JB
6025 goto check_reverse;
6026 break;
6027
6028 case dir_encoding_swap:
6029 goto check_reverse;
6030
6031 case dir_encoding_default:
6032 break;
6033 }
86fa6981 6034 /* If we want store form, we skip the current load. */
64c49ab3
JB
6035 if ((i.dir_encoding == dir_encoding_store
6036 || i.dir_encoding == dir_encoding_swap)
86fa6981
L
6037 && i.mem_operands == 0
6038 && t->opcode_modifier.load)
fa99fab2 6039 continue;
1a0670f3 6040 /* Fall through. */
f48ff2ae 6041 case 4:
c0f3af97 6042 case 5:
c6fb90c8 6043 overlap1 = operand_type_and (i.types[1], operand_types[1]);
40fb9820
L
6044 if (!operand_type_match (overlap0, i.types[0])
6045 || !operand_type_match (overlap1, i.types[1])
e2195274 6046 || ((check_register & 3) == 3
dc821c5f 6047 && !operand_type_register_match (i.types[0],
40fb9820 6048 operand_types[0],
dc821c5f 6049 i.types[1],
40fb9820 6050 operand_types[1])))
29b0f896
AM
6051 {
6052 /* Check if other direction is valid ... */
38e314eb 6053 if (!t->opcode_modifier.d)
29b0f896
AM
6054 continue;
6055
dc1e8a47 6056 check_reverse:
3ac21baa
JB
6057 if (!(size_match & MATCH_REVERSE))
6058 continue;
29b0f896 6059 /* Try reversing direction of operands. */
f5eb1d70
JB
6060 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6061 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
40fb9820 6062 if (!operand_type_match (overlap0, i.types[0])
f5eb1d70 6063 || !operand_type_match (overlap1, i.types[i.operands - 1])
45664ddb 6064 || (check_register
dc821c5f 6065 && !operand_type_register_match (i.types[0],
f5eb1d70
JB
6066 operand_types[i.operands - 1],
6067 i.types[i.operands - 1],
45664ddb 6068 operand_types[0])))
29b0f896
AM
6069 {
6070 /* Does not match either direction. */
6071 continue;
6072 }
38e314eb 6073 /* found_reverse_match holds which of D or FloatR
29b0f896 6074 we've found. */
38e314eb
JB
6075 if (!t->opcode_modifier.d)
6076 found_reverse_match = 0;
6077 else if (operand_types[0].bitfield.tbyte)
8a2ed489 6078 found_reverse_match = Opcode_FloatD;
dbbc8b7e 6079 else if (operand_types[0].bitfield.xmmword
f5eb1d70 6080 || operand_types[i.operands - 1].bitfield.xmmword
3528c362
JB
6081 || operand_types[0].bitfield.class == RegMMX
6082 || operand_types[i.operands - 1].bitfield.class == RegMMX
dbbc8b7e
JB
6083 || is_any_vex_encoding(t))
6084 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6085 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
8a2ed489 6086 else
38e314eb 6087 found_reverse_match = Opcode_D;
40fb9820 6088 if (t->opcode_modifier.floatr)
8a2ed489 6089 found_reverse_match |= Opcode_FloatR;
29b0f896 6090 }
f48ff2ae 6091 else
29b0f896 6092 {
f48ff2ae 6093 /* Found a forward 2 operand match here. */
d1cbb4db
L
6094 switch (t->operands)
6095 {
c0f3af97
L
6096 case 5:
6097 overlap4 = operand_type_and (i.types[4],
6098 operand_types[4]);
1a0670f3 6099 /* Fall through. */
d1cbb4db 6100 case 4:
c6fb90c8
L
6101 overlap3 = operand_type_and (i.types[3],
6102 operand_types[3]);
1a0670f3 6103 /* Fall through. */
d1cbb4db 6104 case 3:
c6fb90c8
L
6105 overlap2 = operand_type_and (i.types[2],
6106 operand_types[2]);
d1cbb4db
L
6107 break;
6108 }
29b0f896 6109
f48ff2ae
L
6110 switch (t->operands)
6111 {
c0f3af97
L
6112 case 5:
6113 if (!operand_type_match (overlap4, i.types[4])
dc821c5f 6114 || !operand_type_register_match (i.types[3],
c0f3af97 6115 operand_types[3],
c0f3af97
L
6116 i.types[4],
6117 operand_types[4]))
6118 continue;
1a0670f3 6119 /* Fall through. */
f48ff2ae 6120 case 4:
40fb9820 6121 if (!operand_type_match (overlap3, i.types[3])
e2195274
JB
6122 || ((check_register & 0xa) == 0xa
6123 && !operand_type_register_match (i.types[1],
f7768225
JB
6124 operand_types[1],
6125 i.types[3],
e2195274
JB
6126 operand_types[3]))
6127 || ((check_register & 0xc) == 0xc
6128 && !operand_type_register_match (i.types[2],
6129 operand_types[2],
6130 i.types[3],
6131 operand_types[3])))
f48ff2ae 6132 continue;
1a0670f3 6133 /* Fall through. */
f48ff2ae
L
6134 case 3:
6135 /* Here we make use of the fact that there are no
23e42951 6136 reverse match 3 operand instructions. */
40fb9820 6137 if (!operand_type_match (overlap2, i.types[2])
e2195274
JB
6138 || ((check_register & 5) == 5
6139 && !operand_type_register_match (i.types[0],
23e42951
JB
6140 operand_types[0],
6141 i.types[2],
e2195274
JB
6142 operand_types[2]))
6143 || ((check_register & 6) == 6
6144 && !operand_type_register_match (i.types[1],
6145 operand_types[1],
6146 i.types[2],
6147 operand_types[2])))
f48ff2ae
L
6148 continue;
6149 break;
6150 }
29b0f896 6151 }
f48ff2ae 6152 /* Found either forward/reverse 2, 3 or 4 operand match here:
29b0f896
AM
6153 slip through to break. */
6154 }
c0f3af97 6155
5614d22c
JB
6156 /* Check if vector and VEX operands are valid. */
6157 if (check_VecOperands (t) || VEX_check_operands (t))
6158 {
6159 specific_error = i.error;
6160 continue;
6161 }
a683cc34 6162
29b0f896
AM
6163 /* We've found a match; break out of loop. */
6164 break;
6165 }
6166
6167 if (t == current_templates->end)
6168 {
6169 /* We found no match. */
a65babc9 6170 const char *err_msg;
5614d22c 6171 switch (specific_error ? specific_error : i.error)
a65babc9
L
6172 {
6173 default:
6174 abort ();
86e026a4 6175 case operand_size_mismatch:
a65babc9
L
6176 err_msg = _("operand size mismatch");
6177 break;
6178 case operand_type_mismatch:
6179 err_msg = _("operand type mismatch");
6180 break;
6181 case register_type_mismatch:
6182 err_msg = _("register type mismatch");
6183 break;
6184 case number_of_operands_mismatch:
6185 err_msg = _("number of operands mismatch");
6186 break;
6187 case invalid_instruction_suffix:
6188 err_msg = _("invalid instruction suffix");
6189 break;
6190 case bad_imm4:
4a2608e3 6191 err_msg = _("constant doesn't fit in 4 bits");
a65babc9 6192 break;
a65babc9
L
6193 case unsupported_with_intel_mnemonic:
6194 err_msg = _("unsupported with Intel mnemonic");
6195 break;
6196 case unsupported_syntax:
6197 err_msg = _("unsupported syntax");
6198 break;
6199 case unsupported:
35262a23 6200 as_bad (_("unsupported instruction `%s'"),
10efe3f6
L
6201 current_templates->start->name);
6202 return NULL;
6c30d220
L
6203 case invalid_vsib_address:
6204 err_msg = _("invalid VSIB address");
6205 break;
7bab8ab5
JB
6206 case invalid_vector_register_set:
6207 err_msg = _("mask, index, and destination registers must be distinct");
6208 break;
6c30d220
L
6209 case unsupported_vector_index_register:
6210 err_msg = _("unsupported vector index register");
6211 break;
43234a1e
L
6212 case unsupported_broadcast:
6213 err_msg = _("unsupported broadcast");
6214 break;
43234a1e
L
6215 case broadcast_needed:
6216 err_msg = _("broadcast is needed for operand of such type");
6217 break;
6218 case unsupported_masking:
6219 err_msg = _("unsupported masking");
6220 break;
6221 case mask_not_on_destination:
6222 err_msg = _("mask not on destination operand");
6223 break;
6224 case no_default_mask:
6225 err_msg = _("default mask isn't allowed");
6226 break;
6227 case unsupported_rc_sae:
6228 err_msg = _("unsupported static rounding/sae");
6229 break;
6230 case rc_sae_operand_not_last_imm:
6231 if (intel_syntax)
6232 err_msg = _("RC/SAE operand must precede immediate operands");
6233 else
6234 err_msg = _("RC/SAE operand must follow immediate operands");
6235 break;
6236 case invalid_register_operand:
6237 err_msg = _("invalid register operand");
6238 break;
a65babc9
L
6239 }
6240 as_bad (_("%s for `%s'"), err_msg,
891edac4 6241 current_templates->start->name);
fa99fab2 6242 return NULL;
29b0f896 6243 }
252b5132 6244
29b0f896
AM
6245 if (!quiet_warnings)
6246 {
6247 if (!intel_syntax
0cfa3eb3 6248 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6f2f06be 6249 as_warn (_("indirect %s without `*'"), t->name);
29b0f896 6250
40fb9820 6251 if (t->opcode_modifier.isprefix
3cd7f3e3 6252 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6253 {
6254 /* Warn them that a data or address size prefix doesn't
6255 affect assembly of the next line of code. */
6256 as_warn (_("stand-alone `%s' prefix"), t->name);
6257 }
6258 }
6259
6260 /* Copy the template we found. */
6261 i.tm = *t;
539e75ad
L
6262
6263 if (addr_prefix_disp != -1)
6264 i.tm.operand_types[addr_prefix_disp]
6265 = operand_types[addr_prefix_disp];
6266
29b0f896
AM
6267 if (found_reverse_match)
6268 {
dfd69174
JB
6269 /* If we found a reverse match we must alter the opcode direction
6270 bit and clear/flip the regmem modifier one. found_reverse_match
6271 holds bits to change (different for int & float insns). */
29b0f896
AM
6272
6273 i.tm.base_opcode ^= found_reverse_match;
6274
f5eb1d70
JB
6275 i.tm.operand_types[0] = operand_types[i.operands - 1];
6276 i.tm.operand_types[i.operands - 1] = operand_types[0];
dfd69174
JB
6277
6278 /* Certain SIMD insns have their load forms specified in the opcode
6279 table, and hence we need to _set_ RegMem instead of clearing it.
6280 We need to avoid setting the bit though on insns like KMOVW. */
6281 i.tm.opcode_modifier.regmem
6282 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6283 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6284 && !i.tm.opcode_modifier.regmem;
29b0f896
AM
6285 }
6286
fa99fab2 6287 return t;
29b0f896
AM
6288}
6289
6290static int
e3bb37b5 6291check_string (void)
29b0f896 6292{
51c8edf6
JB
6293 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6294 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
8dc0818e 6295
51c8edf6 6296 if (i.seg[op] != NULL && i.seg[op] != &es)
29b0f896 6297 {
51c8edf6
JB
6298 as_bad (_("`%s' operand %u must use `%ses' segment"),
6299 i.tm.name,
6300 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6301 register_prefix);
6302 return 0;
29b0f896 6303 }
51c8edf6
JB
6304
6305 /* There's only ever one segment override allowed per instruction.
6306 This instruction possibly has a legal segment override on the
6307 second operand, so copy the segment to where non-string
6308 instructions store it, allowing common code. */
6309 i.seg[op] = i.seg[1];
6310
29b0f896
AM
6311 return 1;
6312}
6313
6314static int
543613e9 6315process_suffix (void)
29b0f896
AM
6316{
6317 /* If matched instruction specifies an explicit instruction mnemonic
6318 suffix, use it. */
673fe0f0 6319 if (i.tm.opcode_modifier.size == SIZE16)
40fb9820 6320 i.suffix = WORD_MNEM_SUFFIX;
673fe0f0 6321 else if (i.tm.opcode_modifier.size == SIZE32)
40fb9820 6322 i.suffix = LONG_MNEM_SUFFIX;
673fe0f0 6323 else if (i.tm.opcode_modifier.size == SIZE64)
40fb9820 6324 i.suffix = QWORD_MNEM_SUFFIX;
13e600d0 6325 else if (i.reg_operands
c8f8eebc
JB
6326 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6327 && !i.tm.opcode_modifier.addrprefixopreg)
29b0f896 6328 {
65fca059
JB
6329 unsigned int numop = i.operands;
6330
6331 /* movsx/movzx want only their source operand considered here, for the
6332 ambiguity checking below. The suffix will be replaced afterwards
6333 to represent the destination (register). */
6334 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6335 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6336 --i.operands;
6337
643bb870
JB
6338 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6339 if (i.tm.base_opcode == 0xf20f38f0
6340 && i.tm.operand_types[1].bitfield.qword)
6341 i.rex |= REX_W;
6342
29b0f896 6343 /* If there's no instruction mnemonic suffix we try to invent one
13e600d0 6344 based on GPR operands. */
29b0f896
AM
6345 if (!i.suffix)
6346 {
6347 /* We take i.suffix from the last register operand specified,
6348 Destination register type is more significant than source
381d071f
L
6349 register type. crc32 in SSE4.2 prefers source register
6350 type. */
1a035124 6351 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
20592a94 6352
1a035124
JB
6353 while (op--)
6354 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6355 || i.tm.operand_types[op].bitfield.instance == Accum)
6356 {
6357 if (i.types[op].bitfield.class != Reg)
6358 continue;
6359 if (i.types[op].bitfield.byte)
6360 i.suffix = BYTE_MNEM_SUFFIX;
6361 else if (i.types[op].bitfield.word)
6362 i.suffix = WORD_MNEM_SUFFIX;
6363 else if (i.types[op].bitfield.dword)
6364 i.suffix = LONG_MNEM_SUFFIX;
6365 else if (i.types[op].bitfield.qword)
6366 i.suffix = QWORD_MNEM_SUFFIX;
6367 else
6368 continue;
6369 break;
6370 }
65fca059
JB
6371
6372 /* As an exception, movsx/movzx silently default to a byte source
6373 in AT&T mode. */
6374 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6375 && !i.suffix && !intel_syntax)
6376 i.suffix = BYTE_MNEM_SUFFIX;
29b0f896
AM
6377 }
6378 else if (i.suffix == BYTE_MNEM_SUFFIX)
6379 {
2eb952a4 6380 if (intel_syntax
3cd7f3e3 6381 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6382 && i.tm.opcode_modifier.no_bsuf)
6383 i.suffix = 0;
6384 else if (!check_byte_reg ())
29b0f896
AM
6385 return 0;
6386 }
6387 else if (i.suffix == LONG_MNEM_SUFFIX)
6388 {
2eb952a4 6389 if (intel_syntax
3cd7f3e3 6390 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6391 && i.tm.opcode_modifier.no_lsuf
6392 && !i.tm.opcode_modifier.todword
6393 && !i.tm.opcode_modifier.toqword)
2eb952a4
L
6394 i.suffix = 0;
6395 else if (!check_long_reg ())
29b0f896
AM
6396 return 0;
6397 }
6398 else if (i.suffix == QWORD_MNEM_SUFFIX)
6399 {
955e1e6a 6400 if (intel_syntax
3cd7f3e3 6401 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
9f123b91
JB
6402 && i.tm.opcode_modifier.no_qsuf
6403 && !i.tm.opcode_modifier.todword
6404 && !i.tm.opcode_modifier.toqword)
955e1e6a
L
6405 i.suffix = 0;
6406 else if (!check_qword_reg ())
29b0f896
AM
6407 return 0;
6408 }
6409 else if (i.suffix == WORD_MNEM_SUFFIX)
6410 {
2eb952a4 6411 if (intel_syntax
3cd7f3e3 6412 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
2eb952a4
L
6413 && i.tm.opcode_modifier.no_wsuf)
6414 i.suffix = 0;
6415 else if (!check_word_reg ())
29b0f896
AM
6416 return 0;
6417 }
3cd7f3e3
L
6418 else if (intel_syntax
6419 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
29b0f896
AM
6420 /* Do nothing if the instruction is going to ignore the prefix. */
6421 ;
6422 else
6423 abort ();
65fca059
JB
6424
6425 /* Undo the movsx/movzx change done above. */
6426 i.operands = numop;
29b0f896 6427 }
3cd7f3e3
L
6428 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6429 && !i.suffix)
29b0f896 6430 {
13e600d0
JB
6431 i.suffix = stackop_size;
6432 if (stackop_size == LONG_MNEM_SUFFIX)
06f74c5c
L
6433 {
6434 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6435 .code16gcc directive to support 16-bit mode with
6436 32-bit address. For IRET without a suffix, generate
6437 16-bit IRET (opcode 0xcf) to return from an interrupt
6438 handler. */
13e600d0
JB
6439 if (i.tm.base_opcode == 0xcf)
6440 {
6441 i.suffix = WORD_MNEM_SUFFIX;
6442 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6443 }
6444 /* Warn about changed behavior for segment register push/pop. */
6445 else if ((i.tm.base_opcode | 1) == 0x07)
6446 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6447 i.tm.name);
06f74c5c 6448 }
29b0f896 6449 }
c006a730 6450 else if (!i.suffix
0cfa3eb3
JB
6451 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6452 || i.tm.opcode_modifier.jump == JUMP_BYTE
6453 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
64e74474
AM
6454 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6455 && i.tm.extension_opcode <= 3)))
9306ca4a
JB
6456 {
6457 switch (flag_code)
6458 {
6459 case CODE_64BIT:
40fb9820 6460 if (!i.tm.opcode_modifier.no_qsuf)
9306ca4a
JB
6461 {
6462 i.suffix = QWORD_MNEM_SUFFIX;
6463 break;
6464 }
1a0670f3 6465 /* Fall through. */
9306ca4a 6466 case CODE_32BIT:
40fb9820 6467 if (!i.tm.opcode_modifier.no_lsuf)
9306ca4a
JB
6468 i.suffix = LONG_MNEM_SUFFIX;
6469 break;
6470 case CODE_16BIT:
40fb9820 6471 if (!i.tm.opcode_modifier.no_wsuf)
9306ca4a
JB
6472 i.suffix = WORD_MNEM_SUFFIX;
6473 break;
6474 }
6475 }
252b5132 6476
c006a730 6477 if (!i.suffix
3cd7f3e3 6478 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8
JB
6479 /* Also cover lret/retf/iret in 64-bit mode. */
6480 || (flag_code == CODE_64BIT
6481 && !i.tm.opcode_modifier.no_lsuf
6482 && !i.tm.opcode_modifier.no_qsuf))
3cd7f3e3 6483 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
62b3f548
JB
6484 /* Accept FLDENV et al without suffix. */
6485 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
29b0f896 6486 {
6c0946d0 6487 unsigned int suffixes, evex = 0;
c006a730
JB
6488
6489 suffixes = !i.tm.opcode_modifier.no_bsuf;
6490 if (!i.tm.opcode_modifier.no_wsuf)
6491 suffixes |= 1 << 1;
6492 if (!i.tm.opcode_modifier.no_lsuf)
6493 suffixes |= 1 << 2;
6494 if (!i.tm.opcode_modifier.no_ldsuf)
6495 suffixes |= 1 << 3;
6496 if (!i.tm.opcode_modifier.no_ssuf)
6497 suffixes |= 1 << 4;
6498 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6499 suffixes |= 1 << 5;
6500
6c0946d0
JB
6501 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6502 also suitable for AT&T syntax mode, it was requested that this be
6503 restricted to just Intel syntax. */
b9915cbc 6504 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6c0946d0 6505 {
b9915cbc 6506 unsigned int op;
6c0946d0 6507
b9915cbc 6508 for (op = 0; op < i.tm.operands; ++op)
6c0946d0 6509 {
b9915cbc
JB
6510 if (is_evex_encoding (&i.tm)
6511 && !cpu_arch_flags.bitfield.cpuavx512vl)
6c0946d0 6512 {
b9915cbc
JB
6513 if (i.tm.operand_types[op].bitfield.ymmword)
6514 i.tm.operand_types[op].bitfield.xmmword = 0;
6515 if (i.tm.operand_types[op].bitfield.zmmword)
6516 i.tm.operand_types[op].bitfield.ymmword = 0;
6517 if (!i.tm.opcode_modifier.evex
6518 || i.tm.opcode_modifier.evex == EVEXDYN)
6519 i.tm.opcode_modifier.evex = EVEX512;
6520 }
6c0946d0 6521
b9915cbc
JB
6522 if (i.tm.operand_types[op].bitfield.xmmword
6523 + i.tm.operand_types[op].bitfield.ymmword
6524 + i.tm.operand_types[op].bitfield.zmmword < 2)
6525 continue;
6c0946d0 6526
b9915cbc
JB
6527 /* Any properly sized operand disambiguates the insn. */
6528 if (i.types[op].bitfield.xmmword
6529 || i.types[op].bitfield.ymmword
6530 || i.types[op].bitfield.zmmword)
6531 {
6532 suffixes &= ~(7 << 6);
6533 evex = 0;
6534 break;
6535 }
6c0946d0 6536
b9915cbc
JB
6537 if ((i.flags[op] & Operand_Mem)
6538 && i.tm.operand_types[op].bitfield.unspecified)
6539 {
6540 if (i.tm.operand_types[op].bitfield.xmmword)
6541 suffixes |= 1 << 6;
6542 if (i.tm.operand_types[op].bitfield.ymmword)
6543 suffixes |= 1 << 7;
6544 if (i.tm.operand_types[op].bitfield.zmmword)
6545 suffixes |= 1 << 8;
6546 if (is_evex_encoding (&i.tm))
6547 evex = EVEX512;
6c0946d0
JB
6548 }
6549 }
6550 }
6551
6552 /* Are multiple suffixes / operand sizes allowed? */
c006a730 6553 if (suffixes & (suffixes - 1))
9306ca4a 6554 {
873494c8 6555 if (intel_syntax
3cd7f3e3 6556 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
873494c8 6557 || operand_check == check_error))
9306ca4a 6558 {
c006a730 6559 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
9306ca4a
JB
6560 return 0;
6561 }
c006a730 6562 if (operand_check == check_error)
9306ca4a 6563 {
c006a730
JB
6564 as_bad (_("no instruction mnemonic suffix given and "
6565 "no register operands; can't size `%s'"), i.tm.name);
9306ca4a
JB
6566 return 0;
6567 }
c006a730 6568 if (operand_check == check_warning)
873494c8
JB
6569 as_warn (_("%s; using default for `%s'"),
6570 intel_syntax
6571 ? _("ambiguous operand size")
6572 : _("no instruction mnemonic suffix given and "
6573 "no register operands"),
6574 i.tm.name);
c006a730
JB
6575
6576 if (i.tm.opcode_modifier.floatmf)
6577 i.suffix = SHORT_MNEM_SUFFIX;
65fca059
JB
6578 else if ((i.tm.base_opcode | 8) == 0xfbe
6579 || (i.tm.base_opcode == 0x63
6580 && i.tm.cpu_flags.bitfield.cpu64))
6581 /* handled below */;
6c0946d0
JB
6582 else if (evex)
6583 i.tm.opcode_modifier.evex = evex;
c006a730
JB
6584 else if (flag_code == CODE_16BIT)
6585 i.suffix = WORD_MNEM_SUFFIX;
1a035124 6586 else if (!i.tm.opcode_modifier.no_lsuf)
c006a730 6587 i.suffix = LONG_MNEM_SUFFIX;
1a035124
JB
6588 else
6589 i.suffix = QWORD_MNEM_SUFFIX;
9306ca4a 6590 }
29b0f896 6591 }
252b5132 6592
65fca059
JB
6593 if ((i.tm.base_opcode | 8) == 0xfbe
6594 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6595 {
6596 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
6597 In AT&T syntax, if there is no suffix (warned about above), the default
6598 will be byte extension. */
6599 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
6600 i.tm.base_opcode |= 1;
6601
6602 /* For further processing, the suffix should represent the destination
6603 (register). This is already the case when one was used with
6604 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
6605 no suffix to begin with. */
6606 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
6607 {
6608 if (i.types[1].bitfield.word)
6609 i.suffix = WORD_MNEM_SUFFIX;
6610 else if (i.types[1].bitfield.qword)
6611 i.suffix = QWORD_MNEM_SUFFIX;
6612 else
6613 i.suffix = LONG_MNEM_SUFFIX;
6614
6615 i.tm.opcode_modifier.w = 0;
6616 }
6617 }
6618
50128d0c
JB
6619 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
6620 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
6621 != (i.tm.operand_types[1].bitfield.class == Reg);
6622
d2224064
JB
6623 /* Change the opcode based on the operand size given by i.suffix. */
6624 switch (i.suffix)
29b0f896 6625 {
d2224064
JB
6626 /* Size floating point instruction. */
6627 case LONG_MNEM_SUFFIX:
6628 if (i.tm.opcode_modifier.floatmf)
6629 {
6630 i.tm.base_opcode ^= 4;
6631 break;
6632 }
6633 /* fall through */
6634 case WORD_MNEM_SUFFIX:
6635 case QWORD_MNEM_SUFFIX:
29b0f896 6636 /* It's not a byte, select word/dword operation. */
40fb9820 6637 if (i.tm.opcode_modifier.w)
29b0f896 6638 {
50128d0c 6639 if (i.short_form)
29b0f896
AM
6640 i.tm.base_opcode |= 8;
6641 else
6642 i.tm.base_opcode |= 1;
6643 }
d2224064
JB
6644 /* fall through */
6645 case SHORT_MNEM_SUFFIX:
29b0f896
AM
6646 /* Now select between word & dword operations via the operand
6647 size prefix, except for instructions that will ignore this
6648 prefix anyway. */
c8f8eebc 6649 if (i.suffix != QWORD_MNEM_SUFFIX
3cd7f3e3 6650 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
c8f8eebc
JB
6651 && !i.tm.opcode_modifier.floatmf
6652 && !is_any_vex_encoding (&i.tm)
6653 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6654 || (flag_code == CODE_64BIT
6655 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
24eab124
AM
6656 {
6657 unsigned int prefix = DATA_PREFIX_OPCODE;
543613e9 6658
0cfa3eb3 6659 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
29b0f896 6660 prefix = ADDR_PREFIX_OPCODE;
252b5132 6661
29b0f896
AM
6662 if (!add_prefix (prefix))
6663 return 0;
24eab124 6664 }
252b5132 6665
29b0f896
AM
6666 /* Set mode64 for an operand. */
6667 if (i.suffix == QWORD_MNEM_SUFFIX
9146926a 6668 && flag_code == CODE_64BIT
d2224064 6669 && !i.tm.opcode_modifier.norex64
4ed21b58 6670 && !i.tm.opcode_modifier.vexw
46e883c5 6671 /* Special case for xchg %rax,%rax. It is NOP and doesn't
d2224064
JB
6672 need rex64. */
6673 && ! (i.operands == 2
6674 && i.tm.base_opcode == 0x90
6675 && i.tm.extension_opcode == None
75e5731b
JB
6676 && i.types[0].bitfield.instance == Accum
6677 && i.types[0].bitfield.qword
6678 && i.types[1].bitfield.instance == Accum
6679 && i.types[1].bitfield.qword))
d2224064 6680 i.rex |= REX_W;
3e73aa7c 6681
d2224064 6682 break;
29b0f896 6683 }
7ecd2f8b 6684
c8f8eebc 6685 if (i.tm.opcode_modifier.addrprefixopreg)
c0a30a9f 6686 {
c8f8eebc
JB
6687 gas_assert (!i.suffix);
6688 gas_assert (i.reg_operands);
c0a30a9f 6689
c8f8eebc
JB
6690 if (i.tm.operand_types[0].bitfield.instance == Accum
6691 || i.operands == 1)
6692 {
6693 /* The address size override prefix changes the size of the
6694 first operand. */
6695 if (flag_code == CODE_64BIT
6696 && i.op[0].regs->reg_type.bitfield.word)
6697 {
6698 as_bad (_("16-bit addressing unavailable for `%s'"),
6699 i.tm.name);
6700 return 0;
6701 }
6702
6703 if ((flag_code == CODE_32BIT
6704 ? i.op[0].regs->reg_type.bitfield.word
6705 : i.op[0].regs->reg_type.bitfield.dword)
6706 && !add_prefix (ADDR_PREFIX_OPCODE))
6707 return 0;
6708 }
c0a30a9f
L
6709 else
6710 {
c8f8eebc
JB
6711 /* Check invalid register operand when the address size override
6712 prefix changes the size of register operands. */
6713 unsigned int op;
6714 enum { need_word, need_dword, need_qword } need;
6715
6716 if (flag_code == CODE_32BIT)
6717 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6718 else if (i.prefix[ADDR_PREFIX])
c0a30a9f
L
6719 need = need_dword;
6720 else
6721 need = flag_code == CODE_64BIT ? need_qword : need_word;
c0a30a9f 6722
c8f8eebc
JB
6723 for (op = 0; op < i.operands; op++)
6724 {
6725 if (i.types[op].bitfield.class != Reg)
6726 continue;
6727
6728 switch (need)
6729 {
6730 case need_word:
6731 if (i.op[op].regs->reg_type.bitfield.word)
6732 continue;
6733 break;
6734 case need_dword:
6735 if (i.op[op].regs->reg_type.bitfield.dword)
6736 continue;
6737 break;
6738 case need_qword:
6739 if (i.op[op].regs->reg_type.bitfield.qword)
6740 continue;
6741 break;
6742 }
6743
6744 as_bad (_("invalid register operand size for `%s'"),
6745 i.tm.name);
6746 return 0;
6747 }
6748 }
c0a30a9f
L
6749 }
6750
29b0f896
AM
6751 return 1;
6752}
3e73aa7c 6753
29b0f896 6754static int
543613e9 6755check_byte_reg (void)
29b0f896
AM
6756{
6757 int op;
543613e9 6758
29b0f896
AM
6759 for (op = i.operands; --op >= 0;)
6760 {
dc821c5f 6761 /* Skip non-register operands. */
bab6aec1 6762 if (i.types[op].bitfield.class != Reg)
dc821c5f
JB
6763 continue;
6764
29b0f896
AM
6765 /* If this is an eight bit register, it's OK. If it's the 16 or
6766 32 bit version of an eight bit register, we will just use the
6767 low portion, and that's OK too. */
dc821c5f 6768 if (i.types[op].bitfield.byte)
29b0f896
AM
6769 continue;
6770
5a819eb9 6771 /* I/O port address operands are OK too. */
75e5731b
JB
6772 if (i.tm.operand_types[op].bitfield.instance == RegD
6773 && i.tm.operand_types[op].bitfield.word)
5a819eb9
JB
6774 continue;
6775
9706160a
JB
6776 /* crc32 only wants its source operand checked here. */
6777 if (i.tm.base_opcode == 0xf20f38f0 && op)
9344ff29
L
6778 continue;
6779
29b0f896 6780 /* Any other register is bad. */
bab6aec1 6781 if (i.types[op].bitfield.class == Reg
3528c362
JB
6782 || i.types[op].bitfield.class == RegMMX
6783 || i.types[op].bitfield.class == RegSIMD
00cee14f 6784 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
6785 || i.types[op].bitfield.class == RegCR
6786 || i.types[op].bitfield.class == RegDR
6787 || i.types[op].bitfield.class == RegTR)
29b0f896 6788 {
a540244d
L
6789 as_bad (_("`%s%s' not allowed with `%s%c'"),
6790 register_prefix,
29b0f896
AM
6791 i.op[op].regs->reg_name,
6792 i.tm.name,
6793 i.suffix);
6794 return 0;
6795 }
6796 }
6797 return 1;
6798}
6799
6800static int
e3bb37b5 6801check_long_reg (void)
29b0f896
AM
6802{
6803 int op;
6804
6805 for (op = i.operands; --op >= 0;)
dc821c5f 6806 /* Skip non-register operands. */
bab6aec1 6807 if (i.types[op].bitfield.class != Reg)
dc821c5f 6808 continue;
29b0f896
AM
6809 /* Reject eight bit registers, except where the template requires
6810 them. (eg. movzb) */
dc821c5f 6811 else if (i.types[op].bitfield.byte
bab6aec1 6812 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6813 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6814 && (i.tm.operand_types[op].bitfield.word
6815 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6816 {
a540244d
L
6817 as_bad (_("`%s%s' not allowed with `%s%c'"),
6818 register_prefix,
29b0f896
AM
6819 i.op[op].regs->reg_name,
6820 i.tm.name,
6821 i.suffix);
6822 return 0;
6823 }
be4c5e58
L
6824 /* Error if the e prefix on a general reg is missing. */
6825 else if (i.types[op].bitfield.word
bab6aec1 6826 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6827 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6828 && i.tm.operand_types[op].bitfield.dword)
29b0f896 6829 {
be4c5e58
L
6830 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6831 register_prefix, i.op[op].regs->reg_name,
6832 i.suffix);
6833 return 0;
252b5132 6834 }
e4630f71 6835 /* Warn if the r prefix on a general reg is present. */
dc821c5f 6836 else if (i.types[op].bitfield.qword
bab6aec1 6837 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6838 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6839 && i.tm.operand_types[op].bitfield.dword)
252b5132 6840 {
34828aad 6841 if (intel_syntax
65fca059 6842 && i.tm.opcode_modifier.toqword
3528c362 6843 && i.types[0].bitfield.class != RegSIMD)
34828aad 6844 {
ca61edf2 6845 /* Convert to QWORD. We want REX byte. */
34828aad
L
6846 i.suffix = QWORD_MNEM_SUFFIX;
6847 }
6848 else
6849 {
2b5d6a91 6850 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6851 register_prefix, i.op[op].regs->reg_name,
6852 i.suffix);
6853 return 0;
6854 }
29b0f896
AM
6855 }
6856 return 1;
6857}
252b5132 6858
29b0f896 6859static int
e3bb37b5 6860check_qword_reg (void)
29b0f896
AM
6861{
6862 int op;
252b5132 6863
29b0f896 6864 for (op = i.operands; --op >= 0; )
dc821c5f 6865 /* Skip non-register operands. */
bab6aec1 6866 if (i.types[op].bitfield.class != Reg)
dc821c5f 6867 continue;
29b0f896
AM
6868 /* Reject eight bit registers, except where the template requires
6869 them. (eg. movzb) */
dc821c5f 6870 else if (i.types[op].bitfield.byte
bab6aec1 6871 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6872 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6873 && (i.tm.operand_types[op].bitfield.word
6874 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6875 {
a540244d
L
6876 as_bad (_("`%s%s' not allowed with `%s%c'"),
6877 register_prefix,
29b0f896
AM
6878 i.op[op].regs->reg_name,
6879 i.tm.name,
6880 i.suffix);
6881 return 0;
6882 }
e4630f71 6883 /* Warn if the r prefix on a general reg is missing. */
dc821c5f
JB
6884 else if ((i.types[op].bitfield.word
6885 || i.types[op].bitfield.dword)
bab6aec1 6886 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6887 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6888 && i.tm.operand_types[op].bitfield.qword)
29b0f896
AM
6889 {
6890 /* Prohibit these changes in the 64bit mode, since the
6891 lowering is more complicated. */
34828aad 6892 if (intel_syntax
ca61edf2 6893 && i.tm.opcode_modifier.todword
3528c362 6894 && i.types[0].bitfield.class != RegSIMD)
34828aad 6895 {
ca61edf2 6896 /* Convert to DWORD. We don't want REX byte. */
34828aad
L
6897 i.suffix = LONG_MNEM_SUFFIX;
6898 }
6899 else
6900 {
2b5d6a91 6901 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
34828aad
L
6902 register_prefix, i.op[op].regs->reg_name,
6903 i.suffix);
6904 return 0;
6905 }
252b5132 6906 }
29b0f896
AM
6907 return 1;
6908}
252b5132 6909
29b0f896 6910static int
e3bb37b5 6911check_word_reg (void)
29b0f896
AM
6912{
6913 int op;
6914 for (op = i.operands; --op >= 0;)
dc821c5f 6915 /* Skip non-register operands. */
bab6aec1 6916 if (i.types[op].bitfield.class != Reg)
dc821c5f 6917 continue;
29b0f896
AM
6918 /* Reject eight bit registers, except where the template requires
6919 them. (eg. movzb) */
dc821c5f 6920 else if (i.types[op].bitfield.byte
bab6aec1 6921 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6922 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f
JB
6923 && (i.tm.operand_types[op].bitfield.word
6924 || i.tm.operand_types[op].bitfield.dword))
29b0f896 6925 {
a540244d
L
6926 as_bad (_("`%s%s' not allowed with `%s%c'"),
6927 register_prefix,
29b0f896
AM
6928 i.op[op].regs->reg_name,
6929 i.tm.name,
6930 i.suffix);
6931 return 0;
6932 }
9706160a
JB
6933 /* Error if the e or r prefix on a general reg is present. */
6934 else if ((i.types[op].bitfield.dword
dc821c5f 6935 || i.types[op].bitfield.qword)
bab6aec1 6936 && (i.tm.operand_types[op].bitfield.class == Reg
75e5731b 6937 || i.tm.operand_types[op].bitfield.instance == Accum)
dc821c5f 6938 && i.tm.operand_types[op].bitfield.word)
252b5132 6939 {
9706160a
JB
6940 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6941 register_prefix, i.op[op].regs->reg_name,
6942 i.suffix);
6943 return 0;
29b0f896
AM
6944 }
6945 return 1;
6946}
252b5132 6947
29b0f896 6948static int
40fb9820 6949update_imm (unsigned int j)
29b0f896 6950{
bc0844ae 6951 i386_operand_type overlap = i.types[j];
40fb9820
L
6952 if ((overlap.bitfield.imm8
6953 || overlap.bitfield.imm8s
6954 || overlap.bitfield.imm16
6955 || overlap.bitfield.imm32
6956 || overlap.bitfield.imm32s
6957 || overlap.bitfield.imm64)
0dfbf9d7
L
6958 && !operand_type_equal (&overlap, &imm8)
6959 && !operand_type_equal (&overlap, &imm8s)
6960 && !operand_type_equal (&overlap, &imm16)
6961 && !operand_type_equal (&overlap, &imm32)
6962 && !operand_type_equal (&overlap, &imm32s)
6963 && !operand_type_equal (&overlap, &imm64))
29b0f896
AM
6964 {
6965 if (i.suffix)
6966 {
40fb9820
L
6967 i386_operand_type temp;
6968
0dfbf9d7 6969 operand_type_set (&temp, 0);
7ab9ffdd 6970 if (i.suffix == BYTE_MNEM_SUFFIX)
40fb9820
L
6971 {
6972 temp.bitfield.imm8 = overlap.bitfield.imm8;
6973 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6974 }
6975 else if (i.suffix == WORD_MNEM_SUFFIX)
6976 temp.bitfield.imm16 = overlap.bitfield.imm16;
6977 else if (i.suffix == QWORD_MNEM_SUFFIX)
6978 {
6979 temp.bitfield.imm64 = overlap.bitfield.imm64;
6980 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6981 }
6982 else
6983 temp.bitfield.imm32 = overlap.bitfield.imm32;
6984 overlap = temp;
29b0f896 6985 }
0dfbf9d7
L
6986 else if (operand_type_equal (&overlap, &imm16_32_32s)
6987 || operand_type_equal (&overlap, &imm16_32)
6988 || operand_type_equal (&overlap, &imm16_32s))
29b0f896 6989 {
40fb9820 6990 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
65da13b5 6991 overlap = imm16;
40fb9820 6992 else
65da13b5 6993 overlap = imm32s;
29b0f896 6994 }
0dfbf9d7
L
6995 if (!operand_type_equal (&overlap, &imm8)
6996 && !operand_type_equal (&overlap, &imm8s)
6997 && !operand_type_equal (&overlap, &imm16)
6998 && !operand_type_equal (&overlap, &imm32)
6999 && !operand_type_equal (&overlap, &imm32s)
7000 && !operand_type_equal (&overlap, &imm64))
29b0f896 7001 {
4eed87de
AM
7002 as_bad (_("no instruction mnemonic suffix given; "
7003 "can't determine immediate size"));
29b0f896
AM
7004 return 0;
7005 }
7006 }
40fb9820 7007 i.types[j] = overlap;
29b0f896 7008
40fb9820
L
7009 return 1;
7010}
7011
7012static int
7013finalize_imm (void)
7014{
bc0844ae 7015 unsigned int j, n;
29b0f896 7016
bc0844ae
L
7017 /* Update the first 2 immediate operands. */
7018 n = i.operands > 2 ? 2 : i.operands;
7019 if (n)
7020 {
7021 for (j = 0; j < n; j++)
7022 if (update_imm (j) == 0)
7023 return 0;
40fb9820 7024
bc0844ae
L
7025 /* The 3rd operand can't be immediate operand. */
7026 gas_assert (operand_type_check (i.types[2], imm) == 0);
7027 }
29b0f896
AM
7028
7029 return 1;
7030}
7031
7032static int
e3bb37b5 7033process_operands (void)
29b0f896
AM
7034{
7035 /* Default segment register this instruction will use for memory
7036 accesses. 0 means unknown. This is only for optimizing out
7037 unnecessary segment overrides. */
7038 const seg_entry *default_seg = 0;
7039
2426c15f 7040 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
29b0f896 7041 {
91d6fa6a
NC
7042 unsigned int dupl = i.operands;
7043 unsigned int dest = dupl - 1;
9fcfb3d7
L
7044 unsigned int j;
7045
c0f3af97 7046 /* The destination must be an xmm register. */
9c2799c2 7047 gas_assert (i.reg_operands
91d6fa6a 7048 && MAX_OPERANDS > dupl
7ab9ffdd 7049 && operand_type_equal (&i.types[dest], &regxmm));
c0f3af97 7050
75e5731b 7051 if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7052 && i.tm.operand_types[0].bitfield.xmmword)
e2ec9d29 7053 {
8cd7925b 7054 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
c0f3af97
L
7055 {
7056 /* Keep xmm0 for instructions with VEX prefix and 3
7057 sources. */
75e5731b 7058 i.tm.operand_types[0].bitfield.instance = InstanceNone;
3528c362 7059 i.tm.operand_types[0].bitfield.class = RegSIMD;
c0f3af97
L
7060 goto duplicate;
7061 }
e2ec9d29 7062 else
c0f3af97
L
7063 {
7064 /* We remove the first xmm0 and keep the number of
7065 operands unchanged, which in fact duplicates the
7066 destination. */
7067 for (j = 1; j < i.operands; j++)
7068 {
7069 i.op[j - 1] = i.op[j];
7070 i.types[j - 1] = i.types[j];
7071 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
8dc0818e 7072 i.flags[j - 1] = i.flags[j];
c0f3af97
L
7073 }
7074 }
7075 }
7076 else if (i.tm.opcode_modifier.implicit1stxmm0)
7ab9ffdd 7077 {
91d6fa6a 7078 gas_assert ((MAX_OPERANDS - 1) > dupl
8cd7925b
L
7079 && (i.tm.opcode_modifier.vexsources
7080 == VEX3SOURCES));
c0f3af97
L
7081
7082 /* Add the implicit xmm0 for instructions with VEX prefix
7083 and 3 sources. */
7084 for (j = i.operands; j > 0; j--)
7085 {
7086 i.op[j] = i.op[j - 1];
7087 i.types[j] = i.types[j - 1];
7088 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
8dc0818e 7089 i.flags[j] = i.flags[j - 1];
c0f3af97
L
7090 }
7091 i.op[0].regs
7092 = (const reg_entry *) hash_find (reg_hash, "xmm0");
7ab9ffdd 7093 i.types[0] = regxmm;
c0f3af97
L
7094 i.tm.operand_types[0] = regxmm;
7095
7096 i.operands += 2;
7097 i.reg_operands += 2;
7098 i.tm.operands += 2;
7099
91d6fa6a 7100 dupl++;
c0f3af97 7101 dest++;
91d6fa6a
NC
7102 i.op[dupl] = i.op[dest];
7103 i.types[dupl] = i.types[dest];
7104 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7105 i.flags[dupl] = i.flags[dest];
e2ec9d29 7106 }
c0f3af97
L
7107 else
7108 {
dc1e8a47 7109 duplicate:
c0f3af97
L
7110 i.operands++;
7111 i.reg_operands++;
7112 i.tm.operands++;
7113
91d6fa6a
NC
7114 i.op[dupl] = i.op[dest];
7115 i.types[dupl] = i.types[dest];
7116 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
8dc0818e 7117 i.flags[dupl] = i.flags[dest];
c0f3af97
L
7118 }
7119
7120 if (i.tm.opcode_modifier.immext)
7121 process_immext ();
7122 }
75e5731b 7123 else if (i.tm.operand_types[0].bitfield.instance == Accum
1b54b8d7 7124 && i.tm.operand_types[0].bitfield.xmmword)
c0f3af97
L
7125 {
7126 unsigned int j;
7127
9fcfb3d7
L
7128 for (j = 1; j < i.operands; j++)
7129 {
7130 i.op[j - 1] = i.op[j];
7131 i.types[j - 1] = i.types[j];
7132
7133 /* We need to adjust fields in i.tm since they are used by
7134 build_modrm_byte. */
7135 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
8dc0818e
JB
7136
7137 i.flags[j - 1] = i.flags[j];
9fcfb3d7
L
7138 }
7139
e2ec9d29
L
7140 i.operands--;
7141 i.reg_operands--;
e2ec9d29
L
7142 i.tm.operands--;
7143 }
920d2ddc
IT
7144 else if (i.tm.opcode_modifier.implicitquadgroup)
7145 {
a477a8c4
JB
7146 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7147
920d2ddc 7148 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
3528c362 7149 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
a477a8c4
JB
7150 regnum = register_number (i.op[1].regs);
7151 first_reg_in_group = regnum & ~3;
7152 last_reg_in_group = first_reg_in_group + 3;
7153 if (regnum != first_reg_in_group)
7154 as_warn (_("source register `%s%s' implicitly denotes"
7155 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7156 register_prefix, i.op[1].regs->reg_name,
7157 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7158 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7159 i.tm.name);
7160 }
e2ec9d29
L
7161 else if (i.tm.opcode_modifier.regkludge)
7162 {
7163 /* The imul $imm, %reg instruction is converted into
7164 imul $imm, %reg, %reg, and the clr %reg instruction
7165 is converted into xor %reg, %reg. */
7166
7167 unsigned int first_reg_op;
7168
7169 if (operand_type_check (i.types[0], reg))
7170 first_reg_op = 0;
7171 else
7172 first_reg_op = 1;
7173 /* Pretend we saw the extra register operand. */
9c2799c2 7174 gas_assert (i.reg_operands == 1
7ab9ffdd 7175 && i.op[first_reg_op + 1].regs == 0);
e2ec9d29
L
7176 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7177 i.types[first_reg_op + 1] = i.types[first_reg_op];
7178 i.operands++;
7179 i.reg_operands++;
29b0f896
AM
7180 }
7181
85b80b0f 7182 if (i.tm.opcode_modifier.modrm)
29b0f896
AM
7183 {
7184 /* The opcode is completed (modulo i.tm.extension_opcode which
52271982
AM
7185 must be put into the modrm byte). Now, we make the modrm and
7186 index base bytes based on all the info we've collected. */
29b0f896
AM
7187
7188 default_seg = build_modrm_byte ();
7189 }
00cee14f 7190 else if (i.types[0].bitfield.class == SReg)
85b80b0f
JB
7191 {
7192 if (flag_code != CODE_64BIT
7193 ? i.tm.base_opcode == POP_SEG_SHORT
7194 && i.op[0].regs->reg_num == 1
7195 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7196 && i.op[0].regs->reg_num < 4)
7197 {
7198 as_bad (_("you can't `%s %s%s'"),
7199 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7200 return 0;
7201 }
7202 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7203 {
7204 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7205 i.tm.opcode_length = 2;
7206 }
7207 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7208 }
8a2ed489 7209 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
29b0f896
AM
7210 {
7211 default_seg = &ds;
7212 }
40fb9820 7213 else if (i.tm.opcode_modifier.isstring)
29b0f896
AM
7214 {
7215 /* For the string instructions that allow a segment override
7216 on one of their operands, the default segment is ds. */
7217 default_seg = &ds;
7218 }
50128d0c 7219 else if (i.short_form)
85b80b0f
JB
7220 {
7221 /* The register or float register operand is in operand
7222 0 or 1. */
bab6aec1 7223 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
85b80b0f
JB
7224
7225 /* Register goes in low 3 bits of opcode. */
7226 i.tm.base_opcode |= i.op[op].regs->reg_num;
7227 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7228 i.rex |= REX_B;
7229 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7230 {
7231 /* Warn about some common errors, but press on regardless.
7232 The first case can be generated by gcc (<= 2.8.1). */
7233 if (i.operands == 2)
7234 {
7235 /* Reversed arguments on faddp, fsubp, etc. */
7236 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7237 register_prefix, i.op[!intel_syntax].regs->reg_name,
7238 register_prefix, i.op[intel_syntax].regs->reg_name);
7239 }
7240 else
7241 {
7242 /* Extraneous `l' suffix on fp insn. */
7243 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7244 register_prefix, i.op[0].regs->reg_name);
7245 }
7246 }
7247 }
29b0f896 7248
514a8bb0 7249 if ((i.seg[0] || i.prefix[SEG_PREFIX])
514a8bb0
JB
7250 && i.tm.base_opcode == 0x8d /* lea */
7251 && !is_any_vex_encoding(&i.tm))
92334ad2
JB
7252 {
7253 if (!quiet_warnings)
7254 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7255 if (optimize)
7256 {
7257 i.seg[0] = NULL;
7258 i.prefix[SEG_PREFIX] = 0;
7259 }
7260 }
52271982
AM
7261
7262 /* If a segment was explicitly specified, and the specified segment
b6773884
JB
7263 is neither the default nor the one already recorded from a prefix,
7264 use an opcode prefix to select it. If we never figured out what
7265 the default segment is, then default_seg will be zero at this
7266 point, and the specified segment prefix will always be used. */
7267 if (i.seg[0]
7268 && i.seg[0] != default_seg
7269 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
29b0f896
AM
7270 {
7271 if (!add_prefix (i.seg[0]->seg_prefix))
7272 return 0;
7273 }
7274 return 1;
7275}
7276
7277static const seg_entry *
e3bb37b5 7278build_modrm_byte (void)
29b0f896
AM
7279{
7280 const seg_entry *default_seg = 0;
c0f3af97 7281 unsigned int source, dest;
8cd7925b 7282 int vex_3_sources;
c0f3af97 7283
8cd7925b 7284 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
c0f3af97
L
7285 if (vex_3_sources)
7286 {
91d6fa6a 7287 unsigned int nds, reg_slot;
4c2c6516 7288 expressionS *exp;
c0f3af97 7289
6b8d3588 7290 dest = i.operands - 1;
c0f3af97 7291 nds = dest - 1;
922d8de8 7292
a683cc34 7293 /* There are 2 kinds of instructions:
bed3d976 7294 1. 5 operands: 4 register operands or 3 register operands
9d3bf266 7295 plus 1 memory operand plus one Imm4 operand, VexXDS, and
bed3d976 7296 VexW0 or VexW1. The destination must be either XMM, YMM or
43234a1e 7297 ZMM register.
bed3d976 7298 2. 4 operands: 4 register operands or 3 register operands
2f1bada2 7299 plus 1 memory operand, with VexXDS. */
922d8de8 7300 gas_assert ((i.reg_operands == 4
bed3d976
JB
7301 || (i.reg_operands == 3 && i.mem_operands == 1))
7302 && i.tm.opcode_modifier.vexvvvv == VEXXDS
dcd7e323 7303 && i.tm.opcode_modifier.vexw
3528c362 7304 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
a683cc34 7305
48db9223
JB
7306 /* If VexW1 is set, the first non-immediate operand is the source and
7307 the second non-immediate one is encoded in the immediate operand. */
7308 if (i.tm.opcode_modifier.vexw == VEXW1)
7309 {
7310 source = i.imm_operands;
7311 reg_slot = i.imm_operands + 1;
7312 }
7313 else
7314 {
7315 source = i.imm_operands + 1;
7316 reg_slot = i.imm_operands;
7317 }
7318
a683cc34 7319 if (i.imm_operands == 0)
bed3d976
JB
7320 {
7321 /* When there is no immediate operand, generate an 8bit
7322 immediate operand to encode the first operand. */
7323 exp = &im_expressions[i.imm_operands++];
7324 i.op[i.operands].imms = exp;
7325 i.types[i.operands] = imm8;
7326 i.operands++;
7327
3528c362 7328 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
bed3d976
JB
7329 exp->X_op = O_constant;
7330 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
43234a1e
L
7331 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7332 }
922d8de8 7333 else
bed3d976 7334 {
9d3bf266
JB
7335 gas_assert (i.imm_operands == 1);
7336 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7337 gas_assert (!i.tm.opcode_modifier.immext);
a683cc34 7338
9d3bf266
JB
7339 /* Turn on Imm8 again so that output_imm will generate it. */
7340 i.types[0].bitfield.imm8 = 1;
bed3d976 7341
3528c362 7342 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
9d3bf266 7343 i.op[0].imms->X_add_number
bed3d976 7344 |= register_number (i.op[reg_slot].regs) << 4;
43234a1e 7345 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
bed3d976 7346 }
a683cc34 7347
3528c362 7348 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
dae39acc 7349 i.vex.register_specifier = i.op[nds].regs;
c0f3af97
L
7350 }
7351 else
7352 source = dest = 0;
29b0f896
AM
7353
7354 /* i.reg_operands MUST be the number of real register operands;
c0f3af97
L
7355 implicit registers do not count. If there are 3 register
7356 operands, it must be a instruction with VexNDS. For a
7357 instruction with VexNDD, the destination register is encoded
7358 in VEX prefix. If there are 4 register operands, it must be
7359 a instruction with VEX prefix and 3 sources. */
7ab9ffdd
L
7360 if (i.mem_operands == 0
7361 && ((i.reg_operands == 2
2426c15f 7362 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7ab9ffdd 7363 || (i.reg_operands == 3
2426c15f 7364 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd 7365 || (i.reg_operands == 4 && vex_3_sources)))
29b0f896 7366 {
cab737b9
L
7367 switch (i.operands)
7368 {
7369 case 2:
7370 source = 0;
7371 break;
7372 case 3:
c81128dc
L
7373 /* When there are 3 operands, one of them may be immediate,
7374 which may be the first or the last operand. Otherwise,
c0f3af97
L
7375 the first operand must be shift count register (cl) or it
7376 is an instruction with VexNDS. */
9c2799c2 7377 gas_assert (i.imm_operands == 1
7ab9ffdd 7378 || (i.imm_operands == 0
2426c15f 7379 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
75e5731b
JB
7380 || (i.types[0].bitfield.instance == RegC
7381 && i.types[0].bitfield.byte))));
40fb9820 7382 if (operand_type_check (i.types[0], imm)
75e5731b
JB
7383 || (i.types[0].bitfield.instance == RegC
7384 && i.types[0].bitfield.byte))
40fb9820
L
7385 source = 1;
7386 else
7387 source = 0;
cab737b9
L
7388 break;
7389 case 4:
368d64cc
L
7390 /* When there are 4 operands, the first two must be 8bit
7391 immediate operands. The source operand will be the 3rd
c0f3af97
L
7392 one.
7393
7394 For instructions with VexNDS, if the first operand
7395 an imm8, the source operand is the 2nd one. If the last
7396 operand is imm8, the source operand is the first one. */
9c2799c2 7397 gas_assert ((i.imm_operands == 2
7ab9ffdd
L
7398 && i.types[0].bitfield.imm8
7399 && i.types[1].bitfield.imm8)
2426c15f 7400 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7ab9ffdd
L
7401 && i.imm_operands == 1
7402 && (i.types[0].bitfield.imm8
43234a1e
L
7403 || i.types[i.operands - 1].bitfield.imm8
7404 || i.rounding)));
9f2670f2
L
7405 if (i.imm_operands == 2)
7406 source = 2;
7407 else
c0f3af97
L
7408 {
7409 if (i.types[0].bitfield.imm8)
7410 source = 1;
7411 else
7412 source = 0;
7413 }
c0f3af97
L
7414 break;
7415 case 5:
e771e7c9 7416 if (is_evex_encoding (&i.tm))
43234a1e
L
7417 {
7418 /* For EVEX instructions, when there are 5 operands, the
7419 first one must be immediate operand. If the second one
7420 is immediate operand, the source operand is the 3th
7421 one. If the last one is immediate operand, the source
7422 operand is the 2nd one. */
7423 gas_assert (i.imm_operands == 2
7424 && i.tm.opcode_modifier.sae
7425 && operand_type_check (i.types[0], imm));
7426 if (operand_type_check (i.types[1], imm))
7427 source = 2;
7428 else if (operand_type_check (i.types[4], imm))
7429 source = 1;
7430 else
7431 abort ();
7432 }
cab737b9
L
7433 break;
7434 default:
7435 abort ();
7436 }
7437
c0f3af97
L
7438 if (!vex_3_sources)
7439 {
7440 dest = source + 1;
7441
43234a1e
L
7442 /* RC/SAE operand could be between DEST and SRC. That happens
7443 when one operand is GPR and the other one is XMM/YMM/ZMM
7444 register. */
7445 if (i.rounding && i.rounding->operand == (int) dest)
7446 dest++;
7447
2426c15f 7448 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
c0f3af97 7449 {
43234a1e 7450 /* For instructions with VexNDS, the register-only source
c5d0745b 7451 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
dfd69174 7452 register. It is encoded in VEX prefix. */
f12dc422
L
7453
7454 i386_operand_type op;
7455 unsigned int vvvv;
7456
7457 /* Check register-only source operand when two source
7458 operands are swapped. */
7459 if (!i.tm.operand_types[source].bitfield.baseindex
7460 && i.tm.operand_types[dest].bitfield.baseindex)
7461 {
7462 vvvv = source;
7463 source = dest;
7464 }
7465 else
7466 vvvv = dest;
7467
7468 op = i.tm.operand_types[vvvv];
c0f3af97 7469 if ((dest + 1) >= i.operands
bab6aec1 7470 || ((op.bitfield.class != Reg
dc821c5f 7471 || (!op.bitfield.dword && !op.bitfield.qword))
3528c362 7472 && op.bitfield.class != RegSIMD
43234a1e 7473 && !operand_type_equal (&op, &regmask)))
c0f3af97 7474 abort ();
f12dc422 7475 i.vex.register_specifier = i.op[vvvv].regs;
c0f3af97
L
7476 dest++;
7477 }
7478 }
29b0f896
AM
7479
7480 i.rm.mode = 3;
dfd69174
JB
7481 /* One of the register operands will be encoded in the i.rm.reg
7482 field, the other in the combined i.rm.mode and i.rm.regmem
29b0f896
AM
7483 fields. If no form of this instruction supports a memory
7484 destination operand, then we assume the source operand may
7485 sometimes be a memory operand and so we need to store the
7486 destination in the i.rm.reg field. */
dfd69174 7487 if (!i.tm.opcode_modifier.regmem
40fb9820 7488 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
29b0f896
AM
7489 {
7490 i.rm.reg = i.op[dest].regs->reg_num;
7491 i.rm.regmem = i.op[source].regs->reg_num;
3528c362
JB
7492 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7493 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
b4a3a7b4 7494 i.has_regmmx = TRUE;
3528c362
JB
7495 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7496 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
b4a3a7b4
L
7497 {
7498 if (i.types[dest].bitfield.zmmword
7499 || i.types[source].bitfield.zmmword)
7500 i.has_regzmm = TRUE;
7501 else if (i.types[dest].bitfield.ymmword
7502 || i.types[source].bitfield.ymmword)
7503 i.has_regymm = TRUE;
7504 else
7505 i.has_regxmm = TRUE;
7506 }
29b0f896 7507 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7508 i.rex |= REX_R;
43234a1e
L
7509 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7510 i.vrex |= REX_R;
29b0f896 7511 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7512 i.rex |= REX_B;
43234a1e
L
7513 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7514 i.vrex |= REX_B;
29b0f896
AM
7515 }
7516 else
7517 {
7518 i.rm.reg = i.op[source].regs->reg_num;
7519 i.rm.regmem = i.op[dest].regs->reg_num;
7520 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
161a04f6 7521 i.rex |= REX_B;
43234a1e
L
7522 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7523 i.vrex |= REX_B;
29b0f896 7524 if ((i.op[source].regs->reg_flags & RegRex) != 0)
161a04f6 7525 i.rex |= REX_R;
43234a1e
L
7526 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7527 i.vrex |= REX_R;
29b0f896 7528 }
e0c7f900 7529 if (flag_code != CODE_64BIT && (i.rex & REX_R))
c4a530c5 7530 {
4a5c67ed 7531 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
c4a530c5 7532 abort ();
e0c7f900 7533 i.rex &= ~REX_R;
c4a530c5
JB
7534 add_prefix (LOCK_PREFIX_OPCODE);
7535 }
29b0f896
AM
7536 }
7537 else
7538 { /* If it's not 2 reg operands... */
c0f3af97
L
7539 unsigned int mem;
7540
29b0f896
AM
7541 if (i.mem_operands)
7542 {
7543 unsigned int fake_zero_displacement = 0;
99018f42 7544 unsigned int op;
4eed87de 7545
7ab9ffdd 7546 for (op = 0; op < i.operands; op++)
8dc0818e 7547 if (i.flags[op] & Operand_Mem)
7ab9ffdd 7548 break;
7ab9ffdd 7549 gas_assert (op < i.operands);
29b0f896 7550
6c30d220
L
7551 if (i.tm.opcode_modifier.vecsib)
7552 {
e968fc9b 7553 if (i.index_reg->reg_num == RegIZ)
6c30d220
L
7554 abort ();
7555
7556 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7557 if (!i.base_reg)
7558 {
7559 i.sib.base = NO_BASE_REGISTER;
7560 i.sib.scale = i.log2_scale_factor;
7561 i.types[op].bitfield.disp8 = 0;
7562 i.types[op].bitfield.disp16 = 0;
7563 i.types[op].bitfield.disp64 = 0;
43083a50 7564 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6c30d220
L
7565 {
7566 /* Must be 32 bit */
7567 i.types[op].bitfield.disp32 = 1;
7568 i.types[op].bitfield.disp32s = 0;
7569 }
7570 else
7571 {
7572 i.types[op].bitfield.disp32 = 0;
7573 i.types[op].bitfield.disp32s = 1;
7574 }
7575 }
7576 i.sib.index = i.index_reg->reg_num;
7577 if ((i.index_reg->reg_flags & RegRex) != 0)
7578 i.rex |= REX_X;
43234a1e
L
7579 if ((i.index_reg->reg_flags & RegVRex) != 0)
7580 i.vrex |= REX_X;
6c30d220
L
7581 }
7582
29b0f896
AM
7583 default_seg = &ds;
7584
7585 if (i.base_reg == 0)
7586 {
7587 i.rm.mode = 0;
7588 if (!i.disp_operands)
9bb129e8 7589 fake_zero_displacement = 1;
29b0f896
AM
7590 if (i.index_reg == 0)
7591 {
73053c1f
JB
7592 i386_operand_type newdisp;
7593
6c30d220 7594 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7595 /* Operand is just <disp> */
20f0a1fc 7596 if (flag_code == CODE_64BIT)
29b0f896
AM
7597 {
7598 /* 64bit mode overwrites the 32bit absolute
7599 addressing by RIP relative addressing and
7600 absolute addressing is encoded by one of the
7601 redundant SIB forms. */
7602 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7603 i.sib.base = NO_BASE_REGISTER;
7604 i.sib.index = NO_INDEX_REGISTER;
73053c1f 7605 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
20f0a1fc 7606 }
fc225355
L
7607 else if ((flag_code == CODE_16BIT)
7608 ^ (i.prefix[ADDR_PREFIX] != 0))
20f0a1fc
NC
7609 {
7610 i.rm.regmem = NO_BASE_REGISTER_16;
73053c1f 7611 newdisp = disp16;
20f0a1fc
NC
7612 }
7613 else
7614 {
7615 i.rm.regmem = NO_BASE_REGISTER;
73053c1f 7616 newdisp = disp32;
29b0f896 7617 }
73053c1f
JB
7618 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7619 i.types[op] = operand_type_or (i.types[op], newdisp);
29b0f896 7620 }
6c30d220 7621 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7622 {
6c30d220 7623 /* !i.base_reg && i.index_reg */
e968fc9b 7624 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7625 i.sib.index = NO_INDEX_REGISTER;
7626 else
7627 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7628 i.sib.base = NO_BASE_REGISTER;
7629 i.sib.scale = i.log2_scale_factor;
7630 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
40fb9820
L
7631 i.types[op].bitfield.disp8 = 0;
7632 i.types[op].bitfield.disp16 = 0;
7633 i.types[op].bitfield.disp64 = 0;
43083a50 7634 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
40fb9820
L
7635 {
7636 /* Must be 32 bit */
7637 i.types[op].bitfield.disp32 = 1;
7638 i.types[op].bitfield.disp32s = 0;
7639 }
29b0f896 7640 else
40fb9820
L
7641 {
7642 i.types[op].bitfield.disp32 = 0;
7643 i.types[op].bitfield.disp32s = 1;
7644 }
29b0f896 7645 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7646 i.rex |= REX_X;
29b0f896
AM
7647 }
7648 }
7649 /* RIP addressing for 64bit mode. */
e968fc9b 7650 else if (i.base_reg->reg_num == RegIP)
29b0f896 7651 {
6c30d220 7652 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896 7653 i.rm.regmem = NO_BASE_REGISTER;
40fb9820
L
7654 i.types[op].bitfield.disp8 = 0;
7655 i.types[op].bitfield.disp16 = 0;
7656 i.types[op].bitfield.disp32 = 0;
7657 i.types[op].bitfield.disp32s = 1;
7658 i.types[op].bitfield.disp64 = 0;
71903a11 7659 i.flags[op] |= Operand_PCrel;
20f0a1fc
NC
7660 if (! i.disp_operands)
7661 fake_zero_displacement = 1;
29b0f896 7662 }
dc821c5f 7663 else if (i.base_reg->reg_type.bitfield.word)
29b0f896 7664 {
6c30d220 7665 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7666 switch (i.base_reg->reg_num)
7667 {
7668 case 3: /* (%bx) */
7669 if (i.index_reg == 0)
7670 i.rm.regmem = 7;
7671 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7672 i.rm.regmem = i.index_reg->reg_num - 6;
7673 break;
7674 case 5: /* (%bp) */
7675 default_seg = &ss;
7676 if (i.index_reg == 0)
7677 {
7678 i.rm.regmem = 6;
40fb9820 7679 if (operand_type_check (i.types[op], disp) == 0)
29b0f896
AM
7680 {
7681 /* fake (%bp) into 0(%bp) */
b5014f7a 7682 i.types[op].bitfield.disp8 = 1;
252b5132 7683 fake_zero_displacement = 1;
29b0f896
AM
7684 }
7685 }
7686 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7687 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7688 break;
7689 default: /* (%si) -> 4 or (%di) -> 5 */
7690 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7691 }
7692 i.rm.mode = mode_from_disp_size (i.types[op]);
7693 }
7694 else /* i.base_reg and 32/64 bit mode */
7695 {
7696 if (flag_code == CODE_64BIT
40fb9820
L
7697 && operand_type_check (i.types[op], disp))
7698 {
73053c1f
JB
7699 i.types[op].bitfield.disp16 = 0;
7700 i.types[op].bitfield.disp64 = 0;
40fb9820 7701 if (i.prefix[ADDR_PREFIX] == 0)
73053c1f
JB
7702 {
7703 i.types[op].bitfield.disp32 = 0;
7704 i.types[op].bitfield.disp32s = 1;
7705 }
40fb9820 7706 else
73053c1f
JB
7707 {
7708 i.types[op].bitfield.disp32 = 1;
7709 i.types[op].bitfield.disp32s = 0;
7710 }
40fb9820 7711 }
20f0a1fc 7712
6c30d220
L
7713 if (!i.tm.opcode_modifier.vecsib)
7714 i.rm.regmem = i.base_reg->reg_num;
29b0f896 7715 if ((i.base_reg->reg_flags & RegRex) != 0)
161a04f6 7716 i.rex |= REX_B;
29b0f896
AM
7717 i.sib.base = i.base_reg->reg_num;
7718 /* x86-64 ignores REX prefix bit here to avoid decoder
7719 complications. */
848930b2
JB
7720 if (!(i.base_reg->reg_flags & RegRex)
7721 && (i.base_reg->reg_num == EBP_REG_NUM
7722 || i.base_reg->reg_num == ESP_REG_NUM))
29b0f896 7723 default_seg = &ss;
848930b2 7724 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
29b0f896 7725 {
848930b2 7726 fake_zero_displacement = 1;
b5014f7a 7727 i.types[op].bitfield.disp8 = 1;
29b0f896
AM
7728 }
7729 i.sib.scale = i.log2_scale_factor;
7730 if (i.index_reg == 0)
7731 {
6c30d220 7732 gas_assert (!i.tm.opcode_modifier.vecsib);
29b0f896
AM
7733 /* <disp>(%esp) becomes two byte modrm with no index
7734 register. We've already stored the code for esp
7735 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7736 Any base register besides %esp will not use the
7737 extra modrm byte. */
7738 i.sib.index = NO_INDEX_REGISTER;
29b0f896 7739 }
6c30d220 7740 else if (!i.tm.opcode_modifier.vecsib)
29b0f896 7741 {
e968fc9b 7742 if (i.index_reg->reg_num == RegIZ)
db51cc60
L
7743 i.sib.index = NO_INDEX_REGISTER;
7744 else
7745 i.sib.index = i.index_reg->reg_num;
29b0f896
AM
7746 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7747 if ((i.index_reg->reg_flags & RegRex) != 0)
161a04f6 7748 i.rex |= REX_X;
29b0f896 7749 }
67a4f2b7
AO
7750
7751 if (i.disp_operands
7752 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7753 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7754 i.rm.mode = 0;
7755 else
a501d77e
L
7756 {
7757 if (!fake_zero_displacement
7758 && !i.disp_operands
7759 && i.disp_encoding)
7760 {
7761 fake_zero_displacement = 1;
7762 if (i.disp_encoding == disp_encoding_8bit)
7763 i.types[op].bitfield.disp8 = 1;
7764 else
7765 i.types[op].bitfield.disp32 = 1;
7766 }
7767 i.rm.mode = mode_from_disp_size (i.types[op]);
7768 }
29b0f896 7769 }
252b5132 7770
29b0f896
AM
7771 if (fake_zero_displacement)
7772 {
7773 /* Fakes a zero displacement assuming that i.types[op]
7774 holds the correct displacement size. */
7775 expressionS *exp;
7776
9c2799c2 7777 gas_assert (i.op[op].disps == 0);
29b0f896
AM
7778 exp = &disp_expressions[i.disp_operands++];
7779 i.op[op].disps = exp;
7780 exp->X_op = O_constant;
7781 exp->X_add_number = 0;
7782 exp->X_add_symbol = (symbolS *) 0;
7783 exp->X_op_symbol = (symbolS *) 0;
7784 }
c0f3af97
L
7785
7786 mem = op;
29b0f896 7787 }
c0f3af97
L
7788 else
7789 mem = ~0;
252b5132 7790
8c43a48b 7791 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
5dd85c99
SP
7792 {
7793 if (operand_type_check (i.types[0], imm))
7794 i.vex.register_specifier = NULL;
7795 else
7796 {
7797 /* VEX.vvvv encodes one of the sources when the first
7798 operand is not an immediate. */
1ef99a7b 7799 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7800 i.vex.register_specifier = i.op[0].regs;
7801 else
7802 i.vex.register_specifier = i.op[1].regs;
7803 }
7804
7805 /* Destination is a XMM register encoded in the ModRM.reg
7806 and VEX.R bit. */
7807 i.rm.reg = i.op[2].regs->reg_num;
7808 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7809 i.rex |= REX_R;
7810
7811 /* ModRM.rm and VEX.B encodes the other source. */
7812 if (!i.mem_operands)
7813 {
7814 i.rm.mode = 3;
7815
1ef99a7b 7816 if (i.tm.opcode_modifier.vexw == VEXW0)
5dd85c99
SP
7817 i.rm.regmem = i.op[1].regs->reg_num;
7818 else
7819 i.rm.regmem = i.op[0].regs->reg_num;
7820
7821 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7822 i.rex |= REX_B;
7823 }
7824 }
2426c15f 7825 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
f88c9eb0
SP
7826 {
7827 i.vex.register_specifier = i.op[2].regs;
7828 if (!i.mem_operands)
7829 {
7830 i.rm.mode = 3;
7831 i.rm.regmem = i.op[1].regs->reg_num;
7832 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7833 i.rex |= REX_B;
7834 }
7835 }
29b0f896
AM
7836 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7837 (if any) based on i.tm.extension_opcode. Again, we must be
7838 careful to make sure that segment/control/debug/test/MMX
7839 registers are coded into the i.rm.reg field. */
f88c9eb0 7840 else if (i.reg_operands)
29b0f896 7841 {
99018f42 7842 unsigned int op;
7ab9ffdd
L
7843 unsigned int vex_reg = ~0;
7844
7845 for (op = 0; op < i.operands; op++)
b4a3a7b4 7846 {
bab6aec1 7847 if (i.types[op].bitfield.class == Reg
f74a6307
JB
7848 || i.types[op].bitfield.class == RegBND
7849 || i.types[op].bitfield.class == RegMask
00cee14f 7850 || i.types[op].bitfield.class == SReg
4a5c67ed
JB
7851 || i.types[op].bitfield.class == RegCR
7852 || i.types[op].bitfield.class == RegDR
7853 || i.types[op].bitfield.class == RegTR)
b4a3a7b4 7854 break;
3528c362 7855 if (i.types[op].bitfield.class == RegSIMD)
b4a3a7b4
L
7856 {
7857 if (i.types[op].bitfield.zmmword)
7858 i.has_regzmm = TRUE;
7859 else if (i.types[op].bitfield.ymmword)
7860 i.has_regymm = TRUE;
7861 else
7862 i.has_regxmm = TRUE;
7863 break;
7864 }
3528c362 7865 if (i.types[op].bitfield.class == RegMMX)
b4a3a7b4
L
7866 {
7867 i.has_regmmx = TRUE;
7868 break;
7869 }
7870 }
c0209578 7871
7ab9ffdd
L
7872 if (vex_3_sources)
7873 op = dest;
2426c15f 7874 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7ab9ffdd
L
7875 {
7876 /* For instructions with VexNDS, the register-only
7877 source operand is encoded in VEX prefix. */
7878 gas_assert (mem != (unsigned int) ~0);
c0f3af97 7879
7ab9ffdd 7880 if (op > mem)
c0f3af97 7881 {
7ab9ffdd
L
7882 vex_reg = op++;
7883 gas_assert (op < i.operands);
c0f3af97
L
7884 }
7885 else
c0f3af97 7886 {
f12dc422
L
7887 /* Check register-only source operand when two source
7888 operands are swapped. */
7889 if (!i.tm.operand_types[op].bitfield.baseindex
7890 && i.tm.operand_types[op + 1].bitfield.baseindex)
7891 {
7892 vex_reg = op;
7893 op += 2;
7894 gas_assert (mem == (vex_reg + 1)
7895 && op < i.operands);
7896 }
7897 else
7898 {
7899 vex_reg = op + 1;
7900 gas_assert (vex_reg < i.operands);
7901 }
c0f3af97 7902 }
7ab9ffdd 7903 }
2426c15f 7904 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7ab9ffdd 7905 {
f12dc422 7906 /* For instructions with VexNDD, the register destination
7ab9ffdd 7907 is encoded in VEX prefix. */
f12dc422
L
7908 if (i.mem_operands == 0)
7909 {
7910 /* There is no memory operand. */
7911 gas_assert ((op + 2) == i.operands);
7912 vex_reg = op + 1;
7913 }
7914 else
8d63c93e 7915 {
ed438a93
JB
7916 /* There are only 2 non-immediate operands. */
7917 gas_assert (op < i.imm_operands + 2
7918 && i.operands == i.imm_operands + 2);
7919 vex_reg = i.imm_operands + 1;
f12dc422 7920 }
7ab9ffdd
L
7921 }
7922 else
7923 gas_assert (op < i.operands);
99018f42 7924
7ab9ffdd
L
7925 if (vex_reg != (unsigned int) ~0)
7926 {
f12dc422 7927 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7ab9ffdd 7928
bab6aec1 7929 if ((type->bitfield.class != Reg
dc821c5f 7930 || (!type->bitfield.dword && !type->bitfield.qword))
3528c362 7931 && type->bitfield.class != RegSIMD
43234a1e 7932 && !operand_type_equal (type, &regmask))
7ab9ffdd 7933 abort ();
f88c9eb0 7934
7ab9ffdd
L
7935 i.vex.register_specifier = i.op[vex_reg].regs;
7936 }
7937
1b9f0c97
L
7938 /* Don't set OP operand twice. */
7939 if (vex_reg != op)
7ab9ffdd 7940 {
1b9f0c97
L
7941 /* If there is an extension opcode to put here, the
7942 register number must be put into the regmem field. */
7943 if (i.tm.extension_opcode != None)
7944 {
7945 i.rm.regmem = i.op[op].regs->reg_num;
7946 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7947 i.rex |= REX_B;
43234a1e
L
7948 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7949 i.vrex |= REX_B;
1b9f0c97
L
7950 }
7951 else
7952 {
7953 i.rm.reg = i.op[op].regs->reg_num;
7954 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7955 i.rex |= REX_R;
43234a1e
L
7956 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7957 i.vrex |= REX_R;
1b9f0c97 7958 }
7ab9ffdd 7959 }
252b5132 7960
29b0f896
AM
7961 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7962 must set it to 3 to indicate this is a register operand
7963 in the regmem field. */
7964 if (!i.mem_operands)
7965 i.rm.mode = 3;
7966 }
252b5132 7967
29b0f896 7968 /* Fill in i.rm.reg field with extension opcode (if any). */
c1e679ec 7969 if (i.tm.extension_opcode != None)
29b0f896
AM
7970 i.rm.reg = i.tm.extension_opcode;
7971 }
7972 return default_seg;
7973}
252b5132 7974
376cd056
JB
7975static unsigned int
7976flip_code16 (unsigned int code16)
7977{
7978 gas_assert (i.tm.operands == 1);
7979
7980 return !(i.prefix[REX_PREFIX] & REX_W)
7981 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7982 || i.tm.operand_types[0].bitfield.disp32s
7983 : i.tm.operand_types[0].bitfield.disp16)
7984 ? CODE16 : 0;
7985}
7986
29b0f896 7987static void
e3bb37b5 7988output_branch (void)
29b0f896
AM
7989{
7990 char *p;
f8a5c266 7991 int size;
29b0f896
AM
7992 int code16;
7993 int prefix;
7994 relax_substateT subtype;
7995 symbolS *sym;
7996 offsetT off;
7997
f8a5c266 7998 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
a501d77e 7999 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
29b0f896
AM
8000
8001 prefix = 0;
8002 if (i.prefix[DATA_PREFIX] != 0)
252b5132 8003 {
29b0f896
AM
8004 prefix = 1;
8005 i.prefixes -= 1;
376cd056 8006 code16 ^= flip_code16(code16);
252b5132 8007 }
29b0f896
AM
8008 /* Pentium4 branch hints. */
8009 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8010 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
2f66722d 8011 {
29b0f896
AM
8012 prefix++;
8013 i.prefixes--;
8014 }
8015 if (i.prefix[REX_PREFIX] != 0)
8016 {
8017 prefix++;
8018 i.prefixes--;
2f66722d
AM
8019 }
8020
7e8b059b
L
8021 /* BND prefixed jump. */
8022 if (i.prefix[BND_PREFIX] != 0)
8023 {
6cb0a70e
JB
8024 prefix++;
8025 i.prefixes--;
7e8b059b
L
8026 }
8027
f2810fe0
JB
8028 if (i.prefixes != 0)
8029 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
29b0f896
AM
8030
8031 /* It's always a symbol; End frag & setup for relax.
8032 Make sure there is enough room in this frag for the largest
8033 instruction we may generate in md_convert_frag. This is 2
8034 bytes for the opcode and room for the prefix and largest
8035 displacement. */
8036 frag_grow (prefix + 2 + 4);
8037 /* Prefix and 1 opcode byte go in fr_fix. */
8038 p = frag_more (prefix + 1);
8039 if (i.prefix[DATA_PREFIX] != 0)
8040 *p++ = DATA_PREFIX_OPCODE;
8041 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8042 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8043 *p++ = i.prefix[SEG_PREFIX];
6cb0a70e
JB
8044 if (i.prefix[BND_PREFIX] != 0)
8045 *p++ = BND_PREFIX_OPCODE;
29b0f896
AM
8046 if (i.prefix[REX_PREFIX] != 0)
8047 *p++ = i.prefix[REX_PREFIX];
8048 *p = i.tm.base_opcode;
8049
8050 if ((unsigned char) *p == JUMP_PC_RELATIVE)
f8a5c266 8051 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
40fb9820 8052 else if (cpu_arch_flags.bitfield.cpui386)
f8a5c266 8053 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
29b0f896 8054 else
f8a5c266 8055 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
29b0f896 8056 subtype |= code16;
3e73aa7c 8057
29b0f896
AM
8058 sym = i.op[0].disps->X_add_symbol;
8059 off = i.op[0].disps->X_add_number;
3e73aa7c 8060
29b0f896
AM
8061 if (i.op[0].disps->X_op != O_constant
8062 && i.op[0].disps->X_op != O_symbol)
3e73aa7c 8063 {
29b0f896
AM
8064 /* Handle complex expressions. */
8065 sym = make_expr_symbol (i.op[0].disps);
8066 off = 0;
8067 }
3e73aa7c 8068
29b0f896
AM
8069 /* 1 possible extra opcode + 4 byte displacement go in var part.
8070 Pass reloc in fr_var. */
d258b828 8071 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
29b0f896 8072}
3e73aa7c 8073
bd7ab16b
L
8074#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8075/* Return TRUE iff PLT32 relocation should be used for branching to
8076 symbol S. */
8077
8078static bfd_boolean
8079need_plt32_p (symbolS *s)
8080{
8081 /* PLT32 relocation is ELF only. */
8082 if (!IS_ELF)
8083 return FALSE;
8084
a5def729
RO
8085#ifdef TE_SOLARIS
8086 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8087 krtld support it. */
8088 return FALSE;
8089#endif
8090
bd7ab16b
L
8091 /* Since there is no need to prepare for PLT branch on x86-64, we
8092 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8093 be used as a marker for 32-bit PC-relative branches. */
8094 if (!object_64bit)
8095 return FALSE;
8096
8097 /* Weak or undefined symbol need PLT32 relocation. */
8098 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8099 return TRUE;
8100
8101 /* Non-global symbol doesn't need PLT32 relocation. */
8102 if (! S_IS_EXTERNAL (s))
8103 return FALSE;
8104
8105 /* Other global symbols need PLT32 relocation. NB: Symbol with
8106 non-default visibilities are treated as normal global symbol
8107 so that PLT32 relocation can be used as a marker for 32-bit
8108 PC-relative branches. It is useful for linker relaxation. */
8109 return TRUE;
8110}
8111#endif
8112
29b0f896 8113static void
e3bb37b5 8114output_jump (void)
29b0f896
AM
8115{
8116 char *p;
8117 int size;
3e02c1cc 8118 fixS *fixP;
bd7ab16b 8119 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
29b0f896 8120
0cfa3eb3 8121 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
29b0f896
AM
8122 {
8123 /* This is a loop or jecxz type instruction. */
8124 size = 1;
8125 if (i.prefix[ADDR_PREFIX] != 0)
8126 {
8127 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
8128 i.prefixes -= 1;
8129 }
8130 /* Pentium4 branch hints. */
8131 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8132 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8133 {
8134 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
8135 i.prefixes--;
3e73aa7c
JH
8136 }
8137 }
29b0f896
AM
8138 else
8139 {
8140 int code16;
3e73aa7c 8141
29b0f896
AM
8142 code16 = 0;
8143 if (flag_code == CODE_16BIT)
8144 code16 = CODE16;
3e73aa7c 8145
29b0f896
AM
8146 if (i.prefix[DATA_PREFIX] != 0)
8147 {
8148 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8149 i.prefixes -= 1;
376cd056 8150 code16 ^= flip_code16(code16);
29b0f896 8151 }
252b5132 8152
29b0f896
AM
8153 size = 4;
8154 if (code16)
8155 size = 2;
8156 }
9fcc94b6 8157
6cb0a70e
JB
8158 /* BND prefixed jump. */
8159 if (i.prefix[BND_PREFIX] != 0)
29b0f896 8160 {
6cb0a70e 8161 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
29b0f896
AM
8162 i.prefixes -= 1;
8163 }
252b5132 8164
6cb0a70e 8165 if (i.prefix[REX_PREFIX] != 0)
7e8b059b 8166 {
6cb0a70e 8167 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7e8b059b
L
8168 i.prefixes -= 1;
8169 }
8170
f2810fe0
JB
8171 if (i.prefixes != 0)
8172 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
e0890092 8173
42164a71
L
8174 p = frag_more (i.tm.opcode_length + size);
8175 switch (i.tm.opcode_length)
8176 {
8177 case 2:
8178 *p++ = i.tm.base_opcode >> 8;
1a0670f3 8179 /* Fall through. */
42164a71
L
8180 case 1:
8181 *p++ = i.tm.base_opcode;
8182 break;
8183 default:
8184 abort ();
8185 }
e0890092 8186
bd7ab16b
L
8187#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8188 if (size == 4
8189 && jump_reloc == NO_RELOC
8190 && need_plt32_p (i.op[0].disps->X_add_symbol))
8191 jump_reloc = BFD_RELOC_X86_64_PLT32;
8192#endif
8193
8194 jump_reloc = reloc (size, 1, 1, jump_reloc);
8195
3e02c1cc 8196 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
bd7ab16b 8197 i.op[0].disps, 1, jump_reloc);
3e02c1cc
AM
8198
8199 /* All jumps handled here are signed, but don't use a signed limit
8200 check for 32 and 16 bit jumps as we want to allow wrap around at
8201 4G and 64k respectively. */
8202 if (size == 1)
8203 fixP->fx_signed = 1;
29b0f896 8204}
e0890092 8205
29b0f896 8206static void
e3bb37b5 8207output_interseg_jump (void)
29b0f896
AM
8208{
8209 char *p;
8210 int size;
8211 int prefix;
8212 int code16;
252b5132 8213
29b0f896
AM
8214 code16 = 0;
8215 if (flag_code == CODE_16BIT)
8216 code16 = CODE16;
a217f122 8217
29b0f896
AM
8218 prefix = 0;
8219 if (i.prefix[DATA_PREFIX] != 0)
8220 {
8221 prefix = 1;
8222 i.prefixes -= 1;
8223 code16 ^= CODE16;
8224 }
6cb0a70e
JB
8225
8226 gas_assert (!i.prefix[REX_PREFIX]);
252b5132 8227
29b0f896
AM
8228 size = 4;
8229 if (code16)
8230 size = 2;
252b5132 8231
f2810fe0
JB
8232 if (i.prefixes != 0)
8233 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
252b5132 8234
29b0f896
AM
8235 /* 1 opcode; 2 segment; offset */
8236 p = frag_more (prefix + 1 + 2 + size);
3e73aa7c 8237
29b0f896
AM
8238 if (i.prefix[DATA_PREFIX] != 0)
8239 *p++ = DATA_PREFIX_OPCODE;
252b5132 8240
29b0f896
AM
8241 if (i.prefix[REX_PREFIX] != 0)
8242 *p++ = i.prefix[REX_PREFIX];
252b5132 8243
29b0f896
AM
8244 *p++ = i.tm.base_opcode;
8245 if (i.op[1].imms->X_op == O_constant)
8246 {
8247 offsetT n = i.op[1].imms->X_add_number;
252b5132 8248
29b0f896
AM
8249 if (size == 2
8250 && !fits_in_unsigned_word (n)
8251 && !fits_in_signed_word (n))
8252 {
8253 as_bad (_("16-bit jump out of range"));
8254 return;
8255 }
8256 md_number_to_chars (p, n, size);
8257 }
8258 else
8259 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
d258b828 8260 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
29b0f896
AM
8261 if (i.op[0].imms->X_op != O_constant)
8262 as_bad (_("can't handle non absolute segment in `%s'"),
8263 i.tm.name);
8264 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8265}
a217f122 8266
b4a3a7b4
L
8267#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8268void
8269x86_cleanup (void)
8270{
8271 char *p;
8272 asection *seg = now_seg;
8273 subsegT subseg = now_subseg;
8274 asection *sec;
8275 unsigned int alignment, align_size_1;
8276 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8277 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8278 unsigned int padding;
8279
8280 if (!IS_ELF || !x86_used_note)
8281 return;
8282
b4a3a7b4
L
8283 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8284
8285 /* The .note.gnu.property section layout:
8286
8287 Field Length Contents
8288 ---- ---- ----
8289 n_namsz 4 4
8290 n_descsz 4 The note descriptor size
8291 n_type 4 NT_GNU_PROPERTY_TYPE_0
8292 n_name 4 "GNU"
8293 n_desc n_descsz The program property array
8294 .... .... ....
8295 */
8296
8297 /* Create the .note.gnu.property section. */
8298 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
fd361982 8299 bfd_set_section_flags (sec,
b4a3a7b4
L
8300 (SEC_ALLOC
8301 | SEC_LOAD
8302 | SEC_DATA
8303 | SEC_HAS_CONTENTS
8304 | SEC_READONLY));
8305
8306 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8307 {
8308 align_size_1 = 7;
8309 alignment = 3;
8310 }
8311 else
8312 {
8313 align_size_1 = 3;
8314 alignment = 2;
8315 }
8316
fd361982 8317 bfd_set_section_alignment (sec, alignment);
b4a3a7b4
L
8318 elf_section_type (sec) = SHT_NOTE;
8319
8320 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8321 + 4-byte data */
8322 isa_1_descsz_raw = 4 + 4 + 4;
8323 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8324 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8325
8326 feature_2_descsz_raw = isa_1_descsz;
8327 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8328 + 4-byte data */
8329 feature_2_descsz_raw += 4 + 4 + 4;
8330 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8331 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8332 & ~align_size_1);
8333
8334 descsz = feature_2_descsz;
8335 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8336 p = frag_more (4 + 4 + 4 + 4 + descsz);
8337
8338 /* Write n_namsz. */
8339 md_number_to_chars (p, (valueT) 4, 4);
8340
8341 /* Write n_descsz. */
8342 md_number_to_chars (p + 4, (valueT) descsz, 4);
8343
8344 /* Write n_type. */
8345 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8346
8347 /* Write n_name. */
8348 memcpy (p + 4 * 3, "GNU", 4);
8349
8350 /* Write 4-byte type. */
8351 md_number_to_chars (p + 4 * 4,
8352 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8353
8354 /* Write 4-byte data size. */
8355 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8356
8357 /* Write 4-byte data. */
8358 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8359
8360 /* Zero out paddings. */
8361 padding = isa_1_descsz - isa_1_descsz_raw;
8362 if (padding)
8363 memset (p + 4 * 7, 0, padding);
8364
8365 /* Write 4-byte type. */
8366 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8367 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8368
8369 /* Write 4-byte data size. */
8370 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8371
8372 /* Write 4-byte data. */
8373 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8374 (valueT) x86_feature_2_used, 4);
8375
8376 /* Zero out paddings. */
8377 padding = feature_2_descsz - feature_2_descsz_raw;
8378 if (padding)
8379 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8380
8381 /* We probably can't restore the current segment, for there likely
8382 isn't one yet... */
8383 if (seg && subseg)
8384 subseg_set (seg, subseg);
8385}
8386#endif
8387
9c33702b
JB
8388static unsigned int
8389encoding_length (const fragS *start_frag, offsetT start_off,
8390 const char *frag_now_ptr)
8391{
8392 unsigned int len = 0;
8393
8394 if (start_frag != frag_now)
8395 {
8396 const fragS *fr = start_frag;
8397
8398 do {
8399 len += fr->fr_fix;
8400 fr = fr->fr_next;
8401 } while (fr && fr != frag_now);
8402 }
8403
8404 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8405}
8406
e379e5f3 8407/* Return 1 for test, and, cmp, add, sub, inc and dec which may
79d72f45
HL
8408 be macro-fused with conditional jumps.
8409 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8410 or is one of the following format:
8411
8412 cmp m, imm
8413 add m, imm
8414 sub m, imm
8415 test m, imm
8416 and m, imm
8417 inc m
8418 dec m
8419
8420 it is unfusible. */
e379e5f3
L
8421
8422static int
79d72f45 8423maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8424{
8425 /* No RIP address. */
8426 if (i.base_reg && i.base_reg->reg_num == RegIP)
8427 return 0;
8428
8429 /* No VEX/EVEX encoding. */
8430 if (is_any_vex_encoding (&i.tm))
8431 return 0;
8432
79d72f45
HL
8433 /* add, sub without add/sub m, imm. */
8434 if (i.tm.base_opcode <= 5
e379e5f3
L
8435 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8436 || ((i.tm.base_opcode | 3) == 0x83
79d72f45 8437 && (i.tm.extension_opcode == 0x5
e379e5f3 8438 || i.tm.extension_opcode == 0x0)))
79d72f45
HL
8439 {
8440 *mf_cmp_p = mf_cmp_alu_cmp;
8441 return !(i.mem_operands && i.imm_operands);
8442 }
e379e5f3 8443
79d72f45
HL
8444 /* and without and m, imm. */
8445 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8446 || ((i.tm.base_opcode | 3) == 0x83
8447 && i.tm.extension_opcode == 0x4))
8448 {
8449 *mf_cmp_p = mf_cmp_test_and;
8450 return !(i.mem_operands && i.imm_operands);
8451 }
8452
8453 /* test without test m imm. */
e379e5f3
L
8454 if ((i.tm.base_opcode | 1) == 0x85
8455 || (i.tm.base_opcode | 1) == 0xa9
8456 || ((i.tm.base_opcode | 1) == 0xf7
79d72f45
HL
8457 && i.tm.extension_opcode == 0))
8458 {
8459 *mf_cmp_p = mf_cmp_test_and;
8460 return !(i.mem_operands && i.imm_operands);
8461 }
8462
8463 /* cmp without cmp m, imm. */
8464 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
e379e5f3
L
8465 || ((i.tm.base_opcode | 3) == 0x83
8466 && (i.tm.extension_opcode == 0x7)))
79d72f45
HL
8467 {
8468 *mf_cmp_p = mf_cmp_alu_cmp;
8469 return !(i.mem_operands && i.imm_operands);
8470 }
e379e5f3 8471
79d72f45 8472 /* inc, dec without inc/dec m. */
e379e5f3
L
8473 if ((i.tm.cpu_flags.bitfield.cpuno64
8474 && (i.tm.base_opcode | 0xf) == 0x4f)
8475 || ((i.tm.base_opcode | 1) == 0xff
8476 && i.tm.extension_opcode <= 0x1))
79d72f45
HL
8477 {
8478 *mf_cmp_p = mf_cmp_incdec;
8479 return !i.mem_operands;
8480 }
e379e5f3
L
8481
8482 return 0;
8483}
8484
8485/* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8486
8487static int
79d72f45 8488add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
e379e5f3
L
8489{
8490 /* NB: Don't work with COND_JUMP86 without i386. */
8491 if (!align_branch_power
8492 || now_seg == absolute_section
8493 || !cpu_arch_flags.bitfield.cpui386
8494 || !(align_branch & align_branch_fused_bit))
8495 return 0;
8496
79d72f45 8497 if (maybe_fused_with_jcc_p (mf_cmp_p))
e379e5f3
L
8498 {
8499 if (last_insn.kind == last_insn_other
8500 || last_insn.seg != now_seg)
8501 return 1;
8502 if (flag_debug)
8503 as_warn_where (last_insn.file, last_insn.line,
8504 _("`%s` skips -malign-branch-boundary on `%s`"),
8505 last_insn.name, i.tm.name);
8506 }
8507
8508 return 0;
8509}
8510
8511/* Return 1 if a BRANCH_PREFIX frag should be generated. */
8512
8513static int
8514add_branch_prefix_frag_p (void)
8515{
8516 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8517 to PadLock instructions since they include prefixes in opcode. */
8518 if (!align_branch_power
8519 || !align_branch_prefix_size
8520 || now_seg == absolute_section
8521 || i.tm.cpu_flags.bitfield.cpupadlock
8522 || !cpu_arch_flags.bitfield.cpui386)
8523 return 0;
8524
8525 /* Don't add prefix if it is a prefix or there is no operand in case
8526 that segment prefix is special. */
8527 if (!i.operands || i.tm.opcode_modifier.isprefix)
8528 return 0;
8529
8530 if (last_insn.kind == last_insn_other
8531 || last_insn.seg != now_seg)
8532 return 1;
8533
8534 if (flag_debug)
8535 as_warn_where (last_insn.file, last_insn.line,
8536 _("`%s` skips -malign-branch-boundary on `%s`"),
8537 last_insn.name, i.tm.name);
8538
8539 return 0;
8540}
8541
8542/* Return 1 if a BRANCH_PADDING frag should be generated. */
8543
8544static int
79d72f45
HL
8545add_branch_padding_frag_p (enum align_branch_kind *branch_p,
8546 enum mf_jcc_kind *mf_jcc_p)
e379e5f3
L
8547{
8548 int add_padding;
8549
8550 /* NB: Don't work with COND_JUMP86 without i386. */
8551 if (!align_branch_power
8552 || now_seg == absolute_section
8553 || !cpu_arch_flags.bitfield.cpui386)
8554 return 0;
8555
8556 add_padding = 0;
8557
8558 /* Check for jcc and direct jmp. */
8559 if (i.tm.opcode_modifier.jump == JUMP)
8560 {
8561 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8562 {
8563 *branch_p = align_branch_jmp;
8564 add_padding = align_branch & align_branch_jmp_bit;
8565 }
8566 else
8567 {
79d72f45
HL
8568 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
8569 igore the lowest bit. */
8570 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
e379e5f3
L
8571 *branch_p = align_branch_jcc;
8572 if ((align_branch & align_branch_jcc_bit))
8573 add_padding = 1;
8574 }
8575 }
8576 else if (is_any_vex_encoding (&i.tm))
8577 return 0;
8578 else if ((i.tm.base_opcode | 1) == 0xc3)
8579 {
8580 /* Near ret. */
8581 *branch_p = align_branch_ret;
8582 if ((align_branch & align_branch_ret_bit))
8583 add_padding = 1;
8584 }
8585 else
8586 {
8587 /* Check for indirect jmp, direct and indirect calls. */
8588 if (i.tm.base_opcode == 0xe8)
8589 {
8590 /* Direct call. */
8591 *branch_p = align_branch_call;
8592 if ((align_branch & align_branch_call_bit))
8593 add_padding = 1;
8594 }
8595 else if (i.tm.base_opcode == 0xff
8596 && (i.tm.extension_opcode == 2
8597 || i.tm.extension_opcode == 4))
8598 {
8599 /* Indirect call and jmp. */
8600 *branch_p = align_branch_indirect;
8601 if ((align_branch & align_branch_indirect_bit))
8602 add_padding = 1;
8603 }
8604
8605 if (add_padding
8606 && i.disp_operands
8607 && tls_get_addr
8608 && (i.op[0].disps->X_op == O_symbol
8609 || (i.op[0].disps->X_op == O_subtract
8610 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8611 {
8612 symbolS *s = i.op[0].disps->X_add_symbol;
8613 /* No padding to call to global or undefined tls_get_addr. */
8614 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8615 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8616 return 0;
8617 }
8618 }
8619
8620 if (add_padding
8621 && last_insn.kind != last_insn_other
8622 && last_insn.seg == now_seg)
8623 {
8624 if (flag_debug)
8625 as_warn_where (last_insn.file, last_insn.line,
8626 _("`%s` skips -malign-branch-boundary on `%s`"),
8627 last_insn.name, i.tm.name);
8628 return 0;
8629 }
8630
8631 return add_padding;
8632}
8633
29b0f896 8634static void
e3bb37b5 8635output_insn (void)
29b0f896 8636{
2bbd9c25
JJ
8637 fragS *insn_start_frag;
8638 offsetT insn_start_off;
e379e5f3
L
8639 fragS *fragP = NULL;
8640 enum align_branch_kind branch = align_branch_none;
79d72f45
HL
8641 /* The initializer is arbitrary just to avoid uninitialized error.
8642 it's actually either assigned in add_branch_padding_frag_p
8643 or never be used. */
8644 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
2bbd9c25 8645
b4a3a7b4
L
8646#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8647 if (IS_ELF && x86_used_note)
8648 {
8649 if (i.tm.cpu_flags.bitfield.cpucmov)
8650 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8651 if (i.tm.cpu_flags.bitfield.cpusse)
8652 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8653 if (i.tm.cpu_flags.bitfield.cpusse2)
8654 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8655 if (i.tm.cpu_flags.bitfield.cpusse3)
8656 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8657 if (i.tm.cpu_flags.bitfield.cpussse3)
8658 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8659 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8660 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8661 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8662 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8663 if (i.tm.cpu_flags.bitfield.cpuavx)
8664 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8665 if (i.tm.cpu_flags.bitfield.cpuavx2)
8666 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8667 if (i.tm.cpu_flags.bitfield.cpufma)
8668 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8669 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8670 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8671 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8672 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8673 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8674 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8675 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8676 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8677 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8678 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8679 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8680 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8681 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8682 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8683 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8684 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8685 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8686 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8687 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8688 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8689 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8690 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8691 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8692 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8693 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8694 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8695 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8696 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
462cac58
L
8697 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8698 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
b4a3a7b4
L
8699
8700 if (i.tm.cpu_flags.bitfield.cpu8087
8701 || i.tm.cpu_flags.bitfield.cpu287
8702 || i.tm.cpu_flags.bitfield.cpu387
8703 || i.tm.cpu_flags.bitfield.cpu687
8704 || i.tm.cpu_flags.bitfield.cpufisttp)
8705 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
319ff62c
JB
8706 if (i.has_regmmx
8707 || i.tm.base_opcode == 0xf77 /* emms */
a7e12755
L
8708 || i.tm.base_opcode == 0xf0e /* femms */
8709 || i.tm.base_opcode == 0xf2a /* cvtpi2ps */
8710 || i.tm.base_opcode == 0x660f2a /* cvtpi2pd */)
b4a3a7b4
L
8711 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8712 if (i.has_regxmm)
8713 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8714 if (i.has_regymm)
8715 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8716 if (i.has_regzmm)
8717 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8718 if (i.tm.cpu_flags.bitfield.cpufxsr)
8719 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8720 if (i.tm.cpu_flags.bitfield.cpuxsave)
8721 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8722 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8723 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8724 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8725 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8726 }
8727#endif
8728
29b0f896
AM
8729 /* Tie dwarf2 debug info to the address at the start of the insn.
8730 We can't do this after the insn has been output as the current
8731 frag may have been closed off. eg. by frag_var. */
8732 dwarf2_emit_insn (0);
8733
2bbd9c25
JJ
8734 insn_start_frag = frag_now;
8735 insn_start_off = frag_now_fix ();
8736
79d72f45 8737 if (add_branch_padding_frag_p (&branch, &mf_jcc))
e379e5f3
L
8738 {
8739 char *p;
8740 /* Branch can be 8 bytes. Leave some room for prefixes. */
8741 unsigned int max_branch_padding_size = 14;
8742
8743 /* Align section to boundary. */
8744 record_alignment (now_seg, align_branch_power);
8745
8746 /* Make room for padding. */
8747 frag_grow (max_branch_padding_size);
8748
8749 /* Start of the padding. */
8750 p = frag_more (0);
8751
8752 fragP = frag_now;
8753
8754 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8755 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8756 NULL, 0, p);
8757
79d72f45 8758 fragP->tc_frag_data.mf_type = mf_jcc;
e379e5f3
L
8759 fragP->tc_frag_data.branch_type = branch;
8760 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8761 }
8762
29b0f896 8763 /* Output jumps. */
0cfa3eb3 8764 if (i.tm.opcode_modifier.jump == JUMP)
29b0f896 8765 output_branch ();
0cfa3eb3
JB
8766 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8767 || i.tm.opcode_modifier.jump == JUMP_DWORD)
29b0f896 8768 output_jump ();
0cfa3eb3 8769 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
29b0f896
AM
8770 output_interseg_jump ();
8771 else
8772 {
8773 /* Output normal instructions here. */
8774 char *p;
8775 unsigned char *q;
47465058 8776 unsigned int j;
331d2d0d 8777 unsigned int prefix;
79d72f45 8778 enum mf_cmp_kind mf_cmp;
4dffcebc 8779
e4e00185 8780 if (avoid_fence
c3949f43
JB
8781 && (i.tm.base_opcode == 0xfaee8
8782 || i.tm.base_opcode == 0xfaef0
8783 || i.tm.base_opcode == 0xfaef8))
e4e00185
AS
8784 {
8785 /* Encode lfence, mfence, and sfence as
8786 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8787 offsetT val = 0x240483f0ULL;
8788 p = frag_more (5);
8789 md_number_to_chars (p, val, 5);
8790 return;
8791 }
8792
d022bddd
IT
8793 /* Some processors fail on LOCK prefix. This options makes
8794 assembler ignore LOCK prefix and serves as a workaround. */
8795 if (omit_lock_prefix)
8796 {
8797 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8798 return;
8799 i.prefix[LOCK_PREFIX] = 0;
8800 }
8801
e379e5f3
L
8802 if (branch)
8803 /* Skip if this is a branch. */
8804 ;
79d72f45 8805 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
e379e5f3
L
8806 {
8807 /* Make room for padding. */
8808 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8809 p = frag_more (0);
8810
8811 fragP = frag_now;
8812
8813 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8814 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8815 NULL, 0, p);
8816
79d72f45 8817 fragP->tc_frag_data.mf_type = mf_cmp;
e379e5f3
L
8818 fragP->tc_frag_data.branch_type = align_branch_fused;
8819 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8820 }
8821 else if (add_branch_prefix_frag_p ())
8822 {
8823 unsigned int max_prefix_size = align_branch_prefix_size;
8824
8825 /* Make room for padding. */
8826 frag_grow (max_prefix_size);
8827 p = frag_more (0);
8828
8829 fragP = frag_now;
8830
8831 frag_var (rs_machine_dependent, max_prefix_size, 0,
8832 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8833 NULL, 0, p);
8834
8835 fragP->tc_frag_data.max_bytes = max_prefix_size;
8836 }
8837
43234a1e
L
8838 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8839 don't need the explicit prefix. */
8840 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
bc4bd9ab 8841 {
c0f3af97 8842 switch (i.tm.opcode_length)
bc4bd9ab 8843 {
c0f3af97
L
8844 case 3:
8845 if (i.tm.base_opcode & 0xff000000)
4dffcebc 8846 {
c0f3af97 8847 prefix = (i.tm.base_opcode >> 24) & 0xff;
c3949f43
JB
8848 if (!i.tm.cpu_flags.bitfield.cpupadlock
8849 || prefix != REPE_PREFIX_OPCODE
8850 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8851 add_prefix (prefix);
c0f3af97
L
8852 }
8853 break;
8854 case 2:
8855 if ((i.tm.base_opcode & 0xff0000) != 0)
8856 {
8857 prefix = (i.tm.base_opcode >> 16) & 0xff;
c3949f43 8858 add_prefix (prefix);
4dffcebc 8859 }
c0f3af97
L
8860 break;
8861 case 1:
8862 break;
390c91cf
L
8863 case 0:
8864 /* Check for pseudo prefixes. */
8865 as_bad_where (insn_start_frag->fr_file,
8866 insn_start_frag->fr_line,
8867 _("pseudo prefix without instruction"));
8868 return;
c0f3af97
L
8869 default:
8870 abort ();
bc4bd9ab 8871 }
c0f3af97 8872
6d19a37a 8873#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
cf61b747
L
8874 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8875 R_X86_64_GOTTPOFF relocation so that linker can safely
14470f07
L
8876 perform IE->LE optimization. A dummy REX_OPCODE prefix
8877 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8878 relocation for GDesc -> IE/LE optimization. */
cf61b747
L
8879 if (x86_elf_abi == X86_64_X32_ABI
8880 && i.operands == 2
14470f07
L
8881 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8882 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
cf61b747
L
8883 && i.prefix[REX_PREFIX] == 0)
8884 add_prefix (REX_OPCODE);
6d19a37a 8885#endif
cf61b747 8886
c0f3af97
L
8887 /* The prefix bytes. */
8888 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8889 if (*q)
8890 FRAG_APPEND_1_CHAR (*q);
0f10071e 8891 }
ae5c1c7b 8892 else
c0f3af97
L
8893 {
8894 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8895 if (*q)
8896 switch (j)
8897 {
8898 case REX_PREFIX:
8899 /* REX byte is encoded in VEX prefix. */
8900 break;
8901 case SEG_PREFIX:
8902 case ADDR_PREFIX:
8903 FRAG_APPEND_1_CHAR (*q);
8904 break;
8905 default:
8906 /* There should be no other prefixes for instructions
8907 with VEX prefix. */
8908 abort ();
8909 }
8910
43234a1e
L
8911 /* For EVEX instructions i.vrex should become 0 after
8912 build_evex_prefix. For VEX instructions upper 16 registers
8913 aren't available, so VREX should be 0. */
8914 if (i.vrex)
8915 abort ();
c0f3af97
L
8916 /* Now the VEX prefix. */
8917 p = frag_more (i.vex.length);
8918 for (j = 0; j < i.vex.length; j++)
8919 p[j] = i.vex.bytes[j];
8920 }
252b5132 8921
29b0f896 8922 /* Now the opcode; be careful about word order here! */
4dffcebc 8923 if (i.tm.opcode_length == 1)
29b0f896
AM
8924 {
8925 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8926 }
8927 else
8928 {
4dffcebc 8929 switch (i.tm.opcode_length)
331d2d0d 8930 {
43234a1e
L
8931 case 4:
8932 p = frag_more (4);
8933 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8934 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8935 break;
4dffcebc 8936 case 3:
331d2d0d
L
8937 p = frag_more (3);
8938 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4dffcebc
L
8939 break;
8940 case 2:
8941 p = frag_more (2);
8942 break;
8943 default:
8944 abort ();
8945 break;
331d2d0d 8946 }
0f10071e 8947
29b0f896
AM
8948 /* Put out high byte first: can't use md_number_to_chars! */
8949 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8950 *p = i.tm.base_opcode & 0xff;
8951 }
3e73aa7c 8952
29b0f896 8953 /* Now the modrm byte and sib byte (if present). */
40fb9820 8954 if (i.tm.opcode_modifier.modrm)
29b0f896 8955 {
4a3523fa
L
8956 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8957 | i.rm.reg << 3
8958 | i.rm.mode << 6));
29b0f896
AM
8959 /* If i.rm.regmem == ESP (4)
8960 && i.rm.mode != (Register mode)
8961 && not 16 bit
8962 ==> need second modrm byte. */
8963 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8964 && i.rm.mode != 3
dc821c5f 8965 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
4a3523fa
L
8966 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8967 | i.sib.index << 3
8968 | i.sib.scale << 6));
29b0f896 8969 }
3e73aa7c 8970
29b0f896 8971 if (i.disp_operands)
2bbd9c25 8972 output_disp (insn_start_frag, insn_start_off);
3e73aa7c 8973
29b0f896 8974 if (i.imm_operands)
2bbd9c25 8975 output_imm (insn_start_frag, insn_start_off);
9c33702b
JB
8976
8977 /*
8978 * frag_now_fix () returning plain abs_section_offset when we're in the
8979 * absolute section, and abs_section_offset not getting updated as data
8980 * gets added to the frag breaks the logic below.
8981 */
8982 if (now_seg != absolute_section)
8983 {
8984 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8985 if (j > 15)
8986 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8987 j);
e379e5f3
L
8988 else if (fragP)
8989 {
8990 /* NB: Don't add prefix with GOTPC relocation since
8991 output_disp() above depends on the fixed encoding
8992 length. Can't add prefix with TLS relocation since
8993 it breaks TLS linker optimization. */
8994 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8995 /* Prefix count on the current instruction. */
8996 unsigned int count = i.vex.length;
8997 unsigned int k;
8998 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8999 /* REX byte is encoded in VEX/EVEX prefix. */
9000 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9001 count++;
9002
9003 /* Count prefixes for extended opcode maps. */
9004 if (!i.vex.length)
9005 switch (i.tm.opcode_length)
9006 {
9007 case 3:
9008 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9009 {
9010 count++;
9011 switch ((i.tm.base_opcode >> 8) & 0xff)
9012 {
9013 case 0x38:
9014 case 0x3a:
9015 count++;
9016 break;
9017 default:
9018 break;
9019 }
9020 }
9021 break;
9022 case 2:
9023 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9024 count++;
9025 break;
9026 case 1:
9027 break;
9028 default:
9029 abort ();
9030 }
9031
9032 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9033 == BRANCH_PREFIX)
9034 {
9035 /* Set the maximum prefix size in BRANCH_PREFIX
9036 frag. */
9037 if (fragP->tc_frag_data.max_bytes > max)
9038 fragP->tc_frag_data.max_bytes = max;
9039 if (fragP->tc_frag_data.max_bytes > count)
9040 fragP->tc_frag_data.max_bytes -= count;
9041 else
9042 fragP->tc_frag_data.max_bytes = 0;
9043 }
9044 else
9045 {
9046 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9047 frag. */
9048 unsigned int max_prefix_size;
9049 if (align_branch_prefix_size > max)
9050 max_prefix_size = max;
9051 else
9052 max_prefix_size = align_branch_prefix_size;
9053 if (max_prefix_size > count)
9054 fragP->tc_frag_data.max_prefix_length
9055 = max_prefix_size - count;
9056 }
9057
9058 /* Use existing segment prefix if possible. Use CS
9059 segment prefix in 64-bit mode. In 32-bit mode, use SS
9060 segment prefix with ESP/EBP base register and use DS
9061 segment prefix without ESP/EBP base register. */
9062 if (i.prefix[SEG_PREFIX])
9063 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9064 else if (flag_code == CODE_64BIT)
9065 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9066 else if (i.base_reg
9067 && (i.base_reg->reg_num == 4
9068 || i.base_reg->reg_num == 5))
9069 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9070 else
9071 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9072 }
9c33702b 9073 }
29b0f896 9074 }
252b5132 9075
e379e5f3
L
9076 /* NB: Don't work with COND_JUMP86 without i386. */
9077 if (align_branch_power
9078 && now_seg != absolute_section
9079 && cpu_arch_flags.bitfield.cpui386)
9080 {
9081 /* Terminate each frag so that we can add prefix and check for
9082 fused jcc. */
9083 frag_wane (frag_now);
9084 frag_new (0);
9085 }
9086
29b0f896
AM
9087#ifdef DEBUG386
9088 if (flag_debug)
9089 {
7b81dfbb 9090 pi ("" /*line*/, &i);
29b0f896
AM
9091 }
9092#endif /* DEBUG386 */
9093}
252b5132 9094
e205caa7
L
9095/* Return the size of the displacement operand N. */
9096
9097static int
9098disp_size (unsigned int n)
9099{
9100 int size = 4;
43234a1e 9101
b5014f7a 9102 if (i.types[n].bitfield.disp64)
40fb9820
L
9103 size = 8;
9104 else if (i.types[n].bitfield.disp8)
9105 size = 1;
9106 else if (i.types[n].bitfield.disp16)
9107 size = 2;
e205caa7
L
9108 return size;
9109}
9110
9111/* Return the size of the immediate operand N. */
9112
9113static int
9114imm_size (unsigned int n)
9115{
9116 int size = 4;
40fb9820
L
9117 if (i.types[n].bitfield.imm64)
9118 size = 8;
9119 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9120 size = 1;
9121 else if (i.types[n].bitfield.imm16)
9122 size = 2;
e205caa7
L
9123 return size;
9124}
9125
29b0f896 9126static void
64e74474 9127output_disp (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9128{
9129 char *p;
9130 unsigned int n;
252b5132 9131
29b0f896
AM
9132 for (n = 0; n < i.operands; n++)
9133 {
b5014f7a 9134 if (operand_type_check (i.types[n], disp))
29b0f896
AM
9135 {
9136 if (i.op[n].disps->X_op == O_constant)
9137 {
e205caa7 9138 int size = disp_size (n);
43234a1e 9139 offsetT val = i.op[n].disps->X_add_number;
252b5132 9140
629cfaf1
JB
9141 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9142 size);
29b0f896
AM
9143 p = frag_more (size);
9144 md_number_to_chars (p, val, size);
9145 }
9146 else
9147 {
f86103b7 9148 enum bfd_reloc_code_real reloc_type;
e205caa7 9149 int size = disp_size (n);
40fb9820 9150 int sign = i.types[n].bitfield.disp32s;
29b0f896 9151 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
02a86693 9152 fixS *fixP;
29b0f896 9153
e205caa7 9154 /* We can't have 8 bit displacement here. */
9c2799c2 9155 gas_assert (!i.types[n].bitfield.disp8);
e205caa7 9156
29b0f896
AM
9157 /* The PC relative address is computed relative
9158 to the instruction boundary, so in case immediate
9159 fields follows, we need to adjust the value. */
9160 if (pcrel && i.imm_operands)
9161 {
29b0f896 9162 unsigned int n1;
e205caa7 9163 int sz = 0;
252b5132 9164
29b0f896 9165 for (n1 = 0; n1 < i.operands; n1++)
40fb9820 9166 if (operand_type_check (i.types[n1], imm))
252b5132 9167 {
e205caa7
L
9168 /* Only one immediate is allowed for PC
9169 relative address. */
9c2799c2 9170 gas_assert (sz == 0);
e205caa7
L
9171 sz = imm_size (n1);
9172 i.op[n].disps->X_add_number -= sz;
252b5132 9173 }
29b0f896 9174 /* We should find the immediate. */
9c2799c2 9175 gas_assert (sz != 0);
29b0f896 9176 }
520dc8e8 9177
29b0f896 9178 p = frag_more (size);
d258b828 9179 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
d6ab8113 9180 if (GOT_symbol
2bbd9c25 9181 && GOT_symbol == i.op[n].disps->X_add_symbol
d6ab8113 9182 && (((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9183 || reloc_type == BFD_RELOC_X86_64_32S
9184 || (reloc_type == BFD_RELOC_64
9185 && object_64bit))
d6ab8113
JB
9186 && (i.op[n].disps->X_op == O_symbol
9187 || (i.op[n].disps->X_op == O_add
9188 && ((symbol_get_value_expression
9189 (i.op[n].disps->X_op_symbol)->X_op)
9190 == O_subtract))))
9191 || reloc_type == BFD_RELOC_32_PCREL))
2bbd9c25 9192 {
4fa24527 9193 if (!object_64bit)
7b81dfbb
AJ
9194 {
9195 reloc_type = BFD_RELOC_386_GOTPC;
e379e5f3 9196 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9197 i.op[n].imms->X_add_number +=
9198 encoding_length (insn_start_frag, insn_start_off, p);
7b81dfbb
AJ
9199 }
9200 else if (reloc_type == BFD_RELOC_64)
9201 reloc_type = BFD_RELOC_X86_64_GOTPC64;
d6ab8113 9202 else
7b81dfbb
AJ
9203 /* Don't do the adjustment for x86-64, as there
9204 the pcrel addressing is relative to the _next_
9205 insn, and that is taken care of in other code. */
d6ab8113 9206 reloc_type = BFD_RELOC_X86_64_GOTPC32;
2bbd9c25 9207 }
e379e5f3
L
9208 else if (align_branch_power)
9209 {
9210 switch (reloc_type)
9211 {
9212 case BFD_RELOC_386_TLS_GD:
9213 case BFD_RELOC_386_TLS_LDM:
9214 case BFD_RELOC_386_TLS_IE:
9215 case BFD_RELOC_386_TLS_IE_32:
9216 case BFD_RELOC_386_TLS_GOTIE:
9217 case BFD_RELOC_386_TLS_GOTDESC:
9218 case BFD_RELOC_386_TLS_DESC_CALL:
9219 case BFD_RELOC_X86_64_TLSGD:
9220 case BFD_RELOC_X86_64_TLSLD:
9221 case BFD_RELOC_X86_64_GOTTPOFF:
9222 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9223 case BFD_RELOC_X86_64_TLSDESC_CALL:
9224 i.has_gotpc_tls_reloc = TRUE;
9225 default:
9226 break;
9227 }
9228 }
02a86693
L
9229 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9230 size, i.op[n].disps, pcrel,
9231 reloc_type);
9232 /* Check for "call/jmp *mem", "mov mem, %reg",
9233 "test %reg, mem" and "binop mem, %reg" where binop
9234 is one of adc, add, and, cmp, or, sbb, sub, xor
e60f4d3b
L
9235 instructions without data prefix. Always generate
9236 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9237 if (i.prefix[DATA_PREFIX] == 0
9238 && (generate_relax_relocations
9239 || (!object_64bit
9240 && i.rm.mode == 0
9241 && i.rm.regmem == 5))
0cb4071e
L
9242 && (i.rm.mode == 2
9243 || (i.rm.mode == 0 && i.rm.regmem == 5))
2ae4c703 9244 && !is_any_vex_encoding(&i.tm)
02a86693
L
9245 && ((i.operands == 1
9246 && i.tm.base_opcode == 0xff
9247 && (i.rm.reg == 2 || i.rm.reg == 4))
9248 || (i.operands == 2
9249 && (i.tm.base_opcode == 0x8b
9250 || i.tm.base_opcode == 0x85
2ae4c703 9251 || (i.tm.base_opcode & ~0x38) == 0x03))))
02a86693
L
9252 {
9253 if (object_64bit)
9254 {
9255 fixP->fx_tcbit = i.rex != 0;
9256 if (i.base_reg
e968fc9b 9257 && (i.base_reg->reg_num == RegIP))
02a86693
L
9258 fixP->fx_tcbit2 = 1;
9259 }
9260 else
9261 fixP->fx_tcbit2 = 1;
9262 }
29b0f896
AM
9263 }
9264 }
9265 }
9266}
252b5132 9267
29b0f896 9268static void
64e74474 9269output_imm (fragS *insn_start_frag, offsetT insn_start_off)
29b0f896
AM
9270{
9271 char *p;
9272 unsigned int n;
252b5132 9273
29b0f896
AM
9274 for (n = 0; n < i.operands; n++)
9275 {
43234a1e
L
9276 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9277 if (i.rounding && (int) n == i.rounding->operand)
9278 continue;
9279
40fb9820 9280 if (operand_type_check (i.types[n], imm))
29b0f896
AM
9281 {
9282 if (i.op[n].imms->X_op == O_constant)
9283 {
e205caa7 9284 int size = imm_size (n);
29b0f896 9285 offsetT val;
b4cac588 9286
29b0f896
AM
9287 val = offset_in_range (i.op[n].imms->X_add_number,
9288 size);
9289 p = frag_more (size);
9290 md_number_to_chars (p, val, size);
9291 }
9292 else
9293 {
9294 /* Not absolute_section.
9295 Need a 32-bit fixup (don't support 8bit
9296 non-absolute imms). Try to support other
9297 sizes ... */
f86103b7 9298 enum bfd_reloc_code_real reloc_type;
e205caa7
L
9299 int size = imm_size (n);
9300 int sign;
29b0f896 9301
40fb9820 9302 if (i.types[n].bitfield.imm32s
a7d61044 9303 && (i.suffix == QWORD_MNEM_SUFFIX
40fb9820 9304 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
29b0f896 9305 sign = 1;
e205caa7
L
9306 else
9307 sign = 0;
520dc8e8 9308
29b0f896 9309 p = frag_more (size);
d258b828 9310 reloc_type = reloc (size, 0, sign, i.reloc[n]);
f86103b7 9311
2bbd9c25
JJ
9312 /* This is tough to explain. We end up with this one if we
9313 * have operands that look like
9314 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9315 * obtain the absolute address of the GOT, and it is strongly
9316 * preferable from a performance point of view to avoid using
9317 * a runtime relocation for this. The actual sequence of
9318 * instructions often look something like:
9319 *
9320 * call .L66
9321 * .L66:
9322 * popl %ebx
9323 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9324 *
9325 * The call and pop essentially return the absolute address
9326 * of the label .L66 and store it in %ebx. The linker itself
9327 * will ultimately change the first operand of the addl so
9328 * that %ebx points to the GOT, but to keep things simple, the
9329 * .o file must have this operand set so that it generates not
9330 * the absolute address of .L66, but the absolute address of
9331 * itself. This allows the linker itself simply treat a GOTPC
9332 * relocation as asking for a pcrel offset to the GOT to be
9333 * added in, and the addend of the relocation is stored in the
9334 * operand field for the instruction itself.
9335 *
9336 * Our job here is to fix the operand so that it would add
9337 * the correct offset so that %ebx would point to itself. The
9338 * thing that is tricky is that .-.L66 will point to the
9339 * beginning of the instruction, so we need to further modify
9340 * the operand so that it will point to itself. There are
9341 * other cases where you have something like:
9342 *
9343 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9344 *
9345 * and here no correction would be required. Internally in
9346 * the assembler we treat operands of this form as not being
9347 * pcrel since the '.' is explicitly mentioned, and I wonder
9348 * whether it would simplify matters to do it this way. Who
9349 * knows. In earlier versions of the PIC patches, the
9350 * pcrel_adjust field was used to store the correction, but
9351 * since the expression is not pcrel, I felt it would be
9352 * confusing to do it this way. */
9353
d6ab8113 9354 if ((reloc_type == BFD_RELOC_32
7b81dfbb
AJ
9355 || reloc_type == BFD_RELOC_X86_64_32S
9356 || reloc_type == BFD_RELOC_64)
29b0f896
AM
9357 && GOT_symbol
9358 && GOT_symbol == i.op[n].imms->X_add_symbol
9359 && (i.op[n].imms->X_op == O_symbol
9360 || (i.op[n].imms->X_op == O_add
9361 && ((symbol_get_value_expression
9362 (i.op[n].imms->X_op_symbol)->X_op)
9363 == O_subtract))))
9364 {
4fa24527 9365 if (!object_64bit)
d6ab8113 9366 reloc_type = BFD_RELOC_386_GOTPC;
7b81dfbb 9367 else if (size == 4)
d6ab8113 9368 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7b81dfbb
AJ
9369 else if (size == 8)
9370 reloc_type = BFD_RELOC_X86_64_GOTPC64;
e379e5f3 9371 i.has_gotpc_tls_reloc = TRUE;
d583596c
JB
9372 i.op[n].imms->X_add_number +=
9373 encoding_length (insn_start_frag, insn_start_off, p);
29b0f896 9374 }
29b0f896
AM
9375 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9376 i.op[n].imms, 0, reloc_type);
9377 }
9378 }
9379 }
252b5132
RH
9380}
9381\f
d182319b
JB
9382/* x86_cons_fix_new is called via the expression parsing code when a
9383 reloc is needed. We use this hook to get the correct .got reloc. */
d182319b
JB
9384static int cons_sign = -1;
9385
9386void
e3bb37b5 9387x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
62ebcb5c 9388 expressionS *exp, bfd_reloc_code_real_type r)
d182319b 9389{
d258b828 9390 r = reloc (len, 0, cons_sign, r);
d182319b
JB
9391
9392#ifdef TE_PE
9393 if (exp->X_op == O_secrel)
9394 {
9395 exp->X_op = O_symbol;
9396 r = BFD_RELOC_32_SECREL;
9397 }
9398#endif
9399
9400 fix_new_exp (frag, off, len, exp, 0, r);
9401}
9402
357d1bd8
L
9403/* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9404 purpose of the `.dc.a' internal pseudo-op. */
9405
9406int
9407x86_address_bytes (void)
9408{
9409 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9410 return 4;
9411 return stdoutput->arch_info->bits_per_address / 8;
9412}
9413
d382c579
TG
9414#if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9415 || defined (LEX_AT)
d258b828 9416# define lex_got(reloc, adjust, types) NULL
718ddfc0 9417#else
f3c180ae
AM
9418/* Parse operands of the form
9419 <symbol>@GOTOFF+<nnn>
9420 and similar .plt or .got references.
9421
9422 If we find one, set up the correct relocation in RELOC and copy the
9423 input string, minus the `@GOTOFF' into a malloc'd buffer for
9424 parsing by the calling routine. Return this buffer, and if ADJUST
9425 is non-null set it to the length of the string we removed from the
9426 input line. Otherwise return NULL. */
9427static char *
91d6fa6a 9428lex_got (enum bfd_reloc_code_real *rel,
64e74474 9429 int *adjust,
d258b828 9430 i386_operand_type *types)
f3c180ae 9431{
7b81dfbb
AJ
9432 /* Some of the relocations depend on the size of what field is to
9433 be relocated. But in our callers i386_immediate and i386_displacement
9434 we don't yet know the operand size (this will be set by insn
9435 matching). Hence we record the word32 relocation here,
9436 and adjust the reloc according to the real size in reloc(). */
f3c180ae
AM
9437 static const struct {
9438 const char *str;
cff8d58a 9439 int len;
4fa24527 9440 const enum bfd_reloc_code_real rel[2];
40fb9820 9441 const i386_operand_type types64;
f3c180ae 9442 } gotrel[] = {
8ce3d284 9443#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
9444 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9445 BFD_RELOC_SIZE32 },
9446 OPERAND_TYPE_IMM32_64 },
8ce3d284 9447#endif
cff8d58a
L
9448 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9449 BFD_RELOC_X86_64_PLTOFF64 },
40fb9820 9450 OPERAND_TYPE_IMM64 },
cff8d58a
L
9451 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9452 BFD_RELOC_X86_64_PLT32 },
40fb9820 9453 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9454 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9455 BFD_RELOC_X86_64_GOTPLT64 },
40fb9820 9456 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9457 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9458 BFD_RELOC_X86_64_GOTOFF64 },
40fb9820 9459 OPERAND_TYPE_IMM64_DISP64 },
cff8d58a
L
9460 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9461 BFD_RELOC_X86_64_GOTPCREL },
40fb9820 9462 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9463 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9464 BFD_RELOC_X86_64_TLSGD },
40fb9820 9465 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9466 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9467 _dummy_first_bfd_reloc_code_real },
40fb9820 9468 OPERAND_TYPE_NONE },
cff8d58a
L
9469 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9470 BFD_RELOC_X86_64_TLSLD },
40fb9820 9471 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9472 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9473 BFD_RELOC_X86_64_GOTTPOFF },
40fb9820 9474 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9475 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9476 BFD_RELOC_X86_64_TPOFF32 },
40fb9820 9477 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9478 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9479 _dummy_first_bfd_reloc_code_real },
40fb9820 9480 OPERAND_TYPE_NONE },
cff8d58a
L
9481 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9482 BFD_RELOC_X86_64_DTPOFF32 },
40fb9820 9483 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
cff8d58a
L
9484 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9485 _dummy_first_bfd_reloc_code_real },
40fb9820 9486 OPERAND_TYPE_NONE },
cff8d58a
L
9487 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9488 _dummy_first_bfd_reloc_code_real },
40fb9820 9489 OPERAND_TYPE_NONE },
cff8d58a
L
9490 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9491 BFD_RELOC_X86_64_GOT32 },
40fb9820 9492 OPERAND_TYPE_IMM32_32S_64_DISP32 },
cff8d58a
L
9493 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9494 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
40fb9820 9495 OPERAND_TYPE_IMM32_32S_DISP32 },
cff8d58a
L
9496 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9497 BFD_RELOC_X86_64_TLSDESC_CALL },
40fb9820 9498 OPERAND_TYPE_IMM32_32S_DISP32 },
f3c180ae
AM
9499 };
9500 char *cp;
9501 unsigned int j;
9502
d382c579 9503#if defined (OBJ_MAYBE_ELF)
718ddfc0
JB
9504 if (!IS_ELF)
9505 return NULL;
d382c579 9506#endif
718ddfc0 9507
f3c180ae 9508 for (cp = input_line_pointer; *cp != '@'; cp++)
67c11a9b 9509 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
f3c180ae
AM
9510 return NULL;
9511
47465058 9512 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
f3c180ae 9513 {
cff8d58a 9514 int len = gotrel[j].len;
28f81592 9515 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
f3c180ae 9516 {
4fa24527 9517 if (gotrel[j].rel[object_64bit] != 0)
f3c180ae 9518 {
28f81592
AM
9519 int first, second;
9520 char *tmpbuf, *past_reloc;
f3c180ae 9521
91d6fa6a 9522 *rel = gotrel[j].rel[object_64bit];
f3c180ae 9523
3956db08
JB
9524 if (types)
9525 {
9526 if (flag_code != CODE_64BIT)
40fb9820
L
9527 {
9528 types->bitfield.imm32 = 1;
9529 types->bitfield.disp32 = 1;
9530 }
3956db08
JB
9531 else
9532 *types = gotrel[j].types64;
9533 }
9534
8fd4256d 9535 if (j != 0 && GOT_symbol == NULL)
f3c180ae
AM
9536 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9537
28f81592 9538 /* The length of the first part of our input line. */
f3c180ae 9539 first = cp - input_line_pointer;
28f81592
AM
9540
9541 /* The second part goes from after the reloc token until
67c11a9b 9542 (and including) an end_of_line char or comma. */
28f81592 9543 past_reloc = cp + 1 + len;
67c11a9b
AM
9544 cp = past_reloc;
9545 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9546 ++cp;
9547 second = cp + 1 - past_reloc;
28f81592
AM
9548
9549 /* Allocate and copy string. The trailing NUL shouldn't
9550 be necessary, but be safe. */
add39d23 9551 tmpbuf = XNEWVEC (char, first + second + 2);
f3c180ae 9552 memcpy (tmpbuf, input_line_pointer, first);
0787a12d
AM
9553 if (second != 0 && *past_reloc != ' ')
9554 /* Replace the relocation token with ' ', so that
9555 errors like foo@GOTOFF1 will be detected. */
9556 tmpbuf[first++] = ' ';
af89796a
L
9557 else
9558 /* Increment length by 1 if the relocation token is
9559 removed. */
9560 len++;
9561 if (adjust)
9562 *adjust = len;
0787a12d
AM
9563 memcpy (tmpbuf + first, past_reloc, second);
9564 tmpbuf[first + second] = '\0';
f3c180ae
AM
9565 return tmpbuf;
9566 }
9567
4fa24527
JB
9568 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9569 gotrel[j].str, 1 << (5 + object_64bit));
f3c180ae
AM
9570 return NULL;
9571 }
9572 }
9573
9574 /* Might be a symbol version string. Don't as_bad here. */
9575 return NULL;
9576}
4e4f7c87 9577#endif
f3c180ae 9578
a988325c
NC
9579#ifdef TE_PE
9580#ifdef lex_got
9581#undef lex_got
9582#endif
9583/* Parse operands of the form
9584 <symbol>@SECREL32+<nnn>
9585
9586 If we find one, set up the correct relocation in RELOC and copy the
9587 input string, minus the `@SECREL32' into a malloc'd buffer for
9588 parsing by the calling routine. Return this buffer, and if ADJUST
9589 is non-null set it to the length of the string we removed from the
34bca508
L
9590 input line. Otherwise return NULL.
9591
a988325c
NC
9592 This function is copied from the ELF version above adjusted for PE targets. */
9593
9594static char *
9595lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9596 int *adjust ATTRIBUTE_UNUSED,
d258b828 9597 i386_operand_type *types)
a988325c
NC
9598{
9599 static const struct
9600 {
9601 const char *str;
9602 int len;
9603 const enum bfd_reloc_code_real rel[2];
9604 const i386_operand_type types64;
9605 }
9606 gotrel[] =
9607 {
9608 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9609 BFD_RELOC_32_SECREL },
9610 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9611 };
9612
9613 char *cp;
9614 unsigned j;
9615
9616 for (cp = input_line_pointer; *cp != '@'; cp++)
9617 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9618 return NULL;
9619
9620 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9621 {
9622 int len = gotrel[j].len;
9623
9624 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9625 {
9626 if (gotrel[j].rel[object_64bit] != 0)
9627 {
9628 int first, second;
9629 char *tmpbuf, *past_reloc;
9630
9631 *rel = gotrel[j].rel[object_64bit];
9632 if (adjust)
9633 *adjust = len;
9634
9635 if (types)
9636 {
9637 if (flag_code != CODE_64BIT)
9638 {
9639 types->bitfield.imm32 = 1;
9640 types->bitfield.disp32 = 1;
9641 }
9642 else
9643 *types = gotrel[j].types64;
9644 }
9645
9646 /* The length of the first part of our input line. */
9647 first = cp - input_line_pointer;
9648
9649 /* The second part goes from after the reloc token until
9650 (and including) an end_of_line char or comma. */
9651 past_reloc = cp + 1 + len;
9652 cp = past_reloc;
9653 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9654 ++cp;
9655 second = cp + 1 - past_reloc;
9656
9657 /* Allocate and copy string. The trailing NUL shouldn't
9658 be necessary, but be safe. */
add39d23 9659 tmpbuf = XNEWVEC (char, first + second + 2);
a988325c
NC
9660 memcpy (tmpbuf, input_line_pointer, first);
9661 if (second != 0 && *past_reloc != ' ')
9662 /* Replace the relocation token with ' ', so that
9663 errors like foo@SECLREL321 will be detected. */
9664 tmpbuf[first++] = ' ';
9665 memcpy (tmpbuf + first, past_reloc, second);
9666 tmpbuf[first + second] = '\0';
9667 return tmpbuf;
9668 }
9669
9670 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9671 gotrel[j].str, 1 << (5 + object_64bit));
9672 return NULL;
9673 }
9674 }
9675
9676 /* Might be a symbol version string. Don't as_bad here. */
9677 return NULL;
9678}
9679
9680#endif /* TE_PE */
9681
62ebcb5c 9682bfd_reloc_code_real_type
e3bb37b5 9683x86_cons (expressionS *exp, int size)
f3c180ae 9684{
62ebcb5c
AM
9685 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9686
ee86248c
JB
9687 intel_syntax = -intel_syntax;
9688
3c7b9c2c 9689 exp->X_md = 0;
4fa24527 9690 if (size == 4 || (object_64bit && size == 8))
f3c180ae
AM
9691 {
9692 /* Handle @GOTOFF and the like in an expression. */
9693 char *save;
9694 char *gotfree_input_line;
4a57f2cf 9695 int adjust = 0;
f3c180ae
AM
9696
9697 save = input_line_pointer;
d258b828 9698 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
f3c180ae
AM
9699 if (gotfree_input_line)
9700 input_line_pointer = gotfree_input_line;
9701
9702 expression (exp);
9703
9704 if (gotfree_input_line)
9705 {
9706 /* expression () has merrily parsed up to the end of line,
9707 or a comma - in the wrong buffer. Transfer how far
9708 input_line_pointer has moved to the right buffer. */
9709 input_line_pointer = (save
9710 + (input_line_pointer - gotfree_input_line)
9711 + adjust);
9712 free (gotfree_input_line);
3992d3b7
AM
9713 if (exp->X_op == O_constant
9714 || exp->X_op == O_absent
9715 || exp->X_op == O_illegal
0398aac5 9716 || exp->X_op == O_register
3992d3b7
AM
9717 || exp->X_op == O_big)
9718 {
9719 char c = *input_line_pointer;
9720 *input_line_pointer = 0;
9721 as_bad (_("missing or invalid expression `%s'"), save);
9722 *input_line_pointer = c;
9723 }
b9519cfe
L
9724 else if ((got_reloc == BFD_RELOC_386_PLT32
9725 || got_reloc == BFD_RELOC_X86_64_PLT32)
9726 && exp->X_op != O_symbol)
9727 {
9728 char c = *input_line_pointer;
9729 *input_line_pointer = 0;
9730 as_bad (_("invalid PLT expression `%s'"), save);
9731 *input_line_pointer = c;
9732 }
f3c180ae
AM
9733 }
9734 }
9735 else
9736 expression (exp);
ee86248c
JB
9737
9738 intel_syntax = -intel_syntax;
9739
9740 if (intel_syntax)
9741 i386_intel_simplify (exp);
62ebcb5c
AM
9742
9743 return got_reloc;
f3c180ae 9744}
f3c180ae 9745
9f32dd5b
L
9746static void
9747signed_cons (int size)
6482c264 9748{
d182319b
JB
9749 if (flag_code == CODE_64BIT)
9750 cons_sign = 1;
9751 cons (size);
9752 cons_sign = -1;
6482c264
NC
9753}
9754
d182319b 9755#ifdef TE_PE
6482c264 9756static void
7016a5d5 9757pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
6482c264
NC
9758{
9759 expressionS exp;
9760
9761 do
9762 {
9763 expression (&exp);
9764 if (exp.X_op == O_symbol)
9765 exp.X_op = O_secrel;
9766
9767 emit_expr (&exp, 4);
9768 }
9769 while (*input_line_pointer++ == ',');
9770
9771 input_line_pointer--;
9772 demand_empty_rest_of_line ();
9773}
6482c264
NC
9774#endif
9775
43234a1e
L
9776/* Handle Vector operations. */
9777
9778static char *
9779check_VecOperations (char *op_string, char *op_end)
9780{
9781 const reg_entry *mask;
9782 const char *saved;
9783 char *end_op;
9784
9785 while (*op_string
9786 && (op_end == NULL || op_string < op_end))
9787 {
9788 saved = op_string;
9789 if (*op_string == '{')
9790 {
9791 op_string++;
9792
9793 /* Check broadcasts. */
9794 if (strncmp (op_string, "1to", 3) == 0)
9795 {
9796 int bcst_type;
9797
9798 if (i.broadcast)
9799 goto duplicated_vec_op;
9800
9801 op_string += 3;
9802 if (*op_string == '8')
8e6e0792 9803 bcst_type = 8;
b28d1bda 9804 else if (*op_string == '4')
8e6e0792 9805 bcst_type = 4;
b28d1bda 9806 else if (*op_string == '2')
8e6e0792 9807 bcst_type = 2;
43234a1e
L
9808 else if (*op_string == '1'
9809 && *(op_string+1) == '6')
9810 {
8e6e0792 9811 bcst_type = 16;
43234a1e
L
9812 op_string++;
9813 }
9814 else
9815 {
9816 as_bad (_("Unsupported broadcast: `%s'"), saved);
9817 return NULL;
9818 }
9819 op_string++;
9820
9821 broadcast_op.type = bcst_type;
9822 broadcast_op.operand = this_operand;
1f75763a 9823 broadcast_op.bytes = 0;
43234a1e
L
9824 i.broadcast = &broadcast_op;
9825 }
9826 /* Check masking operation. */
9827 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9828 {
9829 /* k0 can't be used for write mask. */
f74a6307 9830 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
43234a1e 9831 {
6d2cd6b2
JB
9832 as_bad (_("`%s%s' can't be used for write mask"),
9833 register_prefix, mask->reg_name);
43234a1e
L
9834 return NULL;
9835 }
9836
9837 if (!i.mask)
9838 {
9839 mask_op.mask = mask;
9840 mask_op.zeroing = 0;
9841 mask_op.operand = this_operand;
9842 i.mask = &mask_op;
9843 }
9844 else
9845 {
9846 if (i.mask->mask)
9847 goto duplicated_vec_op;
9848
9849 i.mask->mask = mask;
9850
9851 /* Only "{z}" is allowed here. No need to check
9852 zeroing mask explicitly. */
9853 if (i.mask->operand != this_operand)
9854 {
9855 as_bad (_("invalid write mask `%s'"), saved);
9856 return NULL;
9857 }
9858 }
9859
9860 op_string = end_op;
9861 }
9862 /* Check zeroing-flag for masking operation. */
9863 else if (*op_string == 'z')
9864 {
9865 if (!i.mask)
9866 {
9867 mask_op.mask = NULL;
9868 mask_op.zeroing = 1;
9869 mask_op.operand = this_operand;
9870 i.mask = &mask_op;
9871 }
9872 else
9873 {
9874 if (i.mask->zeroing)
9875 {
9876 duplicated_vec_op:
9877 as_bad (_("duplicated `%s'"), saved);
9878 return NULL;
9879 }
9880
9881 i.mask->zeroing = 1;
9882
9883 /* Only "{%k}" is allowed here. No need to check mask
9884 register explicitly. */
9885 if (i.mask->operand != this_operand)
9886 {
9887 as_bad (_("invalid zeroing-masking `%s'"),
9888 saved);
9889 return NULL;
9890 }
9891 }
9892
9893 op_string++;
9894 }
9895 else
9896 goto unknown_vec_op;
9897
9898 if (*op_string != '}')
9899 {
9900 as_bad (_("missing `}' in `%s'"), saved);
9901 return NULL;
9902 }
9903 op_string++;
0ba3a731
L
9904
9905 /* Strip whitespace since the addition of pseudo prefixes
9906 changed how the scrubber treats '{'. */
9907 if (is_space_char (*op_string))
9908 ++op_string;
9909
43234a1e
L
9910 continue;
9911 }
9912 unknown_vec_op:
9913 /* We don't know this one. */
9914 as_bad (_("unknown vector operation: `%s'"), saved);
9915 return NULL;
9916 }
9917
6d2cd6b2
JB
9918 if (i.mask && i.mask->zeroing && !i.mask->mask)
9919 {
9920 as_bad (_("zeroing-masking only allowed with write mask"));
9921 return NULL;
9922 }
9923
43234a1e
L
9924 return op_string;
9925}
9926
252b5132 9927static int
70e41ade 9928i386_immediate (char *imm_start)
252b5132
RH
9929{
9930 char *save_input_line_pointer;
f3c180ae 9931 char *gotfree_input_line;
252b5132 9932 segT exp_seg = 0;
47926f60 9933 expressionS *exp;
40fb9820
L
9934 i386_operand_type types;
9935
0dfbf9d7 9936 operand_type_set (&types, ~0);
252b5132
RH
9937
9938 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9939 {
31b2323c
L
9940 as_bad (_("at most %d immediate operands are allowed"),
9941 MAX_IMMEDIATE_OPERANDS);
252b5132
RH
9942 return 0;
9943 }
9944
9945 exp = &im_expressions[i.imm_operands++];
520dc8e8 9946 i.op[this_operand].imms = exp;
252b5132
RH
9947
9948 if (is_space_char (*imm_start))
9949 ++imm_start;
9950
9951 save_input_line_pointer = input_line_pointer;
9952 input_line_pointer = imm_start;
9953
d258b828 9954 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
9955 if (gotfree_input_line)
9956 input_line_pointer = gotfree_input_line;
252b5132
RH
9957
9958 exp_seg = expression (exp);
9959
83183c0c 9960 SKIP_WHITESPACE ();
43234a1e
L
9961
9962 /* Handle vector operations. */
9963 if (*input_line_pointer == '{')
9964 {
9965 input_line_pointer = check_VecOperations (input_line_pointer,
9966 NULL);
9967 if (input_line_pointer == NULL)
9968 return 0;
9969 }
9970
252b5132 9971 if (*input_line_pointer)
f3c180ae 9972 as_bad (_("junk `%s' after expression"), input_line_pointer);
252b5132
RH
9973
9974 input_line_pointer = save_input_line_pointer;
f3c180ae 9975 if (gotfree_input_line)
ee86248c
JB
9976 {
9977 free (gotfree_input_line);
9978
9979 if (exp->X_op == O_constant || exp->X_op == O_register)
9980 exp->X_op = O_illegal;
9981 }
9982
9983 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9984}
252b5132 9985
ee86248c
JB
9986static int
9987i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9988 i386_operand_type types, const char *imm_start)
9989{
9990 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
252b5132 9991 {
313c53d1
L
9992 if (imm_start)
9993 as_bad (_("missing or invalid immediate expression `%s'"),
9994 imm_start);
3992d3b7 9995 return 0;
252b5132 9996 }
3e73aa7c 9997 else if (exp->X_op == O_constant)
252b5132 9998 {
47926f60 9999 /* Size it properly later. */
40fb9820 10000 i.types[this_operand].bitfield.imm64 = 1;
13f864ae
L
10001 /* If not 64bit, sign extend val. */
10002 if (flag_code != CODE_64BIT
4eed87de
AM
10003 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10004 exp->X_add_number
10005 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
252b5132 10006 }
4c63da97 10007#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
f86103b7 10008 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
31312f95 10009 && exp_seg != absolute_section
47926f60 10010 && exp_seg != text_section
24eab124
AM
10011 && exp_seg != data_section
10012 && exp_seg != bss_section
10013 && exp_seg != undefined_section
f86103b7 10014 && !bfd_is_com_section (exp_seg))
252b5132 10015 {
d0b47220 10016 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
252b5132
RH
10017 return 0;
10018 }
10019#endif
a841bdf5 10020 else if (!intel_syntax && exp_seg == reg_section)
bb8f5920 10021 {
313c53d1
L
10022 if (imm_start)
10023 as_bad (_("illegal immediate register operand %s"), imm_start);
bb8f5920
L
10024 return 0;
10025 }
252b5132
RH
10026 else
10027 {
10028 /* This is an address. The size of the address will be
24eab124 10029 determined later, depending on destination register,
3e73aa7c 10030 suffix, or the default for the section. */
40fb9820
L
10031 i.types[this_operand].bitfield.imm8 = 1;
10032 i.types[this_operand].bitfield.imm16 = 1;
10033 i.types[this_operand].bitfield.imm32 = 1;
10034 i.types[this_operand].bitfield.imm32s = 1;
10035 i.types[this_operand].bitfield.imm64 = 1;
c6fb90c8
L
10036 i.types[this_operand] = operand_type_and (i.types[this_operand],
10037 types);
252b5132
RH
10038 }
10039
10040 return 1;
10041}
10042
551c1ca1 10043static char *
e3bb37b5 10044i386_scale (char *scale)
252b5132 10045{
551c1ca1
AM
10046 offsetT val;
10047 char *save = input_line_pointer;
252b5132 10048
551c1ca1
AM
10049 input_line_pointer = scale;
10050 val = get_absolute_expression ();
10051
10052 switch (val)
252b5132 10053 {
551c1ca1 10054 case 1:
252b5132
RH
10055 i.log2_scale_factor = 0;
10056 break;
551c1ca1 10057 case 2:
252b5132
RH
10058 i.log2_scale_factor = 1;
10059 break;
551c1ca1 10060 case 4:
252b5132
RH
10061 i.log2_scale_factor = 2;
10062 break;
551c1ca1 10063 case 8:
252b5132
RH
10064 i.log2_scale_factor = 3;
10065 break;
10066 default:
a724f0f4
JB
10067 {
10068 char sep = *input_line_pointer;
10069
10070 *input_line_pointer = '\0';
10071 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10072 scale);
10073 *input_line_pointer = sep;
10074 input_line_pointer = save;
10075 return NULL;
10076 }
252b5132 10077 }
29b0f896 10078 if (i.log2_scale_factor != 0 && i.index_reg == 0)
252b5132
RH
10079 {
10080 as_warn (_("scale factor of %d without an index register"),
24eab124 10081 1 << i.log2_scale_factor);
252b5132 10082 i.log2_scale_factor = 0;
252b5132 10083 }
551c1ca1
AM
10084 scale = input_line_pointer;
10085 input_line_pointer = save;
10086 return scale;
252b5132
RH
10087}
10088
252b5132 10089static int
e3bb37b5 10090i386_displacement (char *disp_start, char *disp_end)
252b5132 10091{
29b0f896 10092 expressionS *exp;
252b5132
RH
10093 segT exp_seg = 0;
10094 char *save_input_line_pointer;
f3c180ae 10095 char *gotfree_input_line;
40fb9820
L
10096 int override;
10097 i386_operand_type bigdisp, types = anydisp;
3992d3b7 10098 int ret;
252b5132 10099
31b2323c
L
10100 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10101 {
10102 as_bad (_("at most %d displacement operands are allowed"),
10103 MAX_MEMORY_OPERANDS);
10104 return 0;
10105 }
10106
0dfbf9d7 10107 operand_type_set (&bigdisp, 0);
6f2f06be 10108 if (i.jumpabsolute
48bcea9f 10109 || i.types[this_operand].bitfield.baseindex
0cfa3eb3
JB
10110 || (current_templates->start->opcode_modifier.jump != JUMP
10111 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
e05278af 10112 {
48bcea9f 10113 i386_addressing_mode ();
e05278af 10114 override = (i.prefix[ADDR_PREFIX] != 0);
40fb9820
L
10115 if (flag_code == CODE_64BIT)
10116 {
10117 if (!override)
10118 {
10119 bigdisp.bitfield.disp32s = 1;
10120 bigdisp.bitfield.disp64 = 1;
10121 }
48bcea9f
JB
10122 else
10123 bigdisp.bitfield.disp32 = 1;
40fb9820
L
10124 }
10125 else if ((flag_code == CODE_16BIT) ^ override)
40fb9820 10126 bigdisp.bitfield.disp16 = 1;
48bcea9f
JB
10127 else
10128 bigdisp.bitfield.disp32 = 1;
e05278af
JB
10129 }
10130 else
10131 {
376cd056
JB
10132 /* For PC-relative branches, the width of the displacement may be
10133 dependent upon data size, but is never dependent upon address size.
10134 Also make sure to not unintentionally match against a non-PC-relative
10135 branch template. */
10136 static templates aux_templates;
10137 const insn_template *t = current_templates->start;
10138 bfd_boolean has_intel64 = FALSE;
10139
10140 aux_templates.start = t;
10141 while (++t < current_templates->end)
10142 {
10143 if (t->opcode_modifier.jump
10144 != current_templates->start->opcode_modifier.jump)
10145 break;
4b5aaf5f 10146 if ((t->opcode_modifier.isa64 >= INTEL64))
376cd056
JB
10147 has_intel64 = TRUE;
10148 }
10149 if (t < current_templates->end)
10150 {
10151 aux_templates.end = t;
10152 current_templates = &aux_templates;
10153 }
10154
e05278af 10155 override = (i.prefix[DATA_PREFIX] != 0);
40fb9820
L
10156 if (flag_code == CODE_64BIT)
10157 {
376cd056
JB
10158 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10159 && (!intel64 || !has_intel64))
40fb9820
L
10160 bigdisp.bitfield.disp16 = 1;
10161 else
48bcea9f 10162 bigdisp.bitfield.disp32s = 1;
40fb9820
L
10163 }
10164 else
e05278af
JB
10165 {
10166 if (!override)
10167 override = (i.suffix == (flag_code != CODE_16BIT
10168 ? WORD_MNEM_SUFFIX
10169 : LONG_MNEM_SUFFIX));
40fb9820
L
10170 bigdisp.bitfield.disp32 = 1;
10171 if ((flag_code == CODE_16BIT) ^ override)
10172 {
10173 bigdisp.bitfield.disp32 = 0;
10174 bigdisp.bitfield.disp16 = 1;
10175 }
e05278af 10176 }
e05278af 10177 }
c6fb90c8
L
10178 i.types[this_operand] = operand_type_or (i.types[this_operand],
10179 bigdisp);
252b5132
RH
10180
10181 exp = &disp_expressions[i.disp_operands];
520dc8e8 10182 i.op[this_operand].disps = exp;
252b5132
RH
10183 i.disp_operands++;
10184 save_input_line_pointer = input_line_pointer;
10185 input_line_pointer = disp_start;
10186 END_STRING_AND_SAVE (disp_end);
10187
10188#ifndef GCC_ASM_O_HACK
10189#define GCC_ASM_O_HACK 0
10190#endif
10191#if GCC_ASM_O_HACK
10192 END_STRING_AND_SAVE (disp_end + 1);
40fb9820 10193 if (i.types[this_operand].bitfield.baseIndex
24eab124 10194 && displacement_string_end[-1] == '+')
252b5132
RH
10195 {
10196 /* This hack is to avoid a warning when using the "o"
24eab124
AM
10197 constraint within gcc asm statements.
10198 For instance:
10199
10200 #define _set_tssldt_desc(n,addr,limit,type) \
10201 __asm__ __volatile__ ( \
10202 "movw %w2,%0\n\t" \
10203 "movw %w1,2+%0\n\t" \
10204 "rorl $16,%1\n\t" \
10205 "movb %b1,4+%0\n\t" \
10206 "movb %4,5+%0\n\t" \
10207 "movb $0,6+%0\n\t" \
10208 "movb %h1,7+%0\n\t" \
10209 "rorl $16,%1" \
10210 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10211
10212 This works great except that the output assembler ends
10213 up looking a bit weird if it turns out that there is
10214 no offset. You end up producing code that looks like:
10215
10216 #APP
10217 movw $235,(%eax)
10218 movw %dx,2+(%eax)
10219 rorl $16,%edx
10220 movb %dl,4+(%eax)
10221 movb $137,5+(%eax)
10222 movb $0,6+(%eax)
10223 movb %dh,7+(%eax)
10224 rorl $16,%edx
10225 #NO_APP
10226
47926f60 10227 So here we provide the missing zero. */
24eab124
AM
10228
10229 *displacement_string_end = '0';
252b5132
RH
10230 }
10231#endif
d258b828 10232 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
f3c180ae
AM
10233 if (gotfree_input_line)
10234 input_line_pointer = gotfree_input_line;
252b5132 10235
24eab124 10236 exp_seg = expression (exp);
252b5132 10237
636c26b0
AM
10238 SKIP_WHITESPACE ();
10239 if (*input_line_pointer)
10240 as_bad (_("junk `%s' after expression"), input_line_pointer);
10241#if GCC_ASM_O_HACK
10242 RESTORE_END_STRING (disp_end + 1);
10243#endif
636c26b0 10244 input_line_pointer = save_input_line_pointer;
636c26b0 10245 if (gotfree_input_line)
ee86248c
JB
10246 {
10247 free (gotfree_input_line);
10248
10249 if (exp->X_op == O_constant || exp->X_op == O_register)
10250 exp->X_op = O_illegal;
10251 }
10252
10253 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10254
10255 RESTORE_END_STRING (disp_end);
10256
10257 return ret;
10258}
10259
10260static int
10261i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10262 i386_operand_type types, const char *disp_start)
10263{
10264 i386_operand_type bigdisp;
10265 int ret = 1;
636c26b0 10266
24eab124
AM
10267 /* We do this to make sure that the section symbol is in
10268 the symbol table. We will ultimately change the relocation
47926f60 10269 to be relative to the beginning of the section. */
1ae12ab7 10270 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
d6ab8113
JB
10271 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10272 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
24eab124 10273 {
636c26b0 10274 if (exp->X_op != O_symbol)
3992d3b7 10275 goto inv_disp;
636c26b0 10276
e5cb08ac 10277 if (S_IS_LOCAL (exp->X_add_symbol)
c64efb4b
L
10278 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10279 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
24eab124 10280 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
24eab124
AM
10281 exp->X_op = O_subtract;
10282 exp->X_op_symbol = GOT_symbol;
1ae12ab7 10283 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
29b0f896 10284 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
d6ab8113
JB
10285 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10286 i.reloc[this_operand] = BFD_RELOC_64;
23df1078 10287 else
29b0f896 10288 i.reloc[this_operand] = BFD_RELOC_32;
24eab124 10289 }
252b5132 10290
3992d3b7
AM
10291 else if (exp->X_op == O_absent
10292 || exp->X_op == O_illegal
ee86248c 10293 || exp->X_op == O_big)
2daf4fd8 10294 {
3992d3b7
AM
10295 inv_disp:
10296 as_bad (_("missing or invalid displacement expression `%s'"),
2daf4fd8 10297 disp_start);
3992d3b7 10298 ret = 0;
2daf4fd8
AM
10299 }
10300
0e1147d9
L
10301 else if (flag_code == CODE_64BIT
10302 && !i.prefix[ADDR_PREFIX]
10303 && exp->X_op == O_constant)
10304 {
10305 /* Since displacement is signed extended to 64bit, don't allow
10306 disp32 and turn off disp32s if they are out of range. */
10307 i.types[this_operand].bitfield.disp32 = 0;
10308 if (!fits_in_signed_long (exp->X_add_number))
10309 {
10310 i.types[this_operand].bitfield.disp32s = 0;
10311 if (i.types[this_operand].bitfield.baseindex)
10312 {
10313 as_bad (_("0x%lx out range of signed 32bit displacement"),
10314 (long) exp->X_add_number);
10315 ret = 0;
10316 }
10317 }
10318 }
10319
4c63da97 10320#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3992d3b7
AM
10321 else if (exp->X_op != O_constant
10322 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10323 && exp_seg != absolute_section
10324 && exp_seg != text_section
10325 && exp_seg != data_section
10326 && exp_seg != bss_section
10327 && exp_seg != undefined_section
10328 && !bfd_is_com_section (exp_seg))
24eab124 10329 {
d0b47220 10330 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3992d3b7 10331 ret = 0;
24eab124 10332 }
252b5132 10333#endif
3956db08 10334
48bcea9f
JB
10335 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10336 /* Constants get taken care of by optimize_disp(). */
10337 && exp->X_op != O_constant)
10338 i.types[this_operand].bitfield.disp8 = 1;
10339
40fb9820
L
10340 /* Check if this is a displacement only operand. */
10341 bigdisp = i.types[this_operand];
10342 bigdisp.bitfield.disp8 = 0;
10343 bigdisp.bitfield.disp16 = 0;
10344 bigdisp.bitfield.disp32 = 0;
10345 bigdisp.bitfield.disp32s = 0;
10346 bigdisp.bitfield.disp64 = 0;
0dfbf9d7 10347 if (operand_type_all_zero (&bigdisp))
c6fb90c8
L
10348 i.types[this_operand] = operand_type_and (i.types[this_operand],
10349 types);
3956db08 10350
3992d3b7 10351 return ret;
252b5132
RH
10352}
10353
2abc2bec
JB
10354/* Return the active addressing mode, taking address override and
10355 registers forming the address into consideration. Update the
10356 address override prefix if necessary. */
47926f60 10357
2abc2bec
JB
10358static enum flag_code
10359i386_addressing_mode (void)
252b5132 10360{
be05d201
L
10361 enum flag_code addr_mode;
10362
10363 if (i.prefix[ADDR_PREFIX])
10364 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
a23b33b3
JB
10365 else if (flag_code == CODE_16BIT
10366 && current_templates->start->cpu_flags.bitfield.cpumpx
10367 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10368 from md_assemble() by "is not a valid base/index expression"
10369 when there is a base and/or index. */
10370 && !i.types[this_operand].bitfield.baseindex)
10371 {
10372 /* MPX insn memory operands with neither base nor index must be forced
10373 to use 32-bit addressing in 16-bit mode. */
10374 addr_mode = CODE_32BIT;
10375 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10376 ++i.prefixes;
10377 gas_assert (!i.types[this_operand].bitfield.disp16);
10378 gas_assert (!i.types[this_operand].bitfield.disp32);
10379 }
be05d201
L
10380 else
10381 {
10382 addr_mode = flag_code;
10383
24eab124 10384#if INFER_ADDR_PREFIX
be05d201
L
10385 if (i.mem_operands == 0)
10386 {
10387 /* Infer address prefix from the first memory operand. */
10388 const reg_entry *addr_reg = i.base_reg;
10389
10390 if (addr_reg == NULL)
10391 addr_reg = i.index_reg;
eecb386c 10392
be05d201
L
10393 if (addr_reg)
10394 {
e968fc9b 10395 if (addr_reg->reg_type.bitfield.dword)
be05d201
L
10396 addr_mode = CODE_32BIT;
10397 else if (flag_code != CODE_64BIT
dc821c5f 10398 && addr_reg->reg_type.bitfield.word)
be05d201
L
10399 addr_mode = CODE_16BIT;
10400
10401 if (addr_mode != flag_code)
10402 {
10403 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10404 i.prefixes += 1;
10405 /* Change the size of any displacement too. At most one
10406 of Disp16 or Disp32 is set.
10407 FIXME. There doesn't seem to be any real need for
10408 separate Disp16 and Disp32 flags. The same goes for
10409 Imm16 and Imm32. Removing them would probably clean
10410 up the code quite a lot. */
10411 if (flag_code != CODE_64BIT
10412 && (i.types[this_operand].bitfield.disp16
10413 || i.types[this_operand].bitfield.disp32))
10414 i.types[this_operand]
10415 = operand_type_xor (i.types[this_operand], disp16_32);
10416 }
10417 }
10418 }
24eab124 10419#endif
be05d201
L
10420 }
10421
2abc2bec
JB
10422 return addr_mode;
10423}
10424
10425/* Make sure the memory operand we've been dealt is valid.
10426 Return 1 on success, 0 on a failure. */
10427
10428static int
10429i386_index_check (const char *operand_string)
10430{
10431 const char *kind = "base/index";
10432 enum flag_code addr_mode = i386_addressing_mode ();
10433
fc0763e6 10434 if (current_templates->start->opcode_modifier.isstring
c3949f43 10435 && !current_templates->start->cpu_flags.bitfield.cpupadlock
fc0763e6
JB
10436 && (current_templates->end[-1].opcode_modifier.isstring
10437 || i.mem_operands))
10438 {
10439 /* Memory operands of string insns are special in that they only allow
10440 a single register (rDI, rSI, or rBX) as their memory address. */
be05d201
L
10441 const reg_entry *expected_reg;
10442 static const char *di_si[][2] =
10443 {
10444 { "esi", "edi" },
10445 { "si", "di" },
10446 { "rsi", "rdi" }
10447 };
10448 static const char *bx[] = { "ebx", "bx", "rbx" };
fc0763e6
JB
10449
10450 kind = "string address";
10451
8325cc63 10452 if (current_templates->start->opcode_modifier.repprefixok)
fc0763e6 10453 {
51c8edf6
JB
10454 int es_op = current_templates->end[-1].opcode_modifier.isstring
10455 - IS_STRING_ES_OP0;
10456 int op = 0;
fc0763e6 10457
51c8edf6 10458 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
fc0763e6
JB
10459 || ((!i.mem_operands != !intel_syntax)
10460 && current_templates->end[-1].operand_types[1]
10461 .bitfield.baseindex))
51c8edf6
JB
10462 op = 1;
10463 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
fc0763e6
JB
10464 }
10465 else
be05d201 10466 expected_reg = hash_find (reg_hash, bx[addr_mode]);
fc0763e6 10467
be05d201
L
10468 if (i.base_reg != expected_reg
10469 || i.index_reg
fc0763e6 10470 || operand_type_check (i.types[this_operand], disp))
fc0763e6 10471 {
be05d201
L
10472 /* The second memory operand must have the same size as
10473 the first one. */
10474 if (i.mem_operands
10475 && i.base_reg
10476 && !((addr_mode == CODE_64BIT
dc821c5f 10477 && i.base_reg->reg_type.bitfield.qword)
be05d201 10478 || (addr_mode == CODE_32BIT
dc821c5f
JB
10479 ? i.base_reg->reg_type.bitfield.dword
10480 : i.base_reg->reg_type.bitfield.word)))
be05d201
L
10481 goto bad_address;
10482
fc0763e6
JB
10483 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10484 operand_string,
10485 intel_syntax ? '[' : '(',
10486 register_prefix,
be05d201 10487 expected_reg->reg_name,
fc0763e6 10488 intel_syntax ? ']' : ')');
be05d201 10489 return 1;
fc0763e6 10490 }
be05d201
L
10491 else
10492 return 1;
10493
dc1e8a47 10494 bad_address:
be05d201
L
10495 as_bad (_("`%s' is not a valid %s expression"),
10496 operand_string, kind);
10497 return 0;
3e73aa7c
JH
10498 }
10499 else
10500 {
be05d201
L
10501 if (addr_mode != CODE_16BIT)
10502 {
10503 /* 32-bit/64-bit checks. */
10504 if ((i.base_reg
e968fc9b
JB
10505 && ((addr_mode == CODE_64BIT
10506 ? !i.base_reg->reg_type.bitfield.qword
10507 : !i.base_reg->reg_type.bitfield.dword)
10508 || (i.index_reg && i.base_reg->reg_num == RegIP)
10509 || i.base_reg->reg_num == RegIZ))
be05d201 10510 || (i.index_reg
1b54b8d7
JB
10511 && !i.index_reg->reg_type.bitfield.xmmword
10512 && !i.index_reg->reg_type.bitfield.ymmword
10513 && !i.index_reg->reg_type.bitfield.zmmword
be05d201 10514 && ((addr_mode == CODE_64BIT
e968fc9b
JB
10515 ? !i.index_reg->reg_type.bitfield.qword
10516 : !i.index_reg->reg_type.bitfield.dword)
be05d201
L
10517 || !i.index_reg->reg_type.bitfield.baseindex)))
10518 goto bad_address;
8178be5b
JB
10519
10520 /* bndmk, bndldx, and bndstx have special restrictions. */
10521 if (current_templates->start->base_opcode == 0xf30f1b
10522 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10523 {
10524 /* They cannot use RIP-relative addressing. */
e968fc9b 10525 if (i.base_reg && i.base_reg->reg_num == RegIP)
8178be5b
JB
10526 {
10527 as_bad (_("`%s' cannot be used here"), operand_string);
10528 return 0;
10529 }
10530
10531 /* bndldx and bndstx ignore their scale factor. */
10532 if (current_templates->start->base_opcode != 0xf30f1b
10533 && i.log2_scale_factor)
10534 as_warn (_("register scaling is being ignored here"));
10535 }
be05d201
L
10536 }
10537 else
3e73aa7c 10538 {
be05d201 10539 /* 16-bit checks. */
3e73aa7c 10540 if ((i.base_reg
dc821c5f 10541 && (!i.base_reg->reg_type.bitfield.word
40fb9820 10542 || !i.base_reg->reg_type.bitfield.baseindex))
3e73aa7c 10543 || (i.index_reg
dc821c5f 10544 && (!i.index_reg->reg_type.bitfield.word
40fb9820 10545 || !i.index_reg->reg_type.bitfield.baseindex
29b0f896
AM
10546 || !(i.base_reg
10547 && i.base_reg->reg_num < 6
10548 && i.index_reg->reg_num >= 6
10549 && i.log2_scale_factor == 0))))
be05d201 10550 goto bad_address;
3e73aa7c
JH
10551 }
10552 }
be05d201 10553 return 1;
24eab124 10554}
252b5132 10555
43234a1e
L
10556/* Handle vector immediates. */
10557
10558static int
10559RC_SAE_immediate (const char *imm_start)
10560{
10561 unsigned int match_found, j;
10562 const char *pstr = imm_start;
10563 expressionS *exp;
10564
10565 if (*pstr != '{')
10566 return 0;
10567
10568 pstr++;
10569 match_found = 0;
10570 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10571 {
10572 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10573 {
10574 if (!i.rounding)
10575 {
10576 rc_op.type = RC_NamesTable[j].type;
10577 rc_op.operand = this_operand;
10578 i.rounding = &rc_op;
10579 }
10580 else
10581 {
10582 as_bad (_("duplicated `%s'"), imm_start);
10583 return 0;
10584 }
10585 pstr += RC_NamesTable[j].len;
10586 match_found = 1;
10587 break;
10588 }
10589 }
10590 if (!match_found)
10591 return 0;
10592
10593 if (*pstr++ != '}')
10594 {
10595 as_bad (_("Missing '}': '%s'"), imm_start);
10596 return 0;
10597 }
10598 /* RC/SAE immediate string should contain nothing more. */;
10599 if (*pstr != 0)
10600 {
10601 as_bad (_("Junk after '}': '%s'"), imm_start);
10602 return 0;
10603 }
10604
10605 exp = &im_expressions[i.imm_operands++];
10606 i.op[this_operand].imms = exp;
10607
10608 exp->X_op = O_constant;
10609 exp->X_add_number = 0;
10610 exp->X_add_symbol = (symbolS *) 0;
10611 exp->X_op_symbol = (symbolS *) 0;
10612
10613 i.types[this_operand].bitfield.imm8 = 1;
10614 return 1;
10615}
10616
8325cc63
JB
10617/* Only string instructions can have a second memory operand, so
10618 reduce current_templates to just those if it contains any. */
10619static int
10620maybe_adjust_templates (void)
10621{
10622 const insn_template *t;
10623
10624 gas_assert (i.mem_operands == 1);
10625
10626 for (t = current_templates->start; t < current_templates->end; ++t)
10627 if (t->opcode_modifier.isstring)
10628 break;
10629
10630 if (t < current_templates->end)
10631 {
10632 static templates aux_templates;
10633 bfd_boolean recheck;
10634
10635 aux_templates.start = t;
10636 for (; t < current_templates->end; ++t)
10637 if (!t->opcode_modifier.isstring)
10638 break;
10639 aux_templates.end = t;
10640
10641 /* Determine whether to re-check the first memory operand. */
10642 recheck = (aux_templates.start != current_templates->start
10643 || t != current_templates->end);
10644
10645 current_templates = &aux_templates;
10646
10647 if (recheck)
10648 {
10649 i.mem_operands = 0;
10650 if (i.memop1_string != NULL
10651 && i386_index_check (i.memop1_string) == 0)
10652 return 0;
10653 i.mem_operands = 1;
10654 }
10655 }
10656
10657 return 1;
10658}
10659
fc0763e6 10660/* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
47926f60 10661 on error. */
252b5132 10662
252b5132 10663static int
a7619375 10664i386_att_operand (char *operand_string)
252b5132 10665{
af6bdddf
AM
10666 const reg_entry *r;
10667 char *end_op;
24eab124 10668 char *op_string = operand_string;
252b5132 10669
24eab124 10670 if (is_space_char (*op_string))
252b5132
RH
10671 ++op_string;
10672
24eab124 10673 /* We check for an absolute prefix (differentiating,
47926f60 10674 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
24eab124
AM
10675 if (*op_string == ABSOLUTE_PREFIX)
10676 {
10677 ++op_string;
10678 if (is_space_char (*op_string))
10679 ++op_string;
6f2f06be 10680 i.jumpabsolute = TRUE;
24eab124 10681 }
252b5132 10682
47926f60 10683 /* Check if operand is a register. */
4d1bb795 10684 if ((r = parse_register (op_string, &end_op)) != NULL)
24eab124 10685 {
40fb9820
L
10686 i386_operand_type temp;
10687
24eab124
AM
10688 /* Check for a segment override by searching for ':' after a
10689 segment register. */
10690 op_string = end_op;
10691 if (is_space_char (*op_string))
10692 ++op_string;
00cee14f 10693 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
24eab124
AM
10694 {
10695 switch (r->reg_num)
10696 {
10697 case 0:
10698 i.seg[i.mem_operands] = &es;
10699 break;
10700 case 1:
10701 i.seg[i.mem_operands] = &cs;
10702 break;
10703 case 2:
10704 i.seg[i.mem_operands] = &ss;
10705 break;
10706 case 3:
10707 i.seg[i.mem_operands] = &ds;
10708 break;
10709 case 4:
10710 i.seg[i.mem_operands] = &fs;
10711 break;
10712 case 5:
10713 i.seg[i.mem_operands] = &gs;
10714 break;
10715 }
252b5132 10716
24eab124 10717 /* Skip the ':' and whitespace. */
252b5132
RH
10718 ++op_string;
10719 if (is_space_char (*op_string))
24eab124 10720 ++op_string;
252b5132 10721
24eab124
AM
10722 if (!is_digit_char (*op_string)
10723 && !is_identifier_char (*op_string)
10724 && *op_string != '('
10725 && *op_string != ABSOLUTE_PREFIX)
10726 {
10727 as_bad (_("bad memory operand `%s'"), op_string);
10728 return 0;
10729 }
47926f60 10730 /* Handle case of %es:*foo. */
24eab124
AM
10731 if (*op_string == ABSOLUTE_PREFIX)
10732 {
10733 ++op_string;
10734 if (is_space_char (*op_string))
10735 ++op_string;
6f2f06be 10736 i.jumpabsolute = TRUE;
24eab124
AM
10737 }
10738 goto do_memory_reference;
10739 }
43234a1e
L
10740
10741 /* Handle vector operations. */
10742 if (*op_string == '{')
10743 {
10744 op_string = check_VecOperations (op_string, NULL);
10745 if (op_string == NULL)
10746 return 0;
10747 }
10748
24eab124
AM
10749 if (*op_string)
10750 {
d0b47220 10751 as_bad (_("junk `%s' after register"), op_string);
24eab124
AM
10752 return 0;
10753 }
40fb9820
L
10754 temp = r->reg_type;
10755 temp.bitfield.baseindex = 0;
c6fb90c8
L
10756 i.types[this_operand] = operand_type_or (i.types[this_operand],
10757 temp);
7d5e4556 10758 i.types[this_operand].bitfield.unspecified = 0;
520dc8e8 10759 i.op[this_operand].regs = r;
24eab124
AM
10760 i.reg_operands++;
10761 }
af6bdddf
AM
10762 else if (*op_string == REGISTER_PREFIX)
10763 {
10764 as_bad (_("bad register name `%s'"), op_string);
10765 return 0;
10766 }
24eab124 10767 else if (*op_string == IMMEDIATE_PREFIX)
ce8a8b2f 10768 {
24eab124 10769 ++op_string;
6f2f06be 10770 if (i.jumpabsolute)
24eab124 10771 {
d0b47220 10772 as_bad (_("immediate operand illegal with absolute jump"));
24eab124
AM
10773 return 0;
10774 }
10775 if (!i386_immediate (op_string))
10776 return 0;
10777 }
43234a1e
L
10778 else if (RC_SAE_immediate (operand_string))
10779 {
10780 /* If it is a RC or SAE immediate, do nothing. */
10781 ;
10782 }
24eab124
AM
10783 else if (is_digit_char (*op_string)
10784 || is_identifier_char (*op_string)
d02603dc 10785 || *op_string == '"'
e5cb08ac 10786 || *op_string == '(')
24eab124 10787 {
47926f60 10788 /* This is a memory reference of some sort. */
af6bdddf 10789 char *base_string;
252b5132 10790
47926f60 10791 /* Start and end of displacement string expression (if found). */
eecb386c
AM
10792 char *displacement_string_start;
10793 char *displacement_string_end;
43234a1e 10794 char *vop_start;
252b5132 10795
24eab124 10796 do_memory_reference:
8325cc63
JB
10797 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10798 return 0;
24eab124 10799 if ((i.mem_operands == 1
40fb9820 10800 && !current_templates->start->opcode_modifier.isstring)
24eab124
AM
10801 || i.mem_operands == 2)
10802 {
10803 as_bad (_("too many memory references for `%s'"),
10804 current_templates->start->name);
10805 return 0;
10806 }
252b5132 10807
24eab124
AM
10808 /* Check for base index form. We detect the base index form by
10809 looking for an ')' at the end of the operand, searching
10810 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10811 after the '('. */
af6bdddf 10812 base_string = op_string + strlen (op_string);
c3332e24 10813
43234a1e
L
10814 /* Handle vector operations. */
10815 vop_start = strchr (op_string, '{');
10816 if (vop_start && vop_start < base_string)
10817 {
10818 if (check_VecOperations (vop_start, base_string) == NULL)
10819 return 0;
10820 base_string = vop_start;
10821 }
10822
af6bdddf
AM
10823 --base_string;
10824 if (is_space_char (*base_string))
10825 --base_string;
252b5132 10826
47926f60 10827 /* If we only have a displacement, set-up for it to be parsed later. */
af6bdddf
AM
10828 displacement_string_start = op_string;
10829 displacement_string_end = base_string + 1;
252b5132 10830
24eab124
AM
10831 if (*base_string == ')')
10832 {
af6bdddf 10833 char *temp_string;
24eab124
AM
10834 unsigned int parens_balanced = 1;
10835 /* We've already checked that the number of left & right ()'s are
47926f60 10836 equal, so this loop will not be infinite. */
24eab124
AM
10837 do
10838 {
10839 base_string--;
10840 if (*base_string == ')')
10841 parens_balanced++;
10842 if (*base_string == '(')
10843 parens_balanced--;
10844 }
10845 while (parens_balanced);
c3332e24 10846
af6bdddf 10847 temp_string = base_string;
c3332e24 10848
24eab124 10849 /* Skip past '(' and whitespace. */
252b5132
RH
10850 ++base_string;
10851 if (is_space_char (*base_string))
24eab124 10852 ++base_string;
252b5132 10853
af6bdddf 10854 if (*base_string == ','
4eed87de
AM
10855 || ((i.base_reg = parse_register (base_string, &end_op))
10856 != NULL))
252b5132 10857 {
af6bdddf 10858 displacement_string_end = temp_string;
252b5132 10859
40fb9820 10860 i.types[this_operand].bitfield.baseindex = 1;
252b5132 10861
af6bdddf 10862 if (i.base_reg)
24eab124 10863 {
24eab124
AM
10864 base_string = end_op;
10865 if (is_space_char (*base_string))
10866 ++base_string;
af6bdddf
AM
10867 }
10868
10869 /* There may be an index reg or scale factor here. */
10870 if (*base_string == ',')
10871 {
10872 ++base_string;
10873 if (is_space_char (*base_string))
10874 ++base_string;
10875
4eed87de
AM
10876 if ((i.index_reg = parse_register (base_string, &end_op))
10877 != NULL)
24eab124 10878 {
af6bdddf 10879 base_string = end_op;
24eab124
AM
10880 if (is_space_char (*base_string))
10881 ++base_string;
af6bdddf
AM
10882 if (*base_string == ',')
10883 {
10884 ++base_string;
10885 if (is_space_char (*base_string))
10886 ++base_string;
10887 }
e5cb08ac 10888 else if (*base_string != ')')
af6bdddf 10889 {
4eed87de
AM
10890 as_bad (_("expecting `,' or `)' "
10891 "after index register in `%s'"),
af6bdddf
AM
10892 operand_string);
10893 return 0;
10894 }
24eab124 10895 }
af6bdddf 10896 else if (*base_string == REGISTER_PREFIX)
24eab124 10897 {
f76bf5e0
L
10898 end_op = strchr (base_string, ',');
10899 if (end_op)
10900 *end_op = '\0';
af6bdddf 10901 as_bad (_("bad register name `%s'"), base_string);
24eab124
AM
10902 return 0;
10903 }
252b5132 10904
47926f60 10905 /* Check for scale factor. */
551c1ca1 10906 if (*base_string != ')')
af6bdddf 10907 {
551c1ca1
AM
10908 char *end_scale = i386_scale (base_string);
10909
10910 if (!end_scale)
af6bdddf 10911 return 0;
24eab124 10912
551c1ca1 10913 base_string = end_scale;
af6bdddf
AM
10914 if (is_space_char (*base_string))
10915 ++base_string;
10916 if (*base_string != ')')
10917 {
4eed87de
AM
10918 as_bad (_("expecting `)' "
10919 "after scale factor in `%s'"),
af6bdddf
AM
10920 operand_string);
10921 return 0;
10922 }
10923 }
10924 else if (!i.index_reg)
24eab124 10925 {
4eed87de
AM
10926 as_bad (_("expecting index register or scale factor "
10927 "after `,'; got '%c'"),
af6bdddf 10928 *base_string);
24eab124
AM
10929 return 0;
10930 }
10931 }
af6bdddf 10932 else if (*base_string != ')')
24eab124 10933 {
4eed87de
AM
10934 as_bad (_("expecting `,' or `)' "
10935 "after base register in `%s'"),
af6bdddf 10936 operand_string);
24eab124
AM
10937 return 0;
10938 }
c3332e24 10939 }
af6bdddf 10940 else if (*base_string == REGISTER_PREFIX)
c3332e24 10941 {
f76bf5e0
L
10942 end_op = strchr (base_string, ',');
10943 if (end_op)
10944 *end_op = '\0';
af6bdddf 10945 as_bad (_("bad register name `%s'"), base_string);
24eab124 10946 return 0;
c3332e24 10947 }
24eab124
AM
10948 }
10949
10950 /* If there's an expression beginning the operand, parse it,
10951 assuming displacement_string_start and
10952 displacement_string_end are meaningful. */
10953 if (displacement_string_start != displacement_string_end)
10954 {
10955 if (!i386_displacement (displacement_string_start,
10956 displacement_string_end))
10957 return 0;
10958 }
10959
10960 /* Special case for (%dx) while doing input/output op. */
10961 if (i.base_reg
75e5731b
JB
10962 && i.base_reg->reg_type.bitfield.instance == RegD
10963 && i.base_reg->reg_type.bitfield.word
24eab124
AM
10964 && i.index_reg == 0
10965 && i.log2_scale_factor == 0
10966 && i.seg[i.mem_operands] == 0
40fb9820 10967 && !operand_type_check (i.types[this_operand], disp))
24eab124 10968 {
2fb5be8d 10969 i.types[this_operand] = i.base_reg->reg_type;
24eab124
AM
10970 return 1;
10971 }
10972
eecb386c
AM
10973 if (i386_index_check (operand_string) == 0)
10974 return 0;
c48dadc9 10975 i.flags[this_operand] |= Operand_Mem;
8325cc63
JB
10976 if (i.mem_operands == 0)
10977 i.memop1_string = xstrdup (operand_string);
24eab124
AM
10978 i.mem_operands++;
10979 }
10980 else
ce8a8b2f
AM
10981 {
10982 /* It's not a memory operand; argh! */
24eab124
AM
10983 as_bad (_("invalid char %s beginning operand %d `%s'"),
10984 output_invalid (*op_string),
10985 this_operand + 1,
10986 op_string);
10987 return 0;
10988 }
47926f60 10989 return 1; /* Normal return. */
252b5132
RH
10990}
10991\f
fa94de6b
RM
10992/* Calculate the maximum variable size (i.e., excluding fr_fix)
10993 that an rs_machine_dependent frag may reach. */
10994
10995unsigned int
10996i386_frag_max_var (fragS *frag)
10997{
10998 /* The only relaxable frags are for jumps.
10999 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11000 gas_assert (frag->fr_type == rs_machine_dependent);
11001 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11002}
11003
b084df0b
L
11004#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11005static int
8dcea932 11006elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
b084df0b
L
11007{
11008 /* STT_GNU_IFUNC symbol must go through PLT. */
11009 if ((symbol_get_bfdsym (fr_symbol)->flags
11010 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11011 return 0;
11012
11013 if (!S_IS_EXTERNAL (fr_symbol))
11014 /* Symbol may be weak or local. */
11015 return !S_IS_WEAK (fr_symbol);
11016
8dcea932
L
11017 /* Global symbols with non-default visibility can't be preempted. */
11018 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11019 return 1;
11020
11021 if (fr_var != NO_RELOC)
11022 switch ((enum bfd_reloc_code_real) fr_var)
11023 {
11024 case BFD_RELOC_386_PLT32:
11025 case BFD_RELOC_X86_64_PLT32:
33eaf5de 11026 /* Symbol with PLT relocation may be preempted. */
8dcea932
L
11027 return 0;
11028 default:
11029 abort ();
11030 }
11031
b084df0b
L
11032 /* Global symbols with default visibility in a shared library may be
11033 preempted by another definition. */
8dcea932 11034 return !shared;
b084df0b
L
11035}
11036#endif
11037
79d72f45
HL
11038/* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11039 Note also work for Skylake and Cascadelake.
11040---------------------------------------------------------------------
11041| JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11042| ------ | ----------- | ------- | -------- |
11043| Jo | N | N | Y |
11044| Jno | N | N | Y |
11045| Jc/Jb | Y | N | Y |
11046| Jae/Jnb | Y | N | Y |
11047| Je/Jz | Y | Y | Y |
11048| Jne/Jnz | Y | Y | Y |
11049| Jna/Jbe | Y | N | Y |
11050| Ja/Jnbe | Y | N | Y |
11051| Js | N | N | Y |
11052| Jns | N | N | Y |
11053| Jp/Jpe | N | N | Y |
11054| Jnp/Jpo | N | N | Y |
11055| Jl/Jnge | Y | Y | Y |
11056| Jge/Jnl | Y | Y | Y |
11057| Jle/Jng | Y | Y | Y |
11058| Jg/Jnle | Y | Y | Y |
11059--------------------------------------------------------------------- */
11060static int
11061i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11062{
11063 if (mf_cmp == mf_cmp_alu_cmp)
11064 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11065 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11066 if (mf_cmp == mf_cmp_incdec)
11067 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11068 || mf_jcc == mf_jcc_jle);
11069 if (mf_cmp == mf_cmp_test_and)
11070 return 1;
11071 return 0;
11072}
11073
e379e5f3
L
11074/* Return the next non-empty frag. */
11075
11076static fragS *
11077i386_next_non_empty_frag (fragS *fragP)
11078{
11079 /* There may be a frag with a ".fill 0" when there is no room in
11080 the current frag for frag_grow in output_insn. */
11081 for (fragP = fragP->fr_next;
11082 (fragP != NULL
11083 && fragP->fr_type == rs_fill
11084 && fragP->fr_fix == 0);
11085 fragP = fragP->fr_next)
11086 ;
11087 return fragP;
11088}
11089
11090/* Return the next jcc frag after BRANCH_PADDING. */
11091
11092static fragS *
79d72f45 11093i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
e379e5f3 11094{
79d72f45
HL
11095 fragS *branch_fragP;
11096 if (!pad_fragP)
e379e5f3
L
11097 return NULL;
11098
79d72f45
HL
11099 if (pad_fragP->fr_type == rs_machine_dependent
11100 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
e379e5f3
L
11101 == BRANCH_PADDING))
11102 {
79d72f45
HL
11103 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11104 if (branch_fragP->fr_type != rs_machine_dependent)
e379e5f3 11105 return NULL;
79d72f45
HL
11106 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11107 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11108 pad_fragP->tc_frag_data.mf_type))
11109 return branch_fragP;
e379e5f3
L
11110 }
11111
11112 return NULL;
11113}
11114
11115/* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11116
11117static void
11118i386_classify_machine_dependent_frag (fragS *fragP)
11119{
11120 fragS *cmp_fragP;
11121 fragS *pad_fragP;
11122 fragS *branch_fragP;
11123 fragS *next_fragP;
11124 unsigned int max_prefix_length;
11125
11126 if (fragP->tc_frag_data.classified)
11127 return;
11128
11129 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11130 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11131 for (next_fragP = fragP;
11132 next_fragP != NULL;
11133 next_fragP = next_fragP->fr_next)
11134 {
11135 next_fragP->tc_frag_data.classified = 1;
11136 if (next_fragP->fr_type == rs_machine_dependent)
11137 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11138 {
11139 case BRANCH_PADDING:
11140 /* The BRANCH_PADDING frag must be followed by a branch
11141 frag. */
11142 branch_fragP = i386_next_non_empty_frag (next_fragP);
11143 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11144 break;
11145 case FUSED_JCC_PADDING:
11146 /* Check if this is a fused jcc:
11147 FUSED_JCC_PADDING
11148 CMP like instruction
11149 BRANCH_PADDING
11150 COND_JUMP
11151 */
11152 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11153 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
79d72f45 11154 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
e379e5f3
L
11155 if (branch_fragP)
11156 {
11157 /* The BRANCH_PADDING frag is merged with the
11158 FUSED_JCC_PADDING frag. */
11159 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11160 /* CMP like instruction size. */
11161 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11162 frag_wane (pad_fragP);
11163 /* Skip to branch_fragP. */
11164 next_fragP = branch_fragP;
11165 }
11166 else if (next_fragP->tc_frag_data.max_prefix_length)
11167 {
11168 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11169 a fused jcc. */
11170 next_fragP->fr_subtype
11171 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11172 next_fragP->tc_frag_data.max_bytes
11173 = next_fragP->tc_frag_data.max_prefix_length;
11174 /* This will be updated in the BRANCH_PREFIX scan. */
11175 next_fragP->tc_frag_data.max_prefix_length = 0;
11176 }
11177 else
11178 frag_wane (next_fragP);
11179 break;
11180 }
11181 }
11182
11183 /* Stop if there is no BRANCH_PREFIX. */
11184 if (!align_branch_prefix_size)
11185 return;
11186
11187 /* Scan for BRANCH_PREFIX. */
11188 for (; fragP != NULL; fragP = fragP->fr_next)
11189 {
11190 if (fragP->fr_type != rs_machine_dependent
11191 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11192 != BRANCH_PREFIX))
11193 continue;
11194
11195 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11196 COND_JUMP_PREFIX. */
11197 max_prefix_length = 0;
11198 for (next_fragP = fragP;
11199 next_fragP != NULL;
11200 next_fragP = next_fragP->fr_next)
11201 {
11202 if (next_fragP->fr_type == rs_fill)
11203 /* Skip rs_fill frags. */
11204 continue;
11205 else if (next_fragP->fr_type != rs_machine_dependent)
11206 /* Stop for all other frags. */
11207 break;
11208
11209 /* rs_machine_dependent frags. */
11210 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11211 == BRANCH_PREFIX)
11212 {
11213 /* Count BRANCH_PREFIX frags. */
11214 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11215 {
11216 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11217 frag_wane (next_fragP);
11218 }
11219 else
11220 max_prefix_length
11221 += next_fragP->tc_frag_data.max_bytes;
11222 }
11223 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11224 == BRANCH_PADDING)
11225 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11226 == FUSED_JCC_PADDING))
11227 {
11228 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11229 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11230 break;
11231 }
11232 else
11233 /* Stop for other rs_machine_dependent frags. */
11234 break;
11235 }
11236
11237 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11238
11239 /* Skip to the next frag. */
11240 fragP = next_fragP;
11241 }
11242}
11243
11244/* Compute padding size for
11245
11246 FUSED_JCC_PADDING
11247 CMP like instruction
11248 BRANCH_PADDING
11249 COND_JUMP/UNCOND_JUMP
11250
11251 or
11252
11253 BRANCH_PADDING
11254 COND_JUMP/UNCOND_JUMP
11255 */
11256
11257static int
11258i386_branch_padding_size (fragS *fragP, offsetT address)
11259{
11260 unsigned int offset, size, padding_size;
11261 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11262
11263 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11264 if (!address)
11265 address = fragP->fr_address;
11266 address += fragP->fr_fix;
11267
11268 /* CMP like instrunction size. */
11269 size = fragP->tc_frag_data.cmp_size;
11270
11271 /* The base size of the branch frag. */
11272 size += branch_fragP->fr_fix;
11273
11274 /* Add opcode and displacement bytes for the rs_machine_dependent
11275 branch frag. */
11276 if (branch_fragP->fr_type == rs_machine_dependent)
11277 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11278
11279 /* Check if branch is within boundary and doesn't end at the last
11280 byte. */
11281 offset = address & ((1U << align_branch_power) - 1);
11282 if ((offset + size) >= (1U << align_branch_power))
11283 /* Padding needed to avoid crossing boundary. */
11284 padding_size = (1U << align_branch_power) - offset;
11285 else
11286 /* No padding needed. */
11287 padding_size = 0;
11288
11289 /* The return value may be saved in tc_frag_data.length which is
11290 unsigned byte. */
11291 if (!fits_in_unsigned_byte (padding_size))
11292 abort ();
11293
11294 return padding_size;
11295}
11296
11297/* i386_generic_table_relax_frag()
11298
11299 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11300 grow/shrink padding to align branch frags. Hand others to
11301 relax_frag(). */
11302
11303long
11304i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11305{
11306 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11307 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11308 {
11309 long padding_size = i386_branch_padding_size (fragP, 0);
11310 long grow = padding_size - fragP->tc_frag_data.length;
11311
11312 /* When the BRANCH_PREFIX frag is used, the computed address
11313 must match the actual address and there should be no padding. */
11314 if (fragP->tc_frag_data.padding_address
11315 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11316 || padding_size))
11317 abort ();
11318
11319 /* Update the padding size. */
11320 if (grow)
11321 fragP->tc_frag_data.length = padding_size;
11322
11323 return grow;
11324 }
11325 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11326 {
11327 fragS *padding_fragP, *next_fragP;
11328 long padding_size, left_size, last_size;
11329
11330 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11331 if (!padding_fragP)
11332 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11333 return (fragP->tc_frag_data.length
11334 - fragP->tc_frag_data.last_length);
11335
11336 /* Compute the relative address of the padding frag in the very
11337 first time where the BRANCH_PREFIX frag sizes are zero. */
11338 if (!fragP->tc_frag_data.padding_address)
11339 fragP->tc_frag_data.padding_address
11340 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11341
11342 /* First update the last length from the previous interation. */
11343 left_size = fragP->tc_frag_data.prefix_length;
11344 for (next_fragP = fragP;
11345 next_fragP != padding_fragP;
11346 next_fragP = next_fragP->fr_next)
11347 if (next_fragP->fr_type == rs_machine_dependent
11348 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11349 == BRANCH_PREFIX))
11350 {
11351 if (left_size)
11352 {
11353 int max = next_fragP->tc_frag_data.max_bytes;
11354 if (max)
11355 {
11356 int size;
11357 if (max > left_size)
11358 size = left_size;
11359 else
11360 size = max;
11361 left_size -= size;
11362 next_fragP->tc_frag_data.last_length = size;
11363 }
11364 }
11365 else
11366 next_fragP->tc_frag_data.last_length = 0;
11367 }
11368
11369 /* Check the padding size for the padding frag. */
11370 padding_size = i386_branch_padding_size
11371 (padding_fragP, (fragP->fr_address
11372 + fragP->tc_frag_data.padding_address));
11373
11374 last_size = fragP->tc_frag_data.prefix_length;
11375 /* Check if there is change from the last interation. */
11376 if (padding_size == last_size)
11377 {
11378 /* Update the expected address of the padding frag. */
11379 padding_fragP->tc_frag_data.padding_address
11380 = (fragP->fr_address + padding_size
11381 + fragP->tc_frag_data.padding_address);
11382 return 0;
11383 }
11384
11385 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11386 {
11387 /* No padding if there is no sufficient room. Clear the
11388 expected address of the padding frag. */
11389 padding_fragP->tc_frag_data.padding_address = 0;
11390 padding_size = 0;
11391 }
11392 else
11393 /* Store the expected address of the padding frag. */
11394 padding_fragP->tc_frag_data.padding_address
11395 = (fragP->fr_address + padding_size
11396 + fragP->tc_frag_data.padding_address);
11397
11398 fragP->tc_frag_data.prefix_length = padding_size;
11399
11400 /* Update the length for the current interation. */
11401 left_size = padding_size;
11402 for (next_fragP = fragP;
11403 next_fragP != padding_fragP;
11404 next_fragP = next_fragP->fr_next)
11405 if (next_fragP->fr_type == rs_machine_dependent
11406 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11407 == BRANCH_PREFIX))
11408 {
11409 if (left_size)
11410 {
11411 int max = next_fragP->tc_frag_data.max_bytes;
11412 if (max)
11413 {
11414 int size;
11415 if (max > left_size)
11416 size = left_size;
11417 else
11418 size = max;
11419 left_size -= size;
11420 next_fragP->tc_frag_data.length = size;
11421 }
11422 }
11423 else
11424 next_fragP->tc_frag_data.length = 0;
11425 }
11426
11427 return (fragP->tc_frag_data.length
11428 - fragP->tc_frag_data.last_length);
11429 }
11430 return relax_frag (segment, fragP, stretch);
11431}
11432
ee7fcc42
AM
11433/* md_estimate_size_before_relax()
11434
11435 Called just before relax() for rs_machine_dependent frags. The x86
11436 assembler uses these frags to handle variable size jump
11437 instructions.
11438
11439 Any symbol that is now undefined will not become defined.
11440 Return the correct fr_subtype in the frag.
11441 Return the initial "guess for variable size of frag" to caller.
11442 The guess is actually the growth beyond the fixed part. Whatever
11443 we do to grow the fixed or variable part contributes to our
11444 returned value. */
11445
252b5132 11446int
7016a5d5 11447md_estimate_size_before_relax (fragS *fragP, segT segment)
252b5132 11448{
e379e5f3
L
11449 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11450 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11451 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11452 {
11453 i386_classify_machine_dependent_frag (fragP);
11454 return fragP->tc_frag_data.length;
11455 }
11456
252b5132 11457 /* We've already got fragP->fr_subtype right; all we have to do is
b98ef147
AM
11458 check for un-relaxable symbols. On an ELF system, we can't relax
11459 an externally visible symbol, because it may be overridden by a
11460 shared library. */
11461 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6d249963 11462#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11463 || (IS_ELF
8dcea932
L
11464 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11465 fragP->fr_var))
fbeb56a4
DK
11466#endif
11467#if defined (OBJ_COFF) && defined (TE_PE)
7ab9ffdd 11468 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
fbeb56a4 11469 && S_IS_WEAK (fragP->fr_symbol))
b98ef147
AM
11470#endif
11471 )
252b5132 11472 {
b98ef147
AM
11473 /* Symbol is undefined in this segment, or we need to keep a
11474 reloc so that weak symbols can be overridden. */
11475 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
f86103b7 11476 enum bfd_reloc_code_real reloc_type;
ee7fcc42
AM
11477 unsigned char *opcode;
11478 int old_fr_fix;
f6af82bd 11479
ee7fcc42 11480 if (fragP->fr_var != NO_RELOC)
1e9cc1c2 11481 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
b98ef147 11482 else if (size == 2)
f6af82bd 11483 reloc_type = BFD_RELOC_16_PCREL;
bd7ab16b
L
11484#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11485 else if (need_plt32_p (fragP->fr_symbol))
11486 reloc_type = BFD_RELOC_X86_64_PLT32;
11487#endif
f6af82bd
AM
11488 else
11489 reloc_type = BFD_RELOC_32_PCREL;
252b5132 11490
ee7fcc42
AM
11491 old_fr_fix = fragP->fr_fix;
11492 opcode = (unsigned char *) fragP->fr_opcode;
11493
fddf5b5b 11494 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
252b5132 11495 {
fddf5b5b
AM
11496 case UNCOND_JUMP:
11497 /* Make jmp (0xeb) a (d)word displacement jump. */
47926f60 11498 opcode[0] = 0xe9;
252b5132 11499 fragP->fr_fix += size;
062cd5e7
AS
11500 fix_new (fragP, old_fr_fix, size,
11501 fragP->fr_symbol,
11502 fragP->fr_offset, 1,
11503 reloc_type);
252b5132
RH
11504 break;
11505
fddf5b5b 11506 case COND_JUMP86:
412167cb
AM
11507 if (size == 2
11508 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
fddf5b5b
AM
11509 {
11510 /* Negate the condition, and branch past an
11511 unconditional jump. */
11512 opcode[0] ^= 1;
11513 opcode[1] = 3;
11514 /* Insert an unconditional jump. */
11515 opcode[2] = 0xe9;
11516 /* We added two extra opcode bytes, and have a two byte
11517 offset. */
11518 fragP->fr_fix += 2 + 2;
062cd5e7
AS
11519 fix_new (fragP, old_fr_fix + 2, 2,
11520 fragP->fr_symbol,
11521 fragP->fr_offset, 1,
11522 reloc_type);
fddf5b5b
AM
11523 break;
11524 }
11525 /* Fall through. */
11526
11527 case COND_JUMP:
412167cb
AM
11528 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11529 {
3e02c1cc
AM
11530 fixS *fixP;
11531
412167cb 11532 fragP->fr_fix += 1;
3e02c1cc
AM
11533 fixP = fix_new (fragP, old_fr_fix, 1,
11534 fragP->fr_symbol,
11535 fragP->fr_offset, 1,
11536 BFD_RELOC_8_PCREL);
11537 fixP->fx_signed = 1;
412167cb
AM
11538 break;
11539 }
93c2a809 11540
24eab124 11541 /* This changes the byte-displacement jump 0x7N
fddf5b5b 11542 to the (d)word-displacement jump 0x0f,0x8N. */
252b5132 11543 opcode[1] = opcode[0] + 0x10;
f6af82bd 11544 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
47926f60
KH
11545 /* We've added an opcode byte. */
11546 fragP->fr_fix += 1 + size;
062cd5e7
AS
11547 fix_new (fragP, old_fr_fix + 1, size,
11548 fragP->fr_symbol,
11549 fragP->fr_offset, 1,
11550 reloc_type);
252b5132 11551 break;
fddf5b5b
AM
11552
11553 default:
11554 BAD_CASE (fragP->fr_subtype);
11555 break;
252b5132
RH
11556 }
11557 frag_wane (fragP);
ee7fcc42 11558 return fragP->fr_fix - old_fr_fix;
252b5132 11559 }
93c2a809 11560
93c2a809
AM
11561 /* Guess size depending on current relax state. Initially the relax
11562 state will correspond to a short jump and we return 1, because
11563 the variable part of the frag (the branch offset) is one byte
11564 long. However, we can relax a section more than once and in that
11565 case we must either set fr_subtype back to the unrelaxed state,
11566 or return the value for the appropriate branch. */
11567 return md_relax_table[fragP->fr_subtype].rlx_length;
ee7fcc42
AM
11568}
11569
47926f60
KH
11570/* Called after relax() is finished.
11571
11572 In: Address of frag.
11573 fr_type == rs_machine_dependent.
11574 fr_subtype is what the address relaxed to.
11575
11576 Out: Any fixSs and constants are set up.
11577 Caller will turn frag into a ".space 0". */
11578
252b5132 11579void
7016a5d5
TG
11580md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11581 fragS *fragP)
252b5132 11582{
29b0f896 11583 unsigned char *opcode;
252b5132 11584 unsigned char *where_to_put_displacement = NULL;
847f7ad4
AM
11585 offsetT target_address;
11586 offsetT opcode_address;
252b5132 11587 unsigned int extension = 0;
847f7ad4 11588 offsetT displacement_from_opcode_start;
252b5132 11589
e379e5f3
L
11590 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11591 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11592 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11593 {
11594 /* Generate nop padding. */
11595 unsigned int size = fragP->tc_frag_data.length;
11596 if (size)
11597 {
11598 if (size > fragP->tc_frag_data.max_bytes)
11599 abort ();
11600
11601 if (flag_debug)
11602 {
11603 const char *msg;
11604 const char *branch = "branch";
11605 const char *prefix = "";
11606 fragS *padding_fragP;
11607 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11608 == BRANCH_PREFIX)
11609 {
11610 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11611 switch (fragP->tc_frag_data.default_prefix)
11612 {
11613 default:
11614 abort ();
11615 break;
11616 case CS_PREFIX_OPCODE:
11617 prefix = " cs";
11618 break;
11619 case DS_PREFIX_OPCODE:
11620 prefix = " ds";
11621 break;
11622 case ES_PREFIX_OPCODE:
11623 prefix = " es";
11624 break;
11625 case FS_PREFIX_OPCODE:
11626 prefix = " fs";
11627 break;
11628 case GS_PREFIX_OPCODE:
11629 prefix = " gs";
11630 break;
11631 case SS_PREFIX_OPCODE:
11632 prefix = " ss";
11633 break;
11634 }
11635 if (padding_fragP)
11636 msg = _("%s:%u: add %d%s at 0x%llx to align "
11637 "%s within %d-byte boundary\n");
11638 else
11639 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11640 "align %s within %d-byte boundary\n");
11641 }
11642 else
11643 {
11644 padding_fragP = fragP;
11645 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11646 "%s within %d-byte boundary\n");
11647 }
11648
11649 if (padding_fragP)
11650 switch (padding_fragP->tc_frag_data.branch_type)
11651 {
11652 case align_branch_jcc:
11653 branch = "jcc";
11654 break;
11655 case align_branch_fused:
11656 branch = "fused jcc";
11657 break;
11658 case align_branch_jmp:
11659 branch = "jmp";
11660 break;
11661 case align_branch_call:
11662 branch = "call";
11663 break;
11664 case align_branch_indirect:
11665 branch = "indiret branch";
11666 break;
11667 case align_branch_ret:
11668 branch = "ret";
11669 break;
11670 default:
11671 break;
11672 }
11673
11674 fprintf (stdout, msg,
11675 fragP->fr_file, fragP->fr_line, size, prefix,
11676 (long long) fragP->fr_address, branch,
11677 1 << align_branch_power);
11678 }
11679 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11680 memset (fragP->fr_opcode,
11681 fragP->tc_frag_data.default_prefix, size);
11682 else
11683 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11684 size, 0);
11685 fragP->fr_fix += size;
11686 }
11687 return;
11688 }
11689
252b5132
RH
11690 opcode = (unsigned char *) fragP->fr_opcode;
11691
47926f60 11692 /* Address we want to reach in file space. */
252b5132 11693 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
252b5132 11694
47926f60 11695 /* Address opcode resides at in file space. */
252b5132
RH
11696 opcode_address = fragP->fr_address + fragP->fr_fix;
11697
47926f60 11698 /* Displacement from opcode start to fill into instruction. */
252b5132
RH
11699 displacement_from_opcode_start = target_address - opcode_address;
11700
fddf5b5b 11701 if ((fragP->fr_subtype & BIG) == 0)
252b5132 11702 {
47926f60
KH
11703 /* Don't have to change opcode. */
11704 extension = 1; /* 1 opcode + 1 displacement */
252b5132 11705 where_to_put_displacement = &opcode[1];
fddf5b5b
AM
11706 }
11707 else
11708 {
11709 if (no_cond_jump_promotion
11710 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4eed87de
AM
11711 as_warn_where (fragP->fr_file, fragP->fr_line,
11712 _("long jump required"));
252b5132 11713
fddf5b5b
AM
11714 switch (fragP->fr_subtype)
11715 {
11716 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11717 extension = 4; /* 1 opcode + 4 displacement */
11718 opcode[0] = 0xe9;
11719 where_to_put_displacement = &opcode[1];
11720 break;
252b5132 11721
fddf5b5b
AM
11722 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11723 extension = 2; /* 1 opcode + 2 displacement */
11724 opcode[0] = 0xe9;
11725 where_to_put_displacement = &opcode[1];
11726 break;
252b5132 11727
fddf5b5b
AM
11728 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11729 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11730 extension = 5; /* 2 opcode + 4 displacement */
11731 opcode[1] = opcode[0] + 0x10;
11732 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11733 where_to_put_displacement = &opcode[2];
11734 break;
252b5132 11735
fddf5b5b
AM
11736 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11737 extension = 3; /* 2 opcode + 2 displacement */
11738 opcode[1] = opcode[0] + 0x10;
11739 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11740 where_to_put_displacement = &opcode[2];
11741 break;
252b5132 11742
fddf5b5b
AM
11743 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11744 extension = 4;
11745 opcode[0] ^= 1;
11746 opcode[1] = 3;
11747 opcode[2] = 0xe9;
11748 where_to_put_displacement = &opcode[3];
11749 break;
11750
11751 default:
11752 BAD_CASE (fragP->fr_subtype);
11753 break;
11754 }
252b5132 11755 }
fddf5b5b 11756
7b81dfbb
AJ
11757 /* If size if less then four we are sure that the operand fits,
11758 but if it's 4, then it could be that the displacement is larger
11759 then -/+ 2GB. */
11760 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11761 && object_64bit
11762 && ((addressT) (displacement_from_opcode_start - extension
4eed87de
AM
11763 + ((addressT) 1 << 31))
11764 > (((addressT) 2 << 31) - 1)))
7b81dfbb
AJ
11765 {
11766 as_bad_where (fragP->fr_file, fragP->fr_line,
11767 _("jump target out of range"));
11768 /* Make us emit 0. */
11769 displacement_from_opcode_start = extension;
11770 }
47926f60 11771 /* Now put displacement after opcode. */
252b5132
RH
11772 md_number_to_chars ((char *) where_to_put_displacement,
11773 (valueT) (displacement_from_opcode_start - extension),
fddf5b5b 11774 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
252b5132
RH
11775 fragP->fr_fix += extension;
11776}
11777\f
7016a5d5 11778/* Apply a fixup (fixP) to segment data, once it has been determined
252b5132
RH
11779 by our caller that we have all the info we need to fix it up.
11780
7016a5d5
TG
11781 Parameter valP is the pointer to the value of the bits.
11782
252b5132
RH
11783 On the 386, immediates, displacements, and data pointers are all in
11784 the same (little-endian) format, so we don't need to care about which
11785 we are handling. */
11786
94f592af 11787void
7016a5d5 11788md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
252b5132 11789{
94f592af 11790 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
c6682705 11791 valueT value = *valP;
252b5132 11792
f86103b7 11793#if !defined (TE_Mach)
93382f6d
AM
11794 if (fixP->fx_pcrel)
11795 {
11796 switch (fixP->fx_r_type)
11797 {
5865bb77
ILT
11798 default:
11799 break;
11800
d6ab8113
JB
11801 case BFD_RELOC_64:
11802 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11803 break;
93382f6d 11804 case BFD_RELOC_32:
ae8887b5 11805 case BFD_RELOC_X86_64_32S:
93382f6d
AM
11806 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11807 break;
11808 case BFD_RELOC_16:
11809 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11810 break;
11811 case BFD_RELOC_8:
11812 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11813 break;
11814 }
11815 }
252b5132 11816
a161fe53 11817 if (fixP->fx_addsy != NULL
31312f95 11818 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
d6ab8113 11819 || fixP->fx_r_type == BFD_RELOC_64_PCREL
31312f95 11820 || fixP->fx_r_type == BFD_RELOC_16_PCREL
d258b828 11821 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
31312f95 11822 && !use_rela_relocations)
252b5132 11823 {
31312f95
AM
11824 /* This is a hack. There should be a better way to handle this.
11825 This covers for the fact that bfd_install_relocation will
11826 subtract the current location (for partial_inplace, PC relative
11827 relocations); see more below. */
252b5132 11828#ifndef OBJ_AOUT
718ddfc0 11829 if (IS_ELF
252b5132
RH
11830#ifdef TE_PE
11831 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11832#endif
11833 )
11834 value += fixP->fx_where + fixP->fx_frag->fr_address;
11835#endif
11836#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11837 if (IS_ELF)
252b5132 11838 {
6539b54b 11839 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
2f66722d 11840
6539b54b 11841 if ((sym_seg == seg
2f66722d 11842 || (symbol_section_p (fixP->fx_addsy)
6539b54b 11843 && sym_seg != absolute_section))
af65af87 11844 && !generic_force_reloc (fixP))
2f66722d
AM
11845 {
11846 /* Yes, we add the values in twice. This is because
6539b54b
AM
11847 bfd_install_relocation subtracts them out again. I think
11848 bfd_install_relocation is broken, but I don't dare change
2f66722d
AM
11849 it. FIXME. */
11850 value += fixP->fx_where + fixP->fx_frag->fr_address;
11851 }
252b5132
RH
11852 }
11853#endif
11854#if defined (OBJ_COFF) && defined (TE_PE)
977cdf5a
NC
11855 /* For some reason, the PE format does not store a
11856 section address offset for a PC relative symbol. */
11857 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
7be1c489 11858 || S_IS_WEAK (fixP->fx_addsy))
252b5132
RH
11859 value += md_pcrel_from (fixP);
11860#endif
11861 }
fbeb56a4 11862#if defined (OBJ_COFF) && defined (TE_PE)
f01c1a09
NC
11863 if (fixP->fx_addsy != NULL
11864 && S_IS_WEAK (fixP->fx_addsy)
11865 /* PR 16858: Do not modify weak function references. */
11866 && ! fixP->fx_pcrel)
fbeb56a4 11867 {
296a8689
NC
11868#if !defined (TE_PEP)
11869 /* For x86 PE weak function symbols are neither PC-relative
11870 nor do they set S_IS_FUNCTION. So the only reliable way
11871 to detect them is to check the flags of their containing
11872 section. */
11873 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11874 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11875 ;
11876 else
11877#endif
fbeb56a4
DK
11878 value -= S_GET_VALUE (fixP->fx_addsy);
11879 }
11880#endif
252b5132
RH
11881
11882 /* Fix a few things - the dynamic linker expects certain values here,
0234cb7c 11883 and we must not disappoint it. */
252b5132 11884#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
718ddfc0 11885 if (IS_ELF && fixP->fx_addsy)
47926f60
KH
11886 switch (fixP->fx_r_type)
11887 {
11888 case BFD_RELOC_386_PLT32:
3e73aa7c 11889 case BFD_RELOC_X86_64_PLT32:
b9519cfe
L
11890 /* Make the jump instruction point to the address of the operand.
11891 At runtime we merely add the offset to the actual PLT entry.
11892 NB: Subtract the offset size only for jump instructions. */
11893 if (fixP->fx_pcrel)
11894 value = -4;
47926f60 11895 break;
31312f95 11896
13ae64f3
JJ
11897 case BFD_RELOC_386_TLS_GD:
11898 case BFD_RELOC_386_TLS_LDM:
13ae64f3 11899 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
11900 case BFD_RELOC_386_TLS_IE:
11901 case BFD_RELOC_386_TLS_GOTIE:
67a4f2b7 11902 case BFD_RELOC_386_TLS_GOTDESC:
bffbf940
JJ
11903 case BFD_RELOC_X86_64_TLSGD:
11904 case BFD_RELOC_X86_64_TLSLD:
11905 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7 11906 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
00f7efb6
JJ
11907 value = 0; /* Fully resolved at runtime. No addend. */
11908 /* Fallthrough */
11909 case BFD_RELOC_386_TLS_LE:
11910 case BFD_RELOC_386_TLS_LDO_32:
11911 case BFD_RELOC_386_TLS_LE_32:
11912 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 11913 case BFD_RELOC_X86_64_DTPOFF64:
00f7efb6 11914 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113 11915 case BFD_RELOC_X86_64_TPOFF64:
00f7efb6
JJ
11916 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11917 break;
11918
67a4f2b7
AO
11919 case BFD_RELOC_386_TLS_DESC_CALL:
11920 case BFD_RELOC_X86_64_TLSDESC_CALL:
11921 value = 0; /* Fully resolved at runtime. No addend. */
11922 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11923 fixP->fx_done = 0;
11924 return;
11925
47926f60
KH
11926 case BFD_RELOC_VTABLE_INHERIT:
11927 case BFD_RELOC_VTABLE_ENTRY:
11928 fixP->fx_done = 0;
94f592af 11929 return;
47926f60
KH
11930
11931 default:
11932 break;
11933 }
11934#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
c6682705 11935 *valP = value;
f86103b7 11936#endif /* !defined (TE_Mach) */
3e73aa7c 11937
3e73aa7c 11938 /* Are we finished with this relocation now? */
c6682705 11939 if (fixP->fx_addsy == NULL)
3e73aa7c 11940 fixP->fx_done = 1;
fbeb56a4
DK
11941#if defined (OBJ_COFF) && defined (TE_PE)
11942 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11943 {
11944 fixP->fx_done = 0;
11945 /* Remember value for tc_gen_reloc. */
11946 fixP->fx_addnumber = value;
11947 /* Clear out the frag for now. */
11948 value = 0;
11949 }
11950#endif
3e73aa7c
JH
11951 else if (use_rela_relocations)
11952 {
11953 fixP->fx_no_overflow = 1;
062cd5e7
AS
11954 /* Remember value for tc_gen_reloc. */
11955 fixP->fx_addnumber = value;
3e73aa7c
JH
11956 value = 0;
11957 }
f86103b7 11958
94f592af 11959 md_number_to_chars (p, value, fixP->fx_size);
252b5132 11960}
252b5132 11961\f
6d4af3c2 11962const char *
499ac353 11963md_atof (int type, char *litP, int *sizeP)
252b5132 11964{
499ac353
NC
11965 /* This outputs the LITTLENUMs in REVERSE order;
11966 in accord with the bigendian 386. */
11967 return ieee_md_atof (type, litP, sizeP, FALSE);
252b5132
RH
11968}
11969\f
2d545b82 11970static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
252b5132 11971
252b5132 11972static char *
e3bb37b5 11973output_invalid (int c)
252b5132 11974{
3882b010 11975 if (ISPRINT (c))
f9f21a03
L
11976 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11977 "'%c'", c);
252b5132 11978 else
f9f21a03 11979 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
2d545b82 11980 "(0x%x)", (unsigned char) c);
252b5132
RH
11981 return output_invalid_buf;
11982}
11983
af6bdddf 11984/* REG_STRING starts *before* REGISTER_PREFIX. */
252b5132
RH
11985
11986static const reg_entry *
4d1bb795 11987parse_real_register (char *reg_string, char **end_op)
252b5132 11988{
af6bdddf
AM
11989 char *s = reg_string;
11990 char *p;
252b5132
RH
11991 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11992 const reg_entry *r;
11993
11994 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11995 if (*s == REGISTER_PREFIX)
11996 ++s;
11997
11998 if (is_space_char (*s))
11999 ++s;
12000
12001 p = reg_name_given;
af6bdddf 12002 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
252b5132
RH
12003 {
12004 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
af6bdddf
AM
12005 return (const reg_entry *) NULL;
12006 s++;
252b5132
RH
12007 }
12008
6588847e
DN
12009 /* For naked regs, make sure that we are not dealing with an identifier.
12010 This prevents confusing an identifier like `eax_var' with register
12011 `eax'. */
12012 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12013 return (const reg_entry *) NULL;
12014
af6bdddf 12015 *end_op = s;
252b5132
RH
12016
12017 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
12018
5f47d35b 12019 /* Handle floating point regs, allowing spaces in the (i) part. */
47926f60 12020 if (r == i386_regtab /* %st is first entry of table */)
5f47d35b 12021 {
0e0eea78
JB
12022 if (!cpu_arch_flags.bitfield.cpu8087
12023 && !cpu_arch_flags.bitfield.cpu287
12024 && !cpu_arch_flags.bitfield.cpu387)
12025 return (const reg_entry *) NULL;
12026
5f47d35b
AM
12027 if (is_space_char (*s))
12028 ++s;
12029 if (*s == '(')
12030 {
af6bdddf 12031 ++s;
5f47d35b
AM
12032 if (is_space_char (*s))
12033 ++s;
12034 if (*s >= '0' && *s <= '7')
12035 {
db557034 12036 int fpr = *s - '0';
af6bdddf 12037 ++s;
5f47d35b
AM
12038 if (is_space_char (*s))
12039 ++s;
12040 if (*s == ')')
12041 {
12042 *end_op = s + 1;
1e9cc1c2 12043 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
db557034
AM
12044 know (r);
12045 return r + fpr;
5f47d35b 12046 }
5f47d35b 12047 }
47926f60 12048 /* We have "%st(" then garbage. */
5f47d35b
AM
12049 return (const reg_entry *) NULL;
12050 }
12051 }
12052
a60de03c
JB
12053 if (r == NULL || allow_pseudo_reg)
12054 return r;
12055
0dfbf9d7 12056 if (operand_type_all_zero (&r->reg_type))
a60de03c
JB
12057 return (const reg_entry *) NULL;
12058
dc821c5f 12059 if ((r->reg_type.bitfield.dword
00cee14f 12060 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
4a5c67ed
JB
12061 || r->reg_type.bitfield.class == RegCR
12062 || r->reg_type.bitfield.class == RegDR
12063 || r->reg_type.bitfield.class == RegTR)
192dc9c6
JB
12064 && !cpu_arch_flags.bitfield.cpui386)
12065 return (const reg_entry *) NULL;
12066
3528c362 12067 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
192dc9c6
JB
12068 return (const reg_entry *) NULL;
12069
6e041cf4
JB
12070 if (!cpu_arch_flags.bitfield.cpuavx512f)
12071 {
f74a6307
JB
12072 if (r->reg_type.bitfield.zmmword
12073 || r->reg_type.bitfield.class == RegMask)
6e041cf4 12074 return (const reg_entry *) NULL;
40f12533 12075
6e041cf4
JB
12076 if (!cpu_arch_flags.bitfield.cpuavx)
12077 {
12078 if (r->reg_type.bitfield.ymmword)
12079 return (const reg_entry *) NULL;
1848e567 12080
6e041cf4
JB
12081 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12082 return (const reg_entry *) NULL;
12083 }
12084 }
43234a1e 12085
f74a6307 12086 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
1adf7f56
JB
12087 return (const reg_entry *) NULL;
12088
db51cc60 12089 /* Don't allow fake index register unless allow_index_reg isn't 0. */
e968fc9b 12090 if (!allow_index_reg && r->reg_num == RegIZ)
db51cc60
L
12091 return (const reg_entry *) NULL;
12092
1d3f8286
JB
12093 /* Upper 16 vector registers are only available with VREX in 64bit
12094 mode, and require EVEX encoding. */
12095 if (r->reg_flags & RegVRex)
43234a1e 12096 {
e951d5ca 12097 if (!cpu_arch_flags.bitfield.cpuavx512f
43234a1e
L
12098 || flag_code != CODE_64BIT)
12099 return (const reg_entry *) NULL;
1d3f8286
JB
12100
12101 i.vec_encoding = vex_encoding_evex;
43234a1e
L
12102 }
12103
4787f4a5 12104 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
4a5c67ed 12105 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
1ae00879 12106 && flag_code != CODE_64BIT)
20f0a1fc 12107 return (const reg_entry *) NULL;
1ae00879 12108
00cee14f
JB
12109 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12110 && !intel_syntax)
b7240065
JB
12111 return (const reg_entry *) NULL;
12112
252b5132
RH
12113 return r;
12114}
4d1bb795
JB
12115
12116/* REG_STRING starts *before* REGISTER_PREFIX. */
12117
12118static const reg_entry *
12119parse_register (char *reg_string, char **end_op)
12120{
12121 const reg_entry *r;
12122
12123 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12124 r = parse_real_register (reg_string, end_op);
12125 else
12126 r = NULL;
12127 if (!r)
12128 {
12129 char *save = input_line_pointer;
12130 char c;
12131 symbolS *symbolP;
12132
12133 input_line_pointer = reg_string;
d02603dc 12134 c = get_symbol_name (&reg_string);
4d1bb795
JB
12135 symbolP = symbol_find (reg_string);
12136 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12137 {
12138 const expressionS *e = symbol_get_value_expression (symbolP);
12139
0398aac5 12140 know (e->X_op == O_register);
4eed87de 12141 know (e->X_add_number >= 0
c3fe08fa 12142 && (valueT) e->X_add_number < i386_regtab_size);
4d1bb795 12143 r = i386_regtab + e->X_add_number;
d3bb6b49 12144 if ((r->reg_flags & RegVRex))
86fa6981 12145 i.vec_encoding = vex_encoding_evex;
4d1bb795
JB
12146 *end_op = input_line_pointer;
12147 }
12148 *input_line_pointer = c;
12149 input_line_pointer = save;
12150 }
12151 return r;
12152}
12153
12154int
12155i386_parse_name (char *name, expressionS *e, char *nextcharP)
12156{
12157 const reg_entry *r;
12158 char *end = input_line_pointer;
12159
12160 *end = *nextcharP;
12161 r = parse_register (name, &input_line_pointer);
12162 if (r && end <= input_line_pointer)
12163 {
12164 *nextcharP = *input_line_pointer;
12165 *input_line_pointer = 0;
12166 e->X_op = O_register;
12167 e->X_add_number = r - i386_regtab;
12168 return 1;
12169 }
12170 input_line_pointer = end;
12171 *end = 0;
ee86248c 12172 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
4d1bb795
JB
12173}
12174
12175void
12176md_operand (expressionS *e)
12177{
ee86248c
JB
12178 char *end;
12179 const reg_entry *r;
4d1bb795 12180
ee86248c
JB
12181 switch (*input_line_pointer)
12182 {
12183 case REGISTER_PREFIX:
12184 r = parse_real_register (input_line_pointer, &end);
4d1bb795
JB
12185 if (r)
12186 {
12187 e->X_op = O_register;
12188 e->X_add_number = r - i386_regtab;
12189 input_line_pointer = end;
12190 }
ee86248c
JB
12191 break;
12192
12193 case '[':
9c2799c2 12194 gas_assert (intel_syntax);
ee86248c
JB
12195 end = input_line_pointer++;
12196 expression (e);
12197 if (*input_line_pointer == ']')
12198 {
12199 ++input_line_pointer;
12200 e->X_op_symbol = make_expr_symbol (e);
12201 e->X_add_symbol = NULL;
12202 e->X_add_number = 0;
12203 e->X_op = O_index;
12204 }
12205 else
12206 {
12207 e->X_op = O_absent;
12208 input_line_pointer = end;
12209 }
12210 break;
4d1bb795
JB
12211 }
12212}
12213
252b5132 12214\f
4cc782b5 12215#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
b6f8c7c4 12216const char *md_shortopts = "kVQ:sqnO::";
252b5132 12217#else
b6f8c7c4 12218const char *md_shortopts = "qnO::";
252b5132 12219#endif
6e0b89ee 12220
3e73aa7c 12221#define OPTION_32 (OPTION_MD_BASE + 0)
b3b91714
AM
12222#define OPTION_64 (OPTION_MD_BASE + 1)
12223#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9103f4f4
L
12224#define OPTION_MARCH (OPTION_MD_BASE + 3)
12225#define OPTION_MTUNE (OPTION_MD_BASE + 4)
1efbbeb4
L
12226#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12227#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12228#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12229#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
bd5dea88 12230#define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
c0f3af97 12231#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
daf50ae7 12232#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
7bab8ab5
JB
12233#define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12234#define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12235#define OPTION_X32 (OPTION_MD_BASE + 14)
7e8b059b 12236#define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
43234a1e
L
12237#define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12238#define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
167ad85b 12239#define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
d1982f93 12240#define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
d3d3c6db 12241#define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
8dcea932 12242#define OPTION_MSHARED (OPTION_MD_BASE + 21)
5db04b09
L
12243#define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12244#define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
e4e00185 12245#define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
b4a3a7b4 12246#define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
03751133 12247#define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
e379e5f3
L
12248#define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12249#define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12250#define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
76cf450b 12251#define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
b3b91714 12252
99ad8390
NC
12253struct option md_longopts[] =
12254{
3e73aa7c 12255 {"32", no_argument, NULL, OPTION_32},
321098a5 12256#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12257 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c 12258 {"64", no_argument, NULL, OPTION_64},
351f65ca
L
12259#endif
12260#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12261 {"x32", no_argument, NULL, OPTION_X32},
8dcea932 12262 {"mshared", no_argument, NULL, OPTION_MSHARED},
b4a3a7b4 12263 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
6e0b89ee 12264#endif
b3b91714 12265 {"divide", no_argument, NULL, OPTION_DIVIDE},
9103f4f4
L
12266 {"march", required_argument, NULL, OPTION_MARCH},
12267 {"mtune", required_argument, NULL, OPTION_MTUNE},
1efbbeb4
L
12268 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12269 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12270 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12271 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
c0f3af97 12272 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
daf50ae7 12273 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
7bab8ab5 12274 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
539f890d 12275 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
03751133 12276 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
7e8b059b 12277 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
43234a1e
L
12278 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12279 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
167ad85b
TG
12280# if defined (TE_PE) || defined (TE_PEP)
12281 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12282#endif
d1982f93 12283 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
e4e00185 12284 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
0cb4071e 12285 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
d3d3c6db 12286 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
e379e5f3
L
12287 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12288 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12289 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
76cf450b 12290 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
5db04b09
L
12291 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12292 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
252b5132
RH
12293 {NULL, no_argument, NULL, 0}
12294};
12295size_t md_longopts_size = sizeof (md_longopts);
12296
12297int
17b9d67d 12298md_parse_option (int c, const char *arg)
252b5132 12299{
91d6fa6a 12300 unsigned int j;
e379e5f3 12301 char *arch, *next, *saved, *type;
9103f4f4 12302
252b5132
RH
12303 switch (c)
12304 {
12b55ccc
L
12305 case 'n':
12306 optimize_align_code = 0;
12307 break;
12308
a38cf1db
AM
12309 case 'q':
12310 quiet_warnings = 1;
252b5132
RH
12311 break;
12312
12313#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
a38cf1db
AM
12314 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12315 should be emitted or not. FIXME: Not implemented. */
12316 case 'Q':
d4693039
JB
12317 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12318 return 0;
252b5132
RH
12319 break;
12320
12321 /* -V: SVR4 argument to print version ID. */
12322 case 'V':
12323 print_version_id ();
12324 break;
12325
a38cf1db
AM
12326 /* -k: Ignore for FreeBSD compatibility. */
12327 case 'k':
252b5132 12328 break;
4cc782b5
ILT
12329
12330 case 's':
12331 /* -s: On i386 Solaris, this tells the native assembler to use
29b0f896 12332 .stab instead of .stab.excl. We always use .stab anyhow. */
4cc782b5 12333 break;
8dcea932
L
12334
12335 case OPTION_MSHARED:
12336 shared = 1;
12337 break;
b4a3a7b4
L
12338
12339 case OPTION_X86_USED_NOTE:
12340 if (strcasecmp (arg, "yes") == 0)
12341 x86_used_note = 1;
12342 else if (strcasecmp (arg, "no") == 0)
12343 x86_used_note = 0;
12344 else
12345 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12346 break;
12347
12348
99ad8390 12349#endif
321098a5 12350#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
d382c579 12351 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
3e73aa7c
JH
12352 case OPTION_64:
12353 {
12354 const char **list, **l;
12355
3e73aa7c
JH
12356 list = bfd_target_list ();
12357 for (l = list; *l != NULL; l++)
8620418b 12358 if (CONST_STRNEQ (*l, "elf64-x86-64")
99ad8390
NC
12359 || strcmp (*l, "coff-x86-64") == 0
12360 || strcmp (*l, "pe-x86-64") == 0
d382c579
TG
12361 || strcmp (*l, "pei-x86-64") == 0
12362 || strcmp (*l, "mach-o-x86-64") == 0)
6e0b89ee
AM
12363 {
12364 default_arch = "x86_64";
12365 break;
12366 }
3e73aa7c 12367 if (*l == NULL)
2b5d6a91 12368 as_fatal (_("no compiled in support for x86_64"));
3e73aa7c
JH
12369 free (list);
12370 }
12371 break;
12372#endif
252b5132 12373
351f65ca 12374#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
570561f7 12375 case OPTION_X32:
351f65ca
L
12376 if (IS_ELF)
12377 {
12378 const char **list, **l;
12379
12380 list = bfd_target_list ();
12381 for (l = list; *l != NULL; l++)
12382 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12383 {
12384 default_arch = "x86_64:32";
12385 break;
12386 }
12387 if (*l == NULL)
2b5d6a91 12388 as_fatal (_("no compiled in support for 32bit x86_64"));
351f65ca
L
12389 free (list);
12390 }
12391 else
12392 as_fatal (_("32bit x86_64 is only supported for ELF"));
12393 break;
12394#endif
12395
6e0b89ee
AM
12396 case OPTION_32:
12397 default_arch = "i386";
12398 break;
12399
b3b91714
AM
12400 case OPTION_DIVIDE:
12401#ifdef SVR4_COMMENT_CHARS
12402 {
12403 char *n, *t;
12404 const char *s;
12405
add39d23 12406 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
b3b91714
AM
12407 t = n;
12408 for (s = i386_comment_chars; *s != '\0'; s++)
12409 if (*s != '/')
12410 *t++ = *s;
12411 *t = '\0';
12412 i386_comment_chars = n;
12413 }
12414#endif
12415 break;
12416
9103f4f4 12417 case OPTION_MARCH:
293f5f65
L
12418 saved = xstrdup (arg);
12419 arch = saved;
12420 /* Allow -march=+nosse. */
12421 if (*arch == '+')
12422 arch++;
6305a203 12423 do
9103f4f4 12424 {
6305a203 12425 if (*arch == '.')
2b5d6a91 12426 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12427 next = strchr (arch, '+');
12428 if (next)
12429 *next++ = '\0';
91d6fa6a 12430 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12431 {
91d6fa6a 12432 if (strcmp (arch, cpu_arch [j].name) == 0)
ccc9c027 12433 {
6305a203 12434 /* Processor. */
1ded5609
JB
12435 if (! cpu_arch[j].flags.bitfield.cpui386)
12436 continue;
12437
91d6fa6a 12438 cpu_arch_name = cpu_arch[j].name;
6305a203 12439 cpu_sub_arch_name = NULL;
91d6fa6a
NC
12440 cpu_arch_flags = cpu_arch[j].flags;
12441 cpu_arch_isa = cpu_arch[j].type;
12442 cpu_arch_isa_flags = cpu_arch[j].flags;
6305a203
L
12443 if (!cpu_arch_tune_set)
12444 {
12445 cpu_arch_tune = cpu_arch_isa;
12446 cpu_arch_tune_flags = cpu_arch_isa_flags;
12447 }
12448 break;
12449 }
91d6fa6a
NC
12450 else if (*cpu_arch [j].name == '.'
12451 && strcmp (arch, cpu_arch [j].name + 1) == 0)
6305a203 12452 {
33eaf5de 12453 /* ISA extension. */
6305a203 12454 i386_cpu_flags flags;
309d3373 12455
293f5f65
L
12456 flags = cpu_flags_or (cpu_arch_flags,
12457 cpu_arch[j].flags);
81486035 12458
5b64d091 12459 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
6305a203
L
12460 {
12461 if (cpu_sub_arch_name)
12462 {
12463 char *name = cpu_sub_arch_name;
12464 cpu_sub_arch_name = concat (name,
91d6fa6a 12465 cpu_arch[j].name,
1bf57e9f 12466 (const char *) NULL);
6305a203
L
12467 free (name);
12468 }
12469 else
91d6fa6a 12470 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
6305a203 12471 cpu_arch_flags = flags;
a586129e 12472 cpu_arch_isa_flags = flags;
6305a203 12473 }
0089dace
L
12474 else
12475 cpu_arch_isa_flags
12476 = cpu_flags_or (cpu_arch_isa_flags,
12477 cpu_arch[j].flags);
6305a203 12478 break;
ccc9c027 12479 }
9103f4f4 12480 }
6305a203 12481
293f5f65
L
12482 if (j >= ARRAY_SIZE (cpu_arch))
12483 {
33eaf5de 12484 /* Disable an ISA extension. */
293f5f65
L
12485 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12486 if (strcmp (arch, cpu_noarch [j].name) == 0)
12487 {
12488 i386_cpu_flags flags;
12489
12490 flags = cpu_flags_and_not (cpu_arch_flags,
12491 cpu_noarch[j].flags);
12492 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12493 {
12494 if (cpu_sub_arch_name)
12495 {
12496 char *name = cpu_sub_arch_name;
12497 cpu_sub_arch_name = concat (arch,
12498 (const char *) NULL);
12499 free (name);
12500 }
12501 else
12502 cpu_sub_arch_name = xstrdup (arch);
12503 cpu_arch_flags = flags;
12504 cpu_arch_isa_flags = flags;
12505 }
12506 break;
12507 }
12508
12509 if (j >= ARRAY_SIZE (cpu_noarch))
12510 j = ARRAY_SIZE (cpu_arch);
12511 }
12512
91d6fa6a 12513 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12514 as_fatal (_("invalid -march= option: `%s'"), arg);
6305a203
L
12515
12516 arch = next;
9103f4f4 12517 }
293f5f65
L
12518 while (next != NULL);
12519 free (saved);
9103f4f4
L
12520 break;
12521
12522 case OPTION_MTUNE:
12523 if (*arg == '.')
2b5d6a91 12524 as_fatal (_("invalid -mtune= option: `%s'"), arg);
91d6fa6a 12525 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9103f4f4 12526 {
91d6fa6a 12527 if (strcmp (arg, cpu_arch [j].name) == 0)
9103f4f4 12528 {
ccc9c027 12529 cpu_arch_tune_set = 1;
91d6fa6a
NC
12530 cpu_arch_tune = cpu_arch [j].type;
12531 cpu_arch_tune_flags = cpu_arch[j].flags;
9103f4f4
L
12532 break;
12533 }
12534 }
91d6fa6a 12535 if (j >= ARRAY_SIZE (cpu_arch))
2b5d6a91 12536 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9103f4f4
L
12537 break;
12538
1efbbeb4
L
12539 case OPTION_MMNEMONIC:
12540 if (strcasecmp (arg, "att") == 0)
12541 intel_mnemonic = 0;
12542 else if (strcasecmp (arg, "intel") == 0)
12543 intel_mnemonic = 1;
12544 else
2b5d6a91 12545 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
1efbbeb4
L
12546 break;
12547
12548 case OPTION_MSYNTAX:
12549 if (strcasecmp (arg, "att") == 0)
12550 intel_syntax = 0;
12551 else if (strcasecmp (arg, "intel") == 0)
12552 intel_syntax = 1;
12553 else
2b5d6a91 12554 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
1efbbeb4
L
12555 break;
12556
12557 case OPTION_MINDEX_REG:
12558 allow_index_reg = 1;
12559 break;
12560
12561 case OPTION_MNAKED_REG:
12562 allow_naked_reg = 1;
12563 break;
12564
c0f3af97
L
12565 case OPTION_MSSE2AVX:
12566 sse2avx = 1;
12567 break;
12568
daf50ae7
L
12569 case OPTION_MSSE_CHECK:
12570 if (strcasecmp (arg, "error") == 0)
7bab8ab5 12571 sse_check = check_error;
daf50ae7 12572 else if (strcasecmp (arg, "warning") == 0)
7bab8ab5 12573 sse_check = check_warning;
daf50ae7 12574 else if (strcasecmp (arg, "none") == 0)
7bab8ab5 12575 sse_check = check_none;
daf50ae7 12576 else
2b5d6a91 12577 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
daf50ae7
L
12578 break;
12579
7bab8ab5
JB
12580 case OPTION_MOPERAND_CHECK:
12581 if (strcasecmp (arg, "error") == 0)
12582 operand_check = check_error;
12583 else if (strcasecmp (arg, "warning") == 0)
12584 operand_check = check_warning;
12585 else if (strcasecmp (arg, "none") == 0)
12586 operand_check = check_none;
12587 else
12588 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12589 break;
12590
539f890d
L
12591 case OPTION_MAVXSCALAR:
12592 if (strcasecmp (arg, "128") == 0)
12593 avxscalar = vex128;
12594 else if (strcasecmp (arg, "256") == 0)
12595 avxscalar = vex256;
12596 else
2b5d6a91 12597 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
539f890d
L
12598 break;
12599
03751133
L
12600 case OPTION_MVEXWIG:
12601 if (strcmp (arg, "0") == 0)
40c9c8de 12602 vexwig = vexw0;
03751133 12603 else if (strcmp (arg, "1") == 0)
40c9c8de 12604 vexwig = vexw1;
03751133
L
12605 else
12606 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12607 break;
12608
7e8b059b
L
12609 case OPTION_MADD_BND_PREFIX:
12610 add_bnd_prefix = 1;
12611 break;
12612
43234a1e
L
12613 case OPTION_MEVEXLIG:
12614 if (strcmp (arg, "128") == 0)
12615 evexlig = evexl128;
12616 else if (strcmp (arg, "256") == 0)
12617 evexlig = evexl256;
12618 else if (strcmp (arg, "512") == 0)
12619 evexlig = evexl512;
12620 else
12621 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12622 break;
12623
d3d3c6db
IT
12624 case OPTION_MEVEXRCIG:
12625 if (strcmp (arg, "rne") == 0)
12626 evexrcig = rne;
12627 else if (strcmp (arg, "rd") == 0)
12628 evexrcig = rd;
12629 else if (strcmp (arg, "ru") == 0)
12630 evexrcig = ru;
12631 else if (strcmp (arg, "rz") == 0)
12632 evexrcig = rz;
12633 else
12634 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12635 break;
12636
43234a1e
L
12637 case OPTION_MEVEXWIG:
12638 if (strcmp (arg, "0") == 0)
12639 evexwig = evexw0;
12640 else if (strcmp (arg, "1") == 0)
12641 evexwig = evexw1;
12642 else
12643 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12644 break;
12645
167ad85b
TG
12646# if defined (TE_PE) || defined (TE_PEP)
12647 case OPTION_MBIG_OBJ:
12648 use_big_obj = 1;
12649 break;
12650#endif
12651
d1982f93 12652 case OPTION_MOMIT_LOCK_PREFIX:
d022bddd
IT
12653 if (strcasecmp (arg, "yes") == 0)
12654 omit_lock_prefix = 1;
12655 else if (strcasecmp (arg, "no") == 0)
12656 omit_lock_prefix = 0;
12657 else
12658 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12659 break;
12660
e4e00185
AS
12661 case OPTION_MFENCE_AS_LOCK_ADD:
12662 if (strcasecmp (arg, "yes") == 0)
12663 avoid_fence = 1;
12664 else if (strcasecmp (arg, "no") == 0)
12665 avoid_fence = 0;
12666 else
12667 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12668 break;
12669
0cb4071e
L
12670 case OPTION_MRELAX_RELOCATIONS:
12671 if (strcasecmp (arg, "yes") == 0)
12672 generate_relax_relocations = 1;
12673 else if (strcasecmp (arg, "no") == 0)
12674 generate_relax_relocations = 0;
12675 else
12676 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12677 break;
12678
e379e5f3
L
12679 case OPTION_MALIGN_BRANCH_BOUNDARY:
12680 {
12681 char *end;
12682 long int align = strtoul (arg, &end, 0);
12683 if (*end == '\0')
12684 {
12685 if (align == 0)
12686 {
12687 align_branch_power = 0;
12688 break;
12689 }
12690 else if (align >= 16)
12691 {
12692 int align_power;
12693 for (align_power = 0;
12694 (align & 1) == 0;
12695 align >>= 1, align_power++)
12696 continue;
12697 /* Limit alignment power to 31. */
12698 if (align == 1 && align_power < 32)
12699 {
12700 align_branch_power = align_power;
12701 break;
12702 }
12703 }
12704 }
12705 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12706 }
12707 break;
12708
12709 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12710 {
12711 char *end;
12712 int align = strtoul (arg, &end, 0);
12713 /* Some processors only support 5 prefixes. */
12714 if (*end == '\0' && align >= 0 && align < 6)
12715 {
12716 align_branch_prefix_size = align;
12717 break;
12718 }
12719 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12720 arg);
12721 }
12722 break;
12723
12724 case OPTION_MALIGN_BRANCH:
12725 align_branch = 0;
12726 saved = xstrdup (arg);
12727 type = saved;
12728 do
12729 {
12730 next = strchr (type, '+');
12731 if (next)
12732 *next++ = '\0';
12733 if (strcasecmp (type, "jcc") == 0)
12734 align_branch |= align_branch_jcc_bit;
12735 else if (strcasecmp (type, "fused") == 0)
12736 align_branch |= align_branch_fused_bit;
12737 else if (strcasecmp (type, "jmp") == 0)
12738 align_branch |= align_branch_jmp_bit;
12739 else if (strcasecmp (type, "call") == 0)
12740 align_branch |= align_branch_call_bit;
12741 else if (strcasecmp (type, "ret") == 0)
12742 align_branch |= align_branch_ret_bit;
12743 else if (strcasecmp (type, "indirect") == 0)
12744 align_branch |= align_branch_indirect_bit;
12745 else
12746 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12747 type = next;
12748 }
12749 while (next != NULL);
12750 free (saved);
12751 break;
12752
76cf450b
L
12753 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12754 align_branch_power = 5;
12755 align_branch_prefix_size = 5;
12756 align_branch = (align_branch_jcc_bit
12757 | align_branch_fused_bit
12758 | align_branch_jmp_bit);
12759 break;
12760
5db04b09 12761 case OPTION_MAMD64:
4b5aaf5f 12762 isa64 = amd64;
5db04b09
L
12763 break;
12764
12765 case OPTION_MINTEL64:
4b5aaf5f 12766 isa64 = intel64;
5db04b09
L
12767 break;
12768
b6f8c7c4
L
12769 case 'O':
12770 if (arg == NULL)
12771 {
12772 optimize = 1;
12773 /* Turn off -Os. */
12774 optimize_for_space = 0;
12775 }
12776 else if (*arg == 's')
12777 {
12778 optimize_for_space = 1;
12779 /* Turn on all encoding optimizations. */
41fd2579 12780 optimize = INT_MAX;
b6f8c7c4
L
12781 }
12782 else
12783 {
12784 optimize = atoi (arg);
12785 /* Turn off -Os. */
12786 optimize_for_space = 0;
12787 }
12788 break;
12789
252b5132
RH
12790 default:
12791 return 0;
12792 }
12793 return 1;
12794}
12795
8a2c8fef
L
12796#define MESSAGE_TEMPLATE \
12797" "
12798
293f5f65
L
12799static char *
12800output_message (FILE *stream, char *p, char *message, char *start,
12801 int *left_p, const char *name, int len)
12802{
12803 int size = sizeof (MESSAGE_TEMPLATE);
12804 int left = *left_p;
12805
12806 /* Reserve 2 spaces for ", " or ",\0" */
12807 left -= len + 2;
12808
12809 /* Check if there is any room. */
12810 if (left >= 0)
12811 {
12812 if (p != start)
12813 {
12814 *p++ = ',';
12815 *p++ = ' ';
12816 }
12817 p = mempcpy (p, name, len);
12818 }
12819 else
12820 {
12821 /* Output the current message now and start a new one. */
12822 *p++ = ',';
12823 *p = '\0';
12824 fprintf (stream, "%s\n", message);
12825 p = start;
12826 left = size - (start - message) - len - 2;
12827
12828 gas_assert (left >= 0);
12829
12830 p = mempcpy (p, name, len);
12831 }
12832
12833 *left_p = left;
12834 return p;
12835}
12836
8a2c8fef 12837static void
1ded5609 12838show_arch (FILE *stream, int ext, int check)
8a2c8fef
L
12839{
12840 static char message[] = MESSAGE_TEMPLATE;
12841 char *start = message + 27;
12842 char *p;
12843 int size = sizeof (MESSAGE_TEMPLATE);
12844 int left;
12845 const char *name;
12846 int len;
12847 unsigned int j;
12848
12849 p = start;
12850 left = size - (start - message);
12851 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12852 {
12853 /* Should it be skipped? */
12854 if (cpu_arch [j].skip)
12855 continue;
12856
12857 name = cpu_arch [j].name;
12858 len = cpu_arch [j].len;
12859 if (*name == '.')
12860 {
12861 /* It is an extension. Skip if we aren't asked to show it. */
12862 if (ext)
12863 {
12864 name++;
12865 len--;
12866 }
12867 else
12868 continue;
12869 }
12870 else if (ext)
12871 {
12872 /* It is an processor. Skip if we show only extension. */
12873 continue;
12874 }
1ded5609
JB
12875 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12876 {
12877 /* It is an impossible processor - skip. */
12878 continue;
12879 }
8a2c8fef 12880
293f5f65 12881 p = output_message (stream, p, message, start, &left, name, len);
8a2c8fef
L
12882 }
12883
293f5f65
L
12884 /* Display disabled extensions. */
12885 if (ext)
12886 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12887 {
12888 name = cpu_noarch [j].name;
12889 len = cpu_noarch [j].len;
12890 p = output_message (stream, p, message, start, &left, name,
12891 len);
12892 }
12893
8a2c8fef
L
12894 *p = '\0';
12895 fprintf (stream, "%s\n", message);
12896}
12897
252b5132 12898void
8a2c8fef 12899md_show_usage (FILE *stream)
252b5132 12900{
4cc782b5
ILT
12901#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12902 fprintf (stream, _("\
d4693039 12903 -Qy, -Qn ignored\n\
a38cf1db 12904 -V print assembler version number\n\
b3b91714
AM
12905 -k ignored\n"));
12906#endif
12907 fprintf (stream, _("\
12b55ccc 12908 -n Do not optimize code alignment\n\
b3b91714
AM
12909 -q quieten some warnings\n"));
12910#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12911 fprintf (stream, _("\
a38cf1db 12912 -s ignored\n"));
b3b91714 12913#endif
d7f449c0
L
12914#if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12915 || defined (TE_PE) || defined (TE_PEP))
751d281c 12916 fprintf (stream, _("\
570561f7 12917 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
751d281c 12918#endif
b3b91714
AM
12919#ifdef SVR4_COMMENT_CHARS
12920 fprintf (stream, _("\
12921 --divide do not treat `/' as a comment character\n"));
a38cf1db
AM
12922#else
12923 fprintf (stream, _("\
b3b91714 12924 --divide ignored\n"));
4cc782b5 12925#endif
9103f4f4 12926 fprintf (stream, _("\
6305a203 12927 -march=CPU[,+EXTENSION...]\n\
8a2c8fef 12928 generate code for CPU and EXTENSION, CPU is one of:\n"));
1ded5609 12929 show_arch (stream, 0, 1);
8a2c8fef
L
12930 fprintf (stream, _("\
12931 EXTENSION is combination of:\n"));
1ded5609 12932 show_arch (stream, 1, 0);
6305a203 12933 fprintf (stream, _("\
8a2c8fef 12934 -mtune=CPU optimize for CPU, CPU is one of:\n"));
1ded5609 12935 show_arch (stream, 0, 0);
ba104c83 12936 fprintf (stream, _("\
c0f3af97
L
12937 -msse2avx encode SSE instructions with VEX prefix\n"));
12938 fprintf (stream, _("\
7c5c05ef 12939 -msse-check=[none|error|warning] (default: warning)\n\
daf50ae7
L
12940 check SSE instructions\n"));
12941 fprintf (stream, _("\
7c5c05ef 12942 -moperand-check=[none|error|warning] (default: warning)\n\
7bab8ab5
JB
12943 check operand combinations for validity\n"));
12944 fprintf (stream, _("\
7c5c05ef
L
12945 -mavxscalar=[128|256] (default: 128)\n\
12946 encode scalar AVX instructions with specific vector\n\
539f890d
L
12947 length\n"));
12948 fprintf (stream, _("\
03751133
L
12949 -mvexwig=[0|1] (default: 0)\n\
12950 encode VEX instructions with specific VEX.W value\n\
12951 for VEX.W bit ignored instructions\n"));
12952 fprintf (stream, _("\
7c5c05ef
L
12953 -mevexlig=[128|256|512] (default: 128)\n\
12954 encode scalar EVEX instructions with specific vector\n\
43234a1e
L
12955 length\n"));
12956 fprintf (stream, _("\
7c5c05ef
L
12957 -mevexwig=[0|1] (default: 0)\n\
12958 encode EVEX instructions with specific EVEX.W value\n\
43234a1e
L
12959 for EVEX.W bit ignored instructions\n"));
12960 fprintf (stream, _("\
7c5c05ef 12961 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
d3d3c6db
IT
12962 encode EVEX instructions with specific EVEX.RC value\n\
12963 for SAE-only ignored instructions\n"));
12964 fprintf (stream, _("\
7c5c05ef
L
12965 -mmnemonic=[att|intel] "));
12966 if (SYSV386_COMPAT)
12967 fprintf (stream, _("(default: att)\n"));
12968 else
12969 fprintf (stream, _("(default: intel)\n"));
12970 fprintf (stream, _("\
12971 use AT&T/Intel mnemonic\n"));
ba104c83 12972 fprintf (stream, _("\
7c5c05ef
L
12973 -msyntax=[att|intel] (default: att)\n\
12974 use AT&T/Intel syntax\n"));
ba104c83
L
12975 fprintf (stream, _("\
12976 -mindex-reg support pseudo index registers\n"));
12977 fprintf (stream, _("\
12978 -mnaked-reg don't require `%%' prefix for registers\n"));
12979 fprintf (stream, _("\
7e8b059b 12980 -madd-bnd-prefix add BND prefix for all valid branches\n"));
b4a3a7b4 12981#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8dcea932
L
12982 fprintf (stream, _("\
12983 -mshared disable branch optimization for shared code\n"));
b4a3a7b4
L
12984 fprintf (stream, _("\
12985 -mx86-used-note=[no|yes] "));
12986 if (DEFAULT_X86_USED_NOTE)
12987 fprintf (stream, _("(default: yes)\n"));
12988 else
12989 fprintf (stream, _("(default: no)\n"));
12990 fprintf (stream, _("\
12991 generate x86 used ISA and feature properties\n"));
12992#endif
12993#if defined (TE_PE) || defined (TE_PEP)
167ad85b
TG
12994 fprintf (stream, _("\
12995 -mbig-obj generate big object files\n"));
12996#endif
d022bddd 12997 fprintf (stream, _("\
7c5c05ef 12998 -momit-lock-prefix=[no|yes] (default: no)\n\
d022bddd 12999 strip all lock prefixes\n"));
5db04b09 13000 fprintf (stream, _("\
7c5c05ef 13001 -mfence-as-lock-add=[no|yes] (default: no)\n\
e4e00185
AS
13002 encode lfence, mfence and sfence as\n\
13003 lock addl $0x0, (%%{re}sp)\n"));
13004 fprintf (stream, _("\
7c5c05ef
L
13005 -mrelax-relocations=[no|yes] "));
13006 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13007 fprintf (stream, _("(default: yes)\n"));
13008 else
13009 fprintf (stream, _("(default: no)\n"));
13010 fprintf (stream, _("\
0cb4071e
L
13011 generate relax relocations\n"));
13012 fprintf (stream, _("\
e379e5f3
L
13013 -malign-branch-boundary=NUM (default: 0)\n\
13014 align branches within NUM byte boundary\n"));
13015 fprintf (stream, _("\
13016 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13017 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13018 indirect\n\
13019 specify types of branches to align\n"));
13020 fprintf (stream, _("\
13021 -malign-branch-prefix-size=NUM (default: 5)\n\
13022 align branches with NUM prefixes per instruction\n"));
13023 fprintf (stream, _("\
76cf450b
L
13024 -mbranches-within-32B-boundaries\n\
13025 align branches within 32 byte boundary\n"));
13026 fprintf (stream, _("\
7c5c05ef 13027 -mamd64 accept only AMD64 ISA [default]\n"));
5db04b09
L
13028 fprintf (stream, _("\
13029 -mintel64 accept only Intel64 ISA\n"));
252b5132
RH
13030}
13031
3e73aa7c 13032#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
321098a5 13033 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
e57f8c65 13034 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
252b5132
RH
13035
13036/* Pick the target format to use. */
13037
47926f60 13038const char *
e3bb37b5 13039i386_target_format (void)
252b5132 13040{
351f65ca
L
13041 if (!strncmp (default_arch, "x86_64", 6))
13042 {
13043 update_code_flag (CODE_64BIT, 1);
13044 if (default_arch[6] == '\0')
7f56bc95 13045 x86_elf_abi = X86_64_ABI;
351f65ca 13046 else
7f56bc95 13047 x86_elf_abi = X86_64_X32_ABI;
351f65ca 13048 }
3e73aa7c 13049 else if (!strcmp (default_arch, "i386"))
78f12dd3 13050 update_code_flag (CODE_32BIT, 1);
5197d474
L
13051 else if (!strcmp (default_arch, "iamcu"))
13052 {
13053 update_code_flag (CODE_32BIT, 1);
13054 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13055 {
13056 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13057 cpu_arch_name = "iamcu";
13058 cpu_sub_arch_name = NULL;
13059 cpu_arch_flags = iamcu_flags;
13060 cpu_arch_isa = PROCESSOR_IAMCU;
13061 cpu_arch_isa_flags = iamcu_flags;
13062 if (!cpu_arch_tune_set)
13063 {
13064 cpu_arch_tune = cpu_arch_isa;
13065 cpu_arch_tune_flags = cpu_arch_isa_flags;
13066 }
13067 }
8d471ec1 13068 else if (cpu_arch_isa != PROCESSOR_IAMCU)
5197d474
L
13069 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13070 cpu_arch_name);
13071 }
3e73aa7c 13072 else
2b5d6a91 13073 as_fatal (_("unknown architecture"));
89507696
JB
13074
13075 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13076 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13077 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13078 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13079
252b5132
RH
13080 switch (OUTPUT_FLAVOR)
13081 {
9384f2ff 13082#if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
4c63da97 13083 case bfd_target_aout_flavour:
47926f60 13084 return AOUT_TARGET_FORMAT;
4c63da97 13085#endif
9384f2ff
AM
13086#if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13087# if defined (TE_PE) || defined (TE_PEP)
13088 case bfd_target_coff_flavour:
167ad85b
TG
13089 if (flag_code == CODE_64BIT)
13090 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13091 else
13092 return "pe-i386";
9384f2ff 13093# elif defined (TE_GO32)
0561d57c
JK
13094 case bfd_target_coff_flavour:
13095 return "coff-go32";
9384f2ff 13096# else
252b5132
RH
13097 case bfd_target_coff_flavour:
13098 return "coff-i386";
9384f2ff 13099# endif
4c63da97 13100#endif
3e73aa7c 13101#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
252b5132 13102 case bfd_target_elf_flavour:
3e73aa7c 13103 {
351f65ca
L
13104 const char *format;
13105
13106 switch (x86_elf_abi)
4fa24527 13107 {
351f65ca
L
13108 default:
13109 format = ELF_TARGET_FORMAT;
e379e5f3
L
13110#ifndef TE_SOLARIS
13111 tls_get_addr = "___tls_get_addr";
13112#endif
351f65ca 13113 break;
7f56bc95 13114 case X86_64_ABI:
351f65ca 13115 use_rela_relocations = 1;
4fa24527 13116 object_64bit = 1;
e379e5f3
L
13117#ifndef TE_SOLARIS
13118 tls_get_addr = "__tls_get_addr";
13119#endif
351f65ca
L
13120 format = ELF_TARGET_FORMAT64;
13121 break;
7f56bc95 13122 case X86_64_X32_ABI:
4fa24527 13123 use_rela_relocations = 1;
351f65ca 13124 object_64bit = 1;
e379e5f3
L
13125#ifndef TE_SOLARIS
13126 tls_get_addr = "__tls_get_addr";
13127#endif
862be3fb 13128 disallow_64bit_reloc = 1;
351f65ca
L
13129 format = ELF_TARGET_FORMAT32;
13130 break;
4fa24527 13131 }
3632d14b 13132 if (cpu_arch_isa == PROCESSOR_L1OM)
8a9036a4 13133 {
7f56bc95 13134 if (x86_elf_abi != X86_64_ABI)
8a9036a4
L
13135 as_fatal (_("Intel L1OM is 64bit only"));
13136 return ELF_TARGET_L1OM_FORMAT;
13137 }
b49f93f6 13138 else if (cpu_arch_isa == PROCESSOR_K1OM)
7a9068fe
L
13139 {
13140 if (x86_elf_abi != X86_64_ABI)
13141 as_fatal (_("Intel K1OM is 64bit only"));
13142 return ELF_TARGET_K1OM_FORMAT;
13143 }
81486035
L
13144 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13145 {
13146 if (x86_elf_abi != I386_ABI)
13147 as_fatal (_("Intel MCU is 32bit only"));
13148 return ELF_TARGET_IAMCU_FORMAT;
13149 }
8a9036a4 13150 else
351f65ca 13151 return format;
3e73aa7c 13152 }
e57f8c65
TG
13153#endif
13154#if defined (OBJ_MACH_O)
13155 case bfd_target_mach_o_flavour:
d382c579
TG
13156 if (flag_code == CODE_64BIT)
13157 {
13158 use_rela_relocations = 1;
13159 object_64bit = 1;
13160 return "mach-o-x86-64";
13161 }
13162 else
13163 return "mach-o-i386";
4c63da97 13164#endif
252b5132
RH
13165 default:
13166 abort ();
13167 return NULL;
13168 }
13169}
13170
47926f60 13171#endif /* OBJ_MAYBE_ more than one */
252b5132 13172\f
252b5132 13173symbolS *
7016a5d5 13174md_undefined_symbol (char *name)
252b5132 13175{
18dc2407
ILT
13176 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13177 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13178 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13179 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
24eab124
AM
13180 {
13181 if (!GOT_symbol)
13182 {
13183 if (symbol_find (name))
13184 as_bad (_("GOT already in symbol table"));
13185 GOT_symbol = symbol_new (name, undefined_section,
13186 (valueT) 0, &zero_address_frag);
13187 };
13188 return GOT_symbol;
13189 }
252b5132
RH
13190 return 0;
13191}
13192
13193/* Round up a section size to the appropriate boundary. */
47926f60 13194
252b5132 13195valueT
7016a5d5 13196md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
252b5132 13197{
4c63da97
AM
13198#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13199 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13200 {
13201 /* For a.out, force the section size to be aligned. If we don't do
13202 this, BFD will align it for us, but it will not write out the
13203 final bytes of the section. This may be a bug in BFD, but it is
13204 easier to fix it here since that is how the other a.out targets
13205 work. */
13206 int align;
13207
fd361982 13208 align = bfd_section_alignment (segment);
8d3842cd 13209 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
4c63da97 13210 }
252b5132
RH
13211#endif
13212
13213 return size;
13214}
13215
13216/* On the i386, PC-relative offsets are relative to the start of the
13217 next instruction. That is, the address of the offset, plus its
13218 size, since the offset is always the last part of the insn. */
13219
13220long
e3bb37b5 13221md_pcrel_from (fixS *fixP)
252b5132
RH
13222{
13223 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13224}
13225
13226#ifndef I386COFF
13227
13228static void
e3bb37b5 13229s_bss (int ignore ATTRIBUTE_UNUSED)
252b5132 13230{
29b0f896 13231 int temp;
252b5132 13232
8a75718c
JB
13233#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13234 if (IS_ELF)
13235 obj_elf_section_change_hook ();
13236#endif
252b5132
RH
13237 temp = get_absolute_expression ();
13238 subseg_set (bss_section, (subsegT) temp);
13239 demand_empty_rest_of_line ();
13240}
13241
13242#endif
13243
e379e5f3
L
13244/* Remember constant directive. */
13245
13246void
13247i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13248{
13249 if (last_insn.kind != last_insn_directive
13250 && (bfd_section_flags (now_seg) & SEC_CODE))
13251 {
13252 last_insn.seg = now_seg;
13253 last_insn.kind = last_insn_directive;
13254 last_insn.name = "constant directive";
13255 last_insn.file = as_where (&last_insn.line);
13256 }
13257}
13258
252b5132 13259void
e3bb37b5 13260i386_validate_fix (fixS *fixp)
252b5132 13261{
02a86693 13262 if (fixp->fx_subsy)
252b5132 13263 {
02a86693 13264 if (fixp->fx_subsy == GOT_symbol)
23df1078 13265 {
02a86693
L
13266 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13267 {
13268 if (!object_64bit)
13269 abort ();
13270#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13271 if (fixp->fx_tcbit2)
56ceb5b5
L
13272 fixp->fx_r_type = (fixp->fx_tcbit
13273 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13274 : BFD_RELOC_X86_64_GOTPCRELX);
02a86693
L
13275 else
13276#endif
13277 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13278 }
d6ab8113 13279 else
02a86693
L
13280 {
13281 if (!object_64bit)
13282 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13283 else
13284 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13285 }
13286 fixp->fx_subsy = 0;
23df1078 13287 }
252b5132 13288 }
02a86693
L
13289#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13290 else if (!object_64bit)
13291 {
13292 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13293 && fixp->fx_tcbit2)
13294 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13295 }
13296#endif
252b5132
RH
13297}
13298
252b5132 13299arelent *
7016a5d5 13300tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
252b5132
RH
13301{
13302 arelent *rel;
13303 bfd_reloc_code_real_type code;
13304
13305 switch (fixp->fx_r_type)
13306 {
8ce3d284 13307#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8fd4256d
L
13308 case BFD_RELOC_SIZE32:
13309 case BFD_RELOC_SIZE64:
13310 if (S_IS_DEFINED (fixp->fx_addsy)
13311 && !S_IS_EXTERNAL (fixp->fx_addsy))
13312 {
13313 /* Resolve size relocation against local symbol to size of
13314 the symbol plus addend. */
13315 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13316 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13317 && !fits_in_unsigned_long (value))
13318 as_bad_where (fixp->fx_file, fixp->fx_line,
13319 _("symbol size computation overflow"));
13320 fixp->fx_addsy = NULL;
13321 fixp->fx_subsy = NULL;
13322 md_apply_fix (fixp, (valueT *) &value, NULL);
13323 return NULL;
13324 }
8ce3d284 13325#endif
1a0670f3 13326 /* Fall through. */
8fd4256d 13327
3e73aa7c
JH
13328 case BFD_RELOC_X86_64_PLT32:
13329 case BFD_RELOC_X86_64_GOT32:
13330 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13331 case BFD_RELOC_X86_64_GOTPCRELX:
13332 case BFD_RELOC_X86_64_REX_GOTPCRELX:
252b5132
RH
13333 case BFD_RELOC_386_PLT32:
13334 case BFD_RELOC_386_GOT32:
02a86693 13335 case BFD_RELOC_386_GOT32X:
252b5132
RH
13336 case BFD_RELOC_386_GOTOFF:
13337 case BFD_RELOC_386_GOTPC:
13ae64f3
JJ
13338 case BFD_RELOC_386_TLS_GD:
13339 case BFD_RELOC_386_TLS_LDM:
13340 case BFD_RELOC_386_TLS_LDO_32:
13341 case BFD_RELOC_386_TLS_IE_32:
37e55690
JJ
13342 case BFD_RELOC_386_TLS_IE:
13343 case BFD_RELOC_386_TLS_GOTIE:
13ae64f3
JJ
13344 case BFD_RELOC_386_TLS_LE_32:
13345 case BFD_RELOC_386_TLS_LE:
67a4f2b7
AO
13346 case BFD_RELOC_386_TLS_GOTDESC:
13347 case BFD_RELOC_386_TLS_DESC_CALL:
bffbf940
JJ
13348 case BFD_RELOC_X86_64_TLSGD:
13349 case BFD_RELOC_X86_64_TLSLD:
13350 case BFD_RELOC_X86_64_DTPOFF32:
d6ab8113 13351 case BFD_RELOC_X86_64_DTPOFF64:
bffbf940
JJ
13352 case BFD_RELOC_X86_64_GOTTPOFF:
13353 case BFD_RELOC_X86_64_TPOFF32:
d6ab8113
JB
13354 case BFD_RELOC_X86_64_TPOFF64:
13355 case BFD_RELOC_X86_64_GOTOFF64:
13356 case BFD_RELOC_X86_64_GOTPC32:
7b81dfbb
AJ
13357 case BFD_RELOC_X86_64_GOT64:
13358 case BFD_RELOC_X86_64_GOTPCREL64:
13359 case BFD_RELOC_X86_64_GOTPC64:
13360 case BFD_RELOC_X86_64_GOTPLT64:
13361 case BFD_RELOC_X86_64_PLTOFF64:
67a4f2b7
AO
13362 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13363 case BFD_RELOC_X86_64_TLSDESC_CALL:
252b5132
RH
13364 case BFD_RELOC_RVA:
13365 case BFD_RELOC_VTABLE_ENTRY:
13366 case BFD_RELOC_VTABLE_INHERIT:
6482c264
NC
13367#ifdef TE_PE
13368 case BFD_RELOC_32_SECREL:
13369#endif
252b5132
RH
13370 code = fixp->fx_r_type;
13371 break;
dbbaec26
L
13372 case BFD_RELOC_X86_64_32S:
13373 if (!fixp->fx_pcrel)
13374 {
13375 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13376 code = fixp->fx_r_type;
13377 break;
13378 }
1a0670f3 13379 /* Fall through. */
252b5132 13380 default:
93382f6d 13381 if (fixp->fx_pcrel)
252b5132 13382 {
93382f6d
AM
13383 switch (fixp->fx_size)
13384 {
13385 default:
b091f402
AM
13386 as_bad_where (fixp->fx_file, fixp->fx_line,
13387 _("can not do %d byte pc-relative relocation"),
13388 fixp->fx_size);
93382f6d
AM
13389 code = BFD_RELOC_32_PCREL;
13390 break;
13391 case 1: code = BFD_RELOC_8_PCREL; break;
13392 case 2: code = BFD_RELOC_16_PCREL; break;
d258b828 13393 case 4: code = BFD_RELOC_32_PCREL; break;
d6ab8113
JB
13394#ifdef BFD64
13395 case 8: code = BFD_RELOC_64_PCREL; break;
13396#endif
93382f6d
AM
13397 }
13398 }
13399 else
13400 {
13401 switch (fixp->fx_size)
13402 {
13403 default:
b091f402
AM
13404 as_bad_where (fixp->fx_file, fixp->fx_line,
13405 _("can not do %d byte relocation"),
13406 fixp->fx_size);
93382f6d
AM
13407 code = BFD_RELOC_32;
13408 break;
13409 case 1: code = BFD_RELOC_8; break;
13410 case 2: code = BFD_RELOC_16; break;
13411 case 4: code = BFD_RELOC_32; break;
937149dd 13412#ifdef BFD64
3e73aa7c 13413 case 8: code = BFD_RELOC_64; break;
937149dd 13414#endif
93382f6d 13415 }
252b5132
RH
13416 }
13417 break;
13418 }
252b5132 13419
d182319b
JB
13420 if ((code == BFD_RELOC_32
13421 || code == BFD_RELOC_32_PCREL
13422 || code == BFD_RELOC_X86_64_32S)
252b5132
RH
13423 && GOT_symbol
13424 && fixp->fx_addsy == GOT_symbol)
3e73aa7c 13425 {
4fa24527 13426 if (!object_64bit)
d6ab8113
JB
13427 code = BFD_RELOC_386_GOTPC;
13428 else
13429 code = BFD_RELOC_X86_64_GOTPC32;
3e73aa7c 13430 }
7b81dfbb
AJ
13431 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13432 && GOT_symbol
13433 && fixp->fx_addsy == GOT_symbol)
13434 {
13435 code = BFD_RELOC_X86_64_GOTPC64;
13436 }
252b5132 13437
add39d23
TS
13438 rel = XNEW (arelent);
13439 rel->sym_ptr_ptr = XNEW (asymbol *);
49309057 13440 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
252b5132
RH
13441
13442 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
c87db184 13443
3e73aa7c
JH
13444 if (!use_rela_relocations)
13445 {
13446 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13447 vtable entry to be used in the relocation's section offset. */
13448 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13449 rel->address = fixp->fx_offset;
fbeb56a4
DK
13450#if defined (OBJ_COFF) && defined (TE_PE)
13451 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13452 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13453 else
13454#endif
c6682705 13455 rel->addend = 0;
3e73aa7c
JH
13456 }
13457 /* Use the rela in 64bit mode. */
252b5132 13458 else
3e73aa7c 13459 {
862be3fb
L
13460 if (disallow_64bit_reloc)
13461 switch (code)
13462 {
862be3fb
L
13463 case BFD_RELOC_X86_64_DTPOFF64:
13464 case BFD_RELOC_X86_64_TPOFF64:
13465 case BFD_RELOC_64_PCREL:
13466 case BFD_RELOC_X86_64_GOTOFF64:
13467 case BFD_RELOC_X86_64_GOT64:
13468 case BFD_RELOC_X86_64_GOTPCREL64:
13469 case BFD_RELOC_X86_64_GOTPC64:
13470 case BFD_RELOC_X86_64_GOTPLT64:
13471 case BFD_RELOC_X86_64_PLTOFF64:
13472 as_bad_where (fixp->fx_file, fixp->fx_line,
13473 _("cannot represent relocation type %s in x32 mode"),
13474 bfd_get_reloc_code_name (code));
13475 break;
13476 default:
13477 break;
13478 }
13479
062cd5e7
AS
13480 if (!fixp->fx_pcrel)
13481 rel->addend = fixp->fx_offset;
13482 else
13483 switch (code)
13484 {
13485 case BFD_RELOC_X86_64_PLT32:
13486 case BFD_RELOC_X86_64_GOT32:
13487 case BFD_RELOC_X86_64_GOTPCREL:
56ceb5b5
L
13488 case BFD_RELOC_X86_64_GOTPCRELX:
13489 case BFD_RELOC_X86_64_REX_GOTPCRELX:
bffbf940
JJ
13490 case BFD_RELOC_X86_64_TLSGD:
13491 case BFD_RELOC_X86_64_TLSLD:
13492 case BFD_RELOC_X86_64_GOTTPOFF:
67a4f2b7
AO
13493 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13494 case BFD_RELOC_X86_64_TLSDESC_CALL:
062cd5e7
AS
13495 rel->addend = fixp->fx_offset - fixp->fx_size;
13496 break;
13497 default:
13498 rel->addend = (section->vma
13499 - fixp->fx_size
13500 + fixp->fx_addnumber
13501 + md_pcrel_from (fixp));
13502 break;
13503 }
3e73aa7c
JH
13504 }
13505
252b5132
RH
13506 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13507 if (rel->howto == NULL)
13508 {
13509 as_bad_where (fixp->fx_file, fixp->fx_line,
d0b47220 13510 _("cannot represent relocation type %s"),
252b5132
RH
13511 bfd_get_reloc_code_name (code));
13512 /* Set howto to a garbage value so that we can keep going. */
13513 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
9c2799c2 13514 gas_assert (rel->howto != NULL);
252b5132
RH
13515 }
13516
13517 return rel;
13518}
13519
ee86248c 13520#include "tc-i386-intel.c"
54cfded0 13521
a60de03c
JB
13522void
13523tc_x86_parse_to_dw2regnum (expressionS *exp)
54cfded0 13524{
a60de03c
JB
13525 int saved_naked_reg;
13526 char saved_register_dot;
54cfded0 13527
a60de03c
JB
13528 saved_naked_reg = allow_naked_reg;
13529 allow_naked_reg = 1;
13530 saved_register_dot = register_chars['.'];
13531 register_chars['.'] = '.';
13532 allow_pseudo_reg = 1;
13533 expression_and_evaluate (exp);
13534 allow_pseudo_reg = 0;
13535 register_chars['.'] = saved_register_dot;
13536 allow_naked_reg = saved_naked_reg;
13537
e96d56a1 13538 if (exp->X_op == O_register && exp->X_add_number >= 0)
54cfded0 13539 {
a60de03c
JB
13540 if ((addressT) exp->X_add_number < i386_regtab_size)
13541 {
13542 exp->X_op = O_constant;
13543 exp->X_add_number = i386_regtab[exp->X_add_number]
13544 .dw2_regnum[flag_code >> 1];
13545 }
13546 else
13547 exp->X_op = O_illegal;
54cfded0 13548 }
54cfded0
AM
13549}
13550
13551void
13552tc_x86_frame_initial_instructions (void)
13553{
a60de03c
JB
13554 static unsigned int sp_regno[2];
13555
13556 if (!sp_regno[flag_code >> 1])
13557 {
13558 char *saved_input = input_line_pointer;
13559 char sp[][4] = {"esp", "rsp"};
13560 expressionS exp;
a4447b93 13561
a60de03c
JB
13562 input_line_pointer = sp[flag_code >> 1];
13563 tc_x86_parse_to_dw2regnum (&exp);
9c2799c2 13564 gas_assert (exp.X_op == O_constant);
a60de03c
JB
13565 sp_regno[flag_code >> 1] = exp.X_add_number;
13566 input_line_pointer = saved_input;
13567 }
a4447b93 13568
61ff971f
L
13569 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13570 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
54cfded0 13571}
d2b2c203 13572
d7921315
L
13573int
13574x86_dwarf2_addr_size (void)
13575{
13576#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13577 if (x86_elf_abi == X86_64_X32_ABI)
13578 return 4;
13579#endif
13580 return bfd_arch_bits_per_address (stdoutput) / 8;
13581}
13582
d2b2c203
DJ
13583int
13584i386_elf_section_type (const char *str, size_t len)
13585{
13586 if (flag_code == CODE_64BIT
13587 && len == sizeof ("unwind") - 1
13588 && strncmp (str, "unwind", 6) == 0)
13589 return SHT_X86_64_UNWIND;
13590
13591 return -1;
13592}
bb41ade5 13593
ad5fec3b
EB
13594#ifdef TE_SOLARIS
13595void
13596i386_solaris_fix_up_eh_frame (segT sec)
13597{
13598 if (flag_code == CODE_64BIT)
13599 elf_section_type (sec) = SHT_X86_64_UNWIND;
13600}
13601#endif
13602
bb41ade5
AM
13603#ifdef TE_PE
13604void
13605tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13606{
91d6fa6a 13607 expressionS exp;
bb41ade5 13608
91d6fa6a
NC
13609 exp.X_op = O_secrel;
13610 exp.X_add_symbol = symbol;
13611 exp.X_add_number = 0;
13612 emit_expr (&exp, size);
bb41ade5
AM
13613}
13614#endif
3b22753a
L
13615
13616#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13617/* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13618
01e1a5bc 13619bfd_vma
6d4af3c2 13620x86_64_section_letter (int letter, const char **ptr_msg)
3b22753a
L
13621{
13622 if (flag_code == CODE_64BIT)
13623 {
13624 if (letter == 'l')
13625 return SHF_X86_64_LARGE;
13626
8f3bae45 13627 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
64e74474 13628 }
3b22753a 13629 else
8f3bae45 13630 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
3b22753a
L
13631 return -1;
13632}
13633
01e1a5bc 13634bfd_vma
3b22753a
L
13635x86_64_section_word (char *str, size_t len)
13636{
8620418b 13637 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
3b22753a
L
13638 return SHF_X86_64_LARGE;
13639
13640 return -1;
13641}
13642
13643static void
13644handle_large_common (int small ATTRIBUTE_UNUSED)
13645{
13646 if (flag_code != CODE_64BIT)
13647 {
13648 s_comm_internal (0, elf_common_parse);
13649 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13650 }
13651 else
13652 {
13653 static segT lbss_section;
13654 asection *saved_com_section_ptr = elf_com_section_ptr;
13655 asection *saved_bss_section = bss_section;
13656
13657 if (lbss_section == NULL)
13658 {
13659 flagword applicable;
13660 segT seg = now_seg;
13661 subsegT subseg = now_subseg;
13662
13663 /* The .lbss section is for local .largecomm symbols. */
13664 lbss_section = subseg_new (".lbss", 0);
13665 applicable = bfd_applicable_section_flags (stdoutput);
fd361982 13666 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
3b22753a
L
13667 seg_info (lbss_section)->bss = 1;
13668
13669 subseg_set (seg, subseg);
13670 }
13671
13672 elf_com_section_ptr = &_bfd_elf_large_com_section;
13673 bss_section = lbss_section;
13674
13675 s_comm_internal (0, elf_common_parse);
13676
13677 elf_com_section_ptr = saved_com_section_ptr;
13678 bss_section = saved_bss_section;
13679 }
13680}
13681#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 2.320201 seconds and 4 git commands to generate.