mm, page_alloc: reset zonelist iterator after resetting fair zone allocation policy
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
ff8e8116 535 pr_alert(
1e9e6365 536 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
ff8e8116 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 546 current->comm, page_to_pfn(page));
ff8e8116
VB
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
4e462112 552 dump_page_owner(page);
3dc14741 553
4f31888c 554 print_modules();
1da177e4 555 dump_stack();
d936cf9b 556out:
8cc3b392 557 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 558 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
560}
561
1da177e4
LT
562/*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
1d798ca3 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 566 *
1d798ca3
KS
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 569 *
1d798ca3
KS
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
1da177e4 572 *
1d798ca3 573 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 574 * This usage means that zero-order pages may not be compound.
1da177e4 575 */
d98c7a09 576
9a982250 577void free_compound_page(struct page *page)
d98c7a09 578{
d85f3385 579 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
580}
581
d00181b9 582void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
583{
584 int i;
585 int nr_pages = 1 << order;
586
f1e61557 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
58a84aa9 592 set_page_count(p, 0);
1c290f64 593 p->mapping = TAIL_MAPPING;
1d798ca3 594 set_compound_head(p, page);
18229df5 595 }
53f9263b 596 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
597}
598
c0a32fc5
SG
599#ifdef CONFIG_DEBUG_PAGEALLOC
600unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
601bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 603EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
604bool _debug_guardpage_enabled __read_mostly;
605
031bc574
JK
606static int __init early_debug_pagealloc(char *buf)
607{
608 if (!buf)
609 return -EINVAL;
2a138dc7 610 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
611}
612early_param("debug_pagealloc", early_debug_pagealloc);
613
e30825f1
JK
614static bool need_debug_guardpage(void)
615{
031bc574
JK
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
e30825f1
JK
620 return true;
621}
622
623static void init_debug_guardpage(void)
624{
031bc574
JK
625 if (!debug_pagealloc_enabled())
626 return;
627
e30825f1
JK
628 _debug_guardpage_enabled = true;
629}
630
631struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634};
c0a32fc5
SG
635
636static int __init debug_guardpage_minorder_setup(char *buf)
637{
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 641 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
1170532b 645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
646 return 0;
647}
648__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
649
2847cf95
JK
650static inline void set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
c0a32fc5 652{
e30825f1
JK
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
656 return;
657
658 page_ext = lookup_page_ext(page);
f86e4271
YS
659 if (unlikely(!page_ext))
660 return;
661
e30825f1
JK
662 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
663
2847cf95
JK
664 INIT_LIST_HEAD(&page->lru);
665 set_page_private(page, order);
666 /* Guard pages are not available for any usage */
667 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
668}
669
2847cf95
JK
670static inline void clear_page_guard(struct zone *zone, struct page *page,
671 unsigned int order, int migratetype)
c0a32fc5 672{
e30825f1
JK
673 struct page_ext *page_ext;
674
675 if (!debug_guardpage_enabled())
676 return;
677
678 page_ext = lookup_page_ext(page);
f86e4271
YS
679 if (unlikely(!page_ext))
680 return;
681
e30825f1
JK
682 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
2847cf95
JK
684 set_page_private(page, 0);
685 if (!is_migrate_isolate(migratetype))
686 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
687}
688#else
e30825f1 689struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
690static inline void set_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
692static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
c0a32fc5
SG
694#endif
695
7aeb09f9 696static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 697{
4c21e2f2 698 set_page_private(page, order);
676165a8 699 __SetPageBuddy(page);
1da177e4
LT
700}
701
702static inline void rmv_page_order(struct page *page)
703{
676165a8 704 __ClearPageBuddy(page);
4c21e2f2 705 set_page_private(page, 0);
1da177e4
LT
706}
707
1da177e4
LT
708/*
709 * This function checks whether a page is free && is the buddy
710 * we can do coalesce a page and its buddy if
13e7444b 711 * (a) the buddy is not in a hole &&
676165a8 712 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
713 * (c) a page and its buddy have the same order &&
714 * (d) a page and its buddy are in the same zone.
676165a8 715 *
cf6fe945
WSH
716 * For recording whether a page is in the buddy system, we set ->_mapcount
717 * PAGE_BUDDY_MAPCOUNT_VALUE.
718 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
719 * serialized by zone->lock.
1da177e4 720 *
676165a8 721 * For recording page's order, we use page_private(page).
1da177e4 722 */
cb2b95e1 723static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 724 unsigned int order)
1da177e4 725{
14e07298 726 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 727 return 0;
13e7444b 728
c0a32fc5 729 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
4c5018ce
WY
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
c0a32fc5
SG
735 return 1;
736 }
737
cb2b95e1 738 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
4c5018ce
WY
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
6aa3001b 749 return 1;
676165a8 750 }
6aa3001b 751 return 0;
1da177e4
LT
752}
753
754/*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
767 * free pages of length of (1 << order) and marked with _mapcount
768 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
769 * field.
1da177e4 770 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
1da177e4 773 * If a block is freed, and its buddy is also free, then this
5f63b720 774 * triggers coalescing into a block of larger size.
1da177e4 775 *
6d49e352 776 * -- nyc
1da177e4
LT
777 */
778
48db57f8 779static inline void __free_one_page(struct page *page,
dc4b0caf 780 unsigned long pfn,
ed0ae21d
MG
781 struct zone *zone, unsigned int order,
782 int migratetype)
1da177e4
LT
783{
784 unsigned long page_idx;
6dda9d55 785 unsigned long combined_idx;
43506fad 786 unsigned long uninitialized_var(buddy_idx);
6dda9d55 787 struct page *buddy;
d9dddbf5
VB
788 unsigned int max_order;
789
790 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 791
d29bb978 792 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 793 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 794
ed0ae21d 795 VM_BUG_ON(migratetype == -1);
d9dddbf5 796 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 797 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 798
d9dddbf5 799 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 800
309381fe
SL
801 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
802 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 803
d9dddbf5 804continue_merging:
3c605096 805 while (order < max_order - 1) {
43506fad
KC
806 buddy_idx = __find_buddy_index(page_idx, order);
807 buddy = page + (buddy_idx - page_idx);
cb2b95e1 808 if (!page_is_buddy(page, buddy, order))
d9dddbf5 809 goto done_merging;
c0a32fc5
SG
810 /*
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
813 */
814 if (page_is_guard(buddy)) {
2847cf95 815 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
816 } else {
817 list_del(&buddy->lru);
818 zone->free_area[order].nr_free--;
819 rmv_page_order(buddy);
820 }
43506fad 821 combined_idx = buddy_idx & page_idx;
1da177e4
LT
822 page = page + (combined_idx - page_idx);
823 page_idx = combined_idx;
824 order++;
825 }
d9dddbf5
VB
826 if (max_order < MAX_ORDER) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
831 *
832 * We don't want to hit this code for the more frequent
833 * low-order merging.
834 */
835 if (unlikely(has_isolate_pageblock(zone))) {
836 int buddy_mt;
837
838 buddy_idx = __find_buddy_index(page_idx, order);
839 buddy = page + (buddy_idx - page_idx);
840 buddy_mt = get_pageblock_migratetype(buddy);
841
842 if (migratetype != buddy_mt
843 && (is_migrate_isolate(migratetype) ||
844 is_migrate_isolate(buddy_mt)))
845 goto done_merging;
846 }
847 max_order++;
848 goto continue_merging;
849 }
850
851done_merging:
1da177e4 852 set_page_order(page, order);
6dda9d55
CZ
853
854 /*
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
861 */
b7f50cfa 862 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 863 struct page *higher_page, *higher_buddy;
43506fad
KC
864 combined_idx = buddy_idx & page_idx;
865 higher_page = page + (combined_idx - page_idx);
866 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 867 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
868 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876out:
1da177e4
LT
877 zone->free_area[order].nr_free++;
878}
879
7bfec6f4
MG
880/*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887{
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893#ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895#endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900}
901
bb552ac6 902static void free_pages_check_bad(struct page *page)
1da177e4 903{
7bfec6f4
MG
904 const char *bad_reason;
905 unsigned long bad_flags;
906
7bfec6f4
MG
907 bad_reason = NULL;
908 bad_flags = 0;
f0b791a3 909
53f9263b 910 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
fe896d18 914 if (unlikely(page_ref_count(page) != 0))
0139aa7b 915 bad_reason = "nonzero _refcount";
f0b791a3
DH
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
9edad6ea
JW
920#ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923#endif
7bfec6f4 924 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
925}
926
927static inline int free_pages_check(struct page *page)
928{
da838d4f 929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 930 return 0;
bb552ac6
MG
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
7bfec6f4 934 return 1;
1da177e4
LT
935}
936
4db7548c
MG
937static int free_tail_pages_check(struct page *head_page, struct page *page)
938{
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping is compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
962 * page_deferred_list().next -- ignore value.
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985}
986
e2769dbd
MG
987static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
4db7548c 989{
e2769dbd 990 int bad = 0;
4db7548c 991
4db7548c
MG
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
e2769dbd
MG
994 trace_mm_page_free(page, order);
995 kmemcheck_free_shadow(page, order);
e2769dbd
MG
996
997 /*
998 * Check tail pages before head page information is cleared to
999 * avoid checking PageCompound for order-0 pages.
1000 */
1001 if (unlikely(order)) {
1002 bool compound = PageCompound(page);
1003 int i;
1004
1005 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1006
e2769dbd
MG
1007 for (i = 1; i < (1 << order); i++) {
1008 if (compound)
1009 bad += free_tail_pages_check(page, page + i);
1010 if (unlikely(free_pages_check(page + i))) {
1011 bad++;
1012 continue;
1013 }
1014 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 }
1016 }
4db7548c
MG
1017 if (PageAnonHead(page))
1018 page->mapping = NULL;
e2769dbd
MG
1019 if (check_free)
1020 bad += free_pages_check(page);
1021 if (bad)
1022 return false;
4db7548c 1023
e2769dbd
MG
1024 page_cpupid_reset_last(page);
1025 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 reset_page_owner(page, order);
4db7548c
MG
1027
1028 if (!PageHighMem(page)) {
1029 debug_check_no_locks_freed(page_address(page),
e2769dbd 1030 PAGE_SIZE << order);
4db7548c 1031 debug_check_no_obj_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 }
e2769dbd
MG
1034 arch_free_page(page, order);
1035 kernel_poison_pages(page, 1 << order, 0);
1036 kernel_map_pages(page, 1 << order, 0);
29b52de1 1037 kasan_free_pages(page, order);
4db7548c 1038
4db7548c
MG
1039 return true;
1040}
1041
e2769dbd
MG
1042#ifdef CONFIG_DEBUG_VM
1043static inline bool free_pcp_prepare(struct page *page)
1044{
1045 return free_pages_prepare(page, 0, true);
1046}
1047
1048static inline bool bulkfree_pcp_prepare(struct page *page)
1049{
1050 return false;
1051}
1052#else
1053static bool free_pcp_prepare(struct page *page)
1054{
1055 return free_pages_prepare(page, 0, false);
1056}
1057
4db7548c
MG
1058static bool bulkfree_pcp_prepare(struct page *page)
1059{
1060 return free_pages_check(page);
1061}
1062#endif /* CONFIG_DEBUG_VM */
1063
1da177e4 1064/*
5f8dcc21 1065 * Frees a number of pages from the PCP lists
1da177e4 1066 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1067 * count is the number of pages to free.
1da177e4
LT
1068 *
1069 * If the zone was previously in an "all pages pinned" state then look to
1070 * see if this freeing clears that state.
1071 *
1072 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073 * pinned" detection logic.
1074 */
5f8dcc21
MG
1075static void free_pcppages_bulk(struct zone *zone, int count,
1076 struct per_cpu_pages *pcp)
1da177e4 1077{
5f8dcc21 1078 int migratetype = 0;
a6f9edd6 1079 int batch_free = 0;
0d5d823a 1080 unsigned long nr_scanned;
3777999d 1081 bool isolated_pageblocks;
5f8dcc21 1082
c54ad30c 1083 spin_lock(&zone->lock);
3777999d 1084 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1085 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1086 if (nr_scanned)
1087 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1088
e5b31ac2 1089 while (count) {
48db57f8 1090 struct page *page;
5f8dcc21
MG
1091 struct list_head *list;
1092
1093 /*
a6f9edd6
MG
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
5f8dcc21
MG
1099 */
1100 do {
a6f9edd6 1101 batch_free++;
5f8dcc21
MG
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
48db57f8 1106
1d16871d
NK
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1109 batch_free = count;
1d16871d 1110
a6f9edd6 1111 do {
770c8aaa
BZ
1112 int mt; /* migratetype of the to-be-freed page */
1113
a16601c5 1114 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1115 /* must delete as __free_one_page list manipulates */
1116 list_del(&page->lru);
aa016d14 1117
bb14c2c7 1118 mt = get_pcppage_migratetype(page);
aa016d14
VB
1119 /* MIGRATE_ISOLATE page should not go to pcplists */
1120 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1121 /* Pageblock could have been isolated meanwhile */
3777999d 1122 if (unlikely(isolated_pageblocks))
51bb1a40 1123 mt = get_pageblock_migratetype(page);
51bb1a40 1124
4db7548c
MG
1125 if (bulkfree_pcp_prepare(page))
1126 continue;
1127
dc4b0caf 1128 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1129 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1130 } while (--count && --batch_free && !list_empty(list));
1da177e4 1131 }
c54ad30c 1132 spin_unlock(&zone->lock);
1da177e4
LT
1133}
1134
dc4b0caf
MG
1135static void free_one_page(struct zone *zone,
1136 struct page *page, unsigned long pfn,
7aeb09f9 1137 unsigned int order,
ed0ae21d 1138 int migratetype)
1da177e4 1139{
0d5d823a 1140 unsigned long nr_scanned;
006d22d9 1141 spin_lock(&zone->lock);
0d5d823a
MG
1142 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1143 if (nr_scanned)
1144 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1145
ad53f92e
JK
1146 if (unlikely(has_isolate_pageblock(zone) ||
1147 is_migrate_isolate(migratetype))) {
1148 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1149 }
dc4b0caf 1150 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1151 spin_unlock(&zone->lock);
48db57f8
NP
1152}
1153
1e8ce83c
RH
1154static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1155 unsigned long zone, int nid)
1156{
1e8ce83c 1157 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1158 init_page_count(page);
1159 page_mapcount_reset(page);
1160 page_cpupid_reset_last(page);
1e8ce83c 1161
1e8ce83c
RH
1162 INIT_LIST_HEAD(&page->lru);
1163#ifdef WANT_PAGE_VIRTUAL
1164 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1165 if (!is_highmem_idx(zone))
1166 set_page_address(page, __va(pfn << PAGE_SHIFT));
1167#endif
1168}
1169
1170static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1171 int nid)
1172{
1173 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1174}
1175
7e18adb4
MG
1176#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1177static void init_reserved_page(unsigned long pfn)
1178{
1179 pg_data_t *pgdat;
1180 int nid, zid;
1181
1182 if (!early_page_uninitialised(pfn))
1183 return;
1184
1185 nid = early_pfn_to_nid(pfn);
1186 pgdat = NODE_DATA(nid);
1187
1188 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1189 struct zone *zone = &pgdat->node_zones[zid];
1190
1191 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1192 break;
1193 }
1194 __init_single_pfn(pfn, zid, nid);
1195}
1196#else
1197static inline void init_reserved_page(unsigned long pfn)
1198{
1199}
1200#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1201
92923ca3
NZ
1202/*
1203 * Initialised pages do not have PageReserved set. This function is
1204 * called for each range allocated by the bootmem allocator and
1205 * marks the pages PageReserved. The remaining valid pages are later
1206 * sent to the buddy page allocator.
1207 */
4b50bcc7 1208void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1209{
1210 unsigned long start_pfn = PFN_DOWN(start);
1211 unsigned long end_pfn = PFN_UP(end);
1212
7e18adb4
MG
1213 for (; start_pfn < end_pfn; start_pfn++) {
1214 if (pfn_valid(start_pfn)) {
1215 struct page *page = pfn_to_page(start_pfn);
1216
1217 init_reserved_page(start_pfn);
1d798ca3
KS
1218
1219 /* Avoid false-positive PageTail() */
1220 INIT_LIST_HEAD(&page->lru);
1221
7e18adb4
MG
1222 SetPageReserved(page);
1223 }
1224 }
92923ca3
NZ
1225}
1226
ec95f53a
KM
1227static void __free_pages_ok(struct page *page, unsigned int order)
1228{
1229 unsigned long flags;
95e34412 1230 int migratetype;
dc4b0caf 1231 unsigned long pfn = page_to_pfn(page);
ec95f53a 1232
e2769dbd 1233 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1234 return;
1235
cfc47a28 1236 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1237 local_irq_save(flags);
f8891e5e 1238 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1239 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1240 local_irq_restore(flags);
1da177e4
LT
1241}
1242
949698a3 1243static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1244{
c3993076 1245 unsigned int nr_pages = 1 << order;
e2d0bd2b 1246 struct page *p = page;
c3993076 1247 unsigned int loop;
a226f6c8 1248
e2d0bd2b
YL
1249 prefetchw(p);
1250 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1251 prefetchw(p + 1);
c3993076
JW
1252 __ClearPageReserved(p);
1253 set_page_count(p, 0);
a226f6c8 1254 }
e2d0bd2b
YL
1255 __ClearPageReserved(p);
1256 set_page_count(p, 0);
c3993076 1257
e2d0bd2b 1258 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1259 set_page_refcounted(page);
1260 __free_pages(page, order);
a226f6c8
DH
1261}
1262
75a592a4
MG
1263#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1264 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1265
75a592a4
MG
1266static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1267
1268int __meminit early_pfn_to_nid(unsigned long pfn)
1269{
7ace9917 1270 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1271 int nid;
1272
7ace9917 1273 spin_lock(&early_pfn_lock);
75a592a4 1274 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1275 if (nid < 0)
1276 nid = 0;
1277 spin_unlock(&early_pfn_lock);
1278
1279 return nid;
75a592a4
MG
1280}
1281#endif
1282
1283#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1284static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1285 struct mminit_pfnnid_cache *state)
1286{
1287 int nid;
1288
1289 nid = __early_pfn_to_nid(pfn, state);
1290 if (nid >= 0 && nid != node)
1291 return false;
1292 return true;
1293}
1294
1295/* Only safe to use early in boot when initialisation is single-threaded */
1296static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1297{
1298 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1299}
1300
1301#else
1302
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return true;
1306}
1307static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1308 struct mminit_pfnnid_cache *state)
1309{
1310 return true;
1311}
1312#endif
1313
1314
0e1cc95b 1315void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1316 unsigned int order)
1317{
1318 if (early_page_uninitialised(pfn))
1319 return;
949698a3 1320 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1321}
1322
7cf91a98
JK
1323/*
1324 * Check that the whole (or subset of) a pageblock given by the interval of
1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326 * with the migration of free compaction scanner. The scanners then need to
1327 * use only pfn_valid_within() check for arches that allow holes within
1328 * pageblocks.
1329 *
1330 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1331 *
1332 * It's possible on some configurations to have a setup like node0 node1 node0
1333 * i.e. it's possible that all pages within a zones range of pages do not
1334 * belong to a single zone. We assume that a border between node0 and node1
1335 * can occur within a single pageblock, but not a node0 node1 node0
1336 * interleaving within a single pageblock. It is therefore sufficient to check
1337 * the first and last page of a pageblock and avoid checking each individual
1338 * page in a pageblock.
1339 */
1340struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1341 unsigned long end_pfn, struct zone *zone)
1342{
1343 struct page *start_page;
1344 struct page *end_page;
1345
1346 /* end_pfn is one past the range we are checking */
1347 end_pfn--;
1348
1349 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1350 return NULL;
1351
1352 start_page = pfn_to_page(start_pfn);
1353
1354 if (page_zone(start_page) != zone)
1355 return NULL;
1356
1357 end_page = pfn_to_page(end_pfn);
1358
1359 /* This gives a shorter code than deriving page_zone(end_page) */
1360 if (page_zone_id(start_page) != page_zone_id(end_page))
1361 return NULL;
1362
1363 return start_page;
1364}
1365
1366void set_zone_contiguous(struct zone *zone)
1367{
1368 unsigned long block_start_pfn = zone->zone_start_pfn;
1369 unsigned long block_end_pfn;
1370
1371 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1372 for (; block_start_pfn < zone_end_pfn(zone);
1373 block_start_pfn = block_end_pfn,
1374 block_end_pfn += pageblock_nr_pages) {
1375
1376 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1377
1378 if (!__pageblock_pfn_to_page(block_start_pfn,
1379 block_end_pfn, zone))
1380 return;
1381 }
1382
1383 /* We confirm that there is no hole */
1384 zone->contiguous = true;
1385}
1386
1387void clear_zone_contiguous(struct zone *zone)
1388{
1389 zone->contiguous = false;
1390}
1391
7e18adb4 1392#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1393static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1394 unsigned long pfn, int nr_pages)
1395{
1396 int i;
1397
1398 if (!page)
1399 return;
1400
1401 /* Free a large naturally-aligned chunk if possible */
1402 if (nr_pages == MAX_ORDER_NR_PAGES &&
1403 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1404 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1405 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1406 return;
1407 }
1408
949698a3
LZ
1409 for (i = 0; i < nr_pages; i++, page++)
1410 __free_pages_boot_core(page, 0);
a4de83dd
MG
1411}
1412
d3cd131d
NS
1413/* Completion tracking for deferred_init_memmap() threads */
1414static atomic_t pgdat_init_n_undone __initdata;
1415static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1416
1417static inline void __init pgdat_init_report_one_done(void)
1418{
1419 if (atomic_dec_and_test(&pgdat_init_n_undone))
1420 complete(&pgdat_init_all_done_comp);
1421}
0e1cc95b 1422
7e18adb4 1423/* Initialise remaining memory on a node */
0e1cc95b 1424static int __init deferred_init_memmap(void *data)
7e18adb4 1425{
0e1cc95b
MG
1426 pg_data_t *pgdat = data;
1427 int nid = pgdat->node_id;
7e18adb4
MG
1428 struct mminit_pfnnid_cache nid_init_state = { };
1429 unsigned long start = jiffies;
1430 unsigned long nr_pages = 0;
1431 unsigned long walk_start, walk_end;
1432 int i, zid;
1433 struct zone *zone;
7e18adb4 1434 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1435 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1436
0e1cc95b 1437 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1438 pgdat_init_report_one_done();
0e1cc95b
MG
1439 return 0;
1440 }
1441
1442 /* Bind memory initialisation thread to a local node if possible */
1443 if (!cpumask_empty(cpumask))
1444 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1445
1446 /* Sanity check boundaries */
1447 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1448 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1449 pgdat->first_deferred_pfn = ULONG_MAX;
1450
1451 /* Only the highest zone is deferred so find it */
1452 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1453 zone = pgdat->node_zones + zid;
1454 if (first_init_pfn < zone_end_pfn(zone))
1455 break;
1456 }
1457
1458 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1459 unsigned long pfn, end_pfn;
54608c3f 1460 struct page *page = NULL;
a4de83dd
MG
1461 struct page *free_base_page = NULL;
1462 unsigned long free_base_pfn = 0;
1463 int nr_to_free = 0;
7e18adb4
MG
1464
1465 end_pfn = min(walk_end, zone_end_pfn(zone));
1466 pfn = first_init_pfn;
1467 if (pfn < walk_start)
1468 pfn = walk_start;
1469 if (pfn < zone->zone_start_pfn)
1470 pfn = zone->zone_start_pfn;
1471
1472 for (; pfn < end_pfn; pfn++) {
54608c3f 1473 if (!pfn_valid_within(pfn))
a4de83dd 1474 goto free_range;
7e18adb4 1475
54608c3f
MG
1476 /*
1477 * Ensure pfn_valid is checked every
1478 * MAX_ORDER_NR_PAGES for memory holes
1479 */
1480 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1481 if (!pfn_valid(pfn)) {
1482 page = NULL;
a4de83dd 1483 goto free_range;
54608c3f
MG
1484 }
1485 }
1486
1487 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1488 page = NULL;
a4de83dd 1489 goto free_range;
54608c3f
MG
1490 }
1491
1492 /* Minimise pfn page lookups and scheduler checks */
1493 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1494 page++;
1495 } else {
a4de83dd
MG
1496 nr_pages += nr_to_free;
1497 deferred_free_range(free_base_page,
1498 free_base_pfn, nr_to_free);
1499 free_base_page = NULL;
1500 free_base_pfn = nr_to_free = 0;
1501
54608c3f
MG
1502 page = pfn_to_page(pfn);
1503 cond_resched();
1504 }
7e18adb4
MG
1505
1506 if (page->flags) {
1507 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1508 goto free_range;
7e18adb4
MG
1509 }
1510
1511 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1512 if (!free_base_page) {
1513 free_base_page = page;
1514 free_base_pfn = pfn;
1515 nr_to_free = 0;
1516 }
1517 nr_to_free++;
1518
1519 /* Where possible, batch up pages for a single free */
1520 continue;
1521free_range:
1522 /* Free the current block of pages to allocator */
1523 nr_pages += nr_to_free;
1524 deferred_free_range(free_base_page, free_base_pfn,
1525 nr_to_free);
1526 free_base_page = NULL;
1527 free_base_pfn = nr_to_free = 0;
7e18adb4 1528 }
a4de83dd 1529
7e18adb4
MG
1530 first_init_pfn = max(end_pfn, first_init_pfn);
1531 }
1532
1533 /* Sanity check that the next zone really is unpopulated */
1534 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1535
0e1cc95b 1536 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1537 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1538
1539 pgdat_init_report_one_done();
0e1cc95b
MG
1540 return 0;
1541}
7cf91a98 1542#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1543
1544void __init page_alloc_init_late(void)
1545{
7cf91a98
JK
1546 struct zone *zone;
1547
1548#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1549 int nid;
1550
d3cd131d
NS
1551 /* There will be num_node_state(N_MEMORY) threads */
1552 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1553 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1554 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1555 }
1556
1557 /* Block until all are initialised */
d3cd131d 1558 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1559
1560 /* Reinit limits that are based on free pages after the kernel is up */
1561 files_maxfiles_init();
7cf91a98
JK
1562#endif
1563
1564 for_each_populated_zone(zone)
1565 set_zone_contiguous(zone);
7e18adb4 1566}
7e18adb4 1567
47118af0 1568#ifdef CONFIG_CMA
9cf510a5 1569/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1570void __init init_cma_reserved_pageblock(struct page *page)
1571{
1572 unsigned i = pageblock_nr_pages;
1573 struct page *p = page;
1574
1575 do {
1576 __ClearPageReserved(p);
1577 set_page_count(p, 0);
1578 } while (++p, --i);
1579
47118af0 1580 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1581
1582 if (pageblock_order >= MAX_ORDER) {
1583 i = pageblock_nr_pages;
1584 p = page;
1585 do {
1586 set_page_refcounted(p);
1587 __free_pages(p, MAX_ORDER - 1);
1588 p += MAX_ORDER_NR_PAGES;
1589 } while (i -= MAX_ORDER_NR_PAGES);
1590 } else {
1591 set_page_refcounted(page);
1592 __free_pages(page, pageblock_order);
1593 }
1594
3dcc0571 1595 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1596}
1597#endif
1da177e4
LT
1598
1599/*
1600 * The order of subdivision here is critical for the IO subsystem.
1601 * Please do not alter this order without good reasons and regression
1602 * testing. Specifically, as large blocks of memory are subdivided,
1603 * the order in which smaller blocks are delivered depends on the order
1604 * they're subdivided in this function. This is the primary factor
1605 * influencing the order in which pages are delivered to the IO
1606 * subsystem according to empirical testing, and this is also justified
1607 * by considering the behavior of a buddy system containing a single
1608 * large block of memory acted on by a series of small allocations.
1609 * This behavior is a critical factor in sglist merging's success.
1610 *
6d49e352 1611 * -- nyc
1da177e4 1612 */
085cc7d5 1613static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1614 int low, int high, struct free_area *area,
1615 int migratetype)
1da177e4
LT
1616{
1617 unsigned long size = 1 << high;
1618
1619 while (high > low) {
1620 area--;
1621 high--;
1622 size >>= 1;
309381fe 1623 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1624
2847cf95 1625 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1626 debug_guardpage_enabled() &&
2847cf95 1627 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1628 /*
1629 * Mark as guard pages (or page), that will allow to
1630 * merge back to allocator when buddy will be freed.
1631 * Corresponding page table entries will not be touched,
1632 * pages will stay not present in virtual address space
1633 */
2847cf95 1634 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1635 continue;
1636 }
b2a0ac88 1637 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1638 area->nr_free++;
1639 set_page_order(&page[size], high);
1640 }
1da177e4
LT
1641}
1642
4e611801 1643static void check_new_page_bad(struct page *page)
1da177e4 1644{
4e611801
VB
1645 const char *bad_reason = NULL;
1646 unsigned long bad_flags = 0;
7bfec6f4 1647
53f9263b 1648 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1649 bad_reason = "nonzero mapcount";
1650 if (unlikely(page->mapping != NULL))
1651 bad_reason = "non-NULL mapping";
fe896d18 1652 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1653 bad_reason = "nonzero _count";
f4c18e6f
NH
1654 if (unlikely(page->flags & __PG_HWPOISON)) {
1655 bad_reason = "HWPoisoned (hardware-corrupted)";
1656 bad_flags = __PG_HWPOISON;
e570f56c
NH
1657 /* Don't complain about hwpoisoned pages */
1658 page_mapcount_reset(page); /* remove PageBuddy */
1659 return;
f4c18e6f 1660 }
f0b791a3
DH
1661 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1662 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1663 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1664 }
9edad6ea
JW
1665#ifdef CONFIG_MEMCG
1666 if (unlikely(page->mem_cgroup))
1667 bad_reason = "page still charged to cgroup";
1668#endif
4e611801
VB
1669 bad_page(page, bad_reason, bad_flags);
1670}
1671
1672/*
1673 * This page is about to be returned from the page allocator
1674 */
1675static inline int check_new_page(struct page *page)
1676{
1677 if (likely(page_expected_state(page,
1678 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1679 return 0;
1680
1681 check_new_page_bad(page);
1682 return 1;
2a7684a2
WF
1683}
1684
1414c7f4
LA
1685static inline bool free_pages_prezeroed(bool poisoned)
1686{
1687 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1688 page_poisoning_enabled() && poisoned;
1689}
1690
479f854a
MG
1691#ifdef CONFIG_DEBUG_VM
1692static bool check_pcp_refill(struct page *page)
1693{
1694 return false;
1695}
1696
1697static bool check_new_pcp(struct page *page)
1698{
1699 return check_new_page(page);
1700}
1701#else
1702static bool check_pcp_refill(struct page *page)
1703{
1704 return check_new_page(page);
1705}
1706static bool check_new_pcp(struct page *page)
1707{
1708 return false;
1709}
1710#endif /* CONFIG_DEBUG_VM */
1711
1712static bool check_new_pages(struct page *page, unsigned int order)
1713{
1714 int i;
1715 for (i = 0; i < (1 << order); i++) {
1716 struct page *p = page + i;
1717
1718 if (unlikely(check_new_page(p)))
1719 return true;
1720 }
1721
1722 return false;
1723}
1724
1725static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1726 unsigned int alloc_flags)
2a7684a2
WF
1727{
1728 int i;
1414c7f4 1729 bool poisoned = true;
2a7684a2
WF
1730
1731 for (i = 0; i < (1 << order); i++) {
1732 struct page *p = page + i;
1414c7f4
LA
1733 if (poisoned)
1734 poisoned &= page_is_poisoned(p);
2a7684a2 1735 }
689bcebf 1736
4c21e2f2 1737 set_page_private(page, 0);
7835e98b 1738 set_page_refcounted(page);
cc102509
NP
1739
1740 arch_alloc_page(page, order);
1da177e4 1741 kernel_map_pages(page, 1 << order, 1);
8823b1db 1742 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1743 kasan_alloc_pages(page, order);
17cf4406 1744
1414c7f4 1745 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1746 for (i = 0; i < (1 << order); i++)
1747 clear_highpage(page + i);
17cf4406
NP
1748
1749 if (order && (gfp_flags & __GFP_COMP))
1750 prep_compound_page(page, order);
1751
48c96a36
JK
1752 set_page_owner(page, order, gfp_flags);
1753
75379191 1754 /*
2f064f34 1755 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1756 * allocate the page. The expectation is that the caller is taking
1757 * steps that will free more memory. The caller should avoid the page
1758 * being used for !PFMEMALLOC purposes.
1759 */
2f064f34
MH
1760 if (alloc_flags & ALLOC_NO_WATERMARKS)
1761 set_page_pfmemalloc(page);
1762 else
1763 clear_page_pfmemalloc(page);
1da177e4
LT
1764}
1765
56fd56b8
MG
1766/*
1767 * Go through the free lists for the given migratetype and remove
1768 * the smallest available page from the freelists
1769 */
728ec980
MG
1770static inline
1771struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1772 int migratetype)
1773{
1774 unsigned int current_order;
b8af2941 1775 struct free_area *area;
56fd56b8
MG
1776 struct page *page;
1777
1778 /* Find a page of the appropriate size in the preferred list */
1779 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1780 area = &(zone->free_area[current_order]);
a16601c5 1781 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1782 struct page, lru);
a16601c5
GT
1783 if (!page)
1784 continue;
56fd56b8
MG
1785 list_del(&page->lru);
1786 rmv_page_order(page);
1787 area->nr_free--;
56fd56b8 1788 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1789 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1790 return page;
1791 }
1792
1793 return NULL;
1794}
1795
1796
b2a0ac88
MG
1797/*
1798 * This array describes the order lists are fallen back to when
1799 * the free lists for the desirable migrate type are depleted
1800 */
47118af0 1801static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1802 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1803 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1805#ifdef CONFIG_CMA
974a786e 1806 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1807#endif
194159fb 1808#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1809 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1810#endif
b2a0ac88
MG
1811};
1812
dc67647b
JK
1813#ifdef CONFIG_CMA
1814static struct page *__rmqueue_cma_fallback(struct zone *zone,
1815 unsigned int order)
1816{
1817 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1818}
1819#else
1820static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order) { return NULL; }
1822#endif
1823
c361be55
MG
1824/*
1825 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1826 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1827 * boundary. If alignment is required, use move_freepages_block()
1828 */
435b405c 1829int move_freepages(struct zone *zone,
b69a7288
AB
1830 struct page *start_page, struct page *end_page,
1831 int migratetype)
c361be55
MG
1832{
1833 struct page *page;
d00181b9 1834 unsigned int order;
d100313f 1835 int pages_moved = 0;
c361be55
MG
1836
1837#ifndef CONFIG_HOLES_IN_ZONE
1838 /*
1839 * page_zone is not safe to call in this context when
1840 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1841 * anyway as we check zone boundaries in move_freepages_block().
1842 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1843 * grouping pages by mobility
c361be55 1844 */
97ee4ba7 1845 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1846#endif
1847
1848 for (page = start_page; page <= end_page;) {
344c790e 1849 /* Make sure we are not inadvertently changing nodes */
309381fe 1850 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1851
c361be55
MG
1852 if (!pfn_valid_within(page_to_pfn(page))) {
1853 page++;
1854 continue;
1855 }
1856
1857 if (!PageBuddy(page)) {
1858 page++;
1859 continue;
1860 }
1861
1862 order = page_order(page);
84be48d8
KS
1863 list_move(&page->lru,
1864 &zone->free_area[order].free_list[migratetype]);
c361be55 1865 page += 1 << order;
d100313f 1866 pages_moved += 1 << order;
c361be55
MG
1867 }
1868
d100313f 1869 return pages_moved;
c361be55
MG
1870}
1871
ee6f509c 1872int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1873 int migratetype)
c361be55
MG
1874{
1875 unsigned long start_pfn, end_pfn;
1876 struct page *start_page, *end_page;
1877
1878 start_pfn = page_to_pfn(page);
d9c23400 1879 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1880 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1881 end_page = start_page + pageblock_nr_pages - 1;
1882 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1883
1884 /* Do not cross zone boundaries */
108bcc96 1885 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1886 start_page = page;
108bcc96 1887 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1888 return 0;
1889
1890 return move_freepages(zone, start_page, end_page, migratetype);
1891}
1892
2f66a68f
MG
1893static void change_pageblock_range(struct page *pageblock_page,
1894 int start_order, int migratetype)
1895{
1896 int nr_pageblocks = 1 << (start_order - pageblock_order);
1897
1898 while (nr_pageblocks--) {
1899 set_pageblock_migratetype(pageblock_page, migratetype);
1900 pageblock_page += pageblock_nr_pages;
1901 }
1902}
1903
fef903ef 1904/*
9c0415eb
VB
1905 * When we are falling back to another migratetype during allocation, try to
1906 * steal extra free pages from the same pageblocks to satisfy further
1907 * allocations, instead of polluting multiple pageblocks.
1908 *
1909 * If we are stealing a relatively large buddy page, it is likely there will
1910 * be more free pages in the pageblock, so try to steal them all. For
1911 * reclaimable and unmovable allocations, we steal regardless of page size,
1912 * as fragmentation caused by those allocations polluting movable pageblocks
1913 * is worse than movable allocations stealing from unmovable and reclaimable
1914 * pageblocks.
fef903ef 1915 */
4eb7dce6
JK
1916static bool can_steal_fallback(unsigned int order, int start_mt)
1917{
1918 /*
1919 * Leaving this order check is intended, although there is
1920 * relaxed order check in next check. The reason is that
1921 * we can actually steal whole pageblock if this condition met,
1922 * but, below check doesn't guarantee it and that is just heuristic
1923 * so could be changed anytime.
1924 */
1925 if (order >= pageblock_order)
1926 return true;
1927
1928 if (order >= pageblock_order / 2 ||
1929 start_mt == MIGRATE_RECLAIMABLE ||
1930 start_mt == MIGRATE_UNMOVABLE ||
1931 page_group_by_mobility_disabled)
1932 return true;
1933
1934 return false;
1935}
1936
1937/*
1938 * This function implements actual steal behaviour. If order is large enough,
1939 * we can steal whole pageblock. If not, we first move freepages in this
1940 * pageblock and check whether half of pages are moved or not. If half of
1941 * pages are moved, we can change migratetype of pageblock and permanently
1942 * use it's pages as requested migratetype in the future.
1943 */
1944static void steal_suitable_fallback(struct zone *zone, struct page *page,
1945 int start_type)
fef903ef 1946{
d00181b9 1947 unsigned int current_order = page_order(page);
4eb7dce6 1948 int pages;
fef903ef 1949
fef903ef
SB
1950 /* Take ownership for orders >= pageblock_order */
1951 if (current_order >= pageblock_order) {
1952 change_pageblock_range(page, current_order, start_type);
3a1086fb 1953 return;
fef903ef
SB
1954 }
1955
4eb7dce6 1956 pages = move_freepages_block(zone, page, start_type);
fef903ef 1957
4eb7dce6
JK
1958 /* Claim the whole block if over half of it is free */
1959 if (pages >= (1 << (pageblock_order-1)) ||
1960 page_group_by_mobility_disabled)
1961 set_pageblock_migratetype(page, start_type);
1962}
1963
2149cdae
JK
1964/*
1965 * Check whether there is a suitable fallback freepage with requested order.
1966 * If only_stealable is true, this function returns fallback_mt only if
1967 * we can steal other freepages all together. This would help to reduce
1968 * fragmentation due to mixed migratetype pages in one pageblock.
1969 */
1970int find_suitable_fallback(struct free_area *area, unsigned int order,
1971 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1972{
1973 int i;
1974 int fallback_mt;
1975
1976 if (area->nr_free == 0)
1977 return -1;
1978
1979 *can_steal = false;
1980 for (i = 0;; i++) {
1981 fallback_mt = fallbacks[migratetype][i];
974a786e 1982 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1983 break;
1984
1985 if (list_empty(&area->free_list[fallback_mt]))
1986 continue;
fef903ef 1987
4eb7dce6
JK
1988 if (can_steal_fallback(order, migratetype))
1989 *can_steal = true;
1990
2149cdae
JK
1991 if (!only_stealable)
1992 return fallback_mt;
1993
1994 if (*can_steal)
1995 return fallback_mt;
fef903ef 1996 }
4eb7dce6
JK
1997
1998 return -1;
fef903ef
SB
1999}
2000
0aaa29a5
MG
2001/*
2002 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2003 * there are no empty page blocks that contain a page with a suitable order
2004 */
2005static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2006 unsigned int alloc_order)
2007{
2008 int mt;
2009 unsigned long max_managed, flags;
2010
2011 /*
2012 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2013 * Check is race-prone but harmless.
2014 */
2015 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2016 if (zone->nr_reserved_highatomic >= max_managed)
2017 return;
2018
2019 spin_lock_irqsave(&zone->lock, flags);
2020
2021 /* Recheck the nr_reserved_highatomic limit under the lock */
2022 if (zone->nr_reserved_highatomic >= max_managed)
2023 goto out_unlock;
2024
2025 /* Yoink! */
2026 mt = get_pageblock_migratetype(page);
2027 if (mt != MIGRATE_HIGHATOMIC &&
2028 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2029 zone->nr_reserved_highatomic += pageblock_nr_pages;
2030 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2031 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2032 }
2033
2034out_unlock:
2035 spin_unlock_irqrestore(&zone->lock, flags);
2036}
2037
2038/*
2039 * Used when an allocation is about to fail under memory pressure. This
2040 * potentially hurts the reliability of high-order allocations when under
2041 * intense memory pressure but failed atomic allocations should be easier
2042 * to recover from than an OOM.
2043 */
2044static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2045{
2046 struct zonelist *zonelist = ac->zonelist;
2047 unsigned long flags;
2048 struct zoneref *z;
2049 struct zone *zone;
2050 struct page *page;
2051 int order;
2052
2053 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2054 ac->nodemask) {
2055 /* Preserve at least one pageblock */
2056 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2057 continue;
2058
2059 spin_lock_irqsave(&zone->lock, flags);
2060 for (order = 0; order < MAX_ORDER; order++) {
2061 struct free_area *area = &(zone->free_area[order]);
2062
a16601c5
GT
2063 page = list_first_entry_or_null(
2064 &area->free_list[MIGRATE_HIGHATOMIC],
2065 struct page, lru);
2066 if (!page)
0aaa29a5
MG
2067 continue;
2068
0aaa29a5
MG
2069 /*
2070 * It should never happen but changes to locking could
2071 * inadvertently allow a per-cpu drain to add pages
2072 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2073 * and watch for underflows.
2074 */
2075 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2076 zone->nr_reserved_highatomic);
2077
2078 /*
2079 * Convert to ac->migratetype and avoid the normal
2080 * pageblock stealing heuristics. Minimally, the caller
2081 * is doing the work and needs the pages. More
2082 * importantly, if the block was always converted to
2083 * MIGRATE_UNMOVABLE or another type then the number
2084 * of pageblocks that cannot be completely freed
2085 * may increase.
2086 */
2087 set_pageblock_migratetype(page, ac->migratetype);
2088 move_freepages_block(zone, page, ac->migratetype);
2089 spin_unlock_irqrestore(&zone->lock, flags);
2090 return;
2091 }
2092 spin_unlock_irqrestore(&zone->lock, flags);
2093 }
2094}
2095
b2a0ac88 2096/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2097static inline struct page *
7aeb09f9 2098__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2099{
b8af2941 2100 struct free_area *area;
7aeb09f9 2101 unsigned int current_order;
b2a0ac88 2102 struct page *page;
4eb7dce6
JK
2103 int fallback_mt;
2104 bool can_steal;
b2a0ac88
MG
2105
2106 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2107 for (current_order = MAX_ORDER-1;
2108 current_order >= order && current_order <= MAX_ORDER-1;
2109 --current_order) {
4eb7dce6
JK
2110 area = &(zone->free_area[current_order]);
2111 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2112 start_migratetype, false, &can_steal);
4eb7dce6
JK
2113 if (fallback_mt == -1)
2114 continue;
b2a0ac88 2115
a16601c5 2116 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2117 struct page, lru);
2118 if (can_steal)
2119 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2120
4eb7dce6
JK
2121 /* Remove the page from the freelists */
2122 area->nr_free--;
2123 list_del(&page->lru);
2124 rmv_page_order(page);
3a1086fb 2125
4eb7dce6
JK
2126 expand(zone, page, order, current_order, area,
2127 start_migratetype);
2128 /*
bb14c2c7 2129 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2130 * migratetype depending on the decisions in
bb14c2c7
VB
2131 * find_suitable_fallback(). This is OK as long as it does not
2132 * differ for MIGRATE_CMA pageblocks. Those can be used as
2133 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2134 */
bb14c2c7 2135 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2136
4eb7dce6
JK
2137 trace_mm_page_alloc_extfrag(page, order, current_order,
2138 start_migratetype, fallback_mt);
e0fff1bd 2139
4eb7dce6 2140 return page;
b2a0ac88
MG
2141 }
2142
728ec980 2143 return NULL;
b2a0ac88
MG
2144}
2145
56fd56b8 2146/*
1da177e4
LT
2147 * Do the hard work of removing an element from the buddy allocator.
2148 * Call me with the zone->lock already held.
2149 */
b2a0ac88 2150static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2151 int migratetype)
1da177e4 2152{
1da177e4
LT
2153 struct page *page;
2154
56fd56b8 2155 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2156 if (unlikely(!page)) {
dc67647b
JK
2157 if (migratetype == MIGRATE_MOVABLE)
2158 page = __rmqueue_cma_fallback(zone, order);
2159
2160 if (!page)
2161 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2162 }
2163
0d3d062a 2164 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2165 return page;
1da177e4
LT
2166}
2167
5f63b720 2168/*
1da177e4
LT
2169 * Obtain a specified number of elements from the buddy allocator, all under
2170 * a single hold of the lock, for efficiency. Add them to the supplied list.
2171 * Returns the number of new pages which were placed at *list.
2172 */
5f63b720 2173static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2174 unsigned long count, struct list_head *list,
b745bc85 2175 int migratetype, bool cold)
1da177e4 2176{
5bcc9f86 2177 int i;
5f63b720 2178
c54ad30c 2179 spin_lock(&zone->lock);
1da177e4 2180 for (i = 0; i < count; ++i) {
6ac0206b 2181 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2182 if (unlikely(page == NULL))
1da177e4 2183 break;
81eabcbe 2184
479f854a
MG
2185 if (unlikely(check_pcp_refill(page)))
2186 continue;
2187
81eabcbe
MG
2188 /*
2189 * Split buddy pages returned by expand() are received here
2190 * in physical page order. The page is added to the callers and
2191 * list and the list head then moves forward. From the callers
2192 * perspective, the linked list is ordered by page number in
2193 * some conditions. This is useful for IO devices that can
2194 * merge IO requests if the physical pages are ordered
2195 * properly.
2196 */
b745bc85 2197 if (likely(!cold))
e084b2d9
MG
2198 list_add(&page->lru, list);
2199 else
2200 list_add_tail(&page->lru, list);
81eabcbe 2201 list = &page->lru;
bb14c2c7 2202 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2203 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2204 -(1 << order));
1da177e4 2205 }
f2260e6b 2206 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2207 spin_unlock(&zone->lock);
085cc7d5 2208 return i;
1da177e4
LT
2209}
2210
4ae7c039 2211#ifdef CONFIG_NUMA
8fce4d8e 2212/*
4037d452
CL
2213 * Called from the vmstat counter updater to drain pagesets of this
2214 * currently executing processor on remote nodes after they have
2215 * expired.
2216 *
879336c3
CL
2217 * Note that this function must be called with the thread pinned to
2218 * a single processor.
8fce4d8e 2219 */
4037d452 2220void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2221{
4ae7c039 2222 unsigned long flags;
7be12fc9 2223 int to_drain, batch;
4ae7c039 2224
4037d452 2225 local_irq_save(flags);
4db0c3c2 2226 batch = READ_ONCE(pcp->batch);
7be12fc9 2227 to_drain = min(pcp->count, batch);
2a13515c
KM
2228 if (to_drain > 0) {
2229 free_pcppages_bulk(zone, to_drain, pcp);
2230 pcp->count -= to_drain;
2231 }
4037d452 2232 local_irq_restore(flags);
4ae7c039
CL
2233}
2234#endif
2235
9f8f2172 2236/*
93481ff0 2237 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2238 *
2239 * The processor must either be the current processor and the
2240 * thread pinned to the current processor or a processor that
2241 * is not online.
2242 */
93481ff0 2243static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2244{
c54ad30c 2245 unsigned long flags;
93481ff0
VB
2246 struct per_cpu_pageset *pset;
2247 struct per_cpu_pages *pcp;
1da177e4 2248
93481ff0
VB
2249 local_irq_save(flags);
2250 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2251
93481ff0
VB
2252 pcp = &pset->pcp;
2253 if (pcp->count) {
2254 free_pcppages_bulk(zone, pcp->count, pcp);
2255 pcp->count = 0;
2256 }
2257 local_irq_restore(flags);
2258}
3dfa5721 2259
93481ff0
VB
2260/*
2261 * Drain pcplists of all zones on the indicated processor.
2262 *
2263 * The processor must either be the current processor and the
2264 * thread pinned to the current processor or a processor that
2265 * is not online.
2266 */
2267static void drain_pages(unsigned int cpu)
2268{
2269 struct zone *zone;
2270
2271 for_each_populated_zone(zone) {
2272 drain_pages_zone(cpu, zone);
1da177e4
LT
2273 }
2274}
1da177e4 2275
9f8f2172
CL
2276/*
2277 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2278 *
2279 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2280 * the single zone's pages.
9f8f2172 2281 */
93481ff0 2282void drain_local_pages(struct zone *zone)
9f8f2172 2283{
93481ff0
VB
2284 int cpu = smp_processor_id();
2285
2286 if (zone)
2287 drain_pages_zone(cpu, zone);
2288 else
2289 drain_pages(cpu);
9f8f2172
CL
2290}
2291
2292/*
74046494
GBY
2293 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2294 *
93481ff0
VB
2295 * When zone parameter is non-NULL, spill just the single zone's pages.
2296 *
74046494
GBY
2297 * Note that this code is protected against sending an IPI to an offline
2298 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2299 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2300 * nothing keeps CPUs from showing up after we populated the cpumask and
2301 * before the call to on_each_cpu_mask().
9f8f2172 2302 */
93481ff0 2303void drain_all_pages(struct zone *zone)
9f8f2172 2304{
74046494 2305 int cpu;
74046494
GBY
2306
2307 /*
2308 * Allocate in the BSS so we wont require allocation in
2309 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2310 */
2311 static cpumask_t cpus_with_pcps;
2312
2313 /*
2314 * We don't care about racing with CPU hotplug event
2315 * as offline notification will cause the notified
2316 * cpu to drain that CPU pcps and on_each_cpu_mask
2317 * disables preemption as part of its processing
2318 */
2319 for_each_online_cpu(cpu) {
93481ff0
VB
2320 struct per_cpu_pageset *pcp;
2321 struct zone *z;
74046494 2322 bool has_pcps = false;
93481ff0
VB
2323
2324 if (zone) {
74046494 2325 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2326 if (pcp->pcp.count)
74046494 2327 has_pcps = true;
93481ff0
VB
2328 } else {
2329 for_each_populated_zone(z) {
2330 pcp = per_cpu_ptr(z->pageset, cpu);
2331 if (pcp->pcp.count) {
2332 has_pcps = true;
2333 break;
2334 }
74046494
GBY
2335 }
2336 }
93481ff0 2337
74046494
GBY
2338 if (has_pcps)
2339 cpumask_set_cpu(cpu, &cpus_with_pcps);
2340 else
2341 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2342 }
93481ff0
VB
2343 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2344 zone, 1);
9f8f2172
CL
2345}
2346
296699de 2347#ifdef CONFIG_HIBERNATION
1da177e4
LT
2348
2349void mark_free_pages(struct zone *zone)
2350{
f623f0db
RW
2351 unsigned long pfn, max_zone_pfn;
2352 unsigned long flags;
7aeb09f9 2353 unsigned int order, t;
86760a2c 2354 struct page *page;
1da177e4 2355
8080fc03 2356 if (zone_is_empty(zone))
1da177e4
LT
2357 return;
2358
2359 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2360
108bcc96 2361 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2362 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2363 if (pfn_valid(pfn)) {
86760a2c 2364 page = pfn_to_page(pfn);
ba6b0979
JK
2365
2366 if (page_zone(page) != zone)
2367 continue;
2368
7be98234
RW
2369 if (!swsusp_page_is_forbidden(page))
2370 swsusp_unset_page_free(page);
f623f0db 2371 }
1da177e4 2372
b2a0ac88 2373 for_each_migratetype_order(order, t) {
86760a2c
GT
2374 list_for_each_entry(page,
2375 &zone->free_area[order].free_list[t], lru) {
f623f0db 2376 unsigned long i;
1da177e4 2377
86760a2c 2378 pfn = page_to_pfn(page);
f623f0db 2379 for (i = 0; i < (1UL << order); i++)
7be98234 2380 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2381 }
b2a0ac88 2382 }
1da177e4
LT
2383 spin_unlock_irqrestore(&zone->lock, flags);
2384}
e2c55dc8 2385#endif /* CONFIG_PM */
1da177e4 2386
1da177e4
LT
2387/*
2388 * Free a 0-order page
b745bc85 2389 * cold == true ? free a cold page : free a hot page
1da177e4 2390 */
b745bc85 2391void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2392{
2393 struct zone *zone = page_zone(page);
2394 struct per_cpu_pages *pcp;
2395 unsigned long flags;
dc4b0caf 2396 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2397 int migratetype;
1da177e4 2398
4db7548c 2399 if (!free_pcp_prepare(page))
689bcebf
HD
2400 return;
2401
dc4b0caf 2402 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2403 set_pcppage_migratetype(page, migratetype);
1da177e4 2404 local_irq_save(flags);
f8891e5e 2405 __count_vm_event(PGFREE);
da456f14 2406
5f8dcc21
MG
2407 /*
2408 * We only track unmovable, reclaimable and movable on pcp lists.
2409 * Free ISOLATE pages back to the allocator because they are being
2410 * offlined but treat RESERVE as movable pages so we can get those
2411 * areas back if necessary. Otherwise, we may have to free
2412 * excessively into the page allocator
2413 */
2414 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2415 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2416 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2417 goto out;
2418 }
2419 migratetype = MIGRATE_MOVABLE;
2420 }
2421
99dcc3e5 2422 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2423 if (!cold)
5f8dcc21 2424 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2425 else
2426 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2427 pcp->count++;
48db57f8 2428 if (pcp->count >= pcp->high) {
4db0c3c2 2429 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2430 free_pcppages_bulk(zone, batch, pcp);
2431 pcp->count -= batch;
48db57f8 2432 }
5f8dcc21
MG
2433
2434out:
1da177e4 2435 local_irq_restore(flags);
1da177e4
LT
2436}
2437
cc59850e
KK
2438/*
2439 * Free a list of 0-order pages
2440 */
b745bc85 2441void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2442{
2443 struct page *page, *next;
2444
2445 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2446 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2447 free_hot_cold_page(page, cold);
2448 }
2449}
2450
8dfcc9ba
NP
2451/*
2452 * split_page takes a non-compound higher-order page, and splits it into
2453 * n (1<<order) sub-pages: page[0..n]
2454 * Each sub-page must be freed individually.
2455 *
2456 * Note: this is probably too low level an operation for use in drivers.
2457 * Please consult with lkml before using this in your driver.
2458 */
2459void split_page(struct page *page, unsigned int order)
2460{
2461 int i;
e2cfc911 2462 gfp_t gfp_mask;
8dfcc9ba 2463
309381fe
SL
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2466
2467#ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474#endif
2475
e2cfc911
JK
2476 gfp_mask = get_page_owner_gfp(page);
2477 set_page_owner(page, 0, gfp_mask);
48c96a36 2478 for (i = 1; i < (1 << order); i++) {
7835e98b 2479 set_page_refcounted(page + i);
e2cfc911 2480 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2481 }
8dfcc9ba 2482}
5853ff23 2483EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2484
3c605096 2485int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2486{
748446bb
MG
2487 unsigned long watermark;
2488 struct zone *zone;
2139cbe6 2489 int mt;
748446bb
MG
2490
2491 BUG_ON(!PageBuddy(page));
2492
2493 zone = page_zone(page);
2e30abd1 2494 mt = get_pageblock_migratetype(page);
748446bb 2495
194159fb 2496 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2497 /* Obey watermarks as if the page was being allocated */
2498 watermark = low_wmark_pages(zone) + (1 << order);
2499 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2500 return 0;
2501
8fb74b9f 2502 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2503 }
748446bb
MG
2504
2505 /* Remove page from free list */
2506 list_del(&page->lru);
2507 zone->free_area[order].nr_free--;
2508 rmv_page_order(page);
2139cbe6 2509
e2cfc911 2510 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2511
8fb74b9f 2512 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2513 if (order >= pageblock_order - 1) {
2514 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2515 for (; page < endpage; page += pageblock_nr_pages) {
2516 int mt = get_pageblock_migratetype(page);
194159fb 2517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2518 set_pageblock_migratetype(page,
2519 MIGRATE_MOVABLE);
2520 }
748446bb
MG
2521 }
2522
f3a14ced 2523
8fb74b9f 2524 return 1UL << order;
1fb3f8ca
MG
2525}
2526
2527/*
2528 * Similar to split_page except the page is already free. As this is only
2529 * being used for migration, the migratetype of the block also changes.
2530 * As this is called with interrupts disabled, the caller is responsible
2531 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2532 * are enabled.
2533 *
2534 * Note: this is probably too low level an operation for use in drivers.
2535 * Please consult with lkml before using this in your driver.
2536 */
2537int split_free_page(struct page *page)
2538{
2539 unsigned int order;
2540 int nr_pages;
2541
1fb3f8ca
MG
2542 order = page_order(page);
2543
8fb74b9f 2544 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2545 if (!nr_pages)
2546 return 0;
2547
2548 /* Split into individual pages */
2549 set_page_refcounted(page);
2550 split_page(page, order);
2551 return nr_pages;
748446bb
MG
2552}
2553
060e7417
MG
2554/*
2555 * Update NUMA hit/miss statistics
2556 *
2557 * Must be called with interrupts disabled.
2558 *
2559 * When __GFP_OTHER_NODE is set assume the node of the preferred
2560 * zone is the local node. This is useful for daemons who allocate
2561 * memory on behalf of other processes.
2562 */
2563static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2564 gfp_t flags)
2565{
2566#ifdef CONFIG_NUMA
2567 int local_nid = numa_node_id();
2568 enum zone_stat_item local_stat = NUMA_LOCAL;
2569
2570 if (unlikely(flags & __GFP_OTHER_NODE)) {
2571 local_stat = NUMA_OTHER;
2572 local_nid = preferred_zone->node;
2573 }
2574
2575 if (z->node == local_nid) {
2576 __inc_zone_state(z, NUMA_HIT);
2577 __inc_zone_state(z, local_stat);
2578 } else {
2579 __inc_zone_state(z, NUMA_MISS);
2580 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2581 }
2582#endif
2583}
2584
1da177e4 2585/*
75379191 2586 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2587 */
0a15c3e9
MG
2588static inline
2589struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2590 struct zone *zone, unsigned int order,
c603844b
MG
2591 gfp_t gfp_flags, unsigned int alloc_flags,
2592 int migratetype)
1da177e4
LT
2593{
2594 unsigned long flags;
689bcebf 2595 struct page *page;
b745bc85 2596 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2597
48db57f8 2598 if (likely(order == 0)) {
1da177e4 2599 struct per_cpu_pages *pcp;
5f8dcc21 2600 struct list_head *list;
1da177e4 2601
1da177e4 2602 local_irq_save(flags);
479f854a
MG
2603 do {
2604 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2605 list = &pcp->lists[migratetype];
2606 if (list_empty(list)) {
2607 pcp->count += rmqueue_bulk(zone, 0,
2608 pcp->batch, list,
2609 migratetype, cold);
2610 if (unlikely(list_empty(list)))
2611 goto failed;
2612 }
b92a6edd 2613
479f854a
MG
2614 if (cold)
2615 page = list_last_entry(list, struct page, lru);
2616 else
2617 page = list_first_entry(list, struct page, lru);
5f8dcc21 2618
83b9355b
VB
2619 __dec_zone_state(zone, NR_ALLOC_BATCH);
2620 list_del(&page->lru);
2621 pcp->count--;
2622
2623 } while (check_new_pcp(page));
7fb1d9fc 2624 } else {
0f352e53
MH
2625 /*
2626 * We most definitely don't want callers attempting to
2627 * allocate greater than order-1 page units with __GFP_NOFAIL.
2628 */
2629 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2630 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2631
479f854a
MG
2632 do {
2633 page = NULL;
2634 if (alloc_flags & ALLOC_HARDER) {
2635 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2636 if (page)
2637 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2638 }
2639 if (!page)
2640 page = __rmqueue(zone, order, migratetype);
2641 } while (page && check_new_pages(page, order));
a74609fa
NP
2642 spin_unlock(&zone->lock);
2643 if (!page)
2644 goto failed;
754078eb 2645 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2646 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2647 get_pcppage_migratetype(page));
1da177e4
LT
2648 }
2649
abe5f972 2650 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2651 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2652 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2653
f8891e5e 2654 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2655 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2656 local_irq_restore(flags);
1da177e4 2657
309381fe 2658 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2659 return page;
a74609fa
NP
2660
2661failed:
2662 local_irq_restore(flags);
a74609fa 2663 return NULL;
1da177e4
LT
2664}
2665
933e312e
AM
2666#ifdef CONFIG_FAIL_PAGE_ALLOC
2667
b2588c4b 2668static struct {
933e312e
AM
2669 struct fault_attr attr;
2670
621a5f7a 2671 bool ignore_gfp_highmem;
71baba4b 2672 bool ignore_gfp_reclaim;
54114994 2673 u32 min_order;
933e312e
AM
2674} fail_page_alloc = {
2675 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2676 .ignore_gfp_reclaim = true,
621a5f7a 2677 .ignore_gfp_highmem = true,
54114994 2678 .min_order = 1,
933e312e
AM
2679};
2680
2681static int __init setup_fail_page_alloc(char *str)
2682{
2683 return setup_fault_attr(&fail_page_alloc.attr, str);
2684}
2685__setup("fail_page_alloc=", setup_fail_page_alloc);
2686
deaf386e 2687static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2688{
54114994 2689 if (order < fail_page_alloc.min_order)
deaf386e 2690 return false;
933e312e 2691 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2692 return false;
933e312e 2693 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2694 return false;
71baba4b
MG
2695 if (fail_page_alloc.ignore_gfp_reclaim &&
2696 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2697 return false;
933e312e
AM
2698
2699 return should_fail(&fail_page_alloc.attr, 1 << order);
2700}
2701
2702#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2703
2704static int __init fail_page_alloc_debugfs(void)
2705{
f4ae40a6 2706 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2707 struct dentry *dir;
933e312e 2708
dd48c085
AM
2709 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2710 &fail_page_alloc.attr);
2711 if (IS_ERR(dir))
2712 return PTR_ERR(dir);
933e312e 2713
b2588c4b 2714 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2715 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2716 goto fail;
2717 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2718 &fail_page_alloc.ignore_gfp_highmem))
2719 goto fail;
2720 if (!debugfs_create_u32("min-order", mode, dir,
2721 &fail_page_alloc.min_order))
2722 goto fail;
2723
2724 return 0;
2725fail:
dd48c085 2726 debugfs_remove_recursive(dir);
933e312e 2727
b2588c4b 2728 return -ENOMEM;
933e312e
AM
2729}
2730
2731late_initcall(fail_page_alloc_debugfs);
2732
2733#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2734
2735#else /* CONFIG_FAIL_PAGE_ALLOC */
2736
deaf386e 2737static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2738{
deaf386e 2739 return false;
933e312e
AM
2740}
2741
2742#endif /* CONFIG_FAIL_PAGE_ALLOC */
2743
1da177e4 2744/*
97a16fc8
MG
2745 * Return true if free base pages are above 'mark'. For high-order checks it
2746 * will return true of the order-0 watermark is reached and there is at least
2747 * one free page of a suitable size. Checking now avoids taking the zone lock
2748 * to check in the allocation paths if no pages are free.
1da177e4 2749 */
86a294a8
MH
2750bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2751 int classzone_idx, unsigned int alloc_flags,
2752 long free_pages)
1da177e4 2753{
d23ad423 2754 long min = mark;
1da177e4 2755 int o;
c603844b 2756 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2757
0aaa29a5 2758 /* free_pages may go negative - that's OK */
df0a6daa 2759 free_pages -= (1 << order) - 1;
0aaa29a5 2760
7fb1d9fc 2761 if (alloc_flags & ALLOC_HIGH)
1da177e4 2762 min -= min / 2;
0aaa29a5
MG
2763
2764 /*
2765 * If the caller does not have rights to ALLOC_HARDER then subtract
2766 * the high-atomic reserves. This will over-estimate the size of the
2767 * atomic reserve but it avoids a search.
2768 */
97a16fc8 2769 if (likely(!alloc_harder))
0aaa29a5
MG
2770 free_pages -= z->nr_reserved_highatomic;
2771 else
1da177e4 2772 min -= min / 4;
e2b19197 2773
d95ea5d1
BZ
2774#ifdef CONFIG_CMA
2775 /* If allocation can't use CMA areas don't use free CMA pages */
2776 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2777 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2778#endif
026b0814 2779
97a16fc8
MG
2780 /*
2781 * Check watermarks for an order-0 allocation request. If these
2782 * are not met, then a high-order request also cannot go ahead
2783 * even if a suitable page happened to be free.
2784 */
2785 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2786 return false;
1da177e4 2787
97a16fc8
MG
2788 /* If this is an order-0 request then the watermark is fine */
2789 if (!order)
2790 return true;
2791
2792 /* For a high-order request, check at least one suitable page is free */
2793 for (o = order; o < MAX_ORDER; o++) {
2794 struct free_area *area = &z->free_area[o];
2795 int mt;
2796
2797 if (!area->nr_free)
2798 continue;
2799
2800 if (alloc_harder)
2801 return true;
1da177e4 2802
97a16fc8
MG
2803 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2804 if (!list_empty(&area->free_list[mt]))
2805 return true;
2806 }
2807
2808#ifdef CONFIG_CMA
2809 if ((alloc_flags & ALLOC_CMA) &&
2810 !list_empty(&area->free_list[MIGRATE_CMA])) {
2811 return true;
2812 }
2813#endif
1da177e4 2814 }
97a16fc8 2815 return false;
88f5acf8
MG
2816}
2817
7aeb09f9 2818bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2819 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2820{
2821 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2822 zone_page_state(z, NR_FREE_PAGES));
2823}
2824
48ee5f36
MG
2825static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2826 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2827{
2828 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2829 long cma_pages = 0;
2830
2831#ifdef CONFIG_CMA
2832 /* If allocation can't use CMA areas don't use free CMA pages */
2833 if (!(alloc_flags & ALLOC_CMA))
2834 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2835#endif
2836
2837 /*
2838 * Fast check for order-0 only. If this fails then the reserves
2839 * need to be calculated. There is a corner case where the check
2840 * passes but only the high-order atomic reserve are free. If
2841 * the caller is !atomic then it'll uselessly search the free
2842 * list. That corner case is then slower but it is harmless.
2843 */
2844 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2845 return true;
2846
2847 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2848 free_pages);
2849}
2850
7aeb09f9 2851bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2852 unsigned long mark, int classzone_idx)
88f5acf8
MG
2853{
2854 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2855
2856 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2857 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2858
e2b19197 2859 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2860 free_pages);
1da177e4
LT
2861}
2862
9276b1bc 2863#ifdef CONFIG_NUMA
81c0a2bb
JW
2864static bool zone_local(struct zone *local_zone, struct zone *zone)
2865{
fff4068c 2866 return local_zone->node == zone->node;
81c0a2bb
JW
2867}
2868
957f822a
DR
2869static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2870{
5f7a75ac
MG
2871 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2872 RECLAIM_DISTANCE;
957f822a 2873}
9276b1bc 2874#else /* CONFIG_NUMA */
81c0a2bb
JW
2875static bool zone_local(struct zone *local_zone, struct zone *zone)
2876{
2877 return true;
2878}
2879
957f822a
DR
2880static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2881{
2882 return true;
2883}
9276b1bc
PJ
2884#endif /* CONFIG_NUMA */
2885
4ffeaf35
MG
2886static void reset_alloc_batches(struct zone *preferred_zone)
2887{
2888 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2889
2890 do {
2891 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2892 high_wmark_pages(zone) - low_wmark_pages(zone) -
2893 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2894 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2895 } while (zone++ != preferred_zone);
2896}
2897
7fb1d9fc 2898/*
0798e519 2899 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2900 * a page.
2901 */
2902static struct page *
a9263751
VB
2903get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2904 const struct alloc_context *ac)
753ee728 2905{
c33d6c06 2906 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2907 struct zone *zone;
30534755
MG
2908 bool fair_skipped = false;
2909 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2910
9276b1bc 2911zonelist_scan:
7fb1d9fc 2912 /*
9276b1bc 2913 * Scan zonelist, looking for a zone with enough free.
344736f2 2914 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2915 */
c33d6c06 2916 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2917 ac->nodemask) {
be06af00 2918 struct page *page;
e085dbc5
JW
2919 unsigned long mark;
2920
664eedde
MG
2921 if (cpusets_enabled() &&
2922 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2923 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2924 continue;
81c0a2bb
JW
2925 /*
2926 * Distribute pages in proportion to the individual
2927 * zone size to ensure fair page aging. The zone a
2928 * page was allocated in should have no effect on the
2929 * time the page has in memory before being reclaimed.
81c0a2bb 2930 */
30534755 2931 if (apply_fair) {
57054651 2932 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2933 fair_skipped = true;
3a025760 2934 continue;
4ffeaf35 2935 }
c33d6c06 2936 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2937 if (fair_skipped)
2938 goto reset_fair;
2939 apply_fair = false;
2940 }
81c0a2bb 2941 }
a756cf59
JW
2942 /*
2943 * When allocating a page cache page for writing, we
2944 * want to get it from a zone that is within its dirty
2945 * limit, such that no single zone holds more than its
2946 * proportional share of globally allowed dirty pages.
2947 * The dirty limits take into account the zone's
2948 * lowmem reserves and high watermark so that kswapd
2949 * should be able to balance it without having to
2950 * write pages from its LRU list.
2951 *
2952 * This may look like it could increase pressure on
2953 * lower zones by failing allocations in higher zones
2954 * before they are full. But the pages that do spill
2955 * over are limited as the lower zones are protected
2956 * by this very same mechanism. It should not become
2957 * a practical burden to them.
2958 *
2959 * XXX: For now, allow allocations to potentially
2960 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2961 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2962 * which is important when on a NUMA setup the allowed
2963 * zones are together not big enough to reach the
2964 * global limit. The proper fix for these situations
2965 * will require awareness of zones in the
2966 * dirty-throttling and the flusher threads.
2967 */
c9ab0c4f 2968 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2969 continue;
7fb1d9fc 2970
e085dbc5 2971 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2972 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2973 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2974 int ret;
2975
5dab2911
MG
2976 /* Checked here to keep the fast path fast */
2977 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2978 if (alloc_flags & ALLOC_NO_WATERMARKS)
2979 goto try_this_zone;
2980
957f822a 2981 if (zone_reclaim_mode == 0 ||
c33d6c06 2982 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2983 continue;
2984
fa5e084e
MG
2985 ret = zone_reclaim(zone, gfp_mask, order);
2986 switch (ret) {
2987 case ZONE_RECLAIM_NOSCAN:
2988 /* did not scan */
cd38b115 2989 continue;
fa5e084e
MG
2990 case ZONE_RECLAIM_FULL:
2991 /* scanned but unreclaimable */
cd38b115 2992 continue;
fa5e084e
MG
2993 default:
2994 /* did we reclaim enough */
fed2719e 2995 if (zone_watermark_ok(zone, order, mark,
93ea9964 2996 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2997 goto try_this_zone;
2998
fed2719e 2999 continue;
0798e519 3000 }
7fb1d9fc
RS
3001 }
3002
fa5e084e 3003try_this_zone:
c33d6c06 3004 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3005 gfp_mask, alloc_flags, ac->migratetype);
75379191 3006 if (page) {
479f854a 3007 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3008
3009 /*
3010 * If this is a high-order atomic allocation then check
3011 * if the pageblock should be reserved for the future
3012 */
3013 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3014 reserve_highatomic_pageblock(page, zone, order);
3015
75379191
VB
3016 return page;
3017 }
54a6eb5c 3018 }
9276b1bc 3019
4ffeaf35
MG
3020 /*
3021 * The first pass makes sure allocations are spread fairly within the
3022 * local node. However, the local node might have free pages left
3023 * after the fairness batches are exhausted, and remote zones haven't
3024 * even been considered yet. Try once more without fairness, and
3025 * include remote zones now, before entering the slowpath and waking
3026 * kswapd: prefer spilling to a remote zone over swapping locally.
3027 */
30534755
MG
3028 if (fair_skipped) {
3029reset_fair:
3030 apply_fair = false;
3031 fair_skipped = false;
c33d6c06 3032 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3033 z = ac->preferred_zoneref;
4ffeaf35 3034 goto zonelist_scan;
30534755 3035 }
4ffeaf35
MG
3036
3037 return NULL;
753ee728
MH
3038}
3039
29423e77
DR
3040/*
3041 * Large machines with many possible nodes should not always dump per-node
3042 * meminfo in irq context.
3043 */
3044static inline bool should_suppress_show_mem(void)
3045{
3046 bool ret = false;
3047
3048#if NODES_SHIFT > 8
3049 ret = in_interrupt();
3050#endif
3051 return ret;
3052}
3053
a238ab5b
DH
3054static DEFINE_RATELIMIT_STATE(nopage_rs,
3055 DEFAULT_RATELIMIT_INTERVAL,
3056 DEFAULT_RATELIMIT_BURST);
3057
d00181b9 3058void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3059{
a238ab5b
DH
3060 unsigned int filter = SHOW_MEM_FILTER_NODES;
3061
c0a32fc5
SG
3062 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3063 debug_guardpage_minorder() > 0)
a238ab5b
DH
3064 return;
3065
3066 /*
3067 * This documents exceptions given to allocations in certain
3068 * contexts that are allowed to allocate outside current's set
3069 * of allowed nodes.
3070 */
3071 if (!(gfp_mask & __GFP_NOMEMALLOC))
3072 if (test_thread_flag(TIF_MEMDIE) ||
3073 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3074 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3075 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3076 filter &= ~SHOW_MEM_FILTER_NODES;
3077
3078 if (fmt) {
3ee9a4f0
JP
3079 struct va_format vaf;
3080 va_list args;
3081
a238ab5b 3082 va_start(args, fmt);
3ee9a4f0
JP
3083
3084 vaf.fmt = fmt;
3085 vaf.va = &args;
3086
3087 pr_warn("%pV", &vaf);
3088
a238ab5b
DH
3089 va_end(args);
3090 }
3091
c5c990e8
VB
3092 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3093 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3094 dump_stack();
3095 if (!should_suppress_show_mem())
3096 show_mem(filter);
3097}
3098
11e33f6a
MG
3099static inline struct page *
3100__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3101 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3102{
6e0fc46d
DR
3103 struct oom_control oc = {
3104 .zonelist = ac->zonelist,
3105 .nodemask = ac->nodemask,
3106 .gfp_mask = gfp_mask,
3107 .order = order,
6e0fc46d 3108 };
11e33f6a
MG
3109 struct page *page;
3110
9879de73
JW
3111 *did_some_progress = 0;
3112
9879de73 3113 /*
dc56401f
JW
3114 * Acquire the oom lock. If that fails, somebody else is
3115 * making progress for us.
9879de73 3116 */
dc56401f 3117 if (!mutex_trylock(&oom_lock)) {
9879de73 3118 *did_some_progress = 1;
11e33f6a 3119 schedule_timeout_uninterruptible(1);
1da177e4
LT
3120 return NULL;
3121 }
6b1de916 3122
11e33f6a
MG
3123 /*
3124 * Go through the zonelist yet one more time, keep very high watermark
3125 * here, this is only to catch a parallel oom killing, we must fail if
3126 * we're still under heavy pressure.
3127 */
a9263751
VB
3128 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3129 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3130 if (page)
11e33f6a
MG
3131 goto out;
3132
4365a567 3133 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3134 /* Coredumps can quickly deplete all memory reserves */
3135 if (current->flags & PF_DUMPCORE)
3136 goto out;
4365a567
KH
3137 /* The OOM killer will not help higher order allocs */
3138 if (order > PAGE_ALLOC_COSTLY_ORDER)
3139 goto out;
03668b3c 3140 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3141 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3142 goto out;
9083905a
JW
3143 if (pm_suspended_storage())
3144 goto out;
3da88fb3
MH
3145 /*
3146 * XXX: GFP_NOFS allocations should rather fail than rely on
3147 * other request to make a forward progress.
3148 * We are in an unfortunate situation where out_of_memory cannot
3149 * do much for this context but let's try it to at least get
3150 * access to memory reserved if the current task is killed (see
3151 * out_of_memory). Once filesystems are ready to handle allocation
3152 * failures more gracefully we should just bail out here.
3153 */
3154
4167e9b2 3155 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3156 if (gfp_mask & __GFP_THISNODE)
3157 goto out;
3158 }
11e33f6a 3159 /* Exhausted what can be done so it's blamo time */
5020e285 3160 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3161 *did_some_progress = 1;
5020e285
MH
3162
3163 if (gfp_mask & __GFP_NOFAIL) {
3164 page = get_page_from_freelist(gfp_mask, order,
3165 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3166 /*
3167 * fallback to ignore cpuset restriction if our nodes
3168 * are depleted
3169 */
3170 if (!page)
3171 page = get_page_from_freelist(gfp_mask, order,
3172 ALLOC_NO_WATERMARKS, ac);
3173 }
3174 }
11e33f6a 3175out:
dc56401f 3176 mutex_unlock(&oom_lock);
11e33f6a
MG
3177 return page;
3178}
3179
33c2d214
MH
3180
3181/*
3182 * Maximum number of compaction retries wit a progress before OOM
3183 * killer is consider as the only way to move forward.
3184 */
3185#define MAX_COMPACT_RETRIES 16
3186
56de7263
MG
3187#ifdef CONFIG_COMPACTION
3188/* Try memory compaction for high-order allocations before reclaim */
3189static struct page *
3190__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3191 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3192 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3193{
98dd3b48 3194 struct page *page;
c5d01d0d 3195 int contended_compaction;
53853e2d
VB
3196
3197 if (!order)
66199712 3198 return NULL;
66199712 3199
c06b1fca 3200 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3201 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3202 mode, &contended_compaction);
c06b1fca 3203 current->flags &= ~PF_MEMALLOC;
56de7263 3204
c5d01d0d 3205 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3206 return NULL;
53853e2d 3207
98dd3b48
VB
3208 /*
3209 * At least in one zone compaction wasn't deferred or skipped, so let's
3210 * count a compaction stall
3211 */
3212 count_vm_event(COMPACTSTALL);
8fb74b9f 3213
a9263751
VB
3214 page = get_page_from_freelist(gfp_mask, order,
3215 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3216
98dd3b48
VB
3217 if (page) {
3218 struct zone *zone = page_zone(page);
53853e2d 3219
98dd3b48
VB
3220 zone->compact_blockskip_flush = false;
3221 compaction_defer_reset(zone, order, true);
3222 count_vm_event(COMPACTSUCCESS);
3223 return page;
3224 }
56de7263 3225
98dd3b48
VB
3226 /*
3227 * It's bad if compaction run occurs and fails. The most likely reason
3228 * is that pages exist, but not enough to satisfy watermarks.
3229 */
3230 count_vm_event(COMPACTFAIL);
66199712 3231
c5d01d0d
MH
3232 /*
3233 * In all zones where compaction was attempted (and not
3234 * deferred or skipped), lock contention has been detected.
3235 * For THP allocation we do not want to disrupt the others
3236 * so we fallback to base pages instead.
3237 */
3238 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3239 *compact_result = COMPACT_CONTENDED;
3240
3241 /*
3242 * If compaction was aborted due to need_resched(), we do not
3243 * want to further increase allocation latency, unless it is
3244 * khugepaged trying to collapse.
3245 */
3246 if (contended_compaction == COMPACT_CONTENDED_SCHED
3247 && !(current->flags & PF_KTHREAD))
3248 *compact_result = COMPACT_CONTENDED;
3249
98dd3b48 3250 cond_resched();
56de7263
MG
3251
3252 return NULL;
3253}
33c2d214
MH
3254
3255static inline bool
86a294a8
MH
3256should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3257 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3258 int compaction_retries)
3259{
7854ea6c
MH
3260 int max_retries = MAX_COMPACT_RETRIES;
3261
33c2d214
MH
3262 if (!order)
3263 return false;
3264
3265 /*
3266 * compaction considers all the zone as desperately out of memory
3267 * so it doesn't really make much sense to retry except when the
3268 * failure could be caused by weak migration mode.
3269 */
3270 if (compaction_failed(compact_result)) {
3271 if (*migrate_mode == MIGRATE_ASYNC) {
3272 *migrate_mode = MIGRATE_SYNC_LIGHT;
3273 return true;
3274 }
3275 return false;
3276 }
3277
3278 /*
7854ea6c
MH
3279 * make sure the compaction wasn't deferred or didn't bail out early
3280 * due to locks contention before we declare that we should give up.
86a294a8
MH
3281 * But do not retry if the given zonelist is not suitable for
3282 * compaction.
33c2d214 3283 */
7854ea6c 3284 if (compaction_withdrawn(compact_result))
86a294a8 3285 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3286
3287 /*
3288 * !costly requests are much more important than __GFP_REPEAT
3289 * costly ones because they are de facto nofail and invoke OOM
3290 * killer to move on while costly can fail and users are ready
3291 * to cope with that. 1/4 retries is rather arbitrary but we
3292 * would need much more detailed feedback from compaction to
3293 * make a better decision.
3294 */
3295 if (order > PAGE_ALLOC_COSTLY_ORDER)
3296 max_retries /= 4;
3297 if (compaction_retries <= max_retries)
3298 return true;
33c2d214
MH
3299
3300 return false;
3301}
56de7263
MG
3302#else
3303static inline struct page *
3304__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3305 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3306 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3307{
33c2d214 3308 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3309 return NULL;
3310}
33c2d214
MH
3311
3312static inline bool
86a294a8
MH
3313should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3314 enum compact_result compact_result,
33c2d214
MH
3315 enum migrate_mode *migrate_mode,
3316 int compaction_retries)
3317{
31e49bfd
MH
3318 struct zone *zone;
3319 struct zoneref *z;
3320
3321 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3322 return false;
3323
3324 /*
3325 * There are setups with compaction disabled which would prefer to loop
3326 * inside the allocator rather than hit the oom killer prematurely.
3327 * Let's give them a good hope and keep retrying while the order-0
3328 * watermarks are OK.
3329 */
3330 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3331 ac->nodemask) {
3332 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3333 ac_classzone_idx(ac), alloc_flags))
3334 return true;
3335 }
33c2d214
MH
3336 return false;
3337}
56de7263
MG
3338#endif /* CONFIG_COMPACTION */
3339
bba90710
MS
3340/* Perform direct synchronous page reclaim */
3341static int
a9263751
VB
3342__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3343 const struct alloc_context *ac)
11e33f6a 3344{
11e33f6a 3345 struct reclaim_state reclaim_state;
bba90710 3346 int progress;
11e33f6a
MG
3347
3348 cond_resched();
3349
3350 /* We now go into synchronous reclaim */
3351 cpuset_memory_pressure_bump();
c06b1fca 3352 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3353 lockdep_set_current_reclaim_state(gfp_mask);
3354 reclaim_state.reclaimed_slab = 0;
c06b1fca 3355 current->reclaim_state = &reclaim_state;
11e33f6a 3356
a9263751
VB
3357 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3358 ac->nodemask);
11e33f6a 3359
c06b1fca 3360 current->reclaim_state = NULL;
11e33f6a 3361 lockdep_clear_current_reclaim_state();
c06b1fca 3362 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3363
3364 cond_resched();
3365
bba90710
MS
3366 return progress;
3367}
3368
3369/* The really slow allocator path where we enter direct reclaim */
3370static inline struct page *
3371__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3372 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3373 unsigned long *did_some_progress)
bba90710
MS
3374{
3375 struct page *page = NULL;
3376 bool drained = false;
3377
a9263751 3378 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3379 if (unlikely(!(*did_some_progress)))
3380 return NULL;
11e33f6a 3381
9ee493ce 3382retry:
a9263751
VB
3383 page = get_page_from_freelist(gfp_mask, order,
3384 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3385
3386 /*
3387 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3388 * pages are pinned on the per-cpu lists or in high alloc reserves.
3389 * Shrink them them and try again
9ee493ce
MG
3390 */
3391 if (!page && !drained) {
0aaa29a5 3392 unreserve_highatomic_pageblock(ac);
93481ff0 3393 drain_all_pages(NULL);
9ee493ce
MG
3394 drained = true;
3395 goto retry;
3396 }
3397
11e33f6a
MG
3398 return page;
3399}
3400
a9263751 3401static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3402{
3403 struct zoneref *z;
3404 struct zone *zone;
3405
a9263751
VB
3406 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3407 ac->high_zoneidx, ac->nodemask)
93ea9964 3408 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3409}
3410
c603844b 3411static inline unsigned int
341ce06f
PZ
3412gfp_to_alloc_flags(gfp_t gfp_mask)
3413{
c603844b 3414 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3415
a56f57ff 3416 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3417 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3418
341ce06f
PZ
3419 /*
3420 * The caller may dip into page reserves a bit more if the caller
3421 * cannot run direct reclaim, or if the caller has realtime scheduling
3422 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3423 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3424 */
e6223a3b 3425 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3426
d0164adc 3427 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3428 /*
b104a35d
DR
3429 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3430 * if it can't schedule.
5c3240d9 3431 */
b104a35d 3432 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3433 alloc_flags |= ALLOC_HARDER;
523b9458 3434 /*
b104a35d 3435 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3436 * comment for __cpuset_node_allowed().
523b9458 3437 */
341ce06f 3438 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3439 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3440 alloc_flags |= ALLOC_HARDER;
3441
b37f1dd0
MG
3442 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3443 if (gfp_mask & __GFP_MEMALLOC)
3444 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3445 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3446 alloc_flags |= ALLOC_NO_WATERMARKS;
3447 else if (!in_interrupt() &&
3448 ((current->flags & PF_MEMALLOC) ||
3449 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3450 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3451 }
d95ea5d1 3452#ifdef CONFIG_CMA
43e7a34d 3453 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3454 alloc_flags |= ALLOC_CMA;
3455#endif
341ce06f
PZ
3456 return alloc_flags;
3457}
3458
072bb0aa
MG
3459bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3460{
b37f1dd0 3461 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3462}
3463
d0164adc
MG
3464static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3465{
3466 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3467}
3468
0a0337e0
MH
3469/*
3470 * Maximum number of reclaim retries without any progress before OOM killer
3471 * is consider as the only way to move forward.
3472 */
3473#define MAX_RECLAIM_RETRIES 16
3474
3475/*
3476 * Checks whether it makes sense to retry the reclaim to make a forward progress
3477 * for the given allocation request.
3478 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3479 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3480 * any progress in a row) is considered as well as the reclaimable pages on the
3481 * applicable zone list (with a backoff mechanism which is a function of
3482 * no_progress_loops).
0a0337e0
MH
3483 *
3484 * Returns true if a retry is viable or false to enter the oom path.
3485 */
3486static inline bool
3487should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3488 struct alloc_context *ac, int alloc_flags,
7854ea6c 3489 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3490{
3491 struct zone *zone;
3492 struct zoneref *z;
3493
3494 /*
3495 * Make sure we converge to OOM if we cannot make any progress
3496 * several times in the row.
3497 */
3498 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3499 return false;
3500
0a0337e0
MH
3501 /*
3502 * Keep reclaiming pages while there is a chance this will lead somewhere.
3503 * If none of the target zones can satisfy our allocation request even
3504 * if all reclaimable pages are considered then we are screwed and have
3505 * to go OOM.
3506 */
3507 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3508 ac->nodemask) {
3509 unsigned long available;
ede37713 3510 unsigned long reclaimable;
0a0337e0 3511
ede37713 3512 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3513 available -= DIV_ROUND_UP(no_progress_loops * available,
3514 MAX_RECLAIM_RETRIES);
3515 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3516
3517 /*
3518 * Would the allocation succeed if we reclaimed the whole
3519 * available?
3520 */
3521 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3522 ac_classzone_idx(ac), alloc_flags, available)) {
3523 /*
3524 * If we didn't make any progress and have a lot of
3525 * dirty + writeback pages then we should wait for
3526 * an IO to complete to slow down the reclaim and
3527 * prevent from pre mature OOM
3528 */
3529 if (!did_some_progress) {
3530 unsigned long writeback;
3531 unsigned long dirty;
3532
3533 writeback = zone_page_state_snapshot(zone,
3534 NR_WRITEBACK);
3535 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3536
3537 if (2*(writeback + dirty) > reclaimable) {
3538 congestion_wait(BLK_RW_ASYNC, HZ/10);
3539 return true;
3540 }
3541 }
3542
3543 /*
3544 * Memory allocation/reclaim might be called from a WQ
3545 * context and the current implementation of the WQ
3546 * concurrency control doesn't recognize that
3547 * a particular WQ is congested if the worker thread is
3548 * looping without ever sleeping. Therefore we have to
3549 * do a short sleep here rather than calling
3550 * cond_resched().
3551 */
3552 if (current->flags & PF_WQ_WORKER)
3553 schedule_timeout_uninterruptible(1);
3554 else
3555 cond_resched();
3556
0a0337e0
MH
3557 return true;
3558 }
3559 }
3560
3561 return false;
3562}
3563
11e33f6a
MG
3564static inline struct page *
3565__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3566 struct alloc_context *ac)
11e33f6a 3567{
d0164adc 3568 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3569 struct page *page = NULL;
c603844b 3570 unsigned int alloc_flags;
11e33f6a 3571 unsigned long did_some_progress;
e0b9daeb 3572 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3573 enum compact_result compact_result;
33c2d214 3574 int compaction_retries = 0;
0a0337e0 3575 int no_progress_loops = 0;
1da177e4 3576
72807a74
MG
3577 /*
3578 * In the slowpath, we sanity check order to avoid ever trying to
3579 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3580 * be using allocators in order of preference for an area that is
3581 * too large.
3582 */
1fc28b70
MG
3583 if (order >= MAX_ORDER) {
3584 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3585 return NULL;
1fc28b70 3586 }
1da177e4 3587
d0164adc
MG
3588 /*
3589 * We also sanity check to catch abuse of atomic reserves being used by
3590 * callers that are not in atomic context.
3591 */
3592 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3593 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3594 gfp_mask &= ~__GFP_ATOMIC;
3595
9879de73 3596retry:
d0164adc 3597 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3598 wake_all_kswapds(order, ac);
1da177e4 3599
9bf2229f 3600 /*
7fb1d9fc
RS
3601 * OK, we're below the kswapd watermark and have kicked background
3602 * reclaim. Now things get more complex, so set up alloc_flags according
3603 * to how we want to proceed.
9bf2229f 3604 */
341ce06f 3605 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3606
341ce06f 3607 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3608 page = get_page_from_freelist(gfp_mask, order,
3609 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3610 if (page)
3611 goto got_pg;
1da177e4 3612
11e33f6a 3613 /* Allocate without watermarks if the context allows */
341ce06f 3614 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3615 /*
3616 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3617 * the allocation is high priority and these type of
3618 * allocations are system rather than user orientated
3619 */
a9263751 3620 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3621 page = get_page_from_freelist(gfp_mask, order,
3622 ALLOC_NO_WATERMARKS, ac);
3623 if (page)
3624 goto got_pg;
1da177e4
LT
3625 }
3626
d0164adc
MG
3627 /* Caller is not willing to reclaim, we can't balance anything */
3628 if (!can_direct_reclaim) {
aed0a0e3 3629 /*
33d53103
MH
3630 * All existing users of the __GFP_NOFAIL are blockable, so warn
3631 * of any new users that actually allow this type of allocation
3632 * to fail.
aed0a0e3
DR
3633 */
3634 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3635 goto nopage;
aed0a0e3 3636 }
1da177e4 3637
341ce06f 3638 /* Avoid recursion of direct reclaim */
33d53103
MH
3639 if (current->flags & PF_MEMALLOC) {
3640 /*
3641 * __GFP_NOFAIL request from this context is rather bizarre
3642 * because we cannot reclaim anything and only can loop waiting
3643 * for somebody to do a work for us.
3644 */
3645 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3646 cond_resched();
3647 goto retry;
3648 }
341ce06f 3649 goto nopage;
33d53103 3650 }
341ce06f 3651
6583bb64
DR
3652 /* Avoid allocations with no watermarks from looping endlessly */
3653 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3654 goto nopage;
3655
77f1fe6b
MG
3656 /*
3657 * Try direct compaction. The first pass is asynchronous. Subsequent
3658 * attempts after direct reclaim are synchronous
3659 */
a9263751
VB
3660 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3661 migration_mode,
c5d01d0d 3662 &compact_result);
56de7263
MG
3663 if (page)
3664 goto got_pg;
75f30861 3665
1f9efdef 3666 /* Checks for THP-specific high-order allocations */
d0164adc 3667 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3668 /*
3669 * If compaction is deferred for high-order allocations, it is
3670 * because sync compaction recently failed. If this is the case
3671 * and the caller requested a THP allocation, we do not want
3672 * to heavily disrupt the system, so we fail the allocation
3673 * instead of entering direct reclaim.
3674 */
c5d01d0d 3675 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3676 goto nopage;
3677
3678 /*
c5d01d0d
MH
3679 * Compaction is contended so rather back off than cause
3680 * excessive stalls.
1f9efdef 3681 */
c5d01d0d 3682 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3683 goto nopage;
3684 }
66199712 3685
33c2d214
MH
3686 if (order && compaction_made_progress(compact_result))
3687 compaction_retries++;
8fe78048 3688
11e33f6a 3689 /* Try direct reclaim and then allocating */
a9263751
VB
3690 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3691 &did_some_progress);
11e33f6a
MG
3692 if (page)
3693 goto got_pg;
1da177e4 3694
9083905a
JW
3695 /* Do not loop if specifically requested */
3696 if (gfp_mask & __GFP_NORETRY)
3697 goto noretry;
3698
0a0337e0
MH
3699 /*
3700 * Do not retry costly high order allocations unless they are
3701 * __GFP_REPEAT
3702 */
3703 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3704 goto noretry;
3705
7854ea6c
MH
3706 /*
3707 * Costly allocations might have made a progress but this doesn't mean
3708 * their order will become available due to high fragmentation so
3709 * always increment the no progress counter for them
3710 */
3711 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3712 no_progress_loops = 0;
7854ea6c 3713 else
0a0337e0 3714 no_progress_loops++;
1da177e4 3715
0a0337e0 3716 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3717 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3718 goto retry;
3719
33c2d214
MH
3720 /*
3721 * It doesn't make any sense to retry for the compaction if the order-0
3722 * reclaim is not able to make any progress because the current
3723 * implementation of the compaction depends on the sufficient amount
3724 * of free memory (see __compaction_suitable)
3725 */
3726 if (did_some_progress > 0 &&
86a294a8
MH
3727 should_compact_retry(ac, order, alloc_flags,
3728 compact_result, &migration_mode,
3729 compaction_retries))
33c2d214
MH
3730 goto retry;
3731
9083905a
JW
3732 /* Reclaim has failed us, start killing things */
3733 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3734 if (page)
3735 goto got_pg;
3736
3737 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3738 if (did_some_progress) {
3739 no_progress_loops = 0;
9083905a 3740 goto retry;
0a0337e0 3741 }
9083905a
JW
3742
3743noretry:
3744 /*
33c2d214
MH
3745 * High-order allocations do not necessarily loop after direct reclaim
3746 * and reclaim/compaction depends on compaction being called after
3747 * reclaim so call directly if necessary.
3748 * It can become very expensive to allocate transparent hugepages at
3749 * fault, so use asynchronous memory compaction for THP unless it is
3750 * khugepaged trying to collapse. All other requests should tolerate
3751 * at least light sync migration.
9083905a 3752 */
33c2d214
MH
3753 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3754 migration_mode = MIGRATE_ASYNC;
3755 else
3756 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3757 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3758 ac, migration_mode,
c5d01d0d 3759 &compact_result);
9083905a
JW
3760 if (page)
3761 goto got_pg;
1da177e4 3762nopage:
a238ab5b 3763 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3764got_pg:
072bb0aa 3765 return page;
1da177e4 3766}
11e33f6a
MG
3767
3768/*
3769 * This is the 'heart' of the zoned buddy allocator.
3770 */
3771struct page *
3772__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3773 struct zonelist *zonelist, nodemask_t *nodemask)
3774{
5bb1b169 3775 struct page *page;
cc9a6c87 3776 unsigned int cpuset_mems_cookie;
c603844b 3777 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3778 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3779 struct alloc_context ac = {
3780 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3781 .zonelist = zonelist,
a9263751
VB
3782 .nodemask = nodemask,
3783 .migratetype = gfpflags_to_migratetype(gfp_mask),
3784 };
11e33f6a 3785
682a3385 3786 if (cpusets_enabled()) {
83d4ca81 3787 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3788 alloc_flags |= ALLOC_CPUSET;
3789 if (!ac.nodemask)
3790 ac.nodemask = &cpuset_current_mems_allowed;
3791 }
3792
dcce284a
BH
3793 gfp_mask &= gfp_allowed_mask;
3794
11e33f6a
MG
3795 lockdep_trace_alloc(gfp_mask);
3796
d0164adc 3797 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3798
3799 if (should_fail_alloc_page(gfp_mask, order))
3800 return NULL;
3801
3802 /*
3803 * Check the zones suitable for the gfp_mask contain at least one
3804 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3805 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3806 */
3807 if (unlikely(!zonelist->_zonerefs->zone))
3808 return NULL;
3809
a9263751 3810 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3811 alloc_flags |= ALLOC_CMA;
3812
cc9a6c87 3813retry_cpuset:
d26914d1 3814 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3815
c9ab0c4f
MG
3816 /* Dirty zone balancing only done in the fast path */
3817 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3818
5117f45d 3819 /* The preferred zone is used for statistics later */
c33d6c06
MG
3820 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3821 ac.high_zoneidx, ac.nodemask);
3822 if (!ac.preferred_zoneref) {
5bb1b169 3823 page = NULL;
4fcb0971 3824 goto no_zone;
5bb1b169
MG
3825 }
3826
5117f45d 3827 /* First allocation attempt */
a9263751 3828 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3829 if (likely(page))
3830 goto out;
11e33f6a 3831
4fcb0971
MG
3832 /*
3833 * Runtime PM, block IO and its error handling path can deadlock
3834 * because I/O on the device might not complete.
3835 */
3836 alloc_mask = memalloc_noio_flags(gfp_mask);
3837 ac.spread_dirty_pages = false;
23f086f9 3838
4741526b
MG
3839 /*
3840 * Restore the original nodemask if it was potentially replaced with
3841 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3842 */
3843 if (cpusets_enabled())
3844 ac.nodemask = nodemask;
4fcb0971 3845 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3846
4fcb0971 3847no_zone:
cc9a6c87
MG
3848 /*
3849 * When updating a task's mems_allowed, it is possible to race with
3850 * parallel threads in such a way that an allocation can fail while
3851 * the mask is being updated. If a page allocation is about to fail,
3852 * check if the cpuset changed during allocation and if so, retry.
3853 */
83d4ca81
MG
3854 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3855 alloc_mask = gfp_mask;
cc9a6c87 3856 goto retry_cpuset;
83d4ca81 3857 }
cc9a6c87 3858
4fcb0971
MG
3859out:
3860 if (kmemcheck_enabled && page)
3861 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3862
3863 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3864
11e33f6a 3865 return page;
1da177e4 3866}
d239171e 3867EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3868
3869/*
3870 * Common helper functions.
3871 */
920c7a5d 3872unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3873{
945a1113
AM
3874 struct page *page;
3875
3876 /*
3877 * __get_free_pages() returns a 32-bit address, which cannot represent
3878 * a highmem page
3879 */
3880 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3881
1da177e4
LT
3882 page = alloc_pages(gfp_mask, order);
3883 if (!page)
3884 return 0;
3885 return (unsigned long) page_address(page);
3886}
1da177e4
LT
3887EXPORT_SYMBOL(__get_free_pages);
3888
920c7a5d 3889unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3890{
945a1113 3891 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3892}
1da177e4
LT
3893EXPORT_SYMBOL(get_zeroed_page);
3894
920c7a5d 3895void __free_pages(struct page *page, unsigned int order)
1da177e4 3896{
b5810039 3897 if (put_page_testzero(page)) {
1da177e4 3898 if (order == 0)
b745bc85 3899 free_hot_cold_page(page, false);
1da177e4
LT
3900 else
3901 __free_pages_ok(page, order);
3902 }
3903}
3904
3905EXPORT_SYMBOL(__free_pages);
3906
920c7a5d 3907void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3908{
3909 if (addr != 0) {
725d704e 3910 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3911 __free_pages(virt_to_page((void *)addr), order);
3912 }
3913}
3914
3915EXPORT_SYMBOL(free_pages);
3916
b63ae8ca
AD
3917/*
3918 * Page Fragment:
3919 * An arbitrary-length arbitrary-offset area of memory which resides
3920 * within a 0 or higher order page. Multiple fragments within that page
3921 * are individually refcounted, in the page's reference counter.
3922 *
3923 * The page_frag functions below provide a simple allocation framework for
3924 * page fragments. This is used by the network stack and network device
3925 * drivers to provide a backing region of memory for use as either an
3926 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3927 */
3928static struct page *__page_frag_refill(struct page_frag_cache *nc,
3929 gfp_t gfp_mask)
3930{
3931 struct page *page = NULL;
3932 gfp_t gfp = gfp_mask;
3933
3934#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3935 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3936 __GFP_NOMEMALLOC;
3937 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3938 PAGE_FRAG_CACHE_MAX_ORDER);
3939 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3940#endif
3941 if (unlikely(!page))
3942 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3943
3944 nc->va = page ? page_address(page) : NULL;
3945
3946 return page;
3947}
3948
3949void *__alloc_page_frag(struct page_frag_cache *nc,
3950 unsigned int fragsz, gfp_t gfp_mask)
3951{
3952 unsigned int size = PAGE_SIZE;
3953 struct page *page;
3954 int offset;
3955
3956 if (unlikely(!nc->va)) {
3957refill:
3958 page = __page_frag_refill(nc, gfp_mask);
3959 if (!page)
3960 return NULL;
3961
3962#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3963 /* if size can vary use size else just use PAGE_SIZE */
3964 size = nc->size;
3965#endif
3966 /* Even if we own the page, we do not use atomic_set().
3967 * This would break get_page_unless_zero() users.
3968 */
fe896d18 3969 page_ref_add(page, size - 1);
b63ae8ca
AD
3970
3971 /* reset page count bias and offset to start of new frag */
2f064f34 3972 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3973 nc->pagecnt_bias = size;
3974 nc->offset = size;
3975 }
3976
3977 offset = nc->offset - fragsz;
3978 if (unlikely(offset < 0)) {
3979 page = virt_to_page(nc->va);
3980
fe896d18 3981 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3982 goto refill;
3983
3984#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3985 /* if size can vary use size else just use PAGE_SIZE */
3986 size = nc->size;
3987#endif
3988 /* OK, page count is 0, we can safely set it */
fe896d18 3989 set_page_count(page, size);
b63ae8ca
AD
3990
3991 /* reset page count bias and offset to start of new frag */
3992 nc->pagecnt_bias = size;
3993 offset = size - fragsz;
3994 }
3995
3996 nc->pagecnt_bias--;
3997 nc->offset = offset;
3998
3999 return nc->va + offset;
4000}
4001EXPORT_SYMBOL(__alloc_page_frag);
4002
4003/*
4004 * Frees a page fragment allocated out of either a compound or order 0 page.
4005 */
4006void __free_page_frag(void *addr)
4007{
4008 struct page *page = virt_to_head_page(addr);
4009
4010 if (unlikely(put_page_testzero(page)))
4011 __free_pages_ok(page, compound_order(page));
4012}
4013EXPORT_SYMBOL(__free_page_frag);
4014
6a1a0d3b 4015/*
52383431 4016 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4017 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4018 * equivalent to alloc_pages.
6a1a0d3b 4019 *
52383431
VD
4020 * It should be used when the caller would like to use kmalloc, but since the
4021 * allocation is large, it has to fall back to the page allocator.
4022 */
4023struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4024{
4025 struct page *page;
52383431 4026
52383431 4027 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4028 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4029 __free_pages(page, order);
4030 page = NULL;
4031 }
52383431
VD
4032 return page;
4033}
4034
4035struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4036{
4037 struct page *page;
52383431 4038
52383431 4039 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4040 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4041 __free_pages(page, order);
4042 page = NULL;
4043 }
52383431
VD
4044 return page;
4045}
4046
4047/*
4048 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4049 * alloc_kmem_pages.
6a1a0d3b 4050 */
52383431 4051void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4052{
d05e83a6 4053 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4054 __free_pages(page, order);
4055}
4056
52383431 4057void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4058{
4059 if (addr != 0) {
4060 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4061 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4062 }
4063}
4064
d00181b9
KS
4065static void *make_alloc_exact(unsigned long addr, unsigned int order,
4066 size_t size)
ee85c2e1
AK
4067{
4068 if (addr) {
4069 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4070 unsigned long used = addr + PAGE_ALIGN(size);
4071
4072 split_page(virt_to_page((void *)addr), order);
4073 while (used < alloc_end) {
4074 free_page(used);
4075 used += PAGE_SIZE;
4076 }
4077 }
4078 return (void *)addr;
4079}
4080
2be0ffe2
TT
4081/**
4082 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4083 * @size: the number of bytes to allocate
4084 * @gfp_mask: GFP flags for the allocation
4085 *
4086 * This function is similar to alloc_pages(), except that it allocates the
4087 * minimum number of pages to satisfy the request. alloc_pages() can only
4088 * allocate memory in power-of-two pages.
4089 *
4090 * This function is also limited by MAX_ORDER.
4091 *
4092 * Memory allocated by this function must be released by free_pages_exact().
4093 */
4094void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4095{
4096 unsigned int order = get_order(size);
4097 unsigned long addr;
4098
4099 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4100 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4101}
4102EXPORT_SYMBOL(alloc_pages_exact);
4103
ee85c2e1
AK
4104/**
4105 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4106 * pages on a node.
b5e6ab58 4107 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4108 * @size: the number of bytes to allocate
4109 * @gfp_mask: GFP flags for the allocation
4110 *
4111 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4112 * back.
ee85c2e1 4113 */
e1931811 4114void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4115{
d00181b9 4116 unsigned int order = get_order(size);
ee85c2e1
AK
4117 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4118 if (!p)
4119 return NULL;
4120 return make_alloc_exact((unsigned long)page_address(p), order, size);
4121}
ee85c2e1 4122
2be0ffe2
TT
4123/**
4124 * free_pages_exact - release memory allocated via alloc_pages_exact()
4125 * @virt: the value returned by alloc_pages_exact.
4126 * @size: size of allocation, same value as passed to alloc_pages_exact().
4127 *
4128 * Release the memory allocated by a previous call to alloc_pages_exact.
4129 */
4130void free_pages_exact(void *virt, size_t size)
4131{
4132 unsigned long addr = (unsigned long)virt;
4133 unsigned long end = addr + PAGE_ALIGN(size);
4134
4135 while (addr < end) {
4136 free_page(addr);
4137 addr += PAGE_SIZE;
4138 }
4139}
4140EXPORT_SYMBOL(free_pages_exact);
4141
e0fb5815
ZY
4142/**
4143 * nr_free_zone_pages - count number of pages beyond high watermark
4144 * @offset: The zone index of the highest zone
4145 *
4146 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4147 * high watermark within all zones at or below a given zone index. For each
4148 * zone, the number of pages is calculated as:
834405c3 4149 * managed_pages - high_pages
e0fb5815 4150 */
ebec3862 4151static unsigned long nr_free_zone_pages(int offset)
1da177e4 4152{
dd1a239f 4153 struct zoneref *z;
54a6eb5c
MG
4154 struct zone *zone;
4155
e310fd43 4156 /* Just pick one node, since fallback list is circular */
ebec3862 4157 unsigned long sum = 0;
1da177e4 4158
0e88460d 4159 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4160
54a6eb5c 4161 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4162 unsigned long size = zone->managed_pages;
41858966 4163 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4164 if (size > high)
4165 sum += size - high;
1da177e4
LT
4166 }
4167
4168 return sum;
4169}
4170
e0fb5815
ZY
4171/**
4172 * nr_free_buffer_pages - count number of pages beyond high watermark
4173 *
4174 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4175 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4176 */
ebec3862 4177unsigned long nr_free_buffer_pages(void)
1da177e4 4178{
af4ca457 4179 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4180}
c2f1a551 4181EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4182
e0fb5815
ZY
4183/**
4184 * nr_free_pagecache_pages - count number of pages beyond high watermark
4185 *
4186 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4187 * high watermark within all zones.
1da177e4 4188 */
ebec3862 4189unsigned long nr_free_pagecache_pages(void)
1da177e4 4190{
2a1e274a 4191 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4192}
08e0f6a9
CL
4193
4194static inline void show_node(struct zone *zone)
1da177e4 4195{
e5adfffc 4196 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4197 printk("Node %d ", zone_to_nid(zone));
1da177e4 4198}
1da177e4 4199
d02bd27b
IR
4200long si_mem_available(void)
4201{
4202 long available;
4203 unsigned long pagecache;
4204 unsigned long wmark_low = 0;
4205 unsigned long pages[NR_LRU_LISTS];
4206 struct zone *zone;
4207 int lru;
4208
4209 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4210 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4211
4212 for_each_zone(zone)
4213 wmark_low += zone->watermark[WMARK_LOW];
4214
4215 /*
4216 * Estimate the amount of memory available for userspace allocations,
4217 * without causing swapping.
4218 */
4219 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4220
4221 /*
4222 * Not all the page cache can be freed, otherwise the system will
4223 * start swapping. Assume at least half of the page cache, or the
4224 * low watermark worth of cache, needs to stay.
4225 */
4226 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4227 pagecache -= min(pagecache / 2, wmark_low);
4228 available += pagecache;
4229
4230 /*
4231 * Part of the reclaimable slab consists of items that are in use,
4232 * and cannot be freed. Cap this estimate at the low watermark.
4233 */
4234 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4235 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4236
4237 if (available < 0)
4238 available = 0;
4239 return available;
4240}
4241EXPORT_SYMBOL_GPL(si_mem_available);
4242
1da177e4
LT
4243void si_meminfo(struct sysinfo *val)
4244{
4245 val->totalram = totalram_pages;
cc7452b6 4246 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4247 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4248 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4249 val->totalhigh = totalhigh_pages;
4250 val->freehigh = nr_free_highpages();
1da177e4
LT
4251 val->mem_unit = PAGE_SIZE;
4252}
4253
4254EXPORT_SYMBOL(si_meminfo);
4255
4256#ifdef CONFIG_NUMA
4257void si_meminfo_node(struct sysinfo *val, int nid)
4258{
cdd91a77
JL
4259 int zone_type; /* needs to be signed */
4260 unsigned long managed_pages = 0;
fc2bd799
JK
4261 unsigned long managed_highpages = 0;
4262 unsigned long free_highpages = 0;
1da177e4
LT
4263 pg_data_t *pgdat = NODE_DATA(nid);
4264
cdd91a77
JL
4265 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4266 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4267 val->totalram = managed_pages;
cc7452b6 4268 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4269 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4270#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4271 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4272 struct zone *zone = &pgdat->node_zones[zone_type];
4273
4274 if (is_highmem(zone)) {
4275 managed_highpages += zone->managed_pages;
4276 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4277 }
4278 }
4279 val->totalhigh = managed_highpages;
4280 val->freehigh = free_highpages;
98d2b0eb 4281#else
fc2bd799
JK
4282 val->totalhigh = managed_highpages;
4283 val->freehigh = free_highpages;
98d2b0eb 4284#endif
1da177e4
LT
4285 val->mem_unit = PAGE_SIZE;
4286}
4287#endif
4288
ddd588b5 4289/*
7bf02ea2
DR
4290 * Determine whether the node should be displayed or not, depending on whether
4291 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4292 */
7bf02ea2 4293bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4294{
4295 bool ret = false;
cc9a6c87 4296 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4297
4298 if (!(flags & SHOW_MEM_FILTER_NODES))
4299 goto out;
4300
cc9a6c87 4301 do {
d26914d1 4302 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4303 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4304 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4305out:
4306 return ret;
4307}
4308
1da177e4
LT
4309#define K(x) ((x) << (PAGE_SHIFT-10))
4310
377e4f16
RV
4311static void show_migration_types(unsigned char type)
4312{
4313 static const char types[MIGRATE_TYPES] = {
4314 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4315 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4316 [MIGRATE_RECLAIMABLE] = 'E',
4317 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4318#ifdef CONFIG_CMA
4319 [MIGRATE_CMA] = 'C',
4320#endif
194159fb 4321#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4322 [MIGRATE_ISOLATE] = 'I',
194159fb 4323#endif
377e4f16
RV
4324 };
4325 char tmp[MIGRATE_TYPES + 1];
4326 char *p = tmp;
4327 int i;
4328
4329 for (i = 0; i < MIGRATE_TYPES; i++) {
4330 if (type & (1 << i))
4331 *p++ = types[i];
4332 }
4333
4334 *p = '\0';
4335 printk("(%s) ", tmp);
4336}
4337
1da177e4
LT
4338/*
4339 * Show free area list (used inside shift_scroll-lock stuff)
4340 * We also calculate the percentage fragmentation. We do this by counting the
4341 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4342 *
4343 * Bits in @filter:
4344 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4345 * cpuset.
1da177e4 4346 */
7bf02ea2 4347void show_free_areas(unsigned int filter)
1da177e4 4348{
d1bfcdb8 4349 unsigned long free_pcp = 0;
c7241913 4350 int cpu;
1da177e4
LT
4351 struct zone *zone;
4352
ee99c71c 4353 for_each_populated_zone(zone) {
7bf02ea2 4354 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4355 continue;
d1bfcdb8 4356
761b0677
KK
4357 for_each_online_cpu(cpu)
4358 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4359 }
4360
a731286d
KM
4361 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4362 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4363 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4364 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4365 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4366 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4367 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4368 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4369 global_page_state(NR_ISOLATED_ANON),
4370 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4371 global_page_state(NR_INACTIVE_FILE),
a731286d 4372 global_page_state(NR_ISOLATED_FILE),
7b854121 4373 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4374 global_page_state(NR_FILE_DIRTY),
ce866b34 4375 global_page_state(NR_WRITEBACK),
fd39fc85 4376 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4377 global_page_state(NR_SLAB_RECLAIMABLE),
4378 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4379 global_page_state(NR_FILE_MAPPED),
4b02108a 4380 global_page_state(NR_SHMEM),
a25700a5 4381 global_page_state(NR_PAGETABLE),
d1ce749a 4382 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4383 global_page_state(NR_FREE_PAGES),
4384 free_pcp,
d1ce749a 4385 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4386
ee99c71c 4387 for_each_populated_zone(zone) {
1da177e4
LT
4388 int i;
4389
7bf02ea2 4390 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4391 continue;
d1bfcdb8
KK
4392
4393 free_pcp = 0;
4394 for_each_online_cpu(cpu)
4395 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4396
1da177e4
LT
4397 show_node(zone);
4398 printk("%s"
4399 " free:%lukB"
4400 " min:%lukB"
4401 " low:%lukB"
4402 " high:%lukB"
4f98a2fe
RR
4403 " active_anon:%lukB"
4404 " inactive_anon:%lukB"
4405 " active_file:%lukB"
4406 " inactive_file:%lukB"
7b854121 4407 " unevictable:%lukB"
a731286d
KM
4408 " isolated(anon):%lukB"
4409 " isolated(file):%lukB"
1da177e4 4410 " present:%lukB"
9feedc9d 4411 " managed:%lukB"
4a0aa73f
KM
4412 " mlocked:%lukB"
4413 " dirty:%lukB"
4414 " writeback:%lukB"
4415 " mapped:%lukB"
4b02108a 4416 " shmem:%lukB"
4a0aa73f
KM
4417 " slab_reclaimable:%lukB"
4418 " slab_unreclaimable:%lukB"
c6a7f572 4419 " kernel_stack:%lukB"
4a0aa73f
KM
4420 " pagetables:%lukB"
4421 " unstable:%lukB"
4422 " bounce:%lukB"
d1bfcdb8
KK
4423 " free_pcp:%lukB"
4424 " local_pcp:%ukB"
d1ce749a 4425 " free_cma:%lukB"
4a0aa73f 4426 " writeback_tmp:%lukB"
1da177e4
LT
4427 " pages_scanned:%lu"
4428 " all_unreclaimable? %s"
4429 "\n",
4430 zone->name,
88f5acf8 4431 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4432 K(min_wmark_pages(zone)),
4433 K(low_wmark_pages(zone)),
4434 K(high_wmark_pages(zone)),
4f98a2fe
RR
4435 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4436 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4437 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4438 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4439 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4440 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4441 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4442 K(zone->present_pages),
9feedc9d 4443 K(zone->managed_pages),
4a0aa73f
KM
4444 K(zone_page_state(zone, NR_MLOCK)),
4445 K(zone_page_state(zone, NR_FILE_DIRTY)),
4446 K(zone_page_state(zone, NR_WRITEBACK)),
4447 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4448 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4449 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4450 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4451 zone_page_state(zone, NR_KERNEL_STACK) *
4452 THREAD_SIZE / 1024,
4a0aa73f
KM
4453 K(zone_page_state(zone, NR_PAGETABLE)),
4454 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4455 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4456 K(free_pcp),
4457 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4458 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4459 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4460 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4461 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4462 );
4463 printk("lowmem_reserve[]:");
4464 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4465 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4466 printk("\n");
4467 }
4468
ee99c71c 4469 for_each_populated_zone(zone) {
d00181b9
KS
4470 unsigned int order;
4471 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4472 unsigned char types[MAX_ORDER];
1da177e4 4473
7bf02ea2 4474 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4475 continue;
1da177e4
LT
4476 show_node(zone);
4477 printk("%s: ", zone->name);
1da177e4
LT
4478
4479 spin_lock_irqsave(&zone->lock, flags);
4480 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4481 struct free_area *area = &zone->free_area[order];
4482 int type;
4483
4484 nr[order] = area->nr_free;
8f9de51a 4485 total += nr[order] << order;
377e4f16
RV
4486
4487 types[order] = 0;
4488 for (type = 0; type < MIGRATE_TYPES; type++) {
4489 if (!list_empty(&area->free_list[type]))
4490 types[order] |= 1 << type;
4491 }
1da177e4
LT
4492 }
4493 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4494 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4495 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4496 if (nr[order])
4497 show_migration_types(types[order]);
4498 }
1da177e4
LT
4499 printk("= %lukB\n", K(total));
4500 }
4501
949f7ec5
DR
4502 hugetlb_show_meminfo();
4503
e6f3602d
LW
4504 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4505
1da177e4
LT
4506 show_swap_cache_info();
4507}
4508
19770b32
MG
4509static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4510{
4511 zoneref->zone = zone;
4512 zoneref->zone_idx = zone_idx(zone);
4513}
4514
1da177e4
LT
4515/*
4516 * Builds allocation fallback zone lists.
1a93205b
CL
4517 *
4518 * Add all populated zones of a node to the zonelist.
1da177e4 4519 */
f0c0b2b8 4520static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4521 int nr_zones)
1da177e4 4522{
1a93205b 4523 struct zone *zone;
bc732f1d 4524 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4525
4526 do {
2f6726e5 4527 zone_type--;
070f8032 4528 zone = pgdat->node_zones + zone_type;
1a93205b 4529 if (populated_zone(zone)) {
dd1a239f
MG
4530 zoneref_set_zone(zone,
4531 &zonelist->_zonerefs[nr_zones++]);
070f8032 4532 check_highest_zone(zone_type);
1da177e4 4533 }
2f6726e5 4534 } while (zone_type);
bc732f1d 4535
070f8032 4536 return nr_zones;
1da177e4
LT
4537}
4538
f0c0b2b8
KH
4539
4540/*
4541 * zonelist_order:
4542 * 0 = automatic detection of better ordering.
4543 * 1 = order by ([node] distance, -zonetype)
4544 * 2 = order by (-zonetype, [node] distance)
4545 *
4546 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4547 * the same zonelist. So only NUMA can configure this param.
4548 */
4549#define ZONELIST_ORDER_DEFAULT 0
4550#define ZONELIST_ORDER_NODE 1
4551#define ZONELIST_ORDER_ZONE 2
4552
4553/* zonelist order in the kernel.
4554 * set_zonelist_order() will set this to NODE or ZONE.
4555 */
4556static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4557static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4558
4559
1da177e4 4560#ifdef CONFIG_NUMA
f0c0b2b8
KH
4561/* The value user specified ....changed by config */
4562static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4563/* string for sysctl */
4564#define NUMA_ZONELIST_ORDER_LEN 16
4565char numa_zonelist_order[16] = "default";
4566
4567/*
4568 * interface for configure zonelist ordering.
4569 * command line option "numa_zonelist_order"
4570 * = "[dD]efault - default, automatic configuration.
4571 * = "[nN]ode - order by node locality, then by zone within node
4572 * = "[zZ]one - order by zone, then by locality within zone
4573 */
4574
4575static int __parse_numa_zonelist_order(char *s)
4576{
4577 if (*s == 'd' || *s == 'D') {
4578 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4579 } else if (*s == 'n' || *s == 'N') {
4580 user_zonelist_order = ZONELIST_ORDER_NODE;
4581 } else if (*s == 'z' || *s == 'Z') {
4582 user_zonelist_order = ZONELIST_ORDER_ZONE;
4583 } else {
1170532b 4584 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4585 return -EINVAL;
4586 }
4587 return 0;
4588}
4589
4590static __init int setup_numa_zonelist_order(char *s)
4591{
ecb256f8
VL
4592 int ret;
4593
4594 if (!s)
4595 return 0;
4596
4597 ret = __parse_numa_zonelist_order(s);
4598 if (ret == 0)
4599 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4600
4601 return ret;
f0c0b2b8
KH
4602}
4603early_param("numa_zonelist_order", setup_numa_zonelist_order);
4604
4605/*
4606 * sysctl handler for numa_zonelist_order
4607 */
cccad5b9 4608int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4609 void __user *buffer, size_t *length,
f0c0b2b8
KH
4610 loff_t *ppos)
4611{
4612 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4613 int ret;
443c6f14 4614 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4615
443c6f14 4616 mutex_lock(&zl_order_mutex);
dacbde09
CG
4617 if (write) {
4618 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4619 ret = -EINVAL;
4620 goto out;
4621 }
4622 strcpy(saved_string, (char *)table->data);
4623 }
8d65af78 4624 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4625 if (ret)
443c6f14 4626 goto out;
f0c0b2b8
KH
4627 if (write) {
4628 int oldval = user_zonelist_order;
dacbde09
CG
4629
4630 ret = __parse_numa_zonelist_order((char *)table->data);
4631 if (ret) {
f0c0b2b8
KH
4632 /*
4633 * bogus value. restore saved string
4634 */
dacbde09 4635 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4636 NUMA_ZONELIST_ORDER_LEN);
4637 user_zonelist_order = oldval;
4eaf3f64
HL
4638 } else if (oldval != user_zonelist_order) {
4639 mutex_lock(&zonelists_mutex);
9adb62a5 4640 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4641 mutex_unlock(&zonelists_mutex);
4642 }
f0c0b2b8 4643 }
443c6f14
AK
4644out:
4645 mutex_unlock(&zl_order_mutex);
4646 return ret;
f0c0b2b8
KH
4647}
4648
4649
62bc62a8 4650#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4651static int node_load[MAX_NUMNODES];
4652
1da177e4 4653/**
4dc3b16b 4654 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4655 * @node: node whose fallback list we're appending
4656 * @used_node_mask: nodemask_t of already used nodes
4657 *
4658 * We use a number of factors to determine which is the next node that should
4659 * appear on a given node's fallback list. The node should not have appeared
4660 * already in @node's fallback list, and it should be the next closest node
4661 * according to the distance array (which contains arbitrary distance values
4662 * from each node to each node in the system), and should also prefer nodes
4663 * with no CPUs, since presumably they'll have very little allocation pressure
4664 * on them otherwise.
4665 * It returns -1 if no node is found.
4666 */
f0c0b2b8 4667static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4668{
4cf808eb 4669 int n, val;
1da177e4 4670 int min_val = INT_MAX;
00ef2d2f 4671 int best_node = NUMA_NO_NODE;
a70f7302 4672 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4673
4cf808eb
LT
4674 /* Use the local node if we haven't already */
4675 if (!node_isset(node, *used_node_mask)) {
4676 node_set(node, *used_node_mask);
4677 return node;
4678 }
1da177e4 4679
4b0ef1fe 4680 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4681
4682 /* Don't want a node to appear more than once */
4683 if (node_isset(n, *used_node_mask))
4684 continue;
4685
1da177e4
LT
4686 /* Use the distance array to find the distance */
4687 val = node_distance(node, n);
4688
4cf808eb
LT
4689 /* Penalize nodes under us ("prefer the next node") */
4690 val += (n < node);
4691
1da177e4 4692 /* Give preference to headless and unused nodes */
a70f7302
RR
4693 tmp = cpumask_of_node(n);
4694 if (!cpumask_empty(tmp))
1da177e4
LT
4695 val += PENALTY_FOR_NODE_WITH_CPUS;
4696
4697 /* Slight preference for less loaded node */
4698 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4699 val += node_load[n];
4700
4701 if (val < min_val) {
4702 min_val = val;
4703 best_node = n;
4704 }
4705 }
4706
4707 if (best_node >= 0)
4708 node_set(best_node, *used_node_mask);
4709
4710 return best_node;
4711}
4712
f0c0b2b8
KH
4713
4714/*
4715 * Build zonelists ordered by node and zones within node.
4716 * This results in maximum locality--normal zone overflows into local
4717 * DMA zone, if any--but risks exhausting DMA zone.
4718 */
4719static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4720{
f0c0b2b8 4721 int j;
1da177e4 4722 struct zonelist *zonelist;
f0c0b2b8 4723
54a6eb5c 4724 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4725 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4726 ;
bc732f1d 4727 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4728 zonelist->_zonerefs[j].zone = NULL;
4729 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4730}
4731
523b9458
CL
4732/*
4733 * Build gfp_thisnode zonelists
4734 */
4735static void build_thisnode_zonelists(pg_data_t *pgdat)
4736{
523b9458
CL
4737 int j;
4738 struct zonelist *zonelist;
4739
54a6eb5c 4740 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4741 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4742 zonelist->_zonerefs[j].zone = NULL;
4743 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4744}
4745
f0c0b2b8
KH
4746/*
4747 * Build zonelists ordered by zone and nodes within zones.
4748 * This results in conserving DMA zone[s] until all Normal memory is
4749 * exhausted, but results in overflowing to remote node while memory
4750 * may still exist in local DMA zone.
4751 */
4752static int node_order[MAX_NUMNODES];
4753
4754static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4755{
f0c0b2b8
KH
4756 int pos, j, node;
4757 int zone_type; /* needs to be signed */
4758 struct zone *z;
4759 struct zonelist *zonelist;
4760
54a6eb5c
MG
4761 zonelist = &pgdat->node_zonelists[0];
4762 pos = 0;
4763 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4764 for (j = 0; j < nr_nodes; j++) {
4765 node = node_order[j];
4766 z = &NODE_DATA(node)->node_zones[zone_type];
4767 if (populated_zone(z)) {
dd1a239f
MG
4768 zoneref_set_zone(z,
4769 &zonelist->_zonerefs[pos++]);
54a6eb5c 4770 check_highest_zone(zone_type);
f0c0b2b8
KH
4771 }
4772 }
f0c0b2b8 4773 }
dd1a239f
MG
4774 zonelist->_zonerefs[pos].zone = NULL;
4775 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4776}
4777
3193913c
MG
4778#if defined(CONFIG_64BIT)
4779/*
4780 * Devices that require DMA32/DMA are relatively rare and do not justify a
4781 * penalty to every machine in case the specialised case applies. Default
4782 * to Node-ordering on 64-bit NUMA machines
4783 */
4784static int default_zonelist_order(void)
4785{
4786 return ZONELIST_ORDER_NODE;
4787}
4788#else
4789/*
4790 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4791 * by the kernel. If processes running on node 0 deplete the low memory zone
4792 * then reclaim will occur more frequency increasing stalls and potentially
4793 * be easier to OOM if a large percentage of the zone is under writeback or
4794 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4795 * Hence, default to zone ordering on 32-bit.
4796 */
f0c0b2b8
KH
4797static int default_zonelist_order(void)
4798{
f0c0b2b8
KH
4799 return ZONELIST_ORDER_ZONE;
4800}
3193913c 4801#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4802
4803static void set_zonelist_order(void)
4804{
4805 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4806 current_zonelist_order = default_zonelist_order();
4807 else
4808 current_zonelist_order = user_zonelist_order;
4809}
4810
4811static void build_zonelists(pg_data_t *pgdat)
4812{
c00eb15a 4813 int i, node, load;
1da177e4 4814 nodemask_t used_mask;
f0c0b2b8
KH
4815 int local_node, prev_node;
4816 struct zonelist *zonelist;
d00181b9 4817 unsigned int order = current_zonelist_order;
1da177e4
LT
4818
4819 /* initialize zonelists */
523b9458 4820 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4821 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4822 zonelist->_zonerefs[0].zone = NULL;
4823 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4824 }
4825
4826 /* NUMA-aware ordering of nodes */
4827 local_node = pgdat->node_id;
62bc62a8 4828 load = nr_online_nodes;
1da177e4
LT
4829 prev_node = local_node;
4830 nodes_clear(used_mask);
f0c0b2b8 4831
f0c0b2b8 4832 memset(node_order, 0, sizeof(node_order));
c00eb15a 4833 i = 0;
f0c0b2b8 4834
1da177e4
LT
4835 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4836 /*
4837 * We don't want to pressure a particular node.
4838 * So adding penalty to the first node in same
4839 * distance group to make it round-robin.
4840 */
957f822a
DR
4841 if (node_distance(local_node, node) !=
4842 node_distance(local_node, prev_node))
f0c0b2b8
KH
4843 node_load[node] = load;
4844
1da177e4
LT
4845 prev_node = node;
4846 load--;
f0c0b2b8
KH
4847 if (order == ZONELIST_ORDER_NODE)
4848 build_zonelists_in_node_order(pgdat, node);
4849 else
c00eb15a 4850 node_order[i++] = node; /* remember order */
f0c0b2b8 4851 }
1da177e4 4852
f0c0b2b8
KH
4853 if (order == ZONELIST_ORDER_ZONE) {
4854 /* calculate node order -- i.e., DMA last! */
c00eb15a 4855 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4856 }
523b9458
CL
4857
4858 build_thisnode_zonelists(pgdat);
1da177e4
LT
4859}
4860
7aac7898
LS
4861#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4862/*
4863 * Return node id of node used for "local" allocations.
4864 * I.e., first node id of first zone in arg node's generic zonelist.
4865 * Used for initializing percpu 'numa_mem', which is used primarily
4866 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4867 */
4868int local_memory_node(int node)
4869{
c33d6c06 4870 struct zoneref *z;
7aac7898 4871
c33d6c06 4872 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4873 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4874 NULL);
4875 return z->zone->node;
7aac7898
LS
4876}
4877#endif
f0c0b2b8 4878
1da177e4
LT
4879#else /* CONFIG_NUMA */
4880
f0c0b2b8
KH
4881static void set_zonelist_order(void)
4882{
4883 current_zonelist_order = ZONELIST_ORDER_ZONE;
4884}
4885
4886static void build_zonelists(pg_data_t *pgdat)
1da177e4 4887{
19655d34 4888 int node, local_node;
54a6eb5c
MG
4889 enum zone_type j;
4890 struct zonelist *zonelist;
1da177e4
LT
4891
4892 local_node = pgdat->node_id;
1da177e4 4893
54a6eb5c 4894 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4895 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4896
54a6eb5c
MG
4897 /*
4898 * Now we build the zonelist so that it contains the zones
4899 * of all the other nodes.
4900 * We don't want to pressure a particular node, so when
4901 * building the zones for node N, we make sure that the
4902 * zones coming right after the local ones are those from
4903 * node N+1 (modulo N)
4904 */
4905 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4906 if (!node_online(node))
4907 continue;
bc732f1d 4908 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4909 }
54a6eb5c
MG
4910 for (node = 0; node < local_node; node++) {
4911 if (!node_online(node))
4912 continue;
bc732f1d 4913 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4914 }
4915
dd1a239f
MG
4916 zonelist->_zonerefs[j].zone = NULL;
4917 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4918}
4919
4920#endif /* CONFIG_NUMA */
4921
99dcc3e5
CL
4922/*
4923 * Boot pageset table. One per cpu which is going to be used for all
4924 * zones and all nodes. The parameters will be set in such a way
4925 * that an item put on a list will immediately be handed over to
4926 * the buddy list. This is safe since pageset manipulation is done
4927 * with interrupts disabled.
4928 *
4929 * The boot_pagesets must be kept even after bootup is complete for
4930 * unused processors and/or zones. They do play a role for bootstrapping
4931 * hotplugged processors.
4932 *
4933 * zoneinfo_show() and maybe other functions do
4934 * not check if the processor is online before following the pageset pointer.
4935 * Other parts of the kernel may not check if the zone is available.
4936 */
4937static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4938static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4939static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4940
4eaf3f64
HL
4941/*
4942 * Global mutex to protect against size modification of zonelists
4943 * as well as to serialize pageset setup for the new populated zone.
4944 */
4945DEFINE_MUTEX(zonelists_mutex);
4946
9b1a4d38 4947/* return values int ....just for stop_machine() */
4ed7e022 4948static int __build_all_zonelists(void *data)
1da177e4 4949{
6811378e 4950 int nid;
99dcc3e5 4951 int cpu;
9adb62a5 4952 pg_data_t *self = data;
9276b1bc 4953
7f9cfb31
BL
4954#ifdef CONFIG_NUMA
4955 memset(node_load, 0, sizeof(node_load));
4956#endif
9adb62a5
JL
4957
4958 if (self && !node_online(self->node_id)) {
4959 build_zonelists(self);
9adb62a5
JL
4960 }
4961
9276b1bc 4962 for_each_online_node(nid) {
7ea1530a
CL
4963 pg_data_t *pgdat = NODE_DATA(nid);
4964
4965 build_zonelists(pgdat);
9276b1bc 4966 }
99dcc3e5
CL
4967
4968 /*
4969 * Initialize the boot_pagesets that are going to be used
4970 * for bootstrapping processors. The real pagesets for
4971 * each zone will be allocated later when the per cpu
4972 * allocator is available.
4973 *
4974 * boot_pagesets are used also for bootstrapping offline
4975 * cpus if the system is already booted because the pagesets
4976 * are needed to initialize allocators on a specific cpu too.
4977 * F.e. the percpu allocator needs the page allocator which
4978 * needs the percpu allocator in order to allocate its pagesets
4979 * (a chicken-egg dilemma).
4980 */
7aac7898 4981 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4982 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4983
7aac7898
LS
4984#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4985 /*
4986 * We now know the "local memory node" for each node--
4987 * i.e., the node of the first zone in the generic zonelist.
4988 * Set up numa_mem percpu variable for on-line cpus. During
4989 * boot, only the boot cpu should be on-line; we'll init the
4990 * secondary cpus' numa_mem as they come on-line. During
4991 * node/memory hotplug, we'll fixup all on-line cpus.
4992 */
4993 if (cpu_online(cpu))
4994 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4995#endif
4996 }
4997
6811378e
YG
4998 return 0;
4999}
5000
061f67bc
RV
5001static noinline void __init
5002build_all_zonelists_init(void)
5003{
5004 __build_all_zonelists(NULL);
5005 mminit_verify_zonelist();
5006 cpuset_init_current_mems_allowed();
5007}
5008
4eaf3f64
HL
5009/*
5010 * Called with zonelists_mutex held always
5011 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5012 *
5013 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5014 * [we're only called with non-NULL zone through __meminit paths] and
5015 * (2) call of __init annotated helper build_all_zonelists_init
5016 * [protected by SYSTEM_BOOTING].
4eaf3f64 5017 */
9adb62a5 5018void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5019{
f0c0b2b8
KH
5020 set_zonelist_order();
5021
6811378e 5022 if (system_state == SYSTEM_BOOTING) {
061f67bc 5023 build_all_zonelists_init();
6811378e 5024 } else {
e9959f0f 5025#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5026 if (zone)
5027 setup_zone_pageset(zone);
e9959f0f 5028#endif
dd1895e2
CS
5029 /* we have to stop all cpus to guarantee there is no user
5030 of zonelist */
9adb62a5 5031 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5032 /* cpuset refresh routine should be here */
5033 }
bd1e22b8 5034 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5035 /*
5036 * Disable grouping by mobility if the number of pages in the
5037 * system is too low to allow the mechanism to work. It would be
5038 * more accurate, but expensive to check per-zone. This check is
5039 * made on memory-hotadd so a system can start with mobility
5040 * disabled and enable it later
5041 */
d9c23400 5042 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5043 page_group_by_mobility_disabled = 1;
5044 else
5045 page_group_by_mobility_disabled = 0;
5046
756a025f
JP
5047 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5048 nr_online_nodes,
5049 zonelist_order_name[current_zonelist_order],
5050 page_group_by_mobility_disabled ? "off" : "on",
5051 vm_total_pages);
f0c0b2b8 5052#ifdef CONFIG_NUMA
f88dfff5 5053 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5054#endif
1da177e4
LT
5055}
5056
5057/*
5058 * Helper functions to size the waitqueue hash table.
5059 * Essentially these want to choose hash table sizes sufficiently
5060 * large so that collisions trying to wait on pages are rare.
5061 * But in fact, the number of active page waitqueues on typical
5062 * systems is ridiculously low, less than 200. So this is even
5063 * conservative, even though it seems large.
5064 *
5065 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5066 * waitqueues, i.e. the size of the waitq table given the number of pages.
5067 */
5068#define PAGES_PER_WAITQUEUE 256
5069
cca448fe 5070#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5071static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5072{
5073 unsigned long size = 1;
5074
5075 pages /= PAGES_PER_WAITQUEUE;
5076
5077 while (size < pages)
5078 size <<= 1;
5079
5080 /*
5081 * Once we have dozens or even hundreds of threads sleeping
5082 * on IO we've got bigger problems than wait queue collision.
5083 * Limit the size of the wait table to a reasonable size.
5084 */
5085 size = min(size, 4096UL);
5086
5087 return max(size, 4UL);
5088}
cca448fe
YG
5089#else
5090/*
5091 * A zone's size might be changed by hot-add, so it is not possible to determine
5092 * a suitable size for its wait_table. So we use the maximum size now.
5093 *
5094 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5095 *
5096 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5097 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5098 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5099 *
5100 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5101 * or more by the traditional way. (See above). It equals:
5102 *
5103 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5104 * ia64(16K page size) : = ( 8G + 4M)byte.
5105 * powerpc (64K page size) : = (32G +16M)byte.
5106 */
5107static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5108{
5109 return 4096UL;
5110}
5111#endif
1da177e4
LT
5112
5113/*
5114 * This is an integer logarithm so that shifts can be used later
5115 * to extract the more random high bits from the multiplicative
5116 * hash function before the remainder is taken.
5117 */
5118static inline unsigned long wait_table_bits(unsigned long size)
5119{
5120 return ffz(~size);
5121}
5122
1da177e4
LT
5123/*
5124 * Initially all pages are reserved - free ones are freed
5125 * up by free_all_bootmem() once the early boot process is
5126 * done. Non-atomic initialization, single-pass.
5127 */
c09b4240 5128void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5129 unsigned long start_pfn, enum memmap_context context)
1da177e4 5130{
4b94ffdc 5131 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5132 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5133 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5134 unsigned long pfn;
3a80a7fa 5135 unsigned long nr_initialised = 0;
342332e6
TI
5136#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5137 struct memblock_region *r = NULL, *tmp;
5138#endif
1da177e4 5139
22b31eec
HD
5140 if (highest_memmap_pfn < end_pfn - 1)
5141 highest_memmap_pfn = end_pfn - 1;
5142
4b94ffdc
DW
5143 /*
5144 * Honor reservation requested by the driver for this ZONE_DEVICE
5145 * memory
5146 */
5147 if (altmap && start_pfn == altmap->base_pfn)
5148 start_pfn += altmap->reserve;
5149
cbe8dd4a 5150 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5151 /*
b72d0ffb
AM
5152 * There can be holes in boot-time mem_map[]s handed to this
5153 * function. They do not exist on hotplugged memory.
a2f3aa02 5154 */
b72d0ffb
AM
5155 if (context != MEMMAP_EARLY)
5156 goto not_early;
5157
5158 if (!early_pfn_valid(pfn))
5159 continue;
5160 if (!early_pfn_in_nid(pfn, nid))
5161 continue;
5162 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5163 break;
342332e6
TI
5164
5165#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5166 /*
5167 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5168 * from zone_movable_pfn[nid] to end of each node should be
5169 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5170 */
5171 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5172 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5173 continue;
342332e6 5174
b72d0ffb
AM
5175 /*
5176 * Check given memblock attribute by firmware which can affect
5177 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5178 * mirrored, it's an overlapped memmap init. skip it.
5179 */
5180 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5181 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5182 for_each_memblock(memory, tmp)
5183 if (pfn < memblock_region_memory_end_pfn(tmp))
5184 break;
5185 r = tmp;
5186 }
5187 if (pfn >= memblock_region_memory_base_pfn(r) &&
5188 memblock_is_mirror(r)) {
5189 /* already initialized as NORMAL */
5190 pfn = memblock_region_memory_end_pfn(r);
5191 continue;
342332e6 5192 }
a2f3aa02 5193 }
b72d0ffb 5194#endif
ac5d2539 5195
b72d0ffb 5196not_early:
ac5d2539
MG
5197 /*
5198 * Mark the block movable so that blocks are reserved for
5199 * movable at startup. This will force kernel allocations
5200 * to reserve their blocks rather than leaking throughout
5201 * the address space during boot when many long-lived
974a786e 5202 * kernel allocations are made.
ac5d2539
MG
5203 *
5204 * bitmap is created for zone's valid pfn range. but memmap
5205 * can be created for invalid pages (for alignment)
5206 * check here not to call set_pageblock_migratetype() against
5207 * pfn out of zone.
5208 */
5209 if (!(pfn & (pageblock_nr_pages - 1))) {
5210 struct page *page = pfn_to_page(pfn);
5211
5212 __init_single_page(page, pfn, zone, nid);
5213 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5214 } else {
5215 __init_single_pfn(pfn, zone, nid);
5216 }
1da177e4
LT
5217 }
5218}
5219
1e548deb 5220static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5221{
7aeb09f9 5222 unsigned int order, t;
b2a0ac88
MG
5223 for_each_migratetype_order(order, t) {
5224 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5225 zone->free_area[order].nr_free = 0;
5226 }
5227}
5228
5229#ifndef __HAVE_ARCH_MEMMAP_INIT
5230#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5231 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5232#endif
5233
7cd2b0a3 5234static int zone_batchsize(struct zone *zone)
e7c8d5c9 5235{
3a6be87f 5236#ifdef CONFIG_MMU
e7c8d5c9
CL
5237 int batch;
5238
5239 /*
5240 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5241 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5242 *
5243 * OK, so we don't know how big the cache is. So guess.
5244 */
b40da049 5245 batch = zone->managed_pages / 1024;
ba56e91c
SR
5246 if (batch * PAGE_SIZE > 512 * 1024)
5247 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5248 batch /= 4; /* We effectively *= 4 below */
5249 if (batch < 1)
5250 batch = 1;
5251
5252 /*
0ceaacc9
NP
5253 * Clamp the batch to a 2^n - 1 value. Having a power
5254 * of 2 value was found to be more likely to have
5255 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5256 *
0ceaacc9
NP
5257 * For example if 2 tasks are alternately allocating
5258 * batches of pages, one task can end up with a lot
5259 * of pages of one half of the possible page colors
5260 * and the other with pages of the other colors.
e7c8d5c9 5261 */
9155203a 5262 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5263
e7c8d5c9 5264 return batch;
3a6be87f
DH
5265
5266#else
5267 /* The deferral and batching of frees should be suppressed under NOMMU
5268 * conditions.
5269 *
5270 * The problem is that NOMMU needs to be able to allocate large chunks
5271 * of contiguous memory as there's no hardware page translation to
5272 * assemble apparent contiguous memory from discontiguous pages.
5273 *
5274 * Queueing large contiguous runs of pages for batching, however,
5275 * causes the pages to actually be freed in smaller chunks. As there
5276 * can be a significant delay between the individual batches being
5277 * recycled, this leads to the once large chunks of space being
5278 * fragmented and becoming unavailable for high-order allocations.
5279 */
5280 return 0;
5281#endif
e7c8d5c9
CL
5282}
5283
8d7a8fa9
CS
5284/*
5285 * pcp->high and pcp->batch values are related and dependent on one another:
5286 * ->batch must never be higher then ->high.
5287 * The following function updates them in a safe manner without read side
5288 * locking.
5289 *
5290 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5291 * those fields changing asynchronously (acording the the above rule).
5292 *
5293 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5294 * outside of boot time (or some other assurance that no concurrent updaters
5295 * exist).
5296 */
5297static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5298 unsigned long batch)
5299{
5300 /* start with a fail safe value for batch */
5301 pcp->batch = 1;
5302 smp_wmb();
5303
5304 /* Update high, then batch, in order */
5305 pcp->high = high;
5306 smp_wmb();
5307
5308 pcp->batch = batch;
5309}
5310
3664033c 5311/* a companion to pageset_set_high() */
4008bab7
CS
5312static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5313{
8d7a8fa9 5314 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5315}
5316
88c90dbc 5317static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5318{
5319 struct per_cpu_pages *pcp;
5f8dcc21 5320 int migratetype;
2caaad41 5321
1c6fe946
MD
5322 memset(p, 0, sizeof(*p));
5323
3dfa5721 5324 pcp = &p->pcp;
2caaad41 5325 pcp->count = 0;
5f8dcc21
MG
5326 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5327 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5328}
5329
88c90dbc
CS
5330static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5331{
5332 pageset_init(p);
5333 pageset_set_batch(p, batch);
5334}
5335
8ad4b1fb 5336/*
3664033c 5337 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5338 * to the value high for the pageset p.
5339 */
3664033c 5340static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5341 unsigned long high)
5342{
8d7a8fa9
CS
5343 unsigned long batch = max(1UL, high / 4);
5344 if ((high / 4) > (PAGE_SHIFT * 8))
5345 batch = PAGE_SHIFT * 8;
8ad4b1fb 5346
8d7a8fa9 5347 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5348}
5349
7cd2b0a3
DR
5350static void pageset_set_high_and_batch(struct zone *zone,
5351 struct per_cpu_pageset *pcp)
56cef2b8 5352{
56cef2b8 5353 if (percpu_pagelist_fraction)
3664033c 5354 pageset_set_high(pcp,
56cef2b8
CS
5355 (zone->managed_pages /
5356 percpu_pagelist_fraction));
5357 else
5358 pageset_set_batch(pcp, zone_batchsize(zone));
5359}
5360
169f6c19
CS
5361static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5362{
5363 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5364
5365 pageset_init(pcp);
5366 pageset_set_high_and_batch(zone, pcp);
5367}
5368
4ed7e022 5369static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5370{
5371 int cpu;
319774e2 5372 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5373 for_each_possible_cpu(cpu)
5374 zone_pageset_init(zone, cpu);
319774e2
WF
5375}
5376
2caaad41 5377/*
99dcc3e5
CL
5378 * Allocate per cpu pagesets and initialize them.
5379 * Before this call only boot pagesets were available.
e7c8d5c9 5380 */
99dcc3e5 5381void __init setup_per_cpu_pageset(void)
e7c8d5c9 5382{
99dcc3e5 5383 struct zone *zone;
e7c8d5c9 5384
319774e2
WF
5385 for_each_populated_zone(zone)
5386 setup_zone_pageset(zone);
e7c8d5c9
CL
5387}
5388
577a32f6 5389static noinline __init_refok
cca448fe 5390int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5391{
5392 int i;
cca448fe 5393 size_t alloc_size;
ed8ece2e
DH
5394
5395 /*
5396 * The per-page waitqueue mechanism uses hashed waitqueues
5397 * per zone.
5398 */
02b694de
YG
5399 zone->wait_table_hash_nr_entries =
5400 wait_table_hash_nr_entries(zone_size_pages);
5401 zone->wait_table_bits =
5402 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5403 alloc_size = zone->wait_table_hash_nr_entries
5404 * sizeof(wait_queue_head_t);
5405
cd94b9db 5406 if (!slab_is_available()) {
cca448fe 5407 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5408 memblock_virt_alloc_node_nopanic(
5409 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5410 } else {
5411 /*
5412 * This case means that a zone whose size was 0 gets new memory
5413 * via memory hot-add.
5414 * But it may be the case that a new node was hot-added. In
5415 * this case vmalloc() will not be able to use this new node's
5416 * memory - this wait_table must be initialized to use this new
5417 * node itself as well.
5418 * To use this new node's memory, further consideration will be
5419 * necessary.
5420 */
8691f3a7 5421 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5422 }
5423 if (!zone->wait_table)
5424 return -ENOMEM;
ed8ece2e 5425
b8af2941 5426 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5427 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5428
5429 return 0;
ed8ece2e
DH
5430}
5431
c09b4240 5432static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5433{
99dcc3e5
CL
5434 /*
5435 * per cpu subsystem is not up at this point. The following code
5436 * relies on the ability of the linker to provide the
5437 * offset of a (static) per cpu variable into the per cpu area.
5438 */
5439 zone->pageset = &boot_pageset;
ed8ece2e 5440
b38a8725 5441 if (populated_zone(zone))
99dcc3e5
CL
5442 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5443 zone->name, zone->present_pages,
5444 zone_batchsize(zone));
ed8ece2e
DH
5445}
5446
4ed7e022 5447int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5448 unsigned long zone_start_pfn,
b171e409 5449 unsigned long size)
ed8ece2e
DH
5450{
5451 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5452 int ret;
5453 ret = zone_wait_table_init(zone, size);
5454 if (ret)
5455 return ret;
ed8ece2e
DH
5456 pgdat->nr_zones = zone_idx(zone) + 1;
5457
ed8ece2e
DH
5458 zone->zone_start_pfn = zone_start_pfn;
5459
708614e6
MG
5460 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5461 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5462 pgdat->node_id,
5463 (unsigned long)zone_idx(zone),
5464 zone_start_pfn, (zone_start_pfn + size));
5465
1e548deb 5466 zone_init_free_lists(zone);
718127cc
YG
5467
5468 return 0;
ed8ece2e
DH
5469}
5470
0ee332c1 5471#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5472#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5473
c713216d
MG
5474/*
5475 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5476 */
8a942fde
MG
5477int __meminit __early_pfn_to_nid(unsigned long pfn,
5478 struct mminit_pfnnid_cache *state)
c713216d 5479{
c13291a5 5480 unsigned long start_pfn, end_pfn;
e76b63f8 5481 int nid;
7c243c71 5482
8a942fde
MG
5483 if (state->last_start <= pfn && pfn < state->last_end)
5484 return state->last_nid;
c713216d 5485
e76b63f8
YL
5486 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5487 if (nid != -1) {
8a942fde
MG
5488 state->last_start = start_pfn;
5489 state->last_end = end_pfn;
5490 state->last_nid = nid;
e76b63f8
YL
5491 }
5492
5493 return nid;
c713216d
MG
5494}
5495#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5496
c713216d 5497/**
6782832e 5498 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5499 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5500 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5501 *
7d018176
ZZ
5502 * If an architecture guarantees that all ranges registered contain no holes
5503 * and may be freed, this this function may be used instead of calling
5504 * memblock_free_early_nid() manually.
c713216d 5505 */
c13291a5 5506void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5507{
c13291a5
TH
5508 unsigned long start_pfn, end_pfn;
5509 int i, this_nid;
edbe7d23 5510
c13291a5
TH
5511 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5512 start_pfn = min(start_pfn, max_low_pfn);
5513 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5514
c13291a5 5515 if (start_pfn < end_pfn)
6782832e
SS
5516 memblock_free_early_nid(PFN_PHYS(start_pfn),
5517 (end_pfn - start_pfn) << PAGE_SHIFT,
5518 this_nid);
edbe7d23 5519 }
edbe7d23 5520}
edbe7d23 5521
c713216d
MG
5522/**
5523 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5524 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5525 *
7d018176
ZZ
5526 * If an architecture guarantees that all ranges registered contain no holes and may
5527 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5528 */
5529void __init sparse_memory_present_with_active_regions(int nid)
5530{
c13291a5
TH
5531 unsigned long start_pfn, end_pfn;
5532 int i, this_nid;
c713216d 5533
c13291a5
TH
5534 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5535 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5536}
5537
5538/**
5539 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5540 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5541 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5542 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5543 *
5544 * It returns the start and end page frame of a node based on information
7d018176 5545 * provided by memblock_set_node(). If called for a node
c713216d 5546 * with no available memory, a warning is printed and the start and end
88ca3b94 5547 * PFNs will be 0.
c713216d 5548 */
a3142c8e 5549void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5550 unsigned long *start_pfn, unsigned long *end_pfn)
5551{
c13291a5 5552 unsigned long this_start_pfn, this_end_pfn;
c713216d 5553 int i;
c13291a5 5554
c713216d
MG
5555 *start_pfn = -1UL;
5556 *end_pfn = 0;
5557
c13291a5
TH
5558 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5559 *start_pfn = min(*start_pfn, this_start_pfn);
5560 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5561 }
5562
633c0666 5563 if (*start_pfn == -1UL)
c713216d 5564 *start_pfn = 0;
c713216d
MG
5565}
5566
2a1e274a
MG
5567/*
5568 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5569 * assumption is made that zones within a node are ordered in monotonic
5570 * increasing memory addresses so that the "highest" populated zone is used
5571 */
b69a7288 5572static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5573{
5574 int zone_index;
5575 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5576 if (zone_index == ZONE_MOVABLE)
5577 continue;
5578
5579 if (arch_zone_highest_possible_pfn[zone_index] >
5580 arch_zone_lowest_possible_pfn[zone_index])
5581 break;
5582 }
5583
5584 VM_BUG_ON(zone_index == -1);
5585 movable_zone = zone_index;
5586}
5587
5588/*
5589 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5590 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5591 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5592 * in each node depending on the size of each node and how evenly kernelcore
5593 * is distributed. This helper function adjusts the zone ranges
5594 * provided by the architecture for a given node by using the end of the
5595 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5596 * zones within a node are in order of monotonic increases memory addresses
5597 */
b69a7288 5598static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5599 unsigned long zone_type,
5600 unsigned long node_start_pfn,
5601 unsigned long node_end_pfn,
5602 unsigned long *zone_start_pfn,
5603 unsigned long *zone_end_pfn)
5604{
5605 /* Only adjust if ZONE_MOVABLE is on this node */
5606 if (zone_movable_pfn[nid]) {
5607 /* Size ZONE_MOVABLE */
5608 if (zone_type == ZONE_MOVABLE) {
5609 *zone_start_pfn = zone_movable_pfn[nid];
5610 *zone_end_pfn = min(node_end_pfn,
5611 arch_zone_highest_possible_pfn[movable_zone]);
5612
2a1e274a
MG
5613 /* Check if this whole range is within ZONE_MOVABLE */
5614 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5615 *zone_start_pfn = *zone_end_pfn;
5616 }
5617}
5618
c713216d
MG
5619/*
5620 * Return the number of pages a zone spans in a node, including holes
5621 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5622 */
6ea6e688 5623static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5624 unsigned long zone_type,
7960aedd
ZY
5625 unsigned long node_start_pfn,
5626 unsigned long node_end_pfn,
d91749c1
TI
5627 unsigned long *zone_start_pfn,
5628 unsigned long *zone_end_pfn,
c713216d
MG
5629 unsigned long *ignored)
5630{
b5685e92 5631 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5632 if (!node_start_pfn && !node_end_pfn)
5633 return 0;
5634
7960aedd 5635 /* Get the start and end of the zone */
d91749c1
TI
5636 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5637 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5638 adjust_zone_range_for_zone_movable(nid, zone_type,
5639 node_start_pfn, node_end_pfn,
d91749c1 5640 zone_start_pfn, zone_end_pfn);
c713216d
MG
5641
5642 /* Check that this node has pages within the zone's required range */
d91749c1 5643 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5644 return 0;
5645
5646 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5647 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5648 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5649
5650 /* Return the spanned pages */
d91749c1 5651 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5652}
5653
5654/*
5655 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5656 * then all holes in the requested range will be accounted for.
c713216d 5657 */
32996250 5658unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5659 unsigned long range_start_pfn,
5660 unsigned long range_end_pfn)
5661{
96e907d1
TH
5662 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5663 unsigned long start_pfn, end_pfn;
5664 int i;
c713216d 5665
96e907d1
TH
5666 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5667 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5668 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5669 nr_absent -= end_pfn - start_pfn;
c713216d 5670 }
96e907d1 5671 return nr_absent;
c713216d
MG
5672}
5673
5674/**
5675 * absent_pages_in_range - Return number of page frames in holes within a range
5676 * @start_pfn: The start PFN to start searching for holes
5677 * @end_pfn: The end PFN to stop searching for holes
5678 *
88ca3b94 5679 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5680 */
5681unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5682 unsigned long end_pfn)
5683{
5684 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5685}
5686
5687/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5688static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5689 unsigned long zone_type,
7960aedd
ZY
5690 unsigned long node_start_pfn,
5691 unsigned long node_end_pfn,
c713216d
MG
5692 unsigned long *ignored)
5693{
96e907d1
TH
5694 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5695 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5696 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5697 unsigned long nr_absent;
9c7cd687 5698
b5685e92 5699 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5700 if (!node_start_pfn && !node_end_pfn)
5701 return 0;
5702
96e907d1
TH
5703 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5704 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5705
2a1e274a
MG
5706 adjust_zone_range_for_zone_movable(nid, zone_type,
5707 node_start_pfn, node_end_pfn,
5708 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5709 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5710
5711 /*
5712 * ZONE_MOVABLE handling.
5713 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5714 * and vice versa.
5715 */
5716 if (zone_movable_pfn[nid]) {
5717 if (mirrored_kernelcore) {
5718 unsigned long start_pfn, end_pfn;
5719 struct memblock_region *r;
5720
5721 for_each_memblock(memory, r) {
5722 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5723 zone_start_pfn, zone_end_pfn);
5724 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5725 zone_start_pfn, zone_end_pfn);
5726
5727 if (zone_type == ZONE_MOVABLE &&
5728 memblock_is_mirror(r))
5729 nr_absent += end_pfn - start_pfn;
5730
5731 if (zone_type == ZONE_NORMAL &&
5732 !memblock_is_mirror(r))
5733 nr_absent += end_pfn - start_pfn;
5734 }
5735 } else {
5736 if (zone_type == ZONE_NORMAL)
5737 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5738 }
5739 }
5740
5741 return nr_absent;
c713216d 5742}
0e0b864e 5743
0ee332c1 5744#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5745static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5746 unsigned long zone_type,
7960aedd
ZY
5747 unsigned long node_start_pfn,
5748 unsigned long node_end_pfn,
d91749c1
TI
5749 unsigned long *zone_start_pfn,
5750 unsigned long *zone_end_pfn,
c713216d
MG
5751 unsigned long *zones_size)
5752{
d91749c1
TI
5753 unsigned int zone;
5754
5755 *zone_start_pfn = node_start_pfn;
5756 for (zone = 0; zone < zone_type; zone++)
5757 *zone_start_pfn += zones_size[zone];
5758
5759 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5760
c713216d
MG
5761 return zones_size[zone_type];
5762}
5763
6ea6e688 5764static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5765 unsigned long zone_type,
7960aedd
ZY
5766 unsigned long node_start_pfn,
5767 unsigned long node_end_pfn,
c713216d
MG
5768 unsigned long *zholes_size)
5769{
5770 if (!zholes_size)
5771 return 0;
5772
5773 return zholes_size[zone_type];
5774}
20e6926d 5775
0ee332c1 5776#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5777
a3142c8e 5778static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5779 unsigned long node_start_pfn,
5780 unsigned long node_end_pfn,
5781 unsigned long *zones_size,
5782 unsigned long *zholes_size)
c713216d 5783{
febd5949 5784 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5785 enum zone_type i;
5786
febd5949
GZ
5787 for (i = 0; i < MAX_NR_ZONES; i++) {
5788 struct zone *zone = pgdat->node_zones + i;
d91749c1 5789 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5790 unsigned long size, real_size;
c713216d 5791
febd5949
GZ
5792 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5793 node_start_pfn,
5794 node_end_pfn,
d91749c1
TI
5795 &zone_start_pfn,
5796 &zone_end_pfn,
febd5949
GZ
5797 zones_size);
5798 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5799 node_start_pfn, node_end_pfn,
5800 zholes_size);
d91749c1
TI
5801 if (size)
5802 zone->zone_start_pfn = zone_start_pfn;
5803 else
5804 zone->zone_start_pfn = 0;
febd5949
GZ
5805 zone->spanned_pages = size;
5806 zone->present_pages = real_size;
5807
5808 totalpages += size;
5809 realtotalpages += real_size;
5810 }
5811
5812 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5813 pgdat->node_present_pages = realtotalpages;
5814 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5815 realtotalpages);
5816}
5817
835c134e
MG
5818#ifndef CONFIG_SPARSEMEM
5819/*
5820 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5821 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5822 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5823 * round what is now in bits to nearest long in bits, then return it in
5824 * bytes.
5825 */
7c45512d 5826static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5827{
5828 unsigned long usemapsize;
5829
7c45512d 5830 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5831 usemapsize = roundup(zonesize, pageblock_nr_pages);
5832 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5833 usemapsize *= NR_PAGEBLOCK_BITS;
5834 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5835
5836 return usemapsize / 8;
5837}
5838
5839static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5840 struct zone *zone,
5841 unsigned long zone_start_pfn,
5842 unsigned long zonesize)
835c134e 5843{
7c45512d 5844 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5845 zone->pageblock_flags = NULL;
58a01a45 5846 if (usemapsize)
6782832e
SS
5847 zone->pageblock_flags =
5848 memblock_virt_alloc_node_nopanic(usemapsize,
5849 pgdat->node_id);
835c134e
MG
5850}
5851#else
7c45512d
LT
5852static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5853 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5854#endif /* CONFIG_SPARSEMEM */
5855
d9c23400 5856#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5857
d9c23400 5858/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5859void __paginginit set_pageblock_order(void)
d9c23400 5860{
955c1cd7
AM
5861 unsigned int order;
5862
d9c23400
MG
5863 /* Check that pageblock_nr_pages has not already been setup */
5864 if (pageblock_order)
5865 return;
5866
955c1cd7
AM
5867 if (HPAGE_SHIFT > PAGE_SHIFT)
5868 order = HUGETLB_PAGE_ORDER;
5869 else
5870 order = MAX_ORDER - 1;
5871
d9c23400
MG
5872 /*
5873 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5874 * This value may be variable depending on boot parameters on IA64 and
5875 * powerpc.
d9c23400
MG
5876 */
5877 pageblock_order = order;
5878}
5879#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5880
ba72cb8c
MG
5881/*
5882 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5883 * is unused as pageblock_order is set at compile-time. See
5884 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5885 * the kernel config
ba72cb8c 5886 */
15ca220e 5887void __paginginit set_pageblock_order(void)
ba72cb8c 5888{
ba72cb8c 5889}
d9c23400
MG
5890
5891#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5892
01cefaef
JL
5893static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5894 unsigned long present_pages)
5895{
5896 unsigned long pages = spanned_pages;
5897
5898 /*
5899 * Provide a more accurate estimation if there are holes within
5900 * the zone and SPARSEMEM is in use. If there are holes within the
5901 * zone, each populated memory region may cost us one or two extra
5902 * memmap pages due to alignment because memmap pages for each
5903 * populated regions may not naturally algined on page boundary.
5904 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5905 */
5906 if (spanned_pages > present_pages + (present_pages >> 4) &&
5907 IS_ENABLED(CONFIG_SPARSEMEM))
5908 pages = present_pages;
5909
5910 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5911}
5912
1da177e4
LT
5913/*
5914 * Set up the zone data structures:
5915 * - mark all pages reserved
5916 * - mark all memory queues empty
5917 * - clear the memory bitmaps
6527af5d
MK
5918 *
5919 * NOTE: pgdat should get zeroed by caller.
1da177e4 5920 */
7f3eb55b 5921static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5922{
2f1b6248 5923 enum zone_type j;
ed8ece2e 5924 int nid = pgdat->node_id;
718127cc 5925 int ret;
1da177e4 5926
208d54e5 5927 pgdat_resize_init(pgdat);
8177a420
AA
5928#ifdef CONFIG_NUMA_BALANCING
5929 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5930 pgdat->numabalancing_migrate_nr_pages = 0;
5931 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5932#endif
5933#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5934 spin_lock_init(&pgdat->split_queue_lock);
5935 INIT_LIST_HEAD(&pgdat->split_queue);
5936 pgdat->split_queue_len = 0;
8177a420 5937#endif
1da177e4 5938 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5939 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5940#ifdef CONFIG_COMPACTION
5941 init_waitqueue_head(&pgdat->kcompactd_wait);
5942#endif
eefa864b 5943 pgdat_page_ext_init(pgdat);
5f63b720 5944
1da177e4
LT
5945 for (j = 0; j < MAX_NR_ZONES; j++) {
5946 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5947 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5948 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5949
febd5949
GZ
5950 size = zone->spanned_pages;
5951 realsize = freesize = zone->present_pages;
1da177e4 5952
0e0b864e 5953 /*
9feedc9d 5954 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5955 * is used by this zone for memmap. This affects the watermark
5956 * and per-cpu initialisations
5957 */
01cefaef 5958 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5959 if (!is_highmem_idx(j)) {
5960 if (freesize >= memmap_pages) {
5961 freesize -= memmap_pages;
5962 if (memmap_pages)
5963 printk(KERN_DEBUG
5964 " %s zone: %lu pages used for memmap\n",
5965 zone_names[j], memmap_pages);
5966 } else
1170532b 5967 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5968 zone_names[j], memmap_pages, freesize);
5969 }
0e0b864e 5970
6267276f 5971 /* Account for reserved pages */
9feedc9d
JL
5972 if (j == 0 && freesize > dma_reserve) {
5973 freesize -= dma_reserve;
d903ef9f 5974 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5975 zone_names[0], dma_reserve);
0e0b864e
MG
5976 }
5977
98d2b0eb 5978 if (!is_highmem_idx(j))
9feedc9d 5979 nr_kernel_pages += freesize;
01cefaef
JL
5980 /* Charge for highmem memmap if there are enough kernel pages */
5981 else if (nr_kernel_pages > memmap_pages * 2)
5982 nr_kernel_pages -= memmap_pages;
9feedc9d 5983 nr_all_pages += freesize;
1da177e4 5984
9feedc9d
JL
5985 /*
5986 * Set an approximate value for lowmem here, it will be adjusted
5987 * when the bootmem allocator frees pages into the buddy system.
5988 * And all highmem pages will be managed by the buddy system.
5989 */
5990 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5991#ifdef CONFIG_NUMA
d5f541ed 5992 zone->node = nid;
9feedc9d 5993 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5994 / 100;
9feedc9d 5995 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5996#endif
1da177e4
LT
5997 zone->name = zone_names[j];
5998 spin_lock_init(&zone->lock);
5999 spin_lock_init(&zone->lru_lock);
bdc8cb98 6000 zone_seqlock_init(zone);
1da177e4 6001 zone->zone_pgdat = pgdat;
ed8ece2e 6002 zone_pcp_init(zone);
81c0a2bb
JW
6003
6004 /* For bootup, initialized properly in watermark setup */
6005 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6006
bea8c150 6007 lruvec_init(&zone->lruvec);
1da177e4
LT
6008 if (!size)
6009 continue;
6010
955c1cd7 6011 set_pageblock_order();
7c45512d 6012 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6013 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6014 BUG_ON(ret);
76cdd58e 6015 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6016 }
6017}
6018
577a32f6 6019static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6020{
b0aeba74 6021 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6022 unsigned long __maybe_unused offset = 0;
6023
1da177e4
LT
6024 /* Skip empty nodes */
6025 if (!pgdat->node_spanned_pages)
6026 return;
6027
d41dee36 6028#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6029 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6030 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6031 /* ia64 gets its own node_mem_map, before this, without bootmem */
6032 if (!pgdat->node_mem_map) {
b0aeba74 6033 unsigned long size, end;
d41dee36
AW
6034 struct page *map;
6035
e984bb43
BP
6036 /*
6037 * The zone's endpoints aren't required to be MAX_ORDER
6038 * aligned but the node_mem_map endpoints must be in order
6039 * for the buddy allocator to function correctly.
6040 */
108bcc96 6041 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6042 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6043 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6044 map = alloc_remap(pgdat->node_id, size);
6045 if (!map)
6782832e
SS
6046 map = memblock_virt_alloc_node_nopanic(size,
6047 pgdat->node_id);
a1c34a3b 6048 pgdat->node_mem_map = map + offset;
1da177e4 6049 }
12d810c1 6050#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6051 /*
6052 * With no DISCONTIG, the global mem_map is just set as node 0's
6053 */
c713216d 6054 if (pgdat == NODE_DATA(0)) {
1da177e4 6055 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6056#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6057 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6058 mem_map -= offset;
0ee332c1 6059#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6060 }
1da177e4 6061#endif
d41dee36 6062#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6063}
6064
9109fb7b
JW
6065void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6066 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6067{
9109fb7b 6068 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6069 unsigned long start_pfn = 0;
6070 unsigned long end_pfn = 0;
9109fb7b 6071
88fdf75d 6072 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6073 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6074
3a80a7fa 6075 reset_deferred_meminit(pgdat);
1da177e4
LT
6076 pgdat->node_id = nid;
6077 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6078#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6079 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6080 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6081 (u64)start_pfn << PAGE_SHIFT,
6082 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6083#else
6084 start_pfn = node_start_pfn;
7960aedd
ZY
6085#endif
6086 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6087 zones_size, zholes_size);
1da177e4
LT
6088
6089 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6090#ifdef CONFIG_FLAT_NODE_MEM_MAP
6091 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6092 nid, (unsigned long)pgdat,
6093 (unsigned long)pgdat->node_mem_map);
6094#endif
1da177e4 6095
7f3eb55b 6096 free_area_init_core(pgdat);
1da177e4
LT
6097}
6098
0ee332c1 6099#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6100
6101#if MAX_NUMNODES > 1
6102/*
6103 * Figure out the number of possible node ids.
6104 */
f9872caf 6105void __init setup_nr_node_ids(void)
418508c1 6106{
904a9553 6107 unsigned int highest;
418508c1 6108
904a9553 6109 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6110 nr_node_ids = highest + 1;
6111}
418508c1
MS
6112#endif
6113
1e01979c
TH
6114/**
6115 * node_map_pfn_alignment - determine the maximum internode alignment
6116 *
6117 * This function should be called after node map is populated and sorted.
6118 * It calculates the maximum power of two alignment which can distinguish
6119 * all the nodes.
6120 *
6121 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6122 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6123 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6124 * shifted, 1GiB is enough and this function will indicate so.
6125 *
6126 * This is used to test whether pfn -> nid mapping of the chosen memory
6127 * model has fine enough granularity to avoid incorrect mapping for the
6128 * populated node map.
6129 *
6130 * Returns the determined alignment in pfn's. 0 if there is no alignment
6131 * requirement (single node).
6132 */
6133unsigned long __init node_map_pfn_alignment(void)
6134{
6135 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6136 unsigned long start, end, mask;
1e01979c 6137 int last_nid = -1;
c13291a5 6138 int i, nid;
1e01979c 6139
c13291a5 6140 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6141 if (!start || last_nid < 0 || last_nid == nid) {
6142 last_nid = nid;
6143 last_end = end;
6144 continue;
6145 }
6146
6147 /*
6148 * Start with a mask granular enough to pin-point to the
6149 * start pfn and tick off bits one-by-one until it becomes
6150 * too coarse to separate the current node from the last.
6151 */
6152 mask = ~((1 << __ffs(start)) - 1);
6153 while (mask && last_end <= (start & (mask << 1)))
6154 mask <<= 1;
6155
6156 /* accumulate all internode masks */
6157 accl_mask |= mask;
6158 }
6159
6160 /* convert mask to number of pages */
6161 return ~accl_mask + 1;
6162}
6163
a6af2bc3 6164/* Find the lowest pfn for a node */
b69a7288 6165static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6166{
a6af2bc3 6167 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6168 unsigned long start_pfn;
6169 int i;
1abbfb41 6170
c13291a5
TH
6171 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6172 min_pfn = min(min_pfn, start_pfn);
c713216d 6173
a6af2bc3 6174 if (min_pfn == ULONG_MAX) {
1170532b 6175 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6176 return 0;
6177 }
6178
6179 return min_pfn;
c713216d
MG
6180}
6181
6182/**
6183 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6184 *
6185 * It returns the minimum PFN based on information provided via
7d018176 6186 * memblock_set_node().
c713216d
MG
6187 */
6188unsigned long __init find_min_pfn_with_active_regions(void)
6189{
6190 return find_min_pfn_for_node(MAX_NUMNODES);
6191}
6192
37b07e41
LS
6193/*
6194 * early_calculate_totalpages()
6195 * Sum pages in active regions for movable zone.
4b0ef1fe 6196 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6197 */
484f51f8 6198static unsigned long __init early_calculate_totalpages(void)
7e63efef 6199{
7e63efef 6200 unsigned long totalpages = 0;
c13291a5
TH
6201 unsigned long start_pfn, end_pfn;
6202 int i, nid;
6203
6204 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6205 unsigned long pages = end_pfn - start_pfn;
7e63efef 6206
37b07e41
LS
6207 totalpages += pages;
6208 if (pages)
4b0ef1fe 6209 node_set_state(nid, N_MEMORY);
37b07e41 6210 }
b8af2941 6211 return totalpages;
7e63efef
MG
6212}
6213
2a1e274a
MG
6214/*
6215 * Find the PFN the Movable zone begins in each node. Kernel memory
6216 * is spread evenly between nodes as long as the nodes have enough
6217 * memory. When they don't, some nodes will have more kernelcore than
6218 * others
6219 */
b224ef85 6220static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6221{
6222 int i, nid;
6223 unsigned long usable_startpfn;
6224 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6225 /* save the state before borrow the nodemask */
4b0ef1fe 6226 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6227 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6228 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6229 struct memblock_region *r;
b2f3eebe
TC
6230
6231 /* Need to find movable_zone earlier when movable_node is specified. */
6232 find_usable_zone_for_movable();
6233
6234 /*
6235 * If movable_node is specified, ignore kernelcore and movablecore
6236 * options.
6237 */
6238 if (movable_node_is_enabled()) {
136199f0
EM
6239 for_each_memblock(memory, r) {
6240 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6241 continue;
6242
136199f0 6243 nid = r->nid;
b2f3eebe 6244
136199f0 6245 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6246 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6247 min(usable_startpfn, zone_movable_pfn[nid]) :
6248 usable_startpfn;
6249 }
6250
6251 goto out2;
6252 }
2a1e274a 6253
342332e6
TI
6254 /*
6255 * If kernelcore=mirror is specified, ignore movablecore option
6256 */
6257 if (mirrored_kernelcore) {
6258 bool mem_below_4gb_not_mirrored = false;
6259
6260 for_each_memblock(memory, r) {
6261 if (memblock_is_mirror(r))
6262 continue;
6263
6264 nid = r->nid;
6265
6266 usable_startpfn = memblock_region_memory_base_pfn(r);
6267
6268 if (usable_startpfn < 0x100000) {
6269 mem_below_4gb_not_mirrored = true;
6270 continue;
6271 }
6272
6273 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6274 min(usable_startpfn, zone_movable_pfn[nid]) :
6275 usable_startpfn;
6276 }
6277
6278 if (mem_below_4gb_not_mirrored)
6279 pr_warn("This configuration results in unmirrored kernel memory.");
6280
6281 goto out2;
6282 }
6283
7e63efef 6284 /*
b2f3eebe 6285 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6286 * kernelcore that corresponds so that memory usable for
6287 * any allocation type is evenly spread. If both kernelcore
6288 * and movablecore are specified, then the value of kernelcore
6289 * will be used for required_kernelcore if it's greater than
6290 * what movablecore would have allowed.
6291 */
6292 if (required_movablecore) {
7e63efef
MG
6293 unsigned long corepages;
6294
6295 /*
6296 * Round-up so that ZONE_MOVABLE is at least as large as what
6297 * was requested by the user
6298 */
6299 required_movablecore =
6300 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6301 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6302 corepages = totalpages - required_movablecore;
6303
6304 required_kernelcore = max(required_kernelcore, corepages);
6305 }
6306
bde304bd
XQ
6307 /*
6308 * If kernelcore was not specified or kernelcore size is larger
6309 * than totalpages, there is no ZONE_MOVABLE.
6310 */
6311 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6312 goto out;
2a1e274a
MG
6313
6314 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6315 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6316
6317restart:
6318 /* Spread kernelcore memory as evenly as possible throughout nodes */
6319 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6320 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6321 unsigned long start_pfn, end_pfn;
6322
2a1e274a
MG
6323 /*
6324 * Recalculate kernelcore_node if the division per node
6325 * now exceeds what is necessary to satisfy the requested
6326 * amount of memory for the kernel
6327 */
6328 if (required_kernelcore < kernelcore_node)
6329 kernelcore_node = required_kernelcore / usable_nodes;
6330
6331 /*
6332 * As the map is walked, we track how much memory is usable
6333 * by the kernel using kernelcore_remaining. When it is
6334 * 0, the rest of the node is usable by ZONE_MOVABLE
6335 */
6336 kernelcore_remaining = kernelcore_node;
6337
6338 /* Go through each range of PFNs within this node */
c13291a5 6339 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6340 unsigned long size_pages;
6341
c13291a5 6342 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6343 if (start_pfn >= end_pfn)
6344 continue;
6345
6346 /* Account for what is only usable for kernelcore */
6347 if (start_pfn < usable_startpfn) {
6348 unsigned long kernel_pages;
6349 kernel_pages = min(end_pfn, usable_startpfn)
6350 - start_pfn;
6351
6352 kernelcore_remaining -= min(kernel_pages,
6353 kernelcore_remaining);
6354 required_kernelcore -= min(kernel_pages,
6355 required_kernelcore);
6356
6357 /* Continue if range is now fully accounted */
6358 if (end_pfn <= usable_startpfn) {
6359
6360 /*
6361 * Push zone_movable_pfn to the end so
6362 * that if we have to rebalance
6363 * kernelcore across nodes, we will
6364 * not double account here
6365 */
6366 zone_movable_pfn[nid] = end_pfn;
6367 continue;
6368 }
6369 start_pfn = usable_startpfn;
6370 }
6371
6372 /*
6373 * The usable PFN range for ZONE_MOVABLE is from
6374 * start_pfn->end_pfn. Calculate size_pages as the
6375 * number of pages used as kernelcore
6376 */
6377 size_pages = end_pfn - start_pfn;
6378 if (size_pages > kernelcore_remaining)
6379 size_pages = kernelcore_remaining;
6380 zone_movable_pfn[nid] = start_pfn + size_pages;
6381
6382 /*
6383 * Some kernelcore has been met, update counts and
6384 * break if the kernelcore for this node has been
b8af2941 6385 * satisfied
2a1e274a
MG
6386 */
6387 required_kernelcore -= min(required_kernelcore,
6388 size_pages);
6389 kernelcore_remaining -= size_pages;
6390 if (!kernelcore_remaining)
6391 break;
6392 }
6393 }
6394
6395 /*
6396 * If there is still required_kernelcore, we do another pass with one
6397 * less node in the count. This will push zone_movable_pfn[nid] further
6398 * along on the nodes that still have memory until kernelcore is
b8af2941 6399 * satisfied
2a1e274a
MG
6400 */
6401 usable_nodes--;
6402 if (usable_nodes && required_kernelcore > usable_nodes)
6403 goto restart;
6404
b2f3eebe 6405out2:
2a1e274a
MG
6406 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6407 for (nid = 0; nid < MAX_NUMNODES; nid++)
6408 zone_movable_pfn[nid] =
6409 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6410
20e6926d 6411out:
66918dcd 6412 /* restore the node_state */
4b0ef1fe 6413 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6414}
6415
4b0ef1fe
LJ
6416/* Any regular or high memory on that node ? */
6417static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6418{
37b07e41
LS
6419 enum zone_type zone_type;
6420
4b0ef1fe
LJ
6421 if (N_MEMORY == N_NORMAL_MEMORY)
6422 return;
6423
6424 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6425 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6426 if (populated_zone(zone)) {
4b0ef1fe
LJ
6427 node_set_state(nid, N_HIGH_MEMORY);
6428 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6429 zone_type <= ZONE_NORMAL)
6430 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6431 break;
6432 }
37b07e41 6433 }
37b07e41
LS
6434}
6435
c713216d
MG
6436/**
6437 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6438 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6439 *
6440 * This will call free_area_init_node() for each active node in the system.
7d018176 6441 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6442 * zone in each node and their holes is calculated. If the maximum PFN
6443 * between two adjacent zones match, it is assumed that the zone is empty.
6444 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6445 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6446 * starts where the previous one ended. For example, ZONE_DMA32 starts
6447 * at arch_max_dma_pfn.
6448 */
6449void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6450{
c13291a5
TH
6451 unsigned long start_pfn, end_pfn;
6452 int i, nid;
a6af2bc3 6453
c713216d
MG
6454 /* Record where the zone boundaries are */
6455 memset(arch_zone_lowest_possible_pfn, 0,
6456 sizeof(arch_zone_lowest_possible_pfn));
6457 memset(arch_zone_highest_possible_pfn, 0,
6458 sizeof(arch_zone_highest_possible_pfn));
6459 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6460 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6461 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6462 if (i == ZONE_MOVABLE)
6463 continue;
c713216d
MG
6464 arch_zone_lowest_possible_pfn[i] =
6465 arch_zone_highest_possible_pfn[i-1];
6466 arch_zone_highest_possible_pfn[i] =
6467 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6468 }
2a1e274a
MG
6469 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6470 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6471
6472 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6473 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6474 find_zone_movable_pfns_for_nodes();
c713216d 6475
c713216d 6476 /* Print out the zone ranges */
f88dfff5 6477 pr_info("Zone ranges:\n");
2a1e274a
MG
6478 for (i = 0; i < MAX_NR_ZONES; i++) {
6479 if (i == ZONE_MOVABLE)
6480 continue;
f88dfff5 6481 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6482 if (arch_zone_lowest_possible_pfn[i] ==
6483 arch_zone_highest_possible_pfn[i])
f88dfff5 6484 pr_cont("empty\n");
72f0ba02 6485 else
8d29e18a
JG
6486 pr_cont("[mem %#018Lx-%#018Lx]\n",
6487 (u64)arch_zone_lowest_possible_pfn[i]
6488 << PAGE_SHIFT,
6489 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6490 << PAGE_SHIFT) - 1);
2a1e274a
MG
6491 }
6492
6493 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6494 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6495 for (i = 0; i < MAX_NUMNODES; i++) {
6496 if (zone_movable_pfn[i])
8d29e18a
JG
6497 pr_info(" Node %d: %#018Lx\n", i,
6498 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6499 }
c713216d 6500
f2d52fe5 6501 /* Print out the early node map */
f88dfff5 6502 pr_info("Early memory node ranges\n");
c13291a5 6503 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6504 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6505 (u64)start_pfn << PAGE_SHIFT,
6506 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6507
6508 /* Initialise every node */
708614e6 6509 mminit_verify_pageflags_layout();
8ef82866 6510 setup_nr_node_ids();
c713216d
MG
6511 for_each_online_node(nid) {
6512 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6513 free_area_init_node(nid, NULL,
c713216d 6514 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6515
6516 /* Any memory on that node */
6517 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6518 node_set_state(nid, N_MEMORY);
6519 check_for_memory(pgdat, nid);
c713216d
MG
6520 }
6521}
2a1e274a 6522
7e63efef 6523static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6524{
6525 unsigned long long coremem;
6526 if (!p)
6527 return -EINVAL;
6528
6529 coremem = memparse(p, &p);
7e63efef 6530 *core = coremem >> PAGE_SHIFT;
2a1e274a 6531
7e63efef 6532 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6533 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6534
6535 return 0;
6536}
ed7ed365 6537
7e63efef
MG
6538/*
6539 * kernelcore=size sets the amount of memory for use for allocations that
6540 * cannot be reclaimed or migrated.
6541 */
6542static int __init cmdline_parse_kernelcore(char *p)
6543{
342332e6
TI
6544 /* parse kernelcore=mirror */
6545 if (parse_option_str(p, "mirror")) {
6546 mirrored_kernelcore = true;
6547 return 0;
6548 }
6549
7e63efef
MG
6550 return cmdline_parse_core(p, &required_kernelcore);
6551}
6552
6553/*
6554 * movablecore=size sets the amount of memory for use for allocations that
6555 * can be reclaimed or migrated.
6556 */
6557static int __init cmdline_parse_movablecore(char *p)
6558{
6559 return cmdline_parse_core(p, &required_movablecore);
6560}
6561
ed7ed365 6562early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6563early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6564
0ee332c1 6565#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6566
c3d5f5f0
JL
6567void adjust_managed_page_count(struct page *page, long count)
6568{
6569 spin_lock(&managed_page_count_lock);
6570 page_zone(page)->managed_pages += count;
6571 totalram_pages += count;
3dcc0571
JL
6572#ifdef CONFIG_HIGHMEM
6573 if (PageHighMem(page))
6574 totalhigh_pages += count;
6575#endif
c3d5f5f0
JL
6576 spin_unlock(&managed_page_count_lock);
6577}
3dcc0571 6578EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6579
11199692 6580unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6581{
11199692
JL
6582 void *pos;
6583 unsigned long pages = 0;
69afade7 6584
11199692
JL
6585 start = (void *)PAGE_ALIGN((unsigned long)start);
6586 end = (void *)((unsigned long)end & PAGE_MASK);
6587 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6588 if ((unsigned int)poison <= 0xFF)
11199692
JL
6589 memset(pos, poison, PAGE_SIZE);
6590 free_reserved_page(virt_to_page(pos));
69afade7
JL
6591 }
6592
6593 if (pages && s)
11199692 6594 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6595 s, pages << (PAGE_SHIFT - 10), start, end);
6596
6597 return pages;
6598}
11199692 6599EXPORT_SYMBOL(free_reserved_area);
69afade7 6600
cfa11e08
JL
6601#ifdef CONFIG_HIGHMEM
6602void free_highmem_page(struct page *page)
6603{
6604 __free_reserved_page(page);
6605 totalram_pages++;
7b4b2a0d 6606 page_zone(page)->managed_pages++;
cfa11e08
JL
6607 totalhigh_pages++;
6608}
6609#endif
6610
7ee3d4e8
JL
6611
6612void __init mem_init_print_info(const char *str)
6613{
6614 unsigned long physpages, codesize, datasize, rosize, bss_size;
6615 unsigned long init_code_size, init_data_size;
6616
6617 physpages = get_num_physpages();
6618 codesize = _etext - _stext;
6619 datasize = _edata - _sdata;
6620 rosize = __end_rodata - __start_rodata;
6621 bss_size = __bss_stop - __bss_start;
6622 init_data_size = __init_end - __init_begin;
6623 init_code_size = _einittext - _sinittext;
6624
6625 /*
6626 * Detect special cases and adjust section sizes accordingly:
6627 * 1) .init.* may be embedded into .data sections
6628 * 2) .init.text.* may be out of [__init_begin, __init_end],
6629 * please refer to arch/tile/kernel/vmlinux.lds.S.
6630 * 3) .rodata.* may be embedded into .text or .data sections.
6631 */
6632#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6633 do { \
6634 if (start <= pos && pos < end && size > adj) \
6635 size -= adj; \
6636 } while (0)
7ee3d4e8
JL
6637
6638 adj_init_size(__init_begin, __init_end, init_data_size,
6639 _sinittext, init_code_size);
6640 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6641 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6642 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6643 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6644
6645#undef adj_init_size
6646
756a025f 6647 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6648#ifdef CONFIG_HIGHMEM
756a025f 6649 ", %luK highmem"
7ee3d4e8 6650#endif
756a025f
JP
6651 "%s%s)\n",
6652 nr_free_pages() << (PAGE_SHIFT - 10),
6653 physpages << (PAGE_SHIFT - 10),
6654 codesize >> 10, datasize >> 10, rosize >> 10,
6655 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6656 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6657 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6658#ifdef CONFIG_HIGHMEM
756a025f 6659 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6660#endif
756a025f 6661 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6662}
6663
0e0b864e 6664/**
88ca3b94
RD
6665 * set_dma_reserve - set the specified number of pages reserved in the first zone
6666 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6667 *
013110a7 6668 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6669 * In the DMA zone, a significant percentage may be consumed by kernel image
6670 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6671 * function may optionally be used to account for unfreeable pages in the
6672 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6673 * smaller per-cpu batchsize.
0e0b864e
MG
6674 */
6675void __init set_dma_reserve(unsigned long new_dma_reserve)
6676{
6677 dma_reserve = new_dma_reserve;
6678}
6679
1da177e4
LT
6680void __init free_area_init(unsigned long *zones_size)
6681{
9109fb7b 6682 free_area_init_node(0, zones_size,
1da177e4
LT
6683 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6684}
1da177e4 6685
1da177e4
LT
6686static int page_alloc_cpu_notify(struct notifier_block *self,
6687 unsigned long action, void *hcpu)
6688{
6689 int cpu = (unsigned long)hcpu;
1da177e4 6690
8bb78442 6691 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6692 lru_add_drain_cpu(cpu);
9f8f2172
CL
6693 drain_pages(cpu);
6694
6695 /*
6696 * Spill the event counters of the dead processor
6697 * into the current processors event counters.
6698 * This artificially elevates the count of the current
6699 * processor.
6700 */
f8891e5e 6701 vm_events_fold_cpu(cpu);
9f8f2172
CL
6702
6703 /*
6704 * Zero the differential counters of the dead processor
6705 * so that the vm statistics are consistent.
6706 *
6707 * This is only okay since the processor is dead and cannot
6708 * race with what we are doing.
6709 */
2bb921e5 6710 cpu_vm_stats_fold(cpu);
1da177e4
LT
6711 }
6712 return NOTIFY_OK;
6713}
1da177e4
LT
6714
6715void __init page_alloc_init(void)
6716{
6717 hotcpu_notifier(page_alloc_cpu_notify, 0);
6718}
6719
cb45b0e9 6720/*
34b10060 6721 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6722 * or min_free_kbytes changes.
6723 */
6724static void calculate_totalreserve_pages(void)
6725{
6726 struct pglist_data *pgdat;
6727 unsigned long reserve_pages = 0;
2f6726e5 6728 enum zone_type i, j;
cb45b0e9
HA
6729
6730 for_each_online_pgdat(pgdat) {
6731 for (i = 0; i < MAX_NR_ZONES; i++) {
6732 struct zone *zone = pgdat->node_zones + i;
3484b2de 6733 long max = 0;
cb45b0e9
HA
6734
6735 /* Find valid and maximum lowmem_reserve in the zone */
6736 for (j = i; j < MAX_NR_ZONES; j++) {
6737 if (zone->lowmem_reserve[j] > max)
6738 max = zone->lowmem_reserve[j];
6739 }
6740
41858966
MG
6741 /* we treat the high watermark as reserved pages. */
6742 max += high_wmark_pages(zone);
cb45b0e9 6743
b40da049
JL
6744 if (max > zone->managed_pages)
6745 max = zone->managed_pages;
a8d01437
JW
6746
6747 zone->totalreserve_pages = max;
6748
cb45b0e9
HA
6749 reserve_pages += max;
6750 }
6751 }
6752 totalreserve_pages = reserve_pages;
6753}
6754
1da177e4
LT
6755/*
6756 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6757 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6758 * has a correct pages reserved value, so an adequate number of
6759 * pages are left in the zone after a successful __alloc_pages().
6760 */
6761static void setup_per_zone_lowmem_reserve(void)
6762{
6763 struct pglist_data *pgdat;
2f6726e5 6764 enum zone_type j, idx;
1da177e4 6765
ec936fc5 6766 for_each_online_pgdat(pgdat) {
1da177e4
LT
6767 for (j = 0; j < MAX_NR_ZONES; j++) {
6768 struct zone *zone = pgdat->node_zones + j;
b40da049 6769 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6770
6771 zone->lowmem_reserve[j] = 0;
6772
2f6726e5
CL
6773 idx = j;
6774 while (idx) {
1da177e4
LT
6775 struct zone *lower_zone;
6776
2f6726e5
CL
6777 idx--;
6778
1da177e4
LT
6779 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6780 sysctl_lowmem_reserve_ratio[idx] = 1;
6781
6782 lower_zone = pgdat->node_zones + idx;
b40da049 6783 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6784 sysctl_lowmem_reserve_ratio[idx];
b40da049 6785 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6786 }
6787 }
6788 }
cb45b0e9
HA
6789
6790 /* update totalreserve_pages */
6791 calculate_totalreserve_pages();
1da177e4
LT
6792}
6793
cfd3da1e 6794static void __setup_per_zone_wmarks(void)
1da177e4
LT
6795{
6796 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6797 unsigned long lowmem_pages = 0;
6798 struct zone *zone;
6799 unsigned long flags;
6800
6801 /* Calculate total number of !ZONE_HIGHMEM pages */
6802 for_each_zone(zone) {
6803 if (!is_highmem(zone))
b40da049 6804 lowmem_pages += zone->managed_pages;
1da177e4
LT
6805 }
6806
6807 for_each_zone(zone) {
ac924c60
AM
6808 u64 tmp;
6809
1125b4e3 6810 spin_lock_irqsave(&zone->lock, flags);
b40da049 6811 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6812 do_div(tmp, lowmem_pages);
1da177e4
LT
6813 if (is_highmem(zone)) {
6814 /*
669ed175
NP
6815 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6816 * need highmem pages, so cap pages_min to a small
6817 * value here.
6818 *
41858966 6819 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6820 * deltas control asynch page reclaim, and so should
669ed175 6821 * not be capped for highmem.
1da177e4 6822 */
90ae8d67 6823 unsigned long min_pages;
1da177e4 6824
b40da049 6825 min_pages = zone->managed_pages / 1024;
90ae8d67 6826 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6827 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6828 } else {
669ed175
NP
6829 /*
6830 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6831 * proportionate to the zone's size.
6832 */
41858966 6833 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6834 }
6835
795ae7a0
JW
6836 /*
6837 * Set the kswapd watermarks distance according to the
6838 * scale factor in proportion to available memory, but
6839 * ensure a minimum size on small systems.
6840 */
6841 tmp = max_t(u64, tmp >> 2,
6842 mult_frac(zone->managed_pages,
6843 watermark_scale_factor, 10000));
6844
6845 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6846 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6847
81c0a2bb 6848 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6849 high_wmark_pages(zone) - low_wmark_pages(zone) -
6850 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6851
1125b4e3 6852 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6853 }
cb45b0e9
HA
6854
6855 /* update totalreserve_pages */
6856 calculate_totalreserve_pages();
1da177e4
LT
6857}
6858
cfd3da1e
MG
6859/**
6860 * setup_per_zone_wmarks - called when min_free_kbytes changes
6861 * or when memory is hot-{added|removed}
6862 *
6863 * Ensures that the watermark[min,low,high] values for each zone are set
6864 * correctly with respect to min_free_kbytes.
6865 */
6866void setup_per_zone_wmarks(void)
6867{
6868 mutex_lock(&zonelists_mutex);
6869 __setup_per_zone_wmarks();
6870 mutex_unlock(&zonelists_mutex);
6871}
6872
1da177e4
LT
6873/*
6874 * Initialise min_free_kbytes.
6875 *
6876 * For small machines we want it small (128k min). For large machines
6877 * we want it large (64MB max). But it is not linear, because network
6878 * bandwidth does not increase linearly with machine size. We use
6879 *
b8af2941 6880 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6881 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6882 *
6883 * which yields
6884 *
6885 * 16MB: 512k
6886 * 32MB: 724k
6887 * 64MB: 1024k
6888 * 128MB: 1448k
6889 * 256MB: 2048k
6890 * 512MB: 2896k
6891 * 1024MB: 4096k
6892 * 2048MB: 5792k
6893 * 4096MB: 8192k
6894 * 8192MB: 11584k
6895 * 16384MB: 16384k
6896 */
1b79acc9 6897int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6898{
6899 unsigned long lowmem_kbytes;
5f12733e 6900 int new_min_free_kbytes;
1da177e4
LT
6901
6902 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6903 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6904
6905 if (new_min_free_kbytes > user_min_free_kbytes) {
6906 min_free_kbytes = new_min_free_kbytes;
6907 if (min_free_kbytes < 128)
6908 min_free_kbytes = 128;
6909 if (min_free_kbytes > 65536)
6910 min_free_kbytes = 65536;
6911 } else {
6912 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6913 new_min_free_kbytes, user_min_free_kbytes);
6914 }
bc75d33f 6915 setup_per_zone_wmarks();
a6cccdc3 6916 refresh_zone_stat_thresholds();
1da177e4
LT
6917 setup_per_zone_lowmem_reserve();
6918 return 0;
6919}
bc22af74 6920core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6921
6922/*
b8af2941 6923 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6924 * that we can call two helper functions whenever min_free_kbytes
6925 * changes.
6926 */
cccad5b9 6927int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6928 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6929{
da8c757b
HP
6930 int rc;
6931
6932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6933 if (rc)
6934 return rc;
6935
5f12733e
MH
6936 if (write) {
6937 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6938 setup_per_zone_wmarks();
5f12733e 6939 }
1da177e4
LT
6940 return 0;
6941}
6942
795ae7a0
JW
6943int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6944 void __user *buffer, size_t *length, loff_t *ppos)
6945{
6946 int rc;
6947
6948 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6949 if (rc)
6950 return rc;
6951
6952 if (write)
6953 setup_per_zone_wmarks();
6954
6955 return 0;
6956}
6957
9614634f 6958#ifdef CONFIG_NUMA
cccad5b9 6959int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6960 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6961{
6962 struct zone *zone;
6963 int rc;
6964
8d65af78 6965 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6966 if (rc)
6967 return rc;
6968
6969 for_each_zone(zone)
b40da049 6970 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6971 sysctl_min_unmapped_ratio) / 100;
6972 return 0;
6973}
0ff38490 6974
cccad5b9 6975int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6976 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6977{
6978 struct zone *zone;
6979 int rc;
6980
8d65af78 6981 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6982 if (rc)
6983 return rc;
6984
6985 for_each_zone(zone)
b40da049 6986 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6987 sysctl_min_slab_ratio) / 100;
6988 return 0;
6989}
9614634f
CL
6990#endif
6991
1da177e4
LT
6992/*
6993 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6994 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6995 * whenever sysctl_lowmem_reserve_ratio changes.
6996 *
6997 * The reserve ratio obviously has absolutely no relation with the
41858966 6998 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6999 * if in function of the boot time zone sizes.
7000 */
cccad5b9 7001int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7002 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7003{
8d65af78 7004 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7005 setup_per_zone_lowmem_reserve();
7006 return 0;
7007}
7008
8ad4b1fb
RS
7009/*
7010 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7011 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7012 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7013 */
cccad5b9 7014int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7015 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7016{
7017 struct zone *zone;
7cd2b0a3 7018 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7019 int ret;
7020
7cd2b0a3
DR
7021 mutex_lock(&pcp_batch_high_lock);
7022 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7023
8d65af78 7024 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7025 if (!write || ret < 0)
7026 goto out;
7027
7028 /* Sanity checking to avoid pcp imbalance */
7029 if (percpu_pagelist_fraction &&
7030 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7031 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7032 ret = -EINVAL;
7033 goto out;
7034 }
7035
7036 /* No change? */
7037 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7038 goto out;
c8e251fa 7039
364df0eb 7040 for_each_populated_zone(zone) {
7cd2b0a3
DR
7041 unsigned int cpu;
7042
22a7f12b 7043 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7044 pageset_set_high_and_batch(zone,
7045 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7046 }
7cd2b0a3 7047out:
c8e251fa 7048 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7049 return ret;
8ad4b1fb
RS
7050}
7051
a9919c79 7052#ifdef CONFIG_NUMA
f034b5d4 7053int hashdist = HASHDIST_DEFAULT;
1da177e4 7054
1da177e4
LT
7055static int __init set_hashdist(char *str)
7056{
7057 if (!str)
7058 return 0;
7059 hashdist = simple_strtoul(str, &str, 0);
7060 return 1;
7061}
7062__setup("hashdist=", set_hashdist);
7063#endif
7064
7065/*
7066 * allocate a large system hash table from bootmem
7067 * - it is assumed that the hash table must contain an exact power-of-2
7068 * quantity of entries
7069 * - limit is the number of hash buckets, not the total allocation size
7070 */
7071void *__init alloc_large_system_hash(const char *tablename,
7072 unsigned long bucketsize,
7073 unsigned long numentries,
7074 int scale,
7075 int flags,
7076 unsigned int *_hash_shift,
7077 unsigned int *_hash_mask,
31fe62b9
TB
7078 unsigned long low_limit,
7079 unsigned long high_limit)
1da177e4 7080{
31fe62b9 7081 unsigned long long max = high_limit;
1da177e4
LT
7082 unsigned long log2qty, size;
7083 void *table = NULL;
7084
7085 /* allow the kernel cmdline to have a say */
7086 if (!numentries) {
7087 /* round applicable memory size up to nearest megabyte */
04903664 7088 numentries = nr_kernel_pages;
a7e83318
JZ
7089
7090 /* It isn't necessary when PAGE_SIZE >= 1MB */
7091 if (PAGE_SHIFT < 20)
7092 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7093
7094 /* limit to 1 bucket per 2^scale bytes of low memory */
7095 if (scale > PAGE_SHIFT)
7096 numentries >>= (scale - PAGE_SHIFT);
7097 else
7098 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7099
7100 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7101 if (unlikely(flags & HASH_SMALL)) {
7102 /* Makes no sense without HASH_EARLY */
7103 WARN_ON(!(flags & HASH_EARLY));
7104 if (!(numentries >> *_hash_shift)) {
7105 numentries = 1UL << *_hash_shift;
7106 BUG_ON(!numentries);
7107 }
7108 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7109 numentries = PAGE_SIZE / bucketsize;
1da177e4 7110 }
6e692ed3 7111 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7112
7113 /* limit allocation size to 1/16 total memory by default */
7114 if (max == 0) {
7115 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7116 do_div(max, bucketsize);
7117 }
074b8517 7118 max = min(max, 0x80000000ULL);
1da177e4 7119
31fe62b9
TB
7120 if (numentries < low_limit)
7121 numentries = low_limit;
1da177e4
LT
7122 if (numentries > max)
7123 numentries = max;
7124
f0d1b0b3 7125 log2qty = ilog2(numentries);
1da177e4
LT
7126
7127 do {
7128 size = bucketsize << log2qty;
7129 if (flags & HASH_EARLY)
6782832e 7130 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7131 else if (hashdist)
7132 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7133 else {
1037b83b
ED
7134 /*
7135 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7136 * some pages at the end of hash table which
7137 * alloc_pages_exact() automatically does
1037b83b 7138 */
264ef8a9 7139 if (get_order(size) < MAX_ORDER) {
a1dd268c 7140 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7141 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7142 }
1da177e4
LT
7143 }
7144 } while (!table && size > PAGE_SIZE && --log2qty);
7145
7146 if (!table)
7147 panic("Failed to allocate %s hash table\n", tablename);
7148
1170532b
JP
7149 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7150 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7151
7152 if (_hash_shift)
7153 *_hash_shift = log2qty;
7154 if (_hash_mask)
7155 *_hash_mask = (1 << log2qty) - 1;
7156
7157 return table;
7158}
a117e66e 7159
a5d76b54 7160/*
80934513
MK
7161 * This function checks whether pageblock includes unmovable pages or not.
7162 * If @count is not zero, it is okay to include less @count unmovable pages
7163 *
b8af2941 7164 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7165 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7166 * expect this function should be exact.
a5d76b54 7167 */
b023f468
WC
7168bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7169 bool skip_hwpoisoned_pages)
49ac8255
KH
7170{
7171 unsigned long pfn, iter, found;
47118af0
MN
7172 int mt;
7173
49ac8255
KH
7174 /*
7175 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7176 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7177 */
7178 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7179 return false;
47118af0
MN
7180 mt = get_pageblock_migratetype(page);
7181 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7182 return false;
49ac8255
KH
7183
7184 pfn = page_to_pfn(page);
7185 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7186 unsigned long check = pfn + iter;
7187
29723fcc 7188 if (!pfn_valid_within(check))
49ac8255 7189 continue;
29723fcc 7190
49ac8255 7191 page = pfn_to_page(check);
c8721bbb
NH
7192
7193 /*
7194 * Hugepages are not in LRU lists, but they're movable.
7195 * We need not scan over tail pages bacause we don't
7196 * handle each tail page individually in migration.
7197 */
7198 if (PageHuge(page)) {
7199 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7200 continue;
7201 }
7202
97d255c8
MK
7203 /*
7204 * We can't use page_count without pin a page
7205 * because another CPU can free compound page.
7206 * This check already skips compound tails of THP
0139aa7b 7207 * because their page->_refcount is zero at all time.
97d255c8 7208 */
fe896d18 7209 if (!page_ref_count(page)) {
49ac8255
KH
7210 if (PageBuddy(page))
7211 iter += (1 << page_order(page)) - 1;
7212 continue;
7213 }
97d255c8 7214
b023f468
WC
7215 /*
7216 * The HWPoisoned page may be not in buddy system, and
7217 * page_count() is not 0.
7218 */
7219 if (skip_hwpoisoned_pages && PageHWPoison(page))
7220 continue;
7221
49ac8255
KH
7222 if (!PageLRU(page))
7223 found++;
7224 /*
6b4f7799
JW
7225 * If there are RECLAIMABLE pages, we need to check
7226 * it. But now, memory offline itself doesn't call
7227 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7228 */
7229 /*
7230 * If the page is not RAM, page_count()should be 0.
7231 * we don't need more check. This is an _used_ not-movable page.
7232 *
7233 * The problematic thing here is PG_reserved pages. PG_reserved
7234 * is set to both of a memory hole page and a _used_ kernel
7235 * page at boot.
7236 */
7237 if (found > count)
80934513 7238 return true;
49ac8255 7239 }
80934513 7240 return false;
49ac8255
KH
7241}
7242
7243bool is_pageblock_removable_nolock(struct page *page)
7244{
656a0706
MH
7245 struct zone *zone;
7246 unsigned long pfn;
687875fb
MH
7247
7248 /*
7249 * We have to be careful here because we are iterating over memory
7250 * sections which are not zone aware so we might end up outside of
7251 * the zone but still within the section.
656a0706
MH
7252 * We have to take care about the node as well. If the node is offline
7253 * its NODE_DATA will be NULL - see page_zone.
687875fb 7254 */
656a0706
MH
7255 if (!node_online(page_to_nid(page)))
7256 return false;
7257
7258 zone = page_zone(page);
7259 pfn = page_to_pfn(page);
108bcc96 7260 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7261 return false;
7262
b023f468 7263 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7264}
0c0e6195 7265
080fe206 7266#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7267
7268static unsigned long pfn_max_align_down(unsigned long pfn)
7269{
7270 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7271 pageblock_nr_pages) - 1);
7272}
7273
7274static unsigned long pfn_max_align_up(unsigned long pfn)
7275{
7276 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7277 pageblock_nr_pages));
7278}
7279
041d3a8c 7280/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7281static int __alloc_contig_migrate_range(struct compact_control *cc,
7282 unsigned long start, unsigned long end)
041d3a8c
MN
7283{
7284 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7285 unsigned long nr_reclaimed;
041d3a8c
MN
7286 unsigned long pfn = start;
7287 unsigned int tries = 0;
7288 int ret = 0;
7289
be49a6e1 7290 migrate_prep();
041d3a8c 7291
bb13ffeb 7292 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7293 if (fatal_signal_pending(current)) {
7294 ret = -EINTR;
7295 break;
7296 }
7297
bb13ffeb
MG
7298 if (list_empty(&cc->migratepages)) {
7299 cc->nr_migratepages = 0;
edc2ca61 7300 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7301 if (!pfn) {
7302 ret = -EINTR;
7303 break;
7304 }
7305 tries = 0;
7306 } else if (++tries == 5) {
7307 ret = ret < 0 ? ret : -EBUSY;
7308 break;
7309 }
7310
beb51eaa
MK
7311 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7312 &cc->migratepages);
7313 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7314
9c620e2b 7315 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7316 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7317 }
2a6f5124
SP
7318 if (ret < 0) {
7319 putback_movable_pages(&cc->migratepages);
7320 return ret;
7321 }
7322 return 0;
041d3a8c
MN
7323}
7324
7325/**
7326 * alloc_contig_range() -- tries to allocate given range of pages
7327 * @start: start PFN to allocate
7328 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7329 * @migratetype: migratetype of the underlaying pageblocks (either
7330 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7331 * in range must have the same migratetype and it must
7332 * be either of the two.
041d3a8c
MN
7333 *
7334 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7335 * aligned, however it's the caller's responsibility to guarantee that
7336 * we are the only thread that changes migrate type of pageblocks the
7337 * pages fall in.
7338 *
7339 * The PFN range must belong to a single zone.
7340 *
7341 * Returns zero on success or negative error code. On success all
7342 * pages which PFN is in [start, end) are allocated for the caller and
7343 * need to be freed with free_contig_range().
7344 */
0815f3d8
MN
7345int alloc_contig_range(unsigned long start, unsigned long end,
7346 unsigned migratetype)
041d3a8c 7347{
041d3a8c 7348 unsigned long outer_start, outer_end;
d00181b9
KS
7349 unsigned int order;
7350 int ret = 0;
041d3a8c 7351
bb13ffeb
MG
7352 struct compact_control cc = {
7353 .nr_migratepages = 0,
7354 .order = -1,
7355 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7356 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7357 .ignore_skip_hint = true,
7358 };
7359 INIT_LIST_HEAD(&cc.migratepages);
7360
041d3a8c
MN
7361 /*
7362 * What we do here is we mark all pageblocks in range as
7363 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7364 * have different sizes, and due to the way page allocator
7365 * work, we align the range to biggest of the two pages so
7366 * that page allocator won't try to merge buddies from
7367 * different pageblocks and change MIGRATE_ISOLATE to some
7368 * other migration type.
7369 *
7370 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7371 * migrate the pages from an unaligned range (ie. pages that
7372 * we are interested in). This will put all the pages in
7373 * range back to page allocator as MIGRATE_ISOLATE.
7374 *
7375 * When this is done, we take the pages in range from page
7376 * allocator removing them from the buddy system. This way
7377 * page allocator will never consider using them.
7378 *
7379 * This lets us mark the pageblocks back as
7380 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7381 * aligned range but not in the unaligned, original range are
7382 * put back to page allocator so that buddy can use them.
7383 */
7384
7385 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7386 pfn_max_align_up(end), migratetype,
7387 false);
041d3a8c 7388 if (ret)
86a595f9 7389 return ret;
041d3a8c 7390
8ef5849f
JK
7391 /*
7392 * In case of -EBUSY, we'd like to know which page causes problem.
7393 * So, just fall through. We will check it in test_pages_isolated().
7394 */
bb13ffeb 7395 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7396 if (ret && ret != -EBUSY)
041d3a8c
MN
7397 goto done;
7398
7399 /*
7400 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7401 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7402 * more, all pages in [start, end) are free in page allocator.
7403 * What we are going to do is to allocate all pages from
7404 * [start, end) (that is remove them from page allocator).
7405 *
7406 * The only problem is that pages at the beginning and at the
7407 * end of interesting range may be not aligned with pages that
7408 * page allocator holds, ie. they can be part of higher order
7409 * pages. Because of this, we reserve the bigger range and
7410 * once this is done free the pages we are not interested in.
7411 *
7412 * We don't have to hold zone->lock here because the pages are
7413 * isolated thus they won't get removed from buddy.
7414 */
7415
7416 lru_add_drain_all();
510f5507 7417 drain_all_pages(cc.zone);
041d3a8c
MN
7418
7419 order = 0;
7420 outer_start = start;
7421 while (!PageBuddy(pfn_to_page(outer_start))) {
7422 if (++order >= MAX_ORDER) {
8ef5849f
JK
7423 outer_start = start;
7424 break;
041d3a8c
MN
7425 }
7426 outer_start &= ~0UL << order;
7427 }
7428
8ef5849f
JK
7429 if (outer_start != start) {
7430 order = page_order(pfn_to_page(outer_start));
7431
7432 /*
7433 * outer_start page could be small order buddy page and
7434 * it doesn't include start page. Adjust outer_start
7435 * in this case to report failed page properly
7436 * on tracepoint in test_pages_isolated()
7437 */
7438 if (outer_start + (1UL << order) <= start)
7439 outer_start = start;
7440 }
7441
041d3a8c 7442 /* Make sure the range is really isolated. */
b023f468 7443 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7444 pr_info("%s: [%lx, %lx) PFNs busy\n",
7445 __func__, outer_start, end);
041d3a8c
MN
7446 ret = -EBUSY;
7447 goto done;
7448 }
7449
49f223a9 7450 /* Grab isolated pages from freelists. */
bb13ffeb 7451 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7452 if (!outer_end) {
7453 ret = -EBUSY;
7454 goto done;
7455 }
7456
7457 /* Free head and tail (if any) */
7458 if (start != outer_start)
7459 free_contig_range(outer_start, start - outer_start);
7460 if (end != outer_end)
7461 free_contig_range(end, outer_end - end);
7462
7463done:
7464 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7465 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7466 return ret;
7467}
7468
7469void free_contig_range(unsigned long pfn, unsigned nr_pages)
7470{
bcc2b02f
MS
7471 unsigned int count = 0;
7472
7473 for (; nr_pages--; pfn++) {
7474 struct page *page = pfn_to_page(pfn);
7475
7476 count += page_count(page) != 1;
7477 __free_page(page);
7478 }
7479 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7480}
7481#endif
7482
4ed7e022 7483#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7484/*
7485 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7486 * page high values need to be recalulated.
7487 */
4ed7e022
JL
7488void __meminit zone_pcp_update(struct zone *zone)
7489{
0a647f38 7490 unsigned cpu;
c8e251fa 7491 mutex_lock(&pcp_batch_high_lock);
0a647f38 7492 for_each_possible_cpu(cpu)
169f6c19
CS
7493 pageset_set_high_and_batch(zone,
7494 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7495 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7496}
7497#endif
7498
340175b7
JL
7499void zone_pcp_reset(struct zone *zone)
7500{
7501 unsigned long flags;
5a883813
MK
7502 int cpu;
7503 struct per_cpu_pageset *pset;
340175b7
JL
7504
7505 /* avoid races with drain_pages() */
7506 local_irq_save(flags);
7507 if (zone->pageset != &boot_pageset) {
5a883813
MK
7508 for_each_online_cpu(cpu) {
7509 pset = per_cpu_ptr(zone->pageset, cpu);
7510 drain_zonestat(zone, pset);
7511 }
340175b7
JL
7512 free_percpu(zone->pageset);
7513 zone->pageset = &boot_pageset;
7514 }
7515 local_irq_restore(flags);
7516}
7517
6dcd73d7 7518#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7519/*
b9eb6319
JK
7520 * All pages in the range must be in a single zone and isolated
7521 * before calling this.
0c0e6195
KH
7522 */
7523void
7524__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7525{
7526 struct page *page;
7527 struct zone *zone;
7aeb09f9 7528 unsigned int order, i;
0c0e6195
KH
7529 unsigned long pfn;
7530 unsigned long flags;
7531 /* find the first valid pfn */
7532 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7533 if (pfn_valid(pfn))
7534 break;
7535 if (pfn == end_pfn)
7536 return;
7537 zone = page_zone(pfn_to_page(pfn));
7538 spin_lock_irqsave(&zone->lock, flags);
7539 pfn = start_pfn;
7540 while (pfn < end_pfn) {
7541 if (!pfn_valid(pfn)) {
7542 pfn++;
7543 continue;
7544 }
7545 page = pfn_to_page(pfn);
b023f468
WC
7546 /*
7547 * The HWPoisoned page may be not in buddy system, and
7548 * page_count() is not 0.
7549 */
7550 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7551 pfn++;
7552 SetPageReserved(page);
7553 continue;
7554 }
7555
0c0e6195
KH
7556 BUG_ON(page_count(page));
7557 BUG_ON(!PageBuddy(page));
7558 order = page_order(page);
7559#ifdef CONFIG_DEBUG_VM
1170532b
JP
7560 pr_info("remove from free list %lx %d %lx\n",
7561 pfn, 1 << order, end_pfn);
0c0e6195
KH
7562#endif
7563 list_del(&page->lru);
7564 rmv_page_order(page);
7565 zone->free_area[order].nr_free--;
0c0e6195
KH
7566 for (i = 0; i < (1 << order); i++)
7567 SetPageReserved((page+i));
7568 pfn += (1 << order);
7569 }
7570 spin_unlock_irqrestore(&zone->lock, flags);
7571}
7572#endif
8d22ba1b 7573
8d22ba1b
WF
7574bool is_free_buddy_page(struct page *page)
7575{
7576 struct zone *zone = page_zone(page);
7577 unsigned long pfn = page_to_pfn(page);
7578 unsigned long flags;
7aeb09f9 7579 unsigned int order;
8d22ba1b
WF
7580
7581 spin_lock_irqsave(&zone->lock, flags);
7582 for (order = 0; order < MAX_ORDER; order++) {
7583 struct page *page_head = page - (pfn & ((1 << order) - 1));
7584
7585 if (PageBuddy(page_head) && page_order(page_head) >= order)
7586 break;
7587 }
7588 spin_unlock_irqrestore(&zone->lock, flags);
7589
7590 return order < MAX_ORDER;
7591}
This page took 1.876182 seconds and 5 git commands to generate.