mm, page_alloc: pull out side effects from free_pages_check
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
7bfec6f4
MG
787/*
788 * A bad page could be due to a number of fields. Instead of multiple branches,
789 * try and check multiple fields with one check. The caller must do a detailed
790 * check if necessary.
791 */
792static inline bool page_expected_state(struct page *page,
793 unsigned long check_flags)
794{
795 if (unlikely(atomic_read(&page->_mapcount) != -1))
796 return false;
797
798 if (unlikely((unsigned long)page->mapping |
799 page_ref_count(page) |
800#ifdef CONFIG_MEMCG
801 (unsigned long)page->mem_cgroup |
802#endif
803 (page->flags & check_flags)))
804 return false;
805
806 return true;
807}
808
bb552ac6 809static void free_pages_check_bad(struct page *page)
1da177e4 810{
7bfec6f4
MG
811 const char *bad_reason;
812 unsigned long bad_flags;
813
7bfec6f4
MG
814 bad_reason = NULL;
815 bad_flags = 0;
f0b791a3 816
53f9263b 817 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
818 bad_reason = "nonzero mapcount";
819 if (unlikely(page->mapping != NULL))
820 bad_reason = "non-NULL mapping";
fe896d18 821 if (unlikely(page_ref_count(page) != 0))
0139aa7b 822 bad_reason = "nonzero _refcount";
f0b791a3
DH
823 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
824 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
825 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
826 }
9edad6ea
JW
827#ifdef CONFIG_MEMCG
828 if (unlikely(page->mem_cgroup))
829 bad_reason = "page still charged to cgroup";
830#endif
7bfec6f4 831 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
832}
833
834static inline int free_pages_check(struct page *page)
835{
da838d4f 836 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 837 return 0;
bb552ac6
MG
838
839 /* Something has gone sideways, find it */
840 free_pages_check_bad(page);
7bfec6f4 841 return 1;
1da177e4
LT
842}
843
844/*
5f8dcc21 845 * Frees a number of pages from the PCP lists
1da177e4 846 * Assumes all pages on list are in same zone, and of same order.
207f36ee 847 * count is the number of pages to free.
1da177e4
LT
848 *
849 * If the zone was previously in an "all pages pinned" state then look to
850 * see if this freeing clears that state.
851 *
852 * And clear the zone's pages_scanned counter, to hold off the "all pages are
853 * pinned" detection logic.
854 */
5f8dcc21
MG
855static void free_pcppages_bulk(struct zone *zone, int count,
856 struct per_cpu_pages *pcp)
1da177e4 857{
5f8dcc21 858 int migratetype = 0;
a6f9edd6 859 int batch_free = 0;
72853e29 860 int to_free = count;
0d5d823a 861 unsigned long nr_scanned;
3777999d 862 bool isolated_pageblocks;
5f8dcc21 863
c54ad30c 864 spin_lock(&zone->lock);
3777999d 865 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
866 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
867 if (nr_scanned)
868 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 869
72853e29 870 while (to_free) {
48db57f8 871 struct page *page;
5f8dcc21
MG
872 struct list_head *list;
873
874 /*
a6f9edd6
MG
875 * Remove pages from lists in a round-robin fashion. A
876 * batch_free count is maintained that is incremented when an
877 * empty list is encountered. This is so more pages are freed
878 * off fuller lists instead of spinning excessively around empty
879 * lists
5f8dcc21
MG
880 */
881 do {
a6f9edd6 882 batch_free++;
5f8dcc21
MG
883 if (++migratetype == MIGRATE_PCPTYPES)
884 migratetype = 0;
885 list = &pcp->lists[migratetype];
886 } while (list_empty(list));
48db57f8 887
1d16871d
NK
888 /* This is the only non-empty list. Free them all. */
889 if (batch_free == MIGRATE_PCPTYPES)
890 batch_free = to_free;
891
a6f9edd6 892 do {
770c8aaa
BZ
893 int mt; /* migratetype of the to-be-freed page */
894
a16601c5 895 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
896 /* must delete as __free_one_page list manipulates */
897 list_del(&page->lru);
aa016d14 898
bb14c2c7 899 mt = get_pcppage_migratetype(page);
aa016d14
VB
900 /* MIGRATE_ISOLATE page should not go to pcplists */
901 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
902 /* Pageblock could have been isolated meanwhile */
3777999d 903 if (unlikely(isolated_pageblocks))
51bb1a40 904 mt = get_pageblock_migratetype(page);
51bb1a40 905
dc4b0caf 906 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 907 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 908 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 909 }
c54ad30c 910 spin_unlock(&zone->lock);
1da177e4
LT
911}
912
dc4b0caf
MG
913static void free_one_page(struct zone *zone,
914 struct page *page, unsigned long pfn,
7aeb09f9 915 unsigned int order,
ed0ae21d 916 int migratetype)
1da177e4 917{
0d5d823a 918 unsigned long nr_scanned;
006d22d9 919 spin_lock(&zone->lock);
0d5d823a
MG
920 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
921 if (nr_scanned)
922 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 923
ad53f92e
JK
924 if (unlikely(has_isolate_pageblock(zone) ||
925 is_migrate_isolate(migratetype))) {
926 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 927 }
dc4b0caf 928 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 929 spin_unlock(&zone->lock);
48db57f8
NP
930}
931
81422f29
KS
932static int free_tail_pages_check(struct page *head_page, struct page *page)
933{
1d798ca3
KS
934 int ret = 1;
935
936 /*
937 * We rely page->lru.next never has bit 0 set, unless the page
938 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
939 */
940 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
941
942 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
943 ret = 0;
944 goto out;
945 }
9a982250
KS
946 switch (page - head_page) {
947 case 1:
948 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
949 if (unlikely(compound_mapcount(page))) {
950 bad_page(page, "nonzero compound_mapcount", 0);
951 goto out;
952 }
9a982250
KS
953 break;
954 case 2:
955 /*
956 * the second tail page: ->mapping is
957 * page_deferred_list().next -- ignore value.
958 */
959 break;
960 default:
961 if (page->mapping != TAIL_MAPPING) {
962 bad_page(page, "corrupted mapping in tail page", 0);
963 goto out;
964 }
965 break;
1c290f64 966 }
81422f29
KS
967 if (unlikely(!PageTail(page))) {
968 bad_page(page, "PageTail not set", 0);
1d798ca3 969 goto out;
81422f29 970 }
1d798ca3
KS
971 if (unlikely(compound_head(page) != head_page)) {
972 bad_page(page, "compound_head not consistent", 0);
973 goto out;
81422f29 974 }
1d798ca3
KS
975 ret = 0;
976out:
1c290f64 977 page->mapping = NULL;
1d798ca3
KS
978 clear_compound_head(page);
979 return ret;
81422f29
KS
980}
981
1e8ce83c
RH
982static void __meminit __init_single_page(struct page *page, unsigned long pfn,
983 unsigned long zone, int nid)
984{
1e8ce83c 985 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
986 init_page_count(page);
987 page_mapcount_reset(page);
988 page_cpupid_reset_last(page);
1e8ce83c 989
1e8ce83c
RH
990 INIT_LIST_HEAD(&page->lru);
991#ifdef WANT_PAGE_VIRTUAL
992 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
993 if (!is_highmem_idx(zone))
994 set_page_address(page, __va(pfn << PAGE_SHIFT));
995#endif
996}
997
998static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
999 int nid)
1000{
1001 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1002}
1003
7e18adb4
MG
1004#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1005static void init_reserved_page(unsigned long pfn)
1006{
1007 pg_data_t *pgdat;
1008 int nid, zid;
1009
1010 if (!early_page_uninitialised(pfn))
1011 return;
1012
1013 nid = early_pfn_to_nid(pfn);
1014 pgdat = NODE_DATA(nid);
1015
1016 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1017 struct zone *zone = &pgdat->node_zones[zid];
1018
1019 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1020 break;
1021 }
1022 __init_single_pfn(pfn, zid, nid);
1023}
1024#else
1025static inline void init_reserved_page(unsigned long pfn)
1026{
1027}
1028#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1029
92923ca3
NZ
1030/*
1031 * Initialised pages do not have PageReserved set. This function is
1032 * called for each range allocated by the bootmem allocator and
1033 * marks the pages PageReserved. The remaining valid pages are later
1034 * sent to the buddy page allocator.
1035 */
7e18adb4 1036void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1037{
1038 unsigned long start_pfn = PFN_DOWN(start);
1039 unsigned long end_pfn = PFN_UP(end);
1040
7e18adb4
MG
1041 for (; start_pfn < end_pfn; start_pfn++) {
1042 if (pfn_valid(start_pfn)) {
1043 struct page *page = pfn_to_page(start_pfn);
1044
1045 init_reserved_page(start_pfn);
1d798ca3
KS
1046
1047 /* Avoid false-positive PageTail() */
1048 INIT_LIST_HEAD(&page->lru);
1049
7e18adb4
MG
1050 SetPageReserved(page);
1051 }
1052 }
92923ca3
NZ
1053}
1054
ec95f53a 1055static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1056{
d61f8590 1057 int bad = 0;
1da177e4 1058
ab1f306f 1059 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1060
b413d48a 1061 trace_mm_page_free(page, order);
b1eeab67 1062 kmemcheck_free_shadow(page, order);
b8c73fc2 1063 kasan_free_pages(page, order);
b1eeab67 1064
d61f8590
MG
1065 /*
1066 * Check tail pages before head page information is cleared to
1067 * avoid checking PageCompound for order-0 pages.
1068 */
1069 if (unlikely(order)) {
1070 bool compound = PageCompound(page);
1071 int i;
1072
1073 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1074
1075 for (i = 1; i < (1 << order); i++) {
1076 if (compound)
1077 bad += free_tail_pages_check(page, page + i);
da838d4f
MG
1078 if (unlikely(free_pages_check(page + i))) {
1079 bad++;
1080 continue;
1081 }
1082 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
d61f8590
MG
1083 }
1084 }
17514574 1085 if (PageAnonHead(page))
8dd60a3a 1086 page->mapping = NULL;
81422f29 1087 bad += free_pages_check(page);
8cc3b392 1088 if (bad)
ec95f53a 1089 return false;
689bcebf 1090
da838d4f
MG
1091 page_cpupid_reset_last(page);
1092 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
48c96a36
JK
1093 reset_page_owner(page, order);
1094
3ac7fe5a 1095 if (!PageHighMem(page)) {
b8af2941
PK
1096 debug_check_no_locks_freed(page_address(page),
1097 PAGE_SIZE << order);
3ac7fe5a
TG
1098 debug_check_no_obj_freed(page_address(page),
1099 PAGE_SIZE << order);
1100 }
dafb1367 1101 arch_free_page(page, order);
8823b1db 1102 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1103 kernel_map_pages(page, 1 << order, 0);
dafb1367 1104
ec95f53a
KM
1105 return true;
1106}
1107
1108static void __free_pages_ok(struct page *page, unsigned int order)
1109{
1110 unsigned long flags;
95e34412 1111 int migratetype;
dc4b0caf 1112 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1113
1114 if (!free_pages_prepare(page, order))
1115 return;
1116
cfc47a28 1117 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1118 local_irq_save(flags);
f8891e5e 1119 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1120 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1121 local_irq_restore(flags);
1da177e4
LT
1122}
1123
949698a3 1124static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1125{
c3993076 1126 unsigned int nr_pages = 1 << order;
e2d0bd2b 1127 struct page *p = page;
c3993076 1128 unsigned int loop;
a226f6c8 1129
e2d0bd2b
YL
1130 prefetchw(p);
1131 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1132 prefetchw(p + 1);
c3993076
JW
1133 __ClearPageReserved(p);
1134 set_page_count(p, 0);
a226f6c8 1135 }
e2d0bd2b
YL
1136 __ClearPageReserved(p);
1137 set_page_count(p, 0);
c3993076 1138
e2d0bd2b 1139 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1140 set_page_refcounted(page);
1141 __free_pages(page, order);
a226f6c8
DH
1142}
1143
75a592a4
MG
1144#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1145 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1146
75a592a4
MG
1147static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1148
1149int __meminit early_pfn_to_nid(unsigned long pfn)
1150{
7ace9917 1151 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1152 int nid;
1153
7ace9917 1154 spin_lock(&early_pfn_lock);
75a592a4 1155 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1156 if (nid < 0)
1157 nid = 0;
1158 spin_unlock(&early_pfn_lock);
1159
1160 return nid;
75a592a4
MG
1161}
1162#endif
1163
1164#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1165static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1166 struct mminit_pfnnid_cache *state)
1167{
1168 int nid;
1169
1170 nid = __early_pfn_to_nid(pfn, state);
1171 if (nid >= 0 && nid != node)
1172 return false;
1173 return true;
1174}
1175
1176/* Only safe to use early in boot when initialisation is single-threaded */
1177static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1178{
1179 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1180}
1181
1182#else
1183
1184static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1185{
1186 return true;
1187}
1188static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1189 struct mminit_pfnnid_cache *state)
1190{
1191 return true;
1192}
1193#endif
1194
1195
0e1cc95b 1196void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1197 unsigned int order)
1198{
1199 if (early_page_uninitialised(pfn))
1200 return;
949698a3 1201 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1202}
1203
7cf91a98
JK
1204/*
1205 * Check that the whole (or subset of) a pageblock given by the interval of
1206 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1207 * with the migration of free compaction scanner. The scanners then need to
1208 * use only pfn_valid_within() check for arches that allow holes within
1209 * pageblocks.
1210 *
1211 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1212 *
1213 * It's possible on some configurations to have a setup like node0 node1 node0
1214 * i.e. it's possible that all pages within a zones range of pages do not
1215 * belong to a single zone. We assume that a border between node0 and node1
1216 * can occur within a single pageblock, but not a node0 node1 node0
1217 * interleaving within a single pageblock. It is therefore sufficient to check
1218 * the first and last page of a pageblock and avoid checking each individual
1219 * page in a pageblock.
1220 */
1221struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1222 unsigned long end_pfn, struct zone *zone)
1223{
1224 struct page *start_page;
1225 struct page *end_page;
1226
1227 /* end_pfn is one past the range we are checking */
1228 end_pfn--;
1229
1230 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1231 return NULL;
1232
1233 start_page = pfn_to_page(start_pfn);
1234
1235 if (page_zone(start_page) != zone)
1236 return NULL;
1237
1238 end_page = pfn_to_page(end_pfn);
1239
1240 /* This gives a shorter code than deriving page_zone(end_page) */
1241 if (page_zone_id(start_page) != page_zone_id(end_page))
1242 return NULL;
1243
1244 return start_page;
1245}
1246
1247void set_zone_contiguous(struct zone *zone)
1248{
1249 unsigned long block_start_pfn = zone->zone_start_pfn;
1250 unsigned long block_end_pfn;
1251
1252 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1253 for (; block_start_pfn < zone_end_pfn(zone);
1254 block_start_pfn = block_end_pfn,
1255 block_end_pfn += pageblock_nr_pages) {
1256
1257 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1258
1259 if (!__pageblock_pfn_to_page(block_start_pfn,
1260 block_end_pfn, zone))
1261 return;
1262 }
1263
1264 /* We confirm that there is no hole */
1265 zone->contiguous = true;
1266}
1267
1268void clear_zone_contiguous(struct zone *zone)
1269{
1270 zone->contiguous = false;
1271}
1272
7e18adb4 1273#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1274static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1275 unsigned long pfn, int nr_pages)
1276{
1277 int i;
1278
1279 if (!page)
1280 return;
1281
1282 /* Free a large naturally-aligned chunk if possible */
1283 if (nr_pages == MAX_ORDER_NR_PAGES &&
1284 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1285 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1286 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1287 return;
1288 }
1289
949698a3
LZ
1290 for (i = 0; i < nr_pages; i++, page++)
1291 __free_pages_boot_core(page, 0);
a4de83dd
MG
1292}
1293
d3cd131d
NS
1294/* Completion tracking for deferred_init_memmap() threads */
1295static atomic_t pgdat_init_n_undone __initdata;
1296static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1297
1298static inline void __init pgdat_init_report_one_done(void)
1299{
1300 if (atomic_dec_and_test(&pgdat_init_n_undone))
1301 complete(&pgdat_init_all_done_comp);
1302}
0e1cc95b 1303
7e18adb4 1304/* Initialise remaining memory on a node */
0e1cc95b 1305static int __init deferred_init_memmap(void *data)
7e18adb4 1306{
0e1cc95b
MG
1307 pg_data_t *pgdat = data;
1308 int nid = pgdat->node_id;
7e18adb4
MG
1309 struct mminit_pfnnid_cache nid_init_state = { };
1310 unsigned long start = jiffies;
1311 unsigned long nr_pages = 0;
1312 unsigned long walk_start, walk_end;
1313 int i, zid;
1314 struct zone *zone;
7e18adb4 1315 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1316 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1317
0e1cc95b 1318 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1319 pgdat_init_report_one_done();
0e1cc95b
MG
1320 return 0;
1321 }
1322
1323 /* Bind memory initialisation thread to a local node if possible */
1324 if (!cpumask_empty(cpumask))
1325 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1326
1327 /* Sanity check boundaries */
1328 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1329 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1330 pgdat->first_deferred_pfn = ULONG_MAX;
1331
1332 /* Only the highest zone is deferred so find it */
1333 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1334 zone = pgdat->node_zones + zid;
1335 if (first_init_pfn < zone_end_pfn(zone))
1336 break;
1337 }
1338
1339 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1340 unsigned long pfn, end_pfn;
54608c3f 1341 struct page *page = NULL;
a4de83dd
MG
1342 struct page *free_base_page = NULL;
1343 unsigned long free_base_pfn = 0;
1344 int nr_to_free = 0;
7e18adb4
MG
1345
1346 end_pfn = min(walk_end, zone_end_pfn(zone));
1347 pfn = first_init_pfn;
1348 if (pfn < walk_start)
1349 pfn = walk_start;
1350 if (pfn < zone->zone_start_pfn)
1351 pfn = zone->zone_start_pfn;
1352
1353 for (; pfn < end_pfn; pfn++) {
54608c3f 1354 if (!pfn_valid_within(pfn))
a4de83dd 1355 goto free_range;
7e18adb4 1356
54608c3f
MG
1357 /*
1358 * Ensure pfn_valid is checked every
1359 * MAX_ORDER_NR_PAGES for memory holes
1360 */
1361 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1362 if (!pfn_valid(pfn)) {
1363 page = NULL;
a4de83dd 1364 goto free_range;
54608c3f
MG
1365 }
1366 }
1367
1368 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1369 page = NULL;
a4de83dd 1370 goto free_range;
54608c3f
MG
1371 }
1372
1373 /* Minimise pfn page lookups and scheduler checks */
1374 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1375 page++;
1376 } else {
a4de83dd
MG
1377 nr_pages += nr_to_free;
1378 deferred_free_range(free_base_page,
1379 free_base_pfn, nr_to_free);
1380 free_base_page = NULL;
1381 free_base_pfn = nr_to_free = 0;
1382
54608c3f
MG
1383 page = pfn_to_page(pfn);
1384 cond_resched();
1385 }
7e18adb4
MG
1386
1387 if (page->flags) {
1388 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1389 goto free_range;
7e18adb4
MG
1390 }
1391
1392 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1393 if (!free_base_page) {
1394 free_base_page = page;
1395 free_base_pfn = pfn;
1396 nr_to_free = 0;
1397 }
1398 nr_to_free++;
1399
1400 /* Where possible, batch up pages for a single free */
1401 continue;
1402free_range:
1403 /* Free the current block of pages to allocator */
1404 nr_pages += nr_to_free;
1405 deferred_free_range(free_base_page, free_base_pfn,
1406 nr_to_free);
1407 free_base_page = NULL;
1408 free_base_pfn = nr_to_free = 0;
7e18adb4 1409 }
a4de83dd 1410
7e18adb4
MG
1411 first_init_pfn = max(end_pfn, first_init_pfn);
1412 }
1413
1414 /* Sanity check that the next zone really is unpopulated */
1415 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1416
0e1cc95b 1417 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1418 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1419
1420 pgdat_init_report_one_done();
0e1cc95b
MG
1421 return 0;
1422}
7cf91a98 1423#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1424
1425void __init page_alloc_init_late(void)
1426{
7cf91a98
JK
1427 struct zone *zone;
1428
1429#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1430 int nid;
1431
d3cd131d
NS
1432 /* There will be num_node_state(N_MEMORY) threads */
1433 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1434 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1435 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1436 }
1437
1438 /* Block until all are initialised */
d3cd131d 1439 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1440
1441 /* Reinit limits that are based on free pages after the kernel is up */
1442 files_maxfiles_init();
7cf91a98
JK
1443#endif
1444
1445 for_each_populated_zone(zone)
1446 set_zone_contiguous(zone);
7e18adb4 1447}
7e18adb4 1448
47118af0 1449#ifdef CONFIG_CMA
9cf510a5 1450/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1451void __init init_cma_reserved_pageblock(struct page *page)
1452{
1453 unsigned i = pageblock_nr_pages;
1454 struct page *p = page;
1455
1456 do {
1457 __ClearPageReserved(p);
1458 set_page_count(p, 0);
1459 } while (++p, --i);
1460
47118af0 1461 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1462
1463 if (pageblock_order >= MAX_ORDER) {
1464 i = pageblock_nr_pages;
1465 p = page;
1466 do {
1467 set_page_refcounted(p);
1468 __free_pages(p, MAX_ORDER - 1);
1469 p += MAX_ORDER_NR_PAGES;
1470 } while (i -= MAX_ORDER_NR_PAGES);
1471 } else {
1472 set_page_refcounted(page);
1473 __free_pages(page, pageblock_order);
1474 }
1475
3dcc0571 1476 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1477}
1478#endif
1da177e4
LT
1479
1480/*
1481 * The order of subdivision here is critical for the IO subsystem.
1482 * Please do not alter this order without good reasons and regression
1483 * testing. Specifically, as large blocks of memory are subdivided,
1484 * the order in which smaller blocks are delivered depends on the order
1485 * they're subdivided in this function. This is the primary factor
1486 * influencing the order in which pages are delivered to the IO
1487 * subsystem according to empirical testing, and this is also justified
1488 * by considering the behavior of a buddy system containing a single
1489 * large block of memory acted on by a series of small allocations.
1490 * This behavior is a critical factor in sglist merging's success.
1491 *
6d49e352 1492 * -- nyc
1da177e4 1493 */
085cc7d5 1494static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1495 int low, int high, struct free_area *area,
1496 int migratetype)
1da177e4
LT
1497{
1498 unsigned long size = 1 << high;
1499
1500 while (high > low) {
1501 area--;
1502 high--;
1503 size >>= 1;
309381fe 1504 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1505
2847cf95 1506 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1507 debug_guardpage_enabled() &&
2847cf95 1508 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1509 /*
1510 * Mark as guard pages (or page), that will allow to
1511 * merge back to allocator when buddy will be freed.
1512 * Corresponding page table entries will not be touched,
1513 * pages will stay not present in virtual address space
1514 */
2847cf95 1515 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1516 continue;
1517 }
b2a0ac88 1518 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1519 area->nr_free++;
1520 set_page_order(&page[size], high);
1521 }
1da177e4
LT
1522}
1523
1da177e4
LT
1524/*
1525 * This page is about to be returned from the page allocator
1526 */
2a7684a2 1527static inline int check_new_page(struct page *page)
1da177e4 1528{
7bfec6f4
MG
1529 const char *bad_reason;
1530 unsigned long bad_flags;
1531
1532 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1533 return 0;
f0b791a3 1534
7bfec6f4
MG
1535 bad_reason = NULL;
1536 bad_flags = 0;
53f9263b 1537 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1538 bad_reason = "nonzero mapcount";
1539 if (unlikely(page->mapping != NULL))
1540 bad_reason = "non-NULL mapping";
fe896d18 1541 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1542 bad_reason = "nonzero _count";
f4c18e6f
NH
1543 if (unlikely(page->flags & __PG_HWPOISON)) {
1544 bad_reason = "HWPoisoned (hardware-corrupted)";
1545 bad_flags = __PG_HWPOISON;
1546 }
f0b791a3
DH
1547 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1548 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1549 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1550 }
9edad6ea
JW
1551#ifdef CONFIG_MEMCG
1552 if (unlikely(page->mem_cgroup))
1553 bad_reason = "page still charged to cgroup";
1554#endif
f0b791a3
DH
1555 if (unlikely(bad_reason)) {
1556 bad_page(page, bad_reason, bad_flags);
689bcebf 1557 return 1;
8cc3b392 1558 }
2a7684a2
WF
1559 return 0;
1560}
1561
1414c7f4
LA
1562static inline bool free_pages_prezeroed(bool poisoned)
1563{
1564 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1565 page_poisoning_enabled() && poisoned;
1566}
1567
75379191 1568static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1569 unsigned int alloc_flags)
2a7684a2
WF
1570{
1571 int i;
1414c7f4 1572 bool poisoned = true;
2a7684a2
WF
1573
1574 for (i = 0; i < (1 << order); i++) {
1575 struct page *p = page + i;
1576 if (unlikely(check_new_page(p)))
1577 return 1;
1414c7f4
LA
1578 if (poisoned)
1579 poisoned &= page_is_poisoned(p);
2a7684a2 1580 }
689bcebf 1581
4c21e2f2 1582 set_page_private(page, 0);
7835e98b 1583 set_page_refcounted(page);
cc102509
NP
1584
1585 arch_alloc_page(page, order);
1da177e4 1586 kernel_map_pages(page, 1 << order, 1);
8823b1db 1587 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1588 kasan_alloc_pages(page, order);
17cf4406 1589
1414c7f4 1590 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1591 for (i = 0; i < (1 << order); i++)
1592 clear_highpage(page + i);
17cf4406
NP
1593
1594 if (order && (gfp_flags & __GFP_COMP))
1595 prep_compound_page(page, order);
1596
48c96a36
JK
1597 set_page_owner(page, order, gfp_flags);
1598
75379191 1599 /*
2f064f34 1600 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1601 * allocate the page. The expectation is that the caller is taking
1602 * steps that will free more memory. The caller should avoid the page
1603 * being used for !PFMEMALLOC purposes.
1604 */
2f064f34
MH
1605 if (alloc_flags & ALLOC_NO_WATERMARKS)
1606 set_page_pfmemalloc(page);
1607 else
1608 clear_page_pfmemalloc(page);
75379191 1609
689bcebf 1610 return 0;
1da177e4
LT
1611}
1612
56fd56b8
MG
1613/*
1614 * Go through the free lists for the given migratetype and remove
1615 * the smallest available page from the freelists
1616 */
728ec980
MG
1617static inline
1618struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1619 int migratetype)
1620{
1621 unsigned int current_order;
b8af2941 1622 struct free_area *area;
56fd56b8
MG
1623 struct page *page;
1624
1625 /* Find a page of the appropriate size in the preferred list */
1626 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1627 area = &(zone->free_area[current_order]);
a16601c5 1628 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1629 struct page, lru);
a16601c5
GT
1630 if (!page)
1631 continue;
56fd56b8
MG
1632 list_del(&page->lru);
1633 rmv_page_order(page);
1634 area->nr_free--;
56fd56b8 1635 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1636 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1637 return page;
1638 }
1639
1640 return NULL;
1641}
1642
1643
b2a0ac88
MG
1644/*
1645 * This array describes the order lists are fallen back to when
1646 * the free lists for the desirable migrate type are depleted
1647 */
47118af0 1648static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1649 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1650 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1651 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1652#ifdef CONFIG_CMA
974a786e 1653 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1654#endif
194159fb 1655#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1656 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1657#endif
b2a0ac88
MG
1658};
1659
dc67647b
JK
1660#ifdef CONFIG_CMA
1661static struct page *__rmqueue_cma_fallback(struct zone *zone,
1662 unsigned int order)
1663{
1664 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1665}
1666#else
1667static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1668 unsigned int order) { return NULL; }
1669#endif
1670
c361be55
MG
1671/*
1672 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1673 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1674 * boundary. If alignment is required, use move_freepages_block()
1675 */
435b405c 1676int move_freepages(struct zone *zone,
b69a7288
AB
1677 struct page *start_page, struct page *end_page,
1678 int migratetype)
c361be55
MG
1679{
1680 struct page *page;
d00181b9 1681 unsigned int order;
d100313f 1682 int pages_moved = 0;
c361be55
MG
1683
1684#ifndef CONFIG_HOLES_IN_ZONE
1685 /*
1686 * page_zone is not safe to call in this context when
1687 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1688 * anyway as we check zone boundaries in move_freepages_block().
1689 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1690 * grouping pages by mobility
c361be55 1691 */
97ee4ba7 1692 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1693#endif
1694
1695 for (page = start_page; page <= end_page;) {
344c790e 1696 /* Make sure we are not inadvertently changing nodes */
309381fe 1697 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1698
c361be55
MG
1699 if (!pfn_valid_within(page_to_pfn(page))) {
1700 page++;
1701 continue;
1702 }
1703
1704 if (!PageBuddy(page)) {
1705 page++;
1706 continue;
1707 }
1708
1709 order = page_order(page);
84be48d8
KS
1710 list_move(&page->lru,
1711 &zone->free_area[order].free_list[migratetype]);
c361be55 1712 page += 1 << order;
d100313f 1713 pages_moved += 1 << order;
c361be55
MG
1714 }
1715
d100313f 1716 return pages_moved;
c361be55
MG
1717}
1718
ee6f509c 1719int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1720 int migratetype)
c361be55
MG
1721{
1722 unsigned long start_pfn, end_pfn;
1723 struct page *start_page, *end_page;
1724
1725 start_pfn = page_to_pfn(page);
d9c23400 1726 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1727 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1728 end_page = start_page + pageblock_nr_pages - 1;
1729 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1730
1731 /* Do not cross zone boundaries */
108bcc96 1732 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1733 start_page = page;
108bcc96 1734 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1735 return 0;
1736
1737 return move_freepages(zone, start_page, end_page, migratetype);
1738}
1739
2f66a68f
MG
1740static void change_pageblock_range(struct page *pageblock_page,
1741 int start_order, int migratetype)
1742{
1743 int nr_pageblocks = 1 << (start_order - pageblock_order);
1744
1745 while (nr_pageblocks--) {
1746 set_pageblock_migratetype(pageblock_page, migratetype);
1747 pageblock_page += pageblock_nr_pages;
1748 }
1749}
1750
fef903ef 1751/*
9c0415eb
VB
1752 * When we are falling back to another migratetype during allocation, try to
1753 * steal extra free pages from the same pageblocks to satisfy further
1754 * allocations, instead of polluting multiple pageblocks.
1755 *
1756 * If we are stealing a relatively large buddy page, it is likely there will
1757 * be more free pages in the pageblock, so try to steal them all. For
1758 * reclaimable and unmovable allocations, we steal regardless of page size,
1759 * as fragmentation caused by those allocations polluting movable pageblocks
1760 * is worse than movable allocations stealing from unmovable and reclaimable
1761 * pageblocks.
fef903ef 1762 */
4eb7dce6
JK
1763static bool can_steal_fallback(unsigned int order, int start_mt)
1764{
1765 /*
1766 * Leaving this order check is intended, although there is
1767 * relaxed order check in next check. The reason is that
1768 * we can actually steal whole pageblock if this condition met,
1769 * but, below check doesn't guarantee it and that is just heuristic
1770 * so could be changed anytime.
1771 */
1772 if (order >= pageblock_order)
1773 return true;
1774
1775 if (order >= pageblock_order / 2 ||
1776 start_mt == MIGRATE_RECLAIMABLE ||
1777 start_mt == MIGRATE_UNMOVABLE ||
1778 page_group_by_mobility_disabled)
1779 return true;
1780
1781 return false;
1782}
1783
1784/*
1785 * This function implements actual steal behaviour. If order is large enough,
1786 * we can steal whole pageblock. If not, we first move freepages in this
1787 * pageblock and check whether half of pages are moved or not. If half of
1788 * pages are moved, we can change migratetype of pageblock and permanently
1789 * use it's pages as requested migratetype in the future.
1790 */
1791static void steal_suitable_fallback(struct zone *zone, struct page *page,
1792 int start_type)
fef903ef 1793{
d00181b9 1794 unsigned int current_order = page_order(page);
4eb7dce6 1795 int pages;
fef903ef 1796
fef903ef
SB
1797 /* Take ownership for orders >= pageblock_order */
1798 if (current_order >= pageblock_order) {
1799 change_pageblock_range(page, current_order, start_type);
3a1086fb 1800 return;
fef903ef
SB
1801 }
1802
4eb7dce6 1803 pages = move_freepages_block(zone, page, start_type);
fef903ef 1804
4eb7dce6
JK
1805 /* Claim the whole block if over half of it is free */
1806 if (pages >= (1 << (pageblock_order-1)) ||
1807 page_group_by_mobility_disabled)
1808 set_pageblock_migratetype(page, start_type);
1809}
1810
2149cdae
JK
1811/*
1812 * Check whether there is a suitable fallback freepage with requested order.
1813 * If only_stealable is true, this function returns fallback_mt only if
1814 * we can steal other freepages all together. This would help to reduce
1815 * fragmentation due to mixed migratetype pages in one pageblock.
1816 */
1817int find_suitable_fallback(struct free_area *area, unsigned int order,
1818 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1819{
1820 int i;
1821 int fallback_mt;
1822
1823 if (area->nr_free == 0)
1824 return -1;
1825
1826 *can_steal = false;
1827 for (i = 0;; i++) {
1828 fallback_mt = fallbacks[migratetype][i];
974a786e 1829 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1830 break;
1831
1832 if (list_empty(&area->free_list[fallback_mt]))
1833 continue;
fef903ef 1834
4eb7dce6
JK
1835 if (can_steal_fallback(order, migratetype))
1836 *can_steal = true;
1837
2149cdae
JK
1838 if (!only_stealable)
1839 return fallback_mt;
1840
1841 if (*can_steal)
1842 return fallback_mt;
fef903ef 1843 }
4eb7dce6
JK
1844
1845 return -1;
fef903ef
SB
1846}
1847
0aaa29a5
MG
1848/*
1849 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1850 * there are no empty page blocks that contain a page with a suitable order
1851 */
1852static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1853 unsigned int alloc_order)
1854{
1855 int mt;
1856 unsigned long max_managed, flags;
1857
1858 /*
1859 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1860 * Check is race-prone but harmless.
1861 */
1862 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1863 if (zone->nr_reserved_highatomic >= max_managed)
1864 return;
1865
1866 spin_lock_irqsave(&zone->lock, flags);
1867
1868 /* Recheck the nr_reserved_highatomic limit under the lock */
1869 if (zone->nr_reserved_highatomic >= max_managed)
1870 goto out_unlock;
1871
1872 /* Yoink! */
1873 mt = get_pageblock_migratetype(page);
1874 if (mt != MIGRATE_HIGHATOMIC &&
1875 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1876 zone->nr_reserved_highatomic += pageblock_nr_pages;
1877 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1878 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1879 }
1880
1881out_unlock:
1882 spin_unlock_irqrestore(&zone->lock, flags);
1883}
1884
1885/*
1886 * Used when an allocation is about to fail under memory pressure. This
1887 * potentially hurts the reliability of high-order allocations when under
1888 * intense memory pressure but failed atomic allocations should be easier
1889 * to recover from than an OOM.
1890 */
1891static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1892{
1893 struct zonelist *zonelist = ac->zonelist;
1894 unsigned long flags;
1895 struct zoneref *z;
1896 struct zone *zone;
1897 struct page *page;
1898 int order;
1899
1900 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1901 ac->nodemask) {
1902 /* Preserve at least one pageblock */
1903 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1904 continue;
1905
1906 spin_lock_irqsave(&zone->lock, flags);
1907 for (order = 0; order < MAX_ORDER; order++) {
1908 struct free_area *area = &(zone->free_area[order]);
1909
a16601c5
GT
1910 page = list_first_entry_or_null(
1911 &area->free_list[MIGRATE_HIGHATOMIC],
1912 struct page, lru);
1913 if (!page)
0aaa29a5
MG
1914 continue;
1915
0aaa29a5
MG
1916 /*
1917 * It should never happen but changes to locking could
1918 * inadvertently allow a per-cpu drain to add pages
1919 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1920 * and watch for underflows.
1921 */
1922 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1923 zone->nr_reserved_highatomic);
1924
1925 /*
1926 * Convert to ac->migratetype and avoid the normal
1927 * pageblock stealing heuristics. Minimally, the caller
1928 * is doing the work and needs the pages. More
1929 * importantly, if the block was always converted to
1930 * MIGRATE_UNMOVABLE or another type then the number
1931 * of pageblocks that cannot be completely freed
1932 * may increase.
1933 */
1934 set_pageblock_migratetype(page, ac->migratetype);
1935 move_freepages_block(zone, page, ac->migratetype);
1936 spin_unlock_irqrestore(&zone->lock, flags);
1937 return;
1938 }
1939 spin_unlock_irqrestore(&zone->lock, flags);
1940 }
1941}
1942
b2a0ac88 1943/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1944static inline struct page *
7aeb09f9 1945__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1946{
b8af2941 1947 struct free_area *area;
7aeb09f9 1948 unsigned int current_order;
b2a0ac88 1949 struct page *page;
4eb7dce6
JK
1950 int fallback_mt;
1951 bool can_steal;
b2a0ac88
MG
1952
1953 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1954 for (current_order = MAX_ORDER-1;
1955 current_order >= order && current_order <= MAX_ORDER-1;
1956 --current_order) {
4eb7dce6
JK
1957 area = &(zone->free_area[current_order]);
1958 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1959 start_migratetype, false, &can_steal);
4eb7dce6
JK
1960 if (fallback_mt == -1)
1961 continue;
b2a0ac88 1962
a16601c5 1963 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1964 struct page, lru);
1965 if (can_steal)
1966 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1967
4eb7dce6
JK
1968 /* Remove the page from the freelists */
1969 area->nr_free--;
1970 list_del(&page->lru);
1971 rmv_page_order(page);
3a1086fb 1972
4eb7dce6
JK
1973 expand(zone, page, order, current_order, area,
1974 start_migratetype);
1975 /*
bb14c2c7 1976 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1977 * migratetype depending on the decisions in
bb14c2c7
VB
1978 * find_suitable_fallback(). This is OK as long as it does not
1979 * differ for MIGRATE_CMA pageblocks. Those can be used as
1980 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1981 */
bb14c2c7 1982 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1983
4eb7dce6
JK
1984 trace_mm_page_alloc_extfrag(page, order, current_order,
1985 start_migratetype, fallback_mt);
e0fff1bd 1986
4eb7dce6 1987 return page;
b2a0ac88
MG
1988 }
1989
728ec980 1990 return NULL;
b2a0ac88
MG
1991}
1992
56fd56b8 1993/*
1da177e4
LT
1994 * Do the hard work of removing an element from the buddy allocator.
1995 * Call me with the zone->lock already held.
1996 */
b2a0ac88 1997static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1998 int migratetype)
1da177e4 1999{
1da177e4
LT
2000 struct page *page;
2001
56fd56b8 2002 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2003 if (unlikely(!page)) {
dc67647b
JK
2004 if (migratetype == MIGRATE_MOVABLE)
2005 page = __rmqueue_cma_fallback(zone, order);
2006
2007 if (!page)
2008 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2009 }
2010
0d3d062a 2011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2012 return page;
1da177e4
LT
2013}
2014
5f63b720 2015/*
1da177e4
LT
2016 * Obtain a specified number of elements from the buddy allocator, all under
2017 * a single hold of the lock, for efficiency. Add them to the supplied list.
2018 * Returns the number of new pages which were placed at *list.
2019 */
5f63b720 2020static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2021 unsigned long count, struct list_head *list,
b745bc85 2022 int migratetype, bool cold)
1da177e4 2023{
5bcc9f86 2024 int i;
5f63b720 2025
c54ad30c 2026 spin_lock(&zone->lock);
1da177e4 2027 for (i = 0; i < count; ++i) {
6ac0206b 2028 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2029 if (unlikely(page == NULL))
1da177e4 2030 break;
81eabcbe
MG
2031
2032 /*
2033 * Split buddy pages returned by expand() are received here
2034 * in physical page order. The page is added to the callers and
2035 * list and the list head then moves forward. From the callers
2036 * perspective, the linked list is ordered by page number in
2037 * some conditions. This is useful for IO devices that can
2038 * merge IO requests if the physical pages are ordered
2039 * properly.
2040 */
b745bc85 2041 if (likely(!cold))
e084b2d9
MG
2042 list_add(&page->lru, list);
2043 else
2044 list_add_tail(&page->lru, list);
81eabcbe 2045 list = &page->lru;
bb14c2c7 2046 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2047 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2048 -(1 << order));
1da177e4 2049 }
f2260e6b 2050 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2051 spin_unlock(&zone->lock);
085cc7d5 2052 return i;
1da177e4
LT
2053}
2054
4ae7c039 2055#ifdef CONFIG_NUMA
8fce4d8e 2056/*
4037d452
CL
2057 * Called from the vmstat counter updater to drain pagesets of this
2058 * currently executing processor on remote nodes after they have
2059 * expired.
2060 *
879336c3
CL
2061 * Note that this function must be called with the thread pinned to
2062 * a single processor.
8fce4d8e 2063 */
4037d452 2064void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2065{
4ae7c039 2066 unsigned long flags;
7be12fc9 2067 int to_drain, batch;
4ae7c039 2068
4037d452 2069 local_irq_save(flags);
4db0c3c2 2070 batch = READ_ONCE(pcp->batch);
7be12fc9 2071 to_drain = min(pcp->count, batch);
2a13515c
KM
2072 if (to_drain > 0) {
2073 free_pcppages_bulk(zone, to_drain, pcp);
2074 pcp->count -= to_drain;
2075 }
4037d452 2076 local_irq_restore(flags);
4ae7c039
CL
2077}
2078#endif
2079
9f8f2172 2080/*
93481ff0 2081 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2082 *
2083 * The processor must either be the current processor and the
2084 * thread pinned to the current processor or a processor that
2085 * is not online.
2086 */
93481ff0 2087static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2088{
c54ad30c 2089 unsigned long flags;
93481ff0
VB
2090 struct per_cpu_pageset *pset;
2091 struct per_cpu_pages *pcp;
1da177e4 2092
93481ff0
VB
2093 local_irq_save(flags);
2094 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2095
93481ff0
VB
2096 pcp = &pset->pcp;
2097 if (pcp->count) {
2098 free_pcppages_bulk(zone, pcp->count, pcp);
2099 pcp->count = 0;
2100 }
2101 local_irq_restore(flags);
2102}
3dfa5721 2103
93481ff0
VB
2104/*
2105 * Drain pcplists of all zones on the indicated processor.
2106 *
2107 * The processor must either be the current processor and the
2108 * thread pinned to the current processor or a processor that
2109 * is not online.
2110 */
2111static void drain_pages(unsigned int cpu)
2112{
2113 struct zone *zone;
2114
2115 for_each_populated_zone(zone) {
2116 drain_pages_zone(cpu, zone);
1da177e4
LT
2117 }
2118}
1da177e4 2119
9f8f2172
CL
2120/*
2121 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2122 *
2123 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2124 * the single zone's pages.
9f8f2172 2125 */
93481ff0 2126void drain_local_pages(struct zone *zone)
9f8f2172 2127{
93481ff0
VB
2128 int cpu = smp_processor_id();
2129
2130 if (zone)
2131 drain_pages_zone(cpu, zone);
2132 else
2133 drain_pages(cpu);
9f8f2172
CL
2134}
2135
2136/*
74046494
GBY
2137 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2138 *
93481ff0
VB
2139 * When zone parameter is non-NULL, spill just the single zone's pages.
2140 *
74046494
GBY
2141 * Note that this code is protected against sending an IPI to an offline
2142 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2143 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2144 * nothing keeps CPUs from showing up after we populated the cpumask and
2145 * before the call to on_each_cpu_mask().
9f8f2172 2146 */
93481ff0 2147void drain_all_pages(struct zone *zone)
9f8f2172 2148{
74046494 2149 int cpu;
74046494
GBY
2150
2151 /*
2152 * Allocate in the BSS so we wont require allocation in
2153 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2154 */
2155 static cpumask_t cpus_with_pcps;
2156
2157 /*
2158 * We don't care about racing with CPU hotplug event
2159 * as offline notification will cause the notified
2160 * cpu to drain that CPU pcps and on_each_cpu_mask
2161 * disables preemption as part of its processing
2162 */
2163 for_each_online_cpu(cpu) {
93481ff0
VB
2164 struct per_cpu_pageset *pcp;
2165 struct zone *z;
74046494 2166 bool has_pcps = false;
93481ff0
VB
2167
2168 if (zone) {
74046494 2169 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2170 if (pcp->pcp.count)
74046494 2171 has_pcps = true;
93481ff0
VB
2172 } else {
2173 for_each_populated_zone(z) {
2174 pcp = per_cpu_ptr(z->pageset, cpu);
2175 if (pcp->pcp.count) {
2176 has_pcps = true;
2177 break;
2178 }
74046494
GBY
2179 }
2180 }
93481ff0 2181
74046494
GBY
2182 if (has_pcps)
2183 cpumask_set_cpu(cpu, &cpus_with_pcps);
2184 else
2185 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2186 }
93481ff0
VB
2187 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2188 zone, 1);
9f8f2172
CL
2189}
2190
296699de 2191#ifdef CONFIG_HIBERNATION
1da177e4
LT
2192
2193void mark_free_pages(struct zone *zone)
2194{
f623f0db
RW
2195 unsigned long pfn, max_zone_pfn;
2196 unsigned long flags;
7aeb09f9 2197 unsigned int order, t;
86760a2c 2198 struct page *page;
1da177e4 2199
8080fc03 2200 if (zone_is_empty(zone))
1da177e4
LT
2201 return;
2202
2203 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2204
108bcc96 2205 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2206 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2207 if (pfn_valid(pfn)) {
86760a2c 2208 page = pfn_to_page(pfn);
ba6b0979
JK
2209
2210 if (page_zone(page) != zone)
2211 continue;
2212
7be98234
RW
2213 if (!swsusp_page_is_forbidden(page))
2214 swsusp_unset_page_free(page);
f623f0db 2215 }
1da177e4 2216
b2a0ac88 2217 for_each_migratetype_order(order, t) {
86760a2c
GT
2218 list_for_each_entry(page,
2219 &zone->free_area[order].free_list[t], lru) {
f623f0db 2220 unsigned long i;
1da177e4 2221
86760a2c 2222 pfn = page_to_pfn(page);
f623f0db 2223 for (i = 0; i < (1UL << order); i++)
7be98234 2224 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2225 }
b2a0ac88 2226 }
1da177e4
LT
2227 spin_unlock_irqrestore(&zone->lock, flags);
2228}
e2c55dc8 2229#endif /* CONFIG_PM */
1da177e4 2230
1da177e4
LT
2231/*
2232 * Free a 0-order page
b745bc85 2233 * cold == true ? free a cold page : free a hot page
1da177e4 2234 */
b745bc85 2235void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2236{
2237 struct zone *zone = page_zone(page);
2238 struct per_cpu_pages *pcp;
2239 unsigned long flags;
dc4b0caf 2240 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2241 int migratetype;
1da177e4 2242
ec95f53a 2243 if (!free_pages_prepare(page, 0))
689bcebf
HD
2244 return;
2245
dc4b0caf 2246 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2247 set_pcppage_migratetype(page, migratetype);
1da177e4 2248 local_irq_save(flags);
f8891e5e 2249 __count_vm_event(PGFREE);
da456f14 2250
5f8dcc21
MG
2251 /*
2252 * We only track unmovable, reclaimable and movable on pcp lists.
2253 * Free ISOLATE pages back to the allocator because they are being
2254 * offlined but treat RESERVE as movable pages so we can get those
2255 * areas back if necessary. Otherwise, we may have to free
2256 * excessively into the page allocator
2257 */
2258 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2259 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2260 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2261 goto out;
2262 }
2263 migratetype = MIGRATE_MOVABLE;
2264 }
2265
99dcc3e5 2266 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2267 if (!cold)
5f8dcc21 2268 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2269 else
2270 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2271 pcp->count++;
48db57f8 2272 if (pcp->count >= pcp->high) {
4db0c3c2 2273 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2274 free_pcppages_bulk(zone, batch, pcp);
2275 pcp->count -= batch;
48db57f8 2276 }
5f8dcc21
MG
2277
2278out:
1da177e4 2279 local_irq_restore(flags);
1da177e4
LT
2280}
2281
cc59850e
KK
2282/*
2283 * Free a list of 0-order pages
2284 */
b745bc85 2285void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2286{
2287 struct page *page, *next;
2288
2289 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2290 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2291 free_hot_cold_page(page, cold);
2292 }
2293}
2294
8dfcc9ba
NP
2295/*
2296 * split_page takes a non-compound higher-order page, and splits it into
2297 * n (1<<order) sub-pages: page[0..n]
2298 * Each sub-page must be freed individually.
2299 *
2300 * Note: this is probably too low level an operation for use in drivers.
2301 * Please consult with lkml before using this in your driver.
2302 */
2303void split_page(struct page *page, unsigned int order)
2304{
2305 int i;
e2cfc911 2306 gfp_t gfp_mask;
8dfcc9ba 2307
309381fe
SL
2308 VM_BUG_ON_PAGE(PageCompound(page), page);
2309 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2310
2311#ifdef CONFIG_KMEMCHECK
2312 /*
2313 * Split shadow pages too, because free(page[0]) would
2314 * otherwise free the whole shadow.
2315 */
2316 if (kmemcheck_page_is_tracked(page))
2317 split_page(virt_to_page(page[0].shadow), order);
2318#endif
2319
e2cfc911
JK
2320 gfp_mask = get_page_owner_gfp(page);
2321 set_page_owner(page, 0, gfp_mask);
48c96a36 2322 for (i = 1; i < (1 << order); i++) {
7835e98b 2323 set_page_refcounted(page + i);
e2cfc911 2324 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2325 }
8dfcc9ba 2326}
5853ff23 2327EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2328
3c605096 2329int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2330{
748446bb
MG
2331 unsigned long watermark;
2332 struct zone *zone;
2139cbe6 2333 int mt;
748446bb
MG
2334
2335 BUG_ON(!PageBuddy(page));
2336
2337 zone = page_zone(page);
2e30abd1 2338 mt = get_pageblock_migratetype(page);
748446bb 2339
194159fb 2340 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2341 /* Obey watermarks as if the page was being allocated */
2342 watermark = low_wmark_pages(zone) + (1 << order);
2343 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2344 return 0;
2345
8fb74b9f 2346 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2347 }
748446bb
MG
2348
2349 /* Remove page from free list */
2350 list_del(&page->lru);
2351 zone->free_area[order].nr_free--;
2352 rmv_page_order(page);
2139cbe6 2353
e2cfc911 2354 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2355
8fb74b9f 2356 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2357 if (order >= pageblock_order - 1) {
2358 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2359 for (; page < endpage; page += pageblock_nr_pages) {
2360 int mt = get_pageblock_migratetype(page);
194159fb 2361 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2362 set_pageblock_migratetype(page,
2363 MIGRATE_MOVABLE);
2364 }
748446bb
MG
2365 }
2366
f3a14ced 2367
8fb74b9f 2368 return 1UL << order;
1fb3f8ca
MG
2369}
2370
2371/*
2372 * Similar to split_page except the page is already free. As this is only
2373 * being used for migration, the migratetype of the block also changes.
2374 * As this is called with interrupts disabled, the caller is responsible
2375 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2376 * are enabled.
2377 *
2378 * Note: this is probably too low level an operation for use in drivers.
2379 * Please consult with lkml before using this in your driver.
2380 */
2381int split_free_page(struct page *page)
2382{
2383 unsigned int order;
2384 int nr_pages;
2385
1fb3f8ca
MG
2386 order = page_order(page);
2387
8fb74b9f 2388 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2389 if (!nr_pages)
2390 return 0;
2391
2392 /* Split into individual pages */
2393 set_page_refcounted(page);
2394 split_page(page, order);
2395 return nr_pages;
748446bb
MG
2396}
2397
060e7417
MG
2398/*
2399 * Update NUMA hit/miss statistics
2400 *
2401 * Must be called with interrupts disabled.
2402 *
2403 * When __GFP_OTHER_NODE is set assume the node of the preferred
2404 * zone is the local node. This is useful for daemons who allocate
2405 * memory on behalf of other processes.
2406 */
2407static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2408 gfp_t flags)
2409{
2410#ifdef CONFIG_NUMA
2411 int local_nid = numa_node_id();
2412 enum zone_stat_item local_stat = NUMA_LOCAL;
2413
2414 if (unlikely(flags & __GFP_OTHER_NODE)) {
2415 local_stat = NUMA_OTHER;
2416 local_nid = preferred_zone->node;
2417 }
2418
2419 if (z->node == local_nid) {
2420 __inc_zone_state(z, NUMA_HIT);
2421 __inc_zone_state(z, local_stat);
2422 } else {
2423 __inc_zone_state(z, NUMA_MISS);
2424 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2425 }
2426#endif
2427}
2428
1da177e4 2429/*
75379191 2430 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2431 */
0a15c3e9
MG
2432static inline
2433struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2434 struct zone *zone, unsigned int order,
c603844b
MG
2435 gfp_t gfp_flags, unsigned int alloc_flags,
2436 int migratetype)
1da177e4
LT
2437{
2438 unsigned long flags;
689bcebf 2439 struct page *page;
b745bc85 2440 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2441
48db57f8 2442 if (likely(order == 0)) {
1da177e4 2443 struct per_cpu_pages *pcp;
5f8dcc21 2444 struct list_head *list;
1da177e4 2445
1da177e4 2446 local_irq_save(flags);
99dcc3e5
CL
2447 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2448 list = &pcp->lists[migratetype];
5f8dcc21 2449 if (list_empty(list)) {
535131e6 2450 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2451 pcp->batch, list,
e084b2d9 2452 migratetype, cold);
5f8dcc21 2453 if (unlikely(list_empty(list)))
6fb332fa 2454 goto failed;
535131e6 2455 }
b92a6edd 2456
5f8dcc21 2457 if (cold)
a16601c5 2458 page = list_last_entry(list, struct page, lru);
5f8dcc21 2459 else
a16601c5 2460 page = list_first_entry(list, struct page, lru);
5f8dcc21 2461
754078eb 2462 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2463 list_del(&page->lru);
2464 pcp->count--;
7fb1d9fc 2465 } else {
0f352e53
MH
2466 /*
2467 * We most definitely don't want callers attempting to
2468 * allocate greater than order-1 page units with __GFP_NOFAIL.
2469 */
2470 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2471 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2472
2473 page = NULL;
2474 if (alloc_flags & ALLOC_HARDER) {
2475 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2476 if (page)
2477 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2478 }
2479 if (!page)
6ac0206b 2480 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2481 spin_unlock(&zone->lock);
2482 if (!page)
2483 goto failed;
754078eb 2484 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2485 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2486 get_pcppage_migratetype(page));
1da177e4
LT
2487 }
2488
abe5f972 2489 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2490 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2491 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2492
f8891e5e 2493 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2494 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2495 local_irq_restore(flags);
1da177e4 2496
309381fe 2497 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2498 return page;
a74609fa
NP
2499
2500failed:
2501 local_irq_restore(flags);
a74609fa 2502 return NULL;
1da177e4
LT
2503}
2504
933e312e
AM
2505#ifdef CONFIG_FAIL_PAGE_ALLOC
2506
b2588c4b 2507static struct {
933e312e
AM
2508 struct fault_attr attr;
2509
621a5f7a 2510 bool ignore_gfp_highmem;
71baba4b 2511 bool ignore_gfp_reclaim;
54114994 2512 u32 min_order;
933e312e
AM
2513} fail_page_alloc = {
2514 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2515 .ignore_gfp_reclaim = true,
621a5f7a 2516 .ignore_gfp_highmem = true,
54114994 2517 .min_order = 1,
933e312e
AM
2518};
2519
2520static int __init setup_fail_page_alloc(char *str)
2521{
2522 return setup_fault_attr(&fail_page_alloc.attr, str);
2523}
2524__setup("fail_page_alloc=", setup_fail_page_alloc);
2525
deaf386e 2526static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2527{
54114994 2528 if (order < fail_page_alloc.min_order)
deaf386e 2529 return false;
933e312e 2530 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2531 return false;
933e312e 2532 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2533 return false;
71baba4b
MG
2534 if (fail_page_alloc.ignore_gfp_reclaim &&
2535 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2536 return false;
933e312e
AM
2537
2538 return should_fail(&fail_page_alloc.attr, 1 << order);
2539}
2540
2541#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2542
2543static int __init fail_page_alloc_debugfs(void)
2544{
f4ae40a6 2545 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2546 struct dentry *dir;
933e312e 2547
dd48c085
AM
2548 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2549 &fail_page_alloc.attr);
2550 if (IS_ERR(dir))
2551 return PTR_ERR(dir);
933e312e 2552
b2588c4b 2553 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2554 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2555 goto fail;
2556 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2557 &fail_page_alloc.ignore_gfp_highmem))
2558 goto fail;
2559 if (!debugfs_create_u32("min-order", mode, dir,
2560 &fail_page_alloc.min_order))
2561 goto fail;
2562
2563 return 0;
2564fail:
dd48c085 2565 debugfs_remove_recursive(dir);
933e312e 2566
b2588c4b 2567 return -ENOMEM;
933e312e
AM
2568}
2569
2570late_initcall(fail_page_alloc_debugfs);
2571
2572#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2573
2574#else /* CONFIG_FAIL_PAGE_ALLOC */
2575
deaf386e 2576static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2577{
deaf386e 2578 return false;
933e312e
AM
2579}
2580
2581#endif /* CONFIG_FAIL_PAGE_ALLOC */
2582
1da177e4 2583/*
97a16fc8
MG
2584 * Return true if free base pages are above 'mark'. For high-order checks it
2585 * will return true of the order-0 watermark is reached and there is at least
2586 * one free page of a suitable size. Checking now avoids taking the zone lock
2587 * to check in the allocation paths if no pages are free.
1da177e4 2588 */
7aeb09f9 2589static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2590 unsigned long mark, int classzone_idx,
2591 unsigned int alloc_flags,
7aeb09f9 2592 long free_pages)
1da177e4 2593{
d23ad423 2594 long min = mark;
1da177e4 2595 int o;
c603844b 2596 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2597
0aaa29a5 2598 /* free_pages may go negative - that's OK */
df0a6daa 2599 free_pages -= (1 << order) - 1;
0aaa29a5 2600
7fb1d9fc 2601 if (alloc_flags & ALLOC_HIGH)
1da177e4 2602 min -= min / 2;
0aaa29a5
MG
2603
2604 /*
2605 * If the caller does not have rights to ALLOC_HARDER then subtract
2606 * the high-atomic reserves. This will over-estimate the size of the
2607 * atomic reserve but it avoids a search.
2608 */
97a16fc8 2609 if (likely(!alloc_harder))
0aaa29a5
MG
2610 free_pages -= z->nr_reserved_highatomic;
2611 else
1da177e4 2612 min -= min / 4;
e2b19197 2613
d95ea5d1
BZ
2614#ifdef CONFIG_CMA
2615 /* If allocation can't use CMA areas don't use free CMA pages */
2616 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2617 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2618#endif
026b0814 2619
97a16fc8
MG
2620 /*
2621 * Check watermarks for an order-0 allocation request. If these
2622 * are not met, then a high-order request also cannot go ahead
2623 * even if a suitable page happened to be free.
2624 */
2625 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2626 return false;
1da177e4 2627
97a16fc8
MG
2628 /* If this is an order-0 request then the watermark is fine */
2629 if (!order)
2630 return true;
2631
2632 /* For a high-order request, check at least one suitable page is free */
2633 for (o = order; o < MAX_ORDER; o++) {
2634 struct free_area *area = &z->free_area[o];
2635 int mt;
2636
2637 if (!area->nr_free)
2638 continue;
2639
2640 if (alloc_harder)
2641 return true;
1da177e4 2642
97a16fc8
MG
2643 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2644 if (!list_empty(&area->free_list[mt]))
2645 return true;
2646 }
2647
2648#ifdef CONFIG_CMA
2649 if ((alloc_flags & ALLOC_CMA) &&
2650 !list_empty(&area->free_list[MIGRATE_CMA])) {
2651 return true;
2652 }
2653#endif
1da177e4 2654 }
97a16fc8 2655 return false;
88f5acf8
MG
2656}
2657
7aeb09f9 2658bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2659 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2660{
2661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2662 zone_page_state(z, NR_FREE_PAGES));
2663}
2664
48ee5f36
MG
2665static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2666 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2667{
2668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2669 long cma_pages = 0;
2670
2671#ifdef CONFIG_CMA
2672 /* If allocation can't use CMA areas don't use free CMA pages */
2673 if (!(alloc_flags & ALLOC_CMA))
2674 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2675#endif
2676
2677 /*
2678 * Fast check for order-0 only. If this fails then the reserves
2679 * need to be calculated. There is a corner case where the check
2680 * passes but only the high-order atomic reserve are free. If
2681 * the caller is !atomic then it'll uselessly search the free
2682 * list. That corner case is then slower but it is harmless.
2683 */
2684 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2685 return true;
2686
2687 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2688 free_pages);
2689}
2690
7aeb09f9 2691bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2692 unsigned long mark, int classzone_idx)
88f5acf8
MG
2693{
2694 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2695
2696 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2697 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2698
e2b19197 2699 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2700 free_pages);
1da177e4
LT
2701}
2702
9276b1bc 2703#ifdef CONFIG_NUMA
81c0a2bb
JW
2704static bool zone_local(struct zone *local_zone, struct zone *zone)
2705{
fff4068c 2706 return local_zone->node == zone->node;
81c0a2bb
JW
2707}
2708
957f822a
DR
2709static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2710{
5f7a75ac
MG
2711 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2712 RECLAIM_DISTANCE;
957f822a 2713}
9276b1bc 2714#else /* CONFIG_NUMA */
81c0a2bb
JW
2715static bool zone_local(struct zone *local_zone, struct zone *zone)
2716{
2717 return true;
2718}
2719
957f822a
DR
2720static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2721{
2722 return true;
2723}
9276b1bc
PJ
2724#endif /* CONFIG_NUMA */
2725
4ffeaf35
MG
2726static void reset_alloc_batches(struct zone *preferred_zone)
2727{
2728 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2729
2730 do {
2731 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2732 high_wmark_pages(zone) - low_wmark_pages(zone) -
2733 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2734 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2735 } while (zone++ != preferred_zone);
2736}
2737
7fb1d9fc 2738/*
0798e519 2739 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2740 * a page.
2741 */
2742static struct page *
a9263751
VB
2743get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2744 const struct alloc_context *ac)
753ee728 2745{
c33d6c06 2746 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2747 struct zone *zone;
30534755
MG
2748 bool fair_skipped = false;
2749 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2750
9276b1bc 2751zonelist_scan:
7fb1d9fc 2752 /*
9276b1bc 2753 * Scan zonelist, looking for a zone with enough free.
344736f2 2754 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2755 */
c33d6c06 2756 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2757 ac->nodemask) {
be06af00 2758 struct page *page;
e085dbc5
JW
2759 unsigned long mark;
2760
664eedde
MG
2761 if (cpusets_enabled() &&
2762 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2763 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2764 continue;
81c0a2bb
JW
2765 /*
2766 * Distribute pages in proportion to the individual
2767 * zone size to ensure fair page aging. The zone a
2768 * page was allocated in should have no effect on the
2769 * time the page has in memory before being reclaimed.
81c0a2bb 2770 */
30534755 2771 if (apply_fair) {
57054651 2772 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2773 fair_skipped = true;
3a025760 2774 continue;
4ffeaf35 2775 }
c33d6c06 2776 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2777 if (fair_skipped)
2778 goto reset_fair;
2779 apply_fair = false;
2780 }
81c0a2bb 2781 }
a756cf59
JW
2782 /*
2783 * When allocating a page cache page for writing, we
2784 * want to get it from a zone that is within its dirty
2785 * limit, such that no single zone holds more than its
2786 * proportional share of globally allowed dirty pages.
2787 * The dirty limits take into account the zone's
2788 * lowmem reserves and high watermark so that kswapd
2789 * should be able to balance it without having to
2790 * write pages from its LRU list.
2791 *
2792 * This may look like it could increase pressure on
2793 * lower zones by failing allocations in higher zones
2794 * before they are full. But the pages that do spill
2795 * over are limited as the lower zones are protected
2796 * by this very same mechanism. It should not become
2797 * a practical burden to them.
2798 *
2799 * XXX: For now, allow allocations to potentially
2800 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2801 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2802 * which is important when on a NUMA setup the allowed
2803 * zones are together not big enough to reach the
2804 * global limit. The proper fix for these situations
2805 * will require awareness of zones in the
2806 * dirty-throttling and the flusher threads.
2807 */
c9ab0c4f 2808 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2809 continue;
7fb1d9fc 2810
e085dbc5 2811 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2812 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2813 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2814 int ret;
2815
5dab2911
MG
2816 /* Checked here to keep the fast path fast */
2817 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2818 if (alloc_flags & ALLOC_NO_WATERMARKS)
2819 goto try_this_zone;
2820
957f822a 2821 if (zone_reclaim_mode == 0 ||
c33d6c06 2822 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2823 continue;
2824
fa5e084e
MG
2825 ret = zone_reclaim(zone, gfp_mask, order);
2826 switch (ret) {
2827 case ZONE_RECLAIM_NOSCAN:
2828 /* did not scan */
cd38b115 2829 continue;
fa5e084e
MG
2830 case ZONE_RECLAIM_FULL:
2831 /* scanned but unreclaimable */
cd38b115 2832 continue;
fa5e084e
MG
2833 default:
2834 /* did we reclaim enough */
fed2719e 2835 if (zone_watermark_ok(zone, order, mark,
93ea9964 2836 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2837 goto try_this_zone;
2838
fed2719e 2839 continue;
0798e519 2840 }
7fb1d9fc
RS
2841 }
2842
fa5e084e 2843try_this_zone:
c33d6c06 2844 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2845 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2846 if (page) {
2847 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2848 goto try_this_zone;
0aaa29a5
MG
2849
2850 /*
2851 * If this is a high-order atomic allocation then check
2852 * if the pageblock should be reserved for the future
2853 */
2854 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2855 reserve_highatomic_pageblock(page, zone, order);
2856
75379191
VB
2857 return page;
2858 }
54a6eb5c 2859 }
9276b1bc 2860
4ffeaf35
MG
2861 /*
2862 * The first pass makes sure allocations are spread fairly within the
2863 * local node. However, the local node might have free pages left
2864 * after the fairness batches are exhausted, and remote zones haven't
2865 * even been considered yet. Try once more without fairness, and
2866 * include remote zones now, before entering the slowpath and waking
2867 * kswapd: prefer spilling to a remote zone over swapping locally.
2868 */
30534755
MG
2869 if (fair_skipped) {
2870reset_fair:
2871 apply_fair = false;
2872 fair_skipped = false;
c33d6c06 2873 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 2874 goto zonelist_scan;
30534755 2875 }
4ffeaf35
MG
2876
2877 return NULL;
753ee728
MH
2878}
2879
29423e77
DR
2880/*
2881 * Large machines with many possible nodes should not always dump per-node
2882 * meminfo in irq context.
2883 */
2884static inline bool should_suppress_show_mem(void)
2885{
2886 bool ret = false;
2887
2888#if NODES_SHIFT > 8
2889 ret = in_interrupt();
2890#endif
2891 return ret;
2892}
2893
a238ab5b
DH
2894static DEFINE_RATELIMIT_STATE(nopage_rs,
2895 DEFAULT_RATELIMIT_INTERVAL,
2896 DEFAULT_RATELIMIT_BURST);
2897
d00181b9 2898void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2899{
a238ab5b
DH
2900 unsigned int filter = SHOW_MEM_FILTER_NODES;
2901
c0a32fc5
SG
2902 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2903 debug_guardpage_minorder() > 0)
a238ab5b
DH
2904 return;
2905
2906 /*
2907 * This documents exceptions given to allocations in certain
2908 * contexts that are allowed to allocate outside current's set
2909 * of allowed nodes.
2910 */
2911 if (!(gfp_mask & __GFP_NOMEMALLOC))
2912 if (test_thread_flag(TIF_MEMDIE) ||
2913 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2914 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2915 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2916 filter &= ~SHOW_MEM_FILTER_NODES;
2917
2918 if (fmt) {
3ee9a4f0
JP
2919 struct va_format vaf;
2920 va_list args;
2921
a238ab5b 2922 va_start(args, fmt);
3ee9a4f0
JP
2923
2924 vaf.fmt = fmt;
2925 vaf.va = &args;
2926
2927 pr_warn("%pV", &vaf);
2928
a238ab5b
DH
2929 va_end(args);
2930 }
2931
c5c990e8
VB
2932 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2933 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2934 dump_stack();
2935 if (!should_suppress_show_mem())
2936 show_mem(filter);
2937}
2938
11e33f6a
MG
2939static inline struct page *
2940__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2941 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2942{
6e0fc46d
DR
2943 struct oom_control oc = {
2944 .zonelist = ac->zonelist,
2945 .nodemask = ac->nodemask,
2946 .gfp_mask = gfp_mask,
2947 .order = order,
6e0fc46d 2948 };
11e33f6a
MG
2949 struct page *page;
2950
9879de73
JW
2951 *did_some_progress = 0;
2952
9879de73 2953 /*
dc56401f
JW
2954 * Acquire the oom lock. If that fails, somebody else is
2955 * making progress for us.
9879de73 2956 */
dc56401f 2957 if (!mutex_trylock(&oom_lock)) {
9879de73 2958 *did_some_progress = 1;
11e33f6a 2959 schedule_timeout_uninterruptible(1);
1da177e4
LT
2960 return NULL;
2961 }
6b1de916 2962
11e33f6a
MG
2963 /*
2964 * Go through the zonelist yet one more time, keep very high watermark
2965 * here, this is only to catch a parallel oom killing, we must fail if
2966 * we're still under heavy pressure.
2967 */
a9263751
VB
2968 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2969 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2970 if (page)
11e33f6a
MG
2971 goto out;
2972
4365a567 2973 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2974 /* Coredumps can quickly deplete all memory reserves */
2975 if (current->flags & PF_DUMPCORE)
2976 goto out;
4365a567
KH
2977 /* The OOM killer will not help higher order allocs */
2978 if (order > PAGE_ALLOC_COSTLY_ORDER)
2979 goto out;
03668b3c 2980 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2981 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2982 goto out;
9083905a
JW
2983 if (pm_suspended_storage())
2984 goto out;
3da88fb3
MH
2985 /*
2986 * XXX: GFP_NOFS allocations should rather fail than rely on
2987 * other request to make a forward progress.
2988 * We are in an unfortunate situation where out_of_memory cannot
2989 * do much for this context but let's try it to at least get
2990 * access to memory reserved if the current task is killed (see
2991 * out_of_memory). Once filesystems are ready to handle allocation
2992 * failures more gracefully we should just bail out here.
2993 */
2994
4167e9b2 2995 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2996 if (gfp_mask & __GFP_THISNODE)
2997 goto out;
2998 }
11e33f6a 2999 /* Exhausted what can be done so it's blamo time */
5020e285 3000 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3001 *did_some_progress = 1;
5020e285
MH
3002
3003 if (gfp_mask & __GFP_NOFAIL) {
3004 page = get_page_from_freelist(gfp_mask, order,
3005 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3006 /*
3007 * fallback to ignore cpuset restriction if our nodes
3008 * are depleted
3009 */
3010 if (!page)
3011 page = get_page_from_freelist(gfp_mask, order,
3012 ALLOC_NO_WATERMARKS, ac);
3013 }
3014 }
11e33f6a 3015out:
dc56401f 3016 mutex_unlock(&oom_lock);
11e33f6a
MG
3017 return page;
3018}
3019
56de7263
MG
3020#ifdef CONFIG_COMPACTION
3021/* Try memory compaction for high-order allocations before reclaim */
3022static struct page *
3023__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3024 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3025 enum migrate_mode mode, int *contended_compaction,
3026 bool *deferred_compaction)
56de7263 3027{
53853e2d 3028 unsigned long compact_result;
98dd3b48 3029 struct page *page;
53853e2d
VB
3030
3031 if (!order)
66199712 3032 return NULL;
66199712 3033
c06b1fca 3034 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3035 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3036 mode, contended_compaction);
c06b1fca 3037 current->flags &= ~PF_MEMALLOC;
56de7263 3038
98dd3b48
VB
3039 switch (compact_result) {
3040 case COMPACT_DEFERRED:
53853e2d 3041 *deferred_compaction = true;
98dd3b48
VB
3042 /* fall-through */
3043 case COMPACT_SKIPPED:
3044 return NULL;
3045 default:
3046 break;
3047 }
53853e2d 3048
98dd3b48
VB
3049 /*
3050 * At least in one zone compaction wasn't deferred or skipped, so let's
3051 * count a compaction stall
3052 */
3053 count_vm_event(COMPACTSTALL);
8fb74b9f 3054
a9263751
VB
3055 page = get_page_from_freelist(gfp_mask, order,
3056 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3057
98dd3b48
VB
3058 if (page) {
3059 struct zone *zone = page_zone(page);
53853e2d 3060
98dd3b48
VB
3061 zone->compact_blockskip_flush = false;
3062 compaction_defer_reset(zone, order, true);
3063 count_vm_event(COMPACTSUCCESS);
3064 return page;
3065 }
56de7263 3066
98dd3b48
VB
3067 /*
3068 * It's bad if compaction run occurs and fails. The most likely reason
3069 * is that pages exist, but not enough to satisfy watermarks.
3070 */
3071 count_vm_event(COMPACTFAIL);
66199712 3072
98dd3b48 3073 cond_resched();
56de7263
MG
3074
3075 return NULL;
3076}
3077#else
3078static inline struct page *
3079__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3080 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3081 enum migrate_mode mode, int *contended_compaction,
3082 bool *deferred_compaction)
56de7263
MG
3083{
3084 return NULL;
3085}
3086#endif /* CONFIG_COMPACTION */
3087
bba90710
MS
3088/* Perform direct synchronous page reclaim */
3089static int
a9263751
VB
3090__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3091 const struct alloc_context *ac)
11e33f6a 3092{
11e33f6a 3093 struct reclaim_state reclaim_state;
bba90710 3094 int progress;
11e33f6a
MG
3095
3096 cond_resched();
3097
3098 /* We now go into synchronous reclaim */
3099 cpuset_memory_pressure_bump();
c06b1fca 3100 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3101 lockdep_set_current_reclaim_state(gfp_mask);
3102 reclaim_state.reclaimed_slab = 0;
c06b1fca 3103 current->reclaim_state = &reclaim_state;
11e33f6a 3104
a9263751
VB
3105 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3106 ac->nodemask);
11e33f6a 3107
c06b1fca 3108 current->reclaim_state = NULL;
11e33f6a 3109 lockdep_clear_current_reclaim_state();
c06b1fca 3110 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3111
3112 cond_resched();
3113
bba90710
MS
3114 return progress;
3115}
3116
3117/* The really slow allocator path where we enter direct reclaim */
3118static inline struct page *
3119__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3120 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3121 unsigned long *did_some_progress)
bba90710
MS
3122{
3123 struct page *page = NULL;
3124 bool drained = false;
3125
a9263751 3126 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3127 if (unlikely(!(*did_some_progress)))
3128 return NULL;
11e33f6a 3129
9ee493ce 3130retry:
a9263751
VB
3131 page = get_page_from_freelist(gfp_mask, order,
3132 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3133
3134 /*
3135 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3136 * pages are pinned on the per-cpu lists or in high alloc reserves.
3137 * Shrink them them and try again
9ee493ce
MG
3138 */
3139 if (!page && !drained) {
0aaa29a5 3140 unreserve_highatomic_pageblock(ac);
93481ff0 3141 drain_all_pages(NULL);
9ee493ce
MG
3142 drained = true;
3143 goto retry;
3144 }
3145
11e33f6a
MG
3146 return page;
3147}
3148
a9263751 3149static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3150{
3151 struct zoneref *z;
3152 struct zone *zone;
3153
a9263751
VB
3154 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3155 ac->high_zoneidx, ac->nodemask)
93ea9964 3156 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3157}
3158
c603844b 3159static inline unsigned int
341ce06f
PZ
3160gfp_to_alloc_flags(gfp_t gfp_mask)
3161{
c603844b 3162 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3163
a56f57ff 3164 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3165 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3166
341ce06f
PZ
3167 /*
3168 * The caller may dip into page reserves a bit more if the caller
3169 * cannot run direct reclaim, or if the caller has realtime scheduling
3170 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3171 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3172 */
e6223a3b 3173 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3174
d0164adc 3175 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3176 /*
b104a35d
DR
3177 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3178 * if it can't schedule.
5c3240d9 3179 */
b104a35d 3180 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3181 alloc_flags |= ALLOC_HARDER;
523b9458 3182 /*
b104a35d 3183 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3184 * comment for __cpuset_node_allowed().
523b9458 3185 */
341ce06f 3186 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3187 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3188 alloc_flags |= ALLOC_HARDER;
3189
b37f1dd0
MG
3190 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3191 if (gfp_mask & __GFP_MEMALLOC)
3192 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3193 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3194 alloc_flags |= ALLOC_NO_WATERMARKS;
3195 else if (!in_interrupt() &&
3196 ((current->flags & PF_MEMALLOC) ||
3197 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3198 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3199 }
d95ea5d1 3200#ifdef CONFIG_CMA
43e7a34d 3201 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3202 alloc_flags |= ALLOC_CMA;
3203#endif
341ce06f
PZ
3204 return alloc_flags;
3205}
3206
072bb0aa
MG
3207bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3208{
b37f1dd0 3209 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3210}
3211
d0164adc
MG
3212static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3213{
3214 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3215}
3216
11e33f6a
MG
3217static inline struct page *
3218__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3219 struct alloc_context *ac)
11e33f6a 3220{
d0164adc 3221 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3222 struct page *page = NULL;
c603844b 3223 unsigned int alloc_flags;
11e33f6a
MG
3224 unsigned long pages_reclaimed = 0;
3225 unsigned long did_some_progress;
e0b9daeb 3226 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3227 bool deferred_compaction = false;
1f9efdef 3228 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3229
72807a74
MG
3230 /*
3231 * In the slowpath, we sanity check order to avoid ever trying to
3232 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3233 * be using allocators in order of preference for an area that is
3234 * too large.
3235 */
1fc28b70
MG
3236 if (order >= MAX_ORDER) {
3237 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3238 return NULL;
1fc28b70 3239 }
1da177e4 3240
d0164adc
MG
3241 /*
3242 * We also sanity check to catch abuse of atomic reserves being used by
3243 * callers that are not in atomic context.
3244 */
3245 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3246 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3247 gfp_mask &= ~__GFP_ATOMIC;
3248
9879de73 3249retry:
d0164adc 3250 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3251 wake_all_kswapds(order, ac);
1da177e4 3252
9bf2229f 3253 /*
7fb1d9fc
RS
3254 * OK, we're below the kswapd watermark and have kicked background
3255 * reclaim. Now things get more complex, so set up alloc_flags according
3256 * to how we want to proceed.
9bf2229f 3257 */
341ce06f 3258 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3259
341ce06f 3260 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3261 page = get_page_from_freelist(gfp_mask, order,
3262 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3263 if (page)
3264 goto got_pg;
1da177e4 3265
11e33f6a 3266 /* Allocate without watermarks if the context allows */
341ce06f 3267 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3268 /*
3269 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3270 * the allocation is high priority and these type of
3271 * allocations are system rather than user orientated
3272 */
a9263751 3273 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3274 page = get_page_from_freelist(gfp_mask, order,
3275 ALLOC_NO_WATERMARKS, ac);
3276 if (page)
3277 goto got_pg;
1da177e4
LT
3278 }
3279
d0164adc
MG
3280 /* Caller is not willing to reclaim, we can't balance anything */
3281 if (!can_direct_reclaim) {
aed0a0e3 3282 /*
33d53103
MH
3283 * All existing users of the __GFP_NOFAIL are blockable, so warn
3284 * of any new users that actually allow this type of allocation
3285 * to fail.
aed0a0e3
DR
3286 */
3287 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3288 goto nopage;
aed0a0e3 3289 }
1da177e4 3290
341ce06f 3291 /* Avoid recursion of direct reclaim */
33d53103
MH
3292 if (current->flags & PF_MEMALLOC) {
3293 /*
3294 * __GFP_NOFAIL request from this context is rather bizarre
3295 * because we cannot reclaim anything and only can loop waiting
3296 * for somebody to do a work for us.
3297 */
3298 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3299 cond_resched();
3300 goto retry;
3301 }
341ce06f 3302 goto nopage;
33d53103 3303 }
341ce06f 3304
6583bb64
DR
3305 /* Avoid allocations with no watermarks from looping endlessly */
3306 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3307 goto nopage;
3308
77f1fe6b
MG
3309 /*
3310 * Try direct compaction. The first pass is asynchronous. Subsequent
3311 * attempts after direct reclaim are synchronous
3312 */
a9263751
VB
3313 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3314 migration_mode,
3315 &contended_compaction,
53853e2d 3316 &deferred_compaction);
56de7263
MG
3317 if (page)
3318 goto got_pg;
75f30861 3319
1f9efdef 3320 /* Checks for THP-specific high-order allocations */
d0164adc 3321 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3322 /*
3323 * If compaction is deferred for high-order allocations, it is
3324 * because sync compaction recently failed. If this is the case
3325 * and the caller requested a THP allocation, we do not want
3326 * to heavily disrupt the system, so we fail the allocation
3327 * instead of entering direct reclaim.
3328 */
3329 if (deferred_compaction)
3330 goto nopage;
3331
3332 /*
3333 * In all zones where compaction was attempted (and not
3334 * deferred or skipped), lock contention has been detected.
3335 * For THP allocation we do not want to disrupt the others
3336 * so we fallback to base pages instead.
3337 */
3338 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3339 goto nopage;
3340
3341 /*
3342 * If compaction was aborted due to need_resched(), we do not
3343 * want to further increase allocation latency, unless it is
3344 * khugepaged trying to collapse.
3345 */
3346 if (contended_compaction == COMPACT_CONTENDED_SCHED
3347 && !(current->flags & PF_KTHREAD))
3348 goto nopage;
3349 }
66199712 3350
8fe78048
DR
3351 /*
3352 * It can become very expensive to allocate transparent hugepages at
3353 * fault, so use asynchronous memory compaction for THP unless it is
3354 * khugepaged trying to collapse.
3355 */
d0164adc 3356 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3357 migration_mode = MIGRATE_SYNC_LIGHT;
3358
11e33f6a 3359 /* Try direct reclaim and then allocating */
a9263751
VB
3360 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3361 &did_some_progress);
11e33f6a
MG
3362 if (page)
3363 goto got_pg;
1da177e4 3364
9083905a
JW
3365 /* Do not loop if specifically requested */
3366 if (gfp_mask & __GFP_NORETRY)
3367 goto noretry;
3368
3369 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3370 pages_reclaimed += did_some_progress;
9083905a
JW
3371 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3372 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3373 /* Wait for some write requests to complete then retry */
c33d6c06 3374 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3375 goto retry;
1da177e4
LT
3376 }
3377
9083905a
JW
3378 /* Reclaim has failed us, start killing things */
3379 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3380 if (page)
3381 goto got_pg;
3382
3383 /* Retry as long as the OOM killer is making progress */
3384 if (did_some_progress)
3385 goto retry;
3386
3387noretry:
3388 /*
3389 * High-order allocations do not necessarily loop after
3390 * direct reclaim and reclaim/compaction depends on compaction
3391 * being called after reclaim so call directly if necessary
3392 */
3393 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3394 ac, migration_mode,
3395 &contended_compaction,
3396 &deferred_compaction);
3397 if (page)
3398 goto got_pg;
1da177e4 3399nopage:
a238ab5b 3400 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3401got_pg:
072bb0aa 3402 return page;
1da177e4 3403}
11e33f6a
MG
3404
3405/*
3406 * This is the 'heart' of the zoned buddy allocator.
3407 */
3408struct page *
3409__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3410 struct zonelist *zonelist, nodemask_t *nodemask)
3411{
5bb1b169 3412 struct page *page;
cc9a6c87 3413 unsigned int cpuset_mems_cookie;
c603844b 3414 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3415 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3416 struct alloc_context ac = {
3417 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3418 .zonelist = zonelist,
a9263751
VB
3419 .nodemask = nodemask,
3420 .migratetype = gfpflags_to_migratetype(gfp_mask),
3421 };
11e33f6a 3422
682a3385 3423 if (cpusets_enabled()) {
83d4ca81 3424 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3425 alloc_flags |= ALLOC_CPUSET;
3426 if (!ac.nodemask)
3427 ac.nodemask = &cpuset_current_mems_allowed;
3428 }
3429
dcce284a
BH
3430 gfp_mask &= gfp_allowed_mask;
3431
11e33f6a
MG
3432 lockdep_trace_alloc(gfp_mask);
3433
d0164adc 3434 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3435
3436 if (should_fail_alloc_page(gfp_mask, order))
3437 return NULL;
3438
3439 /*
3440 * Check the zones suitable for the gfp_mask contain at least one
3441 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3442 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3443 */
3444 if (unlikely(!zonelist->_zonerefs->zone))
3445 return NULL;
3446
a9263751 3447 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3448 alloc_flags |= ALLOC_CMA;
3449
cc9a6c87 3450retry_cpuset:
d26914d1 3451 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3452
c9ab0c4f
MG
3453 /* Dirty zone balancing only done in the fast path */
3454 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3455
5117f45d 3456 /* The preferred zone is used for statistics later */
c33d6c06
MG
3457 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3458 ac.high_zoneidx, ac.nodemask);
3459 if (!ac.preferred_zoneref) {
5bb1b169 3460 page = NULL;
4fcb0971 3461 goto no_zone;
5bb1b169
MG
3462 }
3463
5117f45d 3464 /* First allocation attempt */
a9263751 3465 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3466 if (likely(page))
3467 goto out;
11e33f6a 3468
4fcb0971
MG
3469 /*
3470 * Runtime PM, block IO and its error handling path can deadlock
3471 * because I/O on the device might not complete.
3472 */
3473 alloc_mask = memalloc_noio_flags(gfp_mask);
3474 ac.spread_dirty_pages = false;
23f086f9 3475
4fcb0971 3476 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3477
4fcb0971 3478no_zone:
cc9a6c87
MG
3479 /*
3480 * When updating a task's mems_allowed, it is possible to race with
3481 * parallel threads in such a way that an allocation can fail while
3482 * the mask is being updated. If a page allocation is about to fail,
3483 * check if the cpuset changed during allocation and if so, retry.
3484 */
83d4ca81
MG
3485 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3486 alloc_mask = gfp_mask;
cc9a6c87 3487 goto retry_cpuset;
83d4ca81 3488 }
cc9a6c87 3489
4fcb0971
MG
3490out:
3491 if (kmemcheck_enabled && page)
3492 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3493
3494 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3495
11e33f6a 3496 return page;
1da177e4 3497}
d239171e 3498EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3499
3500/*
3501 * Common helper functions.
3502 */
920c7a5d 3503unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3504{
945a1113
AM
3505 struct page *page;
3506
3507 /*
3508 * __get_free_pages() returns a 32-bit address, which cannot represent
3509 * a highmem page
3510 */
3511 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3512
1da177e4
LT
3513 page = alloc_pages(gfp_mask, order);
3514 if (!page)
3515 return 0;
3516 return (unsigned long) page_address(page);
3517}
1da177e4
LT
3518EXPORT_SYMBOL(__get_free_pages);
3519
920c7a5d 3520unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3521{
945a1113 3522 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3523}
1da177e4
LT
3524EXPORT_SYMBOL(get_zeroed_page);
3525
920c7a5d 3526void __free_pages(struct page *page, unsigned int order)
1da177e4 3527{
b5810039 3528 if (put_page_testzero(page)) {
1da177e4 3529 if (order == 0)
b745bc85 3530 free_hot_cold_page(page, false);
1da177e4
LT
3531 else
3532 __free_pages_ok(page, order);
3533 }
3534}
3535
3536EXPORT_SYMBOL(__free_pages);
3537
920c7a5d 3538void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3539{
3540 if (addr != 0) {
725d704e 3541 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3542 __free_pages(virt_to_page((void *)addr), order);
3543 }
3544}
3545
3546EXPORT_SYMBOL(free_pages);
3547
b63ae8ca
AD
3548/*
3549 * Page Fragment:
3550 * An arbitrary-length arbitrary-offset area of memory which resides
3551 * within a 0 or higher order page. Multiple fragments within that page
3552 * are individually refcounted, in the page's reference counter.
3553 *
3554 * The page_frag functions below provide a simple allocation framework for
3555 * page fragments. This is used by the network stack and network device
3556 * drivers to provide a backing region of memory for use as either an
3557 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3558 */
3559static struct page *__page_frag_refill(struct page_frag_cache *nc,
3560 gfp_t gfp_mask)
3561{
3562 struct page *page = NULL;
3563 gfp_t gfp = gfp_mask;
3564
3565#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3566 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3567 __GFP_NOMEMALLOC;
3568 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3569 PAGE_FRAG_CACHE_MAX_ORDER);
3570 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3571#endif
3572 if (unlikely(!page))
3573 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3574
3575 nc->va = page ? page_address(page) : NULL;
3576
3577 return page;
3578}
3579
3580void *__alloc_page_frag(struct page_frag_cache *nc,
3581 unsigned int fragsz, gfp_t gfp_mask)
3582{
3583 unsigned int size = PAGE_SIZE;
3584 struct page *page;
3585 int offset;
3586
3587 if (unlikely(!nc->va)) {
3588refill:
3589 page = __page_frag_refill(nc, gfp_mask);
3590 if (!page)
3591 return NULL;
3592
3593#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3594 /* if size can vary use size else just use PAGE_SIZE */
3595 size = nc->size;
3596#endif
3597 /* Even if we own the page, we do not use atomic_set().
3598 * This would break get_page_unless_zero() users.
3599 */
fe896d18 3600 page_ref_add(page, size - 1);
b63ae8ca
AD
3601
3602 /* reset page count bias and offset to start of new frag */
2f064f34 3603 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3604 nc->pagecnt_bias = size;
3605 nc->offset = size;
3606 }
3607
3608 offset = nc->offset - fragsz;
3609 if (unlikely(offset < 0)) {
3610 page = virt_to_page(nc->va);
3611
fe896d18 3612 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3613 goto refill;
3614
3615#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3616 /* if size can vary use size else just use PAGE_SIZE */
3617 size = nc->size;
3618#endif
3619 /* OK, page count is 0, we can safely set it */
fe896d18 3620 set_page_count(page, size);
b63ae8ca
AD
3621
3622 /* reset page count bias and offset to start of new frag */
3623 nc->pagecnt_bias = size;
3624 offset = size - fragsz;
3625 }
3626
3627 nc->pagecnt_bias--;
3628 nc->offset = offset;
3629
3630 return nc->va + offset;
3631}
3632EXPORT_SYMBOL(__alloc_page_frag);
3633
3634/*
3635 * Frees a page fragment allocated out of either a compound or order 0 page.
3636 */
3637void __free_page_frag(void *addr)
3638{
3639 struct page *page = virt_to_head_page(addr);
3640
3641 if (unlikely(put_page_testzero(page)))
3642 __free_pages_ok(page, compound_order(page));
3643}
3644EXPORT_SYMBOL(__free_page_frag);
3645
6a1a0d3b 3646/*
52383431 3647 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3648 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3649 * equivalent to alloc_pages.
6a1a0d3b 3650 *
52383431
VD
3651 * It should be used when the caller would like to use kmalloc, but since the
3652 * allocation is large, it has to fall back to the page allocator.
3653 */
3654struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3655{
3656 struct page *page;
52383431 3657
52383431 3658 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3659 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3660 __free_pages(page, order);
3661 page = NULL;
3662 }
52383431
VD
3663 return page;
3664}
3665
3666struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3667{
3668 struct page *page;
52383431 3669
52383431 3670 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3671 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3672 __free_pages(page, order);
3673 page = NULL;
3674 }
52383431
VD
3675 return page;
3676}
3677
3678/*
3679 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3680 * alloc_kmem_pages.
6a1a0d3b 3681 */
52383431 3682void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3683{
d05e83a6 3684 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3685 __free_pages(page, order);
3686}
3687
52383431 3688void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3689{
3690 if (addr != 0) {
3691 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3692 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3693 }
3694}
3695
d00181b9
KS
3696static void *make_alloc_exact(unsigned long addr, unsigned int order,
3697 size_t size)
ee85c2e1
AK
3698{
3699 if (addr) {
3700 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3701 unsigned long used = addr + PAGE_ALIGN(size);
3702
3703 split_page(virt_to_page((void *)addr), order);
3704 while (used < alloc_end) {
3705 free_page(used);
3706 used += PAGE_SIZE;
3707 }
3708 }
3709 return (void *)addr;
3710}
3711
2be0ffe2
TT
3712/**
3713 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3714 * @size: the number of bytes to allocate
3715 * @gfp_mask: GFP flags for the allocation
3716 *
3717 * This function is similar to alloc_pages(), except that it allocates the
3718 * minimum number of pages to satisfy the request. alloc_pages() can only
3719 * allocate memory in power-of-two pages.
3720 *
3721 * This function is also limited by MAX_ORDER.
3722 *
3723 * Memory allocated by this function must be released by free_pages_exact().
3724 */
3725void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3726{
3727 unsigned int order = get_order(size);
3728 unsigned long addr;
3729
3730 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3731 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3732}
3733EXPORT_SYMBOL(alloc_pages_exact);
3734
ee85c2e1
AK
3735/**
3736 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3737 * pages on a node.
b5e6ab58 3738 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3739 * @size: the number of bytes to allocate
3740 * @gfp_mask: GFP flags for the allocation
3741 *
3742 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3743 * back.
ee85c2e1 3744 */
e1931811 3745void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3746{
d00181b9 3747 unsigned int order = get_order(size);
ee85c2e1
AK
3748 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3749 if (!p)
3750 return NULL;
3751 return make_alloc_exact((unsigned long)page_address(p), order, size);
3752}
ee85c2e1 3753
2be0ffe2
TT
3754/**
3755 * free_pages_exact - release memory allocated via alloc_pages_exact()
3756 * @virt: the value returned by alloc_pages_exact.
3757 * @size: size of allocation, same value as passed to alloc_pages_exact().
3758 *
3759 * Release the memory allocated by a previous call to alloc_pages_exact.
3760 */
3761void free_pages_exact(void *virt, size_t size)
3762{
3763 unsigned long addr = (unsigned long)virt;
3764 unsigned long end = addr + PAGE_ALIGN(size);
3765
3766 while (addr < end) {
3767 free_page(addr);
3768 addr += PAGE_SIZE;
3769 }
3770}
3771EXPORT_SYMBOL(free_pages_exact);
3772
e0fb5815
ZY
3773/**
3774 * nr_free_zone_pages - count number of pages beyond high watermark
3775 * @offset: The zone index of the highest zone
3776 *
3777 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3778 * high watermark within all zones at or below a given zone index. For each
3779 * zone, the number of pages is calculated as:
834405c3 3780 * managed_pages - high_pages
e0fb5815 3781 */
ebec3862 3782static unsigned long nr_free_zone_pages(int offset)
1da177e4 3783{
dd1a239f 3784 struct zoneref *z;
54a6eb5c
MG
3785 struct zone *zone;
3786
e310fd43 3787 /* Just pick one node, since fallback list is circular */
ebec3862 3788 unsigned long sum = 0;
1da177e4 3789
0e88460d 3790 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3791
54a6eb5c 3792 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3793 unsigned long size = zone->managed_pages;
41858966 3794 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3795 if (size > high)
3796 sum += size - high;
1da177e4
LT
3797 }
3798
3799 return sum;
3800}
3801
e0fb5815
ZY
3802/**
3803 * nr_free_buffer_pages - count number of pages beyond high watermark
3804 *
3805 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3806 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3807 */
ebec3862 3808unsigned long nr_free_buffer_pages(void)
1da177e4 3809{
af4ca457 3810 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3811}
c2f1a551 3812EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3813
e0fb5815
ZY
3814/**
3815 * nr_free_pagecache_pages - count number of pages beyond high watermark
3816 *
3817 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3818 * high watermark within all zones.
1da177e4 3819 */
ebec3862 3820unsigned long nr_free_pagecache_pages(void)
1da177e4 3821{
2a1e274a 3822 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3823}
08e0f6a9
CL
3824
3825static inline void show_node(struct zone *zone)
1da177e4 3826{
e5adfffc 3827 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3828 printk("Node %d ", zone_to_nid(zone));
1da177e4 3829}
1da177e4 3830
d02bd27b
IR
3831long si_mem_available(void)
3832{
3833 long available;
3834 unsigned long pagecache;
3835 unsigned long wmark_low = 0;
3836 unsigned long pages[NR_LRU_LISTS];
3837 struct zone *zone;
3838 int lru;
3839
3840 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3841 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3842
3843 for_each_zone(zone)
3844 wmark_low += zone->watermark[WMARK_LOW];
3845
3846 /*
3847 * Estimate the amount of memory available for userspace allocations,
3848 * without causing swapping.
3849 */
3850 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3851
3852 /*
3853 * Not all the page cache can be freed, otherwise the system will
3854 * start swapping. Assume at least half of the page cache, or the
3855 * low watermark worth of cache, needs to stay.
3856 */
3857 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3858 pagecache -= min(pagecache / 2, wmark_low);
3859 available += pagecache;
3860
3861 /*
3862 * Part of the reclaimable slab consists of items that are in use,
3863 * and cannot be freed. Cap this estimate at the low watermark.
3864 */
3865 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3866 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3867
3868 if (available < 0)
3869 available = 0;
3870 return available;
3871}
3872EXPORT_SYMBOL_GPL(si_mem_available);
3873
1da177e4
LT
3874void si_meminfo(struct sysinfo *val)
3875{
3876 val->totalram = totalram_pages;
cc7452b6 3877 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3878 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3879 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3880 val->totalhigh = totalhigh_pages;
3881 val->freehigh = nr_free_highpages();
1da177e4
LT
3882 val->mem_unit = PAGE_SIZE;
3883}
3884
3885EXPORT_SYMBOL(si_meminfo);
3886
3887#ifdef CONFIG_NUMA
3888void si_meminfo_node(struct sysinfo *val, int nid)
3889{
cdd91a77
JL
3890 int zone_type; /* needs to be signed */
3891 unsigned long managed_pages = 0;
fc2bd799
JK
3892 unsigned long managed_highpages = 0;
3893 unsigned long free_highpages = 0;
1da177e4
LT
3894 pg_data_t *pgdat = NODE_DATA(nid);
3895
cdd91a77
JL
3896 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3897 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3898 val->totalram = managed_pages;
cc7452b6 3899 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3900 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3901#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3902 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3903 struct zone *zone = &pgdat->node_zones[zone_type];
3904
3905 if (is_highmem(zone)) {
3906 managed_highpages += zone->managed_pages;
3907 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3908 }
3909 }
3910 val->totalhigh = managed_highpages;
3911 val->freehigh = free_highpages;
98d2b0eb 3912#else
fc2bd799
JK
3913 val->totalhigh = managed_highpages;
3914 val->freehigh = free_highpages;
98d2b0eb 3915#endif
1da177e4
LT
3916 val->mem_unit = PAGE_SIZE;
3917}
3918#endif
3919
ddd588b5 3920/*
7bf02ea2
DR
3921 * Determine whether the node should be displayed or not, depending on whether
3922 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3923 */
7bf02ea2 3924bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3925{
3926 bool ret = false;
cc9a6c87 3927 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3928
3929 if (!(flags & SHOW_MEM_FILTER_NODES))
3930 goto out;
3931
cc9a6c87 3932 do {
d26914d1 3933 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3934 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3935 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3936out:
3937 return ret;
3938}
3939
1da177e4
LT
3940#define K(x) ((x) << (PAGE_SHIFT-10))
3941
377e4f16
RV
3942static void show_migration_types(unsigned char type)
3943{
3944 static const char types[MIGRATE_TYPES] = {
3945 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3946 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3947 [MIGRATE_RECLAIMABLE] = 'E',
3948 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3949#ifdef CONFIG_CMA
3950 [MIGRATE_CMA] = 'C',
3951#endif
194159fb 3952#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3953 [MIGRATE_ISOLATE] = 'I',
194159fb 3954#endif
377e4f16
RV
3955 };
3956 char tmp[MIGRATE_TYPES + 1];
3957 char *p = tmp;
3958 int i;
3959
3960 for (i = 0; i < MIGRATE_TYPES; i++) {
3961 if (type & (1 << i))
3962 *p++ = types[i];
3963 }
3964
3965 *p = '\0';
3966 printk("(%s) ", tmp);
3967}
3968
1da177e4
LT
3969/*
3970 * Show free area list (used inside shift_scroll-lock stuff)
3971 * We also calculate the percentage fragmentation. We do this by counting the
3972 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3973 *
3974 * Bits in @filter:
3975 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3976 * cpuset.
1da177e4 3977 */
7bf02ea2 3978void show_free_areas(unsigned int filter)
1da177e4 3979{
d1bfcdb8 3980 unsigned long free_pcp = 0;
c7241913 3981 int cpu;
1da177e4
LT
3982 struct zone *zone;
3983
ee99c71c 3984 for_each_populated_zone(zone) {
7bf02ea2 3985 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3986 continue;
d1bfcdb8 3987
761b0677
KK
3988 for_each_online_cpu(cpu)
3989 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3990 }
3991
a731286d
KM
3992 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3993 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3994 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3995 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3996 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3997 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3998 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3999 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4000 global_page_state(NR_ISOLATED_ANON),
4001 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4002 global_page_state(NR_INACTIVE_FILE),
a731286d 4003 global_page_state(NR_ISOLATED_FILE),
7b854121 4004 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4005 global_page_state(NR_FILE_DIRTY),
ce866b34 4006 global_page_state(NR_WRITEBACK),
fd39fc85 4007 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4008 global_page_state(NR_SLAB_RECLAIMABLE),
4009 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4010 global_page_state(NR_FILE_MAPPED),
4b02108a 4011 global_page_state(NR_SHMEM),
a25700a5 4012 global_page_state(NR_PAGETABLE),
d1ce749a 4013 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4014 global_page_state(NR_FREE_PAGES),
4015 free_pcp,
d1ce749a 4016 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4017
ee99c71c 4018 for_each_populated_zone(zone) {
1da177e4
LT
4019 int i;
4020
7bf02ea2 4021 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4022 continue;
d1bfcdb8
KK
4023
4024 free_pcp = 0;
4025 for_each_online_cpu(cpu)
4026 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4027
1da177e4
LT
4028 show_node(zone);
4029 printk("%s"
4030 " free:%lukB"
4031 " min:%lukB"
4032 " low:%lukB"
4033 " high:%lukB"
4f98a2fe
RR
4034 " active_anon:%lukB"
4035 " inactive_anon:%lukB"
4036 " active_file:%lukB"
4037 " inactive_file:%lukB"
7b854121 4038 " unevictable:%lukB"
a731286d
KM
4039 " isolated(anon):%lukB"
4040 " isolated(file):%lukB"
1da177e4 4041 " present:%lukB"
9feedc9d 4042 " managed:%lukB"
4a0aa73f
KM
4043 " mlocked:%lukB"
4044 " dirty:%lukB"
4045 " writeback:%lukB"
4046 " mapped:%lukB"
4b02108a 4047 " shmem:%lukB"
4a0aa73f
KM
4048 " slab_reclaimable:%lukB"
4049 " slab_unreclaimable:%lukB"
c6a7f572 4050 " kernel_stack:%lukB"
4a0aa73f
KM
4051 " pagetables:%lukB"
4052 " unstable:%lukB"
4053 " bounce:%lukB"
d1bfcdb8
KK
4054 " free_pcp:%lukB"
4055 " local_pcp:%ukB"
d1ce749a 4056 " free_cma:%lukB"
4a0aa73f 4057 " writeback_tmp:%lukB"
1da177e4
LT
4058 " pages_scanned:%lu"
4059 " all_unreclaimable? %s"
4060 "\n",
4061 zone->name,
88f5acf8 4062 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4063 K(min_wmark_pages(zone)),
4064 K(low_wmark_pages(zone)),
4065 K(high_wmark_pages(zone)),
4f98a2fe
RR
4066 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4067 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4068 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4069 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4070 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4071 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4072 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4073 K(zone->present_pages),
9feedc9d 4074 K(zone->managed_pages),
4a0aa73f
KM
4075 K(zone_page_state(zone, NR_MLOCK)),
4076 K(zone_page_state(zone, NR_FILE_DIRTY)),
4077 K(zone_page_state(zone, NR_WRITEBACK)),
4078 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4079 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4080 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4081 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4082 zone_page_state(zone, NR_KERNEL_STACK) *
4083 THREAD_SIZE / 1024,
4a0aa73f
KM
4084 K(zone_page_state(zone, NR_PAGETABLE)),
4085 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4086 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4087 K(free_pcp),
4088 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4089 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4090 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4091 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4092 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4093 );
4094 printk("lowmem_reserve[]:");
4095 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4096 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4097 printk("\n");
4098 }
4099
ee99c71c 4100 for_each_populated_zone(zone) {
d00181b9
KS
4101 unsigned int order;
4102 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4103 unsigned char types[MAX_ORDER];
1da177e4 4104
7bf02ea2 4105 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4106 continue;
1da177e4
LT
4107 show_node(zone);
4108 printk("%s: ", zone->name);
1da177e4
LT
4109
4110 spin_lock_irqsave(&zone->lock, flags);
4111 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4112 struct free_area *area = &zone->free_area[order];
4113 int type;
4114
4115 nr[order] = area->nr_free;
8f9de51a 4116 total += nr[order] << order;
377e4f16
RV
4117
4118 types[order] = 0;
4119 for (type = 0; type < MIGRATE_TYPES; type++) {
4120 if (!list_empty(&area->free_list[type]))
4121 types[order] |= 1 << type;
4122 }
1da177e4
LT
4123 }
4124 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4125 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4126 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4127 if (nr[order])
4128 show_migration_types(types[order]);
4129 }
1da177e4
LT
4130 printk("= %lukB\n", K(total));
4131 }
4132
949f7ec5
DR
4133 hugetlb_show_meminfo();
4134
e6f3602d
LW
4135 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4136
1da177e4
LT
4137 show_swap_cache_info();
4138}
4139
19770b32
MG
4140static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4141{
4142 zoneref->zone = zone;
4143 zoneref->zone_idx = zone_idx(zone);
4144}
4145
1da177e4
LT
4146/*
4147 * Builds allocation fallback zone lists.
1a93205b
CL
4148 *
4149 * Add all populated zones of a node to the zonelist.
1da177e4 4150 */
f0c0b2b8 4151static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4152 int nr_zones)
1da177e4 4153{
1a93205b 4154 struct zone *zone;
bc732f1d 4155 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4156
4157 do {
2f6726e5 4158 zone_type--;
070f8032 4159 zone = pgdat->node_zones + zone_type;
1a93205b 4160 if (populated_zone(zone)) {
dd1a239f
MG
4161 zoneref_set_zone(zone,
4162 &zonelist->_zonerefs[nr_zones++]);
070f8032 4163 check_highest_zone(zone_type);
1da177e4 4164 }
2f6726e5 4165 } while (zone_type);
bc732f1d 4166
070f8032 4167 return nr_zones;
1da177e4
LT
4168}
4169
f0c0b2b8
KH
4170
4171/*
4172 * zonelist_order:
4173 * 0 = automatic detection of better ordering.
4174 * 1 = order by ([node] distance, -zonetype)
4175 * 2 = order by (-zonetype, [node] distance)
4176 *
4177 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4178 * the same zonelist. So only NUMA can configure this param.
4179 */
4180#define ZONELIST_ORDER_DEFAULT 0
4181#define ZONELIST_ORDER_NODE 1
4182#define ZONELIST_ORDER_ZONE 2
4183
4184/* zonelist order in the kernel.
4185 * set_zonelist_order() will set this to NODE or ZONE.
4186 */
4187static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4188static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4189
4190
1da177e4 4191#ifdef CONFIG_NUMA
f0c0b2b8
KH
4192/* The value user specified ....changed by config */
4193static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4194/* string for sysctl */
4195#define NUMA_ZONELIST_ORDER_LEN 16
4196char numa_zonelist_order[16] = "default";
4197
4198/*
4199 * interface for configure zonelist ordering.
4200 * command line option "numa_zonelist_order"
4201 * = "[dD]efault - default, automatic configuration.
4202 * = "[nN]ode - order by node locality, then by zone within node
4203 * = "[zZ]one - order by zone, then by locality within zone
4204 */
4205
4206static int __parse_numa_zonelist_order(char *s)
4207{
4208 if (*s == 'd' || *s == 'D') {
4209 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4210 } else if (*s == 'n' || *s == 'N') {
4211 user_zonelist_order = ZONELIST_ORDER_NODE;
4212 } else if (*s == 'z' || *s == 'Z') {
4213 user_zonelist_order = ZONELIST_ORDER_ZONE;
4214 } else {
1170532b 4215 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4216 return -EINVAL;
4217 }
4218 return 0;
4219}
4220
4221static __init int setup_numa_zonelist_order(char *s)
4222{
ecb256f8
VL
4223 int ret;
4224
4225 if (!s)
4226 return 0;
4227
4228 ret = __parse_numa_zonelist_order(s);
4229 if (ret == 0)
4230 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4231
4232 return ret;
f0c0b2b8
KH
4233}
4234early_param("numa_zonelist_order", setup_numa_zonelist_order);
4235
4236/*
4237 * sysctl handler for numa_zonelist_order
4238 */
cccad5b9 4239int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4240 void __user *buffer, size_t *length,
f0c0b2b8
KH
4241 loff_t *ppos)
4242{
4243 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4244 int ret;
443c6f14 4245 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4246
443c6f14 4247 mutex_lock(&zl_order_mutex);
dacbde09
CG
4248 if (write) {
4249 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4250 ret = -EINVAL;
4251 goto out;
4252 }
4253 strcpy(saved_string, (char *)table->data);
4254 }
8d65af78 4255 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4256 if (ret)
443c6f14 4257 goto out;
f0c0b2b8
KH
4258 if (write) {
4259 int oldval = user_zonelist_order;
dacbde09
CG
4260
4261 ret = __parse_numa_zonelist_order((char *)table->data);
4262 if (ret) {
f0c0b2b8
KH
4263 /*
4264 * bogus value. restore saved string
4265 */
dacbde09 4266 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4267 NUMA_ZONELIST_ORDER_LEN);
4268 user_zonelist_order = oldval;
4eaf3f64
HL
4269 } else if (oldval != user_zonelist_order) {
4270 mutex_lock(&zonelists_mutex);
9adb62a5 4271 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4272 mutex_unlock(&zonelists_mutex);
4273 }
f0c0b2b8 4274 }
443c6f14
AK
4275out:
4276 mutex_unlock(&zl_order_mutex);
4277 return ret;
f0c0b2b8
KH
4278}
4279
4280
62bc62a8 4281#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4282static int node_load[MAX_NUMNODES];
4283
1da177e4 4284/**
4dc3b16b 4285 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4286 * @node: node whose fallback list we're appending
4287 * @used_node_mask: nodemask_t of already used nodes
4288 *
4289 * We use a number of factors to determine which is the next node that should
4290 * appear on a given node's fallback list. The node should not have appeared
4291 * already in @node's fallback list, and it should be the next closest node
4292 * according to the distance array (which contains arbitrary distance values
4293 * from each node to each node in the system), and should also prefer nodes
4294 * with no CPUs, since presumably they'll have very little allocation pressure
4295 * on them otherwise.
4296 * It returns -1 if no node is found.
4297 */
f0c0b2b8 4298static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4299{
4cf808eb 4300 int n, val;
1da177e4 4301 int min_val = INT_MAX;
00ef2d2f 4302 int best_node = NUMA_NO_NODE;
a70f7302 4303 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4304
4cf808eb
LT
4305 /* Use the local node if we haven't already */
4306 if (!node_isset(node, *used_node_mask)) {
4307 node_set(node, *used_node_mask);
4308 return node;
4309 }
1da177e4 4310
4b0ef1fe 4311 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4312
4313 /* Don't want a node to appear more than once */
4314 if (node_isset(n, *used_node_mask))
4315 continue;
4316
1da177e4
LT
4317 /* Use the distance array to find the distance */
4318 val = node_distance(node, n);
4319
4cf808eb
LT
4320 /* Penalize nodes under us ("prefer the next node") */
4321 val += (n < node);
4322
1da177e4 4323 /* Give preference to headless and unused nodes */
a70f7302
RR
4324 tmp = cpumask_of_node(n);
4325 if (!cpumask_empty(tmp))
1da177e4
LT
4326 val += PENALTY_FOR_NODE_WITH_CPUS;
4327
4328 /* Slight preference for less loaded node */
4329 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4330 val += node_load[n];
4331
4332 if (val < min_val) {
4333 min_val = val;
4334 best_node = n;
4335 }
4336 }
4337
4338 if (best_node >= 0)
4339 node_set(best_node, *used_node_mask);
4340
4341 return best_node;
4342}
4343
f0c0b2b8
KH
4344
4345/*
4346 * Build zonelists ordered by node and zones within node.
4347 * This results in maximum locality--normal zone overflows into local
4348 * DMA zone, if any--but risks exhausting DMA zone.
4349 */
4350static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4351{
f0c0b2b8 4352 int j;
1da177e4 4353 struct zonelist *zonelist;
f0c0b2b8 4354
54a6eb5c 4355 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4356 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4357 ;
bc732f1d 4358 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4359 zonelist->_zonerefs[j].zone = NULL;
4360 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4361}
4362
523b9458
CL
4363/*
4364 * Build gfp_thisnode zonelists
4365 */
4366static void build_thisnode_zonelists(pg_data_t *pgdat)
4367{
523b9458
CL
4368 int j;
4369 struct zonelist *zonelist;
4370
54a6eb5c 4371 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4372 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4373 zonelist->_zonerefs[j].zone = NULL;
4374 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4375}
4376
f0c0b2b8
KH
4377/*
4378 * Build zonelists ordered by zone and nodes within zones.
4379 * This results in conserving DMA zone[s] until all Normal memory is
4380 * exhausted, but results in overflowing to remote node while memory
4381 * may still exist in local DMA zone.
4382 */
4383static int node_order[MAX_NUMNODES];
4384
4385static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4386{
f0c0b2b8
KH
4387 int pos, j, node;
4388 int zone_type; /* needs to be signed */
4389 struct zone *z;
4390 struct zonelist *zonelist;
4391
54a6eb5c
MG
4392 zonelist = &pgdat->node_zonelists[0];
4393 pos = 0;
4394 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4395 for (j = 0; j < nr_nodes; j++) {
4396 node = node_order[j];
4397 z = &NODE_DATA(node)->node_zones[zone_type];
4398 if (populated_zone(z)) {
dd1a239f
MG
4399 zoneref_set_zone(z,
4400 &zonelist->_zonerefs[pos++]);
54a6eb5c 4401 check_highest_zone(zone_type);
f0c0b2b8
KH
4402 }
4403 }
f0c0b2b8 4404 }
dd1a239f
MG
4405 zonelist->_zonerefs[pos].zone = NULL;
4406 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4407}
4408
3193913c
MG
4409#if defined(CONFIG_64BIT)
4410/*
4411 * Devices that require DMA32/DMA are relatively rare and do not justify a
4412 * penalty to every machine in case the specialised case applies. Default
4413 * to Node-ordering on 64-bit NUMA machines
4414 */
4415static int default_zonelist_order(void)
4416{
4417 return ZONELIST_ORDER_NODE;
4418}
4419#else
4420/*
4421 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4422 * by the kernel. If processes running on node 0 deplete the low memory zone
4423 * then reclaim will occur more frequency increasing stalls and potentially
4424 * be easier to OOM if a large percentage of the zone is under writeback or
4425 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4426 * Hence, default to zone ordering on 32-bit.
4427 */
f0c0b2b8
KH
4428static int default_zonelist_order(void)
4429{
f0c0b2b8
KH
4430 return ZONELIST_ORDER_ZONE;
4431}
3193913c 4432#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4433
4434static void set_zonelist_order(void)
4435{
4436 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4437 current_zonelist_order = default_zonelist_order();
4438 else
4439 current_zonelist_order = user_zonelist_order;
4440}
4441
4442static void build_zonelists(pg_data_t *pgdat)
4443{
c00eb15a 4444 int i, node, load;
1da177e4 4445 nodemask_t used_mask;
f0c0b2b8
KH
4446 int local_node, prev_node;
4447 struct zonelist *zonelist;
d00181b9 4448 unsigned int order = current_zonelist_order;
1da177e4
LT
4449
4450 /* initialize zonelists */
523b9458 4451 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4452 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4453 zonelist->_zonerefs[0].zone = NULL;
4454 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4455 }
4456
4457 /* NUMA-aware ordering of nodes */
4458 local_node = pgdat->node_id;
62bc62a8 4459 load = nr_online_nodes;
1da177e4
LT
4460 prev_node = local_node;
4461 nodes_clear(used_mask);
f0c0b2b8 4462
f0c0b2b8 4463 memset(node_order, 0, sizeof(node_order));
c00eb15a 4464 i = 0;
f0c0b2b8 4465
1da177e4
LT
4466 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4467 /*
4468 * We don't want to pressure a particular node.
4469 * So adding penalty to the first node in same
4470 * distance group to make it round-robin.
4471 */
957f822a
DR
4472 if (node_distance(local_node, node) !=
4473 node_distance(local_node, prev_node))
f0c0b2b8
KH
4474 node_load[node] = load;
4475
1da177e4
LT
4476 prev_node = node;
4477 load--;
f0c0b2b8
KH
4478 if (order == ZONELIST_ORDER_NODE)
4479 build_zonelists_in_node_order(pgdat, node);
4480 else
c00eb15a 4481 node_order[i++] = node; /* remember order */
f0c0b2b8 4482 }
1da177e4 4483
f0c0b2b8
KH
4484 if (order == ZONELIST_ORDER_ZONE) {
4485 /* calculate node order -- i.e., DMA last! */
c00eb15a 4486 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4487 }
523b9458
CL
4488
4489 build_thisnode_zonelists(pgdat);
1da177e4
LT
4490}
4491
7aac7898
LS
4492#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4493/*
4494 * Return node id of node used for "local" allocations.
4495 * I.e., first node id of first zone in arg node's generic zonelist.
4496 * Used for initializing percpu 'numa_mem', which is used primarily
4497 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4498 */
4499int local_memory_node(int node)
4500{
c33d6c06 4501 struct zoneref *z;
7aac7898 4502
c33d6c06 4503 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4504 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4505 NULL);
4506 return z->zone->node;
7aac7898
LS
4507}
4508#endif
f0c0b2b8 4509
1da177e4
LT
4510#else /* CONFIG_NUMA */
4511
f0c0b2b8
KH
4512static void set_zonelist_order(void)
4513{
4514 current_zonelist_order = ZONELIST_ORDER_ZONE;
4515}
4516
4517static void build_zonelists(pg_data_t *pgdat)
1da177e4 4518{
19655d34 4519 int node, local_node;
54a6eb5c
MG
4520 enum zone_type j;
4521 struct zonelist *zonelist;
1da177e4
LT
4522
4523 local_node = pgdat->node_id;
1da177e4 4524
54a6eb5c 4525 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4526 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4527
54a6eb5c
MG
4528 /*
4529 * Now we build the zonelist so that it contains the zones
4530 * of all the other nodes.
4531 * We don't want to pressure a particular node, so when
4532 * building the zones for node N, we make sure that the
4533 * zones coming right after the local ones are those from
4534 * node N+1 (modulo N)
4535 */
4536 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4537 if (!node_online(node))
4538 continue;
bc732f1d 4539 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4540 }
54a6eb5c
MG
4541 for (node = 0; node < local_node; node++) {
4542 if (!node_online(node))
4543 continue;
bc732f1d 4544 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4545 }
4546
dd1a239f
MG
4547 zonelist->_zonerefs[j].zone = NULL;
4548 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4549}
4550
4551#endif /* CONFIG_NUMA */
4552
99dcc3e5
CL
4553/*
4554 * Boot pageset table. One per cpu which is going to be used for all
4555 * zones and all nodes. The parameters will be set in such a way
4556 * that an item put on a list will immediately be handed over to
4557 * the buddy list. This is safe since pageset manipulation is done
4558 * with interrupts disabled.
4559 *
4560 * The boot_pagesets must be kept even after bootup is complete for
4561 * unused processors and/or zones. They do play a role for bootstrapping
4562 * hotplugged processors.
4563 *
4564 * zoneinfo_show() and maybe other functions do
4565 * not check if the processor is online before following the pageset pointer.
4566 * Other parts of the kernel may not check if the zone is available.
4567 */
4568static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4569static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4570static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4571
4eaf3f64
HL
4572/*
4573 * Global mutex to protect against size modification of zonelists
4574 * as well as to serialize pageset setup for the new populated zone.
4575 */
4576DEFINE_MUTEX(zonelists_mutex);
4577
9b1a4d38 4578/* return values int ....just for stop_machine() */
4ed7e022 4579static int __build_all_zonelists(void *data)
1da177e4 4580{
6811378e 4581 int nid;
99dcc3e5 4582 int cpu;
9adb62a5 4583 pg_data_t *self = data;
9276b1bc 4584
7f9cfb31
BL
4585#ifdef CONFIG_NUMA
4586 memset(node_load, 0, sizeof(node_load));
4587#endif
9adb62a5
JL
4588
4589 if (self && !node_online(self->node_id)) {
4590 build_zonelists(self);
9adb62a5
JL
4591 }
4592
9276b1bc 4593 for_each_online_node(nid) {
7ea1530a
CL
4594 pg_data_t *pgdat = NODE_DATA(nid);
4595
4596 build_zonelists(pgdat);
9276b1bc 4597 }
99dcc3e5
CL
4598
4599 /*
4600 * Initialize the boot_pagesets that are going to be used
4601 * for bootstrapping processors. The real pagesets for
4602 * each zone will be allocated later when the per cpu
4603 * allocator is available.
4604 *
4605 * boot_pagesets are used also for bootstrapping offline
4606 * cpus if the system is already booted because the pagesets
4607 * are needed to initialize allocators on a specific cpu too.
4608 * F.e. the percpu allocator needs the page allocator which
4609 * needs the percpu allocator in order to allocate its pagesets
4610 * (a chicken-egg dilemma).
4611 */
7aac7898 4612 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4613 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4614
7aac7898
LS
4615#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4616 /*
4617 * We now know the "local memory node" for each node--
4618 * i.e., the node of the first zone in the generic zonelist.
4619 * Set up numa_mem percpu variable for on-line cpus. During
4620 * boot, only the boot cpu should be on-line; we'll init the
4621 * secondary cpus' numa_mem as they come on-line. During
4622 * node/memory hotplug, we'll fixup all on-line cpus.
4623 */
4624 if (cpu_online(cpu))
4625 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4626#endif
4627 }
4628
6811378e
YG
4629 return 0;
4630}
4631
061f67bc
RV
4632static noinline void __init
4633build_all_zonelists_init(void)
4634{
4635 __build_all_zonelists(NULL);
4636 mminit_verify_zonelist();
4637 cpuset_init_current_mems_allowed();
4638}
4639
4eaf3f64
HL
4640/*
4641 * Called with zonelists_mutex held always
4642 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4643 *
4644 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4645 * [we're only called with non-NULL zone through __meminit paths] and
4646 * (2) call of __init annotated helper build_all_zonelists_init
4647 * [protected by SYSTEM_BOOTING].
4eaf3f64 4648 */
9adb62a5 4649void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4650{
f0c0b2b8
KH
4651 set_zonelist_order();
4652
6811378e 4653 if (system_state == SYSTEM_BOOTING) {
061f67bc 4654 build_all_zonelists_init();
6811378e 4655 } else {
e9959f0f 4656#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4657 if (zone)
4658 setup_zone_pageset(zone);
e9959f0f 4659#endif
dd1895e2
CS
4660 /* we have to stop all cpus to guarantee there is no user
4661 of zonelist */
9adb62a5 4662 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4663 /* cpuset refresh routine should be here */
4664 }
bd1e22b8 4665 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4666 /*
4667 * Disable grouping by mobility if the number of pages in the
4668 * system is too low to allow the mechanism to work. It would be
4669 * more accurate, but expensive to check per-zone. This check is
4670 * made on memory-hotadd so a system can start with mobility
4671 * disabled and enable it later
4672 */
d9c23400 4673 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4674 page_group_by_mobility_disabled = 1;
4675 else
4676 page_group_by_mobility_disabled = 0;
4677
756a025f
JP
4678 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4679 nr_online_nodes,
4680 zonelist_order_name[current_zonelist_order],
4681 page_group_by_mobility_disabled ? "off" : "on",
4682 vm_total_pages);
f0c0b2b8 4683#ifdef CONFIG_NUMA
f88dfff5 4684 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4685#endif
1da177e4
LT
4686}
4687
4688/*
4689 * Helper functions to size the waitqueue hash table.
4690 * Essentially these want to choose hash table sizes sufficiently
4691 * large so that collisions trying to wait on pages are rare.
4692 * But in fact, the number of active page waitqueues on typical
4693 * systems is ridiculously low, less than 200. So this is even
4694 * conservative, even though it seems large.
4695 *
4696 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4697 * waitqueues, i.e. the size of the waitq table given the number of pages.
4698 */
4699#define PAGES_PER_WAITQUEUE 256
4700
cca448fe 4701#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4702static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4703{
4704 unsigned long size = 1;
4705
4706 pages /= PAGES_PER_WAITQUEUE;
4707
4708 while (size < pages)
4709 size <<= 1;
4710
4711 /*
4712 * Once we have dozens or even hundreds of threads sleeping
4713 * on IO we've got bigger problems than wait queue collision.
4714 * Limit the size of the wait table to a reasonable size.
4715 */
4716 size = min(size, 4096UL);
4717
4718 return max(size, 4UL);
4719}
cca448fe
YG
4720#else
4721/*
4722 * A zone's size might be changed by hot-add, so it is not possible to determine
4723 * a suitable size for its wait_table. So we use the maximum size now.
4724 *
4725 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4726 *
4727 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4728 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4729 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4730 *
4731 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4732 * or more by the traditional way. (See above). It equals:
4733 *
4734 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4735 * ia64(16K page size) : = ( 8G + 4M)byte.
4736 * powerpc (64K page size) : = (32G +16M)byte.
4737 */
4738static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4739{
4740 return 4096UL;
4741}
4742#endif
1da177e4
LT
4743
4744/*
4745 * This is an integer logarithm so that shifts can be used later
4746 * to extract the more random high bits from the multiplicative
4747 * hash function before the remainder is taken.
4748 */
4749static inline unsigned long wait_table_bits(unsigned long size)
4750{
4751 return ffz(~size);
4752}
4753
1da177e4
LT
4754/*
4755 * Initially all pages are reserved - free ones are freed
4756 * up by free_all_bootmem() once the early boot process is
4757 * done. Non-atomic initialization, single-pass.
4758 */
c09b4240 4759void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4760 unsigned long start_pfn, enum memmap_context context)
1da177e4 4761{
4b94ffdc 4762 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4763 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4764 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4765 unsigned long pfn;
3a80a7fa 4766 unsigned long nr_initialised = 0;
342332e6
TI
4767#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4768 struct memblock_region *r = NULL, *tmp;
4769#endif
1da177e4 4770
22b31eec
HD
4771 if (highest_memmap_pfn < end_pfn - 1)
4772 highest_memmap_pfn = end_pfn - 1;
4773
4b94ffdc
DW
4774 /*
4775 * Honor reservation requested by the driver for this ZONE_DEVICE
4776 * memory
4777 */
4778 if (altmap && start_pfn == altmap->base_pfn)
4779 start_pfn += altmap->reserve;
4780
cbe8dd4a 4781 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4782 /*
b72d0ffb
AM
4783 * There can be holes in boot-time mem_map[]s handed to this
4784 * function. They do not exist on hotplugged memory.
a2f3aa02 4785 */
b72d0ffb
AM
4786 if (context != MEMMAP_EARLY)
4787 goto not_early;
4788
4789 if (!early_pfn_valid(pfn))
4790 continue;
4791 if (!early_pfn_in_nid(pfn, nid))
4792 continue;
4793 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4794 break;
342332e6
TI
4795
4796#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4797 /*
4798 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4799 * from zone_movable_pfn[nid] to end of each node should be
4800 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4801 */
4802 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4803 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4804 continue;
342332e6 4805
b72d0ffb
AM
4806 /*
4807 * Check given memblock attribute by firmware which can affect
4808 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4809 * mirrored, it's an overlapped memmap init. skip it.
4810 */
4811 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4812 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4813 for_each_memblock(memory, tmp)
4814 if (pfn < memblock_region_memory_end_pfn(tmp))
4815 break;
4816 r = tmp;
4817 }
4818 if (pfn >= memblock_region_memory_base_pfn(r) &&
4819 memblock_is_mirror(r)) {
4820 /* already initialized as NORMAL */
4821 pfn = memblock_region_memory_end_pfn(r);
4822 continue;
342332e6 4823 }
a2f3aa02 4824 }
b72d0ffb 4825#endif
ac5d2539 4826
b72d0ffb 4827not_early:
ac5d2539
MG
4828 /*
4829 * Mark the block movable so that blocks are reserved for
4830 * movable at startup. This will force kernel allocations
4831 * to reserve their blocks rather than leaking throughout
4832 * the address space during boot when many long-lived
974a786e 4833 * kernel allocations are made.
ac5d2539
MG
4834 *
4835 * bitmap is created for zone's valid pfn range. but memmap
4836 * can be created for invalid pages (for alignment)
4837 * check here not to call set_pageblock_migratetype() against
4838 * pfn out of zone.
4839 */
4840 if (!(pfn & (pageblock_nr_pages - 1))) {
4841 struct page *page = pfn_to_page(pfn);
4842
4843 __init_single_page(page, pfn, zone, nid);
4844 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4845 } else {
4846 __init_single_pfn(pfn, zone, nid);
4847 }
1da177e4
LT
4848 }
4849}
4850
1e548deb 4851static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4852{
7aeb09f9 4853 unsigned int order, t;
b2a0ac88
MG
4854 for_each_migratetype_order(order, t) {
4855 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4856 zone->free_area[order].nr_free = 0;
4857 }
4858}
4859
4860#ifndef __HAVE_ARCH_MEMMAP_INIT
4861#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4862 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4863#endif
4864
7cd2b0a3 4865static int zone_batchsize(struct zone *zone)
e7c8d5c9 4866{
3a6be87f 4867#ifdef CONFIG_MMU
e7c8d5c9
CL
4868 int batch;
4869
4870 /*
4871 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4872 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4873 *
4874 * OK, so we don't know how big the cache is. So guess.
4875 */
b40da049 4876 batch = zone->managed_pages / 1024;
ba56e91c
SR
4877 if (batch * PAGE_SIZE > 512 * 1024)
4878 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4879 batch /= 4; /* We effectively *= 4 below */
4880 if (batch < 1)
4881 batch = 1;
4882
4883 /*
0ceaacc9
NP
4884 * Clamp the batch to a 2^n - 1 value. Having a power
4885 * of 2 value was found to be more likely to have
4886 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4887 *
0ceaacc9
NP
4888 * For example if 2 tasks are alternately allocating
4889 * batches of pages, one task can end up with a lot
4890 * of pages of one half of the possible page colors
4891 * and the other with pages of the other colors.
e7c8d5c9 4892 */
9155203a 4893 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4894
e7c8d5c9 4895 return batch;
3a6be87f
DH
4896
4897#else
4898 /* The deferral and batching of frees should be suppressed under NOMMU
4899 * conditions.
4900 *
4901 * The problem is that NOMMU needs to be able to allocate large chunks
4902 * of contiguous memory as there's no hardware page translation to
4903 * assemble apparent contiguous memory from discontiguous pages.
4904 *
4905 * Queueing large contiguous runs of pages for batching, however,
4906 * causes the pages to actually be freed in smaller chunks. As there
4907 * can be a significant delay between the individual batches being
4908 * recycled, this leads to the once large chunks of space being
4909 * fragmented and becoming unavailable for high-order allocations.
4910 */
4911 return 0;
4912#endif
e7c8d5c9
CL
4913}
4914
8d7a8fa9
CS
4915/*
4916 * pcp->high and pcp->batch values are related and dependent on one another:
4917 * ->batch must never be higher then ->high.
4918 * The following function updates them in a safe manner without read side
4919 * locking.
4920 *
4921 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4922 * those fields changing asynchronously (acording the the above rule).
4923 *
4924 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4925 * outside of boot time (or some other assurance that no concurrent updaters
4926 * exist).
4927 */
4928static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4929 unsigned long batch)
4930{
4931 /* start with a fail safe value for batch */
4932 pcp->batch = 1;
4933 smp_wmb();
4934
4935 /* Update high, then batch, in order */
4936 pcp->high = high;
4937 smp_wmb();
4938
4939 pcp->batch = batch;
4940}
4941
3664033c 4942/* a companion to pageset_set_high() */
4008bab7
CS
4943static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4944{
8d7a8fa9 4945 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4946}
4947
88c90dbc 4948static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4949{
4950 struct per_cpu_pages *pcp;
5f8dcc21 4951 int migratetype;
2caaad41 4952
1c6fe946
MD
4953 memset(p, 0, sizeof(*p));
4954
3dfa5721 4955 pcp = &p->pcp;
2caaad41 4956 pcp->count = 0;
5f8dcc21
MG
4957 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4958 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4959}
4960
88c90dbc
CS
4961static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4962{
4963 pageset_init(p);
4964 pageset_set_batch(p, batch);
4965}
4966
8ad4b1fb 4967/*
3664033c 4968 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4969 * to the value high for the pageset p.
4970 */
3664033c 4971static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4972 unsigned long high)
4973{
8d7a8fa9
CS
4974 unsigned long batch = max(1UL, high / 4);
4975 if ((high / 4) > (PAGE_SHIFT * 8))
4976 batch = PAGE_SHIFT * 8;
8ad4b1fb 4977
8d7a8fa9 4978 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4979}
4980
7cd2b0a3
DR
4981static void pageset_set_high_and_batch(struct zone *zone,
4982 struct per_cpu_pageset *pcp)
56cef2b8 4983{
56cef2b8 4984 if (percpu_pagelist_fraction)
3664033c 4985 pageset_set_high(pcp,
56cef2b8
CS
4986 (zone->managed_pages /
4987 percpu_pagelist_fraction));
4988 else
4989 pageset_set_batch(pcp, zone_batchsize(zone));
4990}
4991
169f6c19
CS
4992static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4993{
4994 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4995
4996 pageset_init(pcp);
4997 pageset_set_high_and_batch(zone, pcp);
4998}
4999
4ed7e022 5000static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5001{
5002 int cpu;
319774e2 5003 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5004 for_each_possible_cpu(cpu)
5005 zone_pageset_init(zone, cpu);
319774e2
WF
5006}
5007
2caaad41 5008/*
99dcc3e5
CL
5009 * Allocate per cpu pagesets and initialize them.
5010 * Before this call only boot pagesets were available.
e7c8d5c9 5011 */
99dcc3e5 5012void __init setup_per_cpu_pageset(void)
e7c8d5c9 5013{
99dcc3e5 5014 struct zone *zone;
e7c8d5c9 5015
319774e2
WF
5016 for_each_populated_zone(zone)
5017 setup_zone_pageset(zone);
e7c8d5c9
CL
5018}
5019
577a32f6 5020static noinline __init_refok
cca448fe 5021int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5022{
5023 int i;
cca448fe 5024 size_t alloc_size;
ed8ece2e
DH
5025
5026 /*
5027 * The per-page waitqueue mechanism uses hashed waitqueues
5028 * per zone.
5029 */
02b694de
YG
5030 zone->wait_table_hash_nr_entries =
5031 wait_table_hash_nr_entries(zone_size_pages);
5032 zone->wait_table_bits =
5033 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5034 alloc_size = zone->wait_table_hash_nr_entries
5035 * sizeof(wait_queue_head_t);
5036
cd94b9db 5037 if (!slab_is_available()) {
cca448fe 5038 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5039 memblock_virt_alloc_node_nopanic(
5040 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5041 } else {
5042 /*
5043 * This case means that a zone whose size was 0 gets new memory
5044 * via memory hot-add.
5045 * But it may be the case that a new node was hot-added. In
5046 * this case vmalloc() will not be able to use this new node's
5047 * memory - this wait_table must be initialized to use this new
5048 * node itself as well.
5049 * To use this new node's memory, further consideration will be
5050 * necessary.
5051 */
8691f3a7 5052 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5053 }
5054 if (!zone->wait_table)
5055 return -ENOMEM;
ed8ece2e 5056
b8af2941 5057 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5058 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5059
5060 return 0;
ed8ece2e
DH
5061}
5062
c09b4240 5063static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5064{
99dcc3e5
CL
5065 /*
5066 * per cpu subsystem is not up at this point. The following code
5067 * relies on the ability of the linker to provide the
5068 * offset of a (static) per cpu variable into the per cpu area.
5069 */
5070 zone->pageset = &boot_pageset;
ed8ece2e 5071
b38a8725 5072 if (populated_zone(zone))
99dcc3e5
CL
5073 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5074 zone->name, zone->present_pages,
5075 zone_batchsize(zone));
ed8ece2e
DH
5076}
5077
4ed7e022 5078int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5079 unsigned long zone_start_pfn,
b171e409 5080 unsigned long size)
ed8ece2e
DH
5081{
5082 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5083 int ret;
5084 ret = zone_wait_table_init(zone, size);
5085 if (ret)
5086 return ret;
ed8ece2e
DH
5087 pgdat->nr_zones = zone_idx(zone) + 1;
5088
ed8ece2e
DH
5089 zone->zone_start_pfn = zone_start_pfn;
5090
708614e6
MG
5091 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5092 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5093 pgdat->node_id,
5094 (unsigned long)zone_idx(zone),
5095 zone_start_pfn, (zone_start_pfn + size));
5096
1e548deb 5097 zone_init_free_lists(zone);
718127cc
YG
5098
5099 return 0;
ed8ece2e
DH
5100}
5101
0ee332c1 5102#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5103#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5104
c713216d
MG
5105/*
5106 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5107 */
8a942fde
MG
5108int __meminit __early_pfn_to_nid(unsigned long pfn,
5109 struct mminit_pfnnid_cache *state)
c713216d 5110{
c13291a5 5111 unsigned long start_pfn, end_pfn;
e76b63f8 5112 int nid;
7c243c71 5113
8a942fde
MG
5114 if (state->last_start <= pfn && pfn < state->last_end)
5115 return state->last_nid;
c713216d 5116
e76b63f8
YL
5117 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5118 if (nid != -1) {
8a942fde
MG
5119 state->last_start = start_pfn;
5120 state->last_end = end_pfn;
5121 state->last_nid = nid;
e76b63f8
YL
5122 }
5123
5124 return nid;
c713216d
MG
5125}
5126#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5127
c713216d 5128/**
6782832e 5129 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5130 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5131 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5132 *
7d018176
ZZ
5133 * If an architecture guarantees that all ranges registered contain no holes
5134 * and may be freed, this this function may be used instead of calling
5135 * memblock_free_early_nid() manually.
c713216d 5136 */
c13291a5 5137void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5138{
c13291a5
TH
5139 unsigned long start_pfn, end_pfn;
5140 int i, this_nid;
edbe7d23 5141
c13291a5
TH
5142 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5143 start_pfn = min(start_pfn, max_low_pfn);
5144 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5145
c13291a5 5146 if (start_pfn < end_pfn)
6782832e
SS
5147 memblock_free_early_nid(PFN_PHYS(start_pfn),
5148 (end_pfn - start_pfn) << PAGE_SHIFT,
5149 this_nid);
edbe7d23 5150 }
edbe7d23 5151}
edbe7d23 5152
c713216d
MG
5153/**
5154 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5155 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5156 *
7d018176
ZZ
5157 * If an architecture guarantees that all ranges registered contain no holes and may
5158 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5159 */
5160void __init sparse_memory_present_with_active_regions(int nid)
5161{
c13291a5
TH
5162 unsigned long start_pfn, end_pfn;
5163 int i, this_nid;
c713216d 5164
c13291a5
TH
5165 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5166 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5167}
5168
5169/**
5170 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5171 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5172 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5173 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5174 *
5175 * It returns the start and end page frame of a node based on information
7d018176 5176 * provided by memblock_set_node(). If called for a node
c713216d 5177 * with no available memory, a warning is printed and the start and end
88ca3b94 5178 * PFNs will be 0.
c713216d 5179 */
a3142c8e 5180void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5181 unsigned long *start_pfn, unsigned long *end_pfn)
5182{
c13291a5 5183 unsigned long this_start_pfn, this_end_pfn;
c713216d 5184 int i;
c13291a5 5185
c713216d
MG
5186 *start_pfn = -1UL;
5187 *end_pfn = 0;
5188
c13291a5
TH
5189 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5190 *start_pfn = min(*start_pfn, this_start_pfn);
5191 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5192 }
5193
633c0666 5194 if (*start_pfn == -1UL)
c713216d 5195 *start_pfn = 0;
c713216d
MG
5196}
5197
2a1e274a
MG
5198/*
5199 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5200 * assumption is made that zones within a node are ordered in monotonic
5201 * increasing memory addresses so that the "highest" populated zone is used
5202 */
b69a7288 5203static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5204{
5205 int zone_index;
5206 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5207 if (zone_index == ZONE_MOVABLE)
5208 continue;
5209
5210 if (arch_zone_highest_possible_pfn[zone_index] >
5211 arch_zone_lowest_possible_pfn[zone_index])
5212 break;
5213 }
5214
5215 VM_BUG_ON(zone_index == -1);
5216 movable_zone = zone_index;
5217}
5218
5219/*
5220 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5221 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5222 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5223 * in each node depending on the size of each node and how evenly kernelcore
5224 * is distributed. This helper function adjusts the zone ranges
5225 * provided by the architecture for a given node by using the end of the
5226 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5227 * zones within a node are in order of monotonic increases memory addresses
5228 */
b69a7288 5229static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5230 unsigned long zone_type,
5231 unsigned long node_start_pfn,
5232 unsigned long node_end_pfn,
5233 unsigned long *zone_start_pfn,
5234 unsigned long *zone_end_pfn)
5235{
5236 /* Only adjust if ZONE_MOVABLE is on this node */
5237 if (zone_movable_pfn[nid]) {
5238 /* Size ZONE_MOVABLE */
5239 if (zone_type == ZONE_MOVABLE) {
5240 *zone_start_pfn = zone_movable_pfn[nid];
5241 *zone_end_pfn = min(node_end_pfn,
5242 arch_zone_highest_possible_pfn[movable_zone]);
5243
2a1e274a
MG
5244 /* Check if this whole range is within ZONE_MOVABLE */
5245 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5246 *zone_start_pfn = *zone_end_pfn;
5247 }
5248}
5249
c713216d
MG
5250/*
5251 * Return the number of pages a zone spans in a node, including holes
5252 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5253 */
6ea6e688 5254static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5255 unsigned long zone_type,
7960aedd
ZY
5256 unsigned long node_start_pfn,
5257 unsigned long node_end_pfn,
d91749c1
TI
5258 unsigned long *zone_start_pfn,
5259 unsigned long *zone_end_pfn,
c713216d
MG
5260 unsigned long *ignored)
5261{
b5685e92 5262 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5263 if (!node_start_pfn && !node_end_pfn)
5264 return 0;
5265
7960aedd 5266 /* Get the start and end of the zone */
d91749c1
TI
5267 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5268 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5269 adjust_zone_range_for_zone_movable(nid, zone_type,
5270 node_start_pfn, node_end_pfn,
d91749c1 5271 zone_start_pfn, zone_end_pfn);
c713216d
MG
5272
5273 /* Check that this node has pages within the zone's required range */
d91749c1 5274 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5275 return 0;
5276
5277 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5278 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5279 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5280
5281 /* Return the spanned pages */
d91749c1 5282 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5283}
5284
5285/*
5286 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5287 * then all holes in the requested range will be accounted for.
c713216d 5288 */
32996250 5289unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5290 unsigned long range_start_pfn,
5291 unsigned long range_end_pfn)
5292{
96e907d1
TH
5293 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5294 unsigned long start_pfn, end_pfn;
5295 int i;
c713216d 5296
96e907d1
TH
5297 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5298 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5299 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5300 nr_absent -= end_pfn - start_pfn;
c713216d 5301 }
96e907d1 5302 return nr_absent;
c713216d
MG
5303}
5304
5305/**
5306 * absent_pages_in_range - Return number of page frames in holes within a range
5307 * @start_pfn: The start PFN to start searching for holes
5308 * @end_pfn: The end PFN to stop searching for holes
5309 *
88ca3b94 5310 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5311 */
5312unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5313 unsigned long end_pfn)
5314{
5315 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5316}
5317
5318/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5319static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5320 unsigned long zone_type,
7960aedd
ZY
5321 unsigned long node_start_pfn,
5322 unsigned long node_end_pfn,
c713216d
MG
5323 unsigned long *ignored)
5324{
96e907d1
TH
5325 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5326 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5327 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5328 unsigned long nr_absent;
9c7cd687 5329
b5685e92 5330 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5331 if (!node_start_pfn && !node_end_pfn)
5332 return 0;
5333
96e907d1
TH
5334 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5335 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5336
2a1e274a
MG
5337 adjust_zone_range_for_zone_movable(nid, zone_type,
5338 node_start_pfn, node_end_pfn,
5339 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5340 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5341
5342 /*
5343 * ZONE_MOVABLE handling.
5344 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5345 * and vice versa.
5346 */
5347 if (zone_movable_pfn[nid]) {
5348 if (mirrored_kernelcore) {
5349 unsigned long start_pfn, end_pfn;
5350 struct memblock_region *r;
5351
5352 for_each_memblock(memory, r) {
5353 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5354 zone_start_pfn, zone_end_pfn);
5355 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5356 zone_start_pfn, zone_end_pfn);
5357
5358 if (zone_type == ZONE_MOVABLE &&
5359 memblock_is_mirror(r))
5360 nr_absent += end_pfn - start_pfn;
5361
5362 if (zone_type == ZONE_NORMAL &&
5363 !memblock_is_mirror(r))
5364 nr_absent += end_pfn - start_pfn;
5365 }
5366 } else {
5367 if (zone_type == ZONE_NORMAL)
5368 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5369 }
5370 }
5371
5372 return nr_absent;
c713216d 5373}
0e0b864e 5374
0ee332c1 5375#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5376static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5377 unsigned long zone_type,
7960aedd
ZY
5378 unsigned long node_start_pfn,
5379 unsigned long node_end_pfn,
d91749c1
TI
5380 unsigned long *zone_start_pfn,
5381 unsigned long *zone_end_pfn,
c713216d
MG
5382 unsigned long *zones_size)
5383{
d91749c1
TI
5384 unsigned int zone;
5385
5386 *zone_start_pfn = node_start_pfn;
5387 for (zone = 0; zone < zone_type; zone++)
5388 *zone_start_pfn += zones_size[zone];
5389
5390 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5391
c713216d
MG
5392 return zones_size[zone_type];
5393}
5394
6ea6e688 5395static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5396 unsigned long zone_type,
7960aedd
ZY
5397 unsigned long node_start_pfn,
5398 unsigned long node_end_pfn,
c713216d
MG
5399 unsigned long *zholes_size)
5400{
5401 if (!zholes_size)
5402 return 0;
5403
5404 return zholes_size[zone_type];
5405}
20e6926d 5406
0ee332c1 5407#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5408
a3142c8e 5409static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5410 unsigned long node_start_pfn,
5411 unsigned long node_end_pfn,
5412 unsigned long *zones_size,
5413 unsigned long *zholes_size)
c713216d 5414{
febd5949 5415 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5416 enum zone_type i;
5417
febd5949
GZ
5418 for (i = 0; i < MAX_NR_ZONES; i++) {
5419 struct zone *zone = pgdat->node_zones + i;
d91749c1 5420 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5421 unsigned long size, real_size;
c713216d 5422
febd5949
GZ
5423 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5424 node_start_pfn,
5425 node_end_pfn,
d91749c1
TI
5426 &zone_start_pfn,
5427 &zone_end_pfn,
febd5949
GZ
5428 zones_size);
5429 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5430 node_start_pfn, node_end_pfn,
5431 zholes_size);
d91749c1
TI
5432 if (size)
5433 zone->zone_start_pfn = zone_start_pfn;
5434 else
5435 zone->zone_start_pfn = 0;
febd5949
GZ
5436 zone->spanned_pages = size;
5437 zone->present_pages = real_size;
5438
5439 totalpages += size;
5440 realtotalpages += real_size;
5441 }
5442
5443 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5444 pgdat->node_present_pages = realtotalpages;
5445 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5446 realtotalpages);
5447}
5448
835c134e
MG
5449#ifndef CONFIG_SPARSEMEM
5450/*
5451 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5452 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5453 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5454 * round what is now in bits to nearest long in bits, then return it in
5455 * bytes.
5456 */
7c45512d 5457static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5458{
5459 unsigned long usemapsize;
5460
7c45512d 5461 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5462 usemapsize = roundup(zonesize, pageblock_nr_pages);
5463 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5464 usemapsize *= NR_PAGEBLOCK_BITS;
5465 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5466
5467 return usemapsize / 8;
5468}
5469
5470static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5471 struct zone *zone,
5472 unsigned long zone_start_pfn,
5473 unsigned long zonesize)
835c134e 5474{
7c45512d 5475 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5476 zone->pageblock_flags = NULL;
58a01a45 5477 if (usemapsize)
6782832e
SS
5478 zone->pageblock_flags =
5479 memblock_virt_alloc_node_nopanic(usemapsize,
5480 pgdat->node_id);
835c134e
MG
5481}
5482#else
7c45512d
LT
5483static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5484 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5485#endif /* CONFIG_SPARSEMEM */
5486
d9c23400 5487#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5488
d9c23400 5489/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5490void __paginginit set_pageblock_order(void)
d9c23400 5491{
955c1cd7
AM
5492 unsigned int order;
5493
d9c23400
MG
5494 /* Check that pageblock_nr_pages has not already been setup */
5495 if (pageblock_order)
5496 return;
5497
955c1cd7
AM
5498 if (HPAGE_SHIFT > PAGE_SHIFT)
5499 order = HUGETLB_PAGE_ORDER;
5500 else
5501 order = MAX_ORDER - 1;
5502
d9c23400
MG
5503 /*
5504 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5505 * This value may be variable depending on boot parameters on IA64 and
5506 * powerpc.
d9c23400
MG
5507 */
5508 pageblock_order = order;
5509}
5510#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5511
ba72cb8c
MG
5512/*
5513 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5514 * is unused as pageblock_order is set at compile-time. See
5515 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5516 * the kernel config
ba72cb8c 5517 */
15ca220e 5518void __paginginit set_pageblock_order(void)
ba72cb8c 5519{
ba72cb8c 5520}
d9c23400
MG
5521
5522#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5523
01cefaef
JL
5524static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5525 unsigned long present_pages)
5526{
5527 unsigned long pages = spanned_pages;
5528
5529 /*
5530 * Provide a more accurate estimation if there are holes within
5531 * the zone and SPARSEMEM is in use. If there are holes within the
5532 * zone, each populated memory region may cost us one or two extra
5533 * memmap pages due to alignment because memmap pages for each
5534 * populated regions may not naturally algined on page boundary.
5535 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5536 */
5537 if (spanned_pages > present_pages + (present_pages >> 4) &&
5538 IS_ENABLED(CONFIG_SPARSEMEM))
5539 pages = present_pages;
5540
5541 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5542}
5543
1da177e4
LT
5544/*
5545 * Set up the zone data structures:
5546 * - mark all pages reserved
5547 * - mark all memory queues empty
5548 * - clear the memory bitmaps
6527af5d
MK
5549 *
5550 * NOTE: pgdat should get zeroed by caller.
1da177e4 5551 */
7f3eb55b 5552static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5553{
2f1b6248 5554 enum zone_type j;
ed8ece2e 5555 int nid = pgdat->node_id;
718127cc 5556 int ret;
1da177e4 5557
208d54e5 5558 pgdat_resize_init(pgdat);
8177a420
AA
5559#ifdef CONFIG_NUMA_BALANCING
5560 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5561 pgdat->numabalancing_migrate_nr_pages = 0;
5562 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5563#endif
5564#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5565 spin_lock_init(&pgdat->split_queue_lock);
5566 INIT_LIST_HEAD(&pgdat->split_queue);
5567 pgdat->split_queue_len = 0;
8177a420 5568#endif
1da177e4 5569 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5570 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5571#ifdef CONFIG_COMPACTION
5572 init_waitqueue_head(&pgdat->kcompactd_wait);
5573#endif
eefa864b 5574 pgdat_page_ext_init(pgdat);
5f63b720 5575
1da177e4
LT
5576 for (j = 0; j < MAX_NR_ZONES; j++) {
5577 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5578 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5579 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5580
febd5949
GZ
5581 size = zone->spanned_pages;
5582 realsize = freesize = zone->present_pages;
1da177e4 5583
0e0b864e 5584 /*
9feedc9d 5585 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5586 * is used by this zone for memmap. This affects the watermark
5587 * and per-cpu initialisations
5588 */
01cefaef 5589 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5590 if (!is_highmem_idx(j)) {
5591 if (freesize >= memmap_pages) {
5592 freesize -= memmap_pages;
5593 if (memmap_pages)
5594 printk(KERN_DEBUG
5595 " %s zone: %lu pages used for memmap\n",
5596 zone_names[j], memmap_pages);
5597 } else
1170532b 5598 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5599 zone_names[j], memmap_pages, freesize);
5600 }
0e0b864e 5601
6267276f 5602 /* Account for reserved pages */
9feedc9d
JL
5603 if (j == 0 && freesize > dma_reserve) {
5604 freesize -= dma_reserve;
d903ef9f 5605 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5606 zone_names[0], dma_reserve);
0e0b864e
MG
5607 }
5608
98d2b0eb 5609 if (!is_highmem_idx(j))
9feedc9d 5610 nr_kernel_pages += freesize;
01cefaef
JL
5611 /* Charge for highmem memmap if there are enough kernel pages */
5612 else if (nr_kernel_pages > memmap_pages * 2)
5613 nr_kernel_pages -= memmap_pages;
9feedc9d 5614 nr_all_pages += freesize;
1da177e4 5615
9feedc9d
JL
5616 /*
5617 * Set an approximate value for lowmem here, it will be adjusted
5618 * when the bootmem allocator frees pages into the buddy system.
5619 * And all highmem pages will be managed by the buddy system.
5620 */
5621 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5622#ifdef CONFIG_NUMA
d5f541ed 5623 zone->node = nid;
9feedc9d 5624 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5625 / 100;
9feedc9d 5626 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5627#endif
1da177e4
LT
5628 zone->name = zone_names[j];
5629 spin_lock_init(&zone->lock);
5630 spin_lock_init(&zone->lru_lock);
bdc8cb98 5631 zone_seqlock_init(zone);
1da177e4 5632 zone->zone_pgdat = pgdat;
ed8ece2e 5633 zone_pcp_init(zone);
81c0a2bb
JW
5634
5635 /* For bootup, initialized properly in watermark setup */
5636 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5637
bea8c150 5638 lruvec_init(&zone->lruvec);
1da177e4
LT
5639 if (!size)
5640 continue;
5641
955c1cd7 5642 set_pageblock_order();
7c45512d 5643 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5644 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5645 BUG_ON(ret);
76cdd58e 5646 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5647 }
5648}
5649
577a32f6 5650static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5651{
b0aeba74 5652 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5653 unsigned long __maybe_unused offset = 0;
5654
1da177e4
LT
5655 /* Skip empty nodes */
5656 if (!pgdat->node_spanned_pages)
5657 return;
5658
d41dee36 5659#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5660 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5661 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5662 /* ia64 gets its own node_mem_map, before this, without bootmem */
5663 if (!pgdat->node_mem_map) {
b0aeba74 5664 unsigned long size, end;
d41dee36
AW
5665 struct page *map;
5666
e984bb43
BP
5667 /*
5668 * The zone's endpoints aren't required to be MAX_ORDER
5669 * aligned but the node_mem_map endpoints must be in order
5670 * for the buddy allocator to function correctly.
5671 */
108bcc96 5672 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5673 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5674 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5675 map = alloc_remap(pgdat->node_id, size);
5676 if (!map)
6782832e
SS
5677 map = memblock_virt_alloc_node_nopanic(size,
5678 pgdat->node_id);
a1c34a3b 5679 pgdat->node_mem_map = map + offset;
1da177e4 5680 }
12d810c1 5681#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5682 /*
5683 * With no DISCONTIG, the global mem_map is just set as node 0's
5684 */
c713216d 5685 if (pgdat == NODE_DATA(0)) {
1da177e4 5686 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5687#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5688 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5689 mem_map -= offset;
0ee332c1 5690#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5691 }
1da177e4 5692#endif
d41dee36 5693#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5694}
5695
9109fb7b
JW
5696void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5697 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5698{
9109fb7b 5699 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5700 unsigned long start_pfn = 0;
5701 unsigned long end_pfn = 0;
9109fb7b 5702
88fdf75d 5703 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5704 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5705
3a80a7fa 5706 reset_deferred_meminit(pgdat);
1da177e4
LT
5707 pgdat->node_id = nid;
5708 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5709#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5710 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5711 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5712 (u64)start_pfn << PAGE_SHIFT,
5713 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5714#else
5715 start_pfn = node_start_pfn;
7960aedd
ZY
5716#endif
5717 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5718 zones_size, zholes_size);
1da177e4
LT
5719
5720 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5721#ifdef CONFIG_FLAT_NODE_MEM_MAP
5722 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5723 nid, (unsigned long)pgdat,
5724 (unsigned long)pgdat->node_mem_map);
5725#endif
1da177e4 5726
7f3eb55b 5727 free_area_init_core(pgdat);
1da177e4
LT
5728}
5729
0ee332c1 5730#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5731
5732#if MAX_NUMNODES > 1
5733/*
5734 * Figure out the number of possible node ids.
5735 */
f9872caf 5736void __init setup_nr_node_ids(void)
418508c1 5737{
904a9553 5738 unsigned int highest;
418508c1 5739
904a9553 5740 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5741 nr_node_ids = highest + 1;
5742}
418508c1
MS
5743#endif
5744
1e01979c
TH
5745/**
5746 * node_map_pfn_alignment - determine the maximum internode alignment
5747 *
5748 * This function should be called after node map is populated and sorted.
5749 * It calculates the maximum power of two alignment which can distinguish
5750 * all the nodes.
5751 *
5752 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5753 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5754 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5755 * shifted, 1GiB is enough and this function will indicate so.
5756 *
5757 * This is used to test whether pfn -> nid mapping of the chosen memory
5758 * model has fine enough granularity to avoid incorrect mapping for the
5759 * populated node map.
5760 *
5761 * Returns the determined alignment in pfn's. 0 if there is no alignment
5762 * requirement (single node).
5763 */
5764unsigned long __init node_map_pfn_alignment(void)
5765{
5766 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5767 unsigned long start, end, mask;
1e01979c 5768 int last_nid = -1;
c13291a5 5769 int i, nid;
1e01979c 5770
c13291a5 5771 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5772 if (!start || last_nid < 0 || last_nid == nid) {
5773 last_nid = nid;
5774 last_end = end;
5775 continue;
5776 }
5777
5778 /*
5779 * Start with a mask granular enough to pin-point to the
5780 * start pfn and tick off bits one-by-one until it becomes
5781 * too coarse to separate the current node from the last.
5782 */
5783 mask = ~((1 << __ffs(start)) - 1);
5784 while (mask && last_end <= (start & (mask << 1)))
5785 mask <<= 1;
5786
5787 /* accumulate all internode masks */
5788 accl_mask |= mask;
5789 }
5790
5791 /* convert mask to number of pages */
5792 return ~accl_mask + 1;
5793}
5794
a6af2bc3 5795/* Find the lowest pfn for a node */
b69a7288 5796static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5797{
a6af2bc3 5798 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5799 unsigned long start_pfn;
5800 int i;
1abbfb41 5801
c13291a5
TH
5802 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5803 min_pfn = min(min_pfn, start_pfn);
c713216d 5804
a6af2bc3 5805 if (min_pfn == ULONG_MAX) {
1170532b 5806 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5807 return 0;
5808 }
5809
5810 return min_pfn;
c713216d
MG
5811}
5812
5813/**
5814 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5815 *
5816 * It returns the minimum PFN based on information provided via
7d018176 5817 * memblock_set_node().
c713216d
MG
5818 */
5819unsigned long __init find_min_pfn_with_active_regions(void)
5820{
5821 return find_min_pfn_for_node(MAX_NUMNODES);
5822}
5823
37b07e41
LS
5824/*
5825 * early_calculate_totalpages()
5826 * Sum pages in active regions for movable zone.
4b0ef1fe 5827 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5828 */
484f51f8 5829static unsigned long __init early_calculate_totalpages(void)
7e63efef 5830{
7e63efef 5831 unsigned long totalpages = 0;
c13291a5
TH
5832 unsigned long start_pfn, end_pfn;
5833 int i, nid;
5834
5835 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5836 unsigned long pages = end_pfn - start_pfn;
7e63efef 5837
37b07e41
LS
5838 totalpages += pages;
5839 if (pages)
4b0ef1fe 5840 node_set_state(nid, N_MEMORY);
37b07e41 5841 }
b8af2941 5842 return totalpages;
7e63efef
MG
5843}
5844
2a1e274a
MG
5845/*
5846 * Find the PFN the Movable zone begins in each node. Kernel memory
5847 * is spread evenly between nodes as long as the nodes have enough
5848 * memory. When they don't, some nodes will have more kernelcore than
5849 * others
5850 */
b224ef85 5851static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5852{
5853 int i, nid;
5854 unsigned long usable_startpfn;
5855 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5856 /* save the state before borrow the nodemask */
4b0ef1fe 5857 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5858 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5859 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5860 struct memblock_region *r;
b2f3eebe
TC
5861
5862 /* Need to find movable_zone earlier when movable_node is specified. */
5863 find_usable_zone_for_movable();
5864
5865 /*
5866 * If movable_node is specified, ignore kernelcore and movablecore
5867 * options.
5868 */
5869 if (movable_node_is_enabled()) {
136199f0
EM
5870 for_each_memblock(memory, r) {
5871 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5872 continue;
5873
136199f0 5874 nid = r->nid;
b2f3eebe 5875
136199f0 5876 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5877 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5878 min(usable_startpfn, zone_movable_pfn[nid]) :
5879 usable_startpfn;
5880 }
5881
5882 goto out2;
5883 }
2a1e274a 5884
342332e6
TI
5885 /*
5886 * If kernelcore=mirror is specified, ignore movablecore option
5887 */
5888 if (mirrored_kernelcore) {
5889 bool mem_below_4gb_not_mirrored = false;
5890
5891 for_each_memblock(memory, r) {
5892 if (memblock_is_mirror(r))
5893 continue;
5894
5895 nid = r->nid;
5896
5897 usable_startpfn = memblock_region_memory_base_pfn(r);
5898
5899 if (usable_startpfn < 0x100000) {
5900 mem_below_4gb_not_mirrored = true;
5901 continue;
5902 }
5903
5904 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5905 min(usable_startpfn, zone_movable_pfn[nid]) :
5906 usable_startpfn;
5907 }
5908
5909 if (mem_below_4gb_not_mirrored)
5910 pr_warn("This configuration results in unmirrored kernel memory.");
5911
5912 goto out2;
5913 }
5914
7e63efef 5915 /*
b2f3eebe 5916 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5917 * kernelcore that corresponds so that memory usable for
5918 * any allocation type is evenly spread. If both kernelcore
5919 * and movablecore are specified, then the value of kernelcore
5920 * will be used for required_kernelcore if it's greater than
5921 * what movablecore would have allowed.
5922 */
5923 if (required_movablecore) {
7e63efef
MG
5924 unsigned long corepages;
5925
5926 /*
5927 * Round-up so that ZONE_MOVABLE is at least as large as what
5928 * was requested by the user
5929 */
5930 required_movablecore =
5931 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5932 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5933 corepages = totalpages - required_movablecore;
5934
5935 required_kernelcore = max(required_kernelcore, corepages);
5936 }
5937
bde304bd
XQ
5938 /*
5939 * If kernelcore was not specified or kernelcore size is larger
5940 * than totalpages, there is no ZONE_MOVABLE.
5941 */
5942 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5943 goto out;
2a1e274a
MG
5944
5945 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5946 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5947
5948restart:
5949 /* Spread kernelcore memory as evenly as possible throughout nodes */
5950 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5951 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5952 unsigned long start_pfn, end_pfn;
5953
2a1e274a
MG
5954 /*
5955 * Recalculate kernelcore_node if the division per node
5956 * now exceeds what is necessary to satisfy the requested
5957 * amount of memory for the kernel
5958 */
5959 if (required_kernelcore < kernelcore_node)
5960 kernelcore_node = required_kernelcore / usable_nodes;
5961
5962 /*
5963 * As the map is walked, we track how much memory is usable
5964 * by the kernel using kernelcore_remaining. When it is
5965 * 0, the rest of the node is usable by ZONE_MOVABLE
5966 */
5967 kernelcore_remaining = kernelcore_node;
5968
5969 /* Go through each range of PFNs within this node */
c13291a5 5970 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5971 unsigned long size_pages;
5972
c13291a5 5973 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5974 if (start_pfn >= end_pfn)
5975 continue;
5976
5977 /* Account for what is only usable for kernelcore */
5978 if (start_pfn < usable_startpfn) {
5979 unsigned long kernel_pages;
5980 kernel_pages = min(end_pfn, usable_startpfn)
5981 - start_pfn;
5982
5983 kernelcore_remaining -= min(kernel_pages,
5984 kernelcore_remaining);
5985 required_kernelcore -= min(kernel_pages,
5986 required_kernelcore);
5987
5988 /* Continue if range is now fully accounted */
5989 if (end_pfn <= usable_startpfn) {
5990
5991 /*
5992 * Push zone_movable_pfn to the end so
5993 * that if we have to rebalance
5994 * kernelcore across nodes, we will
5995 * not double account here
5996 */
5997 zone_movable_pfn[nid] = end_pfn;
5998 continue;
5999 }
6000 start_pfn = usable_startpfn;
6001 }
6002
6003 /*
6004 * The usable PFN range for ZONE_MOVABLE is from
6005 * start_pfn->end_pfn. Calculate size_pages as the
6006 * number of pages used as kernelcore
6007 */
6008 size_pages = end_pfn - start_pfn;
6009 if (size_pages > kernelcore_remaining)
6010 size_pages = kernelcore_remaining;
6011 zone_movable_pfn[nid] = start_pfn + size_pages;
6012
6013 /*
6014 * Some kernelcore has been met, update counts and
6015 * break if the kernelcore for this node has been
b8af2941 6016 * satisfied
2a1e274a
MG
6017 */
6018 required_kernelcore -= min(required_kernelcore,
6019 size_pages);
6020 kernelcore_remaining -= size_pages;
6021 if (!kernelcore_remaining)
6022 break;
6023 }
6024 }
6025
6026 /*
6027 * If there is still required_kernelcore, we do another pass with one
6028 * less node in the count. This will push zone_movable_pfn[nid] further
6029 * along on the nodes that still have memory until kernelcore is
b8af2941 6030 * satisfied
2a1e274a
MG
6031 */
6032 usable_nodes--;
6033 if (usable_nodes && required_kernelcore > usable_nodes)
6034 goto restart;
6035
b2f3eebe 6036out2:
2a1e274a
MG
6037 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6038 for (nid = 0; nid < MAX_NUMNODES; nid++)
6039 zone_movable_pfn[nid] =
6040 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6041
20e6926d 6042out:
66918dcd 6043 /* restore the node_state */
4b0ef1fe 6044 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6045}
6046
4b0ef1fe
LJ
6047/* Any regular or high memory on that node ? */
6048static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6049{
37b07e41
LS
6050 enum zone_type zone_type;
6051
4b0ef1fe
LJ
6052 if (N_MEMORY == N_NORMAL_MEMORY)
6053 return;
6054
6055 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6056 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6057 if (populated_zone(zone)) {
4b0ef1fe
LJ
6058 node_set_state(nid, N_HIGH_MEMORY);
6059 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6060 zone_type <= ZONE_NORMAL)
6061 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6062 break;
6063 }
37b07e41 6064 }
37b07e41
LS
6065}
6066
c713216d
MG
6067/**
6068 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6069 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6070 *
6071 * This will call free_area_init_node() for each active node in the system.
7d018176 6072 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6073 * zone in each node and their holes is calculated. If the maximum PFN
6074 * between two adjacent zones match, it is assumed that the zone is empty.
6075 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6076 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6077 * starts where the previous one ended. For example, ZONE_DMA32 starts
6078 * at arch_max_dma_pfn.
6079 */
6080void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6081{
c13291a5
TH
6082 unsigned long start_pfn, end_pfn;
6083 int i, nid;
a6af2bc3 6084
c713216d
MG
6085 /* Record where the zone boundaries are */
6086 memset(arch_zone_lowest_possible_pfn, 0,
6087 sizeof(arch_zone_lowest_possible_pfn));
6088 memset(arch_zone_highest_possible_pfn, 0,
6089 sizeof(arch_zone_highest_possible_pfn));
6090 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6091 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6092 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6093 if (i == ZONE_MOVABLE)
6094 continue;
c713216d
MG
6095 arch_zone_lowest_possible_pfn[i] =
6096 arch_zone_highest_possible_pfn[i-1];
6097 arch_zone_highest_possible_pfn[i] =
6098 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6099 }
2a1e274a
MG
6100 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6101 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6102
6103 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6104 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6105 find_zone_movable_pfns_for_nodes();
c713216d 6106
c713216d 6107 /* Print out the zone ranges */
f88dfff5 6108 pr_info("Zone ranges:\n");
2a1e274a
MG
6109 for (i = 0; i < MAX_NR_ZONES; i++) {
6110 if (i == ZONE_MOVABLE)
6111 continue;
f88dfff5 6112 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6113 if (arch_zone_lowest_possible_pfn[i] ==
6114 arch_zone_highest_possible_pfn[i])
f88dfff5 6115 pr_cont("empty\n");
72f0ba02 6116 else
8d29e18a
JG
6117 pr_cont("[mem %#018Lx-%#018Lx]\n",
6118 (u64)arch_zone_lowest_possible_pfn[i]
6119 << PAGE_SHIFT,
6120 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6121 << PAGE_SHIFT) - 1);
2a1e274a
MG
6122 }
6123
6124 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6125 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6126 for (i = 0; i < MAX_NUMNODES; i++) {
6127 if (zone_movable_pfn[i])
8d29e18a
JG
6128 pr_info(" Node %d: %#018Lx\n", i,
6129 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6130 }
c713216d 6131
f2d52fe5 6132 /* Print out the early node map */
f88dfff5 6133 pr_info("Early memory node ranges\n");
c13291a5 6134 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6135 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6136 (u64)start_pfn << PAGE_SHIFT,
6137 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6138
6139 /* Initialise every node */
708614e6 6140 mminit_verify_pageflags_layout();
8ef82866 6141 setup_nr_node_ids();
c713216d
MG
6142 for_each_online_node(nid) {
6143 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6144 free_area_init_node(nid, NULL,
c713216d 6145 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6146
6147 /* Any memory on that node */
6148 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6149 node_set_state(nid, N_MEMORY);
6150 check_for_memory(pgdat, nid);
c713216d
MG
6151 }
6152}
2a1e274a 6153
7e63efef 6154static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6155{
6156 unsigned long long coremem;
6157 if (!p)
6158 return -EINVAL;
6159
6160 coremem = memparse(p, &p);
7e63efef 6161 *core = coremem >> PAGE_SHIFT;
2a1e274a 6162
7e63efef 6163 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6164 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6165
6166 return 0;
6167}
ed7ed365 6168
7e63efef
MG
6169/*
6170 * kernelcore=size sets the amount of memory for use for allocations that
6171 * cannot be reclaimed or migrated.
6172 */
6173static int __init cmdline_parse_kernelcore(char *p)
6174{
342332e6
TI
6175 /* parse kernelcore=mirror */
6176 if (parse_option_str(p, "mirror")) {
6177 mirrored_kernelcore = true;
6178 return 0;
6179 }
6180
7e63efef
MG
6181 return cmdline_parse_core(p, &required_kernelcore);
6182}
6183
6184/*
6185 * movablecore=size sets the amount of memory for use for allocations that
6186 * can be reclaimed or migrated.
6187 */
6188static int __init cmdline_parse_movablecore(char *p)
6189{
6190 return cmdline_parse_core(p, &required_movablecore);
6191}
6192
ed7ed365 6193early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6194early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6195
0ee332c1 6196#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6197
c3d5f5f0
JL
6198void adjust_managed_page_count(struct page *page, long count)
6199{
6200 spin_lock(&managed_page_count_lock);
6201 page_zone(page)->managed_pages += count;
6202 totalram_pages += count;
3dcc0571
JL
6203#ifdef CONFIG_HIGHMEM
6204 if (PageHighMem(page))
6205 totalhigh_pages += count;
6206#endif
c3d5f5f0
JL
6207 spin_unlock(&managed_page_count_lock);
6208}
3dcc0571 6209EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6210
11199692 6211unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6212{
11199692
JL
6213 void *pos;
6214 unsigned long pages = 0;
69afade7 6215
11199692
JL
6216 start = (void *)PAGE_ALIGN((unsigned long)start);
6217 end = (void *)((unsigned long)end & PAGE_MASK);
6218 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6219 if ((unsigned int)poison <= 0xFF)
11199692
JL
6220 memset(pos, poison, PAGE_SIZE);
6221 free_reserved_page(virt_to_page(pos));
69afade7
JL
6222 }
6223
6224 if (pages && s)
11199692 6225 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6226 s, pages << (PAGE_SHIFT - 10), start, end);
6227
6228 return pages;
6229}
11199692 6230EXPORT_SYMBOL(free_reserved_area);
69afade7 6231
cfa11e08
JL
6232#ifdef CONFIG_HIGHMEM
6233void free_highmem_page(struct page *page)
6234{
6235 __free_reserved_page(page);
6236 totalram_pages++;
7b4b2a0d 6237 page_zone(page)->managed_pages++;
cfa11e08
JL
6238 totalhigh_pages++;
6239}
6240#endif
6241
7ee3d4e8
JL
6242
6243void __init mem_init_print_info(const char *str)
6244{
6245 unsigned long physpages, codesize, datasize, rosize, bss_size;
6246 unsigned long init_code_size, init_data_size;
6247
6248 physpages = get_num_physpages();
6249 codesize = _etext - _stext;
6250 datasize = _edata - _sdata;
6251 rosize = __end_rodata - __start_rodata;
6252 bss_size = __bss_stop - __bss_start;
6253 init_data_size = __init_end - __init_begin;
6254 init_code_size = _einittext - _sinittext;
6255
6256 /*
6257 * Detect special cases and adjust section sizes accordingly:
6258 * 1) .init.* may be embedded into .data sections
6259 * 2) .init.text.* may be out of [__init_begin, __init_end],
6260 * please refer to arch/tile/kernel/vmlinux.lds.S.
6261 * 3) .rodata.* may be embedded into .text or .data sections.
6262 */
6263#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6264 do { \
6265 if (start <= pos && pos < end && size > adj) \
6266 size -= adj; \
6267 } while (0)
7ee3d4e8
JL
6268
6269 adj_init_size(__init_begin, __init_end, init_data_size,
6270 _sinittext, init_code_size);
6271 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6272 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6273 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6274 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6275
6276#undef adj_init_size
6277
756a025f 6278 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6279#ifdef CONFIG_HIGHMEM
756a025f 6280 ", %luK highmem"
7ee3d4e8 6281#endif
756a025f
JP
6282 "%s%s)\n",
6283 nr_free_pages() << (PAGE_SHIFT - 10),
6284 physpages << (PAGE_SHIFT - 10),
6285 codesize >> 10, datasize >> 10, rosize >> 10,
6286 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6287 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6288 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6289#ifdef CONFIG_HIGHMEM
756a025f 6290 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6291#endif
756a025f 6292 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6293}
6294
0e0b864e 6295/**
88ca3b94
RD
6296 * set_dma_reserve - set the specified number of pages reserved in the first zone
6297 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6298 *
013110a7 6299 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6300 * In the DMA zone, a significant percentage may be consumed by kernel image
6301 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6302 * function may optionally be used to account for unfreeable pages in the
6303 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6304 * smaller per-cpu batchsize.
0e0b864e
MG
6305 */
6306void __init set_dma_reserve(unsigned long new_dma_reserve)
6307{
6308 dma_reserve = new_dma_reserve;
6309}
6310
1da177e4
LT
6311void __init free_area_init(unsigned long *zones_size)
6312{
9109fb7b 6313 free_area_init_node(0, zones_size,
1da177e4
LT
6314 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6315}
1da177e4 6316
1da177e4
LT
6317static int page_alloc_cpu_notify(struct notifier_block *self,
6318 unsigned long action, void *hcpu)
6319{
6320 int cpu = (unsigned long)hcpu;
1da177e4 6321
8bb78442 6322 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6323 lru_add_drain_cpu(cpu);
9f8f2172
CL
6324 drain_pages(cpu);
6325
6326 /*
6327 * Spill the event counters of the dead processor
6328 * into the current processors event counters.
6329 * This artificially elevates the count of the current
6330 * processor.
6331 */
f8891e5e 6332 vm_events_fold_cpu(cpu);
9f8f2172
CL
6333
6334 /*
6335 * Zero the differential counters of the dead processor
6336 * so that the vm statistics are consistent.
6337 *
6338 * This is only okay since the processor is dead and cannot
6339 * race with what we are doing.
6340 */
2bb921e5 6341 cpu_vm_stats_fold(cpu);
1da177e4
LT
6342 }
6343 return NOTIFY_OK;
6344}
1da177e4
LT
6345
6346void __init page_alloc_init(void)
6347{
6348 hotcpu_notifier(page_alloc_cpu_notify, 0);
6349}
6350
cb45b0e9 6351/*
34b10060 6352 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6353 * or min_free_kbytes changes.
6354 */
6355static void calculate_totalreserve_pages(void)
6356{
6357 struct pglist_data *pgdat;
6358 unsigned long reserve_pages = 0;
2f6726e5 6359 enum zone_type i, j;
cb45b0e9
HA
6360
6361 for_each_online_pgdat(pgdat) {
6362 for (i = 0; i < MAX_NR_ZONES; i++) {
6363 struct zone *zone = pgdat->node_zones + i;
3484b2de 6364 long max = 0;
cb45b0e9
HA
6365
6366 /* Find valid and maximum lowmem_reserve in the zone */
6367 for (j = i; j < MAX_NR_ZONES; j++) {
6368 if (zone->lowmem_reserve[j] > max)
6369 max = zone->lowmem_reserve[j];
6370 }
6371
41858966
MG
6372 /* we treat the high watermark as reserved pages. */
6373 max += high_wmark_pages(zone);
cb45b0e9 6374
b40da049
JL
6375 if (max > zone->managed_pages)
6376 max = zone->managed_pages;
a8d01437
JW
6377
6378 zone->totalreserve_pages = max;
6379
cb45b0e9
HA
6380 reserve_pages += max;
6381 }
6382 }
6383 totalreserve_pages = reserve_pages;
6384}
6385
1da177e4
LT
6386/*
6387 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6388 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6389 * has a correct pages reserved value, so an adequate number of
6390 * pages are left in the zone after a successful __alloc_pages().
6391 */
6392static void setup_per_zone_lowmem_reserve(void)
6393{
6394 struct pglist_data *pgdat;
2f6726e5 6395 enum zone_type j, idx;
1da177e4 6396
ec936fc5 6397 for_each_online_pgdat(pgdat) {
1da177e4
LT
6398 for (j = 0; j < MAX_NR_ZONES; j++) {
6399 struct zone *zone = pgdat->node_zones + j;
b40da049 6400 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6401
6402 zone->lowmem_reserve[j] = 0;
6403
2f6726e5
CL
6404 idx = j;
6405 while (idx) {
1da177e4
LT
6406 struct zone *lower_zone;
6407
2f6726e5
CL
6408 idx--;
6409
1da177e4
LT
6410 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6411 sysctl_lowmem_reserve_ratio[idx] = 1;
6412
6413 lower_zone = pgdat->node_zones + idx;
b40da049 6414 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6415 sysctl_lowmem_reserve_ratio[idx];
b40da049 6416 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6417 }
6418 }
6419 }
cb45b0e9
HA
6420
6421 /* update totalreserve_pages */
6422 calculate_totalreserve_pages();
1da177e4
LT
6423}
6424
cfd3da1e 6425static void __setup_per_zone_wmarks(void)
1da177e4
LT
6426{
6427 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6428 unsigned long lowmem_pages = 0;
6429 struct zone *zone;
6430 unsigned long flags;
6431
6432 /* Calculate total number of !ZONE_HIGHMEM pages */
6433 for_each_zone(zone) {
6434 if (!is_highmem(zone))
b40da049 6435 lowmem_pages += zone->managed_pages;
1da177e4
LT
6436 }
6437
6438 for_each_zone(zone) {
ac924c60
AM
6439 u64 tmp;
6440
1125b4e3 6441 spin_lock_irqsave(&zone->lock, flags);
b40da049 6442 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6443 do_div(tmp, lowmem_pages);
1da177e4
LT
6444 if (is_highmem(zone)) {
6445 /*
669ed175
NP
6446 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6447 * need highmem pages, so cap pages_min to a small
6448 * value here.
6449 *
41858966 6450 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6451 * deltas control asynch page reclaim, and so should
669ed175 6452 * not be capped for highmem.
1da177e4 6453 */
90ae8d67 6454 unsigned long min_pages;
1da177e4 6455
b40da049 6456 min_pages = zone->managed_pages / 1024;
90ae8d67 6457 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6458 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6459 } else {
669ed175
NP
6460 /*
6461 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6462 * proportionate to the zone's size.
6463 */
41858966 6464 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6465 }
6466
795ae7a0
JW
6467 /*
6468 * Set the kswapd watermarks distance according to the
6469 * scale factor in proportion to available memory, but
6470 * ensure a minimum size on small systems.
6471 */
6472 tmp = max_t(u64, tmp >> 2,
6473 mult_frac(zone->managed_pages,
6474 watermark_scale_factor, 10000));
6475
6476 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6477 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6478
81c0a2bb 6479 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6480 high_wmark_pages(zone) - low_wmark_pages(zone) -
6481 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6482
1125b4e3 6483 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6484 }
cb45b0e9
HA
6485
6486 /* update totalreserve_pages */
6487 calculate_totalreserve_pages();
1da177e4
LT
6488}
6489
cfd3da1e
MG
6490/**
6491 * setup_per_zone_wmarks - called when min_free_kbytes changes
6492 * or when memory is hot-{added|removed}
6493 *
6494 * Ensures that the watermark[min,low,high] values for each zone are set
6495 * correctly with respect to min_free_kbytes.
6496 */
6497void setup_per_zone_wmarks(void)
6498{
6499 mutex_lock(&zonelists_mutex);
6500 __setup_per_zone_wmarks();
6501 mutex_unlock(&zonelists_mutex);
6502}
6503
55a4462a 6504/*
556adecb
RR
6505 * The inactive anon list should be small enough that the VM never has to
6506 * do too much work, but large enough that each inactive page has a chance
6507 * to be referenced again before it is swapped out.
6508 *
6509 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6510 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6511 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6512 * the anonymous pages are kept on the inactive list.
6513 *
6514 * total target max
6515 * memory ratio inactive anon
6516 * -------------------------------------
6517 * 10MB 1 5MB
6518 * 100MB 1 50MB
6519 * 1GB 3 250MB
6520 * 10GB 10 0.9GB
6521 * 100GB 31 3GB
6522 * 1TB 101 10GB
6523 * 10TB 320 32GB
6524 */
1b79acc9 6525static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6526{
96cb4df5 6527 unsigned int gb, ratio;
556adecb 6528
96cb4df5 6529 /* Zone size in gigabytes */
b40da049 6530 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6531 if (gb)
556adecb 6532 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6533 else
6534 ratio = 1;
556adecb 6535
96cb4df5
MK
6536 zone->inactive_ratio = ratio;
6537}
556adecb 6538
839a4fcc 6539static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6540{
6541 struct zone *zone;
6542
6543 for_each_zone(zone)
6544 calculate_zone_inactive_ratio(zone);
556adecb
RR
6545}
6546
1da177e4
LT
6547/*
6548 * Initialise min_free_kbytes.
6549 *
6550 * For small machines we want it small (128k min). For large machines
6551 * we want it large (64MB max). But it is not linear, because network
6552 * bandwidth does not increase linearly with machine size. We use
6553 *
b8af2941 6554 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6555 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6556 *
6557 * which yields
6558 *
6559 * 16MB: 512k
6560 * 32MB: 724k
6561 * 64MB: 1024k
6562 * 128MB: 1448k
6563 * 256MB: 2048k
6564 * 512MB: 2896k
6565 * 1024MB: 4096k
6566 * 2048MB: 5792k
6567 * 4096MB: 8192k
6568 * 8192MB: 11584k
6569 * 16384MB: 16384k
6570 */
1b79acc9 6571int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6572{
6573 unsigned long lowmem_kbytes;
5f12733e 6574 int new_min_free_kbytes;
1da177e4
LT
6575
6576 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6577 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6578
6579 if (new_min_free_kbytes > user_min_free_kbytes) {
6580 min_free_kbytes = new_min_free_kbytes;
6581 if (min_free_kbytes < 128)
6582 min_free_kbytes = 128;
6583 if (min_free_kbytes > 65536)
6584 min_free_kbytes = 65536;
6585 } else {
6586 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6587 new_min_free_kbytes, user_min_free_kbytes);
6588 }
bc75d33f 6589 setup_per_zone_wmarks();
a6cccdc3 6590 refresh_zone_stat_thresholds();
1da177e4 6591 setup_per_zone_lowmem_reserve();
556adecb 6592 setup_per_zone_inactive_ratio();
1da177e4
LT
6593 return 0;
6594}
bc22af74 6595core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6596
6597/*
b8af2941 6598 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6599 * that we can call two helper functions whenever min_free_kbytes
6600 * changes.
6601 */
cccad5b9 6602int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6603 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6604{
da8c757b
HP
6605 int rc;
6606
6607 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6608 if (rc)
6609 return rc;
6610
5f12733e
MH
6611 if (write) {
6612 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6613 setup_per_zone_wmarks();
5f12733e 6614 }
1da177e4
LT
6615 return 0;
6616}
6617
795ae7a0
JW
6618int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6619 void __user *buffer, size_t *length, loff_t *ppos)
6620{
6621 int rc;
6622
6623 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6624 if (rc)
6625 return rc;
6626
6627 if (write)
6628 setup_per_zone_wmarks();
6629
6630 return 0;
6631}
6632
9614634f 6633#ifdef CONFIG_NUMA
cccad5b9 6634int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6635 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6636{
6637 struct zone *zone;
6638 int rc;
6639
8d65af78 6640 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6641 if (rc)
6642 return rc;
6643
6644 for_each_zone(zone)
b40da049 6645 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6646 sysctl_min_unmapped_ratio) / 100;
6647 return 0;
6648}
0ff38490 6649
cccad5b9 6650int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6651 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6652{
6653 struct zone *zone;
6654 int rc;
6655
8d65af78 6656 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6657 if (rc)
6658 return rc;
6659
6660 for_each_zone(zone)
b40da049 6661 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6662 sysctl_min_slab_ratio) / 100;
6663 return 0;
6664}
9614634f
CL
6665#endif
6666
1da177e4
LT
6667/*
6668 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6669 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6670 * whenever sysctl_lowmem_reserve_ratio changes.
6671 *
6672 * The reserve ratio obviously has absolutely no relation with the
41858966 6673 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6674 * if in function of the boot time zone sizes.
6675 */
cccad5b9 6676int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6677 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6678{
8d65af78 6679 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6680 setup_per_zone_lowmem_reserve();
6681 return 0;
6682}
6683
8ad4b1fb
RS
6684/*
6685 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6686 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6687 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6688 */
cccad5b9 6689int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6690 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6691{
6692 struct zone *zone;
7cd2b0a3 6693 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6694 int ret;
6695
7cd2b0a3
DR
6696 mutex_lock(&pcp_batch_high_lock);
6697 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6698
8d65af78 6699 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6700 if (!write || ret < 0)
6701 goto out;
6702
6703 /* Sanity checking to avoid pcp imbalance */
6704 if (percpu_pagelist_fraction &&
6705 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6706 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6707 ret = -EINVAL;
6708 goto out;
6709 }
6710
6711 /* No change? */
6712 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6713 goto out;
c8e251fa 6714
364df0eb 6715 for_each_populated_zone(zone) {
7cd2b0a3
DR
6716 unsigned int cpu;
6717
22a7f12b 6718 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6719 pageset_set_high_and_batch(zone,
6720 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6721 }
7cd2b0a3 6722out:
c8e251fa 6723 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6724 return ret;
8ad4b1fb
RS
6725}
6726
a9919c79 6727#ifdef CONFIG_NUMA
f034b5d4 6728int hashdist = HASHDIST_DEFAULT;
1da177e4 6729
1da177e4
LT
6730static int __init set_hashdist(char *str)
6731{
6732 if (!str)
6733 return 0;
6734 hashdist = simple_strtoul(str, &str, 0);
6735 return 1;
6736}
6737__setup("hashdist=", set_hashdist);
6738#endif
6739
6740/*
6741 * allocate a large system hash table from bootmem
6742 * - it is assumed that the hash table must contain an exact power-of-2
6743 * quantity of entries
6744 * - limit is the number of hash buckets, not the total allocation size
6745 */
6746void *__init alloc_large_system_hash(const char *tablename,
6747 unsigned long bucketsize,
6748 unsigned long numentries,
6749 int scale,
6750 int flags,
6751 unsigned int *_hash_shift,
6752 unsigned int *_hash_mask,
31fe62b9
TB
6753 unsigned long low_limit,
6754 unsigned long high_limit)
1da177e4 6755{
31fe62b9 6756 unsigned long long max = high_limit;
1da177e4
LT
6757 unsigned long log2qty, size;
6758 void *table = NULL;
6759
6760 /* allow the kernel cmdline to have a say */
6761 if (!numentries) {
6762 /* round applicable memory size up to nearest megabyte */
04903664 6763 numentries = nr_kernel_pages;
a7e83318
JZ
6764
6765 /* It isn't necessary when PAGE_SIZE >= 1MB */
6766 if (PAGE_SHIFT < 20)
6767 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6768
6769 /* limit to 1 bucket per 2^scale bytes of low memory */
6770 if (scale > PAGE_SHIFT)
6771 numentries >>= (scale - PAGE_SHIFT);
6772 else
6773 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6774
6775 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6776 if (unlikely(flags & HASH_SMALL)) {
6777 /* Makes no sense without HASH_EARLY */
6778 WARN_ON(!(flags & HASH_EARLY));
6779 if (!(numentries >> *_hash_shift)) {
6780 numentries = 1UL << *_hash_shift;
6781 BUG_ON(!numentries);
6782 }
6783 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6784 numentries = PAGE_SIZE / bucketsize;
1da177e4 6785 }
6e692ed3 6786 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6787
6788 /* limit allocation size to 1/16 total memory by default */
6789 if (max == 0) {
6790 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6791 do_div(max, bucketsize);
6792 }
074b8517 6793 max = min(max, 0x80000000ULL);
1da177e4 6794
31fe62b9
TB
6795 if (numentries < low_limit)
6796 numentries = low_limit;
1da177e4
LT
6797 if (numentries > max)
6798 numentries = max;
6799
f0d1b0b3 6800 log2qty = ilog2(numentries);
1da177e4
LT
6801
6802 do {
6803 size = bucketsize << log2qty;
6804 if (flags & HASH_EARLY)
6782832e 6805 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6806 else if (hashdist)
6807 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6808 else {
1037b83b
ED
6809 /*
6810 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6811 * some pages at the end of hash table which
6812 * alloc_pages_exact() automatically does
1037b83b 6813 */
264ef8a9 6814 if (get_order(size) < MAX_ORDER) {
a1dd268c 6815 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6816 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6817 }
1da177e4
LT
6818 }
6819 } while (!table && size > PAGE_SIZE && --log2qty);
6820
6821 if (!table)
6822 panic("Failed to allocate %s hash table\n", tablename);
6823
1170532b
JP
6824 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6825 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6826
6827 if (_hash_shift)
6828 *_hash_shift = log2qty;
6829 if (_hash_mask)
6830 *_hash_mask = (1 << log2qty) - 1;
6831
6832 return table;
6833}
a117e66e 6834
835c134e 6835/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6836static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6837 unsigned long pfn)
6838{
6839#ifdef CONFIG_SPARSEMEM
6840 return __pfn_to_section(pfn)->pageblock_flags;
6841#else
f75fb889 6842 return page_zone(page)->pageblock_flags;
835c134e
MG
6843#endif /* CONFIG_SPARSEMEM */
6844}
6845
f75fb889 6846static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6847{
6848#ifdef CONFIG_SPARSEMEM
6849 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6850 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6851#else
f75fb889 6852 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6853 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6854#endif /* CONFIG_SPARSEMEM */
6855}
6856
6857/**
1aab4d77 6858 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6859 * @page: The page within the block of interest
1aab4d77
RD
6860 * @pfn: The target page frame number
6861 * @end_bitidx: The last bit of interest to retrieve
6862 * @mask: mask of bits that the caller is interested in
6863 *
6864 * Return: pageblock_bits flags
835c134e 6865 */
dc4b0caf 6866unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6867 unsigned long end_bitidx,
6868 unsigned long mask)
835c134e 6869{
835c134e 6870 unsigned long *bitmap;
dc4b0caf 6871 unsigned long bitidx, word_bitidx;
e58469ba 6872 unsigned long word;
835c134e 6873
f75fb889
MG
6874 bitmap = get_pageblock_bitmap(page, pfn);
6875 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6876 word_bitidx = bitidx / BITS_PER_LONG;
6877 bitidx &= (BITS_PER_LONG-1);
835c134e 6878
e58469ba
MG
6879 word = bitmap[word_bitidx];
6880 bitidx += end_bitidx;
6881 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6882}
6883
6884/**
dc4b0caf 6885 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6886 * @page: The page within the block of interest
835c134e 6887 * @flags: The flags to set
1aab4d77
RD
6888 * @pfn: The target page frame number
6889 * @end_bitidx: The last bit of interest
6890 * @mask: mask of bits that the caller is interested in
835c134e 6891 */
dc4b0caf
MG
6892void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6893 unsigned long pfn,
e58469ba
MG
6894 unsigned long end_bitidx,
6895 unsigned long mask)
835c134e 6896{
835c134e 6897 unsigned long *bitmap;
dc4b0caf 6898 unsigned long bitidx, word_bitidx;
e58469ba
MG
6899 unsigned long old_word, word;
6900
6901 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6902
f75fb889
MG
6903 bitmap = get_pageblock_bitmap(page, pfn);
6904 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6905 word_bitidx = bitidx / BITS_PER_LONG;
6906 bitidx &= (BITS_PER_LONG-1);
6907
f75fb889 6908 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6909
e58469ba
MG
6910 bitidx += end_bitidx;
6911 mask <<= (BITS_PER_LONG - bitidx - 1);
6912 flags <<= (BITS_PER_LONG - bitidx - 1);
6913
4db0c3c2 6914 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6915 for (;;) {
6916 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6917 if (word == old_word)
6918 break;
6919 word = old_word;
6920 }
835c134e 6921}
a5d76b54
KH
6922
6923/*
80934513
MK
6924 * This function checks whether pageblock includes unmovable pages or not.
6925 * If @count is not zero, it is okay to include less @count unmovable pages
6926 *
b8af2941 6927 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6928 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6929 * expect this function should be exact.
a5d76b54 6930 */
b023f468
WC
6931bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6932 bool skip_hwpoisoned_pages)
49ac8255
KH
6933{
6934 unsigned long pfn, iter, found;
47118af0
MN
6935 int mt;
6936
49ac8255
KH
6937 /*
6938 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6939 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6940 */
6941 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6942 return false;
47118af0
MN
6943 mt = get_pageblock_migratetype(page);
6944 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6945 return false;
49ac8255
KH
6946
6947 pfn = page_to_pfn(page);
6948 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6949 unsigned long check = pfn + iter;
6950
29723fcc 6951 if (!pfn_valid_within(check))
49ac8255 6952 continue;
29723fcc 6953
49ac8255 6954 page = pfn_to_page(check);
c8721bbb
NH
6955
6956 /*
6957 * Hugepages are not in LRU lists, but they're movable.
6958 * We need not scan over tail pages bacause we don't
6959 * handle each tail page individually in migration.
6960 */
6961 if (PageHuge(page)) {
6962 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6963 continue;
6964 }
6965
97d255c8
MK
6966 /*
6967 * We can't use page_count without pin a page
6968 * because another CPU can free compound page.
6969 * This check already skips compound tails of THP
0139aa7b 6970 * because their page->_refcount is zero at all time.
97d255c8 6971 */
fe896d18 6972 if (!page_ref_count(page)) {
49ac8255
KH
6973 if (PageBuddy(page))
6974 iter += (1 << page_order(page)) - 1;
6975 continue;
6976 }
97d255c8 6977
b023f468
WC
6978 /*
6979 * The HWPoisoned page may be not in buddy system, and
6980 * page_count() is not 0.
6981 */
6982 if (skip_hwpoisoned_pages && PageHWPoison(page))
6983 continue;
6984
49ac8255
KH
6985 if (!PageLRU(page))
6986 found++;
6987 /*
6b4f7799
JW
6988 * If there are RECLAIMABLE pages, we need to check
6989 * it. But now, memory offline itself doesn't call
6990 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6991 */
6992 /*
6993 * If the page is not RAM, page_count()should be 0.
6994 * we don't need more check. This is an _used_ not-movable page.
6995 *
6996 * The problematic thing here is PG_reserved pages. PG_reserved
6997 * is set to both of a memory hole page and a _used_ kernel
6998 * page at boot.
6999 */
7000 if (found > count)
80934513 7001 return true;
49ac8255 7002 }
80934513 7003 return false;
49ac8255
KH
7004}
7005
7006bool is_pageblock_removable_nolock(struct page *page)
7007{
656a0706
MH
7008 struct zone *zone;
7009 unsigned long pfn;
687875fb
MH
7010
7011 /*
7012 * We have to be careful here because we are iterating over memory
7013 * sections which are not zone aware so we might end up outside of
7014 * the zone but still within the section.
656a0706
MH
7015 * We have to take care about the node as well. If the node is offline
7016 * its NODE_DATA will be NULL - see page_zone.
687875fb 7017 */
656a0706
MH
7018 if (!node_online(page_to_nid(page)))
7019 return false;
7020
7021 zone = page_zone(page);
7022 pfn = page_to_pfn(page);
108bcc96 7023 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7024 return false;
7025
b023f468 7026 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7027}
0c0e6195 7028
080fe206 7029#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7030
7031static unsigned long pfn_max_align_down(unsigned long pfn)
7032{
7033 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7034 pageblock_nr_pages) - 1);
7035}
7036
7037static unsigned long pfn_max_align_up(unsigned long pfn)
7038{
7039 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7040 pageblock_nr_pages));
7041}
7042
041d3a8c 7043/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7044static int __alloc_contig_migrate_range(struct compact_control *cc,
7045 unsigned long start, unsigned long end)
041d3a8c
MN
7046{
7047 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7048 unsigned long nr_reclaimed;
041d3a8c
MN
7049 unsigned long pfn = start;
7050 unsigned int tries = 0;
7051 int ret = 0;
7052
be49a6e1 7053 migrate_prep();
041d3a8c 7054
bb13ffeb 7055 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7056 if (fatal_signal_pending(current)) {
7057 ret = -EINTR;
7058 break;
7059 }
7060
bb13ffeb
MG
7061 if (list_empty(&cc->migratepages)) {
7062 cc->nr_migratepages = 0;
edc2ca61 7063 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7064 if (!pfn) {
7065 ret = -EINTR;
7066 break;
7067 }
7068 tries = 0;
7069 } else if (++tries == 5) {
7070 ret = ret < 0 ? ret : -EBUSY;
7071 break;
7072 }
7073
beb51eaa
MK
7074 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7075 &cc->migratepages);
7076 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7077
9c620e2b 7078 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7079 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7080 }
2a6f5124
SP
7081 if (ret < 0) {
7082 putback_movable_pages(&cc->migratepages);
7083 return ret;
7084 }
7085 return 0;
041d3a8c
MN
7086}
7087
7088/**
7089 * alloc_contig_range() -- tries to allocate given range of pages
7090 * @start: start PFN to allocate
7091 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7092 * @migratetype: migratetype of the underlaying pageblocks (either
7093 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7094 * in range must have the same migratetype and it must
7095 * be either of the two.
041d3a8c
MN
7096 *
7097 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7098 * aligned, however it's the caller's responsibility to guarantee that
7099 * we are the only thread that changes migrate type of pageblocks the
7100 * pages fall in.
7101 *
7102 * The PFN range must belong to a single zone.
7103 *
7104 * Returns zero on success or negative error code. On success all
7105 * pages which PFN is in [start, end) are allocated for the caller and
7106 * need to be freed with free_contig_range().
7107 */
0815f3d8
MN
7108int alloc_contig_range(unsigned long start, unsigned long end,
7109 unsigned migratetype)
041d3a8c 7110{
041d3a8c 7111 unsigned long outer_start, outer_end;
d00181b9
KS
7112 unsigned int order;
7113 int ret = 0;
041d3a8c 7114
bb13ffeb
MG
7115 struct compact_control cc = {
7116 .nr_migratepages = 0,
7117 .order = -1,
7118 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7119 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7120 .ignore_skip_hint = true,
7121 };
7122 INIT_LIST_HEAD(&cc.migratepages);
7123
041d3a8c
MN
7124 /*
7125 * What we do here is we mark all pageblocks in range as
7126 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7127 * have different sizes, and due to the way page allocator
7128 * work, we align the range to biggest of the two pages so
7129 * that page allocator won't try to merge buddies from
7130 * different pageblocks and change MIGRATE_ISOLATE to some
7131 * other migration type.
7132 *
7133 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7134 * migrate the pages from an unaligned range (ie. pages that
7135 * we are interested in). This will put all the pages in
7136 * range back to page allocator as MIGRATE_ISOLATE.
7137 *
7138 * When this is done, we take the pages in range from page
7139 * allocator removing them from the buddy system. This way
7140 * page allocator will never consider using them.
7141 *
7142 * This lets us mark the pageblocks back as
7143 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7144 * aligned range but not in the unaligned, original range are
7145 * put back to page allocator so that buddy can use them.
7146 */
7147
7148 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7149 pfn_max_align_up(end), migratetype,
7150 false);
041d3a8c 7151 if (ret)
86a595f9 7152 return ret;
041d3a8c 7153
8ef5849f
JK
7154 /*
7155 * In case of -EBUSY, we'd like to know which page causes problem.
7156 * So, just fall through. We will check it in test_pages_isolated().
7157 */
bb13ffeb 7158 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7159 if (ret && ret != -EBUSY)
041d3a8c
MN
7160 goto done;
7161
7162 /*
7163 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7164 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7165 * more, all pages in [start, end) are free in page allocator.
7166 * What we are going to do is to allocate all pages from
7167 * [start, end) (that is remove them from page allocator).
7168 *
7169 * The only problem is that pages at the beginning and at the
7170 * end of interesting range may be not aligned with pages that
7171 * page allocator holds, ie. they can be part of higher order
7172 * pages. Because of this, we reserve the bigger range and
7173 * once this is done free the pages we are not interested in.
7174 *
7175 * We don't have to hold zone->lock here because the pages are
7176 * isolated thus they won't get removed from buddy.
7177 */
7178
7179 lru_add_drain_all();
510f5507 7180 drain_all_pages(cc.zone);
041d3a8c
MN
7181
7182 order = 0;
7183 outer_start = start;
7184 while (!PageBuddy(pfn_to_page(outer_start))) {
7185 if (++order >= MAX_ORDER) {
8ef5849f
JK
7186 outer_start = start;
7187 break;
041d3a8c
MN
7188 }
7189 outer_start &= ~0UL << order;
7190 }
7191
8ef5849f
JK
7192 if (outer_start != start) {
7193 order = page_order(pfn_to_page(outer_start));
7194
7195 /*
7196 * outer_start page could be small order buddy page and
7197 * it doesn't include start page. Adjust outer_start
7198 * in this case to report failed page properly
7199 * on tracepoint in test_pages_isolated()
7200 */
7201 if (outer_start + (1UL << order) <= start)
7202 outer_start = start;
7203 }
7204
041d3a8c 7205 /* Make sure the range is really isolated. */
b023f468 7206 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7207 pr_info("%s: [%lx, %lx) PFNs busy\n",
7208 __func__, outer_start, end);
041d3a8c
MN
7209 ret = -EBUSY;
7210 goto done;
7211 }
7212
49f223a9 7213 /* Grab isolated pages from freelists. */
bb13ffeb 7214 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7215 if (!outer_end) {
7216 ret = -EBUSY;
7217 goto done;
7218 }
7219
7220 /* Free head and tail (if any) */
7221 if (start != outer_start)
7222 free_contig_range(outer_start, start - outer_start);
7223 if (end != outer_end)
7224 free_contig_range(end, outer_end - end);
7225
7226done:
7227 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7228 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7229 return ret;
7230}
7231
7232void free_contig_range(unsigned long pfn, unsigned nr_pages)
7233{
bcc2b02f
MS
7234 unsigned int count = 0;
7235
7236 for (; nr_pages--; pfn++) {
7237 struct page *page = pfn_to_page(pfn);
7238
7239 count += page_count(page) != 1;
7240 __free_page(page);
7241 }
7242 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7243}
7244#endif
7245
4ed7e022 7246#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7247/*
7248 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7249 * page high values need to be recalulated.
7250 */
4ed7e022
JL
7251void __meminit zone_pcp_update(struct zone *zone)
7252{
0a647f38 7253 unsigned cpu;
c8e251fa 7254 mutex_lock(&pcp_batch_high_lock);
0a647f38 7255 for_each_possible_cpu(cpu)
169f6c19
CS
7256 pageset_set_high_and_batch(zone,
7257 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7258 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7259}
7260#endif
7261
340175b7
JL
7262void zone_pcp_reset(struct zone *zone)
7263{
7264 unsigned long flags;
5a883813
MK
7265 int cpu;
7266 struct per_cpu_pageset *pset;
340175b7
JL
7267
7268 /* avoid races with drain_pages() */
7269 local_irq_save(flags);
7270 if (zone->pageset != &boot_pageset) {
5a883813
MK
7271 for_each_online_cpu(cpu) {
7272 pset = per_cpu_ptr(zone->pageset, cpu);
7273 drain_zonestat(zone, pset);
7274 }
340175b7
JL
7275 free_percpu(zone->pageset);
7276 zone->pageset = &boot_pageset;
7277 }
7278 local_irq_restore(flags);
7279}
7280
6dcd73d7 7281#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7282/*
b9eb6319
JK
7283 * All pages in the range must be in a single zone and isolated
7284 * before calling this.
0c0e6195
KH
7285 */
7286void
7287__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7288{
7289 struct page *page;
7290 struct zone *zone;
7aeb09f9 7291 unsigned int order, i;
0c0e6195
KH
7292 unsigned long pfn;
7293 unsigned long flags;
7294 /* find the first valid pfn */
7295 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7296 if (pfn_valid(pfn))
7297 break;
7298 if (pfn == end_pfn)
7299 return;
7300 zone = page_zone(pfn_to_page(pfn));
7301 spin_lock_irqsave(&zone->lock, flags);
7302 pfn = start_pfn;
7303 while (pfn < end_pfn) {
7304 if (!pfn_valid(pfn)) {
7305 pfn++;
7306 continue;
7307 }
7308 page = pfn_to_page(pfn);
b023f468
WC
7309 /*
7310 * The HWPoisoned page may be not in buddy system, and
7311 * page_count() is not 0.
7312 */
7313 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7314 pfn++;
7315 SetPageReserved(page);
7316 continue;
7317 }
7318
0c0e6195
KH
7319 BUG_ON(page_count(page));
7320 BUG_ON(!PageBuddy(page));
7321 order = page_order(page);
7322#ifdef CONFIG_DEBUG_VM
1170532b
JP
7323 pr_info("remove from free list %lx %d %lx\n",
7324 pfn, 1 << order, end_pfn);
0c0e6195
KH
7325#endif
7326 list_del(&page->lru);
7327 rmv_page_order(page);
7328 zone->free_area[order].nr_free--;
0c0e6195
KH
7329 for (i = 0; i < (1 << order); i++)
7330 SetPageReserved((page+i));
7331 pfn += (1 << order);
7332 }
7333 spin_unlock_irqrestore(&zone->lock, flags);
7334}
7335#endif
8d22ba1b 7336
8d22ba1b
WF
7337bool is_free_buddy_page(struct page *page)
7338{
7339 struct zone *zone = page_zone(page);
7340 unsigned long pfn = page_to_pfn(page);
7341 unsigned long flags;
7aeb09f9 7342 unsigned int order;
8d22ba1b
WF
7343
7344 spin_lock_irqsave(&zone->lock, flags);
7345 for (order = 0; order < MAX_ORDER; order++) {
7346 struct page *page_head = page - (pfn & ((1 << order) - 1));
7347
7348 if (PageBuddy(page_head) && page_order(page_head) >= order)
7349 break;
7350 }
7351 spin_unlock_irqrestore(&zone->lock, flags);
7352
7353 return order < MAX_ORDER;
7354}
This page took 1.672532 seconds and 5 git commands to generate.