sched: Remove unused argument dest_cpu to migrate_task()
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
29f59db3
SV
274};
275
eff766a6 276#define root_task_group init_task_group
6f505b16 277
3d4b47b4 278/* task_group_lock serializes the addition/removal of task groups */
8ed36996 279static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 280
e9036b36
CG
281#ifdef CONFIG_FAIR_GROUP_SCHED
282
052f1dc7 283# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 284
cb4ad1ff 285/*
2e084786
LJ
286 * A weight of 0 or 1 can cause arithmetics problems.
287 * A weight of a cfs_rq is the sum of weights of which entities
288 * are queued on this cfs_rq, so a weight of a entity should not be
289 * too large, so as the shares value of a task group.
cb4ad1ff
MX
290 * (The default weight is 1024 - so there's no practical
291 * limitation from this.)
292 */
18d95a28 293#define MIN_SHARES 2
2e084786 294#define MAX_SHARES (1UL << 18)
18d95a28 295
052f1dc7
PZ
296static int init_task_group_load = INIT_TASK_GROUP_LOAD;
297#endif
298
29f59db3 299/* Default task group.
3a252015 300 * Every task in system belong to this group at bootup.
29f59db3 301 */
434d53b0 302struct task_group init_task_group;
29f59db3 303
7c941438 304#endif /* CONFIG_CGROUP_SCHED */
29f59db3 305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
4a55bd5e
PZ
316
317 struct list_head tasks;
318 struct list_head *balance_iterator;
319
320 /*
321 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
322 * It is set to NULL otherwise (i.e when none are currently running).
323 */
4793241b 324 struct sched_entity *curr, *next, *last;
ddc97297 325
5ac5c4d6 326 unsigned int nr_spread_over;
ddc97297 327
62160e3f 328#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
329 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
330
41a2d6cf
IM
331 /*
332 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
333 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
334 * (like users, containers etc.)
335 *
336 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
337 * list is used during load balance.
338 */
3d4b47b4 339 int on_list;
41a2d6cf
IM
340 struct list_head leaf_cfs_rq_list;
341 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
342
343#ifdef CONFIG_SMP
c09595f6 344 /*
c8cba857 345 * the part of load.weight contributed by tasks
c09595f6 346 */
c8cba857 347 unsigned long task_weight;
c09595f6 348
c8cba857
PZ
349 /*
350 * h_load = weight * f(tg)
351 *
352 * Where f(tg) is the recursive weight fraction assigned to
353 * this group.
354 */
355 unsigned long h_load;
c09595f6 356
3b3d190e
PT
357 /*
358 * Maintaining per-cpu shares distribution for group scheduling
359 *
360 * load_stamp is the last time we updated the load average
361 * load_last is the last time we updated the load average and saw load
362 * load_unacc_exec_time is currently unaccounted execution time
363 */
2069dd75
PZ
364 u64 load_avg;
365 u64 load_period;
3b3d190e 366 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 367
2069dd75 368 unsigned long load_contribution;
c09595f6 369#endif
6aa645ea
IM
370#endif
371};
1da177e4 372
6aa645ea
IM
373/* Real-Time classes' related field in a runqueue: */
374struct rt_rq {
375 struct rt_prio_array active;
63489e45 376 unsigned long rt_nr_running;
052f1dc7 377#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
378 struct {
379 int curr; /* highest queued rt task prio */
398a153b 380#ifdef CONFIG_SMP
e864c499 381 int next; /* next highest */
398a153b 382#endif
e864c499 383 } highest_prio;
6f505b16 384#endif
fa85ae24 385#ifdef CONFIG_SMP
73fe6aae 386 unsigned long rt_nr_migratory;
a1ba4d8b 387 unsigned long rt_nr_total;
a22d7fc1 388 int overloaded;
917b627d 389 struct plist_head pushable_tasks;
fa85ae24 390#endif
6f505b16 391 int rt_throttled;
fa85ae24 392 u64 rt_time;
ac086bc2 393 u64 rt_runtime;
ea736ed5 394 /* Nests inside the rq lock: */
0986b11b 395 raw_spinlock_t rt_runtime_lock;
6f505b16 396
052f1dc7 397#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
398 unsigned long rt_nr_boosted;
399
6f505b16
PZ
400 struct rq *rq;
401 struct list_head leaf_rt_rq_list;
402 struct task_group *tg;
6f505b16 403#endif
6aa645ea
IM
404};
405
57d885fe
GH
406#ifdef CONFIG_SMP
407
408/*
409 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
410 * variables. Each exclusive cpuset essentially defines an island domain by
411 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
412 * exclusive cpuset is created, we also create and attach a new root-domain
413 * object.
414 *
57d885fe
GH
415 */
416struct root_domain {
417 atomic_t refcount;
c6c4927b
RR
418 cpumask_var_t span;
419 cpumask_var_t online;
637f5085 420
0eab9146 421 /*
637f5085
GH
422 * The "RT overload" flag: it gets set if a CPU has more than
423 * one runnable RT task.
424 */
c6c4927b 425 cpumask_var_t rto_mask;
0eab9146 426 atomic_t rto_count;
6e0534f2 427 struct cpupri cpupri;
57d885fe
GH
428};
429
dc938520
GH
430/*
431 * By default the system creates a single root-domain with all cpus as
432 * members (mimicking the global state we have today).
433 */
57d885fe
GH
434static struct root_domain def_root_domain;
435
ed2d372c 436#endif /* CONFIG_SMP */
57d885fe 437
1da177e4
LT
438/*
439 * This is the main, per-CPU runqueue data structure.
440 *
441 * Locking rule: those places that want to lock multiple runqueues
442 * (such as the load balancing or the thread migration code), lock
443 * acquire operations must be ordered by ascending &runqueue.
444 */
70b97a7f 445struct rq {
d8016491 446 /* runqueue lock: */
05fa785c 447 raw_spinlock_t lock;
1da177e4
LT
448
449 /*
450 * nr_running and cpu_load should be in the same cacheline because
451 * remote CPUs use both these fields when doing load calculation.
452 */
453 unsigned long nr_running;
6aa645ea
IM
454 #define CPU_LOAD_IDX_MAX 5
455 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 456 unsigned long last_load_update_tick;
46cb4b7c 457#ifdef CONFIG_NO_HZ
39c0cbe2 458 u64 nohz_stamp;
83cd4fe2 459 unsigned char nohz_balance_kick;
46cb4b7c 460#endif
a64692a3
MG
461 unsigned int skip_clock_update;
462
d8016491
IM
463 /* capture load from *all* tasks on this cpu: */
464 struct load_weight load;
6aa645ea
IM
465 unsigned long nr_load_updates;
466 u64 nr_switches;
467
468 struct cfs_rq cfs;
6f505b16 469 struct rt_rq rt;
6f505b16 470
6aa645ea 471#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
472 /* list of leaf cfs_rq on this cpu: */
473 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
474#endif
475#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 476 struct list_head leaf_rt_rq_list;
1da177e4 477#endif
1da177e4
LT
478
479 /*
480 * This is part of a global counter where only the total sum
481 * over all CPUs matters. A task can increase this counter on
482 * one CPU and if it got migrated afterwards it may decrease
483 * it on another CPU. Always updated under the runqueue lock:
484 */
485 unsigned long nr_uninterruptible;
486
34f971f6 487 struct task_struct *curr, *idle, *stop;
c9819f45 488 unsigned long next_balance;
1da177e4 489 struct mm_struct *prev_mm;
6aa645ea 490
3e51f33f 491 u64 clock;
305e6835 492 u64 clock_task;
6aa645ea 493
1da177e4
LT
494 atomic_t nr_iowait;
495
496#ifdef CONFIG_SMP
0eab9146 497 struct root_domain *rd;
1da177e4
LT
498 struct sched_domain *sd;
499
e51fd5e2
PZ
500 unsigned long cpu_power;
501
a0a522ce 502 unsigned char idle_at_tick;
1da177e4 503 /* For active balancing */
3f029d3c 504 int post_schedule;
1da177e4
LT
505 int active_balance;
506 int push_cpu;
969c7921 507 struct cpu_stop_work active_balance_work;
d8016491
IM
508 /* cpu of this runqueue: */
509 int cpu;
1f11eb6a 510 int online;
1da177e4 511
a8a51d5e 512 unsigned long avg_load_per_task;
1da177e4 513
e9e9250b
PZ
514 u64 rt_avg;
515 u64 age_stamp;
1b9508f6
MG
516 u64 idle_stamp;
517 u64 avg_idle;
1da177e4
LT
518#endif
519
aa483808
VP
520#ifdef CONFIG_IRQ_TIME_ACCOUNTING
521 u64 prev_irq_time;
522#endif
523
dce48a84
TG
524 /* calc_load related fields */
525 unsigned long calc_load_update;
526 long calc_load_active;
527
8f4d37ec 528#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
529#ifdef CONFIG_SMP
530 int hrtick_csd_pending;
531 struct call_single_data hrtick_csd;
532#endif
8f4d37ec
PZ
533 struct hrtimer hrtick_timer;
534#endif
535
1da177e4
LT
536#ifdef CONFIG_SCHEDSTATS
537 /* latency stats */
538 struct sched_info rq_sched_info;
9c2c4802
KC
539 unsigned long long rq_cpu_time;
540 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
541
542 /* sys_sched_yield() stats */
480b9434 543 unsigned int yld_count;
1da177e4
LT
544
545 /* schedule() stats */
480b9434
KC
546 unsigned int sched_switch;
547 unsigned int sched_count;
548 unsigned int sched_goidle;
1da177e4
LT
549
550 /* try_to_wake_up() stats */
480b9434
KC
551 unsigned int ttwu_count;
552 unsigned int ttwu_local;
b8efb561
IM
553
554 /* BKL stats */
480b9434 555 unsigned int bkl_count;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
610 return container_of(css, struct task_group, css);
611}
612
613/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
614static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
615{
616#ifdef CONFIG_FAIR_GROUP_SCHED
617 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
618 p->se.parent = task_group(p)->se[cpu];
619#endif
620
621#ifdef CONFIG_RT_GROUP_SCHED
622 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
623 p->rt.parent = task_group(p)->rt_se[cpu];
624#endif
625}
626
627#else /* CONFIG_CGROUP_SCHED */
628
629static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
630static inline struct task_group *task_group(struct task_struct *p)
631{
632 return NULL;
633}
634
635#endif /* CONFIG_CGROUP_SCHED */
636
305e6835 637static u64 irq_time_cpu(int cpu);
aa483808 638static void sched_irq_time_avg_update(struct rq *rq, u64 irq_time);
305e6835 639
aa9c4c0f 640inline void update_rq_clock(struct rq *rq)
3e51f33f 641{
305e6835
VP
642 if (!rq->skip_clock_update) {
643 int cpu = cpu_of(rq);
644 u64 irq_time;
645
646 rq->clock = sched_clock_cpu(cpu);
647 irq_time = irq_time_cpu(cpu);
648 if (rq->clock - irq_time > rq->clock_task)
649 rq->clock_task = rq->clock - irq_time;
aa483808
VP
650
651 sched_irq_time_avg_update(rq, irq_time);
305e6835 652 }
3e51f33f
PZ
653}
654
bf5c91ba
IM
655/*
656 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
657 */
658#ifdef CONFIG_SCHED_DEBUG
659# define const_debug __read_mostly
660#else
661# define const_debug static const
662#endif
663
017730c1
IM
664/**
665 * runqueue_is_locked
e17b38bf 666 * @cpu: the processor in question.
017730c1
IM
667 *
668 * Returns true if the current cpu runqueue is locked.
669 * This interface allows printk to be called with the runqueue lock
670 * held and know whether or not it is OK to wake up the klogd.
671 */
89f19f04 672int runqueue_is_locked(int cpu)
017730c1 673{
05fa785c 674 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
675}
676
bf5c91ba
IM
677/*
678 * Debugging: various feature bits
679 */
f00b45c1
PZ
680
681#define SCHED_FEAT(name, enabled) \
682 __SCHED_FEAT_##name ,
683
bf5c91ba 684enum {
f00b45c1 685#include "sched_features.h"
bf5c91ba
IM
686};
687
f00b45c1
PZ
688#undef SCHED_FEAT
689
690#define SCHED_FEAT(name, enabled) \
691 (1UL << __SCHED_FEAT_##name) * enabled |
692
bf5c91ba 693const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
694#include "sched_features.h"
695 0;
696
697#undef SCHED_FEAT
698
699#ifdef CONFIG_SCHED_DEBUG
700#define SCHED_FEAT(name, enabled) \
701 #name ,
702
983ed7a6 703static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
704#include "sched_features.h"
705 NULL
706};
707
708#undef SCHED_FEAT
709
34f3a814 710static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 711{
f00b45c1
PZ
712 int i;
713
714 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
715 if (!(sysctl_sched_features & (1UL << i)))
716 seq_puts(m, "NO_");
717 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 718 }
34f3a814 719 seq_puts(m, "\n");
f00b45c1 720
34f3a814 721 return 0;
f00b45c1
PZ
722}
723
724static ssize_t
725sched_feat_write(struct file *filp, const char __user *ubuf,
726 size_t cnt, loff_t *ppos)
727{
728 char buf[64];
7740191c 729 char *cmp;
f00b45c1
PZ
730 int neg = 0;
731 int i;
732
733 if (cnt > 63)
734 cnt = 63;
735
736 if (copy_from_user(&buf, ubuf, cnt))
737 return -EFAULT;
738
739 buf[cnt] = 0;
7740191c 740 cmp = strstrip(buf);
f00b45c1 741
c24b7c52 742 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
743 neg = 1;
744 cmp += 3;
745 }
746
747 for (i = 0; sched_feat_names[i]; i++) {
7740191c 748 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
749 if (neg)
750 sysctl_sched_features &= ~(1UL << i);
751 else
752 sysctl_sched_features |= (1UL << i);
753 break;
754 }
755 }
756
757 if (!sched_feat_names[i])
758 return -EINVAL;
759
42994724 760 *ppos += cnt;
f00b45c1
PZ
761
762 return cnt;
763}
764
34f3a814
LZ
765static int sched_feat_open(struct inode *inode, struct file *filp)
766{
767 return single_open(filp, sched_feat_show, NULL);
768}
769
828c0950 770static const struct file_operations sched_feat_fops = {
34f3a814
LZ
771 .open = sched_feat_open,
772 .write = sched_feat_write,
773 .read = seq_read,
774 .llseek = seq_lseek,
775 .release = single_release,
f00b45c1
PZ
776};
777
778static __init int sched_init_debug(void)
779{
f00b45c1
PZ
780 debugfs_create_file("sched_features", 0644, NULL, NULL,
781 &sched_feat_fops);
782
783 return 0;
784}
785late_initcall(sched_init_debug);
786
787#endif
788
789#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 790
b82d9fdd
PZ
791/*
792 * Number of tasks to iterate in a single balance run.
793 * Limited because this is done with IRQs disabled.
794 */
795const_debug unsigned int sysctl_sched_nr_migrate = 32;
796
e9e9250b
PZ
797/*
798 * period over which we average the RT time consumption, measured
799 * in ms.
800 *
801 * default: 1s
802 */
803const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
804
fa85ae24 805/*
9f0c1e56 806 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
807 * default: 1s
808 */
9f0c1e56 809unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 810
6892b75e
IM
811static __read_mostly int scheduler_running;
812
9f0c1e56
PZ
813/*
814 * part of the period that we allow rt tasks to run in us.
815 * default: 0.95s
816 */
817int sysctl_sched_rt_runtime = 950000;
fa85ae24 818
d0b27fa7
PZ
819static inline u64 global_rt_period(void)
820{
821 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
822}
823
824static inline u64 global_rt_runtime(void)
825{
e26873bb 826 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
827 return RUNTIME_INF;
828
829 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
830}
fa85ae24 831
1da177e4 832#ifndef prepare_arch_switch
4866cde0
NP
833# define prepare_arch_switch(next) do { } while (0)
834#endif
835#ifndef finish_arch_switch
836# define finish_arch_switch(prev) do { } while (0)
837#endif
838
051a1d1a
DA
839static inline int task_current(struct rq *rq, struct task_struct *p)
840{
841 return rq->curr == p;
842}
843
4866cde0 844#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 845static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 846{
051a1d1a 847 return task_current(rq, p);
4866cde0
NP
848}
849
70b97a7f 850static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
851{
852}
853
70b97a7f 854static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 855{
da04c035
IM
856#ifdef CONFIG_DEBUG_SPINLOCK
857 /* this is a valid case when another task releases the spinlock */
858 rq->lock.owner = current;
859#endif
8a25d5de
IM
860 /*
861 * If we are tracking spinlock dependencies then we have to
862 * fix up the runqueue lock - which gets 'carried over' from
863 * prev into current:
864 */
865 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
866
05fa785c 867 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
868}
869
870#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 871static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
872{
873#ifdef CONFIG_SMP
874 return p->oncpu;
875#else
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877#endif
878}
879
70b97a7f 880static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
881{
882#ifdef CONFIG_SMP
883 /*
884 * We can optimise this out completely for !SMP, because the
885 * SMP rebalancing from interrupt is the only thing that cares
886 * here.
887 */
888 next->oncpu = 1;
889#endif
890#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 891 raw_spin_unlock_irq(&rq->lock);
4866cde0 892#else
05fa785c 893 raw_spin_unlock(&rq->lock);
4866cde0
NP
894#endif
895}
896
70b97a7f 897static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
898{
899#ifdef CONFIG_SMP
900 /*
901 * After ->oncpu is cleared, the task can be moved to a different CPU.
902 * We must ensure this doesn't happen until the switch is completely
903 * finished.
904 */
905 smp_wmb();
906 prev->oncpu = 0;
907#endif
908#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
909 local_irq_enable();
1da177e4 910#endif
4866cde0
NP
911}
912#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 913
0970d299 914/*
65cc8e48
PZ
915 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
916 * against ttwu().
0970d299
PZ
917 */
918static inline int task_is_waking(struct task_struct *p)
919{
0017d735 920 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
921}
922
b29739f9
IM
923/*
924 * __task_rq_lock - lock the runqueue a given task resides on.
925 * Must be called interrupts disabled.
926 */
70b97a7f 927static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
928 __acquires(rq->lock)
929{
0970d299
PZ
930 struct rq *rq;
931
3a5c359a 932 for (;;) {
0970d299 933 rq = task_rq(p);
05fa785c 934 raw_spin_lock(&rq->lock);
65cc8e48 935 if (likely(rq == task_rq(p)))
3a5c359a 936 return rq;
05fa785c 937 raw_spin_unlock(&rq->lock);
b29739f9 938 }
b29739f9
IM
939}
940
1da177e4
LT
941/*
942 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 943 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
944 * explicitly disabling preemption.
945 */
70b97a7f 946static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
947 __acquires(rq->lock)
948{
70b97a7f 949 struct rq *rq;
1da177e4 950
3a5c359a
AK
951 for (;;) {
952 local_irq_save(*flags);
953 rq = task_rq(p);
05fa785c 954 raw_spin_lock(&rq->lock);
65cc8e48 955 if (likely(rq == task_rq(p)))
3a5c359a 956 return rq;
05fa785c 957 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 958 }
1da177e4
LT
959}
960
a9957449 961static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
962 __releases(rq->lock)
963{
05fa785c 964 raw_spin_unlock(&rq->lock);
b29739f9
IM
965}
966
70b97a7f 967static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
968 __releases(rq->lock)
969{
05fa785c 970 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
971}
972
1da177e4 973/*
cc2a73b5 974 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 975 */
a9957449 976static struct rq *this_rq_lock(void)
1da177e4
LT
977 __acquires(rq->lock)
978{
70b97a7f 979 struct rq *rq;
1da177e4
LT
980
981 local_irq_disable();
982 rq = this_rq();
05fa785c 983 raw_spin_lock(&rq->lock);
1da177e4
LT
984
985 return rq;
986}
987
8f4d37ec
PZ
988#ifdef CONFIG_SCHED_HRTICK
989/*
990 * Use HR-timers to deliver accurate preemption points.
991 *
992 * Its all a bit involved since we cannot program an hrt while holding the
993 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
994 * reschedule event.
995 *
996 * When we get rescheduled we reprogram the hrtick_timer outside of the
997 * rq->lock.
998 */
8f4d37ec
PZ
999
1000/*
1001 * Use hrtick when:
1002 * - enabled by features
1003 * - hrtimer is actually high res
1004 */
1005static inline int hrtick_enabled(struct rq *rq)
1006{
1007 if (!sched_feat(HRTICK))
1008 return 0;
ba42059f 1009 if (!cpu_active(cpu_of(rq)))
b328ca18 1010 return 0;
8f4d37ec
PZ
1011 return hrtimer_is_hres_active(&rq->hrtick_timer);
1012}
1013
8f4d37ec
PZ
1014static void hrtick_clear(struct rq *rq)
1015{
1016 if (hrtimer_active(&rq->hrtick_timer))
1017 hrtimer_cancel(&rq->hrtick_timer);
1018}
1019
8f4d37ec
PZ
1020/*
1021 * High-resolution timer tick.
1022 * Runs from hardirq context with interrupts disabled.
1023 */
1024static enum hrtimer_restart hrtick(struct hrtimer *timer)
1025{
1026 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1027
1028 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1029
05fa785c 1030 raw_spin_lock(&rq->lock);
3e51f33f 1031 update_rq_clock(rq);
8f4d37ec 1032 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1033 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1034
1035 return HRTIMER_NORESTART;
1036}
1037
95e904c7 1038#ifdef CONFIG_SMP
31656519
PZ
1039/*
1040 * called from hardirq (IPI) context
1041 */
1042static void __hrtick_start(void *arg)
b328ca18 1043{
31656519 1044 struct rq *rq = arg;
b328ca18 1045
05fa785c 1046 raw_spin_lock(&rq->lock);
31656519
PZ
1047 hrtimer_restart(&rq->hrtick_timer);
1048 rq->hrtick_csd_pending = 0;
05fa785c 1049 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1050}
1051
31656519
PZ
1052/*
1053 * Called to set the hrtick timer state.
1054 *
1055 * called with rq->lock held and irqs disabled
1056 */
1057static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1058{
31656519
PZ
1059 struct hrtimer *timer = &rq->hrtick_timer;
1060 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1061
cc584b21 1062 hrtimer_set_expires(timer, time);
31656519
PZ
1063
1064 if (rq == this_rq()) {
1065 hrtimer_restart(timer);
1066 } else if (!rq->hrtick_csd_pending) {
6e275637 1067 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1068 rq->hrtick_csd_pending = 1;
1069 }
b328ca18
PZ
1070}
1071
1072static int
1073hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1074{
1075 int cpu = (int)(long)hcpu;
1076
1077 switch (action) {
1078 case CPU_UP_CANCELED:
1079 case CPU_UP_CANCELED_FROZEN:
1080 case CPU_DOWN_PREPARE:
1081 case CPU_DOWN_PREPARE_FROZEN:
1082 case CPU_DEAD:
1083 case CPU_DEAD_FROZEN:
31656519 1084 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1085 return NOTIFY_OK;
1086 }
1087
1088 return NOTIFY_DONE;
1089}
1090
fa748203 1091static __init void init_hrtick(void)
b328ca18
PZ
1092{
1093 hotcpu_notifier(hotplug_hrtick, 0);
1094}
31656519
PZ
1095#else
1096/*
1097 * Called to set the hrtick timer state.
1098 *
1099 * called with rq->lock held and irqs disabled
1100 */
1101static void hrtick_start(struct rq *rq, u64 delay)
1102{
7f1e2ca9 1103 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1104 HRTIMER_MODE_REL_PINNED, 0);
31656519 1105}
b328ca18 1106
006c75f1 1107static inline void init_hrtick(void)
8f4d37ec 1108{
8f4d37ec 1109}
31656519 1110#endif /* CONFIG_SMP */
8f4d37ec 1111
31656519 1112static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1113{
31656519
PZ
1114#ifdef CONFIG_SMP
1115 rq->hrtick_csd_pending = 0;
8f4d37ec 1116
31656519
PZ
1117 rq->hrtick_csd.flags = 0;
1118 rq->hrtick_csd.func = __hrtick_start;
1119 rq->hrtick_csd.info = rq;
1120#endif
8f4d37ec 1121
31656519
PZ
1122 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1123 rq->hrtick_timer.function = hrtick;
8f4d37ec 1124}
006c75f1 1125#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1126static inline void hrtick_clear(struct rq *rq)
1127{
1128}
1129
8f4d37ec
PZ
1130static inline void init_rq_hrtick(struct rq *rq)
1131{
1132}
1133
b328ca18
PZ
1134static inline void init_hrtick(void)
1135{
1136}
006c75f1 1137#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1138
c24d20db
IM
1139/*
1140 * resched_task - mark a task 'to be rescheduled now'.
1141 *
1142 * On UP this means the setting of the need_resched flag, on SMP it
1143 * might also involve a cross-CPU call to trigger the scheduler on
1144 * the target CPU.
1145 */
1146#ifdef CONFIG_SMP
1147
1148#ifndef tsk_is_polling
1149#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1150#endif
1151
31656519 1152static void resched_task(struct task_struct *p)
c24d20db
IM
1153{
1154 int cpu;
1155
05fa785c 1156 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1157
5ed0cec0 1158 if (test_tsk_need_resched(p))
c24d20db
IM
1159 return;
1160
5ed0cec0 1161 set_tsk_need_resched(p);
c24d20db
IM
1162
1163 cpu = task_cpu(p);
1164 if (cpu == smp_processor_id())
1165 return;
1166
1167 /* NEED_RESCHED must be visible before we test polling */
1168 smp_mb();
1169 if (!tsk_is_polling(p))
1170 smp_send_reschedule(cpu);
1171}
1172
1173static void resched_cpu(int cpu)
1174{
1175 struct rq *rq = cpu_rq(cpu);
1176 unsigned long flags;
1177
05fa785c 1178 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1179 return;
1180 resched_task(cpu_curr(cpu));
05fa785c 1181 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1182}
06d8308c
TG
1183
1184#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1185/*
1186 * In the semi idle case, use the nearest busy cpu for migrating timers
1187 * from an idle cpu. This is good for power-savings.
1188 *
1189 * We don't do similar optimization for completely idle system, as
1190 * selecting an idle cpu will add more delays to the timers than intended
1191 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1192 */
1193int get_nohz_timer_target(void)
1194{
1195 int cpu = smp_processor_id();
1196 int i;
1197 struct sched_domain *sd;
1198
1199 for_each_domain(cpu, sd) {
1200 for_each_cpu(i, sched_domain_span(sd))
1201 if (!idle_cpu(i))
1202 return i;
1203 }
1204 return cpu;
1205}
06d8308c
TG
1206/*
1207 * When add_timer_on() enqueues a timer into the timer wheel of an
1208 * idle CPU then this timer might expire before the next timer event
1209 * which is scheduled to wake up that CPU. In case of a completely
1210 * idle system the next event might even be infinite time into the
1211 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1212 * leaves the inner idle loop so the newly added timer is taken into
1213 * account when the CPU goes back to idle and evaluates the timer
1214 * wheel for the next timer event.
1215 */
1216void wake_up_idle_cpu(int cpu)
1217{
1218 struct rq *rq = cpu_rq(cpu);
1219
1220 if (cpu == smp_processor_id())
1221 return;
1222
1223 /*
1224 * This is safe, as this function is called with the timer
1225 * wheel base lock of (cpu) held. When the CPU is on the way
1226 * to idle and has not yet set rq->curr to idle then it will
1227 * be serialized on the timer wheel base lock and take the new
1228 * timer into account automatically.
1229 */
1230 if (rq->curr != rq->idle)
1231 return;
1232
1233 /*
1234 * We can set TIF_RESCHED on the idle task of the other CPU
1235 * lockless. The worst case is that the other CPU runs the
1236 * idle task through an additional NOOP schedule()
1237 */
5ed0cec0 1238 set_tsk_need_resched(rq->idle);
06d8308c
TG
1239
1240 /* NEED_RESCHED must be visible before we test polling */
1241 smp_mb();
1242 if (!tsk_is_polling(rq->idle))
1243 smp_send_reschedule(cpu);
1244}
39c0cbe2 1245
6d6bc0ad 1246#endif /* CONFIG_NO_HZ */
06d8308c 1247
e9e9250b
PZ
1248static u64 sched_avg_period(void)
1249{
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1251}
1252
1253static void sched_avg_update(struct rq *rq)
1254{
1255 s64 period = sched_avg_period();
1256
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1258 /*
1259 * Inline assembly required to prevent the compiler
1260 * optimising this loop into a divmod call.
1261 * See __iter_div_u64_rem() for another example of this.
1262 */
1263 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267}
1268
1269static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270{
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273}
1274
6d6bc0ad 1275#else /* !CONFIG_SMP */
31656519 1276static void resched_task(struct task_struct *p)
c24d20db 1277{
05fa785c 1278 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1279 set_tsk_need_resched(p);
c24d20db 1280}
e9e9250b
PZ
1281
1282static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283{
1284}
da2b71ed
SS
1285
1286static void sched_avg_update(struct rq *rq)
1287{
1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2069dd75
PZ
1346static inline void update_load_set(struct load_weight *lw, unsigned long w)
1347{
1348 lw->weight = w;
1349 lw->inv_weight = 0;
1350}
1351
2dd73a4f
PW
1352/*
1353 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1354 * of tasks with abnormal "nice" values across CPUs the contribution that
1355 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1356 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1357 * scaled version of the new time slice allocation that they receive on time
1358 * slice expiry etc.
1359 */
1360
cce7ade8
PZ
1361#define WEIGHT_IDLEPRIO 3
1362#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1363
1364/*
1365 * Nice levels are multiplicative, with a gentle 10% change for every
1366 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1367 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1368 * that remained on nice 0.
1369 *
1370 * The "10% effect" is relative and cumulative: from _any_ nice level,
1371 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1372 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1373 * If a task goes up by ~10% and another task goes down by ~10% then
1374 * the relative distance between them is ~25%.)
dd41f596
IM
1375 */
1376static const int prio_to_weight[40] = {
254753dc
IM
1377 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1378 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1379 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1380 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1381 /* 0 */ 1024, 820, 655, 526, 423,
1382 /* 5 */ 335, 272, 215, 172, 137,
1383 /* 10 */ 110, 87, 70, 56, 45,
1384 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1385};
1386
5714d2de
IM
1387/*
1388 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1389 *
1390 * In cases where the weight does not change often, we can use the
1391 * precalculated inverse to speed up arithmetics by turning divisions
1392 * into multiplications:
1393 */
dd41f596 1394static const u32 prio_to_wmult[40] = {
254753dc
IM
1395 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1396 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1397 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1398 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1399 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1400 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1401 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1402 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1403};
2dd73a4f 1404
ef12fefa
BR
1405/* Time spent by the tasks of the cpu accounting group executing in ... */
1406enum cpuacct_stat_index {
1407 CPUACCT_STAT_USER, /* ... user mode */
1408 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1409
1410 CPUACCT_STAT_NSTATS,
1411};
1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1415static void cpuacct_update_stats(struct task_struct *tsk,
1416 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1417#else
1418static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1419static inline void cpuacct_update_stats(struct task_struct *tsk,
1420 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1421#endif
1422
18d95a28
PZ
1423static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1424{
1425 update_load_add(&rq->load, load);
1426}
1427
1428static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1429{
1430 update_load_sub(&rq->load, load);
1431}
1432
7940ca36 1433#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1434typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1435
1436/*
1437 * Iterate the full tree, calling @down when first entering a node and @up when
1438 * leaving it for the final time.
1439 */
eb755805 1440static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1441{
1442 struct task_group *parent, *child;
eb755805 1443 int ret;
c09595f6
PZ
1444
1445 rcu_read_lock();
1446 parent = &root_task_group;
1447down:
eb755805
PZ
1448 ret = (*down)(parent, data);
1449 if (ret)
1450 goto out_unlock;
c09595f6
PZ
1451 list_for_each_entry_rcu(child, &parent->children, siblings) {
1452 parent = child;
1453 goto down;
1454
1455up:
1456 continue;
1457 }
eb755805
PZ
1458 ret = (*up)(parent, data);
1459 if (ret)
1460 goto out_unlock;
c09595f6
PZ
1461
1462 child = parent;
1463 parent = parent->parent;
1464 if (parent)
1465 goto up;
eb755805 1466out_unlock:
c09595f6 1467 rcu_read_unlock();
eb755805
PZ
1468
1469 return ret;
c09595f6
PZ
1470}
1471
eb755805
PZ
1472static int tg_nop(struct task_group *tg, void *data)
1473{
1474 return 0;
c09595f6 1475}
eb755805
PZ
1476#endif
1477
1478#ifdef CONFIG_SMP
f5f08f39
PZ
1479/* Used instead of source_load when we know the type == 0 */
1480static unsigned long weighted_cpuload(const int cpu)
1481{
1482 return cpu_rq(cpu)->load.weight;
1483}
1484
1485/*
1486 * Return a low guess at the load of a migration-source cpu weighted
1487 * according to the scheduling class and "nice" value.
1488 *
1489 * We want to under-estimate the load of migration sources, to
1490 * balance conservatively.
1491 */
1492static unsigned long source_load(int cpu, int type)
1493{
1494 struct rq *rq = cpu_rq(cpu);
1495 unsigned long total = weighted_cpuload(cpu);
1496
1497 if (type == 0 || !sched_feat(LB_BIAS))
1498 return total;
1499
1500 return min(rq->cpu_load[type-1], total);
1501}
1502
1503/*
1504 * Return a high guess at the load of a migration-target cpu weighted
1505 * according to the scheduling class and "nice" value.
1506 */
1507static unsigned long target_load(int cpu, int type)
1508{
1509 struct rq *rq = cpu_rq(cpu);
1510 unsigned long total = weighted_cpuload(cpu);
1511
1512 if (type == 0 || !sched_feat(LB_BIAS))
1513 return total;
1514
1515 return max(rq->cpu_load[type-1], total);
1516}
1517
ae154be1
PZ
1518static unsigned long power_of(int cpu)
1519{
e51fd5e2 1520 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1521}
1522
eb755805
PZ
1523static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1524
1525static unsigned long cpu_avg_load_per_task(int cpu)
1526{
1527 struct rq *rq = cpu_rq(cpu);
af6d596f 1528 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1529
4cd42620
SR
1530 if (nr_running)
1531 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1532 else
1533 rq->avg_load_per_task = 0;
eb755805
PZ
1534
1535 return rq->avg_load_per_task;
1536}
1537
1538#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1539
c09595f6 1540/*
c8cba857
PZ
1541 * Compute the cpu's hierarchical load factor for each task group.
1542 * This needs to be done in a top-down fashion because the load of a child
1543 * group is a fraction of its parents load.
c09595f6 1544 */
eb755805 1545static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1546{
c8cba857 1547 unsigned long load;
eb755805 1548 long cpu = (long)data;
c09595f6 1549
c8cba857
PZ
1550 if (!tg->parent) {
1551 load = cpu_rq(cpu)->load.weight;
1552 } else {
1553 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1554 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1555 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1556 }
c09595f6 1557
c8cba857 1558 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1559
eb755805 1560 return 0;
c09595f6
PZ
1561}
1562
eb755805 1563static void update_h_load(long cpu)
c09595f6 1564{
eb755805 1565 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1566}
1567
18d95a28
PZ
1568#endif
1569
8f45e2b5
GH
1570#ifdef CONFIG_PREEMPT
1571
b78bb868
PZ
1572static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1573
70574a99 1574/*
8f45e2b5
GH
1575 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1576 * way at the expense of forcing extra atomic operations in all
1577 * invocations. This assures that the double_lock is acquired using the
1578 * same underlying policy as the spinlock_t on this architecture, which
1579 * reduces latency compared to the unfair variant below. However, it
1580 * also adds more overhead and therefore may reduce throughput.
70574a99 1581 */
8f45e2b5
GH
1582static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1583 __releases(this_rq->lock)
1584 __acquires(busiest->lock)
1585 __acquires(this_rq->lock)
1586{
05fa785c 1587 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1588 double_rq_lock(this_rq, busiest);
1589
1590 return 1;
1591}
1592
1593#else
1594/*
1595 * Unfair double_lock_balance: Optimizes throughput at the expense of
1596 * latency by eliminating extra atomic operations when the locks are
1597 * already in proper order on entry. This favors lower cpu-ids and will
1598 * grant the double lock to lower cpus over higher ids under contention,
1599 * regardless of entry order into the function.
1600 */
1601static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1602 __releases(this_rq->lock)
1603 __acquires(busiest->lock)
1604 __acquires(this_rq->lock)
1605{
1606 int ret = 0;
1607
05fa785c 1608 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1609 if (busiest < this_rq) {
05fa785c
TG
1610 raw_spin_unlock(&this_rq->lock);
1611 raw_spin_lock(&busiest->lock);
1612 raw_spin_lock_nested(&this_rq->lock,
1613 SINGLE_DEPTH_NESTING);
70574a99
AD
1614 ret = 1;
1615 } else
05fa785c
TG
1616 raw_spin_lock_nested(&busiest->lock,
1617 SINGLE_DEPTH_NESTING);
70574a99
AD
1618 }
1619 return ret;
1620}
1621
8f45e2b5
GH
1622#endif /* CONFIG_PREEMPT */
1623
1624/*
1625 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1626 */
1627static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1628{
1629 if (unlikely(!irqs_disabled())) {
1630 /* printk() doesn't work good under rq->lock */
05fa785c 1631 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1632 BUG_ON(1);
1633 }
1634
1635 return _double_lock_balance(this_rq, busiest);
1636}
1637
70574a99
AD
1638static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1639 __releases(busiest->lock)
1640{
05fa785c 1641 raw_spin_unlock(&busiest->lock);
70574a99
AD
1642 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1643}
1e3c88bd
PZ
1644
1645/*
1646 * double_rq_lock - safely lock two runqueues
1647 *
1648 * Note this does not disable interrupts like task_rq_lock,
1649 * you need to do so manually before calling.
1650 */
1651static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1652 __acquires(rq1->lock)
1653 __acquires(rq2->lock)
1654{
1655 BUG_ON(!irqs_disabled());
1656 if (rq1 == rq2) {
1657 raw_spin_lock(&rq1->lock);
1658 __acquire(rq2->lock); /* Fake it out ;) */
1659 } else {
1660 if (rq1 < rq2) {
1661 raw_spin_lock(&rq1->lock);
1662 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1663 } else {
1664 raw_spin_lock(&rq2->lock);
1665 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1666 }
1667 }
1e3c88bd
PZ
1668}
1669
1670/*
1671 * double_rq_unlock - safely unlock two runqueues
1672 *
1673 * Note this does not restore interrupts like task_rq_unlock,
1674 * you need to do so manually after calling.
1675 */
1676static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1677 __releases(rq1->lock)
1678 __releases(rq2->lock)
1679{
1680 raw_spin_unlock(&rq1->lock);
1681 if (rq1 != rq2)
1682 raw_spin_unlock(&rq2->lock);
1683 else
1684 __release(rq2->lock);
1685}
1686
18d95a28
PZ
1687#endif
1688
74f5187a 1689static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1690static void update_sysctl(void);
acb4a848 1691static int get_update_sysctl_factor(void);
fdf3e95d 1692static void update_cpu_load(struct rq *this_rq);
dce48a84 1693
cd29fe6f
PZ
1694static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1695{
1696 set_task_rq(p, cpu);
1697#ifdef CONFIG_SMP
1698 /*
1699 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1700 * successfuly executed on another CPU. We must ensure that updates of
1701 * per-task data have been completed by this moment.
1702 */
1703 smp_wmb();
1704 task_thread_info(p)->cpu = cpu;
1705#endif
1706}
dce48a84 1707
1e3c88bd 1708static const struct sched_class rt_sched_class;
dd41f596 1709
34f971f6 1710#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1711#define for_each_class(class) \
1712 for (class = sched_class_highest; class; class = class->next)
dd41f596 1713
1e3c88bd
PZ
1714#include "sched_stats.h"
1715
c09595f6 1716static void inc_nr_running(struct rq *rq)
9c217245
IM
1717{
1718 rq->nr_running++;
9c217245
IM
1719}
1720
c09595f6 1721static void dec_nr_running(struct rq *rq)
9c217245
IM
1722{
1723 rq->nr_running--;
9c217245
IM
1724}
1725
45bf76df
IM
1726static void set_load_weight(struct task_struct *p)
1727{
dd41f596
IM
1728 /*
1729 * SCHED_IDLE tasks get minimal weight:
1730 */
1731 if (p->policy == SCHED_IDLE) {
1732 p->se.load.weight = WEIGHT_IDLEPRIO;
1733 p->se.load.inv_weight = WMULT_IDLEPRIO;
1734 return;
1735 }
71f8bd46 1736
dd41f596
IM
1737 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1738 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1739}
1740
371fd7e7 1741static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1742{
a64692a3 1743 update_rq_clock(rq);
dd41f596 1744 sched_info_queued(p);
371fd7e7 1745 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1746 p->se.on_rq = 1;
71f8bd46
IM
1747}
1748
371fd7e7 1749static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1750{
a64692a3 1751 update_rq_clock(rq);
46ac22ba 1752 sched_info_dequeued(p);
371fd7e7 1753 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1754 p->se.on_rq = 0;
71f8bd46
IM
1755}
1756
1e3c88bd
PZ
1757/*
1758 * activate_task - move a task to the runqueue.
1759 */
371fd7e7 1760static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1761{
1762 if (task_contributes_to_load(p))
1763 rq->nr_uninterruptible--;
1764
371fd7e7 1765 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1766 inc_nr_running(rq);
1767}
1768
1769/*
1770 * deactivate_task - remove a task from the runqueue.
1771 */
371fd7e7 1772static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1773{
1774 if (task_contributes_to_load(p))
1775 rq->nr_uninterruptible++;
1776
371fd7e7 1777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1778 dec_nr_running(rq);
1779}
1780
b52bfee4
VP
1781#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1782
305e6835
VP
1783/*
1784 * There are no locks covering percpu hardirq/softirq time.
1785 * They are only modified in account_system_vtime, on corresponding CPU
1786 * with interrupts disabled. So, writes are safe.
1787 * They are read and saved off onto struct rq in update_rq_clock().
1788 * This may result in other CPU reading this CPU's irq time and can
1789 * race with irq/account_system_vtime on this CPU. We would either get old
1790 * or new value (or semi updated value on 32 bit) with a side effect of
1791 * accounting a slice of irq time to wrong task when irq is in progress
1792 * while we read rq->clock. That is a worthy compromise in place of having
1793 * locks on each irq in account_system_time.
1794 */
b52bfee4
VP
1795static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1796static DEFINE_PER_CPU(u64, cpu_softirq_time);
1797
1798static DEFINE_PER_CPU(u64, irq_start_time);
1799static int sched_clock_irqtime;
1800
1801void enable_sched_clock_irqtime(void)
1802{
1803 sched_clock_irqtime = 1;
1804}
1805
1806void disable_sched_clock_irqtime(void)
1807{
1808 sched_clock_irqtime = 0;
1809}
1810
305e6835
VP
1811static u64 irq_time_cpu(int cpu)
1812{
1813 if (!sched_clock_irqtime)
1814 return 0;
1815
1816 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1817}
1818
b52bfee4
VP
1819void account_system_vtime(struct task_struct *curr)
1820{
1821 unsigned long flags;
1822 int cpu;
1823 u64 now, delta;
1824
1825 if (!sched_clock_irqtime)
1826 return;
1827
1828 local_irq_save(flags);
1829
b52bfee4 1830 cpu = smp_processor_id();
d267f87f 1831 now = sched_clock_cpu(cpu);
b52bfee4
VP
1832 delta = now - per_cpu(irq_start_time, cpu);
1833 per_cpu(irq_start_time, cpu) = now;
1834 /*
1835 * We do not account for softirq time from ksoftirqd here.
1836 * We want to continue accounting softirq time to ksoftirqd thread
1837 * in that case, so as not to confuse scheduler with a special task
1838 * that do not consume any time, but still wants to run.
1839 */
1840 if (hardirq_count())
1841 per_cpu(cpu_hardirq_time, cpu) += delta;
1842 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1843 per_cpu(cpu_softirq_time, cpu) += delta;
1844
1845 local_irq_restore(flags);
1846}
b7dadc38 1847EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1848
aa483808
VP
1849static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time)
1850{
1851 if (sched_clock_irqtime && sched_feat(NONIRQ_POWER)) {
1852 u64 delta_irq = curr_irq_time - rq->prev_irq_time;
1853 rq->prev_irq_time = curr_irq_time;
1854 sched_rt_avg_update(rq, delta_irq);
1855 }
1856}
1857
305e6835
VP
1858#else
1859
1860static u64 irq_time_cpu(int cpu)
1861{
1862 return 0;
1863}
1864
aa483808
VP
1865static void sched_irq_time_avg_update(struct rq *rq, u64 curr_irq_time) { }
1866
b52bfee4
VP
1867#endif
1868
1e3c88bd
PZ
1869#include "sched_idletask.c"
1870#include "sched_fair.c"
1871#include "sched_rt.c"
34f971f6 1872#include "sched_stoptask.c"
1e3c88bd
PZ
1873#ifdef CONFIG_SCHED_DEBUG
1874# include "sched_debug.c"
1875#endif
1876
34f971f6
PZ
1877void sched_set_stop_task(int cpu, struct task_struct *stop)
1878{
1879 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1880 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1881
1882 if (stop) {
1883 /*
1884 * Make it appear like a SCHED_FIFO task, its something
1885 * userspace knows about and won't get confused about.
1886 *
1887 * Also, it will make PI more or less work without too
1888 * much confusion -- but then, stop work should not
1889 * rely on PI working anyway.
1890 */
1891 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1892
1893 stop->sched_class = &stop_sched_class;
1894 }
1895
1896 cpu_rq(cpu)->stop = stop;
1897
1898 if (old_stop) {
1899 /*
1900 * Reset it back to a normal scheduling class so that
1901 * it can die in pieces.
1902 */
1903 old_stop->sched_class = &rt_sched_class;
1904 }
1905}
1906
14531189 1907/*
dd41f596 1908 * __normal_prio - return the priority that is based on the static prio
14531189 1909 */
14531189
IM
1910static inline int __normal_prio(struct task_struct *p)
1911{
dd41f596 1912 return p->static_prio;
14531189
IM
1913}
1914
b29739f9
IM
1915/*
1916 * Calculate the expected normal priority: i.e. priority
1917 * without taking RT-inheritance into account. Might be
1918 * boosted by interactivity modifiers. Changes upon fork,
1919 * setprio syscalls, and whenever the interactivity
1920 * estimator recalculates.
1921 */
36c8b586 1922static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1923{
1924 int prio;
1925
e05606d3 1926 if (task_has_rt_policy(p))
b29739f9
IM
1927 prio = MAX_RT_PRIO-1 - p->rt_priority;
1928 else
1929 prio = __normal_prio(p);
1930 return prio;
1931}
1932
1933/*
1934 * Calculate the current priority, i.e. the priority
1935 * taken into account by the scheduler. This value might
1936 * be boosted by RT tasks, or might be boosted by
1937 * interactivity modifiers. Will be RT if the task got
1938 * RT-boosted. If not then it returns p->normal_prio.
1939 */
36c8b586 1940static int effective_prio(struct task_struct *p)
b29739f9
IM
1941{
1942 p->normal_prio = normal_prio(p);
1943 /*
1944 * If we are RT tasks or we were boosted to RT priority,
1945 * keep the priority unchanged. Otherwise, update priority
1946 * to the normal priority:
1947 */
1948 if (!rt_prio(p->prio))
1949 return p->normal_prio;
1950 return p->prio;
1951}
1952
1da177e4
LT
1953/**
1954 * task_curr - is this task currently executing on a CPU?
1955 * @p: the task in question.
1956 */
36c8b586 1957inline int task_curr(const struct task_struct *p)
1da177e4
LT
1958{
1959 return cpu_curr(task_cpu(p)) == p;
1960}
1961
cb469845
SR
1962static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1963 const struct sched_class *prev_class,
1964 int oldprio, int running)
1965{
1966 if (prev_class != p->sched_class) {
1967 if (prev_class->switched_from)
1968 prev_class->switched_from(rq, p, running);
1969 p->sched_class->switched_to(rq, p, running);
1970 } else
1971 p->sched_class->prio_changed(rq, p, oldprio, running);
1972}
1973
1e5a7405
PZ
1974static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1975{
1976 const struct sched_class *class;
1977
1978 if (p->sched_class == rq->curr->sched_class) {
1979 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1980 } else {
1981 for_each_class(class) {
1982 if (class == rq->curr->sched_class)
1983 break;
1984 if (class == p->sched_class) {
1985 resched_task(rq->curr);
1986 break;
1987 }
1988 }
1989 }
1990
1991 /*
1992 * A queue event has occurred, and we're going to schedule. In
1993 * this case, we can save a useless back to back clock update.
1994 */
1995 if (test_tsk_need_resched(rq->curr))
1996 rq->skip_clock_update = 1;
1997}
1998
1da177e4 1999#ifdef CONFIG_SMP
cc367732
IM
2000/*
2001 * Is this task likely cache-hot:
2002 */
e7693a36 2003static int
cc367732
IM
2004task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005{
2006 s64 delta;
2007
e6c8fba7
PZ
2008 if (p->sched_class != &fair_sched_class)
2009 return 0;
2010
ef8002f6
NR
2011 if (unlikely(p->policy == SCHED_IDLE))
2012 return 0;
2013
f540a608
IM
2014 /*
2015 * Buddy candidates are cache hot:
2016 */
f685ceac 2017 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2018 (&p->se == cfs_rq_of(&p->se)->next ||
2019 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2020 return 1;
2021
6bc1665b
IM
2022 if (sysctl_sched_migration_cost == -1)
2023 return 1;
2024 if (sysctl_sched_migration_cost == 0)
2025 return 0;
2026
cc367732
IM
2027 delta = now - p->se.exec_start;
2028
2029 return delta < (s64)sysctl_sched_migration_cost;
2030}
2031
dd41f596 2032void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2033{
e2912009
PZ
2034#ifdef CONFIG_SCHED_DEBUG
2035 /*
2036 * We should never call set_task_cpu() on a blocked task,
2037 * ttwu() will sort out the placement.
2038 */
077614ee
PZ
2039 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2040 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2041#endif
2042
de1d7286 2043 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2044
0c69774e
PZ
2045 if (task_cpu(p) != new_cpu) {
2046 p->se.nr_migrations++;
2047 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2048 }
dd41f596
IM
2049
2050 __set_task_cpu(p, new_cpu);
c65cc870
IM
2051}
2052
969c7921 2053struct migration_arg {
36c8b586 2054 struct task_struct *task;
1da177e4 2055 int dest_cpu;
70b97a7f 2056};
1da177e4 2057
969c7921
TH
2058static int migration_cpu_stop(void *data);
2059
1da177e4
LT
2060/*
2061 * The task's runqueue lock must be held.
2062 * Returns true if you have to wait for migration thread.
2063 */
b7a2b39d 2064static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2065{
1da177e4
LT
2066 /*
2067 * If the task is not on a runqueue (and not running), then
e2912009 2068 * the next wake-up will properly place the task.
1da177e4 2069 */
969c7921 2070 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2071}
2072
2073/*
2074 * wait_task_inactive - wait for a thread to unschedule.
2075 *
85ba2d86
RM
2076 * If @match_state is nonzero, it's the @p->state value just checked and
2077 * not expected to change. If it changes, i.e. @p might have woken up,
2078 * then return zero. When we succeed in waiting for @p to be off its CPU,
2079 * we return a positive number (its total switch count). If a second call
2080 * a short while later returns the same number, the caller can be sure that
2081 * @p has remained unscheduled the whole time.
2082 *
1da177e4
LT
2083 * The caller must ensure that the task *will* unschedule sometime soon,
2084 * else this function might spin for a *long* time. This function can't
2085 * be called with interrupts off, or it may introduce deadlock with
2086 * smp_call_function() if an IPI is sent by the same process we are
2087 * waiting to become inactive.
2088 */
85ba2d86 2089unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2090{
2091 unsigned long flags;
dd41f596 2092 int running, on_rq;
85ba2d86 2093 unsigned long ncsw;
70b97a7f 2094 struct rq *rq;
1da177e4 2095
3a5c359a
AK
2096 for (;;) {
2097 /*
2098 * We do the initial early heuristics without holding
2099 * any task-queue locks at all. We'll only try to get
2100 * the runqueue lock when things look like they will
2101 * work out!
2102 */
2103 rq = task_rq(p);
fa490cfd 2104
3a5c359a
AK
2105 /*
2106 * If the task is actively running on another CPU
2107 * still, just relax and busy-wait without holding
2108 * any locks.
2109 *
2110 * NOTE! Since we don't hold any locks, it's not
2111 * even sure that "rq" stays as the right runqueue!
2112 * But we don't care, since "task_running()" will
2113 * return false if the runqueue has changed and p
2114 * is actually now running somewhere else!
2115 */
85ba2d86
RM
2116 while (task_running(rq, p)) {
2117 if (match_state && unlikely(p->state != match_state))
2118 return 0;
3a5c359a 2119 cpu_relax();
85ba2d86 2120 }
fa490cfd 2121
3a5c359a
AK
2122 /*
2123 * Ok, time to look more closely! We need the rq
2124 * lock now, to be *sure*. If we're wrong, we'll
2125 * just go back and repeat.
2126 */
2127 rq = task_rq_lock(p, &flags);
27a9da65 2128 trace_sched_wait_task(p);
3a5c359a
AK
2129 running = task_running(rq, p);
2130 on_rq = p->se.on_rq;
85ba2d86 2131 ncsw = 0;
f31e11d8 2132 if (!match_state || p->state == match_state)
93dcf55f 2133 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2134 task_rq_unlock(rq, &flags);
fa490cfd 2135
85ba2d86
RM
2136 /*
2137 * If it changed from the expected state, bail out now.
2138 */
2139 if (unlikely(!ncsw))
2140 break;
2141
3a5c359a
AK
2142 /*
2143 * Was it really running after all now that we
2144 * checked with the proper locks actually held?
2145 *
2146 * Oops. Go back and try again..
2147 */
2148 if (unlikely(running)) {
2149 cpu_relax();
2150 continue;
2151 }
fa490cfd 2152
3a5c359a
AK
2153 /*
2154 * It's not enough that it's not actively running,
2155 * it must be off the runqueue _entirely_, and not
2156 * preempted!
2157 *
80dd99b3 2158 * So if it was still runnable (but just not actively
3a5c359a
AK
2159 * running right now), it's preempted, and we should
2160 * yield - it could be a while.
2161 */
2162 if (unlikely(on_rq)) {
2163 schedule_timeout_uninterruptible(1);
2164 continue;
2165 }
fa490cfd 2166
3a5c359a
AK
2167 /*
2168 * Ahh, all good. It wasn't running, and it wasn't
2169 * runnable, which means that it will never become
2170 * running in the future either. We're all done!
2171 */
2172 break;
2173 }
85ba2d86
RM
2174
2175 return ncsw;
1da177e4
LT
2176}
2177
2178/***
2179 * kick_process - kick a running thread to enter/exit the kernel
2180 * @p: the to-be-kicked thread
2181 *
2182 * Cause a process which is running on another CPU to enter
2183 * kernel-mode, without any delay. (to get signals handled.)
2184 *
2185 * NOTE: this function doesnt have to take the runqueue lock,
2186 * because all it wants to ensure is that the remote task enters
2187 * the kernel. If the IPI races and the task has been migrated
2188 * to another CPU then no harm is done and the purpose has been
2189 * achieved as well.
2190 */
36c8b586 2191void kick_process(struct task_struct *p)
1da177e4
LT
2192{
2193 int cpu;
2194
2195 preempt_disable();
2196 cpu = task_cpu(p);
2197 if ((cpu != smp_processor_id()) && task_curr(p))
2198 smp_send_reschedule(cpu);
2199 preempt_enable();
2200}
b43e3521 2201EXPORT_SYMBOL_GPL(kick_process);
476d139c 2202#endif /* CONFIG_SMP */
1da177e4 2203
0793a61d
TG
2204/**
2205 * task_oncpu_function_call - call a function on the cpu on which a task runs
2206 * @p: the task to evaluate
2207 * @func: the function to be called
2208 * @info: the function call argument
2209 *
2210 * Calls the function @func when the task is currently running. This might
2211 * be on the current CPU, which just calls the function directly
2212 */
2213void task_oncpu_function_call(struct task_struct *p,
2214 void (*func) (void *info), void *info)
2215{
2216 int cpu;
2217
2218 preempt_disable();
2219 cpu = task_cpu(p);
2220 if (task_curr(p))
2221 smp_call_function_single(cpu, func, info, 1);
2222 preempt_enable();
2223}
2224
970b13ba 2225#ifdef CONFIG_SMP
30da688e
ON
2226/*
2227 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2228 */
5da9a0fb
PZ
2229static int select_fallback_rq(int cpu, struct task_struct *p)
2230{
2231 int dest_cpu;
2232 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2233
2234 /* Look for allowed, online CPU in same node. */
2235 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2236 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2237 return dest_cpu;
2238
2239 /* Any allowed, online CPU? */
2240 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2241 if (dest_cpu < nr_cpu_ids)
2242 return dest_cpu;
2243
2244 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2245 dest_cpu = cpuset_cpus_allowed_fallback(p);
2246 /*
2247 * Don't tell them about moving exiting tasks or
2248 * kernel threads (both mm NULL), since they never
2249 * leave kernel.
2250 */
2251 if (p->mm && printk_ratelimit()) {
2252 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2253 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2254 }
2255
2256 return dest_cpu;
2257}
2258
e2912009 2259/*
30da688e 2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2261 */
970b13ba 2262static inline
0017d735 2263int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2264{
0017d735 2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2266
2267 /*
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2270 * cpu.
2271 *
2272 * Since this is common to all placement strategies, this lives here.
2273 *
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2276 */
2277 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2278 !cpu_online(cpu)))
5da9a0fb 2279 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2280
2281 return cpu;
970b13ba 2282}
09a40af5
MG
2283
2284static void update_avg(u64 *avg, u64 sample)
2285{
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2288}
970b13ba
PZ
2289#endif
2290
9ed3811a
TH
2291static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2292 bool is_sync, bool is_migrate, bool is_local,
2293 unsigned long en_flags)
2294{
2295 schedstat_inc(p, se.statistics.nr_wakeups);
2296 if (is_sync)
2297 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2298 if (is_migrate)
2299 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2300 if (is_local)
2301 schedstat_inc(p, se.statistics.nr_wakeups_local);
2302 else
2303 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2304
2305 activate_task(rq, p, en_flags);
2306}
2307
2308static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2309 int wake_flags, bool success)
2310{
2311 trace_sched_wakeup(p, success);
2312 check_preempt_curr(rq, p, wake_flags);
2313
2314 p->state = TASK_RUNNING;
2315#ifdef CONFIG_SMP
2316 if (p->sched_class->task_woken)
2317 p->sched_class->task_woken(rq, p);
2318
2319 if (unlikely(rq->idle_stamp)) {
2320 u64 delta = rq->clock - rq->idle_stamp;
2321 u64 max = 2*sysctl_sched_migration_cost;
2322
2323 if (delta > max)
2324 rq->avg_idle = max;
2325 else
2326 update_avg(&rq->avg_idle, delta);
2327 rq->idle_stamp = 0;
2328 }
2329#endif
21aa9af0
TH
2330 /* if a worker is waking up, notify workqueue */
2331 if ((p->flags & PF_WQ_WORKER) && success)
2332 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2333}
2334
2335/**
1da177e4 2336 * try_to_wake_up - wake up a thread
9ed3811a 2337 * @p: the thread to be awakened
1da177e4 2338 * @state: the mask of task states that can be woken
9ed3811a 2339 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2340 *
2341 * Put it on the run-queue if it's not already there. The "current"
2342 * thread is always on the run-queue (except when the actual
2343 * re-schedule is in progress), and as such you're allowed to do
2344 * the simpler "current->state = TASK_RUNNING" to mark yourself
2345 * runnable without the overhead of this.
2346 *
9ed3811a
TH
2347 * Returns %true if @p was woken up, %false if it was already running
2348 * or @state didn't match @p's state.
1da177e4 2349 */
7d478721
PZ
2350static int try_to_wake_up(struct task_struct *p, unsigned int state,
2351 int wake_flags)
1da177e4 2352{
cc367732 2353 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2354 unsigned long flags;
371fd7e7 2355 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2356 struct rq *rq;
1da177e4 2357
e9c84311 2358 this_cpu = get_cpu();
2398f2c6 2359
04e2f174 2360 smp_wmb();
ab3b3aa5 2361 rq = task_rq_lock(p, &flags);
e9c84311 2362 if (!(p->state & state))
1da177e4
LT
2363 goto out;
2364
dd41f596 2365 if (p->se.on_rq)
1da177e4
LT
2366 goto out_running;
2367
2368 cpu = task_cpu(p);
cc367732 2369 orig_cpu = cpu;
1da177e4
LT
2370
2371#ifdef CONFIG_SMP
2372 if (unlikely(task_running(rq, p)))
2373 goto out_activate;
2374
e9c84311
PZ
2375 /*
2376 * In order to handle concurrent wakeups and release the rq->lock
2377 * we put the task in TASK_WAKING state.
eb24073b
IM
2378 *
2379 * First fix up the nr_uninterruptible count:
e9c84311 2380 */
cc87f76a
PZ
2381 if (task_contributes_to_load(p)) {
2382 if (likely(cpu_online(orig_cpu)))
2383 rq->nr_uninterruptible--;
2384 else
2385 this_rq()->nr_uninterruptible--;
2386 }
e9c84311 2387 p->state = TASK_WAKING;
efbbd05a 2388
371fd7e7 2389 if (p->sched_class->task_waking) {
efbbd05a 2390 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2391 en_flags |= ENQUEUE_WAKING;
2392 }
efbbd05a 2393
0017d735
PZ
2394 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2395 if (cpu != orig_cpu)
5d2f5a61 2396 set_task_cpu(p, cpu);
0017d735 2397 __task_rq_unlock(rq);
ab19cb23 2398
0970d299
PZ
2399 rq = cpu_rq(cpu);
2400 raw_spin_lock(&rq->lock);
f5dc3753 2401
0970d299
PZ
2402 /*
2403 * We migrated the task without holding either rq->lock, however
2404 * since the task is not on the task list itself, nobody else
2405 * will try and migrate the task, hence the rq should match the
2406 * cpu we just moved it to.
2407 */
2408 WARN_ON(task_cpu(p) != cpu);
e9c84311 2409 WARN_ON(p->state != TASK_WAKING);
1da177e4 2410
e7693a36
GH
2411#ifdef CONFIG_SCHEDSTATS
2412 schedstat_inc(rq, ttwu_count);
2413 if (cpu == this_cpu)
2414 schedstat_inc(rq, ttwu_local);
2415 else {
2416 struct sched_domain *sd;
2417 for_each_domain(this_cpu, sd) {
758b2cdc 2418 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2419 schedstat_inc(sd, ttwu_wake_remote);
2420 break;
2421 }
2422 }
2423 }
6d6bc0ad 2424#endif /* CONFIG_SCHEDSTATS */
e7693a36 2425
1da177e4
LT
2426out_activate:
2427#endif /* CONFIG_SMP */
9ed3811a
TH
2428 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2429 cpu == this_cpu, en_flags);
1da177e4 2430 success = 1;
1da177e4 2431out_running:
9ed3811a 2432 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2433out:
2434 task_rq_unlock(rq, &flags);
e9c84311 2435 put_cpu();
1da177e4
LT
2436
2437 return success;
2438}
2439
21aa9af0
TH
2440/**
2441 * try_to_wake_up_local - try to wake up a local task with rq lock held
2442 * @p: the thread to be awakened
2443 *
2444 * Put @p on the run-queue if it's not alredy there. The caller must
2445 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2446 * the current task. this_rq() stays locked over invocation.
2447 */
2448static void try_to_wake_up_local(struct task_struct *p)
2449{
2450 struct rq *rq = task_rq(p);
2451 bool success = false;
2452
2453 BUG_ON(rq != this_rq());
2454 BUG_ON(p == current);
2455 lockdep_assert_held(&rq->lock);
2456
2457 if (!(p->state & TASK_NORMAL))
2458 return;
2459
2460 if (!p->se.on_rq) {
2461 if (likely(!task_running(rq, p))) {
2462 schedstat_inc(rq, ttwu_count);
2463 schedstat_inc(rq, ttwu_local);
2464 }
2465 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2466 success = true;
2467 }
2468 ttwu_post_activation(p, rq, 0, success);
2469}
2470
50fa610a
DH
2471/**
2472 * wake_up_process - Wake up a specific process
2473 * @p: The process to be woken up.
2474 *
2475 * Attempt to wake up the nominated process and move it to the set of runnable
2476 * processes. Returns 1 if the process was woken up, 0 if it was already
2477 * running.
2478 *
2479 * It may be assumed that this function implies a write memory barrier before
2480 * changing the task state if and only if any tasks are woken up.
2481 */
7ad5b3a5 2482int wake_up_process(struct task_struct *p)
1da177e4 2483{
d9514f6c 2484 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2485}
1da177e4
LT
2486EXPORT_SYMBOL(wake_up_process);
2487
7ad5b3a5 2488int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2489{
2490 return try_to_wake_up(p, state, 0);
2491}
2492
1da177e4
LT
2493/*
2494 * Perform scheduler related setup for a newly forked process p.
2495 * p is forked by current.
dd41f596
IM
2496 *
2497 * __sched_fork() is basic setup used by init_idle() too:
2498 */
2499static void __sched_fork(struct task_struct *p)
2500{
dd41f596
IM
2501 p->se.exec_start = 0;
2502 p->se.sum_exec_runtime = 0;
f6cf891c 2503 p->se.prev_sum_exec_runtime = 0;
6c594c21 2504 p->se.nr_migrations = 0;
6cfb0d5d
IM
2505
2506#ifdef CONFIG_SCHEDSTATS
41acab88 2507 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2508#endif
476d139c 2509
fa717060 2510 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2511 p->se.on_rq = 0;
4a55bd5e 2512 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2513
e107be36
AK
2514#ifdef CONFIG_PREEMPT_NOTIFIERS
2515 INIT_HLIST_HEAD(&p->preempt_notifiers);
2516#endif
dd41f596
IM
2517}
2518
2519/*
2520 * fork()/clone()-time setup:
2521 */
2522void sched_fork(struct task_struct *p, int clone_flags)
2523{
2524 int cpu = get_cpu();
2525
2526 __sched_fork(p);
06b83b5f 2527 /*
0017d735 2528 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2529 * nobody will actually run it, and a signal or other external
2530 * event cannot wake it up and insert it on the runqueue either.
2531 */
0017d735 2532 p->state = TASK_RUNNING;
dd41f596 2533
b9dc29e7
MG
2534 /*
2535 * Revert to default priority/policy on fork if requested.
2536 */
2537 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2538 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2539 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2540 p->normal_prio = p->static_prio;
2541 }
b9dc29e7 2542
6c697bdf
MG
2543 if (PRIO_TO_NICE(p->static_prio) < 0) {
2544 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2545 p->normal_prio = p->static_prio;
6c697bdf
MG
2546 set_load_weight(p);
2547 }
2548
b9dc29e7
MG
2549 /*
2550 * We don't need the reset flag anymore after the fork. It has
2551 * fulfilled its duty:
2552 */
2553 p->sched_reset_on_fork = 0;
2554 }
ca94c442 2555
f83f9ac2
PW
2556 /*
2557 * Make sure we do not leak PI boosting priority to the child.
2558 */
2559 p->prio = current->normal_prio;
2560
2ddbf952
HS
2561 if (!rt_prio(p->prio))
2562 p->sched_class = &fair_sched_class;
b29739f9 2563
cd29fe6f
PZ
2564 if (p->sched_class->task_fork)
2565 p->sched_class->task_fork(p);
2566
86951599
PZ
2567 /*
2568 * The child is not yet in the pid-hash so no cgroup attach races,
2569 * and the cgroup is pinned to this child due to cgroup_fork()
2570 * is ran before sched_fork().
2571 *
2572 * Silence PROVE_RCU.
2573 */
2574 rcu_read_lock();
5f3edc1b 2575 set_task_cpu(p, cpu);
86951599 2576 rcu_read_unlock();
5f3edc1b 2577
52f17b6c 2578#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2579 if (likely(sched_info_on()))
52f17b6c 2580 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2581#endif
d6077cb8 2582#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2583 p->oncpu = 0;
2584#endif
1da177e4 2585#ifdef CONFIG_PREEMPT
4866cde0 2586 /* Want to start with kernel preemption disabled. */
a1261f54 2587 task_thread_info(p)->preempt_count = 1;
1da177e4 2588#endif
917b627d
GH
2589 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2590
476d139c 2591 put_cpu();
1da177e4
LT
2592}
2593
2594/*
2595 * wake_up_new_task - wake up a newly created task for the first time.
2596 *
2597 * This function will do some initial scheduler statistics housekeeping
2598 * that must be done for every newly created context, then puts the task
2599 * on the runqueue and wakes it.
2600 */
7ad5b3a5 2601void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2602{
2603 unsigned long flags;
dd41f596 2604 struct rq *rq;
c890692b 2605 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2606
2607#ifdef CONFIG_SMP
0017d735
PZ
2608 rq = task_rq_lock(p, &flags);
2609 p->state = TASK_WAKING;
2610
fabf318e
PZ
2611 /*
2612 * Fork balancing, do it here and not earlier because:
2613 * - cpus_allowed can change in the fork path
2614 * - any previously selected cpu might disappear through hotplug
2615 *
0017d735
PZ
2616 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2617 * without people poking at ->cpus_allowed.
fabf318e 2618 */
0017d735 2619 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2620 set_task_cpu(p, cpu);
1da177e4 2621
06b83b5f 2622 p->state = TASK_RUNNING;
0017d735
PZ
2623 task_rq_unlock(rq, &flags);
2624#endif
2625
2626 rq = task_rq_lock(p, &flags);
cd29fe6f 2627 activate_task(rq, p, 0);
27a9da65 2628 trace_sched_wakeup_new(p, 1);
a7558e01 2629 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2630#ifdef CONFIG_SMP
efbbd05a
PZ
2631 if (p->sched_class->task_woken)
2632 p->sched_class->task_woken(rq, p);
9a897c5a 2633#endif
dd41f596 2634 task_rq_unlock(rq, &flags);
fabf318e 2635 put_cpu();
1da177e4
LT
2636}
2637
e107be36
AK
2638#ifdef CONFIG_PREEMPT_NOTIFIERS
2639
2640/**
80dd99b3 2641 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2642 * @notifier: notifier struct to register
e107be36
AK
2643 */
2644void preempt_notifier_register(struct preempt_notifier *notifier)
2645{
2646 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2647}
2648EXPORT_SYMBOL_GPL(preempt_notifier_register);
2649
2650/**
2651 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2652 * @notifier: notifier struct to unregister
e107be36
AK
2653 *
2654 * This is safe to call from within a preemption notifier.
2655 */
2656void preempt_notifier_unregister(struct preempt_notifier *notifier)
2657{
2658 hlist_del(&notifier->link);
2659}
2660EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2661
2662static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2663{
2664 struct preempt_notifier *notifier;
2665 struct hlist_node *node;
2666
2667 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2668 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2669}
2670
2671static void
2672fire_sched_out_preempt_notifiers(struct task_struct *curr,
2673 struct task_struct *next)
2674{
2675 struct preempt_notifier *notifier;
2676 struct hlist_node *node;
2677
2678 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2679 notifier->ops->sched_out(notifier, next);
2680}
2681
6d6bc0ad 2682#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2683
2684static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2685{
2686}
2687
2688static void
2689fire_sched_out_preempt_notifiers(struct task_struct *curr,
2690 struct task_struct *next)
2691{
2692}
2693
6d6bc0ad 2694#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2695
4866cde0
NP
2696/**
2697 * prepare_task_switch - prepare to switch tasks
2698 * @rq: the runqueue preparing to switch
421cee29 2699 * @prev: the current task that is being switched out
4866cde0
NP
2700 * @next: the task we are going to switch to.
2701 *
2702 * This is called with the rq lock held and interrupts off. It must
2703 * be paired with a subsequent finish_task_switch after the context
2704 * switch.
2705 *
2706 * prepare_task_switch sets up locking and calls architecture specific
2707 * hooks.
2708 */
e107be36
AK
2709static inline void
2710prepare_task_switch(struct rq *rq, struct task_struct *prev,
2711 struct task_struct *next)
4866cde0 2712{
e107be36 2713 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2714 prepare_lock_switch(rq, next);
2715 prepare_arch_switch(next);
2716}
2717
1da177e4
LT
2718/**
2719 * finish_task_switch - clean up after a task-switch
344babaa 2720 * @rq: runqueue associated with task-switch
1da177e4
LT
2721 * @prev: the thread we just switched away from.
2722 *
4866cde0
NP
2723 * finish_task_switch must be called after the context switch, paired
2724 * with a prepare_task_switch call before the context switch.
2725 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2726 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2727 *
2728 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2729 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2730 * with the lock held can cause deadlocks; see schedule() for
2731 * details.)
2732 */
a9957449 2733static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2734 __releases(rq->lock)
2735{
1da177e4 2736 struct mm_struct *mm = rq->prev_mm;
55a101f8 2737 long prev_state;
1da177e4
LT
2738
2739 rq->prev_mm = NULL;
2740
2741 /*
2742 * A task struct has one reference for the use as "current".
c394cc9f 2743 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2744 * schedule one last time. The schedule call will never return, and
2745 * the scheduled task must drop that reference.
c394cc9f 2746 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2747 * still held, otherwise prev could be scheduled on another cpu, die
2748 * there before we look at prev->state, and then the reference would
2749 * be dropped twice.
2750 * Manfred Spraul <manfred@colorfullife.com>
2751 */
55a101f8 2752 prev_state = prev->state;
4866cde0 2753 finish_arch_switch(prev);
8381f65d
JI
2754#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2755 local_irq_disable();
2756#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2757 perf_event_task_sched_in(current);
8381f65d
JI
2758#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2759 local_irq_enable();
2760#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2761 finish_lock_switch(rq, prev);
e8fa1362 2762
e107be36 2763 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2764 if (mm)
2765 mmdrop(mm);
c394cc9f 2766 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2767 /*
2768 * Remove function-return probe instances associated with this
2769 * task and put them back on the free list.
9761eea8 2770 */
c6fd91f0 2771 kprobe_flush_task(prev);
1da177e4 2772 put_task_struct(prev);
c6fd91f0 2773 }
1da177e4
LT
2774}
2775
3f029d3c
GH
2776#ifdef CONFIG_SMP
2777
2778/* assumes rq->lock is held */
2779static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2780{
2781 if (prev->sched_class->pre_schedule)
2782 prev->sched_class->pre_schedule(rq, prev);
2783}
2784
2785/* rq->lock is NOT held, but preemption is disabled */
2786static inline void post_schedule(struct rq *rq)
2787{
2788 if (rq->post_schedule) {
2789 unsigned long flags;
2790
05fa785c 2791 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2792 if (rq->curr->sched_class->post_schedule)
2793 rq->curr->sched_class->post_schedule(rq);
05fa785c 2794 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2795
2796 rq->post_schedule = 0;
2797 }
2798}
2799
2800#else
da19ab51 2801
3f029d3c
GH
2802static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2803{
2804}
2805
2806static inline void post_schedule(struct rq *rq)
2807{
1da177e4
LT
2808}
2809
3f029d3c
GH
2810#endif
2811
1da177e4
LT
2812/**
2813 * schedule_tail - first thing a freshly forked thread must call.
2814 * @prev: the thread we just switched away from.
2815 */
36c8b586 2816asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2817 __releases(rq->lock)
2818{
70b97a7f
IM
2819 struct rq *rq = this_rq();
2820
4866cde0 2821 finish_task_switch(rq, prev);
da19ab51 2822
3f029d3c
GH
2823 /*
2824 * FIXME: do we need to worry about rq being invalidated by the
2825 * task_switch?
2826 */
2827 post_schedule(rq);
70b97a7f 2828
4866cde0
NP
2829#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2830 /* In this case, finish_task_switch does not reenable preemption */
2831 preempt_enable();
2832#endif
1da177e4 2833 if (current->set_child_tid)
b488893a 2834 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2835}
2836
2837/*
2838 * context_switch - switch to the new MM and the new
2839 * thread's register state.
2840 */
dd41f596 2841static inline void
70b97a7f 2842context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2843 struct task_struct *next)
1da177e4 2844{
dd41f596 2845 struct mm_struct *mm, *oldmm;
1da177e4 2846
e107be36 2847 prepare_task_switch(rq, prev, next);
27a9da65 2848 trace_sched_switch(prev, next);
dd41f596
IM
2849 mm = next->mm;
2850 oldmm = prev->active_mm;
9226d125
ZA
2851 /*
2852 * For paravirt, this is coupled with an exit in switch_to to
2853 * combine the page table reload and the switch backend into
2854 * one hypercall.
2855 */
224101ed 2856 arch_start_context_switch(prev);
9226d125 2857
31915ab4 2858 if (!mm) {
1da177e4
LT
2859 next->active_mm = oldmm;
2860 atomic_inc(&oldmm->mm_count);
2861 enter_lazy_tlb(oldmm, next);
2862 } else
2863 switch_mm(oldmm, mm, next);
2864
31915ab4 2865 if (!prev->mm) {
1da177e4 2866 prev->active_mm = NULL;
1da177e4
LT
2867 rq->prev_mm = oldmm;
2868 }
3a5f5e48
IM
2869 /*
2870 * Since the runqueue lock will be released by the next
2871 * task (which is an invalid locking op but in the case
2872 * of the scheduler it's an obvious special-case), so we
2873 * do an early lockdep release here:
2874 */
2875#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2876 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2877#endif
1da177e4
LT
2878
2879 /* Here we just switch the register state and the stack. */
2880 switch_to(prev, next, prev);
2881
dd41f596
IM
2882 barrier();
2883 /*
2884 * this_rq must be evaluated again because prev may have moved
2885 * CPUs since it called schedule(), thus the 'rq' on its stack
2886 * frame will be invalid.
2887 */
2888 finish_task_switch(this_rq(), prev);
1da177e4
LT
2889}
2890
2891/*
2892 * nr_running, nr_uninterruptible and nr_context_switches:
2893 *
2894 * externally visible scheduler statistics: current number of runnable
2895 * threads, current number of uninterruptible-sleeping threads, total
2896 * number of context switches performed since bootup.
2897 */
2898unsigned long nr_running(void)
2899{
2900 unsigned long i, sum = 0;
2901
2902 for_each_online_cpu(i)
2903 sum += cpu_rq(i)->nr_running;
2904
2905 return sum;
f711f609 2906}
1da177e4
LT
2907
2908unsigned long nr_uninterruptible(void)
f711f609 2909{
1da177e4 2910 unsigned long i, sum = 0;
f711f609 2911
0a945022 2912 for_each_possible_cpu(i)
1da177e4 2913 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2914
2915 /*
1da177e4
LT
2916 * Since we read the counters lockless, it might be slightly
2917 * inaccurate. Do not allow it to go below zero though:
f711f609 2918 */
1da177e4
LT
2919 if (unlikely((long)sum < 0))
2920 sum = 0;
f711f609 2921
1da177e4 2922 return sum;
f711f609 2923}
f711f609 2924
1da177e4 2925unsigned long long nr_context_switches(void)
46cb4b7c 2926{
cc94abfc
SR
2927 int i;
2928 unsigned long long sum = 0;
46cb4b7c 2929
0a945022 2930 for_each_possible_cpu(i)
1da177e4 2931 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2932
1da177e4
LT
2933 return sum;
2934}
483b4ee6 2935
1da177e4
LT
2936unsigned long nr_iowait(void)
2937{
2938 unsigned long i, sum = 0;
483b4ee6 2939
0a945022 2940 for_each_possible_cpu(i)
1da177e4 2941 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2942
1da177e4
LT
2943 return sum;
2944}
483b4ee6 2945
8c215bd3 2946unsigned long nr_iowait_cpu(int cpu)
69d25870 2947{
8c215bd3 2948 struct rq *this = cpu_rq(cpu);
69d25870
AV
2949 return atomic_read(&this->nr_iowait);
2950}
46cb4b7c 2951
69d25870
AV
2952unsigned long this_cpu_load(void)
2953{
2954 struct rq *this = this_rq();
2955 return this->cpu_load[0];
2956}
e790fb0b 2957
46cb4b7c 2958
dce48a84
TG
2959/* Variables and functions for calc_load */
2960static atomic_long_t calc_load_tasks;
2961static unsigned long calc_load_update;
2962unsigned long avenrun[3];
2963EXPORT_SYMBOL(avenrun);
46cb4b7c 2964
74f5187a
PZ
2965static long calc_load_fold_active(struct rq *this_rq)
2966{
2967 long nr_active, delta = 0;
2968
2969 nr_active = this_rq->nr_running;
2970 nr_active += (long) this_rq->nr_uninterruptible;
2971
2972 if (nr_active != this_rq->calc_load_active) {
2973 delta = nr_active - this_rq->calc_load_active;
2974 this_rq->calc_load_active = nr_active;
2975 }
2976
2977 return delta;
2978}
2979
2980#ifdef CONFIG_NO_HZ
2981/*
2982 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2983 *
2984 * When making the ILB scale, we should try to pull this in as well.
2985 */
2986static atomic_long_t calc_load_tasks_idle;
2987
2988static void calc_load_account_idle(struct rq *this_rq)
2989{
2990 long delta;
2991
2992 delta = calc_load_fold_active(this_rq);
2993 if (delta)
2994 atomic_long_add(delta, &calc_load_tasks_idle);
2995}
2996
2997static long calc_load_fold_idle(void)
2998{
2999 long delta = 0;
3000
3001 /*
3002 * Its got a race, we don't care...
3003 */
3004 if (atomic_long_read(&calc_load_tasks_idle))
3005 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3006
3007 return delta;
3008}
3009#else
3010static void calc_load_account_idle(struct rq *this_rq)
3011{
3012}
3013
3014static inline long calc_load_fold_idle(void)
3015{
3016 return 0;
3017}
3018#endif
3019
2d02494f
TG
3020/**
3021 * get_avenrun - get the load average array
3022 * @loads: pointer to dest load array
3023 * @offset: offset to add
3024 * @shift: shift count to shift the result left
3025 *
3026 * These values are estimates at best, so no need for locking.
3027 */
3028void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3029{
3030 loads[0] = (avenrun[0] + offset) << shift;
3031 loads[1] = (avenrun[1] + offset) << shift;
3032 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3033}
46cb4b7c 3034
dce48a84
TG
3035static unsigned long
3036calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3037{
dce48a84
TG
3038 load *= exp;
3039 load += active * (FIXED_1 - exp);
3040 return load >> FSHIFT;
3041}
46cb4b7c
SS
3042
3043/*
dce48a84
TG
3044 * calc_load - update the avenrun load estimates 10 ticks after the
3045 * CPUs have updated calc_load_tasks.
7835b98b 3046 */
dce48a84 3047void calc_global_load(void)
7835b98b 3048{
dce48a84
TG
3049 unsigned long upd = calc_load_update + 10;
3050 long active;
1da177e4 3051
dce48a84
TG
3052 if (time_before(jiffies, upd))
3053 return;
1da177e4 3054
dce48a84
TG
3055 active = atomic_long_read(&calc_load_tasks);
3056 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3057
dce48a84
TG
3058 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3059 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3060 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3061
dce48a84
TG
3062 calc_load_update += LOAD_FREQ;
3063}
1da177e4 3064
dce48a84 3065/*
74f5187a
PZ
3066 * Called from update_cpu_load() to periodically update this CPU's
3067 * active count.
dce48a84
TG
3068 */
3069static void calc_load_account_active(struct rq *this_rq)
3070{
74f5187a 3071 long delta;
08c183f3 3072
74f5187a
PZ
3073 if (time_before(jiffies, this_rq->calc_load_update))
3074 return;
783609c6 3075
74f5187a
PZ
3076 delta = calc_load_fold_active(this_rq);
3077 delta += calc_load_fold_idle();
3078 if (delta)
dce48a84 3079 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3080
3081 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3082}
3083
fdf3e95d
VP
3084/*
3085 * The exact cpuload at various idx values, calculated at every tick would be
3086 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3087 *
3088 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3089 * on nth tick when cpu may be busy, then we have:
3090 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3091 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3092 *
3093 * decay_load_missed() below does efficient calculation of
3094 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3095 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3096 *
3097 * The calculation is approximated on a 128 point scale.
3098 * degrade_zero_ticks is the number of ticks after which load at any
3099 * particular idx is approximated to be zero.
3100 * degrade_factor is a precomputed table, a row for each load idx.
3101 * Each column corresponds to degradation factor for a power of two ticks,
3102 * based on 128 point scale.
3103 * Example:
3104 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3105 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3106 *
3107 * With this power of 2 load factors, we can degrade the load n times
3108 * by looking at 1 bits in n and doing as many mult/shift instead of
3109 * n mult/shifts needed by the exact degradation.
3110 */
3111#define DEGRADE_SHIFT 7
3112static const unsigned char
3113 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3114static const unsigned char
3115 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3116 {0, 0, 0, 0, 0, 0, 0, 0},
3117 {64, 32, 8, 0, 0, 0, 0, 0},
3118 {96, 72, 40, 12, 1, 0, 0},
3119 {112, 98, 75, 43, 15, 1, 0},
3120 {120, 112, 98, 76, 45, 16, 2} };
3121
3122/*
3123 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3124 * would be when CPU is idle and so we just decay the old load without
3125 * adding any new load.
3126 */
3127static unsigned long
3128decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3129{
3130 int j = 0;
3131
3132 if (!missed_updates)
3133 return load;
3134
3135 if (missed_updates >= degrade_zero_ticks[idx])
3136 return 0;
3137
3138 if (idx == 1)
3139 return load >> missed_updates;
3140
3141 while (missed_updates) {
3142 if (missed_updates % 2)
3143 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3144
3145 missed_updates >>= 1;
3146 j++;
3147 }
3148 return load;
3149}
3150
46cb4b7c 3151/*
dd41f596 3152 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3153 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3154 * every tick. We fix it up based on jiffies.
46cb4b7c 3155 */
dd41f596 3156static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3157{
495eca49 3158 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3159 unsigned long curr_jiffies = jiffies;
3160 unsigned long pending_updates;
dd41f596 3161 int i, scale;
46cb4b7c 3162
dd41f596 3163 this_rq->nr_load_updates++;
46cb4b7c 3164
fdf3e95d
VP
3165 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3166 if (curr_jiffies == this_rq->last_load_update_tick)
3167 return;
3168
3169 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3170 this_rq->last_load_update_tick = curr_jiffies;
3171
dd41f596 3172 /* Update our load: */
fdf3e95d
VP
3173 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3174 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3175 unsigned long old_load, new_load;
7d1e6a9b 3176
dd41f596 3177 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3178
dd41f596 3179 old_load = this_rq->cpu_load[i];
fdf3e95d 3180 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3181 new_load = this_load;
a25707f3
IM
3182 /*
3183 * Round up the averaging division if load is increasing. This
3184 * prevents us from getting stuck on 9 if the load is 10, for
3185 * example.
3186 */
3187 if (new_load > old_load)
fdf3e95d
VP
3188 new_load += scale - 1;
3189
3190 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3191 }
da2b71ed
SS
3192
3193 sched_avg_update(this_rq);
fdf3e95d
VP
3194}
3195
3196static void update_cpu_load_active(struct rq *this_rq)
3197{
3198 update_cpu_load(this_rq);
46cb4b7c 3199
74f5187a 3200 calc_load_account_active(this_rq);
46cb4b7c
SS
3201}
3202
dd41f596 3203#ifdef CONFIG_SMP
8a0be9ef 3204
46cb4b7c 3205/*
38022906
PZ
3206 * sched_exec - execve() is a valuable balancing opportunity, because at
3207 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3208 */
38022906 3209void sched_exec(void)
46cb4b7c 3210{
38022906 3211 struct task_struct *p = current;
1da177e4 3212 unsigned long flags;
70b97a7f 3213 struct rq *rq;
0017d735 3214 int dest_cpu;
46cb4b7c 3215
1da177e4 3216 rq = task_rq_lock(p, &flags);
0017d735
PZ
3217 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3218 if (dest_cpu == smp_processor_id())
3219 goto unlock;
38022906 3220
46cb4b7c 3221 /*
38022906 3222 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3223 */
30da688e 3224 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3225 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3226 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3227
1da177e4 3228 task_rq_unlock(rq, &flags);
969c7921 3229 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3230 return;
3231 }
0017d735 3232unlock:
1da177e4 3233 task_rq_unlock(rq, &flags);
1da177e4 3234}
dd41f596 3235
1da177e4
LT
3236#endif
3237
1da177e4
LT
3238DEFINE_PER_CPU(struct kernel_stat, kstat);
3239
3240EXPORT_PER_CPU_SYMBOL(kstat);
3241
3242/*
c5f8d995 3243 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3244 * @p in case that task is currently running.
c5f8d995
HS
3245 *
3246 * Called with task_rq_lock() held on @rq.
1da177e4 3247 */
c5f8d995
HS
3248static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3249{
3250 u64 ns = 0;
3251
3252 if (task_current(rq, p)) {
3253 update_rq_clock(rq);
305e6835 3254 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3255 if ((s64)ns < 0)
3256 ns = 0;
3257 }
3258
3259 return ns;
3260}
3261
bb34d92f 3262unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3263{
1da177e4 3264 unsigned long flags;
41b86e9c 3265 struct rq *rq;
bb34d92f 3266 u64 ns = 0;
48f24c4d 3267
41b86e9c 3268 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3269 ns = do_task_delta_exec(p, rq);
3270 task_rq_unlock(rq, &flags);
1508487e 3271
c5f8d995
HS
3272 return ns;
3273}
f06febc9 3274
c5f8d995
HS
3275/*
3276 * Return accounted runtime for the task.
3277 * In case the task is currently running, return the runtime plus current's
3278 * pending runtime that have not been accounted yet.
3279 */
3280unsigned long long task_sched_runtime(struct task_struct *p)
3281{
3282 unsigned long flags;
3283 struct rq *rq;
3284 u64 ns = 0;
3285
3286 rq = task_rq_lock(p, &flags);
3287 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3288 task_rq_unlock(rq, &flags);
3289
3290 return ns;
3291}
48f24c4d 3292
c5f8d995
HS
3293/*
3294 * Return sum_exec_runtime for the thread group.
3295 * In case the task is currently running, return the sum plus current's
3296 * pending runtime that have not been accounted yet.
3297 *
3298 * Note that the thread group might have other running tasks as well,
3299 * so the return value not includes other pending runtime that other
3300 * running tasks might have.
3301 */
3302unsigned long long thread_group_sched_runtime(struct task_struct *p)
3303{
3304 struct task_cputime totals;
3305 unsigned long flags;
3306 struct rq *rq;
3307 u64 ns;
3308
3309 rq = task_rq_lock(p, &flags);
3310 thread_group_cputime(p, &totals);
3311 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3312 task_rq_unlock(rq, &flags);
48f24c4d 3313
1da177e4
LT
3314 return ns;
3315}
3316
1da177e4
LT
3317/*
3318 * Account user cpu time to a process.
3319 * @p: the process that the cpu time gets accounted to
1da177e4 3320 * @cputime: the cpu time spent in user space since the last update
457533a7 3321 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3322 */
457533a7
MS
3323void account_user_time(struct task_struct *p, cputime_t cputime,
3324 cputime_t cputime_scaled)
1da177e4
LT
3325{
3326 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3327 cputime64_t tmp;
3328
457533a7 3329 /* Add user time to process. */
1da177e4 3330 p->utime = cputime_add(p->utime, cputime);
457533a7 3331 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3332 account_group_user_time(p, cputime);
1da177e4
LT
3333
3334 /* Add user time to cpustat. */
3335 tmp = cputime_to_cputime64(cputime);
3336 if (TASK_NICE(p) > 0)
3337 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3338 else
3339 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3340
3341 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3342 /* Account for user time used */
3343 acct_update_integrals(p);
1da177e4
LT
3344}
3345
94886b84
LV
3346/*
3347 * Account guest cpu time to a process.
3348 * @p: the process that the cpu time gets accounted to
3349 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3350 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3351 */
457533a7
MS
3352static void account_guest_time(struct task_struct *p, cputime_t cputime,
3353 cputime_t cputime_scaled)
94886b84
LV
3354{
3355 cputime64_t tmp;
3356 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3357
3358 tmp = cputime_to_cputime64(cputime);
3359
457533a7 3360 /* Add guest time to process. */
94886b84 3361 p->utime = cputime_add(p->utime, cputime);
457533a7 3362 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3363 account_group_user_time(p, cputime);
94886b84
LV
3364 p->gtime = cputime_add(p->gtime, cputime);
3365
457533a7 3366 /* Add guest time to cpustat. */
ce0e7b28
RO
3367 if (TASK_NICE(p) > 0) {
3368 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3369 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3370 } else {
3371 cpustat->user = cputime64_add(cpustat->user, tmp);
3372 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3373 }
94886b84
LV
3374}
3375
1da177e4
LT
3376/*
3377 * Account system cpu time to a process.
3378 * @p: the process that the cpu time gets accounted to
3379 * @hardirq_offset: the offset to subtract from hardirq_count()
3380 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3381 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3382 */
3383void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3384 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3385{
3386 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3387 cputime64_t tmp;
3388
983ed7a6 3389 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3390 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3391 return;
3392 }
94886b84 3393
457533a7 3394 /* Add system time to process. */
1da177e4 3395 p->stime = cputime_add(p->stime, cputime);
457533a7 3396 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3397 account_group_system_time(p, cputime);
1da177e4
LT
3398
3399 /* Add system time to cpustat. */
3400 tmp = cputime_to_cputime64(cputime);
3401 if (hardirq_count() - hardirq_offset)
3402 cpustat->irq = cputime64_add(cpustat->irq, tmp);
75e1056f 3403 else if (in_serving_softirq())
1da177e4 3404 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3405 else
79741dd3
MS
3406 cpustat->system = cputime64_add(cpustat->system, tmp);
3407
ef12fefa
BR
3408 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3409
1da177e4
LT
3410 /* Account for system time used */
3411 acct_update_integrals(p);
1da177e4
LT
3412}
3413
c66f08be 3414/*
1da177e4 3415 * Account for involuntary wait time.
1da177e4 3416 * @steal: the cpu time spent in involuntary wait
c66f08be 3417 */
79741dd3 3418void account_steal_time(cputime_t cputime)
c66f08be 3419{
79741dd3
MS
3420 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3421 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3422
3423 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3424}
3425
1da177e4 3426/*
79741dd3
MS
3427 * Account for idle time.
3428 * @cputime: the cpu time spent in idle wait
1da177e4 3429 */
79741dd3 3430void account_idle_time(cputime_t cputime)
1da177e4
LT
3431{
3432 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3433 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3434 struct rq *rq = this_rq();
1da177e4 3435
79741dd3
MS
3436 if (atomic_read(&rq->nr_iowait) > 0)
3437 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3438 else
3439 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3440}
3441
79741dd3
MS
3442#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3443
3444/*
3445 * Account a single tick of cpu time.
3446 * @p: the process that the cpu time gets accounted to
3447 * @user_tick: indicates if the tick is a user or a system tick
3448 */
3449void account_process_tick(struct task_struct *p, int user_tick)
3450{
a42548a1 3451 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3452 struct rq *rq = this_rq();
3453
3454 if (user_tick)
a42548a1 3455 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3456 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3457 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3458 one_jiffy_scaled);
3459 else
a42548a1 3460 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3461}
3462
3463/*
3464 * Account multiple ticks of steal time.
3465 * @p: the process from which the cpu time has been stolen
3466 * @ticks: number of stolen ticks
3467 */
3468void account_steal_ticks(unsigned long ticks)
3469{
3470 account_steal_time(jiffies_to_cputime(ticks));
3471}
3472
3473/*
3474 * Account multiple ticks of idle time.
3475 * @ticks: number of stolen ticks
3476 */
3477void account_idle_ticks(unsigned long ticks)
3478{
3479 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3480}
3481
79741dd3
MS
3482#endif
3483
49048622
BS
3484/*
3485 * Use precise platform statistics if available:
3486 */
3487#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3488void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3489{
d99ca3b9
HS
3490 *ut = p->utime;
3491 *st = p->stime;
49048622
BS
3492}
3493
0cf55e1e 3494void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3495{
0cf55e1e
HS
3496 struct task_cputime cputime;
3497
3498 thread_group_cputime(p, &cputime);
3499
3500 *ut = cputime.utime;
3501 *st = cputime.stime;
49048622
BS
3502}
3503#else
761b1d26
HS
3504
3505#ifndef nsecs_to_cputime
b7b20df9 3506# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3507#endif
3508
d180c5bc 3509void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3510{
d99ca3b9 3511 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3512
3513 /*
3514 * Use CFS's precise accounting:
3515 */
d180c5bc 3516 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3517
3518 if (total) {
e75e863d 3519 u64 temp = rtime;
d180c5bc 3520
e75e863d 3521 temp *= utime;
49048622 3522 do_div(temp, total);
d180c5bc
HS
3523 utime = (cputime_t)temp;
3524 } else
3525 utime = rtime;
49048622 3526
d180c5bc
HS
3527 /*
3528 * Compare with previous values, to keep monotonicity:
3529 */
761b1d26 3530 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3531 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3532
d99ca3b9
HS
3533 *ut = p->prev_utime;
3534 *st = p->prev_stime;
49048622
BS
3535}
3536
0cf55e1e
HS
3537/*
3538 * Must be called with siglock held.
3539 */
3540void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3541{
0cf55e1e
HS
3542 struct signal_struct *sig = p->signal;
3543 struct task_cputime cputime;
3544 cputime_t rtime, utime, total;
49048622 3545
0cf55e1e 3546 thread_group_cputime(p, &cputime);
49048622 3547
0cf55e1e
HS
3548 total = cputime_add(cputime.utime, cputime.stime);
3549 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3550
0cf55e1e 3551 if (total) {
e75e863d 3552 u64 temp = rtime;
49048622 3553
e75e863d 3554 temp *= cputime.utime;
0cf55e1e
HS
3555 do_div(temp, total);
3556 utime = (cputime_t)temp;
3557 } else
3558 utime = rtime;
3559
3560 sig->prev_utime = max(sig->prev_utime, utime);
3561 sig->prev_stime = max(sig->prev_stime,
3562 cputime_sub(rtime, sig->prev_utime));
3563
3564 *ut = sig->prev_utime;
3565 *st = sig->prev_stime;
49048622 3566}
49048622 3567#endif
49048622 3568
7835b98b
CL
3569/*
3570 * This function gets called by the timer code, with HZ frequency.
3571 * We call it with interrupts disabled.
3572 *
3573 * It also gets called by the fork code, when changing the parent's
3574 * timeslices.
3575 */
3576void scheduler_tick(void)
3577{
7835b98b
CL
3578 int cpu = smp_processor_id();
3579 struct rq *rq = cpu_rq(cpu);
dd41f596 3580 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3581
3582 sched_clock_tick();
dd41f596 3583
05fa785c 3584 raw_spin_lock(&rq->lock);
3e51f33f 3585 update_rq_clock(rq);
fdf3e95d 3586 update_cpu_load_active(rq);
fa85ae24 3587 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3588 raw_spin_unlock(&rq->lock);
7835b98b 3589
e9d2b064 3590 perf_event_task_tick();
e220d2dc 3591
e418e1c2 3592#ifdef CONFIG_SMP
dd41f596
IM
3593 rq->idle_at_tick = idle_cpu(cpu);
3594 trigger_load_balance(rq, cpu);
e418e1c2 3595#endif
1da177e4
LT
3596}
3597
132380a0 3598notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3599{
3600 if (in_lock_functions(addr)) {
3601 addr = CALLER_ADDR2;
3602 if (in_lock_functions(addr))
3603 addr = CALLER_ADDR3;
3604 }
3605 return addr;
3606}
1da177e4 3607
7e49fcce
SR
3608#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3609 defined(CONFIG_PREEMPT_TRACER))
3610
43627582 3611void __kprobes add_preempt_count(int val)
1da177e4 3612{
6cd8a4bb 3613#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3614 /*
3615 * Underflow?
3616 */
9a11b49a
IM
3617 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3618 return;
6cd8a4bb 3619#endif
1da177e4 3620 preempt_count() += val;
6cd8a4bb 3621#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3622 /*
3623 * Spinlock count overflowing soon?
3624 */
33859f7f
MOS
3625 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3626 PREEMPT_MASK - 10);
6cd8a4bb
SR
3627#endif
3628 if (preempt_count() == val)
3629 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3630}
3631EXPORT_SYMBOL(add_preempt_count);
3632
43627582 3633void __kprobes sub_preempt_count(int val)
1da177e4 3634{
6cd8a4bb 3635#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3636 /*
3637 * Underflow?
3638 */
01e3eb82 3639 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3640 return;
1da177e4
LT
3641 /*
3642 * Is the spinlock portion underflowing?
3643 */
9a11b49a
IM
3644 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3645 !(preempt_count() & PREEMPT_MASK)))
3646 return;
6cd8a4bb 3647#endif
9a11b49a 3648
6cd8a4bb
SR
3649 if (preempt_count() == val)
3650 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3651 preempt_count() -= val;
3652}
3653EXPORT_SYMBOL(sub_preempt_count);
3654
3655#endif
3656
3657/*
dd41f596 3658 * Print scheduling while atomic bug:
1da177e4 3659 */
dd41f596 3660static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3661{
838225b4
SS
3662 struct pt_regs *regs = get_irq_regs();
3663
3df0fc5b
PZ
3664 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3665 prev->comm, prev->pid, preempt_count());
838225b4 3666
dd41f596 3667 debug_show_held_locks(prev);
e21f5b15 3668 print_modules();
dd41f596
IM
3669 if (irqs_disabled())
3670 print_irqtrace_events(prev);
838225b4
SS
3671
3672 if (regs)
3673 show_regs(regs);
3674 else
3675 dump_stack();
dd41f596 3676}
1da177e4 3677
dd41f596
IM
3678/*
3679 * Various schedule()-time debugging checks and statistics:
3680 */
3681static inline void schedule_debug(struct task_struct *prev)
3682{
1da177e4 3683 /*
41a2d6cf 3684 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3685 * schedule() atomically, we ignore that path for now.
3686 * Otherwise, whine if we are scheduling when we should not be.
3687 */
3f33a7ce 3688 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3689 __schedule_bug(prev);
3690
1da177e4
LT
3691 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3692
2d72376b 3693 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3694#ifdef CONFIG_SCHEDSTATS
3695 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3696 schedstat_inc(this_rq(), bkl_count);
3697 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3698 }
3699#endif
dd41f596
IM
3700}
3701
6cecd084 3702static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3703{
a64692a3
MG
3704 if (prev->se.on_rq)
3705 update_rq_clock(rq);
3706 rq->skip_clock_update = 0;
6cecd084 3707 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3708}
3709
dd41f596
IM
3710/*
3711 * Pick up the highest-prio task:
3712 */
3713static inline struct task_struct *
b67802ea 3714pick_next_task(struct rq *rq)
dd41f596 3715{
5522d5d5 3716 const struct sched_class *class;
dd41f596 3717 struct task_struct *p;
1da177e4
LT
3718
3719 /*
dd41f596
IM
3720 * Optimization: we know that if all tasks are in
3721 * the fair class we can call that function directly:
1da177e4 3722 */
dd41f596 3723 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3724 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3725 if (likely(p))
3726 return p;
1da177e4
LT
3727 }
3728
34f971f6 3729 for_each_class(class) {
fb8d4724 3730 p = class->pick_next_task(rq);
dd41f596
IM
3731 if (p)
3732 return p;
dd41f596 3733 }
34f971f6
PZ
3734
3735 BUG(); /* the idle class will always have a runnable task */
dd41f596 3736}
1da177e4 3737
dd41f596
IM
3738/*
3739 * schedule() is the main scheduler function.
3740 */
ff743345 3741asmlinkage void __sched schedule(void)
dd41f596
IM
3742{
3743 struct task_struct *prev, *next;
67ca7bde 3744 unsigned long *switch_count;
dd41f596 3745 struct rq *rq;
31656519 3746 int cpu;
dd41f596 3747
ff743345
PZ
3748need_resched:
3749 preempt_disable();
dd41f596
IM
3750 cpu = smp_processor_id();
3751 rq = cpu_rq(cpu);
25502a6c 3752 rcu_note_context_switch(cpu);
dd41f596 3753 prev = rq->curr;
dd41f596
IM
3754
3755 release_kernel_lock(prev);
3756need_resched_nonpreemptible:
3757
3758 schedule_debug(prev);
1da177e4 3759
31656519 3760 if (sched_feat(HRTICK))
f333fdc9 3761 hrtick_clear(rq);
8f4d37ec 3762
05fa785c 3763 raw_spin_lock_irq(&rq->lock);
1e819950 3764 clear_tsk_need_resched(prev);
1da177e4 3765
246d86b5 3766 switch_count = &prev->nivcsw;
1da177e4 3767 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3768 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3769 prev->state = TASK_RUNNING;
21aa9af0
TH
3770 } else {
3771 /*
3772 * If a worker is going to sleep, notify and
3773 * ask workqueue whether it wants to wake up a
3774 * task to maintain concurrency. If so, wake
3775 * up the task.
3776 */
3777 if (prev->flags & PF_WQ_WORKER) {
3778 struct task_struct *to_wakeup;
3779
3780 to_wakeup = wq_worker_sleeping(prev, cpu);
3781 if (to_wakeup)
3782 try_to_wake_up_local(to_wakeup);
3783 }
371fd7e7 3784 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 3785 }
dd41f596 3786 switch_count = &prev->nvcsw;
1da177e4
LT
3787 }
3788
3f029d3c 3789 pre_schedule(rq, prev);
f65eda4f 3790
dd41f596 3791 if (unlikely(!rq->nr_running))
1da177e4 3792 idle_balance(cpu, rq);
1da177e4 3793
df1c99d4 3794 put_prev_task(rq, prev);
b67802ea 3795 next = pick_next_task(rq);
1da177e4 3796
1da177e4 3797 if (likely(prev != next)) {
673a90a1 3798 sched_info_switch(prev, next);
49f47433 3799 perf_event_task_sched_out(prev, next);
673a90a1 3800
1da177e4
LT
3801 rq->nr_switches++;
3802 rq->curr = next;
3803 ++*switch_count;
3804
dd41f596 3805 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3806 /*
246d86b5
ON
3807 * The context switch have flipped the stack from under us
3808 * and restored the local variables which were saved when
3809 * this task called schedule() in the past. prev == current
3810 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3811 */
3812 cpu = smp_processor_id();
3813 rq = cpu_rq(cpu);
1da177e4 3814 } else
05fa785c 3815 raw_spin_unlock_irq(&rq->lock);
1da177e4 3816
3f029d3c 3817 post_schedule(rq);
1da177e4 3818
246d86b5 3819 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 3820 goto need_resched_nonpreemptible;
8f4d37ec 3821
1da177e4 3822 preempt_enable_no_resched();
ff743345 3823 if (need_resched())
1da177e4
LT
3824 goto need_resched;
3825}
1da177e4
LT
3826EXPORT_SYMBOL(schedule);
3827
c08f7829 3828#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3829/*
3830 * Look out! "owner" is an entirely speculative pointer
3831 * access and not reliable.
3832 */
3833int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3834{
3835 unsigned int cpu;
3836 struct rq *rq;
3837
3838 if (!sched_feat(OWNER_SPIN))
3839 return 0;
3840
3841#ifdef CONFIG_DEBUG_PAGEALLOC
3842 /*
3843 * Need to access the cpu field knowing that
3844 * DEBUG_PAGEALLOC could have unmapped it if
3845 * the mutex owner just released it and exited.
3846 */
3847 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3848 return 0;
0d66bf6d
PZ
3849#else
3850 cpu = owner->cpu;
3851#endif
3852
3853 /*
3854 * Even if the access succeeded (likely case),
3855 * the cpu field may no longer be valid.
3856 */
3857 if (cpu >= nr_cpumask_bits)
4b402210 3858 return 0;
0d66bf6d
PZ
3859
3860 /*
3861 * We need to validate that we can do a
3862 * get_cpu() and that we have the percpu area.
3863 */
3864 if (!cpu_online(cpu))
4b402210 3865 return 0;
0d66bf6d
PZ
3866
3867 rq = cpu_rq(cpu);
3868
3869 for (;;) {
3870 /*
3871 * Owner changed, break to re-assess state.
3872 */
9d0f4dcc
TC
3873 if (lock->owner != owner) {
3874 /*
3875 * If the lock has switched to a different owner,
3876 * we likely have heavy contention. Return 0 to quit
3877 * optimistic spinning and not contend further:
3878 */
3879 if (lock->owner)
3880 return 0;
0d66bf6d 3881 break;
9d0f4dcc 3882 }
0d66bf6d
PZ
3883
3884 /*
3885 * Is that owner really running on that cpu?
3886 */
3887 if (task_thread_info(rq->curr) != owner || need_resched())
3888 return 0;
3889
335d7afb 3890 arch_mutex_cpu_relax();
0d66bf6d 3891 }
4b402210 3892
0d66bf6d
PZ
3893 return 1;
3894}
3895#endif
3896
1da177e4
LT
3897#ifdef CONFIG_PREEMPT
3898/*
2ed6e34f 3899 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3900 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3901 * occur there and call schedule directly.
3902 */
d1f74e20 3903asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3904{
3905 struct thread_info *ti = current_thread_info();
6478d880 3906
1da177e4
LT
3907 /*
3908 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3909 * we do not want to preempt the current task. Just return..
1da177e4 3910 */
beed33a8 3911 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3912 return;
3913
3a5c359a 3914 do {
d1f74e20 3915 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 3916 schedule();
d1f74e20 3917 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3918
3a5c359a
AK
3919 /*
3920 * Check again in case we missed a preemption opportunity
3921 * between schedule and now.
3922 */
3923 barrier();
5ed0cec0 3924 } while (need_resched());
1da177e4 3925}
1da177e4
LT
3926EXPORT_SYMBOL(preempt_schedule);
3927
3928/*
2ed6e34f 3929 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3930 * off of irq context.
3931 * Note, that this is called and return with irqs disabled. This will
3932 * protect us against recursive calling from irq.
3933 */
3934asmlinkage void __sched preempt_schedule_irq(void)
3935{
3936 struct thread_info *ti = current_thread_info();
6478d880 3937
2ed6e34f 3938 /* Catch callers which need to be fixed */
1da177e4
LT
3939 BUG_ON(ti->preempt_count || !irqs_disabled());
3940
3a5c359a
AK
3941 do {
3942 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3943 local_irq_enable();
3944 schedule();
3945 local_irq_disable();
3a5c359a 3946 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3947
3a5c359a
AK
3948 /*
3949 * Check again in case we missed a preemption opportunity
3950 * between schedule and now.
3951 */
3952 barrier();
5ed0cec0 3953 } while (need_resched());
1da177e4
LT
3954}
3955
3956#endif /* CONFIG_PREEMPT */
3957
63859d4f 3958int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3959 void *key)
1da177e4 3960{
63859d4f 3961 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3962}
1da177e4
LT
3963EXPORT_SYMBOL(default_wake_function);
3964
3965/*
41a2d6cf
IM
3966 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3967 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3968 * number) then we wake all the non-exclusive tasks and one exclusive task.
3969 *
3970 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3971 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3972 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3973 */
78ddb08f 3974static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3975 int nr_exclusive, int wake_flags, void *key)
1da177e4 3976{
2e45874c 3977 wait_queue_t *curr, *next;
1da177e4 3978
2e45874c 3979 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3980 unsigned flags = curr->flags;
3981
63859d4f 3982 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3983 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3984 break;
3985 }
3986}
3987
3988/**
3989 * __wake_up - wake up threads blocked on a waitqueue.
3990 * @q: the waitqueue
3991 * @mode: which threads
3992 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3993 * @key: is directly passed to the wakeup function
50fa610a
DH
3994 *
3995 * It may be assumed that this function implies a write memory barrier before
3996 * changing the task state if and only if any tasks are woken up.
1da177e4 3997 */
7ad5b3a5 3998void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3999 int nr_exclusive, void *key)
1da177e4
LT
4000{
4001 unsigned long flags;
4002
4003 spin_lock_irqsave(&q->lock, flags);
4004 __wake_up_common(q, mode, nr_exclusive, 0, key);
4005 spin_unlock_irqrestore(&q->lock, flags);
4006}
1da177e4
LT
4007EXPORT_SYMBOL(__wake_up);
4008
4009/*
4010 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4011 */
7ad5b3a5 4012void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4013{
4014 __wake_up_common(q, mode, 1, 0, NULL);
4015}
22c43c81 4016EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4017
4ede816a
DL
4018void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4019{
4020 __wake_up_common(q, mode, 1, 0, key);
4021}
4022
1da177e4 4023/**
4ede816a 4024 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4025 * @q: the waitqueue
4026 * @mode: which threads
4027 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4028 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4029 *
4030 * The sync wakeup differs that the waker knows that it will schedule
4031 * away soon, so while the target thread will be woken up, it will not
4032 * be migrated to another CPU - ie. the two threads are 'synchronized'
4033 * with each other. This can prevent needless bouncing between CPUs.
4034 *
4035 * On UP it can prevent extra preemption.
50fa610a
DH
4036 *
4037 * It may be assumed that this function implies a write memory barrier before
4038 * changing the task state if and only if any tasks are woken up.
1da177e4 4039 */
4ede816a
DL
4040void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4041 int nr_exclusive, void *key)
1da177e4
LT
4042{
4043 unsigned long flags;
7d478721 4044 int wake_flags = WF_SYNC;
1da177e4
LT
4045
4046 if (unlikely(!q))
4047 return;
4048
4049 if (unlikely(!nr_exclusive))
7d478721 4050 wake_flags = 0;
1da177e4
LT
4051
4052 spin_lock_irqsave(&q->lock, flags);
7d478721 4053 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4054 spin_unlock_irqrestore(&q->lock, flags);
4055}
4ede816a
DL
4056EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4057
4058/*
4059 * __wake_up_sync - see __wake_up_sync_key()
4060 */
4061void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4062{
4063 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4064}
1da177e4
LT
4065EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4066
65eb3dc6
KD
4067/**
4068 * complete: - signals a single thread waiting on this completion
4069 * @x: holds the state of this particular completion
4070 *
4071 * This will wake up a single thread waiting on this completion. Threads will be
4072 * awakened in the same order in which they were queued.
4073 *
4074 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4075 *
4076 * It may be assumed that this function implies a write memory barrier before
4077 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4078 */
b15136e9 4079void complete(struct completion *x)
1da177e4
LT
4080{
4081 unsigned long flags;
4082
4083 spin_lock_irqsave(&x->wait.lock, flags);
4084 x->done++;
d9514f6c 4085 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4086 spin_unlock_irqrestore(&x->wait.lock, flags);
4087}
4088EXPORT_SYMBOL(complete);
4089
65eb3dc6
KD
4090/**
4091 * complete_all: - signals all threads waiting on this completion
4092 * @x: holds the state of this particular completion
4093 *
4094 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4095 *
4096 * It may be assumed that this function implies a write memory barrier before
4097 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4098 */
b15136e9 4099void complete_all(struct completion *x)
1da177e4
LT
4100{
4101 unsigned long flags;
4102
4103 spin_lock_irqsave(&x->wait.lock, flags);
4104 x->done += UINT_MAX/2;
d9514f6c 4105 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4106 spin_unlock_irqrestore(&x->wait.lock, flags);
4107}
4108EXPORT_SYMBOL(complete_all);
4109
8cbbe86d
AK
4110static inline long __sched
4111do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4112{
1da177e4
LT
4113 if (!x->done) {
4114 DECLARE_WAITQUEUE(wait, current);
4115
a93d2f17 4116 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4117 do {
94d3d824 4118 if (signal_pending_state(state, current)) {
ea71a546
ON
4119 timeout = -ERESTARTSYS;
4120 break;
8cbbe86d
AK
4121 }
4122 __set_current_state(state);
1da177e4
LT
4123 spin_unlock_irq(&x->wait.lock);
4124 timeout = schedule_timeout(timeout);
4125 spin_lock_irq(&x->wait.lock);
ea71a546 4126 } while (!x->done && timeout);
1da177e4 4127 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4128 if (!x->done)
4129 return timeout;
1da177e4
LT
4130 }
4131 x->done--;
ea71a546 4132 return timeout ?: 1;
1da177e4 4133}
1da177e4 4134
8cbbe86d
AK
4135static long __sched
4136wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4137{
1da177e4
LT
4138 might_sleep();
4139
4140 spin_lock_irq(&x->wait.lock);
8cbbe86d 4141 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4142 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4143 return timeout;
4144}
1da177e4 4145
65eb3dc6
KD
4146/**
4147 * wait_for_completion: - waits for completion of a task
4148 * @x: holds the state of this particular completion
4149 *
4150 * This waits to be signaled for completion of a specific task. It is NOT
4151 * interruptible and there is no timeout.
4152 *
4153 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4154 * and interrupt capability. Also see complete().
4155 */
b15136e9 4156void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4157{
4158 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4159}
8cbbe86d 4160EXPORT_SYMBOL(wait_for_completion);
1da177e4 4161
65eb3dc6
KD
4162/**
4163 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4164 * @x: holds the state of this particular completion
4165 * @timeout: timeout value in jiffies
4166 *
4167 * This waits for either a completion of a specific task to be signaled or for a
4168 * specified timeout to expire. The timeout is in jiffies. It is not
4169 * interruptible.
4170 */
b15136e9 4171unsigned long __sched
8cbbe86d 4172wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4173{
8cbbe86d 4174 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4175}
8cbbe86d 4176EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4177
65eb3dc6
KD
4178/**
4179 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4180 * @x: holds the state of this particular completion
4181 *
4182 * This waits for completion of a specific task to be signaled. It is
4183 * interruptible.
4184 */
8cbbe86d 4185int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4186{
51e97990
AK
4187 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4188 if (t == -ERESTARTSYS)
4189 return t;
4190 return 0;
0fec171c 4191}
8cbbe86d 4192EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4193
65eb3dc6
KD
4194/**
4195 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4196 * @x: holds the state of this particular completion
4197 * @timeout: timeout value in jiffies
4198 *
4199 * This waits for either a completion of a specific task to be signaled or for a
4200 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4201 */
b15136e9 4202unsigned long __sched
8cbbe86d
AK
4203wait_for_completion_interruptible_timeout(struct completion *x,
4204 unsigned long timeout)
0fec171c 4205{
8cbbe86d 4206 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4207}
8cbbe86d 4208EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4209
65eb3dc6
KD
4210/**
4211 * wait_for_completion_killable: - waits for completion of a task (killable)
4212 * @x: holds the state of this particular completion
4213 *
4214 * This waits to be signaled for completion of a specific task. It can be
4215 * interrupted by a kill signal.
4216 */
009e577e
MW
4217int __sched wait_for_completion_killable(struct completion *x)
4218{
4219 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4220 if (t == -ERESTARTSYS)
4221 return t;
4222 return 0;
4223}
4224EXPORT_SYMBOL(wait_for_completion_killable);
4225
0aa12fb4
SW
4226/**
4227 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4228 * @x: holds the state of this particular completion
4229 * @timeout: timeout value in jiffies
4230 *
4231 * This waits for either a completion of a specific task to be
4232 * signaled or for a specified timeout to expire. It can be
4233 * interrupted by a kill signal. The timeout is in jiffies.
4234 */
4235unsigned long __sched
4236wait_for_completion_killable_timeout(struct completion *x,
4237 unsigned long timeout)
4238{
4239 return wait_for_common(x, timeout, TASK_KILLABLE);
4240}
4241EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4242
be4de352
DC
4243/**
4244 * try_wait_for_completion - try to decrement a completion without blocking
4245 * @x: completion structure
4246 *
4247 * Returns: 0 if a decrement cannot be done without blocking
4248 * 1 if a decrement succeeded.
4249 *
4250 * If a completion is being used as a counting completion,
4251 * attempt to decrement the counter without blocking. This
4252 * enables us to avoid waiting if the resource the completion
4253 * is protecting is not available.
4254 */
4255bool try_wait_for_completion(struct completion *x)
4256{
7539a3b3 4257 unsigned long flags;
be4de352
DC
4258 int ret = 1;
4259
7539a3b3 4260 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4261 if (!x->done)
4262 ret = 0;
4263 else
4264 x->done--;
7539a3b3 4265 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4266 return ret;
4267}
4268EXPORT_SYMBOL(try_wait_for_completion);
4269
4270/**
4271 * completion_done - Test to see if a completion has any waiters
4272 * @x: completion structure
4273 *
4274 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4275 * 1 if there are no waiters.
4276 *
4277 */
4278bool completion_done(struct completion *x)
4279{
7539a3b3 4280 unsigned long flags;
be4de352
DC
4281 int ret = 1;
4282
7539a3b3 4283 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4284 if (!x->done)
4285 ret = 0;
7539a3b3 4286 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4287 return ret;
4288}
4289EXPORT_SYMBOL(completion_done);
4290
8cbbe86d
AK
4291static long __sched
4292sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4293{
0fec171c
IM
4294 unsigned long flags;
4295 wait_queue_t wait;
4296
4297 init_waitqueue_entry(&wait, current);
1da177e4 4298
8cbbe86d 4299 __set_current_state(state);
1da177e4 4300
8cbbe86d
AK
4301 spin_lock_irqsave(&q->lock, flags);
4302 __add_wait_queue(q, &wait);
4303 spin_unlock(&q->lock);
4304 timeout = schedule_timeout(timeout);
4305 spin_lock_irq(&q->lock);
4306 __remove_wait_queue(q, &wait);
4307 spin_unlock_irqrestore(&q->lock, flags);
4308
4309 return timeout;
4310}
4311
4312void __sched interruptible_sleep_on(wait_queue_head_t *q)
4313{
4314 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4315}
1da177e4
LT
4316EXPORT_SYMBOL(interruptible_sleep_on);
4317
0fec171c 4318long __sched
95cdf3b7 4319interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4320{
8cbbe86d 4321 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4322}
1da177e4
LT
4323EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4324
0fec171c 4325void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4326{
8cbbe86d 4327 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4328}
1da177e4
LT
4329EXPORT_SYMBOL(sleep_on);
4330
0fec171c 4331long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4332{
8cbbe86d 4333 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4334}
1da177e4
LT
4335EXPORT_SYMBOL(sleep_on_timeout);
4336
b29739f9
IM
4337#ifdef CONFIG_RT_MUTEXES
4338
4339/*
4340 * rt_mutex_setprio - set the current priority of a task
4341 * @p: task
4342 * @prio: prio value (kernel-internal form)
4343 *
4344 * This function changes the 'effective' priority of a task. It does
4345 * not touch ->normal_prio like __setscheduler().
4346 *
4347 * Used by the rt_mutex code to implement priority inheritance logic.
4348 */
36c8b586 4349void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4350{
4351 unsigned long flags;
83b699ed 4352 int oldprio, on_rq, running;
70b97a7f 4353 struct rq *rq;
83ab0aa0 4354 const struct sched_class *prev_class;
b29739f9
IM
4355
4356 BUG_ON(prio < 0 || prio > MAX_PRIO);
4357
4358 rq = task_rq_lock(p, &flags);
4359
a8027073 4360 trace_sched_pi_setprio(p, prio);
d5f9f942 4361 oldprio = p->prio;
83ab0aa0 4362 prev_class = p->sched_class;
dd41f596 4363 on_rq = p->se.on_rq;
051a1d1a 4364 running = task_current(rq, p);
0e1f3483 4365 if (on_rq)
69be72c1 4366 dequeue_task(rq, p, 0);
0e1f3483
HS
4367 if (running)
4368 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4369
4370 if (rt_prio(prio))
4371 p->sched_class = &rt_sched_class;
4372 else
4373 p->sched_class = &fair_sched_class;
4374
b29739f9
IM
4375 p->prio = prio;
4376
0e1f3483
HS
4377 if (running)
4378 p->sched_class->set_curr_task(rq);
dd41f596 4379 if (on_rq) {
371fd7e7 4380 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4381
4382 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4383 }
4384 task_rq_unlock(rq, &flags);
4385}
4386
4387#endif
4388
36c8b586 4389void set_user_nice(struct task_struct *p, long nice)
1da177e4 4390{
dd41f596 4391 int old_prio, delta, on_rq;
1da177e4 4392 unsigned long flags;
70b97a7f 4393 struct rq *rq;
1da177e4
LT
4394
4395 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4396 return;
4397 /*
4398 * We have to be careful, if called from sys_setpriority(),
4399 * the task might be in the middle of scheduling on another CPU.
4400 */
4401 rq = task_rq_lock(p, &flags);
4402 /*
4403 * The RT priorities are set via sched_setscheduler(), but we still
4404 * allow the 'normal' nice value to be set - but as expected
4405 * it wont have any effect on scheduling until the task is
dd41f596 4406 * SCHED_FIFO/SCHED_RR:
1da177e4 4407 */
e05606d3 4408 if (task_has_rt_policy(p)) {
1da177e4
LT
4409 p->static_prio = NICE_TO_PRIO(nice);
4410 goto out_unlock;
4411 }
dd41f596 4412 on_rq = p->se.on_rq;
c09595f6 4413 if (on_rq)
69be72c1 4414 dequeue_task(rq, p, 0);
1da177e4 4415
1da177e4 4416 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4417 set_load_weight(p);
b29739f9
IM
4418 old_prio = p->prio;
4419 p->prio = effective_prio(p);
4420 delta = p->prio - old_prio;
1da177e4 4421
dd41f596 4422 if (on_rq) {
371fd7e7 4423 enqueue_task(rq, p, 0);
1da177e4 4424 /*
d5f9f942
AM
4425 * If the task increased its priority or is running and
4426 * lowered its priority, then reschedule its CPU:
1da177e4 4427 */
d5f9f942 4428 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4429 resched_task(rq->curr);
4430 }
4431out_unlock:
4432 task_rq_unlock(rq, &flags);
4433}
1da177e4
LT
4434EXPORT_SYMBOL(set_user_nice);
4435
e43379f1
MM
4436/*
4437 * can_nice - check if a task can reduce its nice value
4438 * @p: task
4439 * @nice: nice value
4440 */
36c8b586 4441int can_nice(const struct task_struct *p, const int nice)
e43379f1 4442{
024f4747
MM
4443 /* convert nice value [19,-20] to rlimit style value [1,40] */
4444 int nice_rlim = 20 - nice;
48f24c4d 4445
78d7d407 4446 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4447 capable(CAP_SYS_NICE));
4448}
4449
1da177e4
LT
4450#ifdef __ARCH_WANT_SYS_NICE
4451
4452/*
4453 * sys_nice - change the priority of the current process.
4454 * @increment: priority increment
4455 *
4456 * sys_setpriority is a more generic, but much slower function that
4457 * does similar things.
4458 */
5add95d4 4459SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4460{
48f24c4d 4461 long nice, retval;
1da177e4
LT
4462
4463 /*
4464 * Setpriority might change our priority at the same moment.
4465 * We don't have to worry. Conceptually one call occurs first
4466 * and we have a single winner.
4467 */
e43379f1
MM
4468 if (increment < -40)
4469 increment = -40;
1da177e4
LT
4470 if (increment > 40)
4471 increment = 40;
4472
2b8f836f 4473 nice = TASK_NICE(current) + increment;
1da177e4
LT
4474 if (nice < -20)
4475 nice = -20;
4476 if (nice > 19)
4477 nice = 19;
4478
e43379f1
MM
4479 if (increment < 0 && !can_nice(current, nice))
4480 return -EPERM;
4481
1da177e4
LT
4482 retval = security_task_setnice(current, nice);
4483 if (retval)
4484 return retval;
4485
4486 set_user_nice(current, nice);
4487 return 0;
4488}
4489
4490#endif
4491
4492/**
4493 * task_prio - return the priority value of a given task.
4494 * @p: the task in question.
4495 *
4496 * This is the priority value as seen by users in /proc.
4497 * RT tasks are offset by -200. Normal tasks are centered
4498 * around 0, value goes from -16 to +15.
4499 */
36c8b586 4500int task_prio(const struct task_struct *p)
1da177e4
LT
4501{
4502 return p->prio - MAX_RT_PRIO;
4503}
4504
4505/**
4506 * task_nice - return the nice value of a given task.
4507 * @p: the task in question.
4508 */
36c8b586 4509int task_nice(const struct task_struct *p)
1da177e4
LT
4510{
4511 return TASK_NICE(p);
4512}
150d8bed 4513EXPORT_SYMBOL(task_nice);
1da177e4
LT
4514
4515/**
4516 * idle_cpu - is a given cpu idle currently?
4517 * @cpu: the processor in question.
4518 */
4519int idle_cpu(int cpu)
4520{
4521 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4522}
4523
1da177e4
LT
4524/**
4525 * idle_task - return the idle task for a given cpu.
4526 * @cpu: the processor in question.
4527 */
36c8b586 4528struct task_struct *idle_task(int cpu)
1da177e4
LT
4529{
4530 return cpu_rq(cpu)->idle;
4531}
4532
4533/**
4534 * find_process_by_pid - find a process with a matching PID value.
4535 * @pid: the pid in question.
4536 */
a9957449 4537static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4538{
228ebcbe 4539 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4540}
4541
4542/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4543static void
4544__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4545{
dd41f596 4546 BUG_ON(p->se.on_rq);
48f24c4d 4547
1da177e4
LT
4548 p->policy = policy;
4549 p->rt_priority = prio;
b29739f9
IM
4550 p->normal_prio = normal_prio(p);
4551 /* we are holding p->pi_lock already */
4552 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4553 if (rt_prio(p->prio))
4554 p->sched_class = &rt_sched_class;
4555 else
4556 p->sched_class = &fair_sched_class;
2dd73a4f 4557 set_load_weight(p);
1da177e4
LT
4558}
4559
c69e8d9c
DH
4560/*
4561 * check the target process has a UID that matches the current process's
4562 */
4563static bool check_same_owner(struct task_struct *p)
4564{
4565 const struct cred *cred = current_cred(), *pcred;
4566 bool match;
4567
4568 rcu_read_lock();
4569 pcred = __task_cred(p);
4570 match = (cred->euid == pcred->euid ||
4571 cred->euid == pcred->uid);
4572 rcu_read_unlock();
4573 return match;
4574}
4575
961ccddd 4576static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4577 const struct sched_param *param, bool user)
1da177e4 4578{
83b699ed 4579 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4580 unsigned long flags;
83ab0aa0 4581 const struct sched_class *prev_class;
70b97a7f 4582 struct rq *rq;
ca94c442 4583 int reset_on_fork;
1da177e4 4584
66e5393a
SR
4585 /* may grab non-irq protected spin_locks */
4586 BUG_ON(in_interrupt());
1da177e4
LT
4587recheck:
4588 /* double check policy once rq lock held */
ca94c442
LP
4589 if (policy < 0) {
4590 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4591 policy = oldpolicy = p->policy;
ca94c442
LP
4592 } else {
4593 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4594 policy &= ~SCHED_RESET_ON_FORK;
4595
4596 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4597 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4598 policy != SCHED_IDLE)
4599 return -EINVAL;
4600 }
4601
1da177e4
LT
4602 /*
4603 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4604 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4605 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4606 */
4607 if (param->sched_priority < 0 ||
95cdf3b7 4608 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4609 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4610 return -EINVAL;
e05606d3 4611 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4612 return -EINVAL;
4613
37e4ab3f
OC
4614 /*
4615 * Allow unprivileged RT tasks to decrease priority:
4616 */
961ccddd 4617 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4618 if (rt_policy(policy)) {
a44702e8
ON
4619 unsigned long rlim_rtprio =
4620 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4621
4622 /* can't set/change the rt policy */
4623 if (policy != p->policy && !rlim_rtprio)
4624 return -EPERM;
4625
4626 /* can't increase priority */
4627 if (param->sched_priority > p->rt_priority &&
4628 param->sched_priority > rlim_rtprio)
4629 return -EPERM;
4630 }
dd41f596
IM
4631 /*
4632 * Like positive nice levels, dont allow tasks to
4633 * move out of SCHED_IDLE either:
4634 */
4635 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4636 return -EPERM;
5fe1d75f 4637
37e4ab3f 4638 /* can't change other user's priorities */
c69e8d9c 4639 if (!check_same_owner(p))
37e4ab3f 4640 return -EPERM;
ca94c442
LP
4641
4642 /* Normal users shall not reset the sched_reset_on_fork flag */
4643 if (p->sched_reset_on_fork && !reset_on_fork)
4644 return -EPERM;
37e4ab3f 4645 }
1da177e4 4646
725aad24 4647 if (user) {
b0ae1981 4648 retval = security_task_setscheduler(p);
725aad24
JF
4649 if (retval)
4650 return retval;
4651 }
4652
b29739f9
IM
4653 /*
4654 * make sure no PI-waiters arrive (or leave) while we are
4655 * changing the priority of the task:
4656 */
1d615482 4657 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4658 /*
4659 * To be able to change p->policy safely, the apropriate
4660 * runqueue lock must be held.
4661 */
b29739f9 4662 rq = __task_rq_lock(p);
dc61b1d6 4663
34f971f6
PZ
4664 /*
4665 * Changing the policy of the stop threads its a very bad idea
4666 */
4667 if (p == rq->stop) {
4668 __task_rq_unlock(rq);
4669 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4670 return -EINVAL;
4671 }
4672
dc61b1d6
PZ
4673#ifdef CONFIG_RT_GROUP_SCHED
4674 if (user) {
4675 /*
4676 * Do not allow realtime tasks into groups that have no runtime
4677 * assigned.
4678 */
4679 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4680 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4681 __task_rq_unlock(rq);
4682 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4683 return -EPERM;
4684 }
4685 }
4686#endif
4687
1da177e4
LT
4688 /* recheck policy now with rq lock held */
4689 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4690 policy = oldpolicy = -1;
b29739f9 4691 __task_rq_unlock(rq);
1d615482 4692 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4693 goto recheck;
4694 }
dd41f596 4695 on_rq = p->se.on_rq;
051a1d1a 4696 running = task_current(rq, p);
0e1f3483 4697 if (on_rq)
2e1cb74a 4698 deactivate_task(rq, p, 0);
0e1f3483
HS
4699 if (running)
4700 p->sched_class->put_prev_task(rq, p);
f6b53205 4701
ca94c442
LP
4702 p->sched_reset_on_fork = reset_on_fork;
4703
1da177e4 4704 oldprio = p->prio;
83ab0aa0 4705 prev_class = p->sched_class;
dd41f596 4706 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4707
0e1f3483
HS
4708 if (running)
4709 p->sched_class->set_curr_task(rq);
dd41f596
IM
4710 if (on_rq) {
4711 activate_task(rq, p, 0);
cb469845
SR
4712
4713 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4714 }
b29739f9 4715 __task_rq_unlock(rq);
1d615482 4716 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4717
95e02ca9
TG
4718 rt_mutex_adjust_pi(p);
4719
1da177e4
LT
4720 return 0;
4721}
961ccddd
RR
4722
4723/**
4724 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4725 * @p: the task in question.
4726 * @policy: new policy.
4727 * @param: structure containing the new RT priority.
4728 *
4729 * NOTE that the task may be already dead.
4730 */
4731int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4732 const struct sched_param *param)
961ccddd
RR
4733{
4734 return __sched_setscheduler(p, policy, param, true);
4735}
1da177e4
LT
4736EXPORT_SYMBOL_GPL(sched_setscheduler);
4737
961ccddd
RR
4738/**
4739 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4740 * @p: the task in question.
4741 * @policy: new policy.
4742 * @param: structure containing the new RT priority.
4743 *
4744 * Just like sched_setscheduler, only don't bother checking if the
4745 * current context has permission. For example, this is needed in
4746 * stop_machine(): we create temporary high priority worker threads,
4747 * but our caller might not have that capability.
4748 */
4749int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4750 const struct sched_param *param)
961ccddd
RR
4751{
4752 return __sched_setscheduler(p, policy, param, false);
4753}
4754
95cdf3b7
IM
4755static int
4756do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4757{
1da177e4
LT
4758 struct sched_param lparam;
4759 struct task_struct *p;
36c8b586 4760 int retval;
1da177e4
LT
4761
4762 if (!param || pid < 0)
4763 return -EINVAL;
4764 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4765 return -EFAULT;
5fe1d75f
ON
4766
4767 rcu_read_lock();
4768 retval = -ESRCH;
1da177e4 4769 p = find_process_by_pid(pid);
5fe1d75f
ON
4770 if (p != NULL)
4771 retval = sched_setscheduler(p, policy, &lparam);
4772 rcu_read_unlock();
36c8b586 4773
1da177e4
LT
4774 return retval;
4775}
4776
4777/**
4778 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4779 * @pid: the pid in question.
4780 * @policy: new policy.
4781 * @param: structure containing the new RT priority.
4782 */
5add95d4
HC
4783SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4784 struct sched_param __user *, param)
1da177e4 4785{
c21761f1
JB
4786 /* negative values for policy are not valid */
4787 if (policy < 0)
4788 return -EINVAL;
4789
1da177e4
LT
4790 return do_sched_setscheduler(pid, policy, param);
4791}
4792
4793/**
4794 * sys_sched_setparam - set/change the RT priority of a thread
4795 * @pid: the pid in question.
4796 * @param: structure containing the new RT priority.
4797 */
5add95d4 4798SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4799{
4800 return do_sched_setscheduler(pid, -1, param);
4801}
4802
4803/**
4804 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4805 * @pid: the pid in question.
4806 */
5add95d4 4807SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4808{
36c8b586 4809 struct task_struct *p;
3a5c359a 4810 int retval;
1da177e4
LT
4811
4812 if (pid < 0)
3a5c359a 4813 return -EINVAL;
1da177e4
LT
4814
4815 retval = -ESRCH;
5fe85be0 4816 rcu_read_lock();
1da177e4
LT
4817 p = find_process_by_pid(pid);
4818 if (p) {
4819 retval = security_task_getscheduler(p);
4820 if (!retval)
ca94c442
LP
4821 retval = p->policy
4822 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4823 }
5fe85be0 4824 rcu_read_unlock();
1da177e4
LT
4825 return retval;
4826}
4827
4828/**
ca94c442 4829 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4830 * @pid: the pid in question.
4831 * @param: structure containing the RT priority.
4832 */
5add95d4 4833SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4834{
4835 struct sched_param lp;
36c8b586 4836 struct task_struct *p;
3a5c359a 4837 int retval;
1da177e4
LT
4838
4839 if (!param || pid < 0)
3a5c359a 4840 return -EINVAL;
1da177e4 4841
5fe85be0 4842 rcu_read_lock();
1da177e4
LT
4843 p = find_process_by_pid(pid);
4844 retval = -ESRCH;
4845 if (!p)
4846 goto out_unlock;
4847
4848 retval = security_task_getscheduler(p);
4849 if (retval)
4850 goto out_unlock;
4851
4852 lp.sched_priority = p->rt_priority;
5fe85be0 4853 rcu_read_unlock();
1da177e4
LT
4854
4855 /*
4856 * This one might sleep, we cannot do it with a spinlock held ...
4857 */
4858 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4859
1da177e4
LT
4860 return retval;
4861
4862out_unlock:
5fe85be0 4863 rcu_read_unlock();
1da177e4
LT
4864 return retval;
4865}
4866
96f874e2 4867long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4868{
5a16f3d3 4869 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4870 struct task_struct *p;
4871 int retval;
1da177e4 4872
95402b38 4873 get_online_cpus();
23f5d142 4874 rcu_read_lock();
1da177e4
LT
4875
4876 p = find_process_by_pid(pid);
4877 if (!p) {
23f5d142 4878 rcu_read_unlock();
95402b38 4879 put_online_cpus();
1da177e4
LT
4880 return -ESRCH;
4881 }
4882
23f5d142 4883 /* Prevent p going away */
1da177e4 4884 get_task_struct(p);
23f5d142 4885 rcu_read_unlock();
1da177e4 4886
5a16f3d3
RR
4887 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4888 retval = -ENOMEM;
4889 goto out_put_task;
4890 }
4891 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4892 retval = -ENOMEM;
4893 goto out_free_cpus_allowed;
4894 }
1da177e4 4895 retval = -EPERM;
c69e8d9c 4896 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4897 goto out_unlock;
4898
b0ae1981 4899 retval = security_task_setscheduler(p);
e7834f8f
DQ
4900 if (retval)
4901 goto out_unlock;
4902
5a16f3d3
RR
4903 cpuset_cpus_allowed(p, cpus_allowed);
4904 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4905again:
5a16f3d3 4906 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4907
8707d8b8 4908 if (!retval) {
5a16f3d3
RR
4909 cpuset_cpus_allowed(p, cpus_allowed);
4910 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4911 /*
4912 * We must have raced with a concurrent cpuset
4913 * update. Just reset the cpus_allowed to the
4914 * cpuset's cpus_allowed
4915 */
5a16f3d3 4916 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4917 goto again;
4918 }
4919 }
1da177e4 4920out_unlock:
5a16f3d3
RR
4921 free_cpumask_var(new_mask);
4922out_free_cpus_allowed:
4923 free_cpumask_var(cpus_allowed);
4924out_put_task:
1da177e4 4925 put_task_struct(p);
95402b38 4926 put_online_cpus();
1da177e4
LT
4927 return retval;
4928}
4929
4930static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4931 struct cpumask *new_mask)
1da177e4 4932{
96f874e2
RR
4933 if (len < cpumask_size())
4934 cpumask_clear(new_mask);
4935 else if (len > cpumask_size())
4936 len = cpumask_size();
4937
1da177e4
LT
4938 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4939}
4940
4941/**
4942 * sys_sched_setaffinity - set the cpu affinity of a process
4943 * @pid: pid of the process
4944 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4945 * @user_mask_ptr: user-space pointer to the new cpu mask
4946 */
5add95d4
HC
4947SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4948 unsigned long __user *, user_mask_ptr)
1da177e4 4949{
5a16f3d3 4950 cpumask_var_t new_mask;
1da177e4
LT
4951 int retval;
4952
5a16f3d3
RR
4953 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4954 return -ENOMEM;
1da177e4 4955
5a16f3d3
RR
4956 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4957 if (retval == 0)
4958 retval = sched_setaffinity(pid, new_mask);
4959 free_cpumask_var(new_mask);
4960 return retval;
1da177e4
LT
4961}
4962
96f874e2 4963long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4964{
36c8b586 4965 struct task_struct *p;
31605683
TG
4966 unsigned long flags;
4967 struct rq *rq;
1da177e4 4968 int retval;
1da177e4 4969
95402b38 4970 get_online_cpus();
23f5d142 4971 rcu_read_lock();
1da177e4
LT
4972
4973 retval = -ESRCH;
4974 p = find_process_by_pid(pid);
4975 if (!p)
4976 goto out_unlock;
4977
e7834f8f
DQ
4978 retval = security_task_getscheduler(p);
4979 if (retval)
4980 goto out_unlock;
4981
31605683 4982 rq = task_rq_lock(p, &flags);
96f874e2 4983 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4984 task_rq_unlock(rq, &flags);
1da177e4
LT
4985
4986out_unlock:
23f5d142 4987 rcu_read_unlock();
95402b38 4988 put_online_cpus();
1da177e4 4989
9531b62f 4990 return retval;
1da177e4
LT
4991}
4992
4993/**
4994 * sys_sched_getaffinity - get the cpu affinity of a process
4995 * @pid: pid of the process
4996 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4997 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4998 */
5add95d4
HC
4999SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5000 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5001{
5002 int ret;
f17c8607 5003 cpumask_var_t mask;
1da177e4 5004
84fba5ec 5005 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5006 return -EINVAL;
5007 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5008 return -EINVAL;
5009
f17c8607
RR
5010 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5011 return -ENOMEM;
1da177e4 5012
f17c8607
RR
5013 ret = sched_getaffinity(pid, mask);
5014 if (ret == 0) {
8bc037fb 5015 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5016
5017 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5018 ret = -EFAULT;
5019 else
cd3d8031 5020 ret = retlen;
f17c8607
RR
5021 }
5022 free_cpumask_var(mask);
1da177e4 5023
f17c8607 5024 return ret;
1da177e4
LT
5025}
5026
5027/**
5028 * sys_sched_yield - yield the current processor to other threads.
5029 *
dd41f596
IM
5030 * This function yields the current CPU to other tasks. If there are no
5031 * other threads running on this CPU then this function will return.
1da177e4 5032 */
5add95d4 5033SYSCALL_DEFINE0(sched_yield)
1da177e4 5034{
70b97a7f 5035 struct rq *rq = this_rq_lock();
1da177e4 5036
2d72376b 5037 schedstat_inc(rq, yld_count);
4530d7ab 5038 current->sched_class->yield_task(rq);
1da177e4
LT
5039
5040 /*
5041 * Since we are going to call schedule() anyway, there's
5042 * no need to preempt or enable interrupts:
5043 */
5044 __release(rq->lock);
8a25d5de 5045 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5046 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5047 preempt_enable_no_resched();
5048
5049 schedule();
5050
5051 return 0;
5052}
5053
d86ee480
PZ
5054static inline int should_resched(void)
5055{
5056 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5057}
5058
e7b38404 5059static void __cond_resched(void)
1da177e4 5060{
e7aaaa69
FW
5061 add_preempt_count(PREEMPT_ACTIVE);
5062 schedule();
5063 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5064}
5065
02b67cc3 5066int __sched _cond_resched(void)
1da177e4 5067{
d86ee480 5068 if (should_resched()) {
1da177e4
LT
5069 __cond_resched();
5070 return 1;
5071 }
5072 return 0;
5073}
02b67cc3 5074EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5075
5076/*
613afbf8 5077 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5078 * call schedule, and on return reacquire the lock.
5079 *
41a2d6cf 5080 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5081 * operations here to prevent schedule() from being called twice (once via
5082 * spin_unlock(), once by hand).
5083 */
613afbf8 5084int __cond_resched_lock(spinlock_t *lock)
1da177e4 5085{
d86ee480 5086 int resched = should_resched();
6df3cecb
JK
5087 int ret = 0;
5088
f607c668
PZ
5089 lockdep_assert_held(lock);
5090
95c354fe 5091 if (spin_needbreak(lock) || resched) {
1da177e4 5092 spin_unlock(lock);
d86ee480 5093 if (resched)
95c354fe
NP
5094 __cond_resched();
5095 else
5096 cpu_relax();
6df3cecb 5097 ret = 1;
1da177e4 5098 spin_lock(lock);
1da177e4 5099 }
6df3cecb 5100 return ret;
1da177e4 5101}
613afbf8 5102EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5103
613afbf8 5104int __sched __cond_resched_softirq(void)
1da177e4
LT
5105{
5106 BUG_ON(!in_softirq());
5107
d86ee480 5108 if (should_resched()) {
98d82567 5109 local_bh_enable();
1da177e4
LT
5110 __cond_resched();
5111 local_bh_disable();
5112 return 1;
5113 }
5114 return 0;
5115}
613afbf8 5116EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5117
1da177e4
LT
5118/**
5119 * yield - yield the current processor to other threads.
5120 *
72fd4a35 5121 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5122 * thread runnable and calls sys_sched_yield().
5123 */
5124void __sched yield(void)
5125{
5126 set_current_state(TASK_RUNNING);
5127 sys_sched_yield();
5128}
1da177e4
LT
5129EXPORT_SYMBOL(yield);
5130
5131/*
41a2d6cf 5132 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5133 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5134 */
5135void __sched io_schedule(void)
5136{
54d35f29 5137 struct rq *rq = raw_rq();
1da177e4 5138
0ff92245 5139 delayacct_blkio_start();
1da177e4 5140 atomic_inc(&rq->nr_iowait);
8f0dfc34 5141 current->in_iowait = 1;
1da177e4 5142 schedule();
8f0dfc34 5143 current->in_iowait = 0;
1da177e4 5144 atomic_dec(&rq->nr_iowait);
0ff92245 5145 delayacct_blkio_end();
1da177e4 5146}
1da177e4
LT
5147EXPORT_SYMBOL(io_schedule);
5148
5149long __sched io_schedule_timeout(long timeout)
5150{
54d35f29 5151 struct rq *rq = raw_rq();
1da177e4
LT
5152 long ret;
5153
0ff92245 5154 delayacct_blkio_start();
1da177e4 5155 atomic_inc(&rq->nr_iowait);
8f0dfc34 5156 current->in_iowait = 1;
1da177e4 5157 ret = schedule_timeout(timeout);
8f0dfc34 5158 current->in_iowait = 0;
1da177e4 5159 atomic_dec(&rq->nr_iowait);
0ff92245 5160 delayacct_blkio_end();
1da177e4
LT
5161 return ret;
5162}
5163
5164/**
5165 * sys_sched_get_priority_max - return maximum RT priority.
5166 * @policy: scheduling class.
5167 *
5168 * this syscall returns the maximum rt_priority that can be used
5169 * by a given scheduling class.
5170 */
5add95d4 5171SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5172{
5173 int ret = -EINVAL;
5174
5175 switch (policy) {
5176 case SCHED_FIFO:
5177 case SCHED_RR:
5178 ret = MAX_USER_RT_PRIO-1;
5179 break;
5180 case SCHED_NORMAL:
b0a9499c 5181 case SCHED_BATCH:
dd41f596 5182 case SCHED_IDLE:
1da177e4
LT
5183 ret = 0;
5184 break;
5185 }
5186 return ret;
5187}
5188
5189/**
5190 * sys_sched_get_priority_min - return minimum RT priority.
5191 * @policy: scheduling class.
5192 *
5193 * this syscall returns the minimum rt_priority that can be used
5194 * by a given scheduling class.
5195 */
5add95d4 5196SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5197{
5198 int ret = -EINVAL;
5199
5200 switch (policy) {
5201 case SCHED_FIFO:
5202 case SCHED_RR:
5203 ret = 1;
5204 break;
5205 case SCHED_NORMAL:
b0a9499c 5206 case SCHED_BATCH:
dd41f596 5207 case SCHED_IDLE:
1da177e4
LT
5208 ret = 0;
5209 }
5210 return ret;
5211}
5212
5213/**
5214 * sys_sched_rr_get_interval - return the default timeslice of a process.
5215 * @pid: pid of the process.
5216 * @interval: userspace pointer to the timeslice value.
5217 *
5218 * this syscall writes the default timeslice value of a given process
5219 * into the user-space timespec buffer. A value of '0' means infinity.
5220 */
17da2bd9 5221SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5222 struct timespec __user *, interval)
1da177e4 5223{
36c8b586 5224 struct task_struct *p;
a4ec24b4 5225 unsigned int time_slice;
dba091b9
TG
5226 unsigned long flags;
5227 struct rq *rq;
3a5c359a 5228 int retval;
1da177e4 5229 struct timespec t;
1da177e4
LT
5230
5231 if (pid < 0)
3a5c359a 5232 return -EINVAL;
1da177e4
LT
5233
5234 retval = -ESRCH;
1a551ae7 5235 rcu_read_lock();
1da177e4
LT
5236 p = find_process_by_pid(pid);
5237 if (!p)
5238 goto out_unlock;
5239
5240 retval = security_task_getscheduler(p);
5241 if (retval)
5242 goto out_unlock;
5243
dba091b9
TG
5244 rq = task_rq_lock(p, &flags);
5245 time_slice = p->sched_class->get_rr_interval(rq, p);
5246 task_rq_unlock(rq, &flags);
a4ec24b4 5247
1a551ae7 5248 rcu_read_unlock();
a4ec24b4 5249 jiffies_to_timespec(time_slice, &t);
1da177e4 5250 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5251 return retval;
3a5c359a 5252
1da177e4 5253out_unlock:
1a551ae7 5254 rcu_read_unlock();
1da177e4
LT
5255 return retval;
5256}
5257
7c731e0a 5258static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5259
82a1fcb9 5260void sched_show_task(struct task_struct *p)
1da177e4 5261{
1da177e4 5262 unsigned long free = 0;
36c8b586 5263 unsigned state;
1da177e4 5264
1da177e4 5265 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5266 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5267 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5268#if BITS_PER_LONG == 32
1da177e4 5269 if (state == TASK_RUNNING)
3df0fc5b 5270 printk(KERN_CONT " running ");
1da177e4 5271 else
3df0fc5b 5272 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5273#else
5274 if (state == TASK_RUNNING)
3df0fc5b 5275 printk(KERN_CONT " running task ");
1da177e4 5276 else
3df0fc5b 5277 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5278#endif
5279#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5280 free = stack_not_used(p);
1da177e4 5281#endif
3df0fc5b 5282 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5283 task_pid_nr(p), task_pid_nr(p->real_parent),
5284 (unsigned long)task_thread_info(p)->flags);
1da177e4 5285
5fb5e6de 5286 show_stack(p, NULL);
1da177e4
LT
5287}
5288
e59e2ae2 5289void show_state_filter(unsigned long state_filter)
1da177e4 5290{
36c8b586 5291 struct task_struct *g, *p;
1da177e4 5292
4bd77321 5293#if BITS_PER_LONG == 32
3df0fc5b
PZ
5294 printk(KERN_INFO
5295 " task PC stack pid father\n");
1da177e4 5296#else
3df0fc5b
PZ
5297 printk(KERN_INFO
5298 " task PC stack pid father\n");
1da177e4
LT
5299#endif
5300 read_lock(&tasklist_lock);
5301 do_each_thread(g, p) {
5302 /*
5303 * reset the NMI-timeout, listing all files on a slow
5304 * console might take alot of time:
5305 */
5306 touch_nmi_watchdog();
39bc89fd 5307 if (!state_filter || (p->state & state_filter))
82a1fcb9 5308 sched_show_task(p);
1da177e4
LT
5309 } while_each_thread(g, p);
5310
04c9167f
JF
5311 touch_all_softlockup_watchdogs();
5312
dd41f596
IM
5313#ifdef CONFIG_SCHED_DEBUG
5314 sysrq_sched_debug_show();
5315#endif
1da177e4 5316 read_unlock(&tasklist_lock);
e59e2ae2
IM
5317 /*
5318 * Only show locks if all tasks are dumped:
5319 */
93335a21 5320 if (!state_filter)
e59e2ae2 5321 debug_show_all_locks();
1da177e4
LT
5322}
5323
1df21055
IM
5324void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5325{
dd41f596 5326 idle->sched_class = &idle_sched_class;
1df21055
IM
5327}
5328
f340c0d1
IM
5329/**
5330 * init_idle - set up an idle thread for a given CPU
5331 * @idle: task in question
5332 * @cpu: cpu the idle task belongs to
5333 *
5334 * NOTE: this function does not set the idle thread's NEED_RESCHED
5335 * flag, to make booting more robust.
5336 */
5c1e1767 5337void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5338{
70b97a7f 5339 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5340 unsigned long flags;
5341
05fa785c 5342 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5343
dd41f596 5344 __sched_fork(idle);
06b83b5f 5345 idle->state = TASK_RUNNING;
dd41f596
IM
5346 idle->se.exec_start = sched_clock();
5347
96f874e2 5348 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5349 /*
5350 * We're having a chicken and egg problem, even though we are
5351 * holding rq->lock, the cpu isn't yet set to this cpu so the
5352 * lockdep check in task_group() will fail.
5353 *
5354 * Similar case to sched_fork(). / Alternatively we could
5355 * use task_rq_lock() here and obtain the other rq->lock.
5356 *
5357 * Silence PROVE_RCU
5358 */
5359 rcu_read_lock();
dd41f596 5360 __set_task_cpu(idle, cpu);
6506cf6c 5361 rcu_read_unlock();
1da177e4 5362
1da177e4 5363 rq->curr = rq->idle = idle;
4866cde0
NP
5364#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5365 idle->oncpu = 1;
5366#endif
05fa785c 5367 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5368
5369 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5370#if defined(CONFIG_PREEMPT)
5371 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5372#else
a1261f54 5373 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5374#endif
dd41f596
IM
5375 /*
5376 * The idle tasks have their own, simple scheduling class:
5377 */
5378 idle->sched_class = &idle_sched_class;
fb52607a 5379 ftrace_graph_init_task(idle);
1da177e4
LT
5380}
5381
5382/*
5383 * In a system that switches off the HZ timer nohz_cpu_mask
5384 * indicates which cpus entered this state. This is used
5385 * in the rcu update to wait only for active cpus. For system
5386 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5387 * always be CPU_BITS_NONE.
1da177e4 5388 */
6a7b3dc3 5389cpumask_var_t nohz_cpu_mask;
1da177e4 5390
19978ca6
IM
5391/*
5392 * Increase the granularity value when there are more CPUs,
5393 * because with more CPUs the 'effective latency' as visible
5394 * to users decreases. But the relationship is not linear,
5395 * so pick a second-best guess by going with the log2 of the
5396 * number of CPUs.
5397 *
5398 * This idea comes from the SD scheduler of Con Kolivas:
5399 */
acb4a848 5400static int get_update_sysctl_factor(void)
19978ca6 5401{
4ca3ef71 5402 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5403 unsigned int factor;
5404
5405 switch (sysctl_sched_tunable_scaling) {
5406 case SCHED_TUNABLESCALING_NONE:
5407 factor = 1;
5408 break;
5409 case SCHED_TUNABLESCALING_LINEAR:
5410 factor = cpus;
5411 break;
5412 case SCHED_TUNABLESCALING_LOG:
5413 default:
5414 factor = 1 + ilog2(cpus);
5415 break;
5416 }
19978ca6 5417
acb4a848
CE
5418 return factor;
5419}
19978ca6 5420
acb4a848
CE
5421static void update_sysctl(void)
5422{
5423 unsigned int factor = get_update_sysctl_factor();
19978ca6 5424
0bcdcf28
CE
5425#define SET_SYSCTL(name) \
5426 (sysctl_##name = (factor) * normalized_sysctl_##name)
5427 SET_SYSCTL(sched_min_granularity);
5428 SET_SYSCTL(sched_latency);
5429 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5430#undef SET_SYSCTL
5431}
55cd5340 5432
0bcdcf28
CE
5433static inline void sched_init_granularity(void)
5434{
5435 update_sysctl();
19978ca6
IM
5436}
5437
1da177e4
LT
5438#ifdef CONFIG_SMP
5439/*
5440 * This is how migration works:
5441 *
969c7921
TH
5442 * 1) we invoke migration_cpu_stop() on the target CPU using
5443 * stop_one_cpu().
5444 * 2) stopper starts to run (implicitly forcing the migrated thread
5445 * off the CPU)
5446 * 3) it checks whether the migrated task is still in the wrong runqueue.
5447 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5448 * it and puts it into the right queue.
969c7921
TH
5449 * 5) stopper completes and stop_one_cpu() returns and the migration
5450 * is done.
1da177e4
LT
5451 */
5452
5453/*
5454 * Change a given task's CPU affinity. Migrate the thread to a
5455 * proper CPU and schedule it away if the CPU it's executing on
5456 * is removed from the allowed bitmask.
5457 *
5458 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5459 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5460 * call is not atomic; no spinlocks may be held.
5461 */
96f874e2 5462int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5463{
5464 unsigned long flags;
70b97a7f 5465 struct rq *rq;
969c7921 5466 unsigned int dest_cpu;
48f24c4d 5467 int ret = 0;
1da177e4 5468
65cc8e48
PZ
5469 /*
5470 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5471 * drop the rq->lock and still rely on ->cpus_allowed.
5472 */
5473again:
5474 while (task_is_waking(p))
5475 cpu_relax();
1da177e4 5476 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5477 if (task_is_waking(p)) {
5478 task_rq_unlock(rq, &flags);
5479 goto again;
5480 }
e2912009 5481
6ad4c188 5482 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5483 ret = -EINVAL;
5484 goto out;
5485 }
5486
9985b0ba 5487 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5488 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5489 ret = -EINVAL;
5490 goto out;
5491 }
5492
73fe6aae 5493 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5494 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5495 else {
96f874e2
RR
5496 cpumask_copy(&p->cpus_allowed, new_mask);
5497 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5498 }
5499
1da177e4 5500 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5501 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5502 goto out;
5503
969c7921 5504 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5505 if (migrate_task(p, rq)) {
969c7921 5506 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5507 /* Need help from migration thread: drop lock and wait. */
5508 task_rq_unlock(rq, &flags);
969c7921 5509 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5510 tlb_migrate_finish(p->mm);
5511 return 0;
5512 }
5513out:
5514 task_rq_unlock(rq, &flags);
48f24c4d 5515
1da177e4
LT
5516 return ret;
5517}
cd8ba7cd 5518EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5519
5520/*
41a2d6cf 5521 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5522 * this because either it can't run here any more (set_cpus_allowed()
5523 * away from this CPU, or CPU going down), or because we're
5524 * attempting to rebalance this task on exec (sched_exec).
5525 *
5526 * So we race with normal scheduler movements, but that's OK, as long
5527 * as the task is no longer on this CPU.
efc30814
KK
5528 *
5529 * Returns non-zero if task was successfully migrated.
1da177e4 5530 */
efc30814 5531static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5532{
70b97a7f 5533 struct rq *rq_dest, *rq_src;
e2912009 5534 int ret = 0;
1da177e4 5535
e761b772 5536 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5537 return ret;
1da177e4
LT
5538
5539 rq_src = cpu_rq(src_cpu);
5540 rq_dest = cpu_rq(dest_cpu);
5541
5542 double_rq_lock(rq_src, rq_dest);
5543 /* Already moved. */
5544 if (task_cpu(p) != src_cpu)
b1e38734 5545 goto done;
1da177e4 5546 /* Affinity changed (again). */
96f874e2 5547 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5548 goto fail;
1da177e4 5549
e2912009
PZ
5550 /*
5551 * If we're not on a rq, the next wake-up will ensure we're
5552 * placed properly.
5553 */
5554 if (p->se.on_rq) {
2e1cb74a 5555 deactivate_task(rq_src, p, 0);
e2912009 5556 set_task_cpu(p, dest_cpu);
dd41f596 5557 activate_task(rq_dest, p, 0);
15afe09b 5558 check_preempt_curr(rq_dest, p, 0);
1da177e4 5559 }
b1e38734 5560done:
efc30814 5561 ret = 1;
b1e38734 5562fail:
1da177e4 5563 double_rq_unlock(rq_src, rq_dest);
efc30814 5564 return ret;
1da177e4
LT
5565}
5566
5567/*
969c7921
TH
5568 * migration_cpu_stop - this will be executed by a highprio stopper thread
5569 * and performs thread migration by bumping thread off CPU then
5570 * 'pushing' onto another runqueue.
1da177e4 5571 */
969c7921 5572static int migration_cpu_stop(void *data)
1da177e4 5573{
969c7921 5574 struct migration_arg *arg = data;
f7b4cddc 5575
969c7921
TH
5576 /*
5577 * The original target cpu might have gone down and we might
5578 * be on another cpu but it doesn't matter.
5579 */
f7b4cddc 5580 local_irq_disable();
969c7921 5581 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5582 local_irq_enable();
1da177e4 5583 return 0;
f7b4cddc
ON
5584}
5585
1da177e4 5586#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5587
054b9108 5588/*
48c5ccae
PZ
5589 * Ensures that the idle task is using init_mm right before its cpu goes
5590 * offline.
054b9108 5591 */
48c5ccae 5592void idle_task_exit(void)
1da177e4 5593{
48c5ccae 5594 struct mm_struct *mm = current->active_mm;
e76bd8d9 5595
48c5ccae 5596 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5597
48c5ccae
PZ
5598 if (mm != &init_mm)
5599 switch_mm(mm, &init_mm, current);
5600 mmdrop(mm);
1da177e4
LT
5601}
5602
5603/*
5604 * While a dead CPU has no uninterruptible tasks queued at this point,
5605 * it might still have a nonzero ->nr_uninterruptible counter, because
5606 * for performance reasons the counter is not stricly tracking tasks to
5607 * their home CPUs. So we just add the counter to another CPU's counter,
5608 * to keep the global sum constant after CPU-down:
5609 */
70b97a7f 5610static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5611{
6ad4c188 5612 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5613
1da177e4
LT
5614 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5615 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5616}
5617
dd41f596 5618/*
48c5ccae 5619 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5620 */
48c5ccae 5621static void calc_global_load_remove(struct rq *rq)
1da177e4 5622{
48c5ccae
PZ
5623 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5624 rq->calc_load_active = 0;
1da177e4
LT
5625}
5626
48f24c4d 5627/*
48c5ccae
PZ
5628 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5629 * try_to_wake_up()->select_task_rq().
5630 *
5631 * Called with rq->lock held even though we'er in stop_machine() and
5632 * there's no concurrency possible, we hold the required locks anyway
5633 * because of lock validation efforts.
1da177e4 5634 */
48c5ccae 5635static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5636{
70b97a7f 5637 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5638 struct task_struct *next, *stop = rq->stop;
5639 int dest_cpu;
1da177e4
LT
5640
5641 /*
48c5ccae
PZ
5642 * Fudge the rq selection such that the below task selection loop
5643 * doesn't get stuck on the currently eligible stop task.
5644 *
5645 * We're currently inside stop_machine() and the rq is either stuck
5646 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5647 * either way we should never end up calling schedule() until we're
5648 * done here.
1da177e4 5649 */
48c5ccae 5650 rq->stop = NULL;
48f24c4d 5651
dd41f596 5652 for ( ; ; ) {
48c5ccae
PZ
5653 /*
5654 * There's this thread running, bail when that's the only
5655 * remaining thread.
5656 */
5657 if (rq->nr_running == 1)
dd41f596 5658 break;
48c5ccae 5659
b67802ea 5660 next = pick_next_task(rq);
48c5ccae 5661 BUG_ON(!next);
79c53799 5662 next->sched_class->put_prev_task(rq, next);
e692ab53 5663
48c5ccae
PZ
5664 /* Find suitable destination for @next, with force if needed. */
5665 dest_cpu = select_fallback_rq(dead_cpu, next);
5666 raw_spin_unlock(&rq->lock);
5667
5668 __migrate_task(next, dead_cpu, dest_cpu);
5669
5670 raw_spin_lock(&rq->lock);
1da177e4 5671 }
dce48a84 5672
48c5ccae 5673 rq->stop = stop;
dce48a84 5674}
48c5ccae 5675
1da177e4
LT
5676#endif /* CONFIG_HOTPLUG_CPU */
5677
e692ab53
NP
5678#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5679
5680static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5681 {
5682 .procname = "sched_domain",
c57baf1e 5683 .mode = 0555,
e0361851 5684 },
56992309 5685 {}
e692ab53
NP
5686};
5687
5688static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5689 {
5690 .procname = "kernel",
c57baf1e 5691 .mode = 0555,
e0361851
AD
5692 .child = sd_ctl_dir,
5693 },
56992309 5694 {}
e692ab53
NP
5695};
5696
5697static struct ctl_table *sd_alloc_ctl_entry(int n)
5698{
5699 struct ctl_table *entry =
5cf9f062 5700 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5701
e692ab53
NP
5702 return entry;
5703}
5704
6382bc90
MM
5705static void sd_free_ctl_entry(struct ctl_table **tablep)
5706{
cd790076 5707 struct ctl_table *entry;
6382bc90 5708
cd790076
MM
5709 /*
5710 * In the intermediate directories, both the child directory and
5711 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5712 * will always be set. In the lowest directory the names are
cd790076
MM
5713 * static strings and all have proc handlers.
5714 */
5715 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5716 if (entry->child)
5717 sd_free_ctl_entry(&entry->child);
cd790076
MM
5718 if (entry->proc_handler == NULL)
5719 kfree(entry->procname);
5720 }
6382bc90
MM
5721
5722 kfree(*tablep);
5723 *tablep = NULL;
5724}
5725
e692ab53 5726static void
e0361851 5727set_table_entry(struct ctl_table *entry,
e692ab53
NP
5728 const char *procname, void *data, int maxlen,
5729 mode_t mode, proc_handler *proc_handler)
5730{
e692ab53
NP
5731 entry->procname = procname;
5732 entry->data = data;
5733 entry->maxlen = maxlen;
5734 entry->mode = mode;
5735 entry->proc_handler = proc_handler;
5736}
5737
5738static struct ctl_table *
5739sd_alloc_ctl_domain_table(struct sched_domain *sd)
5740{
a5d8c348 5741 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5742
ad1cdc1d
MM
5743 if (table == NULL)
5744 return NULL;
5745
e0361851 5746 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5747 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5748 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5749 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5750 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5751 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5752 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5753 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5754 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5755 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5756 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5757 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5758 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5759 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5760 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5761 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5762 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5763 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5764 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5765 &sd->cache_nice_tries,
5766 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5767 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5768 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5769 set_table_entry(&table[11], "name", sd->name,
5770 CORENAME_MAX_SIZE, 0444, proc_dostring);
5771 /* &table[12] is terminator */
e692ab53
NP
5772
5773 return table;
5774}
5775
9a4e7159 5776static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5777{
5778 struct ctl_table *entry, *table;
5779 struct sched_domain *sd;
5780 int domain_num = 0, i;
5781 char buf[32];
5782
5783 for_each_domain(cpu, sd)
5784 domain_num++;
5785 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5786 if (table == NULL)
5787 return NULL;
e692ab53
NP
5788
5789 i = 0;
5790 for_each_domain(cpu, sd) {
5791 snprintf(buf, 32, "domain%d", i);
e692ab53 5792 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5793 entry->mode = 0555;
e692ab53
NP
5794 entry->child = sd_alloc_ctl_domain_table(sd);
5795 entry++;
5796 i++;
5797 }
5798 return table;
5799}
5800
5801static struct ctl_table_header *sd_sysctl_header;
6382bc90 5802static void register_sched_domain_sysctl(void)
e692ab53 5803{
6ad4c188 5804 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5805 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5806 char buf[32];
5807
7378547f
MM
5808 WARN_ON(sd_ctl_dir[0].child);
5809 sd_ctl_dir[0].child = entry;
5810
ad1cdc1d
MM
5811 if (entry == NULL)
5812 return;
5813
6ad4c188 5814 for_each_possible_cpu(i) {
e692ab53 5815 snprintf(buf, 32, "cpu%d", i);
e692ab53 5816 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5817 entry->mode = 0555;
e692ab53 5818 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5819 entry++;
e692ab53 5820 }
7378547f
MM
5821
5822 WARN_ON(sd_sysctl_header);
e692ab53
NP
5823 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5824}
6382bc90 5825
7378547f 5826/* may be called multiple times per register */
6382bc90
MM
5827static void unregister_sched_domain_sysctl(void)
5828{
7378547f
MM
5829 if (sd_sysctl_header)
5830 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5831 sd_sysctl_header = NULL;
7378547f
MM
5832 if (sd_ctl_dir[0].child)
5833 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5834}
e692ab53 5835#else
6382bc90
MM
5836static void register_sched_domain_sysctl(void)
5837{
5838}
5839static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5840{
5841}
5842#endif
5843
1f11eb6a
GH
5844static void set_rq_online(struct rq *rq)
5845{
5846 if (!rq->online) {
5847 const struct sched_class *class;
5848
c6c4927b 5849 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5850 rq->online = 1;
5851
5852 for_each_class(class) {
5853 if (class->rq_online)
5854 class->rq_online(rq);
5855 }
5856 }
5857}
5858
5859static void set_rq_offline(struct rq *rq)
5860{
5861 if (rq->online) {
5862 const struct sched_class *class;
5863
5864 for_each_class(class) {
5865 if (class->rq_offline)
5866 class->rq_offline(rq);
5867 }
5868
c6c4927b 5869 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5870 rq->online = 0;
5871 }
5872}
5873
1da177e4
LT
5874/*
5875 * migration_call - callback that gets triggered when a CPU is added.
5876 * Here we can start up the necessary migration thread for the new CPU.
5877 */
48f24c4d
IM
5878static int __cpuinit
5879migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5880{
48f24c4d 5881 int cpu = (long)hcpu;
1da177e4 5882 unsigned long flags;
969c7921 5883 struct rq *rq = cpu_rq(cpu);
1da177e4 5884
48c5ccae 5885 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5886
1da177e4 5887 case CPU_UP_PREPARE:
a468d389 5888 rq->calc_load_update = calc_load_update;
1da177e4 5889 break;
48f24c4d 5890
1da177e4 5891 case CPU_ONLINE:
1f94ef59 5892 /* Update our root-domain */
05fa785c 5893 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5894 if (rq->rd) {
c6c4927b 5895 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5896
5897 set_rq_online(rq);
1f94ef59 5898 }
05fa785c 5899 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5900 break;
48f24c4d 5901
1da177e4 5902#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5903 case CPU_DYING:
57d885fe 5904 /* Update our root-domain */
05fa785c 5905 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5906 if (rq->rd) {
c6c4927b 5907 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5908 set_rq_offline(rq);
57d885fe 5909 }
48c5ccae
PZ
5910 migrate_tasks(cpu);
5911 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5912 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5913
5914 migrate_nr_uninterruptible(rq);
5915 calc_global_load_remove(rq);
57d885fe 5916 break;
1da177e4
LT
5917#endif
5918 }
5919 return NOTIFY_OK;
5920}
5921
f38b0820
PM
5922/*
5923 * Register at high priority so that task migration (migrate_all_tasks)
5924 * happens before everything else. This has to be lower priority than
cdd6c482 5925 * the notifier in the perf_event subsystem, though.
1da177e4 5926 */
26c2143b 5927static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5928 .notifier_call = migration_call,
50a323b7 5929 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5930};
5931
3a101d05
TH
5932static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5933 unsigned long action, void *hcpu)
5934{
5935 switch (action & ~CPU_TASKS_FROZEN) {
5936 case CPU_ONLINE:
5937 case CPU_DOWN_FAILED:
5938 set_cpu_active((long)hcpu, true);
5939 return NOTIFY_OK;
5940 default:
5941 return NOTIFY_DONE;
5942 }
5943}
5944
5945static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5946 unsigned long action, void *hcpu)
5947{
5948 switch (action & ~CPU_TASKS_FROZEN) {
5949 case CPU_DOWN_PREPARE:
5950 set_cpu_active((long)hcpu, false);
5951 return NOTIFY_OK;
5952 default:
5953 return NOTIFY_DONE;
5954 }
5955}
5956
7babe8db 5957static int __init migration_init(void)
1da177e4
LT
5958{
5959 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5960 int err;
48f24c4d 5961
3a101d05 5962 /* Initialize migration for the boot CPU */
07dccf33
AM
5963 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5964 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5965 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5966 register_cpu_notifier(&migration_notifier);
7babe8db 5967
3a101d05
TH
5968 /* Register cpu active notifiers */
5969 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5970 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5971
a004cd42 5972 return 0;
1da177e4 5973}
7babe8db 5974early_initcall(migration_init);
1da177e4
LT
5975#endif
5976
5977#ifdef CONFIG_SMP
476f3534 5978
3e9830dc 5979#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5980
f6630114
MT
5981static __read_mostly int sched_domain_debug_enabled;
5982
5983static int __init sched_domain_debug_setup(char *str)
5984{
5985 sched_domain_debug_enabled = 1;
5986
5987 return 0;
5988}
5989early_param("sched_debug", sched_domain_debug_setup);
5990
7c16ec58 5991static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5992 struct cpumask *groupmask)
1da177e4 5993{
4dcf6aff 5994 struct sched_group *group = sd->groups;
434d53b0 5995 char str[256];
1da177e4 5996
968ea6d8 5997 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5998 cpumask_clear(groupmask);
4dcf6aff
IM
5999
6000 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6001
6002 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6003 printk("does not load-balance\n");
4dcf6aff 6004 if (sd->parent)
3df0fc5b
PZ
6005 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6006 " has parent");
4dcf6aff 6007 return -1;
41c7ce9a
NP
6008 }
6009
3df0fc5b 6010 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6011
758b2cdc 6012 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6013 printk(KERN_ERR "ERROR: domain->span does not contain "
6014 "CPU%d\n", cpu);
4dcf6aff 6015 }
758b2cdc 6016 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6017 printk(KERN_ERR "ERROR: domain->groups does not contain"
6018 " CPU%d\n", cpu);
4dcf6aff 6019 }
1da177e4 6020
4dcf6aff 6021 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6022 do {
4dcf6aff 6023 if (!group) {
3df0fc5b
PZ
6024 printk("\n");
6025 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6026 break;
6027 }
6028
18a3885f 6029 if (!group->cpu_power) {
3df0fc5b
PZ
6030 printk(KERN_CONT "\n");
6031 printk(KERN_ERR "ERROR: domain->cpu_power not "
6032 "set\n");
4dcf6aff
IM
6033 break;
6034 }
1da177e4 6035
758b2cdc 6036 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6037 printk(KERN_CONT "\n");
6038 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6039 break;
6040 }
1da177e4 6041
758b2cdc 6042 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6043 printk(KERN_CONT "\n");
6044 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6045 break;
6046 }
1da177e4 6047
758b2cdc 6048 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6049
968ea6d8 6050 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6051
3df0fc5b 6052 printk(KERN_CONT " %s", str);
18a3885f 6053 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6054 printk(KERN_CONT " (cpu_power = %d)",
6055 group->cpu_power);
381512cf 6056 }
1da177e4 6057
4dcf6aff
IM
6058 group = group->next;
6059 } while (group != sd->groups);
3df0fc5b 6060 printk(KERN_CONT "\n");
1da177e4 6061
758b2cdc 6062 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6063 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6064
758b2cdc
RR
6065 if (sd->parent &&
6066 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6067 printk(KERN_ERR "ERROR: parent span is not a superset "
6068 "of domain->span\n");
4dcf6aff
IM
6069 return 0;
6070}
1da177e4 6071
4dcf6aff
IM
6072static void sched_domain_debug(struct sched_domain *sd, int cpu)
6073{
d5dd3db1 6074 cpumask_var_t groupmask;
4dcf6aff 6075 int level = 0;
1da177e4 6076
f6630114
MT
6077 if (!sched_domain_debug_enabled)
6078 return;
6079
4dcf6aff
IM
6080 if (!sd) {
6081 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6082 return;
6083 }
1da177e4 6084
4dcf6aff
IM
6085 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6086
d5dd3db1 6087 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6088 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6089 return;
6090 }
6091
4dcf6aff 6092 for (;;) {
7c16ec58 6093 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6094 break;
1da177e4
LT
6095 level++;
6096 sd = sd->parent;
33859f7f 6097 if (!sd)
4dcf6aff
IM
6098 break;
6099 }
d5dd3db1 6100 free_cpumask_var(groupmask);
1da177e4 6101}
6d6bc0ad 6102#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6103# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6104#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6105
1a20ff27 6106static int sd_degenerate(struct sched_domain *sd)
245af2c7 6107{
758b2cdc 6108 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6109 return 1;
6110
6111 /* Following flags need at least 2 groups */
6112 if (sd->flags & (SD_LOAD_BALANCE |
6113 SD_BALANCE_NEWIDLE |
6114 SD_BALANCE_FORK |
89c4710e
SS
6115 SD_BALANCE_EXEC |
6116 SD_SHARE_CPUPOWER |
6117 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6118 if (sd->groups != sd->groups->next)
6119 return 0;
6120 }
6121
6122 /* Following flags don't use groups */
c88d5910 6123 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6124 return 0;
6125
6126 return 1;
6127}
6128
48f24c4d
IM
6129static int
6130sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6131{
6132 unsigned long cflags = sd->flags, pflags = parent->flags;
6133
6134 if (sd_degenerate(parent))
6135 return 1;
6136
758b2cdc 6137 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6138 return 0;
6139
245af2c7
SS
6140 /* Flags needing groups don't count if only 1 group in parent */
6141 if (parent->groups == parent->groups->next) {
6142 pflags &= ~(SD_LOAD_BALANCE |
6143 SD_BALANCE_NEWIDLE |
6144 SD_BALANCE_FORK |
89c4710e
SS
6145 SD_BALANCE_EXEC |
6146 SD_SHARE_CPUPOWER |
6147 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6148 if (nr_node_ids == 1)
6149 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6150 }
6151 if (~cflags & pflags)
6152 return 0;
6153
6154 return 1;
6155}
6156
c6c4927b
RR
6157static void free_rootdomain(struct root_domain *rd)
6158{
047106ad
PZ
6159 synchronize_sched();
6160
68e74568
RR
6161 cpupri_cleanup(&rd->cpupri);
6162
c6c4927b
RR
6163 free_cpumask_var(rd->rto_mask);
6164 free_cpumask_var(rd->online);
6165 free_cpumask_var(rd->span);
6166 kfree(rd);
6167}
6168
57d885fe
GH
6169static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6170{
a0490fa3 6171 struct root_domain *old_rd = NULL;
57d885fe 6172 unsigned long flags;
57d885fe 6173
05fa785c 6174 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6175
6176 if (rq->rd) {
a0490fa3 6177 old_rd = rq->rd;
57d885fe 6178
c6c4927b 6179 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6180 set_rq_offline(rq);
57d885fe 6181
c6c4927b 6182 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6183
a0490fa3
IM
6184 /*
6185 * If we dont want to free the old_rt yet then
6186 * set old_rd to NULL to skip the freeing later
6187 * in this function:
6188 */
6189 if (!atomic_dec_and_test(&old_rd->refcount))
6190 old_rd = NULL;
57d885fe
GH
6191 }
6192
6193 atomic_inc(&rd->refcount);
6194 rq->rd = rd;
6195
c6c4927b 6196 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6197 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6198 set_rq_online(rq);
57d885fe 6199
05fa785c 6200 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6201
6202 if (old_rd)
6203 free_rootdomain(old_rd);
57d885fe
GH
6204}
6205
68c38fc3 6206static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6207{
6208 memset(rd, 0, sizeof(*rd));
6209
68c38fc3 6210 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6211 goto out;
68c38fc3 6212 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6213 goto free_span;
68c38fc3 6214 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6215 goto free_online;
6e0534f2 6216
68c38fc3 6217 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6218 goto free_rto_mask;
c6c4927b 6219 return 0;
6e0534f2 6220
68e74568
RR
6221free_rto_mask:
6222 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6223free_online:
6224 free_cpumask_var(rd->online);
6225free_span:
6226 free_cpumask_var(rd->span);
0c910d28 6227out:
c6c4927b 6228 return -ENOMEM;
57d885fe
GH
6229}
6230
6231static void init_defrootdomain(void)
6232{
68c38fc3 6233 init_rootdomain(&def_root_domain);
c6c4927b 6234
57d885fe
GH
6235 atomic_set(&def_root_domain.refcount, 1);
6236}
6237
dc938520 6238static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6239{
6240 struct root_domain *rd;
6241
6242 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6243 if (!rd)
6244 return NULL;
6245
68c38fc3 6246 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6247 kfree(rd);
6248 return NULL;
6249 }
57d885fe
GH
6250
6251 return rd;
6252}
6253
1da177e4 6254/*
0eab9146 6255 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6256 * hold the hotplug lock.
6257 */
0eab9146
IM
6258static void
6259cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6260{
70b97a7f 6261 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6262 struct sched_domain *tmp;
6263
669c55e9
PZ
6264 for (tmp = sd; tmp; tmp = tmp->parent)
6265 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6266
245af2c7 6267 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6268 for (tmp = sd; tmp; ) {
245af2c7
SS
6269 struct sched_domain *parent = tmp->parent;
6270 if (!parent)
6271 break;
f29c9b1c 6272
1a848870 6273 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6274 tmp->parent = parent->parent;
1a848870
SS
6275 if (parent->parent)
6276 parent->parent->child = tmp;
f29c9b1c
LZ
6277 } else
6278 tmp = tmp->parent;
245af2c7
SS
6279 }
6280
1a848870 6281 if (sd && sd_degenerate(sd)) {
245af2c7 6282 sd = sd->parent;
1a848870
SS
6283 if (sd)
6284 sd->child = NULL;
6285 }
1da177e4
LT
6286
6287 sched_domain_debug(sd, cpu);
6288
57d885fe 6289 rq_attach_root(rq, rd);
674311d5 6290 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6291}
6292
6293/* cpus with isolated domains */
dcc30a35 6294static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6295
6296/* Setup the mask of cpus configured for isolated domains */
6297static int __init isolated_cpu_setup(char *str)
6298{
bdddd296 6299 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6300 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6301 return 1;
6302}
6303
8927f494 6304__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6305
6306/*
6711cab4
SS
6307 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6308 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6309 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6310 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6311 *
6312 * init_sched_build_groups will build a circular linked list of the groups
6313 * covered by the given span, and will set each group's ->cpumask correctly,
6314 * and ->cpu_power to 0.
6315 */
a616058b 6316static void
96f874e2
RR
6317init_sched_build_groups(const struct cpumask *span,
6318 const struct cpumask *cpu_map,
6319 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6320 struct sched_group **sg,
96f874e2
RR
6321 struct cpumask *tmpmask),
6322 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6323{
6324 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6325 int i;
6326
96f874e2 6327 cpumask_clear(covered);
7c16ec58 6328
abcd083a 6329 for_each_cpu(i, span) {
6711cab4 6330 struct sched_group *sg;
7c16ec58 6331 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6332 int j;
6333
758b2cdc 6334 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6335 continue;
6336
758b2cdc 6337 cpumask_clear(sched_group_cpus(sg));
18a3885f 6338 sg->cpu_power = 0;
1da177e4 6339
abcd083a 6340 for_each_cpu(j, span) {
7c16ec58 6341 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6342 continue;
6343
96f874e2 6344 cpumask_set_cpu(j, covered);
758b2cdc 6345 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6346 }
6347 if (!first)
6348 first = sg;
6349 if (last)
6350 last->next = sg;
6351 last = sg;
6352 }
6353 last->next = first;
6354}
6355
9c1cfda2 6356#define SD_NODES_PER_DOMAIN 16
1da177e4 6357
9c1cfda2 6358#ifdef CONFIG_NUMA
198e2f18 6359
9c1cfda2
JH
6360/**
6361 * find_next_best_node - find the next node to include in a sched_domain
6362 * @node: node whose sched_domain we're building
6363 * @used_nodes: nodes already in the sched_domain
6364 *
41a2d6cf 6365 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6366 * finds the closest node not already in the @used_nodes map.
6367 *
6368 * Should use nodemask_t.
6369 */
c5f59f08 6370static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6371{
6372 int i, n, val, min_val, best_node = 0;
6373
6374 min_val = INT_MAX;
6375
076ac2af 6376 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6377 /* Start at @node */
076ac2af 6378 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6379
6380 if (!nr_cpus_node(n))
6381 continue;
6382
6383 /* Skip already used nodes */
c5f59f08 6384 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6385 continue;
6386
6387 /* Simple min distance search */
6388 val = node_distance(node, n);
6389
6390 if (val < min_val) {
6391 min_val = val;
6392 best_node = n;
6393 }
6394 }
6395
c5f59f08 6396 node_set(best_node, *used_nodes);
9c1cfda2
JH
6397 return best_node;
6398}
6399
6400/**
6401 * sched_domain_node_span - get a cpumask for a node's sched_domain
6402 * @node: node whose cpumask we're constructing
73486722 6403 * @span: resulting cpumask
9c1cfda2 6404 *
41a2d6cf 6405 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6406 * should be one that prevents unnecessary balancing, but also spreads tasks
6407 * out optimally.
6408 */
96f874e2 6409static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6410{
c5f59f08 6411 nodemask_t used_nodes;
48f24c4d 6412 int i;
9c1cfda2 6413
6ca09dfc 6414 cpumask_clear(span);
c5f59f08 6415 nodes_clear(used_nodes);
9c1cfda2 6416
6ca09dfc 6417 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6418 node_set(node, used_nodes);
9c1cfda2
JH
6419
6420 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6421 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6422
6ca09dfc 6423 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6424 }
9c1cfda2 6425}
6d6bc0ad 6426#endif /* CONFIG_NUMA */
9c1cfda2 6427
5c45bf27 6428int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6429
6c99e9ad
RR
6430/*
6431 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6432 *
6433 * ( See the the comments in include/linux/sched.h:struct sched_group
6434 * and struct sched_domain. )
6c99e9ad
RR
6435 */
6436struct static_sched_group {
6437 struct sched_group sg;
6438 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6439};
6440
6441struct static_sched_domain {
6442 struct sched_domain sd;
6443 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6444};
6445
49a02c51
AH
6446struct s_data {
6447#ifdef CONFIG_NUMA
6448 int sd_allnodes;
6449 cpumask_var_t domainspan;
6450 cpumask_var_t covered;
6451 cpumask_var_t notcovered;
6452#endif
6453 cpumask_var_t nodemask;
6454 cpumask_var_t this_sibling_map;
6455 cpumask_var_t this_core_map;
01a08546 6456 cpumask_var_t this_book_map;
49a02c51
AH
6457 cpumask_var_t send_covered;
6458 cpumask_var_t tmpmask;
6459 struct sched_group **sched_group_nodes;
6460 struct root_domain *rd;
6461};
6462
2109b99e
AH
6463enum s_alloc {
6464 sa_sched_groups = 0,
6465 sa_rootdomain,
6466 sa_tmpmask,
6467 sa_send_covered,
01a08546 6468 sa_this_book_map,
2109b99e
AH
6469 sa_this_core_map,
6470 sa_this_sibling_map,
6471 sa_nodemask,
6472 sa_sched_group_nodes,
6473#ifdef CONFIG_NUMA
6474 sa_notcovered,
6475 sa_covered,
6476 sa_domainspan,
6477#endif
6478 sa_none,
6479};
6480
9c1cfda2 6481/*
48f24c4d 6482 * SMT sched-domains:
9c1cfda2 6483 */
1da177e4 6484#ifdef CONFIG_SCHED_SMT
6c99e9ad 6485static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6486static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6487
41a2d6cf 6488static int
96f874e2
RR
6489cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6490 struct sched_group **sg, struct cpumask *unused)
1da177e4 6491{
6711cab4 6492 if (sg)
1871e52c 6493 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6494 return cpu;
6495}
6d6bc0ad 6496#endif /* CONFIG_SCHED_SMT */
1da177e4 6497
48f24c4d
IM
6498/*
6499 * multi-core sched-domains:
6500 */
1e9f28fa 6501#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6502static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6503static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6504
41a2d6cf 6505static int
96f874e2
RR
6506cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6507 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6508{
6711cab4 6509 int group;
f269893c 6510#ifdef CONFIG_SCHED_SMT
c69fc56d 6511 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6512 group = cpumask_first(mask);
f269893c
HC
6513#else
6514 group = cpu;
6515#endif
6711cab4 6516 if (sg)
6c99e9ad 6517 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6518 return group;
1e9f28fa 6519}
f269893c 6520#endif /* CONFIG_SCHED_MC */
1e9f28fa 6521
01a08546
HC
6522/*
6523 * book sched-domains:
6524 */
6525#ifdef CONFIG_SCHED_BOOK
6526static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6527static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6528
41a2d6cf 6529static int
01a08546
HC
6530cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6531 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6532{
01a08546
HC
6533 int group = cpu;
6534#ifdef CONFIG_SCHED_MC
6535 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6536 group = cpumask_first(mask);
6537#elif defined(CONFIG_SCHED_SMT)
6538 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6539 group = cpumask_first(mask);
6540#endif
6711cab4 6541 if (sg)
01a08546
HC
6542 *sg = &per_cpu(sched_group_book, group).sg;
6543 return group;
1e9f28fa 6544}
01a08546 6545#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6546
6c99e9ad
RR
6547static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6548static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6549
41a2d6cf 6550static int
96f874e2
RR
6551cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6552 struct sched_group **sg, struct cpumask *mask)
1da177e4 6553{
6711cab4 6554 int group;
01a08546
HC
6555#ifdef CONFIG_SCHED_BOOK
6556 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6557 group = cpumask_first(mask);
6558#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6559 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6560 group = cpumask_first(mask);
1e9f28fa 6561#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6562 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6563 group = cpumask_first(mask);
1da177e4 6564#else
6711cab4 6565 group = cpu;
1da177e4 6566#endif
6711cab4 6567 if (sg)
6c99e9ad 6568 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6569 return group;
1da177e4
LT
6570}
6571
6572#ifdef CONFIG_NUMA
1da177e4 6573/*
9c1cfda2
JH
6574 * The init_sched_build_groups can't handle what we want to do with node
6575 * groups, so roll our own. Now each node has its own list of groups which
6576 * gets dynamically allocated.
1da177e4 6577 */
62ea9ceb 6578static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6579static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6580
62ea9ceb 6581static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6582static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6583
96f874e2
RR
6584static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6585 struct sched_group **sg,
6586 struct cpumask *nodemask)
9c1cfda2 6587{
6711cab4
SS
6588 int group;
6589
6ca09dfc 6590 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6591 group = cpumask_first(nodemask);
6711cab4
SS
6592
6593 if (sg)
6c99e9ad 6594 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6595 return group;
1da177e4 6596}
6711cab4 6597
08069033
SS
6598static void init_numa_sched_groups_power(struct sched_group *group_head)
6599{
6600 struct sched_group *sg = group_head;
6601 int j;
6602
6603 if (!sg)
6604 return;
3a5c359a 6605 do {
758b2cdc 6606 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6607 struct sched_domain *sd;
08069033 6608
6c99e9ad 6609 sd = &per_cpu(phys_domains, j).sd;
13318a71 6610 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6611 /*
6612 * Only add "power" once for each
6613 * physical package.
6614 */
6615 continue;
6616 }
08069033 6617
18a3885f 6618 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6619 }
6620 sg = sg->next;
6621 } while (sg != group_head);
08069033 6622}
0601a88d
AH
6623
6624static int build_numa_sched_groups(struct s_data *d,
6625 const struct cpumask *cpu_map, int num)
6626{
6627 struct sched_domain *sd;
6628 struct sched_group *sg, *prev;
6629 int n, j;
6630
6631 cpumask_clear(d->covered);
6632 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6633 if (cpumask_empty(d->nodemask)) {
6634 d->sched_group_nodes[num] = NULL;
6635 goto out;
6636 }
6637
6638 sched_domain_node_span(num, d->domainspan);
6639 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6640
6641 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6642 GFP_KERNEL, num);
6643 if (!sg) {
3df0fc5b
PZ
6644 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6645 num);
0601a88d
AH
6646 return -ENOMEM;
6647 }
6648 d->sched_group_nodes[num] = sg;
6649
6650 for_each_cpu(j, d->nodemask) {
6651 sd = &per_cpu(node_domains, j).sd;
6652 sd->groups = sg;
6653 }
6654
18a3885f 6655 sg->cpu_power = 0;
0601a88d
AH
6656 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6657 sg->next = sg;
6658 cpumask_or(d->covered, d->covered, d->nodemask);
6659
6660 prev = sg;
6661 for (j = 0; j < nr_node_ids; j++) {
6662 n = (num + j) % nr_node_ids;
6663 cpumask_complement(d->notcovered, d->covered);
6664 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6665 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6666 if (cpumask_empty(d->tmpmask))
6667 break;
6668 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6669 if (cpumask_empty(d->tmpmask))
6670 continue;
6671 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6672 GFP_KERNEL, num);
6673 if (!sg) {
3df0fc5b
PZ
6674 printk(KERN_WARNING
6675 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6676 return -ENOMEM;
6677 }
18a3885f 6678 sg->cpu_power = 0;
0601a88d
AH
6679 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6680 sg->next = prev->next;
6681 cpumask_or(d->covered, d->covered, d->tmpmask);
6682 prev->next = sg;
6683 prev = sg;
6684 }
6685out:
6686 return 0;
6687}
6d6bc0ad 6688#endif /* CONFIG_NUMA */
1da177e4 6689
a616058b 6690#ifdef CONFIG_NUMA
51888ca2 6691/* Free memory allocated for various sched_group structures */
96f874e2
RR
6692static void free_sched_groups(const struct cpumask *cpu_map,
6693 struct cpumask *nodemask)
51888ca2 6694{
a616058b 6695 int cpu, i;
51888ca2 6696
abcd083a 6697 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6698 struct sched_group **sched_group_nodes
6699 = sched_group_nodes_bycpu[cpu];
6700
51888ca2
SV
6701 if (!sched_group_nodes)
6702 continue;
6703
076ac2af 6704 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6705 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6706
6ca09dfc 6707 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6708 if (cpumask_empty(nodemask))
51888ca2
SV
6709 continue;
6710
6711 if (sg == NULL)
6712 continue;
6713 sg = sg->next;
6714next_sg:
6715 oldsg = sg;
6716 sg = sg->next;
6717 kfree(oldsg);
6718 if (oldsg != sched_group_nodes[i])
6719 goto next_sg;
6720 }
6721 kfree(sched_group_nodes);
6722 sched_group_nodes_bycpu[cpu] = NULL;
6723 }
51888ca2 6724}
6d6bc0ad 6725#else /* !CONFIG_NUMA */
96f874e2
RR
6726static void free_sched_groups(const struct cpumask *cpu_map,
6727 struct cpumask *nodemask)
a616058b
SS
6728{
6729}
6d6bc0ad 6730#endif /* CONFIG_NUMA */
51888ca2 6731
89c4710e
SS
6732/*
6733 * Initialize sched groups cpu_power.
6734 *
6735 * cpu_power indicates the capacity of sched group, which is used while
6736 * distributing the load between different sched groups in a sched domain.
6737 * Typically cpu_power for all the groups in a sched domain will be same unless
6738 * there are asymmetries in the topology. If there are asymmetries, group
6739 * having more cpu_power will pickup more load compared to the group having
6740 * less cpu_power.
89c4710e
SS
6741 */
6742static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6743{
6744 struct sched_domain *child;
6745 struct sched_group *group;
f93e65c1
PZ
6746 long power;
6747 int weight;
89c4710e
SS
6748
6749 WARN_ON(!sd || !sd->groups);
6750
13318a71 6751 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6752 return;
6753
aae6d3dd
SS
6754 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6755
89c4710e
SS
6756 child = sd->child;
6757
18a3885f 6758 sd->groups->cpu_power = 0;
5517d86b 6759
f93e65c1
PZ
6760 if (!child) {
6761 power = SCHED_LOAD_SCALE;
6762 weight = cpumask_weight(sched_domain_span(sd));
6763 /*
6764 * SMT siblings share the power of a single core.
a52bfd73
PZ
6765 * Usually multiple threads get a better yield out of
6766 * that one core than a single thread would have,
6767 * reflect that in sd->smt_gain.
f93e65c1 6768 */
a52bfd73
PZ
6769 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6770 power *= sd->smt_gain;
f93e65c1 6771 power /= weight;
a52bfd73
PZ
6772 power >>= SCHED_LOAD_SHIFT;
6773 }
18a3885f 6774 sd->groups->cpu_power += power;
89c4710e
SS
6775 return;
6776 }
6777
89c4710e 6778 /*
f93e65c1 6779 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6780 */
6781 group = child->groups;
6782 do {
18a3885f 6783 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6784 group = group->next;
6785 } while (group != child->groups);
6786}
6787
7c16ec58
MT
6788/*
6789 * Initializers for schedule domains
6790 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6791 */
6792
a5d8c348
IM
6793#ifdef CONFIG_SCHED_DEBUG
6794# define SD_INIT_NAME(sd, type) sd->name = #type
6795#else
6796# define SD_INIT_NAME(sd, type) do { } while (0)
6797#endif
6798
7c16ec58 6799#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6800
7c16ec58
MT
6801#define SD_INIT_FUNC(type) \
6802static noinline void sd_init_##type(struct sched_domain *sd) \
6803{ \
6804 memset(sd, 0, sizeof(*sd)); \
6805 *sd = SD_##type##_INIT; \
1d3504fc 6806 sd->level = SD_LV_##type; \
a5d8c348 6807 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6808}
6809
6810SD_INIT_FUNC(CPU)
6811#ifdef CONFIG_NUMA
6812 SD_INIT_FUNC(ALLNODES)
6813 SD_INIT_FUNC(NODE)
6814#endif
6815#ifdef CONFIG_SCHED_SMT
6816 SD_INIT_FUNC(SIBLING)
6817#endif
6818#ifdef CONFIG_SCHED_MC
6819 SD_INIT_FUNC(MC)
6820#endif
01a08546
HC
6821#ifdef CONFIG_SCHED_BOOK
6822 SD_INIT_FUNC(BOOK)
6823#endif
7c16ec58 6824
1d3504fc
HS
6825static int default_relax_domain_level = -1;
6826
6827static int __init setup_relax_domain_level(char *str)
6828{
30e0e178
LZ
6829 unsigned long val;
6830
6831 val = simple_strtoul(str, NULL, 0);
6832 if (val < SD_LV_MAX)
6833 default_relax_domain_level = val;
6834
1d3504fc
HS
6835 return 1;
6836}
6837__setup("relax_domain_level=", setup_relax_domain_level);
6838
6839static void set_domain_attribute(struct sched_domain *sd,
6840 struct sched_domain_attr *attr)
6841{
6842 int request;
6843
6844 if (!attr || attr->relax_domain_level < 0) {
6845 if (default_relax_domain_level < 0)
6846 return;
6847 else
6848 request = default_relax_domain_level;
6849 } else
6850 request = attr->relax_domain_level;
6851 if (request < sd->level) {
6852 /* turn off idle balance on this domain */
c88d5910 6853 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6854 } else {
6855 /* turn on idle balance on this domain */
c88d5910 6856 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6857 }
6858}
6859
2109b99e
AH
6860static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6861 const struct cpumask *cpu_map)
6862{
6863 switch (what) {
6864 case sa_sched_groups:
6865 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6866 d->sched_group_nodes = NULL;
6867 case sa_rootdomain:
6868 free_rootdomain(d->rd); /* fall through */
6869 case sa_tmpmask:
6870 free_cpumask_var(d->tmpmask); /* fall through */
6871 case sa_send_covered:
6872 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
6873 case sa_this_book_map:
6874 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
6875 case sa_this_core_map:
6876 free_cpumask_var(d->this_core_map); /* fall through */
6877 case sa_this_sibling_map:
6878 free_cpumask_var(d->this_sibling_map); /* fall through */
6879 case sa_nodemask:
6880 free_cpumask_var(d->nodemask); /* fall through */
6881 case sa_sched_group_nodes:
d1b55138 6882#ifdef CONFIG_NUMA
2109b99e
AH
6883 kfree(d->sched_group_nodes); /* fall through */
6884 case sa_notcovered:
6885 free_cpumask_var(d->notcovered); /* fall through */
6886 case sa_covered:
6887 free_cpumask_var(d->covered); /* fall through */
6888 case sa_domainspan:
6889 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6890#endif
2109b99e
AH
6891 case sa_none:
6892 break;
6893 }
6894}
3404c8d9 6895
2109b99e
AH
6896static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6897 const struct cpumask *cpu_map)
6898{
3404c8d9 6899#ifdef CONFIG_NUMA
2109b99e
AH
6900 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6901 return sa_none;
6902 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6903 return sa_domainspan;
6904 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6905 return sa_covered;
6906 /* Allocate the per-node list of sched groups */
6907 d->sched_group_nodes = kcalloc(nr_node_ids,
6908 sizeof(struct sched_group *), GFP_KERNEL);
6909 if (!d->sched_group_nodes) {
3df0fc5b 6910 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6911 return sa_notcovered;
d1b55138 6912 }
2109b99e 6913 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6914#endif
2109b99e
AH
6915 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6916 return sa_sched_group_nodes;
6917 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6918 return sa_nodemask;
6919 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6920 return sa_this_sibling_map;
01a08546 6921 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 6922 return sa_this_core_map;
01a08546
HC
6923 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6924 return sa_this_book_map;
2109b99e
AH
6925 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6926 return sa_send_covered;
6927 d->rd = alloc_rootdomain();
6928 if (!d->rd) {
3df0fc5b 6929 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6930 return sa_tmpmask;
57d885fe 6931 }
2109b99e
AH
6932 return sa_rootdomain;
6933}
57d885fe 6934
7f4588f3
AH
6935static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6936 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6937{
6938 struct sched_domain *sd = NULL;
7c16ec58 6939#ifdef CONFIG_NUMA
7f4588f3 6940 struct sched_domain *parent;
1da177e4 6941
7f4588f3
AH
6942 d->sd_allnodes = 0;
6943 if (cpumask_weight(cpu_map) >
6944 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6945 sd = &per_cpu(allnodes_domains, i).sd;
6946 SD_INIT(sd, ALLNODES);
1d3504fc 6947 set_domain_attribute(sd, attr);
7f4588f3
AH
6948 cpumask_copy(sched_domain_span(sd), cpu_map);
6949 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6950 d->sd_allnodes = 1;
6951 }
6952 parent = sd;
6953
6954 sd = &per_cpu(node_domains, i).sd;
6955 SD_INIT(sd, NODE);
6956 set_domain_attribute(sd, attr);
6957 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6958 sd->parent = parent;
6959 if (parent)
6960 parent->child = sd;
6961 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6962#endif
7f4588f3
AH
6963 return sd;
6964}
1da177e4 6965
87cce662
AH
6966static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6967 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6968 struct sched_domain *parent, int i)
6969{
6970 struct sched_domain *sd;
6971 sd = &per_cpu(phys_domains, i).sd;
6972 SD_INIT(sd, CPU);
6973 set_domain_attribute(sd, attr);
6974 cpumask_copy(sched_domain_span(sd), d->nodemask);
6975 sd->parent = parent;
6976 if (parent)
6977 parent->child = sd;
6978 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6979 return sd;
6980}
1da177e4 6981
01a08546
HC
6982static struct sched_domain *__build_book_sched_domain(struct s_data *d,
6983 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6984 struct sched_domain *parent, int i)
6985{
6986 struct sched_domain *sd = parent;
6987#ifdef CONFIG_SCHED_BOOK
6988 sd = &per_cpu(book_domains, i).sd;
6989 SD_INIT(sd, BOOK);
6990 set_domain_attribute(sd, attr);
6991 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
6992 sd->parent = parent;
6993 parent->child = sd;
6994 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
6995#endif
6996 return sd;
6997}
6998
410c4081
AH
6999static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7000 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7001 struct sched_domain *parent, int i)
7002{
7003 struct sched_domain *sd = parent;
1e9f28fa 7004#ifdef CONFIG_SCHED_MC
410c4081
AH
7005 sd = &per_cpu(core_domains, i).sd;
7006 SD_INIT(sd, MC);
7007 set_domain_attribute(sd, attr);
7008 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7009 sd->parent = parent;
7010 parent->child = sd;
7011 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7012#endif
410c4081
AH
7013 return sd;
7014}
1e9f28fa 7015
d8173535
AH
7016static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7017 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7018 struct sched_domain *parent, int i)
7019{
7020 struct sched_domain *sd = parent;
1da177e4 7021#ifdef CONFIG_SCHED_SMT
d8173535
AH
7022 sd = &per_cpu(cpu_domains, i).sd;
7023 SD_INIT(sd, SIBLING);
7024 set_domain_attribute(sd, attr);
7025 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7026 sd->parent = parent;
7027 parent->child = sd;
7028 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7029#endif
d8173535
AH
7030 return sd;
7031}
1da177e4 7032
0e8e85c9
AH
7033static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7034 const struct cpumask *cpu_map, int cpu)
7035{
7036 switch (l) {
1da177e4 7037#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7038 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7039 cpumask_and(d->this_sibling_map, cpu_map,
7040 topology_thread_cpumask(cpu));
7041 if (cpu == cpumask_first(d->this_sibling_map))
7042 init_sched_build_groups(d->this_sibling_map, cpu_map,
7043 &cpu_to_cpu_group,
7044 d->send_covered, d->tmpmask);
7045 break;
1da177e4 7046#endif
1e9f28fa 7047#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7048 case SD_LV_MC: /* set up multi-core groups */
7049 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7050 if (cpu == cpumask_first(d->this_core_map))
7051 init_sched_build_groups(d->this_core_map, cpu_map,
7052 &cpu_to_core_group,
7053 d->send_covered, d->tmpmask);
7054 break;
01a08546
HC
7055#endif
7056#ifdef CONFIG_SCHED_BOOK
7057 case SD_LV_BOOK: /* set up book groups */
7058 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7059 if (cpu == cpumask_first(d->this_book_map))
7060 init_sched_build_groups(d->this_book_map, cpu_map,
7061 &cpu_to_book_group,
7062 d->send_covered, d->tmpmask);
7063 break;
1e9f28fa 7064#endif
86548096
AH
7065 case SD_LV_CPU: /* set up physical groups */
7066 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7067 if (!cpumask_empty(d->nodemask))
7068 init_sched_build_groups(d->nodemask, cpu_map,
7069 &cpu_to_phys_group,
7070 d->send_covered, d->tmpmask);
7071 break;
1da177e4 7072#ifdef CONFIG_NUMA
de616e36
AH
7073 case SD_LV_ALLNODES:
7074 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7075 d->send_covered, d->tmpmask);
7076 break;
7077#endif
0e8e85c9
AH
7078 default:
7079 break;
7c16ec58 7080 }
0e8e85c9 7081}
9c1cfda2 7082
2109b99e
AH
7083/*
7084 * Build sched domains for a given set of cpus and attach the sched domains
7085 * to the individual cpus
7086 */
7087static int __build_sched_domains(const struct cpumask *cpu_map,
7088 struct sched_domain_attr *attr)
7089{
7090 enum s_alloc alloc_state = sa_none;
7091 struct s_data d;
294b0c96 7092 struct sched_domain *sd;
2109b99e 7093 int i;
7c16ec58 7094#ifdef CONFIG_NUMA
2109b99e 7095 d.sd_allnodes = 0;
7c16ec58 7096#endif
9c1cfda2 7097
2109b99e
AH
7098 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7099 if (alloc_state != sa_rootdomain)
7100 goto error;
7101 alloc_state = sa_sched_groups;
9c1cfda2 7102
1da177e4 7103 /*
1a20ff27 7104 * Set up domains for cpus specified by the cpu_map.
1da177e4 7105 */
abcd083a 7106 for_each_cpu(i, cpu_map) {
49a02c51
AH
7107 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7108 cpu_map);
9761eea8 7109
7f4588f3 7110 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7111 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7112 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7113 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7114 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7115 }
9c1cfda2 7116
abcd083a 7117 for_each_cpu(i, cpu_map) {
0e8e85c9 7118 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7119 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7120 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7121 }
9c1cfda2 7122
1da177e4 7123 /* Set up physical groups */
86548096
AH
7124 for (i = 0; i < nr_node_ids; i++)
7125 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7126
1da177e4
LT
7127#ifdef CONFIG_NUMA
7128 /* Set up node groups */
de616e36
AH
7129 if (d.sd_allnodes)
7130 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7131
0601a88d
AH
7132 for (i = 0; i < nr_node_ids; i++)
7133 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7134 goto error;
1da177e4
LT
7135#endif
7136
7137 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7138#ifdef CONFIG_SCHED_SMT
abcd083a 7139 for_each_cpu(i, cpu_map) {
294b0c96 7140 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7141 init_sched_groups_power(i, sd);
5c45bf27 7142 }
1da177e4 7143#endif
1e9f28fa 7144#ifdef CONFIG_SCHED_MC
abcd083a 7145 for_each_cpu(i, cpu_map) {
294b0c96 7146 sd = &per_cpu(core_domains, i).sd;
89c4710e 7147 init_sched_groups_power(i, sd);
5c45bf27
SS
7148 }
7149#endif
01a08546
HC
7150#ifdef CONFIG_SCHED_BOOK
7151 for_each_cpu(i, cpu_map) {
7152 sd = &per_cpu(book_domains, i).sd;
7153 init_sched_groups_power(i, sd);
7154 }
7155#endif
1e9f28fa 7156
abcd083a 7157 for_each_cpu(i, cpu_map) {
294b0c96 7158 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7159 init_sched_groups_power(i, sd);
1da177e4
LT
7160 }
7161
9c1cfda2 7162#ifdef CONFIG_NUMA
076ac2af 7163 for (i = 0; i < nr_node_ids; i++)
49a02c51 7164 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7165
49a02c51 7166 if (d.sd_allnodes) {
6711cab4 7167 struct sched_group *sg;
f712c0c7 7168
96f874e2 7169 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7170 d.tmpmask);
f712c0c7
SS
7171 init_numa_sched_groups_power(sg);
7172 }
9c1cfda2
JH
7173#endif
7174
1da177e4 7175 /* Attach the domains */
abcd083a 7176 for_each_cpu(i, cpu_map) {
1da177e4 7177#ifdef CONFIG_SCHED_SMT
6c99e9ad 7178 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7179#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7180 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7181#elif defined(CONFIG_SCHED_BOOK)
7182 sd = &per_cpu(book_domains, i).sd;
1da177e4 7183#else
6c99e9ad 7184 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7185#endif
49a02c51 7186 cpu_attach_domain(sd, d.rd, i);
1da177e4 7187 }
51888ca2 7188
2109b99e
AH
7189 d.sched_group_nodes = NULL; /* don't free this we still need it */
7190 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7191 return 0;
51888ca2 7192
51888ca2 7193error:
2109b99e
AH
7194 __free_domain_allocs(&d, alloc_state, cpu_map);
7195 return -ENOMEM;
1da177e4 7196}
029190c5 7197
96f874e2 7198static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7199{
7200 return __build_sched_domains(cpu_map, NULL);
7201}
7202
acc3f5d7 7203static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7204static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7205static struct sched_domain_attr *dattr_cur;
7206 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7207
7208/*
7209 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7210 * cpumask) fails, then fallback to a single sched domain,
7211 * as determined by the single cpumask fallback_doms.
029190c5 7212 */
4212823f 7213static cpumask_var_t fallback_doms;
029190c5 7214
ee79d1bd
HC
7215/*
7216 * arch_update_cpu_topology lets virtualized architectures update the
7217 * cpu core maps. It is supposed to return 1 if the topology changed
7218 * or 0 if it stayed the same.
7219 */
7220int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7221{
ee79d1bd 7222 return 0;
22e52b07
HC
7223}
7224
acc3f5d7
RR
7225cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7226{
7227 int i;
7228 cpumask_var_t *doms;
7229
7230 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7231 if (!doms)
7232 return NULL;
7233 for (i = 0; i < ndoms; i++) {
7234 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7235 free_sched_domains(doms, i);
7236 return NULL;
7237 }
7238 }
7239 return doms;
7240}
7241
7242void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7243{
7244 unsigned int i;
7245 for (i = 0; i < ndoms; i++)
7246 free_cpumask_var(doms[i]);
7247 kfree(doms);
7248}
7249
1a20ff27 7250/*
41a2d6cf 7251 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7252 * For now this just excludes isolated cpus, but could be used to
7253 * exclude other special cases in the future.
1a20ff27 7254 */
96f874e2 7255static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7256{
7378547f
MM
7257 int err;
7258
22e52b07 7259 arch_update_cpu_topology();
029190c5 7260 ndoms_cur = 1;
acc3f5d7 7261 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7262 if (!doms_cur)
acc3f5d7
RR
7263 doms_cur = &fallback_doms;
7264 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7265 dattr_cur = NULL;
acc3f5d7 7266 err = build_sched_domains(doms_cur[0]);
6382bc90 7267 register_sched_domain_sysctl();
7378547f
MM
7268
7269 return err;
1a20ff27
DG
7270}
7271
96f874e2
RR
7272static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7273 struct cpumask *tmpmask)
1da177e4 7274{
7c16ec58 7275 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7276}
1da177e4 7277
1a20ff27
DG
7278/*
7279 * Detach sched domains from a group of cpus specified in cpu_map
7280 * These cpus will now be attached to the NULL domain
7281 */
96f874e2 7282static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7283{
96f874e2
RR
7284 /* Save because hotplug lock held. */
7285 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7286 int i;
7287
abcd083a 7288 for_each_cpu(i, cpu_map)
57d885fe 7289 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7290 synchronize_sched();
96f874e2 7291 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7292}
7293
1d3504fc
HS
7294/* handle null as "default" */
7295static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7296 struct sched_domain_attr *new, int idx_new)
7297{
7298 struct sched_domain_attr tmp;
7299
7300 /* fast path */
7301 if (!new && !cur)
7302 return 1;
7303
7304 tmp = SD_ATTR_INIT;
7305 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7306 new ? (new + idx_new) : &tmp,
7307 sizeof(struct sched_domain_attr));
7308}
7309
029190c5
PJ
7310/*
7311 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7312 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7313 * doms_new[] to the current sched domain partitioning, doms_cur[].
7314 * It destroys each deleted domain and builds each new domain.
7315 *
acc3f5d7 7316 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7317 * The masks don't intersect (don't overlap.) We should setup one
7318 * sched domain for each mask. CPUs not in any of the cpumasks will
7319 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7320 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7321 * it as it is.
7322 *
acc3f5d7
RR
7323 * The passed in 'doms_new' should be allocated using
7324 * alloc_sched_domains. This routine takes ownership of it and will
7325 * free_sched_domains it when done with it. If the caller failed the
7326 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7327 * and partition_sched_domains() will fallback to the single partition
7328 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7329 *
96f874e2 7330 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7331 * ndoms_new == 0 is a special case for destroying existing domains,
7332 * and it will not create the default domain.
dfb512ec 7333 *
029190c5
PJ
7334 * Call with hotplug lock held
7335 */
acc3f5d7 7336void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7337 struct sched_domain_attr *dattr_new)
029190c5 7338{
dfb512ec 7339 int i, j, n;
d65bd5ec 7340 int new_topology;
029190c5 7341
712555ee 7342 mutex_lock(&sched_domains_mutex);
a1835615 7343
7378547f
MM
7344 /* always unregister in case we don't destroy any domains */
7345 unregister_sched_domain_sysctl();
7346
d65bd5ec
HC
7347 /* Let architecture update cpu core mappings. */
7348 new_topology = arch_update_cpu_topology();
7349
dfb512ec 7350 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7351
7352 /* Destroy deleted domains */
7353 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7354 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7355 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7356 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7357 goto match1;
7358 }
7359 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7360 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7361match1:
7362 ;
7363 }
7364
e761b772
MK
7365 if (doms_new == NULL) {
7366 ndoms_cur = 0;
acc3f5d7 7367 doms_new = &fallback_doms;
6ad4c188 7368 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7369 WARN_ON_ONCE(dattr_new);
e761b772
MK
7370 }
7371
029190c5
PJ
7372 /* Build new domains */
7373 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7374 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7375 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7376 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7377 goto match2;
7378 }
7379 /* no match - add a new doms_new */
acc3f5d7 7380 __build_sched_domains(doms_new[i],
1d3504fc 7381 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7382match2:
7383 ;
7384 }
7385
7386 /* Remember the new sched domains */
acc3f5d7
RR
7387 if (doms_cur != &fallback_doms)
7388 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7389 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7390 doms_cur = doms_new;
1d3504fc 7391 dattr_cur = dattr_new;
029190c5 7392 ndoms_cur = ndoms_new;
7378547f
MM
7393
7394 register_sched_domain_sysctl();
a1835615 7395
712555ee 7396 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7397}
7398
5c45bf27 7399#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7400static void arch_reinit_sched_domains(void)
5c45bf27 7401{
95402b38 7402 get_online_cpus();
dfb512ec
MK
7403
7404 /* Destroy domains first to force the rebuild */
7405 partition_sched_domains(0, NULL, NULL);
7406
e761b772 7407 rebuild_sched_domains();
95402b38 7408 put_online_cpus();
5c45bf27
SS
7409}
7410
7411static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7412{
afb8a9b7 7413 unsigned int level = 0;
5c45bf27 7414
afb8a9b7
GS
7415 if (sscanf(buf, "%u", &level) != 1)
7416 return -EINVAL;
7417
7418 /*
7419 * level is always be positive so don't check for
7420 * level < POWERSAVINGS_BALANCE_NONE which is 0
7421 * What happens on 0 or 1 byte write,
7422 * need to check for count as well?
7423 */
7424
7425 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7426 return -EINVAL;
7427
7428 if (smt)
afb8a9b7 7429 sched_smt_power_savings = level;
5c45bf27 7430 else
afb8a9b7 7431 sched_mc_power_savings = level;
5c45bf27 7432
c70f22d2 7433 arch_reinit_sched_domains();
5c45bf27 7434
c70f22d2 7435 return count;
5c45bf27
SS
7436}
7437
5c45bf27 7438#ifdef CONFIG_SCHED_MC
f718cd4a 7439static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7440 struct sysdev_class_attribute *attr,
f718cd4a 7441 char *page)
5c45bf27
SS
7442{
7443 return sprintf(page, "%u\n", sched_mc_power_savings);
7444}
f718cd4a 7445static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7446 struct sysdev_class_attribute *attr,
48f24c4d 7447 const char *buf, size_t count)
5c45bf27
SS
7448{
7449 return sched_power_savings_store(buf, count, 0);
7450}
f718cd4a
AK
7451static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7452 sched_mc_power_savings_show,
7453 sched_mc_power_savings_store);
5c45bf27
SS
7454#endif
7455
7456#ifdef CONFIG_SCHED_SMT
f718cd4a 7457static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7458 struct sysdev_class_attribute *attr,
f718cd4a 7459 char *page)
5c45bf27
SS
7460{
7461 return sprintf(page, "%u\n", sched_smt_power_savings);
7462}
f718cd4a 7463static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7464 struct sysdev_class_attribute *attr,
48f24c4d 7465 const char *buf, size_t count)
5c45bf27
SS
7466{
7467 return sched_power_savings_store(buf, count, 1);
7468}
f718cd4a
AK
7469static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7470 sched_smt_power_savings_show,
6707de00
AB
7471 sched_smt_power_savings_store);
7472#endif
7473
39aac648 7474int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7475{
7476 int err = 0;
7477
7478#ifdef CONFIG_SCHED_SMT
7479 if (smt_capable())
7480 err = sysfs_create_file(&cls->kset.kobj,
7481 &attr_sched_smt_power_savings.attr);
7482#endif
7483#ifdef CONFIG_SCHED_MC
7484 if (!err && mc_capable())
7485 err = sysfs_create_file(&cls->kset.kobj,
7486 &attr_sched_mc_power_savings.attr);
7487#endif
7488 return err;
7489}
6d6bc0ad 7490#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7491
1da177e4 7492/*
3a101d05
TH
7493 * Update cpusets according to cpu_active mask. If cpusets are
7494 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7495 * around partition_sched_domains().
1da177e4 7496 */
0b2e918a
TH
7497static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7498 void *hcpu)
e761b772 7499{
3a101d05 7500 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7501 case CPU_ONLINE:
6ad4c188 7502 case CPU_DOWN_FAILED:
3a101d05 7503 cpuset_update_active_cpus();
e761b772 7504 return NOTIFY_OK;
3a101d05
TH
7505 default:
7506 return NOTIFY_DONE;
7507 }
7508}
e761b772 7509
0b2e918a
TH
7510static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7511 void *hcpu)
3a101d05
TH
7512{
7513 switch (action & ~CPU_TASKS_FROZEN) {
7514 case CPU_DOWN_PREPARE:
7515 cpuset_update_active_cpus();
7516 return NOTIFY_OK;
e761b772
MK
7517 default:
7518 return NOTIFY_DONE;
7519 }
7520}
e761b772
MK
7521
7522static int update_runtime(struct notifier_block *nfb,
7523 unsigned long action, void *hcpu)
1da177e4 7524{
7def2be1
PZ
7525 int cpu = (int)(long)hcpu;
7526
1da177e4 7527 switch (action) {
1da177e4 7528 case CPU_DOWN_PREPARE:
8bb78442 7529 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7530 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7531 return NOTIFY_OK;
7532
1da177e4 7533 case CPU_DOWN_FAILED:
8bb78442 7534 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7535 case CPU_ONLINE:
8bb78442 7536 case CPU_ONLINE_FROZEN:
7def2be1 7537 enable_runtime(cpu_rq(cpu));
e761b772
MK
7538 return NOTIFY_OK;
7539
1da177e4
LT
7540 default:
7541 return NOTIFY_DONE;
7542 }
1da177e4 7543}
1da177e4
LT
7544
7545void __init sched_init_smp(void)
7546{
dcc30a35
RR
7547 cpumask_var_t non_isolated_cpus;
7548
7549 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7550 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7551
434d53b0
MT
7552#if defined(CONFIG_NUMA)
7553 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7554 GFP_KERNEL);
7555 BUG_ON(sched_group_nodes_bycpu == NULL);
7556#endif
95402b38 7557 get_online_cpus();
712555ee 7558 mutex_lock(&sched_domains_mutex);
6ad4c188 7559 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7560 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7561 if (cpumask_empty(non_isolated_cpus))
7562 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7563 mutex_unlock(&sched_domains_mutex);
95402b38 7564 put_online_cpus();
e761b772 7565
3a101d05
TH
7566 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7567 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7568
7569 /* RT runtime code needs to handle some hotplug events */
7570 hotcpu_notifier(update_runtime, 0);
7571
b328ca18 7572 init_hrtick();
5c1e1767
NP
7573
7574 /* Move init over to a non-isolated CPU */
dcc30a35 7575 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7576 BUG();
19978ca6 7577 sched_init_granularity();
dcc30a35 7578 free_cpumask_var(non_isolated_cpus);
4212823f 7579
0e3900e6 7580 init_sched_rt_class();
1da177e4
LT
7581}
7582#else
7583void __init sched_init_smp(void)
7584{
19978ca6 7585 sched_init_granularity();
1da177e4
LT
7586}
7587#endif /* CONFIG_SMP */
7588
cd1bb94b
AB
7589const_debug unsigned int sysctl_timer_migration = 1;
7590
1da177e4
LT
7591int in_sched_functions(unsigned long addr)
7592{
1da177e4
LT
7593 return in_lock_functions(addr) ||
7594 (addr >= (unsigned long)__sched_text_start
7595 && addr < (unsigned long)__sched_text_end);
7596}
7597
a9957449 7598static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7599{
7600 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7601 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7602#ifdef CONFIG_FAIR_GROUP_SCHED
7603 cfs_rq->rq = rq;
7604#endif
67e9fb2a 7605 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7606}
7607
fa85ae24
PZ
7608static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7609{
7610 struct rt_prio_array *array;
7611 int i;
7612
7613 array = &rt_rq->active;
7614 for (i = 0; i < MAX_RT_PRIO; i++) {
7615 INIT_LIST_HEAD(array->queue + i);
7616 __clear_bit(i, array->bitmap);
7617 }
7618 /* delimiter for bitsearch: */
7619 __set_bit(MAX_RT_PRIO, array->bitmap);
7620
052f1dc7 7621#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7622 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7623#ifdef CONFIG_SMP
e864c499 7624 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7625#endif
48d5e258 7626#endif
fa85ae24
PZ
7627#ifdef CONFIG_SMP
7628 rt_rq->rt_nr_migratory = 0;
fa85ae24 7629 rt_rq->overloaded = 0;
05fa785c 7630 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7631#endif
7632
7633 rt_rq->rt_time = 0;
7634 rt_rq->rt_throttled = 0;
ac086bc2 7635 rt_rq->rt_runtime = 0;
0986b11b 7636 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7637
052f1dc7 7638#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7639 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7640 rt_rq->rq = rq;
7641#endif
fa85ae24
PZ
7642}
7643
6f505b16 7644#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7645static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7646 struct sched_entity *se, int cpu,
ec7dc8ac 7647 struct sched_entity *parent)
6f505b16 7648{
ec7dc8ac 7649 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7650 tg->cfs_rq[cpu] = cfs_rq;
7651 init_cfs_rq(cfs_rq, rq);
7652 cfs_rq->tg = tg;
6f505b16
PZ
7653
7654 tg->se[cpu] = se;
354d60c2
DG
7655 /* se could be NULL for init_task_group */
7656 if (!se)
7657 return;
7658
ec7dc8ac
DG
7659 if (!parent)
7660 se->cfs_rq = &rq->cfs;
7661 else
7662 se->cfs_rq = parent->my_q;
7663
6f505b16 7664 se->my_q = cfs_rq;
9437178f 7665 update_load_set(&se->load, 0);
ec7dc8ac 7666 se->parent = parent;
6f505b16 7667}
052f1dc7 7668#endif
6f505b16 7669
052f1dc7 7670#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7671static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7672 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7673 struct sched_rt_entity *parent)
6f505b16 7674{
ec7dc8ac
DG
7675 struct rq *rq = cpu_rq(cpu);
7676
6f505b16
PZ
7677 tg->rt_rq[cpu] = rt_rq;
7678 init_rt_rq(rt_rq, rq);
7679 rt_rq->tg = tg;
ac086bc2 7680 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7681
7682 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7683 if (!rt_se)
7684 return;
7685
ec7dc8ac
DG
7686 if (!parent)
7687 rt_se->rt_rq = &rq->rt;
7688 else
7689 rt_se->rt_rq = parent->my_q;
7690
6f505b16 7691 rt_se->my_q = rt_rq;
ec7dc8ac 7692 rt_se->parent = parent;
6f505b16
PZ
7693 INIT_LIST_HEAD(&rt_se->run_list);
7694}
7695#endif
7696
1da177e4
LT
7697void __init sched_init(void)
7698{
dd41f596 7699 int i, j;
434d53b0
MT
7700 unsigned long alloc_size = 0, ptr;
7701
7702#ifdef CONFIG_FAIR_GROUP_SCHED
7703 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7704#endif
7705#ifdef CONFIG_RT_GROUP_SCHED
7706 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7707#endif
df7c8e84 7708#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7709 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7710#endif
434d53b0 7711 if (alloc_size) {
36b7b6d4 7712 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7713
7714#ifdef CONFIG_FAIR_GROUP_SCHED
7715 init_task_group.se = (struct sched_entity **)ptr;
7716 ptr += nr_cpu_ids * sizeof(void **);
7717
7718 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7719 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7720
6d6bc0ad 7721#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7722#ifdef CONFIG_RT_GROUP_SCHED
7723 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7724 ptr += nr_cpu_ids * sizeof(void **);
7725
7726 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7727 ptr += nr_cpu_ids * sizeof(void **);
7728
6d6bc0ad 7729#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7730#ifdef CONFIG_CPUMASK_OFFSTACK
7731 for_each_possible_cpu(i) {
7732 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7733 ptr += cpumask_size();
7734 }
7735#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7736 }
dd41f596 7737
57d885fe
GH
7738#ifdef CONFIG_SMP
7739 init_defrootdomain();
7740#endif
7741
d0b27fa7
PZ
7742 init_rt_bandwidth(&def_rt_bandwidth,
7743 global_rt_period(), global_rt_runtime());
7744
7745#ifdef CONFIG_RT_GROUP_SCHED
7746 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7747 global_rt_period(), global_rt_runtime());
6d6bc0ad 7748#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7749
7c941438 7750#ifdef CONFIG_CGROUP_SCHED
6f505b16 7751 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7752 INIT_LIST_HEAD(&init_task_group.children);
7753
7c941438 7754#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7755
0a945022 7756 for_each_possible_cpu(i) {
70b97a7f 7757 struct rq *rq;
1da177e4
LT
7758
7759 rq = cpu_rq(i);
05fa785c 7760 raw_spin_lock_init(&rq->lock);
7897986b 7761 rq->nr_running = 0;
dce48a84
TG
7762 rq->calc_load_active = 0;
7763 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7764 init_cfs_rq(&rq->cfs, rq);
6f505b16 7765 init_rt_rq(&rq->rt, rq);
dd41f596 7766#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7767 init_task_group.shares = init_task_group_load;
6f505b16 7768 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7769#ifdef CONFIG_CGROUP_SCHED
7770 /*
7771 * How much cpu bandwidth does init_task_group get?
7772 *
7773 * In case of task-groups formed thr' the cgroup filesystem, it
7774 * gets 100% of the cpu resources in the system. This overall
7775 * system cpu resource is divided among the tasks of
7776 * init_task_group and its child task-groups in a fair manner,
7777 * based on each entity's (task or task-group's) weight
7778 * (se->load.weight).
7779 *
7780 * In other words, if init_task_group has 10 tasks of weight
7781 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7782 * then A0's share of the cpu resource is:
7783 *
0d905bca 7784 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7785 *
7786 * We achieve this by letting init_task_group's tasks sit
7787 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7788 */
3d4b47b4 7789 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, NULL);
052f1dc7 7790#endif
354d60c2
DG
7791#endif /* CONFIG_FAIR_GROUP_SCHED */
7792
7793 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7794#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7795 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7796#ifdef CONFIG_CGROUP_SCHED
3d4b47b4 7797 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, NULL);
354d60c2 7798#endif
dd41f596 7799#endif
1da177e4 7800
dd41f596
IM
7801 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7802 rq->cpu_load[j] = 0;
fdf3e95d
VP
7803
7804 rq->last_load_update_tick = jiffies;
7805
1da177e4 7806#ifdef CONFIG_SMP
41c7ce9a 7807 rq->sd = NULL;
57d885fe 7808 rq->rd = NULL;
e51fd5e2 7809 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 7810 rq->post_schedule = 0;
1da177e4 7811 rq->active_balance = 0;
dd41f596 7812 rq->next_balance = jiffies;
1da177e4 7813 rq->push_cpu = 0;
0a2966b4 7814 rq->cpu = i;
1f11eb6a 7815 rq->online = 0;
eae0c9df
MG
7816 rq->idle_stamp = 0;
7817 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7818 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7819#ifdef CONFIG_NO_HZ
7820 rq->nohz_balance_kick = 0;
7821 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7822#endif
1da177e4 7823#endif
8f4d37ec 7824 init_rq_hrtick(rq);
1da177e4 7825 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7826 }
7827
2dd73a4f 7828 set_load_weight(&init_task);
b50f60ce 7829
e107be36
AK
7830#ifdef CONFIG_PREEMPT_NOTIFIERS
7831 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7832#endif
7833
c9819f45 7834#ifdef CONFIG_SMP
962cf36c 7835 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7836#endif
7837
b50f60ce 7838#ifdef CONFIG_RT_MUTEXES
1d615482 7839 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7840#endif
7841
1da177e4
LT
7842 /*
7843 * The boot idle thread does lazy MMU switching as well:
7844 */
7845 atomic_inc(&init_mm.mm_count);
7846 enter_lazy_tlb(&init_mm, current);
7847
7848 /*
7849 * Make us the idle thread. Technically, schedule() should not be
7850 * called from this thread, however somewhere below it might be,
7851 * but because we are the idle thread, we just pick up running again
7852 * when this runqueue becomes "idle".
7853 */
7854 init_idle(current, smp_processor_id());
dce48a84
TG
7855
7856 calc_load_update = jiffies + LOAD_FREQ;
7857
dd41f596
IM
7858 /*
7859 * During early bootup we pretend to be a normal task:
7860 */
7861 current->sched_class = &fair_sched_class;
6892b75e 7862
6a7b3dc3 7863 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7864 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7865#ifdef CONFIG_SMP
7d1e6a9b 7866#ifdef CONFIG_NO_HZ
83cd4fe2
VP
7867 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7868 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7869 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7870 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7871 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 7872#endif
bdddd296
RR
7873 /* May be allocated at isolcpus cmdline parse time */
7874 if (cpu_isolated_map == NULL)
7875 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7876#endif /* SMP */
6a7b3dc3 7877
cdd6c482 7878 perf_event_init();
0d905bca 7879
6892b75e 7880 scheduler_running = 1;
1da177e4
LT
7881}
7882
7883#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7884static inline int preempt_count_equals(int preempt_offset)
7885{
234da7bc 7886 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7887
7888 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7889}
7890
d894837f 7891void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7892{
48f24c4d 7893#ifdef in_atomic
1da177e4
LT
7894 static unsigned long prev_jiffy; /* ratelimiting */
7895
e4aafea2
FW
7896 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7897 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7898 return;
7899 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7900 return;
7901 prev_jiffy = jiffies;
7902
3df0fc5b
PZ
7903 printk(KERN_ERR
7904 "BUG: sleeping function called from invalid context at %s:%d\n",
7905 file, line);
7906 printk(KERN_ERR
7907 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7908 in_atomic(), irqs_disabled(),
7909 current->pid, current->comm);
aef745fc
IM
7910
7911 debug_show_held_locks(current);
7912 if (irqs_disabled())
7913 print_irqtrace_events(current);
7914 dump_stack();
1da177e4
LT
7915#endif
7916}
7917EXPORT_SYMBOL(__might_sleep);
7918#endif
7919
7920#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7921static void normalize_task(struct rq *rq, struct task_struct *p)
7922{
7923 int on_rq;
3e51f33f 7924
3a5e4dc1
AK
7925 on_rq = p->se.on_rq;
7926 if (on_rq)
7927 deactivate_task(rq, p, 0);
7928 __setscheduler(rq, p, SCHED_NORMAL, 0);
7929 if (on_rq) {
7930 activate_task(rq, p, 0);
7931 resched_task(rq->curr);
7932 }
7933}
7934
1da177e4
LT
7935void normalize_rt_tasks(void)
7936{
a0f98a1c 7937 struct task_struct *g, *p;
1da177e4 7938 unsigned long flags;
70b97a7f 7939 struct rq *rq;
1da177e4 7940
4cf5d77a 7941 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7942 do_each_thread(g, p) {
178be793
IM
7943 /*
7944 * Only normalize user tasks:
7945 */
7946 if (!p->mm)
7947 continue;
7948
6cfb0d5d 7949 p->se.exec_start = 0;
6cfb0d5d 7950#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7951 p->se.statistics.wait_start = 0;
7952 p->se.statistics.sleep_start = 0;
7953 p->se.statistics.block_start = 0;
6cfb0d5d 7954#endif
dd41f596
IM
7955
7956 if (!rt_task(p)) {
7957 /*
7958 * Renice negative nice level userspace
7959 * tasks back to 0:
7960 */
7961 if (TASK_NICE(p) < 0 && p->mm)
7962 set_user_nice(p, 0);
1da177e4 7963 continue;
dd41f596 7964 }
1da177e4 7965
1d615482 7966 raw_spin_lock(&p->pi_lock);
b29739f9 7967 rq = __task_rq_lock(p);
1da177e4 7968
178be793 7969 normalize_task(rq, p);
3a5e4dc1 7970
b29739f9 7971 __task_rq_unlock(rq);
1d615482 7972 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7973 } while_each_thread(g, p);
7974
4cf5d77a 7975 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7976}
7977
7978#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7979
67fc4e0c 7980#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7981/*
67fc4e0c 7982 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7983 *
7984 * They can only be called when the whole system has been
7985 * stopped - every CPU needs to be quiescent, and no scheduling
7986 * activity can take place. Using them for anything else would
7987 * be a serious bug, and as a result, they aren't even visible
7988 * under any other configuration.
7989 */
7990
7991/**
7992 * curr_task - return the current task for a given cpu.
7993 * @cpu: the processor in question.
7994 *
7995 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7996 */
36c8b586 7997struct task_struct *curr_task(int cpu)
1df5c10a
LT
7998{
7999 return cpu_curr(cpu);
8000}
8001
67fc4e0c
JW
8002#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8003
8004#ifdef CONFIG_IA64
1df5c10a
LT
8005/**
8006 * set_curr_task - set the current task for a given cpu.
8007 * @cpu: the processor in question.
8008 * @p: the task pointer to set.
8009 *
8010 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8011 * are serviced on a separate stack. It allows the architecture to switch the
8012 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8013 * must be called with all CPU's synchronized, and interrupts disabled, the
8014 * and caller must save the original value of the current task (see
8015 * curr_task() above) and restore that value before reenabling interrupts and
8016 * re-starting the system.
8017 *
8018 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8019 */
36c8b586 8020void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8021{
8022 cpu_curr(cpu) = p;
8023}
8024
8025#endif
29f59db3 8026
bccbe08a
PZ
8027#ifdef CONFIG_FAIR_GROUP_SCHED
8028static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8029{
8030 int i;
8031
8032 for_each_possible_cpu(i) {
8033 if (tg->cfs_rq)
8034 kfree(tg->cfs_rq[i]);
8035 if (tg->se)
8036 kfree(tg->se[i]);
6f505b16
PZ
8037 }
8038
8039 kfree(tg->cfs_rq);
8040 kfree(tg->se);
6f505b16
PZ
8041}
8042
ec7dc8ac
DG
8043static
8044int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8045{
29f59db3 8046 struct cfs_rq *cfs_rq;
eab17229 8047 struct sched_entity *se;
9b5b7751 8048 struct rq *rq;
29f59db3
SV
8049 int i;
8050
434d53b0 8051 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8052 if (!tg->cfs_rq)
8053 goto err;
434d53b0 8054 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8055 if (!tg->se)
8056 goto err;
052f1dc7
PZ
8057
8058 tg->shares = NICE_0_LOAD;
29f59db3
SV
8059
8060 for_each_possible_cpu(i) {
9b5b7751 8061 rq = cpu_rq(i);
29f59db3 8062
eab17229
LZ
8063 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8064 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8065 if (!cfs_rq)
8066 goto err;
8067
eab17229
LZ
8068 se = kzalloc_node(sizeof(struct sched_entity),
8069 GFP_KERNEL, cpu_to_node(i));
29f59db3 8070 if (!se)
dfc12eb2 8071 goto err_free_rq;
29f59db3 8072
3d4b47b4 8073 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8074 }
8075
8076 return 1;
8077
49246274 8078err_free_rq:
dfc12eb2 8079 kfree(cfs_rq);
49246274 8080err:
bccbe08a
PZ
8081 return 0;
8082}
8083
bccbe08a
PZ
8084static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8085{
3d4b47b4
PZ
8086 struct rq *rq = cpu_rq(cpu);
8087 unsigned long flags;
8088 int i;
8089
8090 /*
8091 * Only empty task groups can be destroyed; so we can speculatively
8092 * check on_list without danger of it being re-added.
8093 */
8094 if (!tg->cfs_rq[cpu]->on_list)
8095 return;
8096
8097 raw_spin_lock_irqsave(&rq->lock, flags);
8098 list_del_leaf_cfs_rq(tg->cfs_rq[i]);
8099 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8100}
6d6bc0ad 8101#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8102static inline void free_fair_sched_group(struct task_group *tg)
8103{
8104}
8105
ec7dc8ac
DG
8106static inline
8107int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8108{
8109 return 1;
8110}
8111
bccbe08a
PZ
8112static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8113{
8114}
6d6bc0ad 8115#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8116
8117#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8118static void free_rt_sched_group(struct task_group *tg)
8119{
8120 int i;
8121
d0b27fa7
PZ
8122 destroy_rt_bandwidth(&tg->rt_bandwidth);
8123
bccbe08a
PZ
8124 for_each_possible_cpu(i) {
8125 if (tg->rt_rq)
8126 kfree(tg->rt_rq[i]);
8127 if (tg->rt_se)
8128 kfree(tg->rt_se[i]);
8129 }
8130
8131 kfree(tg->rt_rq);
8132 kfree(tg->rt_se);
8133}
8134
ec7dc8ac
DG
8135static
8136int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8137{
8138 struct rt_rq *rt_rq;
eab17229 8139 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8140 struct rq *rq;
8141 int i;
8142
434d53b0 8143 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8144 if (!tg->rt_rq)
8145 goto err;
434d53b0 8146 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8147 if (!tg->rt_se)
8148 goto err;
8149
d0b27fa7
PZ
8150 init_rt_bandwidth(&tg->rt_bandwidth,
8151 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8152
8153 for_each_possible_cpu(i) {
8154 rq = cpu_rq(i);
8155
eab17229
LZ
8156 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8157 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8158 if (!rt_rq)
8159 goto err;
29f59db3 8160
eab17229
LZ
8161 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8162 GFP_KERNEL, cpu_to_node(i));
6f505b16 8163 if (!rt_se)
dfc12eb2 8164 goto err_free_rq;
29f59db3 8165
3d4b47b4 8166 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8167 }
8168
bccbe08a
PZ
8169 return 1;
8170
49246274 8171err_free_rq:
dfc12eb2 8172 kfree(rt_rq);
49246274 8173err:
bccbe08a
PZ
8174 return 0;
8175}
6d6bc0ad 8176#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8177static inline void free_rt_sched_group(struct task_group *tg)
8178{
8179}
8180
ec7dc8ac
DG
8181static inline
8182int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8183{
8184 return 1;
8185}
6d6bc0ad 8186#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8187
7c941438 8188#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8189static void free_sched_group(struct task_group *tg)
8190{
8191 free_fair_sched_group(tg);
8192 free_rt_sched_group(tg);
8193 kfree(tg);
8194}
8195
8196/* allocate runqueue etc for a new task group */
ec7dc8ac 8197struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8198{
8199 struct task_group *tg;
8200 unsigned long flags;
bccbe08a
PZ
8201
8202 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8203 if (!tg)
8204 return ERR_PTR(-ENOMEM);
8205
ec7dc8ac 8206 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8207 goto err;
8208
ec7dc8ac 8209 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8210 goto err;
8211
8ed36996 8212 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8213 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8214
8215 WARN_ON(!parent); /* root should already exist */
8216
8217 tg->parent = parent;
f473aa5e 8218 INIT_LIST_HEAD(&tg->children);
09f2724a 8219 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8220 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8221
9b5b7751 8222 return tg;
29f59db3
SV
8223
8224err:
6f505b16 8225 free_sched_group(tg);
29f59db3
SV
8226 return ERR_PTR(-ENOMEM);
8227}
8228
9b5b7751 8229/* rcu callback to free various structures associated with a task group */
6f505b16 8230static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8231{
29f59db3 8232 /* now it should be safe to free those cfs_rqs */
6f505b16 8233 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8234}
8235
9b5b7751 8236/* Destroy runqueue etc associated with a task group */
4cf86d77 8237void sched_destroy_group(struct task_group *tg)
29f59db3 8238{
8ed36996 8239 unsigned long flags;
9b5b7751 8240 int i;
29f59db3 8241
3d4b47b4
PZ
8242 /* end participation in shares distribution */
8243 for_each_possible_cpu(i)
bccbe08a 8244 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8245
8246 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8247 list_del_rcu(&tg->list);
f473aa5e 8248 list_del_rcu(&tg->siblings);
8ed36996 8249 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8250
9b5b7751 8251 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8252 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8253}
8254
9b5b7751 8255/* change task's runqueue when it moves between groups.
3a252015
IM
8256 * The caller of this function should have put the task in its new group
8257 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8258 * reflect its new group.
9b5b7751
SV
8259 */
8260void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8261{
8262 int on_rq, running;
8263 unsigned long flags;
8264 struct rq *rq;
8265
8266 rq = task_rq_lock(tsk, &flags);
8267
051a1d1a 8268 running = task_current(rq, tsk);
29f59db3
SV
8269 on_rq = tsk->se.on_rq;
8270
0e1f3483 8271 if (on_rq)
29f59db3 8272 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8273 if (unlikely(running))
8274 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8275
810b3817 8276#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8277 if (tsk->sched_class->task_move_group)
8278 tsk->sched_class->task_move_group(tsk, on_rq);
8279 else
810b3817 8280#endif
b2b5ce02 8281 set_task_rq(tsk, task_cpu(tsk));
810b3817 8282
0e1f3483
HS
8283 if (unlikely(running))
8284 tsk->sched_class->set_curr_task(rq);
8285 if (on_rq)
371fd7e7 8286 enqueue_task(rq, tsk, 0);
29f59db3 8287
29f59db3
SV
8288 task_rq_unlock(rq, &flags);
8289}
7c941438 8290#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8291
052f1dc7 8292#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8293static DEFINE_MUTEX(shares_mutex);
8294
4cf86d77 8295int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8296{
8297 int i;
9437178f 8298 unsigned long flags;
c61935fd 8299
ec7dc8ac
DG
8300 /*
8301 * We can't change the weight of the root cgroup.
8302 */
8303 if (!tg->se[0])
8304 return -EINVAL;
8305
18d95a28
PZ
8306 if (shares < MIN_SHARES)
8307 shares = MIN_SHARES;
cb4ad1ff
MX
8308 else if (shares > MAX_SHARES)
8309 shares = MAX_SHARES;
62fb1851 8310
8ed36996 8311 mutex_lock(&shares_mutex);
9b5b7751 8312 if (tg->shares == shares)
5cb350ba 8313 goto done;
29f59db3 8314
9b5b7751 8315 tg->shares = shares;
c09595f6 8316 for_each_possible_cpu(i) {
9437178f
PT
8317 struct rq *rq = cpu_rq(i);
8318 struct sched_entity *se;
8319
8320 se = tg->se[i];
8321 /* Propagate contribution to hierarchy */
8322 raw_spin_lock_irqsave(&rq->lock, flags);
8323 for_each_sched_entity(se)
8324 update_cfs_shares(group_cfs_rq(se), 0);
8325 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8326 }
29f59db3 8327
5cb350ba 8328done:
8ed36996 8329 mutex_unlock(&shares_mutex);
9b5b7751 8330 return 0;
29f59db3
SV
8331}
8332
5cb350ba
DG
8333unsigned long sched_group_shares(struct task_group *tg)
8334{
8335 return tg->shares;
8336}
052f1dc7 8337#endif
5cb350ba 8338
052f1dc7 8339#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8340/*
9f0c1e56 8341 * Ensure that the real time constraints are schedulable.
6f505b16 8342 */
9f0c1e56
PZ
8343static DEFINE_MUTEX(rt_constraints_mutex);
8344
8345static unsigned long to_ratio(u64 period, u64 runtime)
8346{
8347 if (runtime == RUNTIME_INF)
9a7e0b18 8348 return 1ULL << 20;
9f0c1e56 8349
9a7e0b18 8350 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8351}
8352
9a7e0b18
PZ
8353/* Must be called with tasklist_lock held */
8354static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8355{
9a7e0b18 8356 struct task_struct *g, *p;
b40b2e8e 8357
9a7e0b18
PZ
8358 do_each_thread(g, p) {
8359 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8360 return 1;
8361 } while_each_thread(g, p);
b40b2e8e 8362
9a7e0b18
PZ
8363 return 0;
8364}
b40b2e8e 8365
9a7e0b18
PZ
8366struct rt_schedulable_data {
8367 struct task_group *tg;
8368 u64 rt_period;
8369 u64 rt_runtime;
8370};
b40b2e8e 8371
9a7e0b18
PZ
8372static int tg_schedulable(struct task_group *tg, void *data)
8373{
8374 struct rt_schedulable_data *d = data;
8375 struct task_group *child;
8376 unsigned long total, sum = 0;
8377 u64 period, runtime;
b40b2e8e 8378
9a7e0b18
PZ
8379 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8380 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8381
9a7e0b18
PZ
8382 if (tg == d->tg) {
8383 period = d->rt_period;
8384 runtime = d->rt_runtime;
b40b2e8e 8385 }
b40b2e8e 8386
4653f803
PZ
8387 /*
8388 * Cannot have more runtime than the period.
8389 */
8390 if (runtime > period && runtime != RUNTIME_INF)
8391 return -EINVAL;
6f505b16 8392
4653f803
PZ
8393 /*
8394 * Ensure we don't starve existing RT tasks.
8395 */
9a7e0b18
PZ
8396 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8397 return -EBUSY;
6f505b16 8398
9a7e0b18 8399 total = to_ratio(period, runtime);
6f505b16 8400
4653f803
PZ
8401 /*
8402 * Nobody can have more than the global setting allows.
8403 */
8404 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8405 return -EINVAL;
6f505b16 8406
4653f803
PZ
8407 /*
8408 * The sum of our children's runtime should not exceed our own.
8409 */
9a7e0b18
PZ
8410 list_for_each_entry_rcu(child, &tg->children, siblings) {
8411 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8412 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8413
9a7e0b18
PZ
8414 if (child == d->tg) {
8415 period = d->rt_period;
8416 runtime = d->rt_runtime;
8417 }
6f505b16 8418
9a7e0b18 8419 sum += to_ratio(period, runtime);
9f0c1e56 8420 }
6f505b16 8421
9a7e0b18
PZ
8422 if (sum > total)
8423 return -EINVAL;
8424
8425 return 0;
6f505b16
PZ
8426}
8427
9a7e0b18 8428static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8429{
9a7e0b18
PZ
8430 struct rt_schedulable_data data = {
8431 .tg = tg,
8432 .rt_period = period,
8433 .rt_runtime = runtime,
8434 };
8435
8436 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8437}
8438
d0b27fa7
PZ
8439static int tg_set_bandwidth(struct task_group *tg,
8440 u64 rt_period, u64 rt_runtime)
6f505b16 8441{
ac086bc2 8442 int i, err = 0;
9f0c1e56 8443
9f0c1e56 8444 mutex_lock(&rt_constraints_mutex);
521f1a24 8445 read_lock(&tasklist_lock);
9a7e0b18
PZ
8446 err = __rt_schedulable(tg, rt_period, rt_runtime);
8447 if (err)
9f0c1e56 8448 goto unlock;
ac086bc2 8449
0986b11b 8450 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8451 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8452 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8453
8454 for_each_possible_cpu(i) {
8455 struct rt_rq *rt_rq = tg->rt_rq[i];
8456
0986b11b 8457 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8458 rt_rq->rt_runtime = rt_runtime;
0986b11b 8459 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8460 }
0986b11b 8461 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8462unlock:
521f1a24 8463 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8464 mutex_unlock(&rt_constraints_mutex);
8465
8466 return err;
6f505b16
PZ
8467}
8468
d0b27fa7
PZ
8469int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8470{
8471 u64 rt_runtime, rt_period;
8472
8473 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8474 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8475 if (rt_runtime_us < 0)
8476 rt_runtime = RUNTIME_INF;
8477
8478 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8479}
8480
9f0c1e56
PZ
8481long sched_group_rt_runtime(struct task_group *tg)
8482{
8483 u64 rt_runtime_us;
8484
d0b27fa7 8485 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8486 return -1;
8487
d0b27fa7 8488 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8489 do_div(rt_runtime_us, NSEC_PER_USEC);
8490 return rt_runtime_us;
8491}
d0b27fa7
PZ
8492
8493int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8494{
8495 u64 rt_runtime, rt_period;
8496
8497 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8498 rt_runtime = tg->rt_bandwidth.rt_runtime;
8499
619b0488
R
8500 if (rt_period == 0)
8501 return -EINVAL;
8502
d0b27fa7
PZ
8503 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8504}
8505
8506long sched_group_rt_period(struct task_group *tg)
8507{
8508 u64 rt_period_us;
8509
8510 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8511 do_div(rt_period_us, NSEC_PER_USEC);
8512 return rt_period_us;
8513}
8514
8515static int sched_rt_global_constraints(void)
8516{
4653f803 8517 u64 runtime, period;
d0b27fa7
PZ
8518 int ret = 0;
8519
ec5d4989
HS
8520 if (sysctl_sched_rt_period <= 0)
8521 return -EINVAL;
8522
4653f803
PZ
8523 runtime = global_rt_runtime();
8524 period = global_rt_period();
8525
8526 /*
8527 * Sanity check on the sysctl variables.
8528 */
8529 if (runtime > period && runtime != RUNTIME_INF)
8530 return -EINVAL;
10b612f4 8531
d0b27fa7 8532 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8533 read_lock(&tasklist_lock);
4653f803 8534 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8535 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8536 mutex_unlock(&rt_constraints_mutex);
8537
8538 return ret;
8539}
54e99124
DG
8540
8541int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8542{
8543 /* Don't accept realtime tasks when there is no way for them to run */
8544 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8545 return 0;
8546
8547 return 1;
8548}
8549
6d6bc0ad 8550#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8551static int sched_rt_global_constraints(void)
8552{
ac086bc2
PZ
8553 unsigned long flags;
8554 int i;
8555
ec5d4989
HS
8556 if (sysctl_sched_rt_period <= 0)
8557 return -EINVAL;
8558
60aa605d
PZ
8559 /*
8560 * There's always some RT tasks in the root group
8561 * -- migration, kstopmachine etc..
8562 */
8563 if (sysctl_sched_rt_runtime == 0)
8564 return -EBUSY;
8565
0986b11b 8566 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8567 for_each_possible_cpu(i) {
8568 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8569
0986b11b 8570 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8571 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8572 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8573 }
0986b11b 8574 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8575
d0b27fa7
PZ
8576 return 0;
8577}
6d6bc0ad 8578#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8579
8580int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8581 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8582 loff_t *ppos)
8583{
8584 int ret;
8585 int old_period, old_runtime;
8586 static DEFINE_MUTEX(mutex);
8587
8588 mutex_lock(&mutex);
8589 old_period = sysctl_sched_rt_period;
8590 old_runtime = sysctl_sched_rt_runtime;
8591
8d65af78 8592 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8593
8594 if (!ret && write) {
8595 ret = sched_rt_global_constraints();
8596 if (ret) {
8597 sysctl_sched_rt_period = old_period;
8598 sysctl_sched_rt_runtime = old_runtime;
8599 } else {
8600 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8601 def_rt_bandwidth.rt_period =
8602 ns_to_ktime(global_rt_period());
8603 }
8604 }
8605 mutex_unlock(&mutex);
8606
8607 return ret;
8608}
68318b8e 8609
052f1dc7 8610#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8611
8612/* return corresponding task_group object of a cgroup */
2b01dfe3 8613static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8614{
2b01dfe3
PM
8615 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8616 struct task_group, css);
68318b8e
SV
8617}
8618
8619static struct cgroup_subsys_state *
2b01dfe3 8620cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8621{
ec7dc8ac 8622 struct task_group *tg, *parent;
68318b8e 8623
2b01dfe3 8624 if (!cgrp->parent) {
68318b8e 8625 /* This is early initialization for the top cgroup */
68318b8e
SV
8626 return &init_task_group.css;
8627 }
8628
ec7dc8ac
DG
8629 parent = cgroup_tg(cgrp->parent);
8630 tg = sched_create_group(parent);
68318b8e
SV
8631 if (IS_ERR(tg))
8632 return ERR_PTR(-ENOMEM);
8633
68318b8e
SV
8634 return &tg->css;
8635}
8636
41a2d6cf
IM
8637static void
8638cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8639{
2b01dfe3 8640 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8641
8642 sched_destroy_group(tg);
8643}
8644
41a2d6cf 8645static int
be367d09 8646cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8647{
b68aa230 8648#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8649 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8650 return -EINVAL;
8651#else
68318b8e
SV
8652 /* We don't support RT-tasks being in separate groups */
8653 if (tsk->sched_class != &fair_sched_class)
8654 return -EINVAL;
b68aa230 8655#endif
be367d09
BB
8656 return 0;
8657}
68318b8e 8658
be367d09
BB
8659static int
8660cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8661 struct task_struct *tsk, bool threadgroup)
8662{
8663 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8664 if (retval)
8665 return retval;
8666 if (threadgroup) {
8667 struct task_struct *c;
8668 rcu_read_lock();
8669 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8670 retval = cpu_cgroup_can_attach_task(cgrp, c);
8671 if (retval) {
8672 rcu_read_unlock();
8673 return retval;
8674 }
8675 }
8676 rcu_read_unlock();
8677 }
68318b8e
SV
8678 return 0;
8679}
8680
8681static void
2b01dfe3 8682cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8683 struct cgroup *old_cont, struct task_struct *tsk,
8684 bool threadgroup)
68318b8e
SV
8685{
8686 sched_move_task(tsk);
be367d09
BB
8687 if (threadgroup) {
8688 struct task_struct *c;
8689 rcu_read_lock();
8690 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8691 sched_move_task(c);
8692 }
8693 rcu_read_unlock();
8694 }
68318b8e
SV
8695}
8696
052f1dc7 8697#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8698static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8699 u64 shareval)
68318b8e 8700{
2b01dfe3 8701 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8702}
8703
f4c753b7 8704static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8705{
2b01dfe3 8706 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8707
8708 return (u64) tg->shares;
8709}
6d6bc0ad 8710#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8711
052f1dc7 8712#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8713static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8714 s64 val)
6f505b16 8715{
06ecb27c 8716 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8717}
8718
06ecb27c 8719static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8720{
06ecb27c 8721 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8722}
d0b27fa7
PZ
8723
8724static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8725 u64 rt_period_us)
8726{
8727 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8728}
8729
8730static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8731{
8732 return sched_group_rt_period(cgroup_tg(cgrp));
8733}
6d6bc0ad 8734#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8735
fe5c7cc2 8736static struct cftype cpu_files[] = {
052f1dc7 8737#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8738 {
8739 .name = "shares",
f4c753b7
PM
8740 .read_u64 = cpu_shares_read_u64,
8741 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8742 },
052f1dc7
PZ
8743#endif
8744#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8745 {
9f0c1e56 8746 .name = "rt_runtime_us",
06ecb27c
PM
8747 .read_s64 = cpu_rt_runtime_read,
8748 .write_s64 = cpu_rt_runtime_write,
6f505b16 8749 },
d0b27fa7
PZ
8750 {
8751 .name = "rt_period_us",
f4c753b7
PM
8752 .read_u64 = cpu_rt_period_read_uint,
8753 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8754 },
052f1dc7 8755#endif
68318b8e
SV
8756};
8757
8758static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8759{
fe5c7cc2 8760 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8761}
8762
8763struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8764 .name = "cpu",
8765 .create = cpu_cgroup_create,
8766 .destroy = cpu_cgroup_destroy,
8767 .can_attach = cpu_cgroup_can_attach,
8768 .attach = cpu_cgroup_attach,
8769 .populate = cpu_cgroup_populate,
8770 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8771 .early_init = 1,
8772};
8773
052f1dc7 8774#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8775
8776#ifdef CONFIG_CGROUP_CPUACCT
8777
8778/*
8779 * CPU accounting code for task groups.
8780 *
8781 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8782 * (balbir@in.ibm.com).
8783 */
8784
934352f2 8785/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8786struct cpuacct {
8787 struct cgroup_subsys_state css;
8788 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8789 u64 __percpu *cpuusage;
ef12fefa 8790 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8791 struct cpuacct *parent;
d842de87
SV
8792};
8793
8794struct cgroup_subsys cpuacct_subsys;
8795
8796/* return cpu accounting group corresponding to this container */
32cd756a 8797static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8798{
32cd756a 8799 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8800 struct cpuacct, css);
8801}
8802
8803/* return cpu accounting group to which this task belongs */
8804static inline struct cpuacct *task_ca(struct task_struct *tsk)
8805{
8806 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8807 struct cpuacct, css);
8808}
8809
8810/* create a new cpu accounting group */
8811static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8812 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8813{
8814 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8815 int i;
d842de87
SV
8816
8817 if (!ca)
ef12fefa 8818 goto out;
d842de87
SV
8819
8820 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8821 if (!ca->cpuusage)
8822 goto out_free_ca;
8823
8824 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8825 if (percpu_counter_init(&ca->cpustat[i], 0))
8826 goto out_free_counters;
d842de87 8827
934352f2
BR
8828 if (cgrp->parent)
8829 ca->parent = cgroup_ca(cgrp->parent);
8830
d842de87 8831 return &ca->css;
ef12fefa
BR
8832
8833out_free_counters:
8834 while (--i >= 0)
8835 percpu_counter_destroy(&ca->cpustat[i]);
8836 free_percpu(ca->cpuusage);
8837out_free_ca:
8838 kfree(ca);
8839out:
8840 return ERR_PTR(-ENOMEM);
d842de87
SV
8841}
8842
8843/* destroy an existing cpu accounting group */
41a2d6cf 8844static void
32cd756a 8845cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8846{
32cd756a 8847 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8848 int i;
d842de87 8849
ef12fefa
BR
8850 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8851 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8852 free_percpu(ca->cpuusage);
8853 kfree(ca);
8854}
8855
720f5498
KC
8856static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8857{
b36128c8 8858 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8859 u64 data;
8860
8861#ifndef CONFIG_64BIT
8862 /*
8863 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8864 */
05fa785c 8865 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8866 data = *cpuusage;
05fa785c 8867 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8868#else
8869 data = *cpuusage;
8870#endif
8871
8872 return data;
8873}
8874
8875static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8876{
b36128c8 8877 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8878
8879#ifndef CONFIG_64BIT
8880 /*
8881 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8882 */
05fa785c 8883 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8884 *cpuusage = val;
05fa785c 8885 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8886#else
8887 *cpuusage = val;
8888#endif
8889}
8890
d842de87 8891/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8892static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8893{
32cd756a 8894 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8895 u64 totalcpuusage = 0;
8896 int i;
8897
720f5498
KC
8898 for_each_present_cpu(i)
8899 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8900
8901 return totalcpuusage;
8902}
8903
0297b803
DG
8904static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8905 u64 reset)
8906{
8907 struct cpuacct *ca = cgroup_ca(cgrp);
8908 int err = 0;
8909 int i;
8910
8911 if (reset) {
8912 err = -EINVAL;
8913 goto out;
8914 }
8915
720f5498
KC
8916 for_each_present_cpu(i)
8917 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8918
0297b803
DG
8919out:
8920 return err;
8921}
8922
e9515c3c
KC
8923static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8924 struct seq_file *m)
8925{
8926 struct cpuacct *ca = cgroup_ca(cgroup);
8927 u64 percpu;
8928 int i;
8929
8930 for_each_present_cpu(i) {
8931 percpu = cpuacct_cpuusage_read(ca, i);
8932 seq_printf(m, "%llu ", (unsigned long long) percpu);
8933 }
8934 seq_printf(m, "\n");
8935 return 0;
8936}
8937
ef12fefa
BR
8938static const char *cpuacct_stat_desc[] = {
8939 [CPUACCT_STAT_USER] = "user",
8940 [CPUACCT_STAT_SYSTEM] = "system",
8941};
8942
8943static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8944 struct cgroup_map_cb *cb)
8945{
8946 struct cpuacct *ca = cgroup_ca(cgrp);
8947 int i;
8948
8949 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8950 s64 val = percpu_counter_read(&ca->cpustat[i]);
8951 val = cputime64_to_clock_t(val);
8952 cb->fill(cb, cpuacct_stat_desc[i], val);
8953 }
8954 return 0;
8955}
8956
d842de87
SV
8957static struct cftype files[] = {
8958 {
8959 .name = "usage",
f4c753b7
PM
8960 .read_u64 = cpuusage_read,
8961 .write_u64 = cpuusage_write,
d842de87 8962 },
e9515c3c
KC
8963 {
8964 .name = "usage_percpu",
8965 .read_seq_string = cpuacct_percpu_seq_read,
8966 },
ef12fefa
BR
8967 {
8968 .name = "stat",
8969 .read_map = cpuacct_stats_show,
8970 },
d842de87
SV
8971};
8972
32cd756a 8973static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8974{
32cd756a 8975 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8976}
8977
8978/*
8979 * charge this task's execution time to its accounting group.
8980 *
8981 * called with rq->lock held.
8982 */
8983static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8984{
8985 struct cpuacct *ca;
934352f2 8986 int cpu;
d842de87 8987
c40c6f85 8988 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8989 return;
8990
934352f2 8991 cpu = task_cpu(tsk);
a18b83b7
BR
8992
8993 rcu_read_lock();
8994
d842de87 8995 ca = task_ca(tsk);
d842de87 8996
934352f2 8997 for (; ca; ca = ca->parent) {
b36128c8 8998 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8999 *cpuusage += cputime;
9000 }
a18b83b7
BR
9001
9002 rcu_read_unlock();
d842de87
SV
9003}
9004
fa535a77
AB
9005/*
9006 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9007 * in cputime_t units. As a result, cpuacct_update_stats calls
9008 * percpu_counter_add with values large enough to always overflow the
9009 * per cpu batch limit causing bad SMP scalability.
9010 *
9011 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9012 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9013 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9014 */
9015#ifdef CONFIG_SMP
9016#define CPUACCT_BATCH \
9017 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9018#else
9019#define CPUACCT_BATCH 0
9020#endif
9021
ef12fefa
BR
9022/*
9023 * Charge the system/user time to the task's accounting group.
9024 */
9025static void cpuacct_update_stats(struct task_struct *tsk,
9026 enum cpuacct_stat_index idx, cputime_t val)
9027{
9028 struct cpuacct *ca;
fa535a77 9029 int batch = CPUACCT_BATCH;
ef12fefa
BR
9030
9031 if (unlikely(!cpuacct_subsys.active))
9032 return;
9033
9034 rcu_read_lock();
9035 ca = task_ca(tsk);
9036
9037 do {
fa535a77 9038 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9039 ca = ca->parent;
9040 } while (ca);
9041 rcu_read_unlock();
9042}
9043
d842de87
SV
9044struct cgroup_subsys cpuacct_subsys = {
9045 .name = "cpuacct",
9046 .create = cpuacct_create,
9047 .destroy = cpuacct_destroy,
9048 .populate = cpuacct_populate,
9049 .subsys_id = cpuacct_subsys_id,
9050};
9051#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9052
9053#ifndef CONFIG_SMP
9054
03b042bf
PM
9055void synchronize_sched_expedited(void)
9056{
fc390cde 9057 barrier();
03b042bf
PM
9058}
9059EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9060
9061#else /* #ifndef CONFIG_SMP */
9062
cc631fb7 9063static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
03b042bf 9064
cc631fb7 9065static int synchronize_sched_expedited_cpu_stop(void *data)
03b042bf 9066{
969c7921
TH
9067 /*
9068 * There must be a full memory barrier on each affected CPU
9069 * between the time that try_stop_cpus() is called and the
9070 * time that it returns.
9071 *
9072 * In the current initial implementation of cpu_stop, the
9073 * above condition is already met when the control reaches
9074 * this point and the following smp_mb() is not strictly
9075 * necessary. Do smp_mb() anyway for documentation and
9076 * robustness against future implementation changes.
9077 */
cc631fb7 9078 smp_mb(); /* See above comment block. */
969c7921 9079 return 0;
03b042bf 9080}
03b042bf
PM
9081
9082/*
9083 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9084 * approach to force grace period to end quickly. This consumes
9085 * significant time on all CPUs, and is thus not recommended for
9086 * any sort of common-case code.
9087 *
9088 * Note that it is illegal to call this function while holding any
9089 * lock that is acquired by a CPU-hotplug notifier. Failing to
9090 * observe this restriction will result in deadlock.
9091 */
9092void synchronize_sched_expedited(void)
9093{
969c7921 9094 int snap, trycount = 0;
03b042bf
PM
9095
9096 smp_mb(); /* ensure prior mod happens before capturing snap. */
969c7921 9097 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
03b042bf 9098 get_online_cpus();
969c7921
TH
9099 while (try_stop_cpus(cpu_online_mask,
9100 synchronize_sched_expedited_cpu_stop,
94458d5e 9101 NULL) == -EAGAIN) {
03b042bf
PM
9102 put_online_cpus();
9103 if (trycount++ < 10)
9104 udelay(trycount * num_online_cpus());
9105 else {
9106 synchronize_sched();
9107 return;
9108 }
969c7921 9109 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
03b042bf
PM
9110 smp_mb(); /* ensure test happens before caller kfree */
9111 return;
9112 }
9113 get_online_cpus();
9114 }
969c7921 9115 atomic_inc(&synchronize_sched_expedited_count);
cc631fb7 9116 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
03b042bf 9117 put_online_cpus();
03b042bf
PM
9118}
9119EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9120
9121#endif /* #else #ifndef CONFIG_SMP */
This page took 1.917668 seconds and 5 git commands to generate.