sched: Fix TASK_WAKING vs fork deadlock
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
6f505b16 439#endif
6aa645ea
IM
440};
441
57d885fe
GH
442#ifdef CONFIG_SMP
443
444/*
445 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
57d885fe
GH
451 */
452struct root_domain {
453 atomic_t refcount;
c6c4927b
RR
454 cpumask_var_t span;
455 cpumask_var_t online;
637f5085 456
0eab9146 457 /*
637f5085
GH
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
c6c4927b 461 cpumask_var_t rto_mask;
0eab9146 462 atomic_t rto_count;
6e0534f2
GH
463#ifdef CONFIG_SMP
464 struct cpupri cpupri;
465#endif
57d885fe
GH
466};
467
dc938520
GH
468/*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
57d885fe
GH
472static struct root_domain def_root_domain;
473
474#endif
475
1da177e4
LT
476/*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
70b97a7f 483struct rq {
d8016491 484 /* runqueue lock: */
05fa785c 485 raw_spinlock_t lock;
1da177e4
LT
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
6aa645ea
IM
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 494#ifdef CONFIG_NO_HZ
39c0cbe2 495 u64 nohz_stamp;
46cb4b7c
SS
496 unsigned char in_nohz_recently;
497#endif
a64692a3
MG
498 unsigned int skip_clock_update;
499
d8016491
IM
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
6aa645ea
IM
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
6f505b16 506 struct rt_rq rt;
6f505b16 507
6aa645ea 508#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
511#endif
512#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 513 struct list_head leaf_rt_rq_list;
1da177e4 514#endif
1da177e4
LT
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
36c8b586 524 struct task_struct *curr, *idle;
c9819f45 525 unsigned long next_balance;
1da177e4 526 struct mm_struct *prev_mm;
6aa645ea 527
3e51f33f 528 u64 clock;
6aa645ea 529
1da177e4
LT
530 atomic_t nr_iowait;
531
532#ifdef CONFIG_SMP
0eab9146 533 struct root_domain *rd;
1da177e4
LT
534 struct sched_domain *sd;
535
a0a522ce 536 unsigned char idle_at_tick;
1da177e4 537 /* For active balancing */
3f029d3c 538 int post_schedule;
1da177e4
LT
539 int active_balance;
540 int push_cpu;
d8016491
IM
541 /* cpu of this runqueue: */
542 int cpu;
1f11eb6a 543 int online;
1da177e4 544
a8a51d5e 545 unsigned long avg_load_per_task;
1da177e4 546
36c8b586 547 struct task_struct *migration_thread;
1da177e4 548 struct list_head migration_queue;
e9e9250b
PZ
549
550 u64 rt_avg;
551 u64 age_stamp;
1b9508f6
MG
552 u64 idle_stamp;
553 u64 avg_idle;
1da177e4
LT
554#endif
555
dce48a84
TG
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
8f4d37ec 560#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
561#ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564#endif
8f4d37ec
PZ
565 struct hrtimer hrtick_timer;
566#endif
567
1da177e4
LT
568#ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
9c2c4802
KC
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
573
574 /* sys_sched_yield() stats */
480b9434 575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4
LT
588#endif
589};
590
f34e3b61 591static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 592
7d478721
PZ
593static inline
594void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 595{
7d478721 596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
dd41f596
IM
604}
605
0a2966b4
CL
606static inline int cpu_of(struct rq *rq)
607{
608#ifdef CONFIG_SMP
609 return rq->cpu;
610#else
611 return 0;
612#endif
613}
614
497f0ab3 615#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
674311d5
NP
620/*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 622 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
48f24c4d 627#define for_each_domain(cpu, __sd) \
497f0ab3 628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
629
630#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631#define this_rq() (&__get_cpu_var(runqueues))
632#define task_rq(p) cpu_rq(task_cpu(p))
633#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 634#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 635
aa9c4c0f 636inline void update_rq_clock(struct rq *rq)
3e51f33f 637{
a64692a3
MG
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299
PZ
916/*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
0970d299
PZ
919 */
920static inline int task_is_waking(struct task_struct *p)
921{
0017d735 922 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
923}
924
b29739f9
IM
925/*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
70b97a7f 929static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
930 __acquires(rq->lock)
931{
0970d299
PZ
932 struct rq *rq;
933
3a5c359a 934 for (;;) {
0970d299
PZ
935 while (task_is_waking(p))
936 cpu_relax();
937 rq = task_rq(p);
05fa785c 938 raw_spin_lock(&rq->lock);
0970d299 939 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 940 return rq;
05fa785c 941 raw_spin_unlock(&rq->lock);
b29739f9 942 }
b29739f9
IM
943}
944
1da177e4
LT
945/*
946 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 947 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
948 * explicitly disabling preemption.
949 */
70b97a7f 950static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
951 __acquires(rq->lock)
952{
70b97a7f 953 struct rq *rq;
1da177e4 954
3a5c359a 955 for (;;) {
0970d299
PZ
956 while (task_is_waking(p))
957 cpu_relax();
3a5c359a
AK
958 local_irq_save(*flags);
959 rq = task_rq(p);
05fa785c 960 raw_spin_lock(&rq->lock);
0970d299 961 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 962 return rq;
05fa785c 963 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 964 }
1da177e4
LT
965}
966
ad474cac
ON
967void task_rq_unlock_wait(struct task_struct *p)
968{
969 struct rq *rq = task_rq(p);
970
971 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 972 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
973}
974
a9957449 975static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
976 __releases(rq->lock)
977{
05fa785c 978 raw_spin_unlock(&rq->lock);
b29739f9
IM
979}
980
70b97a7f 981static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
982 __releases(rq->lock)
983{
05fa785c 984 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
985}
986
1da177e4 987/*
cc2a73b5 988 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 989 */
a9957449 990static struct rq *this_rq_lock(void)
1da177e4
LT
991 __acquires(rq->lock)
992{
70b97a7f 993 struct rq *rq;
1da177e4
LT
994
995 local_irq_disable();
996 rq = this_rq();
05fa785c 997 raw_spin_lock(&rq->lock);
1da177e4
LT
998
999 return rq;
1000}
1001
8f4d37ec
PZ
1002#ifdef CONFIG_SCHED_HRTICK
1003/*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
8f4d37ec
PZ
1013
1014/*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019static inline int hrtick_enabled(struct rq *rq)
1020{
1021 if (!sched_feat(HRTICK))
1022 return 0;
ba42059f 1023 if (!cpu_active(cpu_of(rq)))
b328ca18 1024 return 0;
8f4d37ec
PZ
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026}
1027
8f4d37ec
PZ
1028static void hrtick_clear(struct rq *rq)
1029{
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032}
1033
8f4d37ec
PZ
1034/*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039{
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
05fa785c 1044 raw_spin_lock(&rq->lock);
3e51f33f 1045 update_rq_clock(rq);
8f4d37ec 1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1047 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1048
1049 return HRTIMER_NORESTART;
1050}
1051
95e904c7 1052#ifdef CONFIG_SMP
31656519
PZ
1053/*
1054 * called from hardirq (IPI) context
1055 */
1056static void __hrtick_start(void *arg)
b328ca18 1057{
31656519 1058 struct rq *rq = arg;
b328ca18 1059
05fa785c 1060 raw_spin_lock(&rq->lock);
31656519
PZ
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
05fa785c 1063 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1064}
1065
31656519
PZ
1066/*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1072{
31656519
PZ
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1075
cc584b21 1076 hrtimer_set_expires(timer, time);
31656519
PZ
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
6e275637 1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1082 rq->hrtick_csd_pending = 1;
1083 }
b328ca18
PZ
1084}
1085
1086static int
1087hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088{
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
31656519 1098 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103}
1104
fa748203 1105static __init void init_hrtick(void)
b328ca18
PZ
1106{
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108}
31656519
PZ
1109#else
1110/*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115static void hrtick_start(struct rq *rq, u64 delay)
1116{
7f1e2ca9 1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1118 HRTIMER_MODE_REL_PINNED, 0);
31656519 1119}
b328ca18 1120
006c75f1 1121static inline void init_hrtick(void)
8f4d37ec 1122{
8f4d37ec 1123}
31656519 1124#endif /* CONFIG_SMP */
8f4d37ec 1125
31656519 1126static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1127{
31656519
PZ
1128#ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
8f4d37ec 1130
31656519
PZ
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134#endif
8f4d37ec 1135
31656519
PZ
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
8f4d37ec 1138}
006c75f1 1139#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1140static inline void hrtick_clear(struct rq *rq)
1141{
1142}
1143
8f4d37ec
PZ
1144static inline void init_rq_hrtick(struct rq *rq)
1145{
1146}
1147
b328ca18
PZ
1148static inline void init_hrtick(void)
1149{
1150}
006c75f1 1151#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1152
c24d20db
IM
1153/*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160#ifdef CONFIG_SMP
1161
1162#ifndef tsk_is_polling
1163#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164#endif
1165
31656519 1166static void resched_task(struct task_struct *p)
c24d20db
IM
1167{
1168 int cpu;
1169
05fa785c 1170 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1171
5ed0cec0 1172 if (test_tsk_need_resched(p))
c24d20db
IM
1173 return;
1174
5ed0cec0 1175 set_tsk_need_resched(p);
c24d20db
IM
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185}
1186
1187static void resched_cpu(int cpu)
1188{
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
05fa785c 1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1193 return;
1194 resched_task(cpu_curr(cpu));
05fa785c 1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1196}
06d8308c
TG
1197
1198#ifdef CONFIG_NO_HZ
1199/*
1200 * When add_timer_on() enqueues a timer into the timer wheel of an
1201 * idle CPU then this timer might expire before the next timer event
1202 * which is scheduled to wake up that CPU. In case of a completely
1203 * idle system the next event might even be infinite time into the
1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1205 * leaves the inner idle loop so the newly added timer is taken into
1206 * account when the CPU goes back to idle and evaluates the timer
1207 * wheel for the next timer event.
1208 */
1209void wake_up_idle_cpu(int cpu)
1210{
1211 struct rq *rq = cpu_rq(cpu);
1212
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /*
1217 * This is safe, as this function is called with the timer
1218 * wheel base lock of (cpu) held. When the CPU is on the way
1219 * to idle and has not yet set rq->curr to idle then it will
1220 * be serialized on the timer wheel base lock and take the new
1221 * timer into account automatically.
1222 */
1223 if (rq->curr != rq->idle)
1224 return;
1225
1226 /*
1227 * We can set TIF_RESCHED on the idle task of the other CPU
1228 * lockless. The worst case is that the other CPU runs the
1229 * idle task through an additional NOOP schedule()
1230 */
5ed0cec0 1231 set_tsk_need_resched(rq->idle);
06d8308c
TG
1232
1233 /* NEED_RESCHED must be visible before we test polling */
1234 smp_mb();
1235 if (!tsk_is_polling(rq->idle))
1236 smp_send_reschedule(cpu);
1237}
39c0cbe2
MG
1238
1239int nohz_ratelimit(int cpu)
1240{
1241 struct rq *rq = cpu_rq(cpu);
1242 u64 diff = rq->clock - rq->nohz_stamp;
1243
1244 rq->nohz_stamp = rq->clock;
1245
1246 return diff < (NSEC_PER_SEC / HZ) >> 1;
1247}
1248
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
e9e9250b
PZ
1251static u64 sched_avg_period(void)
1252{
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254}
1255
1256static void sched_avg_update(struct rq *rq)
1257{
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264}
1265
1266static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267{
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270}
1271
6d6bc0ad 1272#else /* !CONFIG_SMP */
31656519 1273static void resched_task(struct task_struct *p)
c24d20db 1274{
05fa785c 1275 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1276 set_tsk_need_resched(p);
c24d20db 1277}
e9e9250b
PZ
1278
1279static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280{
1281}
6d6bc0ad 1282#endif /* CONFIG_SMP */
c24d20db 1283
45bf76df
IM
1284#if BITS_PER_LONG == 32
1285# define WMULT_CONST (~0UL)
1286#else
1287# define WMULT_CONST (1UL << 32)
1288#endif
1289
1290#define WMULT_SHIFT 32
1291
194081eb
IM
1292/*
1293 * Shift right and round:
1294 */
cf2ab469 1295#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1296
a7be37ac
PZ
1297/*
1298 * delta *= weight / lw
1299 */
cb1c4fc9 1300static unsigned long
45bf76df
IM
1301calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303{
1304 u64 tmp;
1305
7a232e03
LJ
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
45bf76df
IM
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
194081eb 1318 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1320 WMULT_SHIFT/2);
1321 else
cf2ab469 1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1323
ecf691da 1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1325}
1326
1091985b 1327static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1328{
1329 lw->weight += inc;
e89996ae 1330 lw->inv_weight = 0;
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1334{
1335 lw->weight -= dec;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
2dd73a4f
PW
1339/*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
cce7ade8
PZ
1348#define WEIGHT_IDLEPRIO 3
1349#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1350
1351/*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
dd41f596
IM
1362 */
1363static const int prio_to_weight[40] = {
254753dc
IM
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1372};
1373
5714d2de
IM
1374/*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
dd41f596 1381static const u32 prio_to_wmult[40] = {
254753dc
IM
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1390};
2dd73a4f 1391
ef12fefa
BR
1392/* Time spent by the tasks of the cpu accounting group executing in ... */
1393enum cpuacct_stat_index {
1394 CPUACCT_STAT_USER, /* ... user mode */
1395 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1396
1397 CPUACCT_STAT_NSTATS,
1398};
1399
d842de87
SV
1400#ifdef CONFIG_CGROUP_CPUACCT
1401static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1402static void cpuacct_update_stats(struct task_struct *tsk,
1403 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1404#else
1405static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1406static inline void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1408#endif
1409
18d95a28
PZ
1410static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1411{
1412 update_load_add(&rq->load, load);
1413}
1414
1415static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1416{
1417 update_load_sub(&rq->load, load);
1418}
1419
7940ca36 1420#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1421typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1422
1423/*
1424 * Iterate the full tree, calling @down when first entering a node and @up when
1425 * leaving it for the final time.
1426 */
eb755805 1427static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1428{
1429 struct task_group *parent, *child;
eb755805 1430 int ret;
c09595f6
PZ
1431
1432 rcu_read_lock();
1433 parent = &root_task_group;
1434down:
eb755805
PZ
1435 ret = (*down)(parent, data);
1436 if (ret)
1437 goto out_unlock;
c09595f6
PZ
1438 list_for_each_entry_rcu(child, &parent->children, siblings) {
1439 parent = child;
1440 goto down;
1441
1442up:
1443 continue;
1444 }
eb755805
PZ
1445 ret = (*up)(parent, data);
1446 if (ret)
1447 goto out_unlock;
c09595f6
PZ
1448
1449 child = parent;
1450 parent = parent->parent;
1451 if (parent)
1452 goto up;
eb755805 1453out_unlock:
c09595f6 1454 rcu_read_unlock();
eb755805
PZ
1455
1456 return ret;
c09595f6
PZ
1457}
1458
eb755805
PZ
1459static int tg_nop(struct task_group *tg, void *data)
1460{
1461 return 0;
c09595f6 1462}
eb755805
PZ
1463#endif
1464
1465#ifdef CONFIG_SMP
f5f08f39
PZ
1466/* Used instead of source_load when we know the type == 0 */
1467static unsigned long weighted_cpuload(const int cpu)
1468{
1469 return cpu_rq(cpu)->load.weight;
1470}
1471
1472/*
1473 * Return a low guess at the load of a migration-source cpu weighted
1474 * according to the scheduling class and "nice" value.
1475 *
1476 * We want to under-estimate the load of migration sources, to
1477 * balance conservatively.
1478 */
1479static unsigned long source_load(int cpu, int type)
1480{
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long total = weighted_cpuload(cpu);
1483
1484 if (type == 0 || !sched_feat(LB_BIAS))
1485 return total;
1486
1487 return min(rq->cpu_load[type-1], total);
1488}
1489
1490/*
1491 * Return a high guess at the load of a migration-target cpu weighted
1492 * according to the scheduling class and "nice" value.
1493 */
1494static unsigned long target_load(int cpu, int type)
1495{
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return max(rq->cpu_load[type-1], total);
1503}
1504
ae154be1
PZ
1505static struct sched_group *group_of(int cpu)
1506{
d11c563d 1507 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1508
1509 if (!sd)
1510 return NULL;
1511
1512 return sd->groups;
1513}
1514
1515static unsigned long power_of(int cpu)
1516{
1517 struct sched_group *group = group_of(cpu);
1518
1519 if (!group)
1520 return SCHED_LOAD_SCALE;
1521
1522 return group->cpu_power;
1523}
1524
eb755805
PZ
1525static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527static unsigned long cpu_avg_load_per_task(int cpu)
1528{
1529 struct rq *rq = cpu_rq(cpu);
af6d596f 1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1531
4cd42620
SR
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1534 else
1535 rq->avg_load_per_task = 0;
eb755805
PZ
1536
1537 return rq->avg_load_per_task;
1538}
1539
1540#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1541
43cf38eb 1542static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1543
c09595f6
PZ
1544static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1545
1546/*
1547 * Calculate and set the cpu's group shares.
1548 */
34d76c41
PZ
1549static void update_group_shares_cpu(struct task_group *tg, int cpu,
1550 unsigned long sd_shares,
1551 unsigned long sd_rq_weight,
4a6cc4bd 1552 unsigned long *usd_rq_weight)
18d95a28 1553{
34d76c41 1554 unsigned long shares, rq_weight;
a5004278 1555 int boost = 0;
c09595f6 1556
4a6cc4bd 1557 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1558 if (!rq_weight) {
1559 boost = 1;
1560 rq_weight = NICE_0_LOAD;
1561 }
c8cba857 1562
c09595f6 1563 /*
a8af7246
PZ
1564 * \Sum_j shares_j * rq_weight_i
1565 * shares_i = -----------------------------
1566 * \Sum_j rq_weight_j
c09595f6 1567 */
ec4e0e2f 1568 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1569 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1570
ffda12a1
PZ
1571 if (abs(shares - tg->se[cpu]->load.weight) >
1572 sysctl_sched_shares_thresh) {
1573 struct rq *rq = cpu_rq(cpu);
1574 unsigned long flags;
c09595f6 1575
05fa785c 1576 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1577 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1578 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1579 __set_se_shares(tg->se[cpu], shares);
05fa785c 1580 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1581 }
18d95a28 1582}
c09595f6
PZ
1583
1584/*
c8cba857
PZ
1585 * Re-compute the task group their per cpu shares over the given domain.
1586 * This needs to be done in a bottom-up fashion because the rq weight of a
1587 * parent group depends on the shares of its child groups.
c09595f6 1588 */
eb755805 1589static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1590{
cd8ad40d 1591 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1592 unsigned long *usd_rq_weight;
eb755805 1593 struct sched_domain *sd = data;
34d76c41 1594 unsigned long flags;
c8cba857 1595 int i;
c09595f6 1596
34d76c41
PZ
1597 if (!tg->se[0])
1598 return 0;
1599
1600 local_irq_save(flags);
4a6cc4bd 1601 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1602
758b2cdc 1603 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1604 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1605 usd_rq_weight[i] = weight;
34d76c41 1606
cd8ad40d 1607 rq_weight += weight;
ec4e0e2f
KC
1608 /*
1609 * If there are currently no tasks on the cpu pretend there
1610 * is one of average load so that when a new task gets to
1611 * run here it will not get delayed by group starvation.
1612 */
ec4e0e2f
KC
1613 if (!weight)
1614 weight = NICE_0_LOAD;
1615
cd8ad40d 1616 sum_weight += weight;
c8cba857 1617 shares += tg->cfs_rq[i]->shares;
c09595f6 1618 }
c09595f6 1619
cd8ad40d
PZ
1620 if (!rq_weight)
1621 rq_weight = sum_weight;
1622
c8cba857
PZ
1623 if ((!shares && rq_weight) || shares > tg->shares)
1624 shares = tg->shares;
1625
1626 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1627 shares = tg->shares;
c09595f6 1628
758b2cdc 1629 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1630 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1631
1632 local_irq_restore(flags);
eb755805
PZ
1633
1634 return 0;
c09595f6
PZ
1635}
1636
1637/*
c8cba857
PZ
1638 * Compute the cpu's hierarchical load factor for each task group.
1639 * This needs to be done in a top-down fashion because the load of a child
1640 * group is a fraction of its parents load.
c09595f6 1641 */
eb755805 1642static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1643{
c8cba857 1644 unsigned long load;
eb755805 1645 long cpu = (long)data;
c09595f6 1646
c8cba857
PZ
1647 if (!tg->parent) {
1648 load = cpu_rq(cpu)->load.weight;
1649 } else {
1650 load = tg->parent->cfs_rq[cpu]->h_load;
1651 load *= tg->cfs_rq[cpu]->shares;
1652 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1653 }
c09595f6 1654
c8cba857 1655 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1656
eb755805 1657 return 0;
c09595f6
PZ
1658}
1659
c8cba857 1660static void update_shares(struct sched_domain *sd)
4d8d595d 1661{
e7097159
PZ
1662 s64 elapsed;
1663 u64 now;
1664
1665 if (root_task_group_empty())
1666 return;
1667
1668 now = cpu_clock(raw_smp_processor_id());
1669 elapsed = now - sd->last_update;
2398f2c6
PZ
1670
1671 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1672 sd->last_update = now;
eb755805 1673 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1674 }
4d8d595d
PZ
1675}
1676
eb755805 1677static void update_h_load(long cpu)
c09595f6 1678{
e7097159
PZ
1679 if (root_task_group_empty())
1680 return;
1681
eb755805 1682 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1683}
1684
c09595f6
PZ
1685#else
1686
c8cba857 1687static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1688{
1689}
1690
18d95a28
PZ
1691#endif
1692
8f45e2b5
GH
1693#ifdef CONFIG_PREEMPT
1694
b78bb868
PZ
1695static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1696
70574a99 1697/*
8f45e2b5
GH
1698 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1699 * way at the expense of forcing extra atomic operations in all
1700 * invocations. This assures that the double_lock is acquired using the
1701 * same underlying policy as the spinlock_t on this architecture, which
1702 * reduces latency compared to the unfair variant below. However, it
1703 * also adds more overhead and therefore may reduce throughput.
70574a99 1704 */
8f45e2b5
GH
1705static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 __releases(this_rq->lock)
1707 __acquires(busiest->lock)
1708 __acquires(this_rq->lock)
1709{
05fa785c 1710 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1711 double_rq_lock(this_rq, busiest);
1712
1713 return 1;
1714}
1715
1716#else
1717/*
1718 * Unfair double_lock_balance: Optimizes throughput at the expense of
1719 * latency by eliminating extra atomic operations when the locks are
1720 * already in proper order on entry. This favors lower cpu-ids and will
1721 * grant the double lock to lower cpus over higher ids under contention,
1722 * regardless of entry order into the function.
1723 */
1724static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1725 __releases(this_rq->lock)
1726 __acquires(busiest->lock)
1727 __acquires(this_rq->lock)
1728{
1729 int ret = 0;
1730
05fa785c 1731 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1732 if (busiest < this_rq) {
05fa785c
TG
1733 raw_spin_unlock(&this_rq->lock);
1734 raw_spin_lock(&busiest->lock);
1735 raw_spin_lock_nested(&this_rq->lock,
1736 SINGLE_DEPTH_NESTING);
70574a99
AD
1737 ret = 1;
1738 } else
05fa785c
TG
1739 raw_spin_lock_nested(&busiest->lock,
1740 SINGLE_DEPTH_NESTING);
70574a99
AD
1741 }
1742 return ret;
1743}
1744
8f45e2b5
GH
1745#endif /* CONFIG_PREEMPT */
1746
1747/*
1748 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1749 */
1750static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1751{
1752 if (unlikely(!irqs_disabled())) {
1753 /* printk() doesn't work good under rq->lock */
05fa785c 1754 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1755 BUG_ON(1);
1756 }
1757
1758 return _double_lock_balance(this_rq, busiest);
1759}
1760
70574a99
AD
1761static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1762 __releases(busiest->lock)
1763{
05fa785c 1764 raw_spin_unlock(&busiest->lock);
70574a99
AD
1765 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1766}
1e3c88bd
PZ
1767
1768/*
1769 * double_rq_lock - safely lock two runqueues
1770 *
1771 * Note this does not disable interrupts like task_rq_lock,
1772 * you need to do so manually before calling.
1773 */
1774static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1775 __acquires(rq1->lock)
1776 __acquires(rq2->lock)
1777{
1778 BUG_ON(!irqs_disabled());
1779 if (rq1 == rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 __acquire(rq2->lock); /* Fake it out ;) */
1782 } else {
1783 if (rq1 < rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1786 } else {
1787 raw_spin_lock(&rq2->lock);
1788 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1789 }
1790 }
1e3c88bd
PZ
1791}
1792
1793/*
1794 * double_rq_unlock - safely unlock two runqueues
1795 *
1796 * Note this does not restore interrupts like task_rq_unlock,
1797 * you need to do so manually after calling.
1798 */
1799static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1800 __releases(rq1->lock)
1801 __releases(rq2->lock)
1802{
1803 raw_spin_unlock(&rq1->lock);
1804 if (rq1 != rq2)
1805 raw_spin_unlock(&rq2->lock);
1806 else
1807 __release(rq2->lock);
1808}
1809
18d95a28
PZ
1810#endif
1811
30432094 1812#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1813static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814{
30432094 1815#ifdef CONFIG_SMP
34e83e85
IM
1816 cfs_rq->shares = shares;
1817#endif
1818}
30432094 1819#endif
e7693a36 1820
dce48a84 1821static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1822static void update_sysctl(void);
acb4a848 1823static int get_update_sysctl_factor(void);
dce48a84 1824
cd29fe6f
PZ
1825static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826{
1827 set_task_rq(p, cpu);
1828#ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836#endif
1837}
dce48a84 1838
1e3c88bd 1839static const struct sched_class rt_sched_class;
dd41f596
IM
1840
1841#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1842#define for_each_class(class) \
1843 for (class = sched_class_highest; class; class = class->next)
dd41f596 1844
1e3c88bd
PZ
1845#include "sched_stats.h"
1846
c09595f6 1847static void inc_nr_running(struct rq *rq)
9c217245
IM
1848{
1849 rq->nr_running++;
9c217245
IM
1850}
1851
c09595f6 1852static void dec_nr_running(struct rq *rq)
9c217245
IM
1853{
1854 rq->nr_running--;
9c217245
IM
1855}
1856
45bf76df
IM
1857static void set_load_weight(struct task_struct *p)
1858{
1859 if (task_has_rt_policy(p)) {
dd41f596
IM
1860 p->se.load.weight = prio_to_weight[0] * 2;
1861 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1862 return;
1863 }
45bf76df 1864
dd41f596
IM
1865 /*
1866 * SCHED_IDLE tasks get minimal weight:
1867 */
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1872 }
71f8bd46 1873
dd41f596
IM
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1876}
1877
2087a1ad
GH
1878static void update_avg(u64 *avg, u64 sample)
1879{
1880 s64 diff = sample - *avg;
1881 *avg += diff >> 3;
1882}
1883
ea87bb78
TG
1884static void
1885enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1886{
a64692a3 1887 update_rq_clock(rq);
dd41f596 1888 sched_info_queued(p);
ea87bb78 1889 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1890 p->se.on_rq = 1;
71f8bd46
IM
1891}
1892
69be72c1 1893static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1894{
a64692a3 1895 update_rq_clock(rq);
46ac22ba 1896 sched_info_dequeued(p);
f02231e5 1897 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1898 p->se.on_rq = 0;
71f8bd46
IM
1899}
1900
1e3c88bd
PZ
1901/*
1902 * activate_task - move a task to the runqueue.
1903 */
1904static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1905{
1906 if (task_contributes_to_load(p))
1907 rq->nr_uninterruptible--;
1908
ea87bb78 1909 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1910 inc_nr_running(rq);
1911}
1912
1913/*
1914 * deactivate_task - remove a task from the runqueue.
1915 */
1916static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1917{
1918 if (task_contributes_to_load(p))
1919 rq->nr_uninterruptible++;
1920
1921 dequeue_task(rq, p, sleep);
1922 dec_nr_running(rq);
1923}
1924
1925#include "sched_idletask.c"
1926#include "sched_fair.c"
1927#include "sched_rt.c"
1928#ifdef CONFIG_SCHED_DEBUG
1929# include "sched_debug.c"
1930#endif
1931
14531189 1932/*
dd41f596 1933 * __normal_prio - return the priority that is based on the static prio
14531189 1934 */
14531189
IM
1935static inline int __normal_prio(struct task_struct *p)
1936{
dd41f596 1937 return p->static_prio;
14531189
IM
1938}
1939
b29739f9
IM
1940/*
1941 * Calculate the expected normal priority: i.e. priority
1942 * without taking RT-inheritance into account. Might be
1943 * boosted by interactivity modifiers. Changes upon fork,
1944 * setprio syscalls, and whenever the interactivity
1945 * estimator recalculates.
1946 */
36c8b586 1947static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1948{
1949 int prio;
1950
e05606d3 1951 if (task_has_rt_policy(p))
b29739f9
IM
1952 prio = MAX_RT_PRIO-1 - p->rt_priority;
1953 else
1954 prio = __normal_prio(p);
1955 return prio;
1956}
1957
1958/*
1959 * Calculate the current priority, i.e. the priority
1960 * taken into account by the scheduler. This value might
1961 * be boosted by RT tasks, or might be boosted by
1962 * interactivity modifiers. Will be RT if the task got
1963 * RT-boosted. If not then it returns p->normal_prio.
1964 */
36c8b586 1965static int effective_prio(struct task_struct *p)
b29739f9
IM
1966{
1967 p->normal_prio = normal_prio(p);
1968 /*
1969 * If we are RT tasks or we were boosted to RT priority,
1970 * keep the priority unchanged. Otherwise, update priority
1971 * to the normal priority:
1972 */
1973 if (!rt_prio(p->prio))
1974 return p->normal_prio;
1975 return p->prio;
1976}
1977
1da177e4
LT
1978/**
1979 * task_curr - is this task currently executing on a CPU?
1980 * @p: the task in question.
1981 */
36c8b586 1982inline int task_curr(const struct task_struct *p)
1da177e4
LT
1983{
1984 return cpu_curr(task_cpu(p)) == p;
1985}
1986
cb469845
SR
1987static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1988 const struct sched_class *prev_class,
1989 int oldprio, int running)
1990{
1991 if (prev_class != p->sched_class) {
1992 if (prev_class->switched_from)
1993 prev_class->switched_from(rq, p, running);
1994 p->sched_class->switched_to(rq, p, running);
1995 } else
1996 p->sched_class->prio_changed(rq, p, oldprio, running);
1997}
1998
1da177e4 1999#ifdef CONFIG_SMP
cc367732
IM
2000/*
2001 * Is this task likely cache-hot:
2002 */
e7693a36 2003static int
cc367732
IM
2004task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005{
2006 s64 delta;
2007
e6c8fba7
PZ
2008 if (p->sched_class != &fair_sched_class)
2009 return 0;
2010
f540a608
IM
2011 /*
2012 * Buddy candidates are cache hot:
2013 */
f685ceac 2014 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2015 (&p->se == cfs_rq_of(&p->se)->next ||
2016 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2017 return 1;
2018
6bc1665b
IM
2019 if (sysctl_sched_migration_cost == -1)
2020 return 1;
2021 if (sysctl_sched_migration_cost == 0)
2022 return 0;
2023
cc367732
IM
2024 delta = now - p->se.exec_start;
2025
2026 return delta < (s64)sysctl_sched_migration_cost;
2027}
2028
dd41f596 2029void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2030{
e2912009
PZ
2031#ifdef CONFIG_SCHED_DEBUG
2032 /*
2033 * We should never call set_task_cpu() on a blocked task,
2034 * ttwu() will sort out the placement.
2035 */
077614ee
PZ
2036 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2037 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2038#endif
2039
de1d7286 2040 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2041
0c69774e
PZ
2042 if (task_cpu(p) != new_cpu) {
2043 p->se.nr_migrations++;
2044 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2045 }
dd41f596
IM
2046
2047 __set_task_cpu(p, new_cpu);
c65cc870
IM
2048}
2049
70b97a7f 2050struct migration_req {
1da177e4 2051 struct list_head list;
1da177e4 2052
36c8b586 2053 struct task_struct *task;
1da177e4
LT
2054 int dest_cpu;
2055
1da177e4 2056 struct completion done;
70b97a7f 2057};
1da177e4
LT
2058
2059/*
2060 * The task's runqueue lock must be held.
2061 * Returns true if you have to wait for migration thread.
2062 */
36c8b586 2063static int
70b97a7f 2064migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2065{
70b97a7f 2066 struct rq *rq = task_rq(p);
1da177e4
LT
2067
2068 /*
2069 * If the task is not on a runqueue (and not running), then
e2912009 2070 * the next wake-up will properly place the task.
1da177e4 2071 */
e2912009 2072 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2073 return 0;
1da177e4
LT
2074
2075 init_completion(&req->done);
1da177e4
LT
2076 req->task = p;
2077 req->dest_cpu = dest_cpu;
2078 list_add(&req->list, &rq->migration_queue);
48f24c4d 2079
1da177e4
LT
2080 return 1;
2081}
2082
a26b89f0
MM
2083/*
2084 * wait_task_context_switch - wait for a thread to complete at least one
2085 * context switch.
2086 *
2087 * @p must not be current.
2088 */
2089void wait_task_context_switch(struct task_struct *p)
2090{
2091 unsigned long nvcsw, nivcsw, flags;
2092 int running;
2093 struct rq *rq;
2094
2095 nvcsw = p->nvcsw;
2096 nivcsw = p->nivcsw;
2097 for (;;) {
2098 /*
2099 * The runqueue is assigned before the actual context
2100 * switch. We need to take the runqueue lock.
2101 *
2102 * We could check initially without the lock but it is
2103 * very likely that we need to take the lock in every
2104 * iteration.
2105 */
2106 rq = task_rq_lock(p, &flags);
2107 running = task_running(rq, p);
2108 task_rq_unlock(rq, &flags);
2109
2110 if (likely(!running))
2111 break;
2112 /*
2113 * The switch count is incremented before the actual
2114 * context switch. We thus wait for two switches to be
2115 * sure at least one completed.
2116 */
2117 if ((p->nvcsw - nvcsw) > 1)
2118 break;
2119 if ((p->nivcsw - nivcsw) > 1)
2120 break;
2121
2122 cpu_relax();
2123 }
2124}
2125
1da177e4
LT
2126/*
2127 * wait_task_inactive - wait for a thread to unschedule.
2128 *
85ba2d86
RM
2129 * If @match_state is nonzero, it's the @p->state value just checked and
2130 * not expected to change. If it changes, i.e. @p might have woken up,
2131 * then return zero. When we succeed in waiting for @p to be off its CPU,
2132 * we return a positive number (its total switch count). If a second call
2133 * a short while later returns the same number, the caller can be sure that
2134 * @p has remained unscheduled the whole time.
2135 *
1da177e4
LT
2136 * The caller must ensure that the task *will* unschedule sometime soon,
2137 * else this function might spin for a *long* time. This function can't
2138 * be called with interrupts off, or it may introduce deadlock with
2139 * smp_call_function() if an IPI is sent by the same process we are
2140 * waiting to become inactive.
2141 */
85ba2d86 2142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2143{
2144 unsigned long flags;
dd41f596 2145 int running, on_rq;
85ba2d86 2146 unsigned long ncsw;
70b97a7f 2147 struct rq *rq;
1da177e4 2148
3a5c359a
AK
2149 for (;;) {
2150 /*
2151 * We do the initial early heuristics without holding
2152 * any task-queue locks at all. We'll only try to get
2153 * the runqueue lock when things look like they will
2154 * work out!
2155 */
2156 rq = task_rq(p);
fa490cfd 2157
3a5c359a
AK
2158 /*
2159 * If the task is actively running on another CPU
2160 * still, just relax and busy-wait without holding
2161 * any locks.
2162 *
2163 * NOTE! Since we don't hold any locks, it's not
2164 * even sure that "rq" stays as the right runqueue!
2165 * But we don't care, since "task_running()" will
2166 * return false if the runqueue has changed and p
2167 * is actually now running somewhere else!
2168 */
85ba2d86
RM
2169 while (task_running(rq, p)) {
2170 if (match_state && unlikely(p->state != match_state))
2171 return 0;
3a5c359a 2172 cpu_relax();
85ba2d86 2173 }
fa490cfd 2174
3a5c359a
AK
2175 /*
2176 * Ok, time to look more closely! We need the rq
2177 * lock now, to be *sure*. If we're wrong, we'll
2178 * just go back and repeat.
2179 */
2180 rq = task_rq_lock(p, &flags);
0a16b607 2181 trace_sched_wait_task(rq, p);
3a5c359a
AK
2182 running = task_running(rq, p);
2183 on_rq = p->se.on_rq;
85ba2d86 2184 ncsw = 0;
f31e11d8 2185 if (!match_state || p->state == match_state)
93dcf55f 2186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2187 task_rq_unlock(rq, &flags);
fa490cfd 2188
85ba2d86
RM
2189 /*
2190 * If it changed from the expected state, bail out now.
2191 */
2192 if (unlikely(!ncsw))
2193 break;
2194
3a5c359a
AK
2195 /*
2196 * Was it really running after all now that we
2197 * checked with the proper locks actually held?
2198 *
2199 * Oops. Go back and try again..
2200 */
2201 if (unlikely(running)) {
2202 cpu_relax();
2203 continue;
2204 }
fa490cfd 2205
3a5c359a
AK
2206 /*
2207 * It's not enough that it's not actively running,
2208 * it must be off the runqueue _entirely_, and not
2209 * preempted!
2210 *
80dd99b3 2211 * So if it was still runnable (but just not actively
3a5c359a
AK
2212 * running right now), it's preempted, and we should
2213 * yield - it could be a while.
2214 */
2215 if (unlikely(on_rq)) {
2216 schedule_timeout_uninterruptible(1);
2217 continue;
2218 }
fa490cfd 2219
3a5c359a
AK
2220 /*
2221 * Ahh, all good. It wasn't running, and it wasn't
2222 * runnable, which means that it will never become
2223 * running in the future either. We're all done!
2224 */
2225 break;
2226 }
85ba2d86
RM
2227
2228 return ncsw;
1da177e4
LT
2229}
2230
2231/***
2232 * kick_process - kick a running thread to enter/exit the kernel
2233 * @p: the to-be-kicked thread
2234 *
2235 * Cause a process which is running on another CPU to enter
2236 * kernel-mode, without any delay. (to get signals handled.)
2237 *
2238 * NOTE: this function doesnt have to take the runqueue lock,
2239 * because all it wants to ensure is that the remote task enters
2240 * the kernel. If the IPI races and the task has been migrated
2241 * to another CPU then no harm is done and the purpose has been
2242 * achieved as well.
2243 */
36c8b586 2244void kick_process(struct task_struct *p)
1da177e4
LT
2245{
2246 int cpu;
2247
2248 preempt_disable();
2249 cpu = task_cpu(p);
2250 if ((cpu != smp_processor_id()) && task_curr(p))
2251 smp_send_reschedule(cpu);
2252 preempt_enable();
2253}
b43e3521 2254EXPORT_SYMBOL_GPL(kick_process);
476d139c 2255#endif /* CONFIG_SMP */
1da177e4 2256
0793a61d
TG
2257/**
2258 * task_oncpu_function_call - call a function on the cpu on which a task runs
2259 * @p: the task to evaluate
2260 * @func: the function to be called
2261 * @info: the function call argument
2262 *
2263 * Calls the function @func when the task is currently running. This might
2264 * be on the current CPU, which just calls the function directly
2265 */
2266void task_oncpu_function_call(struct task_struct *p,
2267 void (*func) (void *info), void *info)
2268{
2269 int cpu;
2270
2271 preempt_disable();
2272 cpu = task_cpu(p);
2273 if (task_curr(p))
2274 smp_call_function_single(cpu, func, info, 1);
2275 preempt_enable();
2276}
2277
970b13ba 2278#ifdef CONFIG_SMP
30da688e
ON
2279/*
2280 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2281 */
5da9a0fb
PZ
2282static int select_fallback_rq(int cpu, struct task_struct *p)
2283{
2284 int dest_cpu;
2285 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2286
2287 /* Look for allowed, online CPU in same node. */
2288 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2289 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2290 return dest_cpu;
2291
2292 /* Any allowed, online CPU? */
2293 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2294 if (dest_cpu < nr_cpu_ids)
2295 return dest_cpu;
2296
2297 /* No more Mr. Nice Guy. */
897f0b3c 2298 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2299 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2300 /*
2301 * Don't tell them about moving exiting tasks or
2302 * kernel threads (both mm NULL), since they never
2303 * leave kernel.
2304 */
2305 if (p->mm && printk_ratelimit()) {
2306 printk(KERN_INFO "process %d (%s) no "
2307 "longer affine to cpu%d\n",
2308 task_pid_nr(p), p->comm, cpu);
2309 }
2310 }
2311
2312 return dest_cpu;
2313}
2314
e2912009 2315/*
30da688e 2316 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2317 */
970b13ba 2318static inline
0017d735 2319int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2320{
0017d735 2321 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2322
2323 /*
2324 * In order not to call set_task_cpu() on a blocking task we need
2325 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2326 * cpu.
2327 *
2328 * Since this is common to all placement strategies, this lives here.
2329 *
2330 * [ this allows ->select_task() to simply return task_cpu(p) and
2331 * not worry about this generic constraint ]
2332 */
2333 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2334 !cpu_online(cpu)))
5da9a0fb 2335 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2336
2337 return cpu;
970b13ba
PZ
2338}
2339#endif
2340
1da177e4
LT
2341/***
2342 * try_to_wake_up - wake up a thread
2343 * @p: the to-be-woken-up thread
2344 * @state: the mask of task states that can be woken
2345 * @sync: do a synchronous wakeup?
2346 *
2347 * Put it on the run-queue if it's not already there. The "current"
2348 * thread is always on the run-queue (except when the actual
2349 * re-schedule is in progress), and as such you're allowed to do
2350 * the simpler "current->state = TASK_RUNNING" to mark yourself
2351 * runnable without the overhead of this.
2352 *
2353 * returns failure only if the task is already active.
2354 */
7d478721
PZ
2355static int try_to_wake_up(struct task_struct *p, unsigned int state,
2356 int wake_flags)
1da177e4 2357{
cc367732 2358 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2359 unsigned long flags;
ab3b3aa5 2360 struct rq *rq;
1da177e4 2361
e9c84311 2362 this_cpu = get_cpu();
2398f2c6 2363
04e2f174 2364 smp_wmb();
ab3b3aa5 2365 rq = task_rq_lock(p, &flags);
e9c84311 2366 if (!(p->state & state))
1da177e4
LT
2367 goto out;
2368
dd41f596 2369 if (p->se.on_rq)
1da177e4
LT
2370 goto out_running;
2371
2372 cpu = task_cpu(p);
cc367732 2373 orig_cpu = cpu;
1da177e4
LT
2374
2375#ifdef CONFIG_SMP
2376 if (unlikely(task_running(rq, p)))
2377 goto out_activate;
2378
e9c84311
PZ
2379 /*
2380 * In order to handle concurrent wakeups and release the rq->lock
2381 * we put the task in TASK_WAKING state.
eb24073b
IM
2382 *
2383 * First fix up the nr_uninterruptible count:
e9c84311 2384 */
eb24073b
IM
2385 if (task_contributes_to_load(p))
2386 rq->nr_uninterruptible--;
e9c84311 2387 p->state = TASK_WAKING;
efbbd05a
PZ
2388
2389 if (p->sched_class->task_waking)
2390 p->sched_class->task_waking(rq, p);
2391
0017d735
PZ
2392 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2393 if (cpu != orig_cpu)
5d2f5a61 2394 set_task_cpu(p, cpu);
0017d735 2395 __task_rq_unlock(rq);
ab19cb23 2396
0970d299
PZ
2397 rq = cpu_rq(cpu);
2398 raw_spin_lock(&rq->lock);
f5dc3753 2399
0970d299
PZ
2400 /*
2401 * We migrated the task without holding either rq->lock, however
2402 * since the task is not on the task list itself, nobody else
2403 * will try and migrate the task, hence the rq should match the
2404 * cpu we just moved it to.
2405 */
2406 WARN_ON(task_cpu(p) != cpu);
e9c84311 2407 WARN_ON(p->state != TASK_WAKING);
1da177e4 2408
e7693a36
GH
2409#ifdef CONFIG_SCHEDSTATS
2410 schedstat_inc(rq, ttwu_count);
2411 if (cpu == this_cpu)
2412 schedstat_inc(rq, ttwu_local);
2413 else {
2414 struct sched_domain *sd;
2415 for_each_domain(this_cpu, sd) {
758b2cdc 2416 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2417 schedstat_inc(sd, ttwu_wake_remote);
2418 break;
2419 }
2420 }
2421 }
6d6bc0ad 2422#endif /* CONFIG_SCHEDSTATS */
e7693a36 2423
1da177e4
LT
2424out_activate:
2425#endif /* CONFIG_SMP */
41acab88 2426 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2427 if (wake_flags & WF_SYNC)
41acab88 2428 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2429 if (orig_cpu != cpu)
41acab88 2430 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2431 if (cpu == this_cpu)
41acab88 2432 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2433 else
41acab88 2434 schedstat_inc(p, se.statistics.nr_wakeups_remote);
dd41f596 2435 activate_task(rq, p, 1);
1da177e4
LT
2436 success = 1;
2437
2438out_running:
468a15bb 2439 trace_sched_wakeup(rq, p, success);
7d478721 2440 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2441
1da177e4 2442 p->state = TASK_RUNNING;
9a897c5a 2443#ifdef CONFIG_SMP
efbbd05a
PZ
2444 if (p->sched_class->task_woken)
2445 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2446
2447 if (unlikely(rq->idle_stamp)) {
2448 u64 delta = rq->clock - rq->idle_stamp;
2449 u64 max = 2*sysctl_sched_migration_cost;
2450
2451 if (delta > max)
2452 rq->avg_idle = max;
2453 else
2454 update_avg(&rq->avg_idle, delta);
2455 rq->idle_stamp = 0;
2456 }
9a897c5a 2457#endif
1da177e4
LT
2458out:
2459 task_rq_unlock(rq, &flags);
e9c84311 2460 put_cpu();
1da177e4
LT
2461
2462 return success;
2463}
2464
50fa610a
DH
2465/**
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2468 *
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2471 * running.
2472 *
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2475 */
7ad5b3a5 2476int wake_up_process(struct task_struct *p)
1da177e4 2477{
d9514f6c 2478 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2479}
1da177e4
LT
2480EXPORT_SYMBOL(wake_up_process);
2481
7ad5b3a5 2482int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2483{
2484 return try_to_wake_up(p, state, 0);
2485}
2486
1da177e4
LT
2487/*
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
dd41f596
IM
2490 *
2491 * __sched_fork() is basic setup used by init_idle() too:
2492 */
2493static void __sched_fork(struct task_struct *p)
2494{
dd41f596
IM
2495 p->se.exec_start = 0;
2496 p->se.sum_exec_runtime = 0;
f6cf891c 2497 p->se.prev_sum_exec_runtime = 0;
6c594c21 2498 p->se.nr_migrations = 0;
6cfb0d5d
IM
2499
2500#ifdef CONFIG_SCHEDSTATS
41acab88 2501 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2502#endif
476d139c 2503
fa717060 2504 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2505 p->se.on_rq = 0;
4a55bd5e 2506 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2507
e107be36
AK
2508#ifdef CONFIG_PREEMPT_NOTIFIERS
2509 INIT_HLIST_HEAD(&p->preempt_notifiers);
2510#endif
dd41f596
IM
2511}
2512
2513/*
2514 * fork()/clone()-time setup:
2515 */
2516void sched_fork(struct task_struct *p, int clone_flags)
2517{
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
06b83b5f 2521 /*
0017d735 2522 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2523 * nobody will actually run it, and a signal or other external
2524 * event cannot wake it up and insert it on the runqueue either.
2525 */
0017d735 2526 p->state = TASK_RUNNING;
dd41f596 2527
b9dc29e7
MG
2528 /*
2529 * Revert to default priority/policy on fork if requested.
2530 */
2531 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2533 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2534 p->normal_prio = p->static_prio;
2535 }
b9dc29e7 2536
6c697bdf
MG
2537 if (PRIO_TO_NICE(p->static_prio) < 0) {
2538 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2539 p->normal_prio = p->static_prio;
6c697bdf
MG
2540 set_load_weight(p);
2541 }
2542
b9dc29e7
MG
2543 /*
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2546 */
2547 p->sched_reset_on_fork = 0;
2548 }
ca94c442 2549
f83f9ac2
PW
2550 /*
2551 * Make sure we do not leak PI boosting priority to the child.
2552 */
2553 p->prio = current->normal_prio;
2554
2ddbf952
HS
2555 if (!rt_prio(p->prio))
2556 p->sched_class = &fair_sched_class;
b29739f9 2557
cd29fe6f
PZ
2558 if (p->sched_class->task_fork)
2559 p->sched_class->task_fork(p);
2560
5f3edc1b
PZ
2561 set_task_cpu(p, cpu);
2562
52f17b6c 2563#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2564 if (likely(sched_info_on()))
52f17b6c 2565 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2566#endif
d6077cb8 2567#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2568 p->oncpu = 0;
2569#endif
1da177e4 2570#ifdef CONFIG_PREEMPT
4866cde0 2571 /* Want to start with kernel preemption disabled. */
a1261f54 2572 task_thread_info(p)->preempt_count = 1;
1da177e4 2573#endif
917b627d
GH
2574 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2575
476d139c 2576 put_cpu();
1da177e4
LT
2577}
2578
2579/*
2580 * wake_up_new_task - wake up a newly created task for the first time.
2581 *
2582 * This function will do some initial scheduler statistics housekeeping
2583 * that must be done for every newly created context, then puts the task
2584 * on the runqueue and wakes it.
2585 */
7ad5b3a5 2586void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2587{
2588 unsigned long flags;
dd41f596 2589 struct rq *rq;
c890692b 2590 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2591
2592#ifdef CONFIG_SMP
0017d735
PZ
2593 rq = task_rq_lock(p, &flags);
2594 p->state = TASK_WAKING;
2595
fabf318e
PZ
2596 /*
2597 * Fork balancing, do it here and not earlier because:
2598 * - cpus_allowed can change in the fork path
2599 * - any previously selected cpu might disappear through hotplug
2600 *
0017d735
PZ
2601 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2602 * without people poking at ->cpus_allowed.
fabf318e 2603 */
0017d735 2604 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2605 set_task_cpu(p, cpu);
0970d299 2606
06b83b5f 2607 p->state = TASK_RUNNING;
0017d735
PZ
2608 task_rq_unlock(rq, &flags);
2609#endif
2610
2611 rq = task_rq_lock(p, &flags);
cd29fe6f 2612 activate_task(rq, p, 0);
c71dd42d 2613 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2614 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2615#ifdef CONFIG_SMP
efbbd05a
PZ
2616 if (p->sched_class->task_woken)
2617 p->sched_class->task_woken(rq, p);
9a897c5a 2618#endif
dd41f596 2619 task_rq_unlock(rq, &flags);
fabf318e 2620 put_cpu();
1da177e4
LT
2621}
2622
e107be36
AK
2623#ifdef CONFIG_PREEMPT_NOTIFIERS
2624
2625/**
80dd99b3 2626 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2627 * @notifier: notifier struct to register
e107be36
AK
2628 */
2629void preempt_notifier_register(struct preempt_notifier *notifier)
2630{
2631 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2632}
2633EXPORT_SYMBOL_GPL(preempt_notifier_register);
2634
2635/**
2636 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2637 * @notifier: notifier struct to unregister
e107be36
AK
2638 *
2639 * This is safe to call from within a preemption notifier.
2640 */
2641void preempt_notifier_unregister(struct preempt_notifier *notifier)
2642{
2643 hlist_del(&notifier->link);
2644}
2645EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2646
2647static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2648{
2649 struct preempt_notifier *notifier;
2650 struct hlist_node *node;
2651
2652 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2653 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2654}
2655
2656static void
2657fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659{
2660 struct preempt_notifier *notifier;
2661 struct hlist_node *node;
2662
2663 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2664 notifier->ops->sched_out(notifier, next);
2665}
2666
6d6bc0ad 2667#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2668
2669static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2670{
2671}
2672
2673static void
2674fire_sched_out_preempt_notifiers(struct task_struct *curr,
2675 struct task_struct *next)
2676{
2677}
2678
6d6bc0ad 2679#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2680
4866cde0
NP
2681/**
2682 * prepare_task_switch - prepare to switch tasks
2683 * @rq: the runqueue preparing to switch
421cee29 2684 * @prev: the current task that is being switched out
4866cde0
NP
2685 * @next: the task we are going to switch to.
2686 *
2687 * This is called with the rq lock held and interrupts off. It must
2688 * be paired with a subsequent finish_task_switch after the context
2689 * switch.
2690 *
2691 * prepare_task_switch sets up locking and calls architecture specific
2692 * hooks.
2693 */
e107be36
AK
2694static inline void
2695prepare_task_switch(struct rq *rq, struct task_struct *prev,
2696 struct task_struct *next)
4866cde0 2697{
e107be36 2698 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2699 prepare_lock_switch(rq, next);
2700 prepare_arch_switch(next);
2701}
2702
1da177e4
LT
2703/**
2704 * finish_task_switch - clean up after a task-switch
344babaa 2705 * @rq: runqueue associated with task-switch
1da177e4
LT
2706 * @prev: the thread we just switched away from.
2707 *
4866cde0
NP
2708 * finish_task_switch must be called after the context switch, paired
2709 * with a prepare_task_switch call before the context switch.
2710 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2711 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2712 *
2713 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2714 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2715 * with the lock held can cause deadlocks; see schedule() for
2716 * details.)
2717 */
a9957449 2718static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2719 __releases(rq->lock)
2720{
1da177e4 2721 struct mm_struct *mm = rq->prev_mm;
55a101f8 2722 long prev_state;
1da177e4
LT
2723
2724 rq->prev_mm = NULL;
2725
2726 /*
2727 * A task struct has one reference for the use as "current".
c394cc9f 2728 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2729 * schedule one last time. The schedule call will never return, and
2730 * the scheduled task must drop that reference.
c394cc9f 2731 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2732 * still held, otherwise prev could be scheduled on another cpu, die
2733 * there before we look at prev->state, and then the reference would
2734 * be dropped twice.
2735 * Manfred Spraul <manfred@colorfullife.com>
2736 */
55a101f8 2737 prev_state = prev->state;
4866cde0 2738 finish_arch_switch(prev);
8381f65d
JI
2739#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2740 local_irq_disable();
2741#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2742 perf_event_task_sched_in(current);
8381f65d
JI
2743#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2744 local_irq_enable();
2745#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2746 finish_lock_switch(rq, prev);
e8fa1362 2747
e107be36 2748 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2749 if (mm)
2750 mmdrop(mm);
c394cc9f 2751 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2752 /*
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
9761eea8 2755 */
c6fd91f0 2756 kprobe_flush_task(prev);
1da177e4 2757 put_task_struct(prev);
c6fd91f0 2758 }
1da177e4
LT
2759}
2760
3f029d3c
GH
2761#ifdef CONFIG_SMP
2762
2763/* assumes rq->lock is held */
2764static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2765{
2766 if (prev->sched_class->pre_schedule)
2767 prev->sched_class->pre_schedule(rq, prev);
2768}
2769
2770/* rq->lock is NOT held, but preemption is disabled */
2771static inline void post_schedule(struct rq *rq)
2772{
2773 if (rq->post_schedule) {
2774 unsigned long flags;
2775
05fa785c 2776 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2777 if (rq->curr->sched_class->post_schedule)
2778 rq->curr->sched_class->post_schedule(rq);
05fa785c 2779 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2780
2781 rq->post_schedule = 0;
2782 }
2783}
2784
2785#else
da19ab51 2786
3f029d3c
GH
2787static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2788{
2789}
2790
2791static inline void post_schedule(struct rq *rq)
2792{
1da177e4
LT
2793}
2794
3f029d3c
GH
2795#endif
2796
1da177e4
LT
2797/**
2798 * schedule_tail - first thing a freshly forked thread must call.
2799 * @prev: the thread we just switched away from.
2800 */
36c8b586 2801asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2802 __releases(rq->lock)
2803{
70b97a7f
IM
2804 struct rq *rq = this_rq();
2805
4866cde0 2806 finish_task_switch(rq, prev);
da19ab51 2807
3f029d3c
GH
2808 /*
2809 * FIXME: do we need to worry about rq being invalidated by the
2810 * task_switch?
2811 */
2812 post_schedule(rq);
70b97a7f 2813
4866cde0
NP
2814#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2815 /* In this case, finish_task_switch does not reenable preemption */
2816 preempt_enable();
2817#endif
1da177e4 2818 if (current->set_child_tid)
b488893a 2819 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2820}
2821
2822/*
2823 * context_switch - switch to the new MM and the new
2824 * thread's register state.
2825 */
dd41f596 2826static inline void
70b97a7f 2827context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2828 struct task_struct *next)
1da177e4 2829{
dd41f596 2830 struct mm_struct *mm, *oldmm;
1da177e4 2831
e107be36 2832 prepare_task_switch(rq, prev, next);
0a16b607 2833 trace_sched_switch(rq, prev, next);
dd41f596
IM
2834 mm = next->mm;
2835 oldmm = prev->active_mm;
9226d125
ZA
2836 /*
2837 * For paravirt, this is coupled with an exit in switch_to to
2838 * combine the page table reload and the switch backend into
2839 * one hypercall.
2840 */
224101ed 2841 arch_start_context_switch(prev);
9226d125 2842
710390d9 2843 if (likely(!mm)) {
1da177e4
LT
2844 next->active_mm = oldmm;
2845 atomic_inc(&oldmm->mm_count);
2846 enter_lazy_tlb(oldmm, next);
2847 } else
2848 switch_mm(oldmm, mm, next);
2849
710390d9 2850 if (likely(!prev->mm)) {
1da177e4 2851 prev->active_mm = NULL;
1da177e4
LT
2852 rq->prev_mm = oldmm;
2853 }
3a5f5e48
IM
2854 /*
2855 * Since the runqueue lock will be released by the next
2856 * task (which is an invalid locking op but in the case
2857 * of the scheduler it's an obvious special-case), so we
2858 * do an early lockdep release here:
2859 */
2860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2861 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2862#endif
1da177e4
LT
2863
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev, next, prev);
2866
dd41f596
IM
2867 barrier();
2868 /*
2869 * this_rq must be evaluated again because prev may have moved
2870 * CPUs since it called schedule(), thus the 'rq' on its stack
2871 * frame will be invalid.
2872 */
2873 finish_task_switch(this_rq(), prev);
1da177e4
LT
2874}
2875
2876/*
2877 * nr_running, nr_uninterruptible and nr_context_switches:
2878 *
2879 * externally visible scheduler statistics: current number of runnable
2880 * threads, current number of uninterruptible-sleeping threads, total
2881 * number of context switches performed since bootup.
2882 */
2883unsigned long nr_running(void)
2884{
2885 unsigned long i, sum = 0;
2886
2887 for_each_online_cpu(i)
2888 sum += cpu_rq(i)->nr_running;
2889
2890 return sum;
f711f609 2891}
1da177e4
LT
2892
2893unsigned long nr_uninterruptible(void)
f711f609 2894{
1da177e4 2895 unsigned long i, sum = 0;
f711f609 2896
0a945022 2897 for_each_possible_cpu(i)
1da177e4 2898 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2899
2900 /*
1da177e4
LT
2901 * Since we read the counters lockless, it might be slightly
2902 * inaccurate. Do not allow it to go below zero though:
f711f609 2903 */
1da177e4
LT
2904 if (unlikely((long)sum < 0))
2905 sum = 0;
f711f609 2906
1da177e4 2907 return sum;
f711f609 2908}
f711f609 2909
1da177e4 2910unsigned long long nr_context_switches(void)
46cb4b7c 2911{
cc94abfc
SR
2912 int i;
2913 unsigned long long sum = 0;
46cb4b7c 2914
0a945022 2915 for_each_possible_cpu(i)
1da177e4 2916 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2917
1da177e4
LT
2918 return sum;
2919}
483b4ee6 2920
1da177e4
LT
2921unsigned long nr_iowait(void)
2922{
2923 unsigned long i, sum = 0;
483b4ee6 2924
0a945022 2925 for_each_possible_cpu(i)
1da177e4 2926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2927
1da177e4
LT
2928 return sum;
2929}
483b4ee6 2930
69d25870
AV
2931unsigned long nr_iowait_cpu(void)
2932{
2933 struct rq *this = this_rq();
2934 return atomic_read(&this->nr_iowait);
2935}
46cb4b7c 2936
69d25870
AV
2937unsigned long this_cpu_load(void)
2938{
2939 struct rq *this = this_rq();
2940 return this->cpu_load[0];
2941}
e790fb0b 2942
46cb4b7c 2943
dce48a84
TG
2944/* Variables and functions for calc_load */
2945static atomic_long_t calc_load_tasks;
2946static unsigned long calc_load_update;
2947unsigned long avenrun[3];
2948EXPORT_SYMBOL(avenrun);
46cb4b7c 2949
2d02494f
TG
2950/**
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2955 *
2956 * These values are estimates at best, so no need for locking.
2957 */
2958void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2959{
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2963}
46cb4b7c 2964
dce48a84
TG
2965static unsigned long
2966calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2967{
dce48a84
TG
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2971}
46cb4b7c
SS
2972
2973/*
dce48a84
TG
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
7835b98b 2976 */
dce48a84 2977void calc_global_load(void)
7835b98b 2978{
dce48a84
TG
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
1da177e4 2981
dce48a84
TG
2982 if (time_before(jiffies, upd))
2983 return;
1da177e4 2984
dce48a84
TG
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2987
dce48a84
TG
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2991
dce48a84
TG
2992 calc_load_update += LOAD_FREQ;
2993}
1da177e4 2994
dce48a84
TG
2995/*
2996 * Either called from update_cpu_load() or from a cpu going idle
2997 */
2998static void calc_load_account_active(struct rq *this_rq)
2999{
3000 long nr_active, delta;
08c183f3 3001
dce48a84
TG
3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3004
dce48a84
TG
3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3009 }
46cb4b7c
SS
3010}
3011
3012/*
dd41f596
IM
3013 * Update rq->cpu_load[] statistics. This function is usually called every
3014 * scheduler tick (TICK_NSEC).
46cb4b7c 3015 */
dd41f596 3016static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3017{
495eca49 3018 unsigned long this_load = this_rq->load.weight;
dd41f596 3019 int i, scale;
46cb4b7c 3020
dd41f596 3021 this_rq->nr_load_updates++;
46cb4b7c 3022
dd41f596
IM
3023 /* Update our load: */
3024 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3025 unsigned long old_load, new_load;
7d1e6a9b 3026
dd41f596 3027 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3028
dd41f596
IM
3029 old_load = this_rq->cpu_load[i];
3030 new_load = this_load;
a25707f3
IM
3031 /*
3032 * Round up the averaging division if load is increasing. This
3033 * prevents us from getting stuck on 9 if the load is 10, for
3034 * example.
3035 */
3036 if (new_load > old_load)
3037 new_load += scale-1;
dd41f596
IM
3038 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3039 }
46cb4b7c 3040
dce48a84
TG
3041 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3042 this_rq->calc_load_update += LOAD_FREQ;
3043 calc_load_account_active(this_rq);
46cb4b7c 3044 }
46cb4b7c
SS
3045}
3046
dd41f596 3047#ifdef CONFIG_SMP
8a0be9ef 3048
46cb4b7c 3049/*
38022906
PZ
3050 * sched_exec - execve() is a valuable balancing opportunity, because at
3051 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3052 */
38022906 3053void sched_exec(void)
46cb4b7c 3054{
38022906 3055 struct task_struct *p = current;
70b97a7f 3056 struct migration_req req;
1da177e4 3057 unsigned long flags;
70b97a7f 3058 struct rq *rq;
0017d735 3059 int dest_cpu;
46cb4b7c 3060
1da177e4 3061 rq = task_rq_lock(p, &flags);
0017d735
PZ
3062 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3063 if (dest_cpu == smp_processor_id())
3064 goto unlock;
3065
46cb4b7c 3066 /*
38022906 3067 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3068 */
30da688e
ON
3069 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3070 likely(cpu_active(dest_cpu)) &&
3071 migrate_task(p, dest_cpu, &req)) {
1da177e4
LT
3072 /* Need to wait for migration thread (might exit: take ref). */
3073 struct task_struct *mt = rq->migration_thread;
dd41f596 3074
1da177e4
LT
3075 get_task_struct(mt);
3076 task_rq_unlock(rq, &flags);
3077 wake_up_process(mt);
3078 put_task_struct(mt);
3079 wait_for_completion(&req.done);
dd41f596 3080
1da177e4
LT
3081 return;
3082 }
0017d735 3083unlock:
1da177e4 3084 task_rq_unlock(rq, &flags);
1da177e4 3085}
dd41f596 3086
1da177e4
LT
3087#endif
3088
1da177e4
LT
3089DEFINE_PER_CPU(struct kernel_stat, kstat);
3090
3091EXPORT_PER_CPU_SYMBOL(kstat);
3092
3093/*
c5f8d995 3094 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3095 * @p in case that task is currently running.
c5f8d995
HS
3096 *
3097 * Called with task_rq_lock() held on @rq.
1da177e4 3098 */
c5f8d995
HS
3099static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3100{
3101 u64 ns = 0;
3102
3103 if (task_current(rq, p)) {
3104 update_rq_clock(rq);
3105 ns = rq->clock - p->se.exec_start;
3106 if ((s64)ns < 0)
3107 ns = 0;
3108 }
3109
3110 return ns;
3111}
3112
bb34d92f 3113unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3114{
1da177e4 3115 unsigned long flags;
41b86e9c 3116 struct rq *rq;
bb34d92f 3117 u64 ns = 0;
48f24c4d 3118
41b86e9c 3119 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3120 ns = do_task_delta_exec(p, rq);
3121 task_rq_unlock(rq, &flags);
1508487e 3122
c5f8d995
HS
3123 return ns;
3124}
f06febc9 3125
c5f8d995
HS
3126/*
3127 * Return accounted runtime for the task.
3128 * In case the task is currently running, return the runtime plus current's
3129 * pending runtime that have not been accounted yet.
3130 */
3131unsigned long long task_sched_runtime(struct task_struct *p)
3132{
3133 unsigned long flags;
3134 struct rq *rq;
3135 u64 ns = 0;
3136
3137 rq = task_rq_lock(p, &flags);
3138 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3139 task_rq_unlock(rq, &flags);
3140
3141 return ns;
3142}
48f24c4d 3143
c5f8d995
HS
3144/*
3145 * Return sum_exec_runtime for the thread group.
3146 * In case the task is currently running, return the sum plus current's
3147 * pending runtime that have not been accounted yet.
3148 *
3149 * Note that the thread group might have other running tasks as well,
3150 * so the return value not includes other pending runtime that other
3151 * running tasks might have.
3152 */
3153unsigned long long thread_group_sched_runtime(struct task_struct *p)
3154{
3155 struct task_cputime totals;
3156 unsigned long flags;
3157 struct rq *rq;
3158 u64 ns;
3159
3160 rq = task_rq_lock(p, &flags);
3161 thread_group_cputime(p, &totals);
3162 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3163 task_rq_unlock(rq, &flags);
48f24c4d 3164
1da177e4
LT
3165 return ns;
3166}
3167
1da177e4
LT
3168/*
3169 * Account user cpu time to a process.
3170 * @p: the process that the cpu time gets accounted to
1da177e4 3171 * @cputime: the cpu time spent in user space since the last update
457533a7 3172 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3173 */
457533a7
MS
3174void account_user_time(struct task_struct *p, cputime_t cputime,
3175 cputime_t cputime_scaled)
1da177e4
LT
3176{
3177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3178 cputime64_t tmp;
3179
457533a7 3180 /* Add user time to process. */
1da177e4 3181 p->utime = cputime_add(p->utime, cputime);
457533a7 3182 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3183 account_group_user_time(p, cputime);
1da177e4
LT
3184
3185 /* Add user time to cpustat. */
3186 tmp = cputime_to_cputime64(cputime);
3187 if (TASK_NICE(p) > 0)
3188 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3189 else
3190 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3191
3192 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3193 /* Account for user time used */
3194 acct_update_integrals(p);
1da177e4
LT
3195}
3196
94886b84
LV
3197/*
3198 * Account guest cpu time to a process.
3199 * @p: the process that the cpu time gets accounted to
3200 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3201 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3202 */
457533a7
MS
3203static void account_guest_time(struct task_struct *p, cputime_t cputime,
3204 cputime_t cputime_scaled)
94886b84
LV
3205{
3206 cputime64_t tmp;
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3208
3209 tmp = cputime_to_cputime64(cputime);
3210
457533a7 3211 /* Add guest time to process. */
94886b84 3212 p->utime = cputime_add(p->utime, cputime);
457533a7 3213 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3214 account_group_user_time(p, cputime);
94886b84
LV
3215 p->gtime = cputime_add(p->gtime, cputime);
3216
457533a7 3217 /* Add guest time to cpustat. */
ce0e7b28
RO
3218 if (TASK_NICE(p) > 0) {
3219 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3220 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3221 } else {
3222 cpustat->user = cputime64_add(cpustat->user, tmp);
3223 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3224 }
94886b84
LV
3225}
3226
1da177e4
LT
3227/*
3228 * Account system cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @hardirq_offset: the offset to subtract from hardirq_count()
3231 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3232 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3233 */
3234void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3235 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3236{
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3238 cputime64_t tmp;
3239
983ed7a6 3240 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3241 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3242 return;
3243 }
94886b84 3244
457533a7 3245 /* Add system time to process. */
1da177e4 3246 p->stime = cputime_add(p->stime, cputime);
457533a7 3247 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3248 account_group_system_time(p, cputime);
1da177e4
LT
3249
3250 /* Add system time to cpustat. */
3251 tmp = cputime_to_cputime64(cputime);
3252 if (hardirq_count() - hardirq_offset)
3253 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3254 else if (softirq_count())
3255 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3256 else
79741dd3
MS
3257 cpustat->system = cputime64_add(cpustat->system, tmp);
3258
ef12fefa
BR
3259 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3260
1da177e4
LT
3261 /* Account for system time used */
3262 acct_update_integrals(p);
1da177e4
LT
3263}
3264
c66f08be 3265/*
1da177e4 3266 * Account for involuntary wait time.
1da177e4 3267 * @steal: the cpu time spent in involuntary wait
c66f08be 3268 */
79741dd3 3269void account_steal_time(cputime_t cputime)
c66f08be 3270{
79741dd3
MS
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3272 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3273
3274 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3275}
3276
1da177e4 3277/*
79741dd3
MS
3278 * Account for idle time.
3279 * @cputime: the cpu time spent in idle wait
1da177e4 3280 */
79741dd3 3281void account_idle_time(cputime_t cputime)
1da177e4
LT
3282{
3283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3284 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3285 struct rq *rq = this_rq();
1da177e4 3286
79741dd3
MS
3287 if (atomic_read(&rq->nr_iowait) > 0)
3288 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3289 else
3290 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3291}
3292
79741dd3
MS
3293#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3294
3295/*
3296 * Account a single tick of cpu time.
3297 * @p: the process that the cpu time gets accounted to
3298 * @user_tick: indicates if the tick is a user or a system tick
3299 */
3300void account_process_tick(struct task_struct *p, int user_tick)
3301{
a42548a1 3302 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3303 struct rq *rq = this_rq();
3304
3305 if (user_tick)
a42548a1 3306 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3307 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3308 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3309 one_jiffy_scaled);
3310 else
a42548a1 3311 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3312}
3313
3314/*
3315 * Account multiple ticks of steal time.
3316 * @p: the process from which the cpu time has been stolen
3317 * @ticks: number of stolen ticks
3318 */
3319void account_steal_ticks(unsigned long ticks)
3320{
3321 account_steal_time(jiffies_to_cputime(ticks));
3322}
3323
3324/*
3325 * Account multiple ticks of idle time.
3326 * @ticks: number of stolen ticks
3327 */
3328void account_idle_ticks(unsigned long ticks)
3329{
3330 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3331}
3332
79741dd3
MS
3333#endif
3334
49048622
BS
3335/*
3336 * Use precise platform statistics if available:
3337 */
3338#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3339void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3340{
d99ca3b9
HS
3341 *ut = p->utime;
3342 *st = p->stime;
49048622
BS
3343}
3344
0cf55e1e 3345void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3346{
0cf55e1e
HS
3347 struct task_cputime cputime;
3348
3349 thread_group_cputime(p, &cputime);
3350
3351 *ut = cputime.utime;
3352 *st = cputime.stime;
49048622
BS
3353}
3354#else
761b1d26
HS
3355
3356#ifndef nsecs_to_cputime
b7b20df9 3357# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3358#endif
3359
d180c5bc 3360void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3361{
d99ca3b9 3362 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3363
3364 /*
3365 * Use CFS's precise accounting:
3366 */
d180c5bc 3367 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3368
3369 if (total) {
d180c5bc
HS
3370 u64 temp;
3371
3372 temp = (u64)(rtime * utime);
49048622 3373 do_div(temp, total);
d180c5bc
HS
3374 utime = (cputime_t)temp;
3375 } else
3376 utime = rtime;
49048622 3377
d180c5bc
HS
3378 /*
3379 * Compare with previous values, to keep monotonicity:
3380 */
761b1d26 3381 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3382 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3383
d99ca3b9
HS
3384 *ut = p->prev_utime;
3385 *st = p->prev_stime;
49048622
BS
3386}
3387
0cf55e1e
HS
3388/*
3389 * Must be called with siglock held.
3390 */
3391void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3392{
0cf55e1e
HS
3393 struct signal_struct *sig = p->signal;
3394 struct task_cputime cputime;
3395 cputime_t rtime, utime, total;
49048622 3396
0cf55e1e 3397 thread_group_cputime(p, &cputime);
49048622 3398
0cf55e1e
HS
3399 total = cputime_add(cputime.utime, cputime.stime);
3400 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3401
0cf55e1e
HS
3402 if (total) {
3403 u64 temp;
49048622 3404
0cf55e1e
HS
3405 temp = (u64)(rtime * cputime.utime);
3406 do_div(temp, total);
3407 utime = (cputime_t)temp;
3408 } else
3409 utime = rtime;
3410
3411 sig->prev_utime = max(sig->prev_utime, utime);
3412 sig->prev_stime = max(sig->prev_stime,
3413 cputime_sub(rtime, sig->prev_utime));
3414
3415 *ut = sig->prev_utime;
3416 *st = sig->prev_stime;
49048622 3417}
49048622 3418#endif
49048622 3419
7835b98b
CL
3420/*
3421 * This function gets called by the timer code, with HZ frequency.
3422 * We call it with interrupts disabled.
3423 *
3424 * It also gets called by the fork code, when changing the parent's
3425 * timeslices.
3426 */
3427void scheduler_tick(void)
3428{
7835b98b
CL
3429 int cpu = smp_processor_id();
3430 struct rq *rq = cpu_rq(cpu);
dd41f596 3431 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3432
3433 sched_clock_tick();
dd41f596 3434
05fa785c 3435 raw_spin_lock(&rq->lock);
3e51f33f 3436 update_rq_clock(rq);
f1a438d8 3437 update_cpu_load(rq);
fa85ae24 3438 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3439 raw_spin_unlock(&rq->lock);
7835b98b 3440
49f47433 3441 perf_event_task_tick(curr);
e220d2dc 3442
e418e1c2 3443#ifdef CONFIG_SMP
dd41f596
IM
3444 rq->idle_at_tick = idle_cpu(cpu);
3445 trigger_load_balance(rq, cpu);
e418e1c2 3446#endif
1da177e4
LT
3447}
3448
132380a0 3449notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3450{
3451 if (in_lock_functions(addr)) {
3452 addr = CALLER_ADDR2;
3453 if (in_lock_functions(addr))
3454 addr = CALLER_ADDR3;
3455 }
3456 return addr;
3457}
1da177e4 3458
7e49fcce
SR
3459#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3460 defined(CONFIG_PREEMPT_TRACER))
3461
43627582 3462void __kprobes add_preempt_count(int val)
1da177e4 3463{
6cd8a4bb 3464#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3465 /*
3466 * Underflow?
3467 */
9a11b49a
IM
3468 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3469 return;
6cd8a4bb 3470#endif
1da177e4 3471 preempt_count() += val;
6cd8a4bb 3472#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3473 /*
3474 * Spinlock count overflowing soon?
3475 */
33859f7f
MOS
3476 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3477 PREEMPT_MASK - 10);
6cd8a4bb
SR
3478#endif
3479 if (preempt_count() == val)
3480 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3481}
3482EXPORT_SYMBOL(add_preempt_count);
3483
43627582 3484void __kprobes sub_preempt_count(int val)
1da177e4 3485{
6cd8a4bb 3486#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3487 /*
3488 * Underflow?
3489 */
01e3eb82 3490 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3491 return;
1da177e4
LT
3492 /*
3493 * Is the spinlock portion underflowing?
3494 */
9a11b49a
IM
3495 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3496 !(preempt_count() & PREEMPT_MASK)))
3497 return;
6cd8a4bb 3498#endif
9a11b49a 3499
6cd8a4bb
SR
3500 if (preempt_count() == val)
3501 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3502 preempt_count() -= val;
3503}
3504EXPORT_SYMBOL(sub_preempt_count);
3505
3506#endif
3507
3508/*
dd41f596 3509 * Print scheduling while atomic bug:
1da177e4 3510 */
dd41f596 3511static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3512{
838225b4
SS
3513 struct pt_regs *regs = get_irq_regs();
3514
3df0fc5b
PZ
3515 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3516 prev->comm, prev->pid, preempt_count());
838225b4 3517
dd41f596 3518 debug_show_held_locks(prev);
e21f5b15 3519 print_modules();
dd41f596
IM
3520 if (irqs_disabled())
3521 print_irqtrace_events(prev);
838225b4
SS
3522
3523 if (regs)
3524 show_regs(regs);
3525 else
3526 dump_stack();
dd41f596 3527}
1da177e4 3528
dd41f596
IM
3529/*
3530 * Various schedule()-time debugging checks and statistics:
3531 */
3532static inline void schedule_debug(struct task_struct *prev)
3533{
1da177e4 3534 /*
41a2d6cf 3535 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3536 * schedule() atomically, we ignore that path for now.
3537 * Otherwise, whine if we are scheduling when we should not be.
3538 */
3f33a7ce 3539 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3540 __schedule_bug(prev);
3541
1da177e4
LT
3542 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3543
2d72376b 3544 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3545#ifdef CONFIG_SCHEDSTATS
3546 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3547 schedstat_inc(this_rq(), bkl_count);
3548 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3549 }
3550#endif
dd41f596
IM
3551}
3552
6cecd084 3553static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3554{
a64692a3
MG
3555 if (prev->se.on_rq)
3556 update_rq_clock(rq);
3557 rq->skip_clock_update = 0;
6cecd084 3558 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3559}
3560
dd41f596
IM
3561/*
3562 * Pick up the highest-prio task:
3563 */
3564static inline struct task_struct *
b67802ea 3565pick_next_task(struct rq *rq)
dd41f596 3566{
5522d5d5 3567 const struct sched_class *class;
dd41f596 3568 struct task_struct *p;
1da177e4
LT
3569
3570 /*
dd41f596
IM
3571 * Optimization: we know that if all tasks are in
3572 * the fair class we can call that function directly:
1da177e4 3573 */
dd41f596 3574 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3575 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3576 if (likely(p))
3577 return p;
1da177e4
LT
3578 }
3579
dd41f596
IM
3580 class = sched_class_highest;
3581 for ( ; ; ) {
fb8d4724 3582 p = class->pick_next_task(rq);
dd41f596
IM
3583 if (p)
3584 return p;
3585 /*
3586 * Will never be NULL as the idle class always
3587 * returns a non-NULL p:
3588 */
3589 class = class->next;
3590 }
3591}
1da177e4 3592
dd41f596
IM
3593/*
3594 * schedule() is the main scheduler function.
3595 */
ff743345 3596asmlinkage void __sched schedule(void)
dd41f596
IM
3597{
3598 struct task_struct *prev, *next;
67ca7bde 3599 unsigned long *switch_count;
dd41f596 3600 struct rq *rq;
31656519 3601 int cpu;
dd41f596 3602
ff743345
PZ
3603need_resched:
3604 preempt_disable();
dd41f596
IM
3605 cpu = smp_processor_id();
3606 rq = cpu_rq(cpu);
d6714c22 3607 rcu_sched_qs(cpu);
dd41f596
IM
3608 prev = rq->curr;
3609 switch_count = &prev->nivcsw;
3610
3611 release_kernel_lock(prev);
3612need_resched_nonpreemptible:
3613
3614 schedule_debug(prev);
1da177e4 3615
31656519 3616 if (sched_feat(HRTICK))
f333fdc9 3617 hrtick_clear(rq);
8f4d37ec 3618
05fa785c 3619 raw_spin_lock_irq(&rq->lock);
1e819950 3620 clear_tsk_need_resched(prev);
1da177e4 3621
1da177e4 3622 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3623 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3624 prev->state = TASK_RUNNING;
16882c1e 3625 else
2e1cb74a 3626 deactivate_task(rq, prev, 1);
dd41f596 3627 switch_count = &prev->nvcsw;
1da177e4
LT
3628 }
3629
3f029d3c 3630 pre_schedule(rq, prev);
f65eda4f 3631
dd41f596 3632 if (unlikely(!rq->nr_running))
1da177e4 3633 idle_balance(cpu, rq);
1da177e4 3634
df1c99d4 3635 put_prev_task(rq, prev);
b67802ea 3636 next = pick_next_task(rq);
1da177e4 3637
1da177e4 3638 if (likely(prev != next)) {
673a90a1 3639 sched_info_switch(prev, next);
49f47433 3640 perf_event_task_sched_out(prev, next);
673a90a1 3641
1da177e4
LT
3642 rq->nr_switches++;
3643 rq->curr = next;
3644 ++*switch_count;
3645
dd41f596 3646 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3647 /*
3648 * the context switch might have flipped the stack from under
3649 * us, hence refresh the local variables.
3650 */
3651 cpu = smp_processor_id();
3652 rq = cpu_rq(cpu);
1da177e4 3653 } else
05fa785c 3654 raw_spin_unlock_irq(&rq->lock);
1da177e4 3655
3f029d3c 3656 post_schedule(rq);
1da177e4 3657
6d558c3a
YZ
3658 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3659 prev = rq->curr;
3660 switch_count = &prev->nivcsw;
1da177e4 3661 goto need_resched_nonpreemptible;
6d558c3a 3662 }
8f4d37ec 3663
1da177e4 3664 preempt_enable_no_resched();
ff743345 3665 if (need_resched())
1da177e4
LT
3666 goto need_resched;
3667}
1da177e4
LT
3668EXPORT_SYMBOL(schedule);
3669
c08f7829 3670#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3671/*
3672 * Look out! "owner" is an entirely speculative pointer
3673 * access and not reliable.
3674 */
3675int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3676{
3677 unsigned int cpu;
3678 struct rq *rq;
3679
3680 if (!sched_feat(OWNER_SPIN))
3681 return 0;
3682
3683#ifdef CONFIG_DEBUG_PAGEALLOC
3684 /*
3685 * Need to access the cpu field knowing that
3686 * DEBUG_PAGEALLOC could have unmapped it if
3687 * the mutex owner just released it and exited.
3688 */
3689 if (probe_kernel_address(&owner->cpu, cpu))
3690 goto out;
3691#else
3692 cpu = owner->cpu;
3693#endif
3694
3695 /*
3696 * Even if the access succeeded (likely case),
3697 * the cpu field may no longer be valid.
3698 */
3699 if (cpu >= nr_cpumask_bits)
3700 goto out;
3701
3702 /*
3703 * We need to validate that we can do a
3704 * get_cpu() and that we have the percpu area.
3705 */
3706 if (!cpu_online(cpu))
3707 goto out;
3708
3709 rq = cpu_rq(cpu);
3710
3711 for (;;) {
3712 /*
3713 * Owner changed, break to re-assess state.
3714 */
3715 if (lock->owner != owner)
3716 break;
3717
3718 /*
3719 * Is that owner really running on that cpu?
3720 */
3721 if (task_thread_info(rq->curr) != owner || need_resched())
3722 return 0;
3723
3724 cpu_relax();
3725 }
3726out:
3727 return 1;
3728}
3729#endif
3730
1da177e4
LT
3731#ifdef CONFIG_PREEMPT
3732/*
2ed6e34f 3733 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3734 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3735 * occur there and call schedule directly.
3736 */
3737asmlinkage void __sched preempt_schedule(void)
3738{
3739 struct thread_info *ti = current_thread_info();
6478d880 3740
1da177e4
LT
3741 /*
3742 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3743 * we do not want to preempt the current task. Just return..
1da177e4 3744 */
beed33a8 3745 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3746 return;
3747
3a5c359a
AK
3748 do {
3749 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3750 schedule();
3a5c359a 3751 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3752
3a5c359a
AK
3753 /*
3754 * Check again in case we missed a preemption opportunity
3755 * between schedule and now.
3756 */
3757 barrier();
5ed0cec0 3758 } while (need_resched());
1da177e4 3759}
1da177e4
LT
3760EXPORT_SYMBOL(preempt_schedule);
3761
3762/*
2ed6e34f 3763 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3764 * off of irq context.
3765 * Note, that this is called and return with irqs disabled. This will
3766 * protect us against recursive calling from irq.
3767 */
3768asmlinkage void __sched preempt_schedule_irq(void)
3769{
3770 struct thread_info *ti = current_thread_info();
6478d880 3771
2ed6e34f 3772 /* Catch callers which need to be fixed */
1da177e4
LT
3773 BUG_ON(ti->preempt_count || !irqs_disabled());
3774
3a5c359a
AK
3775 do {
3776 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3777 local_irq_enable();
3778 schedule();
3779 local_irq_disable();
3a5c359a 3780 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3781
3a5c359a
AK
3782 /*
3783 * Check again in case we missed a preemption opportunity
3784 * between schedule and now.
3785 */
3786 barrier();
5ed0cec0 3787 } while (need_resched());
1da177e4
LT
3788}
3789
3790#endif /* CONFIG_PREEMPT */
3791
63859d4f 3792int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3793 void *key)
1da177e4 3794{
63859d4f 3795 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3796}
1da177e4
LT
3797EXPORT_SYMBOL(default_wake_function);
3798
3799/*
41a2d6cf
IM
3800 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3801 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3802 * number) then we wake all the non-exclusive tasks and one exclusive task.
3803 *
3804 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3805 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3806 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3807 */
78ddb08f 3808static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3809 int nr_exclusive, int wake_flags, void *key)
1da177e4 3810{
2e45874c 3811 wait_queue_t *curr, *next;
1da177e4 3812
2e45874c 3813 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3814 unsigned flags = curr->flags;
3815
63859d4f 3816 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3817 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3818 break;
3819 }
3820}
3821
3822/**
3823 * __wake_up - wake up threads blocked on a waitqueue.
3824 * @q: the waitqueue
3825 * @mode: which threads
3826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3827 * @key: is directly passed to the wakeup function
50fa610a
DH
3828 *
3829 * It may be assumed that this function implies a write memory barrier before
3830 * changing the task state if and only if any tasks are woken up.
1da177e4 3831 */
7ad5b3a5 3832void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3833 int nr_exclusive, void *key)
1da177e4
LT
3834{
3835 unsigned long flags;
3836
3837 spin_lock_irqsave(&q->lock, flags);
3838 __wake_up_common(q, mode, nr_exclusive, 0, key);
3839 spin_unlock_irqrestore(&q->lock, flags);
3840}
1da177e4
LT
3841EXPORT_SYMBOL(__wake_up);
3842
3843/*
3844 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3845 */
7ad5b3a5 3846void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3847{
3848 __wake_up_common(q, mode, 1, 0, NULL);
3849}
3850
4ede816a
DL
3851void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3852{
3853 __wake_up_common(q, mode, 1, 0, key);
3854}
3855
1da177e4 3856/**
4ede816a 3857 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3858 * @q: the waitqueue
3859 * @mode: which threads
3860 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3861 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3862 *
3863 * The sync wakeup differs that the waker knows that it will schedule
3864 * away soon, so while the target thread will be woken up, it will not
3865 * be migrated to another CPU - ie. the two threads are 'synchronized'
3866 * with each other. This can prevent needless bouncing between CPUs.
3867 *
3868 * On UP it can prevent extra preemption.
50fa610a
DH
3869 *
3870 * It may be assumed that this function implies a write memory barrier before
3871 * changing the task state if and only if any tasks are woken up.
1da177e4 3872 */
4ede816a
DL
3873void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3874 int nr_exclusive, void *key)
1da177e4
LT
3875{
3876 unsigned long flags;
7d478721 3877 int wake_flags = WF_SYNC;
1da177e4
LT
3878
3879 if (unlikely(!q))
3880 return;
3881
3882 if (unlikely(!nr_exclusive))
7d478721 3883 wake_flags = 0;
1da177e4
LT
3884
3885 spin_lock_irqsave(&q->lock, flags);
7d478721 3886 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3887 spin_unlock_irqrestore(&q->lock, flags);
3888}
4ede816a
DL
3889EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3890
3891/*
3892 * __wake_up_sync - see __wake_up_sync_key()
3893 */
3894void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3895{
3896 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3897}
1da177e4
LT
3898EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3899
65eb3dc6
KD
3900/**
3901 * complete: - signals a single thread waiting on this completion
3902 * @x: holds the state of this particular completion
3903 *
3904 * This will wake up a single thread waiting on this completion. Threads will be
3905 * awakened in the same order in which they were queued.
3906 *
3907 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3908 *
3909 * It may be assumed that this function implies a write memory barrier before
3910 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3911 */
b15136e9 3912void complete(struct completion *x)
1da177e4
LT
3913{
3914 unsigned long flags;
3915
3916 spin_lock_irqsave(&x->wait.lock, flags);
3917 x->done++;
d9514f6c 3918 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3919 spin_unlock_irqrestore(&x->wait.lock, flags);
3920}
3921EXPORT_SYMBOL(complete);
3922
65eb3dc6
KD
3923/**
3924 * complete_all: - signals all threads waiting on this completion
3925 * @x: holds the state of this particular completion
3926 *
3927 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3928 *
3929 * It may be assumed that this function implies a write memory barrier before
3930 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3931 */
b15136e9 3932void complete_all(struct completion *x)
1da177e4
LT
3933{
3934 unsigned long flags;
3935
3936 spin_lock_irqsave(&x->wait.lock, flags);
3937 x->done += UINT_MAX/2;
d9514f6c 3938 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3939 spin_unlock_irqrestore(&x->wait.lock, flags);
3940}
3941EXPORT_SYMBOL(complete_all);
3942
8cbbe86d
AK
3943static inline long __sched
3944do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3945{
1da177e4
LT
3946 if (!x->done) {
3947 DECLARE_WAITQUEUE(wait, current);
3948
3949 wait.flags |= WQ_FLAG_EXCLUSIVE;
3950 __add_wait_queue_tail(&x->wait, &wait);
3951 do {
94d3d824 3952 if (signal_pending_state(state, current)) {
ea71a546
ON
3953 timeout = -ERESTARTSYS;
3954 break;
8cbbe86d
AK
3955 }
3956 __set_current_state(state);
1da177e4
LT
3957 spin_unlock_irq(&x->wait.lock);
3958 timeout = schedule_timeout(timeout);
3959 spin_lock_irq(&x->wait.lock);
ea71a546 3960 } while (!x->done && timeout);
1da177e4 3961 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3962 if (!x->done)
3963 return timeout;
1da177e4
LT
3964 }
3965 x->done--;
ea71a546 3966 return timeout ?: 1;
1da177e4 3967}
1da177e4 3968
8cbbe86d
AK
3969static long __sched
3970wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3971{
1da177e4
LT
3972 might_sleep();
3973
3974 spin_lock_irq(&x->wait.lock);
8cbbe86d 3975 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3976 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3977 return timeout;
3978}
1da177e4 3979
65eb3dc6
KD
3980/**
3981 * wait_for_completion: - waits for completion of a task
3982 * @x: holds the state of this particular completion
3983 *
3984 * This waits to be signaled for completion of a specific task. It is NOT
3985 * interruptible and there is no timeout.
3986 *
3987 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3988 * and interrupt capability. Also see complete().
3989 */
b15136e9 3990void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3991{
3992 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3993}
8cbbe86d 3994EXPORT_SYMBOL(wait_for_completion);
1da177e4 3995
65eb3dc6
KD
3996/**
3997 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3998 * @x: holds the state of this particular completion
3999 * @timeout: timeout value in jiffies
4000 *
4001 * This waits for either a completion of a specific task to be signaled or for a
4002 * specified timeout to expire. The timeout is in jiffies. It is not
4003 * interruptible.
4004 */
b15136e9 4005unsigned long __sched
8cbbe86d 4006wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4007{
8cbbe86d 4008 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4009}
8cbbe86d 4010EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4011
65eb3dc6
KD
4012/**
4013 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4014 * @x: holds the state of this particular completion
4015 *
4016 * This waits for completion of a specific task to be signaled. It is
4017 * interruptible.
4018 */
8cbbe86d 4019int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4020{
51e97990
AK
4021 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4022 if (t == -ERESTARTSYS)
4023 return t;
4024 return 0;
0fec171c 4025}
8cbbe86d 4026EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4027
65eb3dc6
KD
4028/**
4029 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4030 * @x: holds the state of this particular completion
4031 * @timeout: timeout value in jiffies
4032 *
4033 * This waits for either a completion of a specific task to be signaled or for a
4034 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4035 */
b15136e9 4036unsigned long __sched
8cbbe86d
AK
4037wait_for_completion_interruptible_timeout(struct completion *x,
4038 unsigned long timeout)
0fec171c 4039{
8cbbe86d 4040 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4041}
8cbbe86d 4042EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4043
65eb3dc6
KD
4044/**
4045 * wait_for_completion_killable: - waits for completion of a task (killable)
4046 * @x: holds the state of this particular completion
4047 *
4048 * This waits to be signaled for completion of a specific task. It can be
4049 * interrupted by a kill signal.
4050 */
009e577e
MW
4051int __sched wait_for_completion_killable(struct completion *x)
4052{
4053 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4054 if (t == -ERESTARTSYS)
4055 return t;
4056 return 0;
4057}
4058EXPORT_SYMBOL(wait_for_completion_killable);
4059
be4de352
DC
4060/**
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4063 *
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4066 *
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4071 */
4072bool try_wait_for_completion(struct completion *x)
4073{
7539a3b3 4074 unsigned long flags;
be4de352
DC
4075 int ret = 1;
4076
7539a3b3 4077 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4078 if (!x->done)
4079 ret = 0;
4080 else
4081 x->done--;
7539a3b3 4082 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4083 return ret;
4084}
4085EXPORT_SYMBOL(try_wait_for_completion);
4086
4087/**
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4090 *
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4093 *
4094 */
4095bool completion_done(struct completion *x)
4096{
7539a3b3 4097 unsigned long flags;
be4de352
DC
4098 int ret = 1;
4099
7539a3b3 4100 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4101 if (!x->done)
4102 ret = 0;
7539a3b3 4103 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4104 return ret;
4105}
4106EXPORT_SYMBOL(completion_done);
4107
8cbbe86d
AK
4108static long __sched
4109sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4110{
0fec171c
IM
4111 unsigned long flags;
4112 wait_queue_t wait;
4113
4114 init_waitqueue_entry(&wait, current);
1da177e4 4115
8cbbe86d 4116 __set_current_state(state);
1da177e4 4117
8cbbe86d
AK
4118 spin_lock_irqsave(&q->lock, flags);
4119 __add_wait_queue(q, &wait);
4120 spin_unlock(&q->lock);
4121 timeout = schedule_timeout(timeout);
4122 spin_lock_irq(&q->lock);
4123 __remove_wait_queue(q, &wait);
4124 spin_unlock_irqrestore(&q->lock, flags);
4125
4126 return timeout;
4127}
4128
4129void __sched interruptible_sleep_on(wait_queue_head_t *q)
4130{
4131 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4132}
1da177e4
LT
4133EXPORT_SYMBOL(interruptible_sleep_on);
4134
0fec171c 4135long __sched
95cdf3b7 4136interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4137{
8cbbe86d 4138 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4139}
1da177e4
LT
4140EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4141
0fec171c 4142void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4143{
8cbbe86d 4144 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4145}
1da177e4
LT
4146EXPORT_SYMBOL(sleep_on);
4147
0fec171c 4148long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4149{
8cbbe86d 4150 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4151}
1da177e4
LT
4152EXPORT_SYMBOL(sleep_on_timeout);
4153
b29739f9
IM
4154#ifdef CONFIG_RT_MUTEXES
4155
4156/*
4157 * rt_mutex_setprio - set the current priority of a task
4158 * @p: task
4159 * @prio: prio value (kernel-internal form)
4160 *
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4163 *
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4165 */
36c8b586 4166void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4167{
4168 unsigned long flags;
83b699ed 4169 int oldprio, on_rq, running;
70b97a7f 4170 struct rq *rq;
83ab0aa0 4171 const struct sched_class *prev_class;
b29739f9
IM
4172
4173 BUG_ON(prio < 0 || prio > MAX_PRIO);
4174
4175 rq = task_rq_lock(p, &flags);
4176
d5f9f942 4177 oldprio = p->prio;
83ab0aa0 4178 prev_class = p->sched_class;
dd41f596 4179 on_rq = p->se.on_rq;
051a1d1a 4180 running = task_current(rq, p);
0e1f3483 4181 if (on_rq)
69be72c1 4182 dequeue_task(rq, p, 0);
0e1f3483
HS
4183 if (running)
4184 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4185
4186 if (rt_prio(prio))
4187 p->sched_class = &rt_sched_class;
4188 else
4189 p->sched_class = &fair_sched_class;
4190
b29739f9
IM
4191 p->prio = prio;
4192
0e1f3483
HS
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
dd41f596 4195 if (on_rq) {
60db48ca 4196 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4197
4198 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4199 }
4200 task_rq_unlock(rq, &flags);
4201}
4202
4203#endif
4204
36c8b586 4205void set_user_nice(struct task_struct *p, long nice)
1da177e4 4206{
dd41f596 4207 int old_prio, delta, on_rq;
1da177e4 4208 unsigned long flags;
70b97a7f 4209 struct rq *rq;
1da177e4
LT
4210
4211 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4212 return;
4213 /*
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4216 */
4217 rq = task_rq_lock(p, &flags);
4218 /*
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
dd41f596 4222 * SCHED_FIFO/SCHED_RR:
1da177e4 4223 */
e05606d3 4224 if (task_has_rt_policy(p)) {
1da177e4
LT
4225 p->static_prio = NICE_TO_PRIO(nice);
4226 goto out_unlock;
4227 }
dd41f596 4228 on_rq = p->se.on_rq;
c09595f6 4229 if (on_rq)
69be72c1 4230 dequeue_task(rq, p, 0);
1da177e4 4231
1da177e4 4232 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4233 set_load_weight(p);
b29739f9
IM
4234 old_prio = p->prio;
4235 p->prio = effective_prio(p);
4236 delta = p->prio - old_prio;
1da177e4 4237
dd41f596 4238 if (on_rq) {
ea87bb78 4239 enqueue_task(rq, p, 0, false);
1da177e4 4240 /*
d5f9f942
AM
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
1da177e4 4243 */
d5f9f942 4244 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4245 resched_task(rq->curr);
4246 }
4247out_unlock:
4248 task_rq_unlock(rq, &flags);
4249}
1da177e4
LT
4250EXPORT_SYMBOL(set_user_nice);
4251
e43379f1
MM
4252/*
4253 * can_nice - check if a task can reduce its nice value
4254 * @p: task
4255 * @nice: nice value
4256 */
36c8b586 4257int can_nice(const struct task_struct *p, const int nice)
e43379f1 4258{
024f4747
MM
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim = 20 - nice;
48f24c4d 4261
78d7d407 4262 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4263 capable(CAP_SYS_NICE));
4264}
4265
1da177e4
LT
4266#ifdef __ARCH_WANT_SYS_NICE
4267
4268/*
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4271 *
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4274 */
5add95d4 4275SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4276{
48f24c4d 4277 long nice, retval;
1da177e4
LT
4278
4279 /*
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4283 */
e43379f1
MM
4284 if (increment < -40)
4285 increment = -40;
1da177e4
LT
4286 if (increment > 40)
4287 increment = 40;
4288
2b8f836f 4289 nice = TASK_NICE(current) + increment;
1da177e4
LT
4290 if (nice < -20)
4291 nice = -20;
4292 if (nice > 19)
4293 nice = 19;
4294
e43379f1
MM
4295 if (increment < 0 && !can_nice(current, nice))
4296 return -EPERM;
4297
1da177e4
LT
4298 retval = security_task_setnice(current, nice);
4299 if (retval)
4300 return retval;
4301
4302 set_user_nice(current, nice);
4303 return 0;
4304}
4305
4306#endif
4307
4308/**
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4311 *
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4315 */
36c8b586 4316int task_prio(const struct task_struct *p)
1da177e4
LT
4317{
4318 return p->prio - MAX_RT_PRIO;
4319}
4320
4321/**
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4324 */
36c8b586 4325int task_nice(const struct task_struct *p)
1da177e4
LT
4326{
4327 return TASK_NICE(p);
4328}
150d8bed 4329EXPORT_SYMBOL(task_nice);
1da177e4
LT
4330
4331/**
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4334 */
4335int idle_cpu(int cpu)
4336{
4337 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4338}
4339
1da177e4
LT
4340/**
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4343 */
36c8b586 4344struct task_struct *idle_task(int cpu)
1da177e4
LT
4345{
4346 return cpu_rq(cpu)->idle;
4347}
4348
4349/**
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4352 */
a9957449 4353static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4354{
228ebcbe 4355 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4356}
4357
4358/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4359static void
4360__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4361{
dd41f596 4362 BUG_ON(p->se.on_rq);
48f24c4d 4363
1da177e4
LT
4364 p->policy = policy;
4365 p->rt_priority = prio;
b29739f9
IM
4366 p->normal_prio = normal_prio(p);
4367 /* we are holding p->pi_lock already */
4368 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4369 if (rt_prio(p->prio))
4370 p->sched_class = &rt_sched_class;
4371 else
4372 p->sched_class = &fair_sched_class;
2dd73a4f 4373 set_load_weight(p);
1da177e4
LT
4374}
4375
c69e8d9c
DH
4376/*
4377 * check the target process has a UID that matches the current process's
4378 */
4379static bool check_same_owner(struct task_struct *p)
4380{
4381 const struct cred *cred = current_cred(), *pcred;
4382 bool match;
4383
4384 rcu_read_lock();
4385 pcred = __task_cred(p);
4386 match = (cred->euid == pcred->euid ||
4387 cred->euid == pcred->uid);
4388 rcu_read_unlock();
4389 return match;
4390}
4391
961ccddd
RR
4392static int __sched_setscheduler(struct task_struct *p, int policy,
4393 struct sched_param *param, bool user)
1da177e4 4394{
83b699ed 4395 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4396 unsigned long flags;
83ab0aa0 4397 const struct sched_class *prev_class;
70b97a7f 4398 struct rq *rq;
ca94c442 4399 int reset_on_fork;
1da177e4 4400
66e5393a
SR
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
1da177e4
LT
4403recheck:
4404 /* double check policy once rq lock held */
ca94c442
LP
4405 if (policy < 0) {
4406 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4407 policy = oldpolicy = p->policy;
ca94c442
LP
4408 } else {
4409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4410 policy &= ~SCHED_RESET_ON_FORK;
4411
4412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4414 policy != SCHED_IDLE)
4415 return -EINVAL;
4416 }
4417
1da177e4
LT
4418 /*
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4422 */
4423 if (param->sched_priority < 0 ||
95cdf3b7 4424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4426 return -EINVAL;
e05606d3 4427 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4428 return -EINVAL;
4429
37e4ab3f
OC
4430 /*
4431 * Allow unprivileged RT tasks to decrease priority:
4432 */
961ccddd 4433 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4434 if (rt_policy(policy)) {
8dc3e909 4435 unsigned long rlim_rtprio;
8dc3e909
ON
4436
4437 if (!lock_task_sighand(p, &flags))
4438 return -ESRCH;
78d7d407 4439 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4440 unlock_task_sighand(p, &flags);
4441
4442 /* can't set/change the rt policy */
4443 if (policy != p->policy && !rlim_rtprio)
4444 return -EPERM;
4445
4446 /* can't increase priority */
4447 if (param->sched_priority > p->rt_priority &&
4448 param->sched_priority > rlim_rtprio)
4449 return -EPERM;
4450 }
dd41f596
IM
4451 /*
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4454 */
4455 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4456 return -EPERM;
5fe1d75f 4457
37e4ab3f 4458 /* can't change other user's priorities */
c69e8d9c 4459 if (!check_same_owner(p))
37e4ab3f 4460 return -EPERM;
ca94c442
LP
4461
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p->sched_reset_on_fork && !reset_on_fork)
4464 return -EPERM;
37e4ab3f 4465 }
1da177e4 4466
725aad24 4467 if (user) {
b68aa230 4468#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4469 /*
4470 * Do not allow realtime tasks into groups that have no runtime
4471 * assigned.
4472 */
9a7e0b18
PZ
4473 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4474 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4475 return -EPERM;
b68aa230
PZ
4476#endif
4477
725aad24
JF
4478 retval = security_task_setscheduler(p, policy, param);
4479 if (retval)
4480 return retval;
4481 }
4482
b29739f9
IM
4483 /*
4484 * make sure no PI-waiters arrive (or leave) while we are
4485 * changing the priority of the task:
4486 */
1d615482 4487 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4488 /*
4489 * To be able to change p->policy safely, the apropriate
4490 * runqueue lock must be held.
4491 */
b29739f9 4492 rq = __task_rq_lock(p);
1da177e4
LT
4493 /* recheck policy now with rq lock held */
4494 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4495 policy = oldpolicy = -1;
b29739f9 4496 __task_rq_unlock(rq);
1d615482 4497 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4498 goto recheck;
4499 }
dd41f596 4500 on_rq = p->se.on_rq;
051a1d1a 4501 running = task_current(rq, p);
0e1f3483 4502 if (on_rq)
2e1cb74a 4503 deactivate_task(rq, p, 0);
0e1f3483
HS
4504 if (running)
4505 p->sched_class->put_prev_task(rq, p);
f6b53205 4506
ca94c442
LP
4507 p->sched_reset_on_fork = reset_on_fork;
4508
1da177e4 4509 oldprio = p->prio;
83ab0aa0 4510 prev_class = p->sched_class;
dd41f596 4511 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4512
0e1f3483
HS
4513 if (running)
4514 p->sched_class->set_curr_task(rq);
dd41f596
IM
4515 if (on_rq) {
4516 activate_task(rq, p, 0);
cb469845
SR
4517
4518 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4519 }
b29739f9 4520 __task_rq_unlock(rq);
1d615482 4521 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4522
95e02ca9
TG
4523 rt_mutex_adjust_pi(p);
4524
1da177e4
LT
4525 return 0;
4526}
961ccddd
RR
4527
4528/**
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4533 *
4534 * NOTE that the task may be already dead.
4535 */
4536int sched_setscheduler(struct task_struct *p, int policy,
4537 struct sched_param *param)
4538{
4539 return __sched_setscheduler(p, policy, param, true);
4540}
1da177e4
LT
4541EXPORT_SYMBOL_GPL(sched_setscheduler);
4542
961ccddd
RR
4543/**
4544 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4548 *
4549 * Just like sched_setscheduler, only don't bother checking if the
4550 * current context has permission. For example, this is needed in
4551 * stop_machine(): we create temporary high priority worker threads,
4552 * but our caller might not have that capability.
4553 */
4554int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4555 struct sched_param *param)
4556{
4557 return __sched_setscheduler(p, policy, param, false);
4558}
4559
95cdf3b7
IM
4560static int
4561do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4562{
1da177e4
LT
4563 struct sched_param lparam;
4564 struct task_struct *p;
36c8b586 4565 int retval;
1da177e4
LT
4566
4567 if (!param || pid < 0)
4568 return -EINVAL;
4569 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4570 return -EFAULT;
5fe1d75f
ON
4571
4572 rcu_read_lock();
4573 retval = -ESRCH;
1da177e4 4574 p = find_process_by_pid(pid);
5fe1d75f
ON
4575 if (p != NULL)
4576 retval = sched_setscheduler(p, policy, &lparam);
4577 rcu_read_unlock();
36c8b586 4578
1da177e4
LT
4579 return retval;
4580}
4581
4582/**
4583 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4584 * @pid: the pid in question.
4585 * @policy: new policy.
4586 * @param: structure containing the new RT priority.
4587 */
5add95d4
HC
4588SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4589 struct sched_param __user *, param)
1da177e4 4590{
c21761f1
JB
4591 /* negative values for policy are not valid */
4592 if (policy < 0)
4593 return -EINVAL;
4594
1da177e4
LT
4595 return do_sched_setscheduler(pid, policy, param);
4596}
4597
4598/**
4599 * sys_sched_setparam - set/change the RT priority of a thread
4600 * @pid: the pid in question.
4601 * @param: structure containing the new RT priority.
4602 */
5add95d4 4603SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4604{
4605 return do_sched_setscheduler(pid, -1, param);
4606}
4607
4608/**
4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610 * @pid: the pid in question.
4611 */
5add95d4 4612SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4613{
36c8b586 4614 struct task_struct *p;
3a5c359a 4615 int retval;
1da177e4
LT
4616
4617 if (pid < 0)
3a5c359a 4618 return -EINVAL;
1da177e4
LT
4619
4620 retval = -ESRCH;
5fe85be0 4621 rcu_read_lock();
1da177e4
LT
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
ca94c442
LP
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4628 }
5fe85be0 4629 rcu_read_unlock();
1da177e4
LT
4630 return retval;
4631}
4632
4633/**
ca94c442 4634 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4637 */
5add95d4 4638SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4639{
4640 struct sched_param lp;
36c8b586 4641 struct task_struct *p;
3a5c359a 4642 int retval;
1da177e4
LT
4643
4644 if (!param || pid < 0)
3a5c359a 4645 return -EINVAL;
1da177e4 4646
5fe85be0 4647 rcu_read_lock();
1da177e4
LT
4648 p = find_process_by_pid(pid);
4649 retval = -ESRCH;
4650 if (!p)
4651 goto out_unlock;
4652
4653 retval = security_task_getscheduler(p);
4654 if (retval)
4655 goto out_unlock;
4656
4657 lp.sched_priority = p->rt_priority;
5fe85be0 4658 rcu_read_unlock();
1da177e4
LT
4659
4660 /*
4661 * This one might sleep, we cannot do it with a spinlock held ...
4662 */
4663 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4664
1da177e4
LT
4665 return retval;
4666
4667out_unlock:
5fe85be0 4668 rcu_read_unlock();
1da177e4
LT
4669 return retval;
4670}
4671
96f874e2 4672long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4673{
5a16f3d3 4674 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4675 struct task_struct *p;
4676 int retval;
1da177e4 4677
95402b38 4678 get_online_cpus();
23f5d142 4679 rcu_read_lock();
1da177e4
LT
4680
4681 p = find_process_by_pid(pid);
4682 if (!p) {
23f5d142 4683 rcu_read_unlock();
95402b38 4684 put_online_cpus();
1da177e4
LT
4685 return -ESRCH;
4686 }
4687
23f5d142 4688 /* Prevent p going away */
1da177e4 4689 get_task_struct(p);
23f5d142 4690 rcu_read_unlock();
1da177e4 4691
5a16f3d3
RR
4692 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_put_task;
4695 }
4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4697 retval = -ENOMEM;
4698 goto out_free_cpus_allowed;
4699 }
1da177e4 4700 retval = -EPERM;
c69e8d9c 4701 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4702 goto out_unlock;
4703
e7834f8f
DQ
4704 retval = security_task_setscheduler(p, 0, NULL);
4705 if (retval)
4706 goto out_unlock;
4707
5a16f3d3
RR
4708 cpuset_cpus_allowed(p, cpus_allowed);
4709 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4710 again:
5a16f3d3 4711 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4712
8707d8b8 4713 if (!retval) {
5a16f3d3
RR
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4716 /*
4717 * We must have raced with a concurrent cpuset
4718 * update. Just reset the cpus_allowed to the
4719 * cpuset's cpus_allowed
4720 */
5a16f3d3 4721 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4722 goto again;
4723 }
4724 }
1da177e4 4725out_unlock:
5a16f3d3
RR
4726 free_cpumask_var(new_mask);
4727out_free_cpus_allowed:
4728 free_cpumask_var(cpus_allowed);
4729out_put_task:
1da177e4 4730 put_task_struct(p);
95402b38 4731 put_online_cpus();
1da177e4
LT
4732 return retval;
4733}
4734
4735static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4736 struct cpumask *new_mask)
1da177e4 4737{
96f874e2
RR
4738 if (len < cpumask_size())
4739 cpumask_clear(new_mask);
4740 else if (len > cpumask_size())
4741 len = cpumask_size();
4742
1da177e4
LT
4743 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4744}
4745
4746/**
4747 * sys_sched_setaffinity - set the cpu affinity of a process
4748 * @pid: pid of the process
4749 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4750 * @user_mask_ptr: user-space pointer to the new cpu mask
4751 */
5add95d4
HC
4752SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4753 unsigned long __user *, user_mask_ptr)
1da177e4 4754{
5a16f3d3 4755 cpumask_var_t new_mask;
1da177e4
LT
4756 int retval;
4757
5a16f3d3
RR
4758 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4759 return -ENOMEM;
1da177e4 4760
5a16f3d3
RR
4761 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4762 if (retval == 0)
4763 retval = sched_setaffinity(pid, new_mask);
4764 free_cpumask_var(new_mask);
4765 return retval;
1da177e4
LT
4766}
4767
96f874e2 4768long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4769{
36c8b586 4770 struct task_struct *p;
31605683
TG
4771 unsigned long flags;
4772 struct rq *rq;
1da177e4 4773 int retval;
1da177e4 4774
95402b38 4775 get_online_cpus();
23f5d142 4776 rcu_read_lock();
1da177e4
LT
4777
4778 retval = -ESRCH;
4779 p = find_process_by_pid(pid);
4780 if (!p)
4781 goto out_unlock;
4782
e7834f8f
DQ
4783 retval = security_task_getscheduler(p);
4784 if (retval)
4785 goto out_unlock;
4786
31605683 4787 rq = task_rq_lock(p, &flags);
96f874e2 4788 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4789 task_rq_unlock(rq, &flags);
1da177e4
LT
4790
4791out_unlock:
23f5d142 4792 rcu_read_unlock();
95402b38 4793 put_online_cpus();
1da177e4 4794
9531b62f 4795 return retval;
1da177e4
LT
4796}
4797
4798/**
4799 * sys_sched_getaffinity - get the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4803 */
5add95d4
HC
4804SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4805 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4806{
4807 int ret;
f17c8607 4808 cpumask_var_t mask;
1da177e4 4809
cd3d8031
KM
4810 if (len < nr_cpu_ids)
4811 return -EINVAL;
4812 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4813 return -EINVAL;
4814
f17c8607
RR
4815 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4816 return -ENOMEM;
1da177e4 4817
f17c8607
RR
4818 ret = sched_getaffinity(pid, mask);
4819 if (ret == 0) {
8bc037fb 4820 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4821
4822 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4823 ret = -EFAULT;
4824 else
cd3d8031 4825 ret = retlen;
f17c8607
RR
4826 }
4827 free_cpumask_var(mask);
1da177e4 4828
f17c8607 4829 return ret;
1da177e4
LT
4830}
4831
4832/**
4833 * sys_sched_yield - yield the current processor to other threads.
4834 *
dd41f596
IM
4835 * This function yields the current CPU to other tasks. If there are no
4836 * other threads running on this CPU then this function will return.
1da177e4 4837 */
5add95d4 4838SYSCALL_DEFINE0(sched_yield)
1da177e4 4839{
70b97a7f 4840 struct rq *rq = this_rq_lock();
1da177e4 4841
2d72376b 4842 schedstat_inc(rq, yld_count);
4530d7ab 4843 current->sched_class->yield_task(rq);
1da177e4
LT
4844
4845 /*
4846 * Since we are going to call schedule() anyway, there's
4847 * no need to preempt or enable interrupts:
4848 */
4849 __release(rq->lock);
8a25d5de 4850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4851 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4852 preempt_enable_no_resched();
4853
4854 schedule();
4855
4856 return 0;
4857}
4858
d86ee480
PZ
4859static inline int should_resched(void)
4860{
4861 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4862}
4863
e7b38404 4864static void __cond_resched(void)
1da177e4 4865{
e7aaaa69
FW
4866 add_preempt_count(PREEMPT_ACTIVE);
4867 schedule();
4868 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4869}
4870
02b67cc3 4871int __sched _cond_resched(void)
1da177e4 4872{
d86ee480 4873 if (should_resched()) {
1da177e4
LT
4874 __cond_resched();
4875 return 1;
4876 }
4877 return 0;
4878}
02b67cc3 4879EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4880
4881/*
613afbf8 4882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4883 * call schedule, and on return reacquire the lock.
4884 *
41a2d6cf 4885 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4886 * operations here to prevent schedule() from being called twice (once via
4887 * spin_unlock(), once by hand).
4888 */
613afbf8 4889int __cond_resched_lock(spinlock_t *lock)
1da177e4 4890{
d86ee480 4891 int resched = should_resched();
6df3cecb
JK
4892 int ret = 0;
4893
f607c668
PZ
4894 lockdep_assert_held(lock);
4895
95c354fe 4896 if (spin_needbreak(lock) || resched) {
1da177e4 4897 spin_unlock(lock);
d86ee480 4898 if (resched)
95c354fe
NP
4899 __cond_resched();
4900 else
4901 cpu_relax();
6df3cecb 4902 ret = 1;
1da177e4 4903 spin_lock(lock);
1da177e4 4904 }
6df3cecb 4905 return ret;
1da177e4 4906}
613afbf8 4907EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4908
613afbf8 4909int __sched __cond_resched_softirq(void)
1da177e4
LT
4910{
4911 BUG_ON(!in_softirq());
4912
d86ee480 4913 if (should_resched()) {
98d82567 4914 local_bh_enable();
1da177e4
LT
4915 __cond_resched();
4916 local_bh_disable();
4917 return 1;
4918 }
4919 return 0;
4920}
613afbf8 4921EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4922
1da177e4
LT
4923/**
4924 * yield - yield the current processor to other threads.
4925 *
72fd4a35 4926 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4927 * thread runnable and calls sys_sched_yield().
4928 */
4929void __sched yield(void)
4930{
4931 set_current_state(TASK_RUNNING);
4932 sys_sched_yield();
4933}
1da177e4
LT
4934EXPORT_SYMBOL(yield);
4935
4936/*
41a2d6cf 4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4938 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4939 */
4940void __sched io_schedule(void)
4941{
54d35f29 4942 struct rq *rq = raw_rq();
1da177e4 4943
0ff92245 4944 delayacct_blkio_start();
1da177e4 4945 atomic_inc(&rq->nr_iowait);
8f0dfc34 4946 current->in_iowait = 1;
1da177e4 4947 schedule();
8f0dfc34 4948 current->in_iowait = 0;
1da177e4 4949 atomic_dec(&rq->nr_iowait);
0ff92245 4950 delayacct_blkio_end();
1da177e4 4951}
1da177e4
LT
4952EXPORT_SYMBOL(io_schedule);
4953
4954long __sched io_schedule_timeout(long timeout)
4955{
54d35f29 4956 struct rq *rq = raw_rq();
1da177e4
LT
4957 long ret;
4958
0ff92245 4959 delayacct_blkio_start();
1da177e4 4960 atomic_inc(&rq->nr_iowait);
8f0dfc34 4961 current->in_iowait = 1;
1da177e4 4962 ret = schedule_timeout(timeout);
8f0dfc34 4963 current->in_iowait = 0;
1da177e4 4964 atomic_dec(&rq->nr_iowait);
0ff92245 4965 delayacct_blkio_end();
1da177e4
LT
4966 return ret;
4967}
4968
4969/**
4970 * sys_sched_get_priority_max - return maximum RT priority.
4971 * @policy: scheduling class.
4972 *
4973 * this syscall returns the maximum rt_priority that can be used
4974 * by a given scheduling class.
4975 */
5add95d4 4976SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4977{
4978 int ret = -EINVAL;
4979
4980 switch (policy) {
4981 case SCHED_FIFO:
4982 case SCHED_RR:
4983 ret = MAX_USER_RT_PRIO-1;
4984 break;
4985 case SCHED_NORMAL:
b0a9499c 4986 case SCHED_BATCH:
dd41f596 4987 case SCHED_IDLE:
1da177e4
LT
4988 ret = 0;
4989 break;
4990 }
4991 return ret;
4992}
4993
4994/**
4995 * sys_sched_get_priority_min - return minimum RT priority.
4996 * @policy: scheduling class.
4997 *
4998 * this syscall returns the minimum rt_priority that can be used
4999 * by a given scheduling class.
5000 */
5add95d4 5001SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5002{
5003 int ret = -EINVAL;
5004
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = 1;
5009 break;
5010 case SCHED_NORMAL:
b0a9499c 5011 case SCHED_BATCH:
dd41f596 5012 case SCHED_IDLE:
1da177e4
LT
5013 ret = 0;
5014 }
5015 return ret;
5016}
5017
5018/**
5019 * sys_sched_rr_get_interval - return the default timeslice of a process.
5020 * @pid: pid of the process.
5021 * @interval: userspace pointer to the timeslice value.
5022 *
5023 * this syscall writes the default timeslice value of a given process
5024 * into the user-space timespec buffer. A value of '0' means infinity.
5025 */
17da2bd9 5026SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5027 struct timespec __user *, interval)
1da177e4 5028{
36c8b586 5029 struct task_struct *p;
a4ec24b4 5030 unsigned int time_slice;
dba091b9
TG
5031 unsigned long flags;
5032 struct rq *rq;
3a5c359a 5033 int retval;
1da177e4 5034 struct timespec t;
1da177e4
LT
5035
5036 if (pid < 0)
3a5c359a 5037 return -EINVAL;
1da177e4
LT
5038
5039 retval = -ESRCH;
1a551ae7 5040 rcu_read_lock();
1da177e4
LT
5041 p = find_process_by_pid(pid);
5042 if (!p)
5043 goto out_unlock;
5044
5045 retval = security_task_getscheduler(p);
5046 if (retval)
5047 goto out_unlock;
5048
dba091b9
TG
5049 rq = task_rq_lock(p, &flags);
5050 time_slice = p->sched_class->get_rr_interval(rq, p);
5051 task_rq_unlock(rq, &flags);
a4ec24b4 5052
1a551ae7 5053 rcu_read_unlock();
a4ec24b4 5054 jiffies_to_timespec(time_slice, &t);
1da177e4 5055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5056 return retval;
3a5c359a 5057
1da177e4 5058out_unlock:
1a551ae7 5059 rcu_read_unlock();
1da177e4
LT
5060 return retval;
5061}
5062
7c731e0a 5063static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5064
82a1fcb9 5065void sched_show_task(struct task_struct *p)
1da177e4 5066{
1da177e4 5067 unsigned long free = 0;
36c8b586 5068 unsigned state;
1da177e4 5069
1da177e4 5070 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5071 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5072 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5073#if BITS_PER_LONG == 32
1da177e4 5074 if (state == TASK_RUNNING)
3df0fc5b 5075 printk(KERN_CONT " running ");
1da177e4 5076 else
3df0fc5b 5077 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5078#else
5079 if (state == TASK_RUNNING)
3df0fc5b 5080 printk(KERN_CONT " running task ");
1da177e4 5081 else
3df0fc5b 5082 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5083#endif
5084#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5085 free = stack_not_used(p);
1da177e4 5086#endif
3df0fc5b 5087 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5088 task_pid_nr(p), task_pid_nr(p->real_parent),
5089 (unsigned long)task_thread_info(p)->flags);
1da177e4 5090
5fb5e6de 5091 show_stack(p, NULL);
1da177e4
LT
5092}
5093
e59e2ae2 5094void show_state_filter(unsigned long state_filter)
1da177e4 5095{
36c8b586 5096 struct task_struct *g, *p;
1da177e4 5097
4bd77321 5098#if BITS_PER_LONG == 32
3df0fc5b
PZ
5099 printk(KERN_INFO
5100 " task PC stack pid father\n");
1da177e4 5101#else
3df0fc5b
PZ
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
1da177e4
LT
5104#endif
5105 read_lock(&tasklist_lock);
5106 do_each_thread(g, p) {
5107 /*
5108 * reset the NMI-timeout, listing all files on a slow
5109 * console might take alot of time:
5110 */
5111 touch_nmi_watchdog();
39bc89fd 5112 if (!state_filter || (p->state & state_filter))
82a1fcb9 5113 sched_show_task(p);
1da177e4
LT
5114 } while_each_thread(g, p);
5115
04c9167f
JF
5116 touch_all_softlockup_watchdogs();
5117
dd41f596
IM
5118#ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5120#endif
1da177e4 5121 read_unlock(&tasklist_lock);
e59e2ae2
IM
5122 /*
5123 * Only show locks if all tasks are dumped:
5124 */
93335a21 5125 if (!state_filter)
e59e2ae2 5126 debug_show_all_locks();
1da177e4
LT
5127}
5128
1df21055
IM
5129void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5130{
dd41f596 5131 idle->sched_class = &idle_sched_class;
1df21055
IM
5132}
5133
f340c0d1
IM
5134/**
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5138 *
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5141 */
5c1e1767 5142void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5143{
70b97a7f 5144 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5145 unsigned long flags;
5146
05fa785c 5147 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5148
dd41f596 5149 __sched_fork(idle);
06b83b5f 5150 idle->state = TASK_RUNNING;
dd41f596
IM
5151 idle->se.exec_start = sched_clock();
5152
96f874e2 5153 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5154 __set_task_cpu(idle, cpu);
1da177e4 5155
1da177e4 5156 rq->curr = rq->idle = idle;
4866cde0
NP
5157#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5158 idle->oncpu = 1;
5159#endif
05fa785c 5160 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5161
5162 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5163#if defined(CONFIG_PREEMPT)
5164 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5165#else
a1261f54 5166 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5167#endif
dd41f596
IM
5168 /*
5169 * The idle tasks have their own, simple scheduling class:
5170 */
5171 idle->sched_class = &idle_sched_class;
fb52607a 5172 ftrace_graph_init_task(idle);
1da177e4
LT
5173}
5174
5175/*
5176 * In a system that switches off the HZ timer nohz_cpu_mask
5177 * indicates which cpus entered this state. This is used
5178 * in the rcu update to wait only for active cpus. For system
5179 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5180 * always be CPU_BITS_NONE.
1da177e4 5181 */
6a7b3dc3 5182cpumask_var_t nohz_cpu_mask;
1da177e4 5183
19978ca6
IM
5184/*
5185 * Increase the granularity value when there are more CPUs,
5186 * because with more CPUs the 'effective latency' as visible
5187 * to users decreases. But the relationship is not linear,
5188 * so pick a second-best guess by going with the log2 of the
5189 * number of CPUs.
5190 *
5191 * This idea comes from the SD scheduler of Con Kolivas:
5192 */
acb4a848 5193static int get_update_sysctl_factor(void)
19978ca6 5194{
4ca3ef71 5195 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5196 unsigned int factor;
5197
5198 switch (sysctl_sched_tunable_scaling) {
5199 case SCHED_TUNABLESCALING_NONE:
5200 factor = 1;
5201 break;
5202 case SCHED_TUNABLESCALING_LINEAR:
5203 factor = cpus;
5204 break;
5205 case SCHED_TUNABLESCALING_LOG:
5206 default:
5207 factor = 1 + ilog2(cpus);
5208 break;
5209 }
19978ca6 5210
acb4a848
CE
5211 return factor;
5212}
19978ca6 5213
acb4a848
CE
5214static void update_sysctl(void)
5215{
5216 unsigned int factor = get_update_sysctl_factor();
19978ca6 5217
0bcdcf28
CE
5218#define SET_SYSCTL(name) \
5219 (sysctl_##name = (factor) * normalized_sysctl_##name)
5220 SET_SYSCTL(sched_min_granularity);
5221 SET_SYSCTL(sched_latency);
5222 SET_SYSCTL(sched_wakeup_granularity);
5223 SET_SYSCTL(sched_shares_ratelimit);
5224#undef SET_SYSCTL
5225}
55cd5340 5226
0bcdcf28
CE
5227static inline void sched_init_granularity(void)
5228{
5229 update_sysctl();
19978ca6
IM
5230}
5231
1da177e4
LT
5232#ifdef CONFIG_SMP
5233/*
5234 * This is how migration works:
5235 *
70b97a7f 5236 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5237 * runqueue and wake up that CPU's migration thread.
5238 * 2) we down() the locked semaphore => thread blocks.
5239 * 3) migration thread wakes up (implicitly it forces the migrated
5240 * thread off the CPU)
5241 * 4) it gets the migration request and checks whether the migrated
5242 * task is still in the wrong runqueue.
5243 * 5) if it's in the wrong runqueue then the migration thread removes
5244 * it and puts it into the right queue.
5245 * 6) migration thread up()s the semaphore.
5246 * 7) we wake up and the migration is done.
5247 */
5248
5249/*
5250 * Change a given task's CPU affinity. Migrate the thread to a
5251 * proper CPU and schedule it away if the CPU it's executing on
5252 * is removed from the allowed bitmask.
5253 *
5254 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5255 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5256 * call is not atomic; no spinlocks may be held.
5257 */
96f874e2 5258int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5259{
70b97a7f 5260 struct migration_req req;
1da177e4 5261 unsigned long flags;
70b97a7f 5262 struct rq *rq;
48f24c4d 5263 int ret = 0;
1da177e4
LT
5264
5265 rq = task_rq_lock(p, &flags);
e2912009 5266
6ad4c188 5267 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5268 ret = -EINVAL;
5269 goto out;
5270 }
5271
9985b0ba 5272 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5273 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5274 ret = -EINVAL;
5275 goto out;
5276 }
5277
73fe6aae 5278 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5279 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5280 else {
96f874e2
RR
5281 cpumask_copy(&p->cpus_allowed, new_mask);
5282 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5283 }
5284
1da177e4 5285 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5286 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5287 goto out;
5288
6ad4c188 5289 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5290 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5291 struct task_struct *mt = rq->migration_thread;
5292
5293 get_task_struct(mt);
1da177e4
LT
5294 task_rq_unlock(rq, &flags);
5295 wake_up_process(rq->migration_thread);
693525e3 5296 put_task_struct(mt);
1da177e4
LT
5297 wait_for_completion(&req.done);
5298 tlb_migrate_finish(p->mm);
5299 return 0;
5300 }
5301out:
5302 task_rq_unlock(rq, &flags);
48f24c4d 5303
1da177e4
LT
5304 return ret;
5305}
cd8ba7cd 5306EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5307
5308/*
41a2d6cf 5309 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5310 * this because either it can't run here any more (set_cpus_allowed()
5311 * away from this CPU, or CPU going down), or because we're
5312 * attempting to rebalance this task on exec (sched_exec).
5313 *
5314 * So we race with normal scheduler movements, but that's OK, as long
5315 * as the task is no longer on this CPU.
efc30814
KK
5316 *
5317 * Returns non-zero if task was successfully migrated.
1da177e4 5318 */
efc30814 5319static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5320{
70b97a7f 5321 struct rq *rq_dest, *rq_src;
e2912009 5322 int ret = 0;
1da177e4 5323
e761b772 5324 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5325 return ret;
1da177e4
LT
5326
5327 rq_src = cpu_rq(src_cpu);
5328 rq_dest = cpu_rq(dest_cpu);
5329
5330 double_rq_lock(rq_src, rq_dest);
5331 /* Already moved. */
5332 if (task_cpu(p) != src_cpu)
b1e38734 5333 goto done;
1da177e4 5334 /* Affinity changed (again). */
96f874e2 5335 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5336 goto fail;
1da177e4 5337
e2912009
PZ
5338 /*
5339 * If we're not on a rq, the next wake-up will ensure we're
5340 * placed properly.
5341 */
5342 if (p->se.on_rq) {
2e1cb74a 5343 deactivate_task(rq_src, p, 0);
e2912009 5344 set_task_cpu(p, dest_cpu);
dd41f596 5345 activate_task(rq_dest, p, 0);
15afe09b 5346 check_preempt_curr(rq_dest, p, 0);
1da177e4 5347 }
b1e38734 5348done:
efc30814 5349 ret = 1;
b1e38734 5350fail:
1da177e4 5351 double_rq_unlock(rq_src, rq_dest);
efc30814 5352 return ret;
1da177e4
LT
5353}
5354
03b042bf
PM
5355#define RCU_MIGRATION_IDLE 0
5356#define RCU_MIGRATION_NEED_QS 1
5357#define RCU_MIGRATION_GOT_QS 2
5358#define RCU_MIGRATION_MUST_SYNC 3
5359
1da177e4
LT
5360/*
5361 * migration_thread - this is a highprio system thread that performs
5362 * thread migration by bumping thread off CPU then 'pushing' onto
5363 * another runqueue.
5364 */
95cdf3b7 5365static int migration_thread(void *data)
1da177e4 5366{
03b042bf 5367 int badcpu;
1da177e4 5368 int cpu = (long)data;
70b97a7f 5369 struct rq *rq;
1da177e4
LT
5370
5371 rq = cpu_rq(cpu);
5372 BUG_ON(rq->migration_thread != current);
5373
5374 set_current_state(TASK_INTERRUPTIBLE);
5375 while (!kthread_should_stop()) {
70b97a7f 5376 struct migration_req *req;
1da177e4 5377 struct list_head *head;
1da177e4 5378
05fa785c 5379 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5380
5381 if (cpu_is_offline(cpu)) {
05fa785c 5382 raw_spin_unlock_irq(&rq->lock);
371cbb38 5383 break;
1da177e4
LT
5384 }
5385
5386 if (rq->active_balance) {
5387 active_load_balance(rq, cpu);
5388 rq->active_balance = 0;
5389 }
5390
5391 head = &rq->migration_queue;
5392
5393 if (list_empty(head)) {
05fa785c 5394 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5395 schedule();
5396 set_current_state(TASK_INTERRUPTIBLE);
5397 continue;
5398 }
70b97a7f 5399 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5400 list_del_init(head->next);
5401
03b042bf 5402 if (req->task != NULL) {
05fa785c 5403 raw_spin_unlock(&rq->lock);
03b042bf
PM
5404 __migrate_task(req->task, cpu, req->dest_cpu);
5405 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5406 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5407 raw_spin_unlock(&rq->lock);
03b042bf
PM
5408 } else {
5409 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5410 raw_spin_unlock(&rq->lock);
03b042bf
PM
5411 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5412 }
674311d5 5413 local_irq_enable();
1da177e4
LT
5414
5415 complete(&req->done);
5416 }
5417 __set_current_state(TASK_RUNNING);
1da177e4 5418
1da177e4
LT
5419 return 0;
5420}
5421
5422#ifdef CONFIG_HOTPLUG_CPU
054b9108 5423/*
3a4fa0a2 5424 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5425 */
6a1bdc1b 5426void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5427{
1445c08d
ON
5428 struct rq *rq = cpu_rq(dead_cpu);
5429 int needs_cpu, uninitialized_var(dest_cpu);
5430 unsigned long flags;
c1804d54 5431
1445c08d
ON
5432 local_irq_save(flags);
5433
5434 raw_spin_lock(&rq->lock);
5435 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5436 if (needs_cpu)
5437 dest_cpu = select_fallback_rq(dead_cpu, p);
5438 raw_spin_unlock(&rq->lock);
c1804d54
ON
5439 /*
5440 * It can only fail if we race with set_cpus_allowed(),
5441 * in the racer should migrate the task anyway.
5442 */
1445c08d 5443 if (needs_cpu)
c1804d54 5444 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5445 local_irq_restore(flags);
1da177e4
LT
5446}
5447
5448/*
5449 * While a dead CPU has no uninterruptible tasks queued at this point,
5450 * it might still have a nonzero ->nr_uninterruptible counter, because
5451 * for performance reasons the counter is not stricly tracking tasks to
5452 * their home CPUs. So we just add the counter to another CPU's counter,
5453 * to keep the global sum constant after CPU-down:
5454 */
70b97a7f 5455static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5456{
6ad4c188 5457 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5458 unsigned long flags;
5459
5460 local_irq_save(flags);
5461 double_rq_lock(rq_src, rq_dest);
5462 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5463 rq_src->nr_uninterruptible = 0;
5464 double_rq_unlock(rq_src, rq_dest);
5465 local_irq_restore(flags);
5466}
5467
5468/* Run through task list and migrate tasks from the dead cpu. */
5469static void migrate_live_tasks(int src_cpu)
5470{
48f24c4d 5471 struct task_struct *p, *t;
1da177e4 5472
f7b4cddc 5473 read_lock(&tasklist_lock);
1da177e4 5474
48f24c4d
IM
5475 do_each_thread(t, p) {
5476 if (p == current)
1da177e4
LT
5477 continue;
5478
48f24c4d
IM
5479 if (task_cpu(p) == src_cpu)
5480 move_task_off_dead_cpu(src_cpu, p);
5481 } while_each_thread(t, p);
1da177e4 5482
f7b4cddc 5483 read_unlock(&tasklist_lock);
1da177e4
LT
5484}
5485
dd41f596
IM
5486/*
5487 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5488 * It does so by boosting its priority to highest possible.
5489 * Used by CPU offline code.
1da177e4
LT
5490 */
5491void sched_idle_next(void)
5492{
48f24c4d 5493 int this_cpu = smp_processor_id();
70b97a7f 5494 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5495 struct task_struct *p = rq->idle;
5496 unsigned long flags;
5497
5498 /* cpu has to be offline */
48f24c4d 5499 BUG_ON(cpu_online(this_cpu));
1da177e4 5500
48f24c4d
IM
5501 /*
5502 * Strictly not necessary since rest of the CPUs are stopped by now
5503 * and interrupts disabled on the current cpu.
1da177e4 5504 */
05fa785c 5505 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5506
dd41f596 5507 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5508
94bc9a7b 5509 activate_task(rq, p, 0);
1da177e4 5510
05fa785c 5511 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5512}
5513
48f24c4d
IM
5514/*
5515 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5516 * offline.
5517 */
5518void idle_task_exit(void)
5519{
5520 struct mm_struct *mm = current->active_mm;
5521
5522 BUG_ON(cpu_online(smp_processor_id()));
5523
5524 if (mm != &init_mm)
5525 switch_mm(mm, &init_mm, current);
5526 mmdrop(mm);
5527}
5528
054b9108 5529/* called under rq->lock with disabled interrupts */
36c8b586 5530static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5531{
70b97a7f 5532 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5533
5534 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5535 BUG_ON(!p->exit_state);
1da177e4
LT
5536
5537 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5538 BUG_ON(p->state == TASK_DEAD);
1da177e4 5539
48f24c4d 5540 get_task_struct(p);
1da177e4
LT
5541
5542 /*
5543 * Drop lock around migration; if someone else moves it,
41a2d6cf 5544 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5545 * fine.
5546 */
05fa785c 5547 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5548 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5549 raw_spin_lock_irq(&rq->lock);
1da177e4 5550
48f24c4d 5551 put_task_struct(p);
1da177e4
LT
5552}
5553
5554/* release_task() removes task from tasklist, so we won't find dead tasks. */
5555static void migrate_dead_tasks(unsigned int dead_cpu)
5556{
70b97a7f 5557 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5558 struct task_struct *next;
48f24c4d 5559
dd41f596
IM
5560 for ( ; ; ) {
5561 if (!rq->nr_running)
5562 break;
b67802ea 5563 next = pick_next_task(rq);
dd41f596
IM
5564 if (!next)
5565 break;
79c53799 5566 next->sched_class->put_prev_task(rq, next);
dd41f596 5567 migrate_dead(dead_cpu, next);
e692ab53 5568
1da177e4
LT
5569 }
5570}
dce48a84
TG
5571
5572/*
5573 * remove the tasks which were accounted by rq from calc_load_tasks.
5574 */
5575static void calc_global_load_remove(struct rq *rq)
5576{
5577 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5578 rq->calc_load_active = 0;
dce48a84 5579}
1da177e4
LT
5580#endif /* CONFIG_HOTPLUG_CPU */
5581
e692ab53
NP
5582#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5583
5584static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5585 {
5586 .procname = "sched_domain",
c57baf1e 5587 .mode = 0555,
e0361851 5588 },
56992309 5589 {}
e692ab53
NP
5590};
5591
5592static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5593 {
5594 .procname = "kernel",
c57baf1e 5595 .mode = 0555,
e0361851
AD
5596 .child = sd_ctl_dir,
5597 },
56992309 5598 {}
e692ab53
NP
5599};
5600
5601static struct ctl_table *sd_alloc_ctl_entry(int n)
5602{
5603 struct ctl_table *entry =
5cf9f062 5604 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5605
e692ab53
NP
5606 return entry;
5607}
5608
6382bc90
MM
5609static void sd_free_ctl_entry(struct ctl_table **tablep)
5610{
cd790076 5611 struct ctl_table *entry;
6382bc90 5612
cd790076
MM
5613 /*
5614 * In the intermediate directories, both the child directory and
5615 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5616 * will always be set. In the lowest directory the names are
cd790076
MM
5617 * static strings and all have proc handlers.
5618 */
5619 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5620 if (entry->child)
5621 sd_free_ctl_entry(&entry->child);
cd790076
MM
5622 if (entry->proc_handler == NULL)
5623 kfree(entry->procname);
5624 }
6382bc90
MM
5625
5626 kfree(*tablep);
5627 *tablep = NULL;
5628}
5629
e692ab53 5630static void
e0361851 5631set_table_entry(struct ctl_table *entry,
e692ab53
NP
5632 const char *procname, void *data, int maxlen,
5633 mode_t mode, proc_handler *proc_handler)
5634{
e692ab53
NP
5635 entry->procname = procname;
5636 entry->data = data;
5637 entry->maxlen = maxlen;
5638 entry->mode = mode;
5639 entry->proc_handler = proc_handler;
5640}
5641
5642static struct ctl_table *
5643sd_alloc_ctl_domain_table(struct sched_domain *sd)
5644{
a5d8c348 5645 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5646
ad1cdc1d
MM
5647 if (table == NULL)
5648 return NULL;
5649
e0361851 5650 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5651 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5652 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5653 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5654 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5655 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5656 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5657 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5658 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5659 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5660 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5661 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5662 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5663 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5664 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5665 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5666 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5667 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5668 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5669 &sd->cache_nice_tries,
5670 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5671 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5672 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5673 set_table_entry(&table[11], "name", sd->name,
5674 CORENAME_MAX_SIZE, 0444, proc_dostring);
5675 /* &table[12] is terminator */
e692ab53
NP
5676
5677 return table;
5678}
5679
9a4e7159 5680static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5681{
5682 struct ctl_table *entry, *table;
5683 struct sched_domain *sd;
5684 int domain_num = 0, i;
5685 char buf[32];
5686
5687 for_each_domain(cpu, sd)
5688 domain_num++;
5689 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5690 if (table == NULL)
5691 return NULL;
e692ab53
NP
5692
5693 i = 0;
5694 for_each_domain(cpu, sd) {
5695 snprintf(buf, 32, "domain%d", i);
e692ab53 5696 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5697 entry->mode = 0555;
e692ab53
NP
5698 entry->child = sd_alloc_ctl_domain_table(sd);
5699 entry++;
5700 i++;
5701 }
5702 return table;
5703}
5704
5705static struct ctl_table_header *sd_sysctl_header;
6382bc90 5706static void register_sched_domain_sysctl(void)
e692ab53 5707{
6ad4c188 5708 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5709 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5710 char buf[32];
5711
7378547f
MM
5712 WARN_ON(sd_ctl_dir[0].child);
5713 sd_ctl_dir[0].child = entry;
5714
ad1cdc1d
MM
5715 if (entry == NULL)
5716 return;
5717
6ad4c188 5718 for_each_possible_cpu(i) {
e692ab53 5719 snprintf(buf, 32, "cpu%d", i);
e692ab53 5720 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5721 entry->mode = 0555;
e692ab53 5722 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5723 entry++;
e692ab53 5724 }
7378547f
MM
5725
5726 WARN_ON(sd_sysctl_header);
e692ab53
NP
5727 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5728}
6382bc90 5729
7378547f 5730/* may be called multiple times per register */
6382bc90
MM
5731static void unregister_sched_domain_sysctl(void)
5732{
7378547f
MM
5733 if (sd_sysctl_header)
5734 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5735 sd_sysctl_header = NULL;
7378547f
MM
5736 if (sd_ctl_dir[0].child)
5737 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5738}
e692ab53 5739#else
6382bc90
MM
5740static void register_sched_domain_sysctl(void)
5741{
5742}
5743static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5744{
5745}
5746#endif
5747
1f11eb6a
GH
5748static void set_rq_online(struct rq *rq)
5749{
5750 if (!rq->online) {
5751 const struct sched_class *class;
5752
c6c4927b 5753 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5754 rq->online = 1;
5755
5756 for_each_class(class) {
5757 if (class->rq_online)
5758 class->rq_online(rq);
5759 }
5760 }
5761}
5762
5763static void set_rq_offline(struct rq *rq)
5764{
5765 if (rq->online) {
5766 const struct sched_class *class;
5767
5768 for_each_class(class) {
5769 if (class->rq_offline)
5770 class->rq_offline(rq);
5771 }
5772
c6c4927b 5773 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5774 rq->online = 0;
5775 }
5776}
5777
1da177e4
LT
5778/*
5779 * migration_call - callback that gets triggered when a CPU is added.
5780 * Here we can start up the necessary migration thread for the new CPU.
5781 */
48f24c4d
IM
5782static int __cpuinit
5783migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5784{
1da177e4 5785 struct task_struct *p;
48f24c4d 5786 int cpu = (long)hcpu;
1da177e4 5787 unsigned long flags;
70b97a7f 5788 struct rq *rq;
1da177e4
LT
5789
5790 switch (action) {
5be9361c 5791
1da177e4 5792 case CPU_UP_PREPARE:
8bb78442 5793 case CPU_UP_PREPARE_FROZEN:
dd41f596 5794 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5795 if (IS_ERR(p))
5796 return NOTIFY_BAD;
1da177e4
LT
5797 kthread_bind(p, cpu);
5798 /* Must be high prio: stop_machine expects to yield to it. */
5799 rq = task_rq_lock(p, &flags);
dd41f596 5800 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5801 task_rq_unlock(rq, &flags);
371cbb38 5802 get_task_struct(p);
1da177e4 5803 cpu_rq(cpu)->migration_thread = p;
a468d389 5804 rq->calc_load_update = calc_load_update;
1da177e4 5805 break;
48f24c4d 5806
1da177e4 5807 case CPU_ONLINE:
8bb78442 5808 case CPU_ONLINE_FROZEN:
3a4fa0a2 5809 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5810 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5811
5812 /* Update our root-domain */
5813 rq = cpu_rq(cpu);
05fa785c 5814 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5815 if (rq->rd) {
c6c4927b 5816 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5817
5818 set_rq_online(rq);
1f94ef59 5819 }
05fa785c 5820 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5821 break;
48f24c4d 5822
1da177e4
LT
5823#ifdef CONFIG_HOTPLUG_CPU
5824 case CPU_UP_CANCELED:
8bb78442 5825 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5826 if (!cpu_rq(cpu)->migration_thread)
5827 break;
41a2d6cf 5828 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5829 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5830 cpumask_any(cpu_online_mask));
1da177e4 5831 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5832 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5833 cpu_rq(cpu)->migration_thread = NULL;
5834 break;
48f24c4d 5835
1da177e4 5836 case CPU_DEAD:
8bb78442 5837 case CPU_DEAD_FROZEN:
1da177e4
LT
5838 migrate_live_tasks(cpu);
5839 rq = cpu_rq(cpu);
5840 kthread_stop(rq->migration_thread);
371cbb38 5841 put_task_struct(rq->migration_thread);
1da177e4
LT
5842 rq->migration_thread = NULL;
5843 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5844 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5845 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5846 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5847 rq->idle->sched_class = &idle_sched_class;
1da177e4 5848 migrate_dead_tasks(cpu);
05fa785c 5849 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5850 migrate_nr_uninterruptible(rq);
5851 BUG_ON(rq->nr_running != 0);
dce48a84 5852 calc_global_load_remove(rq);
41a2d6cf
IM
5853 /*
5854 * No need to migrate the tasks: it was best-effort if
5855 * they didn't take sched_hotcpu_mutex. Just wake up
5856 * the requestors.
5857 */
05fa785c 5858 raw_spin_lock_irq(&rq->lock);
1da177e4 5859 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5860 struct migration_req *req;
5861
1da177e4 5862 req = list_entry(rq->migration_queue.next,
70b97a7f 5863 struct migration_req, list);
1da177e4 5864 list_del_init(&req->list);
05fa785c 5865 raw_spin_unlock_irq(&rq->lock);
1da177e4 5866 complete(&req->done);
05fa785c 5867 raw_spin_lock_irq(&rq->lock);
1da177e4 5868 }
05fa785c 5869 raw_spin_unlock_irq(&rq->lock);
1da177e4 5870 break;
57d885fe 5871
08f503b0
GH
5872 case CPU_DYING:
5873 case CPU_DYING_FROZEN:
57d885fe
GH
5874 /* Update our root-domain */
5875 rq = cpu_rq(cpu);
05fa785c 5876 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5877 if (rq->rd) {
c6c4927b 5878 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5879 set_rq_offline(rq);
57d885fe 5880 }
05fa785c 5881 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5882 break;
1da177e4
LT
5883#endif
5884 }
5885 return NOTIFY_OK;
5886}
5887
f38b0820
PM
5888/*
5889 * Register at high priority so that task migration (migrate_all_tasks)
5890 * happens before everything else. This has to be lower priority than
cdd6c482 5891 * the notifier in the perf_event subsystem, though.
1da177e4 5892 */
26c2143b 5893static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5894 .notifier_call = migration_call,
5895 .priority = 10
5896};
5897
7babe8db 5898static int __init migration_init(void)
1da177e4
LT
5899{
5900 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5901 int err;
48f24c4d
IM
5902
5903 /* Start one for the boot CPU: */
07dccf33
AM
5904 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5905 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5906 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5907 register_cpu_notifier(&migration_notifier);
7babe8db 5908
a004cd42 5909 return 0;
1da177e4 5910}
7babe8db 5911early_initcall(migration_init);
1da177e4
LT
5912#endif
5913
5914#ifdef CONFIG_SMP
476f3534 5915
3e9830dc 5916#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5917
f6630114
MT
5918static __read_mostly int sched_domain_debug_enabled;
5919
5920static int __init sched_domain_debug_setup(char *str)
5921{
5922 sched_domain_debug_enabled = 1;
5923
5924 return 0;
5925}
5926early_param("sched_debug", sched_domain_debug_setup);
5927
7c16ec58 5928static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5929 struct cpumask *groupmask)
1da177e4 5930{
4dcf6aff 5931 struct sched_group *group = sd->groups;
434d53b0 5932 char str[256];
1da177e4 5933
968ea6d8 5934 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5935 cpumask_clear(groupmask);
4dcf6aff
IM
5936
5937 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5938
5939 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5940 printk("does not load-balance\n");
4dcf6aff 5941 if (sd->parent)
3df0fc5b
PZ
5942 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5943 " has parent");
4dcf6aff 5944 return -1;
41c7ce9a
NP
5945 }
5946
3df0fc5b 5947 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5948
758b2cdc 5949 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5950 printk(KERN_ERR "ERROR: domain->span does not contain "
5951 "CPU%d\n", cpu);
4dcf6aff 5952 }
758b2cdc 5953 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5954 printk(KERN_ERR "ERROR: domain->groups does not contain"
5955 " CPU%d\n", cpu);
4dcf6aff 5956 }
1da177e4 5957
4dcf6aff 5958 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5959 do {
4dcf6aff 5960 if (!group) {
3df0fc5b
PZ
5961 printk("\n");
5962 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5963 break;
5964 }
5965
18a3885f 5966 if (!group->cpu_power) {
3df0fc5b
PZ
5967 printk(KERN_CONT "\n");
5968 printk(KERN_ERR "ERROR: domain->cpu_power not "
5969 "set\n");
4dcf6aff
IM
5970 break;
5971 }
1da177e4 5972
758b2cdc 5973 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5974 printk(KERN_CONT "\n");
5975 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5976 break;
5977 }
1da177e4 5978
758b2cdc 5979 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5980 printk(KERN_CONT "\n");
5981 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5982 break;
5983 }
1da177e4 5984
758b2cdc 5985 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5986
968ea6d8 5987 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5988
3df0fc5b 5989 printk(KERN_CONT " %s", str);
18a3885f 5990 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
5991 printk(KERN_CONT " (cpu_power = %d)",
5992 group->cpu_power);
381512cf 5993 }
1da177e4 5994
4dcf6aff
IM
5995 group = group->next;
5996 } while (group != sd->groups);
3df0fc5b 5997 printk(KERN_CONT "\n");
1da177e4 5998
758b2cdc 5999 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6000 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6001
758b2cdc
RR
6002 if (sd->parent &&
6003 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6004 printk(KERN_ERR "ERROR: parent span is not a superset "
6005 "of domain->span\n");
4dcf6aff
IM
6006 return 0;
6007}
1da177e4 6008
4dcf6aff
IM
6009static void sched_domain_debug(struct sched_domain *sd, int cpu)
6010{
d5dd3db1 6011 cpumask_var_t groupmask;
4dcf6aff 6012 int level = 0;
1da177e4 6013
f6630114
MT
6014 if (!sched_domain_debug_enabled)
6015 return;
6016
4dcf6aff
IM
6017 if (!sd) {
6018 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6019 return;
6020 }
1da177e4 6021
4dcf6aff
IM
6022 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6023
d5dd3db1 6024 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6025 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6026 return;
6027 }
6028
4dcf6aff 6029 for (;;) {
7c16ec58 6030 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6031 break;
1da177e4
LT
6032 level++;
6033 sd = sd->parent;
33859f7f 6034 if (!sd)
4dcf6aff
IM
6035 break;
6036 }
d5dd3db1 6037 free_cpumask_var(groupmask);
1da177e4 6038}
6d6bc0ad 6039#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6040# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6041#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6042
1a20ff27 6043static int sd_degenerate(struct sched_domain *sd)
245af2c7 6044{
758b2cdc 6045 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6046 return 1;
6047
6048 /* Following flags need at least 2 groups */
6049 if (sd->flags & (SD_LOAD_BALANCE |
6050 SD_BALANCE_NEWIDLE |
6051 SD_BALANCE_FORK |
89c4710e
SS
6052 SD_BALANCE_EXEC |
6053 SD_SHARE_CPUPOWER |
6054 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6055 if (sd->groups != sd->groups->next)
6056 return 0;
6057 }
6058
6059 /* Following flags don't use groups */
c88d5910 6060 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6061 return 0;
6062
6063 return 1;
6064}
6065
48f24c4d
IM
6066static int
6067sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6068{
6069 unsigned long cflags = sd->flags, pflags = parent->flags;
6070
6071 if (sd_degenerate(parent))
6072 return 1;
6073
758b2cdc 6074 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6075 return 0;
6076
245af2c7
SS
6077 /* Flags needing groups don't count if only 1 group in parent */
6078 if (parent->groups == parent->groups->next) {
6079 pflags &= ~(SD_LOAD_BALANCE |
6080 SD_BALANCE_NEWIDLE |
6081 SD_BALANCE_FORK |
89c4710e
SS
6082 SD_BALANCE_EXEC |
6083 SD_SHARE_CPUPOWER |
6084 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6085 if (nr_node_ids == 1)
6086 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6087 }
6088 if (~cflags & pflags)
6089 return 0;
6090
6091 return 1;
6092}
6093
c6c4927b
RR
6094static void free_rootdomain(struct root_domain *rd)
6095{
047106ad
PZ
6096 synchronize_sched();
6097
68e74568
RR
6098 cpupri_cleanup(&rd->cpupri);
6099
c6c4927b
RR
6100 free_cpumask_var(rd->rto_mask);
6101 free_cpumask_var(rd->online);
6102 free_cpumask_var(rd->span);
6103 kfree(rd);
6104}
6105
57d885fe
GH
6106static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6107{
a0490fa3 6108 struct root_domain *old_rd = NULL;
57d885fe 6109 unsigned long flags;
57d885fe 6110
05fa785c 6111 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6112
6113 if (rq->rd) {
a0490fa3 6114 old_rd = rq->rd;
57d885fe 6115
c6c4927b 6116 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6117 set_rq_offline(rq);
57d885fe 6118
c6c4927b 6119 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6120
a0490fa3
IM
6121 /*
6122 * If we dont want to free the old_rt yet then
6123 * set old_rd to NULL to skip the freeing later
6124 * in this function:
6125 */
6126 if (!atomic_dec_and_test(&old_rd->refcount))
6127 old_rd = NULL;
57d885fe
GH
6128 }
6129
6130 atomic_inc(&rd->refcount);
6131 rq->rd = rd;
6132
c6c4927b 6133 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6134 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6135 set_rq_online(rq);
57d885fe 6136
05fa785c 6137 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6138
6139 if (old_rd)
6140 free_rootdomain(old_rd);
57d885fe
GH
6141}
6142
fd5e1b5d 6143static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6144{
36b7b6d4
PE
6145 gfp_t gfp = GFP_KERNEL;
6146
57d885fe
GH
6147 memset(rd, 0, sizeof(*rd));
6148
36b7b6d4
PE
6149 if (bootmem)
6150 gfp = GFP_NOWAIT;
c6c4927b 6151
36b7b6d4 6152 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6153 goto out;
36b7b6d4 6154 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6155 goto free_span;
36b7b6d4 6156 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6157 goto free_online;
6e0534f2 6158
0fb53029 6159 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6160 goto free_rto_mask;
c6c4927b 6161 return 0;
6e0534f2 6162
68e74568
RR
6163free_rto_mask:
6164 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6165free_online:
6166 free_cpumask_var(rd->online);
6167free_span:
6168 free_cpumask_var(rd->span);
0c910d28 6169out:
c6c4927b 6170 return -ENOMEM;
57d885fe
GH
6171}
6172
6173static void init_defrootdomain(void)
6174{
c6c4927b
RR
6175 init_rootdomain(&def_root_domain, true);
6176
57d885fe
GH
6177 atomic_set(&def_root_domain.refcount, 1);
6178}
6179
dc938520 6180static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6181{
6182 struct root_domain *rd;
6183
6184 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6185 if (!rd)
6186 return NULL;
6187
c6c4927b
RR
6188 if (init_rootdomain(rd, false) != 0) {
6189 kfree(rd);
6190 return NULL;
6191 }
57d885fe
GH
6192
6193 return rd;
6194}
6195
1da177e4 6196/*
0eab9146 6197 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6198 * hold the hotplug lock.
6199 */
0eab9146
IM
6200static void
6201cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6202{
70b97a7f 6203 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6204 struct sched_domain *tmp;
6205
6206 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6207 for (tmp = sd; tmp; ) {
245af2c7
SS
6208 struct sched_domain *parent = tmp->parent;
6209 if (!parent)
6210 break;
f29c9b1c 6211
1a848870 6212 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6213 tmp->parent = parent->parent;
1a848870
SS
6214 if (parent->parent)
6215 parent->parent->child = tmp;
f29c9b1c
LZ
6216 } else
6217 tmp = tmp->parent;
245af2c7
SS
6218 }
6219
1a848870 6220 if (sd && sd_degenerate(sd)) {
245af2c7 6221 sd = sd->parent;
1a848870
SS
6222 if (sd)
6223 sd->child = NULL;
6224 }
1da177e4
LT
6225
6226 sched_domain_debug(sd, cpu);
6227
57d885fe 6228 rq_attach_root(rq, rd);
674311d5 6229 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6230}
6231
6232/* cpus with isolated domains */
dcc30a35 6233static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6234
6235/* Setup the mask of cpus configured for isolated domains */
6236static int __init isolated_cpu_setup(char *str)
6237{
bdddd296 6238 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6239 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6240 return 1;
6241}
6242
8927f494 6243__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6244
6245/*
6711cab4
SS
6246 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6247 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6248 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6249 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6250 *
6251 * init_sched_build_groups will build a circular linked list of the groups
6252 * covered by the given span, and will set each group's ->cpumask correctly,
6253 * and ->cpu_power to 0.
6254 */
a616058b 6255static void
96f874e2
RR
6256init_sched_build_groups(const struct cpumask *span,
6257 const struct cpumask *cpu_map,
6258 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6259 struct sched_group **sg,
96f874e2
RR
6260 struct cpumask *tmpmask),
6261 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6262{
6263 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6264 int i;
6265
96f874e2 6266 cpumask_clear(covered);
7c16ec58 6267
abcd083a 6268 for_each_cpu(i, span) {
6711cab4 6269 struct sched_group *sg;
7c16ec58 6270 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6271 int j;
6272
758b2cdc 6273 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6274 continue;
6275
758b2cdc 6276 cpumask_clear(sched_group_cpus(sg));
18a3885f 6277 sg->cpu_power = 0;
1da177e4 6278
abcd083a 6279 for_each_cpu(j, span) {
7c16ec58 6280 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6281 continue;
6282
96f874e2 6283 cpumask_set_cpu(j, covered);
758b2cdc 6284 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6285 }
6286 if (!first)
6287 first = sg;
6288 if (last)
6289 last->next = sg;
6290 last = sg;
6291 }
6292 last->next = first;
6293}
6294
9c1cfda2 6295#define SD_NODES_PER_DOMAIN 16
1da177e4 6296
9c1cfda2 6297#ifdef CONFIG_NUMA
198e2f18 6298
9c1cfda2
JH
6299/**
6300 * find_next_best_node - find the next node to include in a sched_domain
6301 * @node: node whose sched_domain we're building
6302 * @used_nodes: nodes already in the sched_domain
6303 *
41a2d6cf 6304 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6305 * finds the closest node not already in the @used_nodes map.
6306 *
6307 * Should use nodemask_t.
6308 */
c5f59f08 6309static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6310{
6311 int i, n, val, min_val, best_node = 0;
6312
6313 min_val = INT_MAX;
6314
076ac2af 6315 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6316 /* Start at @node */
076ac2af 6317 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6318
6319 if (!nr_cpus_node(n))
6320 continue;
6321
6322 /* Skip already used nodes */
c5f59f08 6323 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6324 continue;
6325
6326 /* Simple min distance search */
6327 val = node_distance(node, n);
6328
6329 if (val < min_val) {
6330 min_val = val;
6331 best_node = n;
6332 }
6333 }
6334
c5f59f08 6335 node_set(best_node, *used_nodes);
9c1cfda2
JH
6336 return best_node;
6337}
6338
6339/**
6340 * sched_domain_node_span - get a cpumask for a node's sched_domain
6341 * @node: node whose cpumask we're constructing
73486722 6342 * @span: resulting cpumask
9c1cfda2 6343 *
41a2d6cf 6344 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6345 * should be one that prevents unnecessary balancing, but also spreads tasks
6346 * out optimally.
6347 */
96f874e2 6348static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6349{
c5f59f08 6350 nodemask_t used_nodes;
48f24c4d 6351 int i;
9c1cfda2 6352
6ca09dfc 6353 cpumask_clear(span);
c5f59f08 6354 nodes_clear(used_nodes);
9c1cfda2 6355
6ca09dfc 6356 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6357 node_set(node, used_nodes);
9c1cfda2
JH
6358
6359 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6360 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6361
6ca09dfc 6362 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6363 }
9c1cfda2 6364}
6d6bc0ad 6365#endif /* CONFIG_NUMA */
9c1cfda2 6366
5c45bf27 6367int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6368
6c99e9ad
RR
6369/*
6370 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6371 *
6372 * ( See the the comments in include/linux/sched.h:struct sched_group
6373 * and struct sched_domain. )
6c99e9ad
RR
6374 */
6375struct static_sched_group {
6376 struct sched_group sg;
6377 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6378};
6379
6380struct static_sched_domain {
6381 struct sched_domain sd;
6382 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6383};
6384
49a02c51
AH
6385struct s_data {
6386#ifdef CONFIG_NUMA
6387 int sd_allnodes;
6388 cpumask_var_t domainspan;
6389 cpumask_var_t covered;
6390 cpumask_var_t notcovered;
6391#endif
6392 cpumask_var_t nodemask;
6393 cpumask_var_t this_sibling_map;
6394 cpumask_var_t this_core_map;
6395 cpumask_var_t send_covered;
6396 cpumask_var_t tmpmask;
6397 struct sched_group **sched_group_nodes;
6398 struct root_domain *rd;
6399};
6400
2109b99e
AH
6401enum s_alloc {
6402 sa_sched_groups = 0,
6403 sa_rootdomain,
6404 sa_tmpmask,
6405 sa_send_covered,
6406 sa_this_core_map,
6407 sa_this_sibling_map,
6408 sa_nodemask,
6409 sa_sched_group_nodes,
6410#ifdef CONFIG_NUMA
6411 sa_notcovered,
6412 sa_covered,
6413 sa_domainspan,
6414#endif
6415 sa_none,
6416};
6417
9c1cfda2 6418/*
48f24c4d 6419 * SMT sched-domains:
9c1cfda2 6420 */
1da177e4 6421#ifdef CONFIG_SCHED_SMT
6c99e9ad 6422static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6423static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6424
41a2d6cf 6425static int
96f874e2
RR
6426cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6427 struct sched_group **sg, struct cpumask *unused)
1da177e4 6428{
6711cab4 6429 if (sg)
1871e52c 6430 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6431 return cpu;
6432}
6d6bc0ad 6433#endif /* CONFIG_SCHED_SMT */
1da177e4 6434
48f24c4d
IM
6435/*
6436 * multi-core sched-domains:
6437 */
1e9f28fa 6438#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6439static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6440static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6441#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6442
6443#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6444static int
96f874e2
RR
6445cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6446 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6447{
6711cab4 6448 int group;
7c16ec58 6449
c69fc56d 6450 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6451 group = cpumask_first(mask);
6711cab4 6452 if (sg)
6c99e9ad 6453 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6454 return group;
1e9f28fa
SS
6455}
6456#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6457static int
96f874e2
RR
6458cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6459 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6460{
6711cab4 6461 if (sg)
6c99e9ad 6462 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6463 return cpu;
6464}
6465#endif
6466
6c99e9ad
RR
6467static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6468static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6469
41a2d6cf 6470static int
96f874e2
RR
6471cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6472 struct sched_group **sg, struct cpumask *mask)
1da177e4 6473{
6711cab4 6474 int group;
48f24c4d 6475#ifdef CONFIG_SCHED_MC
6ca09dfc 6476 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6477 group = cpumask_first(mask);
1e9f28fa 6478#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6479 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6480 group = cpumask_first(mask);
1da177e4 6481#else
6711cab4 6482 group = cpu;
1da177e4 6483#endif
6711cab4 6484 if (sg)
6c99e9ad 6485 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6486 return group;
1da177e4
LT
6487}
6488
6489#ifdef CONFIG_NUMA
1da177e4 6490/*
9c1cfda2
JH
6491 * The init_sched_build_groups can't handle what we want to do with node
6492 * groups, so roll our own. Now each node has its own list of groups which
6493 * gets dynamically allocated.
1da177e4 6494 */
62ea9ceb 6495static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6496static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6497
62ea9ceb 6498static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6499static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6500
96f874e2
RR
6501static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6502 struct sched_group **sg,
6503 struct cpumask *nodemask)
9c1cfda2 6504{
6711cab4
SS
6505 int group;
6506
6ca09dfc 6507 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6508 group = cpumask_first(nodemask);
6711cab4
SS
6509
6510 if (sg)
6c99e9ad 6511 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6512 return group;
1da177e4 6513}
6711cab4 6514
08069033
SS
6515static void init_numa_sched_groups_power(struct sched_group *group_head)
6516{
6517 struct sched_group *sg = group_head;
6518 int j;
6519
6520 if (!sg)
6521 return;
3a5c359a 6522 do {
758b2cdc 6523 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6524 struct sched_domain *sd;
08069033 6525
6c99e9ad 6526 sd = &per_cpu(phys_domains, j).sd;
13318a71 6527 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6528 /*
6529 * Only add "power" once for each
6530 * physical package.
6531 */
6532 continue;
6533 }
08069033 6534
18a3885f 6535 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6536 }
6537 sg = sg->next;
6538 } while (sg != group_head);
08069033 6539}
0601a88d
AH
6540
6541static int build_numa_sched_groups(struct s_data *d,
6542 const struct cpumask *cpu_map, int num)
6543{
6544 struct sched_domain *sd;
6545 struct sched_group *sg, *prev;
6546 int n, j;
6547
6548 cpumask_clear(d->covered);
6549 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6550 if (cpumask_empty(d->nodemask)) {
6551 d->sched_group_nodes[num] = NULL;
6552 goto out;
6553 }
6554
6555 sched_domain_node_span(num, d->domainspan);
6556 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6557
6558 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6559 GFP_KERNEL, num);
6560 if (!sg) {
3df0fc5b
PZ
6561 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6562 num);
0601a88d
AH
6563 return -ENOMEM;
6564 }
6565 d->sched_group_nodes[num] = sg;
6566
6567 for_each_cpu(j, d->nodemask) {
6568 sd = &per_cpu(node_domains, j).sd;
6569 sd->groups = sg;
6570 }
6571
18a3885f 6572 sg->cpu_power = 0;
0601a88d
AH
6573 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6574 sg->next = sg;
6575 cpumask_or(d->covered, d->covered, d->nodemask);
6576
6577 prev = sg;
6578 for (j = 0; j < nr_node_ids; j++) {
6579 n = (num + j) % nr_node_ids;
6580 cpumask_complement(d->notcovered, d->covered);
6581 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6582 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6583 if (cpumask_empty(d->tmpmask))
6584 break;
6585 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6586 if (cpumask_empty(d->tmpmask))
6587 continue;
6588 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6589 GFP_KERNEL, num);
6590 if (!sg) {
3df0fc5b
PZ
6591 printk(KERN_WARNING
6592 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6593 return -ENOMEM;
6594 }
18a3885f 6595 sg->cpu_power = 0;
0601a88d
AH
6596 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6597 sg->next = prev->next;
6598 cpumask_or(d->covered, d->covered, d->tmpmask);
6599 prev->next = sg;
6600 prev = sg;
6601 }
6602out:
6603 return 0;
6604}
6d6bc0ad 6605#endif /* CONFIG_NUMA */
1da177e4 6606
a616058b 6607#ifdef CONFIG_NUMA
51888ca2 6608/* Free memory allocated for various sched_group structures */
96f874e2
RR
6609static void free_sched_groups(const struct cpumask *cpu_map,
6610 struct cpumask *nodemask)
51888ca2 6611{
a616058b 6612 int cpu, i;
51888ca2 6613
abcd083a 6614 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6615 struct sched_group **sched_group_nodes
6616 = sched_group_nodes_bycpu[cpu];
6617
51888ca2
SV
6618 if (!sched_group_nodes)
6619 continue;
6620
076ac2af 6621 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6622 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6623
6ca09dfc 6624 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6625 if (cpumask_empty(nodemask))
51888ca2
SV
6626 continue;
6627
6628 if (sg == NULL)
6629 continue;
6630 sg = sg->next;
6631next_sg:
6632 oldsg = sg;
6633 sg = sg->next;
6634 kfree(oldsg);
6635 if (oldsg != sched_group_nodes[i])
6636 goto next_sg;
6637 }
6638 kfree(sched_group_nodes);
6639 sched_group_nodes_bycpu[cpu] = NULL;
6640 }
51888ca2 6641}
6d6bc0ad 6642#else /* !CONFIG_NUMA */
96f874e2
RR
6643static void free_sched_groups(const struct cpumask *cpu_map,
6644 struct cpumask *nodemask)
a616058b
SS
6645{
6646}
6d6bc0ad 6647#endif /* CONFIG_NUMA */
51888ca2 6648
89c4710e
SS
6649/*
6650 * Initialize sched groups cpu_power.
6651 *
6652 * cpu_power indicates the capacity of sched group, which is used while
6653 * distributing the load between different sched groups in a sched domain.
6654 * Typically cpu_power for all the groups in a sched domain will be same unless
6655 * there are asymmetries in the topology. If there are asymmetries, group
6656 * having more cpu_power will pickup more load compared to the group having
6657 * less cpu_power.
89c4710e
SS
6658 */
6659static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6660{
6661 struct sched_domain *child;
6662 struct sched_group *group;
f93e65c1
PZ
6663 long power;
6664 int weight;
89c4710e
SS
6665
6666 WARN_ON(!sd || !sd->groups);
6667
13318a71 6668 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6669 return;
6670
6671 child = sd->child;
6672
18a3885f 6673 sd->groups->cpu_power = 0;
5517d86b 6674
f93e65c1
PZ
6675 if (!child) {
6676 power = SCHED_LOAD_SCALE;
6677 weight = cpumask_weight(sched_domain_span(sd));
6678 /*
6679 * SMT siblings share the power of a single core.
a52bfd73
PZ
6680 * Usually multiple threads get a better yield out of
6681 * that one core than a single thread would have,
6682 * reflect that in sd->smt_gain.
f93e65c1 6683 */
a52bfd73
PZ
6684 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6685 power *= sd->smt_gain;
f93e65c1 6686 power /= weight;
a52bfd73
PZ
6687 power >>= SCHED_LOAD_SHIFT;
6688 }
18a3885f 6689 sd->groups->cpu_power += power;
89c4710e
SS
6690 return;
6691 }
6692
89c4710e 6693 /*
f93e65c1 6694 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6695 */
6696 group = child->groups;
6697 do {
18a3885f 6698 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6699 group = group->next;
6700 } while (group != child->groups);
6701}
6702
7c16ec58
MT
6703/*
6704 * Initializers for schedule domains
6705 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6706 */
6707
a5d8c348
IM
6708#ifdef CONFIG_SCHED_DEBUG
6709# define SD_INIT_NAME(sd, type) sd->name = #type
6710#else
6711# define SD_INIT_NAME(sd, type) do { } while (0)
6712#endif
6713
7c16ec58 6714#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6715
7c16ec58
MT
6716#define SD_INIT_FUNC(type) \
6717static noinline void sd_init_##type(struct sched_domain *sd) \
6718{ \
6719 memset(sd, 0, sizeof(*sd)); \
6720 *sd = SD_##type##_INIT; \
1d3504fc 6721 sd->level = SD_LV_##type; \
a5d8c348 6722 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6723}
6724
6725SD_INIT_FUNC(CPU)
6726#ifdef CONFIG_NUMA
6727 SD_INIT_FUNC(ALLNODES)
6728 SD_INIT_FUNC(NODE)
6729#endif
6730#ifdef CONFIG_SCHED_SMT
6731 SD_INIT_FUNC(SIBLING)
6732#endif
6733#ifdef CONFIG_SCHED_MC
6734 SD_INIT_FUNC(MC)
6735#endif
6736
1d3504fc
HS
6737static int default_relax_domain_level = -1;
6738
6739static int __init setup_relax_domain_level(char *str)
6740{
30e0e178
LZ
6741 unsigned long val;
6742
6743 val = simple_strtoul(str, NULL, 0);
6744 if (val < SD_LV_MAX)
6745 default_relax_domain_level = val;
6746
1d3504fc
HS
6747 return 1;
6748}
6749__setup("relax_domain_level=", setup_relax_domain_level);
6750
6751static void set_domain_attribute(struct sched_domain *sd,
6752 struct sched_domain_attr *attr)
6753{
6754 int request;
6755
6756 if (!attr || attr->relax_domain_level < 0) {
6757 if (default_relax_domain_level < 0)
6758 return;
6759 else
6760 request = default_relax_domain_level;
6761 } else
6762 request = attr->relax_domain_level;
6763 if (request < sd->level) {
6764 /* turn off idle balance on this domain */
c88d5910 6765 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6766 } else {
6767 /* turn on idle balance on this domain */
c88d5910 6768 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6769 }
6770}
6771
2109b99e
AH
6772static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6773 const struct cpumask *cpu_map)
6774{
6775 switch (what) {
6776 case sa_sched_groups:
6777 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6778 d->sched_group_nodes = NULL;
6779 case sa_rootdomain:
6780 free_rootdomain(d->rd); /* fall through */
6781 case sa_tmpmask:
6782 free_cpumask_var(d->tmpmask); /* fall through */
6783 case sa_send_covered:
6784 free_cpumask_var(d->send_covered); /* fall through */
6785 case sa_this_core_map:
6786 free_cpumask_var(d->this_core_map); /* fall through */
6787 case sa_this_sibling_map:
6788 free_cpumask_var(d->this_sibling_map); /* fall through */
6789 case sa_nodemask:
6790 free_cpumask_var(d->nodemask); /* fall through */
6791 case sa_sched_group_nodes:
d1b55138 6792#ifdef CONFIG_NUMA
2109b99e
AH
6793 kfree(d->sched_group_nodes); /* fall through */
6794 case sa_notcovered:
6795 free_cpumask_var(d->notcovered); /* fall through */
6796 case sa_covered:
6797 free_cpumask_var(d->covered); /* fall through */
6798 case sa_domainspan:
6799 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6800#endif
2109b99e
AH
6801 case sa_none:
6802 break;
6803 }
6804}
3404c8d9 6805
2109b99e
AH
6806static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6807 const struct cpumask *cpu_map)
6808{
3404c8d9 6809#ifdef CONFIG_NUMA
2109b99e
AH
6810 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6811 return sa_none;
6812 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6813 return sa_domainspan;
6814 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6815 return sa_covered;
6816 /* Allocate the per-node list of sched groups */
6817 d->sched_group_nodes = kcalloc(nr_node_ids,
6818 sizeof(struct sched_group *), GFP_KERNEL);
6819 if (!d->sched_group_nodes) {
3df0fc5b 6820 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6821 return sa_notcovered;
d1b55138 6822 }
2109b99e 6823 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6824#endif
2109b99e
AH
6825 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6826 return sa_sched_group_nodes;
6827 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6828 return sa_nodemask;
6829 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6830 return sa_this_sibling_map;
6831 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6832 return sa_this_core_map;
6833 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6834 return sa_send_covered;
6835 d->rd = alloc_rootdomain();
6836 if (!d->rd) {
3df0fc5b 6837 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6838 return sa_tmpmask;
57d885fe 6839 }
2109b99e
AH
6840 return sa_rootdomain;
6841}
57d885fe 6842
7f4588f3
AH
6843static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6844 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6845{
6846 struct sched_domain *sd = NULL;
7c16ec58 6847#ifdef CONFIG_NUMA
7f4588f3 6848 struct sched_domain *parent;
1da177e4 6849
7f4588f3
AH
6850 d->sd_allnodes = 0;
6851 if (cpumask_weight(cpu_map) >
6852 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6853 sd = &per_cpu(allnodes_domains, i).sd;
6854 SD_INIT(sd, ALLNODES);
1d3504fc 6855 set_domain_attribute(sd, attr);
7f4588f3
AH
6856 cpumask_copy(sched_domain_span(sd), cpu_map);
6857 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6858 d->sd_allnodes = 1;
6859 }
6860 parent = sd;
6861
6862 sd = &per_cpu(node_domains, i).sd;
6863 SD_INIT(sd, NODE);
6864 set_domain_attribute(sd, attr);
6865 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6866 sd->parent = parent;
6867 if (parent)
6868 parent->child = sd;
6869 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6870#endif
7f4588f3
AH
6871 return sd;
6872}
1da177e4 6873
87cce662
AH
6874static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6875 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6876 struct sched_domain *parent, int i)
6877{
6878 struct sched_domain *sd;
6879 sd = &per_cpu(phys_domains, i).sd;
6880 SD_INIT(sd, CPU);
6881 set_domain_attribute(sd, attr);
6882 cpumask_copy(sched_domain_span(sd), d->nodemask);
6883 sd->parent = parent;
6884 if (parent)
6885 parent->child = sd;
6886 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6887 return sd;
6888}
1da177e4 6889
410c4081
AH
6890static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6891 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6892 struct sched_domain *parent, int i)
6893{
6894 struct sched_domain *sd = parent;
1e9f28fa 6895#ifdef CONFIG_SCHED_MC
410c4081
AH
6896 sd = &per_cpu(core_domains, i).sd;
6897 SD_INIT(sd, MC);
6898 set_domain_attribute(sd, attr);
6899 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6900 sd->parent = parent;
6901 parent->child = sd;
6902 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6903#endif
410c4081
AH
6904 return sd;
6905}
1e9f28fa 6906
d8173535
AH
6907static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6908 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6909 struct sched_domain *parent, int i)
6910{
6911 struct sched_domain *sd = parent;
1da177e4 6912#ifdef CONFIG_SCHED_SMT
d8173535
AH
6913 sd = &per_cpu(cpu_domains, i).sd;
6914 SD_INIT(sd, SIBLING);
6915 set_domain_attribute(sd, attr);
6916 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6917 sd->parent = parent;
6918 parent->child = sd;
6919 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6920#endif
d8173535
AH
6921 return sd;
6922}
1da177e4 6923
0e8e85c9
AH
6924static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6925 const struct cpumask *cpu_map, int cpu)
6926{
6927 switch (l) {
1da177e4 6928#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6929 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6930 cpumask_and(d->this_sibling_map, cpu_map,
6931 topology_thread_cpumask(cpu));
6932 if (cpu == cpumask_first(d->this_sibling_map))
6933 init_sched_build_groups(d->this_sibling_map, cpu_map,
6934 &cpu_to_cpu_group,
6935 d->send_covered, d->tmpmask);
6936 break;
1da177e4 6937#endif
1e9f28fa 6938#ifdef CONFIG_SCHED_MC
a2af04cd
AH
6939 case SD_LV_MC: /* set up multi-core groups */
6940 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6941 if (cpu == cpumask_first(d->this_core_map))
6942 init_sched_build_groups(d->this_core_map, cpu_map,
6943 &cpu_to_core_group,
6944 d->send_covered, d->tmpmask);
6945 break;
1e9f28fa 6946#endif
86548096
AH
6947 case SD_LV_CPU: /* set up physical groups */
6948 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6949 if (!cpumask_empty(d->nodemask))
6950 init_sched_build_groups(d->nodemask, cpu_map,
6951 &cpu_to_phys_group,
6952 d->send_covered, d->tmpmask);
6953 break;
1da177e4 6954#ifdef CONFIG_NUMA
de616e36
AH
6955 case SD_LV_ALLNODES:
6956 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6957 d->send_covered, d->tmpmask);
6958 break;
6959#endif
0e8e85c9
AH
6960 default:
6961 break;
7c16ec58 6962 }
0e8e85c9 6963}
9c1cfda2 6964
2109b99e
AH
6965/*
6966 * Build sched domains for a given set of cpus and attach the sched domains
6967 * to the individual cpus
6968 */
6969static int __build_sched_domains(const struct cpumask *cpu_map,
6970 struct sched_domain_attr *attr)
6971{
6972 enum s_alloc alloc_state = sa_none;
6973 struct s_data d;
294b0c96 6974 struct sched_domain *sd;
2109b99e 6975 int i;
7c16ec58 6976#ifdef CONFIG_NUMA
2109b99e 6977 d.sd_allnodes = 0;
7c16ec58 6978#endif
9c1cfda2 6979
2109b99e
AH
6980 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6981 if (alloc_state != sa_rootdomain)
6982 goto error;
6983 alloc_state = sa_sched_groups;
9c1cfda2 6984
1da177e4 6985 /*
1a20ff27 6986 * Set up domains for cpus specified by the cpu_map.
1da177e4 6987 */
abcd083a 6988 for_each_cpu(i, cpu_map) {
49a02c51
AH
6989 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6990 cpu_map);
9761eea8 6991
7f4588f3 6992 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 6993 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 6994 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 6995 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 6996 }
9c1cfda2 6997
abcd083a 6998 for_each_cpu(i, cpu_map) {
0e8e85c9 6999 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7000 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7001 }
9c1cfda2 7002
1da177e4 7003 /* Set up physical groups */
86548096
AH
7004 for (i = 0; i < nr_node_ids; i++)
7005 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7006
1da177e4
LT
7007#ifdef CONFIG_NUMA
7008 /* Set up node groups */
de616e36
AH
7009 if (d.sd_allnodes)
7010 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7011
0601a88d
AH
7012 for (i = 0; i < nr_node_ids; i++)
7013 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7014 goto error;
1da177e4
LT
7015#endif
7016
7017 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7018#ifdef CONFIG_SCHED_SMT
abcd083a 7019 for_each_cpu(i, cpu_map) {
294b0c96 7020 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7021 init_sched_groups_power(i, sd);
5c45bf27 7022 }
1da177e4 7023#endif
1e9f28fa 7024#ifdef CONFIG_SCHED_MC
abcd083a 7025 for_each_cpu(i, cpu_map) {
294b0c96 7026 sd = &per_cpu(core_domains, i).sd;
89c4710e 7027 init_sched_groups_power(i, sd);
5c45bf27
SS
7028 }
7029#endif
1e9f28fa 7030
abcd083a 7031 for_each_cpu(i, cpu_map) {
294b0c96 7032 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7033 init_sched_groups_power(i, sd);
1da177e4
LT
7034 }
7035
9c1cfda2 7036#ifdef CONFIG_NUMA
076ac2af 7037 for (i = 0; i < nr_node_ids; i++)
49a02c51 7038 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7039
49a02c51 7040 if (d.sd_allnodes) {
6711cab4 7041 struct sched_group *sg;
f712c0c7 7042
96f874e2 7043 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7044 d.tmpmask);
f712c0c7
SS
7045 init_numa_sched_groups_power(sg);
7046 }
9c1cfda2
JH
7047#endif
7048
1da177e4 7049 /* Attach the domains */
abcd083a 7050 for_each_cpu(i, cpu_map) {
1da177e4 7051#ifdef CONFIG_SCHED_SMT
6c99e9ad 7052 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7053#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7054 sd = &per_cpu(core_domains, i).sd;
1da177e4 7055#else
6c99e9ad 7056 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7057#endif
49a02c51 7058 cpu_attach_domain(sd, d.rd, i);
1da177e4 7059 }
51888ca2 7060
2109b99e
AH
7061 d.sched_group_nodes = NULL; /* don't free this we still need it */
7062 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7063 return 0;
51888ca2 7064
51888ca2 7065error:
2109b99e
AH
7066 __free_domain_allocs(&d, alloc_state, cpu_map);
7067 return -ENOMEM;
1da177e4 7068}
029190c5 7069
96f874e2 7070static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7071{
7072 return __build_sched_domains(cpu_map, NULL);
7073}
7074
acc3f5d7 7075static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7076static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7077static struct sched_domain_attr *dattr_cur;
7078 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7079
7080/*
7081 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7082 * cpumask) fails, then fallback to a single sched domain,
7083 * as determined by the single cpumask fallback_doms.
029190c5 7084 */
4212823f 7085static cpumask_var_t fallback_doms;
029190c5 7086
ee79d1bd
HC
7087/*
7088 * arch_update_cpu_topology lets virtualized architectures update the
7089 * cpu core maps. It is supposed to return 1 if the topology changed
7090 * or 0 if it stayed the same.
7091 */
7092int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7093{
ee79d1bd 7094 return 0;
22e52b07
HC
7095}
7096
acc3f5d7
RR
7097cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7098{
7099 int i;
7100 cpumask_var_t *doms;
7101
7102 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7103 if (!doms)
7104 return NULL;
7105 for (i = 0; i < ndoms; i++) {
7106 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7107 free_sched_domains(doms, i);
7108 return NULL;
7109 }
7110 }
7111 return doms;
7112}
7113
7114void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7115{
7116 unsigned int i;
7117 for (i = 0; i < ndoms; i++)
7118 free_cpumask_var(doms[i]);
7119 kfree(doms);
7120}
7121
1a20ff27 7122/*
41a2d6cf 7123 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7124 * For now this just excludes isolated cpus, but could be used to
7125 * exclude other special cases in the future.
1a20ff27 7126 */
96f874e2 7127static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7128{
7378547f
MM
7129 int err;
7130
22e52b07 7131 arch_update_cpu_topology();
029190c5 7132 ndoms_cur = 1;
acc3f5d7 7133 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7134 if (!doms_cur)
acc3f5d7
RR
7135 doms_cur = &fallback_doms;
7136 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7137 dattr_cur = NULL;
acc3f5d7 7138 err = build_sched_domains(doms_cur[0]);
6382bc90 7139 register_sched_domain_sysctl();
7378547f
MM
7140
7141 return err;
1a20ff27
DG
7142}
7143
96f874e2
RR
7144static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7145 struct cpumask *tmpmask)
1da177e4 7146{
7c16ec58 7147 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7148}
1da177e4 7149
1a20ff27
DG
7150/*
7151 * Detach sched domains from a group of cpus specified in cpu_map
7152 * These cpus will now be attached to the NULL domain
7153 */
96f874e2 7154static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7155{
96f874e2
RR
7156 /* Save because hotplug lock held. */
7157 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7158 int i;
7159
abcd083a 7160 for_each_cpu(i, cpu_map)
57d885fe 7161 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7162 synchronize_sched();
96f874e2 7163 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7164}
7165
1d3504fc
HS
7166/* handle null as "default" */
7167static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7168 struct sched_domain_attr *new, int idx_new)
7169{
7170 struct sched_domain_attr tmp;
7171
7172 /* fast path */
7173 if (!new && !cur)
7174 return 1;
7175
7176 tmp = SD_ATTR_INIT;
7177 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7178 new ? (new + idx_new) : &tmp,
7179 sizeof(struct sched_domain_attr));
7180}
7181
029190c5
PJ
7182/*
7183 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7184 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7185 * doms_new[] to the current sched domain partitioning, doms_cur[].
7186 * It destroys each deleted domain and builds each new domain.
7187 *
acc3f5d7 7188 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7189 * The masks don't intersect (don't overlap.) We should setup one
7190 * sched domain for each mask. CPUs not in any of the cpumasks will
7191 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7192 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7193 * it as it is.
7194 *
acc3f5d7
RR
7195 * The passed in 'doms_new' should be allocated using
7196 * alloc_sched_domains. This routine takes ownership of it and will
7197 * free_sched_domains it when done with it. If the caller failed the
7198 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7199 * and partition_sched_domains() will fallback to the single partition
7200 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7201 *
96f874e2 7202 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7203 * ndoms_new == 0 is a special case for destroying existing domains,
7204 * and it will not create the default domain.
dfb512ec 7205 *
029190c5
PJ
7206 * Call with hotplug lock held
7207 */
acc3f5d7 7208void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7209 struct sched_domain_attr *dattr_new)
029190c5 7210{
dfb512ec 7211 int i, j, n;
d65bd5ec 7212 int new_topology;
029190c5 7213
712555ee 7214 mutex_lock(&sched_domains_mutex);
a1835615 7215
7378547f
MM
7216 /* always unregister in case we don't destroy any domains */
7217 unregister_sched_domain_sysctl();
7218
d65bd5ec
HC
7219 /* Let architecture update cpu core mappings. */
7220 new_topology = arch_update_cpu_topology();
7221
dfb512ec 7222 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7223
7224 /* Destroy deleted domains */
7225 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7226 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7227 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7228 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7229 goto match1;
7230 }
7231 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7232 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7233match1:
7234 ;
7235 }
7236
e761b772
MK
7237 if (doms_new == NULL) {
7238 ndoms_cur = 0;
acc3f5d7 7239 doms_new = &fallback_doms;
6ad4c188 7240 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7241 WARN_ON_ONCE(dattr_new);
e761b772
MK
7242 }
7243
029190c5
PJ
7244 /* Build new domains */
7245 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7246 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7247 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7248 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7249 goto match2;
7250 }
7251 /* no match - add a new doms_new */
acc3f5d7 7252 __build_sched_domains(doms_new[i],
1d3504fc 7253 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7254match2:
7255 ;
7256 }
7257
7258 /* Remember the new sched domains */
acc3f5d7
RR
7259 if (doms_cur != &fallback_doms)
7260 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7261 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7262 doms_cur = doms_new;
1d3504fc 7263 dattr_cur = dattr_new;
029190c5 7264 ndoms_cur = ndoms_new;
7378547f
MM
7265
7266 register_sched_domain_sysctl();
a1835615 7267
712555ee 7268 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7269}
7270
5c45bf27 7271#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7272static void arch_reinit_sched_domains(void)
5c45bf27 7273{
95402b38 7274 get_online_cpus();
dfb512ec
MK
7275
7276 /* Destroy domains first to force the rebuild */
7277 partition_sched_domains(0, NULL, NULL);
7278
e761b772 7279 rebuild_sched_domains();
95402b38 7280 put_online_cpus();
5c45bf27
SS
7281}
7282
7283static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7284{
afb8a9b7 7285 unsigned int level = 0;
5c45bf27 7286
afb8a9b7
GS
7287 if (sscanf(buf, "%u", &level) != 1)
7288 return -EINVAL;
7289
7290 /*
7291 * level is always be positive so don't check for
7292 * level < POWERSAVINGS_BALANCE_NONE which is 0
7293 * What happens on 0 or 1 byte write,
7294 * need to check for count as well?
7295 */
7296
7297 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7298 return -EINVAL;
7299
7300 if (smt)
afb8a9b7 7301 sched_smt_power_savings = level;
5c45bf27 7302 else
afb8a9b7 7303 sched_mc_power_savings = level;
5c45bf27 7304
c70f22d2 7305 arch_reinit_sched_domains();
5c45bf27 7306
c70f22d2 7307 return count;
5c45bf27
SS
7308}
7309
5c45bf27 7310#ifdef CONFIG_SCHED_MC
f718cd4a 7311static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7312 struct sysdev_class_attribute *attr,
f718cd4a 7313 char *page)
5c45bf27
SS
7314{
7315 return sprintf(page, "%u\n", sched_mc_power_savings);
7316}
f718cd4a 7317static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7318 struct sysdev_class_attribute *attr,
48f24c4d 7319 const char *buf, size_t count)
5c45bf27
SS
7320{
7321 return sched_power_savings_store(buf, count, 0);
7322}
f718cd4a
AK
7323static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7324 sched_mc_power_savings_show,
7325 sched_mc_power_savings_store);
5c45bf27
SS
7326#endif
7327
7328#ifdef CONFIG_SCHED_SMT
f718cd4a 7329static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7330 struct sysdev_class_attribute *attr,
f718cd4a 7331 char *page)
5c45bf27
SS
7332{
7333 return sprintf(page, "%u\n", sched_smt_power_savings);
7334}
f718cd4a 7335static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7336 struct sysdev_class_attribute *attr,
48f24c4d 7337 const char *buf, size_t count)
5c45bf27
SS
7338{
7339 return sched_power_savings_store(buf, count, 1);
7340}
f718cd4a
AK
7341static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7342 sched_smt_power_savings_show,
6707de00
AB
7343 sched_smt_power_savings_store);
7344#endif
7345
39aac648 7346int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7347{
7348 int err = 0;
7349
7350#ifdef CONFIG_SCHED_SMT
7351 if (smt_capable())
7352 err = sysfs_create_file(&cls->kset.kobj,
7353 &attr_sched_smt_power_savings.attr);
7354#endif
7355#ifdef CONFIG_SCHED_MC
7356 if (!err && mc_capable())
7357 err = sysfs_create_file(&cls->kset.kobj,
7358 &attr_sched_mc_power_savings.attr);
7359#endif
7360 return err;
7361}
6d6bc0ad 7362#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7363
e761b772 7364#ifndef CONFIG_CPUSETS
1da177e4 7365/*
e761b772
MK
7366 * Add online and remove offline CPUs from the scheduler domains.
7367 * When cpusets are enabled they take over this function.
1da177e4
LT
7368 */
7369static int update_sched_domains(struct notifier_block *nfb,
7370 unsigned long action, void *hcpu)
e761b772
MK
7371{
7372 switch (action) {
7373 case CPU_ONLINE:
7374 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7375 case CPU_DOWN_PREPARE:
7376 case CPU_DOWN_PREPARE_FROZEN:
7377 case CPU_DOWN_FAILED:
7378 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7379 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7380 return NOTIFY_OK;
7381
7382 default:
7383 return NOTIFY_DONE;
7384 }
7385}
7386#endif
7387
7388static int update_runtime(struct notifier_block *nfb,
7389 unsigned long action, void *hcpu)
1da177e4 7390{
7def2be1
PZ
7391 int cpu = (int)(long)hcpu;
7392
1da177e4 7393 switch (action) {
1da177e4 7394 case CPU_DOWN_PREPARE:
8bb78442 7395 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7396 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7397 return NOTIFY_OK;
7398
1da177e4 7399 case CPU_DOWN_FAILED:
8bb78442 7400 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7401 case CPU_ONLINE:
8bb78442 7402 case CPU_ONLINE_FROZEN:
7def2be1 7403 enable_runtime(cpu_rq(cpu));
e761b772
MK
7404 return NOTIFY_OK;
7405
1da177e4
LT
7406 default:
7407 return NOTIFY_DONE;
7408 }
1da177e4 7409}
1da177e4
LT
7410
7411void __init sched_init_smp(void)
7412{
dcc30a35
RR
7413 cpumask_var_t non_isolated_cpus;
7414
7415 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7416 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7417
434d53b0
MT
7418#if defined(CONFIG_NUMA)
7419 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7420 GFP_KERNEL);
7421 BUG_ON(sched_group_nodes_bycpu == NULL);
7422#endif
95402b38 7423 get_online_cpus();
712555ee 7424 mutex_lock(&sched_domains_mutex);
6ad4c188 7425 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7426 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7427 if (cpumask_empty(non_isolated_cpus))
7428 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7429 mutex_unlock(&sched_domains_mutex);
95402b38 7430 put_online_cpus();
e761b772
MK
7431
7432#ifndef CONFIG_CPUSETS
1da177e4
LT
7433 /* XXX: Theoretical race here - CPU may be hotplugged now */
7434 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7435#endif
7436
7437 /* RT runtime code needs to handle some hotplug events */
7438 hotcpu_notifier(update_runtime, 0);
7439
b328ca18 7440 init_hrtick();
5c1e1767
NP
7441
7442 /* Move init over to a non-isolated CPU */
dcc30a35 7443 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7444 BUG();
19978ca6 7445 sched_init_granularity();
dcc30a35 7446 free_cpumask_var(non_isolated_cpus);
4212823f 7447
0e3900e6 7448 init_sched_rt_class();
1da177e4
LT
7449}
7450#else
7451void __init sched_init_smp(void)
7452{
19978ca6 7453 sched_init_granularity();
1da177e4
LT
7454}
7455#endif /* CONFIG_SMP */
7456
cd1bb94b
AB
7457const_debug unsigned int sysctl_timer_migration = 1;
7458
1da177e4
LT
7459int in_sched_functions(unsigned long addr)
7460{
1da177e4
LT
7461 return in_lock_functions(addr) ||
7462 (addr >= (unsigned long)__sched_text_start
7463 && addr < (unsigned long)__sched_text_end);
7464}
7465
a9957449 7466static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7467{
7468 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7469 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7470#ifdef CONFIG_FAIR_GROUP_SCHED
7471 cfs_rq->rq = rq;
7472#endif
67e9fb2a 7473 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7474}
7475
fa85ae24
PZ
7476static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7477{
7478 struct rt_prio_array *array;
7479 int i;
7480
7481 array = &rt_rq->active;
7482 for (i = 0; i < MAX_RT_PRIO; i++) {
7483 INIT_LIST_HEAD(array->queue + i);
7484 __clear_bit(i, array->bitmap);
7485 }
7486 /* delimiter for bitsearch: */
7487 __set_bit(MAX_RT_PRIO, array->bitmap);
7488
052f1dc7 7489#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7490 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7491#ifdef CONFIG_SMP
e864c499 7492 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7493#endif
48d5e258 7494#endif
fa85ae24
PZ
7495#ifdef CONFIG_SMP
7496 rt_rq->rt_nr_migratory = 0;
fa85ae24 7497 rt_rq->overloaded = 0;
05fa785c 7498 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7499#endif
7500
7501 rt_rq->rt_time = 0;
7502 rt_rq->rt_throttled = 0;
ac086bc2 7503 rt_rq->rt_runtime = 0;
0986b11b 7504 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7505
052f1dc7 7506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7507 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7508 rt_rq->rq = rq;
7509#endif
fa85ae24
PZ
7510}
7511
6f505b16 7512#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7513static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7514 struct sched_entity *se, int cpu, int add,
7515 struct sched_entity *parent)
6f505b16 7516{
ec7dc8ac 7517 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7518 tg->cfs_rq[cpu] = cfs_rq;
7519 init_cfs_rq(cfs_rq, rq);
7520 cfs_rq->tg = tg;
7521 if (add)
7522 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7523
7524 tg->se[cpu] = se;
354d60c2
DG
7525 /* se could be NULL for init_task_group */
7526 if (!se)
7527 return;
7528
ec7dc8ac
DG
7529 if (!parent)
7530 se->cfs_rq = &rq->cfs;
7531 else
7532 se->cfs_rq = parent->my_q;
7533
6f505b16
PZ
7534 se->my_q = cfs_rq;
7535 se->load.weight = tg->shares;
e05510d0 7536 se->load.inv_weight = 0;
ec7dc8ac 7537 se->parent = parent;
6f505b16 7538}
052f1dc7 7539#endif
6f505b16 7540
052f1dc7 7541#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7542static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7543 struct sched_rt_entity *rt_se, int cpu, int add,
7544 struct sched_rt_entity *parent)
6f505b16 7545{
ec7dc8ac
DG
7546 struct rq *rq = cpu_rq(cpu);
7547
6f505b16
PZ
7548 tg->rt_rq[cpu] = rt_rq;
7549 init_rt_rq(rt_rq, rq);
7550 rt_rq->tg = tg;
ac086bc2 7551 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7552 if (add)
7553 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7554
7555 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7556 if (!rt_se)
7557 return;
7558
ec7dc8ac
DG
7559 if (!parent)
7560 rt_se->rt_rq = &rq->rt;
7561 else
7562 rt_se->rt_rq = parent->my_q;
7563
6f505b16 7564 rt_se->my_q = rt_rq;
ec7dc8ac 7565 rt_se->parent = parent;
6f505b16
PZ
7566 INIT_LIST_HEAD(&rt_se->run_list);
7567}
7568#endif
7569
1da177e4
LT
7570void __init sched_init(void)
7571{
dd41f596 7572 int i, j;
434d53b0
MT
7573 unsigned long alloc_size = 0, ptr;
7574
7575#ifdef CONFIG_FAIR_GROUP_SCHED
7576 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7577#endif
7578#ifdef CONFIG_RT_GROUP_SCHED
7579 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7580#endif
df7c8e84 7581#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7582 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7583#endif
434d53b0 7584 if (alloc_size) {
36b7b6d4 7585 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7586
7587#ifdef CONFIG_FAIR_GROUP_SCHED
7588 init_task_group.se = (struct sched_entity **)ptr;
7589 ptr += nr_cpu_ids * sizeof(void **);
7590
7591 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7592 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7593
6d6bc0ad 7594#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7595#ifdef CONFIG_RT_GROUP_SCHED
7596 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7597 ptr += nr_cpu_ids * sizeof(void **);
7598
7599 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7600 ptr += nr_cpu_ids * sizeof(void **);
7601
6d6bc0ad 7602#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7603#ifdef CONFIG_CPUMASK_OFFSTACK
7604 for_each_possible_cpu(i) {
7605 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7606 ptr += cpumask_size();
7607 }
7608#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7609 }
dd41f596 7610
57d885fe
GH
7611#ifdef CONFIG_SMP
7612 init_defrootdomain();
7613#endif
7614
d0b27fa7
PZ
7615 init_rt_bandwidth(&def_rt_bandwidth,
7616 global_rt_period(), global_rt_runtime());
7617
7618#ifdef CONFIG_RT_GROUP_SCHED
7619 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7620 global_rt_period(), global_rt_runtime());
6d6bc0ad 7621#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7622
7c941438 7623#ifdef CONFIG_CGROUP_SCHED
6f505b16 7624 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7625 INIT_LIST_HEAD(&init_task_group.children);
7626
7c941438 7627#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7628
4a6cc4bd
JK
7629#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7630 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7631 __alignof__(unsigned long));
7632#endif
0a945022 7633 for_each_possible_cpu(i) {
70b97a7f 7634 struct rq *rq;
1da177e4
LT
7635
7636 rq = cpu_rq(i);
05fa785c 7637 raw_spin_lock_init(&rq->lock);
7897986b 7638 rq->nr_running = 0;
dce48a84
TG
7639 rq->calc_load_active = 0;
7640 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7641 init_cfs_rq(&rq->cfs, rq);
6f505b16 7642 init_rt_rq(&rq->rt, rq);
dd41f596 7643#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7644 init_task_group.shares = init_task_group_load;
6f505b16 7645 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7646#ifdef CONFIG_CGROUP_SCHED
7647 /*
7648 * How much cpu bandwidth does init_task_group get?
7649 *
7650 * In case of task-groups formed thr' the cgroup filesystem, it
7651 * gets 100% of the cpu resources in the system. This overall
7652 * system cpu resource is divided among the tasks of
7653 * init_task_group and its child task-groups in a fair manner,
7654 * based on each entity's (task or task-group's) weight
7655 * (se->load.weight).
7656 *
7657 * In other words, if init_task_group has 10 tasks of weight
7658 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7659 * then A0's share of the cpu resource is:
7660 *
0d905bca 7661 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7662 *
7663 * We achieve this by letting init_task_group's tasks sit
7664 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7665 */
ec7dc8ac 7666 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7667#endif
354d60c2
DG
7668#endif /* CONFIG_FAIR_GROUP_SCHED */
7669
7670 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7671#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7672 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7673#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7674 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7675#endif
dd41f596 7676#endif
1da177e4 7677
dd41f596
IM
7678 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7679 rq->cpu_load[j] = 0;
1da177e4 7680#ifdef CONFIG_SMP
41c7ce9a 7681 rq->sd = NULL;
57d885fe 7682 rq->rd = NULL;
3f029d3c 7683 rq->post_schedule = 0;
1da177e4 7684 rq->active_balance = 0;
dd41f596 7685 rq->next_balance = jiffies;
1da177e4 7686 rq->push_cpu = 0;
0a2966b4 7687 rq->cpu = i;
1f11eb6a 7688 rq->online = 0;
1da177e4 7689 rq->migration_thread = NULL;
eae0c9df
MG
7690 rq->idle_stamp = 0;
7691 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7692 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7693 rq_attach_root(rq, &def_root_domain);
1da177e4 7694#endif
8f4d37ec 7695 init_rq_hrtick(rq);
1da177e4 7696 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7697 }
7698
2dd73a4f 7699 set_load_weight(&init_task);
b50f60ce 7700
e107be36
AK
7701#ifdef CONFIG_PREEMPT_NOTIFIERS
7702 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7703#endif
7704
c9819f45 7705#ifdef CONFIG_SMP
962cf36c 7706 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7707#endif
7708
b50f60ce 7709#ifdef CONFIG_RT_MUTEXES
1d615482 7710 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7711#endif
7712
1da177e4
LT
7713 /*
7714 * The boot idle thread does lazy MMU switching as well:
7715 */
7716 atomic_inc(&init_mm.mm_count);
7717 enter_lazy_tlb(&init_mm, current);
7718
7719 /*
7720 * Make us the idle thread. Technically, schedule() should not be
7721 * called from this thread, however somewhere below it might be,
7722 * but because we are the idle thread, we just pick up running again
7723 * when this runqueue becomes "idle".
7724 */
7725 init_idle(current, smp_processor_id());
dce48a84
TG
7726
7727 calc_load_update = jiffies + LOAD_FREQ;
7728
dd41f596
IM
7729 /*
7730 * During early bootup we pretend to be a normal task:
7731 */
7732 current->sched_class = &fair_sched_class;
6892b75e 7733
6a7b3dc3 7734 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7735 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7736#ifdef CONFIG_SMP
7d1e6a9b 7737#ifdef CONFIG_NO_HZ
49557e62 7738 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7739 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7740#endif
bdddd296
RR
7741 /* May be allocated at isolcpus cmdline parse time */
7742 if (cpu_isolated_map == NULL)
7743 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7744#endif /* SMP */
6a7b3dc3 7745
cdd6c482 7746 perf_event_init();
0d905bca 7747
6892b75e 7748 scheduler_running = 1;
1da177e4
LT
7749}
7750
7751#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7752static inline int preempt_count_equals(int preempt_offset)
7753{
234da7bc 7754 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7755
7756 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7757}
7758
d894837f 7759void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7760{
48f24c4d 7761#ifdef in_atomic
1da177e4
LT
7762 static unsigned long prev_jiffy; /* ratelimiting */
7763
e4aafea2
FW
7764 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7765 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7766 return;
7767 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7768 return;
7769 prev_jiffy = jiffies;
7770
3df0fc5b
PZ
7771 printk(KERN_ERR
7772 "BUG: sleeping function called from invalid context at %s:%d\n",
7773 file, line);
7774 printk(KERN_ERR
7775 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7776 in_atomic(), irqs_disabled(),
7777 current->pid, current->comm);
aef745fc
IM
7778
7779 debug_show_held_locks(current);
7780 if (irqs_disabled())
7781 print_irqtrace_events(current);
7782 dump_stack();
1da177e4
LT
7783#endif
7784}
7785EXPORT_SYMBOL(__might_sleep);
7786#endif
7787
7788#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7789static void normalize_task(struct rq *rq, struct task_struct *p)
7790{
7791 int on_rq;
3e51f33f 7792
3a5e4dc1
AK
7793 on_rq = p->se.on_rq;
7794 if (on_rq)
7795 deactivate_task(rq, p, 0);
7796 __setscheduler(rq, p, SCHED_NORMAL, 0);
7797 if (on_rq) {
7798 activate_task(rq, p, 0);
7799 resched_task(rq->curr);
7800 }
7801}
7802
1da177e4
LT
7803void normalize_rt_tasks(void)
7804{
a0f98a1c 7805 struct task_struct *g, *p;
1da177e4 7806 unsigned long flags;
70b97a7f 7807 struct rq *rq;
1da177e4 7808
4cf5d77a 7809 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7810 do_each_thread(g, p) {
178be793
IM
7811 /*
7812 * Only normalize user tasks:
7813 */
7814 if (!p->mm)
7815 continue;
7816
6cfb0d5d 7817 p->se.exec_start = 0;
6cfb0d5d 7818#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7819 p->se.statistics.wait_start = 0;
7820 p->se.statistics.sleep_start = 0;
7821 p->se.statistics.block_start = 0;
6cfb0d5d 7822#endif
dd41f596
IM
7823
7824 if (!rt_task(p)) {
7825 /*
7826 * Renice negative nice level userspace
7827 * tasks back to 0:
7828 */
7829 if (TASK_NICE(p) < 0 && p->mm)
7830 set_user_nice(p, 0);
1da177e4 7831 continue;
dd41f596 7832 }
1da177e4 7833
1d615482 7834 raw_spin_lock(&p->pi_lock);
b29739f9 7835 rq = __task_rq_lock(p);
1da177e4 7836
178be793 7837 normalize_task(rq, p);
3a5e4dc1 7838
b29739f9 7839 __task_rq_unlock(rq);
1d615482 7840 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7841 } while_each_thread(g, p);
7842
4cf5d77a 7843 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7844}
7845
7846#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7847
7848#ifdef CONFIG_IA64
7849/*
7850 * These functions are only useful for the IA64 MCA handling.
7851 *
7852 * They can only be called when the whole system has been
7853 * stopped - every CPU needs to be quiescent, and no scheduling
7854 * activity can take place. Using them for anything else would
7855 * be a serious bug, and as a result, they aren't even visible
7856 * under any other configuration.
7857 */
7858
7859/**
7860 * curr_task - return the current task for a given cpu.
7861 * @cpu: the processor in question.
7862 *
7863 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7864 */
36c8b586 7865struct task_struct *curr_task(int cpu)
1df5c10a
LT
7866{
7867 return cpu_curr(cpu);
7868}
7869
7870/**
7871 * set_curr_task - set the current task for a given cpu.
7872 * @cpu: the processor in question.
7873 * @p: the task pointer to set.
7874 *
7875 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7876 * are serviced on a separate stack. It allows the architecture to switch the
7877 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7878 * must be called with all CPU's synchronized, and interrupts disabled, the
7879 * and caller must save the original value of the current task (see
7880 * curr_task() above) and restore that value before reenabling interrupts and
7881 * re-starting the system.
7882 *
7883 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7884 */
36c8b586 7885void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7886{
7887 cpu_curr(cpu) = p;
7888}
7889
7890#endif
29f59db3 7891
bccbe08a
PZ
7892#ifdef CONFIG_FAIR_GROUP_SCHED
7893static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7894{
7895 int i;
7896
7897 for_each_possible_cpu(i) {
7898 if (tg->cfs_rq)
7899 kfree(tg->cfs_rq[i]);
7900 if (tg->se)
7901 kfree(tg->se[i]);
6f505b16
PZ
7902 }
7903
7904 kfree(tg->cfs_rq);
7905 kfree(tg->se);
6f505b16
PZ
7906}
7907
ec7dc8ac
DG
7908static
7909int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7910{
29f59db3 7911 struct cfs_rq *cfs_rq;
eab17229 7912 struct sched_entity *se;
9b5b7751 7913 struct rq *rq;
29f59db3
SV
7914 int i;
7915
434d53b0 7916 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7917 if (!tg->cfs_rq)
7918 goto err;
434d53b0 7919 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7920 if (!tg->se)
7921 goto err;
052f1dc7
PZ
7922
7923 tg->shares = NICE_0_LOAD;
29f59db3
SV
7924
7925 for_each_possible_cpu(i) {
9b5b7751 7926 rq = cpu_rq(i);
29f59db3 7927
eab17229
LZ
7928 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7929 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7930 if (!cfs_rq)
7931 goto err;
7932
eab17229
LZ
7933 se = kzalloc_node(sizeof(struct sched_entity),
7934 GFP_KERNEL, cpu_to_node(i));
29f59db3 7935 if (!se)
dfc12eb2 7936 goto err_free_rq;
29f59db3 7937
eab17229 7938 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7939 }
7940
7941 return 1;
7942
dfc12eb2
PC
7943 err_free_rq:
7944 kfree(cfs_rq);
bccbe08a
PZ
7945 err:
7946 return 0;
7947}
7948
7949static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7950{
7951 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7952 &cpu_rq(cpu)->leaf_cfs_rq_list);
7953}
7954
7955static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7956{
7957 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7958}
6d6bc0ad 7959#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
7960static inline void free_fair_sched_group(struct task_group *tg)
7961{
7962}
7963
ec7dc8ac
DG
7964static inline
7965int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7966{
7967 return 1;
7968}
7969
7970static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7971{
7972}
7973
7974static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7975{
7976}
6d6bc0ad 7977#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
7978
7979#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7980static void free_rt_sched_group(struct task_group *tg)
7981{
7982 int i;
7983
d0b27fa7
PZ
7984 destroy_rt_bandwidth(&tg->rt_bandwidth);
7985
bccbe08a
PZ
7986 for_each_possible_cpu(i) {
7987 if (tg->rt_rq)
7988 kfree(tg->rt_rq[i]);
7989 if (tg->rt_se)
7990 kfree(tg->rt_se[i]);
7991 }
7992
7993 kfree(tg->rt_rq);
7994 kfree(tg->rt_se);
7995}
7996
ec7dc8ac
DG
7997static
7998int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7999{
8000 struct rt_rq *rt_rq;
eab17229 8001 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8002 struct rq *rq;
8003 int i;
8004
434d53b0 8005 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8006 if (!tg->rt_rq)
8007 goto err;
434d53b0 8008 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8009 if (!tg->rt_se)
8010 goto err;
8011
d0b27fa7
PZ
8012 init_rt_bandwidth(&tg->rt_bandwidth,
8013 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8014
8015 for_each_possible_cpu(i) {
8016 rq = cpu_rq(i);
8017
eab17229
LZ
8018 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8019 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8020 if (!rt_rq)
8021 goto err;
29f59db3 8022
eab17229
LZ
8023 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8024 GFP_KERNEL, cpu_to_node(i));
6f505b16 8025 if (!rt_se)
dfc12eb2 8026 goto err_free_rq;
29f59db3 8027
eab17229 8028 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8029 }
8030
bccbe08a
PZ
8031 return 1;
8032
dfc12eb2
PC
8033 err_free_rq:
8034 kfree(rt_rq);
bccbe08a
PZ
8035 err:
8036 return 0;
8037}
8038
8039static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8040{
8041 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8042 &cpu_rq(cpu)->leaf_rt_rq_list);
8043}
8044
8045static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8046{
8047 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8048}
6d6bc0ad 8049#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8050static inline void free_rt_sched_group(struct task_group *tg)
8051{
8052}
8053
ec7dc8ac
DG
8054static inline
8055int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8056{
8057 return 1;
8058}
8059
8060static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8061{
8062}
8063
8064static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8065{
8066}
6d6bc0ad 8067#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8068
7c941438 8069#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8070static void free_sched_group(struct task_group *tg)
8071{
8072 free_fair_sched_group(tg);
8073 free_rt_sched_group(tg);
8074 kfree(tg);
8075}
8076
8077/* allocate runqueue etc for a new task group */
ec7dc8ac 8078struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8079{
8080 struct task_group *tg;
8081 unsigned long flags;
8082 int i;
8083
8084 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8085 if (!tg)
8086 return ERR_PTR(-ENOMEM);
8087
ec7dc8ac 8088 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8089 goto err;
8090
ec7dc8ac 8091 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8092 goto err;
8093
8ed36996 8094 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8095 for_each_possible_cpu(i) {
bccbe08a
PZ
8096 register_fair_sched_group(tg, i);
8097 register_rt_sched_group(tg, i);
9b5b7751 8098 }
6f505b16 8099 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8100
8101 WARN_ON(!parent); /* root should already exist */
8102
8103 tg->parent = parent;
f473aa5e 8104 INIT_LIST_HEAD(&tg->children);
09f2724a 8105 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8106 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8107
9b5b7751 8108 return tg;
29f59db3
SV
8109
8110err:
6f505b16 8111 free_sched_group(tg);
29f59db3
SV
8112 return ERR_PTR(-ENOMEM);
8113}
8114
9b5b7751 8115/* rcu callback to free various structures associated with a task group */
6f505b16 8116static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8117{
29f59db3 8118 /* now it should be safe to free those cfs_rqs */
6f505b16 8119 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8120}
8121
9b5b7751 8122/* Destroy runqueue etc associated with a task group */
4cf86d77 8123void sched_destroy_group(struct task_group *tg)
29f59db3 8124{
8ed36996 8125 unsigned long flags;
9b5b7751 8126 int i;
29f59db3 8127
8ed36996 8128 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8129 for_each_possible_cpu(i) {
bccbe08a
PZ
8130 unregister_fair_sched_group(tg, i);
8131 unregister_rt_sched_group(tg, i);
9b5b7751 8132 }
6f505b16 8133 list_del_rcu(&tg->list);
f473aa5e 8134 list_del_rcu(&tg->siblings);
8ed36996 8135 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8136
9b5b7751 8137 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8138 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8139}
8140
9b5b7751 8141/* change task's runqueue when it moves between groups.
3a252015
IM
8142 * The caller of this function should have put the task in its new group
8143 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8144 * reflect its new group.
9b5b7751
SV
8145 */
8146void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8147{
8148 int on_rq, running;
8149 unsigned long flags;
8150 struct rq *rq;
8151
8152 rq = task_rq_lock(tsk, &flags);
8153
051a1d1a 8154 running = task_current(rq, tsk);
29f59db3
SV
8155 on_rq = tsk->se.on_rq;
8156
0e1f3483 8157 if (on_rq)
29f59db3 8158 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8159 if (unlikely(running))
8160 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8161
6f505b16 8162 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8163
810b3817
PZ
8164#ifdef CONFIG_FAIR_GROUP_SCHED
8165 if (tsk->sched_class->moved_group)
88ec22d3 8166 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8167#endif
8168
0e1f3483
HS
8169 if (unlikely(running))
8170 tsk->sched_class->set_curr_task(rq);
8171 if (on_rq)
ea87bb78 8172 enqueue_task(rq, tsk, 0, false);
29f59db3 8173
29f59db3
SV
8174 task_rq_unlock(rq, &flags);
8175}
7c941438 8176#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8177
052f1dc7 8178#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8179static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8180{
8181 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8182 int on_rq;
8183
29f59db3 8184 on_rq = se->on_rq;
62fb1851 8185 if (on_rq)
29f59db3
SV
8186 dequeue_entity(cfs_rq, se, 0);
8187
8188 se->load.weight = shares;
e05510d0 8189 se->load.inv_weight = 0;
29f59db3 8190
62fb1851 8191 if (on_rq)
29f59db3 8192 enqueue_entity(cfs_rq, se, 0);
c09595f6 8193}
62fb1851 8194
c09595f6
PZ
8195static void set_se_shares(struct sched_entity *se, unsigned long shares)
8196{
8197 struct cfs_rq *cfs_rq = se->cfs_rq;
8198 struct rq *rq = cfs_rq->rq;
8199 unsigned long flags;
8200
05fa785c 8201 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8202 __set_se_shares(se, shares);
05fa785c 8203 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8204}
8205
8ed36996
PZ
8206static DEFINE_MUTEX(shares_mutex);
8207
4cf86d77 8208int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8209{
8210 int i;
8ed36996 8211 unsigned long flags;
c61935fd 8212
ec7dc8ac
DG
8213 /*
8214 * We can't change the weight of the root cgroup.
8215 */
8216 if (!tg->se[0])
8217 return -EINVAL;
8218
18d95a28
PZ
8219 if (shares < MIN_SHARES)
8220 shares = MIN_SHARES;
cb4ad1ff
MX
8221 else if (shares > MAX_SHARES)
8222 shares = MAX_SHARES;
62fb1851 8223
8ed36996 8224 mutex_lock(&shares_mutex);
9b5b7751 8225 if (tg->shares == shares)
5cb350ba 8226 goto done;
29f59db3 8227
8ed36996 8228 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8229 for_each_possible_cpu(i)
8230 unregister_fair_sched_group(tg, i);
f473aa5e 8231 list_del_rcu(&tg->siblings);
8ed36996 8232 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8233
8234 /* wait for any ongoing reference to this group to finish */
8235 synchronize_sched();
8236
8237 /*
8238 * Now we are free to modify the group's share on each cpu
8239 * w/o tripping rebalance_share or load_balance_fair.
8240 */
9b5b7751 8241 tg->shares = shares;
c09595f6
PZ
8242 for_each_possible_cpu(i) {
8243 /*
8244 * force a rebalance
8245 */
8246 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8247 set_se_shares(tg->se[i], shares);
c09595f6 8248 }
29f59db3 8249
6b2d7700
SV
8250 /*
8251 * Enable load balance activity on this group, by inserting it back on
8252 * each cpu's rq->leaf_cfs_rq_list.
8253 */
8ed36996 8254 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8255 for_each_possible_cpu(i)
8256 register_fair_sched_group(tg, i);
f473aa5e 8257 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8258 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8259done:
8ed36996 8260 mutex_unlock(&shares_mutex);
9b5b7751 8261 return 0;
29f59db3
SV
8262}
8263
5cb350ba
DG
8264unsigned long sched_group_shares(struct task_group *tg)
8265{
8266 return tg->shares;
8267}
052f1dc7 8268#endif
5cb350ba 8269
052f1dc7 8270#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8271/*
9f0c1e56 8272 * Ensure that the real time constraints are schedulable.
6f505b16 8273 */
9f0c1e56
PZ
8274static DEFINE_MUTEX(rt_constraints_mutex);
8275
8276static unsigned long to_ratio(u64 period, u64 runtime)
8277{
8278 if (runtime == RUNTIME_INF)
9a7e0b18 8279 return 1ULL << 20;
9f0c1e56 8280
9a7e0b18 8281 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8282}
8283
9a7e0b18
PZ
8284/* Must be called with tasklist_lock held */
8285static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8286{
9a7e0b18 8287 struct task_struct *g, *p;
b40b2e8e 8288
9a7e0b18
PZ
8289 do_each_thread(g, p) {
8290 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8291 return 1;
8292 } while_each_thread(g, p);
b40b2e8e 8293
9a7e0b18
PZ
8294 return 0;
8295}
b40b2e8e 8296
9a7e0b18
PZ
8297struct rt_schedulable_data {
8298 struct task_group *tg;
8299 u64 rt_period;
8300 u64 rt_runtime;
8301};
b40b2e8e 8302
9a7e0b18
PZ
8303static int tg_schedulable(struct task_group *tg, void *data)
8304{
8305 struct rt_schedulable_data *d = data;
8306 struct task_group *child;
8307 unsigned long total, sum = 0;
8308 u64 period, runtime;
b40b2e8e 8309
9a7e0b18
PZ
8310 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8311 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8312
9a7e0b18
PZ
8313 if (tg == d->tg) {
8314 period = d->rt_period;
8315 runtime = d->rt_runtime;
b40b2e8e 8316 }
b40b2e8e 8317
4653f803
PZ
8318 /*
8319 * Cannot have more runtime than the period.
8320 */
8321 if (runtime > period && runtime != RUNTIME_INF)
8322 return -EINVAL;
6f505b16 8323
4653f803
PZ
8324 /*
8325 * Ensure we don't starve existing RT tasks.
8326 */
9a7e0b18
PZ
8327 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8328 return -EBUSY;
6f505b16 8329
9a7e0b18 8330 total = to_ratio(period, runtime);
6f505b16 8331
4653f803
PZ
8332 /*
8333 * Nobody can have more than the global setting allows.
8334 */
8335 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8336 return -EINVAL;
6f505b16 8337
4653f803
PZ
8338 /*
8339 * The sum of our children's runtime should not exceed our own.
8340 */
9a7e0b18
PZ
8341 list_for_each_entry_rcu(child, &tg->children, siblings) {
8342 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8343 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8344
9a7e0b18
PZ
8345 if (child == d->tg) {
8346 period = d->rt_period;
8347 runtime = d->rt_runtime;
8348 }
6f505b16 8349
9a7e0b18 8350 sum += to_ratio(period, runtime);
9f0c1e56 8351 }
6f505b16 8352
9a7e0b18
PZ
8353 if (sum > total)
8354 return -EINVAL;
8355
8356 return 0;
6f505b16
PZ
8357}
8358
9a7e0b18 8359static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8360{
9a7e0b18
PZ
8361 struct rt_schedulable_data data = {
8362 .tg = tg,
8363 .rt_period = period,
8364 .rt_runtime = runtime,
8365 };
8366
8367 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8368}
8369
d0b27fa7
PZ
8370static int tg_set_bandwidth(struct task_group *tg,
8371 u64 rt_period, u64 rt_runtime)
6f505b16 8372{
ac086bc2 8373 int i, err = 0;
9f0c1e56 8374
9f0c1e56 8375 mutex_lock(&rt_constraints_mutex);
521f1a24 8376 read_lock(&tasklist_lock);
9a7e0b18
PZ
8377 err = __rt_schedulable(tg, rt_period, rt_runtime);
8378 if (err)
9f0c1e56 8379 goto unlock;
ac086bc2 8380
0986b11b 8381 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8382 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8383 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8384
8385 for_each_possible_cpu(i) {
8386 struct rt_rq *rt_rq = tg->rt_rq[i];
8387
0986b11b 8388 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8389 rt_rq->rt_runtime = rt_runtime;
0986b11b 8390 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8391 }
0986b11b 8392 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8393 unlock:
521f1a24 8394 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8395 mutex_unlock(&rt_constraints_mutex);
8396
8397 return err;
6f505b16
PZ
8398}
8399
d0b27fa7
PZ
8400int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8401{
8402 u64 rt_runtime, rt_period;
8403
8404 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8405 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8406 if (rt_runtime_us < 0)
8407 rt_runtime = RUNTIME_INF;
8408
8409 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8410}
8411
9f0c1e56
PZ
8412long sched_group_rt_runtime(struct task_group *tg)
8413{
8414 u64 rt_runtime_us;
8415
d0b27fa7 8416 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8417 return -1;
8418
d0b27fa7 8419 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8420 do_div(rt_runtime_us, NSEC_PER_USEC);
8421 return rt_runtime_us;
8422}
d0b27fa7
PZ
8423
8424int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8425{
8426 u64 rt_runtime, rt_period;
8427
8428 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8429 rt_runtime = tg->rt_bandwidth.rt_runtime;
8430
619b0488
R
8431 if (rt_period == 0)
8432 return -EINVAL;
8433
d0b27fa7
PZ
8434 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8435}
8436
8437long sched_group_rt_period(struct task_group *tg)
8438{
8439 u64 rt_period_us;
8440
8441 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8442 do_div(rt_period_us, NSEC_PER_USEC);
8443 return rt_period_us;
8444}
8445
8446static int sched_rt_global_constraints(void)
8447{
4653f803 8448 u64 runtime, period;
d0b27fa7
PZ
8449 int ret = 0;
8450
ec5d4989
HS
8451 if (sysctl_sched_rt_period <= 0)
8452 return -EINVAL;
8453
4653f803
PZ
8454 runtime = global_rt_runtime();
8455 period = global_rt_period();
8456
8457 /*
8458 * Sanity check on the sysctl variables.
8459 */
8460 if (runtime > period && runtime != RUNTIME_INF)
8461 return -EINVAL;
10b612f4 8462
d0b27fa7 8463 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8464 read_lock(&tasklist_lock);
4653f803 8465 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8466 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8467 mutex_unlock(&rt_constraints_mutex);
8468
8469 return ret;
8470}
54e99124
DG
8471
8472int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8473{
8474 /* Don't accept realtime tasks when there is no way for them to run */
8475 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8476 return 0;
8477
8478 return 1;
8479}
8480
6d6bc0ad 8481#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8482static int sched_rt_global_constraints(void)
8483{
ac086bc2
PZ
8484 unsigned long flags;
8485 int i;
8486
ec5d4989
HS
8487 if (sysctl_sched_rt_period <= 0)
8488 return -EINVAL;
8489
60aa605d
PZ
8490 /*
8491 * There's always some RT tasks in the root group
8492 * -- migration, kstopmachine etc..
8493 */
8494 if (sysctl_sched_rt_runtime == 0)
8495 return -EBUSY;
8496
0986b11b 8497 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8498 for_each_possible_cpu(i) {
8499 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8500
0986b11b 8501 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8502 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8503 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8504 }
0986b11b 8505 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8506
d0b27fa7
PZ
8507 return 0;
8508}
6d6bc0ad 8509#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8510
8511int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8512 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8513 loff_t *ppos)
8514{
8515 int ret;
8516 int old_period, old_runtime;
8517 static DEFINE_MUTEX(mutex);
8518
8519 mutex_lock(&mutex);
8520 old_period = sysctl_sched_rt_period;
8521 old_runtime = sysctl_sched_rt_runtime;
8522
8d65af78 8523 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8524
8525 if (!ret && write) {
8526 ret = sched_rt_global_constraints();
8527 if (ret) {
8528 sysctl_sched_rt_period = old_period;
8529 sysctl_sched_rt_runtime = old_runtime;
8530 } else {
8531 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8532 def_rt_bandwidth.rt_period =
8533 ns_to_ktime(global_rt_period());
8534 }
8535 }
8536 mutex_unlock(&mutex);
8537
8538 return ret;
8539}
68318b8e 8540
052f1dc7 8541#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8542
8543/* return corresponding task_group object of a cgroup */
2b01dfe3 8544static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8545{
2b01dfe3
PM
8546 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8547 struct task_group, css);
68318b8e
SV
8548}
8549
8550static struct cgroup_subsys_state *
2b01dfe3 8551cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8552{
ec7dc8ac 8553 struct task_group *tg, *parent;
68318b8e 8554
2b01dfe3 8555 if (!cgrp->parent) {
68318b8e 8556 /* This is early initialization for the top cgroup */
68318b8e
SV
8557 return &init_task_group.css;
8558 }
8559
ec7dc8ac
DG
8560 parent = cgroup_tg(cgrp->parent);
8561 tg = sched_create_group(parent);
68318b8e
SV
8562 if (IS_ERR(tg))
8563 return ERR_PTR(-ENOMEM);
8564
68318b8e
SV
8565 return &tg->css;
8566}
8567
41a2d6cf
IM
8568static void
8569cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8570{
2b01dfe3 8571 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8572
8573 sched_destroy_group(tg);
8574}
8575
41a2d6cf 8576static int
be367d09 8577cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8578{
b68aa230 8579#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8580 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8581 return -EINVAL;
8582#else
68318b8e
SV
8583 /* We don't support RT-tasks being in separate groups */
8584 if (tsk->sched_class != &fair_sched_class)
8585 return -EINVAL;
b68aa230 8586#endif
be367d09
BB
8587 return 0;
8588}
68318b8e 8589
be367d09
BB
8590static int
8591cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8592 struct task_struct *tsk, bool threadgroup)
8593{
8594 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8595 if (retval)
8596 return retval;
8597 if (threadgroup) {
8598 struct task_struct *c;
8599 rcu_read_lock();
8600 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8601 retval = cpu_cgroup_can_attach_task(cgrp, c);
8602 if (retval) {
8603 rcu_read_unlock();
8604 return retval;
8605 }
8606 }
8607 rcu_read_unlock();
8608 }
68318b8e
SV
8609 return 0;
8610}
8611
8612static void
2b01dfe3 8613cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8614 struct cgroup *old_cont, struct task_struct *tsk,
8615 bool threadgroup)
68318b8e
SV
8616{
8617 sched_move_task(tsk);
be367d09
BB
8618 if (threadgroup) {
8619 struct task_struct *c;
8620 rcu_read_lock();
8621 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8622 sched_move_task(c);
8623 }
8624 rcu_read_unlock();
8625 }
68318b8e
SV
8626}
8627
052f1dc7 8628#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8629static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8630 u64 shareval)
68318b8e 8631{
2b01dfe3 8632 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8633}
8634
f4c753b7 8635static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8636{
2b01dfe3 8637 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8638
8639 return (u64) tg->shares;
8640}
6d6bc0ad 8641#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8642
052f1dc7 8643#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8644static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8645 s64 val)
6f505b16 8646{
06ecb27c 8647 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8648}
8649
06ecb27c 8650static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8651{
06ecb27c 8652 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8653}
d0b27fa7
PZ
8654
8655static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8656 u64 rt_period_us)
8657{
8658 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8659}
8660
8661static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8662{
8663 return sched_group_rt_period(cgroup_tg(cgrp));
8664}
6d6bc0ad 8665#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8666
fe5c7cc2 8667static struct cftype cpu_files[] = {
052f1dc7 8668#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8669 {
8670 .name = "shares",
f4c753b7
PM
8671 .read_u64 = cpu_shares_read_u64,
8672 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8673 },
052f1dc7
PZ
8674#endif
8675#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8676 {
9f0c1e56 8677 .name = "rt_runtime_us",
06ecb27c
PM
8678 .read_s64 = cpu_rt_runtime_read,
8679 .write_s64 = cpu_rt_runtime_write,
6f505b16 8680 },
d0b27fa7
PZ
8681 {
8682 .name = "rt_period_us",
f4c753b7
PM
8683 .read_u64 = cpu_rt_period_read_uint,
8684 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8685 },
052f1dc7 8686#endif
68318b8e
SV
8687};
8688
8689static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8690{
fe5c7cc2 8691 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8692}
8693
8694struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8695 .name = "cpu",
8696 .create = cpu_cgroup_create,
8697 .destroy = cpu_cgroup_destroy,
8698 .can_attach = cpu_cgroup_can_attach,
8699 .attach = cpu_cgroup_attach,
8700 .populate = cpu_cgroup_populate,
8701 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8702 .early_init = 1,
8703};
8704
052f1dc7 8705#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8706
8707#ifdef CONFIG_CGROUP_CPUACCT
8708
8709/*
8710 * CPU accounting code for task groups.
8711 *
8712 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8713 * (balbir@in.ibm.com).
8714 */
8715
934352f2 8716/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8717struct cpuacct {
8718 struct cgroup_subsys_state css;
8719 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8720 u64 __percpu *cpuusage;
ef12fefa 8721 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8722 struct cpuacct *parent;
d842de87
SV
8723};
8724
8725struct cgroup_subsys cpuacct_subsys;
8726
8727/* return cpu accounting group corresponding to this container */
32cd756a 8728static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8729{
32cd756a 8730 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8731 struct cpuacct, css);
8732}
8733
8734/* return cpu accounting group to which this task belongs */
8735static inline struct cpuacct *task_ca(struct task_struct *tsk)
8736{
8737 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8738 struct cpuacct, css);
8739}
8740
8741/* create a new cpu accounting group */
8742static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8743 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8744{
8745 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8746 int i;
d842de87
SV
8747
8748 if (!ca)
ef12fefa 8749 goto out;
d842de87
SV
8750
8751 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8752 if (!ca->cpuusage)
8753 goto out_free_ca;
8754
8755 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8756 if (percpu_counter_init(&ca->cpustat[i], 0))
8757 goto out_free_counters;
d842de87 8758
934352f2
BR
8759 if (cgrp->parent)
8760 ca->parent = cgroup_ca(cgrp->parent);
8761
d842de87 8762 return &ca->css;
ef12fefa
BR
8763
8764out_free_counters:
8765 while (--i >= 0)
8766 percpu_counter_destroy(&ca->cpustat[i]);
8767 free_percpu(ca->cpuusage);
8768out_free_ca:
8769 kfree(ca);
8770out:
8771 return ERR_PTR(-ENOMEM);
d842de87
SV
8772}
8773
8774/* destroy an existing cpu accounting group */
41a2d6cf 8775static void
32cd756a 8776cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8777{
32cd756a 8778 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8779 int i;
d842de87 8780
ef12fefa
BR
8781 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8782 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8783 free_percpu(ca->cpuusage);
8784 kfree(ca);
8785}
8786
720f5498
KC
8787static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8788{
b36128c8 8789 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8790 u64 data;
8791
8792#ifndef CONFIG_64BIT
8793 /*
8794 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8795 */
05fa785c 8796 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8797 data = *cpuusage;
05fa785c 8798 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8799#else
8800 data = *cpuusage;
8801#endif
8802
8803 return data;
8804}
8805
8806static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8807{
b36128c8 8808 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8809
8810#ifndef CONFIG_64BIT
8811 /*
8812 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8813 */
05fa785c 8814 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8815 *cpuusage = val;
05fa785c 8816 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8817#else
8818 *cpuusage = val;
8819#endif
8820}
8821
d842de87 8822/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8823static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8824{
32cd756a 8825 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8826 u64 totalcpuusage = 0;
8827 int i;
8828
720f5498
KC
8829 for_each_present_cpu(i)
8830 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8831
8832 return totalcpuusage;
8833}
8834
0297b803
DG
8835static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8836 u64 reset)
8837{
8838 struct cpuacct *ca = cgroup_ca(cgrp);
8839 int err = 0;
8840 int i;
8841
8842 if (reset) {
8843 err = -EINVAL;
8844 goto out;
8845 }
8846
720f5498
KC
8847 for_each_present_cpu(i)
8848 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8849
0297b803
DG
8850out:
8851 return err;
8852}
8853
e9515c3c
KC
8854static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8855 struct seq_file *m)
8856{
8857 struct cpuacct *ca = cgroup_ca(cgroup);
8858 u64 percpu;
8859 int i;
8860
8861 for_each_present_cpu(i) {
8862 percpu = cpuacct_cpuusage_read(ca, i);
8863 seq_printf(m, "%llu ", (unsigned long long) percpu);
8864 }
8865 seq_printf(m, "\n");
8866 return 0;
8867}
8868
ef12fefa
BR
8869static const char *cpuacct_stat_desc[] = {
8870 [CPUACCT_STAT_USER] = "user",
8871 [CPUACCT_STAT_SYSTEM] = "system",
8872};
8873
8874static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8875 struct cgroup_map_cb *cb)
8876{
8877 struct cpuacct *ca = cgroup_ca(cgrp);
8878 int i;
8879
8880 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8881 s64 val = percpu_counter_read(&ca->cpustat[i]);
8882 val = cputime64_to_clock_t(val);
8883 cb->fill(cb, cpuacct_stat_desc[i], val);
8884 }
8885 return 0;
8886}
8887
d842de87
SV
8888static struct cftype files[] = {
8889 {
8890 .name = "usage",
f4c753b7
PM
8891 .read_u64 = cpuusage_read,
8892 .write_u64 = cpuusage_write,
d842de87 8893 },
e9515c3c
KC
8894 {
8895 .name = "usage_percpu",
8896 .read_seq_string = cpuacct_percpu_seq_read,
8897 },
ef12fefa
BR
8898 {
8899 .name = "stat",
8900 .read_map = cpuacct_stats_show,
8901 },
d842de87
SV
8902};
8903
32cd756a 8904static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8905{
32cd756a 8906 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8907}
8908
8909/*
8910 * charge this task's execution time to its accounting group.
8911 *
8912 * called with rq->lock held.
8913 */
8914static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8915{
8916 struct cpuacct *ca;
934352f2 8917 int cpu;
d842de87 8918
c40c6f85 8919 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8920 return;
8921
934352f2 8922 cpu = task_cpu(tsk);
a18b83b7
BR
8923
8924 rcu_read_lock();
8925
d842de87 8926 ca = task_ca(tsk);
d842de87 8927
934352f2 8928 for (; ca; ca = ca->parent) {
b36128c8 8929 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8930 *cpuusage += cputime;
8931 }
a18b83b7
BR
8932
8933 rcu_read_unlock();
d842de87
SV
8934}
8935
fa535a77
AB
8936/*
8937 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8938 * in cputime_t units. As a result, cpuacct_update_stats calls
8939 * percpu_counter_add with values large enough to always overflow the
8940 * per cpu batch limit causing bad SMP scalability.
8941 *
8942 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8943 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8944 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8945 */
8946#ifdef CONFIG_SMP
8947#define CPUACCT_BATCH \
8948 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8949#else
8950#define CPUACCT_BATCH 0
8951#endif
8952
ef12fefa
BR
8953/*
8954 * Charge the system/user time to the task's accounting group.
8955 */
8956static void cpuacct_update_stats(struct task_struct *tsk,
8957 enum cpuacct_stat_index idx, cputime_t val)
8958{
8959 struct cpuacct *ca;
fa535a77 8960 int batch = CPUACCT_BATCH;
ef12fefa
BR
8961
8962 if (unlikely(!cpuacct_subsys.active))
8963 return;
8964
8965 rcu_read_lock();
8966 ca = task_ca(tsk);
8967
8968 do {
fa535a77 8969 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
8970 ca = ca->parent;
8971 } while (ca);
8972 rcu_read_unlock();
8973}
8974
d842de87
SV
8975struct cgroup_subsys cpuacct_subsys = {
8976 .name = "cpuacct",
8977 .create = cpuacct_create,
8978 .destroy = cpuacct_destroy,
8979 .populate = cpuacct_populate,
8980 .subsys_id = cpuacct_subsys_id,
8981};
8982#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
8983
8984#ifndef CONFIG_SMP
8985
8986int rcu_expedited_torture_stats(char *page)
8987{
8988 return 0;
8989}
8990EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
8991
8992void synchronize_sched_expedited(void)
8993{
8994}
8995EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8996
8997#else /* #ifndef CONFIG_SMP */
8998
8999static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9000static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9001
9002#define RCU_EXPEDITED_STATE_POST -2
9003#define RCU_EXPEDITED_STATE_IDLE -1
9004
9005static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9006
9007int rcu_expedited_torture_stats(char *page)
9008{
9009 int cnt = 0;
9010 int cpu;
9011
9012 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9013 for_each_online_cpu(cpu) {
9014 cnt += sprintf(&page[cnt], " %d:%d",
9015 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9016 }
9017 cnt += sprintf(&page[cnt], "\n");
9018 return cnt;
9019}
9020EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9021
9022static long synchronize_sched_expedited_count;
9023
9024/*
9025 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9026 * approach to force grace period to end quickly. This consumes
9027 * significant time on all CPUs, and is thus not recommended for
9028 * any sort of common-case code.
9029 *
9030 * Note that it is illegal to call this function while holding any
9031 * lock that is acquired by a CPU-hotplug notifier. Failing to
9032 * observe this restriction will result in deadlock.
9033 */
9034void synchronize_sched_expedited(void)
9035{
9036 int cpu;
9037 unsigned long flags;
9038 bool need_full_sync = 0;
9039 struct rq *rq;
9040 struct migration_req *req;
9041 long snap;
9042 int trycount = 0;
9043
9044 smp_mb(); /* ensure prior mod happens before capturing snap. */
9045 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9046 get_online_cpus();
9047 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9048 put_online_cpus();
9049 if (trycount++ < 10)
9050 udelay(trycount * num_online_cpus());
9051 else {
9052 synchronize_sched();
9053 return;
9054 }
9055 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9056 smp_mb(); /* ensure test happens before caller kfree */
9057 return;
9058 }
9059 get_online_cpus();
9060 }
9061 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9062 for_each_online_cpu(cpu) {
9063 rq = cpu_rq(cpu);
9064 req = &per_cpu(rcu_migration_req, cpu);
9065 init_completion(&req->done);
9066 req->task = NULL;
9067 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9068 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9069 list_add(&req->list, &rq->migration_queue);
05fa785c 9070 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9071 wake_up_process(rq->migration_thread);
9072 }
9073 for_each_online_cpu(cpu) {
9074 rcu_expedited_state = cpu;
9075 req = &per_cpu(rcu_migration_req, cpu);
9076 rq = cpu_rq(cpu);
9077 wait_for_completion(&req->done);
05fa785c 9078 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9079 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9080 need_full_sync = 1;
9081 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9082 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9083 }
9084 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9085 synchronize_sched_expedited_count++;
03b042bf
PM
9086 mutex_unlock(&rcu_sched_expedited_mutex);
9087 put_online_cpus();
9088 if (need_full_sync)
9089 synchronize_sched();
9090}
9091EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9092
9093#endif /* #else #ifndef CONFIG_SMP */
This page took 1.858715 seconds and 5 git commands to generate.