thp: file pages support for split_huge_page()
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
7e18adb4
MG
298static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
299{
300 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
301 return true;
302
303 return false;
304}
305
3a80a7fa
MG
306/*
307 * Returns false when the remaining initialisation should be deferred until
308 * later in the boot cycle when it can be parallelised.
309 */
310static inline bool update_defer_init(pg_data_t *pgdat,
311 unsigned long pfn, unsigned long zone_end,
312 unsigned long *nr_initialised)
313{
987b3095
LZ
314 unsigned long max_initialise;
315
3a80a7fa
MG
316 /* Always populate low zones for address-contrained allocations */
317 if (zone_end < pgdat_end_pfn(pgdat))
318 return true;
987b3095
LZ
319 /*
320 * Initialise at least 2G of a node but also take into account that
321 * two large system hashes that can take up 1GB for 0.25TB/node.
322 */
323 max_initialise = max(2UL << (30 - PAGE_SHIFT),
324 (pgdat->node_spanned_pages >> 8));
3a80a7fa 325
3a80a7fa 326 (*nr_initialised)++;
987b3095 327 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
328 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
329 pgdat->first_deferred_pfn = pfn;
330 return false;
331 }
332
333 return true;
334}
335#else
336static inline void reset_deferred_meminit(pg_data_t *pgdat)
337{
338}
339
340static inline bool early_page_uninitialised(unsigned long pfn)
341{
342 return false;
343}
344
7e18adb4
MG
345static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
346{
347 return false;
348}
349
3a80a7fa
MG
350static inline bool update_defer_init(pg_data_t *pgdat,
351 unsigned long pfn, unsigned long zone_end,
352 unsigned long *nr_initialised)
353{
354 return true;
355}
356#endif
357
0b423ca2
MG
358/* Return a pointer to the bitmap storing bits affecting a block of pages */
359static inline unsigned long *get_pageblock_bitmap(struct page *page,
360 unsigned long pfn)
361{
362#ifdef CONFIG_SPARSEMEM
363 return __pfn_to_section(pfn)->pageblock_flags;
364#else
365 return page_zone(page)->pageblock_flags;
366#endif /* CONFIG_SPARSEMEM */
367}
368
369static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
370{
371#ifdef CONFIG_SPARSEMEM
372 pfn &= (PAGES_PER_SECTION-1);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#else
375 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
376 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
377#endif /* CONFIG_SPARSEMEM */
378}
379
380/**
381 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
382 * @page: The page within the block of interest
383 * @pfn: The target page frame number
384 * @end_bitidx: The last bit of interest to retrieve
385 * @mask: mask of bits that the caller is interested in
386 *
387 * Return: pageblock_bits flags
388 */
389static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
390 unsigned long pfn,
391 unsigned long end_bitidx,
392 unsigned long mask)
393{
394 unsigned long *bitmap;
395 unsigned long bitidx, word_bitidx;
396 unsigned long word;
397
398 bitmap = get_pageblock_bitmap(page, pfn);
399 bitidx = pfn_to_bitidx(page, pfn);
400 word_bitidx = bitidx / BITS_PER_LONG;
401 bitidx &= (BITS_PER_LONG-1);
402
403 word = bitmap[word_bitidx];
404 bitidx += end_bitidx;
405 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
406}
407
408unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
409 unsigned long end_bitidx,
410 unsigned long mask)
411{
412 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
413}
414
415static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
416{
417 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418}
419
420/**
421 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
422 * @page: The page within the block of interest
423 * @flags: The flags to set
424 * @pfn: The target page frame number
425 * @end_bitidx: The last bit of interest
426 * @mask: mask of bits that the caller is interested in
427 */
428void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
429 unsigned long pfn,
430 unsigned long end_bitidx,
431 unsigned long mask)
432{
433 unsigned long *bitmap;
434 unsigned long bitidx, word_bitidx;
435 unsigned long old_word, word;
436
437 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
438
439 bitmap = get_pageblock_bitmap(page, pfn);
440 bitidx = pfn_to_bitidx(page, pfn);
441 word_bitidx = bitidx / BITS_PER_LONG;
442 bitidx &= (BITS_PER_LONG-1);
443
444 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
445
446 bitidx += end_bitidx;
447 mask <<= (BITS_PER_LONG - bitidx - 1);
448 flags <<= (BITS_PER_LONG - bitidx - 1);
449
450 word = READ_ONCE(bitmap[word_bitidx]);
451 for (;;) {
452 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
453 if (word == old_word)
454 break;
455 word = old_word;
456 }
457}
3a80a7fa 458
ee6f509c 459void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 460{
5d0f3f72
KM
461 if (unlikely(page_group_by_mobility_disabled &&
462 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
463 migratetype = MIGRATE_UNMOVABLE;
464
b2a0ac88
MG
465 set_pageblock_flags_group(page, (unsigned long)migratetype,
466 PB_migrate, PB_migrate_end);
467}
468
13e7444b 469#ifdef CONFIG_DEBUG_VM
c6a57e19 470static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 471{
bdc8cb98
DH
472 int ret = 0;
473 unsigned seq;
474 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 475 unsigned long sp, start_pfn;
c6a57e19 476
bdc8cb98
DH
477 do {
478 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
479 start_pfn = zone->zone_start_pfn;
480 sp = zone->spanned_pages;
108bcc96 481 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
482 ret = 1;
483 } while (zone_span_seqretry(zone, seq));
484
b5e6a5a2 485 if (ret)
613813e8
DH
486 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
487 pfn, zone_to_nid(zone), zone->name,
488 start_pfn, start_pfn + sp);
b5e6a5a2 489
bdc8cb98 490 return ret;
c6a57e19
DH
491}
492
493static int page_is_consistent(struct zone *zone, struct page *page)
494{
14e07298 495 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 496 return 0;
1da177e4 497 if (zone != page_zone(page))
c6a57e19
DH
498 return 0;
499
500 return 1;
501}
502/*
503 * Temporary debugging check for pages not lying within a given zone.
504 */
505static int bad_range(struct zone *zone, struct page *page)
506{
507 if (page_outside_zone_boundaries(zone, page))
1da177e4 508 return 1;
c6a57e19
DH
509 if (!page_is_consistent(zone, page))
510 return 1;
511
1da177e4
LT
512 return 0;
513}
13e7444b
NP
514#else
515static inline int bad_range(struct zone *zone, struct page *page)
516{
517 return 0;
518}
519#endif
520
d230dec1
KS
521static void bad_page(struct page *page, const char *reason,
522 unsigned long bad_flags)
1da177e4 523{
d936cf9b
HD
524 static unsigned long resume;
525 static unsigned long nr_shown;
526 static unsigned long nr_unshown;
527
528 /*
529 * Allow a burst of 60 reports, then keep quiet for that minute;
530 * or allow a steady drip of one report per second.
531 */
532 if (nr_shown == 60) {
533 if (time_before(jiffies, resume)) {
534 nr_unshown++;
535 goto out;
536 }
537 if (nr_unshown) {
ff8e8116 538 pr_alert(
1e9e6365 539 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
540 nr_unshown);
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
547
ff8e8116 548 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 549 current->comm, page_to_pfn(page));
ff8e8116
VB
550 __dump_page(page, reason);
551 bad_flags &= page->flags;
552 if (bad_flags)
553 pr_alert("bad because of flags: %#lx(%pGp)\n",
554 bad_flags, &bad_flags);
4e462112 555 dump_page_owner(page);
3dc14741 556
4f31888c 557 print_modules();
1da177e4 558 dump_stack();
d936cf9b 559out:
8cc3b392 560 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 561 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 562 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
563}
564
1da177e4
LT
565/*
566 * Higher-order pages are called "compound pages". They are structured thusly:
567 *
1d798ca3 568 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 569 *
1d798ca3
KS
570 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
571 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 572 *
1d798ca3
KS
573 * The first tail page's ->compound_dtor holds the offset in array of compound
574 * page destructors. See compound_page_dtors.
1da177e4 575 *
1d798ca3 576 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 577 * This usage means that zero-order pages may not be compound.
1da177e4 578 */
d98c7a09 579
9a982250 580void free_compound_page(struct page *page)
d98c7a09 581{
d85f3385 582 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
583}
584
d00181b9 585void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
586{
587 int i;
588 int nr_pages = 1 << order;
589
f1e61557 590 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
591 set_compound_order(page, order);
592 __SetPageHead(page);
593 for (i = 1; i < nr_pages; i++) {
594 struct page *p = page + i;
58a84aa9 595 set_page_count(p, 0);
1c290f64 596 p->mapping = TAIL_MAPPING;
1d798ca3 597 set_compound_head(p, page);
18229df5 598 }
53f9263b 599 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
600}
601
c0a32fc5
SG
602#ifdef CONFIG_DEBUG_PAGEALLOC
603unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
604bool _debug_pagealloc_enabled __read_mostly
605 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 606EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
607bool _debug_guardpage_enabled __read_mostly;
608
031bc574
JK
609static int __init early_debug_pagealloc(char *buf)
610{
611 if (!buf)
612 return -EINVAL;
2a138dc7 613 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
614}
615early_param("debug_pagealloc", early_debug_pagealloc);
616
e30825f1
JK
617static bool need_debug_guardpage(void)
618{
031bc574
JK
619 /* If we don't use debug_pagealloc, we don't need guard page */
620 if (!debug_pagealloc_enabled())
621 return false;
622
e30825f1
JK
623 return true;
624}
625
626static void init_debug_guardpage(void)
627{
031bc574
JK
628 if (!debug_pagealloc_enabled())
629 return;
630
e30825f1
JK
631 _debug_guardpage_enabled = true;
632}
633
634struct page_ext_operations debug_guardpage_ops = {
635 .need = need_debug_guardpage,
636 .init = init_debug_guardpage,
637};
c0a32fc5
SG
638
639static int __init debug_guardpage_minorder_setup(char *buf)
640{
641 unsigned long res;
642
643 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 644 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
645 return 0;
646 }
647 _debug_guardpage_minorder = res;
1170532b 648 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
649 return 0;
650}
651__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
652
2847cf95
JK
653static inline void set_page_guard(struct zone *zone, struct page *page,
654 unsigned int order, int migratetype)
c0a32fc5 655{
e30825f1
JK
656 struct page_ext *page_ext;
657
658 if (!debug_guardpage_enabled())
659 return;
660
661 page_ext = lookup_page_ext(page);
f86e4271
YS
662 if (unlikely(!page_ext))
663 return;
664
e30825f1
JK
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
2847cf95
JK
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
671}
672
2847cf95
JK
673static inline void clear_page_guard(struct zone *zone, struct page *page,
674 unsigned int order, int migratetype)
c0a32fc5 675{
e30825f1
JK
676 struct page_ext *page_ext;
677
678 if (!debug_guardpage_enabled())
679 return;
680
681 page_ext = lookup_page_ext(page);
f86e4271
YS
682 if (unlikely(!page_ext))
683 return;
684
e30825f1
JK
685 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
686
2847cf95
JK
687 set_page_private(page, 0);
688 if (!is_migrate_isolate(migratetype))
689 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
690}
691#else
e30825f1 692struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
693static inline void set_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
695static inline void clear_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) {}
c0a32fc5
SG
697#endif
698
7aeb09f9 699static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 700{
4c21e2f2 701 set_page_private(page, order);
676165a8 702 __SetPageBuddy(page);
1da177e4
LT
703}
704
705static inline void rmv_page_order(struct page *page)
706{
676165a8 707 __ClearPageBuddy(page);
4c21e2f2 708 set_page_private(page, 0);
1da177e4
LT
709}
710
1da177e4
LT
711/*
712 * This function checks whether a page is free && is the buddy
713 * we can do coalesce a page and its buddy if
13e7444b 714 * (a) the buddy is not in a hole &&
676165a8 715 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
716 * (c) a page and its buddy have the same order &&
717 * (d) a page and its buddy are in the same zone.
676165a8 718 *
cf6fe945
WSH
719 * For recording whether a page is in the buddy system, we set ->_mapcount
720 * PAGE_BUDDY_MAPCOUNT_VALUE.
721 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
722 * serialized by zone->lock.
1da177e4 723 *
676165a8 724 * For recording page's order, we use page_private(page).
1da177e4 725 */
cb2b95e1 726static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 727 unsigned int order)
1da177e4 728{
14e07298 729 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 730 return 0;
13e7444b 731
c0a32fc5 732 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
733 if (page_zone_id(page) != page_zone_id(buddy))
734 return 0;
735
4c5018ce
WY
736 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
737
c0a32fc5
SG
738 return 1;
739 }
740
cb2b95e1 741 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
742 /*
743 * zone check is done late to avoid uselessly
744 * calculating zone/node ids for pages that could
745 * never merge.
746 */
747 if (page_zone_id(page) != page_zone_id(buddy))
748 return 0;
749
4c5018ce
WY
750 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
751
6aa3001b 752 return 1;
676165a8 753 }
6aa3001b 754 return 0;
1da177e4
LT
755}
756
757/*
758 * Freeing function for a buddy system allocator.
759 *
760 * The concept of a buddy system is to maintain direct-mapped table
761 * (containing bit values) for memory blocks of various "orders".
762 * The bottom level table contains the map for the smallest allocatable
763 * units of memory (here, pages), and each level above it describes
764 * pairs of units from the levels below, hence, "buddies".
765 * At a high level, all that happens here is marking the table entry
766 * at the bottom level available, and propagating the changes upward
767 * as necessary, plus some accounting needed to play nicely with other
768 * parts of the VM system.
769 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
770 * free pages of length of (1 << order) and marked with _mapcount
771 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
772 * field.
1da177e4 773 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
774 * other. That is, if we allocate a small block, and both were
775 * free, the remainder of the region must be split into blocks.
1da177e4 776 * If a block is freed, and its buddy is also free, then this
5f63b720 777 * triggers coalescing into a block of larger size.
1da177e4 778 *
6d49e352 779 * -- nyc
1da177e4
LT
780 */
781
48db57f8 782static inline void __free_one_page(struct page *page,
dc4b0caf 783 unsigned long pfn,
ed0ae21d
MG
784 struct zone *zone, unsigned int order,
785 int migratetype)
1da177e4
LT
786{
787 unsigned long page_idx;
6dda9d55 788 unsigned long combined_idx;
43506fad 789 unsigned long uninitialized_var(buddy_idx);
6dda9d55 790 struct page *buddy;
d9dddbf5
VB
791 unsigned int max_order;
792
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 794
d29bb978 795 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 797
ed0ae21d 798 VM_BUG_ON(migratetype == -1);
d9dddbf5 799 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 801
d9dddbf5 802 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 803
309381fe
SL
804 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
805 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 806
d9dddbf5 807continue_merging:
3c605096 808 while (order < max_order - 1) {
43506fad
KC
809 buddy_idx = __find_buddy_index(page_idx, order);
810 buddy = page + (buddy_idx - page_idx);
cb2b95e1 811 if (!page_is_buddy(page, buddy, order))
d9dddbf5 812 goto done_merging;
c0a32fc5
SG
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy)) {
2847cf95 818 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
819 } else {
820 list_del(&buddy->lru);
821 zone->free_area[order].nr_free--;
822 rmv_page_order(buddy);
823 }
43506fad 824 combined_idx = buddy_idx & page_idx;
1da177e4
LT
825 page = page + (combined_idx - page_idx);
826 page_idx = combined_idx;
827 order++;
828 }
d9dddbf5
VB
829 if (max_order < MAX_ORDER) {
830 /* If we are here, it means order is >= pageblock_order.
831 * We want to prevent merge between freepages on isolate
832 * pageblock and normal pageblock. Without this, pageblock
833 * isolation could cause incorrect freepage or CMA accounting.
834 *
835 * We don't want to hit this code for the more frequent
836 * low-order merging.
837 */
838 if (unlikely(has_isolate_pageblock(zone))) {
839 int buddy_mt;
840
841 buddy_idx = __find_buddy_index(page_idx, order);
842 buddy = page + (buddy_idx - page_idx);
843 buddy_mt = get_pageblock_migratetype(buddy);
844
845 if (migratetype != buddy_mt
846 && (is_migrate_isolate(migratetype) ||
847 is_migrate_isolate(buddy_mt)))
848 goto done_merging;
849 }
850 max_order++;
851 goto continue_merging;
852 }
853
854done_merging:
1da177e4 855 set_page_order(page, order);
6dda9d55
CZ
856
857 /*
858 * If this is not the largest possible page, check if the buddy
859 * of the next-highest order is free. If it is, it's possible
860 * that pages are being freed that will coalesce soon. In case,
861 * that is happening, add the free page to the tail of the list
862 * so it's less likely to be used soon and more likely to be merged
863 * as a higher order page
864 */
b7f50cfa 865 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 866 struct page *higher_page, *higher_buddy;
43506fad
KC
867 combined_idx = buddy_idx & page_idx;
868 higher_page = page + (combined_idx - page_idx);
869 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 870 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
871 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
872 list_add_tail(&page->lru,
873 &zone->free_area[order].free_list[migratetype]);
874 goto out;
875 }
876 }
877
878 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
879out:
1da177e4
LT
880 zone->free_area[order].nr_free++;
881}
882
7bfec6f4
MG
883/*
884 * A bad page could be due to a number of fields. Instead of multiple branches,
885 * try and check multiple fields with one check. The caller must do a detailed
886 * check if necessary.
887 */
888static inline bool page_expected_state(struct page *page,
889 unsigned long check_flags)
890{
891 if (unlikely(atomic_read(&page->_mapcount) != -1))
892 return false;
893
894 if (unlikely((unsigned long)page->mapping |
895 page_ref_count(page) |
896#ifdef CONFIG_MEMCG
897 (unsigned long)page->mem_cgroup |
898#endif
899 (page->flags & check_flags)))
900 return false;
901
902 return true;
903}
904
bb552ac6 905static void free_pages_check_bad(struct page *page)
1da177e4 906{
7bfec6f4
MG
907 const char *bad_reason;
908 unsigned long bad_flags;
909
7bfec6f4
MG
910 bad_reason = NULL;
911 bad_flags = 0;
f0b791a3 912
53f9263b 913 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
914 bad_reason = "nonzero mapcount";
915 if (unlikely(page->mapping != NULL))
916 bad_reason = "non-NULL mapping";
fe896d18 917 if (unlikely(page_ref_count(page) != 0))
0139aa7b 918 bad_reason = "nonzero _refcount";
f0b791a3
DH
919 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
920 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
921 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
922 }
9edad6ea
JW
923#ifdef CONFIG_MEMCG
924 if (unlikely(page->mem_cgroup))
925 bad_reason = "page still charged to cgroup";
926#endif
7bfec6f4 927 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
928}
929
930static inline int free_pages_check(struct page *page)
931{
da838d4f 932 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 933 return 0;
bb552ac6
MG
934
935 /* Something has gone sideways, find it */
936 free_pages_check_bad(page);
7bfec6f4 937 return 1;
1da177e4
LT
938}
939
4db7548c
MG
940static int free_tail_pages_check(struct page *head_page, struct page *page)
941{
942 int ret = 1;
943
944 /*
945 * We rely page->lru.next never has bit 0 set, unless the page
946 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
947 */
948 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
949
950 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
951 ret = 0;
952 goto out;
953 }
954 switch (page - head_page) {
955 case 1:
956 /* the first tail page: ->mapping is compound_mapcount() */
957 if (unlikely(compound_mapcount(page))) {
958 bad_page(page, "nonzero compound_mapcount", 0);
959 goto out;
960 }
961 break;
962 case 2:
963 /*
964 * the second tail page: ->mapping is
965 * page_deferred_list().next -- ignore value.
966 */
967 break;
968 default:
969 if (page->mapping != TAIL_MAPPING) {
970 bad_page(page, "corrupted mapping in tail page", 0);
971 goto out;
972 }
973 break;
974 }
975 if (unlikely(!PageTail(page))) {
976 bad_page(page, "PageTail not set", 0);
977 goto out;
978 }
979 if (unlikely(compound_head(page) != head_page)) {
980 bad_page(page, "compound_head not consistent", 0);
981 goto out;
982 }
983 ret = 0;
984out:
985 page->mapping = NULL;
986 clear_compound_head(page);
987 return ret;
988}
989
e2769dbd
MG
990static __always_inline bool free_pages_prepare(struct page *page,
991 unsigned int order, bool check_free)
4db7548c 992{
e2769dbd 993 int bad = 0;
4db7548c 994
4db7548c
MG
995 VM_BUG_ON_PAGE(PageTail(page), page);
996
e2769dbd
MG
997 trace_mm_page_free(page, order);
998 kmemcheck_free_shadow(page, order);
e2769dbd
MG
999
1000 /*
1001 * Check tail pages before head page information is cleared to
1002 * avoid checking PageCompound for order-0 pages.
1003 */
1004 if (unlikely(order)) {
1005 bool compound = PageCompound(page);
1006 int i;
1007
1008 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1009
e2769dbd
MG
1010 for (i = 1; i < (1 << order); i++) {
1011 if (compound)
1012 bad += free_tail_pages_check(page, page + i);
1013 if (unlikely(free_pages_check(page + i))) {
1014 bad++;
1015 continue;
1016 }
1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 }
1019 }
bda807d4 1020 if (PageMappingFlags(page))
4db7548c 1021 page->mapping = NULL;
4949148a
VD
1022 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1023 memcg_kmem_uncharge(page, order);
1024 __ClearPageKmemcg(page);
1025 }
e2769dbd
MG
1026 if (check_free)
1027 bad += free_pages_check(page);
1028 if (bad)
1029 return false;
4db7548c 1030
e2769dbd
MG
1031 page_cpupid_reset_last(page);
1032 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1033 reset_page_owner(page, order);
4db7548c
MG
1034
1035 if (!PageHighMem(page)) {
1036 debug_check_no_locks_freed(page_address(page),
e2769dbd 1037 PAGE_SIZE << order);
4db7548c 1038 debug_check_no_obj_freed(page_address(page),
e2769dbd 1039 PAGE_SIZE << order);
4db7548c 1040 }
e2769dbd
MG
1041 arch_free_page(page, order);
1042 kernel_poison_pages(page, 1 << order, 0);
1043 kernel_map_pages(page, 1 << order, 0);
29b52de1 1044 kasan_free_pages(page, order);
4db7548c 1045
4db7548c
MG
1046 return true;
1047}
1048
e2769dbd
MG
1049#ifdef CONFIG_DEBUG_VM
1050static inline bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, true);
1053}
1054
1055static inline bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return false;
1058}
1059#else
1060static bool free_pcp_prepare(struct page *page)
1061{
1062 return free_pages_prepare(page, 0, false);
1063}
1064
4db7548c
MG
1065static bool bulkfree_pcp_prepare(struct page *page)
1066{
1067 return free_pages_check(page);
1068}
1069#endif /* CONFIG_DEBUG_VM */
1070
1da177e4 1071/*
5f8dcc21 1072 * Frees a number of pages from the PCP lists
1da177e4 1073 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1074 * count is the number of pages to free.
1da177e4
LT
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
5f8dcc21
MG
1082static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1da177e4 1084{
5f8dcc21 1085 int migratetype = 0;
a6f9edd6 1086 int batch_free = 0;
0d5d823a 1087 unsigned long nr_scanned;
3777999d 1088 bool isolated_pageblocks;
5f8dcc21 1089
c54ad30c 1090 spin_lock(&zone->lock);
3777999d 1091 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1095
e5b31ac2 1096 while (count) {
48db57f8 1097 struct page *page;
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
770c8aaa
BZ
1119 int mt; /* migratetype of the to-be-freed page */
1120
a16601c5 1121 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
aa016d14 1124
bb14c2c7 1125 mt = get_pcppage_migratetype(page);
aa016d14
VB
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
3777999d 1129 if (unlikely(isolated_pageblocks))
51bb1a40 1130 mt = get_pageblock_migratetype(page);
51bb1a40 1131
4db7548c
MG
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
dc4b0caf 1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1136 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1137 } while (--count && --batch_free && !list_empty(list));
1da177e4 1138 }
c54ad30c 1139 spin_unlock(&zone->lock);
1da177e4
LT
1140}
1141
dc4b0caf
MG
1142static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
7aeb09f9 1144 unsigned int order,
ed0ae21d 1145 int migratetype)
1da177e4 1146{
0d5d823a 1147 unsigned long nr_scanned;
006d22d9 1148 spin_lock(&zone->lock);
0d5d823a
MG
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1152
ad53f92e
JK
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1156 }
dc4b0caf 1157 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1158 spin_unlock(&zone->lock);
48db57f8
NP
1159}
1160
1e8ce83c
RH
1161static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163{
1e8ce83c 1164 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1e8ce83c 1168
1e8ce83c
RH
1169 INIT_LIST_HEAD(&page->lru);
1170#ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174#endif
1175}
1176
1177static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179{
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181}
1182
7e18adb4
MG
1183#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184static void init_reserved_page(unsigned long pfn)
1185{
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202}
1203#else
1204static inline void init_reserved_page(unsigned long pfn)
1205{
1206}
1207#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
92923ca3
NZ
1209/*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
4b50bcc7 1215void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1216{
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
7e18adb4
MG
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1d798ca3
KS
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
7e18adb4
MG
1229 SetPageReserved(page);
1230 }
1231 }
92923ca3
NZ
1232}
1233
ec95f53a
KM
1234static void __free_pages_ok(struct page *page, unsigned int order)
1235{
1236 unsigned long flags;
95e34412 1237 int migratetype;
dc4b0caf 1238 unsigned long pfn = page_to_pfn(page);
ec95f53a 1239
e2769dbd 1240 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1241 return;
1242
cfc47a28 1243 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1244 local_irq_save(flags);
f8891e5e 1245 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1247 local_irq_restore(flags);
1da177e4
LT
1248}
1249
949698a3 1250static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1251{
c3993076 1252 unsigned int nr_pages = 1 << order;
e2d0bd2b 1253 struct page *p = page;
c3993076 1254 unsigned int loop;
a226f6c8 1255
e2d0bd2b
YL
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
c3993076
JW
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
a226f6c8 1261 }
e2d0bd2b
YL
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
c3993076 1264
e2d0bd2b 1265 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
a226f6c8
DH
1268}
1269
75a592a4
MG
1270#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1272
75a592a4
MG
1273static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275int __meminit early_pfn_to_nid(unsigned long pfn)
1276{
7ace9917 1277 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1278 int nid;
1279
7ace9917 1280 spin_lock(&early_pfn_lock);
75a592a4 1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1282 if (nid < 0)
e4568d38 1283 nid = first_online_node;
7ace9917
MG
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
75a592a4
MG
1287}
1288#endif
1289
1290#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293{
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300}
1301
1302/* Only safe to use early in boot when initialisation is single-threaded */
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306}
1307
1308#else
1309
1310static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311{
1312 return true;
1313}
1314static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316{
1317 return true;
1318}
1319#endif
1320
1321
0e1cc95b 1322void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1323 unsigned int order)
1324{
1325 if (early_page_uninitialised(pfn))
1326 return;
949698a3 1327 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1328}
1329
7cf91a98
JK
1330/*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349{
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371}
1372
1373void set_zone_contiguous(struct zone *zone)
1374{
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392}
1393
1394void clear_zone_contiguous(struct zone *zone)
1395{
1396 zone->contiguous = false;
1397}
1398
7e18adb4 1399#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1400static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1401 unsigned long pfn, int nr_pages)
1402{
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1412 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1413 return;
1414 }
1415
949698a3
LZ
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
a4de83dd
MG
1418}
1419
d3cd131d
NS
1420/* Completion tracking for deferred_init_memmap() threads */
1421static atomic_t pgdat_init_n_undone __initdata;
1422static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424static inline void __init pgdat_init_report_one_done(void)
1425{
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428}
0e1cc95b 1429
7e18adb4 1430/* Initialise remaining memory on a node */
0e1cc95b 1431static int __init deferred_init_memmap(void *data)
7e18adb4 1432{
0e1cc95b
MG
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
7e18adb4
MG
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
7e18adb4 1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1443
0e1cc95b 1444 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1445 pgdat_init_report_one_done();
0e1cc95b
MG
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
54608c3f 1467 struct page *page = NULL;
a4de83dd
MG
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
7e18adb4
MG
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
54608c3f 1480 if (!pfn_valid_within(pfn))
a4de83dd 1481 goto free_range;
7e18adb4 1482
54608c3f
MG
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
a4de83dd 1490 goto free_range;
54608c3f
MG
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
a4de83dd
MG
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
54608c3f
MG
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
7e18adb4
MG
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1515 goto free_range;
7e18adb4
MG
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
7e18adb4 1535 }
a4de83dd 1536
7e18adb4
MG
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
0e1cc95b 1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1544 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1545
1546 pgdat_init_report_one_done();
0e1cc95b
MG
1547 return 0;
1548}
7cf91a98 1549#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1550
1551void __init page_alloc_init_late(void)
1552{
7cf91a98
JK
1553 struct zone *zone;
1554
1555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1556 int nid;
1557
d3cd131d
NS
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1560 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
d3cd131d 1565 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
7cf91a98
JK
1569#endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
7e18adb4 1573}
7e18adb4 1574
47118af0 1575#ifdef CONFIG_CMA
9cf510a5 1576/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1577void __init init_cma_reserved_pageblock(struct page *page)
1578{
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
47118af0 1587 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
3dcc0571 1602 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1603}
1604#endif
1da177e4
LT
1605
1606/*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
6d49e352 1618 * -- nyc
1da177e4 1619 */
085cc7d5 1620static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1da177e4
LT
1623{
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
309381fe 1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1631
2847cf95 1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1633 debug_guardpage_enabled() &&
2847cf95 1634 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
2847cf95 1641 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1642 continue;
1643 }
b2a0ac88 1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1da177e4
LT
1648}
1649
4e611801 1650static void check_new_page_bad(struct page *page)
1da177e4 1651{
4e611801
VB
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
7bfec6f4 1654
53f9263b 1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
fe896d18 1659 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1660 bad_reason = "nonzero _count";
f4c18e6f
NH
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
e570f56c
NH
1664 /* Don't complain about hwpoisoned pages */
1665 page_mapcount_reset(page); /* remove PageBuddy */
1666 return;
f4c18e6f 1667 }
f0b791a3
DH
1668 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1669 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1670 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1671 }
9edad6ea
JW
1672#ifdef CONFIG_MEMCG
1673 if (unlikely(page->mem_cgroup))
1674 bad_reason = "page still charged to cgroup";
1675#endif
4e611801
VB
1676 bad_page(page, bad_reason, bad_flags);
1677}
1678
1679/*
1680 * This page is about to be returned from the page allocator
1681 */
1682static inline int check_new_page(struct page *page)
1683{
1684 if (likely(page_expected_state(page,
1685 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1686 return 0;
1687
1688 check_new_page_bad(page);
1689 return 1;
2a7684a2
WF
1690}
1691
1414c7f4
LA
1692static inline bool free_pages_prezeroed(bool poisoned)
1693{
1694 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1695 page_poisoning_enabled() && poisoned;
1696}
1697
479f854a
MG
1698#ifdef CONFIG_DEBUG_VM
1699static bool check_pcp_refill(struct page *page)
1700{
1701 return false;
1702}
1703
1704static bool check_new_pcp(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708#else
1709static bool check_pcp_refill(struct page *page)
1710{
1711 return check_new_page(page);
1712}
1713static bool check_new_pcp(struct page *page)
1714{
1715 return false;
1716}
1717#endif /* CONFIG_DEBUG_VM */
1718
1719static bool check_new_pages(struct page *page, unsigned int order)
1720{
1721 int i;
1722 for (i = 0; i < (1 << order); i++) {
1723 struct page *p = page + i;
1724
1725 if (unlikely(check_new_page(p)))
1726 return true;
1727 }
1728
1729 return false;
1730}
1731
46f24fd8
JK
1732inline void post_alloc_hook(struct page *page, unsigned int order,
1733 gfp_t gfp_flags)
1734{
1735 set_page_private(page, 0);
1736 set_page_refcounted(page);
1737
1738 arch_alloc_page(page, order);
1739 kernel_map_pages(page, 1 << order, 1);
1740 kernel_poison_pages(page, 1 << order, 1);
1741 kasan_alloc_pages(page, order);
1742 set_page_owner(page, order, gfp_flags);
1743}
1744
479f854a 1745static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1746 unsigned int alloc_flags)
2a7684a2
WF
1747{
1748 int i;
1414c7f4 1749 bool poisoned = true;
2a7684a2
WF
1750
1751 for (i = 0; i < (1 << order); i++) {
1752 struct page *p = page + i;
1414c7f4
LA
1753 if (poisoned)
1754 poisoned &= page_is_poisoned(p);
2a7684a2 1755 }
689bcebf 1756
46f24fd8 1757 post_alloc_hook(page, order, gfp_flags);
17cf4406 1758
1414c7f4 1759 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1760 for (i = 0; i < (1 << order); i++)
1761 clear_highpage(page + i);
17cf4406
NP
1762
1763 if (order && (gfp_flags & __GFP_COMP))
1764 prep_compound_page(page, order);
1765
75379191 1766 /*
2f064f34 1767 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1768 * allocate the page. The expectation is that the caller is taking
1769 * steps that will free more memory. The caller should avoid the page
1770 * being used for !PFMEMALLOC purposes.
1771 */
2f064f34
MH
1772 if (alloc_flags & ALLOC_NO_WATERMARKS)
1773 set_page_pfmemalloc(page);
1774 else
1775 clear_page_pfmemalloc(page);
1da177e4
LT
1776}
1777
56fd56b8
MG
1778/*
1779 * Go through the free lists for the given migratetype and remove
1780 * the smallest available page from the freelists
1781 */
728ec980
MG
1782static inline
1783struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1784 int migratetype)
1785{
1786 unsigned int current_order;
b8af2941 1787 struct free_area *area;
56fd56b8
MG
1788 struct page *page;
1789
1790 /* Find a page of the appropriate size in the preferred list */
1791 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1792 area = &(zone->free_area[current_order]);
a16601c5 1793 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1794 struct page, lru);
a16601c5
GT
1795 if (!page)
1796 continue;
56fd56b8
MG
1797 list_del(&page->lru);
1798 rmv_page_order(page);
1799 area->nr_free--;
56fd56b8 1800 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1801 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1802 return page;
1803 }
1804
1805 return NULL;
1806}
1807
1808
b2a0ac88
MG
1809/*
1810 * This array describes the order lists are fallen back to when
1811 * the free lists for the desirable migrate type are depleted
1812 */
47118af0 1813static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1814 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1815 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1817#ifdef CONFIG_CMA
974a786e 1818 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1819#endif
194159fb 1820#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1821 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1822#endif
b2a0ac88
MG
1823};
1824
dc67647b
JK
1825#ifdef CONFIG_CMA
1826static struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order)
1828{
1829 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1830}
1831#else
1832static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order) { return NULL; }
1834#endif
1835
c361be55
MG
1836/*
1837 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1838 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1839 * boundary. If alignment is required, use move_freepages_block()
1840 */
435b405c 1841int move_freepages(struct zone *zone,
b69a7288
AB
1842 struct page *start_page, struct page *end_page,
1843 int migratetype)
c361be55
MG
1844{
1845 struct page *page;
d00181b9 1846 unsigned int order;
d100313f 1847 int pages_moved = 0;
c361be55
MG
1848
1849#ifndef CONFIG_HOLES_IN_ZONE
1850 /*
1851 * page_zone is not safe to call in this context when
1852 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1853 * anyway as we check zone boundaries in move_freepages_block().
1854 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1855 * grouping pages by mobility
c361be55 1856 */
97ee4ba7 1857 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1858#endif
1859
1860 for (page = start_page; page <= end_page;) {
344c790e 1861 /* Make sure we are not inadvertently changing nodes */
309381fe 1862 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1863
c361be55
MG
1864 if (!pfn_valid_within(page_to_pfn(page))) {
1865 page++;
1866 continue;
1867 }
1868
1869 if (!PageBuddy(page)) {
1870 page++;
1871 continue;
1872 }
1873
1874 order = page_order(page);
84be48d8
KS
1875 list_move(&page->lru,
1876 &zone->free_area[order].free_list[migratetype]);
c361be55 1877 page += 1 << order;
d100313f 1878 pages_moved += 1 << order;
c361be55
MG
1879 }
1880
d100313f 1881 return pages_moved;
c361be55
MG
1882}
1883
ee6f509c 1884int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1885 int migratetype)
c361be55
MG
1886{
1887 unsigned long start_pfn, end_pfn;
1888 struct page *start_page, *end_page;
1889
1890 start_pfn = page_to_pfn(page);
d9c23400 1891 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1892 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1893 end_page = start_page + pageblock_nr_pages - 1;
1894 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1895
1896 /* Do not cross zone boundaries */
108bcc96 1897 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1898 start_page = page;
108bcc96 1899 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1900 return 0;
1901
1902 return move_freepages(zone, start_page, end_page, migratetype);
1903}
1904
2f66a68f
MG
1905static void change_pageblock_range(struct page *pageblock_page,
1906 int start_order, int migratetype)
1907{
1908 int nr_pageblocks = 1 << (start_order - pageblock_order);
1909
1910 while (nr_pageblocks--) {
1911 set_pageblock_migratetype(pageblock_page, migratetype);
1912 pageblock_page += pageblock_nr_pages;
1913 }
1914}
1915
fef903ef 1916/*
9c0415eb
VB
1917 * When we are falling back to another migratetype during allocation, try to
1918 * steal extra free pages from the same pageblocks to satisfy further
1919 * allocations, instead of polluting multiple pageblocks.
1920 *
1921 * If we are stealing a relatively large buddy page, it is likely there will
1922 * be more free pages in the pageblock, so try to steal them all. For
1923 * reclaimable and unmovable allocations, we steal regardless of page size,
1924 * as fragmentation caused by those allocations polluting movable pageblocks
1925 * is worse than movable allocations stealing from unmovable and reclaimable
1926 * pageblocks.
fef903ef 1927 */
4eb7dce6
JK
1928static bool can_steal_fallback(unsigned int order, int start_mt)
1929{
1930 /*
1931 * Leaving this order check is intended, although there is
1932 * relaxed order check in next check. The reason is that
1933 * we can actually steal whole pageblock if this condition met,
1934 * but, below check doesn't guarantee it and that is just heuristic
1935 * so could be changed anytime.
1936 */
1937 if (order >= pageblock_order)
1938 return true;
1939
1940 if (order >= pageblock_order / 2 ||
1941 start_mt == MIGRATE_RECLAIMABLE ||
1942 start_mt == MIGRATE_UNMOVABLE ||
1943 page_group_by_mobility_disabled)
1944 return true;
1945
1946 return false;
1947}
1948
1949/*
1950 * This function implements actual steal behaviour. If order is large enough,
1951 * we can steal whole pageblock. If not, we first move freepages in this
1952 * pageblock and check whether half of pages are moved or not. If half of
1953 * pages are moved, we can change migratetype of pageblock and permanently
1954 * use it's pages as requested migratetype in the future.
1955 */
1956static void steal_suitable_fallback(struct zone *zone, struct page *page,
1957 int start_type)
fef903ef 1958{
d00181b9 1959 unsigned int current_order = page_order(page);
4eb7dce6 1960 int pages;
fef903ef 1961
fef903ef
SB
1962 /* Take ownership for orders >= pageblock_order */
1963 if (current_order >= pageblock_order) {
1964 change_pageblock_range(page, current_order, start_type);
3a1086fb 1965 return;
fef903ef
SB
1966 }
1967
4eb7dce6 1968 pages = move_freepages_block(zone, page, start_type);
fef903ef 1969
4eb7dce6
JK
1970 /* Claim the whole block if over half of it is free */
1971 if (pages >= (1 << (pageblock_order-1)) ||
1972 page_group_by_mobility_disabled)
1973 set_pageblock_migratetype(page, start_type);
1974}
1975
2149cdae
JK
1976/*
1977 * Check whether there is a suitable fallback freepage with requested order.
1978 * If only_stealable is true, this function returns fallback_mt only if
1979 * we can steal other freepages all together. This would help to reduce
1980 * fragmentation due to mixed migratetype pages in one pageblock.
1981 */
1982int find_suitable_fallback(struct free_area *area, unsigned int order,
1983 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1984{
1985 int i;
1986 int fallback_mt;
1987
1988 if (area->nr_free == 0)
1989 return -1;
1990
1991 *can_steal = false;
1992 for (i = 0;; i++) {
1993 fallback_mt = fallbacks[migratetype][i];
974a786e 1994 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1995 break;
1996
1997 if (list_empty(&area->free_list[fallback_mt]))
1998 continue;
fef903ef 1999
4eb7dce6
JK
2000 if (can_steal_fallback(order, migratetype))
2001 *can_steal = true;
2002
2149cdae
JK
2003 if (!only_stealable)
2004 return fallback_mt;
2005
2006 if (*can_steal)
2007 return fallback_mt;
fef903ef 2008 }
4eb7dce6
JK
2009
2010 return -1;
fef903ef
SB
2011}
2012
0aaa29a5
MG
2013/*
2014 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2015 * there are no empty page blocks that contain a page with a suitable order
2016 */
2017static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2018 unsigned int alloc_order)
2019{
2020 int mt;
2021 unsigned long max_managed, flags;
2022
2023 /*
2024 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2025 * Check is race-prone but harmless.
2026 */
2027 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2028 if (zone->nr_reserved_highatomic >= max_managed)
2029 return;
2030
2031 spin_lock_irqsave(&zone->lock, flags);
2032
2033 /* Recheck the nr_reserved_highatomic limit under the lock */
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 goto out_unlock;
2036
2037 /* Yoink! */
2038 mt = get_pageblock_migratetype(page);
2039 if (mt != MIGRATE_HIGHATOMIC &&
2040 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2041 zone->nr_reserved_highatomic += pageblock_nr_pages;
2042 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2043 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2044 }
2045
2046out_unlock:
2047 spin_unlock_irqrestore(&zone->lock, flags);
2048}
2049
2050/*
2051 * Used when an allocation is about to fail under memory pressure. This
2052 * potentially hurts the reliability of high-order allocations when under
2053 * intense memory pressure but failed atomic allocations should be easier
2054 * to recover from than an OOM.
2055 */
2056static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2057{
2058 struct zonelist *zonelist = ac->zonelist;
2059 unsigned long flags;
2060 struct zoneref *z;
2061 struct zone *zone;
2062 struct page *page;
2063 int order;
2064
2065 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2066 ac->nodemask) {
2067 /* Preserve at least one pageblock */
2068 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2069 continue;
2070
2071 spin_lock_irqsave(&zone->lock, flags);
2072 for (order = 0; order < MAX_ORDER; order++) {
2073 struct free_area *area = &(zone->free_area[order]);
2074
a16601c5
GT
2075 page = list_first_entry_or_null(
2076 &area->free_list[MIGRATE_HIGHATOMIC],
2077 struct page, lru);
2078 if (!page)
0aaa29a5
MG
2079 continue;
2080
0aaa29a5
MG
2081 /*
2082 * It should never happen but changes to locking could
2083 * inadvertently allow a per-cpu drain to add pages
2084 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2085 * and watch for underflows.
2086 */
2087 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2088 zone->nr_reserved_highatomic);
2089
2090 /*
2091 * Convert to ac->migratetype and avoid the normal
2092 * pageblock stealing heuristics. Minimally, the caller
2093 * is doing the work and needs the pages. More
2094 * importantly, if the block was always converted to
2095 * MIGRATE_UNMOVABLE or another type then the number
2096 * of pageblocks that cannot be completely freed
2097 * may increase.
2098 */
2099 set_pageblock_migratetype(page, ac->migratetype);
2100 move_freepages_block(zone, page, ac->migratetype);
2101 spin_unlock_irqrestore(&zone->lock, flags);
2102 return;
2103 }
2104 spin_unlock_irqrestore(&zone->lock, flags);
2105 }
2106}
2107
b2a0ac88 2108/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2109static inline struct page *
7aeb09f9 2110__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2111{
b8af2941 2112 struct free_area *area;
7aeb09f9 2113 unsigned int current_order;
b2a0ac88 2114 struct page *page;
4eb7dce6
JK
2115 int fallback_mt;
2116 bool can_steal;
b2a0ac88
MG
2117
2118 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2119 for (current_order = MAX_ORDER-1;
2120 current_order >= order && current_order <= MAX_ORDER-1;
2121 --current_order) {
4eb7dce6
JK
2122 area = &(zone->free_area[current_order]);
2123 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2124 start_migratetype, false, &can_steal);
4eb7dce6
JK
2125 if (fallback_mt == -1)
2126 continue;
b2a0ac88 2127
a16601c5 2128 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2129 struct page, lru);
2130 if (can_steal)
2131 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2132
4eb7dce6
JK
2133 /* Remove the page from the freelists */
2134 area->nr_free--;
2135 list_del(&page->lru);
2136 rmv_page_order(page);
3a1086fb 2137
4eb7dce6
JK
2138 expand(zone, page, order, current_order, area,
2139 start_migratetype);
2140 /*
bb14c2c7 2141 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2142 * migratetype depending on the decisions in
bb14c2c7
VB
2143 * find_suitable_fallback(). This is OK as long as it does not
2144 * differ for MIGRATE_CMA pageblocks. Those can be used as
2145 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2146 */
bb14c2c7 2147 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2148
4eb7dce6
JK
2149 trace_mm_page_alloc_extfrag(page, order, current_order,
2150 start_migratetype, fallback_mt);
e0fff1bd 2151
4eb7dce6 2152 return page;
b2a0ac88
MG
2153 }
2154
728ec980 2155 return NULL;
b2a0ac88
MG
2156}
2157
56fd56b8 2158/*
1da177e4
LT
2159 * Do the hard work of removing an element from the buddy allocator.
2160 * Call me with the zone->lock already held.
2161 */
b2a0ac88 2162static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2163 int migratetype)
1da177e4 2164{
1da177e4
LT
2165 struct page *page;
2166
56fd56b8 2167 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2168 if (unlikely(!page)) {
dc67647b
JK
2169 if (migratetype == MIGRATE_MOVABLE)
2170 page = __rmqueue_cma_fallback(zone, order);
2171
2172 if (!page)
2173 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2174 }
2175
0d3d062a 2176 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2177 return page;
1da177e4
LT
2178}
2179
5f63b720 2180/*
1da177e4
LT
2181 * Obtain a specified number of elements from the buddy allocator, all under
2182 * a single hold of the lock, for efficiency. Add them to the supplied list.
2183 * Returns the number of new pages which were placed at *list.
2184 */
5f63b720 2185static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2186 unsigned long count, struct list_head *list,
b745bc85 2187 int migratetype, bool cold)
1da177e4 2188{
5bcc9f86 2189 int i;
5f63b720 2190
c54ad30c 2191 spin_lock(&zone->lock);
1da177e4 2192 for (i = 0; i < count; ++i) {
6ac0206b 2193 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2194 if (unlikely(page == NULL))
1da177e4 2195 break;
81eabcbe 2196
479f854a
MG
2197 if (unlikely(check_pcp_refill(page)))
2198 continue;
2199
81eabcbe
MG
2200 /*
2201 * Split buddy pages returned by expand() are received here
2202 * in physical page order. The page is added to the callers and
2203 * list and the list head then moves forward. From the callers
2204 * perspective, the linked list is ordered by page number in
2205 * some conditions. This is useful for IO devices that can
2206 * merge IO requests if the physical pages are ordered
2207 * properly.
2208 */
b745bc85 2209 if (likely(!cold))
e084b2d9
MG
2210 list_add(&page->lru, list);
2211 else
2212 list_add_tail(&page->lru, list);
81eabcbe 2213 list = &page->lru;
bb14c2c7 2214 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2215 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2216 -(1 << order));
1da177e4 2217 }
f2260e6b 2218 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2219 spin_unlock(&zone->lock);
085cc7d5 2220 return i;
1da177e4
LT
2221}
2222
4ae7c039 2223#ifdef CONFIG_NUMA
8fce4d8e 2224/*
4037d452
CL
2225 * Called from the vmstat counter updater to drain pagesets of this
2226 * currently executing processor on remote nodes after they have
2227 * expired.
2228 *
879336c3
CL
2229 * Note that this function must be called with the thread pinned to
2230 * a single processor.
8fce4d8e 2231 */
4037d452 2232void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2233{
4ae7c039 2234 unsigned long flags;
7be12fc9 2235 int to_drain, batch;
4ae7c039 2236
4037d452 2237 local_irq_save(flags);
4db0c3c2 2238 batch = READ_ONCE(pcp->batch);
7be12fc9 2239 to_drain = min(pcp->count, batch);
2a13515c
KM
2240 if (to_drain > 0) {
2241 free_pcppages_bulk(zone, to_drain, pcp);
2242 pcp->count -= to_drain;
2243 }
4037d452 2244 local_irq_restore(flags);
4ae7c039
CL
2245}
2246#endif
2247
9f8f2172 2248/*
93481ff0 2249 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2250 *
2251 * The processor must either be the current processor and the
2252 * thread pinned to the current processor or a processor that
2253 * is not online.
2254 */
93481ff0 2255static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2256{
c54ad30c 2257 unsigned long flags;
93481ff0
VB
2258 struct per_cpu_pageset *pset;
2259 struct per_cpu_pages *pcp;
1da177e4 2260
93481ff0
VB
2261 local_irq_save(flags);
2262 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2263
93481ff0
VB
2264 pcp = &pset->pcp;
2265 if (pcp->count) {
2266 free_pcppages_bulk(zone, pcp->count, pcp);
2267 pcp->count = 0;
2268 }
2269 local_irq_restore(flags);
2270}
3dfa5721 2271
93481ff0
VB
2272/*
2273 * Drain pcplists of all zones on the indicated processor.
2274 *
2275 * The processor must either be the current processor and the
2276 * thread pinned to the current processor or a processor that
2277 * is not online.
2278 */
2279static void drain_pages(unsigned int cpu)
2280{
2281 struct zone *zone;
2282
2283 for_each_populated_zone(zone) {
2284 drain_pages_zone(cpu, zone);
1da177e4
LT
2285 }
2286}
1da177e4 2287
9f8f2172
CL
2288/*
2289 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2290 *
2291 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2292 * the single zone's pages.
9f8f2172 2293 */
93481ff0 2294void drain_local_pages(struct zone *zone)
9f8f2172 2295{
93481ff0
VB
2296 int cpu = smp_processor_id();
2297
2298 if (zone)
2299 drain_pages_zone(cpu, zone);
2300 else
2301 drain_pages(cpu);
9f8f2172
CL
2302}
2303
2304/*
74046494
GBY
2305 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2306 *
93481ff0
VB
2307 * When zone parameter is non-NULL, spill just the single zone's pages.
2308 *
74046494
GBY
2309 * Note that this code is protected against sending an IPI to an offline
2310 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2311 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2312 * nothing keeps CPUs from showing up after we populated the cpumask and
2313 * before the call to on_each_cpu_mask().
9f8f2172 2314 */
93481ff0 2315void drain_all_pages(struct zone *zone)
9f8f2172 2316{
74046494 2317 int cpu;
74046494
GBY
2318
2319 /*
2320 * Allocate in the BSS so we wont require allocation in
2321 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2322 */
2323 static cpumask_t cpus_with_pcps;
2324
2325 /*
2326 * We don't care about racing with CPU hotplug event
2327 * as offline notification will cause the notified
2328 * cpu to drain that CPU pcps and on_each_cpu_mask
2329 * disables preemption as part of its processing
2330 */
2331 for_each_online_cpu(cpu) {
93481ff0
VB
2332 struct per_cpu_pageset *pcp;
2333 struct zone *z;
74046494 2334 bool has_pcps = false;
93481ff0
VB
2335
2336 if (zone) {
74046494 2337 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2338 if (pcp->pcp.count)
74046494 2339 has_pcps = true;
93481ff0
VB
2340 } else {
2341 for_each_populated_zone(z) {
2342 pcp = per_cpu_ptr(z->pageset, cpu);
2343 if (pcp->pcp.count) {
2344 has_pcps = true;
2345 break;
2346 }
74046494
GBY
2347 }
2348 }
93481ff0 2349
74046494
GBY
2350 if (has_pcps)
2351 cpumask_set_cpu(cpu, &cpus_with_pcps);
2352 else
2353 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2354 }
93481ff0
VB
2355 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2356 zone, 1);
9f8f2172
CL
2357}
2358
296699de 2359#ifdef CONFIG_HIBERNATION
1da177e4
LT
2360
2361void mark_free_pages(struct zone *zone)
2362{
f623f0db
RW
2363 unsigned long pfn, max_zone_pfn;
2364 unsigned long flags;
7aeb09f9 2365 unsigned int order, t;
86760a2c 2366 struct page *page;
1da177e4 2367
8080fc03 2368 if (zone_is_empty(zone))
1da177e4
LT
2369 return;
2370
2371 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2372
108bcc96 2373 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2374 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2375 if (pfn_valid(pfn)) {
86760a2c 2376 page = pfn_to_page(pfn);
ba6b0979
JK
2377
2378 if (page_zone(page) != zone)
2379 continue;
2380
7be98234
RW
2381 if (!swsusp_page_is_forbidden(page))
2382 swsusp_unset_page_free(page);
f623f0db 2383 }
1da177e4 2384
b2a0ac88 2385 for_each_migratetype_order(order, t) {
86760a2c
GT
2386 list_for_each_entry(page,
2387 &zone->free_area[order].free_list[t], lru) {
f623f0db 2388 unsigned long i;
1da177e4 2389
86760a2c 2390 pfn = page_to_pfn(page);
f623f0db 2391 for (i = 0; i < (1UL << order); i++)
7be98234 2392 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2393 }
b2a0ac88 2394 }
1da177e4
LT
2395 spin_unlock_irqrestore(&zone->lock, flags);
2396}
e2c55dc8 2397#endif /* CONFIG_PM */
1da177e4 2398
1da177e4
LT
2399/*
2400 * Free a 0-order page
b745bc85 2401 * cold == true ? free a cold page : free a hot page
1da177e4 2402 */
b745bc85 2403void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2404{
2405 struct zone *zone = page_zone(page);
2406 struct per_cpu_pages *pcp;
2407 unsigned long flags;
dc4b0caf 2408 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2409 int migratetype;
1da177e4 2410
4db7548c 2411 if (!free_pcp_prepare(page))
689bcebf
HD
2412 return;
2413
dc4b0caf 2414 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2415 set_pcppage_migratetype(page, migratetype);
1da177e4 2416 local_irq_save(flags);
f8891e5e 2417 __count_vm_event(PGFREE);
da456f14 2418
5f8dcc21
MG
2419 /*
2420 * We only track unmovable, reclaimable and movable on pcp lists.
2421 * Free ISOLATE pages back to the allocator because they are being
2422 * offlined but treat RESERVE as movable pages so we can get those
2423 * areas back if necessary. Otherwise, we may have to free
2424 * excessively into the page allocator
2425 */
2426 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2427 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2428 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2429 goto out;
2430 }
2431 migratetype = MIGRATE_MOVABLE;
2432 }
2433
99dcc3e5 2434 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2435 if (!cold)
5f8dcc21 2436 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2437 else
2438 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2439 pcp->count++;
48db57f8 2440 if (pcp->count >= pcp->high) {
4db0c3c2 2441 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2442 free_pcppages_bulk(zone, batch, pcp);
2443 pcp->count -= batch;
48db57f8 2444 }
5f8dcc21
MG
2445
2446out:
1da177e4 2447 local_irq_restore(flags);
1da177e4
LT
2448}
2449
cc59850e
KK
2450/*
2451 * Free a list of 0-order pages
2452 */
b745bc85 2453void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2454{
2455 struct page *page, *next;
2456
2457 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2458 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2459 free_hot_cold_page(page, cold);
2460 }
2461}
2462
8dfcc9ba
NP
2463/*
2464 * split_page takes a non-compound higher-order page, and splits it into
2465 * n (1<<order) sub-pages: page[0..n]
2466 * Each sub-page must be freed individually.
2467 *
2468 * Note: this is probably too low level an operation for use in drivers.
2469 * Please consult with lkml before using this in your driver.
2470 */
2471void split_page(struct page *page, unsigned int order)
2472{
2473 int i;
2474
309381fe
SL
2475 VM_BUG_ON_PAGE(PageCompound(page), page);
2476 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2477
2478#ifdef CONFIG_KMEMCHECK
2479 /*
2480 * Split shadow pages too, because free(page[0]) would
2481 * otherwise free the whole shadow.
2482 */
2483 if (kmemcheck_page_is_tracked(page))
2484 split_page(virt_to_page(page[0].shadow), order);
2485#endif
2486
a9627bc5 2487 for (i = 1; i < (1 << order); i++)
7835e98b 2488 set_page_refcounted(page + i);
a9627bc5 2489 split_page_owner(page, order);
8dfcc9ba 2490}
5853ff23 2491EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2492
3c605096 2493int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2494{
748446bb
MG
2495 unsigned long watermark;
2496 struct zone *zone;
2139cbe6 2497 int mt;
748446bb
MG
2498
2499 BUG_ON(!PageBuddy(page));
2500
2501 zone = page_zone(page);
2e30abd1 2502 mt = get_pageblock_migratetype(page);
748446bb 2503
194159fb 2504 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2505 /* Obey watermarks as if the page was being allocated */
2506 watermark = low_wmark_pages(zone) + (1 << order);
2507 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2508 return 0;
2509
8fb74b9f 2510 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2511 }
748446bb
MG
2512
2513 /* Remove page from free list */
2514 list_del(&page->lru);
2515 zone->free_area[order].nr_free--;
2516 rmv_page_order(page);
2139cbe6 2517
8fb74b9f 2518 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2519 if (order >= pageblock_order - 1) {
2520 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2521 for (; page < endpage; page += pageblock_nr_pages) {
2522 int mt = get_pageblock_migratetype(page);
194159fb 2523 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2524 set_pageblock_migratetype(page,
2525 MIGRATE_MOVABLE);
2526 }
748446bb
MG
2527 }
2528
f3a14ced 2529
8fb74b9f 2530 return 1UL << order;
1fb3f8ca
MG
2531}
2532
060e7417
MG
2533/*
2534 * Update NUMA hit/miss statistics
2535 *
2536 * Must be called with interrupts disabled.
2537 *
2538 * When __GFP_OTHER_NODE is set assume the node of the preferred
2539 * zone is the local node. This is useful for daemons who allocate
2540 * memory on behalf of other processes.
2541 */
2542static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2543 gfp_t flags)
2544{
2545#ifdef CONFIG_NUMA
2546 int local_nid = numa_node_id();
2547 enum zone_stat_item local_stat = NUMA_LOCAL;
2548
2549 if (unlikely(flags & __GFP_OTHER_NODE)) {
2550 local_stat = NUMA_OTHER;
2551 local_nid = preferred_zone->node;
2552 }
2553
2554 if (z->node == local_nid) {
2555 __inc_zone_state(z, NUMA_HIT);
2556 __inc_zone_state(z, local_stat);
2557 } else {
2558 __inc_zone_state(z, NUMA_MISS);
2559 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2560 }
2561#endif
2562}
2563
1da177e4 2564/*
75379191 2565 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2566 */
0a15c3e9
MG
2567static inline
2568struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2569 struct zone *zone, unsigned int order,
c603844b
MG
2570 gfp_t gfp_flags, unsigned int alloc_flags,
2571 int migratetype)
1da177e4
LT
2572{
2573 unsigned long flags;
689bcebf 2574 struct page *page;
b745bc85 2575 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2576
48db57f8 2577 if (likely(order == 0)) {
1da177e4 2578 struct per_cpu_pages *pcp;
5f8dcc21 2579 struct list_head *list;
1da177e4 2580
1da177e4 2581 local_irq_save(flags);
479f854a
MG
2582 do {
2583 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2584 list = &pcp->lists[migratetype];
2585 if (list_empty(list)) {
2586 pcp->count += rmqueue_bulk(zone, 0,
2587 pcp->batch, list,
2588 migratetype, cold);
2589 if (unlikely(list_empty(list)))
2590 goto failed;
2591 }
b92a6edd 2592
479f854a
MG
2593 if (cold)
2594 page = list_last_entry(list, struct page, lru);
2595 else
2596 page = list_first_entry(list, struct page, lru);
5f8dcc21 2597
83b9355b
VB
2598 __dec_zone_state(zone, NR_ALLOC_BATCH);
2599 list_del(&page->lru);
2600 pcp->count--;
2601
2602 } while (check_new_pcp(page));
7fb1d9fc 2603 } else {
0f352e53
MH
2604 /*
2605 * We most definitely don't want callers attempting to
2606 * allocate greater than order-1 page units with __GFP_NOFAIL.
2607 */
2608 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2609 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2610
479f854a
MG
2611 do {
2612 page = NULL;
2613 if (alloc_flags & ALLOC_HARDER) {
2614 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2615 if (page)
2616 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2617 }
2618 if (!page)
2619 page = __rmqueue(zone, order, migratetype);
2620 } while (page && check_new_pages(page, order));
a74609fa
NP
2621 spin_unlock(&zone->lock);
2622 if (!page)
2623 goto failed;
754078eb 2624 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2625 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2626 get_pcppage_migratetype(page));
1da177e4
LT
2627 }
2628
abe5f972 2629 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2630 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2631 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2632
f8891e5e 2633 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2634 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2635 local_irq_restore(flags);
1da177e4 2636
309381fe 2637 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2638 return page;
a74609fa
NP
2639
2640failed:
2641 local_irq_restore(flags);
a74609fa 2642 return NULL;
1da177e4
LT
2643}
2644
933e312e
AM
2645#ifdef CONFIG_FAIL_PAGE_ALLOC
2646
b2588c4b 2647static struct {
933e312e
AM
2648 struct fault_attr attr;
2649
621a5f7a 2650 bool ignore_gfp_highmem;
71baba4b 2651 bool ignore_gfp_reclaim;
54114994 2652 u32 min_order;
933e312e
AM
2653} fail_page_alloc = {
2654 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2655 .ignore_gfp_reclaim = true,
621a5f7a 2656 .ignore_gfp_highmem = true,
54114994 2657 .min_order = 1,
933e312e
AM
2658};
2659
2660static int __init setup_fail_page_alloc(char *str)
2661{
2662 return setup_fault_attr(&fail_page_alloc.attr, str);
2663}
2664__setup("fail_page_alloc=", setup_fail_page_alloc);
2665
deaf386e 2666static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2667{
54114994 2668 if (order < fail_page_alloc.min_order)
deaf386e 2669 return false;
933e312e 2670 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2671 return false;
933e312e 2672 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2673 return false;
71baba4b
MG
2674 if (fail_page_alloc.ignore_gfp_reclaim &&
2675 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2676 return false;
933e312e
AM
2677
2678 return should_fail(&fail_page_alloc.attr, 1 << order);
2679}
2680
2681#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2682
2683static int __init fail_page_alloc_debugfs(void)
2684{
f4ae40a6 2685 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2686 struct dentry *dir;
933e312e 2687
dd48c085
AM
2688 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2689 &fail_page_alloc.attr);
2690 if (IS_ERR(dir))
2691 return PTR_ERR(dir);
933e312e 2692
b2588c4b 2693 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2694 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2695 goto fail;
2696 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2697 &fail_page_alloc.ignore_gfp_highmem))
2698 goto fail;
2699 if (!debugfs_create_u32("min-order", mode, dir,
2700 &fail_page_alloc.min_order))
2701 goto fail;
2702
2703 return 0;
2704fail:
dd48c085 2705 debugfs_remove_recursive(dir);
933e312e 2706
b2588c4b 2707 return -ENOMEM;
933e312e
AM
2708}
2709
2710late_initcall(fail_page_alloc_debugfs);
2711
2712#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2713
2714#else /* CONFIG_FAIL_PAGE_ALLOC */
2715
deaf386e 2716static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2717{
deaf386e 2718 return false;
933e312e
AM
2719}
2720
2721#endif /* CONFIG_FAIL_PAGE_ALLOC */
2722
1da177e4 2723/*
97a16fc8
MG
2724 * Return true if free base pages are above 'mark'. For high-order checks it
2725 * will return true of the order-0 watermark is reached and there is at least
2726 * one free page of a suitable size. Checking now avoids taking the zone lock
2727 * to check in the allocation paths if no pages are free.
1da177e4 2728 */
86a294a8
MH
2729bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2730 int classzone_idx, unsigned int alloc_flags,
2731 long free_pages)
1da177e4 2732{
d23ad423 2733 long min = mark;
1da177e4 2734 int o;
c603844b 2735 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2736
0aaa29a5 2737 /* free_pages may go negative - that's OK */
df0a6daa 2738 free_pages -= (1 << order) - 1;
0aaa29a5 2739
7fb1d9fc 2740 if (alloc_flags & ALLOC_HIGH)
1da177e4 2741 min -= min / 2;
0aaa29a5
MG
2742
2743 /*
2744 * If the caller does not have rights to ALLOC_HARDER then subtract
2745 * the high-atomic reserves. This will over-estimate the size of the
2746 * atomic reserve but it avoids a search.
2747 */
97a16fc8 2748 if (likely(!alloc_harder))
0aaa29a5
MG
2749 free_pages -= z->nr_reserved_highatomic;
2750 else
1da177e4 2751 min -= min / 4;
e2b19197 2752
d95ea5d1
BZ
2753#ifdef CONFIG_CMA
2754 /* If allocation can't use CMA areas don't use free CMA pages */
2755 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2756 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2757#endif
026b0814 2758
97a16fc8
MG
2759 /*
2760 * Check watermarks for an order-0 allocation request. If these
2761 * are not met, then a high-order request also cannot go ahead
2762 * even if a suitable page happened to be free.
2763 */
2764 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2765 return false;
1da177e4 2766
97a16fc8
MG
2767 /* If this is an order-0 request then the watermark is fine */
2768 if (!order)
2769 return true;
2770
2771 /* For a high-order request, check at least one suitable page is free */
2772 for (o = order; o < MAX_ORDER; o++) {
2773 struct free_area *area = &z->free_area[o];
2774 int mt;
2775
2776 if (!area->nr_free)
2777 continue;
2778
2779 if (alloc_harder)
2780 return true;
1da177e4 2781
97a16fc8
MG
2782 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2783 if (!list_empty(&area->free_list[mt]))
2784 return true;
2785 }
2786
2787#ifdef CONFIG_CMA
2788 if ((alloc_flags & ALLOC_CMA) &&
2789 !list_empty(&area->free_list[MIGRATE_CMA])) {
2790 return true;
2791 }
2792#endif
1da177e4 2793 }
97a16fc8 2794 return false;
88f5acf8
MG
2795}
2796
7aeb09f9 2797bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2798 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2799{
2800 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2801 zone_page_state(z, NR_FREE_PAGES));
2802}
2803
48ee5f36
MG
2804static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2805 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2806{
2807 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2808 long cma_pages = 0;
2809
2810#ifdef CONFIG_CMA
2811 /* If allocation can't use CMA areas don't use free CMA pages */
2812 if (!(alloc_flags & ALLOC_CMA))
2813 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2814#endif
2815
2816 /*
2817 * Fast check for order-0 only. If this fails then the reserves
2818 * need to be calculated. There is a corner case where the check
2819 * passes but only the high-order atomic reserve are free. If
2820 * the caller is !atomic then it'll uselessly search the free
2821 * list. That corner case is then slower but it is harmless.
2822 */
2823 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2824 return true;
2825
2826 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2827 free_pages);
2828}
2829
7aeb09f9 2830bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2831 unsigned long mark, int classzone_idx)
88f5acf8
MG
2832{
2833 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2834
2835 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2836 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2837
e2b19197 2838 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2839 free_pages);
1da177e4
LT
2840}
2841
9276b1bc 2842#ifdef CONFIG_NUMA
81c0a2bb
JW
2843static bool zone_local(struct zone *local_zone, struct zone *zone)
2844{
fff4068c 2845 return local_zone->node == zone->node;
81c0a2bb
JW
2846}
2847
957f822a
DR
2848static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2849{
5f7a75ac
MG
2850 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2851 RECLAIM_DISTANCE;
957f822a 2852}
9276b1bc 2853#else /* CONFIG_NUMA */
81c0a2bb
JW
2854static bool zone_local(struct zone *local_zone, struct zone *zone)
2855{
2856 return true;
2857}
2858
957f822a
DR
2859static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2860{
2861 return true;
2862}
9276b1bc
PJ
2863#endif /* CONFIG_NUMA */
2864
4ffeaf35
MG
2865static void reset_alloc_batches(struct zone *preferred_zone)
2866{
2867 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2868
2869 do {
2870 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2871 high_wmark_pages(zone) - low_wmark_pages(zone) -
2872 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2873 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2874 } while (zone++ != preferred_zone);
2875}
2876
7fb1d9fc 2877/*
0798e519 2878 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2879 * a page.
2880 */
2881static struct page *
a9263751
VB
2882get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2883 const struct alloc_context *ac)
753ee728 2884{
c33d6c06 2885 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2886 struct zone *zone;
30534755
MG
2887 bool fair_skipped = false;
2888 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2889
9276b1bc 2890zonelist_scan:
7fb1d9fc 2891 /*
9276b1bc 2892 * Scan zonelist, looking for a zone with enough free.
344736f2 2893 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2894 */
c33d6c06 2895 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2896 ac->nodemask) {
be06af00 2897 struct page *page;
e085dbc5
JW
2898 unsigned long mark;
2899
664eedde
MG
2900 if (cpusets_enabled() &&
2901 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2902 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2903 continue;
81c0a2bb
JW
2904 /*
2905 * Distribute pages in proportion to the individual
2906 * zone size to ensure fair page aging. The zone a
2907 * page was allocated in should have no effect on the
2908 * time the page has in memory before being reclaimed.
81c0a2bb 2909 */
30534755 2910 if (apply_fair) {
57054651 2911 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2912 fair_skipped = true;
3a025760 2913 continue;
4ffeaf35 2914 }
c33d6c06 2915 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2916 if (fair_skipped)
2917 goto reset_fair;
2918 apply_fair = false;
2919 }
81c0a2bb 2920 }
a756cf59
JW
2921 /*
2922 * When allocating a page cache page for writing, we
2923 * want to get it from a zone that is within its dirty
2924 * limit, such that no single zone holds more than its
2925 * proportional share of globally allowed dirty pages.
2926 * The dirty limits take into account the zone's
2927 * lowmem reserves and high watermark so that kswapd
2928 * should be able to balance it without having to
2929 * write pages from its LRU list.
2930 *
2931 * This may look like it could increase pressure on
2932 * lower zones by failing allocations in higher zones
2933 * before they are full. But the pages that do spill
2934 * over are limited as the lower zones are protected
2935 * by this very same mechanism. It should not become
2936 * a practical burden to them.
2937 *
2938 * XXX: For now, allow allocations to potentially
2939 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2940 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2941 * which is important when on a NUMA setup the allowed
2942 * zones are together not big enough to reach the
2943 * global limit. The proper fix for these situations
2944 * will require awareness of zones in the
2945 * dirty-throttling and the flusher threads.
2946 */
c9ab0c4f 2947 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2948 continue;
7fb1d9fc 2949
e085dbc5 2950 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2951 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2952 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2953 int ret;
2954
5dab2911
MG
2955 /* Checked here to keep the fast path fast */
2956 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2957 if (alloc_flags & ALLOC_NO_WATERMARKS)
2958 goto try_this_zone;
2959
957f822a 2960 if (zone_reclaim_mode == 0 ||
c33d6c06 2961 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2962 continue;
2963
fa5e084e
MG
2964 ret = zone_reclaim(zone, gfp_mask, order);
2965 switch (ret) {
2966 case ZONE_RECLAIM_NOSCAN:
2967 /* did not scan */
cd38b115 2968 continue;
fa5e084e
MG
2969 case ZONE_RECLAIM_FULL:
2970 /* scanned but unreclaimable */
cd38b115 2971 continue;
fa5e084e
MG
2972 default:
2973 /* did we reclaim enough */
fed2719e 2974 if (zone_watermark_ok(zone, order, mark,
93ea9964 2975 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2976 goto try_this_zone;
2977
fed2719e 2978 continue;
0798e519 2979 }
7fb1d9fc
RS
2980 }
2981
fa5e084e 2982try_this_zone:
c33d6c06 2983 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2984 gfp_mask, alloc_flags, ac->migratetype);
75379191 2985 if (page) {
479f854a 2986 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2987
2988 /*
2989 * If this is a high-order atomic allocation then check
2990 * if the pageblock should be reserved for the future
2991 */
2992 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2993 reserve_highatomic_pageblock(page, zone, order);
2994
75379191
VB
2995 return page;
2996 }
54a6eb5c 2997 }
9276b1bc 2998
4ffeaf35
MG
2999 /*
3000 * The first pass makes sure allocations are spread fairly within the
3001 * local node. However, the local node might have free pages left
3002 * after the fairness batches are exhausted, and remote zones haven't
3003 * even been considered yet. Try once more without fairness, and
3004 * include remote zones now, before entering the slowpath and waking
3005 * kswapd: prefer spilling to a remote zone over swapping locally.
3006 */
30534755
MG
3007 if (fair_skipped) {
3008reset_fair:
3009 apply_fair = false;
3010 fair_skipped = false;
c33d6c06 3011 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3012 z = ac->preferred_zoneref;
4ffeaf35 3013 goto zonelist_scan;
30534755 3014 }
4ffeaf35
MG
3015
3016 return NULL;
753ee728
MH
3017}
3018
29423e77
DR
3019/*
3020 * Large machines with many possible nodes should not always dump per-node
3021 * meminfo in irq context.
3022 */
3023static inline bool should_suppress_show_mem(void)
3024{
3025 bool ret = false;
3026
3027#if NODES_SHIFT > 8
3028 ret = in_interrupt();
3029#endif
3030 return ret;
3031}
3032
a238ab5b
DH
3033static DEFINE_RATELIMIT_STATE(nopage_rs,
3034 DEFAULT_RATELIMIT_INTERVAL,
3035 DEFAULT_RATELIMIT_BURST);
3036
d00181b9 3037void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3038{
a238ab5b
DH
3039 unsigned int filter = SHOW_MEM_FILTER_NODES;
3040
c0a32fc5
SG
3041 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3042 debug_guardpage_minorder() > 0)
a238ab5b
DH
3043 return;
3044
3045 /*
3046 * This documents exceptions given to allocations in certain
3047 * contexts that are allowed to allocate outside current's set
3048 * of allowed nodes.
3049 */
3050 if (!(gfp_mask & __GFP_NOMEMALLOC))
3051 if (test_thread_flag(TIF_MEMDIE) ||
3052 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3053 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3054 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3055 filter &= ~SHOW_MEM_FILTER_NODES;
3056
3057 if (fmt) {
3ee9a4f0
JP
3058 struct va_format vaf;
3059 va_list args;
3060
a238ab5b 3061 va_start(args, fmt);
3ee9a4f0
JP
3062
3063 vaf.fmt = fmt;
3064 vaf.va = &args;
3065
3066 pr_warn("%pV", &vaf);
3067
a238ab5b
DH
3068 va_end(args);
3069 }
3070
c5c990e8
VB
3071 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3072 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3073 dump_stack();
3074 if (!should_suppress_show_mem())
3075 show_mem(filter);
3076}
3077
11e33f6a
MG
3078static inline struct page *
3079__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3080 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3081{
6e0fc46d
DR
3082 struct oom_control oc = {
3083 .zonelist = ac->zonelist,
3084 .nodemask = ac->nodemask,
2a966b77 3085 .memcg = NULL,
6e0fc46d
DR
3086 .gfp_mask = gfp_mask,
3087 .order = order,
6e0fc46d 3088 };
11e33f6a
MG
3089 struct page *page;
3090
9879de73
JW
3091 *did_some_progress = 0;
3092
9879de73 3093 /*
dc56401f
JW
3094 * Acquire the oom lock. If that fails, somebody else is
3095 * making progress for us.
9879de73 3096 */
dc56401f 3097 if (!mutex_trylock(&oom_lock)) {
9879de73 3098 *did_some_progress = 1;
11e33f6a 3099 schedule_timeout_uninterruptible(1);
1da177e4
LT
3100 return NULL;
3101 }
6b1de916 3102
11e33f6a
MG
3103 /*
3104 * Go through the zonelist yet one more time, keep very high watermark
3105 * here, this is only to catch a parallel oom killing, we must fail if
3106 * we're still under heavy pressure.
3107 */
a9263751
VB
3108 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3109 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3110 if (page)
11e33f6a
MG
3111 goto out;
3112
4365a567 3113 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3114 /* Coredumps can quickly deplete all memory reserves */
3115 if (current->flags & PF_DUMPCORE)
3116 goto out;
4365a567
KH
3117 /* The OOM killer will not help higher order allocs */
3118 if (order > PAGE_ALLOC_COSTLY_ORDER)
3119 goto out;
03668b3c 3120 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3121 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3122 goto out;
9083905a
JW
3123 if (pm_suspended_storage())
3124 goto out;
3da88fb3
MH
3125 /*
3126 * XXX: GFP_NOFS allocations should rather fail than rely on
3127 * other request to make a forward progress.
3128 * We are in an unfortunate situation where out_of_memory cannot
3129 * do much for this context but let's try it to at least get
3130 * access to memory reserved if the current task is killed (see
3131 * out_of_memory). Once filesystems are ready to handle allocation
3132 * failures more gracefully we should just bail out here.
3133 */
3134
4167e9b2 3135 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3136 if (gfp_mask & __GFP_THISNODE)
3137 goto out;
3138 }
11e33f6a 3139 /* Exhausted what can be done so it's blamo time */
5020e285 3140 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3141 *did_some_progress = 1;
5020e285
MH
3142
3143 if (gfp_mask & __GFP_NOFAIL) {
3144 page = get_page_from_freelist(gfp_mask, order,
3145 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3146 /*
3147 * fallback to ignore cpuset restriction if our nodes
3148 * are depleted
3149 */
3150 if (!page)
3151 page = get_page_from_freelist(gfp_mask, order,
3152 ALLOC_NO_WATERMARKS, ac);
3153 }
3154 }
11e33f6a 3155out:
dc56401f 3156 mutex_unlock(&oom_lock);
11e33f6a
MG
3157 return page;
3158}
3159
33c2d214
MH
3160
3161/*
3162 * Maximum number of compaction retries wit a progress before OOM
3163 * killer is consider as the only way to move forward.
3164 */
3165#define MAX_COMPACT_RETRIES 16
3166
56de7263
MG
3167#ifdef CONFIG_COMPACTION
3168/* Try memory compaction for high-order allocations before reclaim */
3169static struct page *
3170__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3171 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3172 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3173{
98dd3b48 3174 struct page *page;
c5d01d0d 3175 int contended_compaction;
53853e2d
VB
3176
3177 if (!order)
66199712 3178 return NULL;
66199712 3179
c06b1fca 3180 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3181 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3182 mode, &contended_compaction);
c06b1fca 3183 current->flags &= ~PF_MEMALLOC;
56de7263 3184
c5d01d0d 3185 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3186 return NULL;
53853e2d 3187
98dd3b48
VB
3188 /*
3189 * At least in one zone compaction wasn't deferred or skipped, so let's
3190 * count a compaction stall
3191 */
3192 count_vm_event(COMPACTSTALL);
8fb74b9f 3193
a9263751
VB
3194 page = get_page_from_freelist(gfp_mask, order,
3195 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3196
98dd3b48
VB
3197 if (page) {
3198 struct zone *zone = page_zone(page);
53853e2d 3199
98dd3b48
VB
3200 zone->compact_blockskip_flush = false;
3201 compaction_defer_reset(zone, order, true);
3202 count_vm_event(COMPACTSUCCESS);
3203 return page;
3204 }
56de7263 3205
98dd3b48
VB
3206 /*
3207 * It's bad if compaction run occurs and fails. The most likely reason
3208 * is that pages exist, but not enough to satisfy watermarks.
3209 */
3210 count_vm_event(COMPACTFAIL);
66199712 3211
c5d01d0d
MH
3212 /*
3213 * In all zones where compaction was attempted (and not
3214 * deferred or skipped), lock contention has been detected.
3215 * For THP allocation we do not want to disrupt the others
3216 * so we fallback to base pages instead.
3217 */
3218 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3219 *compact_result = COMPACT_CONTENDED;
3220
3221 /*
3222 * If compaction was aborted due to need_resched(), we do not
3223 * want to further increase allocation latency, unless it is
3224 * khugepaged trying to collapse.
3225 */
3226 if (contended_compaction == COMPACT_CONTENDED_SCHED
3227 && !(current->flags & PF_KTHREAD))
3228 *compact_result = COMPACT_CONTENDED;
3229
98dd3b48 3230 cond_resched();
56de7263
MG
3231
3232 return NULL;
3233}
33c2d214
MH
3234
3235static inline bool
86a294a8
MH
3236should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3237 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3238 int compaction_retries)
3239{
7854ea6c
MH
3240 int max_retries = MAX_COMPACT_RETRIES;
3241
33c2d214
MH
3242 if (!order)
3243 return false;
3244
3245 /*
3246 * compaction considers all the zone as desperately out of memory
3247 * so it doesn't really make much sense to retry except when the
3248 * failure could be caused by weak migration mode.
3249 */
3250 if (compaction_failed(compact_result)) {
3251 if (*migrate_mode == MIGRATE_ASYNC) {
3252 *migrate_mode = MIGRATE_SYNC_LIGHT;
3253 return true;
3254 }
3255 return false;
3256 }
3257
3258 /*
7854ea6c
MH
3259 * make sure the compaction wasn't deferred or didn't bail out early
3260 * due to locks contention before we declare that we should give up.
86a294a8
MH
3261 * But do not retry if the given zonelist is not suitable for
3262 * compaction.
33c2d214 3263 */
7854ea6c 3264 if (compaction_withdrawn(compact_result))
86a294a8 3265 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3266
3267 /*
3268 * !costly requests are much more important than __GFP_REPEAT
3269 * costly ones because they are de facto nofail and invoke OOM
3270 * killer to move on while costly can fail and users are ready
3271 * to cope with that. 1/4 retries is rather arbitrary but we
3272 * would need much more detailed feedback from compaction to
3273 * make a better decision.
3274 */
3275 if (order > PAGE_ALLOC_COSTLY_ORDER)
3276 max_retries /= 4;
3277 if (compaction_retries <= max_retries)
3278 return true;
33c2d214
MH
3279
3280 return false;
3281}
56de7263
MG
3282#else
3283static inline struct page *
3284__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3285 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3286 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3287{
33c2d214 3288 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3289 return NULL;
3290}
33c2d214
MH
3291
3292static inline bool
86a294a8
MH
3293should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3294 enum compact_result compact_result,
33c2d214
MH
3295 enum migrate_mode *migrate_mode,
3296 int compaction_retries)
3297{
31e49bfd
MH
3298 struct zone *zone;
3299 struct zoneref *z;
3300
3301 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3302 return false;
3303
3304 /*
3305 * There are setups with compaction disabled which would prefer to loop
3306 * inside the allocator rather than hit the oom killer prematurely.
3307 * Let's give them a good hope and keep retrying while the order-0
3308 * watermarks are OK.
3309 */
3310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3311 ac->nodemask) {
3312 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3313 ac_classzone_idx(ac), alloc_flags))
3314 return true;
3315 }
33c2d214
MH
3316 return false;
3317}
56de7263
MG
3318#endif /* CONFIG_COMPACTION */
3319
bba90710
MS
3320/* Perform direct synchronous page reclaim */
3321static int
a9263751
VB
3322__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3323 const struct alloc_context *ac)
11e33f6a 3324{
11e33f6a 3325 struct reclaim_state reclaim_state;
bba90710 3326 int progress;
11e33f6a
MG
3327
3328 cond_resched();
3329
3330 /* We now go into synchronous reclaim */
3331 cpuset_memory_pressure_bump();
c06b1fca 3332 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3333 lockdep_set_current_reclaim_state(gfp_mask);
3334 reclaim_state.reclaimed_slab = 0;
c06b1fca 3335 current->reclaim_state = &reclaim_state;
11e33f6a 3336
a9263751
VB
3337 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3338 ac->nodemask);
11e33f6a 3339
c06b1fca 3340 current->reclaim_state = NULL;
11e33f6a 3341 lockdep_clear_current_reclaim_state();
c06b1fca 3342 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3343
3344 cond_resched();
3345
bba90710
MS
3346 return progress;
3347}
3348
3349/* The really slow allocator path where we enter direct reclaim */
3350static inline struct page *
3351__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3352 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3353 unsigned long *did_some_progress)
bba90710
MS
3354{
3355 struct page *page = NULL;
3356 bool drained = false;
3357
a9263751 3358 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3359 if (unlikely(!(*did_some_progress)))
3360 return NULL;
11e33f6a 3361
9ee493ce 3362retry:
a9263751
VB
3363 page = get_page_from_freelist(gfp_mask, order,
3364 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3365
3366 /*
3367 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3368 * pages are pinned on the per-cpu lists or in high alloc reserves.
3369 * Shrink them them and try again
9ee493ce
MG
3370 */
3371 if (!page && !drained) {
0aaa29a5 3372 unreserve_highatomic_pageblock(ac);
93481ff0 3373 drain_all_pages(NULL);
9ee493ce
MG
3374 drained = true;
3375 goto retry;
3376 }
3377
11e33f6a
MG
3378 return page;
3379}
3380
a9263751 3381static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3382{
3383 struct zoneref *z;
3384 struct zone *zone;
3385
a9263751
VB
3386 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3387 ac->high_zoneidx, ac->nodemask)
93ea9964 3388 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3389}
3390
c603844b 3391static inline unsigned int
341ce06f
PZ
3392gfp_to_alloc_flags(gfp_t gfp_mask)
3393{
c603844b 3394 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3395
a56f57ff 3396 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3397 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3398
341ce06f
PZ
3399 /*
3400 * The caller may dip into page reserves a bit more if the caller
3401 * cannot run direct reclaim, or if the caller has realtime scheduling
3402 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3403 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3404 */
e6223a3b 3405 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3406
d0164adc 3407 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3408 /*
b104a35d
DR
3409 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3410 * if it can't schedule.
5c3240d9 3411 */
b104a35d 3412 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3413 alloc_flags |= ALLOC_HARDER;
523b9458 3414 /*
b104a35d 3415 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3416 * comment for __cpuset_node_allowed().
523b9458 3417 */
341ce06f 3418 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3419 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3420 alloc_flags |= ALLOC_HARDER;
3421
b37f1dd0
MG
3422 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3423 if (gfp_mask & __GFP_MEMALLOC)
3424 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3425 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3426 alloc_flags |= ALLOC_NO_WATERMARKS;
3427 else if (!in_interrupt() &&
3428 ((current->flags & PF_MEMALLOC) ||
3429 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3430 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3431 }
d95ea5d1 3432#ifdef CONFIG_CMA
43e7a34d 3433 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3434 alloc_flags |= ALLOC_CMA;
3435#endif
341ce06f
PZ
3436 return alloc_flags;
3437}
3438
072bb0aa
MG
3439bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3440{
b37f1dd0 3441 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3442}
3443
d0164adc
MG
3444static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3445{
3446 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3447}
3448
0a0337e0
MH
3449/*
3450 * Maximum number of reclaim retries without any progress before OOM killer
3451 * is consider as the only way to move forward.
3452 */
3453#define MAX_RECLAIM_RETRIES 16
3454
3455/*
3456 * Checks whether it makes sense to retry the reclaim to make a forward progress
3457 * for the given allocation request.
3458 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3459 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3460 * any progress in a row) is considered as well as the reclaimable pages on the
3461 * applicable zone list (with a backoff mechanism which is a function of
3462 * no_progress_loops).
0a0337e0
MH
3463 *
3464 * Returns true if a retry is viable or false to enter the oom path.
3465 */
3466static inline bool
3467should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3468 struct alloc_context *ac, int alloc_flags,
7854ea6c 3469 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3470{
3471 struct zone *zone;
3472 struct zoneref *z;
3473
3474 /*
3475 * Make sure we converge to OOM if we cannot make any progress
3476 * several times in the row.
3477 */
3478 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3479 return false;
3480
0a0337e0
MH
3481 /*
3482 * Keep reclaiming pages while there is a chance this will lead somewhere.
3483 * If none of the target zones can satisfy our allocation request even
3484 * if all reclaimable pages are considered then we are screwed and have
3485 * to go OOM.
3486 */
3487 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3488 ac->nodemask) {
3489 unsigned long available;
ede37713 3490 unsigned long reclaimable;
0a0337e0 3491
ede37713 3492 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3493 available -= DIV_ROUND_UP(no_progress_loops * available,
3494 MAX_RECLAIM_RETRIES);
3495 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3496
3497 /*
3498 * Would the allocation succeed if we reclaimed the whole
3499 * available?
3500 */
3501 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3502 ac_classzone_idx(ac), alloc_flags, available)) {
3503 /*
3504 * If we didn't make any progress and have a lot of
3505 * dirty + writeback pages then we should wait for
3506 * an IO to complete to slow down the reclaim and
3507 * prevent from pre mature OOM
3508 */
3509 if (!did_some_progress) {
3510 unsigned long writeback;
3511 unsigned long dirty;
3512
3513 writeback = zone_page_state_snapshot(zone,
3514 NR_WRITEBACK);
3515 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3516
3517 if (2*(writeback + dirty) > reclaimable) {
3518 congestion_wait(BLK_RW_ASYNC, HZ/10);
3519 return true;
3520 }
3521 }
3522
3523 /*
3524 * Memory allocation/reclaim might be called from a WQ
3525 * context and the current implementation of the WQ
3526 * concurrency control doesn't recognize that
3527 * a particular WQ is congested if the worker thread is
3528 * looping without ever sleeping. Therefore we have to
3529 * do a short sleep here rather than calling
3530 * cond_resched().
3531 */
3532 if (current->flags & PF_WQ_WORKER)
3533 schedule_timeout_uninterruptible(1);
3534 else
3535 cond_resched();
3536
0a0337e0
MH
3537 return true;
3538 }
3539 }
3540
3541 return false;
3542}
3543
11e33f6a
MG
3544static inline struct page *
3545__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3546 struct alloc_context *ac)
11e33f6a 3547{
d0164adc 3548 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3549 struct page *page = NULL;
c603844b 3550 unsigned int alloc_flags;
11e33f6a 3551 unsigned long did_some_progress;
e0b9daeb 3552 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3553 enum compact_result compact_result;
33c2d214 3554 int compaction_retries = 0;
0a0337e0 3555 int no_progress_loops = 0;
1da177e4 3556
72807a74
MG
3557 /*
3558 * In the slowpath, we sanity check order to avoid ever trying to
3559 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3560 * be using allocators in order of preference for an area that is
3561 * too large.
3562 */
1fc28b70
MG
3563 if (order >= MAX_ORDER) {
3564 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3565 return NULL;
1fc28b70 3566 }
1da177e4 3567
d0164adc
MG
3568 /*
3569 * We also sanity check to catch abuse of atomic reserves being used by
3570 * callers that are not in atomic context.
3571 */
3572 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3573 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3574 gfp_mask &= ~__GFP_ATOMIC;
3575
9879de73 3576retry:
d0164adc 3577 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3578 wake_all_kswapds(order, ac);
1da177e4 3579
9bf2229f 3580 /*
7fb1d9fc
RS
3581 * OK, we're below the kswapd watermark and have kicked background
3582 * reclaim. Now things get more complex, so set up alloc_flags according
3583 * to how we want to proceed.
9bf2229f 3584 */
341ce06f 3585 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3586
e46e7b77
MG
3587 /*
3588 * Reset the zonelist iterators if memory policies can be ignored.
3589 * These allocations are high priority and system rather than user
3590 * orientated.
3591 */
3592 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3593 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3594 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3595 ac->high_zoneidx, ac->nodemask);
3596 }
3597
341ce06f 3598 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3599 page = get_page_from_freelist(gfp_mask, order,
3600 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3601 if (page)
3602 goto got_pg;
1da177e4 3603
11e33f6a 3604 /* Allocate without watermarks if the context allows */
341ce06f 3605 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3606 page = get_page_from_freelist(gfp_mask, order,
3607 ALLOC_NO_WATERMARKS, ac);
3608 if (page)
3609 goto got_pg;
1da177e4
LT
3610 }
3611
d0164adc
MG
3612 /* Caller is not willing to reclaim, we can't balance anything */
3613 if (!can_direct_reclaim) {
aed0a0e3 3614 /*
33d53103
MH
3615 * All existing users of the __GFP_NOFAIL are blockable, so warn
3616 * of any new users that actually allow this type of allocation
3617 * to fail.
aed0a0e3
DR
3618 */
3619 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3620 goto nopage;
aed0a0e3 3621 }
1da177e4 3622
341ce06f 3623 /* Avoid recursion of direct reclaim */
33d53103
MH
3624 if (current->flags & PF_MEMALLOC) {
3625 /*
3626 * __GFP_NOFAIL request from this context is rather bizarre
3627 * because we cannot reclaim anything and only can loop waiting
3628 * for somebody to do a work for us.
3629 */
3630 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3631 cond_resched();
3632 goto retry;
3633 }
341ce06f 3634 goto nopage;
33d53103 3635 }
341ce06f 3636
6583bb64
DR
3637 /* Avoid allocations with no watermarks from looping endlessly */
3638 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3639 goto nopage;
3640
77f1fe6b
MG
3641 /*
3642 * Try direct compaction. The first pass is asynchronous. Subsequent
3643 * attempts after direct reclaim are synchronous
3644 */
a9263751
VB
3645 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3646 migration_mode,
c5d01d0d 3647 &compact_result);
56de7263
MG
3648 if (page)
3649 goto got_pg;
75f30861 3650
1f9efdef 3651 /* Checks for THP-specific high-order allocations */
d0164adc 3652 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3653 /*
3654 * If compaction is deferred for high-order allocations, it is
3655 * because sync compaction recently failed. If this is the case
3656 * and the caller requested a THP allocation, we do not want
3657 * to heavily disrupt the system, so we fail the allocation
3658 * instead of entering direct reclaim.
3659 */
c5d01d0d 3660 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3661 goto nopage;
3662
3663 /*
c5d01d0d
MH
3664 * Compaction is contended so rather back off than cause
3665 * excessive stalls.
1f9efdef 3666 */
c5d01d0d 3667 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3668 goto nopage;
3669 }
66199712 3670
33c2d214
MH
3671 if (order && compaction_made_progress(compact_result))
3672 compaction_retries++;
8fe78048 3673
11e33f6a 3674 /* Try direct reclaim and then allocating */
a9263751
VB
3675 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3676 &did_some_progress);
11e33f6a
MG
3677 if (page)
3678 goto got_pg;
1da177e4 3679
9083905a
JW
3680 /* Do not loop if specifically requested */
3681 if (gfp_mask & __GFP_NORETRY)
3682 goto noretry;
3683
0a0337e0
MH
3684 /*
3685 * Do not retry costly high order allocations unless they are
3686 * __GFP_REPEAT
3687 */
3688 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3689 goto noretry;
3690
7854ea6c
MH
3691 /*
3692 * Costly allocations might have made a progress but this doesn't mean
3693 * their order will become available due to high fragmentation so
3694 * always increment the no progress counter for them
3695 */
3696 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3697 no_progress_loops = 0;
7854ea6c 3698 else
0a0337e0 3699 no_progress_loops++;
1da177e4 3700
0a0337e0 3701 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3702 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3703 goto retry;
3704
33c2d214
MH
3705 /*
3706 * It doesn't make any sense to retry for the compaction if the order-0
3707 * reclaim is not able to make any progress because the current
3708 * implementation of the compaction depends on the sufficient amount
3709 * of free memory (see __compaction_suitable)
3710 */
3711 if (did_some_progress > 0 &&
86a294a8
MH
3712 should_compact_retry(ac, order, alloc_flags,
3713 compact_result, &migration_mode,
3714 compaction_retries))
33c2d214
MH
3715 goto retry;
3716
9083905a
JW
3717 /* Reclaim has failed us, start killing things */
3718 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3719 if (page)
3720 goto got_pg;
3721
3722 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3723 if (did_some_progress) {
3724 no_progress_loops = 0;
9083905a 3725 goto retry;
0a0337e0 3726 }
9083905a
JW
3727
3728noretry:
3729 /*
33c2d214
MH
3730 * High-order allocations do not necessarily loop after direct reclaim
3731 * and reclaim/compaction depends on compaction being called after
3732 * reclaim so call directly if necessary.
3733 * It can become very expensive to allocate transparent hugepages at
3734 * fault, so use asynchronous memory compaction for THP unless it is
3735 * khugepaged trying to collapse. All other requests should tolerate
3736 * at least light sync migration.
9083905a 3737 */
33c2d214
MH
3738 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3739 migration_mode = MIGRATE_ASYNC;
3740 else
3741 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3742 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3743 ac, migration_mode,
c5d01d0d 3744 &compact_result);
9083905a
JW
3745 if (page)
3746 goto got_pg;
1da177e4 3747nopage:
a238ab5b 3748 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3749got_pg:
072bb0aa 3750 return page;
1da177e4 3751}
11e33f6a
MG
3752
3753/*
3754 * This is the 'heart' of the zoned buddy allocator.
3755 */
3756struct page *
3757__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3758 struct zonelist *zonelist, nodemask_t *nodemask)
3759{
5bb1b169 3760 struct page *page;
cc9a6c87 3761 unsigned int cpuset_mems_cookie;
c603844b 3762 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3763 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3764 struct alloc_context ac = {
3765 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3766 .zonelist = zonelist,
a9263751
VB
3767 .nodemask = nodemask,
3768 .migratetype = gfpflags_to_migratetype(gfp_mask),
3769 };
11e33f6a 3770
682a3385 3771 if (cpusets_enabled()) {
83d4ca81 3772 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3773 alloc_flags |= ALLOC_CPUSET;
3774 if (!ac.nodemask)
3775 ac.nodemask = &cpuset_current_mems_allowed;
3776 }
3777
dcce284a
BH
3778 gfp_mask &= gfp_allowed_mask;
3779
11e33f6a
MG
3780 lockdep_trace_alloc(gfp_mask);
3781
d0164adc 3782 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3783
3784 if (should_fail_alloc_page(gfp_mask, order))
3785 return NULL;
3786
3787 /*
3788 * Check the zones suitable for the gfp_mask contain at least one
3789 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3790 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3791 */
3792 if (unlikely(!zonelist->_zonerefs->zone))
3793 return NULL;
3794
a9263751 3795 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3796 alloc_flags |= ALLOC_CMA;
3797
cc9a6c87 3798retry_cpuset:
d26914d1 3799 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3800
c9ab0c4f
MG
3801 /* Dirty zone balancing only done in the fast path */
3802 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3803
e46e7b77
MG
3804 /*
3805 * The preferred zone is used for statistics but crucially it is
3806 * also used as the starting point for the zonelist iterator. It
3807 * may get reset for allocations that ignore memory policies.
3808 */
c33d6c06
MG
3809 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3810 ac.high_zoneidx, ac.nodemask);
3811 if (!ac.preferred_zoneref) {
5bb1b169 3812 page = NULL;
4fcb0971 3813 goto no_zone;
5bb1b169
MG
3814 }
3815
5117f45d 3816 /* First allocation attempt */
a9263751 3817 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3818 if (likely(page))
3819 goto out;
11e33f6a 3820
4fcb0971
MG
3821 /*
3822 * Runtime PM, block IO and its error handling path can deadlock
3823 * because I/O on the device might not complete.
3824 */
3825 alloc_mask = memalloc_noio_flags(gfp_mask);
3826 ac.spread_dirty_pages = false;
23f086f9 3827
4741526b
MG
3828 /*
3829 * Restore the original nodemask if it was potentially replaced with
3830 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3831 */
3832 if (cpusets_enabled())
3833 ac.nodemask = nodemask;
4fcb0971 3834 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3835
4fcb0971 3836no_zone:
cc9a6c87
MG
3837 /*
3838 * When updating a task's mems_allowed, it is possible to race with
3839 * parallel threads in such a way that an allocation can fail while
3840 * the mask is being updated. If a page allocation is about to fail,
3841 * check if the cpuset changed during allocation and if so, retry.
3842 */
83d4ca81
MG
3843 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3844 alloc_mask = gfp_mask;
cc9a6c87 3845 goto retry_cpuset;
83d4ca81 3846 }
cc9a6c87 3847
4fcb0971 3848out:
4949148a
VD
3849 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3850 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3851 __free_pages(page, order);
3852 page = NULL;
3853 } else
3854 __SetPageKmemcg(page);
3855 }
3856
4fcb0971
MG
3857 if (kmemcheck_enabled && page)
3858 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3859
3860 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3861
11e33f6a 3862 return page;
1da177e4 3863}
d239171e 3864EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3865
3866/*
3867 * Common helper functions.
3868 */
920c7a5d 3869unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3870{
945a1113
AM
3871 struct page *page;
3872
3873 /*
3874 * __get_free_pages() returns a 32-bit address, which cannot represent
3875 * a highmem page
3876 */
3877 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3878
1da177e4
LT
3879 page = alloc_pages(gfp_mask, order);
3880 if (!page)
3881 return 0;
3882 return (unsigned long) page_address(page);
3883}
1da177e4
LT
3884EXPORT_SYMBOL(__get_free_pages);
3885
920c7a5d 3886unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3887{
945a1113 3888 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3889}
1da177e4
LT
3890EXPORT_SYMBOL(get_zeroed_page);
3891
920c7a5d 3892void __free_pages(struct page *page, unsigned int order)
1da177e4 3893{
b5810039 3894 if (put_page_testzero(page)) {
1da177e4 3895 if (order == 0)
b745bc85 3896 free_hot_cold_page(page, false);
1da177e4
LT
3897 else
3898 __free_pages_ok(page, order);
3899 }
3900}
3901
3902EXPORT_SYMBOL(__free_pages);
3903
920c7a5d 3904void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3905{
3906 if (addr != 0) {
725d704e 3907 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3908 __free_pages(virt_to_page((void *)addr), order);
3909 }
3910}
3911
3912EXPORT_SYMBOL(free_pages);
3913
b63ae8ca
AD
3914/*
3915 * Page Fragment:
3916 * An arbitrary-length arbitrary-offset area of memory which resides
3917 * within a 0 or higher order page. Multiple fragments within that page
3918 * are individually refcounted, in the page's reference counter.
3919 *
3920 * The page_frag functions below provide a simple allocation framework for
3921 * page fragments. This is used by the network stack and network device
3922 * drivers to provide a backing region of memory for use as either an
3923 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3924 */
3925static struct page *__page_frag_refill(struct page_frag_cache *nc,
3926 gfp_t gfp_mask)
3927{
3928 struct page *page = NULL;
3929 gfp_t gfp = gfp_mask;
3930
3931#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3932 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3933 __GFP_NOMEMALLOC;
3934 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3935 PAGE_FRAG_CACHE_MAX_ORDER);
3936 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3937#endif
3938 if (unlikely(!page))
3939 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3940
3941 nc->va = page ? page_address(page) : NULL;
3942
3943 return page;
3944}
3945
3946void *__alloc_page_frag(struct page_frag_cache *nc,
3947 unsigned int fragsz, gfp_t gfp_mask)
3948{
3949 unsigned int size = PAGE_SIZE;
3950 struct page *page;
3951 int offset;
3952
3953 if (unlikely(!nc->va)) {
3954refill:
3955 page = __page_frag_refill(nc, gfp_mask);
3956 if (!page)
3957 return NULL;
3958
3959#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3960 /* if size can vary use size else just use PAGE_SIZE */
3961 size = nc->size;
3962#endif
3963 /* Even if we own the page, we do not use atomic_set().
3964 * This would break get_page_unless_zero() users.
3965 */
fe896d18 3966 page_ref_add(page, size - 1);
b63ae8ca
AD
3967
3968 /* reset page count bias and offset to start of new frag */
2f064f34 3969 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3970 nc->pagecnt_bias = size;
3971 nc->offset = size;
3972 }
3973
3974 offset = nc->offset - fragsz;
3975 if (unlikely(offset < 0)) {
3976 page = virt_to_page(nc->va);
3977
fe896d18 3978 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3979 goto refill;
3980
3981#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3982 /* if size can vary use size else just use PAGE_SIZE */
3983 size = nc->size;
3984#endif
3985 /* OK, page count is 0, we can safely set it */
fe896d18 3986 set_page_count(page, size);
b63ae8ca
AD
3987
3988 /* reset page count bias and offset to start of new frag */
3989 nc->pagecnt_bias = size;
3990 offset = size - fragsz;
3991 }
3992
3993 nc->pagecnt_bias--;
3994 nc->offset = offset;
3995
3996 return nc->va + offset;
3997}
3998EXPORT_SYMBOL(__alloc_page_frag);
3999
4000/*
4001 * Frees a page fragment allocated out of either a compound or order 0 page.
4002 */
4003void __free_page_frag(void *addr)
4004{
4005 struct page *page = virt_to_head_page(addr);
4006
4007 if (unlikely(put_page_testzero(page)))
4008 __free_pages_ok(page, compound_order(page));
4009}
4010EXPORT_SYMBOL(__free_page_frag);
4011
d00181b9
KS
4012static void *make_alloc_exact(unsigned long addr, unsigned int order,
4013 size_t size)
ee85c2e1
AK
4014{
4015 if (addr) {
4016 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4017 unsigned long used = addr + PAGE_ALIGN(size);
4018
4019 split_page(virt_to_page((void *)addr), order);
4020 while (used < alloc_end) {
4021 free_page(used);
4022 used += PAGE_SIZE;
4023 }
4024 }
4025 return (void *)addr;
4026}
4027
2be0ffe2
TT
4028/**
4029 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4030 * @size: the number of bytes to allocate
4031 * @gfp_mask: GFP flags for the allocation
4032 *
4033 * This function is similar to alloc_pages(), except that it allocates the
4034 * minimum number of pages to satisfy the request. alloc_pages() can only
4035 * allocate memory in power-of-two pages.
4036 *
4037 * This function is also limited by MAX_ORDER.
4038 *
4039 * Memory allocated by this function must be released by free_pages_exact().
4040 */
4041void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4042{
4043 unsigned int order = get_order(size);
4044 unsigned long addr;
4045
4046 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4047 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4048}
4049EXPORT_SYMBOL(alloc_pages_exact);
4050
ee85c2e1
AK
4051/**
4052 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4053 * pages on a node.
b5e6ab58 4054 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4055 * @size: the number of bytes to allocate
4056 * @gfp_mask: GFP flags for the allocation
4057 *
4058 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4059 * back.
ee85c2e1 4060 */
e1931811 4061void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4062{
d00181b9 4063 unsigned int order = get_order(size);
ee85c2e1
AK
4064 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4065 if (!p)
4066 return NULL;
4067 return make_alloc_exact((unsigned long)page_address(p), order, size);
4068}
ee85c2e1 4069
2be0ffe2
TT
4070/**
4071 * free_pages_exact - release memory allocated via alloc_pages_exact()
4072 * @virt: the value returned by alloc_pages_exact.
4073 * @size: size of allocation, same value as passed to alloc_pages_exact().
4074 *
4075 * Release the memory allocated by a previous call to alloc_pages_exact.
4076 */
4077void free_pages_exact(void *virt, size_t size)
4078{
4079 unsigned long addr = (unsigned long)virt;
4080 unsigned long end = addr + PAGE_ALIGN(size);
4081
4082 while (addr < end) {
4083 free_page(addr);
4084 addr += PAGE_SIZE;
4085 }
4086}
4087EXPORT_SYMBOL(free_pages_exact);
4088
e0fb5815
ZY
4089/**
4090 * nr_free_zone_pages - count number of pages beyond high watermark
4091 * @offset: The zone index of the highest zone
4092 *
4093 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4094 * high watermark within all zones at or below a given zone index. For each
4095 * zone, the number of pages is calculated as:
834405c3 4096 * managed_pages - high_pages
e0fb5815 4097 */
ebec3862 4098static unsigned long nr_free_zone_pages(int offset)
1da177e4 4099{
dd1a239f 4100 struct zoneref *z;
54a6eb5c
MG
4101 struct zone *zone;
4102
e310fd43 4103 /* Just pick one node, since fallback list is circular */
ebec3862 4104 unsigned long sum = 0;
1da177e4 4105
0e88460d 4106 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4107
54a6eb5c 4108 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4109 unsigned long size = zone->managed_pages;
41858966 4110 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4111 if (size > high)
4112 sum += size - high;
1da177e4
LT
4113 }
4114
4115 return sum;
4116}
4117
e0fb5815
ZY
4118/**
4119 * nr_free_buffer_pages - count number of pages beyond high watermark
4120 *
4121 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4122 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4123 */
ebec3862 4124unsigned long nr_free_buffer_pages(void)
1da177e4 4125{
af4ca457 4126 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4127}
c2f1a551 4128EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4129
e0fb5815
ZY
4130/**
4131 * nr_free_pagecache_pages - count number of pages beyond high watermark
4132 *
4133 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4134 * high watermark within all zones.
1da177e4 4135 */
ebec3862 4136unsigned long nr_free_pagecache_pages(void)
1da177e4 4137{
2a1e274a 4138 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4139}
08e0f6a9
CL
4140
4141static inline void show_node(struct zone *zone)
1da177e4 4142{
e5adfffc 4143 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4144 printk("Node %d ", zone_to_nid(zone));
1da177e4 4145}
1da177e4 4146
d02bd27b
IR
4147long si_mem_available(void)
4148{
4149 long available;
4150 unsigned long pagecache;
4151 unsigned long wmark_low = 0;
4152 unsigned long pages[NR_LRU_LISTS];
4153 struct zone *zone;
4154 int lru;
4155
4156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4157 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4158
4159 for_each_zone(zone)
4160 wmark_low += zone->watermark[WMARK_LOW];
4161
4162 /*
4163 * Estimate the amount of memory available for userspace allocations,
4164 * without causing swapping.
4165 */
4166 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4167
4168 /*
4169 * Not all the page cache can be freed, otherwise the system will
4170 * start swapping. Assume at least half of the page cache, or the
4171 * low watermark worth of cache, needs to stay.
4172 */
4173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4174 pagecache -= min(pagecache / 2, wmark_low);
4175 available += pagecache;
4176
4177 /*
4178 * Part of the reclaimable slab consists of items that are in use,
4179 * and cannot be freed. Cap this estimate at the low watermark.
4180 */
4181 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4182 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4183
4184 if (available < 0)
4185 available = 0;
4186 return available;
4187}
4188EXPORT_SYMBOL_GPL(si_mem_available);
4189
1da177e4
LT
4190void si_meminfo(struct sysinfo *val)
4191{
4192 val->totalram = totalram_pages;
cc7452b6 4193 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4194 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4195 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4196 val->totalhigh = totalhigh_pages;
4197 val->freehigh = nr_free_highpages();
1da177e4
LT
4198 val->mem_unit = PAGE_SIZE;
4199}
4200
4201EXPORT_SYMBOL(si_meminfo);
4202
4203#ifdef CONFIG_NUMA
4204void si_meminfo_node(struct sysinfo *val, int nid)
4205{
cdd91a77
JL
4206 int zone_type; /* needs to be signed */
4207 unsigned long managed_pages = 0;
fc2bd799
JK
4208 unsigned long managed_highpages = 0;
4209 unsigned long free_highpages = 0;
1da177e4
LT
4210 pg_data_t *pgdat = NODE_DATA(nid);
4211
cdd91a77
JL
4212 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4213 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4214 val->totalram = managed_pages;
cc7452b6 4215 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4216 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4217#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4218 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4219 struct zone *zone = &pgdat->node_zones[zone_type];
4220
4221 if (is_highmem(zone)) {
4222 managed_highpages += zone->managed_pages;
4223 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4224 }
4225 }
4226 val->totalhigh = managed_highpages;
4227 val->freehigh = free_highpages;
98d2b0eb 4228#else
fc2bd799
JK
4229 val->totalhigh = managed_highpages;
4230 val->freehigh = free_highpages;
98d2b0eb 4231#endif
1da177e4
LT
4232 val->mem_unit = PAGE_SIZE;
4233}
4234#endif
4235
ddd588b5 4236/*
7bf02ea2
DR
4237 * Determine whether the node should be displayed or not, depending on whether
4238 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4239 */
7bf02ea2 4240bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4241{
4242 bool ret = false;
cc9a6c87 4243 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4244
4245 if (!(flags & SHOW_MEM_FILTER_NODES))
4246 goto out;
4247
cc9a6c87 4248 do {
d26914d1 4249 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4250 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4251 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4252out:
4253 return ret;
4254}
4255
1da177e4
LT
4256#define K(x) ((x) << (PAGE_SHIFT-10))
4257
377e4f16
RV
4258static void show_migration_types(unsigned char type)
4259{
4260 static const char types[MIGRATE_TYPES] = {
4261 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4262 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4263 [MIGRATE_RECLAIMABLE] = 'E',
4264 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4265#ifdef CONFIG_CMA
4266 [MIGRATE_CMA] = 'C',
4267#endif
194159fb 4268#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4269 [MIGRATE_ISOLATE] = 'I',
194159fb 4270#endif
377e4f16
RV
4271 };
4272 char tmp[MIGRATE_TYPES + 1];
4273 char *p = tmp;
4274 int i;
4275
4276 for (i = 0; i < MIGRATE_TYPES; i++) {
4277 if (type & (1 << i))
4278 *p++ = types[i];
4279 }
4280
4281 *p = '\0';
4282 printk("(%s) ", tmp);
4283}
4284
1da177e4
LT
4285/*
4286 * Show free area list (used inside shift_scroll-lock stuff)
4287 * We also calculate the percentage fragmentation. We do this by counting the
4288 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4289 *
4290 * Bits in @filter:
4291 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4292 * cpuset.
1da177e4 4293 */
7bf02ea2 4294void show_free_areas(unsigned int filter)
1da177e4 4295{
d1bfcdb8 4296 unsigned long free_pcp = 0;
c7241913 4297 int cpu;
1da177e4
LT
4298 struct zone *zone;
4299
ee99c71c 4300 for_each_populated_zone(zone) {
7bf02ea2 4301 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4302 continue;
d1bfcdb8 4303
761b0677
KK
4304 for_each_online_cpu(cpu)
4305 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4306 }
4307
a731286d
KM
4308 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4309 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4310 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4311 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4312 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4313 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4314 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4315 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4316 global_page_state(NR_ISOLATED_ANON),
4317 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4318 global_page_state(NR_INACTIVE_FILE),
a731286d 4319 global_page_state(NR_ISOLATED_FILE),
7b854121 4320 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4321 global_page_state(NR_FILE_DIRTY),
ce866b34 4322 global_page_state(NR_WRITEBACK),
fd39fc85 4323 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4324 global_page_state(NR_SLAB_RECLAIMABLE),
4325 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4326 global_page_state(NR_FILE_MAPPED),
4b02108a 4327 global_page_state(NR_SHMEM),
a25700a5 4328 global_page_state(NR_PAGETABLE),
d1ce749a 4329 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4330 global_page_state(NR_FREE_PAGES),
4331 free_pcp,
d1ce749a 4332 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4333
ee99c71c 4334 for_each_populated_zone(zone) {
1da177e4
LT
4335 int i;
4336
7bf02ea2 4337 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4338 continue;
d1bfcdb8
KK
4339
4340 free_pcp = 0;
4341 for_each_online_cpu(cpu)
4342 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4343
1da177e4
LT
4344 show_node(zone);
4345 printk("%s"
4346 " free:%lukB"
4347 " min:%lukB"
4348 " low:%lukB"
4349 " high:%lukB"
4f98a2fe
RR
4350 " active_anon:%lukB"
4351 " inactive_anon:%lukB"
4352 " active_file:%lukB"
4353 " inactive_file:%lukB"
7b854121 4354 " unevictable:%lukB"
a731286d
KM
4355 " isolated(anon):%lukB"
4356 " isolated(file):%lukB"
1da177e4 4357 " present:%lukB"
9feedc9d 4358 " managed:%lukB"
4a0aa73f
KM
4359 " mlocked:%lukB"
4360 " dirty:%lukB"
4361 " writeback:%lukB"
4362 " mapped:%lukB"
4b02108a 4363 " shmem:%lukB"
4a0aa73f
KM
4364 " slab_reclaimable:%lukB"
4365 " slab_unreclaimable:%lukB"
c6a7f572 4366 " kernel_stack:%lukB"
4a0aa73f
KM
4367 " pagetables:%lukB"
4368 " unstable:%lukB"
4369 " bounce:%lukB"
d1bfcdb8
KK
4370 " free_pcp:%lukB"
4371 " local_pcp:%ukB"
d1ce749a 4372 " free_cma:%lukB"
4a0aa73f 4373 " writeback_tmp:%lukB"
1da177e4
LT
4374 " pages_scanned:%lu"
4375 " all_unreclaimable? %s"
4376 "\n",
4377 zone->name,
88f5acf8 4378 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4379 K(min_wmark_pages(zone)),
4380 K(low_wmark_pages(zone)),
4381 K(high_wmark_pages(zone)),
4f98a2fe
RR
4382 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4383 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4384 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4385 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4386 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4387 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4388 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4389 K(zone->present_pages),
9feedc9d 4390 K(zone->managed_pages),
4a0aa73f
KM
4391 K(zone_page_state(zone, NR_MLOCK)),
4392 K(zone_page_state(zone, NR_FILE_DIRTY)),
4393 K(zone_page_state(zone, NR_WRITEBACK)),
4394 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4395 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4396 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4397 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4398 zone_page_state(zone, NR_KERNEL_STACK) *
4399 THREAD_SIZE / 1024,
4a0aa73f
KM
4400 K(zone_page_state(zone, NR_PAGETABLE)),
4401 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4402 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4403 K(free_pcp),
4404 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4405 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4406 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4407 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4408 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4409 );
4410 printk("lowmem_reserve[]:");
4411 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4412 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4413 printk("\n");
4414 }
4415
ee99c71c 4416 for_each_populated_zone(zone) {
d00181b9
KS
4417 unsigned int order;
4418 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4419 unsigned char types[MAX_ORDER];
1da177e4 4420
7bf02ea2 4421 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4422 continue;
1da177e4
LT
4423 show_node(zone);
4424 printk("%s: ", zone->name);
1da177e4
LT
4425
4426 spin_lock_irqsave(&zone->lock, flags);
4427 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4428 struct free_area *area = &zone->free_area[order];
4429 int type;
4430
4431 nr[order] = area->nr_free;
8f9de51a 4432 total += nr[order] << order;
377e4f16
RV
4433
4434 types[order] = 0;
4435 for (type = 0; type < MIGRATE_TYPES; type++) {
4436 if (!list_empty(&area->free_list[type]))
4437 types[order] |= 1 << type;
4438 }
1da177e4
LT
4439 }
4440 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4441 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4442 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4443 if (nr[order])
4444 show_migration_types(types[order]);
4445 }
1da177e4
LT
4446 printk("= %lukB\n", K(total));
4447 }
4448
949f7ec5
DR
4449 hugetlb_show_meminfo();
4450
e6f3602d
LW
4451 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4452
1da177e4
LT
4453 show_swap_cache_info();
4454}
4455
19770b32
MG
4456static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4457{
4458 zoneref->zone = zone;
4459 zoneref->zone_idx = zone_idx(zone);
4460}
4461
1da177e4
LT
4462/*
4463 * Builds allocation fallback zone lists.
1a93205b
CL
4464 *
4465 * Add all populated zones of a node to the zonelist.
1da177e4 4466 */
f0c0b2b8 4467static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4468 int nr_zones)
1da177e4 4469{
1a93205b 4470 struct zone *zone;
bc732f1d 4471 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4472
4473 do {
2f6726e5 4474 zone_type--;
070f8032 4475 zone = pgdat->node_zones + zone_type;
1a93205b 4476 if (populated_zone(zone)) {
dd1a239f
MG
4477 zoneref_set_zone(zone,
4478 &zonelist->_zonerefs[nr_zones++]);
070f8032 4479 check_highest_zone(zone_type);
1da177e4 4480 }
2f6726e5 4481 } while (zone_type);
bc732f1d 4482
070f8032 4483 return nr_zones;
1da177e4
LT
4484}
4485
f0c0b2b8
KH
4486
4487/*
4488 * zonelist_order:
4489 * 0 = automatic detection of better ordering.
4490 * 1 = order by ([node] distance, -zonetype)
4491 * 2 = order by (-zonetype, [node] distance)
4492 *
4493 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4494 * the same zonelist. So only NUMA can configure this param.
4495 */
4496#define ZONELIST_ORDER_DEFAULT 0
4497#define ZONELIST_ORDER_NODE 1
4498#define ZONELIST_ORDER_ZONE 2
4499
4500/* zonelist order in the kernel.
4501 * set_zonelist_order() will set this to NODE or ZONE.
4502 */
4503static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4504static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4505
4506
1da177e4 4507#ifdef CONFIG_NUMA
f0c0b2b8
KH
4508/* The value user specified ....changed by config */
4509static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4510/* string for sysctl */
4511#define NUMA_ZONELIST_ORDER_LEN 16
4512char numa_zonelist_order[16] = "default";
4513
4514/*
4515 * interface for configure zonelist ordering.
4516 * command line option "numa_zonelist_order"
4517 * = "[dD]efault - default, automatic configuration.
4518 * = "[nN]ode - order by node locality, then by zone within node
4519 * = "[zZ]one - order by zone, then by locality within zone
4520 */
4521
4522static int __parse_numa_zonelist_order(char *s)
4523{
4524 if (*s == 'd' || *s == 'D') {
4525 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4526 } else if (*s == 'n' || *s == 'N') {
4527 user_zonelist_order = ZONELIST_ORDER_NODE;
4528 } else if (*s == 'z' || *s == 'Z') {
4529 user_zonelist_order = ZONELIST_ORDER_ZONE;
4530 } else {
1170532b 4531 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4532 return -EINVAL;
4533 }
4534 return 0;
4535}
4536
4537static __init int setup_numa_zonelist_order(char *s)
4538{
ecb256f8
VL
4539 int ret;
4540
4541 if (!s)
4542 return 0;
4543
4544 ret = __parse_numa_zonelist_order(s);
4545 if (ret == 0)
4546 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4547
4548 return ret;
f0c0b2b8
KH
4549}
4550early_param("numa_zonelist_order", setup_numa_zonelist_order);
4551
4552/*
4553 * sysctl handler for numa_zonelist_order
4554 */
cccad5b9 4555int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4556 void __user *buffer, size_t *length,
f0c0b2b8
KH
4557 loff_t *ppos)
4558{
4559 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4560 int ret;
443c6f14 4561 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4562
443c6f14 4563 mutex_lock(&zl_order_mutex);
dacbde09
CG
4564 if (write) {
4565 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4566 ret = -EINVAL;
4567 goto out;
4568 }
4569 strcpy(saved_string, (char *)table->data);
4570 }
8d65af78 4571 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4572 if (ret)
443c6f14 4573 goto out;
f0c0b2b8
KH
4574 if (write) {
4575 int oldval = user_zonelist_order;
dacbde09
CG
4576
4577 ret = __parse_numa_zonelist_order((char *)table->data);
4578 if (ret) {
f0c0b2b8
KH
4579 /*
4580 * bogus value. restore saved string
4581 */
dacbde09 4582 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4583 NUMA_ZONELIST_ORDER_LEN);
4584 user_zonelist_order = oldval;
4eaf3f64
HL
4585 } else if (oldval != user_zonelist_order) {
4586 mutex_lock(&zonelists_mutex);
9adb62a5 4587 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4588 mutex_unlock(&zonelists_mutex);
4589 }
f0c0b2b8 4590 }
443c6f14
AK
4591out:
4592 mutex_unlock(&zl_order_mutex);
4593 return ret;
f0c0b2b8
KH
4594}
4595
4596
62bc62a8 4597#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4598static int node_load[MAX_NUMNODES];
4599
1da177e4 4600/**
4dc3b16b 4601 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4602 * @node: node whose fallback list we're appending
4603 * @used_node_mask: nodemask_t of already used nodes
4604 *
4605 * We use a number of factors to determine which is the next node that should
4606 * appear on a given node's fallback list. The node should not have appeared
4607 * already in @node's fallback list, and it should be the next closest node
4608 * according to the distance array (which contains arbitrary distance values
4609 * from each node to each node in the system), and should also prefer nodes
4610 * with no CPUs, since presumably they'll have very little allocation pressure
4611 * on them otherwise.
4612 * It returns -1 if no node is found.
4613 */
f0c0b2b8 4614static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4615{
4cf808eb 4616 int n, val;
1da177e4 4617 int min_val = INT_MAX;
00ef2d2f 4618 int best_node = NUMA_NO_NODE;
a70f7302 4619 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4620
4cf808eb
LT
4621 /* Use the local node if we haven't already */
4622 if (!node_isset(node, *used_node_mask)) {
4623 node_set(node, *used_node_mask);
4624 return node;
4625 }
1da177e4 4626
4b0ef1fe 4627 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4628
4629 /* Don't want a node to appear more than once */
4630 if (node_isset(n, *used_node_mask))
4631 continue;
4632
1da177e4
LT
4633 /* Use the distance array to find the distance */
4634 val = node_distance(node, n);
4635
4cf808eb
LT
4636 /* Penalize nodes under us ("prefer the next node") */
4637 val += (n < node);
4638
1da177e4 4639 /* Give preference to headless and unused nodes */
a70f7302
RR
4640 tmp = cpumask_of_node(n);
4641 if (!cpumask_empty(tmp))
1da177e4
LT
4642 val += PENALTY_FOR_NODE_WITH_CPUS;
4643
4644 /* Slight preference for less loaded node */
4645 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4646 val += node_load[n];
4647
4648 if (val < min_val) {
4649 min_val = val;
4650 best_node = n;
4651 }
4652 }
4653
4654 if (best_node >= 0)
4655 node_set(best_node, *used_node_mask);
4656
4657 return best_node;
4658}
4659
f0c0b2b8
KH
4660
4661/*
4662 * Build zonelists ordered by node and zones within node.
4663 * This results in maximum locality--normal zone overflows into local
4664 * DMA zone, if any--but risks exhausting DMA zone.
4665 */
4666static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4667{
f0c0b2b8 4668 int j;
1da177e4 4669 struct zonelist *zonelist;
f0c0b2b8 4670
54a6eb5c 4671 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4672 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4673 ;
bc732f1d 4674 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4675 zonelist->_zonerefs[j].zone = NULL;
4676 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4677}
4678
523b9458
CL
4679/*
4680 * Build gfp_thisnode zonelists
4681 */
4682static void build_thisnode_zonelists(pg_data_t *pgdat)
4683{
523b9458
CL
4684 int j;
4685 struct zonelist *zonelist;
4686
54a6eb5c 4687 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4688 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4689 zonelist->_zonerefs[j].zone = NULL;
4690 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4691}
4692
f0c0b2b8
KH
4693/*
4694 * Build zonelists ordered by zone and nodes within zones.
4695 * This results in conserving DMA zone[s] until all Normal memory is
4696 * exhausted, but results in overflowing to remote node while memory
4697 * may still exist in local DMA zone.
4698 */
4699static int node_order[MAX_NUMNODES];
4700
4701static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4702{
f0c0b2b8
KH
4703 int pos, j, node;
4704 int zone_type; /* needs to be signed */
4705 struct zone *z;
4706 struct zonelist *zonelist;
4707
54a6eb5c
MG
4708 zonelist = &pgdat->node_zonelists[0];
4709 pos = 0;
4710 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4711 for (j = 0; j < nr_nodes; j++) {
4712 node = node_order[j];
4713 z = &NODE_DATA(node)->node_zones[zone_type];
4714 if (populated_zone(z)) {
dd1a239f
MG
4715 zoneref_set_zone(z,
4716 &zonelist->_zonerefs[pos++]);
54a6eb5c 4717 check_highest_zone(zone_type);
f0c0b2b8
KH
4718 }
4719 }
f0c0b2b8 4720 }
dd1a239f
MG
4721 zonelist->_zonerefs[pos].zone = NULL;
4722 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4723}
4724
3193913c
MG
4725#if defined(CONFIG_64BIT)
4726/*
4727 * Devices that require DMA32/DMA are relatively rare and do not justify a
4728 * penalty to every machine in case the specialised case applies. Default
4729 * to Node-ordering on 64-bit NUMA machines
4730 */
4731static int default_zonelist_order(void)
4732{
4733 return ZONELIST_ORDER_NODE;
4734}
4735#else
4736/*
4737 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4738 * by the kernel. If processes running on node 0 deplete the low memory zone
4739 * then reclaim will occur more frequency increasing stalls and potentially
4740 * be easier to OOM if a large percentage of the zone is under writeback or
4741 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4742 * Hence, default to zone ordering on 32-bit.
4743 */
f0c0b2b8
KH
4744static int default_zonelist_order(void)
4745{
f0c0b2b8
KH
4746 return ZONELIST_ORDER_ZONE;
4747}
3193913c 4748#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4749
4750static void set_zonelist_order(void)
4751{
4752 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4753 current_zonelist_order = default_zonelist_order();
4754 else
4755 current_zonelist_order = user_zonelist_order;
4756}
4757
4758static void build_zonelists(pg_data_t *pgdat)
4759{
c00eb15a 4760 int i, node, load;
1da177e4 4761 nodemask_t used_mask;
f0c0b2b8
KH
4762 int local_node, prev_node;
4763 struct zonelist *zonelist;
d00181b9 4764 unsigned int order = current_zonelist_order;
1da177e4
LT
4765
4766 /* initialize zonelists */
523b9458 4767 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4768 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4769 zonelist->_zonerefs[0].zone = NULL;
4770 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4771 }
4772
4773 /* NUMA-aware ordering of nodes */
4774 local_node = pgdat->node_id;
62bc62a8 4775 load = nr_online_nodes;
1da177e4
LT
4776 prev_node = local_node;
4777 nodes_clear(used_mask);
f0c0b2b8 4778
f0c0b2b8 4779 memset(node_order, 0, sizeof(node_order));
c00eb15a 4780 i = 0;
f0c0b2b8 4781
1da177e4
LT
4782 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4783 /*
4784 * We don't want to pressure a particular node.
4785 * So adding penalty to the first node in same
4786 * distance group to make it round-robin.
4787 */
957f822a
DR
4788 if (node_distance(local_node, node) !=
4789 node_distance(local_node, prev_node))
f0c0b2b8
KH
4790 node_load[node] = load;
4791
1da177e4
LT
4792 prev_node = node;
4793 load--;
f0c0b2b8
KH
4794 if (order == ZONELIST_ORDER_NODE)
4795 build_zonelists_in_node_order(pgdat, node);
4796 else
c00eb15a 4797 node_order[i++] = node; /* remember order */
f0c0b2b8 4798 }
1da177e4 4799
f0c0b2b8
KH
4800 if (order == ZONELIST_ORDER_ZONE) {
4801 /* calculate node order -- i.e., DMA last! */
c00eb15a 4802 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4803 }
523b9458
CL
4804
4805 build_thisnode_zonelists(pgdat);
1da177e4
LT
4806}
4807
7aac7898
LS
4808#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4809/*
4810 * Return node id of node used for "local" allocations.
4811 * I.e., first node id of first zone in arg node's generic zonelist.
4812 * Used for initializing percpu 'numa_mem', which is used primarily
4813 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4814 */
4815int local_memory_node(int node)
4816{
c33d6c06 4817 struct zoneref *z;
7aac7898 4818
c33d6c06 4819 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4820 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4821 NULL);
4822 return z->zone->node;
7aac7898
LS
4823}
4824#endif
f0c0b2b8 4825
1da177e4
LT
4826#else /* CONFIG_NUMA */
4827
f0c0b2b8
KH
4828static void set_zonelist_order(void)
4829{
4830 current_zonelist_order = ZONELIST_ORDER_ZONE;
4831}
4832
4833static void build_zonelists(pg_data_t *pgdat)
1da177e4 4834{
19655d34 4835 int node, local_node;
54a6eb5c
MG
4836 enum zone_type j;
4837 struct zonelist *zonelist;
1da177e4
LT
4838
4839 local_node = pgdat->node_id;
1da177e4 4840
54a6eb5c 4841 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4842 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4843
54a6eb5c
MG
4844 /*
4845 * Now we build the zonelist so that it contains the zones
4846 * of all the other nodes.
4847 * We don't want to pressure a particular node, so when
4848 * building the zones for node N, we make sure that the
4849 * zones coming right after the local ones are those from
4850 * node N+1 (modulo N)
4851 */
4852 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4853 if (!node_online(node))
4854 continue;
bc732f1d 4855 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4856 }
54a6eb5c
MG
4857 for (node = 0; node < local_node; node++) {
4858 if (!node_online(node))
4859 continue;
bc732f1d 4860 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4861 }
4862
dd1a239f
MG
4863 zonelist->_zonerefs[j].zone = NULL;
4864 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4865}
4866
4867#endif /* CONFIG_NUMA */
4868
99dcc3e5
CL
4869/*
4870 * Boot pageset table. One per cpu which is going to be used for all
4871 * zones and all nodes. The parameters will be set in such a way
4872 * that an item put on a list will immediately be handed over to
4873 * the buddy list. This is safe since pageset manipulation is done
4874 * with interrupts disabled.
4875 *
4876 * The boot_pagesets must be kept even after bootup is complete for
4877 * unused processors and/or zones. They do play a role for bootstrapping
4878 * hotplugged processors.
4879 *
4880 * zoneinfo_show() and maybe other functions do
4881 * not check if the processor is online before following the pageset pointer.
4882 * Other parts of the kernel may not check if the zone is available.
4883 */
4884static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4885static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4886static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4887
4eaf3f64
HL
4888/*
4889 * Global mutex to protect against size modification of zonelists
4890 * as well as to serialize pageset setup for the new populated zone.
4891 */
4892DEFINE_MUTEX(zonelists_mutex);
4893
9b1a4d38 4894/* return values int ....just for stop_machine() */
4ed7e022 4895static int __build_all_zonelists(void *data)
1da177e4 4896{
6811378e 4897 int nid;
99dcc3e5 4898 int cpu;
9adb62a5 4899 pg_data_t *self = data;
9276b1bc 4900
7f9cfb31
BL
4901#ifdef CONFIG_NUMA
4902 memset(node_load, 0, sizeof(node_load));
4903#endif
9adb62a5
JL
4904
4905 if (self && !node_online(self->node_id)) {
4906 build_zonelists(self);
9adb62a5
JL
4907 }
4908
9276b1bc 4909 for_each_online_node(nid) {
7ea1530a
CL
4910 pg_data_t *pgdat = NODE_DATA(nid);
4911
4912 build_zonelists(pgdat);
9276b1bc 4913 }
99dcc3e5
CL
4914
4915 /*
4916 * Initialize the boot_pagesets that are going to be used
4917 * for bootstrapping processors. The real pagesets for
4918 * each zone will be allocated later when the per cpu
4919 * allocator is available.
4920 *
4921 * boot_pagesets are used also for bootstrapping offline
4922 * cpus if the system is already booted because the pagesets
4923 * are needed to initialize allocators on a specific cpu too.
4924 * F.e. the percpu allocator needs the page allocator which
4925 * needs the percpu allocator in order to allocate its pagesets
4926 * (a chicken-egg dilemma).
4927 */
7aac7898 4928 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4929 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4930
7aac7898
LS
4931#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4932 /*
4933 * We now know the "local memory node" for each node--
4934 * i.e., the node of the first zone in the generic zonelist.
4935 * Set up numa_mem percpu variable for on-line cpus. During
4936 * boot, only the boot cpu should be on-line; we'll init the
4937 * secondary cpus' numa_mem as they come on-line. During
4938 * node/memory hotplug, we'll fixup all on-line cpus.
4939 */
4940 if (cpu_online(cpu))
4941 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4942#endif
4943 }
4944
6811378e
YG
4945 return 0;
4946}
4947
061f67bc
RV
4948static noinline void __init
4949build_all_zonelists_init(void)
4950{
4951 __build_all_zonelists(NULL);
4952 mminit_verify_zonelist();
4953 cpuset_init_current_mems_allowed();
4954}
4955
4eaf3f64
HL
4956/*
4957 * Called with zonelists_mutex held always
4958 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4959 *
4960 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4961 * [we're only called with non-NULL zone through __meminit paths] and
4962 * (2) call of __init annotated helper build_all_zonelists_init
4963 * [protected by SYSTEM_BOOTING].
4eaf3f64 4964 */
9adb62a5 4965void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4966{
f0c0b2b8
KH
4967 set_zonelist_order();
4968
6811378e 4969 if (system_state == SYSTEM_BOOTING) {
061f67bc 4970 build_all_zonelists_init();
6811378e 4971 } else {
e9959f0f 4972#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4973 if (zone)
4974 setup_zone_pageset(zone);
e9959f0f 4975#endif
dd1895e2
CS
4976 /* we have to stop all cpus to guarantee there is no user
4977 of zonelist */
9adb62a5 4978 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4979 /* cpuset refresh routine should be here */
4980 }
bd1e22b8 4981 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4982 /*
4983 * Disable grouping by mobility if the number of pages in the
4984 * system is too low to allow the mechanism to work. It would be
4985 * more accurate, but expensive to check per-zone. This check is
4986 * made on memory-hotadd so a system can start with mobility
4987 * disabled and enable it later
4988 */
d9c23400 4989 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4990 page_group_by_mobility_disabled = 1;
4991 else
4992 page_group_by_mobility_disabled = 0;
4993
756a025f
JP
4994 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4995 nr_online_nodes,
4996 zonelist_order_name[current_zonelist_order],
4997 page_group_by_mobility_disabled ? "off" : "on",
4998 vm_total_pages);
f0c0b2b8 4999#ifdef CONFIG_NUMA
f88dfff5 5000 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5001#endif
1da177e4
LT
5002}
5003
5004/*
5005 * Helper functions to size the waitqueue hash table.
5006 * Essentially these want to choose hash table sizes sufficiently
5007 * large so that collisions trying to wait on pages are rare.
5008 * But in fact, the number of active page waitqueues on typical
5009 * systems is ridiculously low, less than 200. So this is even
5010 * conservative, even though it seems large.
5011 *
5012 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5013 * waitqueues, i.e. the size of the waitq table given the number of pages.
5014 */
5015#define PAGES_PER_WAITQUEUE 256
5016
cca448fe 5017#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5018static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5019{
5020 unsigned long size = 1;
5021
5022 pages /= PAGES_PER_WAITQUEUE;
5023
5024 while (size < pages)
5025 size <<= 1;
5026
5027 /*
5028 * Once we have dozens or even hundreds of threads sleeping
5029 * on IO we've got bigger problems than wait queue collision.
5030 * Limit the size of the wait table to a reasonable size.
5031 */
5032 size = min(size, 4096UL);
5033
5034 return max(size, 4UL);
5035}
cca448fe
YG
5036#else
5037/*
5038 * A zone's size might be changed by hot-add, so it is not possible to determine
5039 * a suitable size for its wait_table. So we use the maximum size now.
5040 *
5041 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5042 *
5043 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5044 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5045 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5046 *
5047 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5048 * or more by the traditional way. (See above). It equals:
5049 *
5050 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5051 * ia64(16K page size) : = ( 8G + 4M)byte.
5052 * powerpc (64K page size) : = (32G +16M)byte.
5053 */
5054static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5055{
5056 return 4096UL;
5057}
5058#endif
1da177e4
LT
5059
5060/*
5061 * This is an integer logarithm so that shifts can be used later
5062 * to extract the more random high bits from the multiplicative
5063 * hash function before the remainder is taken.
5064 */
5065static inline unsigned long wait_table_bits(unsigned long size)
5066{
5067 return ffz(~size);
5068}
5069
1da177e4
LT
5070/*
5071 * Initially all pages are reserved - free ones are freed
5072 * up by free_all_bootmem() once the early boot process is
5073 * done. Non-atomic initialization, single-pass.
5074 */
c09b4240 5075void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5076 unsigned long start_pfn, enum memmap_context context)
1da177e4 5077{
4b94ffdc 5078 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5079 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5080 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5081 unsigned long pfn;
3a80a7fa 5082 unsigned long nr_initialised = 0;
342332e6
TI
5083#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5084 struct memblock_region *r = NULL, *tmp;
5085#endif
1da177e4 5086
22b31eec
HD
5087 if (highest_memmap_pfn < end_pfn - 1)
5088 highest_memmap_pfn = end_pfn - 1;
5089
4b94ffdc
DW
5090 /*
5091 * Honor reservation requested by the driver for this ZONE_DEVICE
5092 * memory
5093 */
5094 if (altmap && start_pfn == altmap->base_pfn)
5095 start_pfn += altmap->reserve;
5096
cbe8dd4a 5097 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5098 /*
b72d0ffb
AM
5099 * There can be holes in boot-time mem_map[]s handed to this
5100 * function. They do not exist on hotplugged memory.
a2f3aa02 5101 */
b72d0ffb
AM
5102 if (context != MEMMAP_EARLY)
5103 goto not_early;
5104
5105 if (!early_pfn_valid(pfn))
5106 continue;
5107 if (!early_pfn_in_nid(pfn, nid))
5108 continue;
5109 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5110 break;
342332e6
TI
5111
5112#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5113 /*
5114 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5115 * from zone_movable_pfn[nid] to end of each node should be
5116 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5117 */
5118 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5119 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5120 continue;
342332e6 5121
b72d0ffb
AM
5122 /*
5123 * Check given memblock attribute by firmware which can affect
5124 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5125 * mirrored, it's an overlapped memmap init. skip it.
5126 */
5127 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5128 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5129 for_each_memblock(memory, tmp)
5130 if (pfn < memblock_region_memory_end_pfn(tmp))
5131 break;
5132 r = tmp;
5133 }
5134 if (pfn >= memblock_region_memory_base_pfn(r) &&
5135 memblock_is_mirror(r)) {
5136 /* already initialized as NORMAL */
5137 pfn = memblock_region_memory_end_pfn(r);
5138 continue;
342332e6 5139 }
a2f3aa02 5140 }
b72d0ffb 5141#endif
ac5d2539 5142
b72d0ffb 5143not_early:
ac5d2539
MG
5144 /*
5145 * Mark the block movable so that blocks are reserved for
5146 * movable at startup. This will force kernel allocations
5147 * to reserve their blocks rather than leaking throughout
5148 * the address space during boot when many long-lived
974a786e 5149 * kernel allocations are made.
ac5d2539
MG
5150 *
5151 * bitmap is created for zone's valid pfn range. but memmap
5152 * can be created for invalid pages (for alignment)
5153 * check here not to call set_pageblock_migratetype() against
5154 * pfn out of zone.
5155 */
5156 if (!(pfn & (pageblock_nr_pages - 1))) {
5157 struct page *page = pfn_to_page(pfn);
5158
5159 __init_single_page(page, pfn, zone, nid);
5160 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5161 } else {
5162 __init_single_pfn(pfn, zone, nid);
5163 }
1da177e4
LT
5164 }
5165}
5166
1e548deb 5167static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5168{
7aeb09f9 5169 unsigned int order, t;
b2a0ac88
MG
5170 for_each_migratetype_order(order, t) {
5171 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5172 zone->free_area[order].nr_free = 0;
5173 }
5174}
5175
5176#ifndef __HAVE_ARCH_MEMMAP_INIT
5177#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5178 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5179#endif
5180
7cd2b0a3 5181static int zone_batchsize(struct zone *zone)
e7c8d5c9 5182{
3a6be87f 5183#ifdef CONFIG_MMU
e7c8d5c9
CL
5184 int batch;
5185
5186 /*
5187 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5188 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5189 *
5190 * OK, so we don't know how big the cache is. So guess.
5191 */
b40da049 5192 batch = zone->managed_pages / 1024;
ba56e91c
SR
5193 if (batch * PAGE_SIZE > 512 * 1024)
5194 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5195 batch /= 4; /* We effectively *= 4 below */
5196 if (batch < 1)
5197 batch = 1;
5198
5199 /*
0ceaacc9
NP
5200 * Clamp the batch to a 2^n - 1 value. Having a power
5201 * of 2 value was found to be more likely to have
5202 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5203 *
0ceaacc9
NP
5204 * For example if 2 tasks are alternately allocating
5205 * batches of pages, one task can end up with a lot
5206 * of pages of one half of the possible page colors
5207 * and the other with pages of the other colors.
e7c8d5c9 5208 */
9155203a 5209 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5210
e7c8d5c9 5211 return batch;
3a6be87f
DH
5212
5213#else
5214 /* The deferral and batching of frees should be suppressed under NOMMU
5215 * conditions.
5216 *
5217 * The problem is that NOMMU needs to be able to allocate large chunks
5218 * of contiguous memory as there's no hardware page translation to
5219 * assemble apparent contiguous memory from discontiguous pages.
5220 *
5221 * Queueing large contiguous runs of pages for batching, however,
5222 * causes the pages to actually be freed in smaller chunks. As there
5223 * can be a significant delay between the individual batches being
5224 * recycled, this leads to the once large chunks of space being
5225 * fragmented and becoming unavailable for high-order allocations.
5226 */
5227 return 0;
5228#endif
e7c8d5c9
CL
5229}
5230
8d7a8fa9
CS
5231/*
5232 * pcp->high and pcp->batch values are related and dependent on one another:
5233 * ->batch must never be higher then ->high.
5234 * The following function updates them in a safe manner without read side
5235 * locking.
5236 *
5237 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5238 * those fields changing asynchronously (acording the the above rule).
5239 *
5240 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5241 * outside of boot time (or some other assurance that no concurrent updaters
5242 * exist).
5243 */
5244static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5245 unsigned long batch)
5246{
5247 /* start with a fail safe value for batch */
5248 pcp->batch = 1;
5249 smp_wmb();
5250
5251 /* Update high, then batch, in order */
5252 pcp->high = high;
5253 smp_wmb();
5254
5255 pcp->batch = batch;
5256}
5257
3664033c 5258/* a companion to pageset_set_high() */
4008bab7
CS
5259static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5260{
8d7a8fa9 5261 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5262}
5263
88c90dbc 5264static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5265{
5266 struct per_cpu_pages *pcp;
5f8dcc21 5267 int migratetype;
2caaad41 5268
1c6fe946
MD
5269 memset(p, 0, sizeof(*p));
5270
3dfa5721 5271 pcp = &p->pcp;
2caaad41 5272 pcp->count = 0;
5f8dcc21
MG
5273 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5274 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5275}
5276
88c90dbc
CS
5277static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5278{
5279 pageset_init(p);
5280 pageset_set_batch(p, batch);
5281}
5282
8ad4b1fb 5283/*
3664033c 5284 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5285 * to the value high for the pageset p.
5286 */
3664033c 5287static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5288 unsigned long high)
5289{
8d7a8fa9
CS
5290 unsigned long batch = max(1UL, high / 4);
5291 if ((high / 4) > (PAGE_SHIFT * 8))
5292 batch = PAGE_SHIFT * 8;
8ad4b1fb 5293
8d7a8fa9 5294 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5295}
5296
7cd2b0a3
DR
5297static void pageset_set_high_and_batch(struct zone *zone,
5298 struct per_cpu_pageset *pcp)
56cef2b8 5299{
56cef2b8 5300 if (percpu_pagelist_fraction)
3664033c 5301 pageset_set_high(pcp,
56cef2b8
CS
5302 (zone->managed_pages /
5303 percpu_pagelist_fraction));
5304 else
5305 pageset_set_batch(pcp, zone_batchsize(zone));
5306}
5307
169f6c19
CS
5308static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5309{
5310 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5311
5312 pageset_init(pcp);
5313 pageset_set_high_and_batch(zone, pcp);
5314}
5315
4ed7e022 5316static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5317{
5318 int cpu;
319774e2 5319 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5320 for_each_possible_cpu(cpu)
5321 zone_pageset_init(zone, cpu);
319774e2
WF
5322}
5323
2caaad41 5324/*
99dcc3e5
CL
5325 * Allocate per cpu pagesets and initialize them.
5326 * Before this call only boot pagesets were available.
e7c8d5c9 5327 */
99dcc3e5 5328void __init setup_per_cpu_pageset(void)
e7c8d5c9 5329{
99dcc3e5 5330 struct zone *zone;
e7c8d5c9 5331
319774e2
WF
5332 for_each_populated_zone(zone)
5333 setup_zone_pageset(zone);
e7c8d5c9
CL
5334}
5335
577a32f6 5336static noinline __init_refok
cca448fe 5337int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5338{
5339 int i;
cca448fe 5340 size_t alloc_size;
ed8ece2e
DH
5341
5342 /*
5343 * The per-page waitqueue mechanism uses hashed waitqueues
5344 * per zone.
5345 */
02b694de
YG
5346 zone->wait_table_hash_nr_entries =
5347 wait_table_hash_nr_entries(zone_size_pages);
5348 zone->wait_table_bits =
5349 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5350 alloc_size = zone->wait_table_hash_nr_entries
5351 * sizeof(wait_queue_head_t);
5352
cd94b9db 5353 if (!slab_is_available()) {
cca448fe 5354 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5355 memblock_virt_alloc_node_nopanic(
5356 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5357 } else {
5358 /*
5359 * This case means that a zone whose size was 0 gets new memory
5360 * via memory hot-add.
5361 * But it may be the case that a new node was hot-added. In
5362 * this case vmalloc() will not be able to use this new node's
5363 * memory - this wait_table must be initialized to use this new
5364 * node itself as well.
5365 * To use this new node's memory, further consideration will be
5366 * necessary.
5367 */
8691f3a7 5368 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5369 }
5370 if (!zone->wait_table)
5371 return -ENOMEM;
ed8ece2e 5372
b8af2941 5373 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5374 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5375
5376 return 0;
ed8ece2e
DH
5377}
5378
c09b4240 5379static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5380{
99dcc3e5
CL
5381 /*
5382 * per cpu subsystem is not up at this point. The following code
5383 * relies on the ability of the linker to provide the
5384 * offset of a (static) per cpu variable into the per cpu area.
5385 */
5386 zone->pageset = &boot_pageset;
ed8ece2e 5387
b38a8725 5388 if (populated_zone(zone))
99dcc3e5
CL
5389 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5390 zone->name, zone->present_pages,
5391 zone_batchsize(zone));
ed8ece2e
DH
5392}
5393
4ed7e022 5394int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5395 unsigned long zone_start_pfn,
b171e409 5396 unsigned long size)
ed8ece2e
DH
5397{
5398 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5399 int ret;
5400 ret = zone_wait_table_init(zone, size);
5401 if (ret)
5402 return ret;
ed8ece2e
DH
5403 pgdat->nr_zones = zone_idx(zone) + 1;
5404
ed8ece2e
DH
5405 zone->zone_start_pfn = zone_start_pfn;
5406
708614e6
MG
5407 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5408 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5409 pgdat->node_id,
5410 (unsigned long)zone_idx(zone),
5411 zone_start_pfn, (zone_start_pfn + size));
5412
1e548deb 5413 zone_init_free_lists(zone);
718127cc
YG
5414
5415 return 0;
ed8ece2e
DH
5416}
5417
0ee332c1 5418#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5419#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5420
c713216d
MG
5421/*
5422 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5423 */
8a942fde
MG
5424int __meminit __early_pfn_to_nid(unsigned long pfn,
5425 struct mminit_pfnnid_cache *state)
c713216d 5426{
c13291a5 5427 unsigned long start_pfn, end_pfn;
e76b63f8 5428 int nid;
7c243c71 5429
8a942fde
MG
5430 if (state->last_start <= pfn && pfn < state->last_end)
5431 return state->last_nid;
c713216d 5432
e76b63f8
YL
5433 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5434 if (nid != -1) {
8a942fde
MG
5435 state->last_start = start_pfn;
5436 state->last_end = end_pfn;
5437 state->last_nid = nid;
e76b63f8
YL
5438 }
5439
5440 return nid;
c713216d
MG
5441}
5442#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5443
c713216d 5444/**
6782832e 5445 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5446 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5447 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5448 *
7d018176
ZZ
5449 * If an architecture guarantees that all ranges registered contain no holes
5450 * and may be freed, this this function may be used instead of calling
5451 * memblock_free_early_nid() manually.
c713216d 5452 */
c13291a5 5453void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5454{
c13291a5
TH
5455 unsigned long start_pfn, end_pfn;
5456 int i, this_nid;
edbe7d23 5457
c13291a5
TH
5458 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5459 start_pfn = min(start_pfn, max_low_pfn);
5460 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5461
c13291a5 5462 if (start_pfn < end_pfn)
6782832e
SS
5463 memblock_free_early_nid(PFN_PHYS(start_pfn),
5464 (end_pfn - start_pfn) << PAGE_SHIFT,
5465 this_nid);
edbe7d23 5466 }
edbe7d23 5467}
edbe7d23 5468
c713216d
MG
5469/**
5470 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5471 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5472 *
7d018176
ZZ
5473 * If an architecture guarantees that all ranges registered contain no holes and may
5474 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5475 */
5476void __init sparse_memory_present_with_active_regions(int nid)
5477{
c13291a5
TH
5478 unsigned long start_pfn, end_pfn;
5479 int i, this_nid;
c713216d 5480
c13291a5
TH
5481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5482 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5483}
5484
5485/**
5486 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5487 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5488 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5489 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5490 *
5491 * It returns the start and end page frame of a node based on information
7d018176 5492 * provided by memblock_set_node(). If called for a node
c713216d 5493 * with no available memory, a warning is printed and the start and end
88ca3b94 5494 * PFNs will be 0.
c713216d 5495 */
a3142c8e 5496void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5497 unsigned long *start_pfn, unsigned long *end_pfn)
5498{
c13291a5 5499 unsigned long this_start_pfn, this_end_pfn;
c713216d 5500 int i;
c13291a5 5501
c713216d
MG
5502 *start_pfn = -1UL;
5503 *end_pfn = 0;
5504
c13291a5
TH
5505 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5506 *start_pfn = min(*start_pfn, this_start_pfn);
5507 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5508 }
5509
633c0666 5510 if (*start_pfn == -1UL)
c713216d 5511 *start_pfn = 0;
c713216d
MG
5512}
5513
2a1e274a
MG
5514/*
5515 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5516 * assumption is made that zones within a node are ordered in monotonic
5517 * increasing memory addresses so that the "highest" populated zone is used
5518 */
b69a7288 5519static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5520{
5521 int zone_index;
5522 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5523 if (zone_index == ZONE_MOVABLE)
5524 continue;
5525
5526 if (arch_zone_highest_possible_pfn[zone_index] >
5527 arch_zone_lowest_possible_pfn[zone_index])
5528 break;
5529 }
5530
5531 VM_BUG_ON(zone_index == -1);
5532 movable_zone = zone_index;
5533}
5534
5535/*
5536 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5537 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5538 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5539 * in each node depending on the size of each node and how evenly kernelcore
5540 * is distributed. This helper function adjusts the zone ranges
5541 * provided by the architecture for a given node by using the end of the
5542 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5543 * zones within a node are in order of monotonic increases memory addresses
5544 */
b69a7288 5545static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5546 unsigned long zone_type,
5547 unsigned long node_start_pfn,
5548 unsigned long node_end_pfn,
5549 unsigned long *zone_start_pfn,
5550 unsigned long *zone_end_pfn)
5551{
5552 /* Only adjust if ZONE_MOVABLE is on this node */
5553 if (zone_movable_pfn[nid]) {
5554 /* Size ZONE_MOVABLE */
5555 if (zone_type == ZONE_MOVABLE) {
5556 *zone_start_pfn = zone_movable_pfn[nid];
5557 *zone_end_pfn = min(node_end_pfn,
5558 arch_zone_highest_possible_pfn[movable_zone]);
5559
2a1e274a
MG
5560 /* Check if this whole range is within ZONE_MOVABLE */
5561 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5562 *zone_start_pfn = *zone_end_pfn;
5563 }
5564}
5565
c713216d
MG
5566/*
5567 * Return the number of pages a zone spans in a node, including holes
5568 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5569 */
6ea6e688 5570static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5571 unsigned long zone_type,
7960aedd
ZY
5572 unsigned long node_start_pfn,
5573 unsigned long node_end_pfn,
d91749c1
TI
5574 unsigned long *zone_start_pfn,
5575 unsigned long *zone_end_pfn,
c713216d
MG
5576 unsigned long *ignored)
5577{
b5685e92 5578 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5579 if (!node_start_pfn && !node_end_pfn)
5580 return 0;
5581
7960aedd 5582 /* Get the start and end of the zone */
d91749c1
TI
5583 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5584 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5585 adjust_zone_range_for_zone_movable(nid, zone_type,
5586 node_start_pfn, node_end_pfn,
d91749c1 5587 zone_start_pfn, zone_end_pfn);
c713216d
MG
5588
5589 /* Check that this node has pages within the zone's required range */
d91749c1 5590 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5591 return 0;
5592
5593 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5594 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5595 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5596
5597 /* Return the spanned pages */
d91749c1 5598 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5599}
5600
5601/*
5602 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5603 * then all holes in the requested range will be accounted for.
c713216d 5604 */
32996250 5605unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5606 unsigned long range_start_pfn,
5607 unsigned long range_end_pfn)
5608{
96e907d1
TH
5609 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5610 unsigned long start_pfn, end_pfn;
5611 int i;
c713216d 5612
96e907d1
TH
5613 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5614 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5615 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5616 nr_absent -= end_pfn - start_pfn;
c713216d 5617 }
96e907d1 5618 return nr_absent;
c713216d
MG
5619}
5620
5621/**
5622 * absent_pages_in_range - Return number of page frames in holes within a range
5623 * @start_pfn: The start PFN to start searching for holes
5624 * @end_pfn: The end PFN to stop searching for holes
5625 *
88ca3b94 5626 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5627 */
5628unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5629 unsigned long end_pfn)
5630{
5631 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5632}
5633
5634/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5635static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5636 unsigned long zone_type,
7960aedd
ZY
5637 unsigned long node_start_pfn,
5638 unsigned long node_end_pfn,
c713216d
MG
5639 unsigned long *ignored)
5640{
96e907d1
TH
5641 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5642 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5643 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5644 unsigned long nr_absent;
9c7cd687 5645
b5685e92 5646 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5647 if (!node_start_pfn && !node_end_pfn)
5648 return 0;
5649
96e907d1
TH
5650 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5651 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5652
2a1e274a
MG
5653 adjust_zone_range_for_zone_movable(nid, zone_type,
5654 node_start_pfn, node_end_pfn,
5655 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5656 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5657
5658 /*
5659 * ZONE_MOVABLE handling.
5660 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5661 * and vice versa.
5662 */
5663 if (zone_movable_pfn[nid]) {
5664 if (mirrored_kernelcore) {
5665 unsigned long start_pfn, end_pfn;
5666 struct memblock_region *r;
5667
5668 for_each_memblock(memory, r) {
5669 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5670 zone_start_pfn, zone_end_pfn);
5671 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5672 zone_start_pfn, zone_end_pfn);
5673
5674 if (zone_type == ZONE_MOVABLE &&
5675 memblock_is_mirror(r))
5676 nr_absent += end_pfn - start_pfn;
5677
5678 if (zone_type == ZONE_NORMAL &&
5679 !memblock_is_mirror(r))
5680 nr_absent += end_pfn - start_pfn;
5681 }
5682 } else {
5683 if (zone_type == ZONE_NORMAL)
5684 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5685 }
5686 }
5687
5688 return nr_absent;
c713216d 5689}
0e0b864e 5690
0ee332c1 5691#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5692static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5693 unsigned long zone_type,
7960aedd
ZY
5694 unsigned long node_start_pfn,
5695 unsigned long node_end_pfn,
d91749c1
TI
5696 unsigned long *zone_start_pfn,
5697 unsigned long *zone_end_pfn,
c713216d
MG
5698 unsigned long *zones_size)
5699{
d91749c1
TI
5700 unsigned int zone;
5701
5702 *zone_start_pfn = node_start_pfn;
5703 for (zone = 0; zone < zone_type; zone++)
5704 *zone_start_pfn += zones_size[zone];
5705
5706 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5707
c713216d
MG
5708 return zones_size[zone_type];
5709}
5710
6ea6e688 5711static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5712 unsigned long zone_type,
7960aedd
ZY
5713 unsigned long node_start_pfn,
5714 unsigned long node_end_pfn,
c713216d
MG
5715 unsigned long *zholes_size)
5716{
5717 if (!zholes_size)
5718 return 0;
5719
5720 return zholes_size[zone_type];
5721}
20e6926d 5722
0ee332c1 5723#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5724
a3142c8e 5725static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5726 unsigned long node_start_pfn,
5727 unsigned long node_end_pfn,
5728 unsigned long *zones_size,
5729 unsigned long *zholes_size)
c713216d 5730{
febd5949 5731 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5732 enum zone_type i;
5733
febd5949
GZ
5734 for (i = 0; i < MAX_NR_ZONES; i++) {
5735 struct zone *zone = pgdat->node_zones + i;
d91749c1 5736 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5737 unsigned long size, real_size;
c713216d 5738
febd5949
GZ
5739 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5740 node_start_pfn,
5741 node_end_pfn,
d91749c1
TI
5742 &zone_start_pfn,
5743 &zone_end_pfn,
febd5949
GZ
5744 zones_size);
5745 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5746 node_start_pfn, node_end_pfn,
5747 zholes_size);
d91749c1
TI
5748 if (size)
5749 zone->zone_start_pfn = zone_start_pfn;
5750 else
5751 zone->zone_start_pfn = 0;
febd5949
GZ
5752 zone->spanned_pages = size;
5753 zone->present_pages = real_size;
5754
5755 totalpages += size;
5756 realtotalpages += real_size;
5757 }
5758
5759 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5760 pgdat->node_present_pages = realtotalpages;
5761 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5762 realtotalpages);
5763}
5764
835c134e
MG
5765#ifndef CONFIG_SPARSEMEM
5766/*
5767 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5768 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5769 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5770 * round what is now in bits to nearest long in bits, then return it in
5771 * bytes.
5772 */
7c45512d 5773static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5774{
5775 unsigned long usemapsize;
5776
7c45512d 5777 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5778 usemapsize = roundup(zonesize, pageblock_nr_pages);
5779 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5780 usemapsize *= NR_PAGEBLOCK_BITS;
5781 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5782
5783 return usemapsize / 8;
5784}
5785
5786static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5787 struct zone *zone,
5788 unsigned long zone_start_pfn,
5789 unsigned long zonesize)
835c134e 5790{
7c45512d 5791 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5792 zone->pageblock_flags = NULL;
58a01a45 5793 if (usemapsize)
6782832e
SS
5794 zone->pageblock_flags =
5795 memblock_virt_alloc_node_nopanic(usemapsize,
5796 pgdat->node_id);
835c134e
MG
5797}
5798#else
7c45512d
LT
5799static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5800 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5801#endif /* CONFIG_SPARSEMEM */
5802
d9c23400 5803#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5804
d9c23400 5805/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5806void __paginginit set_pageblock_order(void)
d9c23400 5807{
955c1cd7
AM
5808 unsigned int order;
5809
d9c23400
MG
5810 /* Check that pageblock_nr_pages has not already been setup */
5811 if (pageblock_order)
5812 return;
5813
955c1cd7
AM
5814 if (HPAGE_SHIFT > PAGE_SHIFT)
5815 order = HUGETLB_PAGE_ORDER;
5816 else
5817 order = MAX_ORDER - 1;
5818
d9c23400
MG
5819 /*
5820 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5821 * This value may be variable depending on boot parameters on IA64 and
5822 * powerpc.
d9c23400
MG
5823 */
5824 pageblock_order = order;
5825}
5826#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5827
ba72cb8c
MG
5828/*
5829 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5830 * is unused as pageblock_order is set at compile-time. See
5831 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5832 * the kernel config
ba72cb8c 5833 */
15ca220e 5834void __paginginit set_pageblock_order(void)
ba72cb8c 5835{
ba72cb8c 5836}
d9c23400
MG
5837
5838#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5839
01cefaef
JL
5840static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5841 unsigned long present_pages)
5842{
5843 unsigned long pages = spanned_pages;
5844
5845 /*
5846 * Provide a more accurate estimation if there are holes within
5847 * the zone and SPARSEMEM is in use. If there are holes within the
5848 * zone, each populated memory region may cost us one or two extra
5849 * memmap pages due to alignment because memmap pages for each
5850 * populated regions may not naturally algined on page boundary.
5851 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5852 */
5853 if (spanned_pages > present_pages + (present_pages >> 4) &&
5854 IS_ENABLED(CONFIG_SPARSEMEM))
5855 pages = present_pages;
5856
5857 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5858}
5859
1da177e4
LT
5860/*
5861 * Set up the zone data structures:
5862 * - mark all pages reserved
5863 * - mark all memory queues empty
5864 * - clear the memory bitmaps
6527af5d
MK
5865 *
5866 * NOTE: pgdat should get zeroed by caller.
1da177e4 5867 */
7f3eb55b 5868static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5869{
2f1b6248 5870 enum zone_type j;
ed8ece2e 5871 int nid = pgdat->node_id;
718127cc 5872 int ret;
1da177e4 5873
208d54e5 5874 pgdat_resize_init(pgdat);
8177a420
AA
5875#ifdef CONFIG_NUMA_BALANCING
5876 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5877 pgdat->numabalancing_migrate_nr_pages = 0;
5878 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5879#endif
5880#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5881 spin_lock_init(&pgdat->split_queue_lock);
5882 INIT_LIST_HEAD(&pgdat->split_queue);
5883 pgdat->split_queue_len = 0;
8177a420 5884#endif
1da177e4 5885 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5886 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5887#ifdef CONFIG_COMPACTION
5888 init_waitqueue_head(&pgdat->kcompactd_wait);
5889#endif
eefa864b 5890 pgdat_page_ext_init(pgdat);
5f63b720 5891
1da177e4
LT
5892 for (j = 0; j < MAX_NR_ZONES; j++) {
5893 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5894 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5895 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5896
febd5949
GZ
5897 size = zone->spanned_pages;
5898 realsize = freesize = zone->present_pages;
1da177e4 5899
0e0b864e 5900 /*
9feedc9d 5901 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5902 * is used by this zone for memmap. This affects the watermark
5903 * and per-cpu initialisations
5904 */
01cefaef 5905 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5906 if (!is_highmem_idx(j)) {
5907 if (freesize >= memmap_pages) {
5908 freesize -= memmap_pages;
5909 if (memmap_pages)
5910 printk(KERN_DEBUG
5911 " %s zone: %lu pages used for memmap\n",
5912 zone_names[j], memmap_pages);
5913 } else
1170532b 5914 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5915 zone_names[j], memmap_pages, freesize);
5916 }
0e0b864e 5917
6267276f 5918 /* Account for reserved pages */
9feedc9d
JL
5919 if (j == 0 && freesize > dma_reserve) {
5920 freesize -= dma_reserve;
d903ef9f 5921 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5922 zone_names[0], dma_reserve);
0e0b864e
MG
5923 }
5924
98d2b0eb 5925 if (!is_highmem_idx(j))
9feedc9d 5926 nr_kernel_pages += freesize;
01cefaef
JL
5927 /* Charge for highmem memmap if there are enough kernel pages */
5928 else if (nr_kernel_pages > memmap_pages * 2)
5929 nr_kernel_pages -= memmap_pages;
9feedc9d 5930 nr_all_pages += freesize;
1da177e4 5931
9feedc9d
JL
5932 /*
5933 * Set an approximate value for lowmem here, it will be adjusted
5934 * when the bootmem allocator frees pages into the buddy system.
5935 * And all highmem pages will be managed by the buddy system.
5936 */
5937 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5938#ifdef CONFIG_NUMA
d5f541ed 5939 zone->node = nid;
9feedc9d 5940 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5941 / 100;
9feedc9d 5942 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5943#endif
1da177e4
LT
5944 zone->name = zone_names[j];
5945 spin_lock_init(&zone->lock);
5946 spin_lock_init(&zone->lru_lock);
bdc8cb98 5947 zone_seqlock_init(zone);
1da177e4 5948 zone->zone_pgdat = pgdat;
ed8ece2e 5949 zone_pcp_init(zone);
81c0a2bb
JW
5950
5951 /* For bootup, initialized properly in watermark setup */
5952 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5953
bea8c150 5954 lruvec_init(&zone->lruvec);
1da177e4
LT
5955 if (!size)
5956 continue;
5957
955c1cd7 5958 set_pageblock_order();
7c45512d 5959 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5960 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5961 BUG_ON(ret);
76cdd58e 5962 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5963 }
5964}
5965
577a32f6 5966static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5967{
b0aeba74 5968 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5969 unsigned long __maybe_unused offset = 0;
5970
1da177e4
LT
5971 /* Skip empty nodes */
5972 if (!pgdat->node_spanned_pages)
5973 return;
5974
d41dee36 5975#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5976 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5977 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5978 /* ia64 gets its own node_mem_map, before this, without bootmem */
5979 if (!pgdat->node_mem_map) {
b0aeba74 5980 unsigned long size, end;
d41dee36
AW
5981 struct page *map;
5982
e984bb43
BP
5983 /*
5984 * The zone's endpoints aren't required to be MAX_ORDER
5985 * aligned but the node_mem_map endpoints must be in order
5986 * for the buddy allocator to function correctly.
5987 */
108bcc96 5988 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5989 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5990 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5991 map = alloc_remap(pgdat->node_id, size);
5992 if (!map)
6782832e
SS
5993 map = memblock_virt_alloc_node_nopanic(size,
5994 pgdat->node_id);
a1c34a3b 5995 pgdat->node_mem_map = map + offset;
1da177e4 5996 }
12d810c1 5997#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5998 /*
5999 * With no DISCONTIG, the global mem_map is just set as node 0's
6000 */
c713216d 6001 if (pgdat == NODE_DATA(0)) {
1da177e4 6002 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6003#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6004 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6005 mem_map -= offset;
0ee332c1 6006#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6007 }
1da177e4 6008#endif
d41dee36 6009#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6010}
6011
9109fb7b
JW
6012void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6013 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6014{
9109fb7b 6015 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6016 unsigned long start_pfn = 0;
6017 unsigned long end_pfn = 0;
9109fb7b 6018
88fdf75d 6019 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6020 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6021
3a80a7fa 6022 reset_deferred_meminit(pgdat);
1da177e4
LT
6023 pgdat->node_id = nid;
6024 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6025#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6026 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6027 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6028 (u64)start_pfn << PAGE_SHIFT,
6029 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6030#else
6031 start_pfn = node_start_pfn;
7960aedd
ZY
6032#endif
6033 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6034 zones_size, zholes_size);
1da177e4
LT
6035
6036 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6037#ifdef CONFIG_FLAT_NODE_MEM_MAP
6038 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6039 nid, (unsigned long)pgdat,
6040 (unsigned long)pgdat->node_mem_map);
6041#endif
1da177e4 6042
7f3eb55b 6043 free_area_init_core(pgdat);
1da177e4
LT
6044}
6045
0ee332c1 6046#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6047
6048#if MAX_NUMNODES > 1
6049/*
6050 * Figure out the number of possible node ids.
6051 */
f9872caf 6052void __init setup_nr_node_ids(void)
418508c1 6053{
904a9553 6054 unsigned int highest;
418508c1 6055
904a9553 6056 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6057 nr_node_ids = highest + 1;
6058}
418508c1
MS
6059#endif
6060
1e01979c
TH
6061/**
6062 * node_map_pfn_alignment - determine the maximum internode alignment
6063 *
6064 * This function should be called after node map is populated and sorted.
6065 * It calculates the maximum power of two alignment which can distinguish
6066 * all the nodes.
6067 *
6068 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6069 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6070 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6071 * shifted, 1GiB is enough and this function will indicate so.
6072 *
6073 * This is used to test whether pfn -> nid mapping of the chosen memory
6074 * model has fine enough granularity to avoid incorrect mapping for the
6075 * populated node map.
6076 *
6077 * Returns the determined alignment in pfn's. 0 if there is no alignment
6078 * requirement (single node).
6079 */
6080unsigned long __init node_map_pfn_alignment(void)
6081{
6082 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6083 unsigned long start, end, mask;
1e01979c 6084 int last_nid = -1;
c13291a5 6085 int i, nid;
1e01979c 6086
c13291a5 6087 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6088 if (!start || last_nid < 0 || last_nid == nid) {
6089 last_nid = nid;
6090 last_end = end;
6091 continue;
6092 }
6093
6094 /*
6095 * Start with a mask granular enough to pin-point to the
6096 * start pfn and tick off bits one-by-one until it becomes
6097 * too coarse to separate the current node from the last.
6098 */
6099 mask = ~((1 << __ffs(start)) - 1);
6100 while (mask && last_end <= (start & (mask << 1)))
6101 mask <<= 1;
6102
6103 /* accumulate all internode masks */
6104 accl_mask |= mask;
6105 }
6106
6107 /* convert mask to number of pages */
6108 return ~accl_mask + 1;
6109}
6110
a6af2bc3 6111/* Find the lowest pfn for a node */
b69a7288 6112static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6113{
a6af2bc3 6114 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6115 unsigned long start_pfn;
6116 int i;
1abbfb41 6117
c13291a5
TH
6118 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6119 min_pfn = min(min_pfn, start_pfn);
c713216d 6120
a6af2bc3 6121 if (min_pfn == ULONG_MAX) {
1170532b 6122 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6123 return 0;
6124 }
6125
6126 return min_pfn;
c713216d
MG
6127}
6128
6129/**
6130 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6131 *
6132 * It returns the minimum PFN based on information provided via
7d018176 6133 * memblock_set_node().
c713216d
MG
6134 */
6135unsigned long __init find_min_pfn_with_active_regions(void)
6136{
6137 return find_min_pfn_for_node(MAX_NUMNODES);
6138}
6139
37b07e41
LS
6140/*
6141 * early_calculate_totalpages()
6142 * Sum pages in active regions for movable zone.
4b0ef1fe 6143 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6144 */
484f51f8 6145static unsigned long __init early_calculate_totalpages(void)
7e63efef 6146{
7e63efef 6147 unsigned long totalpages = 0;
c13291a5
TH
6148 unsigned long start_pfn, end_pfn;
6149 int i, nid;
6150
6151 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6152 unsigned long pages = end_pfn - start_pfn;
7e63efef 6153
37b07e41
LS
6154 totalpages += pages;
6155 if (pages)
4b0ef1fe 6156 node_set_state(nid, N_MEMORY);
37b07e41 6157 }
b8af2941 6158 return totalpages;
7e63efef
MG
6159}
6160
2a1e274a
MG
6161/*
6162 * Find the PFN the Movable zone begins in each node. Kernel memory
6163 * is spread evenly between nodes as long as the nodes have enough
6164 * memory. When they don't, some nodes will have more kernelcore than
6165 * others
6166 */
b224ef85 6167static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6168{
6169 int i, nid;
6170 unsigned long usable_startpfn;
6171 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6172 /* save the state before borrow the nodemask */
4b0ef1fe 6173 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6174 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6175 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6176 struct memblock_region *r;
b2f3eebe
TC
6177
6178 /* Need to find movable_zone earlier when movable_node is specified. */
6179 find_usable_zone_for_movable();
6180
6181 /*
6182 * If movable_node is specified, ignore kernelcore and movablecore
6183 * options.
6184 */
6185 if (movable_node_is_enabled()) {
136199f0
EM
6186 for_each_memblock(memory, r) {
6187 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6188 continue;
6189
136199f0 6190 nid = r->nid;
b2f3eebe 6191
136199f0 6192 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6193 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6194 min(usable_startpfn, zone_movable_pfn[nid]) :
6195 usable_startpfn;
6196 }
6197
6198 goto out2;
6199 }
2a1e274a 6200
342332e6
TI
6201 /*
6202 * If kernelcore=mirror is specified, ignore movablecore option
6203 */
6204 if (mirrored_kernelcore) {
6205 bool mem_below_4gb_not_mirrored = false;
6206
6207 for_each_memblock(memory, r) {
6208 if (memblock_is_mirror(r))
6209 continue;
6210
6211 nid = r->nid;
6212
6213 usable_startpfn = memblock_region_memory_base_pfn(r);
6214
6215 if (usable_startpfn < 0x100000) {
6216 mem_below_4gb_not_mirrored = true;
6217 continue;
6218 }
6219
6220 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6221 min(usable_startpfn, zone_movable_pfn[nid]) :
6222 usable_startpfn;
6223 }
6224
6225 if (mem_below_4gb_not_mirrored)
6226 pr_warn("This configuration results in unmirrored kernel memory.");
6227
6228 goto out2;
6229 }
6230
7e63efef 6231 /*
b2f3eebe 6232 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6233 * kernelcore that corresponds so that memory usable for
6234 * any allocation type is evenly spread. If both kernelcore
6235 * and movablecore are specified, then the value of kernelcore
6236 * will be used for required_kernelcore if it's greater than
6237 * what movablecore would have allowed.
6238 */
6239 if (required_movablecore) {
7e63efef
MG
6240 unsigned long corepages;
6241
6242 /*
6243 * Round-up so that ZONE_MOVABLE is at least as large as what
6244 * was requested by the user
6245 */
6246 required_movablecore =
6247 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6248 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6249 corepages = totalpages - required_movablecore;
6250
6251 required_kernelcore = max(required_kernelcore, corepages);
6252 }
6253
bde304bd
XQ
6254 /*
6255 * If kernelcore was not specified or kernelcore size is larger
6256 * than totalpages, there is no ZONE_MOVABLE.
6257 */
6258 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6259 goto out;
2a1e274a
MG
6260
6261 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6262 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6263
6264restart:
6265 /* Spread kernelcore memory as evenly as possible throughout nodes */
6266 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6267 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6268 unsigned long start_pfn, end_pfn;
6269
2a1e274a
MG
6270 /*
6271 * Recalculate kernelcore_node if the division per node
6272 * now exceeds what is necessary to satisfy the requested
6273 * amount of memory for the kernel
6274 */
6275 if (required_kernelcore < kernelcore_node)
6276 kernelcore_node = required_kernelcore / usable_nodes;
6277
6278 /*
6279 * As the map is walked, we track how much memory is usable
6280 * by the kernel using kernelcore_remaining. When it is
6281 * 0, the rest of the node is usable by ZONE_MOVABLE
6282 */
6283 kernelcore_remaining = kernelcore_node;
6284
6285 /* Go through each range of PFNs within this node */
c13291a5 6286 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6287 unsigned long size_pages;
6288
c13291a5 6289 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6290 if (start_pfn >= end_pfn)
6291 continue;
6292
6293 /* Account for what is only usable for kernelcore */
6294 if (start_pfn < usable_startpfn) {
6295 unsigned long kernel_pages;
6296 kernel_pages = min(end_pfn, usable_startpfn)
6297 - start_pfn;
6298
6299 kernelcore_remaining -= min(kernel_pages,
6300 kernelcore_remaining);
6301 required_kernelcore -= min(kernel_pages,
6302 required_kernelcore);
6303
6304 /* Continue if range is now fully accounted */
6305 if (end_pfn <= usable_startpfn) {
6306
6307 /*
6308 * Push zone_movable_pfn to the end so
6309 * that if we have to rebalance
6310 * kernelcore across nodes, we will
6311 * not double account here
6312 */
6313 zone_movable_pfn[nid] = end_pfn;
6314 continue;
6315 }
6316 start_pfn = usable_startpfn;
6317 }
6318
6319 /*
6320 * The usable PFN range for ZONE_MOVABLE is from
6321 * start_pfn->end_pfn. Calculate size_pages as the
6322 * number of pages used as kernelcore
6323 */
6324 size_pages = end_pfn - start_pfn;
6325 if (size_pages > kernelcore_remaining)
6326 size_pages = kernelcore_remaining;
6327 zone_movable_pfn[nid] = start_pfn + size_pages;
6328
6329 /*
6330 * Some kernelcore has been met, update counts and
6331 * break if the kernelcore for this node has been
b8af2941 6332 * satisfied
2a1e274a
MG
6333 */
6334 required_kernelcore -= min(required_kernelcore,
6335 size_pages);
6336 kernelcore_remaining -= size_pages;
6337 if (!kernelcore_remaining)
6338 break;
6339 }
6340 }
6341
6342 /*
6343 * If there is still required_kernelcore, we do another pass with one
6344 * less node in the count. This will push zone_movable_pfn[nid] further
6345 * along on the nodes that still have memory until kernelcore is
b8af2941 6346 * satisfied
2a1e274a
MG
6347 */
6348 usable_nodes--;
6349 if (usable_nodes && required_kernelcore > usable_nodes)
6350 goto restart;
6351
b2f3eebe 6352out2:
2a1e274a
MG
6353 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6354 for (nid = 0; nid < MAX_NUMNODES; nid++)
6355 zone_movable_pfn[nid] =
6356 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6357
20e6926d 6358out:
66918dcd 6359 /* restore the node_state */
4b0ef1fe 6360 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6361}
6362
4b0ef1fe
LJ
6363/* Any regular or high memory on that node ? */
6364static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6365{
37b07e41
LS
6366 enum zone_type zone_type;
6367
4b0ef1fe
LJ
6368 if (N_MEMORY == N_NORMAL_MEMORY)
6369 return;
6370
6371 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6372 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6373 if (populated_zone(zone)) {
4b0ef1fe
LJ
6374 node_set_state(nid, N_HIGH_MEMORY);
6375 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6376 zone_type <= ZONE_NORMAL)
6377 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6378 break;
6379 }
37b07e41 6380 }
37b07e41
LS
6381}
6382
c713216d
MG
6383/**
6384 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6385 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6386 *
6387 * This will call free_area_init_node() for each active node in the system.
7d018176 6388 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6389 * zone in each node and their holes is calculated. If the maximum PFN
6390 * between two adjacent zones match, it is assumed that the zone is empty.
6391 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6392 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6393 * starts where the previous one ended. For example, ZONE_DMA32 starts
6394 * at arch_max_dma_pfn.
6395 */
6396void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6397{
c13291a5
TH
6398 unsigned long start_pfn, end_pfn;
6399 int i, nid;
a6af2bc3 6400
c713216d
MG
6401 /* Record where the zone boundaries are */
6402 memset(arch_zone_lowest_possible_pfn, 0,
6403 sizeof(arch_zone_lowest_possible_pfn));
6404 memset(arch_zone_highest_possible_pfn, 0,
6405 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6406
6407 start_pfn = find_min_pfn_with_active_regions();
6408
6409 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6410 if (i == ZONE_MOVABLE)
6411 continue;
90cae1fe
OH
6412
6413 end_pfn = max(max_zone_pfn[i], start_pfn);
6414 arch_zone_lowest_possible_pfn[i] = start_pfn;
6415 arch_zone_highest_possible_pfn[i] = end_pfn;
6416
6417 start_pfn = end_pfn;
c713216d 6418 }
2a1e274a
MG
6419 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6420 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6421
6422 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6423 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6424 find_zone_movable_pfns_for_nodes();
c713216d 6425
c713216d 6426 /* Print out the zone ranges */
f88dfff5 6427 pr_info("Zone ranges:\n");
2a1e274a
MG
6428 for (i = 0; i < MAX_NR_ZONES; i++) {
6429 if (i == ZONE_MOVABLE)
6430 continue;
f88dfff5 6431 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6432 if (arch_zone_lowest_possible_pfn[i] ==
6433 arch_zone_highest_possible_pfn[i])
f88dfff5 6434 pr_cont("empty\n");
72f0ba02 6435 else
8d29e18a
JG
6436 pr_cont("[mem %#018Lx-%#018Lx]\n",
6437 (u64)arch_zone_lowest_possible_pfn[i]
6438 << PAGE_SHIFT,
6439 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6440 << PAGE_SHIFT) - 1);
2a1e274a
MG
6441 }
6442
6443 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6444 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6445 for (i = 0; i < MAX_NUMNODES; i++) {
6446 if (zone_movable_pfn[i])
8d29e18a
JG
6447 pr_info(" Node %d: %#018Lx\n", i,
6448 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6449 }
c713216d 6450
f2d52fe5 6451 /* Print out the early node map */
f88dfff5 6452 pr_info("Early memory node ranges\n");
c13291a5 6453 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6454 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6455 (u64)start_pfn << PAGE_SHIFT,
6456 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6457
6458 /* Initialise every node */
708614e6 6459 mminit_verify_pageflags_layout();
8ef82866 6460 setup_nr_node_ids();
c713216d
MG
6461 for_each_online_node(nid) {
6462 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6463 free_area_init_node(nid, NULL,
c713216d 6464 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6465
6466 /* Any memory on that node */
6467 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6468 node_set_state(nid, N_MEMORY);
6469 check_for_memory(pgdat, nid);
c713216d
MG
6470 }
6471}
2a1e274a 6472
7e63efef 6473static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6474{
6475 unsigned long long coremem;
6476 if (!p)
6477 return -EINVAL;
6478
6479 coremem = memparse(p, &p);
7e63efef 6480 *core = coremem >> PAGE_SHIFT;
2a1e274a 6481
7e63efef 6482 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6483 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6484
6485 return 0;
6486}
ed7ed365 6487
7e63efef
MG
6488/*
6489 * kernelcore=size sets the amount of memory for use for allocations that
6490 * cannot be reclaimed or migrated.
6491 */
6492static int __init cmdline_parse_kernelcore(char *p)
6493{
342332e6
TI
6494 /* parse kernelcore=mirror */
6495 if (parse_option_str(p, "mirror")) {
6496 mirrored_kernelcore = true;
6497 return 0;
6498 }
6499
7e63efef
MG
6500 return cmdline_parse_core(p, &required_kernelcore);
6501}
6502
6503/*
6504 * movablecore=size sets the amount of memory for use for allocations that
6505 * can be reclaimed or migrated.
6506 */
6507static int __init cmdline_parse_movablecore(char *p)
6508{
6509 return cmdline_parse_core(p, &required_movablecore);
6510}
6511
ed7ed365 6512early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6513early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6514
0ee332c1 6515#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6516
c3d5f5f0
JL
6517void adjust_managed_page_count(struct page *page, long count)
6518{
6519 spin_lock(&managed_page_count_lock);
6520 page_zone(page)->managed_pages += count;
6521 totalram_pages += count;
3dcc0571
JL
6522#ifdef CONFIG_HIGHMEM
6523 if (PageHighMem(page))
6524 totalhigh_pages += count;
6525#endif
c3d5f5f0
JL
6526 spin_unlock(&managed_page_count_lock);
6527}
3dcc0571 6528EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6529
11199692 6530unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6531{
11199692
JL
6532 void *pos;
6533 unsigned long pages = 0;
69afade7 6534
11199692
JL
6535 start = (void *)PAGE_ALIGN((unsigned long)start);
6536 end = (void *)((unsigned long)end & PAGE_MASK);
6537 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6538 if ((unsigned int)poison <= 0xFF)
11199692
JL
6539 memset(pos, poison, PAGE_SIZE);
6540 free_reserved_page(virt_to_page(pos));
69afade7
JL
6541 }
6542
6543 if (pages && s)
11199692 6544 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6545 s, pages << (PAGE_SHIFT - 10), start, end);
6546
6547 return pages;
6548}
11199692 6549EXPORT_SYMBOL(free_reserved_area);
69afade7 6550
cfa11e08
JL
6551#ifdef CONFIG_HIGHMEM
6552void free_highmem_page(struct page *page)
6553{
6554 __free_reserved_page(page);
6555 totalram_pages++;
7b4b2a0d 6556 page_zone(page)->managed_pages++;
cfa11e08
JL
6557 totalhigh_pages++;
6558}
6559#endif
6560
7ee3d4e8
JL
6561
6562void __init mem_init_print_info(const char *str)
6563{
6564 unsigned long physpages, codesize, datasize, rosize, bss_size;
6565 unsigned long init_code_size, init_data_size;
6566
6567 physpages = get_num_physpages();
6568 codesize = _etext - _stext;
6569 datasize = _edata - _sdata;
6570 rosize = __end_rodata - __start_rodata;
6571 bss_size = __bss_stop - __bss_start;
6572 init_data_size = __init_end - __init_begin;
6573 init_code_size = _einittext - _sinittext;
6574
6575 /*
6576 * Detect special cases and adjust section sizes accordingly:
6577 * 1) .init.* may be embedded into .data sections
6578 * 2) .init.text.* may be out of [__init_begin, __init_end],
6579 * please refer to arch/tile/kernel/vmlinux.lds.S.
6580 * 3) .rodata.* may be embedded into .text or .data sections.
6581 */
6582#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6583 do { \
6584 if (start <= pos && pos < end && size > adj) \
6585 size -= adj; \
6586 } while (0)
7ee3d4e8
JL
6587
6588 adj_init_size(__init_begin, __init_end, init_data_size,
6589 _sinittext, init_code_size);
6590 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6591 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6592 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6593 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6594
6595#undef adj_init_size
6596
756a025f 6597 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6598#ifdef CONFIG_HIGHMEM
756a025f 6599 ", %luK highmem"
7ee3d4e8 6600#endif
756a025f
JP
6601 "%s%s)\n",
6602 nr_free_pages() << (PAGE_SHIFT - 10),
6603 physpages << (PAGE_SHIFT - 10),
6604 codesize >> 10, datasize >> 10, rosize >> 10,
6605 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6606 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6607 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6608#ifdef CONFIG_HIGHMEM
756a025f 6609 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6610#endif
756a025f 6611 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6612}
6613
0e0b864e 6614/**
88ca3b94
RD
6615 * set_dma_reserve - set the specified number of pages reserved in the first zone
6616 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6617 *
013110a7 6618 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6619 * In the DMA zone, a significant percentage may be consumed by kernel image
6620 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6621 * function may optionally be used to account for unfreeable pages in the
6622 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6623 * smaller per-cpu batchsize.
0e0b864e
MG
6624 */
6625void __init set_dma_reserve(unsigned long new_dma_reserve)
6626{
6627 dma_reserve = new_dma_reserve;
6628}
6629
1da177e4
LT
6630void __init free_area_init(unsigned long *zones_size)
6631{
9109fb7b 6632 free_area_init_node(0, zones_size,
1da177e4
LT
6633 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6634}
1da177e4 6635
1da177e4
LT
6636static int page_alloc_cpu_notify(struct notifier_block *self,
6637 unsigned long action, void *hcpu)
6638{
6639 int cpu = (unsigned long)hcpu;
1da177e4 6640
8bb78442 6641 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6642 lru_add_drain_cpu(cpu);
9f8f2172
CL
6643 drain_pages(cpu);
6644
6645 /*
6646 * Spill the event counters of the dead processor
6647 * into the current processors event counters.
6648 * This artificially elevates the count of the current
6649 * processor.
6650 */
f8891e5e 6651 vm_events_fold_cpu(cpu);
9f8f2172
CL
6652
6653 /*
6654 * Zero the differential counters of the dead processor
6655 * so that the vm statistics are consistent.
6656 *
6657 * This is only okay since the processor is dead and cannot
6658 * race with what we are doing.
6659 */
2bb921e5 6660 cpu_vm_stats_fold(cpu);
1da177e4
LT
6661 }
6662 return NOTIFY_OK;
6663}
1da177e4
LT
6664
6665void __init page_alloc_init(void)
6666{
6667 hotcpu_notifier(page_alloc_cpu_notify, 0);
6668}
6669
cb45b0e9 6670/*
34b10060 6671 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6672 * or min_free_kbytes changes.
6673 */
6674static void calculate_totalreserve_pages(void)
6675{
6676 struct pglist_data *pgdat;
6677 unsigned long reserve_pages = 0;
2f6726e5 6678 enum zone_type i, j;
cb45b0e9
HA
6679
6680 for_each_online_pgdat(pgdat) {
6681 for (i = 0; i < MAX_NR_ZONES; i++) {
6682 struct zone *zone = pgdat->node_zones + i;
3484b2de 6683 long max = 0;
cb45b0e9
HA
6684
6685 /* Find valid and maximum lowmem_reserve in the zone */
6686 for (j = i; j < MAX_NR_ZONES; j++) {
6687 if (zone->lowmem_reserve[j] > max)
6688 max = zone->lowmem_reserve[j];
6689 }
6690
41858966
MG
6691 /* we treat the high watermark as reserved pages. */
6692 max += high_wmark_pages(zone);
cb45b0e9 6693
b40da049
JL
6694 if (max > zone->managed_pages)
6695 max = zone->managed_pages;
a8d01437
JW
6696
6697 zone->totalreserve_pages = max;
6698
cb45b0e9
HA
6699 reserve_pages += max;
6700 }
6701 }
6702 totalreserve_pages = reserve_pages;
6703}
6704
1da177e4
LT
6705/*
6706 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6707 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6708 * has a correct pages reserved value, so an adequate number of
6709 * pages are left in the zone after a successful __alloc_pages().
6710 */
6711static void setup_per_zone_lowmem_reserve(void)
6712{
6713 struct pglist_data *pgdat;
2f6726e5 6714 enum zone_type j, idx;
1da177e4 6715
ec936fc5 6716 for_each_online_pgdat(pgdat) {
1da177e4
LT
6717 for (j = 0; j < MAX_NR_ZONES; j++) {
6718 struct zone *zone = pgdat->node_zones + j;
b40da049 6719 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6720
6721 zone->lowmem_reserve[j] = 0;
6722
2f6726e5
CL
6723 idx = j;
6724 while (idx) {
1da177e4
LT
6725 struct zone *lower_zone;
6726
2f6726e5
CL
6727 idx--;
6728
1da177e4
LT
6729 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6730 sysctl_lowmem_reserve_ratio[idx] = 1;
6731
6732 lower_zone = pgdat->node_zones + idx;
b40da049 6733 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6734 sysctl_lowmem_reserve_ratio[idx];
b40da049 6735 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6736 }
6737 }
6738 }
cb45b0e9
HA
6739
6740 /* update totalreserve_pages */
6741 calculate_totalreserve_pages();
1da177e4
LT
6742}
6743
cfd3da1e 6744static void __setup_per_zone_wmarks(void)
1da177e4
LT
6745{
6746 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6747 unsigned long lowmem_pages = 0;
6748 struct zone *zone;
6749 unsigned long flags;
6750
6751 /* Calculate total number of !ZONE_HIGHMEM pages */
6752 for_each_zone(zone) {
6753 if (!is_highmem(zone))
b40da049 6754 lowmem_pages += zone->managed_pages;
1da177e4
LT
6755 }
6756
6757 for_each_zone(zone) {
ac924c60
AM
6758 u64 tmp;
6759
1125b4e3 6760 spin_lock_irqsave(&zone->lock, flags);
b40da049 6761 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6762 do_div(tmp, lowmem_pages);
1da177e4
LT
6763 if (is_highmem(zone)) {
6764 /*
669ed175
NP
6765 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6766 * need highmem pages, so cap pages_min to a small
6767 * value here.
6768 *
41858966 6769 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6770 * deltas control asynch page reclaim, and so should
669ed175 6771 * not be capped for highmem.
1da177e4 6772 */
90ae8d67 6773 unsigned long min_pages;
1da177e4 6774
b40da049 6775 min_pages = zone->managed_pages / 1024;
90ae8d67 6776 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6777 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6778 } else {
669ed175
NP
6779 /*
6780 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6781 * proportionate to the zone's size.
6782 */
41858966 6783 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6784 }
6785
795ae7a0
JW
6786 /*
6787 * Set the kswapd watermarks distance according to the
6788 * scale factor in proportion to available memory, but
6789 * ensure a minimum size on small systems.
6790 */
6791 tmp = max_t(u64, tmp >> 2,
6792 mult_frac(zone->managed_pages,
6793 watermark_scale_factor, 10000));
6794
6795 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6796 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6797
81c0a2bb 6798 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6799 high_wmark_pages(zone) - low_wmark_pages(zone) -
6800 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6801
1125b4e3 6802 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6803 }
cb45b0e9
HA
6804
6805 /* update totalreserve_pages */
6806 calculate_totalreserve_pages();
1da177e4
LT
6807}
6808
cfd3da1e
MG
6809/**
6810 * setup_per_zone_wmarks - called when min_free_kbytes changes
6811 * or when memory is hot-{added|removed}
6812 *
6813 * Ensures that the watermark[min,low,high] values for each zone are set
6814 * correctly with respect to min_free_kbytes.
6815 */
6816void setup_per_zone_wmarks(void)
6817{
6818 mutex_lock(&zonelists_mutex);
6819 __setup_per_zone_wmarks();
6820 mutex_unlock(&zonelists_mutex);
6821}
6822
1da177e4
LT
6823/*
6824 * Initialise min_free_kbytes.
6825 *
6826 * For small machines we want it small (128k min). For large machines
6827 * we want it large (64MB max). But it is not linear, because network
6828 * bandwidth does not increase linearly with machine size. We use
6829 *
b8af2941 6830 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6831 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6832 *
6833 * which yields
6834 *
6835 * 16MB: 512k
6836 * 32MB: 724k
6837 * 64MB: 1024k
6838 * 128MB: 1448k
6839 * 256MB: 2048k
6840 * 512MB: 2896k
6841 * 1024MB: 4096k
6842 * 2048MB: 5792k
6843 * 4096MB: 8192k
6844 * 8192MB: 11584k
6845 * 16384MB: 16384k
6846 */
1b79acc9 6847int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6848{
6849 unsigned long lowmem_kbytes;
5f12733e 6850 int new_min_free_kbytes;
1da177e4
LT
6851
6852 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6853 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6854
6855 if (new_min_free_kbytes > user_min_free_kbytes) {
6856 min_free_kbytes = new_min_free_kbytes;
6857 if (min_free_kbytes < 128)
6858 min_free_kbytes = 128;
6859 if (min_free_kbytes > 65536)
6860 min_free_kbytes = 65536;
6861 } else {
6862 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6863 new_min_free_kbytes, user_min_free_kbytes);
6864 }
bc75d33f 6865 setup_per_zone_wmarks();
a6cccdc3 6866 refresh_zone_stat_thresholds();
1da177e4
LT
6867 setup_per_zone_lowmem_reserve();
6868 return 0;
6869}
bc22af74 6870core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6871
6872/*
b8af2941 6873 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6874 * that we can call two helper functions whenever min_free_kbytes
6875 * changes.
6876 */
cccad5b9 6877int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6878 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6879{
da8c757b
HP
6880 int rc;
6881
6882 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6883 if (rc)
6884 return rc;
6885
5f12733e
MH
6886 if (write) {
6887 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6888 setup_per_zone_wmarks();
5f12733e 6889 }
1da177e4
LT
6890 return 0;
6891}
6892
795ae7a0
JW
6893int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6894 void __user *buffer, size_t *length, loff_t *ppos)
6895{
6896 int rc;
6897
6898 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6899 if (rc)
6900 return rc;
6901
6902 if (write)
6903 setup_per_zone_wmarks();
6904
6905 return 0;
6906}
6907
9614634f 6908#ifdef CONFIG_NUMA
cccad5b9 6909int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6910 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6911{
6912 struct zone *zone;
6913 int rc;
6914
8d65af78 6915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6916 if (rc)
6917 return rc;
6918
6919 for_each_zone(zone)
b40da049 6920 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6921 sysctl_min_unmapped_ratio) / 100;
6922 return 0;
6923}
0ff38490 6924
cccad5b9 6925int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6926 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6927{
6928 struct zone *zone;
6929 int rc;
6930
8d65af78 6931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6932 if (rc)
6933 return rc;
6934
6935 for_each_zone(zone)
b40da049 6936 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6937 sysctl_min_slab_ratio) / 100;
6938 return 0;
6939}
9614634f
CL
6940#endif
6941
1da177e4
LT
6942/*
6943 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6944 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6945 * whenever sysctl_lowmem_reserve_ratio changes.
6946 *
6947 * The reserve ratio obviously has absolutely no relation with the
41858966 6948 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6949 * if in function of the boot time zone sizes.
6950 */
cccad5b9 6951int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6952 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6953{
8d65af78 6954 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6955 setup_per_zone_lowmem_reserve();
6956 return 0;
6957}
6958
8ad4b1fb
RS
6959/*
6960 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6961 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6962 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6963 */
cccad5b9 6964int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6965 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6966{
6967 struct zone *zone;
7cd2b0a3 6968 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6969 int ret;
6970
7cd2b0a3
DR
6971 mutex_lock(&pcp_batch_high_lock);
6972 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6973
8d65af78 6974 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6975 if (!write || ret < 0)
6976 goto out;
6977
6978 /* Sanity checking to avoid pcp imbalance */
6979 if (percpu_pagelist_fraction &&
6980 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6981 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6982 ret = -EINVAL;
6983 goto out;
6984 }
6985
6986 /* No change? */
6987 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6988 goto out;
c8e251fa 6989
364df0eb 6990 for_each_populated_zone(zone) {
7cd2b0a3
DR
6991 unsigned int cpu;
6992
22a7f12b 6993 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6994 pageset_set_high_and_batch(zone,
6995 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6996 }
7cd2b0a3 6997out:
c8e251fa 6998 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6999 return ret;
8ad4b1fb
RS
7000}
7001
a9919c79 7002#ifdef CONFIG_NUMA
f034b5d4 7003int hashdist = HASHDIST_DEFAULT;
1da177e4 7004
1da177e4
LT
7005static int __init set_hashdist(char *str)
7006{
7007 if (!str)
7008 return 0;
7009 hashdist = simple_strtoul(str, &str, 0);
7010 return 1;
7011}
7012__setup("hashdist=", set_hashdist);
7013#endif
7014
7015/*
7016 * allocate a large system hash table from bootmem
7017 * - it is assumed that the hash table must contain an exact power-of-2
7018 * quantity of entries
7019 * - limit is the number of hash buckets, not the total allocation size
7020 */
7021void *__init alloc_large_system_hash(const char *tablename,
7022 unsigned long bucketsize,
7023 unsigned long numentries,
7024 int scale,
7025 int flags,
7026 unsigned int *_hash_shift,
7027 unsigned int *_hash_mask,
31fe62b9
TB
7028 unsigned long low_limit,
7029 unsigned long high_limit)
1da177e4 7030{
31fe62b9 7031 unsigned long long max = high_limit;
1da177e4
LT
7032 unsigned long log2qty, size;
7033 void *table = NULL;
7034
7035 /* allow the kernel cmdline to have a say */
7036 if (!numentries) {
7037 /* round applicable memory size up to nearest megabyte */
04903664 7038 numentries = nr_kernel_pages;
a7e83318
JZ
7039
7040 /* It isn't necessary when PAGE_SIZE >= 1MB */
7041 if (PAGE_SHIFT < 20)
7042 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7043
7044 /* limit to 1 bucket per 2^scale bytes of low memory */
7045 if (scale > PAGE_SHIFT)
7046 numentries >>= (scale - PAGE_SHIFT);
7047 else
7048 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7049
7050 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7051 if (unlikely(flags & HASH_SMALL)) {
7052 /* Makes no sense without HASH_EARLY */
7053 WARN_ON(!(flags & HASH_EARLY));
7054 if (!(numentries >> *_hash_shift)) {
7055 numentries = 1UL << *_hash_shift;
7056 BUG_ON(!numentries);
7057 }
7058 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7059 numentries = PAGE_SIZE / bucketsize;
1da177e4 7060 }
6e692ed3 7061 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7062
7063 /* limit allocation size to 1/16 total memory by default */
7064 if (max == 0) {
7065 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7066 do_div(max, bucketsize);
7067 }
074b8517 7068 max = min(max, 0x80000000ULL);
1da177e4 7069
31fe62b9
TB
7070 if (numentries < low_limit)
7071 numentries = low_limit;
1da177e4
LT
7072 if (numentries > max)
7073 numentries = max;
7074
f0d1b0b3 7075 log2qty = ilog2(numentries);
1da177e4
LT
7076
7077 do {
7078 size = bucketsize << log2qty;
7079 if (flags & HASH_EARLY)
6782832e 7080 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7081 else if (hashdist)
7082 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7083 else {
1037b83b
ED
7084 /*
7085 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7086 * some pages at the end of hash table which
7087 * alloc_pages_exact() automatically does
1037b83b 7088 */
264ef8a9 7089 if (get_order(size) < MAX_ORDER) {
a1dd268c 7090 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7091 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7092 }
1da177e4
LT
7093 }
7094 } while (!table && size > PAGE_SIZE && --log2qty);
7095
7096 if (!table)
7097 panic("Failed to allocate %s hash table\n", tablename);
7098
1170532b
JP
7099 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7100 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7101
7102 if (_hash_shift)
7103 *_hash_shift = log2qty;
7104 if (_hash_mask)
7105 *_hash_mask = (1 << log2qty) - 1;
7106
7107 return table;
7108}
a117e66e 7109
a5d76b54 7110/*
80934513
MK
7111 * This function checks whether pageblock includes unmovable pages or not.
7112 * If @count is not zero, it is okay to include less @count unmovable pages
7113 *
b8af2941 7114 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7115 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7116 * expect this function should be exact.
a5d76b54 7117 */
b023f468
WC
7118bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7119 bool skip_hwpoisoned_pages)
49ac8255
KH
7120{
7121 unsigned long pfn, iter, found;
47118af0
MN
7122 int mt;
7123
49ac8255
KH
7124 /*
7125 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7126 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7127 */
7128 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7129 return false;
47118af0
MN
7130 mt = get_pageblock_migratetype(page);
7131 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7132 return false;
49ac8255
KH
7133
7134 pfn = page_to_pfn(page);
7135 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7136 unsigned long check = pfn + iter;
7137
29723fcc 7138 if (!pfn_valid_within(check))
49ac8255 7139 continue;
29723fcc 7140
49ac8255 7141 page = pfn_to_page(check);
c8721bbb
NH
7142
7143 /*
7144 * Hugepages are not in LRU lists, but they're movable.
7145 * We need not scan over tail pages bacause we don't
7146 * handle each tail page individually in migration.
7147 */
7148 if (PageHuge(page)) {
7149 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7150 continue;
7151 }
7152
97d255c8
MK
7153 /*
7154 * We can't use page_count without pin a page
7155 * because another CPU can free compound page.
7156 * This check already skips compound tails of THP
0139aa7b 7157 * because their page->_refcount is zero at all time.
97d255c8 7158 */
fe896d18 7159 if (!page_ref_count(page)) {
49ac8255
KH
7160 if (PageBuddy(page))
7161 iter += (1 << page_order(page)) - 1;
7162 continue;
7163 }
97d255c8 7164
b023f468
WC
7165 /*
7166 * The HWPoisoned page may be not in buddy system, and
7167 * page_count() is not 0.
7168 */
7169 if (skip_hwpoisoned_pages && PageHWPoison(page))
7170 continue;
7171
49ac8255
KH
7172 if (!PageLRU(page))
7173 found++;
7174 /*
6b4f7799
JW
7175 * If there are RECLAIMABLE pages, we need to check
7176 * it. But now, memory offline itself doesn't call
7177 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7178 */
7179 /*
7180 * If the page is not RAM, page_count()should be 0.
7181 * we don't need more check. This is an _used_ not-movable page.
7182 *
7183 * The problematic thing here is PG_reserved pages. PG_reserved
7184 * is set to both of a memory hole page and a _used_ kernel
7185 * page at boot.
7186 */
7187 if (found > count)
80934513 7188 return true;
49ac8255 7189 }
80934513 7190 return false;
49ac8255
KH
7191}
7192
7193bool is_pageblock_removable_nolock(struct page *page)
7194{
656a0706
MH
7195 struct zone *zone;
7196 unsigned long pfn;
687875fb
MH
7197
7198 /*
7199 * We have to be careful here because we are iterating over memory
7200 * sections which are not zone aware so we might end up outside of
7201 * the zone but still within the section.
656a0706
MH
7202 * We have to take care about the node as well. If the node is offline
7203 * its NODE_DATA will be NULL - see page_zone.
687875fb 7204 */
656a0706
MH
7205 if (!node_online(page_to_nid(page)))
7206 return false;
7207
7208 zone = page_zone(page);
7209 pfn = page_to_pfn(page);
108bcc96 7210 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7211 return false;
7212
b023f468 7213 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7214}
0c0e6195 7215
080fe206 7216#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7217
7218static unsigned long pfn_max_align_down(unsigned long pfn)
7219{
7220 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7221 pageblock_nr_pages) - 1);
7222}
7223
7224static unsigned long pfn_max_align_up(unsigned long pfn)
7225{
7226 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7227 pageblock_nr_pages));
7228}
7229
041d3a8c 7230/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7231static int __alloc_contig_migrate_range(struct compact_control *cc,
7232 unsigned long start, unsigned long end)
041d3a8c
MN
7233{
7234 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7235 unsigned long nr_reclaimed;
041d3a8c
MN
7236 unsigned long pfn = start;
7237 unsigned int tries = 0;
7238 int ret = 0;
7239
be49a6e1 7240 migrate_prep();
041d3a8c 7241
bb13ffeb 7242 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7243 if (fatal_signal_pending(current)) {
7244 ret = -EINTR;
7245 break;
7246 }
7247
bb13ffeb
MG
7248 if (list_empty(&cc->migratepages)) {
7249 cc->nr_migratepages = 0;
edc2ca61 7250 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7251 if (!pfn) {
7252 ret = -EINTR;
7253 break;
7254 }
7255 tries = 0;
7256 } else if (++tries == 5) {
7257 ret = ret < 0 ? ret : -EBUSY;
7258 break;
7259 }
7260
beb51eaa
MK
7261 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7262 &cc->migratepages);
7263 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7264
9c620e2b 7265 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7266 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7267 }
2a6f5124
SP
7268 if (ret < 0) {
7269 putback_movable_pages(&cc->migratepages);
7270 return ret;
7271 }
7272 return 0;
041d3a8c
MN
7273}
7274
7275/**
7276 * alloc_contig_range() -- tries to allocate given range of pages
7277 * @start: start PFN to allocate
7278 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7279 * @migratetype: migratetype of the underlaying pageblocks (either
7280 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7281 * in range must have the same migratetype and it must
7282 * be either of the two.
041d3a8c
MN
7283 *
7284 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7285 * aligned, however it's the caller's responsibility to guarantee that
7286 * we are the only thread that changes migrate type of pageblocks the
7287 * pages fall in.
7288 *
7289 * The PFN range must belong to a single zone.
7290 *
7291 * Returns zero on success or negative error code. On success all
7292 * pages which PFN is in [start, end) are allocated for the caller and
7293 * need to be freed with free_contig_range().
7294 */
0815f3d8
MN
7295int alloc_contig_range(unsigned long start, unsigned long end,
7296 unsigned migratetype)
041d3a8c 7297{
041d3a8c 7298 unsigned long outer_start, outer_end;
d00181b9
KS
7299 unsigned int order;
7300 int ret = 0;
041d3a8c 7301
bb13ffeb
MG
7302 struct compact_control cc = {
7303 .nr_migratepages = 0,
7304 .order = -1,
7305 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7306 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7307 .ignore_skip_hint = true,
7308 };
7309 INIT_LIST_HEAD(&cc.migratepages);
7310
041d3a8c
MN
7311 /*
7312 * What we do here is we mark all pageblocks in range as
7313 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7314 * have different sizes, and due to the way page allocator
7315 * work, we align the range to biggest of the two pages so
7316 * that page allocator won't try to merge buddies from
7317 * different pageblocks and change MIGRATE_ISOLATE to some
7318 * other migration type.
7319 *
7320 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7321 * migrate the pages from an unaligned range (ie. pages that
7322 * we are interested in). This will put all the pages in
7323 * range back to page allocator as MIGRATE_ISOLATE.
7324 *
7325 * When this is done, we take the pages in range from page
7326 * allocator removing them from the buddy system. This way
7327 * page allocator will never consider using them.
7328 *
7329 * This lets us mark the pageblocks back as
7330 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7331 * aligned range but not in the unaligned, original range are
7332 * put back to page allocator so that buddy can use them.
7333 */
7334
7335 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7336 pfn_max_align_up(end), migratetype,
7337 false);
041d3a8c 7338 if (ret)
86a595f9 7339 return ret;
041d3a8c 7340
8ef5849f
JK
7341 /*
7342 * In case of -EBUSY, we'd like to know which page causes problem.
7343 * So, just fall through. We will check it in test_pages_isolated().
7344 */
bb13ffeb 7345 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7346 if (ret && ret != -EBUSY)
041d3a8c
MN
7347 goto done;
7348
7349 /*
7350 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7351 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7352 * more, all pages in [start, end) are free in page allocator.
7353 * What we are going to do is to allocate all pages from
7354 * [start, end) (that is remove them from page allocator).
7355 *
7356 * The only problem is that pages at the beginning and at the
7357 * end of interesting range may be not aligned with pages that
7358 * page allocator holds, ie. they can be part of higher order
7359 * pages. Because of this, we reserve the bigger range and
7360 * once this is done free the pages we are not interested in.
7361 *
7362 * We don't have to hold zone->lock here because the pages are
7363 * isolated thus they won't get removed from buddy.
7364 */
7365
7366 lru_add_drain_all();
510f5507 7367 drain_all_pages(cc.zone);
041d3a8c
MN
7368
7369 order = 0;
7370 outer_start = start;
7371 while (!PageBuddy(pfn_to_page(outer_start))) {
7372 if (++order >= MAX_ORDER) {
8ef5849f
JK
7373 outer_start = start;
7374 break;
041d3a8c
MN
7375 }
7376 outer_start &= ~0UL << order;
7377 }
7378
8ef5849f
JK
7379 if (outer_start != start) {
7380 order = page_order(pfn_to_page(outer_start));
7381
7382 /*
7383 * outer_start page could be small order buddy page and
7384 * it doesn't include start page. Adjust outer_start
7385 * in this case to report failed page properly
7386 * on tracepoint in test_pages_isolated()
7387 */
7388 if (outer_start + (1UL << order) <= start)
7389 outer_start = start;
7390 }
7391
041d3a8c 7392 /* Make sure the range is really isolated. */
b023f468 7393 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7394 pr_info("%s: [%lx, %lx) PFNs busy\n",
7395 __func__, outer_start, end);
041d3a8c
MN
7396 ret = -EBUSY;
7397 goto done;
7398 }
7399
49f223a9 7400 /* Grab isolated pages from freelists. */
bb13ffeb 7401 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7402 if (!outer_end) {
7403 ret = -EBUSY;
7404 goto done;
7405 }
7406
7407 /* Free head and tail (if any) */
7408 if (start != outer_start)
7409 free_contig_range(outer_start, start - outer_start);
7410 if (end != outer_end)
7411 free_contig_range(end, outer_end - end);
7412
7413done:
7414 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7415 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7416 return ret;
7417}
7418
7419void free_contig_range(unsigned long pfn, unsigned nr_pages)
7420{
bcc2b02f
MS
7421 unsigned int count = 0;
7422
7423 for (; nr_pages--; pfn++) {
7424 struct page *page = pfn_to_page(pfn);
7425
7426 count += page_count(page) != 1;
7427 __free_page(page);
7428 }
7429 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7430}
7431#endif
7432
4ed7e022 7433#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7434/*
7435 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7436 * page high values need to be recalulated.
7437 */
4ed7e022
JL
7438void __meminit zone_pcp_update(struct zone *zone)
7439{
0a647f38 7440 unsigned cpu;
c8e251fa 7441 mutex_lock(&pcp_batch_high_lock);
0a647f38 7442 for_each_possible_cpu(cpu)
169f6c19
CS
7443 pageset_set_high_and_batch(zone,
7444 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7445 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7446}
7447#endif
7448
340175b7
JL
7449void zone_pcp_reset(struct zone *zone)
7450{
7451 unsigned long flags;
5a883813
MK
7452 int cpu;
7453 struct per_cpu_pageset *pset;
340175b7
JL
7454
7455 /* avoid races with drain_pages() */
7456 local_irq_save(flags);
7457 if (zone->pageset != &boot_pageset) {
5a883813
MK
7458 for_each_online_cpu(cpu) {
7459 pset = per_cpu_ptr(zone->pageset, cpu);
7460 drain_zonestat(zone, pset);
7461 }
340175b7
JL
7462 free_percpu(zone->pageset);
7463 zone->pageset = &boot_pageset;
7464 }
7465 local_irq_restore(flags);
7466}
7467
6dcd73d7 7468#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7469/*
b9eb6319
JK
7470 * All pages in the range must be in a single zone and isolated
7471 * before calling this.
0c0e6195
KH
7472 */
7473void
7474__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7475{
7476 struct page *page;
7477 struct zone *zone;
7aeb09f9 7478 unsigned int order, i;
0c0e6195
KH
7479 unsigned long pfn;
7480 unsigned long flags;
7481 /* find the first valid pfn */
7482 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7483 if (pfn_valid(pfn))
7484 break;
7485 if (pfn == end_pfn)
7486 return;
7487 zone = page_zone(pfn_to_page(pfn));
7488 spin_lock_irqsave(&zone->lock, flags);
7489 pfn = start_pfn;
7490 while (pfn < end_pfn) {
7491 if (!pfn_valid(pfn)) {
7492 pfn++;
7493 continue;
7494 }
7495 page = pfn_to_page(pfn);
b023f468
WC
7496 /*
7497 * The HWPoisoned page may be not in buddy system, and
7498 * page_count() is not 0.
7499 */
7500 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7501 pfn++;
7502 SetPageReserved(page);
7503 continue;
7504 }
7505
0c0e6195
KH
7506 BUG_ON(page_count(page));
7507 BUG_ON(!PageBuddy(page));
7508 order = page_order(page);
7509#ifdef CONFIG_DEBUG_VM
1170532b
JP
7510 pr_info("remove from free list %lx %d %lx\n",
7511 pfn, 1 << order, end_pfn);
0c0e6195
KH
7512#endif
7513 list_del(&page->lru);
7514 rmv_page_order(page);
7515 zone->free_area[order].nr_free--;
0c0e6195
KH
7516 for (i = 0; i < (1 << order); i++)
7517 SetPageReserved((page+i));
7518 pfn += (1 << order);
7519 }
7520 spin_unlock_irqrestore(&zone->lock, flags);
7521}
7522#endif
8d22ba1b 7523
8d22ba1b
WF
7524bool is_free_buddy_page(struct page *page)
7525{
7526 struct zone *zone = page_zone(page);
7527 unsigned long pfn = page_to_pfn(page);
7528 unsigned long flags;
7aeb09f9 7529 unsigned int order;
8d22ba1b
WF
7530
7531 spin_lock_irqsave(&zone->lock, flags);
7532 for (order = 0; order < MAX_ORDER; order++) {
7533 struct page *page_head = page - (pfn & ((1 << order) - 1));
7534
7535 if (PageBuddy(page_head) && page_order(page_head) >= order)
7536 break;
7537 }
7538 spin_unlock_irqrestore(&zone->lock, flags);
7539
7540 return order < MAX_ORDER;
7541}
This page took 2.651396 seconds and 5 git commands to generate.