mm, vmscan: release/reacquire lru_lock on pgdat change
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
e30825f1
JK
618 _debug_guardpage_enabled = true;
619}
620
621struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624};
c0a32fc5
SG
625
626static int __init debug_guardpage_minorder_setup(char *buf)
627{
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 631 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
1170532b 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
636 return 0;
637}
638__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
2847cf95
JK
640static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
c0a32fc5 642{
e30825f1
JK
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
f86e4271
YS
649 if (unlikely(!page_ext))
650 return;
651
e30825f1
JK
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
2847cf95
JK
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
658}
659
2847cf95
JK
660static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
c0a32fc5 662{
e30825f1
JK
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
f86e4271
YS
669 if (unlikely(!page_ext))
670 return;
671
e30825f1
JK
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
677}
678#else
e30825f1 679struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
680static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
c0a32fc5
SG
684#endif
685
7aeb09f9 686static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 687{
4c21e2f2 688 set_page_private(page, order);
676165a8 689 __SetPageBuddy(page);
1da177e4
LT
690}
691
692static inline void rmv_page_order(struct page *page)
693{
676165a8 694 __ClearPageBuddy(page);
4c21e2f2 695 set_page_private(page, 0);
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
13e7444b 701 * (a) the buddy is not in a hole &&
676165a8 702 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
676165a8 705 *
cf6fe945
WSH
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
1da177e4 710 *
676165a8 711 * For recording page's order, we use page_private(page).
1da177e4 712 */
cb2b95e1 713static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 714 unsigned int order)
1da177e4 715{
14e07298 716 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 717 return 0;
13e7444b 718
c0a32fc5 719 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
4c5018ce
WY
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
c0a32fc5
SG
725 return 1;
726 }
727
cb2b95e1 728 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
6aa3001b 739 return 1;
676165a8 740 }
6aa3001b 741 return 0;
1da177e4
LT
742}
743
744/*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
1da177e4 760 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
1da177e4 763 * If a block is freed, and its buddy is also free, then this
5f63b720 764 * triggers coalescing into a block of larger size.
1da177e4 765 *
6d49e352 766 * -- nyc
1da177e4
LT
767 */
768
48db57f8 769static inline void __free_one_page(struct page *page,
dc4b0caf 770 unsigned long pfn,
ed0ae21d
MG
771 struct zone *zone, unsigned int order,
772 int migratetype)
1da177e4
LT
773{
774 unsigned long page_idx;
6dda9d55 775 unsigned long combined_idx;
43506fad 776 unsigned long uninitialized_var(buddy_idx);
6dda9d55 777 struct page *buddy;
d9dddbf5
VB
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 781
d29bb978 782 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 784
ed0ae21d 785 VM_BUG_ON(migratetype == -1);
d9dddbf5 786 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 788
d9dddbf5 789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 790
309381fe
SL
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 793
d9dddbf5 794continue_merging:
3c605096 795 while (order < max_order - 1) {
43506fad
KC
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
cb2b95e1 798 if (!page_is_buddy(page, buddy, order))
d9dddbf5 799 goto done_merging;
c0a32fc5
SG
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
2847cf95 805 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
43506fad 811 combined_idx = buddy_idx & page_idx;
1da177e4
LT
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
d9dddbf5
VB
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841done_merging:
1da177e4 842 set_page_order(page, order);
6dda9d55
CZ
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
b7f50cfa 852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 853 struct page *higher_page, *higher_buddy;
43506fad
KC
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 857 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866out:
1da177e4
LT
867 zone->free_area[order].nr_free++;
868}
869
7bfec6f4
MG
870/*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877{
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883#ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885#endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890}
891
bb552ac6 892static void free_pages_check_bad(struct page *page)
1da177e4 893{
7bfec6f4
MG
894 const char *bad_reason;
895 unsigned long bad_flags;
896
7bfec6f4
MG
897 bad_reason = NULL;
898 bad_flags = 0;
f0b791a3 899
53f9263b 900 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
fe896d18 904 if (unlikely(page_ref_count(page) != 0))
0139aa7b 905 bad_reason = "nonzero _refcount";
f0b791a3
DH
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
9edad6ea
JW
910#ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913#endif
7bfec6f4 914 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
915}
916
917static inline int free_pages_check(struct page *page)
918{
da838d4f 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 920 return 0;
bb552ac6
MG
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
7bfec6f4 924 return 1;
1da177e4
LT
925}
926
4db7548c
MG
927static int free_tail_pages_check(struct page *head_page, struct page *page)
928{
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975}
976
e2769dbd
MG
977static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
4db7548c 979{
e2769dbd 980 int bad = 0;
4db7548c 981
4db7548c
MG
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
e2769dbd
MG
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
e2769dbd
MG
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 996
9a73f61b
KS
997 if (compound)
998 ClearPageDoubleMap(page);
e2769dbd
MG
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
bda807d4 1009 if (PageMappingFlags(page))
4db7548c 1010 page->mapping = NULL;
4949148a
VD
1011 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1012 memcg_kmem_uncharge(page, order);
1013 __ClearPageKmemcg(page);
1014 }
e2769dbd
MG
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
4db7548c 1019
e2769dbd
MG
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
4db7548c
MG
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 debug_check_no_obj_freed(page_address(page),
e2769dbd 1028 PAGE_SIZE << order);
4db7548c 1029 }
e2769dbd
MG
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
29b52de1 1033 kasan_free_pages(page, order);
4db7548c 1034
4db7548c
MG
1035 return true;
1036}
1037
e2769dbd
MG
1038#ifdef CONFIG_DEBUG_VM
1039static inline bool free_pcp_prepare(struct page *page)
1040{
1041 return free_pages_prepare(page, 0, true);
1042}
1043
1044static inline bool bulkfree_pcp_prepare(struct page *page)
1045{
1046 return false;
1047}
1048#else
1049static bool free_pcp_prepare(struct page *page)
1050{
1051 return free_pages_prepare(page, 0, false);
1052}
1053
4db7548c
MG
1054static bool bulkfree_pcp_prepare(struct page *page)
1055{
1056 return free_pages_check(page);
1057}
1058#endif /* CONFIG_DEBUG_VM */
1059
1da177e4 1060/*
5f8dcc21 1061 * Frees a number of pages from the PCP lists
1da177e4 1062 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1063 * count is the number of pages to free.
1da177e4
LT
1064 *
1065 * If the zone was previously in an "all pages pinned" state then look to
1066 * see if this freeing clears that state.
1067 *
1068 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1069 * pinned" detection logic.
1070 */
5f8dcc21
MG
1071static void free_pcppages_bulk(struct zone *zone, int count,
1072 struct per_cpu_pages *pcp)
1da177e4 1073{
5f8dcc21 1074 int migratetype = 0;
a6f9edd6 1075 int batch_free = 0;
0d5d823a 1076 unsigned long nr_scanned;
3777999d 1077 bool isolated_pageblocks;
5f8dcc21 1078
c54ad30c 1079 spin_lock(&zone->lock);
3777999d 1080 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1081 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1082 if (nr_scanned)
599d0c95 1083 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1084
e5b31ac2 1085 while (count) {
48db57f8 1086 struct page *page;
5f8dcc21
MG
1087 struct list_head *list;
1088
1089 /*
a6f9edd6
MG
1090 * Remove pages from lists in a round-robin fashion. A
1091 * batch_free count is maintained that is incremented when an
1092 * empty list is encountered. This is so more pages are freed
1093 * off fuller lists instead of spinning excessively around empty
1094 * lists
5f8dcc21
MG
1095 */
1096 do {
a6f9edd6 1097 batch_free++;
5f8dcc21
MG
1098 if (++migratetype == MIGRATE_PCPTYPES)
1099 migratetype = 0;
1100 list = &pcp->lists[migratetype];
1101 } while (list_empty(list));
48db57f8 1102
1d16871d
NK
1103 /* This is the only non-empty list. Free them all. */
1104 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1105 batch_free = count;
1d16871d 1106
a6f9edd6 1107 do {
770c8aaa
BZ
1108 int mt; /* migratetype of the to-be-freed page */
1109
a16601c5 1110 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1111 /* must delete as __free_one_page list manipulates */
1112 list_del(&page->lru);
aa016d14 1113
bb14c2c7 1114 mt = get_pcppage_migratetype(page);
aa016d14
VB
1115 /* MIGRATE_ISOLATE page should not go to pcplists */
1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 /* Pageblock could have been isolated meanwhile */
3777999d 1118 if (unlikely(isolated_pageblocks))
51bb1a40 1119 mt = get_pageblock_migratetype(page);
51bb1a40 1120
4db7548c
MG
1121 if (bulkfree_pcp_prepare(page))
1122 continue;
1123
dc4b0caf 1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1125 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1126 } while (--count && --batch_free && !list_empty(list));
1da177e4 1127 }
c54ad30c 1128 spin_unlock(&zone->lock);
1da177e4
LT
1129}
1130
dc4b0caf
MG
1131static void free_one_page(struct zone *zone,
1132 struct page *page, unsigned long pfn,
7aeb09f9 1133 unsigned int order,
ed0ae21d 1134 int migratetype)
1da177e4 1135{
0d5d823a 1136 unsigned long nr_scanned;
006d22d9 1137 spin_lock(&zone->lock);
599d0c95 1138 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1139 if (nr_scanned)
599d0c95 1140 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1141
ad53f92e
JK
1142 if (unlikely(has_isolate_pageblock(zone) ||
1143 is_migrate_isolate(migratetype))) {
1144 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1145 }
dc4b0caf 1146 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1147 spin_unlock(&zone->lock);
48db57f8
NP
1148}
1149
1e8ce83c
RH
1150static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1151 unsigned long zone, int nid)
1152{
1e8ce83c 1153 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1154 init_page_count(page);
1155 page_mapcount_reset(page);
1156 page_cpupid_reset_last(page);
1e8ce83c 1157
1e8ce83c
RH
1158 INIT_LIST_HEAD(&page->lru);
1159#ifdef WANT_PAGE_VIRTUAL
1160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1161 if (!is_highmem_idx(zone))
1162 set_page_address(page, __va(pfn << PAGE_SHIFT));
1163#endif
1164}
1165
1166static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1167 int nid)
1168{
1169 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1170}
1171
7e18adb4
MG
1172#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1173static void init_reserved_page(unsigned long pfn)
1174{
1175 pg_data_t *pgdat;
1176 int nid, zid;
1177
1178 if (!early_page_uninitialised(pfn))
1179 return;
1180
1181 nid = early_pfn_to_nid(pfn);
1182 pgdat = NODE_DATA(nid);
1183
1184 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1185 struct zone *zone = &pgdat->node_zones[zid];
1186
1187 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1188 break;
1189 }
1190 __init_single_pfn(pfn, zid, nid);
1191}
1192#else
1193static inline void init_reserved_page(unsigned long pfn)
1194{
1195}
1196#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1197
92923ca3
NZ
1198/*
1199 * Initialised pages do not have PageReserved set. This function is
1200 * called for each range allocated by the bootmem allocator and
1201 * marks the pages PageReserved. The remaining valid pages are later
1202 * sent to the buddy page allocator.
1203 */
4b50bcc7 1204void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1205{
1206 unsigned long start_pfn = PFN_DOWN(start);
1207 unsigned long end_pfn = PFN_UP(end);
1208
7e18adb4
MG
1209 for (; start_pfn < end_pfn; start_pfn++) {
1210 if (pfn_valid(start_pfn)) {
1211 struct page *page = pfn_to_page(start_pfn);
1212
1213 init_reserved_page(start_pfn);
1d798ca3
KS
1214
1215 /* Avoid false-positive PageTail() */
1216 INIT_LIST_HEAD(&page->lru);
1217
7e18adb4
MG
1218 SetPageReserved(page);
1219 }
1220 }
92923ca3
NZ
1221}
1222
ec95f53a
KM
1223static void __free_pages_ok(struct page *page, unsigned int order)
1224{
1225 unsigned long flags;
95e34412 1226 int migratetype;
dc4b0caf 1227 unsigned long pfn = page_to_pfn(page);
ec95f53a 1228
e2769dbd 1229 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1230 return;
1231
cfc47a28 1232 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1233 local_irq_save(flags);
f8891e5e 1234 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1235 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1236 local_irq_restore(flags);
1da177e4
LT
1237}
1238
949698a3 1239static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1240{
c3993076 1241 unsigned int nr_pages = 1 << order;
e2d0bd2b 1242 struct page *p = page;
c3993076 1243 unsigned int loop;
a226f6c8 1244
e2d0bd2b
YL
1245 prefetchw(p);
1246 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1247 prefetchw(p + 1);
c3993076
JW
1248 __ClearPageReserved(p);
1249 set_page_count(p, 0);
a226f6c8 1250 }
e2d0bd2b
YL
1251 __ClearPageReserved(p);
1252 set_page_count(p, 0);
c3993076 1253
e2d0bd2b 1254 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1255 set_page_refcounted(page);
1256 __free_pages(page, order);
a226f6c8
DH
1257}
1258
75a592a4
MG
1259#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1260 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1261
75a592a4
MG
1262static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1263
1264int __meminit early_pfn_to_nid(unsigned long pfn)
1265{
7ace9917 1266 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1267 int nid;
1268
7ace9917 1269 spin_lock(&early_pfn_lock);
75a592a4 1270 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1271 if (nid < 0)
e4568d38 1272 nid = first_online_node;
7ace9917
MG
1273 spin_unlock(&early_pfn_lock);
1274
1275 return nid;
75a592a4
MG
1276}
1277#endif
1278
1279#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1280static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1281 struct mminit_pfnnid_cache *state)
1282{
1283 int nid;
1284
1285 nid = __early_pfn_to_nid(pfn, state);
1286 if (nid >= 0 && nid != node)
1287 return false;
1288 return true;
1289}
1290
1291/* Only safe to use early in boot when initialisation is single-threaded */
1292static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1293{
1294 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1295}
1296
1297#else
1298
1299static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1300{
1301 return true;
1302}
1303static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
1305{
1306 return true;
1307}
1308#endif
1309
1310
0e1cc95b 1311void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1312 unsigned int order)
1313{
1314 if (early_page_uninitialised(pfn))
1315 return;
949698a3 1316 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1317}
1318
7cf91a98
JK
1319/*
1320 * Check that the whole (or subset of) a pageblock given by the interval of
1321 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1322 * with the migration of free compaction scanner. The scanners then need to
1323 * use only pfn_valid_within() check for arches that allow holes within
1324 * pageblocks.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 */
1336struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 unsigned long end_pfn, struct zone *zone)
1338{
1339 struct page *start_page;
1340 struct page *end_page;
1341
1342 /* end_pfn is one past the range we are checking */
1343 end_pfn--;
1344
1345 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1346 return NULL;
1347
1348 start_page = pfn_to_page(start_pfn);
1349
1350 if (page_zone(start_page) != zone)
1351 return NULL;
1352
1353 end_page = pfn_to_page(end_pfn);
1354
1355 /* This gives a shorter code than deriving page_zone(end_page) */
1356 if (page_zone_id(start_page) != page_zone_id(end_page))
1357 return NULL;
1358
1359 return start_page;
1360}
1361
1362void set_zone_contiguous(struct zone *zone)
1363{
1364 unsigned long block_start_pfn = zone->zone_start_pfn;
1365 unsigned long block_end_pfn;
1366
1367 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1368 for (; block_start_pfn < zone_end_pfn(zone);
1369 block_start_pfn = block_end_pfn,
1370 block_end_pfn += pageblock_nr_pages) {
1371
1372 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1373
1374 if (!__pageblock_pfn_to_page(block_start_pfn,
1375 block_end_pfn, zone))
1376 return;
1377 }
1378
1379 /* We confirm that there is no hole */
1380 zone->contiguous = true;
1381}
1382
1383void clear_zone_contiguous(struct zone *zone)
1384{
1385 zone->contiguous = false;
1386}
1387
7e18adb4 1388#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1389static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1390 unsigned long pfn, int nr_pages)
1391{
1392 int i;
1393
1394 if (!page)
1395 return;
1396
1397 /* Free a large naturally-aligned chunk if possible */
1398 if (nr_pages == MAX_ORDER_NR_PAGES &&
1399 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1400 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1401 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1402 return;
1403 }
1404
949698a3
LZ
1405 for (i = 0; i < nr_pages; i++, page++)
1406 __free_pages_boot_core(page, 0);
a4de83dd
MG
1407}
1408
d3cd131d
NS
1409/* Completion tracking for deferred_init_memmap() threads */
1410static atomic_t pgdat_init_n_undone __initdata;
1411static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1412
1413static inline void __init pgdat_init_report_one_done(void)
1414{
1415 if (atomic_dec_and_test(&pgdat_init_n_undone))
1416 complete(&pgdat_init_all_done_comp);
1417}
0e1cc95b 1418
7e18adb4 1419/* Initialise remaining memory on a node */
0e1cc95b 1420static int __init deferred_init_memmap(void *data)
7e18adb4 1421{
0e1cc95b
MG
1422 pg_data_t *pgdat = data;
1423 int nid = pgdat->node_id;
7e18adb4
MG
1424 struct mminit_pfnnid_cache nid_init_state = { };
1425 unsigned long start = jiffies;
1426 unsigned long nr_pages = 0;
1427 unsigned long walk_start, walk_end;
1428 int i, zid;
1429 struct zone *zone;
7e18adb4 1430 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1431 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1432
0e1cc95b 1433 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1434 pgdat_init_report_one_done();
0e1cc95b
MG
1435 return 0;
1436 }
1437
1438 /* Bind memory initialisation thread to a local node if possible */
1439 if (!cpumask_empty(cpumask))
1440 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1441
1442 /* Sanity check boundaries */
1443 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1444 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1445 pgdat->first_deferred_pfn = ULONG_MAX;
1446
1447 /* Only the highest zone is deferred so find it */
1448 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1449 zone = pgdat->node_zones + zid;
1450 if (first_init_pfn < zone_end_pfn(zone))
1451 break;
1452 }
1453
1454 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1455 unsigned long pfn, end_pfn;
54608c3f 1456 struct page *page = NULL;
a4de83dd
MG
1457 struct page *free_base_page = NULL;
1458 unsigned long free_base_pfn = 0;
1459 int nr_to_free = 0;
7e18adb4
MG
1460
1461 end_pfn = min(walk_end, zone_end_pfn(zone));
1462 pfn = first_init_pfn;
1463 if (pfn < walk_start)
1464 pfn = walk_start;
1465 if (pfn < zone->zone_start_pfn)
1466 pfn = zone->zone_start_pfn;
1467
1468 for (; pfn < end_pfn; pfn++) {
54608c3f 1469 if (!pfn_valid_within(pfn))
a4de83dd 1470 goto free_range;
7e18adb4 1471
54608c3f
MG
1472 /*
1473 * Ensure pfn_valid is checked every
1474 * MAX_ORDER_NR_PAGES for memory holes
1475 */
1476 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1477 if (!pfn_valid(pfn)) {
1478 page = NULL;
a4de83dd 1479 goto free_range;
54608c3f
MG
1480 }
1481 }
1482
1483 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487
1488 /* Minimise pfn page lookups and scheduler checks */
1489 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1490 page++;
1491 } else {
a4de83dd
MG
1492 nr_pages += nr_to_free;
1493 deferred_free_range(free_base_page,
1494 free_base_pfn, nr_to_free);
1495 free_base_page = NULL;
1496 free_base_pfn = nr_to_free = 0;
1497
54608c3f
MG
1498 page = pfn_to_page(pfn);
1499 cond_resched();
1500 }
7e18adb4
MG
1501
1502 if (page->flags) {
1503 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1504 goto free_range;
7e18adb4
MG
1505 }
1506
1507 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1508 if (!free_base_page) {
1509 free_base_page = page;
1510 free_base_pfn = pfn;
1511 nr_to_free = 0;
1512 }
1513 nr_to_free++;
1514
1515 /* Where possible, batch up pages for a single free */
1516 continue;
1517free_range:
1518 /* Free the current block of pages to allocator */
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page, free_base_pfn,
1521 nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
7e18adb4 1524 }
a4de83dd 1525
7e18adb4
MG
1526 first_init_pfn = max(end_pfn, first_init_pfn);
1527 }
1528
1529 /* Sanity check that the next zone really is unpopulated */
1530 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1531
0e1cc95b 1532 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1533 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1534
1535 pgdat_init_report_one_done();
0e1cc95b
MG
1536 return 0;
1537}
7cf91a98 1538#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1539
1540void __init page_alloc_init_late(void)
1541{
7cf91a98
JK
1542 struct zone *zone;
1543
1544#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1545 int nid;
1546
d3cd131d
NS
1547 /* There will be num_node_state(N_MEMORY) threads */
1548 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1549 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1550 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1551 }
1552
1553 /* Block until all are initialised */
d3cd131d 1554 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1555
1556 /* Reinit limits that are based on free pages after the kernel is up */
1557 files_maxfiles_init();
7cf91a98
JK
1558#endif
1559
1560 for_each_populated_zone(zone)
1561 set_zone_contiguous(zone);
7e18adb4 1562}
7e18adb4 1563
47118af0 1564#ifdef CONFIG_CMA
9cf510a5 1565/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1566void __init init_cma_reserved_pageblock(struct page *page)
1567{
1568 unsigned i = pageblock_nr_pages;
1569 struct page *p = page;
1570
1571 do {
1572 __ClearPageReserved(p);
1573 set_page_count(p, 0);
1574 } while (++p, --i);
1575
47118af0 1576 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1577
1578 if (pageblock_order >= MAX_ORDER) {
1579 i = pageblock_nr_pages;
1580 p = page;
1581 do {
1582 set_page_refcounted(p);
1583 __free_pages(p, MAX_ORDER - 1);
1584 p += MAX_ORDER_NR_PAGES;
1585 } while (i -= MAX_ORDER_NR_PAGES);
1586 } else {
1587 set_page_refcounted(page);
1588 __free_pages(page, pageblock_order);
1589 }
1590
3dcc0571 1591 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1592}
1593#endif
1da177e4
LT
1594
1595/*
1596 * The order of subdivision here is critical for the IO subsystem.
1597 * Please do not alter this order without good reasons and regression
1598 * testing. Specifically, as large blocks of memory are subdivided,
1599 * the order in which smaller blocks are delivered depends on the order
1600 * they're subdivided in this function. This is the primary factor
1601 * influencing the order in which pages are delivered to the IO
1602 * subsystem according to empirical testing, and this is also justified
1603 * by considering the behavior of a buddy system containing a single
1604 * large block of memory acted on by a series of small allocations.
1605 * This behavior is a critical factor in sglist merging's success.
1606 *
6d49e352 1607 * -- nyc
1da177e4 1608 */
085cc7d5 1609static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1610 int low, int high, struct free_area *area,
1611 int migratetype)
1da177e4
LT
1612{
1613 unsigned long size = 1 << high;
1614
1615 while (high > low) {
1616 area--;
1617 high--;
1618 size >>= 1;
309381fe 1619 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1620
2847cf95 1621 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1622 debug_guardpage_enabled() &&
2847cf95 1623 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1624 /*
1625 * Mark as guard pages (or page), that will allow to
1626 * merge back to allocator when buddy will be freed.
1627 * Corresponding page table entries will not be touched,
1628 * pages will stay not present in virtual address space
1629 */
2847cf95 1630 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1631 continue;
1632 }
b2a0ac88 1633 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1634 area->nr_free++;
1635 set_page_order(&page[size], high);
1636 }
1da177e4
LT
1637}
1638
4e611801 1639static void check_new_page_bad(struct page *page)
1da177e4 1640{
4e611801
VB
1641 const char *bad_reason = NULL;
1642 unsigned long bad_flags = 0;
7bfec6f4 1643
53f9263b 1644 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1645 bad_reason = "nonzero mapcount";
1646 if (unlikely(page->mapping != NULL))
1647 bad_reason = "non-NULL mapping";
fe896d18 1648 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1649 bad_reason = "nonzero _count";
f4c18e6f
NH
1650 if (unlikely(page->flags & __PG_HWPOISON)) {
1651 bad_reason = "HWPoisoned (hardware-corrupted)";
1652 bad_flags = __PG_HWPOISON;
e570f56c
NH
1653 /* Don't complain about hwpoisoned pages */
1654 page_mapcount_reset(page); /* remove PageBuddy */
1655 return;
f4c18e6f 1656 }
f0b791a3
DH
1657 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1658 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1659 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1660 }
9edad6ea
JW
1661#ifdef CONFIG_MEMCG
1662 if (unlikely(page->mem_cgroup))
1663 bad_reason = "page still charged to cgroup";
1664#endif
4e611801
VB
1665 bad_page(page, bad_reason, bad_flags);
1666}
1667
1668/*
1669 * This page is about to be returned from the page allocator
1670 */
1671static inline int check_new_page(struct page *page)
1672{
1673 if (likely(page_expected_state(page,
1674 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1675 return 0;
1676
1677 check_new_page_bad(page);
1678 return 1;
2a7684a2
WF
1679}
1680
1414c7f4
LA
1681static inline bool free_pages_prezeroed(bool poisoned)
1682{
1683 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1684 page_poisoning_enabled() && poisoned;
1685}
1686
479f854a
MG
1687#ifdef CONFIG_DEBUG_VM
1688static bool check_pcp_refill(struct page *page)
1689{
1690 return false;
1691}
1692
1693static bool check_new_pcp(struct page *page)
1694{
1695 return check_new_page(page);
1696}
1697#else
1698static bool check_pcp_refill(struct page *page)
1699{
1700 return check_new_page(page);
1701}
1702static bool check_new_pcp(struct page *page)
1703{
1704 return false;
1705}
1706#endif /* CONFIG_DEBUG_VM */
1707
1708static bool check_new_pages(struct page *page, unsigned int order)
1709{
1710 int i;
1711 for (i = 0; i < (1 << order); i++) {
1712 struct page *p = page + i;
1713
1714 if (unlikely(check_new_page(p)))
1715 return true;
1716 }
1717
1718 return false;
1719}
1720
46f24fd8
JK
1721inline void post_alloc_hook(struct page *page, unsigned int order,
1722 gfp_t gfp_flags)
1723{
1724 set_page_private(page, 0);
1725 set_page_refcounted(page);
1726
1727 arch_alloc_page(page, order);
1728 kernel_map_pages(page, 1 << order, 1);
1729 kernel_poison_pages(page, 1 << order, 1);
1730 kasan_alloc_pages(page, order);
1731 set_page_owner(page, order, gfp_flags);
1732}
1733
479f854a 1734static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1735 unsigned int alloc_flags)
2a7684a2
WF
1736{
1737 int i;
1414c7f4 1738 bool poisoned = true;
2a7684a2
WF
1739
1740 for (i = 0; i < (1 << order); i++) {
1741 struct page *p = page + i;
1414c7f4
LA
1742 if (poisoned)
1743 poisoned &= page_is_poisoned(p);
2a7684a2 1744 }
689bcebf 1745
46f24fd8 1746 post_alloc_hook(page, order, gfp_flags);
17cf4406 1747
1414c7f4 1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
17cf4406
NP
1751
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1754
75379191 1755 /*
2f064f34 1756 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1757 * allocate the page. The expectation is that the caller is taking
1758 * steps that will free more memory. The caller should avoid the page
1759 * being used for !PFMEMALLOC purposes.
1760 */
2f064f34
MH
1761 if (alloc_flags & ALLOC_NO_WATERMARKS)
1762 set_page_pfmemalloc(page);
1763 else
1764 clear_page_pfmemalloc(page);
1da177e4
LT
1765}
1766
56fd56b8
MG
1767/*
1768 * Go through the free lists for the given migratetype and remove
1769 * the smallest available page from the freelists
1770 */
728ec980
MG
1771static inline
1772struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1773 int migratetype)
1774{
1775 unsigned int current_order;
b8af2941 1776 struct free_area *area;
56fd56b8
MG
1777 struct page *page;
1778
1779 /* Find a page of the appropriate size in the preferred list */
1780 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1781 area = &(zone->free_area[current_order]);
a16601c5 1782 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1783 struct page, lru);
a16601c5
GT
1784 if (!page)
1785 continue;
56fd56b8
MG
1786 list_del(&page->lru);
1787 rmv_page_order(page);
1788 area->nr_free--;
56fd56b8 1789 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1790 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1791 return page;
1792 }
1793
1794 return NULL;
1795}
1796
1797
b2a0ac88
MG
1798/*
1799 * This array describes the order lists are fallen back to when
1800 * the free lists for the desirable migrate type are depleted
1801 */
47118af0 1802static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1803 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1806#ifdef CONFIG_CMA
974a786e 1807 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1808#endif
194159fb 1809#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1810 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1811#endif
b2a0ac88
MG
1812};
1813
dc67647b
JK
1814#ifdef CONFIG_CMA
1815static struct page *__rmqueue_cma_fallback(struct zone *zone,
1816 unsigned int order)
1817{
1818 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819}
1820#else
1821static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order) { return NULL; }
1823#endif
1824
c361be55
MG
1825/*
1826 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1827 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1828 * boundary. If alignment is required, use move_freepages_block()
1829 */
435b405c 1830int move_freepages(struct zone *zone,
b69a7288
AB
1831 struct page *start_page, struct page *end_page,
1832 int migratetype)
c361be55
MG
1833{
1834 struct page *page;
d00181b9 1835 unsigned int order;
d100313f 1836 int pages_moved = 0;
c361be55
MG
1837
1838#ifndef CONFIG_HOLES_IN_ZONE
1839 /*
1840 * page_zone is not safe to call in this context when
1841 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1842 * anyway as we check zone boundaries in move_freepages_block().
1843 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1844 * grouping pages by mobility
c361be55 1845 */
97ee4ba7 1846 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1847#endif
1848
1849 for (page = start_page; page <= end_page;) {
344c790e 1850 /* Make sure we are not inadvertently changing nodes */
309381fe 1851 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1852
c361be55
MG
1853 if (!pfn_valid_within(page_to_pfn(page))) {
1854 page++;
1855 continue;
1856 }
1857
1858 if (!PageBuddy(page)) {
1859 page++;
1860 continue;
1861 }
1862
1863 order = page_order(page);
84be48d8
KS
1864 list_move(&page->lru,
1865 &zone->free_area[order].free_list[migratetype]);
c361be55 1866 page += 1 << order;
d100313f 1867 pages_moved += 1 << order;
c361be55
MG
1868 }
1869
d100313f 1870 return pages_moved;
c361be55
MG
1871}
1872
ee6f509c 1873int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1874 int migratetype)
c361be55
MG
1875{
1876 unsigned long start_pfn, end_pfn;
1877 struct page *start_page, *end_page;
1878
1879 start_pfn = page_to_pfn(page);
d9c23400 1880 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1881 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1882 end_page = start_page + pageblock_nr_pages - 1;
1883 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1884
1885 /* Do not cross zone boundaries */
108bcc96 1886 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1887 start_page = page;
108bcc96 1888 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1889 return 0;
1890
1891 return move_freepages(zone, start_page, end_page, migratetype);
1892}
1893
2f66a68f
MG
1894static void change_pageblock_range(struct page *pageblock_page,
1895 int start_order, int migratetype)
1896{
1897 int nr_pageblocks = 1 << (start_order - pageblock_order);
1898
1899 while (nr_pageblocks--) {
1900 set_pageblock_migratetype(pageblock_page, migratetype);
1901 pageblock_page += pageblock_nr_pages;
1902 }
1903}
1904
fef903ef 1905/*
9c0415eb
VB
1906 * When we are falling back to another migratetype during allocation, try to
1907 * steal extra free pages from the same pageblocks to satisfy further
1908 * allocations, instead of polluting multiple pageblocks.
1909 *
1910 * If we are stealing a relatively large buddy page, it is likely there will
1911 * be more free pages in the pageblock, so try to steal them all. For
1912 * reclaimable and unmovable allocations, we steal regardless of page size,
1913 * as fragmentation caused by those allocations polluting movable pageblocks
1914 * is worse than movable allocations stealing from unmovable and reclaimable
1915 * pageblocks.
fef903ef 1916 */
4eb7dce6
JK
1917static bool can_steal_fallback(unsigned int order, int start_mt)
1918{
1919 /*
1920 * Leaving this order check is intended, although there is
1921 * relaxed order check in next check. The reason is that
1922 * we can actually steal whole pageblock if this condition met,
1923 * but, below check doesn't guarantee it and that is just heuristic
1924 * so could be changed anytime.
1925 */
1926 if (order >= pageblock_order)
1927 return true;
1928
1929 if (order >= pageblock_order / 2 ||
1930 start_mt == MIGRATE_RECLAIMABLE ||
1931 start_mt == MIGRATE_UNMOVABLE ||
1932 page_group_by_mobility_disabled)
1933 return true;
1934
1935 return false;
1936}
1937
1938/*
1939 * This function implements actual steal behaviour. If order is large enough,
1940 * we can steal whole pageblock. If not, we first move freepages in this
1941 * pageblock and check whether half of pages are moved or not. If half of
1942 * pages are moved, we can change migratetype of pageblock and permanently
1943 * use it's pages as requested migratetype in the future.
1944 */
1945static void steal_suitable_fallback(struct zone *zone, struct page *page,
1946 int start_type)
fef903ef 1947{
d00181b9 1948 unsigned int current_order = page_order(page);
4eb7dce6 1949 int pages;
fef903ef 1950
fef903ef
SB
1951 /* Take ownership for orders >= pageblock_order */
1952 if (current_order >= pageblock_order) {
1953 change_pageblock_range(page, current_order, start_type);
3a1086fb 1954 return;
fef903ef
SB
1955 }
1956
4eb7dce6 1957 pages = move_freepages_block(zone, page, start_type);
fef903ef 1958
4eb7dce6
JK
1959 /* Claim the whole block if over half of it is free */
1960 if (pages >= (1 << (pageblock_order-1)) ||
1961 page_group_by_mobility_disabled)
1962 set_pageblock_migratetype(page, start_type);
1963}
1964
2149cdae
JK
1965/*
1966 * Check whether there is a suitable fallback freepage with requested order.
1967 * If only_stealable is true, this function returns fallback_mt only if
1968 * we can steal other freepages all together. This would help to reduce
1969 * fragmentation due to mixed migratetype pages in one pageblock.
1970 */
1971int find_suitable_fallback(struct free_area *area, unsigned int order,
1972 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1973{
1974 int i;
1975 int fallback_mt;
1976
1977 if (area->nr_free == 0)
1978 return -1;
1979
1980 *can_steal = false;
1981 for (i = 0;; i++) {
1982 fallback_mt = fallbacks[migratetype][i];
974a786e 1983 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1984 break;
1985
1986 if (list_empty(&area->free_list[fallback_mt]))
1987 continue;
fef903ef 1988
4eb7dce6
JK
1989 if (can_steal_fallback(order, migratetype))
1990 *can_steal = true;
1991
2149cdae
JK
1992 if (!only_stealable)
1993 return fallback_mt;
1994
1995 if (*can_steal)
1996 return fallback_mt;
fef903ef 1997 }
4eb7dce6
JK
1998
1999 return -1;
fef903ef
SB
2000}
2001
0aaa29a5
MG
2002/*
2003 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2004 * there are no empty page blocks that contain a page with a suitable order
2005 */
2006static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2007 unsigned int alloc_order)
2008{
2009 int mt;
2010 unsigned long max_managed, flags;
2011
2012 /*
2013 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2014 * Check is race-prone but harmless.
2015 */
2016 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2017 if (zone->nr_reserved_highatomic >= max_managed)
2018 return;
2019
2020 spin_lock_irqsave(&zone->lock, flags);
2021
2022 /* Recheck the nr_reserved_highatomic limit under the lock */
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 goto out_unlock;
2025
2026 /* Yoink! */
2027 mt = get_pageblock_migratetype(page);
2028 if (mt != MIGRATE_HIGHATOMIC &&
2029 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2030 zone->nr_reserved_highatomic += pageblock_nr_pages;
2031 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2032 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2033 }
2034
2035out_unlock:
2036 spin_unlock_irqrestore(&zone->lock, flags);
2037}
2038
2039/*
2040 * Used when an allocation is about to fail under memory pressure. This
2041 * potentially hurts the reliability of high-order allocations when under
2042 * intense memory pressure but failed atomic allocations should be easier
2043 * to recover from than an OOM.
2044 */
2045static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046{
2047 struct zonelist *zonelist = ac->zonelist;
2048 unsigned long flags;
2049 struct zoneref *z;
2050 struct zone *zone;
2051 struct page *page;
2052 int order;
2053
2054 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2055 ac->nodemask) {
2056 /* Preserve at least one pageblock */
2057 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2058 continue;
2059
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < MAX_ORDER; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063
a16601c5
GT
2064 page = list_first_entry_or_null(
2065 &area->free_list[MIGRATE_HIGHATOMIC],
2066 struct page, lru);
2067 if (!page)
0aaa29a5
MG
2068 continue;
2069
0aaa29a5
MG
2070 /*
2071 * It should never happen but changes to locking could
2072 * inadvertently allow a per-cpu drain to add pages
2073 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2074 * and watch for underflows.
2075 */
2076 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2077 zone->nr_reserved_highatomic);
2078
2079 /*
2080 * Convert to ac->migratetype and avoid the normal
2081 * pageblock stealing heuristics. Minimally, the caller
2082 * is doing the work and needs the pages. More
2083 * importantly, if the block was always converted to
2084 * MIGRATE_UNMOVABLE or another type then the number
2085 * of pageblocks that cannot be completely freed
2086 * may increase.
2087 */
2088 set_pageblock_migratetype(page, ac->migratetype);
2089 move_freepages_block(zone, page, ac->migratetype);
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091 return;
2092 }
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 }
2095}
2096
b2a0ac88 2097/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2098static inline struct page *
7aeb09f9 2099__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2100{
b8af2941 2101 struct free_area *area;
7aeb09f9 2102 unsigned int current_order;
b2a0ac88 2103 struct page *page;
4eb7dce6
JK
2104 int fallback_mt;
2105 bool can_steal;
b2a0ac88
MG
2106
2107 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2108 for (current_order = MAX_ORDER-1;
2109 current_order >= order && current_order <= MAX_ORDER-1;
2110 --current_order) {
4eb7dce6
JK
2111 area = &(zone->free_area[current_order]);
2112 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2113 start_migratetype, false, &can_steal);
4eb7dce6
JK
2114 if (fallback_mt == -1)
2115 continue;
b2a0ac88 2116
a16601c5 2117 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2118 struct page, lru);
2119 if (can_steal)
2120 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2121
4eb7dce6
JK
2122 /* Remove the page from the freelists */
2123 area->nr_free--;
2124 list_del(&page->lru);
2125 rmv_page_order(page);
3a1086fb 2126
4eb7dce6
JK
2127 expand(zone, page, order, current_order, area,
2128 start_migratetype);
2129 /*
bb14c2c7 2130 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2131 * migratetype depending on the decisions in
bb14c2c7
VB
2132 * find_suitable_fallback(). This is OK as long as it does not
2133 * differ for MIGRATE_CMA pageblocks. Those can be used as
2134 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2135 */
bb14c2c7 2136 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2137
4eb7dce6
JK
2138 trace_mm_page_alloc_extfrag(page, order, current_order,
2139 start_migratetype, fallback_mt);
e0fff1bd 2140
4eb7dce6 2141 return page;
b2a0ac88
MG
2142 }
2143
728ec980 2144 return NULL;
b2a0ac88
MG
2145}
2146
56fd56b8 2147/*
1da177e4
LT
2148 * Do the hard work of removing an element from the buddy allocator.
2149 * Call me with the zone->lock already held.
2150 */
b2a0ac88 2151static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2152 int migratetype)
1da177e4 2153{
1da177e4
LT
2154 struct page *page;
2155
56fd56b8 2156 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2157 if (unlikely(!page)) {
dc67647b
JK
2158 if (migratetype == MIGRATE_MOVABLE)
2159 page = __rmqueue_cma_fallback(zone, order);
2160
2161 if (!page)
2162 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2163 }
2164
0d3d062a 2165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2166 return page;
1da177e4
LT
2167}
2168
5f63b720 2169/*
1da177e4
LT
2170 * Obtain a specified number of elements from the buddy allocator, all under
2171 * a single hold of the lock, for efficiency. Add them to the supplied list.
2172 * Returns the number of new pages which were placed at *list.
2173 */
5f63b720 2174static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2175 unsigned long count, struct list_head *list,
b745bc85 2176 int migratetype, bool cold)
1da177e4 2177{
5bcc9f86 2178 int i;
5f63b720 2179
c54ad30c 2180 spin_lock(&zone->lock);
1da177e4 2181 for (i = 0; i < count; ++i) {
6ac0206b 2182 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2183 if (unlikely(page == NULL))
1da177e4 2184 break;
81eabcbe 2185
479f854a
MG
2186 if (unlikely(check_pcp_refill(page)))
2187 continue;
2188
81eabcbe
MG
2189 /*
2190 * Split buddy pages returned by expand() are received here
2191 * in physical page order. The page is added to the callers and
2192 * list and the list head then moves forward. From the callers
2193 * perspective, the linked list is ordered by page number in
2194 * some conditions. This is useful for IO devices that can
2195 * merge IO requests if the physical pages are ordered
2196 * properly.
2197 */
b745bc85 2198 if (likely(!cold))
e084b2d9
MG
2199 list_add(&page->lru, list);
2200 else
2201 list_add_tail(&page->lru, list);
81eabcbe 2202 list = &page->lru;
bb14c2c7 2203 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2205 -(1 << order));
1da177e4 2206 }
f2260e6b 2207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2208 spin_unlock(&zone->lock);
085cc7d5 2209 return i;
1da177e4
LT
2210}
2211
4ae7c039 2212#ifdef CONFIG_NUMA
8fce4d8e 2213/*
4037d452
CL
2214 * Called from the vmstat counter updater to drain pagesets of this
2215 * currently executing processor on remote nodes after they have
2216 * expired.
2217 *
879336c3
CL
2218 * Note that this function must be called with the thread pinned to
2219 * a single processor.
8fce4d8e 2220 */
4037d452 2221void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2222{
4ae7c039 2223 unsigned long flags;
7be12fc9 2224 int to_drain, batch;
4ae7c039 2225
4037d452 2226 local_irq_save(flags);
4db0c3c2 2227 batch = READ_ONCE(pcp->batch);
7be12fc9 2228 to_drain = min(pcp->count, batch);
2a13515c
KM
2229 if (to_drain > 0) {
2230 free_pcppages_bulk(zone, to_drain, pcp);
2231 pcp->count -= to_drain;
2232 }
4037d452 2233 local_irq_restore(flags);
4ae7c039
CL
2234}
2235#endif
2236
9f8f2172 2237/*
93481ff0 2238 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2239 *
2240 * The processor must either be the current processor and the
2241 * thread pinned to the current processor or a processor that
2242 * is not online.
2243 */
93481ff0 2244static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2245{
c54ad30c 2246 unsigned long flags;
93481ff0
VB
2247 struct per_cpu_pageset *pset;
2248 struct per_cpu_pages *pcp;
1da177e4 2249
93481ff0
VB
2250 local_irq_save(flags);
2251 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2252
93481ff0
VB
2253 pcp = &pset->pcp;
2254 if (pcp->count) {
2255 free_pcppages_bulk(zone, pcp->count, pcp);
2256 pcp->count = 0;
2257 }
2258 local_irq_restore(flags);
2259}
3dfa5721 2260
93481ff0
VB
2261/*
2262 * Drain pcplists of all zones on the indicated processor.
2263 *
2264 * The processor must either be the current processor and the
2265 * thread pinned to the current processor or a processor that
2266 * is not online.
2267 */
2268static void drain_pages(unsigned int cpu)
2269{
2270 struct zone *zone;
2271
2272 for_each_populated_zone(zone) {
2273 drain_pages_zone(cpu, zone);
1da177e4
LT
2274 }
2275}
1da177e4 2276
9f8f2172
CL
2277/*
2278 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2279 *
2280 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2281 * the single zone's pages.
9f8f2172 2282 */
93481ff0 2283void drain_local_pages(struct zone *zone)
9f8f2172 2284{
93481ff0
VB
2285 int cpu = smp_processor_id();
2286
2287 if (zone)
2288 drain_pages_zone(cpu, zone);
2289 else
2290 drain_pages(cpu);
9f8f2172
CL
2291}
2292
2293/*
74046494
GBY
2294 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 *
93481ff0
VB
2296 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 *
74046494
GBY
2298 * Note that this code is protected against sending an IPI to an offline
2299 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2300 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2301 * nothing keeps CPUs from showing up after we populated the cpumask and
2302 * before the call to on_each_cpu_mask().
9f8f2172 2303 */
93481ff0 2304void drain_all_pages(struct zone *zone)
9f8f2172 2305{
74046494 2306 int cpu;
74046494
GBY
2307
2308 /*
2309 * Allocate in the BSS so we wont require allocation in
2310 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 */
2312 static cpumask_t cpus_with_pcps;
2313
2314 /*
2315 * We don't care about racing with CPU hotplug event
2316 * as offline notification will cause the notified
2317 * cpu to drain that CPU pcps and on_each_cpu_mask
2318 * disables preemption as part of its processing
2319 */
2320 for_each_online_cpu(cpu) {
93481ff0
VB
2321 struct per_cpu_pageset *pcp;
2322 struct zone *z;
74046494 2323 bool has_pcps = false;
93481ff0
VB
2324
2325 if (zone) {
74046494 2326 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2327 if (pcp->pcp.count)
74046494 2328 has_pcps = true;
93481ff0
VB
2329 } else {
2330 for_each_populated_zone(z) {
2331 pcp = per_cpu_ptr(z->pageset, cpu);
2332 if (pcp->pcp.count) {
2333 has_pcps = true;
2334 break;
2335 }
74046494
GBY
2336 }
2337 }
93481ff0 2338
74046494
GBY
2339 if (has_pcps)
2340 cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 else
2342 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 }
93481ff0
VB
2344 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2345 zone, 1);
9f8f2172
CL
2346}
2347
296699de 2348#ifdef CONFIG_HIBERNATION
1da177e4
LT
2349
2350void mark_free_pages(struct zone *zone)
2351{
f623f0db
RW
2352 unsigned long pfn, max_zone_pfn;
2353 unsigned long flags;
7aeb09f9 2354 unsigned int order, t;
86760a2c 2355 struct page *page;
1da177e4 2356
8080fc03 2357 if (zone_is_empty(zone))
1da177e4
LT
2358 return;
2359
2360 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2361
108bcc96 2362 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2363 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2364 if (pfn_valid(pfn)) {
86760a2c 2365 page = pfn_to_page(pfn);
ba6b0979
JK
2366
2367 if (page_zone(page) != zone)
2368 continue;
2369
7be98234
RW
2370 if (!swsusp_page_is_forbidden(page))
2371 swsusp_unset_page_free(page);
f623f0db 2372 }
1da177e4 2373
b2a0ac88 2374 for_each_migratetype_order(order, t) {
86760a2c
GT
2375 list_for_each_entry(page,
2376 &zone->free_area[order].free_list[t], lru) {
f623f0db 2377 unsigned long i;
1da177e4 2378
86760a2c 2379 pfn = page_to_pfn(page);
f623f0db 2380 for (i = 0; i < (1UL << order); i++)
7be98234 2381 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2382 }
b2a0ac88 2383 }
1da177e4
LT
2384 spin_unlock_irqrestore(&zone->lock, flags);
2385}
e2c55dc8 2386#endif /* CONFIG_PM */
1da177e4 2387
1da177e4
LT
2388/*
2389 * Free a 0-order page
b745bc85 2390 * cold == true ? free a cold page : free a hot page
1da177e4 2391 */
b745bc85 2392void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2393{
2394 struct zone *zone = page_zone(page);
2395 struct per_cpu_pages *pcp;
2396 unsigned long flags;
dc4b0caf 2397 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2398 int migratetype;
1da177e4 2399
4db7548c 2400 if (!free_pcp_prepare(page))
689bcebf
HD
2401 return;
2402
dc4b0caf 2403 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2404 set_pcppage_migratetype(page, migratetype);
1da177e4 2405 local_irq_save(flags);
f8891e5e 2406 __count_vm_event(PGFREE);
da456f14 2407
5f8dcc21
MG
2408 /*
2409 * We only track unmovable, reclaimable and movable on pcp lists.
2410 * Free ISOLATE pages back to the allocator because they are being
2411 * offlined but treat RESERVE as movable pages so we can get those
2412 * areas back if necessary. Otherwise, we may have to free
2413 * excessively into the page allocator
2414 */
2415 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2416 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2417 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2418 goto out;
2419 }
2420 migratetype = MIGRATE_MOVABLE;
2421 }
2422
99dcc3e5 2423 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2424 if (!cold)
5f8dcc21 2425 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2426 else
2427 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2428 pcp->count++;
48db57f8 2429 if (pcp->count >= pcp->high) {
4db0c3c2 2430 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2431 free_pcppages_bulk(zone, batch, pcp);
2432 pcp->count -= batch;
48db57f8 2433 }
5f8dcc21
MG
2434
2435out:
1da177e4 2436 local_irq_restore(flags);
1da177e4
LT
2437}
2438
cc59850e
KK
2439/*
2440 * Free a list of 0-order pages
2441 */
b745bc85 2442void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2443{
2444 struct page *page, *next;
2445
2446 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2447 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2448 free_hot_cold_page(page, cold);
2449 }
2450}
2451
8dfcc9ba
NP
2452/*
2453 * split_page takes a non-compound higher-order page, and splits it into
2454 * n (1<<order) sub-pages: page[0..n]
2455 * Each sub-page must be freed individually.
2456 *
2457 * Note: this is probably too low level an operation for use in drivers.
2458 * Please consult with lkml before using this in your driver.
2459 */
2460void split_page(struct page *page, unsigned int order)
2461{
2462 int i;
2463
309381fe
SL
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2466
2467#ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474#endif
2475
a9627bc5 2476 for (i = 1; i < (1 << order); i++)
7835e98b 2477 set_page_refcounted(page + i);
a9627bc5 2478 split_page_owner(page, order);
8dfcc9ba 2479}
5853ff23 2480EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2481
3c605096 2482int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2483{
748446bb
MG
2484 unsigned long watermark;
2485 struct zone *zone;
2139cbe6 2486 int mt;
748446bb
MG
2487
2488 BUG_ON(!PageBuddy(page));
2489
2490 zone = page_zone(page);
2e30abd1 2491 mt = get_pageblock_migratetype(page);
748446bb 2492
194159fb 2493 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2494 /* Obey watermarks as if the page was being allocated */
2495 watermark = low_wmark_pages(zone) + (1 << order);
2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 return 0;
2498
8fb74b9f 2499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2500 }
748446bb
MG
2501
2502 /* Remove page from free list */
2503 list_del(&page->lru);
2504 zone->free_area[order].nr_free--;
2505 rmv_page_order(page);
2139cbe6 2506
400bc7fd 2507 /*
2508 * Set the pageblock if the isolated page is at least half of a
2509 * pageblock
2510 */
748446bb
MG
2511 if (order >= pageblock_order - 1) {
2512 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2513 for (; page < endpage; page += pageblock_nr_pages) {
2514 int mt = get_pageblock_migratetype(page);
194159fb 2515 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2516 set_pageblock_migratetype(page,
2517 MIGRATE_MOVABLE);
2518 }
748446bb
MG
2519 }
2520
f3a14ced 2521
8fb74b9f 2522 return 1UL << order;
1fb3f8ca
MG
2523}
2524
060e7417
MG
2525/*
2526 * Update NUMA hit/miss statistics
2527 *
2528 * Must be called with interrupts disabled.
2529 *
2530 * When __GFP_OTHER_NODE is set assume the node of the preferred
2531 * zone is the local node. This is useful for daemons who allocate
2532 * memory on behalf of other processes.
2533 */
2534static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2535 gfp_t flags)
2536{
2537#ifdef CONFIG_NUMA
2538 int local_nid = numa_node_id();
2539 enum zone_stat_item local_stat = NUMA_LOCAL;
2540
2541 if (unlikely(flags & __GFP_OTHER_NODE)) {
2542 local_stat = NUMA_OTHER;
2543 local_nid = preferred_zone->node;
2544 }
2545
2546 if (z->node == local_nid) {
2547 __inc_zone_state(z, NUMA_HIT);
2548 __inc_zone_state(z, local_stat);
2549 } else {
2550 __inc_zone_state(z, NUMA_MISS);
2551 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2552 }
2553#endif
2554}
2555
1da177e4 2556/*
75379191 2557 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2558 */
0a15c3e9
MG
2559static inline
2560struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2561 struct zone *zone, unsigned int order,
c603844b
MG
2562 gfp_t gfp_flags, unsigned int alloc_flags,
2563 int migratetype)
1da177e4
LT
2564{
2565 unsigned long flags;
689bcebf 2566 struct page *page;
b745bc85 2567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2568
48db57f8 2569 if (likely(order == 0)) {
1da177e4 2570 struct per_cpu_pages *pcp;
5f8dcc21 2571 struct list_head *list;
1da177e4 2572
1da177e4 2573 local_irq_save(flags);
479f854a
MG
2574 do {
2575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2576 list = &pcp->lists[migratetype];
2577 if (list_empty(list)) {
2578 pcp->count += rmqueue_bulk(zone, 0,
2579 pcp->batch, list,
2580 migratetype, cold);
2581 if (unlikely(list_empty(list)))
2582 goto failed;
2583 }
b92a6edd 2584
479f854a
MG
2585 if (cold)
2586 page = list_last_entry(list, struct page, lru);
2587 else
2588 page = list_first_entry(list, struct page, lru);
5f8dcc21 2589
83b9355b
VB
2590 list_del(&page->lru);
2591 pcp->count--;
2592
2593 } while (check_new_pcp(page));
7fb1d9fc 2594 } else {
0f352e53
MH
2595 /*
2596 * We most definitely don't want callers attempting to
2597 * allocate greater than order-1 page units with __GFP_NOFAIL.
2598 */
2599 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2600 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2601
479f854a
MG
2602 do {
2603 page = NULL;
2604 if (alloc_flags & ALLOC_HARDER) {
2605 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2606 if (page)
2607 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2608 }
2609 if (!page)
2610 page = __rmqueue(zone, order, migratetype);
2611 } while (page && check_new_pages(page, order));
a74609fa
NP
2612 spin_unlock(&zone->lock);
2613 if (!page)
2614 goto failed;
d1ce749a 2615 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2616 get_pcppage_migratetype(page));
1da177e4
LT
2617 }
2618
16709d1d 2619 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2620 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2621 local_irq_restore(flags);
1da177e4 2622
309381fe 2623 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2624 return page;
a74609fa
NP
2625
2626failed:
2627 local_irq_restore(flags);
a74609fa 2628 return NULL;
1da177e4
LT
2629}
2630
933e312e
AM
2631#ifdef CONFIG_FAIL_PAGE_ALLOC
2632
b2588c4b 2633static struct {
933e312e
AM
2634 struct fault_attr attr;
2635
621a5f7a 2636 bool ignore_gfp_highmem;
71baba4b 2637 bool ignore_gfp_reclaim;
54114994 2638 u32 min_order;
933e312e
AM
2639} fail_page_alloc = {
2640 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2641 .ignore_gfp_reclaim = true,
621a5f7a 2642 .ignore_gfp_highmem = true,
54114994 2643 .min_order = 1,
933e312e
AM
2644};
2645
2646static int __init setup_fail_page_alloc(char *str)
2647{
2648 return setup_fault_attr(&fail_page_alloc.attr, str);
2649}
2650__setup("fail_page_alloc=", setup_fail_page_alloc);
2651
deaf386e 2652static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2653{
54114994 2654 if (order < fail_page_alloc.min_order)
deaf386e 2655 return false;
933e312e 2656 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2657 return false;
933e312e 2658 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2659 return false;
71baba4b
MG
2660 if (fail_page_alloc.ignore_gfp_reclaim &&
2661 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2662 return false;
933e312e
AM
2663
2664 return should_fail(&fail_page_alloc.attr, 1 << order);
2665}
2666
2667#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2668
2669static int __init fail_page_alloc_debugfs(void)
2670{
f4ae40a6 2671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2672 struct dentry *dir;
933e312e 2673
dd48c085
AM
2674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2675 &fail_page_alloc.attr);
2676 if (IS_ERR(dir))
2677 return PTR_ERR(dir);
933e312e 2678
b2588c4b 2679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2680 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2681 goto fail;
2682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2683 &fail_page_alloc.ignore_gfp_highmem))
2684 goto fail;
2685 if (!debugfs_create_u32("min-order", mode, dir,
2686 &fail_page_alloc.min_order))
2687 goto fail;
2688
2689 return 0;
2690fail:
dd48c085 2691 debugfs_remove_recursive(dir);
933e312e 2692
b2588c4b 2693 return -ENOMEM;
933e312e
AM
2694}
2695
2696late_initcall(fail_page_alloc_debugfs);
2697
2698#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2699
2700#else /* CONFIG_FAIL_PAGE_ALLOC */
2701
deaf386e 2702static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2703{
deaf386e 2704 return false;
933e312e
AM
2705}
2706
2707#endif /* CONFIG_FAIL_PAGE_ALLOC */
2708
1da177e4 2709/*
97a16fc8
MG
2710 * Return true if free base pages are above 'mark'. For high-order checks it
2711 * will return true of the order-0 watermark is reached and there is at least
2712 * one free page of a suitable size. Checking now avoids taking the zone lock
2713 * to check in the allocation paths if no pages are free.
1da177e4 2714 */
86a294a8
MH
2715bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2716 int classzone_idx, unsigned int alloc_flags,
2717 long free_pages)
1da177e4 2718{
d23ad423 2719 long min = mark;
1da177e4 2720 int o;
c603844b 2721 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2722
0aaa29a5 2723 /* free_pages may go negative - that's OK */
df0a6daa 2724 free_pages -= (1 << order) - 1;
0aaa29a5 2725
7fb1d9fc 2726 if (alloc_flags & ALLOC_HIGH)
1da177e4 2727 min -= min / 2;
0aaa29a5
MG
2728
2729 /*
2730 * If the caller does not have rights to ALLOC_HARDER then subtract
2731 * the high-atomic reserves. This will over-estimate the size of the
2732 * atomic reserve but it avoids a search.
2733 */
97a16fc8 2734 if (likely(!alloc_harder))
0aaa29a5
MG
2735 free_pages -= z->nr_reserved_highatomic;
2736 else
1da177e4 2737 min -= min / 4;
e2b19197 2738
d95ea5d1
BZ
2739#ifdef CONFIG_CMA
2740 /* If allocation can't use CMA areas don't use free CMA pages */
2741 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2742 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2743#endif
026b0814 2744
97a16fc8
MG
2745 /*
2746 * Check watermarks for an order-0 allocation request. If these
2747 * are not met, then a high-order request also cannot go ahead
2748 * even if a suitable page happened to be free.
2749 */
2750 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2751 return false;
1da177e4 2752
97a16fc8
MG
2753 /* If this is an order-0 request then the watermark is fine */
2754 if (!order)
2755 return true;
2756
2757 /* For a high-order request, check at least one suitable page is free */
2758 for (o = order; o < MAX_ORDER; o++) {
2759 struct free_area *area = &z->free_area[o];
2760 int mt;
2761
2762 if (!area->nr_free)
2763 continue;
2764
2765 if (alloc_harder)
2766 return true;
1da177e4 2767
97a16fc8
MG
2768 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2769 if (!list_empty(&area->free_list[mt]))
2770 return true;
2771 }
2772
2773#ifdef CONFIG_CMA
2774 if ((alloc_flags & ALLOC_CMA) &&
2775 !list_empty(&area->free_list[MIGRATE_CMA])) {
2776 return true;
2777 }
2778#endif
1da177e4 2779 }
97a16fc8 2780 return false;
88f5acf8
MG
2781}
2782
7aeb09f9 2783bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2784 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2785{
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 zone_page_state(z, NR_FREE_PAGES));
2788}
2789
48ee5f36
MG
2790static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2791 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2792{
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794 long cma_pages = 0;
2795
2796#ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
2799 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2800#endif
2801
2802 /*
2803 * Fast check for order-0 only. If this fails then the reserves
2804 * need to be calculated. There is a corner case where the check
2805 * passes but only the high-order atomic reserve are free. If
2806 * the caller is !atomic then it'll uselessly search the free
2807 * list. That corner case is then slower but it is harmless.
2808 */
2809 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2810 return true;
2811
2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 free_pages);
2814}
2815
7aeb09f9 2816bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2817 unsigned long mark, int classzone_idx)
88f5acf8
MG
2818{
2819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820
2821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2823
e2b19197 2824 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2825 free_pages);
1da177e4
LT
2826}
2827
9276b1bc 2828#ifdef CONFIG_NUMA
957f822a
DR
2829static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2830{
5f7a75ac
MG
2831 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2832 RECLAIM_DISTANCE;
957f822a 2833}
9276b1bc 2834#else /* CONFIG_NUMA */
957f822a
DR
2835static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2836{
2837 return true;
2838}
9276b1bc
PJ
2839#endif /* CONFIG_NUMA */
2840
7fb1d9fc 2841/*
0798e519 2842 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2843 * a page.
2844 */
2845static struct page *
a9263751
VB
2846get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2847 const struct alloc_context *ac)
753ee728 2848{
c33d6c06 2849 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2850 struct zone *zone;
3b8c0be4
MG
2851 struct pglist_data *last_pgdat_dirty_limit = NULL;
2852
7fb1d9fc 2853 /*
9276b1bc 2854 * Scan zonelist, looking for a zone with enough free.
344736f2 2855 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2856 */
c33d6c06 2857 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2858 ac->nodemask) {
be06af00 2859 struct page *page;
e085dbc5
JW
2860 unsigned long mark;
2861
664eedde
MG
2862 if (cpusets_enabled() &&
2863 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2864 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2865 continue;
a756cf59
JW
2866 /*
2867 * When allocating a page cache page for writing, we
281e3726
MG
2868 * want to get it from a node that is within its dirty
2869 * limit, such that no single node holds more than its
a756cf59 2870 * proportional share of globally allowed dirty pages.
281e3726 2871 * The dirty limits take into account the node's
a756cf59
JW
2872 * lowmem reserves and high watermark so that kswapd
2873 * should be able to balance it without having to
2874 * write pages from its LRU list.
2875 *
a756cf59 2876 * XXX: For now, allow allocations to potentially
281e3726 2877 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2878 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2879 * which is important when on a NUMA setup the allowed
281e3726 2880 * nodes are together not big enough to reach the
a756cf59 2881 * global limit. The proper fix for these situations
281e3726 2882 * will require awareness of nodes in the
a756cf59
JW
2883 * dirty-throttling and the flusher threads.
2884 */
3b8c0be4
MG
2885 if (ac->spread_dirty_pages) {
2886 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2887 continue;
2888
2889 if (!node_dirty_ok(zone->zone_pgdat)) {
2890 last_pgdat_dirty_limit = zone->zone_pgdat;
2891 continue;
2892 }
2893 }
7fb1d9fc 2894
e085dbc5 2895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2896 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2897 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2898 int ret;
2899
5dab2911
MG
2900 /* Checked here to keep the fast path fast */
2901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2902 if (alloc_flags & ALLOC_NO_WATERMARKS)
2903 goto try_this_zone;
2904
a5f5f91d 2905 if (node_reclaim_mode == 0 ||
c33d6c06 2906 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2907 continue;
2908
a5f5f91d 2909 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2910 switch (ret) {
a5f5f91d 2911 case NODE_RECLAIM_NOSCAN:
fa5e084e 2912 /* did not scan */
cd38b115 2913 continue;
a5f5f91d 2914 case NODE_RECLAIM_FULL:
fa5e084e 2915 /* scanned but unreclaimable */
cd38b115 2916 continue;
fa5e084e
MG
2917 default:
2918 /* did we reclaim enough */
fed2719e 2919 if (zone_watermark_ok(zone, order, mark,
93ea9964 2920 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2921 goto try_this_zone;
2922
fed2719e 2923 continue;
0798e519 2924 }
7fb1d9fc
RS
2925 }
2926
fa5e084e 2927try_this_zone:
c33d6c06 2928 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2929 gfp_mask, alloc_flags, ac->migratetype);
75379191 2930 if (page) {
479f854a 2931 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2932
2933 /*
2934 * If this is a high-order atomic allocation then check
2935 * if the pageblock should be reserved for the future
2936 */
2937 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2938 reserve_highatomic_pageblock(page, zone, order);
2939
75379191
VB
2940 return page;
2941 }
54a6eb5c 2942 }
9276b1bc 2943
4ffeaf35 2944 return NULL;
753ee728
MH
2945}
2946
29423e77
DR
2947/*
2948 * Large machines with many possible nodes should not always dump per-node
2949 * meminfo in irq context.
2950 */
2951static inline bool should_suppress_show_mem(void)
2952{
2953 bool ret = false;
2954
2955#if NODES_SHIFT > 8
2956 ret = in_interrupt();
2957#endif
2958 return ret;
2959}
2960
a238ab5b
DH
2961static DEFINE_RATELIMIT_STATE(nopage_rs,
2962 DEFAULT_RATELIMIT_INTERVAL,
2963 DEFAULT_RATELIMIT_BURST);
2964
d00181b9 2965void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2966{
a238ab5b
DH
2967 unsigned int filter = SHOW_MEM_FILTER_NODES;
2968
c0a32fc5
SG
2969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2970 debug_guardpage_minorder() > 0)
a238ab5b
DH
2971 return;
2972
2973 /*
2974 * This documents exceptions given to allocations in certain
2975 * contexts that are allowed to allocate outside current's set
2976 * of allowed nodes.
2977 */
2978 if (!(gfp_mask & __GFP_NOMEMALLOC))
2979 if (test_thread_flag(TIF_MEMDIE) ||
2980 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2982 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2983 filter &= ~SHOW_MEM_FILTER_NODES;
2984
2985 if (fmt) {
3ee9a4f0
JP
2986 struct va_format vaf;
2987 va_list args;
2988
a238ab5b 2989 va_start(args, fmt);
3ee9a4f0
JP
2990
2991 vaf.fmt = fmt;
2992 vaf.va = &args;
2993
2994 pr_warn("%pV", &vaf);
2995
a238ab5b
DH
2996 va_end(args);
2997 }
2998
c5c990e8
VB
2999 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3000 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3001 dump_stack();
3002 if (!should_suppress_show_mem())
3003 show_mem(filter);
3004}
3005
11e33f6a
MG
3006static inline struct page *
3007__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3008 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3009{
6e0fc46d
DR
3010 struct oom_control oc = {
3011 .zonelist = ac->zonelist,
3012 .nodemask = ac->nodemask,
2a966b77 3013 .memcg = NULL,
6e0fc46d
DR
3014 .gfp_mask = gfp_mask,
3015 .order = order,
6e0fc46d 3016 };
11e33f6a
MG
3017 struct page *page;
3018
9879de73
JW
3019 *did_some_progress = 0;
3020
9879de73 3021 /*
dc56401f
JW
3022 * Acquire the oom lock. If that fails, somebody else is
3023 * making progress for us.
9879de73 3024 */
dc56401f 3025 if (!mutex_trylock(&oom_lock)) {
9879de73 3026 *did_some_progress = 1;
11e33f6a 3027 schedule_timeout_uninterruptible(1);
1da177e4
LT
3028 return NULL;
3029 }
6b1de916 3030
11e33f6a
MG
3031 /*
3032 * Go through the zonelist yet one more time, keep very high watermark
3033 * here, this is only to catch a parallel oom killing, we must fail if
3034 * we're still under heavy pressure.
3035 */
a9263751
VB
3036 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3037 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3038 if (page)
11e33f6a
MG
3039 goto out;
3040
4365a567 3041 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3042 /* Coredumps can quickly deplete all memory reserves */
3043 if (current->flags & PF_DUMPCORE)
3044 goto out;
4365a567
KH
3045 /* The OOM killer will not help higher order allocs */
3046 if (order > PAGE_ALLOC_COSTLY_ORDER)
3047 goto out;
03668b3c 3048 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3049 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3050 goto out;
9083905a
JW
3051 if (pm_suspended_storage())
3052 goto out;
3da88fb3
MH
3053 /*
3054 * XXX: GFP_NOFS allocations should rather fail than rely on
3055 * other request to make a forward progress.
3056 * We are in an unfortunate situation where out_of_memory cannot
3057 * do much for this context but let's try it to at least get
3058 * access to memory reserved if the current task is killed (see
3059 * out_of_memory). Once filesystems are ready to handle allocation
3060 * failures more gracefully we should just bail out here.
3061 */
3062
4167e9b2 3063 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3064 if (gfp_mask & __GFP_THISNODE)
3065 goto out;
3066 }
11e33f6a 3067 /* Exhausted what can be done so it's blamo time */
5020e285 3068 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3069 *did_some_progress = 1;
5020e285
MH
3070
3071 if (gfp_mask & __GFP_NOFAIL) {
3072 page = get_page_from_freelist(gfp_mask, order,
3073 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3074 /*
3075 * fallback to ignore cpuset restriction if our nodes
3076 * are depleted
3077 */
3078 if (!page)
3079 page = get_page_from_freelist(gfp_mask, order,
3080 ALLOC_NO_WATERMARKS, ac);
3081 }
3082 }
11e33f6a 3083out:
dc56401f 3084 mutex_unlock(&oom_lock);
11e33f6a
MG
3085 return page;
3086}
3087
33c2d214
MH
3088
3089/*
3090 * Maximum number of compaction retries wit a progress before OOM
3091 * killer is consider as the only way to move forward.
3092 */
3093#define MAX_COMPACT_RETRIES 16
3094
56de7263
MG
3095#ifdef CONFIG_COMPACTION
3096/* Try memory compaction for high-order allocations before reclaim */
3097static struct page *
3098__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3099 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3100 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3101{
98dd3b48 3102 struct page *page;
c5d01d0d 3103 int contended_compaction;
53853e2d
VB
3104
3105 if (!order)
66199712 3106 return NULL;
66199712 3107
c06b1fca 3108 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3109 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3110 mode, &contended_compaction);
c06b1fca 3111 current->flags &= ~PF_MEMALLOC;
56de7263 3112
c5d01d0d 3113 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3114 return NULL;
53853e2d 3115
98dd3b48
VB
3116 /*
3117 * At least in one zone compaction wasn't deferred or skipped, so let's
3118 * count a compaction stall
3119 */
3120 count_vm_event(COMPACTSTALL);
8fb74b9f 3121
a9263751
VB
3122 page = get_page_from_freelist(gfp_mask, order,
3123 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3124
98dd3b48
VB
3125 if (page) {
3126 struct zone *zone = page_zone(page);
53853e2d 3127
98dd3b48
VB
3128 zone->compact_blockskip_flush = false;
3129 compaction_defer_reset(zone, order, true);
3130 count_vm_event(COMPACTSUCCESS);
3131 return page;
3132 }
56de7263 3133
98dd3b48
VB
3134 /*
3135 * It's bad if compaction run occurs and fails. The most likely reason
3136 * is that pages exist, but not enough to satisfy watermarks.
3137 */
3138 count_vm_event(COMPACTFAIL);
66199712 3139
c5d01d0d
MH
3140 /*
3141 * In all zones where compaction was attempted (and not
3142 * deferred or skipped), lock contention has been detected.
3143 * For THP allocation we do not want to disrupt the others
3144 * so we fallback to base pages instead.
3145 */
3146 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3147 *compact_result = COMPACT_CONTENDED;
3148
3149 /*
3150 * If compaction was aborted due to need_resched(), we do not
3151 * want to further increase allocation latency, unless it is
3152 * khugepaged trying to collapse.
3153 */
3154 if (contended_compaction == COMPACT_CONTENDED_SCHED
3155 && !(current->flags & PF_KTHREAD))
3156 *compact_result = COMPACT_CONTENDED;
3157
98dd3b48 3158 cond_resched();
56de7263
MG
3159
3160 return NULL;
3161}
33c2d214
MH
3162
3163static inline bool
86a294a8
MH
3164should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3165 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3166 int compaction_retries)
3167{
7854ea6c
MH
3168 int max_retries = MAX_COMPACT_RETRIES;
3169
33c2d214
MH
3170 if (!order)
3171 return false;
3172
3173 /*
3174 * compaction considers all the zone as desperately out of memory
3175 * so it doesn't really make much sense to retry except when the
3176 * failure could be caused by weak migration mode.
3177 */
3178 if (compaction_failed(compact_result)) {
3179 if (*migrate_mode == MIGRATE_ASYNC) {
3180 *migrate_mode = MIGRATE_SYNC_LIGHT;
3181 return true;
3182 }
3183 return false;
3184 }
3185
3186 /*
7854ea6c
MH
3187 * make sure the compaction wasn't deferred or didn't bail out early
3188 * due to locks contention before we declare that we should give up.
86a294a8
MH
3189 * But do not retry if the given zonelist is not suitable for
3190 * compaction.
33c2d214 3191 */
7854ea6c 3192 if (compaction_withdrawn(compact_result))
86a294a8 3193 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3194
3195 /*
3196 * !costly requests are much more important than __GFP_REPEAT
3197 * costly ones because they are de facto nofail and invoke OOM
3198 * killer to move on while costly can fail and users are ready
3199 * to cope with that. 1/4 retries is rather arbitrary but we
3200 * would need much more detailed feedback from compaction to
3201 * make a better decision.
3202 */
3203 if (order > PAGE_ALLOC_COSTLY_ORDER)
3204 max_retries /= 4;
3205 if (compaction_retries <= max_retries)
3206 return true;
33c2d214
MH
3207
3208 return false;
3209}
56de7263
MG
3210#else
3211static inline struct page *
3212__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3213 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3214 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3215{
33c2d214 3216 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3217 return NULL;
3218}
33c2d214
MH
3219
3220static inline bool
86a294a8
MH
3221should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3222 enum compact_result compact_result,
33c2d214
MH
3223 enum migrate_mode *migrate_mode,
3224 int compaction_retries)
3225{
31e49bfd
MH
3226 struct zone *zone;
3227 struct zoneref *z;
3228
3229 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3230 return false;
3231
3232 /*
3233 * There are setups with compaction disabled which would prefer to loop
3234 * inside the allocator rather than hit the oom killer prematurely.
3235 * Let's give them a good hope and keep retrying while the order-0
3236 * watermarks are OK.
3237 */
3238 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3239 ac->nodemask) {
3240 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3241 ac_classzone_idx(ac), alloc_flags))
3242 return true;
3243 }
33c2d214
MH
3244 return false;
3245}
56de7263
MG
3246#endif /* CONFIG_COMPACTION */
3247
bba90710
MS
3248/* Perform direct synchronous page reclaim */
3249static int
a9263751
VB
3250__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3251 const struct alloc_context *ac)
11e33f6a 3252{
11e33f6a 3253 struct reclaim_state reclaim_state;
bba90710 3254 int progress;
11e33f6a
MG
3255
3256 cond_resched();
3257
3258 /* We now go into synchronous reclaim */
3259 cpuset_memory_pressure_bump();
c06b1fca 3260 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3261 lockdep_set_current_reclaim_state(gfp_mask);
3262 reclaim_state.reclaimed_slab = 0;
c06b1fca 3263 current->reclaim_state = &reclaim_state;
11e33f6a 3264
a9263751
VB
3265 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3266 ac->nodemask);
11e33f6a 3267
c06b1fca 3268 current->reclaim_state = NULL;
11e33f6a 3269 lockdep_clear_current_reclaim_state();
c06b1fca 3270 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3271
3272 cond_resched();
3273
bba90710
MS
3274 return progress;
3275}
3276
3277/* The really slow allocator path where we enter direct reclaim */
3278static inline struct page *
3279__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3280 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3281 unsigned long *did_some_progress)
bba90710
MS
3282{
3283 struct page *page = NULL;
3284 bool drained = false;
3285
a9263751 3286 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3287 if (unlikely(!(*did_some_progress)))
3288 return NULL;
11e33f6a 3289
9ee493ce 3290retry:
a9263751
VB
3291 page = get_page_from_freelist(gfp_mask, order,
3292 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3293
3294 /*
3295 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3296 * pages are pinned on the per-cpu lists or in high alloc reserves.
3297 * Shrink them them and try again
9ee493ce
MG
3298 */
3299 if (!page && !drained) {
0aaa29a5 3300 unreserve_highatomic_pageblock(ac);
93481ff0 3301 drain_all_pages(NULL);
9ee493ce
MG
3302 drained = true;
3303 goto retry;
3304 }
3305
11e33f6a
MG
3306 return page;
3307}
3308
a9263751 3309static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3310{
3311 struct zoneref *z;
3312 struct zone *zone;
e1a55637 3313 pg_data_t *last_pgdat = NULL;
3a025760 3314
a9263751 3315 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3316 ac->high_zoneidx, ac->nodemask) {
3317 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3318 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3319 last_pgdat = zone->zone_pgdat;
3320 }
3a025760
JW
3321}
3322
c603844b 3323static inline unsigned int
341ce06f
PZ
3324gfp_to_alloc_flags(gfp_t gfp_mask)
3325{
c603844b 3326 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3327
a56f57ff 3328 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3329 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3330
341ce06f
PZ
3331 /*
3332 * The caller may dip into page reserves a bit more if the caller
3333 * cannot run direct reclaim, or if the caller has realtime scheduling
3334 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3335 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3336 */
e6223a3b 3337 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3338
d0164adc 3339 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3340 /*
b104a35d
DR
3341 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3342 * if it can't schedule.
5c3240d9 3343 */
b104a35d 3344 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3345 alloc_flags |= ALLOC_HARDER;
523b9458 3346 /*
b104a35d 3347 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3348 * comment for __cpuset_node_allowed().
523b9458 3349 */
341ce06f 3350 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3351 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3352 alloc_flags |= ALLOC_HARDER;
3353
b37f1dd0
MG
3354 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3355 if (gfp_mask & __GFP_MEMALLOC)
3356 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3357 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3358 alloc_flags |= ALLOC_NO_WATERMARKS;
3359 else if (!in_interrupt() &&
3360 ((current->flags & PF_MEMALLOC) ||
3361 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3362 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3363 }
d95ea5d1 3364#ifdef CONFIG_CMA
43e7a34d 3365 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3366 alloc_flags |= ALLOC_CMA;
3367#endif
341ce06f
PZ
3368 return alloc_flags;
3369}
3370
072bb0aa
MG
3371bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3372{
b37f1dd0 3373 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3374}
3375
d0164adc
MG
3376static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3377{
3378 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3379}
3380
0a0337e0
MH
3381/*
3382 * Maximum number of reclaim retries without any progress before OOM killer
3383 * is consider as the only way to move forward.
3384 */
3385#define MAX_RECLAIM_RETRIES 16
3386
3387/*
3388 * Checks whether it makes sense to retry the reclaim to make a forward progress
3389 * for the given allocation request.
3390 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3391 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3392 * any progress in a row) is considered as well as the reclaimable pages on the
3393 * applicable zone list (with a backoff mechanism which is a function of
3394 * no_progress_loops).
0a0337e0
MH
3395 *
3396 * Returns true if a retry is viable or false to enter the oom path.
3397 */
3398static inline bool
3399should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3400 struct alloc_context *ac, int alloc_flags,
7854ea6c 3401 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3402{
3403 struct zone *zone;
3404 struct zoneref *z;
bca67592 3405 pg_data_t *current_pgdat = NULL;
0a0337e0
MH
3406
3407 /*
3408 * Make sure we converge to OOM if we cannot make any progress
3409 * several times in the row.
3410 */
3411 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3412 return false;
3413
0a0337e0 3414 /*
bca67592
MG
3415 * Blindly retry lowmem allocation requests that are often ignored by
3416 * the OOM killer up to MAX_RECLAIM_RETRIES as we not have a reliable
3417 * and fast means of calculating reclaimable, dirty and writeback pages
3418 * in eligible zones.
3419 */
3420 if (ac->high_zoneidx < ZONE_NORMAL)
3421 goto out;
3422
3423 /*
3424 * Keep reclaiming pages while there is a chance this will lead
3425 * somewhere. If none of the target zones can satisfy our allocation
3426 * request even if all reclaimable pages are considered then we are
3427 * screwed and have to go OOM.
0a0337e0
MH
3428 */
3429 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3430 ac->nodemask) {
3431 unsigned long available;
ede37713 3432 unsigned long reclaimable;
bca67592 3433 int zid;
0a0337e0 3434
bca67592
MG
3435 if (current_pgdat == zone->zone_pgdat)
3436 continue;
3437
3438 current_pgdat = zone->zone_pgdat;
3439 available = reclaimable = pgdat_reclaimable_pages(current_pgdat);
0a0337e0
MH
3440 available -= DIV_ROUND_UP(no_progress_loops * available,
3441 MAX_RECLAIM_RETRIES);
bca67592
MG
3442
3443 /* Account for all free pages on eligible zones */
3444 for (zid = 0; zid <= zone_idx(zone); zid++) {
3445 struct zone *acct_zone = &current_pgdat->node_zones[zid];
3446
3447 available += zone_page_state_snapshot(acct_zone, NR_FREE_PAGES);
3448 }
0a0337e0
MH
3449
3450 /*
3451 * Would the allocation succeed if we reclaimed the whole
bca67592
MG
3452 * available? This is approximate because there is no
3453 * accurate count of reclaimable pages per zone.
0a0337e0 3454 */
bca67592
MG
3455 for (zid = 0; zid <= zone_idx(zone); zid++) {
3456 struct zone *check_zone = &current_pgdat->node_zones[zid];
3457 unsigned long estimate;
3458
3459 estimate = min(check_zone->managed_pages, available);
3460 if (!__zone_watermark_ok(check_zone, order,
3461 min_wmark_pages(check_zone), ac_classzone_idx(ac),
3462 alloc_flags, estimate))
3463 continue;
3464
ede37713
MH
3465 /*
3466 * If we didn't make any progress and have a lot of
3467 * dirty + writeback pages then we should wait for
3468 * an IO to complete to slow down the reclaim and
3469 * prevent from pre mature OOM
3470 */
3471 if (!did_some_progress) {
11fb9989 3472 unsigned long write_pending;
ede37713 3473
bca67592
MG
3474 write_pending =
3475 node_page_state(current_pgdat, NR_WRITEBACK) +
3476 node_page_state(current_pgdat, NR_FILE_DIRTY);
ede37713 3477
11fb9989 3478 if (2 * write_pending > reclaimable) {
ede37713
MH
3479 congestion_wait(BLK_RW_ASYNC, HZ/10);
3480 return true;
3481 }
3482 }
bca67592 3483out:
ede37713
MH
3484 /*
3485 * Memory allocation/reclaim might be called from a WQ
3486 * context and the current implementation of the WQ
3487 * concurrency control doesn't recognize that
3488 * a particular WQ is congested if the worker thread is
3489 * looping without ever sleeping. Therefore we have to
3490 * do a short sleep here rather than calling
3491 * cond_resched().
3492 */
3493 if (current->flags & PF_WQ_WORKER)
3494 schedule_timeout_uninterruptible(1);
3495 else
3496 cond_resched();
3497
0a0337e0
MH
3498 return true;
3499 }
3500 }
3501
3502 return false;
3503}
3504
11e33f6a
MG
3505static inline struct page *
3506__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3507 struct alloc_context *ac)
11e33f6a 3508{
d0164adc 3509 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3510 struct page *page = NULL;
c603844b 3511 unsigned int alloc_flags;
11e33f6a 3512 unsigned long did_some_progress;
e0b9daeb 3513 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3514 enum compact_result compact_result;
33c2d214 3515 int compaction_retries = 0;
0a0337e0 3516 int no_progress_loops = 0;
1da177e4 3517
72807a74
MG
3518 /*
3519 * In the slowpath, we sanity check order to avoid ever trying to
3520 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3521 * be using allocators in order of preference for an area that is
3522 * too large.
3523 */
1fc28b70
MG
3524 if (order >= MAX_ORDER) {
3525 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3526 return NULL;
1fc28b70 3527 }
1da177e4 3528
d0164adc
MG
3529 /*
3530 * We also sanity check to catch abuse of atomic reserves being used by
3531 * callers that are not in atomic context.
3532 */
3533 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3534 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3535 gfp_mask &= ~__GFP_ATOMIC;
3536
9879de73 3537retry:
d0164adc 3538 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3539 wake_all_kswapds(order, ac);
1da177e4 3540
9bf2229f 3541 /*
7fb1d9fc
RS
3542 * OK, we're below the kswapd watermark and have kicked background
3543 * reclaim. Now things get more complex, so set up alloc_flags according
3544 * to how we want to proceed.
9bf2229f 3545 */
341ce06f 3546 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3547
e46e7b77
MG
3548 /*
3549 * Reset the zonelist iterators if memory policies can be ignored.
3550 * These allocations are high priority and system rather than user
3551 * orientated.
3552 */
3553 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3554 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3555 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3556 ac->high_zoneidx, ac->nodemask);
3557 }
3558
341ce06f 3559 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3560 page = get_page_from_freelist(gfp_mask, order,
3561 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3562 if (page)
3563 goto got_pg;
1da177e4 3564
11e33f6a 3565 /* Allocate without watermarks if the context allows */
341ce06f 3566 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3567 page = get_page_from_freelist(gfp_mask, order,
3568 ALLOC_NO_WATERMARKS, ac);
3569 if (page)
3570 goto got_pg;
1da177e4
LT
3571 }
3572
d0164adc
MG
3573 /* Caller is not willing to reclaim, we can't balance anything */
3574 if (!can_direct_reclaim) {
aed0a0e3 3575 /*
33d53103
MH
3576 * All existing users of the __GFP_NOFAIL are blockable, so warn
3577 * of any new users that actually allow this type of allocation
3578 * to fail.
aed0a0e3
DR
3579 */
3580 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3581 goto nopage;
aed0a0e3 3582 }
1da177e4 3583
341ce06f 3584 /* Avoid recursion of direct reclaim */
33d53103
MH
3585 if (current->flags & PF_MEMALLOC) {
3586 /*
3587 * __GFP_NOFAIL request from this context is rather bizarre
3588 * because we cannot reclaim anything and only can loop waiting
3589 * for somebody to do a work for us.
3590 */
3591 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3592 cond_resched();
3593 goto retry;
3594 }
341ce06f 3595 goto nopage;
33d53103 3596 }
341ce06f 3597
6583bb64
DR
3598 /* Avoid allocations with no watermarks from looping endlessly */
3599 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3600 goto nopage;
3601
77f1fe6b
MG
3602 /*
3603 * Try direct compaction. The first pass is asynchronous. Subsequent
3604 * attempts after direct reclaim are synchronous
3605 */
a9263751
VB
3606 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3607 migration_mode,
c5d01d0d 3608 &compact_result);
56de7263
MG
3609 if (page)
3610 goto got_pg;
75f30861 3611
1f9efdef 3612 /* Checks for THP-specific high-order allocations */
d0164adc 3613 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3614 /*
3615 * If compaction is deferred for high-order allocations, it is
3616 * because sync compaction recently failed. If this is the case
3617 * and the caller requested a THP allocation, we do not want
3618 * to heavily disrupt the system, so we fail the allocation
3619 * instead of entering direct reclaim.
3620 */
c5d01d0d 3621 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3622 goto nopage;
3623
3624 /*
c5d01d0d
MH
3625 * Compaction is contended so rather back off than cause
3626 * excessive stalls.
1f9efdef 3627 */
c5d01d0d 3628 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3629 goto nopage;
3630 }
66199712 3631
33c2d214
MH
3632 if (order && compaction_made_progress(compact_result))
3633 compaction_retries++;
8fe78048 3634
11e33f6a 3635 /* Try direct reclaim and then allocating */
a9263751
VB
3636 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3637 &did_some_progress);
11e33f6a
MG
3638 if (page)
3639 goto got_pg;
1da177e4 3640
9083905a
JW
3641 /* Do not loop if specifically requested */
3642 if (gfp_mask & __GFP_NORETRY)
3643 goto noretry;
3644
0a0337e0
MH
3645 /*
3646 * Do not retry costly high order allocations unless they are
3647 * __GFP_REPEAT
3648 */
3649 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3650 goto noretry;
3651
7854ea6c
MH
3652 /*
3653 * Costly allocations might have made a progress but this doesn't mean
3654 * their order will become available due to high fragmentation so
3655 * always increment the no progress counter for them
3656 */
3657 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3658 no_progress_loops = 0;
7854ea6c 3659 else
0a0337e0 3660 no_progress_loops++;
1da177e4 3661
0a0337e0 3662 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3663 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3664 goto retry;
3665
33c2d214
MH
3666 /*
3667 * It doesn't make any sense to retry for the compaction if the order-0
3668 * reclaim is not able to make any progress because the current
3669 * implementation of the compaction depends on the sufficient amount
3670 * of free memory (see __compaction_suitable)
3671 */
3672 if (did_some_progress > 0 &&
86a294a8
MH
3673 should_compact_retry(ac, order, alloc_flags,
3674 compact_result, &migration_mode,
3675 compaction_retries))
33c2d214
MH
3676 goto retry;
3677
9083905a
JW
3678 /* Reclaim has failed us, start killing things */
3679 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3680 if (page)
3681 goto got_pg;
3682
3683 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3684 if (did_some_progress) {
3685 no_progress_loops = 0;
9083905a 3686 goto retry;
0a0337e0 3687 }
9083905a
JW
3688
3689noretry:
3690 /*
33c2d214
MH
3691 * High-order allocations do not necessarily loop after direct reclaim
3692 * and reclaim/compaction depends on compaction being called after
3693 * reclaim so call directly if necessary.
3694 * It can become very expensive to allocate transparent hugepages at
3695 * fault, so use asynchronous memory compaction for THP unless it is
3696 * khugepaged trying to collapse. All other requests should tolerate
3697 * at least light sync migration.
9083905a 3698 */
33c2d214
MH
3699 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3700 migration_mode = MIGRATE_ASYNC;
3701 else
3702 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3703 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3704 ac, migration_mode,
c5d01d0d 3705 &compact_result);
9083905a
JW
3706 if (page)
3707 goto got_pg;
1da177e4 3708nopage:
a238ab5b 3709 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3710got_pg:
072bb0aa 3711 return page;
1da177e4 3712}
11e33f6a
MG
3713
3714/*
3715 * This is the 'heart' of the zoned buddy allocator.
3716 */
3717struct page *
3718__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3719 struct zonelist *zonelist, nodemask_t *nodemask)
3720{
5bb1b169 3721 struct page *page;
cc9a6c87 3722 unsigned int cpuset_mems_cookie;
e6cbd7f2 3723 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3724 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3725 struct alloc_context ac = {
3726 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3727 .zonelist = zonelist,
a9263751
VB
3728 .nodemask = nodemask,
3729 .migratetype = gfpflags_to_migratetype(gfp_mask),
3730 };
11e33f6a 3731
682a3385 3732 if (cpusets_enabled()) {
83d4ca81 3733 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3734 alloc_flags |= ALLOC_CPUSET;
3735 if (!ac.nodemask)
3736 ac.nodemask = &cpuset_current_mems_allowed;
3737 }
3738
dcce284a
BH
3739 gfp_mask &= gfp_allowed_mask;
3740
11e33f6a
MG
3741 lockdep_trace_alloc(gfp_mask);
3742
d0164adc 3743 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3744
3745 if (should_fail_alloc_page(gfp_mask, order))
3746 return NULL;
3747
3748 /*
3749 * Check the zones suitable for the gfp_mask contain at least one
3750 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3751 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3752 */
3753 if (unlikely(!zonelist->_zonerefs->zone))
3754 return NULL;
3755
a9263751 3756 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3757 alloc_flags |= ALLOC_CMA;
3758
cc9a6c87 3759retry_cpuset:
d26914d1 3760 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3761
c9ab0c4f
MG
3762 /* Dirty zone balancing only done in the fast path */
3763 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3764
e46e7b77
MG
3765 /*
3766 * The preferred zone is used for statistics but crucially it is
3767 * also used as the starting point for the zonelist iterator. It
3768 * may get reset for allocations that ignore memory policies.
3769 */
c33d6c06
MG
3770 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3771 ac.high_zoneidx, ac.nodemask);
3772 if (!ac.preferred_zoneref) {
5bb1b169 3773 page = NULL;
4fcb0971 3774 goto no_zone;
5bb1b169
MG
3775 }
3776
5117f45d 3777 /* First allocation attempt */
a9263751 3778 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3779 if (likely(page))
3780 goto out;
11e33f6a 3781
4fcb0971
MG
3782 /*
3783 * Runtime PM, block IO and its error handling path can deadlock
3784 * because I/O on the device might not complete.
3785 */
3786 alloc_mask = memalloc_noio_flags(gfp_mask);
3787 ac.spread_dirty_pages = false;
23f086f9 3788
4741526b
MG
3789 /*
3790 * Restore the original nodemask if it was potentially replaced with
3791 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3792 */
3793 if (cpusets_enabled())
3794 ac.nodemask = nodemask;
4fcb0971 3795 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3796
4fcb0971 3797no_zone:
cc9a6c87
MG
3798 /*
3799 * When updating a task's mems_allowed, it is possible to race with
3800 * parallel threads in such a way that an allocation can fail while
3801 * the mask is being updated. If a page allocation is about to fail,
3802 * check if the cpuset changed during allocation and if so, retry.
3803 */
83d4ca81
MG
3804 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3805 alloc_mask = gfp_mask;
cc9a6c87 3806 goto retry_cpuset;
83d4ca81 3807 }
cc9a6c87 3808
4fcb0971 3809out:
4949148a
VD
3810 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3811 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3812 __free_pages(page, order);
3813 page = NULL;
3814 } else
3815 __SetPageKmemcg(page);
3816 }
3817
4fcb0971
MG
3818 if (kmemcheck_enabled && page)
3819 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3820
3821 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3822
11e33f6a 3823 return page;
1da177e4 3824}
d239171e 3825EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3826
3827/*
3828 * Common helper functions.
3829 */
920c7a5d 3830unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3831{
945a1113
AM
3832 struct page *page;
3833
3834 /*
3835 * __get_free_pages() returns a 32-bit address, which cannot represent
3836 * a highmem page
3837 */
3838 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3839
1da177e4
LT
3840 page = alloc_pages(gfp_mask, order);
3841 if (!page)
3842 return 0;
3843 return (unsigned long) page_address(page);
3844}
1da177e4
LT
3845EXPORT_SYMBOL(__get_free_pages);
3846
920c7a5d 3847unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3848{
945a1113 3849 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3850}
1da177e4
LT
3851EXPORT_SYMBOL(get_zeroed_page);
3852
920c7a5d 3853void __free_pages(struct page *page, unsigned int order)
1da177e4 3854{
b5810039 3855 if (put_page_testzero(page)) {
1da177e4 3856 if (order == 0)
b745bc85 3857 free_hot_cold_page(page, false);
1da177e4
LT
3858 else
3859 __free_pages_ok(page, order);
3860 }
3861}
3862
3863EXPORT_SYMBOL(__free_pages);
3864
920c7a5d 3865void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3866{
3867 if (addr != 0) {
725d704e 3868 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3869 __free_pages(virt_to_page((void *)addr), order);
3870 }
3871}
3872
3873EXPORT_SYMBOL(free_pages);
3874
b63ae8ca
AD
3875/*
3876 * Page Fragment:
3877 * An arbitrary-length arbitrary-offset area of memory which resides
3878 * within a 0 or higher order page. Multiple fragments within that page
3879 * are individually refcounted, in the page's reference counter.
3880 *
3881 * The page_frag functions below provide a simple allocation framework for
3882 * page fragments. This is used by the network stack and network device
3883 * drivers to provide a backing region of memory for use as either an
3884 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3885 */
3886static struct page *__page_frag_refill(struct page_frag_cache *nc,
3887 gfp_t gfp_mask)
3888{
3889 struct page *page = NULL;
3890 gfp_t gfp = gfp_mask;
3891
3892#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3893 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3894 __GFP_NOMEMALLOC;
3895 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3896 PAGE_FRAG_CACHE_MAX_ORDER);
3897 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3898#endif
3899 if (unlikely(!page))
3900 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3901
3902 nc->va = page ? page_address(page) : NULL;
3903
3904 return page;
3905}
3906
3907void *__alloc_page_frag(struct page_frag_cache *nc,
3908 unsigned int fragsz, gfp_t gfp_mask)
3909{
3910 unsigned int size = PAGE_SIZE;
3911 struct page *page;
3912 int offset;
3913
3914 if (unlikely(!nc->va)) {
3915refill:
3916 page = __page_frag_refill(nc, gfp_mask);
3917 if (!page)
3918 return NULL;
3919
3920#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3921 /* if size can vary use size else just use PAGE_SIZE */
3922 size = nc->size;
3923#endif
3924 /* Even if we own the page, we do not use atomic_set().
3925 * This would break get_page_unless_zero() users.
3926 */
fe896d18 3927 page_ref_add(page, size - 1);
b63ae8ca
AD
3928
3929 /* reset page count bias and offset to start of new frag */
2f064f34 3930 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3931 nc->pagecnt_bias = size;
3932 nc->offset = size;
3933 }
3934
3935 offset = nc->offset - fragsz;
3936 if (unlikely(offset < 0)) {
3937 page = virt_to_page(nc->va);
3938
fe896d18 3939 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3940 goto refill;
3941
3942#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3943 /* if size can vary use size else just use PAGE_SIZE */
3944 size = nc->size;
3945#endif
3946 /* OK, page count is 0, we can safely set it */
fe896d18 3947 set_page_count(page, size);
b63ae8ca
AD
3948
3949 /* reset page count bias and offset to start of new frag */
3950 nc->pagecnt_bias = size;
3951 offset = size - fragsz;
3952 }
3953
3954 nc->pagecnt_bias--;
3955 nc->offset = offset;
3956
3957 return nc->va + offset;
3958}
3959EXPORT_SYMBOL(__alloc_page_frag);
3960
3961/*
3962 * Frees a page fragment allocated out of either a compound or order 0 page.
3963 */
3964void __free_page_frag(void *addr)
3965{
3966 struct page *page = virt_to_head_page(addr);
3967
3968 if (unlikely(put_page_testzero(page)))
3969 __free_pages_ok(page, compound_order(page));
3970}
3971EXPORT_SYMBOL(__free_page_frag);
3972
d00181b9
KS
3973static void *make_alloc_exact(unsigned long addr, unsigned int order,
3974 size_t size)
ee85c2e1
AK
3975{
3976 if (addr) {
3977 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3978 unsigned long used = addr + PAGE_ALIGN(size);
3979
3980 split_page(virt_to_page((void *)addr), order);
3981 while (used < alloc_end) {
3982 free_page(used);
3983 used += PAGE_SIZE;
3984 }
3985 }
3986 return (void *)addr;
3987}
3988
2be0ffe2
TT
3989/**
3990 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3991 * @size: the number of bytes to allocate
3992 * @gfp_mask: GFP flags for the allocation
3993 *
3994 * This function is similar to alloc_pages(), except that it allocates the
3995 * minimum number of pages to satisfy the request. alloc_pages() can only
3996 * allocate memory in power-of-two pages.
3997 *
3998 * This function is also limited by MAX_ORDER.
3999 *
4000 * Memory allocated by this function must be released by free_pages_exact().
4001 */
4002void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4003{
4004 unsigned int order = get_order(size);
4005 unsigned long addr;
4006
4007 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4008 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4009}
4010EXPORT_SYMBOL(alloc_pages_exact);
4011
ee85c2e1
AK
4012/**
4013 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4014 * pages on a node.
b5e6ab58 4015 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4016 * @size: the number of bytes to allocate
4017 * @gfp_mask: GFP flags for the allocation
4018 *
4019 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4020 * back.
ee85c2e1 4021 */
e1931811 4022void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4023{
d00181b9 4024 unsigned int order = get_order(size);
ee85c2e1
AK
4025 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4026 if (!p)
4027 return NULL;
4028 return make_alloc_exact((unsigned long)page_address(p), order, size);
4029}
ee85c2e1 4030
2be0ffe2
TT
4031/**
4032 * free_pages_exact - release memory allocated via alloc_pages_exact()
4033 * @virt: the value returned by alloc_pages_exact.
4034 * @size: size of allocation, same value as passed to alloc_pages_exact().
4035 *
4036 * Release the memory allocated by a previous call to alloc_pages_exact.
4037 */
4038void free_pages_exact(void *virt, size_t size)
4039{
4040 unsigned long addr = (unsigned long)virt;
4041 unsigned long end = addr + PAGE_ALIGN(size);
4042
4043 while (addr < end) {
4044 free_page(addr);
4045 addr += PAGE_SIZE;
4046 }
4047}
4048EXPORT_SYMBOL(free_pages_exact);
4049
e0fb5815
ZY
4050/**
4051 * nr_free_zone_pages - count number of pages beyond high watermark
4052 * @offset: The zone index of the highest zone
4053 *
4054 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4055 * high watermark within all zones at or below a given zone index. For each
4056 * zone, the number of pages is calculated as:
834405c3 4057 * managed_pages - high_pages
e0fb5815 4058 */
ebec3862 4059static unsigned long nr_free_zone_pages(int offset)
1da177e4 4060{
dd1a239f 4061 struct zoneref *z;
54a6eb5c
MG
4062 struct zone *zone;
4063
e310fd43 4064 /* Just pick one node, since fallback list is circular */
ebec3862 4065 unsigned long sum = 0;
1da177e4 4066
0e88460d 4067 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4068
54a6eb5c 4069 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4070 unsigned long size = zone->managed_pages;
41858966 4071 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4072 if (size > high)
4073 sum += size - high;
1da177e4
LT
4074 }
4075
4076 return sum;
4077}
4078
e0fb5815
ZY
4079/**
4080 * nr_free_buffer_pages - count number of pages beyond high watermark
4081 *
4082 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4083 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4084 */
ebec3862 4085unsigned long nr_free_buffer_pages(void)
1da177e4 4086{
af4ca457 4087 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4088}
c2f1a551 4089EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4090
e0fb5815
ZY
4091/**
4092 * nr_free_pagecache_pages - count number of pages beyond high watermark
4093 *
4094 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4095 * high watermark within all zones.
1da177e4 4096 */
ebec3862 4097unsigned long nr_free_pagecache_pages(void)
1da177e4 4098{
2a1e274a 4099 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4100}
08e0f6a9
CL
4101
4102static inline void show_node(struct zone *zone)
1da177e4 4103{
e5adfffc 4104 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4105 printk("Node %d ", zone_to_nid(zone));
1da177e4 4106}
1da177e4 4107
d02bd27b
IR
4108long si_mem_available(void)
4109{
4110 long available;
4111 unsigned long pagecache;
4112 unsigned long wmark_low = 0;
4113 unsigned long pages[NR_LRU_LISTS];
4114 struct zone *zone;
4115 int lru;
4116
4117 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4118 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4119
4120 for_each_zone(zone)
4121 wmark_low += zone->watermark[WMARK_LOW];
4122
4123 /*
4124 * Estimate the amount of memory available for userspace allocations,
4125 * without causing swapping.
4126 */
4127 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4128
4129 /*
4130 * Not all the page cache can be freed, otherwise the system will
4131 * start swapping. Assume at least half of the page cache, or the
4132 * low watermark worth of cache, needs to stay.
4133 */
4134 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4135 pagecache -= min(pagecache / 2, wmark_low);
4136 available += pagecache;
4137
4138 /*
4139 * Part of the reclaimable slab consists of items that are in use,
4140 * and cannot be freed. Cap this estimate at the low watermark.
4141 */
4142 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4143 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4144
4145 if (available < 0)
4146 available = 0;
4147 return available;
4148}
4149EXPORT_SYMBOL_GPL(si_mem_available);
4150
1da177e4
LT
4151void si_meminfo(struct sysinfo *val)
4152{
4153 val->totalram = totalram_pages;
11fb9989 4154 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4155 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4156 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4157 val->totalhigh = totalhigh_pages;
4158 val->freehigh = nr_free_highpages();
1da177e4
LT
4159 val->mem_unit = PAGE_SIZE;
4160}
4161
4162EXPORT_SYMBOL(si_meminfo);
4163
4164#ifdef CONFIG_NUMA
4165void si_meminfo_node(struct sysinfo *val, int nid)
4166{
cdd91a77
JL
4167 int zone_type; /* needs to be signed */
4168 unsigned long managed_pages = 0;
fc2bd799
JK
4169 unsigned long managed_highpages = 0;
4170 unsigned long free_highpages = 0;
1da177e4
LT
4171 pg_data_t *pgdat = NODE_DATA(nid);
4172
cdd91a77
JL
4173 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4174 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4175 val->totalram = managed_pages;
11fb9989 4176 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4177 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4178#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4179 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4180 struct zone *zone = &pgdat->node_zones[zone_type];
4181
4182 if (is_highmem(zone)) {
4183 managed_highpages += zone->managed_pages;
4184 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4185 }
4186 }
4187 val->totalhigh = managed_highpages;
4188 val->freehigh = free_highpages;
98d2b0eb 4189#else
fc2bd799
JK
4190 val->totalhigh = managed_highpages;
4191 val->freehigh = free_highpages;
98d2b0eb 4192#endif
1da177e4
LT
4193 val->mem_unit = PAGE_SIZE;
4194}
4195#endif
4196
ddd588b5 4197/*
7bf02ea2
DR
4198 * Determine whether the node should be displayed or not, depending on whether
4199 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4200 */
7bf02ea2 4201bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4202{
4203 bool ret = false;
cc9a6c87 4204 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4205
4206 if (!(flags & SHOW_MEM_FILTER_NODES))
4207 goto out;
4208
cc9a6c87 4209 do {
d26914d1 4210 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4211 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4212 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4213out:
4214 return ret;
4215}
4216
1da177e4
LT
4217#define K(x) ((x) << (PAGE_SHIFT-10))
4218
377e4f16
RV
4219static void show_migration_types(unsigned char type)
4220{
4221 static const char types[MIGRATE_TYPES] = {
4222 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4223 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4224 [MIGRATE_RECLAIMABLE] = 'E',
4225 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4226#ifdef CONFIG_CMA
4227 [MIGRATE_CMA] = 'C',
4228#endif
194159fb 4229#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4230 [MIGRATE_ISOLATE] = 'I',
194159fb 4231#endif
377e4f16
RV
4232 };
4233 char tmp[MIGRATE_TYPES + 1];
4234 char *p = tmp;
4235 int i;
4236
4237 for (i = 0; i < MIGRATE_TYPES; i++) {
4238 if (type & (1 << i))
4239 *p++ = types[i];
4240 }
4241
4242 *p = '\0';
4243 printk("(%s) ", tmp);
4244}
4245
1da177e4
LT
4246/*
4247 * Show free area list (used inside shift_scroll-lock stuff)
4248 * We also calculate the percentage fragmentation. We do this by counting the
4249 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4250 *
4251 * Bits in @filter:
4252 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4253 * cpuset.
1da177e4 4254 */
7bf02ea2 4255void show_free_areas(unsigned int filter)
1da177e4 4256{
d1bfcdb8 4257 unsigned long free_pcp = 0;
c7241913 4258 int cpu;
1da177e4 4259 struct zone *zone;
599d0c95 4260 pg_data_t *pgdat;
1da177e4 4261
ee99c71c 4262 for_each_populated_zone(zone) {
7bf02ea2 4263 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4264 continue;
d1bfcdb8 4265
761b0677
KK
4266 for_each_online_cpu(cpu)
4267 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4268 }
4269
a731286d
KM
4270 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4271 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4272 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4273 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4274 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4275 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4276 global_node_page_state(NR_ACTIVE_ANON),
4277 global_node_page_state(NR_INACTIVE_ANON),
4278 global_node_page_state(NR_ISOLATED_ANON),
4279 global_node_page_state(NR_ACTIVE_FILE),
4280 global_node_page_state(NR_INACTIVE_FILE),
4281 global_node_page_state(NR_ISOLATED_FILE),
4282 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4283 global_node_page_state(NR_FILE_DIRTY),
4284 global_node_page_state(NR_WRITEBACK),
4285 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4286 global_page_state(NR_SLAB_RECLAIMABLE),
4287 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4288 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4289 global_node_page_state(NR_SHMEM),
a25700a5 4290 global_page_state(NR_PAGETABLE),
d1ce749a 4291 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4292 global_page_state(NR_FREE_PAGES),
4293 free_pcp,
d1ce749a 4294 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4295
599d0c95
MG
4296 for_each_online_pgdat(pgdat) {
4297 printk("Node %d"
4298 " active_anon:%lukB"
4299 " inactive_anon:%lukB"
4300 " active_file:%lukB"
4301 " inactive_file:%lukB"
4302 " unevictable:%lukB"
4303 " isolated(anon):%lukB"
4304 " isolated(file):%lukB"
50658e2e 4305 " mapped:%lukB"
11fb9989
MG
4306 " dirty:%lukB"
4307 " writeback:%lukB"
4308 " shmem:%lukB"
4309#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4310 " shmem_thp: %lukB"
4311 " shmem_pmdmapped: %lukB"
4312 " anon_thp: %lukB"
4313#endif
4314 " writeback_tmp:%lukB"
4315 " unstable:%lukB"
33e077bd 4316 " pages_scanned:%lu"
599d0c95
MG
4317 " all_unreclaimable? %s"
4318 "\n",
4319 pgdat->node_id,
4320 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4321 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4322 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4323 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4324 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4325 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4326 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4327 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4328 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4329 K(node_page_state(pgdat, NR_WRITEBACK)),
4330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4331 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4332 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4333 * HPAGE_PMD_NR),
4334 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4335#endif
4336 K(node_page_state(pgdat, NR_SHMEM)),
4337 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4338 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4339 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4340 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4341 }
4342
ee99c71c 4343 for_each_populated_zone(zone) {
1da177e4
LT
4344 int i;
4345
7bf02ea2 4346 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4347 continue;
d1bfcdb8
KK
4348
4349 free_pcp = 0;
4350 for_each_online_cpu(cpu)
4351 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4352
1da177e4
LT
4353 show_node(zone);
4354 printk("%s"
4355 " free:%lukB"
4356 " min:%lukB"
4357 " low:%lukB"
4358 " high:%lukB"
1da177e4 4359 " present:%lukB"
9feedc9d 4360 " managed:%lukB"
4a0aa73f 4361 " mlocked:%lukB"
4a0aa73f
KM
4362 " slab_reclaimable:%lukB"
4363 " slab_unreclaimable:%lukB"
c6a7f572 4364 " kernel_stack:%lukB"
4a0aa73f 4365 " pagetables:%lukB"
4a0aa73f 4366 " bounce:%lukB"
d1bfcdb8
KK
4367 " free_pcp:%lukB"
4368 " local_pcp:%ukB"
d1ce749a 4369 " free_cma:%lukB"
1da177e4
LT
4370 "\n",
4371 zone->name,
88f5acf8 4372 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4373 K(min_wmark_pages(zone)),
4374 K(low_wmark_pages(zone)),
4375 K(high_wmark_pages(zone)),
1da177e4 4376 K(zone->present_pages),
9feedc9d 4377 K(zone->managed_pages),
4a0aa73f 4378 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4379 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4380 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4381 zone_page_state(zone, NR_KERNEL_STACK) *
4382 THREAD_SIZE / 1024,
4a0aa73f 4383 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4384 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4385 K(free_pcp),
4386 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4387 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4388 printk("lowmem_reserve[]:");
4389 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4390 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4391 printk("\n");
4392 }
4393
ee99c71c 4394 for_each_populated_zone(zone) {
d00181b9
KS
4395 unsigned int order;
4396 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4397 unsigned char types[MAX_ORDER];
1da177e4 4398
7bf02ea2 4399 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4400 continue;
1da177e4
LT
4401 show_node(zone);
4402 printk("%s: ", zone->name);
1da177e4
LT
4403
4404 spin_lock_irqsave(&zone->lock, flags);
4405 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4406 struct free_area *area = &zone->free_area[order];
4407 int type;
4408
4409 nr[order] = area->nr_free;
8f9de51a 4410 total += nr[order] << order;
377e4f16
RV
4411
4412 types[order] = 0;
4413 for (type = 0; type < MIGRATE_TYPES; type++) {
4414 if (!list_empty(&area->free_list[type]))
4415 types[order] |= 1 << type;
4416 }
1da177e4
LT
4417 }
4418 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4419 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4420 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4421 if (nr[order])
4422 show_migration_types(types[order]);
4423 }
1da177e4
LT
4424 printk("= %lukB\n", K(total));
4425 }
4426
949f7ec5
DR
4427 hugetlb_show_meminfo();
4428
11fb9989 4429 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4430
1da177e4
LT
4431 show_swap_cache_info();
4432}
4433
19770b32
MG
4434static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4435{
4436 zoneref->zone = zone;
4437 zoneref->zone_idx = zone_idx(zone);
4438}
4439
1da177e4
LT
4440/*
4441 * Builds allocation fallback zone lists.
1a93205b
CL
4442 *
4443 * Add all populated zones of a node to the zonelist.
1da177e4 4444 */
f0c0b2b8 4445static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4446 int nr_zones)
1da177e4 4447{
1a93205b 4448 struct zone *zone;
bc732f1d 4449 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4450
4451 do {
2f6726e5 4452 zone_type--;
070f8032 4453 zone = pgdat->node_zones + zone_type;
1a93205b 4454 if (populated_zone(zone)) {
dd1a239f
MG
4455 zoneref_set_zone(zone,
4456 &zonelist->_zonerefs[nr_zones++]);
070f8032 4457 check_highest_zone(zone_type);
1da177e4 4458 }
2f6726e5 4459 } while (zone_type);
bc732f1d 4460
070f8032 4461 return nr_zones;
1da177e4
LT
4462}
4463
f0c0b2b8
KH
4464
4465/*
4466 * zonelist_order:
4467 * 0 = automatic detection of better ordering.
4468 * 1 = order by ([node] distance, -zonetype)
4469 * 2 = order by (-zonetype, [node] distance)
4470 *
4471 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4472 * the same zonelist. So only NUMA can configure this param.
4473 */
4474#define ZONELIST_ORDER_DEFAULT 0
4475#define ZONELIST_ORDER_NODE 1
4476#define ZONELIST_ORDER_ZONE 2
4477
4478/* zonelist order in the kernel.
4479 * set_zonelist_order() will set this to NODE or ZONE.
4480 */
4481static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4482static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4483
4484
1da177e4 4485#ifdef CONFIG_NUMA
f0c0b2b8
KH
4486/* The value user specified ....changed by config */
4487static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4488/* string for sysctl */
4489#define NUMA_ZONELIST_ORDER_LEN 16
4490char numa_zonelist_order[16] = "default";
4491
4492/*
4493 * interface for configure zonelist ordering.
4494 * command line option "numa_zonelist_order"
4495 * = "[dD]efault - default, automatic configuration.
4496 * = "[nN]ode - order by node locality, then by zone within node
4497 * = "[zZ]one - order by zone, then by locality within zone
4498 */
4499
4500static int __parse_numa_zonelist_order(char *s)
4501{
4502 if (*s == 'd' || *s == 'D') {
4503 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4504 } else if (*s == 'n' || *s == 'N') {
4505 user_zonelist_order = ZONELIST_ORDER_NODE;
4506 } else if (*s == 'z' || *s == 'Z') {
4507 user_zonelist_order = ZONELIST_ORDER_ZONE;
4508 } else {
1170532b 4509 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4510 return -EINVAL;
4511 }
4512 return 0;
4513}
4514
4515static __init int setup_numa_zonelist_order(char *s)
4516{
ecb256f8
VL
4517 int ret;
4518
4519 if (!s)
4520 return 0;
4521
4522 ret = __parse_numa_zonelist_order(s);
4523 if (ret == 0)
4524 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4525
4526 return ret;
f0c0b2b8
KH
4527}
4528early_param("numa_zonelist_order", setup_numa_zonelist_order);
4529
4530/*
4531 * sysctl handler for numa_zonelist_order
4532 */
cccad5b9 4533int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4534 void __user *buffer, size_t *length,
f0c0b2b8
KH
4535 loff_t *ppos)
4536{
4537 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4538 int ret;
443c6f14 4539 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4540
443c6f14 4541 mutex_lock(&zl_order_mutex);
dacbde09
CG
4542 if (write) {
4543 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4544 ret = -EINVAL;
4545 goto out;
4546 }
4547 strcpy(saved_string, (char *)table->data);
4548 }
8d65af78 4549 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4550 if (ret)
443c6f14 4551 goto out;
f0c0b2b8
KH
4552 if (write) {
4553 int oldval = user_zonelist_order;
dacbde09
CG
4554
4555 ret = __parse_numa_zonelist_order((char *)table->data);
4556 if (ret) {
f0c0b2b8
KH
4557 /*
4558 * bogus value. restore saved string
4559 */
dacbde09 4560 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4561 NUMA_ZONELIST_ORDER_LEN);
4562 user_zonelist_order = oldval;
4eaf3f64
HL
4563 } else if (oldval != user_zonelist_order) {
4564 mutex_lock(&zonelists_mutex);
9adb62a5 4565 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4566 mutex_unlock(&zonelists_mutex);
4567 }
f0c0b2b8 4568 }
443c6f14
AK
4569out:
4570 mutex_unlock(&zl_order_mutex);
4571 return ret;
f0c0b2b8
KH
4572}
4573
4574
62bc62a8 4575#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4576static int node_load[MAX_NUMNODES];
4577
1da177e4 4578/**
4dc3b16b 4579 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4580 * @node: node whose fallback list we're appending
4581 * @used_node_mask: nodemask_t of already used nodes
4582 *
4583 * We use a number of factors to determine which is the next node that should
4584 * appear on a given node's fallback list. The node should not have appeared
4585 * already in @node's fallback list, and it should be the next closest node
4586 * according to the distance array (which contains arbitrary distance values
4587 * from each node to each node in the system), and should also prefer nodes
4588 * with no CPUs, since presumably they'll have very little allocation pressure
4589 * on them otherwise.
4590 * It returns -1 if no node is found.
4591 */
f0c0b2b8 4592static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4593{
4cf808eb 4594 int n, val;
1da177e4 4595 int min_val = INT_MAX;
00ef2d2f 4596 int best_node = NUMA_NO_NODE;
a70f7302 4597 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4598
4cf808eb
LT
4599 /* Use the local node if we haven't already */
4600 if (!node_isset(node, *used_node_mask)) {
4601 node_set(node, *used_node_mask);
4602 return node;
4603 }
1da177e4 4604
4b0ef1fe 4605 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4606
4607 /* Don't want a node to appear more than once */
4608 if (node_isset(n, *used_node_mask))
4609 continue;
4610
1da177e4
LT
4611 /* Use the distance array to find the distance */
4612 val = node_distance(node, n);
4613
4cf808eb
LT
4614 /* Penalize nodes under us ("prefer the next node") */
4615 val += (n < node);
4616
1da177e4 4617 /* Give preference to headless and unused nodes */
a70f7302
RR
4618 tmp = cpumask_of_node(n);
4619 if (!cpumask_empty(tmp))
1da177e4
LT
4620 val += PENALTY_FOR_NODE_WITH_CPUS;
4621
4622 /* Slight preference for less loaded node */
4623 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4624 val += node_load[n];
4625
4626 if (val < min_val) {
4627 min_val = val;
4628 best_node = n;
4629 }
4630 }
4631
4632 if (best_node >= 0)
4633 node_set(best_node, *used_node_mask);
4634
4635 return best_node;
4636}
4637
f0c0b2b8
KH
4638
4639/*
4640 * Build zonelists ordered by node and zones within node.
4641 * This results in maximum locality--normal zone overflows into local
4642 * DMA zone, if any--but risks exhausting DMA zone.
4643 */
4644static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4645{
f0c0b2b8 4646 int j;
1da177e4 4647 struct zonelist *zonelist;
f0c0b2b8 4648
54a6eb5c 4649 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4650 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4651 ;
bc732f1d 4652 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4653 zonelist->_zonerefs[j].zone = NULL;
4654 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4655}
4656
523b9458
CL
4657/*
4658 * Build gfp_thisnode zonelists
4659 */
4660static void build_thisnode_zonelists(pg_data_t *pgdat)
4661{
523b9458
CL
4662 int j;
4663 struct zonelist *zonelist;
4664
54a6eb5c 4665 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4666 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4667 zonelist->_zonerefs[j].zone = NULL;
4668 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4669}
4670
f0c0b2b8
KH
4671/*
4672 * Build zonelists ordered by zone and nodes within zones.
4673 * This results in conserving DMA zone[s] until all Normal memory is
4674 * exhausted, but results in overflowing to remote node while memory
4675 * may still exist in local DMA zone.
4676 */
4677static int node_order[MAX_NUMNODES];
4678
4679static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4680{
f0c0b2b8
KH
4681 int pos, j, node;
4682 int zone_type; /* needs to be signed */
4683 struct zone *z;
4684 struct zonelist *zonelist;
4685
54a6eb5c
MG
4686 zonelist = &pgdat->node_zonelists[0];
4687 pos = 0;
4688 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4689 for (j = 0; j < nr_nodes; j++) {
4690 node = node_order[j];
4691 z = &NODE_DATA(node)->node_zones[zone_type];
4692 if (populated_zone(z)) {
dd1a239f
MG
4693 zoneref_set_zone(z,
4694 &zonelist->_zonerefs[pos++]);
54a6eb5c 4695 check_highest_zone(zone_type);
f0c0b2b8
KH
4696 }
4697 }
f0c0b2b8 4698 }
dd1a239f
MG
4699 zonelist->_zonerefs[pos].zone = NULL;
4700 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4701}
4702
3193913c
MG
4703#if defined(CONFIG_64BIT)
4704/*
4705 * Devices that require DMA32/DMA are relatively rare and do not justify a
4706 * penalty to every machine in case the specialised case applies. Default
4707 * to Node-ordering on 64-bit NUMA machines
4708 */
4709static int default_zonelist_order(void)
4710{
4711 return ZONELIST_ORDER_NODE;
4712}
4713#else
4714/*
4715 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4716 * by the kernel. If processes running on node 0 deplete the low memory zone
4717 * then reclaim will occur more frequency increasing stalls and potentially
4718 * be easier to OOM if a large percentage of the zone is under writeback or
4719 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4720 * Hence, default to zone ordering on 32-bit.
4721 */
f0c0b2b8
KH
4722static int default_zonelist_order(void)
4723{
f0c0b2b8
KH
4724 return ZONELIST_ORDER_ZONE;
4725}
3193913c 4726#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4727
4728static void set_zonelist_order(void)
4729{
4730 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4731 current_zonelist_order = default_zonelist_order();
4732 else
4733 current_zonelist_order = user_zonelist_order;
4734}
4735
4736static void build_zonelists(pg_data_t *pgdat)
4737{
c00eb15a 4738 int i, node, load;
1da177e4 4739 nodemask_t used_mask;
f0c0b2b8
KH
4740 int local_node, prev_node;
4741 struct zonelist *zonelist;
d00181b9 4742 unsigned int order = current_zonelist_order;
1da177e4
LT
4743
4744 /* initialize zonelists */
523b9458 4745 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4746 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4747 zonelist->_zonerefs[0].zone = NULL;
4748 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4749 }
4750
4751 /* NUMA-aware ordering of nodes */
4752 local_node = pgdat->node_id;
62bc62a8 4753 load = nr_online_nodes;
1da177e4
LT
4754 prev_node = local_node;
4755 nodes_clear(used_mask);
f0c0b2b8 4756
f0c0b2b8 4757 memset(node_order, 0, sizeof(node_order));
c00eb15a 4758 i = 0;
f0c0b2b8 4759
1da177e4
LT
4760 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4761 /*
4762 * We don't want to pressure a particular node.
4763 * So adding penalty to the first node in same
4764 * distance group to make it round-robin.
4765 */
957f822a
DR
4766 if (node_distance(local_node, node) !=
4767 node_distance(local_node, prev_node))
f0c0b2b8
KH
4768 node_load[node] = load;
4769
1da177e4
LT
4770 prev_node = node;
4771 load--;
f0c0b2b8
KH
4772 if (order == ZONELIST_ORDER_NODE)
4773 build_zonelists_in_node_order(pgdat, node);
4774 else
c00eb15a 4775 node_order[i++] = node; /* remember order */
f0c0b2b8 4776 }
1da177e4 4777
f0c0b2b8
KH
4778 if (order == ZONELIST_ORDER_ZONE) {
4779 /* calculate node order -- i.e., DMA last! */
c00eb15a 4780 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4781 }
523b9458
CL
4782
4783 build_thisnode_zonelists(pgdat);
1da177e4
LT
4784}
4785
7aac7898
LS
4786#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4787/*
4788 * Return node id of node used for "local" allocations.
4789 * I.e., first node id of first zone in arg node's generic zonelist.
4790 * Used for initializing percpu 'numa_mem', which is used primarily
4791 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4792 */
4793int local_memory_node(int node)
4794{
c33d6c06 4795 struct zoneref *z;
7aac7898 4796
c33d6c06 4797 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4798 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4799 NULL);
4800 return z->zone->node;
7aac7898
LS
4801}
4802#endif
f0c0b2b8 4803
1da177e4
LT
4804#else /* CONFIG_NUMA */
4805
f0c0b2b8
KH
4806static void set_zonelist_order(void)
4807{
4808 current_zonelist_order = ZONELIST_ORDER_ZONE;
4809}
4810
4811static void build_zonelists(pg_data_t *pgdat)
1da177e4 4812{
19655d34 4813 int node, local_node;
54a6eb5c
MG
4814 enum zone_type j;
4815 struct zonelist *zonelist;
1da177e4
LT
4816
4817 local_node = pgdat->node_id;
1da177e4 4818
54a6eb5c 4819 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4820 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4821
54a6eb5c
MG
4822 /*
4823 * Now we build the zonelist so that it contains the zones
4824 * of all the other nodes.
4825 * We don't want to pressure a particular node, so when
4826 * building the zones for node N, we make sure that the
4827 * zones coming right after the local ones are those from
4828 * node N+1 (modulo N)
4829 */
4830 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4831 if (!node_online(node))
4832 continue;
bc732f1d 4833 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4834 }
54a6eb5c
MG
4835 for (node = 0; node < local_node; node++) {
4836 if (!node_online(node))
4837 continue;
bc732f1d 4838 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4839 }
4840
dd1a239f
MG
4841 zonelist->_zonerefs[j].zone = NULL;
4842 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4843}
4844
4845#endif /* CONFIG_NUMA */
4846
99dcc3e5
CL
4847/*
4848 * Boot pageset table. One per cpu which is going to be used for all
4849 * zones and all nodes. The parameters will be set in such a way
4850 * that an item put on a list will immediately be handed over to
4851 * the buddy list. This is safe since pageset manipulation is done
4852 * with interrupts disabled.
4853 *
4854 * The boot_pagesets must be kept even after bootup is complete for
4855 * unused processors and/or zones. They do play a role for bootstrapping
4856 * hotplugged processors.
4857 *
4858 * zoneinfo_show() and maybe other functions do
4859 * not check if the processor is online before following the pageset pointer.
4860 * Other parts of the kernel may not check if the zone is available.
4861 */
4862static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4863static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4864static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4865
4eaf3f64
HL
4866/*
4867 * Global mutex to protect against size modification of zonelists
4868 * as well as to serialize pageset setup for the new populated zone.
4869 */
4870DEFINE_MUTEX(zonelists_mutex);
4871
9b1a4d38 4872/* return values int ....just for stop_machine() */
4ed7e022 4873static int __build_all_zonelists(void *data)
1da177e4 4874{
6811378e 4875 int nid;
99dcc3e5 4876 int cpu;
9adb62a5 4877 pg_data_t *self = data;
9276b1bc 4878
7f9cfb31
BL
4879#ifdef CONFIG_NUMA
4880 memset(node_load, 0, sizeof(node_load));
4881#endif
9adb62a5
JL
4882
4883 if (self && !node_online(self->node_id)) {
4884 build_zonelists(self);
9adb62a5
JL
4885 }
4886
9276b1bc 4887 for_each_online_node(nid) {
7ea1530a
CL
4888 pg_data_t *pgdat = NODE_DATA(nid);
4889
4890 build_zonelists(pgdat);
9276b1bc 4891 }
99dcc3e5
CL
4892
4893 /*
4894 * Initialize the boot_pagesets that are going to be used
4895 * for bootstrapping processors. The real pagesets for
4896 * each zone will be allocated later when the per cpu
4897 * allocator is available.
4898 *
4899 * boot_pagesets are used also for bootstrapping offline
4900 * cpus if the system is already booted because the pagesets
4901 * are needed to initialize allocators on a specific cpu too.
4902 * F.e. the percpu allocator needs the page allocator which
4903 * needs the percpu allocator in order to allocate its pagesets
4904 * (a chicken-egg dilemma).
4905 */
7aac7898 4906 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4907 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4908
7aac7898
LS
4909#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4910 /*
4911 * We now know the "local memory node" for each node--
4912 * i.e., the node of the first zone in the generic zonelist.
4913 * Set up numa_mem percpu variable for on-line cpus. During
4914 * boot, only the boot cpu should be on-line; we'll init the
4915 * secondary cpus' numa_mem as they come on-line. During
4916 * node/memory hotplug, we'll fixup all on-line cpus.
4917 */
4918 if (cpu_online(cpu))
4919 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4920#endif
4921 }
4922
6811378e
YG
4923 return 0;
4924}
4925
061f67bc
RV
4926static noinline void __init
4927build_all_zonelists_init(void)
4928{
4929 __build_all_zonelists(NULL);
4930 mminit_verify_zonelist();
4931 cpuset_init_current_mems_allowed();
4932}
4933
4eaf3f64
HL
4934/*
4935 * Called with zonelists_mutex held always
4936 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4937 *
4938 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4939 * [we're only called with non-NULL zone through __meminit paths] and
4940 * (2) call of __init annotated helper build_all_zonelists_init
4941 * [protected by SYSTEM_BOOTING].
4eaf3f64 4942 */
9adb62a5 4943void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4944{
f0c0b2b8
KH
4945 set_zonelist_order();
4946
6811378e 4947 if (system_state == SYSTEM_BOOTING) {
061f67bc 4948 build_all_zonelists_init();
6811378e 4949 } else {
e9959f0f 4950#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4951 if (zone)
4952 setup_zone_pageset(zone);
e9959f0f 4953#endif
dd1895e2
CS
4954 /* we have to stop all cpus to guarantee there is no user
4955 of zonelist */
9adb62a5 4956 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4957 /* cpuset refresh routine should be here */
4958 }
bd1e22b8 4959 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4960 /*
4961 * Disable grouping by mobility if the number of pages in the
4962 * system is too low to allow the mechanism to work. It would be
4963 * more accurate, but expensive to check per-zone. This check is
4964 * made on memory-hotadd so a system can start with mobility
4965 * disabled and enable it later
4966 */
d9c23400 4967 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4968 page_group_by_mobility_disabled = 1;
4969 else
4970 page_group_by_mobility_disabled = 0;
4971
756a025f
JP
4972 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4973 nr_online_nodes,
4974 zonelist_order_name[current_zonelist_order],
4975 page_group_by_mobility_disabled ? "off" : "on",
4976 vm_total_pages);
f0c0b2b8 4977#ifdef CONFIG_NUMA
f88dfff5 4978 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4979#endif
1da177e4
LT
4980}
4981
4982/*
4983 * Helper functions to size the waitqueue hash table.
4984 * Essentially these want to choose hash table sizes sufficiently
4985 * large so that collisions trying to wait on pages are rare.
4986 * But in fact, the number of active page waitqueues on typical
4987 * systems is ridiculously low, less than 200. So this is even
4988 * conservative, even though it seems large.
4989 *
4990 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4991 * waitqueues, i.e. the size of the waitq table given the number of pages.
4992 */
4993#define PAGES_PER_WAITQUEUE 256
4994
cca448fe 4995#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4996static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4997{
4998 unsigned long size = 1;
4999
5000 pages /= PAGES_PER_WAITQUEUE;
5001
5002 while (size < pages)
5003 size <<= 1;
5004
5005 /*
5006 * Once we have dozens or even hundreds of threads sleeping
5007 * on IO we've got bigger problems than wait queue collision.
5008 * Limit the size of the wait table to a reasonable size.
5009 */
5010 size = min(size, 4096UL);
5011
5012 return max(size, 4UL);
5013}
cca448fe
YG
5014#else
5015/*
5016 * A zone's size might be changed by hot-add, so it is not possible to determine
5017 * a suitable size for its wait_table. So we use the maximum size now.
5018 *
5019 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5020 *
5021 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5022 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5023 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5024 *
5025 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5026 * or more by the traditional way. (See above). It equals:
5027 *
5028 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5029 * ia64(16K page size) : = ( 8G + 4M)byte.
5030 * powerpc (64K page size) : = (32G +16M)byte.
5031 */
5032static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5033{
5034 return 4096UL;
5035}
5036#endif
1da177e4
LT
5037
5038/*
5039 * This is an integer logarithm so that shifts can be used later
5040 * to extract the more random high bits from the multiplicative
5041 * hash function before the remainder is taken.
5042 */
5043static inline unsigned long wait_table_bits(unsigned long size)
5044{
5045 return ffz(~size);
5046}
5047
1da177e4
LT
5048/*
5049 * Initially all pages are reserved - free ones are freed
5050 * up by free_all_bootmem() once the early boot process is
5051 * done. Non-atomic initialization, single-pass.
5052 */
c09b4240 5053void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5054 unsigned long start_pfn, enum memmap_context context)
1da177e4 5055{
4b94ffdc 5056 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5057 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5058 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5059 unsigned long pfn;
3a80a7fa 5060 unsigned long nr_initialised = 0;
342332e6
TI
5061#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5062 struct memblock_region *r = NULL, *tmp;
5063#endif
1da177e4 5064
22b31eec
HD
5065 if (highest_memmap_pfn < end_pfn - 1)
5066 highest_memmap_pfn = end_pfn - 1;
5067
4b94ffdc
DW
5068 /*
5069 * Honor reservation requested by the driver for this ZONE_DEVICE
5070 * memory
5071 */
5072 if (altmap && start_pfn == altmap->base_pfn)
5073 start_pfn += altmap->reserve;
5074
cbe8dd4a 5075 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5076 /*
b72d0ffb
AM
5077 * There can be holes in boot-time mem_map[]s handed to this
5078 * function. They do not exist on hotplugged memory.
a2f3aa02 5079 */
b72d0ffb
AM
5080 if (context != MEMMAP_EARLY)
5081 goto not_early;
5082
5083 if (!early_pfn_valid(pfn))
5084 continue;
5085 if (!early_pfn_in_nid(pfn, nid))
5086 continue;
5087 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5088 break;
342332e6
TI
5089
5090#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5091 /*
5092 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5093 * from zone_movable_pfn[nid] to end of each node should be
5094 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5095 */
5096 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5097 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5098 continue;
342332e6 5099
b72d0ffb
AM
5100 /*
5101 * Check given memblock attribute by firmware which can affect
5102 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5103 * mirrored, it's an overlapped memmap init. skip it.
5104 */
5105 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5106 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5107 for_each_memblock(memory, tmp)
5108 if (pfn < memblock_region_memory_end_pfn(tmp))
5109 break;
5110 r = tmp;
5111 }
5112 if (pfn >= memblock_region_memory_base_pfn(r) &&
5113 memblock_is_mirror(r)) {
5114 /* already initialized as NORMAL */
5115 pfn = memblock_region_memory_end_pfn(r);
5116 continue;
342332e6 5117 }
a2f3aa02 5118 }
b72d0ffb 5119#endif
ac5d2539 5120
b72d0ffb 5121not_early:
ac5d2539
MG
5122 /*
5123 * Mark the block movable so that blocks are reserved for
5124 * movable at startup. This will force kernel allocations
5125 * to reserve their blocks rather than leaking throughout
5126 * the address space during boot when many long-lived
974a786e 5127 * kernel allocations are made.
ac5d2539
MG
5128 *
5129 * bitmap is created for zone's valid pfn range. but memmap
5130 * can be created for invalid pages (for alignment)
5131 * check here not to call set_pageblock_migratetype() against
5132 * pfn out of zone.
5133 */
5134 if (!(pfn & (pageblock_nr_pages - 1))) {
5135 struct page *page = pfn_to_page(pfn);
5136
5137 __init_single_page(page, pfn, zone, nid);
5138 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5139 } else {
5140 __init_single_pfn(pfn, zone, nid);
5141 }
1da177e4
LT
5142 }
5143}
5144
1e548deb 5145static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5146{
7aeb09f9 5147 unsigned int order, t;
b2a0ac88
MG
5148 for_each_migratetype_order(order, t) {
5149 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5150 zone->free_area[order].nr_free = 0;
5151 }
5152}
5153
5154#ifndef __HAVE_ARCH_MEMMAP_INIT
5155#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5156 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5157#endif
5158
7cd2b0a3 5159static int zone_batchsize(struct zone *zone)
e7c8d5c9 5160{
3a6be87f 5161#ifdef CONFIG_MMU
e7c8d5c9
CL
5162 int batch;
5163
5164 /*
5165 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5166 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5167 *
5168 * OK, so we don't know how big the cache is. So guess.
5169 */
b40da049 5170 batch = zone->managed_pages / 1024;
ba56e91c
SR
5171 if (batch * PAGE_SIZE > 512 * 1024)
5172 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5173 batch /= 4; /* We effectively *= 4 below */
5174 if (batch < 1)
5175 batch = 1;
5176
5177 /*
0ceaacc9
NP
5178 * Clamp the batch to a 2^n - 1 value. Having a power
5179 * of 2 value was found to be more likely to have
5180 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5181 *
0ceaacc9
NP
5182 * For example if 2 tasks are alternately allocating
5183 * batches of pages, one task can end up with a lot
5184 * of pages of one half of the possible page colors
5185 * and the other with pages of the other colors.
e7c8d5c9 5186 */
9155203a 5187 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5188
e7c8d5c9 5189 return batch;
3a6be87f
DH
5190
5191#else
5192 /* The deferral and batching of frees should be suppressed under NOMMU
5193 * conditions.
5194 *
5195 * The problem is that NOMMU needs to be able to allocate large chunks
5196 * of contiguous memory as there's no hardware page translation to
5197 * assemble apparent contiguous memory from discontiguous pages.
5198 *
5199 * Queueing large contiguous runs of pages for batching, however,
5200 * causes the pages to actually be freed in smaller chunks. As there
5201 * can be a significant delay between the individual batches being
5202 * recycled, this leads to the once large chunks of space being
5203 * fragmented and becoming unavailable for high-order allocations.
5204 */
5205 return 0;
5206#endif
e7c8d5c9
CL
5207}
5208
8d7a8fa9
CS
5209/*
5210 * pcp->high and pcp->batch values are related and dependent on one another:
5211 * ->batch must never be higher then ->high.
5212 * The following function updates them in a safe manner without read side
5213 * locking.
5214 *
5215 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5216 * those fields changing asynchronously (acording the the above rule).
5217 *
5218 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5219 * outside of boot time (or some other assurance that no concurrent updaters
5220 * exist).
5221 */
5222static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5223 unsigned long batch)
5224{
5225 /* start with a fail safe value for batch */
5226 pcp->batch = 1;
5227 smp_wmb();
5228
5229 /* Update high, then batch, in order */
5230 pcp->high = high;
5231 smp_wmb();
5232
5233 pcp->batch = batch;
5234}
5235
3664033c 5236/* a companion to pageset_set_high() */
4008bab7
CS
5237static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5238{
8d7a8fa9 5239 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5240}
5241
88c90dbc 5242static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5243{
5244 struct per_cpu_pages *pcp;
5f8dcc21 5245 int migratetype;
2caaad41 5246
1c6fe946
MD
5247 memset(p, 0, sizeof(*p));
5248
3dfa5721 5249 pcp = &p->pcp;
2caaad41 5250 pcp->count = 0;
5f8dcc21
MG
5251 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5252 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5253}
5254
88c90dbc
CS
5255static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5256{
5257 pageset_init(p);
5258 pageset_set_batch(p, batch);
5259}
5260
8ad4b1fb 5261/*
3664033c 5262 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5263 * to the value high for the pageset p.
5264 */
3664033c 5265static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5266 unsigned long high)
5267{
8d7a8fa9
CS
5268 unsigned long batch = max(1UL, high / 4);
5269 if ((high / 4) > (PAGE_SHIFT * 8))
5270 batch = PAGE_SHIFT * 8;
8ad4b1fb 5271
8d7a8fa9 5272 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5273}
5274
7cd2b0a3
DR
5275static void pageset_set_high_and_batch(struct zone *zone,
5276 struct per_cpu_pageset *pcp)
56cef2b8 5277{
56cef2b8 5278 if (percpu_pagelist_fraction)
3664033c 5279 pageset_set_high(pcp,
56cef2b8
CS
5280 (zone->managed_pages /
5281 percpu_pagelist_fraction));
5282 else
5283 pageset_set_batch(pcp, zone_batchsize(zone));
5284}
5285
169f6c19
CS
5286static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5287{
5288 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5289
5290 pageset_init(pcp);
5291 pageset_set_high_and_batch(zone, pcp);
5292}
5293
4ed7e022 5294static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5295{
5296 int cpu;
319774e2 5297 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5298 for_each_possible_cpu(cpu)
5299 zone_pageset_init(zone, cpu);
75ef7184
MG
5300
5301 if (!zone->zone_pgdat->per_cpu_nodestats) {
5302 zone->zone_pgdat->per_cpu_nodestats =
5303 alloc_percpu(struct per_cpu_nodestat);
5304 }
319774e2
WF
5305}
5306
2caaad41 5307/*
99dcc3e5
CL
5308 * Allocate per cpu pagesets and initialize them.
5309 * Before this call only boot pagesets were available.
e7c8d5c9 5310 */
99dcc3e5 5311void __init setup_per_cpu_pageset(void)
e7c8d5c9 5312{
99dcc3e5 5313 struct zone *zone;
e7c8d5c9 5314
319774e2
WF
5315 for_each_populated_zone(zone)
5316 setup_zone_pageset(zone);
e7c8d5c9
CL
5317}
5318
577a32f6 5319static noinline __init_refok
cca448fe 5320int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5321{
5322 int i;
cca448fe 5323 size_t alloc_size;
ed8ece2e
DH
5324
5325 /*
5326 * The per-page waitqueue mechanism uses hashed waitqueues
5327 * per zone.
5328 */
02b694de
YG
5329 zone->wait_table_hash_nr_entries =
5330 wait_table_hash_nr_entries(zone_size_pages);
5331 zone->wait_table_bits =
5332 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5333 alloc_size = zone->wait_table_hash_nr_entries
5334 * sizeof(wait_queue_head_t);
5335
cd94b9db 5336 if (!slab_is_available()) {
cca448fe 5337 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5338 memblock_virt_alloc_node_nopanic(
5339 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5340 } else {
5341 /*
5342 * This case means that a zone whose size was 0 gets new memory
5343 * via memory hot-add.
5344 * But it may be the case that a new node was hot-added. In
5345 * this case vmalloc() will not be able to use this new node's
5346 * memory - this wait_table must be initialized to use this new
5347 * node itself as well.
5348 * To use this new node's memory, further consideration will be
5349 * necessary.
5350 */
8691f3a7 5351 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5352 }
5353 if (!zone->wait_table)
5354 return -ENOMEM;
ed8ece2e 5355
b8af2941 5356 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5357 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5358
5359 return 0;
ed8ece2e
DH
5360}
5361
c09b4240 5362static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5363{
99dcc3e5
CL
5364 /*
5365 * per cpu subsystem is not up at this point. The following code
5366 * relies on the ability of the linker to provide the
5367 * offset of a (static) per cpu variable into the per cpu area.
5368 */
5369 zone->pageset = &boot_pageset;
ed8ece2e 5370
b38a8725 5371 if (populated_zone(zone))
99dcc3e5
CL
5372 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5373 zone->name, zone->present_pages,
5374 zone_batchsize(zone));
ed8ece2e
DH
5375}
5376
4ed7e022 5377int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5378 unsigned long zone_start_pfn,
b171e409 5379 unsigned long size)
ed8ece2e
DH
5380{
5381 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5382 int ret;
5383 ret = zone_wait_table_init(zone, size);
5384 if (ret)
5385 return ret;
ed8ece2e
DH
5386 pgdat->nr_zones = zone_idx(zone) + 1;
5387
ed8ece2e
DH
5388 zone->zone_start_pfn = zone_start_pfn;
5389
708614e6
MG
5390 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5391 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5392 pgdat->node_id,
5393 (unsigned long)zone_idx(zone),
5394 zone_start_pfn, (zone_start_pfn + size));
5395
1e548deb 5396 zone_init_free_lists(zone);
718127cc
YG
5397
5398 return 0;
ed8ece2e
DH
5399}
5400
0ee332c1 5401#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5402#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5403
c713216d
MG
5404/*
5405 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5406 */
8a942fde
MG
5407int __meminit __early_pfn_to_nid(unsigned long pfn,
5408 struct mminit_pfnnid_cache *state)
c713216d 5409{
c13291a5 5410 unsigned long start_pfn, end_pfn;
e76b63f8 5411 int nid;
7c243c71 5412
8a942fde
MG
5413 if (state->last_start <= pfn && pfn < state->last_end)
5414 return state->last_nid;
c713216d 5415
e76b63f8
YL
5416 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5417 if (nid != -1) {
8a942fde
MG
5418 state->last_start = start_pfn;
5419 state->last_end = end_pfn;
5420 state->last_nid = nid;
e76b63f8
YL
5421 }
5422
5423 return nid;
c713216d
MG
5424}
5425#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5426
c713216d 5427/**
6782832e 5428 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5429 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5430 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5431 *
7d018176
ZZ
5432 * If an architecture guarantees that all ranges registered contain no holes
5433 * and may be freed, this this function may be used instead of calling
5434 * memblock_free_early_nid() manually.
c713216d 5435 */
c13291a5 5436void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5437{
c13291a5
TH
5438 unsigned long start_pfn, end_pfn;
5439 int i, this_nid;
edbe7d23 5440
c13291a5
TH
5441 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5442 start_pfn = min(start_pfn, max_low_pfn);
5443 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5444
c13291a5 5445 if (start_pfn < end_pfn)
6782832e
SS
5446 memblock_free_early_nid(PFN_PHYS(start_pfn),
5447 (end_pfn - start_pfn) << PAGE_SHIFT,
5448 this_nid);
edbe7d23 5449 }
edbe7d23 5450}
edbe7d23 5451
c713216d
MG
5452/**
5453 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5454 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5455 *
7d018176
ZZ
5456 * If an architecture guarantees that all ranges registered contain no holes and may
5457 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5458 */
5459void __init sparse_memory_present_with_active_regions(int nid)
5460{
c13291a5
TH
5461 unsigned long start_pfn, end_pfn;
5462 int i, this_nid;
c713216d 5463
c13291a5
TH
5464 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5465 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5466}
5467
5468/**
5469 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5470 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5471 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5472 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5473 *
5474 * It returns the start and end page frame of a node based on information
7d018176 5475 * provided by memblock_set_node(). If called for a node
c713216d 5476 * with no available memory, a warning is printed and the start and end
88ca3b94 5477 * PFNs will be 0.
c713216d 5478 */
a3142c8e 5479void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5480 unsigned long *start_pfn, unsigned long *end_pfn)
5481{
c13291a5 5482 unsigned long this_start_pfn, this_end_pfn;
c713216d 5483 int i;
c13291a5 5484
c713216d
MG
5485 *start_pfn = -1UL;
5486 *end_pfn = 0;
5487
c13291a5
TH
5488 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5489 *start_pfn = min(*start_pfn, this_start_pfn);
5490 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5491 }
5492
633c0666 5493 if (*start_pfn == -1UL)
c713216d 5494 *start_pfn = 0;
c713216d
MG
5495}
5496
2a1e274a
MG
5497/*
5498 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5499 * assumption is made that zones within a node are ordered in monotonic
5500 * increasing memory addresses so that the "highest" populated zone is used
5501 */
b69a7288 5502static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5503{
5504 int zone_index;
5505 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5506 if (zone_index == ZONE_MOVABLE)
5507 continue;
5508
5509 if (arch_zone_highest_possible_pfn[zone_index] >
5510 arch_zone_lowest_possible_pfn[zone_index])
5511 break;
5512 }
5513
5514 VM_BUG_ON(zone_index == -1);
5515 movable_zone = zone_index;
5516}
5517
5518/*
5519 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5520 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5521 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5522 * in each node depending on the size of each node and how evenly kernelcore
5523 * is distributed. This helper function adjusts the zone ranges
5524 * provided by the architecture for a given node by using the end of the
5525 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5526 * zones within a node are in order of monotonic increases memory addresses
5527 */
b69a7288 5528static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5529 unsigned long zone_type,
5530 unsigned long node_start_pfn,
5531 unsigned long node_end_pfn,
5532 unsigned long *zone_start_pfn,
5533 unsigned long *zone_end_pfn)
5534{
5535 /* Only adjust if ZONE_MOVABLE is on this node */
5536 if (zone_movable_pfn[nid]) {
5537 /* Size ZONE_MOVABLE */
5538 if (zone_type == ZONE_MOVABLE) {
5539 *zone_start_pfn = zone_movable_pfn[nid];
5540 *zone_end_pfn = min(node_end_pfn,
5541 arch_zone_highest_possible_pfn[movable_zone]);
5542
2a1e274a
MG
5543 /* Check if this whole range is within ZONE_MOVABLE */
5544 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5545 *zone_start_pfn = *zone_end_pfn;
5546 }
5547}
5548
c713216d
MG
5549/*
5550 * Return the number of pages a zone spans in a node, including holes
5551 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5552 */
6ea6e688 5553static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5554 unsigned long zone_type,
7960aedd
ZY
5555 unsigned long node_start_pfn,
5556 unsigned long node_end_pfn,
d91749c1
TI
5557 unsigned long *zone_start_pfn,
5558 unsigned long *zone_end_pfn,
c713216d
MG
5559 unsigned long *ignored)
5560{
b5685e92 5561 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5562 if (!node_start_pfn && !node_end_pfn)
5563 return 0;
5564
7960aedd 5565 /* Get the start and end of the zone */
d91749c1
TI
5566 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5567 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5568 adjust_zone_range_for_zone_movable(nid, zone_type,
5569 node_start_pfn, node_end_pfn,
d91749c1 5570 zone_start_pfn, zone_end_pfn);
c713216d
MG
5571
5572 /* Check that this node has pages within the zone's required range */
d91749c1 5573 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5574 return 0;
5575
5576 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5577 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5578 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5579
5580 /* Return the spanned pages */
d91749c1 5581 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5582}
5583
5584/*
5585 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5586 * then all holes in the requested range will be accounted for.
c713216d 5587 */
32996250 5588unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5589 unsigned long range_start_pfn,
5590 unsigned long range_end_pfn)
5591{
96e907d1
TH
5592 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5593 unsigned long start_pfn, end_pfn;
5594 int i;
c713216d 5595
96e907d1
TH
5596 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5597 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5598 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5599 nr_absent -= end_pfn - start_pfn;
c713216d 5600 }
96e907d1 5601 return nr_absent;
c713216d
MG
5602}
5603
5604/**
5605 * absent_pages_in_range - Return number of page frames in holes within a range
5606 * @start_pfn: The start PFN to start searching for holes
5607 * @end_pfn: The end PFN to stop searching for holes
5608 *
88ca3b94 5609 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5610 */
5611unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5612 unsigned long end_pfn)
5613{
5614 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5615}
5616
5617/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5618static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5619 unsigned long zone_type,
7960aedd
ZY
5620 unsigned long node_start_pfn,
5621 unsigned long node_end_pfn,
c713216d
MG
5622 unsigned long *ignored)
5623{
96e907d1
TH
5624 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5625 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5626 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5627 unsigned long nr_absent;
9c7cd687 5628
b5685e92 5629 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5630 if (!node_start_pfn && !node_end_pfn)
5631 return 0;
5632
96e907d1
TH
5633 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5634 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5635
2a1e274a
MG
5636 adjust_zone_range_for_zone_movable(nid, zone_type,
5637 node_start_pfn, node_end_pfn,
5638 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5639 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5640
5641 /*
5642 * ZONE_MOVABLE handling.
5643 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5644 * and vice versa.
5645 */
5646 if (zone_movable_pfn[nid]) {
5647 if (mirrored_kernelcore) {
5648 unsigned long start_pfn, end_pfn;
5649 struct memblock_region *r;
5650
5651 for_each_memblock(memory, r) {
5652 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5653 zone_start_pfn, zone_end_pfn);
5654 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5655 zone_start_pfn, zone_end_pfn);
5656
5657 if (zone_type == ZONE_MOVABLE &&
5658 memblock_is_mirror(r))
5659 nr_absent += end_pfn - start_pfn;
5660
5661 if (zone_type == ZONE_NORMAL &&
5662 !memblock_is_mirror(r))
5663 nr_absent += end_pfn - start_pfn;
5664 }
5665 } else {
5666 if (zone_type == ZONE_NORMAL)
5667 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5668 }
5669 }
5670
5671 return nr_absent;
c713216d 5672}
0e0b864e 5673
0ee332c1 5674#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5675static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5676 unsigned long zone_type,
7960aedd
ZY
5677 unsigned long node_start_pfn,
5678 unsigned long node_end_pfn,
d91749c1
TI
5679 unsigned long *zone_start_pfn,
5680 unsigned long *zone_end_pfn,
c713216d
MG
5681 unsigned long *zones_size)
5682{
d91749c1
TI
5683 unsigned int zone;
5684
5685 *zone_start_pfn = node_start_pfn;
5686 for (zone = 0; zone < zone_type; zone++)
5687 *zone_start_pfn += zones_size[zone];
5688
5689 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5690
c713216d
MG
5691 return zones_size[zone_type];
5692}
5693
6ea6e688 5694static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5695 unsigned long zone_type,
7960aedd
ZY
5696 unsigned long node_start_pfn,
5697 unsigned long node_end_pfn,
c713216d
MG
5698 unsigned long *zholes_size)
5699{
5700 if (!zholes_size)
5701 return 0;
5702
5703 return zholes_size[zone_type];
5704}
20e6926d 5705
0ee332c1 5706#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5707
a3142c8e 5708static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5709 unsigned long node_start_pfn,
5710 unsigned long node_end_pfn,
5711 unsigned long *zones_size,
5712 unsigned long *zholes_size)
c713216d 5713{
febd5949 5714 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5715 enum zone_type i;
5716
febd5949
GZ
5717 for (i = 0; i < MAX_NR_ZONES; i++) {
5718 struct zone *zone = pgdat->node_zones + i;
d91749c1 5719 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5720 unsigned long size, real_size;
c713216d 5721
febd5949
GZ
5722 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5723 node_start_pfn,
5724 node_end_pfn,
d91749c1
TI
5725 &zone_start_pfn,
5726 &zone_end_pfn,
febd5949
GZ
5727 zones_size);
5728 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5729 node_start_pfn, node_end_pfn,
5730 zholes_size);
d91749c1
TI
5731 if (size)
5732 zone->zone_start_pfn = zone_start_pfn;
5733 else
5734 zone->zone_start_pfn = 0;
febd5949
GZ
5735 zone->spanned_pages = size;
5736 zone->present_pages = real_size;
5737
5738 totalpages += size;
5739 realtotalpages += real_size;
5740 }
5741
5742 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5743 pgdat->node_present_pages = realtotalpages;
5744 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5745 realtotalpages);
5746}
5747
835c134e
MG
5748#ifndef CONFIG_SPARSEMEM
5749/*
5750 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5751 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5752 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5753 * round what is now in bits to nearest long in bits, then return it in
5754 * bytes.
5755 */
7c45512d 5756static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5757{
5758 unsigned long usemapsize;
5759
7c45512d 5760 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5761 usemapsize = roundup(zonesize, pageblock_nr_pages);
5762 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5763 usemapsize *= NR_PAGEBLOCK_BITS;
5764 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5765
5766 return usemapsize / 8;
5767}
5768
5769static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5770 struct zone *zone,
5771 unsigned long zone_start_pfn,
5772 unsigned long zonesize)
835c134e 5773{
7c45512d 5774 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5775 zone->pageblock_flags = NULL;
58a01a45 5776 if (usemapsize)
6782832e
SS
5777 zone->pageblock_flags =
5778 memblock_virt_alloc_node_nopanic(usemapsize,
5779 pgdat->node_id);
835c134e
MG
5780}
5781#else
7c45512d
LT
5782static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5783 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5784#endif /* CONFIG_SPARSEMEM */
5785
d9c23400 5786#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5787
d9c23400 5788/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5789void __paginginit set_pageblock_order(void)
d9c23400 5790{
955c1cd7
AM
5791 unsigned int order;
5792
d9c23400
MG
5793 /* Check that pageblock_nr_pages has not already been setup */
5794 if (pageblock_order)
5795 return;
5796
955c1cd7
AM
5797 if (HPAGE_SHIFT > PAGE_SHIFT)
5798 order = HUGETLB_PAGE_ORDER;
5799 else
5800 order = MAX_ORDER - 1;
5801
d9c23400
MG
5802 /*
5803 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5804 * This value may be variable depending on boot parameters on IA64 and
5805 * powerpc.
d9c23400
MG
5806 */
5807 pageblock_order = order;
5808}
5809#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5810
ba72cb8c
MG
5811/*
5812 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5813 * is unused as pageblock_order is set at compile-time. See
5814 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5815 * the kernel config
ba72cb8c 5816 */
15ca220e 5817void __paginginit set_pageblock_order(void)
ba72cb8c 5818{
ba72cb8c 5819}
d9c23400
MG
5820
5821#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5822
01cefaef
JL
5823static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5824 unsigned long present_pages)
5825{
5826 unsigned long pages = spanned_pages;
5827
5828 /*
5829 * Provide a more accurate estimation if there are holes within
5830 * the zone and SPARSEMEM is in use. If there are holes within the
5831 * zone, each populated memory region may cost us one or two extra
5832 * memmap pages due to alignment because memmap pages for each
5833 * populated regions may not naturally algined on page boundary.
5834 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5835 */
5836 if (spanned_pages > present_pages + (present_pages >> 4) &&
5837 IS_ENABLED(CONFIG_SPARSEMEM))
5838 pages = present_pages;
5839
5840 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5841}
5842
1da177e4
LT
5843/*
5844 * Set up the zone data structures:
5845 * - mark all pages reserved
5846 * - mark all memory queues empty
5847 * - clear the memory bitmaps
6527af5d
MK
5848 *
5849 * NOTE: pgdat should get zeroed by caller.
1da177e4 5850 */
7f3eb55b 5851static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5852{
2f1b6248 5853 enum zone_type j;
ed8ece2e 5854 int nid = pgdat->node_id;
718127cc 5855 int ret;
1da177e4 5856
208d54e5 5857 pgdat_resize_init(pgdat);
8177a420
AA
5858#ifdef CONFIG_NUMA_BALANCING
5859 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5860 pgdat->numabalancing_migrate_nr_pages = 0;
5861 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5862#endif
5863#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5864 spin_lock_init(&pgdat->split_queue_lock);
5865 INIT_LIST_HEAD(&pgdat->split_queue);
5866 pgdat->split_queue_len = 0;
8177a420 5867#endif
1da177e4 5868 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5869 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5870#ifdef CONFIG_COMPACTION
5871 init_waitqueue_head(&pgdat->kcompactd_wait);
5872#endif
eefa864b 5873 pgdat_page_ext_init(pgdat);
a52633d8 5874 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5875 lruvec_init(node_lruvec(pgdat));
5f63b720 5876
1da177e4
LT
5877 for (j = 0; j < MAX_NR_ZONES; j++) {
5878 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5879 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5880 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5881
febd5949
GZ
5882 size = zone->spanned_pages;
5883 realsize = freesize = zone->present_pages;
1da177e4 5884
0e0b864e 5885 /*
9feedc9d 5886 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5887 * is used by this zone for memmap. This affects the watermark
5888 * and per-cpu initialisations
5889 */
01cefaef 5890 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5891 if (!is_highmem_idx(j)) {
5892 if (freesize >= memmap_pages) {
5893 freesize -= memmap_pages;
5894 if (memmap_pages)
5895 printk(KERN_DEBUG
5896 " %s zone: %lu pages used for memmap\n",
5897 zone_names[j], memmap_pages);
5898 } else
1170532b 5899 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5900 zone_names[j], memmap_pages, freesize);
5901 }
0e0b864e 5902
6267276f 5903 /* Account for reserved pages */
9feedc9d
JL
5904 if (j == 0 && freesize > dma_reserve) {
5905 freesize -= dma_reserve;
d903ef9f 5906 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5907 zone_names[0], dma_reserve);
0e0b864e
MG
5908 }
5909
98d2b0eb 5910 if (!is_highmem_idx(j))
9feedc9d 5911 nr_kernel_pages += freesize;
01cefaef
JL
5912 /* Charge for highmem memmap if there are enough kernel pages */
5913 else if (nr_kernel_pages > memmap_pages * 2)
5914 nr_kernel_pages -= memmap_pages;
9feedc9d 5915 nr_all_pages += freesize;
1da177e4 5916
9feedc9d
JL
5917 /*
5918 * Set an approximate value for lowmem here, it will be adjusted
5919 * when the bootmem allocator frees pages into the buddy system.
5920 * And all highmem pages will be managed by the buddy system.
5921 */
5922 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5923#ifdef CONFIG_NUMA
d5f541ed 5924 zone->node = nid;
a5f5f91d 5925 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
9614634f 5926 / 100;
a5f5f91d 5927 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5928#endif
1da177e4 5929 zone->name = zone_names[j];
a52633d8 5930 zone->zone_pgdat = pgdat;
1da177e4 5931 spin_lock_init(&zone->lock);
bdc8cb98 5932 zone_seqlock_init(zone);
ed8ece2e 5933 zone_pcp_init(zone);
81c0a2bb 5934
1da177e4
LT
5935 if (!size)
5936 continue;
5937
955c1cd7 5938 set_pageblock_order();
7c45512d 5939 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5940 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5941 BUG_ON(ret);
76cdd58e 5942 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5943 }
5944}
5945
577a32f6 5946static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5947{
b0aeba74 5948 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5949 unsigned long __maybe_unused offset = 0;
5950
1da177e4
LT
5951 /* Skip empty nodes */
5952 if (!pgdat->node_spanned_pages)
5953 return;
5954
d41dee36 5955#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5956 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5957 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5958 /* ia64 gets its own node_mem_map, before this, without bootmem */
5959 if (!pgdat->node_mem_map) {
b0aeba74 5960 unsigned long size, end;
d41dee36
AW
5961 struct page *map;
5962
e984bb43
BP
5963 /*
5964 * The zone's endpoints aren't required to be MAX_ORDER
5965 * aligned but the node_mem_map endpoints must be in order
5966 * for the buddy allocator to function correctly.
5967 */
108bcc96 5968 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5969 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5970 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5971 map = alloc_remap(pgdat->node_id, size);
5972 if (!map)
6782832e
SS
5973 map = memblock_virt_alloc_node_nopanic(size,
5974 pgdat->node_id);
a1c34a3b 5975 pgdat->node_mem_map = map + offset;
1da177e4 5976 }
12d810c1 5977#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5978 /*
5979 * With no DISCONTIG, the global mem_map is just set as node 0's
5980 */
c713216d 5981 if (pgdat == NODE_DATA(0)) {
1da177e4 5982 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5983#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5984 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5985 mem_map -= offset;
0ee332c1 5986#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5987 }
1da177e4 5988#endif
d41dee36 5989#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5990}
5991
9109fb7b
JW
5992void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5993 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5994{
9109fb7b 5995 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5996 unsigned long start_pfn = 0;
5997 unsigned long end_pfn = 0;
9109fb7b 5998
88fdf75d 5999 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6000 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6001
3a80a7fa 6002 reset_deferred_meminit(pgdat);
1da177e4
LT
6003 pgdat->node_id = nid;
6004 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6005 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6006#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6007 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6008 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6009 (u64)start_pfn << PAGE_SHIFT,
6010 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6011#else
6012 start_pfn = node_start_pfn;
7960aedd
ZY
6013#endif
6014 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6015 zones_size, zholes_size);
1da177e4
LT
6016
6017 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6018#ifdef CONFIG_FLAT_NODE_MEM_MAP
6019 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6020 nid, (unsigned long)pgdat,
6021 (unsigned long)pgdat->node_mem_map);
6022#endif
1da177e4 6023
7f3eb55b 6024 free_area_init_core(pgdat);
1da177e4
LT
6025}
6026
0ee332c1 6027#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6028
6029#if MAX_NUMNODES > 1
6030/*
6031 * Figure out the number of possible node ids.
6032 */
f9872caf 6033void __init setup_nr_node_ids(void)
418508c1 6034{
904a9553 6035 unsigned int highest;
418508c1 6036
904a9553 6037 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6038 nr_node_ids = highest + 1;
6039}
418508c1
MS
6040#endif
6041
1e01979c
TH
6042/**
6043 * node_map_pfn_alignment - determine the maximum internode alignment
6044 *
6045 * This function should be called after node map is populated and sorted.
6046 * It calculates the maximum power of two alignment which can distinguish
6047 * all the nodes.
6048 *
6049 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6050 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6051 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6052 * shifted, 1GiB is enough and this function will indicate so.
6053 *
6054 * This is used to test whether pfn -> nid mapping of the chosen memory
6055 * model has fine enough granularity to avoid incorrect mapping for the
6056 * populated node map.
6057 *
6058 * Returns the determined alignment in pfn's. 0 if there is no alignment
6059 * requirement (single node).
6060 */
6061unsigned long __init node_map_pfn_alignment(void)
6062{
6063 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6064 unsigned long start, end, mask;
1e01979c 6065 int last_nid = -1;
c13291a5 6066 int i, nid;
1e01979c 6067
c13291a5 6068 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6069 if (!start || last_nid < 0 || last_nid == nid) {
6070 last_nid = nid;
6071 last_end = end;
6072 continue;
6073 }
6074
6075 /*
6076 * Start with a mask granular enough to pin-point to the
6077 * start pfn and tick off bits one-by-one until it becomes
6078 * too coarse to separate the current node from the last.
6079 */
6080 mask = ~((1 << __ffs(start)) - 1);
6081 while (mask && last_end <= (start & (mask << 1)))
6082 mask <<= 1;
6083
6084 /* accumulate all internode masks */
6085 accl_mask |= mask;
6086 }
6087
6088 /* convert mask to number of pages */
6089 return ~accl_mask + 1;
6090}
6091
a6af2bc3 6092/* Find the lowest pfn for a node */
b69a7288 6093static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6094{
a6af2bc3 6095 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6096 unsigned long start_pfn;
6097 int i;
1abbfb41 6098
c13291a5
TH
6099 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6100 min_pfn = min(min_pfn, start_pfn);
c713216d 6101
a6af2bc3 6102 if (min_pfn == ULONG_MAX) {
1170532b 6103 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6104 return 0;
6105 }
6106
6107 return min_pfn;
c713216d
MG
6108}
6109
6110/**
6111 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6112 *
6113 * It returns the minimum PFN based on information provided via
7d018176 6114 * memblock_set_node().
c713216d
MG
6115 */
6116unsigned long __init find_min_pfn_with_active_regions(void)
6117{
6118 return find_min_pfn_for_node(MAX_NUMNODES);
6119}
6120
37b07e41
LS
6121/*
6122 * early_calculate_totalpages()
6123 * Sum pages in active regions for movable zone.
4b0ef1fe 6124 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6125 */
484f51f8 6126static unsigned long __init early_calculate_totalpages(void)
7e63efef 6127{
7e63efef 6128 unsigned long totalpages = 0;
c13291a5
TH
6129 unsigned long start_pfn, end_pfn;
6130 int i, nid;
6131
6132 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6133 unsigned long pages = end_pfn - start_pfn;
7e63efef 6134
37b07e41
LS
6135 totalpages += pages;
6136 if (pages)
4b0ef1fe 6137 node_set_state(nid, N_MEMORY);
37b07e41 6138 }
b8af2941 6139 return totalpages;
7e63efef
MG
6140}
6141
2a1e274a
MG
6142/*
6143 * Find the PFN the Movable zone begins in each node. Kernel memory
6144 * is spread evenly between nodes as long as the nodes have enough
6145 * memory. When they don't, some nodes will have more kernelcore than
6146 * others
6147 */
b224ef85 6148static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6149{
6150 int i, nid;
6151 unsigned long usable_startpfn;
6152 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6153 /* save the state before borrow the nodemask */
4b0ef1fe 6154 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6155 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6156 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6157 struct memblock_region *r;
b2f3eebe
TC
6158
6159 /* Need to find movable_zone earlier when movable_node is specified. */
6160 find_usable_zone_for_movable();
6161
6162 /*
6163 * If movable_node is specified, ignore kernelcore and movablecore
6164 * options.
6165 */
6166 if (movable_node_is_enabled()) {
136199f0
EM
6167 for_each_memblock(memory, r) {
6168 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6169 continue;
6170
136199f0 6171 nid = r->nid;
b2f3eebe 6172
136199f0 6173 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6174 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6175 min(usable_startpfn, zone_movable_pfn[nid]) :
6176 usable_startpfn;
6177 }
6178
6179 goto out2;
6180 }
2a1e274a 6181
342332e6
TI
6182 /*
6183 * If kernelcore=mirror is specified, ignore movablecore option
6184 */
6185 if (mirrored_kernelcore) {
6186 bool mem_below_4gb_not_mirrored = false;
6187
6188 for_each_memblock(memory, r) {
6189 if (memblock_is_mirror(r))
6190 continue;
6191
6192 nid = r->nid;
6193
6194 usable_startpfn = memblock_region_memory_base_pfn(r);
6195
6196 if (usable_startpfn < 0x100000) {
6197 mem_below_4gb_not_mirrored = true;
6198 continue;
6199 }
6200
6201 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6202 min(usable_startpfn, zone_movable_pfn[nid]) :
6203 usable_startpfn;
6204 }
6205
6206 if (mem_below_4gb_not_mirrored)
6207 pr_warn("This configuration results in unmirrored kernel memory.");
6208
6209 goto out2;
6210 }
6211
7e63efef 6212 /*
b2f3eebe 6213 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6214 * kernelcore that corresponds so that memory usable for
6215 * any allocation type is evenly spread. If both kernelcore
6216 * and movablecore are specified, then the value of kernelcore
6217 * will be used for required_kernelcore if it's greater than
6218 * what movablecore would have allowed.
6219 */
6220 if (required_movablecore) {
7e63efef
MG
6221 unsigned long corepages;
6222
6223 /*
6224 * Round-up so that ZONE_MOVABLE is at least as large as what
6225 * was requested by the user
6226 */
6227 required_movablecore =
6228 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6229 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6230 corepages = totalpages - required_movablecore;
6231
6232 required_kernelcore = max(required_kernelcore, corepages);
6233 }
6234
bde304bd
XQ
6235 /*
6236 * If kernelcore was not specified or kernelcore size is larger
6237 * than totalpages, there is no ZONE_MOVABLE.
6238 */
6239 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6240 goto out;
2a1e274a
MG
6241
6242 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6243 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6244
6245restart:
6246 /* Spread kernelcore memory as evenly as possible throughout nodes */
6247 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6248 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6249 unsigned long start_pfn, end_pfn;
6250
2a1e274a
MG
6251 /*
6252 * Recalculate kernelcore_node if the division per node
6253 * now exceeds what is necessary to satisfy the requested
6254 * amount of memory for the kernel
6255 */
6256 if (required_kernelcore < kernelcore_node)
6257 kernelcore_node = required_kernelcore / usable_nodes;
6258
6259 /*
6260 * As the map is walked, we track how much memory is usable
6261 * by the kernel using kernelcore_remaining. When it is
6262 * 0, the rest of the node is usable by ZONE_MOVABLE
6263 */
6264 kernelcore_remaining = kernelcore_node;
6265
6266 /* Go through each range of PFNs within this node */
c13291a5 6267 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6268 unsigned long size_pages;
6269
c13291a5 6270 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6271 if (start_pfn >= end_pfn)
6272 continue;
6273
6274 /* Account for what is only usable for kernelcore */
6275 if (start_pfn < usable_startpfn) {
6276 unsigned long kernel_pages;
6277 kernel_pages = min(end_pfn, usable_startpfn)
6278 - start_pfn;
6279
6280 kernelcore_remaining -= min(kernel_pages,
6281 kernelcore_remaining);
6282 required_kernelcore -= min(kernel_pages,
6283 required_kernelcore);
6284
6285 /* Continue if range is now fully accounted */
6286 if (end_pfn <= usable_startpfn) {
6287
6288 /*
6289 * Push zone_movable_pfn to the end so
6290 * that if we have to rebalance
6291 * kernelcore across nodes, we will
6292 * not double account here
6293 */
6294 zone_movable_pfn[nid] = end_pfn;
6295 continue;
6296 }
6297 start_pfn = usable_startpfn;
6298 }
6299
6300 /*
6301 * The usable PFN range for ZONE_MOVABLE is from
6302 * start_pfn->end_pfn. Calculate size_pages as the
6303 * number of pages used as kernelcore
6304 */
6305 size_pages = end_pfn - start_pfn;
6306 if (size_pages > kernelcore_remaining)
6307 size_pages = kernelcore_remaining;
6308 zone_movable_pfn[nid] = start_pfn + size_pages;
6309
6310 /*
6311 * Some kernelcore has been met, update counts and
6312 * break if the kernelcore for this node has been
b8af2941 6313 * satisfied
2a1e274a
MG
6314 */
6315 required_kernelcore -= min(required_kernelcore,
6316 size_pages);
6317 kernelcore_remaining -= size_pages;
6318 if (!kernelcore_remaining)
6319 break;
6320 }
6321 }
6322
6323 /*
6324 * If there is still required_kernelcore, we do another pass with one
6325 * less node in the count. This will push zone_movable_pfn[nid] further
6326 * along on the nodes that still have memory until kernelcore is
b8af2941 6327 * satisfied
2a1e274a
MG
6328 */
6329 usable_nodes--;
6330 if (usable_nodes && required_kernelcore > usable_nodes)
6331 goto restart;
6332
b2f3eebe 6333out2:
2a1e274a
MG
6334 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6335 for (nid = 0; nid < MAX_NUMNODES; nid++)
6336 zone_movable_pfn[nid] =
6337 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6338
20e6926d 6339out:
66918dcd 6340 /* restore the node_state */
4b0ef1fe 6341 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6342}
6343
4b0ef1fe
LJ
6344/* Any regular or high memory on that node ? */
6345static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6346{
37b07e41
LS
6347 enum zone_type zone_type;
6348
4b0ef1fe
LJ
6349 if (N_MEMORY == N_NORMAL_MEMORY)
6350 return;
6351
6352 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6353 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6354 if (populated_zone(zone)) {
4b0ef1fe
LJ
6355 node_set_state(nid, N_HIGH_MEMORY);
6356 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6357 zone_type <= ZONE_NORMAL)
6358 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6359 break;
6360 }
37b07e41 6361 }
37b07e41
LS
6362}
6363
c713216d
MG
6364/**
6365 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6366 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6367 *
6368 * This will call free_area_init_node() for each active node in the system.
7d018176 6369 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6370 * zone in each node and their holes is calculated. If the maximum PFN
6371 * between two adjacent zones match, it is assumed that the zone is empty.
6372 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6373 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6374 * starts where the previous one ended. For example, ZONE_DMA32 starts
6375 * at arch_max_dma_pfn.
6376 */
6377void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6378{
c13291a5
TH
6379 unsigned long start_pfn, end_pfn;
6380 int i, nid;
a6af2bc3 6381
c713216d
MG
6382 /* Record where the zone boundaries are */
6383 memset(arch_zone_lowest_possible_pfn, 0,
6384 sizeof(arch_zone_lowest_possible_pfn));
6385 memset(arch_zone_highest_possible_pfn, 0,
6386 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6387
6388 start_pfn = find_min_pfn_with_active_regions();
6389
6390 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6391 if (i == ZONE_MOVABLE)
6392 continue;
90cae1fe
OH
6393
6394 end_pfn = max(max_zone_pfn[i], start_pfn);
6395 arch_zone_lowest_possible_pfn[i] = start_pfn;
6396 arch_zone_highest_possible_pfn[i] = end_pfn;
6397
6398 start_pfn = end_pfn;
c713216d 6399 }
2a1e274a
MG
6400 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6401 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6402
6403 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6404 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6405 find_zone_movable_pfns_for_nodes();
c713216d 6406
c713216d 6407 /* Print out the zone ranges */
f88dfff5 6408 pr_info("Zone ranges:\n");
2a1e274a
MG
6409 for (i = 0; i < MAX_NR_ZONES; i++) {
6410 if (i == ZONE_MOVABLE)
6411 continue;
f88dfff5 6412 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6413 if (arch_zone_lowest_possible_pfn[i] ==
6414 arch_zone_highest_possible_pfn[i])
f88dfff5 6415 pr_cont("empty\n");
72f0ba02 6416 else
8d29e18a
JG
6417 pr_cont("[mem %#018Lx-%#018Lx]\n",
6418 (u64)arch_zone_lowest_possible_pfn[i]
6419 << PAGE_SHIFT,
6420 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6421 << PAGE_SHIFT) - 1);
2a1e274a
MG
6422 }
6423
6424 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6425 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6426 for (i = 0; i < MAX_NUMNODES; i++) {
6427 if (zone_movable_pfn[i])
8d29e18a
JG
6428 pr_info(" Node %d: %#018Lx\n", i,
6429 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6430 }
c713216d 6431
f2d52fe5 6432 /* Print out the early node map */
f88dfff5 6433 pr_info("Early memory node ranges\n");
c13291a5 6434 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6435 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6436 (u64)start_pfn << PAGE_SHIFT,
6437 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6438
6439 /* Initialise every node */
708614e6 6440 mminit_verify_pageflags_layout();
8ef82866 6441 setup_nr_node_ids();
c713216d
MG
6442 for_each_online_node(nid) {
6443 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6444 free_area_init_node(nid, NULL,
c713216d 6445 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6446
6447 /* Any memory on that node */
6448 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6449 node_set_state(nid, N_MEMORY);
6450 check_for_memory(pgdat, nid);
c713216d
MG
6451 }
6452}
2a1e274a 6453
7e63efef 6454static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6455{
6456 unsigned long long coremem;
6457 if (!p)
6458 return -EINVAL;
6459
6460 coremem = memparse(p, &p);
7e63efef 6461 *core = coremem >> PAGE_SHIFT;
2a1e274a 6462
7e63efef 6463 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6464 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6465
6466 return 0;
6467}
ed7ed365 6468
7e63efef
MG
6469/*
6470 * kernelcore=size sets the amount of memory for use for allocations that
6471 * cannot be reclaimed or migrated.
6472 */
6473static int __init cmdline_parse_kernelcore(char *p)
6474{
342332e6
TI
6475 /* parse kernelcore=mirror */
6476 if (parse_option_str(p, "mirror")) {
6477 mirrored_kernelcore = true;
6478 return 0;
6479 }
6480
7e63efef
MG
6481 return cmdline_parse_core(p, &required_kernelcore);
6482}
6483
6484/*
6485 * movablecore=size sets the amount of memory for use for allocations that
6486 * can be reclaimed or migrated.
6487 */
6488static int __init cmdline_parse_movablecore(char *p)
6489{
6490 return cmdline_parse_core(p, &required_movablecore);
6491}
6492
ed7ed365 6493early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6494early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6495
0ee332c1 6496#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6497
c3d5f5f0
JL
6498void adjust_managed_page_count(struct page *page, long count)
6499{
6500 spin_lock(&managed_page_count_lock);
6501 page_zone(page)->managed_pages += count;
6502 totalram_pages += count;
3dcc0571
JL
6503#ifdef CONFIG_HIGHMEM
6504 if (PageHighMem(page))
6505 totalhigh_pages += count;
6506#endif
c3d5f5f0
JL
6507 spin_unlock(&managed_page_count_lock);
6508}
3dcc0571 6509EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6510
11199692 6511unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6512{
11199692
JL
6513 void *pos;
6514 unsigned long pages = 0;
69afade7 6515
11199692
JL
6516 start = (void *)PAGE_ALIGN((unsigned long)start);
6517 end = (void *)((unsigned long)end & PAGE_MASK);
6518 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6519 if ((unsigned int)poison <= 0xFF)
11199692
JL
6520 memset(pos, poison, PAGE_SIZE);
6521 free_reserved_page(virt_to_page(pos));
69afade7
JL
6522 }
6523
6524 if (pages && s)
11199692 6525 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6526 s, pages << (PAGE_SHIFT - 10), start, end);
6527
6528 return pages;
6529}
11199692 6530EXPORT_SYMBOL(free_reserved_area);
69afade7 6531
cfa11e08
JL
6532#ifdef CONFIG_HIGHMEM
6533void free_highmem_page(struct page *page)
6534{
6535 __free_reserved_page(page);
6536 totalram_pages++;
7b4b2a0d 6537 page_zone(page)->managed_pages++;
cfa11e08
JL
6538 totalhigh_pages++;
6539}
6540#endif
6541
7ee3d4e8
JL
6542
6543void __init mem_init_print_info(const char *str)
6544{
6545 unsigned long physpages, codesize, datasize, rosize, bss_size;
6546 unsigned long init_code_size, init_data_size;
6547
6548 physpages = get_num_physpages();
6549 codesize = _etext - _stext;
6550 datasize = _edata - _sdata;
6551 rosize = __end_rodata - __start_rodata;
6552 bss_size = __bss_stop - __bss_start;
6553 init_data_size = __init_end - __init_begin;
6554 init_code_size = _einittext - _sinittext;
6555
6556 /*
6557 * Detect special cases and adjust section sizes accordingly:
6558 * 1) .init.* may be embedded into .data sections
6559 * 2) .init.text.* may be out of [__init_begin, __init_end],
6560 * please refer to arch/tile/kernel/vmlinux.lds.S.
6561 * 3) .rodata.* may be embedded into .text or .data sections.
6562 */
6563#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6564 do { \
6565 if (start <= pos && pos < end && size > adj) \
6566 size -= adj; \
6567 } while (0)
7ee3d4e8
JL
6568
6569 adj_init_size(__init_begin, __init_end, init_data_size,
6570 _sinittext, init_code_size);
6571 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6572 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6573 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6574 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6575
6576#undef adj_init_size
6577
756a025f 6578 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6579#ifdef CONFIG_HIGHMEM
756a025f 6580 ", %luK highmem"
7ee3d4e8 6581#endif
756a025f
JP
6582 "%s%s)\n",
6583 nr_free_pages() << (PAGE_SHIFT - 10),
6584 physpages << (PAGE_SHIFT - 10),
6585 codesize >> 10, datasize >> 10, rosize >> 10,
6586 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6587 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6588 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6589#ifdef CONFIG_HIGHMEM
756a025f 6590 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6591#endif
756a025f 6592 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6593}
6594
0e0b864e 6595/**
88ca3b94
RD
6596 * set_dma_reserve - set the specified number of pages reserved in the first zone
6597 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6598 *
013110a7 6599 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6600 * In the DMA zone, a significant percentage may be consumed by kernel image
6601 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6602 * function may optionally be used to account for unfreeable pages in the
6603 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6604 * smaller per-cpu batchsize.
0e0b864e
MG
6605 */
6606void __init set_dma_reserve(unsigned long new_dma_reserve)
6607{
6608 dma_reserve = new_dma_reserve;
6609}
6610
1da177e4
LT
6611void __init free_area_init(unsigned long *zones_size)
6612{
9109fb7b 6613 free_area_init_node(0, zones_size,
1da177e4
LT
6614 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6615}
1da177e4 6616
1da177e4
LT
6617static int page_alloc_cpu_notify(struct notifier_block *self,
6618 unsigned long action, void *hcpu)
6619{
6620 int cpu = (unsigned long)hcpu;
1da177e4 6621
8bb78442 6622 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6623 lru_add_drain_cpu(cpu);
9f8f2172
CL
6624 drain_pages(cpu);
6625
6626 /*
6627 * Spill the event counters of the dead processor
6628 * into the current processors event counters.
6629 * This artificially elevates the count of the current
6630 * processor.
6631 */
f8891e5e 6632 vm_events_fold_cpu(cpu);
9f8f2172
CL
6633
6634 /*
6635 * Zero the differential counters of the dead processor
6636 * so that the vm statistics are consistent.
6637 *
6638 * This is only okay since the processor is dead and cannot
6639 * race with what we are doing.
6640 */
2bb921e5 6641 cpu_vm_stats_fold(cpu);
1da177e4
LT
6642 }
6643 return NOTIFY_OK;
6644}
1da177e4
LT
6645
6646void __init page_alloc_init(void)
6647{
6648 hotcpu_notifier(page_alloc_cpu_notify, 0);
6649}
6650
cb45b0e9 6651/*
34b10060 6652 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6653 * or min_free_kbytes changes.
6654 */
6655static void calculate_totalreserve_pages(void)
6656{
6657 struct pglist_data *pgdat;
6658 unsigned long reserve_pages = 0;
2f6726e5 6659 enum zone_type i, j;
cb45b0e9
HA
6660
6661 for_each_online_pgdat(pgdat) {
281e3726
MG
6662
6663 pgdat->totalreserve_pages = 0;
6664
cb45b0e9
HA
6665 for (i = 0; i < MAX_NR_ZONES; i++) {
6666 struct zone *zone = pgdat->node_zones + i;
3484b2de 6667 long max = 0;
cb45b0e9
HA
6668
6669 /* Find valid and maximum lowmem_reserve in the zone */
6670 for (j = i; j < MAX_NR_ZONES; j++) {
6671 if (zone->lowmem_reserve[j] > max)
6672 max = zone->lowmem_reserve[j];
6673 }
6674
41858966
MG
6675 /* we treat the high watermark as reserved pages. */
6676 max += high_wmark_pages(zone);
cb45b0e9 6677
b40da049
JL
6678 if (max > zone->managed_pages)
6679 max = zone->managed_pages;
a8d01437 6680
281e3726 6681 pgdat->totalreserve_pages += max;
a8d01437 6682
cb45b0e9
HA
6683 reserve_pages += max;
6684 }
6685 }
6686 totalreserve_pages = reserve_pages;
6687}
6688
1da177e4
LT
6689/*
6690 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6691 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6692 * has a correct pages reserved value, so an adequate number of
6693 * pages are left in the zone after a successful __alloc_pages().
6694 */
6695static void setup_per_zone_lowmem_reserve(void)
6696{
6697 struct pglist_data *pgdat;
2f6726e5 6698 enum zone_type j, idx;
1da177e4 6699
ec936fc5 6700 for_each_online_pgdat(pgdat) {
1da177e4
LT
6701 for (j = 0; j < MAX_NR_ZONES; j++) {
6702 struct zone *zone = pgdat->node_zones + j;
b40da049 6703 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6704
6705 zone->lowmem_reserve[j] = 0;
6706
2f6726e5
CL
6707 idx = j;
6708 while (idx) {
1da177e4
LT
6709 struct zone *lower_zone;
6710
2f6726e5
CL
6711 idx--;
6712
1da177e4
LT
6713 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6714 sysctl_lowmem_reserve_ratio[idx] = 1;
6715
6716 lower_zone = pgdat->node_zones + idx;
b40da049 6717 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6718 sysctl_lowmem_reserve_ratio[idx];
b40da049 6719 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6720 }
6721 }
6722 }
cb45b0e9
HA
6723
6724 /* update totalreserve_pages */
6725 calculate_totalreserve_pages();
1da177e4
LT
6726}
6727
cfd3da1e 6728static void __setup_per_zone_wmarks(void)
1da177e4
LT
6729{
6730 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6731 unsigned long lowmem_pages = 0;
6732 struct zone *zone;
6733 unsigned long flags;
6734
6735 /* Calculate total number of !ZONE_HIGHMEM pages */
6736 for_each_zone(zone) {
6737 if (!is_highmem(zone))
b40da049 6738 lowmem_pages += zone->managed_pages;
1da177e4
LT
6739 }
6740
6741 for_each_zone(zone) {
ac924c60
AM
6742 u64 tmp;
6743
1125b4e3 6744 spin_lock_irqsave(&zone->lock, flags);
b40da049 6745 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6746 do_div(tmp, lowmem_pages);
1da177e4
LT
6747 if (is_highmem(zone)) {
6748 /*
669ed175
NP
6749 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6750 * need highmem pages, so cap pages_min to a small
6751 * value here.
6752 *
41858966 6753 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6754 * deltas control asynch page reclaim, and so should
669ed175 6755 * not be capped for highmem.
1da177e4 6756 */
90ae8d67 6757 unsigned long min_pages;
1da177e4 6758
b40da049 6759 min_pages = zone->managed_pages / 1024;
90ae8d67 6760 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6761 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6762 } else {
669ed175
NP
6763 /*
6764 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6765 * proportionate to the zone's size.
6766 */
41858966 6767 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6768 }
6769
795ae7a0
JW
6770 /*
6771 * Set the kswapd watermarks distance according to the
6772 * scale factor in proportion to available memory, but
6773 * ensure a minimum size on small systems.
6774 */
6775 tmp = max_t(u64, tmp >> 2,
6776 mult_frac(zone->managed_pages,
6777 watermark_scale_factor, 10000));
6778
6779 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6780 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6781
1125b4e3 6782 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6783 }
cb45b0e9
HA
6784
6785 /* update totalreserve_pages */
6786 calculate_totalreserve_pages();
1da177e4
LT
6787}
6788
cfd3da1e
MG
6789/**
6790 * setup_per_zone_wmarks - called when min_free_kbytes changes
6791 * or when memory is hot-{added|removed}
6792 *
6793 * Ensures that the watermark[min,low,high] values for each zone are set
6794 * correctly with respect to min_free_kbytes.
6795 */
6796void setup_per_zone_wmarks(void)
6797{
6798 mutex_lock(&zonelists_mutex);
6799 __setup_per_zone_wmarks();
6800 mutex_unlock(&zonelists_mutex);
6801}
6802
1da177e4
LT
6803/*
6804 * Initialise min_free_kbytes.
6805 *
6806 * For small machines we want it small (128k min). For large machines
6807 * we want it large (64MB max). But it is not linear, because network
6808 * bandwidth does not increase linearly with machine size. We use
6809 *
b8af2941 6810 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6811 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6812 *
6813 * which yields
6814 *
6815 * 16MB: 512k
6816 * 32MB: 724k
6817 * 64MB: 1024k
6818 * 128MB: 1448k
6819 * 256MB: 2048k
6820 * 512MB: 2896k
6821 * 1024MB: 4096k
6822 * 2048MB: 5792k
6823 * 4096MB: 8192k
6824 * 8192MB: 11584k
6825 * 16384MB: 16384k
6826 */
1b79acc9 6827int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6828{
6829 unsigned long lowmem_kbytes;
5f12733e 6830 int new_min_free_kbytes;
1da177e4
LT
6831
6832 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6833 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6834
6835 if (new_min_free_kbytes > user_min_free_kbytes) {
6836 min_free_kbytes = new_min_free_kbytes;
6837 if (min_free_kbytes < 128)
6838 min_free_kbytes = 128;
6839 if (min_free_kbytes > 65536)
6840 min_free_kbytes = 65536;
6841 } else {
6842 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6843 new_min_free_kbytes, user_min_free_kbytes);
6844 }
bc75d33f 6845 setup_per_zone_wmarks();
a6cccdc3 6846 refresh_zone_stat_thresholds();
1da177e4
LT
6847 setup_per_zone_lowmem_reserve();
6848 return 0;
6849}
bc22af74 6850core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6851
6852/*
b8af2941 6853 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6854 * that we can call two helper functions whenever min_free_kbytes
6855 * changes.
6856 */
cccad5b9 6857int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6858 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6859{
da8c757b
HP
6860 int rc;
6861
6862 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6863 if (rc)
6864 return rc;
6865
5f12733e
MH
6866 if (write) {
6867 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6868 setup_per_zone_wmarks();
5f12733e 6869 }
1da177e4
LT
6870 return 0;
6871}
6872
795ae7a0
JW
6873int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6874 void __user *buffer, size_t *length, loff_t *ppos)
6875{
6876 int rc;
6877
6878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6879 if (rc)
6880 return rc;
6881
6882 if (write)
6883 setup_per_zone_wmarks();
6884
6885 return 0;
6886}
6887
9614634f 6888#ifdef CONFIG_NUMA
cccad5b9 6889int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6890 void __user *buffer, size_t *length, loff_t *ppos)
9614634f 6891{
a5f5f91d 6892 struct pglist_data *pgdat;
9614634f
CL
6893 struct zone *zone;
6894 int rc;
6895
8d65af78 6896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6897 if (rc)
6898 return rc;
6899
a5f5f91d
MG
6900 for_each_online_pgdat(pgdat)
6901 pgdat->min_slab_pages = 0;
6902
9614634f 6903 for_each_zone(zone)
a5f5f91d 6904 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f
CL
6905 sysctl_min_unmapped_ratio) / 100;
6906 return 0;
6907}
0ff38490 6908
cccad5b9 6909int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6910 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6911{
a5f5f91d 6912 struct pglist_data *pgdat;
0ff38490
CL
6913 struct zone *zone;
6914 int rc;
6915
8d65af78 6916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6917 if (rc)
6918 return rc;
6919
a5f5f91d
MG
6920 for_each_online_pgdat(pgdat)
6921 pgdat->min_slab_pages = 0;
6922
0ff38490 6923 for_each_zone(zone)
a5f5f91d 6924 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490
CL
6925 sysctl_min_slab_ratio) / 100;
6926 return 0;
6927}
9614634f
CL
6928#endif
6929
1da177e4
LT
6930/*
6931 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6932 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6933 * whenever sysctl_lowmem_reserve_ratio changes.
6934 *
6935 * The reserve ratio obviously has absolutely no relation with the
41858966 6936 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6937 * if in function of the boot time zone sizes.
6938 */
cccad5b9 6939int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6940 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6941{
8d65af78 6942 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6943 setup_per_zone_lowmem_reserve();
6944 return 0;
6945}
6946
8ad4b1fb
RS
6947/*
6948 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6949 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6950 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6951 */
cccad5b9 6952int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6953 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6954{
6955 struct zone *zone;
7cd2b0a3 6956 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6957 int ret;
6958
7cd2b0a3
DR
6959 mutex_lock(&pcp_batch_high_lock);
6960 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6961
8d65af78 6962 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6963 if (!write || ret < 0)
6964 goto out;
6965
6966 /* Sanity checking to avoid pcp imbalance */
6967 if (percpu_pagelist_fraction &&
6968 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6969 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6970 ret = -EINVAL;
6971 goto out;
6972 }
6973
6974 /* No change? */
6975 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6976 goto out;
c8e251fa 6977
364df0eb 6978 for_each_populated_zone(zone) {
7cd2b0a3
DR
6979 unsigned int cpu;
6980
22a7f12b 6981 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6982 pageset_set_high_and_batch(zone,
6983 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6984 }
7cd2b0a3 6985out:
c8e251fa 6986 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6987 return ret;
8ad4b1fb
RS
6988}
6989
a9919c79 6990#ifdef CONFIG_NUMA
f034b5d4 6991int hashdist = HASHDIST_DEFAULT;
1da177e4 6992
1da177e4
LT
6993static int __init set_hashdist(char *str)
6994{
6995 if (!str)
6996 return 0;
6997 hashdist = simple_strtoul(str, &str, 0);
6998 return 1;
6999}
7000__setup("hashdist=", set_hashdist);
7001#endif
7002
7003/*
7004 * allocate a large system hash table from bootmem
7005 * - it is assumed that the hash table must contain an exact power-of-2
7006 * quantity of entries
7007 * - limit is the number of hash buckets, not the total allocation size
7008 */
7009void *__init alloc_large_system_hash(const char *tablename,
7010 unsigned long bucketsize,
7011 unsigned long numentries,
7012 int scale,
7013 int flags,
7014 unsigned int *_hash_shift,
7015 unsigned int *_hash_mask,
31fe62b9
TB
7016 unsigned long low_limit,
7017 unsigned long high_limit)
1da177e4 7018{
31fe62b9 7019 unsigned long long max = high_limit;
1da177e4
LT
7020 unsigned long log2qty, size;
7021 void *table = NULL;
7022
7023 /* allow the kernel cmdline to have a say */
7024 if (!numentries) {
7025 /* round applicable memory size up to nearest megabyte */
04903664 7026 numentries = nr_kernel_pages;
a7e83318
JZ
7027
7028 /* It isn't necessary when PAGE_SIZE >= 1MB */
7029 if (PAGE_SHIFT < 20)
7030 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7031
7032 /* limit to 1 bucket per 2^scale bytes of low memory */
7033 if (scale > PAGE_SHIFT)
7034 numentries >>= (scale - PAGE_SHIFT);
7035 else
7036 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7037
7038 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7039 if (unlikely(flags & HASH_SMALL)) {
7040 /* Makes no sense without HASH_EARLY */
7041 WARN_ON(!(flags & HASH_EARLY));
7042 if (!(numentries >> *_hash_shift)) {
7043 numentries = 1UL << *_hash_shift;
7044 BUG_ON(!numentries);
7045 }
7046 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7047 numentries = PAGE_SIZE / bucketsize;
1da177e4 7048 }
6e692ed3 7049 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7050
7051 /* limit allocation size to 1/16 total memory by default */
7052 if (max == 0) {
7053 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7054 do_div(max, bucketsize);
7055 }
074b8517 7056 max = min(max, 0x80000000ULL);
1da177e4 7057
31fe62b9
TB
7058 if (numentries < low_limit)
7059 numentries = low_limit;
1da177e4
LT
7060 if (numentries > max)
7061 numentries = max;
7062
f0d1b0b3 7063 log2qty = ilog2(numentries);
1da177e4
LT
7064
7065 do {
7066 size = bucketsize << log2qty;
7067 if (flags & HASH_EARLY)
6782832e 7068 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7069 else if (hashdist)
7070 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7071 else {
1037b83b
ED
7072 /*
7073 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7074 * some pages at the end of hash table which
7075 * alloc_pages_exact() automatically does
1037b83b 7076 */
264ef8a9 7077 if (get_order(size) < MAX_ORDER) {
a1dd268c 7078 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7079 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7080 }
1da177e4
LT
7081 }
7082 } while (!table && size > PAGE_SIZE && --log2qty);
7083
7084 if (!table)
7085 panic("Failed to allocate %s hash table\n", tablename);
7086
1170532b
JP
7087 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7088 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7089
7090 if (_hash_shift)
7091 *_hash_shift = log2qty;
7092 if (_hash_mask)
7093 *_hash_mask = (1 << log2qty) - 1;
7094
7095 return table;
7096}
a117e66e 7097
a5d76b54 7098/*
80934513
MK
7099 * This function checks whether pageblock includes unmovable pages or not.
7100 * If @count is not zero, it is okay to include less @count unmovable pages
7101 *
b8af2941 7102 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7103 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7104 * expect this function should be exact.
a5d76b54 7105 */
b023f468
WC
7106bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7107 bool skip_hwpoisoned_pages)
49ac8255
KH
7108{
7109 unsigned long pfn, iter, found;
47118af0
MN
7110 int mt;
7111
49ac8255
KH
7112 /*
7113 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7114 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7115 */
7116 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7117 return false;
47118af0
MN
7118 mt = get_pageblock_migratetype(page);
7119 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7120 return false;
49ac8255
KH
7121
7122 pfn = page_to_pfn(page);
7123 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7124 unsigned long check = pfn + iter;
7125
29723fcc 7126 if (!pfn_valid_within(check))
49ac8255 7127 continue;
29723fcc 7128
49ac8255 7129 page = pfn_to_page(check);
c8721bbb
NH
7130
7131 /*
7132 * Hugepages are not in LRU lists, but they're movable.
7133 * We need not scan over tail pages bacause we don't
7134 * handle each tail page individually in migration.
7135 */
7136 if (PageHuge(page)) {
7137 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7138 continue;
7139 }
7140
97d255c8
MK
7141 /*
7142 * We can't use page_count without pin a page
7143 * because another CPU can free compound page.
7144 * This check already skips compound tails of THP
0139aa7b 7145 * because their page->_refcount is zero at all time.
97d255c8 7146 */
fe896d18 7147 if (!page_ref_count(page)) {
49ac8255
KH
7148 if (PageBuddy(page))
7149 iter += (1 << page_order(page)) - 1;
7150 continue;
7151 }
97d255c8 7152
b023f468
WC
7153 /*
7154 * The HWPoisoned page may be not in buddy system, and
7155 * page_count() is not 0.
7156 */
7157 if (skip_hwpoisoned_pages && PageHWPoison(page))
7158 continue;
7159
49ac8255
KH
7160 if (!PageLRU(page))
7161 found++;
7162 /*
6b4f7799
JW
7163 * If there are RECLAIMABLE pages, we need to check
7164 * it. But now, memory offline itself doesn't call
7165 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7166 */
7167 /*
7168 * If the page is not RAM, page_count()should be 0.
7169 * we don't need more check. This is an _used_ not-movable page.
7170 *
7171 * The problematic thing here is PG_reserved pages. PG_reserved
7172 * is set to both of a memory hole page and a _used_ kernel
7173 * page at boot.
7174 */
7175 if (found > count)
80934513 7176 return true;
49ac8255 7177 }
80934513 7178 return false;
49ac8255
KH
7179}
7180
7181bool is_pageblock_removable_nolock(struct page *page)
7182{
656a0706
MH
7183 struct zone *zone;
7184 unsigned long pfn;
687875fb
MH
7185
7186 /*
7187 * We have to be careful here because we are iterating over memory
7188 * sections which are not zone aware so we might end up outside of
7189 * the zone but still within the section.
656a0706
MH
7190 * We have to take care about the node as well. If the node is offline
7191 * its NODE_DATA will be NULL - see page_zone.
687875fb 7192 */
656a0706
MH
7193 if (!node_online(page_to_nid(page)))
7194 return false;
7195
7196 zone = page_zone(page);
7197 pfn = page_to_pfn(page);
108bcc96 7198 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7199 return false;
7200
b023f468 7201 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7202}
0c0e6195 7203
080fe206 7204#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7205
7206static unsigned long pfn_max_align_down(unsigned long pfn)
7207{
7208 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7209 pageblock_nr_pages) - 1);
7210}
7211
7212static unsigned long pfn_max_align_up(unsigned long pfn)
7213{
7214 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7215 pageblock_nr_pages));
7216}
7217
041d3a8c 7218/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7219static int __alloc_contig_migrate_range(struct compact_control *cc,
7220 unsigned long start, unsigned long end)
041d3a8c
MN
7221{
7222 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7223 unsigned long nr_reclaimed;
041d3a8c
MN
7224 unsigned long pfn = start;
7225 unsigned int tries = 0;
7226 int ret = 0;
7227
be49a6e1 7228 migrate_prep();
041d3a8c 7229
bb13ffeb 7230 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7231 if (fatal_signal_pending(current)) {
7232 ret = -EINTR;
7233 break;
7234 }
7235
bb13ffeb
MG
7236 if (list_empty(&cc->migratepages)) {
7237 cc->nr_migratepages = 0;
edc2ca61 7238 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7239 if (!pfn) {
7240 ret = -EINTR;
7241 break;
7242 }
7243 tries = 0;
7244 } else if (++tries == 5) {
7245 ret = ret < 0 ? ret : -EBUSY;
7246 break;
7247 }
7248
beb51eaa
MK
7249 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7250 &cc->migratepages);
7251 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7252
9c620e2b 7253 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7254 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7255 }
2a6f5124
SP
7256 if (ret < 0) {
7257 putback_movable_pages(&cc->migratepages);
7258 return ret;
7259 }
7260 return 0;
041d3a8c
MN
7261}
7262
7263/**
7264 * alloc_contig_range() -- tries to allocate given range of pages
7265 * @start: start PFN to allocate
7266 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7267 * @migratetype: migratetype of the underlaying pageblocks (either
7268 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7269 * in range must have the same migratetype and it must
7270 * be either of the two.
041d3a8c
MN
7271 *
7272 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7273 * aligned, however it's the caller's responsibility to guarantee that
7274 * we are the only thread that changes migrate type of pageblocks the
7275 * pages fall in.
7276 *
7277 * The PFN range must belong to a single zone.
7278 *
7279 * Returns zero on success or negative error code. On success all
7280 * pages which PFN is in [start, end) are allocated for the caller and
7281 * need to be freed with free_contig_range().
7282 */
0815f3d8
MN
7283int alloc_contig_range(unsigned long start, unsigned long end,
7284 unsigned migratetype)
041d3a8c 7285{
041d3a8c 7286 unsigned long outer_start, outer_end;
d00181b9
KS
7287 unsigned int order;
7288 int ret = 0;
041d3a8c 7289
bb13ffeb
MG
7290 struct compact_control cc = {
7291 .nr_migratepages = 0,
7292 .order = -1,
7293 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7294 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7295 .ignore_skip_hint = true,
7296 };
7297 INIT_LIST_HEAD(&cc.migratepages);
7298
041d3a8c
MN
7299 /*
7300 * What we do here is we mark all pageblocks in range as
7301 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7302 * have different sizes, and due to the way page allocator
7303 * work, we align the range to biggest of the two pages so
7304 * that page allocator won't try to merge buddies from
7305 * different pageblocks and change MIGRATE_ISOLATE to some
7306 * other migration type.
7307 *
7308 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7309 * migrate the pages from an unaligned range (ie. pages that
7310 * we are interested in). This will put all the pages in
7311 * range back to page allocator as MIGRATE_ISOLATE.
7312 *
7313 * When this is done, we take the pages in range from page
7314 * allocator removing them from the buddy system. This way
7315 * page allocator will never consider using them.
7316 *
7317 * This lets us mark the pageblocks back as
7318 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7319 * aligned range but not in the unaligned, original range are
7320 * put back to page allocator so that buddy can use them.
7321 */
7322
7323 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7324 pfn_max_align_up(end), migratetype,
7325 false);
041d3a8c 7326 if (ret)
86a595f9 7327 return ret;
041d3a8c 7328
8ef5849f
JK
7329 /*
7330 * In case of -EBUSY, we'd like to know which page causes problem.
7331 * So, just fall through. We will check it in test_pages_isolated().
7332 */
bb13ffeb 7333 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7334 if (ret && ret != -EBUSY)
041d3a8c
MN
7335 goto done;
7336
7337 /*
7338 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7339 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7340 * more, all pages in [start, end) are free in page allocator.
7341 * What we are going to do is to allocate all pages from
7342 * [start, end) (that is remove them from page allocator).
7343 *
7344 * The only problem is that pages at the beginning and at the
7345 * end of interesting range may be not aligned with pages that
7346 * page allocator holds, ie. they can be part of higher order
7347 * pages. Because of this, we reserve the bigger range and
7348 * once this is done free the pages we are not interested in.
7349 *
7350 * We don't have to hold zone->lock here because the pages are
7351 * isolated thus they won't get removed from buddy.
7352 */
7353
7354 lru_add_drain_all();
510f5507 7355 drain_all_pages(cc.zone);
041d3a8c
MN
7356
7357 order = 0;
7358 outer_start = start;
7359 while (!PageBuddy(pfn_to_page(outer_start))) {
7360 if (++order >= MAX_ORDER) {
8ef5849f
JK
7361 outer_start = start;
7362 break;
041d3a8c
MN
7363 }
7364 outer_start &= ~0UL << order;
7365 }
7366
8ef5849f
JK
7367 if (outer_start != start) {
7368 order = page_order(pfn_to_page(outer_start));
7369
7370 /*
7371 * outer_start page could be small order buddy page and
7372 * it doesn't include start page. Adjust outer_start
7373 * in this case to report failed page properly
7374 * on tracepoint in test_pages_isolated()
7375 */
7376 if (outer_start + (1UL << order) <= start)
7377 outer_start = start;
7378 }
7379
041d3a8c 7380 /* Make sure the range is really isolated. */
b023f468 7381 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7382 pr_info("%s: [%lx, %lx) PFNs busy\n",
7383 __func__, outer_start, end);
041d3a8c
MN
7384 ret = -EBUSY;
7385 goto done;
7386 }
7387
49f223a9 7388 /* Grab isolated pages from freelists. */
bb13ffeb 7389 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7390 if (!outer_end) {
7391 ret = -EBUSY;
7392 goto done;
7393 }
7394
7395 /* Free head and tail (if any) */
7396 if (start != outer_start)
7397 free_contig_range(outer_start, start - outer_start);
7398 if (end != outer_end)
7399 free_contig_range(end, outer_end - end);
7400
7401done:
7402 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7403 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7404 return ret;
7405}
7406
7407void free_contig_range(unsigned long pfn, unsigned nr_pages)
7408{
bcc2b02f
MS
7409 unsigned int count = 0;
7410
7411 for (; nr_pages--; pfn++) {
7412 struct page *page = pfn_to_page(pfn);
7413
7414 count += page_count(page) != 1;
7415 __free_page(page);
7416 }
7417 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7418}
7419#endif
7420
4ed7e022 7421#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7422/*
7423 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7424 * page high values need to be recalulated.
7425 */
4ed7e022
JL
7426void __meminit zone_pcp_update(struct zone *zone)
7427{
0a647f38 7428 unsigned cpu;
c8e251fa 7429 mutex_lock(&pcp_batch_high_lock);
0a647f38 7430 for_each_possible_cpu(cpu)
169f6c19
CS
7431 pageset_set_high_and_batch(zone,
7432 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7433 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7434}
7435#endif
7436
340175b7
JL
7437void zone_pcp_reset(struct zone *zone)
7438{
7439 unsigned long flags;
5a883813
MK
7440 int cpu;
7441 struct per_cpu_pageset *pset;
340175b7
JL
7442
7443 /* avoid races with drain_pages() */
7444 local_irq_save(flags);
7445 if (zone->pageset != &boot_pageset) {
5a883813
MK
7446 for_each_online_cpu(cpu) {
7447 pset = per_cpu_ptr(zone->pageset, cpu);
7448 drain_zonestat(zone, pset);
7449 }
340175b7
JL
7450 free_percpu(zone->pageset);
7451 zone->pageset = &boot_pageset;
7452 }
7453 local_irq_restore(flags);
7454}
7455
6dcd73d7 7456#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7457/*
b9eb6319
JK
7458 * All pages in the range must be in a single zone and isolated
7459 * before calling this.
0c0e6195
KH
7460 */
7461void
7462__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7463{
7464 struct page *page;
7465 struct zone *zone;
7aeb09f9 7466 unsigned int order, i;
0c0e6195
KH
7467 unsigned long pfn;
7468 unsigned long flags;
7469 /* find the first valid pfn */
7470 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7471 if (pfn_valid(pfn))
7472 break;
7473 if (pfn == end_pfn)
7474 return;
7475 zone = page_zone(pfn_to_page(pfn));
7476 spin_lock_irqsave(&zone->lock, flags);
7477 pfn = start_pfn;
7478 while (pfn < end_pfn) {
7479 if (!pfn_valid(pfn)) {
7480 pfn++;
7481 continue;
7482 }
7483 page = pfn_to_page(pfn);
b023f468
WC
7484 /*
7485 * The HWPoisoned page may be not in buddy system, and
7486 * page_count() is not 0.
7487 */
7488 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7489 pfn++;
7490 SetPageReserved(page);
7491 continue;
7492 }
7493
0c0e6195
KH
7494 BUG_ON(page_count(page));
7495 BUG_ON(!PageBuddy(page));
7496 order = page_order(page);
7497#ifdef CONFIG_DEBUG_VM
1170532b
JP
7498 pr_info("remove from free list %lx %d %lx\n",
7499 pfn, 1 << order, end_pfn);
0c0e6195
KH
7500#endif
7501 list_del(&page->lru);
7502 rmv_page_order(page);
7503 zone->free_area[order].nr_free--;
0c0e6195
KH
7504 for (i = 0; i < (1 << order); i++)
7505 SetPageReserved((page+i));
7506 pfn += (1 << order);
7507 }
7508 spin_unlock_irqrestore(&zone->lock, flags);
7509}
7510#endif
8d22ba1b 7511
8d22ba1b
WF
7512bool is_free_buddy_page(struct page *page)
7513{
7514 struct zone *zone = page_zone(page);
7515 unsigned long pfn = page_to_pfn(page);
7516 unsigned long flags;
7aeb09f9 7517 unsigned int order;
8d22ba1b
WF
7518
7519 spin_lock_irqsave(&zone->lock, flags);
7520 for (order = 0; order < MAX_ORDER; order++) {
7521 struct page *page_head = page - (pfn & ((1 << order) - 1));
7522
7523 if (PageBuddy(page_head) && page_order(page_head) >= order)
7524 break;
7525 }
7526 spin_unlock_irqrestore(&zone->lock, flags);
7527
7528 return order < MAX_ORDER;
7529}
This page took 2.124527 seconds and 5 git commands to generate.