mm: use put_page() to free page instead of putback_lru_page()
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ef70b6f4
MG
289 int nid = early_pfn_to_nid(pfn);
290
291 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
292 return true;
293
294 return false;
295}
296
7e18adb4
MG
297static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298{
299 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 return true;
301
302 return false;
303}
304
3a80a7fa
MG
305/*
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
308 */
309static inline bool update_defer_init(pg_data_t *pgdat,
310 unsigned long pfn, unsigned long zone_end,
311 unsigned long *nr_initialised)
312{
987b3095
LZ
313 unsigned long max_initialise;
314
3a80a7fa
MG
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
317 return true;
987b3095
LZ
318 /*
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
321 */
322 max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 (pgdat->node_spanned_pages >> 8));
3a80a7fa 324
3a80a7fa 325 (*nr_initialised)++;
987b3095 326 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
327 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 pgdat->first_deferred_pfn = pfn;
329 return false;
330 }
331
332 return true;
333}
334#else
335static inline void reset_deferred_meminit(pg_data_t *pgdat)
336{
337}
338
339static inline bool early_page_uninitialised(unsigned long pfn)
340{
341 return false;
342}
343
7e18adb4
MG
344static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345{
346 return false;
347}
348
3a80a7fa
MG
349static inline bool update_defer_init(pg_data_t *pgdat,
350 unsigned long pfn, unsigned long zone_end,
351 unsigned long *nr_initialised)
352{
353 return true;
354}
355#endif
356
0b423ca2
MG
357/* Return a pointer to the bitmap storing bits affecting a block of pages */
358static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 unsigned long pfn)
360{
361#ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn)->pageblock_flags;
363#else
364 return page_zone(page)->pageblock_flags;
365#endif /* CONFIG_SPARSEMEM */
366}
367
368static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 pfn &= (PAGES_PER_SECTION-1);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373#else
374 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376#endif /* CONFIG_SPARSEMEM */
377}
378
379/**
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
385 *
386 * Return: pageblock_bits flags
387 */
388static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long pfn,
390 unsigned long end_bitidx,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 bitmap = get_pageblock_bitmap(page, pfn);
398 bitidx = pfn_to_bitidx(page, pfn);
399 word_bitidx = bitidx / BITS_PER_LONG;
400 bitidx &= (BITS_PER_LONG-1);
401
402 word = bitmap[word_bitidx];
403 bitidx += end_bitidx;
404 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405}
406
407unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410{
411 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412}
413
414static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415{
416 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417}
418
419/**
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
426 */
427void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long pfn,
429 unsigned long end_bitidx,
430 unsigned long mask)
431{
432 unsigned long *bitmap;
433 unsigned long bitidx, word_bitidx;
434 unsigned long old_word, word;
435
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437
438 bitmap = get_pageblock_bitmap(page, pfn);
439 bitidx = pfn_to_bitidx(page, pfn);
440 word_bitidx = bitidx / BITS_PER_LONG;
441 bitidx &= (BITS_PER_LONG-1);
442
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444
445 bitidx += end_bitidx;
446 mask <<= (BITS_PER_LONG - bitidx - 1);
447 flags <<= (BITS_PER_LONG - bitidx - 1);
448
449 word = READ_ONCE(bitmap[word_bitidx]);
450 for (;;) {
451 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 if (word == old_word)
453 break;
454 word = old_word;
455 }
456}
3a80a7fa 457
ee6f509c 458void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 459{
5d0f3f72
KM
460 if (unlikely(page_group_by_mobility_disabled &&
461 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
462 migratetype = MIGRATE_UNMOVABLE;
463
b2a0ac88
MG
464 set_pageblock_flags_group(page, (unsigned long)migratetype,
465 PB_migrate, PB_migrate_end);
466}
467
13e7444b 468#ifdef CONFIG_DEBUG_VM
c6a57e19 469static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 470{
bdc8cb98
DH
471 int ret = 0;
472 unsigned seq;
473 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 474 unsigned long sp, start_pfn;
c6a57e19 475
bdc8cb98
DH
476 do {
477 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
478 start_pfn = zone->zone_start_pfn;
479 sp = zone->spanned_pages;
108bcc96 480 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
481 ret = 1;
482 } while (zone_span_seqretry(zone, seq));
483
b5e6a5a2 484 if (ret)
613813e8
DH
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn, zone_to_nid(zone), zone->name,
487 start_pfn, start_pfn + sp);
b5e6a5a2 488
bdc8cb98 489 return ret;
c6a57e19
DH
490}
491
492static int page_is_consistent(struct zone *zone, struct page *page)
493{
14e07298 494 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 495 return 0;
1da177e4 496 if (zone != page_zone(page))
c6a57e19
DH
497 return 0;
498
499 return 1;
500}
501/*
502 * Temporary debugging check for pages not lying within a given zone.
503 */
504static int bad_range(struct zone *zone, struct page *page)
505{
506 if (page_outside_zone_boundaries(zone, page))
1da177e4 507 return 1;
c6a57e19
DH
508 if (!page_is_consistent(zone, page))
509 return 1;
510
1da177e4
LT
511 return 0;
512}
13e7444b
NP
513#else
514static inline int bad_range(struct zone *zone, struct page *page)
515{
516 return 0;
517}
518#endif
519
d230dec1
KS
520static void bad_page(struct page *page, const char *reason,
521 unsigned long bad_flags)
1da177e4 522{
d936cf9b
HD
523 static unsigned long resume;
524 static unsigned long nr_shown;
525 static unsigned long nr_unshown;
526
527 /*
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
530 */
531 if (nr_shown == 60) {
532 if (time_before(jiffies, resume)) {
533 nr_unshown++;
534 goto out;
535 }
536 if (nr_unshown) {
ff8e8116 537 pr_alert(
1e9e6365 538 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
539 nr_unshown);
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
546
ff8e8116 547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 548 current->comm, page_to_pfn(page));
ff8e8116
VB
549 __dump_page(page, reason);
550 bad_flags &= page->flags;
551 if (bad_flags)
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags, &bad_flags);
4e462112 554 dump_page_owner(page);
3dc14741 555
4f31888c 556 print_modules();
1da177e4 557 dump_stack();
d936cf9b 558out:
8cc3b392 559 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 560 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * Higher-order pages are called "compound pages". They are structured thusly:
566 *
1d798ca3 567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 568 *
1d798ca3
KS
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 571 *
1d798ca3
KS
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
1da177e4 574 *
1d798ca3 575 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 576 * This usage means that zero-order pages may not be compound.
1da177e4 577 */
d98c7a09 578
9a982250 579void free_compound_page(struct page *page)
d98c7a09 580{
d85f3385 581 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
582}
583
d00181b9 584void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
585{
586 int i;
587 int nr_pages = 1 << order;
588
f1e61557 589 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
590 set_compound_order(page, order);
591 __SetPageHead(page);
592 for (i = 1; i < nr_pages; i++) {
593 struct page *p = page + i;
58a84aa9 594 set_page_count(p, 0);
1c290f64 595 p->mapping = TAIL_MAPPING;
1d798ca3 596 set_compound_head(p, page);
18229df5 597 }
53f9263b 598 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
599}
600
c0a32fc5
SG
601#ifdef CONFIG_DEBUG_PAGEALLOC
602unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
603bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 605EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
606bool _debug_guardpage_enabled __read_mostly;
607
031bc574
JK
608static int __init early_debug_pagealloc(char *buf)
609{
610 if (!buf)
611 return -EINVAL;
2a138dc7 612 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
613}
614early_param("debug_pagealloc", early_debug_pagealloc);
615
e30825f1
JK
616static bool need_debug_guardpage(void)
617{
031bc574
JK
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
620 return false;
621
e30825f1
JK
622 return true;
623}
624
625static void init_debug_guardpage(void)
626{
031bc574
JK
627 if (!debug_pagealloc_enabled())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
650__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651
2847cf95
JK
652static inline void set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return;
659
660 page_ext = lookup_page_ext(page);
f86e4271
YS
661 if (unlikely(!page_ext))
662 return;
663
e30825f1
JK
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
2847cf95
JK
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
670}
671
2847cf95
JK
672static inline void clear_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
c0a32fc5 674{
e30825f1
JK
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return;
679
680 page_ext = lookup_page_ext(page);
f86e4271
YS
681 if (unlikely(!page_ext))
682 return;
683
e30825f1
JK
684 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
2847cf95
JK
686 set_page_private(page, 0);
687 if (!is_migrate_isolate(migratetype))
688 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
689}
690#else
e30825f1 691struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
692static inline void set_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) {}
c0a32fc5
SG
696#endif
697
7aeb09f9 698static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 699{
4c21e2f2 700 set_page_private(page, order);
676165a8 701 __SetPageBuddy(page);
1da177e4
LT
702}
703
704static inline void rmv_page_order(struct page *page)
705{
676165a8 706 __ClearPageBuddy(page);
4c21e2f2 707 set_page_private(page, 0);
1da177e4
LT
708}
709
1da177e4
LT
710/*
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
13e7444b 713 * (a) the buddy is not in a hole &&
676165a8 714 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
676165a8 717 *
cf6fe945
WSH
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
1da177e4 722 *
676165a8 723 * For recording page's order, we use page_private(page).
1da177e4 724 */
cb2b95e1 725static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 726 unsigned int order)
1da177e4 727{
14e07298 728 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 729 return 0;
13e7444b 730
c0a32fc5 731 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 if (page_zone_id(page) != page_zone_id(buddy))
733 return 0;
734
4c5018ce
WY
735 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736
c0a32fc5
SG
737 return 1;
738 }
739
cb2b95e1 740 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
741 /*
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
744 * never merge.
745 */
746 if (page_zone_id(page) != page_zone_id(buddy))
747 return 0;
748
4c5018ce
WY
749 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750
6aa3001b 751 return 1;
676165a8 752 }
6aa3001b 753 return 0;
1da177e4
LT
754}
755
756/*
757 * Freeing function for a buddy system allocator.
758 *
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771 * field.
1da177e4 772 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
1da177e4 775 * If a block is freed, and its buddy is also free, then this
5f63b720 776 * triggers coalescing into a block of larger size.
1da177e4 777 *
6d49e352 778 * -- nyc
1da177e4
LT
779 */
780
48db57f8 781static inline void __free_one_page(struct page *page,
dc4b0caf 782 unsigned long pfn,
ed0ae21d
MG
783 struct zone *zone, unsigned int order,
784 int migratetype)
1da177e4
LT
785{
786 unsigned long page_idx;
6dda9d55 787 unsigned long combined_idx;
43506fad 788 unsigned long uninitialized_var(buddy_idx);
6dda9d55 789 struct page *buddy;
d9dddbf5
VB
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 793
d29bb978 794 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 796
ed0ae21d 797 VM_BUG_ON(migratetype == -1);
d9dddbf5 798 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 800
d9dddbf5 801 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 802
309381fe
SL
803 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 805
d9dddbf5 806continue_merging:
3c605096 807 while (order < max_order - 1) {
43506fad
KC
808 buddy_idx = __find_buddy_index(page_idx, order);
809 buddy = page + (buddy_idx - page_idx);
cb2b95e1 810 if (!page_is_buddy(page, buddy, order))
d9dddbf5 811 goto done_merging;
c0a32fc5
SG
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy)) {
2847cf95 817 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
818 } else {
819 list_del(&buddy->lru);
820 zone->free_area[order].nr_free--;
821 rmv_page_order(buddy);
822 }
43506fad 823 combined_idx = buddy_idx & page_idx;
1da177e4
LT
824 page = page + (combined_idx - page_idx);
825 page_idx = combined_idx;
826 order++;
827 }
d9dddbf5
VB
828 if (max_order < MAX_ORDER) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
833 *
834 * We don't want to hit this code for the more frequent
835 * low-order merging.
836 */
837 if (unlikely(has_isolate_pageblock(zone))) {
838 int buddy_mt;
839
840 buddy_idx = __find_buddy_index(page_idx, order);
841 buddy = page + (buddy_idx - page_idx);
842 buddy_mt = get_pageblock_migratetype(buddy);
843
844 if (migratetype != buddy_mt
845 && (is_migrate_isolate(migratetype) ||
846 is_migrate_isolate(buddy_mt)))
847 goto done_merging;
848 }
849 max_order++;
850 goto continue_merging;
851 }
852
853done_merging:
1da177e4 854 set_page_order(page, order);
6dda9d55
CZ
855
856 /*
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
863 */
b7f50cfa 864 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 865 struct page *higher_page, *higher_buddy;
43506fad
KC
866 combined_idx = buddy_idx & page_idx;
867 higher_page = page + (combined_idx - page_idx);
868 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 869 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
870 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 list_add_tail(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 goto out;
874 }
875 }
876
877 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878out:
1da177e4
LT
879 zone->free_area[order].nr_free++;
880}
881
7bfec6f4
MG
882/*
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
886 */
887static inline bool page_expected_state(struct page *page,
888 unsigned long check_flags)
889{
890 if (unlikely(atomic_read(&page->_mapcount) != -1))
891 return false;
892
893 if (unlikely((unsigned long)page->mapping |
894 page_ref_count(page) |
895#ifdef CONFIG_MEMCG
896 (unsigned long)page->mem_cgroup |
897#endif
898 (page->flags & check_flags)))
899 return false;
900
901 return true;
902}
903
bb552ac6 904static void free_pages_check_bad(struct page *page)
1da177e4 905{
7bfec6f4
MG
906 const char *bad_reason;
907 unsigned long bad_flags;
908
7bfec6f4
MG
909 bad_reason = NULL;
910 bad_flags = 0;
f0b791a3 911
53f9263b 912 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
913 bad_reason = "nonzero mapcount";
914 if (unlikely(page->mapping != NULL))
915 bad_reason = "non-NULL mapping";
fe896d18 916 if (unlikely(page_ref_count(page) != 0))
0139aa7b 917 bad_reason = "nonzero _refcount";
f0b791a3
DH
918 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 }
9edad6ea
JW
922#ifdef CONFIG_MEMCG
923 if (unlikely(page->mem_cgroup))
924 bad_reason = "page still charged to cgroup";
925#endif
7bfec6f4 926 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
927}
928
929static inline int free_pages_check(struct page *page)
930{
da838d4f 931 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 932 return 0;
bb552ac6
MG
933
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page);
7bfec6f4 936 return 1;
1da177e4
LT
937}
938
4db7548c
MG
939static int free_tail_pages_check(struct page *head_page, struct page *page)
940{
941 int ret = 1;
942
943 /*
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 */
947 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948
949 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 ret = 0;
951 goto out;
952 }
953 switch (page - head_page) {
954 case 1:
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page))) {
957 bad_page(page, "nonzero compound_mapcount", 0);
958 goto out;
959 }
960 break;
961 case 2:
962 /*
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
965 */
966 break;
967 default:
968 if (page->mapping != TAIL_MAPPING) {
969 bad_page(page, "corrupted mapping in tail page", 0);
970 goto out;
971 }
972 break;
973 }
974 if (unlikely(!PageTail(page))) {
975 bad_page(page, "PageTail not set", 0);
976 goto out;
977 }
978 if (unlikely(compound_head(page) != head_page)) {
979 bad_page(page, "compound_head not consistent", 0);
980 goto out;
981 }
982 ret = 0;
983out:
984 page->mapping = NULL;
985 clear_compound_head(page);
986 return ret;
987}
988
e2769dbd
MG
989static __always_inline bool free_pages_prepare(struct page *page,
990 unsigned int order, bool check_free)
4db7548c 991{
e2769dbd 992 int bad = 0;
4db7548c 993
4db7548c
MG
994 VM_BUG_ON_PAGE(PageTail(page), page);
995
e2769dbd
MG
996 trace_mm_page_free(page, order);
997 kmemcheck_free_shadow(page, order);
e2769dbd
MG
998
999 /*
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1002 */
1003 if (unlikely(order)) {
1004 bool compound = PageCompound(page);
1005 int i;
1006
1007 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1008
e2769dbd
MG
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
4db7548c
MG
1019 if (PageAnonHead(page))
1020 page->mapping = NULL;
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
1da177e4 1066/*
5f8dcc21 1067 * Frees a number of pages from the PCP lists
1da177e4 1068 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1069 * count is the number of pages to free.
1da177e4
LT
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
5f8dcc21
MG
1077static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1da177e4 1079{
5f8dcc21 1080 int migratetype = 0;
a6f9edd6 1081 int batch_free = 0;
0d5d823a 1082 unsigned long nr_scanned;
3777999d 1083 bool isolated_pageblocks;
5f8dcc21 1084
c54ad30c 1085 spin_lock(&zone->lock);
3777999d 1086 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1087 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 if (nr_scanned)
1089 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1090
e5b31ac2 1091 while (count) {
48db57f8 1092 struct page *page;
5f8dcc21
MG
1093 struct list_head *list;
1094
1095 /*
a6f9edd6
MG
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
5f8dcc21
MG
1101 */
1102 do {
a6f9edd6 1103 batch_free++;
5f8dcc21
MG
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
48db57f8 1108
1d16871d
NK
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1111 batch_free = count;
1d16871d 1112
a6f9edd6 1113 do {
770c8aaa
BZ
1114 int mt; /* migratetype of the to-be-freed page */
1115
a16601c5 1116 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
aa016d14 1119
bb14c2c7 1120 mt = get_pcppage_migratetype(page);
aa016d14
VB
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
3777999d 1124 if (unlikely(isolated_pageblocks))
51bb1a40 1125 mt = get_pageblock_migratetype(page);
51bb1a40 1126
4db7548c
MG
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
dc4b0caf 1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1131 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1132 } while (--count && --batch_free && !list_empty(list));
1da177e4 1133 }
c54ad30c 1134 spin_unlock(&zone->lock);
1da177e4
LT
1135}
1136
dc4b0caf
MG
1137static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
7aeb09f9 1139 unsigned int order,
ed0ae21d 1140 int migratetype)
1da177e4 1141{
0d5d823a 1142 unsigned long nr_scanned;
006d22d9 1143 spin_lock(&zone->lock);
0d5d823a
MG
1144 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 if (nr_scanned)
1146 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1147
ad53f92e
JK
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1151 }
dc4b0caf 1152 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1153 spin_unlock(&zone->lock);
48db57f8
NP
1154}
1155
1e8ce83c
RH
1156static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158{
1e8ce83c 1159 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1e8ce83c 1163
1e8ce83c
RH
1164 INIT_LIST_HEAD(&page->lru);
1165#ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169#endif
1170}
1171
1172static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174{
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176}
1177
7e18adb4
MG
1178#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179static void init_reserved_page(unsigned long pfn)
1180{
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197}
1198#else
1199static inline void init_reserved_page(unsigned long pfn)
1200{
1201}
1202#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
92923ca3
NZ
1204/*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
4b50bcc7 1210void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1211{
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
7e18adb4
MG
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1d798ca3
KS
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
7e18adb4
MG
1224 SetPageReserved(page);
1225 }
1226 }
92923ca3
NZ
1227}
1228
ec95f53a
KM
1229static void __free_pages_ok(struct page *page, unsigned int order)
1230{
1231 unsigned long flags;
95e34412 1232 int migratetype;
dc4b0caf 1233 unsigned long pfn = page_to_pfn(page);
ec95f53a 1234
e2769dbd 1235 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1236 return;
1237
cfc47a28 1238 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1239 local_irq_save(flags);
f8891e5e 1240 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1242 local_irq_restore(flags);
1da177e4
LT
1243}
1244
949698a3 1245static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1246{
c3993076 1247 unsigned int nr_pages = 1 << order;
e2d0bd2b 1248 struct page *p = page;
c3993076 1249 unsigned int loop;
a226f6c8 1250
e2d0bd2b
YL
1251 prefetchw(p);
1252 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 prefetchw(p + 1);
c3993076
JW
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
a226f6c8 1256 }
e2d0bd2b
YL
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
c3993076 1259
e2d0bd2b 1260 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1261 set_page_refcounted(page);
1262 __free_pages(page, order);
a226f6c8
DH
1263}
1264
75a592a4
MG
1265#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1267
75a592a4
MG
1268static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269
1270int __meminit early_pfn_to_nid(unsigned long pfn)
1271{
7ace9917 1272 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1273 int nid;
1274
7ace9917 1275 spin_lock(&early_pfn_lock);
75a592a4 1276 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1277 if (nid < 0)
e4568d38 1278 nid = first_online_node;
7ace9917
MG
1279 spin_unlock(&early_pfn_lock);
1280
1281 return nid;
75a592a4
MG
1282}
1283#endif
1284
1285#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 struct mminit_pfnnid_cache *state)
1288{
1289 int nid;
1290
1291 nid = __early_pfn_to_nid(pfn, state);
1292 if (nid >= 0 && nid != node)
1293 return false;
1294 return true;
1295}
1296
1297/* Only safe to use early in boot when initialisation is single-threaded */
1298static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299{
1300 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301}
1302
1303#else
1304
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return true;
1308}
1309static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 return true;
1313}
1314#endif
1315
1316
0e1cc95b 1317void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1318 unsigned int order)
1319{
1320 if (early_page_uninitialised(pfn))
1321 return;
949698a3 1322 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1323}
1324
7cf91a98
JK
1325/*
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1330 * pageblocks.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 */
1342struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 unsigned long end_pfn, struct zone *zone)
1344{
1345 struct page *start_page;
1346 struct page *end_page;
1347
1348 /* end_pfn is one past the range we are checking */
1349 end_pfn--;
1350
1351 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 return NULL;
1353
1354 start_page = pfn_to_page(start_pfn);
1355
1356 if (page_zone(start_page) != zone)
1357 return NULL;
1358
1359 end_page = pfn_to_page(end_pfn);
1360
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 return NULL;
1364
1365 return start_page;
1366}
1367
1368void set_zone_contiguous(struct zone *zone)
1369{
1370 unsigned long block_start_pfn = zone->zone_start_pfn;
1371 unsigned long block_end_pfn;
1372
1373 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 for (; block_start_pfn < zone_end_pfn(zone);
1375 block_start_pfn = block_end_pfn,
1376 block_end_pfn += pageblock_nr_pages) {
1377
1378 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379
1380 if (!__pageblock_pfn_to_page(block_start_pfn,
1381 block_end_pfn, zone))
1382 return;
1383 }
1384
1385 /* We confirm that there is no hole */
1386 zone->contiguous = true;
1387}
1388
1389void clear_zone_contiguous(struct zone *zone)
1390{
1391 zone->contiguous = false;
1392}
1393
7e18adb4 1394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1395static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1396 unsigned long pfn, int nr_pages)
1397{
1398 int i;
1399
1400 if (!page)
1401 return;
1402
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1407 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1408 return;
1409 }
1410
949698a3
LZ
1411 for (i = 0; i < nr_pages; i++, page++)
1412 __free_pages_boot_core(page, 0);
a4de83dd
MG
1413}
1414
d3cd131d
NS
1415/* Completion tracking for deferred_init_memmap() threads */
1416static atomic_t pgdat_init_n_undone __initdata;
1417static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419static inline void __init pgdat_init_report_one_done(void)
1420{
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423}
0e1cc95b 1424
7e18adb4 1425/* Initialise remaining memory on a node */
0e1cc95b 1426static int __init deferred_init_memmap(void *data)
7e18adb4 1427{
0e1cc95b
MG
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
7e18adb4
MG
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
7e18adb4 1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1438
0e1cc95b 1439 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1440 pgdat_init_report_one_done();
0e1cc95b
MG
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
54608c3f 1462 struct page *page = NULL;
a4de83dd
MG
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
7e18adb4
MG
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
54608c3f 1475 if (!pfn_valid_within(pfn))
a4de83dd 1476 goto free_range;
7e18adb4 1477
54608c3f
MG
1478 /*
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1481 */
1482 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 page++;
1497 } else {
a4de83dd
MG
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
54608c3f
MG
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
7e18adb4
MG
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1510 goto free_range;
7e18adb4
MG
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
7e18adb4 1530 }
a4de83dd 1531
7e18adb4
MG
1532 first_init_pfn = max(end_pfn, first_init_pfn);
1533 }
1534
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537
0e1cc95b 1538 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1539 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1540
1541 pgdat_init_report_one_done();
0e1cc95b
MG
1542 return 0;
1543}
7cf91a98 1544#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1545
1546void __init page_alloc_init_late(void)
1547{
7cf91a98
JK
1548 struct zone *zone;
1549
1550#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1551 int nid;
1552
d3cd131d
NS
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1555 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1556 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 }
1558
1559 /* Block until all are initialised */
d3cd131d 1560 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1561
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
7cf91a98
JK
1564#endif
1565
1566 for_each_populated_zone(zone)
1567 set_zone_contiguous(zone);
7e18adb4 1568}
7e18adb4 1569
47118af0 1570#ifdef CONFIG_CMA
9cf510a5 1571/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1572void __init init_cma_reserved_pageblock(struct page *page)
1573{
1574 unsigned i = pageblock_nr_pages;
1575 struct page *p = page;
1576
1577 do {
1578 __ClearPageReserved(p);
1579 set_page_count(p, 0);
1580 } while (++p, --i);
1581
47118af0 1582 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1583
1584 if (pageblock_order >= MAX_ORDER) {
1585 i = pageblock_nr_pages;
1586 p = page;
1587 do {
1588 set_page_refcounted(p);
1589 __free_pages(p, MAX_ORDER - 1);
1590 p += MAX_ORDER_NR_PAGES;
1591 } while (i -= MAX_ORDER_NR_PAGES);
1592 } else {
1593 set_page_refcounted(page);
1594 __free_pages(page, pageblock_order);
1595 }
1596
3dcc0571 1597 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1598}
1599#endif
1da177e4
LT
1600
1601/*
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1612 *
6d49e352 1613 * -- nyc
1da177e4 1614 */
085cc7d5 1615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1616 int low, int high, struct free_area *area,
1617 int migratetype)
1da177e4
LT
1618{
1619 unsigned long size = 1 << high;
1620
1621 while (high > low) {
1622 area--;
1623 high--;
1624 size >>= 1;
309381fe 1625 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1626
2847cf95 1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1628 debug_guardpage_enabled() &&
2847cf95 1629 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
2847cf95 1636 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1637 continue;
1638 }
b2a0ac88 1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1da177e4
LT
1643}
1644
4e611801 1645static void check_new_page_bad(struct page *page)
1da177e4 1646{
4e611801
VB
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
7bfec6f4 1649
53f9263b 1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
fe896d18 1654 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1655 bad_reason = "nonzero _count";
f4c18e6f
NH
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
e570f56c
NH
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
f4c18e6f 1662 }
f0b791a3
DH
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
9edad6ea
JW
1667#ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670#endif
4e611801
VB
1671 bad_page(page, bad_reason, bad_flags);
1672}
1673
1674/*
1675 * This page is about to be returned from the page allocator
1676 */
1677static inline int check_new_page(struct page *page)
1678{
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
2a7684a2
WF
1685}
1686
1414c7f4
LA
1687static inline bool free_pages_prezeroed(bool poisoned)
1688{
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691}
1692
479f854a
MG
1693#ifdef CONFIG_DEBUG_VM
1694static bool check_pcp_refill(struct page *page)
1695{
1696 return false;
1697}
1698
1699static bool check_new_pcp(struct page *page)
1700{
1701 return check_new_page(page);
1702}
1703#else
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708static bool check_new_pcp(struct page *page)
1709{
1710 return false;
1711}
1712#endif /* CONFIG_DEBUG_VM */
1713
1714static bool check_new_pages(struct page *page, unsigned int order)
1715{
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726
1727static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1728 unsigned int alloc_flags)
2a7684a2
WF
1729{
1730 int i;
1414c7f4 1731 bool poisoned = true;
2a7684a2
WF
1732
1733 for (i = 0; i < (1 << order); i++) {
1734 struct page *p = page + i;
1414c7f4
LA
1735 if (poisoned)
1736 poisoned &= page_is_poisoned(p);
2a7684a2 1737 }
689bcebf 1738
4c21e2f2 1739 set_page_private(page, 0);
7835e98b 1740 set_page_refcounted(page);
cc102509
NP
1741
1742 arch_alloc_page(page, order);
1da177e4 1743 kernel_map_pages(page, 1 << order, 1);
8823b1db 1744 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1745 kasan_alloc_pages(page, order);
17cf4406 1746
1414c7f4 1747 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1748 for (i = 0; i < (1 << order); i++)
1749 clear_highpage(page + i);
17cf4406
NP
1750
1751 if (order && (gfp_flags & __GFP_COMP))
1752 prep_compound_page(page, order);
1753
48c96a36
JK
1754 set_page_owner(page, order, gfp_flags);
1755
75379191 1756 /*
2f064f34 1757 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1758 * allocate the page. The expectation is that the caller is taking
1759 * steps that will free more memory. The caller should avoid the page
1760 * being used for !PFMEMALLOC purposes.
1761 */
2f064f34
MH
1762 if (alloc_flags & ALLOC_NO_WATERMARKS)
1763 set_page_pfmemalloc(page);
1764 else
1765 clear_page_pfmemalloc(page);
1da177e4
LT
1766}
1767
56fd56b8
MG
1768/*
1769 * Go through the free lists for the given migratetype and remove
1770 * the smallest available page from the freelists
1771 */
728ec980
MG
1772static inline
1773struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1774 int migratetype)
1775{
1776 unsigned int current_order;
b8af2941 1777 struct free_area *area;
56fd56b8
MG
1778 struct page *page;
1779
1780 /* Find a page of the appropriate size in the preferred list */
1781 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1782 area = &(zone->free_area[current_order]);
a16601c5 1783 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1784 struct page, lru);
a16601c5
GT
1785 if (!page)
1786 continue;
56fd56b8
MG
1787 list_del(&page->lru);
1788 rmv_page_order(page);
1789 area->nr_free--;
56fd56b8 1790 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1791 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1792 return page;
1793 }
1794
1795 return NULL;
1796}
1797
1798
b2a0ac88
MG
1799/*
1800 * This array describes the order lists are fallen back to when
1801 * the free lists for the desirable migrate type are depleted
1802 */
47118af0 1803static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1804 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1807#ifdef CONFIG_CMA
974a786e 1808 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1809#endif
194159fb 1810#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1811 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1812#endif
b2a0ac88
MG
1813};
1814
dc67647b
JK
1815#ifdef CONFIG_CMA
1816static struct page *__rmqueue_cma_fallback(struct zone *zone,
1817 unsigned int order)
1818{
1819 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1820}
1821#else
1822static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 unsigned int order) { return NULL; }
1824#endif
1825
c361be55
MG
1826/*
1827 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1828 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1829 * boundary. If alignment is required, use move_freepages_block()
1830 */
435b405c 1831int move_freepages(struct zone *zone,
b69a7288
AB
1832 struct page *start_page, struct page *end_page,
1833 int migratetype)
c361be55
MG
1834{
1835 struct page *page;
d00181b9 1836 unsigned int order;
d100313f 1837 int pages_moved = 0;
c361be55
MG
1838
1839#ifndef CONFIG_HOLES_IN_ZONE
1840 /*
1841 * page_zone is not safe to call in this context when
1842 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 * anyway as we check zone boundaries in move_freepages_block().
1844 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1845 * grouping pages by mobility
c361be55 1846 */
97ee4ba7 1847 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1848#endif
1849
1850 for (page = start_page; page <= end_page;) {
344c790e 1851 /* Make sure we are not inadvertently changing nodes */
309381fe 1852 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1853
c361be55
MG
1854 if (!pfn_valid_within(page_to_pfn(page))) {
1855 page++;
1856 continue;
1857 }
1858
1859 if (!PageBuddy(page)) {
1860 page++;
1861 continue;
1862 }
1863
1864 order = page_order(page);
84be48d8
KS
1865 list_move(&page->lru,
1866 &zone->free_area[order].free_list[migratetype]);
c361be55 1867 page += 1 << order;
d100313f 1868 pages_moved += 1 << order;
c361be55
MG
1869 }
1870
d100313f 1871 return pages_moved;
c361be55
MG
1872}
1873
ee6f509c 1874int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1875 int migratetype)
c361be55
MG
1876{
1877 unsigned long start_pfn, end_pfn;
1878 struct page *start_page, *end_page;
1879
1880 start_pfn = page_to_pfn(page);
d9c23400 1881 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1882 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1883 end_page = start_page + pageblock_nr_pages - 1;
1884 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1885
1886 /* Do not cross zone boundaries */
108bcc96 1887 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1888 start_page = page;
108bcc96 1889 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1890 return 0;
1891
1892 return move_freepages(zone, start_page, end_page, migratetype);
1893}
1894
2f66a68f
MG
1895static void change_pageblock_range(struct page *pageblock_page,
1896 int start_order, int migratetype)
1897{
1898 int nr_pageblocks = 1 << (start_order - pageblock_order);
1899
1900 while (nr_pageblocks--) {
1901 set_pageblock_migratetype(pageblock_page, migratetype);
1902 pageblock_page += pageblock_nr_pages;
1903 }
1904}
1905
fef903ef 1906/*
9c0415eb
VB
1907 * When we are falling back to another migratetype during allocation, try to
1908 * steal extra free pages from the same pageblocks to satisfy further
1909 * allocations, instead of polluting multiple pageblocks.
1910 *
1911 * If we are stealing a relatively large buddy page, it is likely there will
1912 * be more free pages in the pageblock, so try to steal them all. For
1913 * reclaimable and unmovable allocations, we steal regardless of page size,
1914 * as fragmentation caused by those allocations polluting movable pageblocks
1915 * is worse than movable allocations stealing from unmovable and reclaimable
1916 * pageblocks.
fef903ef 1917 */
4eb7dce6
JK
1918static bool can_steal_fallback(unsigned int order, int start_mt)
1919{
1920 /*
1921 * Leaving this order check is intended, although there is
1922 * relaxed order check in next check. The reason is that
1923 * we can actually steal whole pageblock if this condition met,
1924 * but, below check doesn't guarantee it and that is just heuristic
1925 * so could be changed anytime.
1926 */
1927 if (order >= pageblock_order)
1928 return true;
1929
1930 if (order >= pageblock_order / 2 ||
1931 start_mt == MIGRATE_RECLAIMABLE ||
1932 start_mt == MIGRATE_UNMOVABLE ||
1933 page_group_by_mobility_disabled)
1934 return true;
1935
1936 return false;
1937}
1938
1939/*
1940 * This function implements actual steal behaviour. If order is large enough,
1941 * we can steal whole pageblock. If not, we first move freepages in this
1942 * pageblock and check whether half of pages are moved or not. If half of
1943 * pages are moved, we can change migratetype of pageblock and permanently
1944 * use it's pages as requested migratetype in the future.
1945 */
1946static void steal_suitable_fallback(struct zone *zone, struct page *page,
1947 int start_type)
fef903ef 1948{
d00181b9 1949 unsigned int current_order = page_order(page);
4eb7dce6 1950 int pages;
fef903ef 1951
fef903ef
SB
1952 /* Take ownership for orders >= pageblock_order */
1953 if (current_order >= pageblock_order) {
1954 change_pageblock_range(page, current_order, start_type);
3a1086fb 1955 return;
fef903ef
SB
1956 }
1957
4eb7dce6 1958 pages = move_freepages_block(zone, page, start_type);
fef903ef 1959
4eb7dce6
JK
1960 /* Claim the whole block if over half of it is free */
1961 if (pages >= (1 << (pageblock_order-1)) ||
1962 page_group_by_mobility_disabled)
1963 set_pageblock_migratetype(page, start_type);
1964}
1965
2149cdae
JK
1966/*
1967 * Check whether there is a suitable fallback freepage with requested order.
1968 * If only_stealable is true, this function returns fallback_mt only if
1969 * we can steal other freepages all together. This would help to reduce
1970 * fragmentation due to mixed migratetype pages in one pageblock.
1971 */
1972int find_suitable_fallback(struct free_area *area, unsigned int order,
1973 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1974{
1975 int i;
1976 int fallback_mt;
1977
1978 if (area->nr_free == 0)
1979 return -1;
1980
1981 *can_steal = false;
1982 for (i = 0;; i++) {
1983 fallback_mt = fallbacks[migratetype][i];
974a786e 1984 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1985 break;
1986
1987 if (list_empty(&area->free_list[fallback_mt]))
1988 continue;
fef903ef 1989
4eb7dce6
JK
1990 if (can_steal_fallback(order, migratetype))
1991 *can_steal = true;
1992
2149cdae
JK
1993 if (!only_stealable)
1994 return fallback_mt;
1995
1996 if (*can_steal)
1997 return fallback_mt;
fef903ef 1998 }
4eb7dce6
JK
1999
2000 return -1;
fef903ef
SB
2001}
2002
0aaa29a5
MG
2003/*
2004 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005 * there are no empty page blocks that contain a page with a suitable order
2006 */
2007static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2008 unsigned int alloc_order)
2009{
2010 int mt;
2011 unsigned long max_managed, flags;
2012
2013 /*
2014 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 * Check is race-prone but harmless.
2016 */
2017 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2018 if (zone->nr_reserved_highatomic >= max_managed)
2019 return;
2020
2021 spin_lock_irqsave(&zone->lock, flags);
2022
2023 /* Recheck the nr_reserved_highatomic limit under the lock */
2024 if (zone->nr_reserved_highatomic >= max_managed)
2025 goto out_unlock;
2026
2027 /* Yoink! */
2028 mt = get_pageblock_migratetype(page);
2029 if (mt != MIGRATE_HIGHATOMIC &&
2030 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2031 zone->nr_reserved_highatomic += pageblock_nr_pages;
2032 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2033 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 }
2035
2036out_unlock:
2037 spin_unlock_irqrestore(&zone->lock, flags);
2038}
2039
2040/*
2041 * Used when an allocation is about to fail under memory pressure. This
2042 * potentially hurts the reliability of high-order allocations when under
2043 * intense memory pressure but failed atomic allocations should be easier
2044 * to recover from than an OOM.
2045 */
2046static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2047{
2048 struct zonelist *zonelist = ac->zonelist;
2049 unsigned long flags;
2050 struct zoneref *z;
2051 struct zone *zone;
2052 struct page *page;
2053 int order;
2054
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
2057 /* Preserve at least one pageblock */
2058 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2059 continue;
2060
2061 spin_lock_irqsave(&zone->lock, flags);
2062 for (order = 0; order < MAX_ORDER; order++) {
2063 struct free_area *area = &(zone->free_area[order]);
2064
a16601c5
GT
2065 page = list_first_entry_or_null(
2066 &area->free_list[MIGRATE_HIGHATOMIC],
2067 struct page, lru);
2068 if (!page)
0aaa29a5
MG
2069 continue;
2070
0aaa29a5
MG
2071 /*
2072 * It should never happen but changes to locking could
2073 * inadvertently allow a per-cpu drain to add pages
2074 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 * and watch for underflows.
2076 */
2077 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2078 zone->nr_reserved_highatomic);
2079
2080 /*
2081 * Convert to ac->migratetype and avoid the normal
2082 * pageblock stealing heuristics. Minimally, the caller
2083 * is doing the work and needs the pages. More
2084 * importantly, if the block was always converted to
2085 * MIGRATE_UNMOVABLE or another type then the number
2086 * of pageblocks that cannot be completely freed
2087 * may increase.
2088 */
2089 set_pageblock_migratetype(page, ac->migratetype);
2090 move_freepages_block(zone, page, ac->migratetype);
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 return;
2093 }
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 }
2096}
2097
b2a0ac88 2098/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2099static inline struct page *
7aeb09f9 2100__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2101{
b8af2941 2102 struct free_area *area;
7aeb09f9 2103 unsigned int current_order;
b2a0ac88 2104 struct page *page;
4eb7dce6
JK
2105 int fallback_mt;
2106 bool can_steal;
b2a0ac88
MG
2107
2108 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2109 for (current_order = MAX_ORDER-1;
2110 current_order >= order && current_order <= MAX_ORDER-1;
2111 --current_order) {
4eb7dce6
JK
2112 area = &(zone->free_area[current_order]);
2113 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2114 start_migratetype, false, &can_steal);
4eb7dce6
JK
2115 if (fallback_mt == -1)
2116 continue;
b2a0ac88 2117
a16601c5 2118 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2119 struct page, lru);
2120 if (can_steal)
2121 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2122
4eb7dce6
JK
2123 /* Remove the page from the freelists */
2124 area->nr_free--;
2125 list_del(&page->lru);
2126 rmv_page_order(page);
3a1086fb 2127
4eb7dce6
JK
2128 expand(zone, page, order, current_order, area,
2129 start_migratetype);
2130 /*
bb14c2c7 2131 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2132 * migratetype depending on the decisions in
bb14c2c7
VB
2133 * find_suitable_fallback(). This is OK as long as it does not
2134 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2136 */
bb14c2c7 2137 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2138
4eb7dce6
JK
2139 trace_mm_page_alloc_extfrag(page, order, current_order,
2140 start_migratetype, fallback_mt);
e0fff1bd 2141
4eb7dce6 2142 return page;
b2a0ac88
MG
2143 }
2144
728ec980 2145 return NULL;
b2a0ac88
MG
2146}
2147
56fd56b8 2148/*
1da177e4
LT
2149 * Do the hard work of removing an element from the buddy allocator.
2150 * Call me with the zone->lock already held.
2151 */
b2a0ac88 2152static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2153 int migratetype)
1da177e4 2154{
1da177e4
LT
2155 struct page *page;
2156
56fd56b8 2157 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2158 if (unlikely(!page)) {
dc67647b
JK
2159 if (migratetype == MIGRATE_MOVABLE)
2160 page = __rmqueue_cma_fallback(zone, order);
2161
2162 if (!page)
2163 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2164 }
2165
0d3d062a 2166 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2167 return page;
1da177e4
LT
2168}
2169
5f63b720 2170/*
1da177e4
LT
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2174 */
5f63b720 2175static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2176 unsigned long count, struct list_head *list,
b745bc85 2177 int migratetype, bool cold)
1da177e4 2178{
5bcc9f86 2179 int i;
5f63b720 2180
c54ad30c 2181 spin_lock(&zone->lock);
1da177e4 2182 for (i = 0; i < count; ++i) {
6ac0206b 2183 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2184 if (unlikely(page == NULL))
1da177e4 2185 break;
81eabcbe 2186
479f854a
MG
2187 if (unlikely(check_pcp_refill(page)))
2188 continue;
2189
81eabcbe
MG
2190 /*
2191 * Split buddy pages returned by expand() are received here
2192 * in physical page order. The page is added to the callers and
2193 * list and the list head then moves forward. From the callers
2194 * perspective, the linked list is ordered by page number in
2195 * some conditions. This is useful for IO devices that can
2196 * merge IO requests if the physical pages are ordered
2197 * properly.
2198 */
b745bc85 2199 if (likely(!cold))
e084b2d9
MG
2200 list_add(&page->lru, list);
2201 else
2202 list_add_tail(&page->lru, list);
81eabcbe 2203 list = &page->lru;
bb14c2c7 2204 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2205 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2206 -(1 << order));
1da177e4 2207 }
f2260e6b 2208 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2209 spin_unlock(&zone->lock);
085cc7d5 2210 return i;
1da177e4
LT
2211}
2212
4ae7c039 2213#ifdef CONFIG_NUMA
8fce4d8e 2214/*
4037d452
CL
2215 * Called from the vmstat counter updater to drain pagesets of this
2216 * currently executing processor on remote nodes after they have
2217 * expired.
2218 *
879336c3
CL
2219 * Note that this function must be called with the thread pinned to
2220 * a single processor.
8fce4d8e 2221 */
4037d452 2222void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2223{
4ae7c039 2224 unsigned long flags;
7be12fc9 2225 int to_drain, batch;
4ae7c039 2226
4037d452 2227 local_irq_save(flags);
4db0c3c2 2228 batch = READ_ONCE(pcp->batch);
7be12fc9 2229 to_drain = min(pcp->count, batch);
2a13515c
KM
2230 if (to_drain > 0) {
2231 free_pcppages_bulk(zone, to_drain, pcp);
2232 pcp->count -= to_drain;
2233 }
4037d452 2234 local_irq_restore(flags);
4ae7c039
CL
2235}
2236#endif
2237
9f8f2172 2238/*
93481ff0 2239 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2240 *
2241 * The processor must either be the current processor and the
2242 * thread pinned to the current processor or a processor that
2243 * is not online.
2244 */
93481ff0 2245static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2246{
c54ad30c 2247 unsigned long flags;
93481ff0
VB
2248 struct per_cpu_pageset *pset;
2249 struct per_cpu_pages *pcp;
1da177e4 2250
93481ff0
VB
2251 local_irq_save(flags);
2252 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2253
93481ff0
VB
2254 pcp = &pset->pcp;
2255 if (pcp->count) {
2256 free_pcppages_bulk(zone, pcp->count, pcp);
2257 pcp->count = 0;
2258 }
2259 local_irq_restore(flags);
2260}
3dfa5721 2261
93481ff0
VB
2262/*
2263 * Drain pcplists of all zones on the indicated processor.
2264 *
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2267 * is not online.
2268 */
2269static void drain_pages(unsigned int cpu)
2270{
2271 struct zone *zone;
2272
2273 for_each_populated_zone(zone) {
2274 drain_pages_zone(cpu, zone);
1da177e4
LT
2275 }
2276}
1da177e4 2277
9f8f2172
CL
2278/*
2279 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2280 *
2281 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282 * the single zone's pages.
9f8f2172 2283 */
93481ff0 2284void drain_local_pages(struct zone *zone)
9f8f2172 2285{
93481ff0
VB
2286 int cpu = smp_processor_id();
2287
2288 if (zone)
2289 drain_pages_zone(cpu, zone);
2290 else
2291 drain_pages(cpu);
9f8f2172
CL
2292}
2293
2294/*
74046494
GBY
2295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2296 *
93481ff0
VB
2297 * When zone parameter is non-NULL, spill just the single zone's pages.
2298 *
74046494
GBY
2299 * Note that this code is protected against sending an IPI to an offline
2300 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302 * nothing keeps CPUs from showing up after we populated the cpumask and
2303 * before the call to on_each_cpu_mask().
9f8f2172 2304 */
93481ff0 2305void drain_all_pages(struct zone *zone)
9f8f2172 2306{
74046494 2307 int cpu;
74046494
GBY
2308
2309 /*
2310 * Allocate in the BSS so we wont require allocation in
2311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2312 */
2313 static cpumask_t cpus_with_pcps;
2314
2315 /*
2316 * We don't care about racing with CPU hotplug event
2317 * as offline notification will cause the notified
2318 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 * disables preemption as part of its processing
2320 */
2321 for_each_online_cpu(cpu) {
93481ff0
VB
2322 struct per_cpu_pageset *pcp;
2323 struct zone *z;
74046494 2324 bool has_pcps = false;
93481ff0
VB
2325
2326 if (zone) {
74046494 2327 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2328 if (pcp->pcp.count)
74046494 2329 has_pcps = true;
93481ff0
VB
2330 } else {
2331 for_each_populated_zone(z) {
2332 pcp = per_cpu_ptr(z->pageset, cpu);
2333 if (pcp->pcp.count) {
2334 has_pcps = true;
2335 break;
2336 }
74046494
GBY
2337 }
2338 }
93481ff0 2339
74046494
GBY
2340 if (has_pcps)
2341 cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 else
2343 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 }
93481ff0
VB
2345 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2346 zone, 1);
9f8f2172
CL
2347}
2348
296699de 2349#ifdef CONFIG_HIBERNATION
1da177e4
LT
2350
2351void mark_free_pages(struct zone *zone)
2352{
f623f0db
RW
2353 unsigned long pfn, max_zone_pfn;
2354 unsigned long flags;
7aeb09f9 2355 unsigned int order, t;
86760a2c 2356 struct page *page;
1da177e4 2357
8080fc03 2358 if (zone_is_empty(zone))
1da177e4
LT
2359 return;
2360
2361 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2362
108bcc96 2363 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2364 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2365 if (pfn_valid(pfn)) {
86760a2c 2366 page = pfn_to_page(pfn);
ba6b0979
JK
2367
2368 if (page_zone(page) != zone)
2369 continue;
2370
7be98234
RW
2371 if (!swsusp_page_is_forbidden(page))
2372 swsusp_unset_page_free(page);
f623f0db 2373 }
1da177e4 2374
b2a0ac88 2375 for_each_migratetype_order(order, t) {
86760a2c
GT
2376 list_for_each_entry(page,
2377 &zone->free_area[order].free_list[t], lru) {
f623f0db 2378 unsigned long i;
1da177e4 2379
86760a2c 2380 pfn = page_to_pfn(page);
f623f0db 2381 for (i = 0; i < (1UL << order); i++)
7be98234 2382 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2383 }
b2a0ac88 2384 }
1da177e4
LT
2385 spin_unlock_irqrestore(&zone->lock, flags);
2386}
e2c55dc8 2387#endif /* CONFIG_PM */
1da177e4 2388
1da177e4
LT
2389/*
2390 * Free a 0-order page
b745bc85 2391 * cold == true ? free a cold page : free a hot page
1da177e4 2392 */
b745bc85 2393void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2394{
2395 struct zone *zone = page_zone(page);
2396 struct per_cpu_pages *pcp;
2397 unsigned long flags;
dc4b0caf 2398 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2399 int migratetype;
1da177e4 2400
4db7548c 2401 if (!free_pcp_prepare(page))
689bcebf
HD
2402 return;
2403
dc4b0caf 2404 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2405 set_pcppage_migratetype(page, migratetype);
1da177e4 2406 local_irq_save(flags);
f8891e5e 2407 __count_vm_event(PGFREE);
da456f14 2408
5f8dcc21
MG
2409 /*
2410 * We only track unmovable, reclaimable and movable on pcp lists.
2411 * Free ISOLATE pages back to the allocator because they are being
2412 * offlined but treat RESERVE as movable pages so we can get those
2413 * areas back if necessary. Otherwise, we may have to free
2414 * excessively into the page allocator
2415 */
2416 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2417 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2418 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2419 goto out;
2420 }
2421 migratetype = MIGRATE_MOVABLE;
2422 }
2423
99dcc3e5 2424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2425 if (!cold)
5f8dcc21 2426 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2427 else
2428 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2429 pcp->count++;
48db57f8 2430 if (pcp->count >= pcp->high) {
4db0c3c2 2431 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2432 free_pcppages_bulk(zone, batch, pcp);
2433 pcp->count -= batch;
48db57f8 2434 }
5f8dcc21
MG
2435
2436out:
1da177e4 2437 local_irq_restore(flags);
1da177e4
LT
2438}
2439
cc59850e
KK
2440/*
2441 * Free a list of 0-order pages
2442 */
b745bc85 2443void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2444{
2445 struct page *page, *next;
2446
2447 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2448 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2449 free_hot_cold_page(page, cold);
2450 }
2451}
2452
8dfcc9ba
NP
2453/*
2454 * split_page takes a non-compound higher-order page, and splits it into
2455 * n (1<<order) sub-pages: page[0..n]
2456 * Each sub-page must be freed individually.
2457 *
2458 * Note: this is probably too low level an operation for use in drivers.
2459 * Please consult with lkml before using this in your driver.
2460 */
2461void split_page(struct page *page, unsigned int order)
2462{
2463 int i;
e2cfc911 2464 gfp_t gfp_mask;
8dfcc9ba 2465
309381fe
SL
2466 VM_BUG_ON_PAGE(PageCompound(page), page);
2467 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2468
2469#ifdef CONFIG_KMEMCHECK
2470 /*
2471 * Split shadow pages too, because free(page[0]) would
2472 * otherwise free the whole shadow.
2473 */
2474 if (kmemcheck_page_is_tracked(page))
2475 split_page(virt_to_page(page[0].shadow), order);
2476#endif
2477
e2cfc911
JK
2478 gfp_mask = get_page_owner_gfp(page);
2479 set_page_owner(page, 0, gfp_mask);
48c96a36 2480 for (i = 1; i < (1 << order); i++) {
7835e98b 2481 set_page_refcounted(page + i);
e2cfc911 2482 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2483 }
8dfcc9ba 2484}
5853ff23 2485EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2486
3c605096 2487int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2488{
748446bb
MG
2489 unsigned long watermark;
2490 struct zone *zone;
2139cbe6 2491 int mt;
748446bb
MG
2492
2493 BUG_ON(!PageBuddy(page));
2494
2495 zone = page_zone(page);
2e30abd1 2496 mt = get_pageblock_migratetype(page);
748446bb 2497
194159fb 2498 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2499 /* Obey watermarks as if the page was being allocated */
2500 watermark = low_wmark_pages(zone) + (1 << order);
2501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2502 return 0;
2503
8fb74b9f 2504 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2505 }
748446bb
MG
2506
2507 /* Remove page from free list */
2508 list_del(&page->lru);
2509 zone->free_area[order].nr_free--;
2510 rmv_page_order(page);
2139cbe6 2511
e2cfc911 2512 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2513
8fb74b9f 2514 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2515 if (order >= pageblock_order - 1) {
2516 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2517 for (; page < endpage; page += pageblock_nr_pages) {
2518 int mt = get_pageblock_migratetype(page);
194159fb 2519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2520 set_pageblock_migratetype(page,
2521 MIGRATE_MOVABLE);
2522 }
748446bb
MG
2523 }
2524
f3a14ced 2525
8fb74b9f 2526 return 1UL << order;
1fb3f8ca
MG
2527}
2528
2529/*
2530 * Similar to split_page except the page is already free. As this is only
2531 * being used for migration, the migratetype of the block also changes.
2532 * As this is called with interrupts disabled, the caller is responsible
2533 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2534 * are enabled.
2535 *
2536 * Note: this is probably too low level an operation for use in drivers.
2537 * Please consult with lkml before using this in your driver.
2538 */
2539int split_free_page(struct page *page)
2540{
2541 unsigned int order;
2542 int nr_pages;
2543
1fb3f8ca
MG
2544 order = page_order(page);
2545
8fb74b9f 2546 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2547 if (!nr_pages)
2548 return 0;
2549
2550 /* Split into individual pages */
2551 set_page_refcounted(page);
2552 split_page(page, order);
2553 return nr_pages;
748446bb
MG
2554}
2555
060e7417
MG
2556/*
2557 * Update NUMA hit/miss statistics
2558 *
2559 * Must be called with interrupts disabled.
2560 *
2561 * When __GFP_OTHER_NODE is set assume the node of the preferred
2562 * zone is the local node. This is useful for daemons who allocate
2563 * memory on behalf of other processes.
2564 */
2565static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2566 gfp_t flags)
2567{
2568#ifdef CONFIG_NUMA
2569 int local_nid = numa_node_id();
2570 enum zone_stat_item local_stat = NUMA_LOCAL;
2571
2572 if (unlikely(flags & __GFP_OTHER_NODE)) {
2573 local_stat = NUMA_OTHER;
2574 local_nid = preferred_zone->node;
2575 }
2576
2577 if (z->node == local_nid) {
2578 __inc_zone_state(z, NUMA_HIT);
2579 __inc_zone_state(z, local_stat);
2580 } else {
2581 __inc_zone_state(z, NUMA_MISS);
2582 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2583 }
2584#endif
2585}
2586
1da177e4 2587/*
75379191 2588 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2589 */
0a15c3e9
MG
2590static inline
2591struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2592 struct zone *zone, unsigned int order,
c603844b
MG
2593 gfp_t gfp_flags, unsigned int alloc_flags,
2594 int migratetype)
1da177e4
LT
2595{
2596 unsigned long flags;
689bcebf 2597 struct page *page;
b745bc85 2598 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2599
48db57f8 2600 if (likely(order == 0)) {
1da177e4 2601 struct per_cpu_pages *pcp;
5f8dcc21 2602 struct list_head *list;
1da177e4 2603
1da177e4 2604 local_irq_save(flags);
479f854a
MG
2605 do {
2606 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2607 list = &pcp->lists[migratetype];
2608 if (list_empty(list)) {
2609 pcp->count += rmqueue_bulk(zone, 0,
2610 pcp->batch, list,
2611 migratetype, cold);
2612 if (unlikely(list_empty(list)))
2613 goto failed;
2614 }
b92a6edd 2615
479f854a
MG
2616 if (cold)
2617 page = list_last_entry(list, struct page, lru);
2618 else
2619 page = list_first_entry(list, struct page, lru);
5f8dcc21 2620
83b9355b
VB
2621 __dec_zone_state(zone, NR_ALLOC_BATCH);
2622 list_del(&page->lru);
2623 pcp->count--;
2624
2625 } while (check_new_pcp(page));
7fb1d9fc 2626 } else {
0f352e53
MH
2627 /*
2628 * We most definitely don't want callers attempting to
2629 * allocate greater than order-1 page units with __GFP_NOFAIL.
2630 */
2631 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2632 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2633
479f854a
MG
2634 do {
2635 page = NULL;
2636 if (alloc_flags & ALLOC_HARDER) {
2637 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2638 if (page)
2639 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2640 }
2641 if (!page)
2642 page = __rmqueue(zone, order, migratetype);
2643 } while (page && check_new_pages(page, order));
a74609fa
NP
2644 spin_unlock(&zone->lock);
2645 if (!page)
2646 goto failed;
754078eb 2647 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2648 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2649 get_pcppage_migratetype(page));
1da177e4
LT
2650 }
2651
abe5f972 2652 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2653 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2654 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2655
f8891e5e 2656 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2657 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2658 local_irq_restore(flags);
1da177e4 2659
309381fe 2660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2661 return page;
a74609fa
NP
2662
2663failed:
2664 local_irq_restore(flags);
a74609fa 2665 return NULL;
1da177e4
LT
2666}
2667
933e312e
AM
2668#ifdef CONFIG_FAIL_PAGE_ALLOC
2669
b2588c4b 2670static struct {
933e312e
AM
2671 struct fault_attr attr;
2672
621a5f7a 2673 bool ignore_gfp_highmem;
71baba4b 2674 bool ignore_gfp_reclaim;
54114994 2675 u32 min_order;
933e312e
AM
2676} fail_page_alloc = {
2677 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2678 .ignore_gfp_reclaim = true,
621a5f7a 2679 .ignore_gfp_highmem = true,
54114994 2680 .min_order = 1,
933e312e
AM
2681};
2682
2683static int __init setup_fail_page_alloc(char *str)
2684{
2685 return setup_fault_attr(&fail_page_alloc.attr, str);
2686}
2687__setup("fail_page_alloc=", setup_fail_page_alloc);
2688
deaf386e 2689static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2690{
54114994 2691 if (order < fail_page_alloc.min_order)
deaf386e 2692 return false;
933e312e 2693 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2694 return false;
933e312e 2695 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2696 return false;
71baba4b
MG
2697 if (fail_page_alloc.ignore_gfp_reclaim &&
2698 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2699 return false;
933e312e
AM
2700
2701 return should_fail(&fail_page_alloc.attr, 1 << order);
2702}
2703
2704#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2705
2706static int __init fail_page_alloc_debugfs(void)
2707{
f4ae40a6 2708 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2709 struct dentry *dir;
933e312e 2710
dd48c085
AM
2711 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2712 &fail_page_alloc.attr);
2713 if (IS_ERR(dir))
2714 return PTR_ERR(dir);
933e312e 2715
b2588c4b 2716 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2717 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2718 goto fail;
2719 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2720 &fail_page_alloc.ignore_gfp_highmem))
2721 goto fail;
2722 if (!debugfs_create_u32("min-order", mode, dir,
2723 &fail_page_alloc.min_order))
2724 goto fail;
2725
2726 return 0;
2727fail:
dd48c085 2728 debugfs_remove_recursive(dir);
933e312e 2729
b2588c4b 2730 return -ENOMEM;
933e312e
AM
2731}
2732
2733late_initcall(fail_page_alloc_debugfs);
2734
2735#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2736
2737#else /* CONFIG_FAIL_PAGE_ALLOC */
2738
deaf386e 2739static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2740{
deaf386e 2741 return false;
933e312e
AM
2742}
2743
2744#endif /* CONFIG_FAIL_PAGE_ALLOC */
2745
1da177e4 2746/*
97a16fc8
MG
2747 * Return true if free base pages are above 'mark'. For high-order checks it
2748 * will return true of the order-0 watermark is reached and there is at least
2749 * one free page of a suitable size. Checking now avoids taking the zone lock
2750 * to check in the allocation paths if no pages are free.
1da177e4 2751 */
86a294a8
MH
2752bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2753 int classzone_idx, unsigned int alloc_flags,
2754 long free_pages)
1da177e4 2755{
d23ad423 2756 long min = mark;
1da177e4 2757 int o;
c603844b 2758 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2759
0aaa29a5 2760 /* free_pages may go negative - that's OK */
df0a6daa 2761 free_pages -= (1 << order) - 1;
0aaa29a5 2762
7fb1d9fc 2763 if (alloc_flags & ALLOC_HIGH)
1da177e4 2764 min -= min / 2;
0aaa29a5
MG
2765
2766 /*
2767 * If the caller does not have rights to ALLOC_HARDER then subtract
2768 * the high-atomic reserves. This will over-estimate the size of the
2769 * atomic reserve but it avoids a search.
2770 */
97a16fc8 2771 if (likely(!alloc_harder))
0aaa29a5
MG
2772 free_pages -= z->nr_reserved_highatomic;
2773 else
1da177e4 2774 min -= min / 4;
e2b19197 2775
d95ea5d1
BZ
2776#ifdef CONFIG_CMA
2777 /* If allocation can't use CMA areas don't use free CMA pages */
2778 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2779 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2780#endif
026b0814 2781
97a16fc8
MG
2782 /*
2783 * Check watermarks for an order-0 allocation request. If these
2784 * are not met, then a high-order request also cannot go ahead
2785 * even if a suitable page happened to be free.
2786 */
2787 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2788 return false;
1da177e4 2789
97a16fc8
MG
2790 /* If this is an order-0 request then the watermark is fine */
2791 if (!order)
2792 return true;
2793
2794 /* For a high-order request, check at least one suitable page is free */
2795 for (o = order; o < MAX_ORDER; o++) {
2796 struct free_area *area = &z->free_area[o];
2797 int mt;
2798
2799 if (!area->nr_free)
2800 continue;
2801
2802 if (alloc_harder)
2803 return true;
1da177e4 2804
97a16fc8
MG
2805 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2806 if (!list_empty(&area->free_list[mt]))
2807 return true;
2808 }
2809
2810#ifdef CONFIG_CMA
2811 if ((alloc_flags & ALLOC_CMA) &&
2812 !list_empty(&area->free_list[MIGRATE_CMA])) {
2813 return true;
2814 }
2815#endif
1da177e4 2816 }
97a16fc8 2817 return false;
88f5acf8
MG
2818}
2819
7aeb09f9 2820bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2821 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2822{
2823 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2824 zone_page_state(z, NR_FREE_PAGES));
2825}
2826
48ee5f36
MG
2827static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2828 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2829{
2830 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2831 long cma_pages = 0;
2832
2833#ifdef CONFIG_CMA
2834 /* If allocation can't use CMA areas don't use free CMA pages */
2835 if (!(alloc_flags & ALLOC_CMA))
2836 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2837#endif
2838
2839 /*
2840 * Fast check for order-0 only. If this fails then the reserves
2841 * need to be calculated. There is a corner case where the check
2842 * passes but only the high-order atomic reserve are free. If
2843 * the caller is !atomic then it'll uselessly search the free
2844 * list. That corner case is then slower but it is harmless.
2845 */
2846 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2847 return true;
2848
2849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2850 free_pages);
2851}
2852
7aeb09f9 2853bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2854 unsigned long mark, int classzone_idx)
88f5acf8
MG
2855{
2856 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2857
2858 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2859 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2860
e2b19197 2861 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2862 free_pages);
1da177e4
LT
2863}
2864
9276b1bc 2865#ifdef CONFIG_NUMA
81c0a2bb
JW
2866static bool zone_local(struct zone *local_zone, struct zone *zone)
2867{
fff4068c 2868 return local_zone->node == zone->node;
81c0a2bb
JW
2869}
2870
957f822a
DR
2871static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2872{
5f7a75ac
MG
2873 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2874 RECLAIM_DISTANCE;
957f822a 2875}
9276b1bc 2876#else /* CONFIG_NUMA */
81c0a2bb
JW
2877static bool zone_local(struct zone *local_zone, struct zone *zone)
2878{
2879 return true;
2880}
2881
957f822a
DR
2882static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2883{
2884 return true;
2885}
9276b1bc
PJ
2886#endif /* CONFIG_NUMA */
2887
4ffeaf35
MG
2888static void reset_alloc_batches(struct zone *preferred_zone)
2889{
2890 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2891
2892 do {
2893 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2894 high_wmark_pages(zone) - low_wmark_pages(zone) -
2895 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2896 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2897 } while (zone++ != preferred_zone);
2898}
2899
7fb1d9fc 2900/*
0798e519 2901 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2902 * a page.
2903 */
2904static struct page *
a9263751
VB
2905get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2906 const struct alloc_context *ac)
753ee728 2907{
c33d6c06 2908 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2909 struct zone *zone;
30534755
MG
2910 bool fair_skipped = false;
2911 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2912
9276b1bc 2913zonelist_scan:
7fb1d9fc 2914 /*
9276b1bc 2915 * Scan zonelist, looking for a zone with enough free.
344736f2 2916 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2917 */
c33d6c06 2918 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2919 ac->nodemask) {
be06af00 2920 struct page *page;
e085dbc5
JW
2921 unsigned long mark;
2922
664eedde
MG
2923 if (cpusets_enabled() &&
2924 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2925 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2926 continue;
81c0a2bb
JW
2927 /*
2928 * Distribute pages in proportion to the individual
2929 * zone size to ensure fair page aging. The zone a
2930 * page was allocated in should have no effect on the
2931 * time the page has in memory before being reclaimed.
81c0a2bb 2932 */
30534755 2933 if (apply_fair) {
57054651 2934 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2935 fair_skipped = true;
3a025760 2936 continue;
4ffeaf35 2937 }
c33d6c06 2938 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2939 if (fair_skipped)
2940 goto reset_fair;
2941 apply_fair = false;
2942 }
81c0a2bb 2943 }
a756cf59
JW
2944 /*
2945 * When allocating a page cache page for writing, we
2946 * want to get it from a zone that is within its dirty
2947 * limit, such that no single zone holds more than its
2948 * proportional share of globally allowed dirty pages.
2949 * The dirty limits take into account the zone's
2950 * lowmem reserves and high watermark so that kswapd
2951 * should be able to balance it without having to
2952 * write pages from its LRU list.
2953 *
2954 * This may look like it could increase pressure on
2955 * lower zones by failing allocations in higher zones
2956 * before they are full. But the pages that do spill
2957 * over are limited as the lower zones are protected
2958 * by this very same mechanism. It should not become
2959 * a practical burden to them.
2960 *
2961 * XXX: For now, allow allocations to potentially
2962 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2963 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2964 * which is important when on a NUMA setup the allowed
2965 * zones are together not big enough to reach the
2966 * global limit. The proper fix for these situations
2967 * will require awareness of zones in the
2968 * dirty-throttling and the flusher threads.
2969 */
c9ab0c4f 2970 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2971 continue;
7fb1d9fc 2972
e085dbc5 2973 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2974 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2975 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2976 int ret;
2977
5dab2911
MG
2978 /* Checked here to keep the fast path fast */
2979 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2980 if (alloc_flags & ALLOC_NO_WATERMARKS)
2981 goto try_this_zone;
2982
957f822a 2983 if (zone_reclaim_mode == 0 ||
c33d6c06 2984 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2985 continue;
2986
fa5e084e
MG
2987 ret = zone_reclaim(zone, gfp_mask, order);
2988 switch (ret) {
2989 case ZONE_RECLAIM_NOSCAN:
2990 /* did not scan */
cd38b115 2991 continue;
fa5e084e
MG
2992 case ZONE_RECLAIM_FULL:
2993 /* scanned but unreclaimable */
cd38b115 2994 continue;
fa5e084e
MG
2995 default:
2996 /* did we reclaim enough */
fed2719e 2997 if (zone_watermark_ok(zone, order, mark,
93ea9964 2998 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2999 goto try_this_zone;
3000
fed2719e 3001 continue;
0798e519 3002 }
7fb1d9fc
RS
3003 }
3004
fa5e084e 3005try_this_zone:
c33d6c06 3006 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3007 gfp_mask, alloc_flags, ac->migratetype);
75379191 3008 if (page) {
479f854a 3009 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3010
3011 /*
3012 * If this is a high-order atomic allocation then check
3013 * if the pageblock should be reserved for the future
3014 */
3015 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3016 reserve_highatomic_pageblock(page, zone, order);
3017
75379191
VB
3018 return page;
3019 }
54a6eb5c 3020 }
9276b1bc 3021
4ffeaf35
MG
3022 /*
3023 * The first pass makes sure allocations are spread fairly within the
3024 * local node. However, the local node might have free pages left
3025 * after the fairness batches are exhausted, and remote zones haven't
3026 * even been considered yet. Try once more without fairness, and
3027 * include remote zones now, before entering the slowpath and waking
3028 * kswapd: prefer spilling to a remote zone over swapping locally.
3029 */
30534755
MG
3030 if (fair_skipped) {
3031reset_fair:
3032 apply_fair = false;
3033 fair_skipped = false;
c33d6c06 3034 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3035 z = ac->preferred_zoneref;
4ffeaf35 3036 goto zonelist_scan;
30534755 3037 }
4ffeaf35
MG
3038
3039 return NULL;
753ee728
MH
3040}
3041
29423e77
DR
3042/*
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3045 */
3046static inline bool should_suppress_show_mem(void)
3047{
3048 bool ret = false;
3049
3050#if NODES_SHIFT > 8
3051 ret = in_interrupt();
3052#endif
3053 return ret;
3054}
3055
a238ab5b
DH
3056static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 DEFAULT_RATELIMIT_INTERVAL,
3058 DEFAULT_RATELIMIT_BURST);
3059
d00181b9 3060void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3061{
a238ab5b
DH
3062 unsigned int filter = SHOW_MEM_FILTER_NODES;
3063
c0a32fc5
SG
3064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 debug_guardpage_minorder() > 0)
a238ab5b
DH
3066 return;
3067
3068 /*
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3071 * of allowed nodes.
3072 */
3073 if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 if (test_thread_flag(TIF_MEMDIE) ||
3075 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3077 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3078 filter &= ~SHOW_MEM_FILTER_NODES;
3079
3080 if (fmt) {
3ee9a4f0
JP
3081 struct va_format vaf;
3082 va_list args;
3083
a238ab5b 3084 va_start(args, fmt);
3ee9a4f0
JP
3085
3086 vaf.fmt = fmt;
3087 vaf.va = &args;
3088
3089 pr_warn("%pV", &vaf);
3090
a238ab5b
DH
3091 va_end(args);
3092 }
3093
c5c990e8
VB
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3096 dump_stack();
3097 if (!should_suppress_show_mem())
3098 show_mem(filter);
3099}
3100
11e33f6a
MG
3101static inline struct page *
3102__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3103 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3104{
6e0fc46d
DR
3105 struct oom_control oc = {
3106 .zonelist = ac->zonelist,
3107 .nodemask = ac->nodemask,
2a966b77 3108 .memcg = NULL,
6e0fc46d
DR
3109 .gfp_mask = gfp_mask,
3110 .order = order,
6e0fc46d 3111 };
11e33f6a
MG
3112 struct page *page;
3113
9879de73
JW
3114 *did_some_progress = 0;
3115
9879de73 3116 /*
dc56401f
JW
3117 * Acquire the oom lock. If that fails, somebody else is
3118 * making progress for us.
9879de73 3119 */
dc56401f 3120 if (!mutex_trylock(&oom_lock)) {
9879de73 3121 *did_some_progress = 1;
11e33f6a 3122 schedule_timeout_uninterruptible(1);
1da177e4
LT
3123 return NULL;
3124 }
6b1de916 3125
11e33f6a
MG
3126 /*
3127 * Go through the zonelist yet one more time, keep very high watermark
3128 * here, this is only to catch a parallel oom killing, we must fail if
3129 * we're still under heavy pressure.
3130 */
a9263751
VB
3131 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3132 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3133 if (page)
11e33f6a
MG
3134 goto out;
3135
4365a567 3136 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3137 /* Coredumps can quickly deplete all memory reserves */
3138 if (current->flags & PF_DUMPCORE)
3139 goto out;
4365a567
KH
3140 /* The OOM killer will not help higher order allocs */
3141 if (order > PAGE_ALLOC_COSTLY_ORDER)
3142 goto out;
03668b3c 3143 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3144 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3145 goto out;
9083905a
JW
3146 if (pm_suspended_storage())
3147 goto out;
3da88fb3
MH
3148 /*
3149 * XXX: GFP_NOFS allocations should rather fail than rely on
3150 * other request to make a forward progress.
3151 * We are in an unfortunate situation where out_of_memory cannot
3152 * do much for this context but let's try it to at least get
3153 * access to memory reserved if the current task is killed (see
3154 * out_of_memory). Once filesystems are ready to handle allocation
3155 * failures more gracefully we should just bail out here.
3156 */
3157
4167e9b2 3158 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3159 if (gfp_mask & __GFP_THISNODE)
3160 goto out;
3161 }
11e33f6a 3162 /* Exhausted what can be done so it's blamo time */
5020e285 3163 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3164 *did_some_progress = 1;
5020e285
MH
3165
3166 if (gfp_mask & __GFP_NOFAIL) {
3167 page = get_page_from_freelist(gfp_mask, order,
3168 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3169 /*
3170 * fallback to ignore cpuset restriction if our nodes
3171 * are depleted
3172 */
3173 if (!page)
3174 page = get_page_from_freelist(gfp_mask, order,
3175 ALLOC_NO_WATERMARKS, ac);
3176 }
3177 }
11e33f6a 3178out:
dc56401f 3179 mutex_unlock(&oom_lock);
11e33f6a
MG
3180 return page;
3181}
3182
33c2d214
MH
3183
3184/*
3185 * Maximum number of compaction retries wit a progress before OOM
3186 * killer is consider as the only way to move forward.
3187 */
3188#define MAX_COMPACT_RETRIES 16
3189
56de7263
MG
3190#ifdef CONFIG_COMPACTION
3191/* Try memory compaction for high-order allocations before reclaim */
3192static struct page *
3193__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3194 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3195 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3196{
98dd3b48 3197 struct page *page;
c5d01d0d 3198 int contended_compaction;
53853e2d
VB
3199
3200 if (!order)
66199712 3201 return NULL;
66199712 3202
c06b1fca 3203 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3204 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3205 mode, &contended_compaction);
c06b1fca 3206 current->flags &= ~PF_MEMALLOC;
56de7263 3207
c5d01d0d 3208 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3209 return NULL;
53853e2d 3210
98dd3b48
VB
3211 /*
3212 * At least in one zone compaction wasn't deferred or skipped, so let's
3213 * count a compaction stall
3214 */
3215 count_vm_event(COMPACTSTALL);
8fb74b9f 3216
a9263751
VB
3217 page = get_page_from_freelist(gfp_mask, order,
3218 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3219
98dd3b48
VB
3220 if (page) {
3221 struct zone *zone = page_zone(page);
53853e2d 3222
98dd3b48
VB
3223 zone->compact_blockskip_flush = false;
3224 compaction_defer_reset(zone, order, true);
3225 count_vm_event(COMPACTSUCCESS);
3226 return page;
3227 }
56de7263 3228
98dd3b48
VB
3229 /*
3230 * It's bad if compaction run occurs and fails. The most likely reason
3231 * is that pages exist, but not enough to satisfy watermarks.
3232 */
3233 count_vm_event(COMPACTFAIL);
66199712 3234
c5d01d0d
MH
3235 /*
3236 * In all zones where compaction was attempted (and not
3237 * deferred or skipped), lock contention has been detected.
3238 * For THP allocation we do not want to disrupt the others
3239 * so we fallback to base pages instead.
3240 */
3241 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3242 *compact_result = COMPACT_CONTENDED;
3243
3244 /*
3245 * If compaction was aborted due to need_resched(), we do not
3246 * want to further increase allocation latency, unless it is
3247 * khugepaged trying to collapse.
3248 */
3249 if (contended_compaction == COMPACT_CONTENDED_SCHED
3250 && !(current->flags & PF_KTHREAD))
3251 *compact_result = COMPACT_CONTENDED;
3252
98dd3b48 3253 cond_resched();
56de7263
MG
3254
3255 return NULL;
3256}
33c2d214
MH
3257
3258static inline bool
86a294a8
MH
3259should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3260 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3261 int compaction_retries)
3262{
7854ea6c
MH
3263 int max_retries = MAX_COMPACT_RETRIES;
3264
33c2d214
MH
3265 if (!order)
3266 return false;
3267
3268 /*
3269 * compaction considers all the zone as desperately out of memory
3270 * so it doesn't really make much sense to retry except when the
3271 * failure could be caused by weak migration mode.
3272 */
3273 if (compaction_failed(compact_result)) {
3274 if (*migrate_mode == MIGRATE_ASYNC) {
3275 *migrate_mode = MIGRATE_SYNC_LIGHT;
3276 return true;
3277 }
3278 return false;
3279 }
3280
3281 /*
7854ea6c
MH
3282 * make sure the compaction wasn't deferred or didn't bail out early
3283 * due to locks contention before we declare that we should give up.
86a294a8
MH
3284 * But do not retry if the given zonelist is not suitable for
3285 * compaction.
33c2d214 3286 */
7854ea6c 3287 if (compaction_withdrawn(compact_result))
86a294a8 3288 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3289
3290 /*
3291 * !costly requests are much more important than __GFP_REPEAT
3292 * costly ones because they are de facto nofail and invoke OOM
3293 * killer to move on while costly can fail and users are ready
3294 * to cope with that. 1/4 retries is rather arbitrary but we
3295 * would need much more detailed feedback from compaction to
3296 * make a better decision.
3297 */
3298 if (order > PAGE_ALLOC_COSTLY_ORDER)
3299 max_retries /= 4;
3300 if (compaction_retries <= max_retries)
3301 return true;
33c2d214
MH
3302
3303 return false;
3304}
56de7263
MG
3305#else
3306static inline struct page *
3307__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3308 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3309 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3310{
33c2d214 3311 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3312 return NULL;
3313}
33c2d214
MH
3314
3315static inline bool
86a294a8
MH
3316should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3317 enum compact_result compact_result,
33c2d214
MH
3318 enum migrate_mode *migrate_mode,
3319 int compaction_retries)
3320{
31e49bfd
MH
3321 struct zone *zone;
3322 struct zoneref *z;
3323
3324 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3325 return false;
3326
3327 /*
3328 * There are setups with compaction disabled which would prefer to loop
3329 * inside the allocator rather than hit the oom killer prematurely.
3330 * Let's give them a good hope and keep retrying while the order-0
3331 * watermarks are OK.
3332 */
3333 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3334 ac->nodemask) {
3335 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3336 ac_classzone_idx(ac), alloc_flags))
3337 return true;
3338 }
33c2d214
MH
3339 return false;
3340}
56de7263
MG
3341#endif /* CONFIG_COMPACTION */
3342
bba90710
MS
3343/* Perform direct synchronous page reclaim */
3344static int
a9263751
VB
3345__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3346 const struct alloc_context *ac)
11e33f6a 3347{
11e33f6a 3348 struct reclaim_state reclaim_state;
bba90710 3349 int progress;
11e33f6a
MG
3350
3351 cond_resched();
3352
3353 /* We now go into synchronous reclaim */
3354 cpuset_memory_pressure_bump();
c06b1fca 3355 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3356 lockdep_set_current_reclaim_state(gfp_mask);
3357 reclaim_state.reclaimed_slab = 0;
c06b1fca 3358 current->reclaim_state = &reclaim_state;
11e33f6a 3359
a9263751
VB
3360 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3361 ac->nodemask);
11e33f6a 3362
c06b1fca 3363 current->reclaim_state = NULL;
11e33f6a 3364 lockdep_clear_current_reclaim_state();
c06b1fca 3365 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3366
3367 cond_resched();
3368
bba90710
MS
3369 return progress;
3370}
3371
3372/* The really slow allocator path where we enter direct reclaim */
3373static inline struct page *
3374__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3375 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3376 unsigned long *did_some_progress)
bba90710
MS
3377{
3378 struct page *page = NULL;
3379 bool drained = false;
3380
a9263751 3381 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3382 if (unlikely(!(*did_some_progress)))
3383 return NULL;
11e33f6a 3384
9ee493ce 3385retry:
a9263751
VB
3386 page = get_page_from_freelist(gfp_mask, order,
3387 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3388
3389 /*
3390 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3391 * pages are pinned on the per-cpu lists or in high alloc reserves.
3392 * Shrink them them and try again
9ee493ce
MG
3393 */
3394 if (!page && !drained) {
0aaa29a5 3395 unreserve_highatomic_pageblock(ac);
93481ff0 3396 drain_all_pages(NULL);
9ee493ce
MG
3397 drained = true;
3398 goto retry;
3399 }
3400
11e33f6a
MG
3401 return page;
3402}
3403
a9263751 3404static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3405{
3406 struct zoneref *z;
3407 struct zone *zone;
3408
a9263751
VB
3409 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3410 ac->high_zoneidx, ac->nodemask)
93ea9964 3411 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3412}
3413
c603844b 3414static inline unsigned int
341ce06f
PZ
3415gfp_to_alloc_flags(gfp_t gfp_mask)
3416{
c603844b 3417 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3418
a56f57ff 3419 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3420 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3421
341ce06f
PZ
3422 /*
3423 * The caller may dip into page reserves a bit more if the caller
3424 * cannot run direct reclaim, or if the caller has realtime scheduling
3425 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3426 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3427 */
e6223a3b 3428 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3429
d0164adc 3430 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3431 /*
b104a35d
DR
3432 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3433 * if it can't schedule.
5c3240d9 3434 */
b104a35d 3435 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3436 alloc_flags |= ALLOC_HARDER;
523b9458 3437 /*
b104a35d 3438 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3439 * comment for __cpuset_node_allowed().
523b9458 3440 */
341ce06f 3441 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3442 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3443 alloc_flags |= ALLOC_HARDER;
3444
b37f1dd0
MG
3445 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3446 if (gfp_mask & __GFP_MEMALLOC)
3447 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3448 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3449 alloc_flags |= ALLOC_NO_WATERMARKS;
3450 else if (!in_interrupt() &&
3451 ((current->flags & PF_MEMALLOC) ||
3452 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3453 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3454 }
d95ea5d1 3455#ifdef CONFIG_CMA
43e7a34d 3456 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3457 alloc_flags |= ALLOC_CMA;
3458#endif
341ce06f
PZ
3459 return alloc_flags;
3460}
3461
072bb0aa
MG
3462bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3463{
b37f1dd0 3464 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3465}
3466
d0164adc
MG
3467static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3468{
3469 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3470}
3471
0a0337e0
MH
3472/*
3473 * Maximum number of reclaim retries without any progress before OOM killer
3474 * is consider as the only way to move forward.
3475 */
3476#define MAX_RECLAIM_RETRIES 16
3477
3478/*
3479 * Checks whether it makes sense to retry the reclaim to make a forward progress
3480 * for the given allocation request.
3481 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3482 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3483 * any progress in a row) is considered as well as the reclaimable pages on the
3484 * applicable zone list (with a backoff mechanism which is a function of
3485 * no_progress_loops).
0a0337e0
MH
3486 *
3487 * Returns true if a retry is viable or false to enter the oom path.
3488 */
3489static inline bool
3490should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3491 struct alloc_context *ac, int alloc_flags,
7854ea6c 3492 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3493{
3494 struct zone *zone;
3495 struct zoneref *z;
3496
3497 /*
3498 * Make sure we converge to OOM if we cannot make any progress
3499 * several times in the row.
3500 */
3501 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3502 return false;
3503
0a0337e0
MH
3504 /*
3505 * Keep reclaiming pages while there is a chance this will lead somewhere.
3506 * If none of the target zones can satisfy our allocation request even
3507 * if all reclaimable pages are considered then we are screwed and have
3508 * to go OOM.
3509 */
3510 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3511 ac->nodemask) {
3512 unsigned long available;
ede37713 3513 unsigned long reclaimable;
0a0337e0 3514
ede37713 3515 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3516 available -= DIV_ROUND_UP(no_progress_loops * available,
3517 MAX_RECLAIM_RETRIES);
3518 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3519
3520 /*
3521 * Would the allocation succeed if we reclaimed the whole
3522 * available?
3523 */
3524 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3525 ac_classzone_idx(ac), alloc_flags, available)) {
3526 /*
3527 * If we didn't make any progress and have a lot of
3528 * dirty + writeback pages then we should wait for
3529 * an IO to complete to slow down the reclaim and
3530 * prevent from pre mature OOM
3531 */
3532 if (!did_some_progress) {
3533 unsigned long writeback;
3534 unsigned long dirty;
3535
3536 writeback = zone_page_state_snapshot(zone,
3537 NR_WRITEBACK);
3538 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3539
3540 if (2*(writeback + dirty) > reclaimable) {
3541 congestion_wait(BLK_RW_ASYNC, HZ/10);
3542 return true;
3543 }
3544 }
3545
3546 /*
3547 * Memory allocation/reclaim might be called from a WQ
3548 * context and the current implementation of the WQ
3549 * concurrency control doesn't recognize that
3550 * a particular WQ is congested if the worker thread is
3551 * looping without ever sleeping. Therefore we have to
3552 * do a short sleep here rather than calling
3553 * cond_resched().
3554 */
3555 if (current->flags & PF_WQ_WORKER)
3556 schedule_timeout_uninterruptible(1);
3557 else
3558 cond_resched();
3559
0a0337e0
MH
3560 return true;
3561 }
3562 }
3563
3564 return false;
3565}
3566
11e33f6a
MG
3567static inline struct page *
3568__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3569 struct alloc_context *ac)
11e33f6a 3570{
d0164adc 3571 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3572 struct page *page = NULL;
c603844b 3573 unsigned int alloc_flags;
11e33f6a 3574 unsigned long did_some_progress;
e0b9daeb 3575 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3576 enum compact_result compact_result;
33c2d214 3577 int compaction_retries = 0;
0a0337e0 3578 int no_progress_loops = 0;
1da177e4 3579
72807a74
MG
3580 /*
3581 * In the slowpath, we sanity check order to avoid ever trying to
3582 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3583 * be using allocators in order of preference for an area that is
3584 * too large.
3585 */
1fc28b70
MG
3586 if (order >= MAX_ORDER) {
3587 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3588 return NULL;
1fc28b70 3589 }
1da177e4 3590
d0164adc
MG
3591 /*
3592 * We also sanity check to catch abuse of atomic reserves being used by
3593 * callers that are not in atomic context.
3594 */
3595 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3596 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3597 gfp_mask &= ~__GFP_ATOMIC;
3598
9879de73 3599retry:
d0164adc 3600 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3601 wake_all_kswapds(order, ac);
1da177e4 3602
9bf2229f 3603 /*
7fb1d9fc
RS
3604 * OK, we're below the kswapd watermark and have kicked background
3605 * reclaim. Now things get more complex, so set up alloc_flags according
3606 * to how we want to proceed.
9bf2229f 3607 */
341ce06f 3608 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3609
e46e7b77
MG
3610 /*
3611 * Reset the zonelist iterators if memory policies can be ignored.
3612 * These allocations are high priority and system rather than user
3613 * orientated.
3614 */
3615 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3616 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3617 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3618 ac->high_zoneidx, ac->nodemask);
3619 }
3620
341ce06f 3621 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3622 page = get_page_from_freelist(gfp_mask, order,
3623 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3624 if (page)
3625 goto got_pg;
1da177e4 3626
11e33f6a 3627 /* Allocate without watermarks if the context allows */
341ce06f 3628 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3629 page = get_page_from_freelist(gfp_mask, order,
3630 ALLOC_NO_WATERMARKS, ac);
3631 if (page)
3632 goto got_pg;
1da177e4
LT
3633 }
3634
d0164adc
MG
3635 /* Caller is not willing to reclaim, we can't balance anything */
3636 if (!can_direct_reclaim) {
aed0a0e3 3637 /*
33d53103
MH
3638 * All existing users of the __GFP_NOFAIL are blockable, so warn
3639 * of any new users that actually allow this type of allocation
3640 * to fail.
aed0a0e3
DR
3641 */
3642 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3643 goto nopage;
aed0a0e3 3644 }
1da177e4 3645
341ce06f 3646 /* Avoid recursion of direct reclaim */
33d53103
MH
3647 if (current->flags & PF_MEMALLOC) {
3648 /*
3649 * __GFP_NOFAIL request from this context is rather bizarre
3650 * because we cannot reclaim anything and only can loop waiting
3651 * for somebody to do a work for us.
3652 */
3653 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3654 cond_resched();
3655 goto retry;
3656 }
341ce06f 3657 goto nopage;
33d53103 3658 }
341ce06f 3659
6583bb64
DR
3660 /* Avoid allocations with no watermarks from looping endlessly */
3661 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3662 goto nopage;
3663
77f1fe6b
MG
3664 /*
3665 * Try direct compaction. The first pass is asynchronous. Subsequent
3666 * attempts after direct reclaim are synchronous
3667 */
a9263751
VB
3668 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3669 migration_mode,
c5d01d0d 3670 &compact_result);
56de7263
MG
3671 if (page)
3672 goto got_pg;
75f30861 3673
1f9efdef 3674 /* Checks for THP-specific high-order allocations */
d0164adc 3675 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3676 /*
3677 * If compaction is deferred for high-order allocations, it is
3678 * because sync compaction recently failed. If this is the case
3679 * and the caller requested a THP allocation, we do not want
3680 * to heavily disrupt the system, so we fail the allocation
3681 * instead of entering direct reclaim.
3682 */
c5d01d0d 3683 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3684 goto nopage;
3685
3686 /*
c5d01d0d
MH
3687 * Compaction is contended so rather back off than cause
3688 * excessive stalls.
1f9efdef 3689 */
c5d01d0d 3690 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3691 goto nopage;
3692 }
66199712 3693
33c2d214
MH
3694 if (order && compaction_made_progress(compact_result))
3695 compaction_retries++;
8fe78048 3696
11e33f6a 3697 /* Try direct reclaim and then allocating */
a9263751
VB
3698 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3699 &did_some_progress);
11e33f6a
MG
3700 if (page)
3701 goto got_pg;
1da177e4 3702
9083905a
JW
3703 /* Do not loop if specifically requested */
3704 if (gfp_mask & __GFP_NORETRY)
3705 goto noretry;
3706
0a0337e0
MH
3707 /*
3708 * Do not retry costly high order allocations unless they are
3709 * __GFP_REPEAT
3710 */
3711 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3712 goto noretry;
3713
7854ea6c
MH
3714 /*
3715 * Costly allocations might have made a progress but this doesn't mean
3716 * their order will become available due to high fragmentation so
3717 * always increment the no progress counter for them
3718 */
3719 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3720 no_progress_loops = 0;
7854ea6c 3721 else
0a0337e0 3722 no_progress_loops++;
1da177e4 3723
0a0337e0 3724 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3725 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3726 goto retry;
3727
33c2d214
MH
3728 /*
3729 * It doesn't make any sense to retry for the compaction if the order-0
3730 * reclaim is not able to make any progress because the current
3731 * implementation of the compaction depends on the sufficient amount
3732 * of free memory (see __compaction_suitable)
3733 */
3734 if (did_some_progress > 0 &&
86a294a8
MH
3735 should_compact_retry(ac, order, alloc_flags,
3736 compact_result, &migration_mode,
3737 compaction_retries))
33c2d214
MH
3738 goto retry;
3739
9083905a
JW
3740 /* Reclaim has failed us, start killing things */
3741 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3742 if (page)
3743 goto got_pg;
3744
3745 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3746 if (did_some_progress) {
3747 no_progress_loops = 0;
9083905a 3748 goto retry;
0a0337e0 3749 }
9083905a
JW
3750
3751noretry:
3752 /*
33c2d214
MH
3753 * High-order allocations do not necessarily loop after direct reclaim
3754 * and reclaim/compaction depends on compaction being called after
3755 * reclaim so call directly if necessary.
3756 * It can become very expensive to allocate transparent hugepages at
3757 * fault, so use asynchronous memory compaction for THP unless it is
3758 * khugepaged trying to collapse. All other requests should tolerate
3759 * at least light sync migration.
9083905a 3760 */
33c2d214
MH
3761 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3762 migration_mode = MIGRATE_ASYNC;
3763 else
3764 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3765 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3766 ac, migration_mode,
c5d01d0d 3767 &compact_result);
9083905a
JW
3768 if (page)
3769 goto got_pg;
1da177e4 3770nopage:
a238ab5b 3771 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3772got_pg:
072bb0aa 3773 return page;
1da177e4 3774}
11e33f6a
MG
3775
3776/*
3777 * This is the 'heart' of the zoned buddy allocator.
3778 */
3779struct page *
3780__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3781 struct zonelist *zonelist, nodemask_t *nodemask)
3782{
5bb1b169 3783 struct page *page;
cc9a6c87 3784 unsigned int cpuset_mems_cookie;
c603844b 3785 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3786 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3787 struct alloc_context ac = {
3788 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3789 .zonelist = zonelist,
a9263751
VB
3790 .nodemask = nodemask,
3791 .migratetype = gfpflags_to_migratetype(gfp_mask),
3792 };
11e33f6a 3793
682a3385 3794 if (cpusets_enabled()) {
83d4ca81 3795 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3796 alloc_flags |= ALLOC_CPUSET;
3797 if (!ac.nodemask)
3798 ac.nodemask = &cpuset_current_mems_allowed;
3799 }
3800
dcce284a
BH
3801 gfp_mask &= gfp_allowed_mask;
3802
11e33f6a
MG
3803 lockdep_trace_alloc(gfp_mask);
3804
d0164adc 3805 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3806
3807 if (should_fail_alloc_page(gfp_mask, order))
3808 return NULL;
3809
3810 /*
3811 * Check the zones suitable for the gfp_mask contain at least one
3812 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3813 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3814 */
3815 if (unlikely(!zonelist->_zonerefs->zone))
3816 return NULL;
3817
a9263751 3818 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3819 alloc_flags |= ALLOC_CMA;
3820
cc9a6c87 3821retry_cpuset:
d26914d1 3822 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3823
c9ab0c4f
MG
3824 /* Dirty zone balancing only done in the fast path */
3825 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3826
e46e7b77
MG
3827 /*
3828 * The preferred zone is used for statistics but crucially it is
3829 * also used as the starting point for the zonelist iterator. It
3830 * may get reset for allocations that ignore memory policies.
3831 */
c33d6c06
MG
3832 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3833 ac.high_zoneidx, ac.nodemask);
3834 if (!ac.preferred_zoneref) {
5bb1b169 3835 page = NULL;
4fcb0971 3836 goto no_zone;
5bb1b169
MG
3837 }
3838
5117f45d 3839 /* First allocation attempt */
a9263751 3840 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3841 if (likely(page))
3842 goto out;
11e33f6a 3843
4fcb0971
MG
3844 /*
3845 * Runtime PM, block IO and its error handling path can deadlock
3846 * because I/O on the device might not complete.
3847 */
3848 alloc_mask = memalloc_noio_flags(gfp_mask);
3849 ac.spread_dirty_pages = false;
23f086f9 3850
4741526b
MG
3851 /*
3852 * Restore the original nodemask if it was potentially replaced with
3853 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3854 */
3855 if (cpusets_enabled())
3856 ac.nodemask = nodemask;
4fcb0971 3857 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3858
4fcb0971 3859no_zone:
cc9a6c87
MG
3860 /*
3861 * When updating a task's mems_allowed, it is possible to race with
3862 * parallel threads in such a way that an allocation can fail while
3863 * the mask is being updated. If a page allocation is about to fail,
3864 * check if the cpuset changed during allocation and if so, retry.
3865 */
83d4ca81
MG
3866 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3867 alloc_mask = gfp_mask;
cc9a6c87 3868 goto retry_cpuset;
83d4ca81 3869 }
cc9a6c87 3870
4fcb0971
MG
3871out:
3872 if (kmemcheck_enabled && page)
3873 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3874
3875 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3876
11e33f6a 3877 return page;
1da177e4 3878}
d239171e 3879EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3880
3881/*
3882 * Common helper functions.
3883 */
920c7a5d 3884unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3885{
945a1113
AM
3886 struct page *page;
3887
3888 /*
3889 * __get_free_pages() returns a 32-bit address, which cannot represent
3890 * a highmem page
3891 */
3892 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3893
1da177e4
LT
3894 page = alloc_pages(gfp_mask, order);
3895 if (!page)
3896 return 0;
3897 return (unsigned long) page_address(page);
3898}
1da177e4
LT
3899EXPORT_SYMBOL(__get_free_pages);
3900
920c7a5d 3901unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3902{
945a1113 3903 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3904}
1da177e4
LT
3905EXPORT_SYMBOL(get_zeroed_page);
3906
920c7a5d 3907void __free_pages(struct page *page, unsigned int order)
1da177e4 3908{
b5810039 3909 if (put_page_testzero(page)) {
1da177e4 3910 if (order == 0)
b745bc85 3911 free_hot_cold_page(page, false);
1da177e4
LT
3912 else
3913 __free_pages_ok(page, order);
3914 }
3915}
3916
3917EXPORT_SYMBOL(__free_pages);
3918
920c7a5d 3919void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3920{
3921 if (addr != 0) {
725d704e 3922 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3923 __free_pages(virt_to_page((void *)addr), order);
3924 }
3925}
3926
3927EXPORT_SYMBOL(free_pages);
3928
b63ae8ca
AD
3929/*
3930 * Page Fragment:
3931 * An arbitrary-length arbitrary-offset area of memory which resides
3932 * within a 0 or higher order page. Multiple fragments within that page
3933 * are individually refcounted, in the page's reference counter.
3934 *
3935 * The page_frag functions below provide a simple allocation framework for
3936 * page fragments. This is used by the network stack and network device
3937 * drivers to provide a backing region of memory for use as either an
3938 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3939 */
3940static struct page *__page_frag_refill(struct page_frag_cache *nc,
3941 gfp_t gfp_mask)
3942{
3943 struct page *page = NULL;
3944 gfp_t gfp = gfp_mask;
3945
3946#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3947 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3948 __GFP_NOMEMALLOC;
3949 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3950 PAGE_FRAG_CACHE_MAX_ORDER);
3951 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3952#endif
3953 if (unlikely(!page))
3954 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3955
3956 nc->va = page ? page_address(page) : NULL;
3957
3958 return page;
3959}
3960
3961void *__alloc_page_frag(struct page_frag_cache *nc,
3962 unsigned int fragsz, gfp_t gfp_mask)
3963{
3964 unsigned int size = PAGE_SIZE;
3965 struct page *page;
3966 int offset;
3967
3968 if (unlikely(!nc->va)) {
3969refill:
3970 page = __page_frag_refill(nc, gfp_mask);
3971 if (!page)
3972 return NULL;
3973
3974#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3975 /* if size can vary use size else just use PAGE_SIZE */
3976 size = nc->size;
3977#endif
3978 /* Even if we own the page, we do not use atomic_set().
3979 * This would break get_page_unless_zero() users.
3980 */
fe896d18 3981 page_ref_add(page, size - 1);
b63ae8ca
AD
3982
3983 /* reset page count bias and offset to start of new frag */
2f064f34 3984 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3985 nc->pagecnt_bias = size;
3986 nc->offset = size;
3987 }
3988
3989 offset = nc->offset - fragsz;
3990 if (unlikely(offset < 0)) {
3991 page = virt_to_page(nc->va);
3992
fe896d18 3993 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3994 goto refill;
3995
3996#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3997 /* if size can vary use size else just use PAGE_SIZE */
3998 size = nc->size;
3999#endif
4000 /* OK, page count is 0, we can safely set it */
fe896d18 4001 set_page_count(page, size);
b63ae8ca
AD
4002
4003 /* reset page count bias and offset to start of new frag */
4004 nc->pagecnt_bias = size;
4005 offset = size - fragsz;
4006 }
4007
4008 nc->pagecnt_bias--;
4009 nc->offset = offset;
4010
4011 return nc->va + offset;
4012}
4013EXPORT_SYMBOL(__alloc_page_frag);
4014
4015/*
4016 * Frees a page fragment allocated out of either a compound or order 0 page.
4017 */
4018void __free_page_frag(void *addr)
4019{
4020 struct page *page = virt_to_head_page(addr);
4021
4022 if (unlikely(put_page_testzero(page)))
4023 __free_pages_ok(page, compound_order(page));
4024}
4025EXPORT_SYMBOL(__free_page_frag);
4026
6a1a0d3b 4027/*
52383431 4028 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4029 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4030 * equivalent to alloc_pages.
6a1a0d3b 4031 *
52383431
VD
4032 * It should be used when the caller would like to use kmalloc, but since the
4033 * allocation is large, it has to fall back to the page allocator.
4034 */
4035struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4036{
4037 struct page *page;
52383431 4038
52383431 4039 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4040 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4041 __free_pages(page, order);
4042 page = NULL;
4043 }
52383431
VD
4044 return page;
4045}
4046
4047struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4048{
4049 struct page *page;
52383431 4050
52383431 4051 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4052 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4053 __free_pages(page, order);
4054 page = NULL;
4055 }
52383431
VD
4056 return page;
4057}
4058
4059/*
4060 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4061 * alloc_kmem_pages.
6a1a0d3b 4062 */
52383431 4063void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4064{
d05e83a6 4065 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4066 __free_pages(page, order);
4067}
4068
52383431 4069void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4070{
4071 if (addr != 0) {
4072 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4073 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4074 }
4075}
4076
d00181b9
KS
4077static void *make_alloc_exact(unsigned long addr, unsigned int order,
4078 size_t size)
ee85c2e1
AK
4079{
4080 if (addr) {
4081 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4082 unsigned long used = addr + PAGE_ALIGN(size);
4083
4084 split_page(virt_to_page((void *)addr), order);
4085 while (used < alloc_end) {
4086 free_page(used);
4087 used += PAGE_SIZE;
4088 }
4089 }
4090 return (void *)addr;
4091}
4092
2be0ffe2
TT
4093/**
4094 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4095 * @size: the number of bytes to allocate
4096 * @gfp_mask: GFP flags for the allocation
4097 *
4098 * This function is similar to alloc_pages(), except that it allocates the
4099 * minimum number of pages to satisfy the request. alloc_pages() can only
4100 * allocate memory in power-of-two pages.
4101 *
4102 * This function is also limited by MAX_ORDER.
4103 *
4104 * Memory allocated by this function must be released by free_pages_exact().
4105 */
4106void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4107{
4108 unsigned int order = get_order(size);
4109 unsigned long addr;
4110
4111 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4112 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4113}
4114EXPORT_SYMBOL(alloc_pages_exact);
4115
ee85c2e1
AK
4116/**
4117 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4118 * pages on a node.
b5e6ab58 4119 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4120 * @size: the number of bytes to allocate
4121 * @gfp_mask: GFP flags for the allocation
4122 *
4123 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4124 * back.
ee85c2e1 4125 */
e1931811 4126void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4127{
d00181b9 4128 unsigned int order = get_order(size);
ee85c2e1
AK
4129 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4130 if (!p)
4131 return NULL;
4132 return make_alloc_exact((unsigned long)page_address(p), order, size);
4133}
ee85c2e1 4134
2be0ffe2
TT
4135/**
4136 * free_pages_exact - release memory allocated via alloc_pages_exact()
4137 * @virt: the value returned by alloc_pages_exact.
4138 * @size: size of allocation, same value as passed to alloc_pages_exact().
4139 *
4140 * Release the memory allocated by a previous call to alloc_pages_exact.
4141 */
4142void free_pages_exact(void *virt, size_t size)
4143{
4144 unsigned long addr = (unsigned long)virt;
4145 unsigned long end = addr + PAGE_ALIGN(size);
4146
4147 while (addr < end) {
4148 free_page(addr);
4149 addr += PAGE_SIZE;
4150 }
4151}
4152EXPORT_SYMBOL(free_pages_exact);
4153
e0fb5815
ZY
4154/**
4155 * nr_free_zone_pages - count number of pages beyond high watermark
4156 * @offset: The zone index of the highest zone
4157 *
4158 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4159 * high watermark within all zones at or below a given zone index. For each
4160 * zone, the number of pages is calculated as:
834405c3 4161 * managed_pages - high_pages
e0fb5815 4162 */
ebec3862 4163static unsigned long nr_free_zone_pages(int offset)
1da177e4 4164{
dd1a239f 4165 struct zoneref *z;
54a6eb5c
MG
4166 struct zone *zone;
4167
e310fd43 4168 /* Just pick one node, since fallback list is circular */
ebec3862 4169 unsigned long sum = 0;
1da177e4 4170
0e88460d 4171 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4172
54a6eb5c 4173 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4174 unsigned long size = zone->managed_pages;
41858966 4175 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4176 if (size > high)
4177 sum += size - high;
1da177e4
LT
4178 }
4179
4180 return sum;
4181}
4182
e0fb5815
ZY
4183/**
4184 * nr_free_buffer_pages - count number of pages beyond high watermark
4185 *
4186 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4187 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4188 */
ebec3862 4189unsigned long nr_free_buffer_pages(void)
1da177e4 4190{
af4ca457 4191 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4192}
c2f1a551 4193EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4194
e0fb5815
ZY
4195/**
4196 * nr_free_pagecache_pages - count number of pages beyond high watermark
4197 *
4198 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4199 * high watermark within all zones.
1da177e4 4200 */
ebec3862 4201unsigned long nr_free_pagecache_pages(void)
1da177e4 4202{
2a1e274a 4203 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4204}
08e0f6a9
CL
4205
4206static inline void show_node(struct zone *zone)
1da177e4 4207{
e5adfffc 4208 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4209 printk("Node %d ", zone_to_nid(zone));
1da177e4 4210}
1da177e4 4211
d02bd27b
IR
4212long si_mem_available(void)
4213{
4214 long available;
4215 unsigned long pagecache;
4216 unsigned long wmark_low = 0;
4217 unsigned long pages[NR_LRU_LISTS];
4218 struct zone *zone;
4219 int lru;
4220
4221 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4222 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4223
4224 for_each_zone(zone)
4225 wmark_low += zone->watermark[WMARK_LOW];
4226
4227 /*
4228 * Estimate the amount of memory available for userspace allocations,
4229 * without causing swapping.
4230 */
4231 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4232
4233 /*
4234 * Not all the page cache can be freed, otherwise the system will
4235 * start swapping. Assume at least half of the page cache, or the
4236 * low watermark worth of cache, needs to stay.
4237 */
4238 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4239 pagecache -= min(pagecache / 2, wmark_low);
4240 available += pagecache;
4241
4242 /*
4243 * Part of the reclaimable slab consists of items that are in use,
4244 * and cannot be freed. Cap this estimate at the low watermark.
4245 */
4246 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4247 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4248
4249 if (available < 0)
4250 available = 0;
4251 return available;
4252}
4253EXPORT_SYMBOL_GPL(si_mem_available);
4254
1da177e4
LT
4255void si_meminfo(struct sysinfo *val)
4256{
4257 val->totalram = totalram_pages;
cc7452b6 4258 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4259 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4260 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4261 val->totalhigh = totalhigh_pages;
4262 val->freehigh = nr_free_highpages();
1da177e4
LT
4263 val->mem_unit = PAGE_SIZE;
4264}
4265
4266EXPORT_SYMBOL(si_meminfo);
4267
4268#ifdef CONFIG_NUMA
4269void si_meminfo_node(struct sysinfo *val, int nid)
4270{
cdd91a77
JL
4271 int zone_type; /* needs to be signed */
4272 unsigned long managed_pages = 0;
fc2bd799
JK
4273 unsigned long managed_highpages = 0;
4274 unsigned long free_highpages = 0;
1da177e4
LT
4275 pg_data_t *pgdat = NODE_DATA(nid);
4276
cdd91a77
JL
4277 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4278 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4279 val->totalram = managed_pages;
cc7452b6 4280 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4281 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4282#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4283 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4284 struct zone *zone = &pgdat->node_zones[zone_type];
4285
4286 if (is_highmem(zone)) {
4287 managed_highpages += zone->managed_pages;
4288 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4289 }
4290 }
4291 val->totalhigh = managed_highpages;
4292 val->freehigh = free_highpages;
98d2b0eb 4293#else
fc2bd799
JK
4294 val->totalhigh = managed_highpages;
4295 val->freehigh = free_highpages;
98d2b0eb 4296#endif
1da177e4
LT
4297 val->mem_unit = PAGE_SIZE;
4298}
4299#endif
4300
ddd588b5 4301/*
7bf02ea2
DR
4302 * Determine whether the node should be displayed or not, depending on whether
4303 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4304 */
7bf02ea2 4305bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4306{
4307 bool ret = false;
cc9a6c87 4308 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4309
4310 if (!(flags & SHOW_MEM_FILTER_NODES))
4311 goto out;
4312
cc9a6c87 4313 do {
d26914d1 4314 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4315 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4316 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4317out:
4318 return ret;
4319}
4320
1da177e4
LT
4321#define K(x) ((x) << (PAGE_SHIFT-10))
4322
377e4f16
RV
4323static void show_migration_types(unsigned char type)
4324{
4325 static const char types[MIGRATE_TYPES] = {
4326 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4327 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4328 [MIGRATE_RECLAIMABLE] = 'E',
4329 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4330#ifdef CONFIG_CMA
4331 [MIGRATE_CMA] = 'C',
4332#endif
194159fb 4333#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4334 [MIGRATE_ISOLATE] = 'I',
194159fb 4335#endif
377e4f16
RV
4336 };
4337 char tmp[MIGRATE_TYPES + 1];
4338 char *p = tmp;
4339 int i;
4340
4341 for (i = 0; i < MIGRATE_TYPES; i++) {
4342 if (type & (1 << i))
4343 *p++ = types[i];
4344 }
4345
4346 *p = '\0';
4347 printk("(%s) ", tmp);
4348}
4349
1da177e4
LT
4350/*
4351 * Show free area list (used inside shift_scroll-lock stuff)
4352 * We also calculate the percentage fragmentation. We do this by counting the
4353 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4354 *
4355 * Bits in @filter:
4356 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4357 * cpuset.
1da177e4 4358 */
7bf02ea2 4359void show_free_areas(unsigned int filter)
1da177e4 4360{
d1bfcdb8 4361 unsigned long free_pcp = 0;
c7241913 4362 int cpu;
1da177e4
LT
4363 struct zone *zone;
4364
ee99c71c 4365 for_each_populated_zone(zone) {
7bf02ea2 4366 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4367 continue;
d1bfcdb8 4368
761b0677
KK
4369 for_each_online_cpu(cpu)
4370 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4371 }
4372
a731286d
KM
4373 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4374 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4375 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4376 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4377 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4378 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4379 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4380 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4381 global_page_state(NR_ISOLATED_ANON),
4382 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4383 global_page_state(NR_INACTIVE_FILE),
a731286d 4384 global_page_state(NR_ISOLATED_FILE),
7b854121 4385 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4386 global_page_state(NR_FILE_DIRTY),
ce866b34 4387 global_page_state(NR_WRITEBACK),
fd39fc85 4388 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4389 global_page_state(NR_SLAB_RECLAIMABLE),
4390 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4391 global_page_state(NR_FILE_MAPPED),
4b02108a 4392 global_page_state(NR_SHMEM),
a25700a5 4393 global_page_state(NR_PAGETABLE),
d1ce749a 4394 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4395 global_page_state(NR_FREE_PAGES),
4396 free_pcp,
d1ce749a 4397 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4398
ee99c71c 4399 for_each_populated_zone(zone) {
1da177e4
LT
4400 int i;
4401
7bf02ea2 4402 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4403 continue;
d1bfcdb8
KK
4404
4405 free_pcp = 0;
4406 for_each_online_cpu(cpu)
4407 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4408
1da177e4
LT
4409 show_node(zone);
4410 printk("%s"
4411 " free:%lukB"
4412 " min:%lukB"
4413 " low:%lukB"
4414 " high:%lukB"
4f98a2fe
RR
4415 " active_anon:%lukB"
4416 " inactive_anon:%lukB"
4417 " active_file:%lukB"
4418 " inactive_file:%lukB"
7b854121 4419 " unevictable:%lukB"
a731286d
KM
4420 " isolated(anon):%lukB"
4421 " isolated(file):%lukB"
1da177e4 4422 " present:%lukB"
9feedc9d 4423 " managed:%lukB"
4a0aa73f
KM
4424 " mlocked:%lukB"
4425 " dirty:%lukB"
4426 " writeback:%lukB"
4427 " mapped:%lukB"
4b02108a 4428 " shmem:%lukB"
4a0aa73f
KM
4429 " slab_reclaimable:%lukB"
4430 " slab_unreclaimable:%lukB"
c6a7f572 4431 " kernel_stack:%lukB"
4a0aa73f
KM
4432 " pagetables:%lukB"
4433 " unstable:%lukB"
4434 " bounce:%lukB"
d1bfcdb8
KK
4435 " free_pcp:%lukB"
4436 " local_pcp:%ukB"
d1ce749a 4437 " free_cma:%lukB"
4a0aa73f 4438 " writeback_tmp:%lukB"
1da177e4
LT
4439 " pages_scanned:%lu"
4440 " all_unreclaimable? %s"
4441 "\n",
4442 zone->name,
88f5acf8 4443 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4444 K(min_wmark_pages(zone)),
4445 K(low_wmark_pages(zone)),
4446 K(high_wmark_pages(zone)),
4f98a2fe
RR
4447 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4448 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4449 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4450 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4451 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4452 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4453 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4454 K(zone->present_pages),
9feedc9d 4455 K(zone->managed_pages),
4a0aa73f
KM
4456 K(zone_page_state(zone, NR_MLOCK)),
4457 K(zone_page_state(zone, NR_FILE_DIRTY)),
4458 K(zone_page_state(zone, NR_WRITEBACK)),
4459 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4460 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4461 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4462 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4463 zone_page_state(zone, NR_KERNEL_STACK) *
4464 THREAD_SIZE / 1024,
4a0aa73f
KM
4465 K(zone_page_state(zone, NR_PAGETABLE)),
4466 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4467 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4468 K(free_pcp),
4469 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4470 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4471 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4472 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4473 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4474 );
4475 printk("lowmem_reserve[]:");
4476 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4477 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4478 printk("\n");
4479 }
4480
ee99c71c 4481 for_each_populated_zone(zone) {
d00181b9
KS
4482 unsigned int order;
4483 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4484 unsigned char types[MAX_ORDER];
1da177e4 4485
7bf02ea2 4486 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4487 continue;
1da177e4
LT
4488 show_node(zone);
4489 printk("%s: ", zone->name);
1da177e4
LT
4490
4491 spin_lock_irqsave(&zone->lock, flags);
4492 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4493 struct free_area *area = &zone->free_area[order];
4494 int type;
4495
4496 nr[order] = area->nr_free;
8f9de51a 4497 total += nr[order] << order;
377e4f16
RV
4498
4499 types[order] = 0;
4500 for (type = 0; type < MIGRATE_TYPES; type++) {
4501 if (!list_empty(&area->free_list[type]))
4502 types[order] |= 1 << type;
4503 }
1da177e4
LT
4504 }
4505 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4506 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4507 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4508 if (nr[order])
4509 show_migration_types(types[order]);
4510 }
1da177e4
LT
4511 printk("= %lukB\n", K(total));
4512 }
4513
949f7ec5
DR
4514 hugetlb_show_meminfo();
4515
e6f3602d
LW
4516 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4517
1da177e4
LT
4518 show_swap_cache_info();
4519}
4520
19770b32
MG
4521static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4522{
4523 zoneref->zone = zone;
4524 zoneref->zone_idx = zone_idx(zone);
4525}
4526
1da177e4
LT
4527/*
4528 * Builds allocation fallback zone lists.
1a93205b
CL
4529 *
4530 * Add all populated zones of a node to the zonelist.
1da177e4 4531 */
f0c0b2b8 4532static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4533 int nr_zones)
1da177e4 4534{
1a93205b 4535 struct zone *zone;
bc732f1d 4536 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4537
4538 do {
2f6726e5 4539 zone_type--;
070f8032 4540 zone = pgdat->node_zones + zone_type;
1a93205b 4541 if (populated_zone(zone)) {
dd1a239f
MG
4542 zoneref_set_zone(zone,
4543 &zonelist->_zonerefs[nr_zones++]);
070f8032 4544 check_highest_zone(zone_type);
1da177e4 4545 }
2f6726e5 4546 } while (zone_type);
bc732f1d 4547
070f8032 4548 return nr_zones;
1da177e4
LT
4549}
4550
f0c0b2b8
KH
4551
4552/*
4553 * zonelist_order:
4554 * 0 = automatic detection of better ordering.
4555 * 1 = order by ([node] distance, -zonetype)
4556 * 2 = order by (-zonetype, [node] distance)
4557 *
4558 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4559 * the same zonelist. So only NUMA can configure this param.
4560 */
4561#define ZONELIST_ORDER_DEFAULT 0
4562#define ZONELIST_ORDER_NODE 1
4563#define ZONELIST_ORDER_ZONE 2
4564
4565/* zonelist order in the kernel.
4566 * set_zonelist_order() will set this to NODE or ZONE.
4567 */
4568static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4569static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4570
4571
1da177e4 4572#ifdef CONFIG_NUMA
f0c0b2b8
KH
4573/* The value user specified ....changed by config */
4574static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4575/* string for sysctl */
4576#define NUMA_ZONELIST_ORDER_LEN 16
4577char numa_zonelist_order[16] = "default";
4578
4579/*
4580 * interface for configure zonelist ordering.
4581 * command line option "numa_zonelist_order"
4582 * = "[dD]efault - default, automatic configuration.
4583 * = "[nN]ode - order by node locality, then by zone within node
4584 * = "[zZ]one - order by zone, then by locality within zone
4585 */
4586
4587static int __parse_numa_zonelist_order(char *s)
4588{
4589 if (*s == 'd' || *s == 'D') {
4590 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4591 } else if (*s == 'n' || *s == 'N') {
4592 user_zonelist_order = ZONELIST_ORDER_NODE;
4593 } else if (*s == 'z' || *s == 'Z') {
4594 user_zonelist_order = ZONELIST_ORDER_ZONE;
4595 } else {
1170532b 4596 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4597 return -EINVAL;
4598 }
4599 return 0;
4600}
4601
4602static __init int setup_numa_zonelist_order(char *s)
4603{
ecb256f8
VL
4604 int ret;
4605
4606 if (!s)
4607 return 0;
4608
4609 ret = __parse_numa_zonelist_order(s);
4610 if (ret == 0)
4611 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4612
4613 return ret;
f0c0b2b8
KH
4614}
4615early_param("numa_zonelist_order", setup_numa_zonelist_order);
4616
4617/*
4618 * sysctl handler for numa_zonelist_order
4619 */
cccad5b9 4620int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4621 void __user *buffer, size_t *length,
f0c0b2b8
KH
4622 loff_t *ppos)
4623{
4624 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4625 int ret;
443c6f14 4626 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4627
443c6f14 4628 mutex_lock(&zl_order_mutex);
dacbde09
CG
4629 if (write) {
4630 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4631 ret = -EINVAL;
4632 goto out;
4633 }
4634 strcpy(saved_string, (char *)table->data);
4635 }
8d65af78 4636 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4637 if (ret)
443c6f14 4638 goto out;
f0c0b2b8
KH
4639 if (write) {
4640 int oldval = user_zonelist_order;
dacbde09
CG
4641
4642 ret = __parse_numa_zonelist_order((char *)table->data);
4643 if (ret) {
f0c0b2b8
KH
4644 /*
4645 * bogus value. restore saved string
4646 */
dacbde09 4647 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4648 NUMA_ZONELIST_ORDER_LEN);
4649 user_zonelist_order = oldval;
4eaf3f64
HL
4650 } else if (oldval != user_zonelist_order) {
4651 mutex_lock(&zonelists_mutex);
9adb62a5 4652 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4653 mutex_unlock(&zonelists_mutex);
4654 }
f0c0b2b8 4655 }
443c6f14
AK
4656out:
4657 mutex_unlock(&zl_order_mutex);
4658 return ret;
f0c0b2b8
KH
4659}
4660
4661
62bc62a8 4662#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4663static int node_load[MAX_NUMNODES];
4664
1da177e4 4665/**
4dc3b16b 4666 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4667 * @node: node whose fallback list we're appending
4668 * @used_node_mask: nodemask_t of already used nodes
4669 *
4670 * We use a number of factors to determine which is the next node that should
4671 * appear on a given node's fallback list. The node should not have appeared
4672 * already in @node's fallback list, and it should be the next closest node
4673 * according to the distance array (which contains arbitrary distance values
4674 * from each node to each node in the system), and should also prefer nodes
4675 * with no CPUs, since presumably they'll have very little allocation pressure
4676 * on them otherwise.
4677 * It returns -1 if no node is found.
4678 */
f0c0b2b8 4679static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4680{
4cf808eb 4681 int n, val;
1da177e4 4682 int min_val = INT_MAX;
00ef2d2f 4683 int best_node = NUMA_NO_NODE;
a70f7302 4684 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4685
4cf808eb
LT
4686 /* Use the local node if we haven't already */
4687 if (!node_isset(node, *used_node_mask)) {
4688 node_set(node, *used_node_mask);
4689 return node;
4690 }
1da177e4 4691
4b0ef1fe 4692 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4693
4694 /* Don't want a node to appear more than once */
4695 if (node_isset(n, *used_node_mask))
4696 continue;
4697
1da177e4
LT
4698 /* Use the distance array to find the distance */
4699 val = node_distance(node, n);
4700
4cf808eb
LT
4701 /* Penalize nodes under us ("prefer the next node") */
4702 val += (n < node);
4703
1da177e4 4704 /* Give preference to headless and unused nodes */
a70f7302
RR
4705 tmp = cpumask_of_node(n);
4706 if (!cpumask_empty(tmp))
1da177e4
LT
4707 val += PENALTY_FOR_NODE_WITH_CPUS;
4708
4709 /* Slight preference for less loaded node */
4710 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4711 val += node_load[n];
4712
4713 if (val < min_val) {
4714 min_val = val;
4715 best_node = n;
4716 }
4717 }
4718
4719 if (best_node >= 0)
4720 node_set(best_node, *used_node_mask);
4721
4722 return best_node;
4723}
4724
f0c0b2b8
KH
4725
4726/*
4727 * Build zonelists ordered by node and zones within node.
4728 * This results in maximum locality--normal zone overflows into local
4729 * DMA zone, if any--but risks exhausting DMA zone.
4730 */
4731static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4732{
f0c0b2b8 4733 int j;
1da177e4 4734 struct zonelist *zonelist;
f0c0b2b8 4735
54a6eb5c 4736 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4737 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4738 ;
bc732f1d 4739 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4740 zonelist->_zonerefs[j].zone = NULL;
4741 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4742}
4743
523b9458
CL
4744/*
4745 * Build gfp_thisnode zonelists
4746 */
4747static void build_thisnode_zonelists(pg_data_t *pgdat)
4748{
523b9458
CL
4749 int j;
4750 struct zonelist *zonelist;
4751
54a6eb5c 4752 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4753 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4754 zonelist->_zonerefs[j].zone = NULL;
4755 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4756}
4757
f0c0b2b8
KH
4758/*
4759 * Build zonelists ordered by zone and nodes within zones.
4760 * This results in conserving DMA zone[s] until all Normal memory is
4761 * exhausted, but results in overflowing to remote node while memory
4762 * may still exist in local DMA zone.
4763 */
4764static int node_order[MAX_NUMNODES];
4765
4766static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4767{
f0c0b2b8
KH
4768 int pos, j, node;
4769 int zone_type; /* needs to be signed */
4770 struct zone *z;
4771 struct zonelist *zonelist;
4772
54a6eb5c
MG
4773 zonelist = &pgdat->node_zonelists[0];
4774 pos = 0;
4775 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4776 for (j = 0; j < nr_nodes; j++) {
4777 node = node_order[j];
4778 z = &NODE_DATA(node)->node_zones[zone_type];
4779 if (populated_zone(z)) {
dd1a239f
MG
4780 zoneref_set_zone(z,
4781 &zonelist->_zonerefs[pos++]);
54a6eb5c 4782 check_highest_zone(zone_type);
f0c0b2b8
KH
4783 }
4784 }
f0c0b2b8 4785 }
dd1a239f
MG
4786 zonelist->_zonerefs[pos].zone = NULL;
4787 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4788}
4789
3193913c
MG
4790#if defined(CONFIG_64BIT)
4791/*
4792 * Devices that require DMA32/DMA are relatively rare and do not justify a
4793 * penalty to every machine in case the specialised case applies. Default
4794 * to Node-ordering on 64-bit NUMA machines
4795 */
4796static int default_zonelist_order(void)
4797{
4798 return ZONELIST_ORDER_NODE;
4799}
4800#else
4801/*
4802 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4803 * by the kernel. If processes running on node 0 deplete the low memory zone
4804 * then reclaim will occur more frequency increasing stalls and potentially
4805 * be easier to OOM if a large percentage of the zone is under writeback or
4806 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4807 * Hence, default to zone ordering on 32-bit.
4808 */
f0c0b2b8
KH
4809static int default_zonelist_order(void)
4810{
f0c0b2b8
KH
4811 return ZONELIST_ORDER_ZONE;
4812}
3193913c 4813#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4814
4815static void set_zonelist_order(void)
4816{
4817 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4818 current_zonelist_order = default_zonelist_order();
4819 else
4820 current_zonelist_order = user_zonelist_order;
4821}
4822
4823static void build_zonelists(pg_data_t *pgdat)
4824{
c00eb15a 4825 int i, node, load;
1da177e4 4826 nodemask_t used_mask;
f0c0b2b8
KH
4827 int local_node, prev_node;
4828 struct zonelist *zonelist;
d00181b9 4829 unsigned int order = current_zonelist_order;
1da177e4
LT
4830
4831 /* initialize zonelists */
523b9458 4832 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4833 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4834 zonelist->_zonerefs[0].zone = NULL;
4835 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4836 }
4837
4838 /* NUMA-aware ordering of nodes */
4839 local_node = pgdat->node_id;
62bc62a8 4840 load = nr_online_nodes;
1da177e4
LT
4841 prev_node = local_node;
4842 nodes_clear(used_mask);
f0c0b2b8 4843
f0c0b2b8 4844 memset(node_order, 0, sizeof(node_order));
c00eb15a 4845 i = 0;
f0c0b2b8 4846
1da177e4
LT
4847 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4848 /*
4849 * We don't want to pressure a particular node.
4850 * So adding penalty to the first node in same
4851 * distance group to make it round-robin.
4852 */
957f822a
DR
4853 if (node_distance(local_node, node) !=
4854 node_distance(local_node, prev_node))
f0c0b2b8
KH
4855 node_load[node] = load;
4856
1da177e4
LT
4857 prev_node = node;
4858 load--;
f0c0b2b8
KH
4859 if (order == ZONELIST_ORDER_NODE)
4860 build_zonelists_in_node_order(pgdat, node);
4861 else
c00eb15a 4862 node_order[i++] = node; /* remember order */
f0c0b2b8 4863 }
1da177e4 4864
f0c0b2b8
KH
4865 if (order == ZONELIST_ORDER_ZONE) {
4866 /* calculate node order -- i.e., DMA last! */
c00eb15a 4867 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4868 }
523b9458
CL
4869
4870 build_thisnode_zonelists(pgdat);
1da177e4
LT
4871}
4872
7aac7898
LS
4873#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4874/*
4875 * Return node id of node used for "local" allocations.
4876 * I.e., first node id of first zone in arg node's generic zonelist.
4877 * Used for initializing percpu 'numa_mem', which is used primarily
4878 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4879 */
4880int local_memory_node(int node)
4881{
c33d6c06 4882 struct zoneref *z;
7aac7898 4883
c33d6c06 4884 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4885 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4886 NULL);
4887 return z->zone->node;
7aac7898
LS
4888}
4889#endif
f0c0b2b8 4890
1da177e4
LT
4891#else /* CONFIG_NUMA */
4892
f0c0b2b8
KH
4893static void set_zonelist_order(void)
4894{
4895 current_zonelist_order = ZONELIST_ORDER_ZONE;
4896}
4897
4898static void build_zonelists(pg_data_t *pgdat)
1da177e4 4899{
19655d34 4900 int node, local_node;
54a6eb5c
MG
4901 enum zone_type j;
4902 struct zonelist *zonelist;
1da177e4
LT
4903
4904 local_node = pgdat->node_id;
1da177e4 4905
54a6eb5c 4906 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4907 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4908
54a6eb5c
MG
4909 /*
4910 * Now we build the zonelist so that it contains the zones
4911 * of all the other nodes.
4912 * We don't want to pressure a particular node, so when
4913 * building the zones for node N, we make sure that the
4914 * zones coming right after the local ones are those from
4915 * node N+1 (modulo N)
4916 */
4917 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4918 if (!node_online(node))
4919 continue;
bc732f1d 4920 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4921 }
54a6eb5c
MG
4922 for (node = 0; node < local_node; node++) {
4923 if (!node_online(node))
4924 continue;
bc732f1d 4925 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4926 }
4927
dd1a239f
MG
4928 zonelist->_zonerefs[j].zone = NULL;
4929 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4930}
4931
4932#endif /* CONFIG_NUMA */
4933
99dcc3e5
CL
4934/*
4935 * Boot pageset table. One per cpu which is going to be used for all
4936 * zones and all nodes. The parameters will be set in such a way
4937 * that an item put on a list will immediately be handed over to
4938 * the buddy list. This is safe since pageset manipulation is done
4939 * with interrupts disabled.
4940 *
4941 * The boot_pagesets must be kept even after bootup is complete for
4942 * unused processors and/or zones. They do play a role for bootstrapping
4943 * hotplugged processors.
4944 *
4945 * zoneinfo_show() and maybe other functions do
4946 * not check if the processor is online before following the pageset pointer.
4947 * Other parts of the kernel may not check if the zone is available.
4948 */
4949static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4950static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4951static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4952
4eaf3f64
HL
4953/*
4954 * Global mutex to protect against size modification of zonelists
4955 * as well as to serialize pageset setup for the new populated zone.
4956 */
4957DEFINE_MUTEX(zonelists_mutex);
4958
9b1a4d38 4959/* return values int ....just for stop_machine() */
4ed7e022 4960static int __build_all_zonelists(void *data)
1da177e4 4961{
6811378e 4962 int nid;
99dcc3e5 4963 int cpu;
9adb62a5 4964 pg_data_t *self = data;
9276b1bc 4965
7f9cfb31
BL
4966#ifdef CONFIG_NUMA
4967 memset(node_load, 0, sizeof(node_load));
4968#endif
9adb62a5
JL
4969
4970 if (self && !node_online(self->node_id)) {
4971 build_zonelists(self);
9adb62a5
JL
4972 }
4973
9276b1bc 4974 for_each_online_node(nid) {
7ea1530a
CL
4975 pg_data_t *pgdat = NODE_DATA(nid);
4976
4977 build_zonelists(pgdat);
9276b1bc 4978 }
99dcc3e5
CL
4979
4980 /*
4981 * Initialize the boot_pagesets that are going to be used
4982 * for bootstrapping processors. The real pagesets for
4983 * each zone will be allocated later when the per cpu
4984 * allocator is available.
4985 *
4986 * boot_pagesets are used also for bootstrapping offline
4987 * cpus if the system is already booted because the pagesets
4988 * are needed to initialize allocators on a specific cpu too.
4989 * F.e. the percpu allocator needs the page allocator which
4990 * needs the percpu allocator in order to allocate its pagesets
4991 * (a chicken-egg dilemma).
4992 */
7aac7898 4993 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4994 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4995
7aac7898
LS
4996#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4997 /*
4998 * We now know the "local memory node" for each node--
4999 * i.e., the node of the first zone in the generic zonelist.
5000 * Set up numa_mem percpu variable for on-line cpus. During
5001 * boot, only the boot cpu should be on-line; we'll init the
5002 * secondary cpus' numa_mem as they come on-line. During
5003 * node/memory hotplug, we'll fixup all on-line cpus.
5004 */
5005 if (cpu_online(cpu))
5006 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5007#endif
5008 }
5009
6811378e
YG
5010 return 0;
5011}
5012
061f67bc
RV
5013static noinline void __init
5014build_all_zonelists_init(void)
5015{
5016 __build_all_zonelists(NULL);
5017 mminit_verify_zonelist();
5018 cpuset_init_current_mems_allowed();
5019}
5020
4eaf3f64
HL
5021/*
5022 * Called with zonelists_mutex held always
5023 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5024 *
5025 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5026 * [we're only called with non-NULL zone through __meminit paths] and
5027 * (2) call of __init annotated helper build_all_zonelists_init
5028 * [protected by SYSTEM_BOOTING].
4eaf3f64 5029 */
9adb62a5 5030void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5031{
f0c0b2b8
KH
5032 set_zonelist_order();
5033
6811378e 5034 if (system_state == SYSTEM_BOOTING) {
061f67bc 5035 build_all_zonelists_init();
6811378e 5036 } else {
e9959f0f 5037#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5038 if (zone)
5039 setup_zone_pageset(zone);
e9959f0f 5040#endif
dd1895e2
CS
5041 /* we have to stop all cpus to guarantee there is no user
5042 of zonelist */
9adb62a5 5043 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5044 /* cpuset refresh routine should be here */
5045 }
bd1e22b8 5046 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5047 /*
5048 * Disable grouping by mobility if the number of pages in the
5049 * system is too low to allow the mechanism to work. It would be
5050 * more accurate, but expensive to check per-zone. This check is
5051 * made on memory-hotadd so a system can start with mobility
5052 * disabled and enable it later
5053 */
d9c23400 5054 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5055 page_group_by_mobility_disabled = 1;
5056 else
5057 page_group_by_mobility_disabled = 0;
5058
756a025f
JP
5059 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5060 nr_online_nodes,
5061 zonelist_order_name[current_zonelist_order],
5062 page_group_by_mobility_disabled ? "off" : "on",
5063 vm_total_pages);
f0c0b2b8 5064#ifdef CONFIG_NUMA
f88dfff5 5065 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5066#endif
1da177e4
LT
5067}
5068
5069/*
5070 * Helper functions to size the waitqueue hash table.
5071 * Essentially these want to choose hash table sizes sufficiently
5072 * large so that collisions trying to wait on pages are rare.
5073 * But in fact, the number of active page waitqueues on typical
5074 * systems is ridiculously low, less than 200. So this is even
5075 * conservative, even though it seems large.
5076 *
5077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5078 * waitqueues, i.e. the size of the waitq table given the number of pages.
5079 */
5080#define PAGES_PER_WAITQUEUE 256
5081
cca448fe 5082#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5083static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5084{
5085 unsigned long size = 1;
5086
5087 pages /= PAGES_PER_WAITQUEUE;
5088
5089 while (size < pages)
5090 size <<= 1;
5091
5092 /*
5093 * Once we have dozens or even hundreds of threads sleeping
5094 * on IO we've got bigger problems than wait queue collision.
5095 * Limit the size of the wait table to a reasonable size.
5096 */
5097 size = min(size, 4096UL);
5098
5099 return max(size, 4UL);
5100}
cca448fe
YG
5101#else
5102/*
5103 * A zone's size might be changed by hot-add, so it is not possible to determine
5104 * a suitable size for its wait_table. So we use the maximum size now.
5105 *
5106 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5107 *
5108 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5109 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5110 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5111 *
5112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5113 * or more by the traditional way. (See above). It equals:
5114 *
5115 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5116 * ia64(16K page size) : = ( 8G + 4M)byte.
5117 * powerpc (64K page size) : = (32G +16M)byte.
5118 */
5119static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5120{
5121 return 4096UL;
5122}
5123#endif
1da177e4
LT
5124
5125/*
5126 * This is an integer logarithm so that shifts can be used later
5127 * to extract the more random high bits from the multiplicative
5128 * hash function before the remainder is taken.
5129 */
5130static inline unsigned long wait_table_bits(unsigned long size)
5131{
5132 return ffz(~size);
5133}
5134
1da177e4
LT
5135/*
5136 * Initially all pages are reserved - free ones are freed
5137 * up by free_all_bootmem() once the early boot process is
5138 * done. Non-atomic initialization, single-pass.
5139 */
c09b4240 5140void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5141 unsigned long start_pfn, enum memmap_context context)
1da177e4 5142{
4b94ffdc 5143 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5144 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5145 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5146 unsigned long pfn;
3a80a7fa 5147 unsigned long nr_initialised = 0;
342332e6
TI
5148#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5149 struct memblock_region *r = NULL, *tmp;
5150#endif
1da177e4 5151
22b31eec
HD
5152 if (highest_memmap_pfn < end_pfn - 1)
5153 highest_memmap_pfn = end_pfn - 1;
5154
4b94ffdc
DW
5155 /*
5156 * Honor reservation requested by the driver for this ZONE_DEVICE
5157 * memory
5158 */
5159 if (altmap && start_pfn == altmap->base_pfn)
5160 start_pfn += altmap->reserve;
5161
cbe8dd4a 5162 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5163 /*
b72d0ffb
AM
5164 * There can be holes in boot-time mem_map[]s handed to this
5165 * function. They do not exist on hotplugged memory.
a2f3aa02 5166 */
b72d0ffb
AM
5167 if (context != MEMMAP_EARLY)
5168 goto not_early;
5169
5170 if (!early_pfn_valid(pfn))
5171 continue;
5172 if (!early_pfn_in_nid(pfn, nid))
5173 continue;
5174 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5175 break;
342332e6
TI
5176
5177#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5178 /*
5179 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5180 * from zone_movable_pfn[nid] to end of each node should be
5181 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5182 */
5183 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5184 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5185 continue;
342332e6 5186
b72d0ffb
AM
5187 /*
5188 * Check given memblock attribute by firmware which can affect
5189 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5190 * mirrored, it's an overlapped memmap init. skip it.
5191 */
5192 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5193 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5194 for_each_memblock(memory, tmp)
5195 if (pfn < memblock_region_memory_end_pfn(tmp))
5196 break;
5197 r = tmp;
5198 }
5199 if (pfn >= memblock_region_memory_base_pfn(r) &&
5200 memblock_is_mirror(r)) {
5201 /* already initialized as NORMAL */
5202 pfn = memblock_region_memory_end_pfn(r);
5203 continue;
342332e6 5204 }
a2f3aa02 5205 }
b72d0ffb 5206#endif
ac5d2539 5207
b72d0ffb 5208not_early:
ac5d2539
MG
5209 /*
5210 * Mark the block movable so that blocks are reserved for
5211 * movable at startup. This will force kernel allocations
5212 * to reserve their blocks rather than leaking throughout
5213 * the address space during boot when many long-lived
974a786e 5214 * kernel allocations are made.
ac5d2539
MG
5215 *
5216 * bitmap is created for zone's valid pfn range. but memmap
5217 * can be created for invalid pages (for alignment)
5218 * check here not to call set_pageblock_migratetype() against
5219 * pfn out of zone.
5220 */
5221 if (!(pfn & (pageblock_nr_pages - 1))) {
5222 struct page *page = pfn_to_page(pfn);
5223
5224 __init_single_page(page, pfn, zone, nid);
5225 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5226 } else {
5227 __init_single_pfn(pfn, zone, nid);
5228 }
1da177e4
LT
5229 }
5230}
5231
1e548deb 5232static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5233{
7aeb09f9 5234 unsigned int order, t;
b2a0ac88
MG
5235 for_each_migratetype_order(order, t) {
5236 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5237 zone->free_area[order].nr_free = 0;
5238 }
5239}
5240
5241#ifndef __HAVE_ARCH_MEMMAP_INIT
5242#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5243 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5244#endif
5245
7cd2b0a3 5246static int zone_batchsize(struct zone *zone)
e7c8d5c9 5247{
3a6be87f 5248#ifdef CONFIG_MMU
e7c8d5c9
CL
5249 int batch;
5250
5251 /*
5252 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5253 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5254 *
5255 * OK, so we don't know how big the cache is. So guess.
5256 */
b40da049 5257 batch = zone->managed_pages / 1024;
ba56e91c
SR
5258 if (batch * PAGE_SIZE > 512 * 1024)
5259 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5260 batch /= 4; /* We effectively *= 4 below */
5261 if (batch < 1)
5262 batch = 1;
5263
5264 /*
0ceaacc9
NP
5265 * Clamp the batch to a 2^n - 1 value. Having a power
5266 * of 2 value was found to be more likely to have
5267 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5268 *
0ceaacc9
NP
5269 * For example if 2 tasks are alternately allocating
5270 * batches of pages, one task can end up with a lot
5271 * of pages of one half of the possible page colors
5272 * and the other with pages of the other colors.
e7c8d5c9 5273 */
9155203a 5274 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5275
e7c8d5c9 5276 return batch;
3a6be87f
DH
5277
5278#else
5279 /* The deferral and batching of frees should be suppressed under NOMMU
5280 * conditions.
5281 *
5282 * The problem is that NOMMU needs to be able to allocate large chunks
5283 * of contiguous memory as there's no hardware page translation to
5284 * assemble apparent contiguous memory from discontiguous pages.
5285 *
5286 * Queueing large contiguous runs of pages for batching, however,
5287 * causes the pages to actually be freed in smaller chunks. As there
5288 * can be a significant delay between the individual batches being
5289 * recycled, this leads to the once large chunks of space being
5290 * fragmented and becoming unavailable for high-order allocations.
5291 */
5292 return 0;
5293#endif
e7c8d5c9
CL
5294}
5295
8d7a8fa9
CS
5296/*
5297 * pcp->high and pcp->batch values are related and dependent on one another:
5298 * ->batch must never be higher then ->high.
5299 * The following function updates them in a safe manner without read side
5300 * locking.
5301 *
5302 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5303 * those fields changing asynchronously (acording the the above rule).
5304 *
5305 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5306 * outside of boot time (or some other assurance that no concurrent updaters
5307 * exist).
5308 */
5309static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5310 unsigned long batch)
5311{
5312 /* start with a fail safe value for batch */
5313 pcp->batch = 1;
5314 smp_wmb();
5315
5316 /* Update high, then batch, in order */
5317 pcp->high = high;
5318 smp_wmb();
5319
5320 pcp->batch = batch;
5321}
5322
3664033c 5323/* a companion to pageset_set_high() */
4008bab7
CS
5324static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5325{
8d7a8fa9 5326 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5327}
5328
88c90dbc 5329static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5330{
5331 struct per_cpu_pages *pcp;
5f8dcc21 5332 int migratetype;
2caaad41 5333
1c6fe946
MD
5334 memset(p, 0, sizeof(*p));
5335
3dfa5721 5336 pcp = &p->pcp;
2caaad41 5337 pcp->count = 0;
5f8dcc21
MG
5338 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5339 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5340}
5341
88c90dbc
CS
5342static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5343{
5344 pageset_init(p);
5345 pageset_set_batch(p, batch);
5346}
5347
8ad4b1fb 5348/*
3664033c 5349 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5350 * to the value high for the pageset p.
5351 */
3664033c 5352static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5353 unsigned long high)
5354{
8d7a8fa9
CS
5355 unsigned long batch = max(1UL, high / 4);
5356 if ((high / 4) > (PAGE_SHIFT * 8))
5357 batch = PAGE_SHIFT * 8;
8ad4b1fb 5358
8d7a8fa9 5359 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5360}
5361
7cd2b0a3
DR
5362static void pageset_set_high_and_batch(struct zone *zone,
5363 struct per_cpu_pageset *pcp)
56cef2b8 5364{
56cef2b8 5365 if (percpu_pagelist_fraction)
3664033c 5366 pageset_set_high(pcp,
56cef2b8
CS
5367 (zone->managed_pages /
5368 percpu_pagelist_fraction));
5369 else
5370 pageset_set_batch(pcp, zone_batchsize(zone));
5371}
5372
169f6c19
CS
5373static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5374{
5375 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5376
5377 pageset_init(pcp);
5378 pageset_set_high_and_batch(zone, pcp);
5379}
5380
4ed7e022 5381static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5382{
5383 int cpu;
319774e2 5384 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5385 for_each_possible_cpu(cpu)
5386 zone_pageset_init(zone, cpu);
319774e2
WF
5387}
5388
2caaad41 5389/*
99dcc3e5
CL
5390 * Allocate per cpu pagesets and initialize them.
5391 * Before this call only boot pagesets were available.
e7c8d5c9 5392 */
99dcc3e5 5393void __init setup_per_cpu_pageset(void)
e7c8d5c9 5394{
99dcc3e5 5395 struct zone *zone;
e7c8d5c9 5396
319774e2
WF
5397 for_each_populated_zone(zone)
5398 setup_zone_pageset(zone);
e7c8d5c9
CL
5399}
5400
577a32f6 5401static noinline __init_refok
cca448fe 5402int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5403{
5404 int i;
cca448fe 5405 size_t alloc_size;
ed8ece2e
DH
5406
5407 /*
5408 * The per-page waitqueue mechanism uses hashed waitqueues
5409 * per zone.
5410 */
02b694de
YG
5411 zone->wait_table_hash_nr_entries =
5412 wait_table_hash_nr_entries(zone_size_pages);
5413 zone->wait_table_bits =
5414 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5415 alloc_size = zone->wait_table_hash_nr_entries
5416 * sizeof(wait_queue_head_t);
5417
cd94b9db 5418 if (!slab_is_available()) {
cca448fe 5419 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5420 memblock_virt_alloc_node_nopanic(
5421 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5422 } else {
5423 /*
5424 * This case means that a zone whose size was 0 gets new memory
5425 * via memory hot-add.
5426 * But it may be the case that a new node was hot-added. In
5427 * this case vmalloc() will not be able to use this new node's
5428 * memory - this wait_table must be initialized to use this new
5429 * node itself as well.
5430 * To use this new node's memory, further consideration will be
5431 * necessary.
5432 */
8691f3a7 5433 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5434 }
5435 if (!zone->wait_table)
5436 return -ENOMEM;
ed8ece2e 5437
b8af2941 5438 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5439 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5440
5441 return 0;
ed8ece2e
DH
5442}
5443
c09b4240 5444static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5445{
99dcc3e5
CL
5446 /*
5447 * per cpu subsystem is not up at this point. The following code
5448 * relies on the ability of the linker to provide the
5449 * offset of a (static) per cpu variable into the per cpu area.
5450 */
5451 zone->pageset = &boot_pageset;
ed8ece2e 5452
b38a8725 5453 if (populated_zone(zone))
99dcc3e5
CL
5454 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5455 zone->name, zone->present_pages,
5456 zone_batchsize(zone));
ed8ece2e
DH
5457}
5458
4ed7e022 5459int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5460 unsigned long zone_start_pfn,
b171e409 5461 unsigned long size)
ed8ece2e
DH
5462{
5463 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5464 int ret;
5465 ret = zone_wait_table_init(zone, size);
5466 if (ret)
5467 return ret;
ed8ece2e
DH
5468 pgdat->nr_zones = zone_idx(zone) + 1;
5469
ed8ece2e
DH
5470 zone->zone_start_pfn = zone_start_pfn;
5471
708614e6
MG
5472 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5473 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5474 pgdat->node_id,
5475 (unsigned long)zone_idx(zone),
5476 zone_start_pfn, (zone_start_pfn + size));
5477
1e548deb 5478 zone_init_free_lists(zone);
718127cc
YG
5479
5480 return 0;
ed8ece2e
DH
5481}
5482
0ee332c1 5483#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5484#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5485
c713216d
MG
5486/*
5487 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5488 */
8a942fde
MG
5489int __meminit __early_pfn_to_nid(unsigned long pfn,
5490 struct mminit_pfnnid_cache *state)
c713216d 5491{
c13291a5 5492 unsigned long start_pfn, end_pfn;
e76b63f8 5493 int nid;
7c243c71 5494
8a942fde
MG
5495 if (state->last_start <= pfn && pfn < state->last_end)
5496 return state->last_nid;
c713216d 5497
e76b63f8
YL
5498 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5499 if (nid != -1) {
8a942fde
MG
5500 state->last_start = start_pfn;
5501 state->last_end = end_pfn;
5502 state->last_nid = nid;
e76b63f8
YL
5503 }
5504
5505 return nid;
c713216d
MG
5506}
5507#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5508
c713216d 5509/**
6782832e 5510 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5511 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5512 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5513 *
7d018176
ZZ
5514 * If an architecture guarantees that all ranges registered contain no holes
5515 * and may be freed, this this function may be used instead of calling
5516 * memblock_free_early_nid() manually.
c713216d 5517 */
c13291a5 5518void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5519{
c13291a5
TH
5520 unsigned long start_pfn, end_pfn;
5521 int i, this_nid;
edbe7d23 5522
c13291a5
TH
5523 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5524 start_pfn = min(start_pfn, max_low_pfn);
5525 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5526
c13291a5 5527 if (start_pfn < end_pfn)
6782832e
SS
5528 memblock_free_early_nid(PFN_PHYS(start_pfn),
5529 (end_pfn - start_pfn) << PAGE_SHIFT,
5530 this_nid);
edbe7d23 5531 }
edbe7d23 5532}
edbe7d23 5533
c713216d
MG
5534/**
5535 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5536 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5537 *
7d018176
ZZ
5538 * If an architecture guarantees that all ranges registered contain no holes and may
5539 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5540 */
5541void __init sparse_memory_present_with_active_regions(int nid)
5542{
c13291a5
TH
5543 unsigned long start_pfn, end_pfn;
5544 int i, this_nid;
c713216d 5545
c13291a5
TH
5546 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5547 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5548}
5549
5550/**
5551 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5552 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5553 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5554 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5555 *
5556 * It returns the start and end page frame of a node based on information
7d018176 5557 * provided by memblock_set_node(). If called for a node
c713216d 5558 * with no available memory, a warning is printed and the start and end
88ca3b94 5559 * PFNs will be 0.
c713216d 5560 */
a3142c8e 5561void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5562 unsigned long *start_pfn, unsigned long *end_pfn)
5563{
c13291a5 5564 unsigned long this_start_pfn, this_end_pfn;
c713216d 5565 int i;
c13291a5 5566
c713216d
MG
5567 *start_pfn = -1UL;
5568 *end_pfn = 0;
5569
c13291a5
TH
5570 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5571 *start_pfn = min(*start_pfn, this_start_pfn);
5572 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5573 }
5574
633c0666 5575 if (*start_pfn == -1UL)
c713216d 5576 *start_pfn = 0;
c713216d
MG
5577}
5578
2a1e274a
MG
5579/*
5580 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5581 * assumption is made that zones within a node are ordered in monotonic
5582 * increasing memory addresses so that the "highest" populated zone is used
5583 */
b69a7288 5584static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5585{
5586 int zone_index;
5587 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5588 if (zone_index == ZONE_MOVABLE)
5589 continue;
5590
5591 if (arch_zone_highest_possible_pfn[zone_index] >
5592 arch_zone_lowest_possible_pfn[zone_index])
5593 break;
5594 }
5595
5596 VM_BUG_ON(zone_index == -1);
5597 movable_zone = zone_index;
5598}
5599
5600/*
5601 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5602 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5603 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5604 * in each node depending on the size of each node and how evenly kernelcore
5605 * is distributed. This helper function adjusts the zone ranges
5606 * provided by the architecture for a given node by using the end of the
5607 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5608 * zones within a node are in order of monotonic increases memory addresses
5609 */
b69a7288 5610static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5611 unsigned long zone_type,
5612 unsigned long node_start_pfn,
5613 unsigned long node_end_pfn,
5614 unsigned long *zone_start_pfn,
5615 unsigned long *zone_end_pfn)
5616{
5617 /* Only adjust if ZONE_MOVABLE is on this node */
5618 if (zone_movable_pfn[nid]) {
5619 /* Size ZONE_MOVABLE */
5620 if (zone_type == ZONE_MOVABLE) {
5621 *zone_start_pfn = zone_movable_pfn[nid];
5622 *zone_end_pfn = min(node_end_pfn,
5623 arch_zone_highest_possible_pfn[movable_zone]);
5624
2a1e274a
MG
5625 /* Check if this whole range is within ZONE_MOVABLE */
5626 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5627 *zone_start_pfn = *zone_end_pfn;
5628 }
5629}
5630
c713216d
MG
5631/*
5632 * Return the number of pages a zone spans in a node, including holes
5633 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5634 */
6ea6e688 5635static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5636 unsigned long zone_type,
7960aedd
ZY
5637 unsigned long node_start_pfn,
5638 unsigned long node_end_pfn,
d91749c1
TI
5639 unsigned long *zone_start_pfn,
5640 unsigned long *zone_end_pfn,
c713216d
MG
5641 unsigned long *ignored)
5642{
b5685e92 5643 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5644 if (!node_start_pfn && !node_end_pfn)
5645 return 0;
5646
7960aedd 5647 /* Get the start and end of the zone */
d91749c1
TI
5648 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5649 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5650 adjust_zone_range_for_zone_movable(nid, zone_type,
5651 node_start_pfn, node_end_pfn,
d91749c1 5652 zone_start_pfn, zone_end_pfn);
c713216d
MG
5653
5654 /* Check that this node has pages within the zone's required range */
d91749c1 5655 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5656 return 0;
5657
5658 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5659 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5660 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5661
5662 /* Return the spanned pages */
d91749c1 5663 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5664}
5665
5666/*
5667 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5668 * then all holes in the requested range will be accounted for.
c713216d 5669 */
32996250 5670unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5671 unsigned long range_start_pfn,
5672 unsigned long range_end_pfn)
5673{
96e907d1
TH
5674 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5675 unsigned long start_pfn, end_pfn;
5676 int i;
c713216d 5677
96e907d1
TH
5678 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5679 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5680 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5681 nr_absent -= end_pfn - start_pfn;
c713216d 5682 }
96e907d1 5683 return nr_absent;
c713216d
MG
5684}
5685
5686/**
5687 * absent_pages_in_range - Return number of page frames in holes within a range
5688 * @start_pfn: The start PFN to start searching for holes
5689 * @end_pfn: The end PFN to stop searching for holes
5690 *
88ca3b94 5691 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5692 */
5693unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5694 unsigned long end_pfn)
5695{
5696 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5697}
5698
5699/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5700static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5701 unsigned long zone_type,
7960aedd
ZY
5702 unsigned long node_start_pfn,
5703 unsigned long node_end_pfn,
c713216d
MG
5704 unsigned long *ignored)
5705{
96e907d1
TH
5706 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5707 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5708 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5709 unsigned long nr_absent;
9c7cd687 5710
b5685e92 5711 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5712 if (!node_start_pfn && !node_end_pfn)
5713 return 0;
5714
96e907d1
TH
5715 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5716 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5717
2a1e274a
MG
5718 adjust_zone_range_for_zone_movable(nid, zone_type,
5719 node_start_pfn, node_end_pfn,
5720 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5721 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5722
5723 /*
5724 * ZONE_MOVABLE handling.
5725 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5726 * and vice versa.
5727 */
5728 if (zone_movable_pfn[nid]) {
5729 if (mirrored_kernelcore) {
5730 unsigned long start_pfn, end_pfn;
5731 struct memblock_region *r;
5732
5733 for_each_memblock(memory, r) {
5734 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5735 zone_start_pfn, zone_end_pfn);
5736 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5737 zone_start_pfn, zone_end_pfn);
5738
5739 if (zone_type == ZONE_MOVABLE &&
5740 memblock_is_mirror(r))
5741 nr_absent += end_pfn - start_pfn;
5742
5743 if (zone_type == ZONE_NORMAL &&
5744 !memblock_is_mirror(r))
5745 nr_absent += end_pfn - start_pfn;
5746 }
5747 } else {
5748 if (zone_type == ZONE_NORMAL)
5749 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5750 }
5751 }
5752
5753 return nr_absent;
c713216d 5754}
0e0b864e 5755
0ee332c1 5756#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5757static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5758 unsigned long zone_type,
7960aedd
ZY
5759 unsigned long node_start_pfn,
5760 unsigned long node_end_pfn,
d91749c1
TI
5761 unsigned long *zone_start_pfn,
5762 unsigned long *zone_end_pfn,
c713216d
MG
5763 unsigned long *zones_size)
5764{
d91749c1
TI
5765 unsigned int zone;
5766
5767 *zone_start_pfn = node_start_pfn;
5768 for (zone = 0; zone < zone_type; zone++)
5769 *zone_start_pfn += zones_size[zone];
5770
5771 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5772
c713216d
MG
5773 return zones_size[zone_type];
5774}
5775
6ea6e688 5776static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5777 unsigned long zone_type,
7960aedd
ZY
5778 unsigned long node_start_pfn,
5779 unsigned long node_end_pfn,
c713216d
MG
5780 unsigned long *zholes_size)
5781{
5782 if (!zholes_size)
5783 return 0;
5784
5785 return zholes_size[zone_type];
5786}
20e6926d 5787
0ee332c1 5788#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5789
a3142c8e 5790static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5791 unsigned long node_start_pfn,
5792 unsigned long node_end_pfn,
5793 unsigned long *zones_size,
5794 unsigned long *zholes_size)
c713216d 5795{
febd5949 5796 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5797 enum zone_type i;
5798
febd5949
GZ
5799 for (i = 0; i < MAX_NR_ZONES; i++) {
5800 struct zone *zone = pgdat->node_zones + i;
d91749c1 5801 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5802 unsigned long size, real_size;
c713216d 5803
febd5949
GZ
5804 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5805 node_start_pfn,
5806 node_end_pfn,
d91749c1
TI
5807 &zone_start_pfn,
5808 &zone_end_pfn,
febd5949
GZ
5809 zones_size);
5810 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5811 node_start_pfn, node_end_pfn,
5812 zholes_size);
d91749c1
TI
5813 if (size)
5814 zone->zone_start_pfn = zone_start_pfn;
5815 else
5816 zone->zone_start_pfn = 0;
febd5949
GZ
5817 zone->spanned_pages = size;
5818 zone->present_pages = real_size;
5819
5820 totalpages += size;
5821 realtotalpages += real_size;
5822 }
5823
5824 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5825 pgdat->node_present_pages = realtotalpages;
5826 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5827 realtotalpages);
5828}
5829
835c134e
MG
5830#ifndef CONFIG_SPARSEMEM
5831/*
5832 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5833 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5834 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5835 * round what is now in bits to nearest long in bits, then return it in
5836 * bytes.
5837 */
7c45512d 5838static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5839{
5840 unsigned long usemapsize;
5841
7c45512d 5842 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5843 usemapsize = roundup(zonesize, pageblock_nr_pages);
5844 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5845 usemapsize *= NR_PAGEBLOCK_BITS;
5846 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5847
5848 return usemapsize / 8;
5849}
5850
5851static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5852 struct zone *zone,
5853 unsigned long zone_start_pfn,
5854 unsigned long zonesize)
835c134e 5855{
7c45512d 5856 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5857 zone->pageblock_flags = NULL;
58a01a45 5858 if (usemapsize)
6782832e
SS
5859 zone->pageblock_flags =
5860 memblock_virt_alloc_node_nopanic(usemapsize,
5861 pgdat->node_id);
835c134e
MG
5862}
5863#else
7c45512d
LT
5864static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5865 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5866#endif /* CONFIG_SPARSEMEM */
5867
d9c23400 5868#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5869
d9c23400 5870/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5871void __paginginit set_pageblock_order(void)
d9c23400 5872{
955c1cd7
AM
5873 unsigned int order;
5874
d9c23400
MG
5875 /* Check that pageblock_nr_pages has not already been setup */
5876 if (pageblock_order)
5877 return;
5878
955c1cd7
AM
5879 if (HPAGE_SHIFT > PAGE_SHIFT)
5880 order = HUGETLB_PAGE_ORDER;
5881 else
5882 order = MAX_ORDER - 1;
5883
d9c23400
MG
5884 /*
5885 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5886 * This value may be variable depending on boot parameters on IA64 and
5887 * powerpc.
d9c23400
MG
5888 */
5889 pageblock_order = order;
5890}
5891#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5892
ba72cb8c
MG
5893/*
5894 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5895 * is unused as pageblock_order is set at compile-time. See
5896 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5897 * the kernel config
ba72cb8c 5898 */
15ca220e 5899void __paginginit set_pageblock_order(void)
ba72cb8c 5900{
ba72cb8c 5901}
d9c23400
MG
5902
5903#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5904
01cefaef
JL
5905static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5906 unsigned long present_pages)
5907{
5908 unsigned long pages = spanned_pages;
5909
5910 /*
5911 * Provide a more accurate estimation if there are holes within
5912 * the zone and SPARSEMEM is in use. If there are holes within the
5913 * zone, each populated memory region may cost us one or two extra
5914 * memmap pages due to alignment because memmap pages for each
5915 * populated regions may not naturally algined on page boundary.
5916 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5917 */
5918 if (spanned_pages > present_pages + (present_pages >> 4) &&
5919 IS_ENABLED(CONFIG_SPARSEMEM))
5920 pages = present_pages;
5921
5922 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5923}
5924
1da177e4
LT
5925/*
5926 * Set up the zone data structures:
5927 * - mark all pages reserved
5928 * - mark all memory queues empty
5929 * - clear the memory bitmaps
6527af5d
MK
5930 *
5931 * NOTE: pgdat should get zeroed by caller.
1da177e4 5932 */
7f3eb55b 5933static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5934{
2f1b6248 5935 enum zone_type j;
ed8ece2e 5936 int nid = pgdat->node_id;
718127cc 5937 int ret;
1da177e4 5938
208d54e5 5939 pgdat_resize_init(pgdat);
8177a420
AA
5940#ifdef CONFIG_NUMA_BALANCING
5941 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5942 pgdat->numabalancing_migrate_nr_pages = 0;
5943 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5944#endif
5945#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5946 spin_lock_init(&pgdat->split_queue_lock);
5947 INIT_LIST_HEAD(&pgdat->split_queue);
5948 pgdat->split_queue_len = 0;
8177a420 5949#endif
1da177e4 5950 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5951 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5952#ifdef CONFIG_COMPACTION
5953 init_waitqueue_head(&pgdat->kcompactd_wait);
5954#endif
eefa864b 5955 pgdat_page_ext_init(pgdat);
5f63b720 5956
1da177e4
LT
5957 for (j = 0; j < MAX_NR_ZONES; j++) {
5958 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5959 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5960 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5961
febd5949
GZ
5962 size = zone->spanned_pages;
5963 realsize = freesize = zone->present_pages;
1da177e4 5964
0e0b864e 5965 /*
9feedc9d 5966 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5967 * is used by this zone for memmap. This affects the watermark
5968 * and per-cpu initialisations
5969 */
01cefaef 5970 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5971 if (!is_highmem_idx(j)) {
5972 if (freesize >= memmap_pages) {
5973 freesize -= memmap_pages;
5974 if (memmap_pages)
5975 printk(KERN_DEBUG
5976 " %s zone: %lu pages used for memmap\n",
5977 zone_names[j], memmap_pages);
5978 } else
1170532b 5979 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5980 zone_names[j], memmap_pages, freesize);
5981 }
0e0b864e 5982
6267276f 5983 /* Account for reserved pages */
9feedc9d
JL
5984 if (j == 0 && freesize > dma_reserve) {
5985 freesize -= dma_reserve;
d903ef9f 5986 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5987 zone_names[0], dma_reserve);
0e0b864e
MG
5988 }
5989
98d2b0eb 5990 if (!is_highmem_idx(j))
9feedc9d 5991 nr_kernel_pages += freesize;
01cefaef
JL
5992 /* Charge for highmem memmap if there are enough kernel pages */
5993 else if (nr_kernel_pages > memmap_pages * 2)
5994 nr_kernel_pages -= memmap_pages;
9feedc9d 5995 nr_all_pages += freesize;
1da177e4 5996
9feedc9d
JL
5997 /*
5998 * Set an approximate value for lowmem here, it will be adjusted
5999 * when the bootmem allocator frees pages into the buddy system.
6000 * And all highmem pages will be managed by the buddy system.
6001 */
6002 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6003#ifdef CONFIG_NUMA
d5f541ed 6004 zone->node = nid;
9feedc9d 6005 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 6006 / 100;
9feedc9d 6007 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 6008#endif
1da177e4
LT
6009 zone->name = zone_names[j];
6010 spin_lock_init(&zone->lock);
6011 spin_lock_init(&zone->lru_lock);
bdc8cb98 6012 zone_seqlock_init(zone);
1da177e4 6013 zone->zone_pgdat = pgdat;
ed8ece2e 6014 zone_pcp_init(zone);
81c0a2bb
JW
6015
6016 /* For bootup, initialized properly in watermark setup */
6017 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6018
bea8c150 6019 lruvec_init(&zone->lruvec);
1da177e4
LT
6020 if (!size)
6021 continue;
6022
955c1cd7 6023 set_pageblock_order();
7c45512d 6024 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6025 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6026 BUG_ON(ret);
76cdd58e 6027 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6028 }
6029}
6030
577a32f6 6031static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6032{
b0aeba74 6033 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6034 unsigned long __maybe_unused offset = 0;
6035
1da177e4
LT
6036 /* Skip empty nodes */
6037 if (!pgdat->node_spanned_pages)
6038 return;
6039
d41dee36 6040#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6041 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6042 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6043 /* ia64 gets its own node_mem_map, before this, without bootmem */
6044 if (!pgdat->node_mem_map) {
b0aeba74 6045 unsigned long size, end;
d41dee36
AW
6046 struct page *map;
6047
e984bb43
BP
6048 /*
6049 * The zone's endpoints aren't required to be MAX_ORDER
6050 * aligned but the node_mem_map endpoints must be in order
6051 * for the buddy allocator to function correctly.
6052 */
108bcc96 6053 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6054 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6055 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6056 map = alloc_remap(pgdat->node_id, size);
6057 if (!map)
6782832e
SS
6058 map = memblock_virt_alloc_node_nopanic(size,
6059 pgdat->node_id);
a1c34a3b 6060 pgdat->node_mem_map = map + offset;
1da177e4 6061 }
12d810c1 6062#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6063 /*
6064 * With no DISCONTIG, the global mem_map is just set as node 0's
6065 */
c713216d 6066 if (pgdat == NODE_DATA(0)) {
1da177e4 6067 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6068#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6069 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6070 mem_map -= offset;
0ee332c1 6071#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6072 }
1da177e4 6073#endif
d41dee36 6074#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6075}
6076
9109fb7b
JW
6077void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6078 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6079{
9109fb7b 6080 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6081 unsigned long start_pfn = 0;
6082 unsigned long end_pfn = 0;
9109fb7b 6083
88fdf75d 6084 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6085 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6086
3a80a7fa 6087 reset_deferred_meminit(pgdat);
1da177e4
LT
6088 pgdat->node_id = nid;
6089 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6090#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6091 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6092 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6093 (u64)start_pfn << PAGE_SHIFT,
6094 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6095#else
6096 start_pfn = node_start_pfn;
7960aedd
ZY
6097#endif
6098 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6099 zones_size, zholes_size);
1da177e4
LT
6100
6101 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6102#ifdef CONFIG_FLAT_NODE_MEM_MAP
6103 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6104 nid, (unsigned long)pgdat,
6105 (unsigned long)pgdat->node_mem_map);
6106#endif
1da177e4 6107
7f3eb55b 6108 free_area_init_core(pgdat);
1da177e4
LT
6109}
6110
0ee332c1 6111#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6112
6113#if MAX_NUMNODES > 1
6114/*
6115 * Figure out the number of possible node ids.
6116 */
f9872caf 6117void __init setup_nr_node_ids(void)
418508c1 6118{
904a9553 6119 unsigned int highest;
418508c1 6120
904a9553 6121 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6122 nr_node_ids = highest + 1;
6123}
418508c1
MS
6124#endif
6125
1e01979c
TH
6126/**
6127 * node_map_pfn_alignment - determine the maximum internode alignment
6128 *
6129 * This function should be called after node map is populated and sorted.
6130 * It calculates the maximum power of two alignment which can distinguish
6131 * all the nodes.
6132 *
6133 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6134 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6135 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6136 * shifted, 1GiB is enough and this function will indicate so.
6137 *
6138 * This is used to test whether pfn -> nid mapping of the chosen memory
6139 * model has fine enough granularity to avoid incorrect mapping for the
6140 * populated node map.
6141 *
6142 * Returns the determined alignment in pfn's. 0 if there is no alignment
6143 * requirement (single node).
6144 */
6145unsigned long __init node_map_pfn_alignment(void)
6146{
6147 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6148 unsigned long start, end, mask;
1e01979c 6149 int last_nid = -1;
c13291a5 6150 int i, nid;
1e01979c 6151
c13291a5 6152 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6153 if (!start || last_nid < 0 || last_nid == nid) {
6154 last_nid = nid;
6155 last_end = end;
6156 continue;
6157 }
6158
6159 /*
6160 * Start with a mask granular enough to pin-point to the
6161 * start pfn and tick off bits one-by-one until it becomes
6162 * too coarse to separate the current node from the last.
6163 */
6164 mask = ~((1 << __ffs(start)) - 1);
6165 while (mask && last_end <= (start & (mask << 1)))
6166 mask <<= 1;
6167
6168 /* accumulate all internode masks */
6169 accl_mask |= mask;
6170 }
6171
6172 /* convert mask to number of pages */
6173 return ~accl_mask + 1;
6174}
6175
a6af2bc3 6176/* Find the lowest pfn for a node */
b69a7288 6177static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6178{
a6af2bc3 6179 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6180 unsigned long start_pfn;
6181 int i;
1abbfb41 6182
c13291a5
TH
6183 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6184 min_pfn = min(min_pfn, start_pfn);
c713216d 6185
a6af2bc3 6186 if (min_pfn == ULONG_MAX) {
1170532b 6187 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6188 return 0;
6189 }
6190
6191 return min_pfn;
c713216d
MG
6192}
6193
6194/**
6195 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6196 *
6197 * It returns the minimum PFN based on information provided via
7d018176 6198 * memblock_set_node().
c713216d
MG
6199 */
6200unsigned long __init find_min_pfn_with_active_regions(void)
6201{
6202 return find_min_pfn_for_node(MAX_NUMNODES);
6203}
6204
37b07e41
LS
6205/*
6206 * early_calculate_totalpages()
6207 * Sum pages in active regions for movable zone.
4b0ef1fe 6208 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6209 */
484f51f8 6210static unsigned long __init early_calculate_totalpages(void)
7e63efef 6211{
7e63efef 6212 unsigned long totalpages = 0;
c13291a5
TH
6213 unsigned long start_pfn, end_pfn;
6214 int i, nid;
6215
6216 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6217 unsigned long pages = end_pfn - start_pfn;
7e63efef 6218
37b07e41
LS
6219 totalpages += pages;
6220 if (pages)
4b0ef1fe 6221 node_set_state(nid, N_MEMORY);
37b07e41 6222 }
b8af2941 6223 return totalpages;
7e63efef
MG
6224}
6225
2a1e274a
MG
6226/*
6227 * Find the PFN the Movable zone begins in each node. Kernel memory
6228 * is spread evenly between nodes as long as the nodes have enough
6229 * memory. When they don't, some nodes will have more kernelcore than
6230 * others
6231 */
b224ef85 6232static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6233{
6234 int i, nid;
6235 unsigned long usable_startpfn;
6236 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6237 /* save the state before borrow the nodemask */
4b0ef1fe 6238 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6239 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6240 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6241 struct memblock_region *r;
b2f3eebe
TC
6242
6243 /* Need to find movable_zone earlier when movable_node is specified. */
6244 find_usable_zone_for_movable();
6245
6246 /*
6247 * If movable_node is specified, ignore kernelcore and movablecore
6248 * options.
6249 */
6250 if (movable_node_is_enabled()) {
136199f0
EM
6251 for_each_memblock(memory, r) {
6252 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6253 continue;
6254
136199f0 6255 nid = r->nid;
b2f3eebe 6256
136199f0 6257 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6258 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6259 min(usable_startpfn, zone_movable_pfn[nid]) :
6260 usable_startpfn;
6261 }
6262
6263 goto out2;
6264 }
2a1e274a 6265
342332e6
TI
6266 /*
6267 * If kernelcore=mirror is specified, ignore movablecore option
6268 */
6269 if (mirrored_kernelcore) {
6270 bool mem_below_4gb_not_mirrored = false;
6271
6272 for_each_memblock(memory, r) {
6273 if (memblock_is_mirror(r))
6274 continue;
6275
6276 nid = r->nid;
6277
6278 usable_startpfn = memblock_region_memory_base_pfn(r);
6279
6280 if (usable_startpfn < 0x100000) {
6281 mem_below_4gb_not_mirrored = true;
6282 continue;
6283 }
6284
6285 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6286 min(usable_startpfn, zone_movable_pfn[nid]) :
6287 usable_startpfn;
6288 }
6289
6290 if (mem_below_4gb_not_mirrored)
6291 pr_warn("This configuration results in unmirrored kernel memory.");
6292
6293 goto out2;
6294 }
6295
7e63efef 6296 /*
b2f3eebe 6297 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6298 * kernelcore that corresponds so that memory usable for
6299 * any allocation type is evenly spread. If both kernelcore
6300 * and movablecore are specified, then the value of kernelcore
6301 * will be used for required_kernelcore if it's greater than
6302 * what movablecore would have allowed.
6303 */
6304 if (required_movablecore) {
7e63efef
MG
6305 unsigned long corepages;
6306
6307 /*
6308 * Round-up so that ZONE_MOVABLE is at least as large as what
6309 * was requested by the user
6310 */
6311 required_movablecore =
6312 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6313 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6314 corepages = totalpages - required_movablecore;
6315
6316 required_kernelcore = max(required_kernelcore, corepages);
6317 }
6318
bde304bd
XQ
6319 /*
6320 * If kernelcore was not specified or kernelcore size is larger
6321 * than totalpages, there is no ZONE_MOVABLE.
6322 */
6323 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6324 goto out;
2a1e274a
MG
6325
6326 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6327 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6328
6329restart:
6330 /* Spread kernelcore memory as evenly as possible throughout nodes */
6331 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6332 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6333 unsigned long start_pfn, end_pfn;
6334
2a1e274a
MG
6335 /*
6336 * Recalculate kernelcore_node if the division per node
6337 * now exceeds what is necessary to satisfy the requested
6338 * amount of memory for the kernel
6339 */
6340 if (required_kernelcore < kernelcore_node)
6341 kernelcore_node = required_kernelcore / usable_nodes;
6342
6343 /*
6344 * As the map is walked, we track how much memory is usable
6345 * by the kernel using kernelcore_remaining. When it is
6346 * 0, the rest of the node is usable by ZONE_MOVABLE
6347 */
6348 kernelcore_remaining = kernelcore_node;
6349
6350 /* Go through each range of PFNs within this node */
c13291a5 6351 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6352 unsigned long size_pages;
6353
c13291a5 6354 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6355 if (start_pfn >= end_pfn)
6356 continue;
6357
6358 /* Account for what is only usable for kernelcore */
6359 if (start_pfn < usable_startpfn) {
6360 unsigned long kernel_pages;
6361 kernel_pages = min(end_pfn, usable_startpfn)
6362 - start_pfn;
6363
6364 kernelcore_remaining -= min(kernel_pages,
6365 kernelcore_remaining);
6366 required_kernelcore -= min(kernel_pages,
6367 required_kernelcore);
6368
6369 /* Continue if range is now fully accounted */
6370 if (end_pfn <= usable_startpfn) {
6371
6372 /*
6373 * Push zone_movable_pfn to the end so
6374 * that if we have to rebalance
6375 * kernelcore across nodes, we will
6376 * not double account here
6377 */
6378 zone_movable_pfn[nid] = end_pfn;
6379 continue;
6380 }
6381 start_pfn = usable_startpfn;
6382 }
6383
6384 /*
6385 * The usable PFN range for ZONE_MOVABLE is from
6386 * start_pfn->end_pfn. Calculate size_pages as the
6387 * number of pages used as kernelcore
6388 */
6389 size_pages = end_pfn - start_pfn;
6390 if (size_pages > kernelcore_remaining)
6391 size_pages = kernelcore_remaining;
6392 zone_movable_pfn[nid] = start_pfn + size_pages;
6393
6394 /*
6395 * Some kernelcore has been met, update counts and
6396 * break if the kernelcore for this node has been
b8af2941 6397 * satisfied
2a1e274a
MG
6398 */
6399 required_kernelcore -= min(required_kernelcore,
6400 size_pages);
6401 kernelcore_remaining -= size_pages;
6402 if (!kernelcore_remaining)
6403 break;
6404 }
6405 }
6406
6407 /*
6408 * If there is still required_kernelcore, we do another pass with one
6409 * less node in the count. This will push zone_movable_pfn[nid] further
6410 * along on the nodes that still have memory until kernelcore is
b8af2941 6411 * satisfied
2a1e274a
MG
6412 */
6413 usable_nodes--;
6414 if (usable_nodes && required_kernelcore > usable_nodes)
6415 goto restart;
6416
b2f3eebe 6417out2:
2a1e274a
MG
6418 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6419 for (nid = 0; nid < MAX_NUMNODES; nid++)
6420 zone_movable_pfn[nid] =
6421 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6422
20e6926d 6423out:
66918dcd 6424 /* restore the node_state */
4b0ef1fe 6425 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6426}
6427
4b0ef1fe
LJ
6428/* Any regular or high memory on that node ? */
6429static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6430{
37b07e41
LS
6431 enum zone_type zone_type;
6432
4b0ef1fe
LJ
6433 if (N_MEMORY == N_NORMAL_MEMORY)
6434 return;
6435
6436 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6437 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6438 if (populated_zone(zone)) {
4b0ef1fe
LJ
6439 node_set_state(nid, N_HIGH_MEMORY);
6440 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6441 zone_type <= ZONE_NORMAL)
6442 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6443 break;
6444 }
37b07e41 6445 }
37b07e41
LS
6446}
6447
c713216d
MG
6448/**
6449 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6450 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6451 *
6452 * This will call free_area_init_node() for each active node in the system.
7d018176 6453 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6454 * zone in each node and their holes is calculated. If the maximum PFN
6455 * between two adjacent zones match, it is assumed that the zone is empty.
6456 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6457 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6458 * starts where the previous one ended. For example, ZONE_DMA32 starts
6459 * at arch_max_dma_pfn.
6460 */
6461void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6462{
c13291a5
TH
6463 unsigned long start_pfn, end_pfn;
6464 int i, nid;
a6af2bc3 6465
c713216d
MG
6466 /* Record where the zone boundaries are */
6467 memset(arch_zone_lowest_possible_pfn, 0,
6468 sizeof(arch_zone_lowest_possible_pfn));
6469 memset(arch_zone_highest_possible_pfn, 0,
6470 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6471
6472 start_pfn = find_min_pfn_with_active_regions();
6473
6474 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6475 if (i == ZONE_MOVABLE)
6476 continue;
90cae1fe
OH
6477
6478 end_pfn = max(max_zone_pfn[i], start_pfn);
6479 arch_zone_lowest_possible_pfn[i] = start_pfn;
6480 arch_zone_highest_possible_pfn[i] = end_pfn;
6481
6482 start_pfn = end_pfn;
c713216d 6483 }
2a1e274a
MG
6484 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6485 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6486
6487 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6488 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6489 find_zone_movable_pfns_for_nodes();
c713216d 6490
c713216d 6491 /* Print out the zone ranges */
f88dfff5 6492 pr_info("Zone ranges:\n");
2a1e274a
MG
6493 for (i = 0; i < MAX_NR_ZONES; i++) {
6494 if (i == ZONE_MOVABLE)
6495 continue;
f88dfff5 6496 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6497 if (arch_zone_lowest_possible_pfn[i] ==
6498 arch_zone_highest_possible_pfn[i])
f88dfff5 6499 pr_cont("empty\n");
72f0ba02 6500 else
8d29e18a
JG
6501 pr_cont("[mem %#018Lx-%#018Lx]\n",
6502 (u64)arch_zone_lowest_possible_pfn[i]
6503 << PAGE_SHIFT,
6504 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6505 << PAGE_SHIFT) - 1);
2a1e274a
MG
6506 }
6507
6508 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6509 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6510 for (i = 0; i < MAX_NUMNODES; i++) {
6511 if (zone_movable_pfn[i])
8d29e18a
JG
6512 pr_info(" Node %d: %#018Lx\n", i,
6513 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6514 }
c713216d 6515
f2d52fe5 6516 /* Print out the early node map */
f88dfff5 6517 pr_info("Early memory node ranges\n");
c13291a5 6518 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6519 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6520 (u64)start_pfn << PAGE_SHIFT,
6521 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6522
6523 /* Initialise every node */
708614e6 6524 mminit_verify_pageflags_layout();
8ef82866 6525 setup_nr_node_ids();
c713216d
MG
6526 for_each_online_node(nid) {
6527 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6528 free_area_init_node(nid, NULL,
c713216d 6529 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6530
6531 /* Any memory on that node */
6532 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6533 node_set_state(nid, N_MEMORY);
6534 check_for_memory(pgdat, nid);
c713216d
MG
6535 }
6536}
2a1e274a 6537
7e63efef 6538static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6539{
6540 unsigned long long coremem;
6541 if (!p)
6542 return -EINVAL;
6543
6544 coremem = memparse(p, &p);
7e63efef 6545 *core = coremem >> PAGE_SHIFT;
2a1e274a 6546
7e63efef 6547 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6548 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6549
6550 return 0;
6551}
ed7ed365 6552
7e63efef
MG
6553/*
6554 * kernelcore=size sets the amount of memory for use for allocations that
6555 * cannot be reclaimed or migrated.
6556 */
6557static int __init cmdline_parse_kernelcore(char *p)
6558{
342332e6
TI
6559 /* parse kernelcore=mirror */
6560 if (parse_option_str(p, "mirror")) {
6561 mirrored_kernelcore = true;
6562 return 0;
6563 }
6564
7e63efef
MG
6565 return cmdline_parse_core(p, &required_kernelcore);
6566}
6567
6568/*
6569 * movablecore=size sets the amount of memory for use for allocations that
6570 * can be reclaimed or migrated.
6571 */
6572static int __init cmdline_parse_movablecore(char *p)
6573{
6574 return cmdline_parse_core(p, &required_movablecore);
6575}
6576
ed7ed365 6577early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6578early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6579
0ee332c1 6580#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6581
c3d5f5f0
JL
6582void adjust_managed_page_count(struct page *page, long count)
6583{
6584 spin_lock(&managed_page_count_lock);
6585 page_zone(page)->managed_pages += count;
6586 totalram_pages += count;
3dcc0571
JL
6587#ifdef CONFIG_HIGHMEM
6588 if (PageHighMem(page))
6589 totalhigh_pages += count;
6590#endif
c3d5f5f0
JL
6591 spin_unlock(&managed_page_count_lock);
6592}
3dcc0571 6593EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6594
11199692 6595unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6596{
11199692
JL
6597 void *pos;
6598 unsigned long pages = 0;
69afade7 6599
11199692
JL
6600 start = (void *)PAGE_ALIGN((unsigned long)start);
6601 end = (void *)((unsigned long)end & PAGE_MASK);
6602 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6603 if ((unsigned int)poison <= 0xFF)
11199692
JL
6604 memset(pos, poison, PAGE_SIZE);
6605 free_reserved_page(virt_to_page(pos));
69afade7
JL
6606 }
6607
6608 if (pages && s)
11199692 6609 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6610 s, pages << (PAGE_SHIFT - 10), start, end);
6611
6612 return pages;
6613}
11199692 6614EXPORT_SYMBOL(free_reserved_area);
69afade7 6615
cfa11e08
JL
6616#ifdef CONFIG_HIGHMEM
6617void free_highmem_page(struct page *page)
6618{
6619 __free_reserved_page(page);
6620 totalram_pages++;
7b4b2a0d 6621 page_zone(page)->managed_pages++;
cfa11e08
JL
6622 totalhigh_pages++;
6623}
6624#endif
6625
7ee3d4e8
JL
6626
6627void __init mem_init_print_info(const char *str)
6628{
6629 unsigned long physpages, codesize, datasize, rosize, bss_size;
6630 unsigned long init_code_size, init_data_size;
6631
6632 physpages = get_num_physpages();
6633 codesize = _etext - _stext;
6634 datasize = _edata - _sdata;
6635 rosize = __end_rodata - __start_rodata;
6636 bss_size = __bss_stop - __bss_start;
6637 init_data_size = __init_end - __init_begin;
6638 init_code_size = _einittext - _sinittext;
6639
6640 /*
6641 * Detect special cases and adjust section sizes accordingly:
6642 * 1) .init.* may be embedded into .data sections
6643 * 2) .init.text.* may be out of [__init_begin, __init_end],
6644 * please refer to arch/tile/kernel/vmlinux.lds.S.
6645 * 3) .rodata.* may be embedded into .text or .data sections.
6646 */
6647#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6648 do { \
6649 if (start <= pos && pos < end && size > adj) \
6650 size -= adj; \
6651 } while (0)
7ee3d4e8
JL
6652
6653 adj_init_size(__init_begin, __init_end, init_data_size,
6654 _sinittext, init_code_size);
6655 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6656 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6657 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6658 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6659
6660#undef adj_init_size
6661
756a025f 6662 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6663#ifdef CONFIG_HIGHMEM
756a025f 6664 ", %luK highmem"
7ee3d4e8 6665#endif
756a025f
JP
6666 "%s%s)\n",
6667 nr_free_pages() << (PAGE_SHIFT - 10),
6668 physpages << (PAGE_SHIFT - 10),
6669 codesize >> 10, datasize >> 10, rosize >> 10,
6670 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6671 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6672 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6673#ifdef CONFIG_HIGHMEM
756a025f 6674 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6675#endif
756a025f 6676 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6677}
6678
0e0b864e 6679/**
88ca3b94
RD
6680 * set_dma_reserve - set the specified number of pages reserved in the first zone
6681 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6682 *
013110a7 6683 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6684 * In the DMA zone, a significant percentage may be consumed by kernel image
6685 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6686 * function may optionally be used to account for unfreeable pages in the
6687 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6688 * smaller per-cpu batchsize.
0e0b864e
MG
6689 */
6690void __init set_dma_reserve(unsigned long new_dma_reserve)
6691{
6692 dma_reserve = new_dma_reserve;
6693}
6694
1da177e4
LT
6695void __init free_area_init(unsigned long *zones_size)
6696{
9109fb7b 6697 free_area_init_node(0, zones_size,
1da177e4
LT
6698 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6699}
1da177e4 6700
1da177e4
LT
6701static int page_alloc_cpu_notify(struct notifier_block *self,
6702 unsigned long action, void *hcpu)
6703{
6704 int cpu = (unsigned long)hcpu;
1da177e4 6705
8bb78442 6706 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6707 lru_add_drain_cpu(cpu);
9f8f2172
CL
6708 drain_pages(cpu);
6709
6710 /*
6711 * Spill the event counters of the dead processor
6712 * into the current processors event counters.
6713 * This artificially elevates the count of the current
6714 * processor.
6715 */
f8891e5e 6716 vm_events_fold_cpu(cpu);
9f8f2172
CL
6717
6718 /*
6719 * Zero the differential counters of the dead processor
6720 * so that the vm statistics are consistent.
6721 *
6722 * This is only okay since the processor is dead and cannot
6723 * race with what we are doing.
6724 */
2bb921e5 6725 cpu_vm_stats_fold(cpu);
1da177e4
LT
6726 }
6727 return NOTIFY_OK;
6728}
1da177e4
LT
6729
6730void __init page_alloc_init(void)
6731{
6732 hotcpu_notifier(page_alloc_cpu_notify, 0);
6733}
6734
cb45b0e9 6735/*
34b10060 6736 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6737 * or min_free_kbytes changes.
6738 */
6739static void calculate_totalreserve_pages(void)
6740{
6741 struct pglist_data *pgdat;
6742 unsigned long reserve_pages = 0;
2f6726e5 6743 enum zone_type i, j;
cb45b0e9
HA
6744
6745 for_each_online_pgdat(pgdat) {
6746 for (i = 0; i < MAX_NR_ZONES; i++) {
6747 struct zone *zone = pgdat->node_zones + i;
3484b2de 6748 long max = 0;
cb45b0e9
HA
6749
6750 /* Find valid and maximum lowmem_reserve in the zone */
6751 for (j = i; j < MAX_NR_ZONES; j++) {
6752 if (zone->lowmem_reserve[j] > max)
6753 max = zone->lowmem_reserve[j];
6754 }
6755
41858966
MG
6756 /* we treat the high watermark as reserved pages. */
6757 max += high_wmark_pages(zone);
cb45b0e9 6758
b40da049
JL
6759 if (max > zone->managed_pages)
6760 max = zone->managed_pages;
a8d01437
JW
6761
6762 zone->totalreserve_pages = max;
6763
cb45b0e9
HA
6764 reserve_pages += max;
6765 }
6766 }
6767 totalreserve_pages = reserve_pages;
6768}
6769
1da177e4
LT
6770/*
6771 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6772 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6773 * has a correct pages reserved value, so an adequate number of
6774 * pages are left in the zone after a successful __alloc_pages().
6775 */
6776static void setup_per_zone_lowmem_reserve(void)
6777{
6778 struct pglist_data *pgdat;
2f6726e5 6779 enum zone_type j, idx;
1da177e4 6780
ec936fc5 6781 for_each_online_pgdat(pgdat) {
1da177e4
LT
6782 for (j = 0; j < MAX_NR_ZONES; j++) {
6783 struct zone *zone = pgdat->node_zones + j;
b40da049 6784 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6785
6786 zone->lowmem_reserve[j] = 0;
6787
2f6726e5
CL
6788 idx = j;
6789 while (idx) {
1da177e4
LT
6790 struct zone *lower_zone;
6791
2f6726e5
CL
6792 idx--;
6793
1da177e4
LT
6794 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6795 sysctl_lowmem_reserve_ratio[idx] = 1;
6796
6797 lower_zone = pgdat->node_zones + idx;
b40da049 6798 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6799 sysctl_lowmem_reserve_ratio[idx];
b40da049 6800 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6801 }
6802 }
6803 }
cb45b0e9
HA
6804
6805 /* update totalreserve_pages */
6806 calculate_totalreserve_pages();
1da177e4
LT
6807}
6808
cfd3da1e 6809static void __setup_per_zone_wmarks(void)
1da177e4
LT
6810{
6811 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6812 unsigned long lowmem_pages = 0;
6813 struct zone *zone;
6814 unsigned long flags;
6815
6816 /* Calculate total number of !ZONE_HIGHMEM pages */
6817 for_each_zone(zone) {
6818 if (!is_highmem(zone))
b40da049 6819 lowmem_pages += zone->managed_pages;
1da177e4
LT
6820 }
6821
6822 for_each_zone(zone) {
ac924c60
AM
6823 u64 tmp;
6824
1125b4e3 6825 spin_lock_irqsave(&zone->lock, flags);
b40da049 6826 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6827 do_div(tmp, lowmem_pages);
1da177e4
LT
6828 if (is_highmem(zone)) {
6829 /*
669ed175
NP
6830 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6831 * need highmem pages, so cap pages_min to a small
6832 * value here.
6833 *
41858966 6834 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6835 * deltas control asynch page reclaim, and so should
669ed175 6836 * not be capped for highmem.
1da177e4 6837 */
90ae8d67 6838 unsigned long min_pages;
1da177e4 6839
b40da049 6840 min_pages = zone->managed_pages / 1024;
90ae8d67 6841 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6842 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6843 } else {
669ed175
NP
6844 /*
6845 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6846 * proportionate to the zone's size.
6847 */
41858966 6848 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6849 }
6850
795ae7a0
JW
6851 /*
6852 * Set the kswapd watermarks distance according to the
6853 * scale factor in proportion to available memory, but
6854 * ensure a minimum size on small systems.
6855 */
6856 tmp = max_t(u64, tmp >> 2,
6857 mult_frac(zone->managed_pages,
6858 watermark_scale_factor, 10000));
6859
6860 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6861 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6862
81c0a2bb 6863 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6864 high_wmark_pages(zone) - low_wmark_pages(zone) -
6865 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6866
1125b4e3 6867 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6868 }
cb45b0e9
HA
6869
6870 /* update totalreserve_pages */
6871 calculate_totalreserve_pages();
1da177e4
LT
6872}
6873
cfd3da1e
MG
6874/**
6875 * setup_per_zone_wmarks - called when min_free_kbytes changes
6876 * or when memory is hot-{added|removed}
6877 *
6878 * Ensures that the watermark[min,low,high] values for each zone are set
6879 * correctly with respect to min_free_kbytes.
6880 */
6881void setup_per_zone_wmarks(void)
6882{
6883 mutex_lock(&zonelists_mutex);
6884 __setup_per_zone_wmarks();
6885 mutex_unlock(&zonelists_mutex);
6886}
6887
1da177e4
LT
6888/*
6889 * Initialise min_free_kbytes.
6890 *
6891 * For small machines we want it small (128k min). For large machines
6892 * we want it large (64MB max). But it is not linear, because network
6893 * bandwidth does not increase linearly with machine size. We use
6894 *
b8af2941 6895 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6896 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6897 *
6898 * which yields
6899 *
6900 * 16MB: 512k
6901 * 32MB: 724k
6902 * 64MB: 1024k
6903 * 128MB: 1448k
6904 * 256MB: 2048k
6905 * 512MB: 2896k
6906 * 1024MB: 4096k
6907 * 2048MB: 5792k
6908 * 4096MB: 8192k
6909 * 8192MB: 11584k
6910 * 16384MB: 16384k
6911 */
1b79acc9 6912int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6913{
6914 unsigned long lowmem_kbytes;
5f12733e 6915 int new_min_free_kbytes;
1da177e4
LT
6916
6917 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6918 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6919
6920 if (new_min_free_kbytes > user_min_free_kbytes) {
6921 min_free_kbytes = new_min_free_kbytes;
6922 if (min_free_kbytes < 128)
6923 min_free_kbytes = 128;
6924 if (min_free_kbytes > 65536)
6925 min_free_kbytes = 65536;
6926 } else {
6927 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6928 new_min_free_kbytes, user_min_free_kbytes);
6929 }
bc75d33f 6930 setup_per_zone_wmarks();
a6cccdc3 6931 refresh_zone_stat_thresholds();
1da177e4
LT
6932 setup_per_zone_lowmem_reserve();
6933 return 0;
6934}
bc22af74 6935core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6936
6937/*
b8af2941 6938 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6939 * that we can call two helper functions whenever min_free_kbytes
6940 * changes.
6941 */
cccad5b9 6942int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6943 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6944{
da8c757b
HP
6945 int rc;
6946
6947 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6948 if (rc)
6949 return rc;
6950
5f12733e
MH
6951 if (write) {
6952 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6953 setup_per_zone_wmarks();
5f12733e 6954 }
1da177e4
LT
6955 return 0;
6956}
6957
795ae7a0
JW
6958int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6959 void __user *buffer, size_t *length, loff_t *ppos)
6960{
6961 int rc;
6962
6963 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6964 if (rc)
6965 return rc;
6966
6967 if (write)
6968 setup_per_zone_wmarks();
6969
6970 return 0;
6971}
6972
9614634f 6973#ifdef CONFIG_NUMA
cccad5b9 6974int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6975 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6976{
6977 struct zone *zone;
6978 int rc;
6979
8d65af78 6980 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6981 if (rc)
6982 return rc;
6983
6984 for_each_zone(zone)
b40da049 6985 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6986 sysctl_min_unmapped_ratio) / 100;
6987 return 0;
6988}
0ff38490 6989
cccad5b9 6990int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6991 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6992{
6993 struct zone *zone;
6994 int rc;
6995
8d65af78 6996 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6997 if (rc)
6998 return rc;
6999
7000 for_each_zone(zone)
b40da049 7001 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
7002 sysctl_min_slab_ratio) / 100;
7003 return 0;
7004}
9614634f
CL
7005#endif
7006
1da177e4
LT
7007/*
7008 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7009 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7010 * whenever sysctl_lowmem_reserve_ratio changes.
7011 *
7012 * The reserve ratio obviously has absolutely no relation with the
41858966 7013 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7014 * if in function of the boot time zone sizes.
7015 */
cccad5b9 7016int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7017 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7018{
8d65af78 7019 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7020 setup_per_zone_lowmem_reserve();
7021 return 0;
7022}
7023
8ad4b1fb
RS
7024/*
7025 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7026 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7027 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7028 */
cccad5b9 7029int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7030 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7031{
7032 struct zone *zone;
7cd2b0a3 7033 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7034 int ret;
7035
7cd2b0a3
DR
7036 mutex_lock(&pcp_batch_high_lock);
7037 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7038
8d65af78 7039 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7040 if (!write || ret < 0)
7041 goto out;
7042
7043 /* Sanity checking to avoid pcp imbalance */
7044 if (percpu_pagelist_fraction &&
7045 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7046 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7047 ret = -EINVAL;
7048 goto out;
7049 }
7050
7051 /* No change? */
7052 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7053 goto out;
c8e251fa 7054
364df0eb 7055 for_each_populated_zone(zone) {
7cd2b0a3
DR
7056 unsigned int cpu;
7057
22a7f12b 7058 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7059 pageset_set_high_and_batch(zone,
7060 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7061 }
7cd2b0a3 7062out:
c8e251fa 7063 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7064 return ret;
8ad4b1fb
RS
7065}
7066
a9919c79 7067#ifdef CONFIG_NUMA
f034b5d4 7068int hashdist = HASHDIST_DEFAULT;
1da177e4 7069
1da177e4
LT
7070static int __init set_hashdist(char *str)
7071{
7072 if (!str)
7073 return 0;
7074 hashdist = simple_strtoul(str, &str, 0);
7075 return 1;
7076}
7077__setup("hashdist=", set_hashdist);
7078#endif
7079
7080/*
7081 * allocate a large system hash table from bootmem
7082 * - it is assumed that the hash table must contain an exact power-of-2
7083 * quantity of entries
7084 * - limit is the number of hash buckets, not the total allocation size
7085 */
7086void *__init alloc_large_system_hash(const char *tablename,
7087 unsigned long bucketsize,
7088 unsigned long numentries,
7089 int scale,
7090 int flags,
7091 unsigned int *_hash_shift,
7092 unsigned int *_hash_mask,
31fe62b9
TB
7093 unsigned long low_limit,
7094 unsigned long high_limit)
1da177e4 7095{
31fe62b9 7096 unsigned long long max = high_limit;
1da177e4
LT
7097 unsigned long log2qty, size;
7098 void *table = NULL;
7099
7100 /* allow the kernel cmdline to have a say */
7101 if (!numentries) {
7102 /* round applicable memory size up to nearest megabyte */
04903664 7103 numentries = nr_kernel_pages;
a7e83318
JZ
7104
7105 /* It isn't necessary when PAGE_SIZE >= 1MB */
7106 if (PAGE_SHIFT < 20)
7107 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7108
7109 /* limit to 1 bucket per 2^scale bytes of low memory */
7110 if (scale > PAGE_SHIFT)
7111 numentries >>= (scale - PAGE_SHIFT);
7112 else
7113 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7114
7115 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7116 if (unlikely(flags & HASH_SMALL)) {
7117 /* Makes no sense without HASH_EARLY */
7118 WARN_ON(!(flags & HASH_EARLY));
7119 if (!(numentries >> *_hash_shift)) {
7120 numentries = 1UL << *_hash_shift;
7121 BUG_ON(!numentries);
7122 }
7123 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7124 numentries = PAGE_SIZE / bucketsize;
1da177e4 7125 }
6e692ed3 7126 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7127
7128 /* limit allocation size to 1/16 total memory by default */
7129 if (max == 0) {
7130 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7131 do_div(max, bucketsize);
7132 }
074b8517 7133 max = min(max, 0x80000000ULL);
1da177e4 7134
31fe62b9
TB
7135 if (numentries < low_limit)
7136 numentries = low_limit;
1da177e4
LT
7137 if (numentries > max)
7138 numentries = max;
7139
f0d1b0b3 7140 log2qty = ilog2(numentries);
1da177e4
LT
7141
7142 do {
7143 size = bucketsize << log2qty;
7144 if (flags & HASH_EARLY)
6782832e 7145 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7146 else if (hashdist)
7147 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7148 else {
1037b83b
ED
7149 /*
7150 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7151 * some pages at the end of hash table which
7152 * alloc_pages_exact() automatically does
1037b83b 7153 */
264ef8a9 7154 if (get_order(size) < MAX_ORDER) {
a1dd268c 7155 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7156 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7157 }
1da177e4
LT
7158 }
7159 } while (!table && size > PAGE_SIZE && --log2qty);
7160
7161 if (!table)
7162 panic("Failed to allocate %s hash table\n", tablename);
7163
1170532b
JP
7164 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7165 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7166
7167 if (_hash_shift)
7168 *_hash_shift = log2qty;
7169 if (_hash_mask)
7170 *_hash_mask = (1 << log2qty) - 1;
7171
7172 return table;
7173}
a117e66e 7174
a5d76b54 7175/*
80934513
MK
7176 * This function checks whether pageblock includes unmovable pages or not.
7177 * If @count is not zero, it is okay to include less @count unmovable pages
7178 *
b8af2941 7179 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7180 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7181 * expect this function should be exact.
a5d76b54 7182 */
b023f468
WC
7183bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7184 bool skip_hwpoisoned_pages)
49ac8255
KH
7185{
7186 unsigned long pfn, iter, found;
47118af0
MN
7187 int mt;
7188
49ac8255
KH
7189 /*
7190 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7191 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7192 */
7193 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7194 return false;
47118af0
MN
7195 mt = get_pageblock_migratetype(page);
7196 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7197 return false;
49ac8255
KH
7198
7199 pfn = page_to_pfn(page);
7200 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7201 unsigned long check = pfn + iter;
7202
29723fcc 7203 if (!pfn_valid_within(check))
49ac8255 7204 continue;
29723fcc 7205
49ac8255 7206 page = pfn_to_page(check);
c8721bbb
NH
7207
7208 /*
7209 * Hugepages are not in LRU lists, but they're movable.
7210 * We need not scan over tail pages bacause we don't
7211 * handle each tail page individually in migration.
7212 */
7213 if (PageHuge(page)) {
7214 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7215 continue;
7216 }
7217
97d255c8
MK
7218 /*
7219 * We can't use page_count without pin a page
7220 * because another CPU can free compound page.
7221 * This check already skips compound tails of THP
0139aa7b 7222 * because their page->_refcount is zero at all time.
97d255c8 7223 */
fe896d18 7224 if (!page_ref_count(page)) {
49ac8255
KH
7225 if (PageBuddy(page))
7226 iter += (1 << page_order(page)) - 1;
7227 continue;
7228 }
97d255c8 7229
b023f468
WC
7230 /*
7231 * The HWPoisoned page may be not in buddy system, and
7232 * page_count() is not 0.
7233 */
7234 if (skip_hwpoisoned_pages && PageHWPoison(page))
7235 continue;
7236
49ac8255
KH
7237 if (!PageLRU(page))
7238 found++;
7239 /*
6b4f7799
JW
7240 * If there are RECLAIMABLE pages, we need to check
7241 * it. But now, memory offline itself doesn't call
7242 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7243 */
7244 /*
7245 * If the page is not RAM, page_count()should be 0.
7246 * we don't need more check. This is an _used_ not-movable page.
7247 *
7248 * The problematic thing here is PG_reserved pages. PG_reserved
7249 * is set to both of a memory hole page and a _used_ kernel
7250 * page at boot.
7251 */
7252 if (found > count)
80934513 7253 return true;
49ac8255 7254 }
80934513 7255 return false;
49ac8255
KH
7256}
7257
7258bool is_pageblock_removable_nolock(struct page *page)
7259{
656a0706
MH
7260 struct zone *zone;
7261 unsigned long pfn;
687875fb
MH
7262
7263 /*
7264 * We have to be careful here because we are iterating over memory
7265 * sections which are not zone aware so we might end up outside of
7266 * the zone but still within the section.
656a0706
MH
7267 * We have to take care about the node as well. If the node is offline
7268 * its NODE_DATA will be NULL - see page_zone.
687875fb 7269 */
656a0706
MH
7270 if (!node_online(page_to_nid(page)))
7271 return false;
7272
7273 zone = page_zone(page);
7274 pfn = page_to_pfn(page);
108bcc96 7275 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7276 return false;
7277
b023f468 7278 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7279}
0c0e6195 7280
080fe206 7281#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7282
7283static unsigned long pfn_max_align_down(unsigned long pfn)
7284{
7285 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7286 pageblock_nr_pages) - 1);
7287}
7288
7289static unsigned long pfn_max_align_up(unsigned long pfn)
7290{
7291 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7292 pageblock_nr_pages));
7293}
7294
041d3a8c 7295/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7296static int __alloc_contig_migrate_range(struct compact_control *cc,
7297 unsigned long start, unsigned long end)
041d3a8c
MN
7298{
7299 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7300 unsigned long nr_reclaimed;
041d3a8c
MN
7301 unsigned long pfn = start;
7302 unsigned int tries = 0;
7303 int ret = 0;
7304
be49a6e1 7305 migrate_prep();
041d3a8c 7306
bb13ffeb 7307 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7308 if (fatal_signal_pending(current)) {
7309 ret = -EINTR;
7310 break;
7311 }
7312
bb13ffeb
MG
7313 if (list_empty(&cc->migratepages)) {
7314 cc->nr_migratepages = 0;
edc2ca61 7315 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7316 if (!pfn) {
7317 ret = -EINTR;
7318 break;
7319 }
7320 tries = 0;
7321 } else if (++tries == 5) {
7322 ret = ret < 0 ? ret : -EBUSY;
7323 break;
7324 }
7325
beb51eaa
MK
7326 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7327 &cc->migratepages);
7328 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7329
9c620e2b 7330 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7331 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7332 }
2a6f5124
SP
7333 if (ret < 0) {
7334 putback_movable_pages(&cc->migratepages);
7335 return ret;
7336 }
7337 return 0;
041d3a8c
MN
7338}
7339
7340/**
7341 * alloc_contig_range() -- tries to allocate given range of pages
7342 * @start: start PFN to allocate
7343 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7344 * @migratetype: migratetype of the underlaying pageblocks (either
7345 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7346 * in range must have the same migratetype and it must
7347 * be either of the two.
041d3a8c
MN
7348 *
7349 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7350 * aligned, however it's the caller's responsibility to guarantee that
7351 * we are the only thread that changes migrate type of pageblocks the
7352 * pages fall in.
7353 *
7354 * The PFN range must belong to a single zone.
7355 *
7356 * Returns zero on success or negative error code. On success all
7357 * pages which PFN is in [start, end) are allocated for the caller and
7358 * need to be freed with free_contig_range().
7359 */
0815f3d8
MN
7360int alloc_contig_range(unsigned long start, unsigned long end,
7361 unsigned migratetype)
041d3a8c 7362{
041d3a8c 7363 unsigned long outer_start, outer_end;
d00181b9
KS
7364 unsigned int order;
7365 int ret = 0;
041d3a8c 7366
bb13ffeb
MG
7367 struct compact_control cc = {
7368 .nr_migratepages = 0,
7369 .order = -1,
7370 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7371 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7372 .ignore_skip_hint = true,
7373 };
7374 INIT_LIST_HEAD(&cc.migratepages);
7375
041d3a8c
MN
7376 /*
7377 * What we do here is we mark all pageblocks in range as
7378 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7379 * have different sizes, and due to the way page allocator
7380 * work, we align the range to biggest of the two pages so
7381 * that page allocator won't try to merge buddies from
7382 * different pageblocks and change MIGRATE_ISOLATE to some
7383 * other migration type.
7384 *
7385 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7386 * migrate the pages from an unaligned range (ie. pages that
7387 * we are interested in). This will put all the pages in
7388 * range back to page allocator as MIGRATE_ISOLATE.
7389 *
7390 * When this is done, we take the pages in range from page
7391 * allocator removing them from the buddy system. This way
7392 * page allocator will never consider using them.
7393 *
7394 * This lets us mark the pageblocks back as
7395 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7396 * aligned range but not in the unaligned, original range are
7397 * put back to page allocator so that buddy can use them.
7398 */
7399
7400 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7401 pfn_max_align_up(end), migratetype,
7402 false);
041d3a8c 7403 if (ret)
86a595f9 7404 return ret;
041d3a8c 7405
8ef5849f
JK
7406 /*
7407 * In case of -EBUSY, we'd like to know which page causes problem.
7408 * So, just fall through. We will check it in test_pages_isolated().
7409 */
bb13ffeb 7410 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7411 if (ret && ret != -EBUSY)
041d3a8c
MN
7412 goto done;
7413
7414 /*
7415 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7416 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7417 * more, all pages in [start, end) are free in page allocator.
7418 * What we are going to do is to allocate all pages from
7419 * [start, end) (that is remove them from page allocator).
7420 *
7421 * The only problem is that pages at the beginning and at the
7422 * end of interesting range may be not aligned with pages that
7423 * page allocator holds, ie. they can be part of higher order
7424 * pages. Because of this, we reserve the bigger range and
7425 * once this is done free the pages we are not interested in.
7426 *
7427 * We don't have to hold zone->lock here because the pages are
7428 * isolated thus they won't get removed from buddy.
7429 */
7430
7431 lru_add_drain_all();
510f5507 7432 drain_all_pages(cc.zone);
041d3a8c
MN
7433
7434 order = 0;
7435 outer_start = start;
7436 while (!PageBuddy(pfn_to_page(outer_start))) {
7437 if (++order >= MAX_ORDER) {
8ef5849f
JK
7438 outer_start = start;
7439 break;
041d3a8c
MN
7440 }
7441 outer_start &= ~0UL << order;
7442 }
7443
8ef5849f
JK
7444 if (outer_start != start) {
7445 order = page_order(pfn_to_page(outer_start));
7446
7447 /*
7448 * outer_start page could be small order buddy page and
7449 * it doesn't include start page. Adjust outer_start
7450 * in this case to report failed page properly
7451 * on tracepoint in test_pages_isolated()
7452 */
7453 if (outer_start + (1UL << order) <= start)
7454 outer_start = start;
7455 }
7456
041d3a8c 7457 /* Make sure the range is really isolated. */
b023f468 7458 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7459 pr_info("%s: [%lx, %lx) PFNs busy\n",
7460 __func__, outer_start, end);
041d3a8c
MN
7461 ret = -EBUSY;
7462 goto done;
7463 }
7464
49f223a9 7465 /* Grab isolated pages from freelists. */
bb13ffeb 7466 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7467 if (!outer_end) {
7468 ret = -EBUSY;
7469 goto done;
7470 }
7471
7472 /* Free head and tail (if any) */
7473 if (start != outer_start)
7474 free_contig_range(outer_start, start - outer_start);
7475 if (end != outer_end)
7476 free_contig_range(end, outer_end - end);
7477
7478done:
7479 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7480 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7481 return ret;
7482}
7483
7484void free_contig_range(unsigned long pfn, unsigned nr_pages)
7485{
bcc2b02f
MS
7486 unsigned int count = 0;
7487
7488 for (; nr_pages--; pfn++) {
7489 struct page *page = pfn_to_page(pfn);
7490
7491 count += page_count(page) != 1;
7492 __free_page(page);
7493 }
7494 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7495}
7496#endif
7497
4ed7e022 7498#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7499/*
7500 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7501 * page high values need to be recalulated.
7502 */
4ed7e022
JL
7503void __meminit zone_pcp_update(struct zone *zone)
7504{
0a647f38 7505 unsigned cpu;
c8e251fa 7506 mutex_lock(&pcp_batch_high_lock);
0a647f38 7507 for_each_possible_cpu(cpu)
169f6c19
CS
7508 pageset_set_high_and_batch(zone,
7509 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7510 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7511}
7512#endif
7513
340175b7
JL
7514void zone_pcp_reset(struct zone *zone)
7515{
7516 unsigned long flags;
5a883813
MK
7517 int cpu;
7518 struct per_cpu_pageset *pset;
340175b7
JL
7519
7520 /* avoid races with drain_pages() */
7521 local_irq_save(flags);
7522 if (zone->pageset != &boot_pageset) {
5a883813
MK
7523 for_each_online_cpu(cpu) {
7524 pset = per_cpu_ptr(zone->pageset, cpu);
7525 drain_zonestat(zone, pset);
7526 }
340175b7
JL
7527 free_percpu(zone->pageset);
7528 zone->pageset = &boot_pageset;
7529 }
7530 local_irq_restore(flags);
7531}
7532
6dcd73d7 7533#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7534/*
b9eb6319
JK
7535 * All pages in the range must be in a single zone and isolated
7536 * before calling this.
0c0e6195
KH
7537 */
7538void
7539__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7540{
7541 struct page *page;
7542 struct zone *zone;
7aeb09f9 7543 unsigned int order, i;
0c0e6195
KH
7544 unsigned long pfn;
7545 unsigned long flags;
7546 /* find the first valid pfn */
7547 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7548 if (pfn_valid(pfn))
7549 break;
7550 if (pfn == end_pfn)
7551 return;
7552 zone = page_zone(pfn_to_page(pfn));
7553 spin_lock_irqsave(&zone->lock, flags);
7554 pfn = start_pfn;
7555 while (pfn < end_pfn) {
7556 if (!pfn_valid(pfn)) {
7557 pfn++;
7558 continue;
7559 }
7560 page = pfn_to_page(pfn);
b023f468
WC
7561 /*
7562 * The HWPoisoned page may be not in buddy system, and
7563 * page_count() is not 0.
7564 */
7565 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7566 pfn++;
7567 SetPageReserved(page);
7568 continue;
7569 }
7570
0c0e6195
KH
7571 BUG_ON(page_count(page));
7572 BUG_ON(!PageBuddy(page));
7573 order = page_order(page);
7574#ifdef CONFIG_DEBUG_VM
1170532b
JP
7575 pr_info("remove from free list %lx %d %lx\n",
7576 pfn, 1 << order, end_pfn);
0c0e6195
KH
7577#endif
7578 list_del(&page->lru);
7579 rmv_page_order(page);
7580 zone->free_area[order].nr_free--;
0c0e6195
KH
7581 for (i = 0; i < (1 << order); i++)
7582 SetPageReserved((page+i));
7583 pfn += (1 << order);
7584 }
7585 spin_unlock_irqrestore(&zone->lock, flags);
7586}
7587#endif
8d22ba1b 7588
8d22ba1b
WF
7589bool is_free_buddy_page(struct page *page)
7590{
7591 struct zone *zone = page_zone(page);
7592 unsigned long pfn = page_to_pfn(page);
7593 unsigned long flags;
7aeb09f9 7594 unsigned int order;
8d22ba1b
WF
7595
7596 spin_lock_irqsave(&zone->lock, flags);
7597 for (order = 0; order < MAX_ORDER; order++) {
7598 struct page *page_head = page - (pfn & ((1 << order) - 1));
7599
7600 if (PageBuddy(page_head) && page_order(page_head) >= order)
7601 break;
7602 }
7603 spin_unlock_irqrestore(&zone->lock, flags);
7604
7605 return order < MAX_ORDER;
7606}
This page took 1.705371 seconds and 5 git commands to generate.