sched, kernel-doc: Fix runqueue_is_locked() description
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
969c7921 60#include <linux/stop_machine.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
335d7afb 78#include <asm/mutex.h>
1da177e4 79
6e0534f2 80#include "sched_cpupri.h"
21aa9af0 81#include "workqueue_sched.h"
5091faa4 82#include "sched_autogroup.h"
6e0534f2 83
a8d154b0 84#define CREATE_TRACE_POINTS
ad8d75ff 85#include <trace/events/sched.h>
a8d154b0 86
1da177e4
LT
87/*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96/*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105/*
d7876a08 106 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 107 */
d6322faf 108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 109
6aa645ea
IM
110#define NICE_0_LOAD SCHED_LOAD_SCALE
111#define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
1da177e4
LT
113/*
114 * These are the 'tuning knobs' of the scheduler:
115 *
a4ec24b4 116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
117 * Timeslices get refilled after they expire.
118 */
1da177e4 119#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 120
d0b27fa7
PZ
121/*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124#define RUNTIME_INF ((u64)~0ULL)
125
e05606d3
IM
126static inline int rt_policy(int policy)
127{
3f33a7ce 128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
129 return 1;
130 return 0;
131}
132
133static inline int task_has_rt_policy(struct task_struct *p)
134{
135 return rt_policy(p->policy);
136}
137
1da177e4 138/*
6aa645ea 139 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 140 */
6aa645ea
IM
141struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144};
145
d0b27fa7 146struct rt_bandwidth {
ea736ed5 147 /* nests inside the rq lock: */
0986b11b 148 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
d0b27fa7
PZ
152};
153
154static struct rt_bandwidth def_rt_bandwidth;
155
156static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159{
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177}
178
179static
180void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181{
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
0986b11b 185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 186
d0b27fa7
PZ
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
190}
191
c8bfff6d
KH
192static inline int rt_bandwidth_enabled(void)
193{
194 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
195}
196
197static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198{
199 ktime_t now;
200
cac64d00 201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
0986b11b 207 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 208 for (;;) {
7f1e2ca9
PZ
209 unsigned long delta;
210 ktime_t soft, hard;
211
d0b27fa7
PZ
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 222 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 223 }
0986b11b 224 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
225}
226
227#ifdef CONFIG_RT_GROUP_SCHED
228static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229{
230 hrtimer_cancel(&rt_b->rt_period_timer);
231}
232#endif
233
712555ee
HC
234/*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238static DEFINE_MUTEX(sched_domains_mutex);
239
7c941438 240#ifdef CONFIG_CGROUP_SCHED
29f59db3 241
68318b8e
SV
242#include <linux/cgroup.h>
243
29f59db3
SV
244struct cfs_rq;
245
6f505b16
PZ
246static LIST_HEAD(task_groups);
247
29f59db3 248/* task group related information */
4cf86d77 249struct task_group {
68318b8e 250 struct cgroup_subsys_state css;
6c415b92 251
052f1dc7 252#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
2069dd75
PZ
258
259 atomic_t load_weight;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
5091faa4
MG
275
276#ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278#endif
29f59db3
SV
279};
280
3d4b47b4 281/* task_group_lock serializes the addition/removal of task groups */
8ed36996 282static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 283
e9036b36
CG
284#ifdef CONFIG_FAIR_GROUP_SCHED
285
07e06b01 286# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 287
cb4ad1ff 288/*
2e084786
LJ
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
cb4ad1ff
MX
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
18d95a28 296#define MIN_SHARES 2
2e084786 297#define MAX_SHARES (1UL << 18)
18d95a28 298
07e06b01 299static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
300#endif
301
29f59db3 302/* Default task group.
3a252015 303 * Every task in system belong to this group at bootup.
29f59db3 304 */
07e06b01 305struct task_group root_task_group;
29f59db3 306
7c941438 307#endif /* CONFIG_CGROUP_SCHED */
29f59db3 308
6aa645ea
IM
309/* CFS-related fields in a runqueue */
310struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
6aa645ea 314 u64 exec_clock;
e9acbff6 315 u64 min_vruntime;
6aa645ea
IM
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
4a55bd5e
PZ
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
ac53db59 327 struct sched_entity *curr, *next, *last, *skip;
ddc97297 328
5ac5c4d6 329 unsigned int nr_spread_over;
ddc97297 330
62160e3f 331#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
41a2d6cf
IM
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
3d4b47b4 342 int on_list;
41a2d6cf
IM
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
345
346#ifdef CONFIG_SMP
c09595f6 347 /*
c8cba857 348 * the part of load.weight contributed by tasks
c09595f6 349 */
c8cba857 350 unsigned long task_weight;
c09595f6 351
c8cba857
PZ
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
c09595f6 359
c8cba857 360 /*
3b3d190e
PT
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 366 */
2069dd75
PZ
367 u64 load_avg;
368 u64 load_period;
3b3d190e 369 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 370
2069dd75 371 unsigned long load_contribution;
c09595f6 372#endif
6aa645ea
IM
373#endif
374};
1da177e4 375
6aa645ea
IM
376/* Real-Time classes' related field in a runqueue: */
377struct rt_rq {
378 struct rt_prio_array active;
63489e45 379 unsigned long rt_nr_running;
052f1dc7 380#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
381 struct {
382 int curr; /* highest queued rt task prio */
398a153b 383#ifdef CONFIG_SMP
e864c499 384 int next; /* next highest */
398a153b 385#endif
e864c499 386 } highest_prio;
6f505b16 387#endif
fa85ae24 388#ifdef CONFIG_SMP
73fe6aae 389 unsigned long rt_nr_migratory;
a1ba4d8b 390 unsigned long rt_nr_total;
a22d7fc1 391 int overloaded;
917b627d 392 struct plist_head pushable_tasks;
fa85ae24 393#endif
6f505b16 394 int rt_throttled;
fa85ae24 395 u64 rt_time;
ac086bc2 396 u64 rt_runtime;
ea736ed5 397 /* Nests inside the rq lock: */
0986b11b 398 raw_spinlock_t rt_runtime_lock;
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
401 unsigned long rt_nr_boosted;
402
6f505b16
PZ
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
6f505b16 406#endif
6aa645ea
IM
407};
408
57d885fe
GH
409#ifdef CONFIG_SMP
410
411/*
412 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
57d885fe
GH
418 */
419struct root_domain {
420 atomic_t refcount;
c6c4927b
RR
421 cpumask_var_t span;
422 cpumask_var_t online;
637f5085 423
0eab9146 424 /*
637f5085
GH
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
c6c4927b 428 cpumask_var_t rto_mask;
0eab9146 429 atomic_t rto_count;
6e0534f2 430 struct cpupri cpupri;
57d885fe
GH
431};
432
dc938520
GH
433/*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
57d885fe
GH
437static struct root_domain def_root_domain;
438
ed2d372c 439#endif /* CONFIG_SMP */
57d885fe 440
1da177e4
LT
441/*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
70b97a7f 448struct rq {
d8016491 449 /* runqueue lock: */
05fa785c 450 raw_spinlock_t lock;
1da177e4
LT
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
6aa645ea
IM
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 459 unsigned long last_load_update_tick;
46cb4b7c 460#ifdef CONFIG_NO_HZ
39c0cbe2 461 u64 nohz_stamp;
83cd4fe2 462 unsigned char nohz_balance_kick;
46cb4b7c 463#endif
a64692a3
MG
464 unsigned int skip_clock_update;
465
d8016491
IM
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
6aa645ea
IM
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
6f505b16 472 struct rt_rq rt;
6f505b16 473
6aa645ea 474#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
477#endif
478#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 479 struct list_head leaf_rt_rq_list;
1da177e4 480#endif
1da177e4
LT
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
34f971f6 490 struct task_struct *curr, *idle, *stop;
c9819f45 491 unsigned long next_balance;
1da177e4 492 struct mm_struct *prev_mm;
6aa645ea 493
3e51f33f 494 u64 clock;
305e6835 495 u64 clock_task;
6aa645ea 496
1da177e4
LT
497 atomic_t nr_iowait;
498
499#ifdef CONFIG_SMP
0eab9146 500 struct root_domain *rd;
1da177e4
LT
501 struct sched_domain *sd;
502
e51fd5e2
PZ
503 unsigned long cpu_power;
504
a0a522ce 505 unsigned char idle_at_tick;
1da177e4 506 /* For active balancing */
3f029d3c 507 int post_schedule;
1da177e4
LT
508 int active_balance;
509 int push_cpu;
969c7921 510 struct cpu_stop_work active_balance_work;
d8016491
IM
511 /* cpu of this runqueue: */
512 int cpu;
1f11eb6a 513 int online;
1da177e4 514
a8a51d5e 515 unsigned long avg_load_per_task;
1da177e4 516
e9e9250b
PZ
517 u64 rt_avg;
518 u64 age_stamp;
1b9508f6
MG
519 u64 idle_stamp;
520 u64 avg_idle;
1da177e4
LT
521#endif
522
aa483808
VP
523#ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525#endif
526
dce48a84
TG
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
8f4d37ec 531#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
532#ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535#endif
8f4d37ec
PZ
536 struct hrtimer hrtick_timer;
537#endif
538
1da177e4
LT
539#ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
9c2c4802
KC
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
544
545 /* sys_sched_yield() stats */
480b9434 546 unsigned int yld_count;
1da177e4
LT
547
548 /* schedule() stats */
480b9434
KC
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
1da177e4
LT
552
553 /* try_to_wake_up() stats */
480b9434
KC
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
1da177e4
LT
556#endif
557};
558
f34e3b61 559static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 560
a64692a3 561
1e5a7405 562static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 563
0a2966b4
CL
564static inline int cpu_of(struct rq *rq)
565{
566#ifdef CONFIG_SMP
567 return rq->cpu;
568#else
569 return 0;
570#endif
571}
572
497f0ab3 573#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
574 rcu_dereference_check((p), \
575 rcu_read_lock_sched_held() || \
576 lockdep_is_held(&sched_domains_mutex))
577
674311d5
NP
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 580 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
48f24c4d 585#define for_each_domain(cpu, __sd) \
497f0ab3 586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
587
588#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
589#define this_rq() (&__get_cpu_var(runqueues))
590#define task_rq(p) cpu_rq(task_cpu(p))
591#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 592#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 593
dc61b1d6
PZ
594#ifdef CONFIG_CGROUP_SCHED
595
596/*
597 * Return the group to which this tasks belongs.
598 *
599 * We use task_subsys_state_check() and extend the RCU verification
600 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
601 * holds that lock for each task it moves into the cgroup. Therefore
602 * by holding that lock, we pin the task to the current cgroup.
603 */
604static inline struct task_group *task_group(struct task_struct *p)
605{
5091faa4 606 struct task_group *tg;
dc61b1d6
PZ
607 struct cgroup_subsys_state *css;
608
609 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
610 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
611 tg = container_of(css, struct task_group, css);
612
613 return autogroup_task_group(p, tg);
dc61b1d6
PZ
614}
615
616/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
617static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
618{
619#ifdef CONFIG_FAIR_GROUP_SCHED
620 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
621 p->se.parent = task_group(p)->se[cpu];
622#endif
623
624#ifdef CONFIG_RT_GROUP_SCHED
625 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
626 p->rt.parent = task_group(p)->rt_se[cpu];
627#endif
628}
629
630#else /* CONFIG_CGROUP_SCHED */
631
632static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
633static inline struct task_group *task_group(struct task_struct *p)
634{
635 return NULL;
636}
637
638#endif /* CONFIG_CGROUP_SCHED */
639
fe44d621 640static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 641
fe44d621 642static void update_rq_clock(struct rq *rq)
3e51f33f 643{
fe44d621 644 s64 delta;
305e6835 645
f26f9aff
MG
646 if (rq->skip_clock_update)
647 return;
aa483808 648
fe44d621
PZ
649 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
650 rq->clock += delta;
651 update_rq_clock_task(rq, delta);
3e51f33f
PZ
652}
653
bf5c91ba
IM
654/*
655 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
656 */
657#ifdef CONFIG_SCHED_DEBUG
658# define const_debug __read_mostly
659#else
660# define const_debug static const
661#endif
662
017730c1 663/**
58cbe247 664 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 665 * @cpu: the processor in question.
017730c1 666 *
017730c1
IM
667 * This interface allows printk to be called with the runqueue lock
668 * held and know whether or not it is OK to wake up the klogd.
669 */
89f19f04 670int runqueue_is_locked(int cpu)
017730c1 671{
05fa785c 672 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
673}
674
bf5c91ba
IM
675/*
676 * Debugging: various feature bits
677 */
f00b45c1
PZ
678
679#define SCHED_FEAT(name, enabled) \
680 __SCHED_FEAT_##name ,
681
bf5c91ba 682enum {
f00b45c1 683#include "sched_features.h"
bf5c91ba
IM
684};
685
f00b45c1
PZ
686#undef SCHED_FEAT
687
688#define SCHED_FEAT(name, enabled) \
689 (1UL << __SCHED_FEAT_##name) * enabled |
690
bf5c91ba 691const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
692#include "sched_features.h"
693 0;
694
695#undef SCHED_FEAT
696
697#ifdef CONFIG_SCHED_DEBUG
698#define SCHED_FEAT(name, enabled) \
699 #name ,
700
983ed7a6 701static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
702#include "sched_features.h"
703 NULL
704};
705
706#undef SCHED_FEAT
707
34f3a814 708static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 709{
f00b45c1
PZ
710 int i;
711
712 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
713 if (!(sysctl_sched_features & (1UL << i)))
714 seq_puts(m, "NO_");
715 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 716 }
34f3a814 717 seq_puts(m, "\n");
f00b45c1 718
34f3a814 719 return 0;
f00b45c1
PZ
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
7740191c 727 char *cmp;
f00b45c1
PZ
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
7740191c 738 cmp = strstrip(buf);
f00b45c1 739
524429c3 740 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
741 neg = 1;
742 cmp += 3;
743 }
744
745 for (i = 0; sched_feat_names[i]; i++) {
7740191c 746 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
747 if (neg)
748 sysctl_sched_features &= ~(1UL << i);
749 else
750 sysctl_sched_features |= (1UL << i);
751 break;
752 }
753 }
754
755 if (!sched_feat_names[i])
756 return -EINVAL;
757
42994724 758 *ppos += cnt;
f00b45c1
PZ
759
760 return cnt;
761}
762
34f3a814
LZ
763static int sched_feat_open(struct inode *inode, struct file *filp)
764{
765 return single_open(filp, sched_feat_show, NULL);
766}
767
828c0950 768static const struct file_operations sched_feat_fops = {
34f3a814
LZ
769 .open = sched_feat_open,
770 .write = sched_feat_write,
771 .read = seq_read,
772 .llseek = seq_lseek,
773 .release = single_release,
f00b45c1
PZ
774};
775
776static __init int sched_init_debug(void)
777{
f00b45c1
PZ
778 debugfs_create_file("sched_features", 0644, NULL, NULL,
779 &sched_feat_fops);
780
781 return 0;
782}
783late_initcall(sched_init_debug);
784
785#endif
786
787#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 788
b82d9fdd
PZ
789/*
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
792 */
793const_debug unsigned int sysctl_sched_nr_migrate = 32;
794
e9e9250b
PZ
795/*
796 * period over which we average the RT time consumption, measured
797 * in ms.
798 *
799 * default: 1s
800 */
801const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
802
fa85ae24 803/*
9f0c1e56 804 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
805 * default: 1s
806 */
9f0c1e56 807unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 808
6892b75e
IM
809static __read_mostly int scheduler_running;
810
9f0c1e56
PZ
811/*
812 * part of the period that we allow rt tasks to run in us.
813 * default: 0.95s
814 */
815int sysctl_sched_rt_runtime = 950000;
fa85ae24 816
d0b27fa7
PZ
817static inline u64 global_rt_period(void)
818{
819 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
820}
821
822static inline u64 global_rt_runtime(void)
823{
e26873bb 824 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
825 return RUNTIME_INF;
826
827 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
828}
fa85ae24 829
1da177e4 830#ifndef prepare_arch_switch
4866cde0
NP
831# define prepare_arch_switch(next) do { } while (0)
832#endif
833#ifndef finish_arch_switch
834# define finish_arch_switch(prev) do { } while (0)
835#endif
836
051a1d1a
DA
837static inline int task_current(struct rq *rq, struct task_struct *p)
838{
839 return rq->curr == p;
840}
841
4866cde0 842#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 843static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 844{
051a1d1a 845 return task_current(rq, p);
4866cde0
NP
846}
847
70b97a7f 848static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
849{
850}
851
70b97a7f 852static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 853{
da04c035
IM
854#ifdef CONFIG_DEBUG_SPINLOCK
855 /* this is a valid case when another task releases the spinlock */
856 rq->lock.owner = current;
857#endif
8a25d5de
IM
858 /*
859 * If we are tracking spinlock dependencies then we have to
860 * fix up the runqueue lock - which gets 'carried over' from
861 * prev into current:
862 */
863 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
864
05fa785c 865 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
866}
867
868#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 869static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
870{
871#ifdef CONFIG_SMP
872 return p->oncpu;
873#else
051a1d1a 874 return task_current(rq, p);
4866cde0
NP
875#endif
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880#ifdef CONFIG_SMP
881 /*
882 * We can optimise this out completely for !SMP, because the
883 * SMP rebalancing from interrupt is the only thing that cares
884 * here.
885 */
886 next->oncpu = 1;
887#endif
888#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 889 raw_spin_unlock_irq(&rq->lock);
4866cde0 890#else
05fa785c 891 raw_spin_unlock(&rq->lock);
4866cde0
NP
892#endif
893}
894
70b97a7f 895static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
896{
897#ifdef CONFIG_SMP
898 /*
899 * After ->oncpu is cleared, the task can be moved to a different CPU.
900 * We must ensure this doesn't happen until the switch is completely
901 * finished.
902 */
903 smp_wmb();
904 prev->oncpu = 0;
905#endif
906#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
907 local_irq_enable();
1da177e4 908#endif
4866cde0
NP
909}
910#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 911
0970d299 912/*
65cc8e48
PZ
913 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
914 * against ttwu().
0970d299
PZ
915 */
916static inline int task_is_waking(struct task_struct *p)
917{
0017d735 918 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
919}
920
b29739f9
IM
921/*
922 * __task_rq_lock - lock the runqueue a given task resides on.
923 * Must be called interrupts disabled.
924 */
70b97a7f 925static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
926 __acquires(rq->lock)
927{
0970d299
PZ
928 struct rq *rq;
929
3a5c359a 930 for (;;) {
0970d299 931 rq = task_rq(p);
05fa785c 932 raw_spin_lock(&rq->lock);
65cc8e48 933 if (likely(rq == task_rq(p)))
3a5c359a 934 return rq;
05fa785c 935 raw_spin_unlock(&rq->lock);
b29739f9 936 }
b29739f9
IM
937}
938
1da177e4
LT
939/*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 941 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
942 * explicitly disabling preemption.
943 */
70b97a7f 944static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
945 __acquires(rq->lock)
946{
70b97a7f 947 struct rq *rq;
1da177e4 948
3a5c359a
AK
949 for (;;) {
950 local_irq_save(*flags);
951 rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
65cc8e48 953 if (likely(rq == task_rq(p)))
3a5c359a 954 return rq;
05fa785c 955 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 956 }
1da177e4
LT
957}
958
a9957449 959static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
960 __releases(rq->lock)
961{
05fa785c 962 raw_spin_unlock(&rq->lock);
b29739f9
IM
963}
964
70b97a7f 965static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
966 __releases(rq->lock)
967{
05fa785c 968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
969}
970
1da177e4 971/*
cc2a73b5 972 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 973 */
a9957449 974static struct rq *this_rq_lock(void)
1da177e4
LT
975 __acquires(rq->lock)
976{
70b97a7f 977 struct rq *rq;
1da177e4
LT
978
979 local_irq_disable();
980 rq = this_rq();
05fa785c 981 raw_spin_lock(&rq->lock);
1da177e4
LT
982
983 return rq;
984}
985
8f4d37ec
PZ
986#ifdef CONFIG_SCHED_HRTICK
987/*
988 * Use HR-timers to deliver accurate preemption points.
989 *
990 * Its all a bit involved since we cannot program an hrt while holding the
991 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
992 * reschedule event.
993 *
994 * When we get rescheduled we reprogram the hrtick_timer outside of the
995 * rq->lock.
996 */
8f4d37ec
PZ
997
998/*
999 * Use hrtick when:
1000 * - enabled by features
1001 * - hrtimer is actually high res
1002 */
1003static inline int hrtick_enabled(struct rq *rq)
1004{
1005 if (!sched_feat(HRTICK))
1006 return 0;
ba42059f 1007 if (!cpu_active(cpu_of(rq)))
b328ca18 1008 return 0;
8f4d37ec
PZ
1009 return hrtimer_is_hres_active(&rq->hrtick_timer);
1010}
1011
8f4d37ec
PZ
1012static void hrtick_clear(struct rq *rq)
1013{
1014 if (hrtimer_active(&rq->hrtick_timer))
1015 hrtimer_cancel(&rq->hrtick_timer);
1016}
1017
8f4d37ec
PZ
1018/*
1019 * High-resolution timer tick.
1020 * Runs from hardirq context with interrupts disabled.
1021 */
1022static enum hrtimer_restart hrtick(struct hrtimer *timer)
1023{
1024 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1025
1026 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1027
05fa785c 1028 raw_spin_lock(&rq->lock);
3e51f33f 1029 update_rq_clock(rq);
8f4d37ec 1030 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1031 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1032
1033 return HRTIMER_NORESTART;
1034}
1035
95e904c7 1036#ifdef CONFIG_SMP
31656519
PZ
1037/*
1038 * called from hardirq (IPI) context
1039 */
1040static void __hrtick_start(void *arg)
b328ca18 1041{
31656519 1042 struct rq *rq = arg;
b328ca18 1043
05fa785c 1044 raw_spin_lock(&rq->lock);
31656519
PZ
1045 hrtimer_restart(&rq->hrtick_timer);
1046 rq->hrtick_csd_pending = 0;
05fa785c 1047 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1048}
1049
31656519
PZ
1050/*
1051 * Called to set the hrtick timer state.
1052 *
1053 * called with rq->lock held and irqs disabled
1054 */
1055static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1056{
31656519
PZ
1057 struct hrtimer *timer = &rq->hrtick_timer;
1058 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1059
cc584b21 1060 hrtimer_set_expires(timer, time);
31656519
PZ
1061
1062 if (rq == this_rq()) {
1063 hrtimer_restart(timer);
1064 } else if (!rq->hrtick_csd_pending) {
6e275637 1065 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1066 rq->hrtick_csd_pending = 1;
1067 }
b328ca18
PZ
1068}
1069
1070static int
1071hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1072{
1073 int cpu = (int)(long)hcpu;
1074
1075 switch (action) {
1076 case CPU_UP_CANCELED:
1077 case CPU_UP_CANCELED_FROZEN:
1078 case CPU_DOWN_PREPARE:
1079 case CPU_DOWN_PREPARE_FROZEN:
1080 case CPU_DEAD:
1081 case CPU_DEAD_FROZEN:
31656519 1082 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1083 return NOTIFY_OK;
1084 }
1085
1086 return NOTIFY_DONE;
1087}
1088
fa748203 1089static __init void init_hrtick(void)
b328ca18
PZ
1090{
1091 hotcpu_notifier(hotplug_hrtick, 0);
1092}
31656519
PZ
1093#else
1094/*
1095 * Called to set the hrtick timer state.
1096 *
1097 * called with rq->lock held and irqs disabled
1098 */
1099static void hrtick_start(struct rq *rq, u64 delay)
1100{
7f1e2ca9 1101 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1102 HRTIMER_MODE_REL_PINNED, 0);
31656519 1103}
b328ca18 1104
006c75f1 1105static inline void init_hrtick(void)
8f4d37ec 1106{
8f4d37ec 1107}
31656519 1108#endif /* CONFIG_SMP */
8f4d37ec 1109
31656519 1110static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1111{
31656519
PZ
1112#ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
8f4d37ec 1114
31656519
PZ
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118#endif
8f4d37ec 1119
31656519
PZ
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
8f4d37ec 1122}
006c75f1 1123#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1124static inline void hrtick_clear(struct rq *rq)
1125{
1126}
1127
8f4d37ec
PZ
1128static inline void init_rq_hrtick(struct rq *rq)
1129{
1130}
1131
b328ca18
PZ
1132static inline void init_hrtick(void)
1133{
1134}
006c75f1 1135#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1136
c24d20db
IM
1137/*
1138 * resched_task - mark a task 'to be rescheduled now'.
1139 *
1140 * On UP this means the setting of the need_resched flag, on SMP it
1141 * might also involve a cross-CPU call to trigger the scheduler on
1142 * the target CPU.
1143 */
1144#ifdef CONFIG_SMP
1145
1146#ifndef tsk_is_polling
1147#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1148#endif
1149
31656519 1150static void resched_task(struct task_struct *p)
c24d20db
IM
1151{
1152 int cpu;
1153
05fa785c 1154 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1155
5ed0cec0 1156 if (test_tsk_need_resched(p))
c24d20db
IM
1157 return;
1158
5ed0cec0 1159 set_tsk_need_resched(p);
c24d20db
IM
1160
1161 cpu = task_cpu(p);
1162 if (cpu == smp_processor_id())
1163 return;
1164
1165 /* NEED_RESCHED must be visible before we test polling */
1166 smp_mb();
1167 if (!tsk_is_polling(p))
1168 smp_send_reschedule(cpu);
1169}
1170
1171static void resched_cpu(int cpu)
1172{
1173 struct rq *rq = cpu_rq(cpu);
1174 unsigned long flags;
1175
05fa785c 1176 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1177 return;
1178 resched_task(cpu_curr(cpu));
05fa785c 1179 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1180}
06d8308c
TG
1181
1182#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1183/*
1184 * In the semi idle case, use the nearest busy cpu for migrating timers
1185 * from an idle cpu. This is good for power-savings.
1186 *
1187 * We don't do similar optimization for completely idle system, as
1188 * selecting an idle cpu will add more delays to the timers than intended
1189 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1190 */
1191int get_nohz_timer_target(void)
1192{
1193 int cpu = smp_processor_id();
1194 int i;
1195 struct sched_domain *sd;
1196
1197 for_each_domain(cpu, sd) {
1198 for_each_cpu(i, sched_domain_span(sd))
1199 if (!idle_cpu(i))
1200 return i;
1201 }
1202 return cpu;
1203}
06d8308c
TG
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
5ed0cec0 1236 set_tsk_need_resched(rq->idle);
06d8308c
TG
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
39c0cbe2 1243
6d6bc0ad 1244#endif /* CONFIG_NO_HZ */
06d8308c 1245
e9e9250b
PZ
1246static u64 sched_avg_period(void)
1247{
1248 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1249}
1250
1251static void sched_avg_update(struct rq *rq)
1252{
1253 s64 period = sched_avg_period();
1254
1255 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1256 /*
1257 * Inline assembly required to prevent the compiler
1258 * optimising this loop into a divmod call.
1259 * See __iter_div_u64_rem() for another example of this.
1260 */
1261 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
da2b71ed
SS
1283
1284static void sched_avg_update(struct rq *rq)
1285{
1286}
6d6bc0ad 1287#endif /* CONFIG_SMP */
c24d20db 1288
45bf76df
IM
1289#if BITS_PER_LONG == 32
1290# define WMULT_CONST (~0UL)
1291#else
1292# define WMULT_CONST (1UL << 32)
1293#endif
1294
1295#define WMULT_SHIFT 32
1296
194081eb
IM
1297/*
1298 * Shift right and round:
1299 */
cf2ab469 1300#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1301
a7be37ac
PZ
1302/*
1303 * delta *= weight / lw
1304 */
cb1c4fc9 1305static unsigned long
45bf76df
IM
1306calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308{
1309 u64 tmp;
1310
7a232e03
LJ
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
45bf76df
IM
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
194081eb 1323 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1325 WMULT_SHIFT/2);
1326 else
cf2ab469 1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1328
ecf691da 1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1333{
1334 lw->weight += inc;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
1091985b 1338static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1339{
1340 lw->weight -= dec;
e89996ae 1341 lw->inv_weight = 0;
45bf76df
IM
1342}
1343
2069dd75
PZ
1344static inline void update_load_set(struct load_weight *lw, unsigned long w)
1345{
1346 lw->weight = w;
1347 lw->inv_weight = 0;
1348}
1349
2dd73a4f
PW
1350/*
1351 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1352 * of tasks with abnormal "nice" values across CPUs the contribution that
1353 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1354 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1355 * scaled version of the new time slice allocation that they receive on time
1356 * slice expiry etc.
1357 */
1358
cce7ade8
PZ
1359#define WEIGHT_IDLEPRIO 3
1360#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1361
1362/*
1363 * Nice levels are multiplicative, with a gentle 10% change for every
1364 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1365 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1366 * that remained on nice 0.
1367 *
1368 * The "10% effect" is relative and cumulative: from _any_ nice level,
1369 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1370 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1371 * If a task goes up by ~10% and another task goes down by ~10% then
1372 * the relative distance between them is ~25%.)
dd41f596
IM
1373 */
1374static const int prio_to_weight[40] = {
254753dc
IM
1375 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1376 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1377 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1378 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1379 /* 0 */ 1024, 820, 655, 526, 423,
1380 /* 5 */ 335, 272, 215, 172, 137,
1381 /* 10 */ 110, 87, 70, 56, 45,
1382 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1383};
1384
5714d2de
IM
1385/*
1386 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1387 *
1388 * In cases where the weight does not change often, we can use the
1389 * precalculated inverse to speed up arithmetics by turning divisions
1390 * into multiplications:
1391 */
dd41f596 1392static const u32 prio_to_wmult[40] = {
254753dc
IM
1393 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1394 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1395 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1396 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1397 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1398 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1399 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1400 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1401};
2dd73a4f 1402
ef12fefa
BR
1403/* Time spent by the tasks of the cpu accounting group executing in ... */
1404enum cpuacct_stat_index {
1405 CPUACCT_STAT_USER, /* ... user mode */
1406 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1407
1408 CPUACCT_STAT_NSTATS,
1409};
1410
d842de87
SV
1411#ifdef CONFIG_CGROUP_CPUACCT
1412static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1413static void cpuacct_update_stats(struct task_struct *tsk,
1414 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1417static inline void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1419#endif
1420
18d95a28
PZ
1421static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1422{
1423 update_load_add(&rq->load, load);
1424}
1425
1426static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1427{
1428 update_load_sub(&rq->load, load);
1429}
1430
7940ca36 1431#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1432typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1433
1434/*
1435 * Iterate the full tree, calling @down when first entering a node and @up when
1436 * leaving it for the final time.
1437 */
eb755805 1438static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1439{
1440 struct task_group *parent, *child;
eb755805 1441 int ret;
c09595f6
PZ
1442
1443 rcu_read_lock();
1444 parent = &root_task_group;
1445down:
eb755805
PZ
1446 ret = (*down)(parent, data);
1447 if (ret)
1448 goto out_unlock;
c09595f6
PZ
1449 list_for_each_entry_rcu(child, &parent->children, siblings) {
1450 parent = child;
1451 goto down;
1452
1453up:
1454 continue;
1455 }
eb755805
PZ
1456 ret = (*up)(parent, data);
1457 if (ret)
1458 goto out_unlock;
c09595f6
PZ
1459
1460 child = parent;
1461 parent = parent->parent;
1462 if (parent)
1463 goto up;
eb755805 1464out_unlock:
c09595f6 1465 rcu_read_unlock();
eb755805
PZ
1466
1467 return ret;
c09595f6
PZ
1468}
1469
eb755805
PZ
1470static int tg_nop(struct task_group *tg, void *data)
1471{
1472 return 0;
c09595f6 1473}
eb755805
PZ
1474#endif
1475
1476#ifdef CONFIG_SMP
f5f08f39
PZ
1477/* Used instead of source_load when we know the type == 0 */
1478static unsigned long weighted_cpuload(const int cpu)
1479{
1480 return cpu_rq(cpu)->load.weight;
1481}
1482
1483/*
1484 * Return a low guess at the load of a migration-source cpu weighted
1485 * according to the scheduling class and "nice" value.
1486 *
1487 * We want to under-estimate the load of migration sources, to
1488 * balance conservatively.
1489 */
1490static unsigned long source_load(int cpu, int type)
1491{
1492 struct rq *rq = cpu_rq(cpu);
1493 unsigned long total = weighted_cpuload(cpu);
1494
1495 if (type == 0 || !sched_feat(LB_BIAS))
1496 return total;
1497
1498 return min(rq->cpu_load[type-1], total);
1499}
1500
1501/*
1502 * Return a high guess at the load of a migration-target cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 */
1505static unsigned long target_load(int cpu, int type)
1506{
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return max(rq->cpu_load[type-1], total);
1514}
1515
ae154be1
PZ
1516static unsigned long power_of(int cpu)
1517{
e51fd5e2 1518 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1519}
1520
eb755805
PZ
1521static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1522
1523static unsigned long cpu_avg_load_per_task(int cpu)
1524{
1525 struct rq *rq = cpu_rq(cpu);
af6d596f 1526 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1527
4cd42620
SR
1528 if (nr_running)
1529 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1530 else
1531 rq->avg_load_per_task = 0;
eb755805
PZ
1532
1533 return rq->avg_load_per_task;
1534}
1535
1536#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1537
c09595f6 1538/*
c8cba857
PZ
1539 * Compute the cpu's hierarchical load factor for each task group.
1540 * This needs to be done in a top-down fashion because the load of a child
1541 * group is a fraction of its parents load.
c09595f6 1542 */
eb755805 1543static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1544{
c8cba857 1545 unsigned long load;
eb755805 1546 long cpu = (long)data;
c09595f6 1547
c8cba857
PZ
1548 if (!tg->parent) {
1549 load = cpu_rq(cpu)->load.weight;
1550 } else {
1551 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1552 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1553 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1554 }
c09595f6 1555
c8cba857 1556 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1557
eb755805 1558 return 0;
c09595f6
PZ
1559}
1560
eb755805 1561static void update_h_load(long cpu)
c09595f6 1562{
eb755805 1563 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1564}
1565
18d95a28
PZ
1566#endif
1567
8f45e2b5
GH
1568#ifdef CONFIG_PREEMPT
1569
b78bb868
PZ
1570static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1571
70574a99 1572/*
8f45e2b5
GH
1573 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1574 * way at the expense of forcing extra atomic operations in all
1575 * invocations. This assures that the double_lock is acquired using the
1576 * same underlying policy as the spinlock_t on this architecture, which
1577 * reduces latency compared to the unfair variant below. However, it
1578 * also adds more overhead and therefore may reduce throughput.
70574a99 1579 */
8f45e2b5
GH
1580static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1581 __releases(this_rq->lock)
1582 __acquires(busiest->lock)
1583 __acquires(this_rq->lock)
1584{
05fa785c 1585 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1586 double_rq_lock(this_rq, busiest);
1587
1588 return 1;
1589}
1590
1591#else
1592/*
1593 * Unfair double_lock_balance: Optimizes throughput at the expense of
1594 * latency by eliminating extra atomic operations when the locks are
1595 * already in proper order on entry. This favors lower cpu-ids and will
1596 * grant the double lock to lower cpus over higher ids under contention,
1597 * regardless of entry order into the function.
1598 */
1599static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1600 __releases(this_rq->lock)
1601 __acquires(busiest->lock)
1602 __acquires(this_rq->lock)
1603{
1604 int ret = 0;
1605
05fa785c 1606 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1607 if (busiest < this_rq) {
05fa785c
TG
1608 raw_spin_unlock(&this_rq->lock);
1609 raw_spin_lock(&busiest->lock);
1610 raw_spin_lock_nested(&this_rq->lock,
1611 SINGLE_DEPTH_NESTING);
70574a99
AD
1612 ret = 1;
1613 } else
05fa785c
TG
1614 raw_spin_lock_nested(&busiest->lock,
1615 SINGLE_DEPTH_NESTING);
70574a99
AD
1616 }
1617 return ret;
1618}
1619
8f45e2b5
GH
1620#endif /* CONFIG_PREEMPT */
1621
1622/*
1623 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1624 */
1625static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1626{
1627 if (unlikely(!irqs_disabled())) {
1628 /* printk() doesn't work good under rq->lock */
05fa785c 1629 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1630 BUG_ON(1);
1631 }
1632
1633 return _double_lock_balance(this_rq, busiest);
1634}
1635
70574a99
AD
1636static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1637 __releases(busiest->lock)
1638{
05fa785c 1639 raw_spin_unlock(&busiest->lock);
70574a99
AD
1640 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1641}
1e3c88bd
PZ
1642
1643/*
1644 * double_rq_lock - safely lock two runqueues
1645 *
1646 * Note this does not disable interrupts like task_rq_lock,
1647 * you need to do so manually before calling.
1648 */
1649static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1650 __acquires(rq1->lock)
1651 __acquires(rq2->lock)
1652{
1653 BUG_ON(!irqs_disabled());
1654 if (rq1 == rq2) {
1655 raw_spin_lock(&rq1->lock);
1656 __acquire(rq2->lock); /* Fake it out ;) */
1657 } else {
1658 if (rq1 < rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1661 } else {
1662 raw_spin_lock(&rq2->lock);
1663 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1664 }
1665 }
1e3c88bd
PZ
1666}
1667
1668/*
1669 * double_rq_unlock - safely unlock two runqueues
1670 *
1671 * Note this does not restore interrupts like task_rq_unlock,
1672 * you need to do so manually after calling.
1673 */
1674static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1675 __releases(rq1->lock)
1676 __releases(rq2->lock)
1677{
1678 raw_spin_unlock(&rq1->lock);
1679 if (rq1 != rq2)
1680 raw_spin_unlock(&rq2->lock);
1681 else
1682 __release(rq2->lock);
1683}
1684
d95f4122
MG
1685#else /* CONFIG_SMP */
1686
1687/*
1688 * double_rq_lock - safely lock two runqueues
1689 *
1690 * Note this does not disable interrupts like task_rq_lock,
1691 * you need to do so manually before calling.
1692 */
1693static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1694 __acquires(rq1->lock)
1695 __acquires(rq2->lock)
1696{
1697 BUG_ON(!irqs_disabled());
1698 BUG_ON(rq1 != rq2);
1699 raw_spin_lock(&rq1->lock);
1700 __acquire(rq2->lock); /* Fake it out ;) */
1701}
1702
1703/*
1704 * double_rq_unlock - safely unlock two runqueues
1705 *
1706 * Note this does not restore interrupts like task_rq_unlock,
1707 * you need to do so manually after calling.
1708 */
1709static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1710 __releases(rq1->lock)
1711 __releases(rq2->lock)
1712{
1713 BUG_ON(rq1 != rq2);
1714 raw_spin_unlock(&rq1->lock);
1715 __release(rq2->lock);
1716}
1717
18d95a28
PZ
1718#endif
1719
74f5187a 1720static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1721static void update_sysctl(void);
acb4a848 1722static int get_update_sysctl_factor(void);
fdf3e95d 1723static void update_cpu_load(struct rq *this_rq);
dce48a84 1724
cd29fe6f
PZ
1725static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1726{
1727 set_task_rq(p, cpu);
1728#ifdef CONFIG_SMP
1729 /*
1730 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1731 * successfuly executed on another CPU. We must ensure that updates of
1732 * per-task data have been completed by this moment.
1733 */
1734 smp_wmb();
1735 task_thread_info(p)->cpu = cpu;
1736#endif
1737}
dce48a84 1738
1e3c88bd 1739static const struct sched_class rt_sched_class;
dd41f596 1740
34f971f6 1741#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1742#define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
dd41f596 1744
1e3c88bd
PZ
1745#include "sched_stats.h"
1746
c09595f6 1747static void inc_nr_running(struct rq *rq)
9c217245
IM
1748{
1749 rq->nr_running++;
9c217245
IM
1750}
1751
c09595f6 1752static void dec_nr_running(struct rq *rq)
9c217245
IM
1753{
1754 rq->nr_running--;
9c217245
IM
1755}
1756
45bf76df
IM
1757static void set_load_weight(struct task_struct *p)
1758{
dd41f596
IM
1759 /*
1760 * SCHED_IDLE tasks get minimal weight:
1761 */
1762 if (p->policy == SCHED_IDLE) {
1763 p->se.load.weight = WEIGHT_IDLEPRIO;
1764 p->se.load.inv_weight = WMULT_IDLEPRIO;
1765 return;
1766 }
71f8bd46 1767
dd41f596
IM
1768 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1769 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1770}
1771
371fd7e7 1772static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1773{
a64692a3 1774 update_rq_clock(rq);
dd41f596 1775 sched_info_queued(p);
371fd7e7 1776 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1777 p->se.on_rq = 1;
71f8bd46
IM
1778}
1779
371fd7e7 1780static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1781{
a64692a3 1782 update_rq_clock(rq);
46ac22ba 1783 sched_info_dequeued(p);
371fd7e7 1784 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1785 p->se.on_rq = 0;
71f8bd46
IM
1786}
1787
1e3c88bd
PZ
1788/*
1789 * activate_task - move a task to the runqueue.
1790 */
371fd7e7 1791static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1792{
1793 if (task_contributes_to_load(p))
1794 rq->nr_uninterruptible--;
1795
371fd7e7 1796 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1797 inc_nr_running(rq);
1798}
1799
1800/*
1801 * deactivate_task - remove a task from the runqueue.
1802 */
371fd7e7 1803static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1804{
1805 if (task_contributes_to_load(p))
1806 rq->nr_uninterruptible++;
1807
371fd7e7 1808 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1809 dec_nr_running(rq);
1810}
1811
b52bfee4
VP
1812#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1813
305e6835
VP
1814/*
1815 * There are no locks covering percpu hardirq/softirq time.
1816 * They are only modified in account_system_vtime, on corresponding CPU
1817 * with interrupts disabled. So, writes are safe.
1818 * They are read and saved off onto struct rq in update_rq_clock().
1819 * This may result in other CPU reading this CPU's irq time and can
1820 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1821 * or new value with a side effect of accounting a slice of irq time to wrong
1822 * task when irq is in progress while we read rq->clock. That is a worthy
1823 * compromise in place of having locks on each irq in account_system_time.
305e6835 1824 */
b52bfee4
VP
1825static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1826static DEFINE_PER_CPU(u64, cpu_softirq_time);
1827
1828static DEFINE_PER_CPU(u64, irq_start_time);
1829static int sched_clock_irqtime;
1830
1831void enable_sched_clock_irqtime(void)
1832{
1833 sched_clock_irqtime = 1;
1834}
1835
1836void disable_sched_clock_irqtime(void)
1837{
1838 sched_clock_irqtime = 0;
1839}
1840
8e92c201
PZ
1841#ifndef CONFIG_64BIT
1842static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1843
1844static inline void irq_time_write_begin(void)
1845{
1846 __this_cpu_inc(irq_time_seq.sequence);
1847 smp_wmb();
1848}
1849
1850static inline void irq_time_write_end(void)
1851{
1852 smp_wmb();
1853 __this_cpu_inc(irq_time_seq.sequence);
1854}
1855
1856static inline u64 irq_time_read(int cpu)
1857{
1858 u64 irq_time;
1859 unsigned seq;
1860
1861 do {
1862 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1863 irq_time = per_cpu(cpu_softirq_time, cpu) +
1864 per_cpu(cpu_hardirq_time, cpu);
1865 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1866
1867 return irq_time;
1868}
1869#else /* CONFIG_64BIT */
1870static inline void irq_time_write_begin(void)
1871{
1872}
1873
1874static inline void irq_time_write_end(void)
1875{
1876}
1877
1878static inline u64 irq_time_read(int cpu)
305e6835 1879{
305e6835
VP
1880 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1881}
8e92c201 1882#endif /* CONFIG_64BIT */
305e6835 1883
fe44d621
PZ
1884/*
1885 * Called before incrementing preempt_count on {soft,}irq_enter
1886 * and before decrementing preempt_count on {soft,}irq_exit.
1887 */
b52bfee4
VP
1888void account_system_vtime(struct task_struct *curr)
1889{
1890 unsigned long flags;
fe44d621 1891 s64 delta;
b52bfee4 1892 int cpu;
b52bfee4
VP
1893
1894 if (!sched_clock_irqtime)
1895 return;
1896
1897 local_irq_save(flags);
1898
b52bfee4 1899 cpu = smp_processor_id();
fe44d621
PZ
1900 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1901 __this_cpu_add(irq_start_time, delta);
1902
8e92c201 1903 irq_time_write_begin();
b52bfee4
VP
1904 /*
1905 * We do not account for softirq time from ksoftirqd here.
1906 * We want to continue accounting softirq time to ksoftirqd thread
1907 * in that case, so as not to confuse scheduler with a special task
1908 * that do not consume any time, but still wants to run.
1909 */
1910 if (hardirq_count())
fe44d621 1911 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1912 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1913 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1914
8e92c201 1915 irq_time_write_end();
b52bfee4
VP
1916 local_irq_restore(flags);
1917}
b7dadc38 1918EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1919
fe44d621 1920static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1921{
fe44d621
PZ
1922 s64 irq_delta;
1923
8e92c201 1924 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1925
1926 /*
1927 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1928 * this case when a previous update_rq_clock() happened inside a
1929 * {soft,}irq region.
1930 *
1931 * When this happens, we stop ->clock_task and only update the
1932 * prev_irq_time stamp to account for the part that fit, so that a next
1933 * update will consume the rest. This ensures ->clock_task is
1934 * monotonic.
1935 *
1936 * It does however cause some slight miss-attribution of {soft,}irq
1937 * time, a more accurate solution would be to update the irq_time using
1938 * the current rq->clock timestamp, except that would require using
1939 * atomic ops.
1940 */
1941 if (irq_delta > delta)
1942 irq_delta = delta;
1943
1944 rq->prev_irq_time += irq_delta;
1945 delta -= irq_delta;
1946 rq->clock_task += delta;
1947
1948 if (irq_delta && sched_feat(NONIRQ_POWER))
1949 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1950}
1951
abb74cef
VP
1952static int irqtime_account_hi_update(void)
1953{
1954 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1955 unsigned long flags;
1956 u64 latest_ns;
1957 int ret = 0;
1958
1959 local_irq_save(flags);
1960 latest_ns = this_cpu_read(cpu_hardirq_time);
1961 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1962 ret = 1;
1963 local_irq_restore(flags);
1964 return ret;
1965}
1966
1967static int irqtime_account_si_update(void)
1968{
1969 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1970 unsigned long flags;
1971 u64 latest_ns;
1972 int ret = 0;
1973
1974 local_irq_save(flags);
1975 latest_ns = this_cpu_read(cpu_softirq_time);
1976 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1977 ret = 1;
1978 local_irq_restore(flags);
1979 return ret;
1980}
1981
fe44d621 1982#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1983
abb74cef
VP
1984#define sched_clock_irqtime (0)
1985
fe44d621 1986static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1987{
fe44d621 1988 rq->clock_task += delta;
305e6835
VP
1989}
1990
fe44d621 1991#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 1992
1e3c88bd
PZ
1993#include "sched_idletask.c"
1994#include "sched_fair.c"
1995#include "sched_rt.c"
5091faa4 1996#include "sched_autogroup.c"
34f971f6 1997#include "sched_stoptask.c"
1e3c88bd
PZ
1998#ifdef CONFIG_SCHED_DEBUG
1999# include "sched_debug.c"
2000#endif
2001
34f971f6
PZ
2002void sched_set_stop_task(int cpu, struct task_struct *stop)
2003{
2004 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2005 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2006
2007 if (stop) {
2008 /*
2009 * Make it appear like a SCHED_FIFO task, its something
2010 * userspace knows about and won't get confused about.
2011 *
2012 * Also, it will make PI more or less work without too
2013 * much confusion -- but then, stop work should not
2014 * rely on PI working anyway.
2015 */
2016 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2017
2018 stop->sched_class = &stop_sched_class;
2019 }
2020
2021 cpu_rq(cpu)->stop = stop;
2022
2023 if (old_stop) {
2024 /*
2025 * Reset it back to a normal scheduling class so that
2026 * it can die in pieces.
2027 */
2028 old_stop->sched_class = &rt_sched_class;
2029 }
2030}
2031
14531189 2032/*
dd41f596 2033 * __normal_prio - return the priority that is based on the static prio
14531189 2034 */
14531189
IM
2035static inline int __normal_prio(struct task_struct *p)
2036{
dd41f596 2037 return p->static_prio;
14531189
IM
2038}
2039
b29739f9
IM
2040/*
2041 * Calculate the expected normal priority: i.e. priority
2042 * without taking RT-inheritance into account. Might be
2043 * boosted by interactivity modifiers. Changes upon fork,
2044 * setprio syscalls, and whenever the interactivity
2045 * estimator recalculates.
2046 */
36c8b586 2047static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2048{
2049 int prio;
2050
e05606d3 2051 if (task_has_rt_policy(p))
b29739f9
IM
2052 prio = MAX_RT_PRIO-1 - p->rt_priority;
2053 else
2054 prio = __normal_prio(p);
2055 return prio;
2056}
2057
2058/*
2059 * Calculate the current priority, i.e. the priority
2060 * taken into account by the scheduler. This value might
2061 * be boosted by RT tasks, or might be boosted by
2062 * interactivity modifiers. Will be RT if the task got
2063 * RT-boosted. If not then it returns p->normal_prio.
2064 */
36c8b586 2065static int effective_prio(struct task_struct *p)
b29739f9
IM
2066{
2067 p->normal_prio = normal_prio(p);
2068 /*
2069 * If we are RT tasks or we were boosted to RT priority,
2070 * keep the priority unchanged. Otherwise, update priority
2071 * to the normal priority:
2072 */
2073 if (!rt_prio(p->prio))
2074 return p->normal_prio;
2075 return p->prio;
2076}
2077
1da177e4
LT
2078/**
2079 * task_curr - is this task currently executing on a CPU?
2080 * @p: the task in question.
2081 */
36c8b586 2082inline int task_curr(const struct task_struct *p)
1da177e4
LT
2083{
2084 return cpu_curr(task_cpu(p)) == p;
2085}
2086
cb469845
SR
2087static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2088 const struct sched_class *prev_class,
da7a735e 2089 int oldprio)
cb469845
SR
2090{
2091 if (prev_class != p->sched_class) {
2092 if (prev_class->switched_from)
da7a735e
PZ
2093 prev_class->switched_from(rq, p);
2094 p->sched_class->switched_to(rq, p);
2095 } else if (oldprio != p->prio)
2096 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2097}
2098
1e5a7405
PZ
2099static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2100{
2101 const struct sched_class *class;
2102
2103 if (p->sched_class == rq->curr->sched_class) {
2104 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2105 } else {
2106 for_each_class(class) {
2107 if (class == rq->curr->sched_class)
2108 break;
2109 if (class == p->sched_class) {
2110 resched_task(rq->curr);
2111 break;
2112 }
2113 }
2114 }
2115
2116 /*
2117 * A queue event has occurred, and we're going to schedule. In
2118 * this case, we can save a useless back to back clock update.
2119 */
f26f9aff 2120 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2121 rq->skip_clock_update = 1;
2122}
2123
1da177e4 2124#ifdef CONFIG_SMP
cc367732
IM
2125/*
2126 * Is this task likely cache-hot:
2127 */
e7693a36 2128static int
cc367732
IM
2129task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2130{
2131 s64 delta;
2132
e6c8fba7
PZ
2133 if (p->sched_class != &fair_sched_class)
2134 return 0;
2135
ef8002f6
NR
2136 if (unlikely(p->policy == SCHED_IDLE))
2137 return 0;
2138
f540a608
IM
2139 /*
2140 * Buddy candidates are cache hot:
2141 */
f685ceac 2142 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2143 (&p->se == cfs_rq_of(&p->se)->next ||
2144 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2145 return 1;
2146
6bc1665b
IM
2147 if (sysctl_sched_migration_cost == -1)
2148 return 1;
2149 if (sysctl_sched_migration_cost == 0)
2150 return 0;
2151
cc367732
IM
2152 delta = now - p->se.exec_start;
2153
2154 return delta < (s64)sysctl_sched_migration_cost;
2155}
2156
dd41f596 2157void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2158{
e2912009
PZ
2159#ifdef CONFIG_SCHED_DEBUG
2160 /*
2161 * We should never call set_task_cpu() on a blocked task,
2162 * ttwu() will sort out the placement.
2163 */
077614ee
PZ
2164 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2165 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2166#endif
2167
de1d7286 2168 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2169
0c69774e
PZ
2170 if (task_cpu(p) != new_cpu) {
2171 p->se.nr_migrations++;
2172 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2173 }
dd41f596
IM
2174
2175 __set_task_cpu(p, new_cpu);
c65cc870
IM
2176}
2177
969c7921 2178struct migration_arg {
36c8b586 2179 struct task_struct *task;
1da177e4 2180 int dest_cpu;
70b97a7f 2181};
1da177e4 2182
969c7921
TH
2183static int migration_cpu_stop(void *data);
2184
1da177e4
LT
2185/*
2186 * The task's runqueue lock must be held.
2187 * Returns true if you have to wait for migration thread.
2188 */
b7a2b39d 2189static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2190{
1da177e4
LT
2191 /*
2192 * If the task is not on a runqueue (and not running), then
e2912009 2193 * the next wake-up will properly place the task.
1da177e4 2194 */
969c7921 2195 return p->se.on_rq || task_running(rq, p);
1da177e4
LT
2196}
2197
2198/*
2199 * wait_task_inactive - wait for a thread to unschedule.
2200 *
85ba2d86
RM
2201 * If @match_state is nonzero, it's the @p->state value just checked and
2202 * not expected to change. If it changes, i.e. @p might have woken up,
2203 * then return zero. When we succeed in waiting for @p to be off its CPU,
2204 * we return a positive number (its total switch count). If a second call
2205 * a short while later returns the same number, the caller can be sure that
2206 * @p has remained unscheduled the whole time.
2207 *
1da177e4
LT
2208 * The caller must ensure that the task *will* unschedule sometime soon,
2209 * else this function might spin for a *long* time. This function can't
2210 * be called with interrupts off, or it may introduce deadlock with
2211 * smp_call_function() if an IPI is sent by the same process we are
2212 * waiting to become inactive.
2213 */
85ba2d86 2214unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2215{
2216 unsigned long flags;
dd41f596 2217 int running, on_rq;
85ba2d86 2218 unsigned long ncsw;
70b97a7f 2219 struct rq *rq;
1da177e4 2220
3a5c359a
AK
2221 for (;;) {
2222 /*
2223 * We do the initial early heuristics without holding
2224 * any task-queue locks at all. We'll only try to get
2225 * the runqueue lock when things look like they will
2226 * work out!
2227 */
2228 rq = task_rq(p);
fa490cfd 2229
3a5c359a
AK
2230 /*
2231 * If the task is actively running on another CPU
2232 * still, just relax and busy-wait without holding
2233 * any locks.
2234 *
2235 * NOTE! Since we don't hold any locks, it's not
2236 * even sure that "rq" stays as the right runqueue!
2237 * But we don't care, since "task_running()" will
2238 * return false if the runqueue has changed and p
2239 * is actually now running somewhere else!
2240 */
85ba2d86
RM
2241 while (task_running(rq, p)) {
2242 if (match_state && unlikely(p->state != match_state))
2243 return 0;
3a5c359a 2244 cpu_relax();
85ba2d86 2245 }
fa490cfd 2246
3a5c359a
AK
2247 /*
2248 * Ok, time to look more closely! We need the rq
2249 * lock now, to be *sure*. If we're wrong, we'll
2250 * just go back and repeat.
2251 */
2252 rq = task_rq_lock(p, &flags);
27a9da65 2253 trace_sched_wait_task(p);
3a5c359a
AK
2254 running = task_running(rq, p);
2255 on_rq = p->se.on_rq;
85ba2d86 2256 ncsw = 0;
f31e11d8 2257 if (!match_state || p->state == match_state)
93dcf55f 2258 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2259 task_rq_unlock(rq, &flags);
fa490cfd 2260
85ba2d86
RM
2261 /*
2262 * If it changed from the expected state, bail out now.
2263 */
2264 if (unlikely(!ncsw))
2265 break;
2266
3a5c359a
AK
2267 /*
2268 * Was it really running after all now that we
2269 * checked with the proper locks actually held?
2270 *
2271 * Oops. Go back and try again..
2272 */
2273 if (unlikely(running)) {
2274 cpu_relax();
2275 continue;
2276 }
fa490cfd 2277
3a5c359a
AK
2278 /*
2279 * It's not enough that it's not actively running,
2280 * it must be off the runqueue _entirely_, and not
2281 * preempted!
2282 *
80dd99b3 2283 * So if it was still runnable (but just not actively
3a5c359a
AK
2284 * running right now), it's preempted, and we should
2285 * yield - it could be a while.
2286 */
2287 if (unlikely(on_rq)) {
8eb90c30
TG
2288 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2289
2290 set_current_state(TASK_UNINTERRUPTIBLE);
2291 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2292 continue;
2293 }
fa490cfd 2294
3a5c359a
AK
2295 /*
2296 * Ahh, all good. It wasn't running, and it wasn't
2297 * runnable, which means that it will never become
2298 * running in the future either. We're all done!
2299 */
2300 break;
2301 }
85ba2d86
RM
2302
2303 return ncsw;
1da177e4
LT
2304}
2305
2306/***
2307 * kick_process - kick a running thread to enter/exit the kernel
2308 * @p: the to-be-kicked thread
2309 *
2310 * Cause a process which is running on another CPU to enter
2311 * kernel-mode, without any delay. (to get signals handled.)
2312 *
2313 * NOTE: this function doesnt have to take the runqueue lock,
2314 * because all it wants to ensure is that the remote task enters
2315 * the kernel. If the IPI races and the task has been migrated
2316 * to another CPU then no harm is done and the purpose has been
2317 * achieved as well.
2318 */
36c8b586 2319void kick_process(struct task_struct *p)
1da177e4
LT
2320{
2321 int cpu;
2322
2323 preempt_disable();
2324 cpu = task_cpu(p);
2325 if ((cpu != smp_processor_id()) && task_curr(p))
2326 smp_send_reschedule(cpu);
2327 preempt_enable();
2328}
b43e3521 2329EXPORT_SYMBOL_GPL(kick_process);
476d139c 2330#endif /* CONFIG_SMP */
1da177e4 2331
970b13ba 2332#ifdef CONFIG_SMP
30da688e
ON
2333/*
2334 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2335 */
5da9a0fb
PZ
2336static int select_fallback_rq(int cpu, struct task_struct *p)
2337{
2338 int dest_cpu;
2339 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2340
2341 /* Look for allowed, online CPU in same node. */
2342 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2343 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2344 return dest_cpu;
2345
2346 /* Any allowed, online CPU? */
2347 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2348 if (dest_cpu < nr_cpu_ids)
2349 return dest_cpu;
2350
2351 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2352 dest_cpu = cpuset_cpus_allowed_fallback(p);
2353 /*
2354 * Don't tell them about moving exiting tasks or
2355 * kernel threads (both mm NULL), since they never
2356 * leave kernel.
2357 */
2358 if (p->mm && printk_ratelimit()) {
2359 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2360 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2361 }
2362
2363 return dest_cpu;
2364}
2365
e2912009 2366/*
30da688e 2367 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2368 */
970b13ba 2369static inline
0017d735 2370int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2371{
0017d735 2372 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2373
2374 /*
2375 * In order not to call set_task_cpu() on a blocking task we need
2376 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2377 * cpu.
2378 *
2379 * Since this is common to all placement strategies, this lives here.
2380 *
2381 * [ this allows ->select_task() to simply return task_cpu(p) and
2382 * not worry about this generic constraint ]
2383 */
2384 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2385 !cpu_online(cpu)))
5da9a0fb 2386 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2387
2388 return cpu;
970b13ba 2389}
09a40af5
MG
2390
2391static void update_avg(u64 *avg, u64 sample)
2392{
2393 s64 diff = sample - *avg;
2394 *avg += diff >> 3;
2395}
970b13ba
PZ
2396#endif
2397
9ed3811a
TH
2398static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2399 bool is_sync, bool is_migrate, bool is_local,
2400 unsigned long en_flags)
2401{
2402 schedstat_inc(p, se.statistics.nr_wakeups);
2403 if (is_sync)
2404 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2405 if (is_migrate)
2406 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2407 if (is_local)
2408 schedstat_inc(p, se.statistics.nr_wakeups_local);
2409 else
2410 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2411
2412 activate_task(rq, p, en_flags);
2413}
2414
2415static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2416 int wake_flags, bool success)
2417{
2418 trace_sched_wakeup(p, success);
2419 check_preempt_curr(rq, p, wake_flags);
2420
2421 p->state = TASK_RUNNING;
2422#ifdef CONFIG_SMP
2423 if (p->sched_class->task_woken)
2424 p->sched_class->task_woken(rq, p);
2425
2426 if (unlikely(rq->idle_stamp)) {
2427 u64 delta = rq->clock - rq->idle_stamp;
2428 u64 max = 2*sysctl_sched_migration_cost;
2429
2430 if (delta > max)
2431 rq->avg_idle = max;
2432 else
2433 update_avg(&rq->avg_idle, delta);
2434 rq->idle_stamp = 0;
2435 }
2436#endif
21aa9af0
TH
2437 /* if a worker is waking up, notify workqueue */
2438 if ((p->flags & PF_WQ_WORKER) && success)
2439 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2440}
2441
2442/**
1da177e4 2443 * try_to_wake_up - wake up a thread
9ed3811a 2444 * @p: the thread to be awakened
1da177e4 2445 * @state: the mask of task states that can be woken
9ed3811a 2446 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2447 *
2448 * Put it on the run-queue if it's not already there. The "current"
2449 * thread is always on the run-queue (except when the actual
2450 * re-schedule is in progress), and as such you're allowed to do
2451 * the simpler "current->state = TASK_RUNNING" to mark yourself
2452 * runnable without the overhead of this.
2453 *
9ed3811a
TH
2454 * Returns %true if @p was woken up, %false if it was already running
2455 * or @state didn't match @p's state.
1da177e4 2456 */
7d478721
PZ
2457static int try_to_wake_up(struct task_struct *p, unsigned int state,
2458 int wake_flags)
1da177e4 2459{
cc367732 2460 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2461 unsigned long flags;
371fd7e7 2462 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2463 struct rq *rq;
1da177e4 2464
e9c84311 2465 this_cpu = get_cpu();
2398f2c6 2466
04e2f174 2467 smp_wmb();
ab3b3aa5 2468 rq = task_rq_lock(p, &flags);
e9c84311 2469 if (!(p->state & state))
1da177e4
LT
2470 goto out;
2471
dd41f596 2472 if (p->se.on_rq)
1da177e4
LT
2473 goto out_running;
2474
2475 cpu = task_cpu(p);
cc367732 2476 orig_cpu = cpu;
1da177e4
LT
2477
2478#ifdef CONFIG_SMP
2479 if (unlikely(task_running(rq, p)))
2480 goto out_activate;
2481
e9c84311
PZ
2482 /*
2483 * In order to handle concurrent wakeups and release the rq->lock
2484 * we put the task in TASK_WAKING state.
eb24073b
IM
2485 *
2486 * First fix up the nr_uninterruptible count:
e9c84311 2487 */
cc87f76a
PZ
2488 if (task_contributes_to_load(p)) {
2489 if (likely(cpu_online(orig_cpu)))
2490 rq->nr_uninterruptible--;
2491 else
2492 this_rq()->nr_uninterruptible--;
2493 }
e9c84311 2494 p->state = TASK_WAKING;
efbbd05a 2495
371fd7e7 2496 if (p->sched_class->task_waking) {
efbbd05a 2497 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2498 en_flags |= ENQUEUE_WAKING;
2499 }
efbbd05a 2500
0017d735
PZ
2501 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2502 if (cpu != orig_cpu)
5d2f5a61 2503 set_task_cpu(p, cpu);
0017d735 2504 __task_rq_unlock(rq);
ab19cb23 2505
0970d299
PZ
2506 rq = cpu_rq(cpu);
2507 raw_spin_lock(&rq->lock);
f5dc3753 2508
0970d299
PZ
2509 /*
2510 * We migrated the task without holding either rq->lock, however
2511 * since the task is not on the task list itself, nobody else
2512 * will try and migrate the task, hence the rq should match the
2513 * cpu we just moved it to.
2514 */
2515 WARN_ON(task_cpu(p) != cpu);
e9c84311 2516 WARN_ON(p->state != TASK_WAKING);
1da177e4 2517
e7693a36
GH
2518#ifdef CONFIG_SCHEDSTATS
2519 schedstat_inc(rq, ttwu_count);
2520 if (cpu == this_cpu)
2521 schedstat_inc(rq, ttwu_local);
2522 else {
2523 struct sched_domain *sd;
2524 for_each_domain(this_cpu, sd) {
758b2cdc 2525 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2526 schedstat_inc(sd, ttwu_wake_remote);
2527 break;
2528 }
2529 }
2530 }
6d6bc0ad 2531#endif /* CONFIG_SCHEDSTATS */
e7693a36 2532
1da177e4
LT
2533out_activate:
2534#endif /* CONFIG_SMP */
9ed3811a
TH
2535 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2536 cpu == this_cpu, en_flags);
1da177e4 2537 success = 1;
1da177e4 2538out_running:
9ed3811a 2539 ttwu_post_activation(p, rq, wake_flags, success);
1da177e4
LT
2540out:
2541 task_rq_unlock(rq, &flags);
e9c84311 2542 put_cpu();
1da177e4
LT
2543
2544 return success;
2545}
2546
21aa9af0
TH
2547/**
2548 * try_to_wake_up_local - try to wake up a local task with rq lock held
2549 * @p: the thread to be awakened
2550 *
b595076a 2551 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2552 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2553 * the current task. this_rq() stays locked over invocation.
2554 */
2555static void try_to_wake_up_local(struct task_struct *p)
2556{
2557 struct rq *rq = task_rq(p);
2558 bool success = false;
2559
2560 BUG_ON(rq != this_rq());
2561 BUG_ON(p == current);
2562 lockdep_assert_held(&rq->lock);
2563
2564 if (!(p->state & TASK_NORMAL))
2565 return;
2566
2567 if (!p->se.on_rq) {
2568 if (likely(!task_running(rq, p))) {
2569 schedstat_inc(rq, ttwu_count);
2570 schedstat_inc(rq, ttwu_local);
2571 }
2572 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2573 success = true;
2574 }
2575 ttwu_post_activation(p, rq, 0, success);
2576}
2577
50fa610a
DH
2578/**
2579 * wake_up_process - Wake up a specific process
2580 * @p: The process to be woken up.
2581 *
2582 * Attempt to wake up the nominated process and move it to the set of runnable
2583 * processes. Returns 1 if the process was woken up, 0 if it was already
2584 * running.
2585 *
2586 * It may be assumed that this function implies a write memory barrier before
2587 * changing the task state if and only if any tasks are woken up.
2588 */
7ad5b3a5 2589int wake_up_process(struct task_struct *p)
1da177e4 2590{
d9514f6c 2591 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2592}
1da177e4
LT
2593EXPORT_SYMBOL(wake_up_process);
2594
7ad5b3a5 2595int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2596{
2597 return try_to_wake_up(p, state, 0);
2598}
2599
1da177e4
LT
2600/*
2601 * Perform scheduler related setup for a newly forked process p.
2602 * p is forked by current.
dd41f596
IM
2603 *
2604 * __sched_fork() is basic setup used by init_idle() too:
2605 */
2606static void __sched_fork(struct task_struct *p)
2607{
dd41f596
IM
2608 p->se.exec_start = 0;
2609 p->se.sum_exec_runtime = 0;
f6cf891c 2610 p->se.prev_sum_exec_runtime = 0;
6c594c21 2611 p->se.nr_migrations = 0;
da7a735e 2612 p->se.vruntime = 0;
6cfb0d5d
IM
2613
2614#ifdef CONFIG_SCHEDSTATS
41acab88 2615 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2616#endif
476d139c 2617
fa717060 2618 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2619 p->se.on_rq = 0;
4a55bd5e 2620 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2621
e107be36
AK
2622#ifdef CONFIG_PREEMPT_NOTIFIERS
2623 INIT_HLIST_HEAD(&p->preempt_notifiers);
2624#endif
dd41f596
IM
2625}
2626
2627/*
2628 * fork()/clone()-time setup:
2629 */
2630void sched_fork(struct task_struct *p, int clone_flags)
2631{
2632 int cpu = get_cpu();
2633
2634 __sched_fork(p);
06b83b5f 2635 /*
0017d735 2636 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2637 * nobody will actually run it, and a signal or other external
2638 * event cannot wake it up and insert it on the runqueue either.
2639 */
0017d735 2640 p->state = TASK_RUNNING;
dd41f596 2641
b9dc29e7
MG
2642 /*
2643 * Revert to default priority/policy on fork if requested.
2644 */
2645 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2646 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2647 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2648 p->normal_prio = p->static_prio;
2649 }
b9dc29e7 2650
6c697bdf
MG
2651 if (PRIO_TO_NICE(p->static_prio) < 0) {
2652 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2653 p->normal_prio = p->static_prio;
6c697bdf
MG
2654 set_load_weight(p);
2655 }
2656
b9dc29e7
MG
2657 /*
2658 * We don't need the reset flag anymore after the fork. It has
2659 * fulfilled its duty:
2660 */
2661 p->sched_reset_on_fork = 0;
2662 }
ca94c442 2663
f83f9ac2
PW
2664 /*
2665 * Make sure we do not leak PI boosting priority to the child.
2666 */
2667 p->prio = current->normal_prio;
2668
2ddbf952
HS
2669 if (!rt_prio(p->prio))
2670 p->sched_class = &fair_sched_class;
b29739f9 2671
cd29fe6f
PZ
2672 if (p->sched_class->task_fork)
2673 p->sched_class->task_fork(p);
2674
86951599
PZ
2675 /*
2676 * The child is not yet in the pid-hash so no cgroup attach races,
2677 * and the cgroup is pinned to this child due to cgroup_fork()
2678 * is ran before sched_fork().
2679 *
2680 * Silence PROVE_RCU.
2681 */
2682 rcu_read_lock();
5f3edc1b 2683 set_task_cpu(p, cpu);
86951599 2684 rcu_read_unlock();
5f3edc1b 2685
52f17b6c 2686#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2687 if (likely(sched_info_on()))
52f17b6c 2688 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2689#endif
d6077cb8 2690#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2691 p->oncpu = 0;
2692#endif
1da177e4 2693#ifdef CONFIG_PREEMPT
4866cde0 2694 /* Want to start with kernel preemption disabled. */
a1261f54 2695 task_thread_info(p)->preempt_count = 1;
1da177e4 2696#endif
806c09a7 2697#ifdef CONFIG_SMP
917b627d 2698 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2699#endif
917b627d 2700
476d139c 2701 put_cpu();
1da177e4
LT
2702}
2703
2704/*
2705 * wake_up_new_task - wake up a newly created task for the first time.
2706 *
2707 * This function will do some initial scheduler statistics housekeeping
2708 * that must be done for every newly created context, then puts the task
2709 * on the runqueue and wakes it.
2710 */
7ad5b3a5 2711void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2712{
2713 unsigned long flags;
dd41f596 2714 struct rq *rq;
c890692b 2715 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2716
2717#ifdef CONFIG_SMP
0017d735
PZ
2718 rq = task_rq_lock(p, &flags);
2719 p->state = TASK_WAKING;
2720
fabf318e
PZ
2721 /*
2722 * Fork balancing, do it here and not earlier because:
2723 * - cpus_allowed can change in the fork path
2724 * - any previously selected cpu might disappear through hotplug
2725 *
0017d735
PZ
2726 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2727 * without people poking at ->cpus_allowed.
fabf318e 2728 */
0017d735 2729 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2730 set_task_cpu(p, cpu);
1da177e4 2731
06b83b5f 2732 p->state = TASK_RUNNING;
0017d735
PZ
2733 task_rq_unlock(rq, &flags);
2734#endif
2735
2736 rq = task_rq_lock(p, &flags);
cd29fe6f 2737 activate_task(rq, p, 0);
27a9da65 2738 trace_sched_wakeup_new(p, 1);
a7558e01 2739 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2740#ifdef CONFIG_SMP
efbbd05a
PZ
2741 if (p->sched_class->task_woken)
2742 p->sched_class->task_woken(rq, p);
9a897c5a 2743#endif
dd41f596 2744 task_rq_unlock(rq, &flags);
fabf318e 2745 put_cpu();
1da177e4
LT
2746}
2747
e107be36
AK
2748#ifdef CONFIG_PREEMPT_NOTIFIERS
2749
2750/**
80dd99b3 2751 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2752 * @notifier: notifier struct to register
e107be36
AK
2753 */
2754void preempt_notifier_register(struct preempt_notifier *notifier)
2755{
2756 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2757}
2758EXPORT_SYMBOL_GPL(preempt_notifier_register);
2759
2760/**
2761 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2762 * @notifier: notifier struct to unregister
e107be36
AK
2763 *
2764 * This is safe to call from within a preemption notifier.
2765 */
2766void preempt_notifier_unregister(struct preempt_notifier *notifier)
2767{
2768 hlist_del(&notifier->link);
2769}
2770EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2771
2772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2773{
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2779}
2780
2781static void
2782fire_sched_out_preempt_notifiers(struct task_struct *curr,
2783 struct task_struct *next)
2784{
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_out(notifier, next);
2790}
2791
6d6bc0ad 2792#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2793
2794static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795{
2796}
2797
2798static void
2799fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801{
2802}
2803
6d6bc0ad 2804#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2805
4866cde0
NP
2806/**
2807 * prepare_task_switch - prepare to switch tasks
2808 * @rq: the runqueue preparing to switch
421cee29 2809 * @prev: the current task that is being switched out
4866cde0
NP
2810 * @next: the task we are going to switch to.
2811 *
2812 * This is called with the rq lock held and interrupts off. It must
2813 * be paired with a subsequent finish_task_switch after the context
2814 * switch.
2815 *
2816 * prepare_task_switch sets up locking and calls architecture specific
2817 * hooks.
2818 */
e107be36
AK
2819static inline void
2820prepare_task_switch(struct rq *rq, struct task_struct *prev,
2821 struct task_struct *next)
4866cde0 2822{
fe4b04fa
PZ
2823 sched_info_switch(prev, next);
2824 perf_event_task_sched_out(prev, next);
e107be36 2825 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2826 prepare_lock_switch(rq, next);
2827 prepare_arch_switch(next);
fe4b04fa 2828 trace_sched_switch(prev, next);
4866cde0
NP
2829}
2830
1da177e4
LT
2831/**
2832 * finish_task_switch - clean up after a task-switch
344babaa 2833 * @rq: runqueue associated with task-switch
1da177e4
LT
2834 * @prev: the thread we just switched away from.
2835 *
4866cde0
NP
2836 * finish_task_switch must be called after the context switch, paired
2837 * with a prepare_task_switch call before the context switch.
2838 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2839 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2840 *
2841 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2842 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2843 * with the lock held can cause deadlocks; see schedule() for
2844 * details.)
2845 */
a9957449 2846static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2847 __releases(rq->lock)
2848{
1da177e4 2849 struct mm_struct *mm = rq->prev_mm;
55a101f8 2850 long prev_state;
1da177e4
LT
2851
2852 rq->prev_mm = NULL;
2853
2854 /*
2855 * A task struct has one reference for the use as "current".
c394cc9f 2856 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2857 * schedule one last time. The schedule call will never return, and
2858 * the scheduled task must drop that reference.
c394cc9f 2859 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2860 * still held, otherwise prev could be scheduled on another cpu, die
2861 * there before we look at prev->state, and then the reference would
2862 * be dropped twice.
2863 * Manfred Spraul <manfred@colorfullife.com>
2864 */
55a101f8 2865 prev_state = prev->state;
4866cde0 2866 finish_arch_switch(prev);
8381f65d
JI
2867#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2868 local_irq_disable();
2869#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2870 perf_event_task_sched_in(current);
8381f65d
JI
2871#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2872 local_irq_enable();
2873#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2874 finish_lock_switch(rq, prev);
e8fa1362 2875
e107be36 2876 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2877 if (mm)
2878 mmdrop(mm);
c394cc9f 2879 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2880 /*
2881 * Remove function-return probe instances associated with this
2882 * task and put them back on the free list.
9761eea8 2883 */
c6fd91f0 2884 kprobe_flush_task(prev);
1da177e4 2885 put_task_struct(prev);
c6fd91f0 2886 }
1da177e4
LT
2887}
2888
3f029d3c
GH
2889#ifdef CONFIG_SMP
2890
2891/* assumes rq->lock is held */
2892static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2893{
2894 if (prev->sched_class->pre_schedule)
2895 prev->sched_class->pre_schedule(rq, prev);
2896}
2897
2898/* rq->lock is NOT held, but preemption is disabled */
2899static inline void post_schedule(struct rq *rq)
2900{
2901 if (rq->post_schedule) {
2902 unsigned long flags;
2903
05fa785c 2904 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2905 if (rq->curr->sched_class->post_schedule)
2906 rq->curr->sched_class->post_schedule(rq);
05fa785c 2907 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2908
2909 rq->post_schedule = 0;
2910 }
2911}
2912
2913#else
da19ab51 2914
3f029d3c
GH
2915static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2916{
2917}
2918
2919static inline void post_schedule(struct rq *rq)
2920{
1da177e4
LT
2921}
2922
3f029d3c
GH
2923#endif
2924
1da177e4
LT
2925/**
2926 * schedule_tail - first thing a freshly forked thread must call.
2927 * @prev: the thread we just switched away from.
2928 */
36c8b586 2929asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2930 __releases(rq->lock)
2931{
70b97a7f
IM
2932 struct rq *rq = this_rq();
2933
4866cde0 2934 finish_task_switch(rq, prev);
da19ab51 2935
3f029d3c
GH
2936 /*
2937 * FIXME: do we need to worry about rq being invalidated by the
2938 * task_switch?
2939 */
2940 post_schedule(rq);
70b97a7f 2941
4866cde0
NP
2942#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2943 /* In this case, finish_task_switch does not reenable preemption */
2944 preempt_enable();
2945#endif
1da177e4 2946 if (current->set_child_tid)
b488893a 2947 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2948}
2949
2950/*
2951 * context_switch - switch to the new MM and the new
2952 * thread's register state.
2953 */
dd41f596 2954static inline void
70b97a7f 2955context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2956 struct task_struct *next)
1da177e4 2957{
dd41f596 2958 struct mm_struct *mm, *oldmm;
1da177e4 2959
e107be36 2960 prepare_task_switch(rq, prev, next);
fe4b04fa 2961
dd41f596
IM
2962 mm = next->mm;
2963 oldmm = prev->active_mm;
9226d125
ZA
2964 /*
2965 * For paravirt, this is coupled with an exit in switch_to to
2966 * combine the page table reload and the switch backend into
2967 * one hypercall.
2968 */
224101ed 2969 arch_start_context_switch(prev);
9226d125 2970
31915ab4 2971 if (!mm) {
1da177e4
LT
2972 next->active_mm = oldmm;
2973 atomic_inc(&oldmm->mm_count);
2974 enter_lazy_tlb(oldmm, next);
2975 } else
2976 switch_mm(oldmm, mm, next);
2977
31915ab4 2978 if (!prev->mm) {
1da177e4 2979 prev->active_mm = NULL;
1da177e4
LT
2980 rq->prev_mm = oldmm;
2981 }
3a5f5e48
IM
2982 /*
2983 * Since the runqueue lock will be released by the next
2984 * task (which is an invalid locking op but in the case
2985 * of the scheduler it's an obvious special-case), so we
2986 * do an early lockdep release here:
2987 */
2988#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2989 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2990#endif
1da177e4
LT
2991
2992 /* Here we just switch the register state and the stack. */
2993 switch_to(prev, next, prev);
2994
dd41f596
IM
2995 barrier();
2996 /*
2997 * this_rq must be evaluated again because prev may have moved
2998 * CPUs since it called schedule(), thus the 'rq' on its stack
2999 * frame will be invalid.
3000 */
3001 finish_task_switch(this_rq(), prev);
1da177e4
LT
3002}
3003
3004/*
3005 * nr_running, nr_uninterruptible and nr_context_switches:
3006 *
3007 * externally visible scheduler statistics: current number of runnable
3008 * threads, current number of uninterruptible-sleeping threads, total
3009 * number of context switches performed since bootup.
3010 */
3011unsigned long nr_running(void)
3012{
3013 unsigned long i, sum = 0;
3014
3015 for_each_online_cpu(i)
3016 sum += cpu_rq(i)->nr_running;
3017
3018 return sum;
f711f609 3019}
1da177e4
LT
3020
3021unsigned long nr_uninterruptible(void)
f711f609 3022{
1da177e4 3023 unsigned long i, sum = 0;
f711f609 3024
0a945022 3025 for_each_possible_cpu(i)
1da177e4 3026 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3027
3028 /*
1da177e4
LT
3029 * Since we read the counters lockless, it might be slightly
3030 * inaccurate. Do not allow it to go below zero though:
f711f609 3031 */
1da177e4
LT
3032 if (unlikely((long)sum < 0))
3033 sum = 0;
f711f609 3034
1da177e4 3035 return sum;
f711f609 3036}
f711f609 3037
1da177e4 3038unsigned long long nr_context_switches(void)
46cb4b7c 3039{
cc94abfc
SR
3040 int i;
3041 unsigned long long sum = 0;
46cb4b7c 3042
0a945022 3043 for_each_possible_cpu(i)
1da177e4 3044 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3045
1da177e4
LT
3046 return sum;
3047}
483b4ee6 3048
1da177e4
LT
3049unsigned long nr_iowait(void)
3050{
3051 unsigned long i, sum = 0;
483b4ee6 3052
0a945022 3053 for_each_possible_cpu(i)
1da177e4 3054 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3055
1da177e4
LT
3056 return sum;
3057}
483b4ee6 3058
8c215bd3 3059unsigned long nr_iowait_cpu(int cpu)
69d25870 3060{
8c215bd3 3061 struct rq *this = cpu_rq(cpu);
69d25870
AV
3062 return atomic_read(&this->nr_iowait);
3063}
46cb4b7c 3064
69d25870
AV
3065unsigned long this_cpu_load(void)
3066{
3067 struct rq *this = this_rq();
3068 return this->cpu_load[0];
3069}
e790fb0b 3070
46cb4b7c 3071
dce48a84
TG
3072/* Variables and functions for calc_load */
3073static atomic_long_t calc_load_tasks;
3074static unsigned long calc_load_update;
3075unsigned long avenrun[3];
3076EXPORT_SYMBOL(avenrun);
46cb4b7c 3077
74f5187a
PZ
3078static long calc_load_fold_active(struct rq *this_rq)
3079{
3080 long nr_active, delta = 0;
3081
3082 nr_active = this_rq->nr_running;
3083 nr_active += (long) this_rq->nr_uninterruptible;
3084
3085 if (nr_active != this_rq->calc_load_active) {
3086 delta = nr_active - this_rq->calc_load_active;
3087 this_rq->calc_load_active = nr_active;
3088 }
3089
3090 return delta;
3091}
3092
0f004f5a
PZ
3093static unsigned long
3094calc_load(unsigned long load, unsigned long exp, unsigned long active)
3095{
3096 load *= exp;
3097 load += active * (FIXED_1 - exp);
3098 load += 1UL << (FSHIFT - 1);
3099 return load >> FSHIFT;
3100}
3101
74f5187a
PZ
3102#ifdef CONFIG_NO_HZ
3103/*
3104 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3105 *
3106 * When making the ILB scale, we should try to pull this in as well.
3107 */
3108static atomic_long_t calc_load_tasks_idle;
3109
3110static void calc_load_account_idle(struct rq *this_rq)
3111{
3112 long delta;
3113
3114 delta = calc_load_fold_active(this_rq);
3115 if (delta)
3116 atomic_long_add(delta, &calc_load_tasks_idle);
3117}
3118
3119static long calc_load_fold_idle(void)
3120{
3121 long delta = 0;
3122
3123 /*
3124 * Its got a race, we don't care...
3125 */
3126 if (atomic_long_read(&calc_load_tasks_idle))
3127 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3128
3129 return delta;
3130}
0f004f5a
PZ
3131
3132/**
3133 * fixed_power_int - compute: x^n, in O(log n) time
3134 *
3135 * @x: base of the power
3136 * @frac_bits: fractional bits of @x
3137 * @n: power to raise @x to.
3138 *
3139 * By exploiting the relation between the definition of the natural power
3140 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3141 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3142 * (where: n_i \elem {0, 1}, the binary vector representing n),
3143 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3144 * of course trivially computable in O(log_2 n), the length of our binary
3145 * vector.
3146 */
3147static unsigned long
3148fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3149{
3150 unsigned long result = 1UL << frac_bits;
3151
3152 if (n) for (;;) {
3153 if (n & 1) {
3154 result *= x;
3155 result += 1UL << (frac_bits - 1);
3156 result >>= frac_bits;
3157 }
3158 n >>= 1;
3159 if (!n)
3160 break;
3161 x *= x;
3162 x += 1UL << (frac_bits - 1);
3163 x >>= frac_bits;
3164 }
3165
3166 return result;
3167}
3168
3169/*
3170 * a1 = a0 * e + a * (1 - e)
3171 *
3172 * a2 = a1 * e + a * (1 - e)
3173 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3174 * = a0 * e^2 + a * (1 - e) * (1 + e)
3175 *
3176 * a3 = a2 * e + a * (1 - e)
3177 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3178 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3179 *
3180 * ...
3181 *
3182 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3183 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3184 * = a0 * e^n + a * (1 - e^n)
3185 *
3186 * [1] application of the geometric series:
3187 *
3188 * n 1 - x^(n+1)
3189 * S_n := \Sum x^i = -------------
3190 * i=0 1 - x
3191 */
3192static unsigned long
3193calc_load_n(unsigned long load, unsigned long exp,
3194 unsigned long active, unsigned int n)
3195{
3196
3197 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3198}
3199
3200/*
3201 * NO_HZ can leave us missing all per-cpu ticks calling
3202 * calc_load_account_active(), but since an idle CPU folds its delta into
3203 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3204 * in the pending idle delta if our idle period crossed a load cycle boundary.
3205 *
3206 * Once we've updated the global active value, we need to apply the exponential
3207 * weights adjusted to the number of cycles missed.
3208 */
3209static void calc_global_nohz(unsigned long ticks)
3210{
3211 long delta, active, n;
3212
3213 if (time_before(jiffies, calc_load_update))
3214 return;
3215
3216 /*
3217 * If we crossed a calc_load_update boundary, make sure to fold
3218 * any pending idle changes, the respective CPUs might have
3219 * missed the tick driven calc_load_account_active() update
3220 * due to NO_HZ.
3221 */
3222 delta = calc_load_fold_idle();
3223 if (delta)
3224 atomic_long_add(delta, &calc_load_tasks);
3225
3226 /*
3227 * If we were idle for multiple load cycles, apply them.
3228 */
3229 if (ticks >= LOAD_FREQ) {
3230 n = ticks / LOAD_FREQ;
3231
3232 active = atomic_long_read(&calc_load_tasks);
3233 active = active > 0 ? active * FIXED_1 : 0;
3234
3235 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3236 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3237 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3238
3239 calc_load_update += n * LOAD_FREQ;
3240 }
3241
3242 /*
3243 * Its possible the remainder of the above division also crosses
3244 * a LOAD_FREQ period, the regular check in calc_global_load()
3245 * which comes after this will take care of that.
3246 *
3247 * Consider us being 11 ticks before a cycle completion, and us
3248 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3249 * age us 4 cycles, and the test in calc_global_load() will
3250 * pick up the final one.
3251 */
3252}
74f5187a
PZ
3253#else
3254static void calc_load_account_idle(struct rq *this_rq)
3255{
3256}
3257
3258static inline long calc_load_fold_idle(void)
3259{
3260 return 0;
3261}
0f004f5a
PZ
3262
3263static void calc_global_nohz(unsigned long ticks)
3264{
3265}
74f5187a
PZ
3266#endif
3267
2d02494f
TG
3268/**
3269 * get_avenrun - get the load average array
3270 * @loads: pointer to dest load array
3271 * @offset: offset to add
3272 * @shift: shift count to shift the result left
3273 *
3274 * These values are estimates at best, so no need for locking.
3275 */
3276void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3277{
3278 loads[0] = (avenrun[0] + offset) << shift;
3279 loads[1] = (avenrun[1] + offset) << shift;
3280 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3281}
46cb4b7c 3282
46cb4b7c 3283/*
dce48a84
TG
3284 * calc_load - update the avenrun load estimates 10 ticks after the
3285 * CPUs have updated calc_load_tasks.
7835b98b 3286 */
0f004f5a 3287void calc_global_load(unsigned long ticks)
7835b98b 3288{
dce48a84 3289 long active;
1da177e4 3290
0f004f5a
PZ
3291 calc_global_nohz(ticks);
3292
3293 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3294 return;
1da177e4 3295
dce48a84
TG
3296 active = atomic_long_read(&calc_load_tasks);
3297 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3298
dce48a84
TG
3299 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3300 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3301 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3302
dce48a84
TG
3303 calc_load_update += LOAD_FREQ;
3304}
1da177e4 3305
dce48a84 3306/*
74f5187a
PZ
3307 * Called from update_cpu_load() to periodically update this CPU's
3308 * active count.
dce48a84
TG
3309 */
3310static void calc_load_account_active(struct rq *this_rq)
3311{
74f5187a 3312 long delta;
08c183f3 3313
74f5187a
PZ
3314 if (time_before(jiffies, this_rq->calc_load_update))
3315 return;
783609c6 3316
74f5187a
PZ
3317 delta = calc_load_fold_active(this_rq);
3318 delta += calc_load_fold_idle();
3319 if (delta)
dce48a84 3320 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3321
3322 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3323}
3324
fdf3e95d
VP
3325/*
3326 * The exact cpuload at various idx values, calculated at every tick would be
3327 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3328 *
3329 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3330 * on nth tick when cpu may be busy, then we have:
3331 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3332 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3333 *
3334 * decay_load_missed() below does efficient calculation of
3335 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3336 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3337 *
3338 * The calculation is approximated on a 128 point scale.
3339 * degrade_zero_ticks is the number of ticks after which load at any
3340 * particular idx is approximated to be zero.
3341 * degrade_factor is a precomputed table, a row for each load idx.
3342 * Each column corresponds to degradation factor for a power of two ticks,
3343 * based on 128 point scale.
3344 * Example:
3345 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3346 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3347 *
3348 * With this power of 2 load factors, we can degrade the load n times
3349 * by looking at 1 bits in n and doing as many mult/shift instead of
3350 * n mult/shifts needed by the exact degradation.
3351 */
3352#define DEGRADE_SHIFT 7
3353static const unsigned char
3354 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3355static const unsigned char
3356 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3357 {0, 0, 0, 0, 0, 0, 0, 0},
3358 {64, 32, 8, 0, 0, 0, 0, 0},
3359 {96, 72, 40, 12, 1, 0, 0},
3360 {112, 98, 75, 43, 15, 1, 0},
3361 {120, 112, 98, 76, 45, 16, 2} };
3362
3363/*
3364 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3365 * would be when CPU is idle and so we just decay the old load without
3366 * adding any new load.
3367 */
3368static unsigned long
3369decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3370{
3371 int j = 0;
3372
3373 if (!missed_updates)
3374 return load;
3375
3376 if (missed_updates >= degrade_zero_ticks[idx])
3377 return 0;
3378
3379 if (idx == 1)
3380 return load >> missed_updates;
3381
3382 while (missed_updates) {
3383 if (missed_updates % 2)
3384 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3385
3386 missed_updates >>= 1;
3387 j++;
3388 }
3389 return load;
3390}
3391
46cb4b7c 3392/*
dd41f596 3393 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3394 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3395 * every tick. We fix it up based on jiffies.
46cb4b7c 3396 */
dd41f596 3397static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3398{
495eca49 3399 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3400 unsigned long curr_jiffies = jiffies;
3401 unsigned long pending_updates;
dd41f596 3402 int i, scale;
46cb4b7c 3403
dd41f596 3404 this_rq->nr_load_updates++;
46cb4b7c 3405
fdf3e95d
VP
3406 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3407 if (curr_jiffies == this_rq->last_load_update_tick)
3408 return;
3409
3410 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3411 this_rq->last_load_update_tick = curr_jiffies;
3412
dd41f596 3413 /* Update our load: */
fdf3e95d
VP
3414 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3415 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3416 unsigned long old_load, new_load;
7d1e6a9b 3417
dd41f596 3418 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3419
dd41f596 3420 old_load = this_rq->cpu_load[i];
fdf3e95d 3421 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3422 new_load = this_load;
a25707f3
IM
3423 /*
3424 * Round up the averaging division if load is increasing. This
3425 * prevents us from getting stuck on 9 if the load is 10, for
3426 * example.
3427 */
3428 if (new_load > old_load)
fdf3e95d
VP
3429 new_load += scale - 1;
3430
3431 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3432 }
da2b71ed
SS
3433
3434 sched_avg_update(this_rq);
fdf3e95d
VP
3435}
3436
3437static void update_cpu_load_active(struct rq *this_rq)
3438{
3439 update_cpu_load(this_rq);
46cb4b7c 3440
74f5187a 3441 calc_load_account_active(this_rq);
46cb4b7c
SS
3442}
3443
dd41f596 3444#ifdef CONFIG_SMP
8a0be9ef 3445
46cb4b7c 3446/*
38022906
PZ
3447 * sched_exec - execve() is a valuable balancing opportunity, because at
3448 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3449 */
38022906 3450void sched_exec(void)
46cb4b7c 3451{
38022906 3452 struct task_struct *p = current;
1da177e4 3453 unsigned long flags;
70b97a7f 3454 struct rq *rq;
0017d735 3455 int dest_cpu;
46cb4b7c 3456
1da177e4 3457 rq = task_rq_lock(p, &flags);
0017d735
PZ
3458 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3459 if (dest_cpu == smp_processor_id())
3460 goto unlock;
38022906 3461
46cb4b7c 3462 /*
38022906 3463 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3464 */
30da688e 3465 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3466 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3467 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3468
1da177e4 3469 task_rq_unlock(rq, &flags);
969c7921 3470 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3471 return;
3472 }
0017d735 3473unlock:
1da177e4 3474 task_rq_unlock(rq, &flags);
1da177e4 3475}
dd41f596 3476
1da177e4
LT
3477#endif
3478
1da177e4
LT
3479DEFINE_PER_CPU(struct kernel_stat, kstat);
3480
3481EXPORT_PER_CPU_SYMBOL(kstat);
3482
3483/*
c5f8d995 3484 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3485 * @p in case that task is currently running.
c5f8d995
HS
3486 *
3487 * Called with task_rq_lock() held on @rq.
1da177e4 3488 */
c5f8d995
HS
3489static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3490{
3491 u64 ns = 0;
3492
3493 if (task_current(rq, p)) {
3494 update_rq_clock(rq);
305e6835 3495 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3496 if ((s64)ns < 0)
3497 ns = 0;
3498 }
3499
3500 return ns;
3501}
3502
bb34d92f 3503unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3504{
1da177e4 3505 unsigned long flags;
41b86e9c 3506 struct rq *rq;
bb34d92f 3507 u64 ns = 0;
48f24c4d 3508
41b86e9c 3509 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3510 ns = do_task_delta_exec(p, rq);
3511 task_rq_unlock(rq, &flags);
1508487e 3512
c5f8d995
HS
3513 return ns;
3514}
f06febc9 3515
c5f8d995
HS
3516/*
3517 * Return accounted runtime for the task.
3518 * In case the task is currently running, return the runtime plus current's
3519 * pending runtime that have not been accounted yet.
3520 */
3521unsigned long long task_sched_runtime(struct task_struct *p)
3522{
3523 unsigned long flags;
3524 struct rq *rq;
3525 u64 ns = 0;
3526
3527 rq = task_rq_lock(p, &flags);
3528 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3529 task_rq_unlock(rq, &flags);
3530
3531 return ns;
3532}
48f24c4d 3533
c5f8d995
HS
3534/*
3535 * Return sum_exec_runtime for the thread group.
3536 * In case the task is currently running, return the sum plus current's
3537 * pending runtime that have not been accounted yet.
3538 *
3539 * Note that the thread group might have other running tasks as well,
3540 * so the return value not includes other pending runtime that other
3541 * running tasks might have.
3542 */
3543unsigned long long thread_group_sched_runtime(struct task_struct *p)
3544{
3545 struct task_cputime totals;
3546 unsigned long flags;
3547 struct rq *rq;
3548 u64 ns;
3549
3550 rq = task_rq_lock(p, &flags);
3551 thread_group_cputime(p, &totals);
3552 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3553 task_rq_unlock(rq, &flags);
48f24c4d 3554
1da177e4
LT
3555 return ns;
3556}
3557
1da177e4
LT
3558/*
3559 * Account user cpu time to a process.
3560 * @p: the process that the cpu time gets accounted to
1da177e4 3561 * @cputime: the cpu time spent in user space since the last update
457533a7 3562 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3563 */
457533a7
MS
3564void account_user_time(struct task_struct *p, cputime_t cputime,
3565 cputime_t cputime_scaled)
1da177e4
LT
3566{
3567 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3568 cputime64_t tmp;
3569
457533a7 3570 /* Add user time to process. */
1da177e4 3571 p->utime = cputime_add(p->utime, cputime);
457533a7 3572 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3573 account_group_user_time(p, cputime);
1da177e4
LT
3574
3575 /* Add user time to cpustat. */
3576 tmp = cputime_to_cputime64(cputime);
3577 if (TASK_NICE(p) > 0)
3578 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3579 else
3580 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3581
3582 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3583 /* Account for user time used */
3584 acct_update_integrals(p);
1da177e4
LT
3585}
3586
94886b84
LV
3587/*
3588 * Account guest cpu time to a process.
3589 * @p: the process that the cpu time gets accounted to
3590 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3591 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3592 */
457533a7
MS
3593static void account_guest_time(struct task_struct *p, cputime_t cputime,
3594 cputime_t cputime_scaled)
94886b84
LV
3595{
3596 cputime64_t tmp;
3597 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3598
3599 tmp = cputime_to_cputime64(cputime);
3600
457533a7 3601 /* Add guest time to process. */
94886b84 3602 p->utime = cputime_add(p->utime, cputime);
457533a7 3603 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3604 account_group_user_time(p, cputime);
94886b84
LV
3605 p->gtime = cputime_add(p->gtime, cputime);
3606
457533a7 3607 /* Add guest time to cpustat. */
ce0e7b28
RO
3608 if (TASK_NICE(p) > 0) {
3609 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3610 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3611 } else {
3612 cpustat->user = cputime64_add(cpustat->user, tmp);
3613 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3614 }
94886b84
LV
3615}
3616
70a89a66
VP
3617/*
3618 * Account system cpu time to a process and desired cpustat field
3619 * @p: the process that the cpu time gets accounted to
3620 * @cputime: the cpu time spent in kernel space since the last update
3621 * @cputime_scaled: cputime scaled by cpu frequency
3622 * @target_cputime64: pointer to cpustat field that has to be updated
3623 */
3624static inline
3625void __account_system_time(struct task_struct *p, cputime_t cputime,
3626 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3627{
3628 cputime64_t tmp = cputime_to_cputime64(cputime);
3629
3630 /* Add system time to process. */
3631 p->stime = cputime_add(p->stime, cputime);
3632 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3633 account_group_system_time(p, cputime);
3634
3635 /* Add system time to cpustat. */
3636 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3637 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3638
3639 /* Account for system time used */
3640 acct_update_integrals(p);
3641}
3642
1da177e4
LT
3643/*
3644 * Account system cpu time to a process.
3645 * @p: the process that the cpu time gets accounted to
3646 * @hardirq_offset: the offset to subtract from hardirq_count()
3647 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3648 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3649 */
3650void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3651 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3652{
3653 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3654 cputime64_t *target_cputime64;
1da177e4 3655
983ed7a6 3656 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3657 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3658 return;
3659 }
94886b84 3660
1da177e4 3661 if (hardirq_count() - hardirq_offset)
70a89a66 3662 target_cputime64 = &cpustat->irq;
75e1056f 3663 else if (in_serving_softirq())
70a89a66 3664 target_cputime64 = &cpustat->softirq;
1da177e4 3665 else
70a89a66 3666 target_cputime64 = &cpustat->system;
ef12fefa 3667
70a89a66 3668 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3669}
3670
c66f08be 3671/*
1da177e4 3672 * Account for involuntary wait time.
544b4a1f 3673 * @cputime: the cpu time spent in involuntary wait
c66f08be 3674 */
79741dd3 3675void account_steal_time(cputime_t cputime)
c66f08be 3676{
79741dd3
MS
3677 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3678 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3679
3680 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3681}
3682
1da177e4 3683/*
79741dd3
MS
3684 * Account for idle time.
3685 * @cputime: the cpu time spent in idle wait
1da177e4 3686 */
79741dd3 3687void account_idle_time(cputime_t cputime)
1da177e4
LT
3688{
3689 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3690 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3691 struct rq *rq = this_rq();
1da177e4 3692
79741dd3
MS
3693 if (atomic_read(&rq->nr_iowait) > 0)
3694 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3695 else
3696 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3697}
3698
79741dd3
MS
3699#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3700
abb74cef
VP
3701#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3702/*
3703 * Account a tick to a process and cpustat
3704 * @p: the process that the cpu time gets accounted to
3705 * @user_tick: is the tick from userspace
3706 * @rq: the pointer to rq
3707 *
3708 * Tick demultiplexing follows the order
3709 * - pending hardirq update
3710 * - pending softirq update
3711 * - user_time
3712 * - idle_time
3713 * - system time
3714 * - check for guest_time
3715 * - else account as system_time
3716 *
3717 * Check for hardirq is done both for system and user time as there is
3718 * no timer going off while we are on hardirq and hence we may never get an
3719 * opportunity to update it solely in system time.
3720 * p->stime and friends are only updated on system time and not on irq
3721 * softirq as those do not count in task exec_runtime any more.
3722 */
3723static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3724 struct rq *rq)
3725{
3726 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3727 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3728 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3729
3730 if (irqtime_account_hi_update()) {
3731 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3732 } else if (irqtime_account_si_update()) {
3733 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3734 } else if (this_cpu_ksoftirqd() == p) {
3735 /*
3736 * ksoftirqd time do not get accounted in cpu_softirq_time.
3737 * So, we have to handle it separately here.
3738 * Also, p->stime needs to be updated for ksoftirqd.
3739 */
3740 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3741 &cpustat->softirq);
abb74cef
VP
3742 } else if (user_tick) {
3743 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3744 } else if (p == rq->idle) {
3745 account_idle_time(cputime_one_jiffy);
3746 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3747 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3748 } else {
3749 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3750 &cpustat->system);
3751 }
3752}
3753
3754static void irqtime_account_idle_ticks(int ticks)
3755{
3756 int i;
3757 struct rq *rq = this_rq();
3758
3759 for (i = 0; i < ticks; i++)
3760 irqtime_account_process_tick(current, 0, rq);
3761}
544b4a1f 3762#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3763static void irqtime_account_idle_ticks(int ticks) {}
3764static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3765 struct rq *rq) {}
544b4a1f 3766#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3767
3768/*
3769 * Account a single tick of cpu time.
3770 * @p: the process that the cpu time gets accounted to
3771 * @user_tick: indicates if the tick is a user or a system tick
3772 */
3773void account_process_tick(struct task_struct *p, int user_tick)
3774{
a42548a1 3775 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3776 struct rq *rq = this_rq();
3777
abb74cef
VP
3778 if (sched_clock_irqtime) {
3779 irqtime_account_process_tick(p, user_tick, rq);
3780 return;
3781 }
3782
79741dd3 3783 if (user_tick)
a42548a1 3784 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3785 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3786 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3787 one_jiffy_scaled);
3788 else
a42548a1 3789 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3790}
3791
3792/*
3793 * Account multiple ticks of steal time.
3794 * @p: the process from which the cpu time has been stolen
3795 * @ticks: number of stolen ticks
3796 */
3797void account_steal_ticks(unsigned long ticks)
3798{
3799 account_steal_time(jiffies_to_cputime(ticks));
3800}
3801
3802/*
3803 * Account multiple ticks of idle time.
3804 * @ticks: number of stolen ticks
3805 */
3806void account_idle_ticks(unsigned long ticks)
3807{
abb74cef
VP
3808
3809 if (sched_clock_irqtime) {
3810 irqtime_account_idle_ticks(ticks);
3811 return;
3812 }
3813
79741dd3 3814 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3815}
3816
79741dd3
MS
3817#endif
3818
49048622
BS
3819/*
3820 * Use precise platform statistics if available:
3821 */
3822#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3823void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3824{
d99ca3b9
HS
3825 *ut = p->utime;
3826 *st = p->stime;
49048622
BS
3827}
3828
0cf55e1e 3829void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3830{
0cf55e1e
HS
3831 struct task_cputime cputime;
3832
3833 thread_group_cputime(p, &cputime);
3834
3835 *ut = cputime.utime;
3836 *st = cputime.stime;
49048622
BS
3837}
3838#else
761b1d26
HS
3839
3840#ifndef nsecs_to_cputime
b7b20df9 3841# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3842#endif
3843
d180c5bc 3844void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3845{
d99ca3b9 3846 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3847
3848 /*
3849 * Use CFS's precise accounting:
3850 */
d180c5bc 3851 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3852
3853 if (total) {
e75e863d 3854 u64 temp = rtime;
d180c5bc 3855
e75e863d 3856 temp *= utime;
49048622 3857 do_div(temp, total);
d180c5bc
HS
3858 utime = (cputime_t)temp;
3859 } else
3860 utime = rtime;
49048622 3861
d180c5bc
HS
3862 /*
3863 * Compare with previous values, to keep monotonicity:
3864 */
761b1d26 3865 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3866 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3867
d99ca3b9
HS
3868 *ut = p->prev_utime;
3869 *st = p->prev_stime;
49048622
BS
3870}
3871
0cf55e1e
HS
3872/*
3873 * Must be called with siglock held.
3874 */
3875void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3876{
0cf55e1e
HS
3877 struct signal_struct *sig = p->signal;
3878 struct task_cputime cputime;
3879 cputime_t rtime, utime, total;
49048622 3880
0cf55e1e 3881 thread_group_cputime(p, &cputime);
49048622 3882
0cf55e1e
HS
3883 total = cputime_add(cputime.utime, cputime.stime);
3884 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3885
0cf55e1e 3886 if (total) {
e75e863d 3887 u64 temp = rtime;
49048622 3888
e75e863d 3889 temp *= cputime.utime;
0cf55e1e
HS
3890 do_div(temp, total);
3891 utime = (cputime_t)temp;
3892 } else
3893 utime = rtime;
3894
3895 sig->prev_utime = max(sig->prev_utime, utime);
3896 sig->prev_stime = max(sig->prev_stime,
3897 cputime_sub(rtime, sig->prev_utime));
3898
3899 *ut = sig->prev_utime;
3900 *st = sig->prev_stime;
49048622 3901}
49048622 3902#endif
49048622 3903
7835b98b
CL
3904/*
3905 * This function gets called by the timer code, with HZ frequency.
3906 * We call it with interrupts disabled.
3907 *
3908 * It also gets called by the fork code, when changing the parent's
3909 * timeslices.
3910 */
3911void scheduler_tick(void)
3912{
7835b98b
CL
3913 int cpu = smp_processor_id();
3914 struct rq *rq = cpu_rq(cpu);
dd41f596 3915 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3916
3917 sched_clock_tick();
dd41f596 3918
05fa785c 3919 raw_spin_lock(&rq->lock);
3e51f33f 3920 update_rq_clock(rq);
fdf3e95d 3921 update_cpu_load_active(rq);
fa85ae24 3922 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3923 raw_spin_unlock(&rq->lock);
7835b98b 3924
e9d2b064 3925 perf_event_task_tick();
e220d2dc 3926
e418e1c2 3927#ifdef CONFIG_SMP
dd41f596
IM
3928 rq->idle_at_tick = idle_cpu(cpu);
3929 trigger_load_balance(rq, cpu);
e418e1c2 3930#endif
1da177e4
LT
3931}
3932
132380a0 3933notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3934{
3935 if (in_lock_functions(addr)) {
3936 addr = CALLER_ADDR2;
3937 if (in_lock_functions(addr))
3938 addr = CALLER_ADDR3;
3939 }
3940 return addr;
3941}
1da177e4 3942
7e49fcce
SR
3943#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3944 defined(CONFIG_PREEMPT_TRACER))
3945
43627582 3946void __kprobes add_preempt_count(int val)
1da177e4 3947{
6cd8a4bb 3948#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3949 /*
3950 * Underflow?
3951 */
9a11b49a
IM
3952 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3953 return;
6cd8a4bb 3954#endif
1da177e4 3955 preempt_count() += val;
6cd8a4bb 3956#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3957 /*
3958 * Spinlock count overflowing soon?
3959 */
33859f7f
MOS
3960 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3961 PREEMPT_MASK - 10);
6cd8a4bb
SR
3962#endif
3963 if (preempt_count() == val)
3964 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3965}
3966EXPORT_SYMBOL(add_preempt_count);
3967
43627582 3968void __kprobes sub_preempt_count(int val)
1da177e4 3969{
6cd8a4bb 3970#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3971 /*
3972 * Underflow?
3973 */
01e3eb82 3974 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3975 return;
1da177e4
LT
3976 /*
3977 * Is the spinlock portion underflowing?
3978 */
9a11b49a
IM
3979 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3980 !(preempt_count() & PREEMPT_MASK)))
3981 return;
6cd8a4bb 3982#endif
9a11b49a 3983
6cd8a4bb
SR
3984 if (preempt_count() == val)
3985 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3986 preempt_count() -= val;
3987}
3988EXPORT_SYMBOL(sub_preempt_count);
3989
3990#endif
3991
3992/*
dd41f596 3993 * Print scheduling while atomic bug:
1da177e4 3994 */
dd41f596 3995static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3996{
838225b4
SS
3997 struct pt_regs *regs = get_irq_regs();
3998
3df0fc5b
PZ
3999 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4000 prev->comm, prev->pid, preempt_count());
838225b4 4001
dd41f596 4002 debug_show_held_locks(prev);
e21f5b15 4003 print_modules();
dd41f596
IM
4004 if (irqs_disabled())
4005 print_irqtrace_events(prev);
838225b4
SS
4006
4007 if (regs)
4008 show_regs(regs);
4009 else
4010 dump_stack();
dd41f596 4011}
1da177e4 4012
dd41f596
IM
4013/*
4014 * Various schedule()-time debugging checks and statistics:
4015 */
4016static inline void schedule_debug(struct task_struct *prev)
4017{
1da177e4 4018 /*
41a2d6cf 4019 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4020 * schedule() atomically, we ignore that path for now.
4021 * Otherwise, whine if we are scheduling when we should not be.
4022 */
3f33a7ce 4023 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4024 __schedule_bug(prev);
4025
1da177e4
LT
4026 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4027
2d72376b 4028 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4029#ifdef CONFIG_SCHEDSTATS
4030 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4031 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4032 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4033 }
4034#endif
dd41f596
IM
4035}
4036
6cecd084 4037static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4038{
a64692a3
MG
4039 if (prev->se.on_rq)
4040 update_rq_clock(rq);
6cecd084 4041 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4042}
4043
dd41f596
IM
4044/*
4045 * Pick up the highest-prio task:
4046 */
4047static inline struct task_struct *
b67802ea 4048pick_next_task(struct rq *rq)
dd41f596 4049{
5522d5d5 4050 const struct sched_class *class;
dd41f596 4051 struct task_struct *p;
1da177e4
LT
4052
4053 /*
dd41f596
IM
4054 * Optimization: we know that if all tasks are in
4055 * the fair class we can call that function directly:
1da177e4 4056 */
dd41f596 4057 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4058 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4059 if (likely(p))
4060 return p;
1da177e4
LT
4061 }
4062
34f971f6 4063 for_each_class(class) {
fb8d4724 4064 p = class->pick_next_task(rq);
dd41f596
IM
4065 if (p)
4066 return p;
dd41f596 4067 }
34f971f6
PZ
4068
4069 BUG(); /* the idle class will always have a runnable task */
dd41f596 4070}
1da177e4 4071
dd41f596
IM
4072/*
4073 * schedule() is the main scheduler function.
4074 */
ff743345 4075asmlinkage void __sched schedule(void)
dd41f596
IM
4076{
4077 struct task_struct *prev, *next;
67ca7bde 4078 unsigned long *switch_count;
dd41f596 4079 struct rq *rq;
31656519 4080 int cpu;
dd41f596 4081
ff743345
PZ
4082need_resched:
4083 preempt_disable();
dd41f596
IM
4084 cpu = smp_processor_id();
4085 rq = cpu_rq(cpu);
25502a6c 4086 rcu_note_context_switch(cpu);
dd41f596 4087 prev = rq->curr;
dd41f596
IM
4088
4089 release_kernel_lock(prev);
4090need_resched_nonpreemptible:
4091
4092 schedule_debug(prev);
1da177e4 4093
31656519 4094 if (sched_feat(HRTICK))
f333fdc9 4095 hrtick_clear(rq);
8f4d37ec 4096
05fa785c 4097 raw_spin_lock_irq(&rq->lock);
1da177e4 4098
246d86b5 4099 switch_count = &prev->nivcsw;
1da177e4 4100 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4101 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4102 prev->state = TASK_RUNNING;
21aa9af0
TH
4103 } else {
4104 /*
4105 * If a worker is going to sleep, notify and
4106 * ask workqueue whether it wants to wake up a
4107 * task to maintain concurrency. If so, wake
4108 * up the task.
4109 */
4110 if (prev->flags & PF_WQ_WORKER) {
4111 struct task_struct *to_wakeup;
4112
4113 to_wakeup = wq_worker_sleeping(prev, cpu);
4114 if (to_wakeup)
4115 try_to_wake_up_local(to_wakeup);
4116 }
371fd7e7 4117 deactivate_task(rq, prev, DEQUEUE_SLEEP);
21aa9af0 4118 }
dd41f596 4119 switch_count = &prev->nvcsw;
1da177e4
LT
4120 }
4121
3f029d3c 4122 pre_schedule(rq, prev);
f65eda4f 4123
dd41f596 4124 if (unlikely(!rq->nr_running))
1da177e4 4125 idle_balance(cpu, rq);
1da177e4 4126
df1c99d4 4127 put_prev_task(rq, prev);
b67802ea 4128 next = pick_next_task(rq);
f26f9aff
MG
4129 clear_tsk_need_resched(prev);
4130 rq->skip_clock_update = 0;
1da177e4 4131
1da177e4 4132 if (likely(prev != next)) {
1da177e4
LT
4133 rq->nr_switches++;
4134 rq->curr = next;
4135 ++*switch_count;
4136
dd41f596 4137 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4138 /*
246d86b5
ON
4139 * The context switch have flipped the stack from under us
4140 * and restored the local variables which were saved when
4141 * this task called schedule() in the past. prev == current
4142 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4143 */
4144 cpu = smp_processor_id();
4145 rq = cpu_rq(cpu);
1da177e4 4146 } else
05fa785c 4147 raw_spin_unlock_irq(&rq->lock);
1da177e4 4148
3f029d3c 4149 post_schedule(rq);
1da177e4 4150
246d86b5 4151 if (unlikely(reacquire_kernel_lock(prev)))
1da177e4 4152 goto need_resched_nonpreemptible;
8f4d37ec 4153
1da177e4 4154 preempt_enable_no_resched();
ff743345 4155 if (need_resched())
1da177e4
LT
4156 goto need_resched;
4157}
1da177e4
LT
4158EXPORT_SYMBOL(schedule);
4159
c08f7829 4160#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
4161/*
4162 * Look out! "owner" is an entirely speculative pointer
4163 * access and not reliable.
4164 */
4165int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4166{
4167 unsigned int cpu;
4168 struct rq *rq;
4169
4170 if (!sched_feat(OWNER_SPIN))
4171 return 0;
4172
4173#ifdef CONFIG_DEBUG_PAGEALLOC
4174 /*
4175 * Need to access the cpu field knowing that
4176 * DEBUG_PAGEALLOC could have unmapped it if
4177 * the mutex owner just released it and exited.
4178 */
4179 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 4180 return 0;
0d66bf6d
PZ
4181#else
4182 cpu = owner->cpu;
4183#endif
4184
4185 /*
4186 * Even if the access succeeded (likely case),
4187 * the cpu field may no longer be valid.
4188 */
4189 if (cpu >= nr_cpumask_bits)
4b402210 4190 return 0;
0d66bf6d
PZ
4191
4192 /*
4193 * We need to validate that we can do a
4194 * get_cpu() and that we have the percpu area.
4195 */
4196 if (!cpu_online(cpu))
4b402210 4197 return 0;
0d66bf6d
PZ
4198
4199 rq = cpu_rq(cpu);
4200
4201 for (;;) {
4202 /*
4203 * Owner changed, break to re-assess state.
4204 */
9d0f4dcc
TC
4205 if (lock->owner != owner) {
4206 /*
4207 * If the lock has switched to a different owner,
4208 * we likely have heavy contention. Return 0 to quit
4209 * optimistic spinning and not contend further:
4210 */
4211 if (lock->owner)
4212 return 0;
0d66bf6d 4213 break;
9d0f4dcc 4214 }
0d66bf6d
PZ
4215
4216 /*
4217 * Is that owner really running on that cpu?
4218 */
4219 if (task_thread_info(rq->curr) != owner || need_resched())
4220 return 0;
4221
335d7afb 4222 arch_mutex_cpu_relax();
0d66bf6d 4223 }
4b402210 4224
0d66bf6d
PZ
4225 return 1;
4226}
4227#endif
4228
1da177e4
LT
4229#ifdef CONFIG_PREEMPT
4230/*
2ed6e34f 4231 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4232 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4233 * occur there and call schedule directly.
4234 */
d1f74e20 4235asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4236{
4237 struct thread_info *ti = current_thread_info();
6478d880 4238
1da177e4
LT
4239 /*
4240 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4241 * we do not want to preempt the current task. Just return..
1da177e4 4242 */
beed33a8 4243 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4244 return;
4245
3a5c359a 4246 do {
d1f74e20 4247 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4248 schedule();
d1f74e20 4249 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4250
3a5c359a
AK
4251 /*
4252 * Check again in case we missed a preemption opportunity
4253 * between schedule and now.
4254 */
4255 barrier();
5ed0cec0 4256 } while (need_resched());
1da177e4 4257}
1da177e4
LT
4258EXPORT_SYMBOL(preempt_schedule);
4259
4260/*
2ed6e34f 4261 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4262 * off of irq context.
4263 * Note, that this is called and return with irqs disabled. This will
4264 * protect us against recursive calling from irq.
4265 */
4266asmlinkage void __sched preempt_schedule_irq(void)
4267{
4268 struct thread_info *ti = current_thread_info();
6478d880 4269
2ed6e34f 4270 /* Catch callers which need to be fixed */
1da177e4
LT
4271 BUG_ON(ti->preempt_count || !irqs_disabled());
4272
3a5c359a
AK
4273 do {
4274 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4275 local_irq_enable();
4276 schedule();
4277 local_irq_disable();
3a5c359a 4278 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4279
3a5c359a
AK
4280 /*
4281 * Check again in case we missed a preemption opportunity
4282 * between schedule and now.
4283 */
4284 barrier();
5ed0cec0 4285 } while (need_resched());
1da177e4
LT
4286}
4287
4288#endif /* CONFIG_PREEMPT */
4289
63859d4f 4290int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4291 void *key)
1da177e4 4292{
63859d4f 4293 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4294}
1da177e4
LT
4295EXPORT_SYMBOL(default_wake_function);
4296
4297/*
41a2d6cf
IM
4298 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4299 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4300 * number) then we wake all the non-exclusive tasks and one exclusive task.
4301 *
4302 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4303 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4304 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4305 */
78ddb08f 4306static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4307 int nr_exclusive, int wake_flags, void *key)
1da177e4 4308{
2e45874c 4309 wait_queue_t *curr, *next;
1da177e4 4310
2e45874c 4311 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4312 unsigned flags = curr->flags;
4313
63859d4f 4314 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4315 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4316 break;
4317 }
4318}
4319
4320/**
4321 * __wake_up - wake up threads blocked on a waitqueue.
4322 * @q: the waitqueue
4323 * @mode: which threads
4324 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4325 * @key: is directly passed to the wakeup function
50fa610a
DH
4326 *
4327 * It may be assumed that this function implies a write memory barrier before
4328 * changing the task state if and only if any tasks are woken up.
1da177e4 4329 */
7ad5b3a5 4330void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4331 int nr_exclusive, void *key)
1da177e4
LT
4332{
4333 unsigned long flags;
4334
4335 spin_lock_irqsave(&q->lock, flags);
4336 __wake_up_common(q, mode, nr_exclusive, 0, key);
4337 spin_unlock_irqrestore(&q->lock, flags);
4338}
1da177e4
LT
4339EXPORT_SYMBOL(__wake_up);
4340
4341/*
4342 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4343 */
7ad5b3a5 4344void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4345{
4346 __wake_up_common(q, mode, 1, 0, NULL);
4347}
22c43c81 4348EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4349
4ede816a
DL
4350void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4351{
4352 __wake_up_common(q, mode, 1, 0, key);
4353}
bf294b41 4354EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4355
1da177e4 4356/**
4ede816a 4357 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4358 * @q: the waitqueue
4359 * @mode: which threads
4360 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4361 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4362 *
4363 * The sync wakeup differs that the waker knows that it will schedule
4364 * away soon, so while the target thread will be woken up, it will not
4365 * be migrated to another CPU - ie. the two threads are 'synchronized'
4366 * with each other. This can prevent needless bouncing between CPUs.
4367 *
4368 * On UP it can prevent extra preemption.
50fa610a
DH
4369 *
4370 * It may be assumed that this function implies a write memory barrier before
4371 * changing the task state if and only if any tasks are woken up.
1da177e4 4372 */
4ede816a
DL
4373void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4374 int nr_exclusive, void *key)
1da177e4
LT
4375{
4376 unsigned long flags;
7d478721 4377 int wake_flags = WF_SYNC;
1da177e4
LT
4378
4379 if (unlikely(!q))
4380 return;
4381
4382 if (unlikely(!nr_exclusive))
7d478721 4383 wake_flags = 0;
1da177e4
LT
4384
4385 spin_lock_irqsave(&q->lock, flags);
7d478721 4386 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4387 spin_unlock_irqrestore(&q->lock, flags);
4388}
4ede816a
DL
4389EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4390
4391/*
4392 * __wake_up_sync - see __wake_up_sync_key()
4393 */
4394void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4395{
4396 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4397}
1da177e4
LT
4398EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4399
65eb3dc6
KD
4400/**
4401 * complete: - signals a single thread waiting on this completion
4402 * @x: holds the state of this particular completion
4403 *
4404 * This will wake up a single thread waiting on this completion. Threads will be
4405 * awakened in the same order in which they were queued.
4406 *
4407 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4408 *
4409 * It may be assumed that this function implies a write memory barrier before
4410 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4411 */
b15136e9 4412void complete(struct completion *x)
1da177e4
LT
4413{
4414 unsigned long flags;
4415
4416 spin_lock_irqsave(&x->wait.lock, flags);
4417 x->done++;
d9514f6c 4418 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4419 spin_unlock_irqrestore(&x->wait.lock, flags);
4420}
4421EXPORT_SYMBOL(complete);
4422
65eb3dc6
KD
4423/**
4424 * complete_all: - signals all threads waiting on this completion
4425 * @x: holds the state of this particular completion
4426 *
4427 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4428 *
4429 * It may be assumed that this function implies a write memory barrier before
4430 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4431 */
b15136e9 4432void complete_all(struct completion *x)
1da177e4
LT
4433{
4434 unsigned long flags;
4435
4436 spin_lock_irqsave(&x->wait.lock, flags);
4437 x->done += UINT_MAX/2;
d9514f6c 4438 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4439 spin_unlock_irqrestore(&x->wait.lock, flags);
4440}
4441EXPORT_SYMBOL(complete_all);
4442
8cbbe86d
AK
4443static inline long __sched
4444do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4445{
1da177e4
LT
4446 if (!x->done) {
4447 DECLARE_WAITQUEUE(wait, current);
4448
a93d2f17 4449 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4450 do {
94d3d824 4451 if (signal_pending_state(state, current)) {
ea71a546
ON
4452 timeout = -ERESTARTSYS;
4453 break;
8cbbe86d
AK
4454 }
4455 __set_current_state(state);
1da177e4
LT
4456 spin_unlock_irq(&x->wait.lock);
4457 timeout = schedule_timeout(timeout);
4458 spin_lock_irq(&x->wait.lock);
ea71a546 4459 } while (!x->done && timeout);
1da177e4 4460 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4461 if (!x->done)
4462 return timeout;
1da177e4
LT
4463 }
4464 x->done--;
ea71a546 4465 return timeout ?: 1;
1da177e4 4466}
1da177e4 4467
8cbbe86d
AK
4468static long __sched
4469wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4470{
1da177e4
LT
4471 might_sleep();
4472
4473 spin_lock_irq(&x->wait.lock);
8cbbe86d 4474 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4475 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4476 return timeout;
4477}
1da177e4 4478
65eb3dc6
KD
4479/**
4480 * wait_for_completion: - waits for completion of a task
4481 * @x: holds the state of this particular completion
4482 *
4483 * This waits to be signaled for completion of a specific task. It is NOT
4484 * interruptible and there is no timeout.
4485 *
4486 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4487 * and interrupt capability. Also see complete().
4488 */
b15136e9 4489void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4490{
4491 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4492}
8cbbe86d 4493EXPORT_SYMBOL(wait_for_completion);
1da177e4 4494
65eb3dc6
KD
4495/**
4496 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4497 * @x: holds the state of this particular completion
4498 * @timeout: timeout value in jiffies
4499 *
4500 * This waits for either a completion of a specific task to be signaled or for a
4501 * specified timeout to expire. The timeout is in jiffies. It is not
4502 * interruptible.
4503 */
b15136e9 4504unsigned long __sched
8cbbe86d 4505wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4506{
8cbbe86d 4507 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4508}
8cbbe86d 4509EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4510
65eb3dc6
KD
4511/**
4512 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4513 * @x: holds the state of this particular completion
4514 *
4515 * This waits for completion of a specific task to be signaled. It is
4516 * interruptible.
4517 */
8cbbe86d 4518int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4519{
51e97990
AK
4520 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4521 if (t == -ERESTARTSYS)
4522 return t;
4523 return 0;
0fec171c 4524}
8cbbe86d 4525EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4526
65eb3dc6
KD
4527/**
4528 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4529 * @x: holds the state of this particular completion
4530 * @timeout: timeout value in jiffies
4531 *
4532 * This waits for either a completion of a specific task to be signaled or for a
4533 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4534 */
6bf41237 4535long __sched
8cbbe86d
AK
4536wait_for_completion_interruptible_timeout(struct completion *x,
4537 unsigned long timeout)
0fec171c 4538{
8cbbe86d 4539 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4540}
8cbbe86d 4541EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4542
65eb3dc6
KD
4543/**
4544 * wait_for_completion_killable: - waits for completion of a task (killable)
4545 * @x: holds the state of this particular completion
4546 *
4547 * This waits to be signaled for completion of a specific task. It can be
4548 * interrupted by a kill signal.
4549 */
009e577e
MW
4550int __sched wait_for_completion_killable(struct completion *x)
4551{
4552 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4553 if (t == -ERESTARTSYS)
4554 return t;
4555 return 0;
4556}
4557EXPORT_SYMBOL(wait_for_completion_killable);
4558
0aa12fb4
SW
4559/**
4560 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4561 * @x: holds the state of this particular completion
4562 * @timeout: timeout value in jiffies
4563 *
4564 * This waits for either a completion of a specific task to be
4565 * signaled or for a specified timeout to expire. It can be
4566 * interrupted by a kill signal. The timeout is in jiffies.
4567 */
6bf41237 4568long __sched
0aa12fb4
SW
4569wait_for_completion_killable_timeout(struct completion *x,
4570 unsigned long timeout)
4571{
4572 return wait_for_common(x, timeout, TASK_KILLABLE);
4573}
4574EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4575
be4de352
DC
4576/**
4577 * try_wait_for_completion - try to decrement a completion without blocking
4578 * @x: completion structure
4579 *
4580 * Returns: 0 if a decrement cannot be done without blocking
4581 * 1 if a decrement succeeded.
4582 *
4583 * If a completion is being used as a counting completion,
4584 * attempt to decrement the counter without blocking. This
4585 * enables us to avoid waiting if the resource the completion
4586 * is protecting is not available.
4587 */
4588bool try_wait_for_completion(struct completion *x)
4589{
7539a3b3 4590 unsigned long flags;
be4de352
DC
4591 int ret = 1;
4592
7539a3b3 4593 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4594 if (!x->done)
4595 ret = 0;
4596 else
4597 x->done--;
7539a3b3 4598 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4599 return ret;
4600}
4601EXPORT_SYMBOL(try_wait_for_completion);
4602
4603/**
4604 * completion_done - Test to see if a completion has any waiters
4605 * @x: completion structure
4606 *
4607 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4608 * 1 if there are no waiters.
4609 *
4610 */
4611bool completion_done(struct completion *x)
4612{
7539a3b3 4613 unsigned long flags;
be4de352
DC
4614 int ret = 1;
4615
7539a3b3 4616 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4617 if (!x->done)
4618 ret = 0;
7539a3b3 4619 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4620 return ret;
4621}
4622EXPORT_SYMBOL(completion_done);
4623
8cbbe86d
AK
4624static long __sched
4625sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4626{
0fec171c
IM
4627 unsigned long flags;
4628 wait_queue_t wait;
4629
4630 init_waitqueue_entry(&wait, current);
1da177e4 4631
8cbbe86d 4632 __set_current_state(state);
1da177e4 4633
8cbbe86d
AK
4634 spin_lock_irqsave(&q->lock, flags);
4635 __add_wait_queue(q, &wait);
4636 spin_unlock(&q->lock);
4637 timeout = schedule_timeout(timeout);
4638 spin_lock_irq(&q->lock);
4639 __remove_wait_queue(q, &wait);
4640 spin_unlock_irqrestore(&q->lock, flags);
4641
4642 return timeout;
4643}
4644
4645void __sched interruptible_sleep_on(wait_queue_head_t *q)
4646{
4647 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4648}
1da177e4
LT
4649EXPORT_SYMBOL(interruptible_sleep_on);
4650
0fec171c 4651long __sched
95cdf3b7 4652interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4653{
8cbbe86d 4654 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4655}
1da177e4
LT
4656EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4657
0fec171c 4658void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4659{
8cbbe86d 4660 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4661}
1da177e4
LT
4662EXPORT_SYMBOL(sleep_on);
4663
0fec171c 4664long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4665{
8cbbe86d 4666 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4667}
1da177e4
LT
4668EXPORT_SYMBOL(sleep_on_timeout);
4669
b29739f9
IM
4670#ifdef CONFIG_RT_MUTEXES
4671
4672/*
4673 * rt_mutex_setprio - set the current priority of a task
4674 * @p: task
4675 * @prio: prio value (kernel-internal form)
4676 *
4677 * This function changes the 'effective' priority of a task. It does
4678 * not touch ->normal_prio like __setscheduler().
4679 *
4680 * Used by the rt_mutex code to implement priority inheritance logic.
4681 */
36c8b586 4682void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4683{
4684 unsigned long flags;
83b699ed 4685 int oldprio, on_rq, running;
70b97a7f 4686 struct rq *rq;
83ab0aa0 4687 const struct sched_class *prev_class;
b29739f9
IM
4688
4689 BUG_ON(prio < 0 || prio > MAX_PRIO);
4690
4691 rq = task_rq_lock(p, &flags);
4692
a8027073 4693 trace_sched_pi_setprio(p, prio);
d5f9f942 4694 oldprio = p->prio;
83ab0aa0 4695 prev_class = p->sched_class;
dd41f596 4696 on_rq = p->se.on_rq;
051a1d1a 4697 running = task_current(rq, p);
0e1f3483 4698 if (on_rq)
69be72c1 4699 dequeue_task(rq, p, 0);
0e1f3483
HS
4700 if (running)
4701 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4702
4703 if (rt_prio(prio))
4704 p->sched_class = &rt_sched_class;
4705 else
4706 p->sched_class = &fair_sched_class;
4707
b29739f9
IM
4708 p->prio = prio;
4709
0e1f3483
HS
4710 if (running)
4711 p->sched_class->set_curr_task(rq);
da7a735e 4712 if (on_rq)
371fd7e7 4713 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4714
da7a735e 4715 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4716 task_rq_unlock(rq, &flags);
4717}
4718
4719#endif
4720
36c8b586 4721void set_user_nice(struct task_struct *p, long nice)
1da177e4 4722{
dd41f596 4723 int old_prio, delta, on_rq;
1da177e4 4724 unsigned long flags;
70b97a7f 4725 struct rq *rq;
1da177e4
LT
4726
4727 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4728 return;
4729 /*
4730 * We have to be careful, if called from sys_setpriority(),
4731 * the task might be in the middle of scheduling on another CPU.
4732 */
4733 rq = task_rq_lock(p, &flags);
4734 /*
4735 * The RT priorities are set via sched_setscheduler(), but we still
4736 * allow the 'normal' nice value to be set - but as expected
4737 * it wont have any effect on scheduling until the task is
dd41f596 4738 * SCHED_FIFO/SCHED_RR:
1da177e4 4739 */
e05606d3 4740 if (task_has_rt_policy(p)) {
1da177e4
LT
4741 p->static_prio = NICE_TO_PRIO(nice);
4742 goto out_unlock;
4743 }
dd41f596 4744 on_rq = p->se.on_rq;
c09595f6 4745 if (on_rq)
69be72c1 4746 dequeue_task(rq, p, 0);
1da177e4 4747
1da177e4 4748 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4749 set_load_weight(p);
b29739f9
IM
4750 old_prio = p->prio;
4751 p->prio = effective_prio(p);
4752 delta = p->prio - old_prio;
1da177e4 4753
dd41f596 4754 if (on_rq) {
371fd7e7 4755 enqueue_task(rq, p, 0);
1da177e4 4756 /*
d5f9f942
AM
4757 * If the task increased its priority or is running and
4758 * lowered its priority, then reschedule its CPU:
1da177e4 4759 */
d5f9f942 4760 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4761 resched_task(rq->curr);
4762 }
4763out_unlock:
4764 task_rq_unlock(rq, &flags);
4765}
1da177e4
LT
4766EXPORT_SYMBOL(set_user_nice);
4767
e43379f1
MM
4768/*
4769 * can_nice - check if a task can reduce its nice value
4770 * @p: task
4771 * @nice: nice value
4772 */
36c8b586 4773int can_nice(const struct task_struct *p, const int nice)
e43379f1 4774{
024f4747
MM
4775 /* convert nice value [19,-20] to rlimit style value [1,40] */
4776 int nice_rlim = 20 - nice;
48f24c4d 4777
78d7d407 4778 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4779 capable(CAP_SYS_NICE));
4780}
4781
1da177e4
LT
4782#ifdef __ARCH_WANT_SYS_NICE
4783
4784/*
4785 * sys_nice - change the priority of the current process.
4786 * @increment: priority increment
4787 *
4788 * sys_setpriority is a more generic, but much slower function that
4789 * does similar things.
4790 */
5add95d4 4791SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4792{
48f24c4d 4793 long nice, retval;
1da177e4
LT
4794
4795 /*
4796 * Setpriority might change our priority at the same moment.
4797 * We don't have to worry. Conceptually one call occurs first
4798 * and we have a single winner.
4799 */
e43379f1
MM
4800 if (increment < -40)
4801 increment = -40;
1da177e4
LT
4802 if (increment > 40)
4803 increment = 40;
4804
2b8f836f 4805 nice = TASK_NICE(current) + increment;
1da177e4
LT
4806 if (nice < -20)
4807 nice = -20;
4808 if (nice > 19)
4809 nice = 19;
4810
e43379f1
MM
4811 if (increment < 0 && !can_nice(current, nice))
4812 return -EPERM;
4813
1da177e4
LT
4814 retval = security_task_setnice(current, nice);
4815 if (retval)
4816 return retval;
4817
4818 set_user_nice(current, nice);
4819 return 0;
4820}
4821
4822#endif
4823
4824/**
4825 * task_prio - return the priority value of a given task.
4826 * @p: the task in question.
4827 *
4828 * This is the priority value as seen by users in /proc.
4829 * RT tasks are offset by -200. Normal tasks are centered
4830 * around 0, value goes from -16 to +15.
4831 */
36c8b586 4832int task_prio(const struct task_struct *p)
1da177e4
LT
4833{
4834 return p->prio - MAX_RT_PRIO;
4835}
4836
4837/**
4838 * task_nice - return the nice value of a given task.
4839 * @p: the task in question.
4840 */
36c8b586 4841int task_nice(const struct task_struct *p)
1da177e4
LT
4842{
4843 return TASK_NICE(p);
4844}
150d8bed 4845EXPORT_SYMBOL(task_nice);
1da177e4
LT
4846
4847/**
4848 * idle_cpu - is a given cpu idle currently?
4849 * @cpu: the processor in question.
4850 */
4851int idle_cpu(int cpu)
4852{
4853 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4854}
4855
1da177e4
LT
4856/**
4857 * idle_task - return the idle task for a given cpu.
4858 * @cpu: the processor in question.
4859 */
36c8b586 4860struct task_struct *idle_task(int cpu)
1da177e4
LT
4861{
4862 return cpu_rq(cpu)->idle;
4863}
4864
4865/**
4866 * find_process_by_pid - find a process with a matching PID value.
4867 * @pid: the pid in question.
4868 */
a9957449 4869static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4870{
228ebcbe 4871 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4872}
4873
4874/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4875static void
4876__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4877{
dd41f596 4878 BUG_ON(p->se.on_rq);
48f24c4d 4879
1da177e4
LT
4880 p->policy = policy;
4881 p->rt_priority = prio;
b29739f9
IM
4882 p->normal_prio = normal_prio(p);
4883 /* we are holding p->pi_lock already */
4884 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4885 if (rt_prio(p->prio))
4886 p->sched_class = &rt_sched_class;
4887 else
4888 p->sched_class = &fair_sched_class;
2dd73a4f 4889 set_load_weight(p);
1da177e4
LT
4890}
4891
c69e8d9c
DH
4892/*
4893 * check the target process has a UID that matches the current process's
4894 */
4895static bool check_same_owner(struct task_struct *p)
4896{
4897 const struct cred *cred = current_cred(), *pcred;
4898 bool match;
4899
4900 rcu_read_lock();
4901 pcred = __task_cred(p);
4902 match = (cred->euid == pcred->euid ||
4903 cred->euid == pcred->uid);
4904 rcu_read_unlock();
4905 return match;
4906}
4907
961ccddd 4908static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4909 const struct sched_param *param, bool user)
1da177e4 4910{
83b699ed 4911 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4912 unsigned long flags;
83ab0aa0 4913 const struct sched_class *prev_class;
70b97a7f 4914 struct rq *rq;
ca94c442 4915 int reset_on_fork;
1da177e4 4916
66e5393a
SR
4917 /* may grab non-irq protected spin_locks */
4918 BUG_ON(in_interrupt());
1da177e4
LT
4919recheck:
4920 /* double check policy once rq lock held */
ca94c442
LP
4921 if (policy < 0) {
4922 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4923 policy = oldpolicy = p->policy;
ca94c442
LP
4924 } else {
4925 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4926 policy &= ~SCHED_RESET_ON_FORK;
4927
4928 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4929 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4930 policy != SCHED_IDLE)
4931 return -EINVAL;
4932 }
4933
1da177e4
LT
4934 /*
4935 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4936 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4937 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4938 */
4939 if (param->sched_priority < 0 ||
95cdf3b7 4940 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4941 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4942 return -EINVAL;
e05606d3 4943 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4944 return -EINVAL;
4945
37e4ab3f
OC
4946 /*
4947 * Allow unprivileged RT tasks to decrease priority:
4948 */
961ccddd 4949 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4950 if (rt_policy(policy)) {
a44702e8
ON
4951 unsigned long rlim_rtprio =
4952 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4953
4954 /* can't set/change the rt policy */
4955 if (policy != p->policy && !rlim_rtprio)
4956 return -EPERM;
4957
4958 /* can't increase priority */
4959 if (param->sched_priority > p->rt_priority &&
4960 param->sched_priority > rlim_rtprio)
4961 return -EPERM;
4962 }
c02aa73b 4963
dd41f596 4964 /*
c02aa73b
DH
4965 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4966 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4967 */
c02aa73b
DH
4968 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4969 if (!can_nice(p, TASK_NICE(p)))
4970 return -EPERM;
4971 }
5fe1d75f 4972
37e4ab3f 4973 /* can't change other user's priorities */
c69e8d9c 4974 if (!check_same_owner(p))
37e4ab3f 4975 return -EPERM;
ca94c442
LP
4976
4977 /* Normal users shall not reset the sched_reset_on_fork flag */
4978 if (p->sched_reset_on_fork && !reset_on_fork)
4979 return -EPERM;
37e4ab3f 4980 }
1da177e4 4981
725aad24 4982 if (user) {
b0ae1981 4983 retval = security_task_setscheduler(p);
725aad24
JF
4984 if (retval)
4985 return retval;
4986 }
4987
b29739f9
IM
4988 /*
4989 * make sure no PI-waiters arrive (or leave) while we are
4990 * changing the priority of the task:
4991 */
1d615482 4992 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4993 /*
4994 * To be able to change p->policy safely, the apropriate
4995 * runqueue lock must be held.
4996 */
b29739f9 4997 rq = __task_rq_lock(p);
dc61b1d6 4998
34f971f6
PZ
4999 /*
5000 * Changing the policy of the stop threads its a very bad idea
5001 */
5002 if (p == rq->stop) {
5003 __task_rq_unlock(rq);
5004 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5005 return -EINVAL;
5006 }
5007
dc61b1d6
PZ
5008#ifdef CONFIG_RT_GROUP_SCHED
5009 if (user) {
5010 /*
5011 * Do not allow realtime tasks into groups that have no runtime
5012 * assigned.
5013 */
5014 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5015 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5016 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5017 __task_rq_unlock(rq);
5018 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5019 return -EPERM;
5020 }
5021 }
5022#endif
5023
1da177e4
LT
5024 /* recheck policy now with rq lock held */
5025 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5026 policy = oldpolicy = -1;
b29739f9 5027 __task_rq_unlock(rq);
1d615482 5028 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5029 goto recheck;
5030 }
dd41f596 5031 on_rq = p->se.on_rq;
051a1d1a 5032 running = task_current(rq, p);
0e1f3483 5033 if (on_rq)
2e1cb74a 5034 deactivate_task(rq, p, 0);
0e1f3483
HS
5035 if (running)
5036 p->sched_class->put_prev_task(rq, p);
f6b53205 5037
ca94c442
LP
5038 p->sched_reset_on_fork = reset_on_fork;
5039
1da177e4 5040 oldprio = p->prio;
83ab0aa0 5041 prev_class = p->sched_class;
dd41f596 5042 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5043
0e1f3483
HS
5044 if (running)
5045 p->sched_class->set_curr_task(rq);
da7a735e 5046 if (on_rq)
dd41f596 5047 activate_task(rq, p, 0);
cb469845 5048
da7a735e 5049 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5050 __task_rq_unlock(rq);
1d615482 5051 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5052
95e02ca9
TG
5053 rt_mutex_adjust_pi(p);
5054
1da177e4
LT
5055 return 0;
5056}
961ccddd
RR
5057
5058/**
5059 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5060 * @p: the task in question.
5061 * @policy: new policy.
5062 * @param: structure containing the new RT priority.
5063 *
5064 * NOTE that the task may be already dead.
5065 */
5066int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5067 const struct sched_param *param)
961ccddd
RR
5068{
5069 return __sched_setscheduler(p, policy, param, true);
5070}
1da177e4
LT
5071EXPORT_SYMBOL_GPL(sched_setscheduler);
5072
961ccddd
RR
5073/**
5074 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5075 * @p: the task in question.
5076 * @policy: new policy.
5077 * @param: structure containing the new RT priority.
5078 *
5079 * Just like sched_setscheduler, only don't bother checking if the
5080 * current context has permission. For example, this is needed in
5081 * stop_machine(): we create temporary high priority worker threads,
5082 * but our caller might not have that capability.
5083 */
5084int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5085 const struct sched_param *param)
961ccddd
RR
5086{
5087 return __sched_setscheduler(p, policy, param, false);
5088}
5089
95cdf3b7
IM
5090static int
5091do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5092{
1da177e4
LT
5093 struct sched_param lparam;
5094 struct task_struct *p;
36c8b586 5095 int retval;
1da177e4
LT
5096
5097 if (!param || pid < 0)
5098 return -EINVAL;
5099 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5100 return -EFAULT;
5fe1d75f
ON
5101
5102 rcu_read_lock();
5103 retval = -ESRCH;
1da177e4 5104 p = find_process_by_pid(pid);
5fe1d75f
ON
5105 if (p != NULL)
5106 retval = sched_setscheduler(p, policy, &lparam);
5107 rcu_read_unlock();
36c8b586 5108
1da177e4
LT
5109 return retval;
5110}
5111
5112/**
5113 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5114 * @pid: the pid in question.
5115 * @policy: new policy.
5116 * @param: structure containing the new RT priority.
5117 */
5add95d4
HC
5118SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5119 struct sched_param __user *, param)
1da177e4 5120{
c21761f1
JB
5121 /* negative values for policy are not valid */
5122 if (policy < 0)
5123 return -EINVAL;
5124
1da177e4
LT
5125 return do_sched_setscheduler(pid, policy, param);
5126}
5127
5128/**
5129 * sys_sched_setparam - set/change the RT priority of a thread
5130 * @pid: the pid in question.
5131 * @param: structure containing the new RT priority.
5132 */
5add95d4 5133SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5134{
5135 return do_sched_setscheduler(pid, -1, param);
5136}
5137
5138/**
5139 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5140 * @pid: the pid in question.
5141 */
5add95d4 5142SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5143{
36c8b586 5144 struct task_struct *p;
3a5c359a 5145 int retval;
1da177e4
LT
5146
5147 if (pid < 0)
3a5c359a 5148 return -EINVAL;
1da177e4
LT
5149
5150 retval = -ESRCH;
5fe85be0 5151 rcu_read_lock();
1da177e4
LT
5152 p = find_process_by_pid(pid);
5153 if (p) {
5154 retval = security_task_getscheduler(p);
5155 if (!retval)
ca94c442
LP
5156 retval = p->policy
5157 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5158 }
5fe85be0 5159 rcu_read_unlock();
1da177e4
LT
5160 return retval;
5161}
5162
5163/**
ca94c442 5164 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5165 * @pid: the pid in question.
5166 * @param: structure containing the RT priority.
5167 */
5add95d4 5168SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5169{
5170 struct sched_param lp;
36c8b586 5171 struct task_struct *p;
3a5c359a 5172 int retval;
1da177e4
LT
5173
5174 if (!param || pid < 0)
3a5c359a 5175 return -EINVAL;
1da177e4 5176
5fe85be0 5177 rcu_read_lock();
1da177e4
LT
5178 p = find_process_by_pid(pid);
5179 retval = -ESRCH;
5180 if (!p)
5181 goto out_unlock;
5182
5183 retval = security_task_getscheduler(p);
5184 if (retval)
5185 goto out_unlock;
5186
5187 lp.sched_priority = p->rt_priority;
5fe85be0 5188 rcu_read_unlock();
1da177e4
LT
5189
5190 /*
5191 * This one might sleep, we cannot do it with a spinlock held ...
5192 */
5193 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5194
1da177e4
LT
5195 return retval;
5196
5197out_unlock:
5fe85be0 5198 rcu_read_unlock();
1da177e4
LT
5199 return retval;
5200}
5201
96f874e2 5202long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5203{
5a16f3d3 5204 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5205 struct task_struct *p;
5206 int retval;
1da177e4 5207
95402b38 5208 get_online_cpus();
23f5d142 5209 rcu_read_lock();
1da177e4
LT
5210
5211 p = find_process_by_pid(pid);
5212 if (!p) {
23f5d142 5213 rcu_read_unlock();
95402b38 5214 put_online_cpus();
1da177e4
LT
5215 return -ESRCH;
5216 }
5217
23f5d142 5218 /* Prevent p going away */
1da177e4 5219 get_task_struct(p);
23f5d142 5220 rcu_read_unlock();
1da177e4 5221
5a16f3d3
RR
5222 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5223 retval = -ENOMEM;
5224 goto out_put_task;
5225 }
5226 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5227 retval = -ENOMEM;
5228 goto out_free_cpus_allowed;
5229 }
1da177e4 5230 retval = -EPERM;
c69e8d9c 5231 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5232 goto out_unlock;
5233
b0ae1981 5234 retval = security_task_setscheduler(p);
e7834f8f
DQ
5235 if (retval)
5236 goto out_unlock;
5237
5a16f3d3
RR
5238 cpuset_cpus_allowed(p, cpus_allowed);
5239 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5240again:
5a16f3d3 5241 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5242
8707d8b8 5243 if (!retval) {
5a16f3d3
RR
5244 cpuset_cpus_allowed(p, cpus_allowed);
5245 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5246 /*
5247 * We must have raced with a concurrent cpuset
5248 * update. Just reset the cpus_allowed to the
5249 * cpuset's cpus_allowed
5250 */
5a16f3d3 5251 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5252 goto again;
5253 }
5254 }
1da177e4 5255out_unlock:
5a16f3d3
RR
5256 free_cpumask_var(new_mask);
5257out_free_cpus_allowed:
5258 free_cpumask_var(cpus_allowed);
5259out_put_task:
1da177e4 5260 put_task_struct(p);
95402b38 5261 put_online_cpus();
1da177e4
LT
5262 return retval;
5263}
5264
5265static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5266 struct cpumask *new_mask)
1da177e4 5267{
96f874e2
RR
5268 if (len < cpumask_size())
5269 cpumask_clear(new_mask);
5270 else if (len > cpumask_size())
5271 len = cpumask_size();
5272
1da177e4
LT
5273 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5274}
5275
5276/**
5277 * sys_sched_setaffinity - set the cpu affinity of a process
5278 * @pid: pid of the process
5279 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5280 * @user_mask_ptr: user-space pointer to the new cpu mask
5281 */
5add95d4
HC
5282SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5283 unsigned long __user *, user_mask_ptr)
1da177e4 5284{
5a16f3d3 5285 cpumask_var_t new_mask;
1da177e4
LT
5286 int retval;
5287
5a16f3d3
RR
5288 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5289 return -ENOMEM;
1da177e4 5290
5a16f3d3
RR
5291 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5292 if (retval == 0)
5293 retval = sched_setaffinity(pid, new_mask);
5294 free_cpumask_var(new_mask);
5295 return retval;
1da177e4
LT
5296}
5297
96f874e2 5298long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5299{
36c8b586 5300 struct task_struct *p;
31605683
TG
5301 unsigned long flags;
5302 struct rq *rq;
1da177e4 5303 int retval;
1da177e4 5304
95402b38 5305 get_online_cpus();
23f5d142 5306 rcu_read_lock();
1da177e4
LT
5307
5308 retval = -ESRCH;
5309 p = find_process_by_pid(pid);
5310 if (!p)
5311 goto out_unlock;
5312
e7834f8f
DQ
5313 retval = security_task_getscheduler(p);
5314 if (retval)
5315 goto out_unlock;
5316
31605683 5317 rq = task_rq_lock(p, &flags);
96f874e2 5318 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5319 task_rq_unlock(rq, &flags);
1da177e4
LT
5320
5321out_unlock:
23f5d142 5322 rcu_read_unlock();
95402b38 5323 put_online_cpus();
1da177e4 5324
9531b62f 5325 return retval;
1da177e4
LT
5326}
5327
5328/**
5329 * sys_sched_getaffinity - get the cpu affinity of a process
5330 * @pid: pid of the process
5331 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5332 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5333 */
5add95d4
HC
5334SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5335 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5336{
5337 int ret;
f17c8607 5338 cpumask_var_t mask;
1da177e4 5339
84fba5ec 5340 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5341 return -EINVAL;
5342 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5343 return -EINVAL;
5344
f17c8607
RR
5345 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5346 return -ENOMEM;
1da177e4 5347
f17c8607
RR
5348 ret = sched_getaffinity(pid, mask);
5349 if (ret == 0) {
8bc037fb 5350 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5351
5352 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5353 ret = -EFAULT;
5354 else
cd3d8031 5355 ret = retlen;
f17c8607
RR
5356 }
5357 free_cpumask_var(mask);
1da177e4 5358
f17c8607 5359 return ret;
1da177e4
LT
5360}
5361
5362/**
5363 * sys_sched_yield - yield the current processor to other threads.
5364 *
dd41f596
IM
5365 * This function yields the current CPU to other tasks. If there are no
5366 * other threads running on this CPU then this function will return.
1da177e4 5367 */
5add95d4 5368SYSCALL_DEFINE0(sched_yield)
1da177e4 5369{
70b97a7f 5370 struct rq *rq = this_rq_lock();
1da177e4 5371
2d72376b 5372 schedstat_inc(rq, yld_count);
4530d7ab 5373 current->sched_class->yield_task(rq);
1da177e4
LT
5374
5375 /*
5376 * Since we are going to call schedule() anyway, there's
5377 * no need to preempt or enable interrupts:
5378 */
5379 __release(rq->lock);
8a25d5de 5380 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5381 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5382 preempt_enable_no_resched();
5383
5384 schedule();
5385
5386 return 0;
5387}
5388
d86ee480
PZ
5389static inline int should_resched(void)
5390{
5391 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5392}
5393
e7b38404 5394static void __cond_resched(void)
1da177e4 5395{
e7aaaa69
FW
5396 add_preempt_count(PREEMPT_ACTIVE);
5397 schedule();
5398 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5399}
5400
02b67cc3 5401int __sched _cond_resched(void)
1da177e4 5402{
d86ee480 5403 if (should_resched()) {
1da177e4
LT
5404 __cond_resched();
5405 return 1;
5406 }
5407 return 0;
5408}
02b67cc3 5409EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5410
5411/*
613afbf8 5412 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5413 * call schedule, and on return reacquire the lock.
5414 *
41a2d6cf 5415 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5416 * operations here to prevent schedule() from being called twice (once via
5417 * spin_unlock(), once by hand).
5418 */
613afbf8 5419int __cond_resched_lock(spinlock_t *lock)
1da177e4 5420{
d86ee480 5421 int resched = should_resched();
6df3cecb
JK
5422 int ret = 0;
5423
f607c668
PZ
5424 lockdep_assert_held(lock);
5425
95c354fe 5426 if (spin_needbreak(lock) || resched) {
1da177e4 5427 spin_unlock(lock);
d86ee480 5428 if (resched)
95c354fe
NP
5429 __cond_resched();
5430 else
5431 cpu_relax();
6df3cecb 5432 ret = 1;
1da177e4 5433 spin_lock(lock);
1da177e4 5434 }
6df3cecb 5435 return ret;
1da177e4 5436}
613afbf8 5437EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5438
613afbf8 5439int __sched __cond_resched_softirq(void)
1da177e4
LT
5440{
5441 BUG_ON(!in_softirq());
5442
d86ee480 5443 if (should_resched()) {
98d82567 5444 local_bh_enable();
1da177e4
LT
5445 __cond_resched();
5446 local_bh_disable();
5447 return 1;
5448 }
5449 return 0;
5450}
613afbf8 5451EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5452
1da177e4
LT
5453/**
5454 * yield - yield the current processor to other threads.
5455 *
72fd4a35 5456 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5457 * thread runnable and calls sys_sched_yield().
5458 */
5459void __sched yield(void)
5460{
5461 set_current_state(TASK_RUNNING);
5462 sys_sched_yield();
5463}
1da177e4
LT
5464EXPORT_SYMBOL(yield);
5465
d95f4122
MG
5466/**
5467 * yield_to - yield the current processor to another thread in
5468 * your thread group, or accelerate that thread toward the
5469 * processor it's on.
5470 *
5471 * It's the caller's job to ensure that the target task struct
5472 * can't go away on us before we can do any checks.
5473 *
5474 * Returns true if we indeed boosted the target task.
5475 */
5476bool __sched yield_to(struct task_struct *p, bool preempt)
5477{
5478 struct task_struct *curr = current;
5479 struct rq *rq, *p_rq;
5480 unsigned long flags;
5481 bool yielded = 0;
5482
5483 local_irq_save(flags);
5484 rq = this_rq();
5485
5486again:
5487 p_rq = task_rq(p);
5488 double_rq_lock(rq, p_rq);
5489 while (task_rq(p) != p_rq) {
5490 double_rq_unlock(rq, p_rq);
5491 goto again;
5492 }
5493
5494 if (!curr->sched_class->yield_to_task)
5495 goto out;
5496
5497 if (curr->sched_class != p->sched_class)
5498 goto out;
5499
5500 if (task_running(p_rq, p) || p->state)
5501 goto out;
5502
5503 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5504 if (yielded) {
d95f4122 5505 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5506 /*
5507 * Make p's CPU reschedule; pick_next_entity takes care of
5508 * fairness.
5509 */
5510 if (preempt && rq != p_rq)
5511 resched_task(p_rq->curr);
5512 }
d95f4122
MG
5513
5514out:
5515 double_rq_unlock(rq, p_rq);
5516 local_irq_restore(flags);
5517
5518 if (yielded)
5519 schedule();
5520
5521 return yielded;
5522}
5523EXPORT_SYMBOL_GPL(yield_to);
5524
1da177e4 5525/*
41a2d6cf 5526 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5527 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5528 */
5529void __sched io_schedule(void)
5530{
54d35f29 5531 struct rq *rq = raw_rq();
1da177e4 5532
0ff92245 5533 delayacct_blkio_start();
1da177e4 5534 atomic_inc(&rq->nr_iowait);
8f0dfc34 5535 current->in_iowait = 1;
1da177e4 5536 schedule();
8f0dfc34 5537 current->in_iowait = 0;
1da177e4 5538 atomic_dec(&rq->nr_iowait);
0ff92245 5539 delayacct_blkio_end();
1da177e4 5540}
1da177e4
LT
5541EXPORT_SYMBOL(io_schedule);
5542
5543long __sched io_schedule_timeout(long timeout)
5544{
54d35f29 5545 struct rq *rq = raw_rq();
1da177e4
LT
5546 long ret;
5547
0ff92245 5548 delayacct_blkio_start();
1da177e4 5549 atomic_inc(&rq->nr_iowait);
8f0dfc34 5550 current->in_iowait = 1;
1da177e4 5551 ret = schedule_timeout(timeout);
8f0dfc34 5552 current->in_iowait = 0;
1da177e4 5553 atomic_dec(&rq->nr_iowait);
0ff92245 5554 delayacct_blkio_end();
1da177e4
LT
5555 return ret;
5556}
5557
5558/**
5559 * sys_sched_get_priority_max - return maximum RT priority.
5560 * @policy: scheduling class.
5561 *
5562 * this syscall returns the maximum rt_priority that can be used
5563 * by a given scheduling class.
5564 */
5add95d4 5565SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5566{
5567 int ret = -EINVAL;
5568
5569 switch (policy) {
5570 case SCHED_FIFO:
5571 case SCHED_RR:
5572 ret = MAX_USER_RT_PRIO-1;
5573 break;
5574 case SCHED_NORMAL:
b0a9499c 5575 case SCHED_BATCH:
dd41f596 5576 case SCHED_IDLE:
1da177e4
LT
5577 ret = 0;
5578 break;
5579 }
5580 return ret;
5581}
5582
5583/**
5584 * sys_sched_get_priority_min - return minimum RT priority.
5585 * @policy: scheduling class.
5586 *
5587 * this syscall returns the minimum rt_priority that can be used
5588 * by a given scheduling class.
5589 */
5add95d4 5590SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5591{
5592 int ret = -EINVAL;
5593
5594 switch (policy) {
5595 case SCHED_FIFO:
5596 case SCHED_RR:
5597 ret = 1;
5598 break;
5599 case SCHED_NORMAL:
b0a9499c 5600 case SCHED_BATCH:
dd41f596 5601 case SCHED_IDLE:
1da177e4
LT
5602 ret = 0;
5603 }
5604 return ret;
5605}
5606
5607/**
5608 * sys_sched_rr_get_interval - return the default timeslice of a process.
5609 * @pid: pid of the process.
5610 * @interval: userspace pointer to the timeslice value.
5611 *
5612 * this syscall writes the default timeslice value of a given process
5613 * into the user-space timespec buffer. A value of '0' means infinity.
5614 */
17da2bd9 5615SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5616 struct timespec __user *, interval)
1da177e4 5617{
36c8b586 5618 struct task_struct *p;
a4ec24b4 5619 unsigned int time_slice;
dba091b9
TG
5620 unsigned long flags;
5621 struct rq *rq;
3a5c359a 5622 int retval;
1da177e4 5623 struct timespec t;
1da177e4
LT
5624
5625 if (pid < 0)
3a5c359a 5626 return -EINVAL;
1da177e4
LT
5627
5628 retval = -ESRCH;
1a551ae7 5629 rcu_read_lock();
1da177e4
LT
5630 p = find_process_by_pid(pid);
5631 if (!p)
5632 goto out_unlock;
5633
5634 retval = security_task_getscheduler(p);
5635 if (retval)
5636 goto out_unlock;
5637
dba091b9
TG
5638 rq = task_rq_lock(p, &flags);
5639 time_slice = p->sched_class->get_rr_interval(rq, p);
5640 task_rq_unlock(rq, &flags);
a4ec24b4 5641
1a551ae7 5642 rcu_read_unlock();
a4ec24b4 5643 jiffies_to_timespec(time_slice, &t);
1da177e4 5644 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5645 return retval;
3a5c359a 5646
1da177e4 5647out_unlock:
1a551ae7 5648 rcu_read_unlock();
1da177e4
LT
5649 return retval;
5650}
5651
7c731e0a 5652static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5653
82a1fcb9 5654void sched_show_task(struct task_struct *p)
1da177e4 5655{
1da177e4 5656 unsigned long free = 0;
36c8b586 5657 unsigned state;
1da177e4 5658
1da177e4 5659 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5660 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5661 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5662#if BITS_PER_LONG == 32
1da177e4 5663 if (state == TASK_RUNNING)
3df0fc5b 5664 printk(KERN_CONT " running ");
1da177e4 5665 else
3df0fc5b 5666 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5667#else
5668 if (state == TASK_RUNNING)
3df0fc5b 5669 printk(KERN_CONT " running task ");
1da177e4 5670 else
3df0fc5b 5671 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5672#endif
5673#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5674 free = stack_not_used(p);
1da177e4 5675#endif
3df0fc5b 5676 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5677 task_pid_nr(p), task_pid_nr(p->real_parent),
5678 (unsigned long)task_thread_info(p)->flags);
1da177e4 5679
5fb5e6de 5680 show_stack(p, NULL);
1da177e4
LT
5681}
5682
e59e2ae2 5683void show_state_filter(unsigned long state_filter)
1da177e4 5684{
36c8b586 5685 struct task_struct *g, *p;
1da177e4 5686
4bd77321 5687#if BITS_PER_LONG == 32
3df0fc5b
PZ
5688 printk(KERN_INFO
5689 " task PC stack pid father\n");
1da177e4 5690#else
3df0fc5b
PZ
5691 printk(KERN_INFO
5692 " task PC stack pid father\n");
1da177e4
LT
5693#endif
5694 read_lock(&tasklist_lock);
5695 do_each_thread(g, p) {
5696 /*
5697 * reset the NMI-timeout, listing all files on a slow
5698 * console might take alot of time:
5699 */
5700 touch_nmi_watchdog();
39bc89fd 5701 if (!state_filter || (p->state & state_filter))
82a1fcb9 5702 sched_show_task(p);
1da177e4
LT
5703 } while_each_thread(g, p);
5704
04c9167f
JF
5705 touch_all_softlockup_watchdogs();
5706
dd41f596
IM
5707#ifdef CONFIG_SCHED_DEBUG
5708 sysrq_sched_debug_show();
5709#endif
1da177e4 5710 read_unlock(&tasklist_lock);
e59e2ae2
IM
5711 /*
5712 * Only show locks if all tasks are dumped:
5713 */
93335a21 5714 if (!state_filter)
e59e2ae2 5715 debug_show_all_locks();
1da177e4
LT
5716}
5717
1df21055
IM
5718void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5719{
dd41f596 5720 idle->sched_class = &idle_sched_class;
1df21055
IM
5721}
5722
f340c0d1
IM
5723/**
5724 * init_idle - set up an idle thread for a given CPU
5725 * @idle: task in question
5726 * @cpu: cpu the idle task belongs to
5727 *
5728 * NOTE: this function does not set the idle thread's NEED_RESCHED
5729 * flag, to make booting more robust.
5730 */
5c1e1767 5731void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5732{
70b97a7f 5733 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5734 unsigned long flags;
5735
05fa785c 5736 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5737
dd41f596 5738 __sched_fork(idle);
06b83b5f 5739 idle->state = TASK_RUNNING;
dd41f596
IM
5740 idle->se.exec_start = sched_clock();
5741
96f874e2 5742 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5743 /*
5744 * We're having a chicken and egg problem, even though we are
5745 * holding rq->lock, the cpu isn't yet set to this cpu so the
5746 * lockdep check in task_group() will fail.
5747 *
5748 * Similar case to sched_fork(). / Alternatively we could
5749 * use task_rq_lock() here and obtain the other rq->lock.
5750 *
5751 * Silence PROVE_RCU
5752 */
5753 rcu_read_lock();
dd41f596 5754 __set_task_cpu(idle, cpu);
6506cf6c 5755 rcu_read_unlock();
1da177e4 5756
1da177e4 5757 rq->curr = rq->idle = idle;
4866cde0
NP
5758#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5759 idle->oncpu = 1;
5760#endif
05fa785c 5761 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5762
5763 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5764#if defined(CONFIG_PREEMPT)
5765 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5766#else
a1261f54 5767 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5768#endif
dd41f596
IM
5769 /*
5770 * The idle tasks have their own, simple scheduling class:
5771 */
5772 idle->sched_class = &idle_sched_class;
868baf07 5773 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5774}
5775
5776/*
5777 * In a system that switches off the HZ timer nohz_cpu_mask
5778 * indicates which cpus entered this state. This is used
5779 * in the rcu update to wait only for active cpus. For system
5780 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5781 * always be CPU_BITS_NONE.
1da177e4 5782 */
6a7b3dc3 5783cpumask_var_t nohz_cpu_mask;
1da177e4 5784
19978ca6
IM
5785/*
5786 * Increase the granularity value when there are more CPUs,
5787 * because with more CPUs the 'effective latency' as visible
5788 * to users decreases. But the relationship is not linear,
5789 * so pick a second-best guess by going with the log2 of the
5790 * number of CPUs.
5791 *
5792 * This idea comes from the SD scheduler of Con Kolivas:
5793 */
acb4a848 5794static int get_update_sysctl_factor(void)
19978ca6 5795{
4ca3ef71 5796 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5797 unsigned int factor;
5798
5799 switch (sysctl_sched_tunable_scaling) {
5800 case SCHED_TUNABLESCALING_NONE:
5801 factor = 1;
5802 break;
5803 case SCHED_TUNABLESCALING_LINEAR:
5804 factor = cpus;
5805 break;
5806 case SCHED_TUNABLESCALING_LOG:
5807 default:
5808 factor = 1 + ilog2(cpus);
5809 break;
5810 }
19978ca6 5811
acb4a848
CE
5812 return factor;
5813}
19978ca6 5814
acb4a848
CE
5815static void update_sysctl(void)
5816{
5817 unsigned int factor = get_update_sysctl_factor();
19978ca6 5818
0bcdcf28
CE
5819#define SET_SYSCTL(name) \
5820 (sysctl_##name = (factor) * normalized_sysctl_##name)
5821 SET_SYSCTL(sched_min_granularity);
5822 SET_SYSCTL(sched_latency);
5823 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5824#undef SET_SYSCTL
5825}
55cd5340 5826
0bcdcf28
CE
5827static inline void sched_init_granularity(void)
5828{
5829 update_sysctl();
19978ca6
IM
5830}
5831
1da177e4
LT
5832#ifdef CONFIG_SMP
5833/*
5834 * This is how migration works:
5835 *
969c7921
TH
5836 * 1) we invoke migration_cpu_stop() on the target CPU using
5837 * stop_one_cpu().
5838 * 2) stopper starts to run (implicitly forcing the migrated thread
5839 * off the CPU)
5840 * 3) it checks whether the migrated task is still in the wrong runqueue.
5841 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5842 * it and puts it into the right queue.
969c7921
TH
5843 * 5) stopper completes and stop_one_cpu() returns and the migration
5844 * is done.
1da177e4
LT
5845 */
5846
5847/*
5848 * Change a given task's CPU affinity. Migrate the thread to a
5849 * proper CPU and schedule it away if the CPU it's executing on
5850 * is removed from the allowed bitmask.
5851 *
5852 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5853 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5854 * call is not atomic; no spinlocks may be held.
5855 */
96f874e2 5856int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5857{
5858 unsigned long flags;
70b97a7f 5859 struct rq *rq;
969c7921 5860 unsigned int dest_cpu;
48f24c4d 5861 int ret = 0;
1da177e4 5862
65cc8e48
PZ
5863 /*
5864 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5865 * drop the rq->lock and still rely on ->cpus_allowed.
5866 */
5867again:
5868 while (task_is_waking(p))
5869 cpu_relax();
1da177e4 5870 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5871 if (task_is_waking(p)) {
5872 task_rq_unlock(rq, &flags);
5873 goto again;
5874 }
e2912009 5875
6ad4c188 5876 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5877 ret = -EINVAL;
5878 goto out;
5879 }
5880
9985b0ba 5881 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5882 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5883 ret = -EINVAL;
5884 goto out;
5885 }
5886
73fe6aae 5887 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5888 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5889 else {
96f874e2
RR
5890 cpumask_copy(&p->cpus_allowed, new_mask);
5891 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5892 }
5893
1da177e4 5894 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5895 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5896 goto out;
5897
969c7921 5898 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5899 if (migrate_task(p, rq)) {
969c7921 5900 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5901 /* Need help from migration thread: drop lock and wait. */
5902 task_rq_unlock(rq, &flags);
969c7921 5903 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5904 tlb_migrate_finish(p->mm);
5905 return 0;
5906 }
5907out:
5908 task_rq_unlock(rq, &flags);
48f24c4d 5909
1da177e4
LT
5910 return ret;
5911}
cd8ba7cd 5912EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5913
5914/*
41a2d6cf 5915 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5916 * this because either it can't run here any more (set_cpus_allowed()
5917 * away from this CPU, or CPU going down), or because we're
5918 * attempting to rebalance this task on exec (sched_exec).
5919 *
5920 * So we race with normal scheduler movements, but that's OK, as long
5921 * as the task is no longer on this CPU.
efc30814
KK
5922 *
5923 * Returns non-zero if task was successfully migrated.
1da177e4 5924 */
efc30814 5925static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5926{
70b97a7f 5927 struct rq *rq_dest, *rq_src;
e2912009 5928 int ret = 0;
1da177e4 5929
e761b772 5930 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5931 return ret;
1da177e4
LT
5932
5933 rq_src = cpu_rq(src_cpu);
5934 rq_dest = cpu_rq(dest_cpu);
5935
5936 double_rq_lock(rq_src, rq_dest);
5937 /* Already moved. */
5938 if (task_cpu(p) != src_cpu)
b1e38734 5939 goto done;
1da177e4 5940 /* Affinity changed (again). */
96f874e2 5941 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5942 goto fail;
1da177e4 5943
e2912009
PZ
5944 /*
5945 * If we're not on a rq, the next wake-up will ensure we're
5946 * placed properly.
5947 */
5948 if (p->se.on_rq) {
2e1cb74a 5949 deactivate_task(rq_src, p, 0);
e2912009 5950 set_task_cpu(p, dest_cpu);
dd41f596 5951 activate_task(rq_dest, p, 0);
15afe09b 5952 check_preempt_curr(rq_dest, p, 0);
1da177e4 5953 }
b1e38734 5954done:
efc30814 5955 ret = 1;
b1e38734 5956fail:
1da177e4 5957 double_rq_unlock(rq_src, rq_dest);
efc30814 5958 return ret;
1da177e4
LT
5959}
5960
5961/*
969c7921
TH
5962 * migration_cpu_stop - this will be executed by a highprio stopper thread
5963 * and performs thread migration by bumping thread off CPU then
5964 * 'pushing' onto another runqueue.
1da177e4 5965 */
969c7921 5966static int migration_cpu_stop(void *data)
1da177e4 5967{
969c7921 5968 struct migration_arg *arg = data;
f7b4cddc 5969
969c7921
TH
5970 /*
5971 * The original target cpu might have gone down and we might
5972 * be on another cpu but it doesn't matter.
5973 */
f7b4cddc 5974 local_irq_disable();
969c7921 5975 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5976 local_irq_enable();
1da177e4 5977 return 0;
f7b4cddc
ON
5978}
5979
1da177e4 5980#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5981
054b9108 5982/*
48c5ccae
PZ
5983 * Ensures that the idle task is using init_mm right before its cpu goes
5984 * offline.
054b9108 5985 */
48c5ccae 5986void idle_task_exit(void)
1da177e4 5987{
48c5ccae 5988 struct mm_struct *mm = current->active_mm;
e76bd8d9 5989
48c5ccae 5990 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5991
48c5ccae
PZ
5992 if (mm != &init_mm)
5993 switch_mm(mm, &init_mm, current);
5994 mmdrop(mm);
1da177e4
LT
5995}
5996
5997/*
5998 * While a dead CPU has no uninterruptible tasks queued at this point,
5999 * it might still have a nonzero ->nr_uninterruptible counter, because
6000 * for performance reasons the counter is not stricly tracking tasks to
6001 * their home CPUs. So we just add the counter to another CPU's counter,
6002 * to keep the global sum constant after CPU-down:
6003 */
70b97a7f 6004static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6005{
6ad4c188 6006 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6007
1da177e4
LT
6008 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6009 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6010}
6011
dd41f596 6012/*
48c5ccae 6013 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6014 */
48c5ccae 6015static void calc_global_load_remove(struct rq *rq)
1da177e4 6016{
48c5ccae
PZ
6017 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6018 rq->calc_load_active = 0;
1da177e4
LT
6019}
6020
48f24c4d 6021/*
48c5ccae
PZ
6022 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6023 * try_to_wake_up()->select_task_rq().
6024 *
6025 * Called with rq->lock held even though we'er in stop_machine() and
6026 * there's no concurrency possible, we hold the required locks anyway
6027 * because of lock validation efforts.
1da177e4 6028 */
48c5ccae 6029static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6030{
70b97a7f 6031 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6032 struct task_struct *next, *stop = rq->stop;
6033 int dest_cpu;
1da177e4
LT
6034
6035 /*
48c5ccae
PZ
6036 * Fudge the rq selection such that the below task selection loop
6037 * doesn't get stuck on the currently eligible stop task.
6038 *
6039 * We're currently inside stop_machine() and the rq is either stuck
6040 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6041 * either way we should never end up calling schedule() until we're
6042 * done here.
1da177e4 6043 */
48c5ccae 6044 rq->stop = NULL;
48f24c4d 6045
dd41f596 6046 for ( ; ; ) {
48c5ccae
PZ
6047 /*
6048 * There's this thread running, bail when that's the only
6049 * remaining thread.
6050 */
6051 if (rq->nr_running == 1)
dd41f596 6052 break;
48c5ccae 6053
b67802ea 6054 next = pick_next_task(rq);
48c5ccae 6055 BUG_ON(!next);
79c53799 6056 next->sched_class->put_prev_task(rq, next);
e692ab53 6057
48c5ccae
PZ
6058 /* Find suitable destination for @next, with force if needed. */
6059 dest_cpu = select_fallback_rq(dead_cpu, next);
6060 raw_spin_unlock(&rq->lock);
6061
6062 __migrate_task(next, dead_cpu, dest_cpu);
6063
6064 raw_spin_lock(&rq->lock);
1da177e4 6065 }
dce48a84 6066
48c5ccae 6067 rq->stop = stop;
dce48a84 6068}
48c5ccae 6069
1da177e4
LT
6070#endif /* CONFIG_HOTPLUG_CPU */
6071
e692ab53
NP
6072#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6073
6074static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6075 {
6076 .procname = "sched_domain",
c57baf1e 6077 .mode = 0555,
e0361851 6078 },
56992309 6079 {}
e692ab53
NP
6080};
6081
6082static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6083 {
6084 .procname = "kernel",
c57baf1e 6085 .mode = 0555,
e0361851
AD
6086 .child = sd_ctl_dir,
6087 },
56992309 6088 {}
e692ab53
NP
6089};
6090
6091static struct ctl_table *sd_alloc_ctl_entry(int n)
6092{
6093 struct ctl_table *entry =
5cf9f062 6094 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6095
e692ab53
NP
6096 return entry;
6097}
6098
6382bc90
MM
6099static void sd_free_ctl_entry(struct ctl_table **tablep)
6100{
cd790076 6101 struct ctl_table *entry;
6382bc90 6102
cd790076
MM
6103 /*
6104 * In the intermediate directories, both the child directory and
6105 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6106 * will always be set. In the lowest directory the names are
cd790076
MM
6107 * static strings and all have proc handlers.
6108 */
6109 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6110 if (entry->child)
6111 sd_free_ctl_entry(&entry->child);
cd790076
MM
6112 if (entry->proc_handler == NULL)
6113 kfree(entry->procname);
6114 }
6382bc90
MM
6115
6116 kfree(*tablep);
6117 *tablep = NULL;
6118}
6119
e692ab53 6120static void
e0361851 6121set_table_entry(struct ctl_table *entry,
e692ab53
NP
6122 const char *procname, void *data, int maxlen,
6123 mode_t mode, proc_handler *proc_handler)
6124{
e692ab53
NP
6125 entry->procname = procname;
6126 entry->data = data;
6127 entry->maxlen = maxlen;
6128 entry->mode = mode;
6129 entry->proc_handler = proc_handler;
6130}
6131
6132static struct ctl_table *
6133sd_alloc_ctl_domain_table(struct sched_domain *sd)
6134{
a5d8c348 6135 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6136
ad1cdc1d
MM
6137 if (table == NULL)
6138 return NULL;
6139
e0361851 6140 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6141 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6142 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6143 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6144 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6145 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6146 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6147 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6148 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6149 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6150 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6151 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6152 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6153 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6154 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6155 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6156 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6157 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6158 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6159 &sd->cache_nice_tries,
6160 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6161 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6162 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6163 set_table_entry(&table[11], "name", sd->name,
6164 CORENAME_MAX_SIZE, 0444, proc_dostring);
6165 /* &table[12] is terminator */
e692ab53
NP
6166
6167 return table;
6168}
6169
9a4e7159 6170static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6171{
6172 struct ctl_table *entry, *table;
6173 struct sched_domain *sd;
6174 int domain_num = 0, i;
6175 char buf[32];
6176
6177 for_each_domain(cpu, sd)
6178 domain_num++;
6179 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6180 if (table == NULL)
6181 return NULL;
e692ab53
NP
6182
6183 i = 0;
6184 for_each_domain(cpu, sd) {
6185 snprintf(buf, 32, "domain%d", i);
e692ab53 6186 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6187 entry->mode = 0555;
e692ab53
NP
6188 entry->child = sd_alloc_ctl_domain_table(sd);
6189 entry++;
6190 i++;
6191 }
6192 return table;
6193}
6194
6195static struct ctl_table_header *sd_sysctl_header;
6382bc90 6196static void register_sched_domain_sysctl(void)
e692ab53 6197{
6ad4c188 6198 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6199 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6200 char buf[32];
6201
7378547f
MM
6202 WARN_ON(sd_ctl_dir[0].child);
6203 sd_ctl_dir[0].child = entry;
6204
ad1cdc1d
MM
6205 if (entry == NULL)
6206 return;
6207
6ad4c188 6208 for_each_possible_cpu(i) {
e692ab53 6209 snprintf(buf, 32, "cpu%d", i);
e692ab53 6210 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6211 entry->mode = 0555;
e692ab53 6212 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6213 entry++;
e692ab53 6214 }
7378547f
MM
6215
6216 WARN_ON(sd_sysctl_header);
e692ab53
NP
6217 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6218}
6382bc90 6219
7378547f 6220/* may be called multiple times per register */
6382bc90
MM
6221static void unregister_sched_domain_sysctl(void)
6222{
7378547f
MM
6223 if (sd_sysctl_header)
6224 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6225 sd_sysctl_header = NULL;
7378547f
MM
6226 if (sd_ctl_dir[0].child)
6227 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6228}
e692ab53 6229#else
6382bc90
MM
6230static void register_sched_domain_sysctl(void)
6231{
6232}
6233static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6234{
6235}
6236#endif
6237
1f11eb6a
GH
6238static void set_rq_online(struct rq *rq)
6239{
6240 if (!rq->online) {
6241 const struct sched_class *class;
6242
c6c4927b 6243 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6244 rq->online = 1;
6245
6246 for_each_class(class) {
6247 if (class->rq_online)
6248 class->rq_online(rq);
6249 }
6250 }
6251}
6252
6253static void set_rq_offline(struct rq *rq)
6254{
6255 if (rq->online) {
6256 const struct sched_class *class;
6257
6258 for_each_class(class) {
6259 if (class->rq_offline)
6260 class->rq_offline(rq);
6261 }
6262
c6c4927b 6263 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6264 rq->online = 0;
6265 }
6266}
6267
1da177e4
LT
6268/*
6269 * migration_call - callback that gets triggered when a CPU is added.
6270 * Here we can start up the necessary migration thread for the new CPU.
6271 */
48f24c4d
IM
6272static int __cpuinit
6273migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6274{
48f24c4d 6275 int cpu = (long)hcpu;
1da177e4 6276 unsigned long flags;
969c7921 6277 struct rq *rq = cpu_rq(cpu);
1da177e4 6278
48c5ccae 6279 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6280
1da177e4 6281 case CPU_UP_PREPARE:
a468d389 6282 rq->calc_load_update = calc_load_update;
1da177e4 6283 break;
48f24c4d 6284
1da177e4 6285 case CPU_ONLINE:
1f94ef59 6286 /* Update our root-domain */
05fa785c 6287 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6288 if (rq->rd) {
c6c4927b 6289 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6290
6291 set_rq_online(rq);
1f94ef59 6292 }
05fa785c 6293 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6294 break;
48f24c4d 6295
1da177e4 6296#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6297 case CPU_DYING:
57d885fe 6298 /* Update our root-domain */
05fa785c 6299 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6300 if (rq->rd) {
c6c4927b 6301 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6302 set_rq_offline(rq);
57d885fe 6303 }
48c5ccae
PZ
6304 migrate_tasks(cpu);
6305 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6306 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6307
6308 migrate_nr_uninterruptible(rq);
6309 calc_global_load_remove(rq);
57d885fe 6310 break;
1da177e4
LT
6311#endif
6312 }
6313 return NOTIFY_OK;
6314}
6315
f38b0820
PM
6316/*
6317 * Register at high priority so that task migration (migrate_all_tasks)
6318 * happens before everything else. This has to be lower priority than
cdd6c482 6319 * the notifier in the perf_event subsystem, though.
1da177e4 6320 */
26c2143b 6321static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6322 .notifier_call = migration_call,
50a323b7 6323 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6324};
6325
3a101d05
TH
6326static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6327 unsigned long action, void *hcpu)
6328{
6329 switch (action & ~CPU_TASKS_FROZEN) {
6330 case CPU_ONLINE:
6331 case CPU_DOWN_FAILED:
6332 set_cpu_active((long)hcpu, true);
6333 return NOTIFY_OK;
6334 default:
6335 return NOTIFY_DONE;
6336 }
6337}
6338
6339static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6340 unsigned long action, void *hcpu)
6341{
6342 switch (action & ~CPU_TASKS_FROZEN) {
6343 case CPU_DOWN_PREPARE:
6344 set_cpu_active((long)hcpu, false);
6345 return NOTIFY_OK;
6346 default:
6347 return NOTIFY_DONE;
6348 }
6349}
6350
7babe8db 6351static int __init migration_init(void)
1da177e4
LT
6352{
6353 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6354 int err;
48f24c4d 6355
3a101d05 6356 /* Initialize migration for the boot CPU */
07dccf33
AM
6357 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6358 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6359 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6360 register_cpu_notifier(&migration_notifier);
7babe8db 6361
3a101d05
TH
6362 /* Register cpu active notifiers */
6363 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6364 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6365
a004cd42 6366 return 0;
1da177e4 6367}
7babe8db 6368early_initcall(migration_init);
1da177e4
LT
6369#endif
6370
6371#ifdef CONFIG_SMP
476f3534 6372
3e9830dc 6373#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6374
f6630114
MT
6375static __read_mostly int sched_domain_debug_enabled;
6376
6377static int __init sched_domain_debug_setup(char *str)
6378{
6379 sched_domain_debug_enabled = 1;
6380
6381 return 0;
6382}
6383early_param("sched_debug", sched_domain_debug_setup);
6384
7c16ec58 6385static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6386 struct cpumask *groupmask)
1da177e4 6387{
4dcf6aff 6388 struct sched_group *group = sd->groups;
434d53b0 6389 char str[256];
1da177e4 6390
968ea6d8 6391 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6392 cpumask_clear(groupmask);
4dcf6aff
IM
6393
6394 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6395
6396 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6397 printk("does not load-balance\n");
4dcf6aff 6398 if (sd->parent)
3df0fc5b
PZ
6399 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6400 " has parent");
4dcf6aff 6401 return -1;
41c7ce9a
NP
6402 }
6403
3df0fc5b 6404 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6405
758b2cdc 6406 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6407 printk(KERN_ERR "ERROR: domain->span does not contain "
6408 "CPU%d\n", cpu);
4dcf6aff 6409 }
758b2cdc 6410 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6411 printk(KERN_ERR "ERROR: domain->groups does not contain"
6412 " CPU%d\n", cpu);
4dcf6aff 6413 }
1da177e4 6414
4dcf6aff 6415 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6416 do {
4dcf6aff 6417 if (!group) {
3df0fc5b
PZ
6418 printk("\n");
6419 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6420 break;
6421 }
6422
18a3885f 6423 if (!group->cpu_power) {
3df0fc5b
PZ
6424 printk(KERN_CONT "\n");
6425 printk(KERN_ERR "ERROR: domain->cpu_power not "
6426 "set\n");
4dcf6aff
IM
6427 break;
6428 }
1da177e4 6429
758b2cdc 6430 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6431 printk(KERN_CONT "\n");
6432 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6433 break;
6434 }
1da177e4 6435
758b2cdc 6436 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6437 printk(KERN_CONT "\n");
6438 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6439 break;
6440 }
1da177e4 6441
758b2cdc 6442 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6443
968ea6d8 6444 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6445
3df0fc5b 6446 printk(KERN_CONT " %s", str);
18a3885f 6447 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6448 printk(KERN_CONT " (cpu_power = %d)",
6449 group->cpu_power);
381512cf 6450 }
1da177e4 6451
4dcf6aff
IM
6452 group = group->next;
6453 } while (group != sd->groups);
3df0fc5b 6454 printk(KERN_CONT "\n");
1da177e4 6455
758b2cdc 6456 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6457 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6458
758b2cdc
RR
6459 if (sd->parent &&
6460 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6461 printk(KERN_ERR "ERROR: parent span is not a superset "
6462 "of domain->span\n");
4dcf6aff
IM
6463 return 0;
6464}
1da177e4 6465
4dcf6aff
IM
6466static void sched_domain_debug(struct sched_domain *sd, int cpu)
6467{
d5dd3db1 6468 cpumask_var_t groupmask;
4dcf6aff 6469 int level = 0;
1da177e4 6470
f6630114
MT
6471 if (!sched_domain_debug_enabled)
6472 return;
6473
4dcf6aff
IM
6474 if (!sd) {
6475 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6476 return;
6477 }
1da177e4 6478
4dcf6aff
IM
6479 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6480
d5dd3db1 6481 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6482 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6483 return;
6484 }
6485
4dcf6aff 6486 for (;;) {
7c16ec58 6487 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6488 break;
1da177e4
LT
6489 level++;
6490 sd = sd->parent;
33859f7f 6491 if (!sd)
4dcf6aff
IM
6492 break;
6493 }
d5dd3db1 6494 free_cpumask_var(groupmask);
1da177e4 6495}
6d6bc0ad 6496#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6497# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6498#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6499
1a20ff27 6500static int sd_degenerate(struct sched_domain *sd)
245af2c7 6501{
758b2cdc 6502 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6503 return 1;
6504
6505 /* Following flags need at least 2 groups */
6506 if (sd->flags & (SD_LOAD_BALANCE |
6507 SD_BALANCE_NEWIDLE |
6508 SD_BALANCE_FORK |
89c4710e
SS
6509 SD_BALANCE_EXEC |
6510 SD_SHARE_CPUPOWER |
6511 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6512 if (sd->groups != sd->groups->next)
6513 return 0;
6514 }
6515
6516 /* Following flags don't use groups */
c88d5910 6517 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6518 return 0;
6519
6520 return 1;
6521}
6522
48f24c4d
IM
6523static int
6524sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6525{
6526 unsigned long cflags = sd->flags, pflags = parent->flags;
6527
6528 if (sd_degenerate(parent))
6529 return 1;
6530
758b2cdc 6531 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6532 return 0;
6533
245af2c7
SS
6534 /* Flags needing groups don't count if only 1 group in parent */
6535 if (parent->groups == parent->groups->next) {
6536 pflags &= ~(SD_LOAD_BALANCE |
6537 SD_BALANCE_NEWIDLE |
6538 SD_BALANCE_FORK |
89c4710e
SS
6539 SD_BALANCE_EXEC |
6540 SD_SHARE_CPUPOWER |
6541 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6542 if (nr_node_ids == 1)
6543 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6544 }
6545 if (~cflags & pflags)
6546 return 0;
6547
6548 return 1;
6549}
6550
c6c4927b
RR
6551static void free_rootdomain(struct root_domain *rd)
6552{
047106ad
PZ
6553 synchronize_sched();
6554
68e74568
RR
6555 cpupri_cleanup(&rd->cpupri);
6556
c6c4927b
RR
6557 free_cpumask_var(rd->rto_mask);
6558 free_cpumask_var(rd->online);
6559 free_cpumask_var(rd->span);
6560 kfree(rd);
6561}
6562
57d885fe
GH
6563static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6564{
a0490fa3 6565 struct root_domain *old_rd = NULL;
57d885fe 6566 unsigned long flags;
57d885fe 6567
05fa785c 6568 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6569
6570 if (rq->rd) {
a0490fa3 6571 old_rd = rq->rd;
57d885fe 6572
c6c4927b 6573 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6574 set_rq_offline(rq);
57d885fe 6575
c6c4927b 6576 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6577
a0490fa3
IM
6578 /*
6579 * If we dont want to free the old_rt yet then
6580 * set old_rd to NULL to skip the freeing later
6581 * in this function:
6582 */
6583 if (!atomic_dec_and_test(&old_rd->refcount))
6584 old_rd = NULL;
57d885fe
GH
6585 }
6586
6587 atomic_inc(&rd->refcount);
6588 rq->rd = rd;
6589
c6c4927b 6590 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6591 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6592 set_rq_online(rq);
57d885fe 6593
05fa785c 6594 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6595
6596 if (old_rd)
6597 free_rootdomain(old_rd);
57d885fe
GH
6598}
6599
68c38fc3 6600static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6601{
6602 memset(rd, 0, sizeof(*rd));
6603
68c38fc3 6604 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6605 goto out;
68c38fc3 6606 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6607 goto free_span;
68c38fc3 6608 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6609 goto free_online;
6e0534f2 6610
68c38fc3 6611 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6612 goto free_rto_mask;
c6c4927b 6613 return 0;
6e0534f2 6614
68e74568
RR
6615free_rto_mask:
6616 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6617free_online:
6618 free_cpumask_var(rd->online);
6619free_span:
6620 free_cpumask_var(rd->span);
0c910d28 6621out:
c6c4927b 6622 return -ENOMEM;
57d885fe
GH
6623}
6624
6625static void init_defrootdomain(void)
6626{
68c38fc3 6627 init_rootdomain(&def_root_domain);
c6c4927b 6628
57d885fe
GH
6629 atomic_set(&def_root_domain.refcount, 1);
6630}
6631
dc938520 6632static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6633{
6634 struct root_domain *rd;
6635
6636 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6637 if (!rd)
6638 return NULL;
6639
68c38fc3 6640 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6641 kfree(rd);
6642 return NULL;
6643 }
57d885fe
GH
6644
6645 return rd;
6646}
6647
1da177e4 6648/*
0eab9146 6649 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6650 * hold the hotplug lock.
6651 */
0eab9146
IM
6652static void
6653cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6654{
70b97a7f 6655 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6656 struct sched_domain *tmp;
6657
669c55e9
PZ
6658 for (tmp = sd; tmp; tmp = tmp->parent)
6659 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6660
245af2c7 6661 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6662 for (tmp = sd; tmp; ) {
245af2c7
SS
6663 struct sched_domain *parent = tmp->parent;
6664 if (!parent)
6665 break;
f29c9b1c 6666
1a848870 6667 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6668 tmp->parent = parent->parent;
1a848870
SS
6669 if (parent->parent)
6670 parent->parent->child = tmp;
f29c9b1c
LZ
6671 } else
6672 tmp = tmp->parent;
245af2c7
SS
6673 }
6674
1a848870 6675 if (sd && sd_degenerate(sd)) {
245af2c7 6676 sd = sd->parent;
1a848870
SS
6677 if (sd)
6678 sd->child = NULL;
6679 }
1da177e4
LT
6680
6681 sched_domain_debug(sd, cpu);
6682
57d885fe 6683 rq_attach_root(rq, rd);
674311d5 6684 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6685}
6686
6687/* cpus with isolated domains */
dcc30a35 6688static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6689
6690/* Setup the mask of cpus configured for isolated domains */
6691static int __init isolated_cpu_setup(char *str)
6692{
bdddd296 6693 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6694 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6695 return 1;
6696}
6697
8927f494 6698__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6699
6700/*
6711cab4
SS
6701 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6702 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6703 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6704 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6705 *
6706 * init_sched_build_groups will build a circular linked list of the groups
6707 * covered by the given span, and will set each group's ->cpumask correctly,
6708 * and ->cpu_power to 0.
6709 */
a616058b 6710static void
96f874e2
RR
6711init_sched_build_groups(const struct cpumask *span,
6712 const struct cpumask *cpu_map,
6713 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6714 struct sched_group **sg,
96f874e2
RR
6715 struct cpumask *tmpmask),
6716 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6717{
6718 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6719 int i;
6720
96f874e2 6721 cpumask_clear(covered);
7c16ec58 6722
abcd083a 6723 for_each_cpu(i, span) {
6711cab4 6724 struct sched_group *sg;
7c16ec58 6725 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6726 int j;
6727
758b2cdc 6728 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6729 continue;
6730
758b2cdc 6731 cpumask_clear(sched_group_cpus(sg));
18a3885f 6732 sg->cpu_power = 0;
1da177e4 6733
abcd083a 6734 for_each_cpu(j, span) {
7c16ec58 6735 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6736 continue;
6737
96f874e2 6738 cpumask_set_cpu(j, covered);
758b2cdc 6739 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6740 }
6741 if (!first)
6742 first = sg;
6743 if (last)
6744 last->next = sg;
6745 last = sg;
6746 }
6747 last->next = first;
6748}
6749
9c1cfda2 6750#define SD_NODES_PER_DOMAIN 16
1da177e4 6751
9c1cfda2 6752#ifdef CONFIG_NUMA
198e2f18 6753
9c1cfda2
JH
6754/**
6755 * find_next_best_node - find the next node to include in a sched_domain
6756 * @node: node whose sched_domain we're building
6757 * @used_nodes: nodes already in the sched_domain
6758 *
41a2d6cf 6759 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6760 * finds the closest node not already in the @used_nodes map.
6761 *
6762 * Should use nodemask_t.
6763 */
c5f59f08 6764static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6765{
6766 int i, n, val, min_val, best_node = 0;
6767
6768 min_val = INT_MAX;
6769
076ac2af 6770 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6771 /* Start at @node */
076ac2af 6772 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6773
6774 if (!nr_cpus_node(n))
6775 continue;
6776
6777 /* Skip already used nodes */
c5f59f08 6778 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6779 continue;
6780
6781 /* Simple min distance search */
6782 val = node_distance(node, n);
6783
6784 if (val < min_val) {
6785 min_val = val;
6786 best_node = n;
6787 }
6788 }
6789
c5f59f08 6790 node_set(best_node, *used_nodes);
9c1cfda2
JH
6791 return best_node;
6792}
6793
6794/**
6795 * sched_domain_node_span - get a cpumask for a node's sched_domain
6796 * @node: node whose cpumask we're constructing
73486722 6797 * @span: resulting cpumask
9c1cfda2 6798 *
41a2d6cf 6799 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6800 * should be one that prevents unnecessary balancing, but also spreads tasks
6801 * out optimally.
6802 */
96f874e2 6803static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6804{
c5f59f08 6805 nodemask_t used_nodes;
48f24c4d 6806 int i;
9c1cfda2 6807
6ca09dfc 6808 cpumask_clear(span);
c5f59f08 6809 nodes_clear(used_nodes);
9c1cfda2 6810
6ca09dfc 6811 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6812 node_set(node, used_nodes);
9c1cfda2
JH
6813
6814 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6815 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6816
6ca09dfc 6817 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6818 }
9c1cfda2 6819}
6d6bc0ad 6820#endif /* CONFIG_NUMA */
9c1cfda2 6821
5c45bf27 6822int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6823
6c99e9ad
RR
6824/*
6825 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6826 *
6827 * ( See the the comments in include/linux/sched.h:struct sched_group
6828 * and struct sched_domain. )
6c99e9ad
RR
6829 */
6830struct static_sched_group {
6831 struct sched_group sg;
6832 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6833};
6834
6835struct static_sched_domain {
6836 struct sched_domain sd;
6837 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6838};
6839
49a02c51
AH
6840struct s_data {
6841#ifdef CONFIG_NUMA
6842 int sd_allnodes;
6843 cpumask_var_t domainspan;
6844 cpumask_var_t covered;
6845 cpumask_var_t notcovered;
6846#endif
6847 cpumask_var_t nodemask;
6848 cpumask_var_t this_sibling_map;
6849 cpumask_var_t this_core_map;
01a08546 6850 cpumask_var_t this_book_map;
49a02c51
AH
6851 cpumask_var_t send_covered;
6852 cpumask_var_t tmpmask;
6853 struct sched_group **sched_group_nodes;
6854 struct root_domain *rd;
6855};
6856
2109b99e
AH
6857enum s_alloc {
6858 sa_sched_groups = 0,
6859 sa_rootdomain,
6860 sa_tmpmask,
6861 sa_send_covered,
01a08546 6862 sa_this_book_map,
2109b99e
AH
6863 sa_this_core_map,
6864 sa_this_sibling_map,
6865 sa_nodemask,
6866 sa_sched_group_nodes,
6867#ifdef CONFIG_NUMA
6868 sa_notcovered,
6869 sa_covered,
6870 sa_domainspan,
6871#endif
6872 sa_none,
6873};
6874
9c1cfda2 6875/*
48f24c4d 6876 * SMT sched-domains:
9c1cfda2 6877 */
1da177e4 6878#ifdef CONFIG_SCHED_SMT
6c99e9ad 6879static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6880static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6881
41a2d6cf 6882static int
96f874e2
RR
6883cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6884 struct sched_group **sg, struct cpumask *unused)
1da177e4 6885{
6711cab4 6886 if (sg)
1871e52c 6887 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6888 return cpu;
6889}
6d6bc0ad 6890#endif /* CONFIG_SCHED_SMT */
1da177e4 6891
48f24c4d
IM
6892/*
6893 * multi-core sched-domains:
6894 */
1e9f28fa 6895#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6896static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6897static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6898
41a2d6cf 6899static int
96f874e2
RR
6900cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6901 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6902{
6711cab4 6903 int group;
f269893c 6904#ifdef CONFIG_SCHED_SMT
c69fc56d 6905 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6906 group = cpumask_first(mask);
f269893c
HC
6907#else
6908 group = cpu;
6909#endif
6711cab4 6910 if (sg)
6c99e9ad 6911 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6912 return group;
1e9f28fa 6913}
f269893c 6914#endif /* CONFIG_SCHED_MC */
1e9f28fa 6915
01a08546
HC
6916/*
6917 * book sched-domains:
6918 */
6919#ifdef CONFIG_SCHED_BOOK
6920static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6921static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6922
41a2d6cf 6923static int
01a08546
HC
6924cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6925 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6926{
01a08546
HC
6927 int group = cpu;
6928#ifdef CONFIG_SCHED_MC
6929 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6930 group = cpumask_first(mask);
6931#elif defined(CONFIG_SCHED_SMT)
6932 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6933 group = cpumask_first(mask);
6934#endif
6711cab4 6935 if (sg)
01a08546
HC
6936 *sg = &per_cpu(sched_group_book, group).sg;
6937 return group;
1e9f28fa 6938}
01a08546 6939#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6940
6c99e9ad
RR
6941static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6942static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6943
41a2d6cf 6944static int
96f874e2
RR
6945cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6946 struct sched_group **sg, struct cpumask *mask)
1da177e4 6947{
6711cab4 6948 int group;
01a08546
HC
6949#ifdef CONFIG_SCHED_BOOK
6950 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6951 group = cpumask_first(mask);
6952#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6953 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6954 group = cpumask_first(mask);
1e9f28fa 6955#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6956 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6957 group = cpumask_first(mask);
1da177e4 6958#else
6711cab4 6959 group = cpu;
1da177e4 6960#endif
6711cab4 6961 if (sg)
6c99e9ad 6962 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6963 return group;
1da177e4
LT
6964}
6965
6966#ifdef CONFIG_NUMA
1da177e4 6967/*
9c1cfda2
JH
6968 * The init_sched_build_groups can't handle what we want to do with node
6969 * groups, so roll our own. Now each node has its own list of groups which
6970 * gets dynamically allocated.
1da177e4 6971 */
62ea9ceb 6972static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6973static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6974
62ea9ceb 6975static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6976static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6977
96f874e2
RR
6978static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6979 struct sched_group **sg,
6980 struct cpumask *nodemask)
9c1cfda2 6981{
6711cab4
SS
6982 int group;
6983
6ca09dfc 6984 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6985 group = cpumask_first(nodemask);
6711cab4
SS
6986
6987 if (sg)
6c99e9ad 6988 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6989 return group;
1da177e4 6990}
6711cab4 6991
08069033
SS
6992static void init_numa_sched_groups_power(struct sched_group *group_head)
6993{
6994 struct sched_group *sg = group_head;
6995 int j;
6996
6997 if (!sg)
6998 return;
3a5c359a 6999 do {
758b2cdc 7000 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7001 struct sched_domain *sd;
08069033 7002
6c99e9ad 7003 sd = &per_cpu(phys_domains, j).sd;
13318a71 7004 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7005 /*
7006 * Only add "power" once for each
7007 * physical package.
7008 */
7009 continue;
7010 }
08069033 7011
18a3885f 7012 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7013 }
7014 sg = sg->next;
7015 } while (sg != group_head);
08069033 7016}
0601a88d
AH
7017
7018static int build_numa_sched_groups(struct s_data *d,
7019 const struct cpumask *cpu_map, int num)
7020{
7021 struct sched_domain *sd;
7022 struct sched_group *sg, *prev;
7023 int n, j;
7024
7025 cpumask_clear(d->covered);
7026 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7027 if (cpumask_empty(d->nodemask)) {
7028 d->sched_group_nodes[num] = NULL;
7029 goto out;
7030 }
7031
7032 sched_domain_node_span(num, d->domainspan);
7033 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7034
7035 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7036 GFP_KERNEL, num);
7037 if (!sg) {
3df0fc5b
PZ
7038 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7039 num);
0601a88d
AH
7040 return -ENOMEM;
7041 }
7042 d->sched_group_nodes[num] = sg;
7043
7044 for_each_cpu(j, d->nodemask) {
7045 sd = &per_cpu(node_domains, j).sd;
7046 sd->groups = sg;
7047 }
7048
18a3885f 7049 sg->cpu_power = 0;
0601a88d
AH
7050 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7051 sg->next = sg;
7052 cpumask_or(d->covered, d->covered, d->nodemask);
7053
7054 prev = sg;
7055 for (j = 0; j < nr_node_ids; j++) {
7056 n = (num + j) % nr_node_ids;
7057 cpumask_complement(d->notcovered, d->covered);
7058 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7059 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7060 if (cpumask_empty(d->tmpmask))
7061 break;
7062 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7063 if (cpumask_empty(d->tmpmask))
7064 continue;
7065 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7066 GFP_KERNEL, num);
7067 if (!sg) {
3df0fc5b
PZ
7068 printk(KERN_WARNING
7069 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7070 return -ENOMEM;
7071 }
18a3885f 7072 sg->cpu_power = 0;
0601a88d
AH
7073 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7074 sg->next = prev->next;
7075 cpumask_or(d->covered, d->covered, d->tmpmask);
7076 prev->next = sg;
7077 prev = sg;
7078 }
7079out:
7080 return 0;
7081}
6d6bc0ad 7082#endif /* CONFIG_NUMA */
1da177e4 7083
a616058b 7084#ifdef CONFIG_NUMA
51888ca2 7085/* Free memory allocated for various sched_group structures */
96f874e2
RR
7086static void free_sched_groups(const struct cpumask *cpu_map,
7087 struct cpumask *nodemask)
51888ca2 7088{
a616058b 7089 int cpu, i;
51888ca2 7090
abcd083a 7091 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7092 struct sched_group **sched_group_nodes
7093 = sched_group_nodes_bycpu[cpu];
7094
51888ca2
SV
7095 if (!sched_group_nodes)
7096 continue;
7097
076ac2af 7098 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7099 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7100
6ca09dfc 7101 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7102 if (cpumask_empty(nodemask))
51888ca2
SV
7103 continue;
7104
7105 if (sg == NULL)
7106 continue;
7107 sg = sg->next;
7108next_sg:
7109 oldsg = sg;
7110 sg = sg->next;
7111 kfree(oldsg);
7112 if (oldsg != sched_group_nodes[i])
7113 goto next_sg;
7114 }
7115 kfree(sched_group_nodes);
7116 sched_group_nodes_bycpu[cpu] = NULL;
7117 }
51888ca2 7118}
6d6bc0ad 7119#else /* !CONFIG_NUMA */
96f874e2
RR
7120static void free_sched_groups(const struct cpumask *cpu_map,
7121 struct cpumask *nodemask)
a616058b
SS
7122{
7123}
6d6bc0ad 7124#endif /* CONFIG_NUMA */
51888ca2 7125
89c4710e
SS
7126/*
7127 * Initialize sched groups cpu_power.
7128 *
7129 * cpu_power indicates the capacity of sched group, which is used while
7130 * distributing the load between different sched groups in a sched domain.
7131 * Typically cpu_power for all the groups in a sched domain will be same unless
7132 * there are asymmetries in the topology. If there are asymmetries, group
7133 * having more cpu_power will pickup more load compared to the group having
7134 * less cpu_power.
89c4710e
SS
7135 */
7136static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7137{
7138 struct sched_domain *child;
7139 struct sched_group *group;
f93e65c1
PZ
7140 long power;
7141 int weight;
89c4710e
SS
7142
7143 WARN_ON(!sd || !sd->groups);
7144
13318a71 7145 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7146 return;
7147
aae6d3dd
SS
7148 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7149
89c4710e
SS
7150 child = sd->child;
7151
18a3885f 7152 sd->groups->cpu_power = 0;
5517d86b 7153
f93e65c1
PZ
7154 if (!child) {
7155 power = SCHED_LOAD_SCALE;
7156 weight = cpumask_weight(sched_domain_span(sd));
7157 /*
7158 * SMT siblings share the power of a single core.
a52bfd73
PZ
7159 * Usually multiple threads get a better yield out of
7160 * that one core than a single thread would have,
7161 * reflect that in sd->smt_gain.
f93e65c1 7162 */
a52bfd73
PZ
7163 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7164 power *= sd->smt_gain;
f93e65c1 7165 power /= weight;
a52bfd73
PZ
7166 power >>= SCHED_LOAD_SHIFT;
7167 }
18a3885f 7168 sd->groups->cpu_power += power;
89c4710e
SS
7169 return;
7170 }
7171
89c4710e 7172 /*
f93e65c1 7173 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7174 */
7175 group = child->groups;
7176 do {
18a3885f 7177 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7178 group = group->next;
7179 } while (group != child->groups);
7180}
7181
7c16ec58
MT
7182/*
7183 * Initializers for schedule domains
7184 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7185 */
7186
a5d8c348
IM
7187#ifdef CONFIG_SCHED_DEBUG
7188# define SD_INIT_NAME(sd, type) sd->name = #type
7189#else
7190# define SD_INIT_NAME(sd, type) do { } while (0)
7191#endif
7192
7c16ec58 7193#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7194
7c16ec58
MT
7195#define SD_INIT_FUNC(type) \
7196static noinline void sd_init_##type(struct sched_domain *sd) \
7197{ \
7198 memset(sd, 0, sizeof(*sd)); \
7199 *sd = SD_##type##_INIT; \
1d3504fc 7200 sd->level = SD_LV_##type; \
a5d8c348 7201 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7202}
7203
7204SD_INIT_FUNC(CPU)
7205#ifdef CONFIG_NUMA
7206 SD_INIT_FUNC(ALLNODES)
7207 SD_INIT_FUNC(NODE)
7208#endif
7209#ifdef CONFIG_SCHED_SMT
7210 SD_INIT_FUNC(SIBLING)
7211#endif
7212#ifdef CONFIG_SCHED_MC
7213 SD_INIT_FUNC(MC)
7214#endif
01a08546
HC
7215#ifdef CONFIG_SCHED_BOOK
7216 SD_INIT_FUNC(BOOK)
7217#endif
7c16ec58 7218
1d3504fc
HS
7219static int default_relax_domain_level = -1;
7220
7221static int __init setup_relax_domain_level(char *str)
7222{
30e0e178
LZ
7223 unsigned long val;
7224
7225 val = simple_strtoul(str, NULL, 0);
7226 if (val < SD_LV_MAX)
7227 default_relax_domain_level = val;
7228
1d3504fc
HS
7229 return 1;
7230}
7231__setup("relax_domain_level=", setup_relax_domain_level);
7232
7233static void set_domain_attribute(struct sched_domain *sd,
7234 struct sched_domain_attr *attr)
7235{
7236 int request;
7237
7238 if (!attr || attr->relax_domain_level < 0) {
7239 if (default_relax_domain_level < 0)
7240 return;
7241 else
7242 request = default_relax_domain_level;
7243 } else
7244 request = attr->relax_domain_level;
7245 if (request < sd->level) {
7246 /* turn off idle balance on this domain */
c88d5910 7247 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7248 } else {
7249 /* turn on idle balance on this domain */
c88d5910 7250 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7251 }
7252}
7253
2109b99e
AH
7254static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7255 const struct cpumask *cpu_map)
7256{
7257 switch (what) {
7258 case sa_sched_groups:
7259 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7260 d->sched_group_nodes = NULL;
7261 case sa_rootdomain:
7262 free_rootdomain(d->rd); /* fall through */
7263 case sa_tmpmask:
7264 free_cpumask_var(d->tmpmask); /* fall through */
7265 case sa_send_covered:
7266 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7267 case sa_this_book_map:
7268 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7269 case sa_this_core_map:
7270 free_cpumask_var(d->this_core_map); /* fall through */
7271 case sa_this_sibling_map:
7272 free_cpumask_var(d->this_sibling_map); /* fall through */
7273 case sa_nodemask:
7274 free_cpumask_var(d->nodemask); /* fall through */
7275 case sa_sched_group_nodes:
d1b55138 7276#ifdef CONFIG_NUMA
2109b99e
AH
7277 kfree(d->sched_group_nodes); /* fall through */
7278 case sa_notcovered:
7279 free_cpumask_var(d->notcovered); /* fall through */
7280 case sa_covered:
7281 free_cpumask_var(d->covered); /* fall through */
7282 case sa_domainspan:
7283 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7284#endif
2109b99e
AH
7285 case sa_none:
7286 break;
7287 }
7288}
3404c8d9 7289
2109b99e
AH
7290static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7291 const struct cpumask *cpu_map)
7292{
3404c8d9 7293#ifdef CONFIG_NUMA
2109b99e
AH
7294 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7295 return sa_none;
7296 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7297 return sa_domainspan;
7298 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7299 return sa_covered;
7300 /* Allocate the per-node list of sched groups */
7301 d->sched_group_nodes = kcalloc(nr_node_ids,
7302 sizeof(struct sched_group *), GFP_KERNEL);
7303 if (!d->sched_group_nodes) {
3df0fc5b 7304 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7305 return sa_notcovered;
d1b55138 7306 }
2109b99e 7307 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7308#endif
2109b99e
AH
7309 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7310 return sa_sched_group_nodes;
7311 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7312 return sa_nodemask;
7313 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7314 return sa_this_sibling_map;
01a08546 7315 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7316 return sa_this_core_map;
01a08546
HC
7317 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7318 return sa_this_book_map;
2109b99e
AH
7319 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7320 return sa_send_covered;
7321 d->rd = alloc_rootdomain();
7322 if (!d->rd) {
3df0fc5b 7323 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7324 return sa_tmpmask;
57d885fe 7325 }
2109b99e
AH
7326 return sa_rootdomain;
7327}
57d885fe 7328
7f4588f3
AH
7329static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7330 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7331{
7332 struct sched_domain *sd = NULL;
7c16ec58 7333#ifdef CONFIG_NUMA
7f4588f3 7334 struct sched_domain *parent;
1da177e4 7335
7f4588f3
AH
7336 d->sd_allnodes = 0;
7337 if (cpumask_weight(cpu_map) >
7338 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7339 sd = &per_cpu(allnodes_domains, i).sd;
7340 SD_INIT(sd, ALLNODES);
1d3504fc 7341 set_domain_attribute(sd, attr);
7f4588f3
AH
7342 cpumask_copy(sched_domain_span(sd), cpu_map);
7343 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7344 d->sd_allnodes = 1;
7345 }
7346 parent = sd;
7347
7348 sd = &per_cpu(node_domains, i).sd;
7349 SD_INIT(sd, NODE);
7350 set_domain_attribute(sd, attr);
7351 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7352 sd->parent = parent;
7353 if (parent)
7354 parent->child = sd;
7355 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7356#endif
7f4588f3
AH
7357 return sd;
7358}
1da177e4 7359
87cce662
AH
7360static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7361 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7362 struct sched_domain *parent, int i)
7363{
7364 struct sched_domain *sd;
7365 sd = &per_cpu(phys_domains, i).sd;
7366 SD_INIT(sd, CPU);
7367 set_domain_attribute(sd, attr);
7368 cpumask_copy(sched_domain_span(sd), d->nodemask);
7369 sd->parent = parent;
7370 if (parent)
7371 parent->child = sd;
7372 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7373 return sd;
7374}
1da177e4 7375
01a08546
HC
7376static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7377 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7378 struct sched_domain *parent, int i)
7379{
7380 struct sched_domain *sd = parent;
7381#ifdef CONFIG_SCHED_BOOK
7382 sd = &per_cpu(book_domains, i).sd;
7383 SD_INIT(sd, BOOK);
7384 set_domain_attribute(sd, attr);
7385 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7386 sd->parent = parent;
7387 parent->child = sd;
7388 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7389#endif
7390 return sd;
7391}
7392
410c4081
AH
7393static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7394 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7395 struct sched_domain *parent, int i)
7396{
7397 struct sched_domain *sd = parent;
1e9f28fa 7398#ifdef CONFIG_SCHED_MC
410c4081
AH
7399 sd = &per_cpu(core_domains, i).sd;
7400 SD_INIT(sd, MC);
7401 set_domain_attribute(sd, attr);
7402 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7403 sd->parent = parent;
7404 parent->child = sd;
7405 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7406#endif
410c4081
AH
7407 return sd;
7408}
1e9f28fa 7409
d8173535
AH
7410static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7411 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7412 struct sched_domain *parent, int i)
7413{
7414 struct sched_domain *sd = parent;
1da177e4 7415#ifdef CONFIG_SCHED_SMT
d8173535
AH
7416 sd = &per_cpu(cpu_domains, i).sd;
7417 SD_INIT(sd, SIBLING);
7418 set_domain_attribute(sd, attr);
7419 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7420 sd->parent = parent;
7421 parent->child = sd;
7422 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7423#endif
d8173535
AH
7424 return sd;
7425}
1da177e4 7426
0e8e85c9
AH
7427static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7428 const struct cpumask *cpu_map, int cpu)
7429{
7430 switch (l) {
1da177e4 7431#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7432 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7433 cpumask_and(d->this_sibling_map, cpu_map,
7434 topology_thread_cpumask(cpu));
7435 if (cpu == cpumask_first(d->this_sibling_map))
7436 init_sched_build_groups(d->this_sibling_map, cpu_map,
7437 &cpu_to_cpu_group,
7438 d->send_covered, d->tmpmask);
7439 break;
1da177e4 7440#endif
1e9f28fa 7441#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7442 case SD_LV_MC: /* set up multi-core groups */
7443 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7444 if (cpu == cpumask_first(d->this_core_map))
7445 init_sched_build_groups(d->this_core_map, cpu_map,
7446 &cpu_to_core_group,
7447 d->send_covered, d->tmpmask);
7448 break;
01a08546
HC
7449#endif
7450#ifdef CONFIG_SCHED_BOOK
7451 case SD_LV_BOOK: /* set up book groups */
7452 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7453 if (cpu == cpumask_first(d->this_book_map))
7454 init_sched_build_groups(d->this_book_map, cpu_map,
7455 &cpu_to_book_group,
7456 d->send_covered, d->tmpmask);
7457 break;
1e9f28fa 7458#endif
86548096
AH
7459 case SD_LV_CPU: /* set up physical groups */
7460 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7461 if (!cpumask_empty(d->nodemask))
7462 init_sched_build_groups(d->nodemask, cpu_map,
7463 &cpu_to_phys_group,
7464 d->send_covered, d->tmpmask);
7465 break;
1da177e4 7466#ifdef CONFIG_NUMA
de616e36
AH
7467 case SD_LV_ALLNODES:
7468 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7469 d->send_covered, d->tmpmask);
7470 break;
7471#endif
0e8e85c9
AH
7472 default:
7473 break;
7c16ec58 7474 }
0e8e85c9 7475}
9c1cfda2 7476
2109b99e
AH
7477/*
7478 * Build sched domains for a given set of cpus and attach the sched domains
7479 * to the individual cpus
7480 */
7481static int __build_sched_domains(const struct cpumask *cpu_map,
7482 struct sched_domain_attr *attr)
7483{
7484 enum s_alloc alloc_state = sa_none;
7485 struct s_data d;
294b0c96 7486 struct sched_domain *sd;
2109b99e 7487 int i;
7c16ec58 7488#ifdef CONFIG_NUMA
2109b99e 7489 d.sd_allnodes = 0;
7c16ec58 7490#endif
9c1cfda2 7491
2109b99e
AH
7492 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7493 if (alloc_state != sa_rootdomain)
7494 goto error;
7495 alloc_state = sa_sched_groups;
9c1cfda2 7496
1da177e4 7497 /*
1a20ff27 7498 * Set up domains for cpus specified by the cpu_map.
1da177e4 7499 */
abcd083a 7500 for_each_cpu(i, cpu_map) {
49a02c51
AH
7501 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7502 cpu_map);
9761eea8 7503
7f4588f3 7504 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7505 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7506 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7507 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7508 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7509 }
9c1cfda2 7510
abcd083a 7511 for_each_cpu(i, cpu_map) {
0e8e85c9 7512 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7513 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7514 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7515 }
9c1cfda2 7516
1da177e4 7517 /* Set up physical groups */
86548096
AH
7518 for (i = 0; i < nr_node_ids; i++)
7519 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7520
1da177e4
LT
7521#ifdef CONFIG_NUMA
7522 /* Set up node groups */
de616e36
AH
7523 if (d.sd_allnodes)
7524 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7525
0601a88d
AH
7526 for (i = 0; i < nr_node_ids; i++)
7527 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7528 goto error;
1da177e4
LT
7529#endif
7530
7531 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7532#ifdef CONFIG_SCHED_SMT
abcd083a 7533 for_each_cpu(i, cpu_map) {
294b0c96 7534 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7535 init_sched_groups_power(i, sd);
5c45bf27 7536 }
1da177e4 7537#endif
1e9f28fa 7538#ifdef CONFIG_SCHED_MC
abcd083a 7539 for_each_cpu(i, cpu_map) {
294b0c96 7540 sd = &per_cpu(core_domains, i).sd;
89c4710e 7541 init_sched_groups_power(i, sd);
5c45bf27
SS
7542 }
7543#endif
01a08546
HC
7544#ifdef CONFIG_SCHED_BOOK
7545 for_each_cpu(i, cpu_map) {
7546 sd = &per_cpu(book_domains, i).sd;
7547 init_sched_groups_power(i, sd);
7548 }
7549#endif
1e9f28fa 7550
abcd083a 7551 for_each_cpu(i, cpu_map) {
294b0c96 7552 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7553 init_sched_groups_power(i, sd);
1da177e4
LT
7554 }
7555
9c1cfda2 7556#ifdef CONFIG_NUMA
076ac2af 7557 for (i = 0; i < nr_node_ids; i++)
49a02c51 7558 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7559
49a02c51 7560 if (d.sd_allnodes) {
6711cab4 7561 struct sched_group *sg;
f712c0c7 7562
96f874e2 7563 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7564 d.tmpmask);
f712c0c7
SS
7565 init_numa_sched_groups_power(sg);
7566 }
9c1cfda2
JH
7567#endif
7568
1da177e4 7569 /* Attach the domains */
abcd083a 7570 for_each_cpu(i, cpu_map) {
1da177e4 7571#ifdef CONFIG_SCHED_SMT
6c99e9ad 7572 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7573#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7574 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7575#elif defined(CONFIG_SCHED_BOOK)
7576 sd = &per_cpu(book_domains, i).sd;
1da177e4 7577#else
6c99e9ad 7578 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7579#endif
49a02c51 7580 cpu_attach_domain(sd, d.rd, i);
1da177e4 7581 }
51888ca2 7582
2109b99e
AH
7583 d.sched_group_nodes = NULL; /* don't free this we still need it */
7584 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7585 return 0;
51888ca2 7586
51888ca2 7587error:
2109b99e
AH
7588 __free_domain_allocs(&d, alloc_state, cpu_map);
7589 return -ENOMEM;
1da177e4 7590}
029190c5 7591
96f874e2 7592static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7593{
7594 return __build_sched_domains(cpu_map, NULL);
7595}
7596
acc3f5d7 7597static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7598static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7599static struct sched_domain_attr *dattr_cur;
7600 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7601
7602/*
7603 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7604 * cpumask) fails, then fallback to a single sched domain,
7605 * as determined by the single cpumask fallback_doms.
029190c5 7606 */
4212823f 7607static cpumask_var_t fallback_doms;
029190c5 7608
ee79d1bd
HC
7609/*
7610 * arch_update_cpu_topology lets virtualized architectures update the
7611 * cpu core maps. It is supposed to return 1 if the topology changed
7612 * or 0 if it stayed the same.
7613 */
7614int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7615{
ee79d1bd 7616 return 0;
22e52b07
HC
7617}
7618
acc3f5d7
RR
7619cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7620{
7621 int i;
7622 cpumask_var_t *doms;
7623
7624 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7625 if (!doms)
7626 return NULL;
7627 for (i = 0; i < ndoms; i++) {
7628 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7629 free_sched_domains(doms, i);
7630 return NULL;
7631 }
7632 }
7633 return doms;
7634}
7635
7636void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7637{
7638 unsigned int i;
7639 for (i = 0; i < ndoms; i++)
7640 free_cpumask_var(doms[i]);
7641 kfree(doms);
7642}
7643
1a20ff27 7644/*
41a2d6cf 7645 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7646 * For now this just excludes isolated cpus, but could be used to
7647 * exclude other special cases in the future.
1a20ff27 7648 */
96f874e2 7649static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7650{
7378547f
MM
7651 int err;
7652
22e52b07 7653 arch_update_cpu_topology();
029190c5 7654 ndoms_cur = 1;
acc3f5d7 7655 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7656 if (!doms_cur)
acc3f5d7
RR
7657 doms_cur = &fallback_doms;
7658 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7659 dattr_cur = NULL;
acc3f5d7 7660 err = build_sched_domains(doms_cur[0]);
6382bc90 7661 register_sched_domain_sysctl();
7378547f
MM
7662
7663 return err;
1a20ff27
DG
7664}
7665
96f874e2
RR
7666static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7667 struct cpumask *tmpmask)
1da177e4 7668{
7c16ec58 7669 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7670}
1da177e4 7671
1a20ff27
DG
7672/*
7673 * Detach sched domains from a group of cpus specified in cpu_map
7674 * These cpus will now be attached to the NULL domain
7675 */
96f874e2 7676static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7677{
96f874e2
RR
7678 /* Save because hotplug lock held. */
7679 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7680 int i;
7681
abcd083a 7682 for_each_cpu(i, cpu_map)
57d885fe 7683 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7684 synchronize_sched();
96f874e2 7685 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7686}
7687
1d3504fc
HS
7688/* handle null as "default" */
7689static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7690 struct sched_domain_attr *new, int idx_new)
7691{
7692 struct sched_domain_attr tmp;
7693
7694 /* fast path */
7695 if (!new && !cur)
7696 return 1;
7697
7698 tmp = SD_ATTR_INIT;
7699 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7700 new ? (new + idx_new) : &tmp,
7701 sizeof(struct sched_domain_attr));
7702}
7703
029190c5
PJ
7704/*
7705 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7706 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7707 * doms_new[] to the current sched domain partitioning, doms_cur[].
7708 * It destroys each deleted domain and builds each new domain.
7709 *
acc3f5d7 7710 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7711 * The masks don't intersect (don't overlap.) We should setup one
7712 * sched domain for each mask. CPUs not in any of the cpumasks will
7713 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7714 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7715 * it as it is.
7716 *
acc3f5d7
RR
7717 * The passed in 'doms_new' should be allocated using
7718 * alloc_sched_domains. This routine takes ownership of it and will
7719 * free_sched_domains it when done with it. If the caller failed the
7720 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7721 * and partition_sched_domains() will fallback to the single partition
7722 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7723 *
96f874e2 7724 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7725 * ndoms_new == 0 is a special case for destroying existing domains,
7726 * and it will not create the default domain.
dfb512ec 7727 *
029190c5
PJ
7728 * Call with hotplug lock held
7729 */
acc3f5d7 7730void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7731 struct sched_domain_attr *dattr_new)
029190c5 7732{
dfb512ec 7733 int i, j, n;
d65bd5ec 7734 int new_topology;
029190c5 7735
712555ee 7736 mutex_lock(&sched_domains_mutex);
a1835615 7737
7378547f
MM
7738 /* always unregister in case we don't destroy any domains */
7739 unregister_sched_domain_sysctl();
7740
d65bd5ec
HC
7741 /* Let architecture update cpu core mappings. */
7742 new_topology = arch_update_cpu_topology();
7743
dfb512ec 7744 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7745
7746 /* Destroy deleted domains */
7747 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7748 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7749 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7750 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7751 goto match1;
7752 }
7753 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7754 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7755match1:
7756 ;
7757 }
7758
e761b772
MK
7759 if (doms_new == NULL) {
7760 ndoms_cur = 0;
acc3f5d7 7761 doms_new = &fallback_doms;
6ad4c188 7762 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7763 WARN_ON_ONCE(dattr_new);
e761b772
MK
7764 }
7765
029190c5
PJ
7766 /* Build new domains */
7767 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7768 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7769 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7770 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7771 goto match2;
7772 }
7773 /* no match - add a new doms_new */
acc3f5d7 7774 __build_sched_domains(doms_new[i],
1d3504fc 7775 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7776match2:
7777 ;
7778 }
7779
7780 /* Remember the new sched domains */
acc3f5d7
RR
7781 if (doms_cur != &fallback_doms)
7782 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7783 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7784 doms_cur = doms_new;
1d3504fc 7785 dattr_cur = dattr_new;
029190c5 7786 ndoms_cur = ndoms_new;
7378547f
MM
7787
7788 register_sched_domain_sysctl();
a1835615 7789
712555ee 7790 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7791}
7792
5c45bf27 7793#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7794static void arch_reinit_sched_domains(void)
5c45bf27 7795{
95402b38 7796 get_online_cpus();
dfb512ec
MK
7797
7798 /* Destroy domains first to force the rebuild */
7799 partition_sched_domains(0, NULL, NULL);
7800
e761b772 7801 rebuild_sched_domains();
95402b38 7802 put_online_cpus();
5c45bf27
SS
7803}
7804
7805static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7806{
afb8a9b7 7807 unsigned int level = 0;
5c45bf27 7808
afb8a9b7
GS
7809 if (sscanf(buf, "%u", &level) != 1)
7810 return -EINVAL;
7811
7812 /*
7813 * level is always be positive so don't check for
7814 * level < POWERSAVINGS_BALANCE_NONE which is 0
7815 * What happens on 0 or 1 byte write,
7816 * need to check for count as well?
7817 */
7818
7819 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7820 return -EINVAL;
7821
7822 if (smt)
afb8a9b7 7823 sched_smt_power_savings = level;
5c45bf27 7824 else
afb8a9b7 7825 sched_mc_power_savings = level;
5c45bf27 7826
c70f22d2 7827 arch_reinit_sched_domains();
5c45bf27 7828
c70f22d2 7829 return count;
5c45bf27
SS
7830}
7831
5c45bf27 7832#ifdef CONFIG_SCHED_MC
f718cd4a 7833static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7834 struct sysdev_class_attribute *attr,
f718cd4a 7835 char *page)
5c45bf27
SS
7836{
7837 return sprintf(page, "%u\n", sched_mc_power_savings);
7838}
f718cd4a 7839static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7840 struct sysdev_class_attribute *attr,
48f24c4d 7841 const char *buf, size_t count)
5c45bf27
SS
7842{
7843 return sched_power_savings_store(buf, count, 0);
7844}
f718cd4a
AK
7845static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7846 sched_mc_power_savings_show,
7847 sched_mc_power_savings_store);
5c45bf27
SS
7848#endif
7849
7850#ifdef CONFIG_SCHED_SMT
f718cd4a 7851static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7852 struct sysdev_class_attribute *attr,
f718cd4a 7853 char *page)
5c45bf27
SS
7854{
7855 return sprintf(page, "%u\n", sched_smt_power_savings);
7856}
f718cd4a 7857static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7858 struct sysdev_class_attribute *attr,
48f24c4d 7859 const char *buf, size_t count)
5c45bf27
SS
7860{
7861 return sched_power_savings_store(buf, count, 1);
7862}
f718cd4a
AK
7863static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7864 sched_smt_power_savings_show,
6707de00
AB
7865 sched_smt_power_savings_store);
7866#endif
7867
39aac648 7868int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7869{
7870 int err = 0;
7871
7872#ifdef CONFIG_SCHED_SMT
7873 if (smt_capable())
7874 err = sysfs_create_file(&cls->kset.kobj,
7875 &attr_sched_smt_power_savings.attr);
7876#endif
7877#ifdef CONFIG_SCHED_MC
7878 if (!err && mc_capable())
7879 err = sysfs_create_file(&cls->kset.kobj,
7880 &attr_sched_mc_power_savings.attr);
7881#endif
7882 return err;
7883}
6d6bc0ad 7884#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7885
1da177e4 7886/*
3a101d05
TH
7887 * Update cpusets according to cpu_active mask. If cpusets are
7888 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7889 * around partition_sched_domains().
1da177e4 7890 */
0b2e918a
TH
7891static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7892 void *hcpu)
e761b772 7893{
3a101d05 7894 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7895 case CPU_ONLINE:
6ad4c188 7896 case CPU_DOWN_FAILED:
3a101d05 7897 cpuset_update_active_cpus();
e761b772 7898 return NOTIFY_OK;
3a101d05
TH
7899 default:
7900 return NOTIFY_DONE;
7901 }
7902}
e761b772 7903
0b2e918a
TH
7904static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7905 void *hcpu)
3a101d05
TH
7906{
7907 switch (action & ~CPU_TASKS_FROZEN) {
7908 case CPU_DOWN_PREPARE:
7909 cpuset_update_active_cpus();
7910 return NOTIFY_OK;
e761b772
MK
7911 default:
7912 return NOTIFY_DONE;
7913 }
7914}
e761b772
MK
7915
7916static int update_runtime(struct notifier_block *nfb,
7917 unsigned long action, void *hcpu)
1da177e4 7918{
7def2be1
PZ
7919 int cpu = (int)(long)hcpu;
7920
1da177e4 7921 switch (action) {
1da177e4 7922 case CPU_DOWN_PREPARE:
8bb78442 7923 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7924 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7925 return NOTIFY_OK;
7926
1da177e4 7927 case CPU_DOWN_FAILED:
8bb78442 7928 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7929 case CPU_ONLINE:
8bb78442 7930 case CPU_ONLINE_FROZEN:
7def2be1 7931 enable_runtime(cpu_rq(cpu));
e761b772
MK
7932 return NOTIFY_OK;
7933
1da177e4
LT
7934 default:
7935 return NOTIFY_DONE;
7936 }
1da177e4 7937}
1da177e4
LT
7938
7939void __init sched_init_smp(void)
7940{
dcc30a35
RR
7941 cpumask_var_t non_isolated_cpus;
7942
7943 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7944 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7945
434d53b0
MT
7946#if defined(CONFIG_NUMA)
7947 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7948 GFP_KERNEL);
7949 BUG_ON(sched_group_nodes_bycpu == NULL);
7950#endif
95402b38 7951 get_online_cpus();
712555ee 7952 mutex_lock(&sched_domains_mutex);
6ad4c188 7953 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7954 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7955 if (cpumask_empty(non_isolated_cpus))
7956 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7957 mutex_unlock(&sched_domains_mutex);
95402b38 7958 put_online_cpus();
e761b772 7959
3a101d05
TH
7960 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7961 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7962
7963 /* RT runtime code needs to handle some hotplug events */
7964 hotcpu_notifier(update_runtime, 0);
7965
b328ca18 7966 init_hrtick();
5c1e1767
NP
7967
7968 /* Move init over to a non-isolated CPU */
dcc30a35 7969 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7970 BUG();
19978ca6 7971 sched_init_granularity();
dcc30a35 7972 free_cpumask_var(non_isolated_cpus);
4212823f 7973
0e3900e6 7974 init_sched_rt_class();
1da177e4
LT
7975}
7976#else
7977void __init sched_init_smp(void)
7978{
19978ca6 7979 sched_init_granularity();
1da177e4
LT
7980}
7981#endif /* CONFIG_SMP */
7982
cd1bb94b
AB
7983const_debug unsigned int sysctl_timer_migration = 1;
7984
1da177e4
LT
7985int in_sched_functions(unsigned long addr)
7986{
1da177e4
LT
7987 return in_lock_functions(addr) ||
7988 (addr >= (unsigned long)__sched_text_start
7989 && addr < (unsigned long)__sched_text_end);
7990}
7991
a9957449 7992static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7993{
7994 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7995 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7996#ifdef CONFIG_FAIR_GROUP_SCHED
7997 cfs_rq->rq = rq;
f07333bf 7998 /* allow initial update_cfs_load() to truncate */
6ea72f12 7999#ifdef CONFIG_SMP
f07333bf 8000 cfs_rq->load_stamp = 1;
6ea72f12 8001#endif
dd41f596 8002#endif
67e9fb2a 8003 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8004}
8005
fa85ae24
PZ
8006static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8007{
8008 struct rt_prio_array *array;
8009 int i;
8010
8011 array = &rt_rq->active;
8012 for (i = 0; i < MAX_RT_PRIO; i++) {
8013 INIT_LIST_HEAD(array->queue + i);
8014 __clear_bit(i, array->bitmap);
8015 }
8016 /* delimiter for bitsearch: */
8017 __set_bit(MAX_RT_PRIO, array->bitmap);
8018
052f1dc7 8019#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8020 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8021#ifdef CONFIG_SMP
e864c499 8022 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8023#endif
48d5e258 8024#endif
fa85ae24
PZ
8025#ifdef CONFIG_SMP
8026 rt_rq->rt_nr_migratory = 0;
fa85ae24 8027 rt_rq->overloaded = 0;
05fa785c 8028 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8029#endif
8030
8031 rt_rq->rt_time = 0;
8032 rt_rq->rt_throttled = 0;
ac086bc2 8033 rt_rq->rt_runtime = 0;
0986b11b 8034 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8035
052f1dc7 8036#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8037 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8038 rt_rq->rq = rq;
8039#endif
fa85ae24
PZ
8040}
8041
6f505b16 8042#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8043static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8044 struct sched_entity *se, int cpu,
ec7dc8ac 8045 struct sched_entity *parent)
6f505b16 8046{
ec7dc8ac 8047 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8048 tg->cfs_rq[cpu] = cfs_rq;
8049 init_cfs_rq(cfs_rq, rq);
8050 cfs_rq->tg = tg;
6f505b16
PZ
8051
8052 tg->se[cpu] = se;
07e06b01 8053 /* se could be NULL for root_task_group */
354d60c2
DG
8054 if (!se)
8055 return;
8056
ec7dc8ac
DG
8057 if (!parent)
8058 se->cfs_rq = &rq->cfs;
8059 else
8060 se->cfs_rq = parent->my_q;
8061
6f505b16 8062 se->my_q = cfs_rq;
9437178f 8063 update_load_set(&se->load, 0);
ec7dc8ac 8064 se->parent = parent;
6f505b16 8065}
052f1dc7 8066#endif
6f505b16 8067
052f1dc7 8068#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8069static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8070 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8071 struct sched_rt_entity *parent)
6f505b16 8072{
ec7dc8ac
DG
8073 struct rq *rq = cpu_rq(cpu);
8074
6f505b16
PZ
8075 tg->rt_rq[cpu] = rt_rq;
8076 init_rt_rq(rt_rq, rq);
8077 rt_rq->tg = tg;
ac086bc2 8078 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8079
8080 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8081 if (!rt_se)
8082 return;
8083
ec7dc8ac
DG
8084 if (!parent)
8085 rt_se->rt_rq = &rq->rt;
8086 else
8087 rt_se->rt_rq = parent->my_q;
8088
6f505b16 8089 rt_se->my_q = rt_rq;
ec7dc8ac 8090 rt_se->parent = parent;
6f505b16
PZ
8091 INIT_LIST_HEAD(&rt_se->run_list);
8092}
8093#endif
8094
1da177e4
LT
8095void __init sched_init(void)
8096{
dd41f596 8097 int i, j;
434d53b0
MT
8098 unsigned long alloc_size = 0, ptr;
8099
8100#ifdef CONFIG_FAIR_GROUP_SCHED
8101 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8102#endif
8103#ifdef CONFIG_RT_GROUP_SCHED
8104 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8105#endif
df7c8e84 8106#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8107 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8108#endif
434d53b0 8109 if (alloc_size) {
36b7b6d4 8110 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8111
8112#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8113 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8114 ptr += nr_cpu_ids * sizeof(void **);
8115
07e06b01 8116 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8117 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8118
6d6bc0ad 8119#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8120#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8121 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8122 ptr += nr_cpu_ids * sizeof(void **);
8123
07e06b01 8124 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8125 ptr += nr_cpu_ids * sizeof(void **);
8126
6d6bc0ad 8127#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8128#ifdef CONFIG_CPUMASK_OFFSTACK
8129 for_each_possible_cpu(i) {
8130 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8131 ptr += cpumask_size();
8132 }
8133#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8134 }
dd41f596 8135
57d885fe
GH
8136#ifdef CONFIG_SMP
8137 init_defrootdomain();
8138#endif
8139
d0b27fa7
PZ
8140 init_rt_bandwidth(&def_rt_bandwidth,
8141 global_rt_period(), global_rt_runtime());
8142
8143#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8144 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8145 global_rt_period(), global_rt_runtime());
6d6bc0ad 8146#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8147
7c941438 8148#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8149 list_add(&root_task_group.list, &task_groups);
8150 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8151 autogroup_init(&init_task);
7c941438 8152#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8153
0a945022 8154 for_each_possible_cpu(i) {
70b97a7f 8155 struct rq *rq;
1da177e4
LT
8156
8157 rq = cpu_rq(i);
05fa785c 8158 raw_spin_lock_init(&rq->lock);
7897986b 8159 rq->nr_running = 0;
dce48a84
TG
8160 rq->calc_load_active = 0;
8161 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8162 init_cfs_rq(&rq->cfs, rq);
6f505b16 8163 init_rt_rq(&rq->rt, rq);
dd41f596 8164#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8165 root_task_group.shares = root_task_group_load;
6f505b16 8166 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8167 /*
07e06b01 8168 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8169 *
8170 * In case of task-groups formed thr' the cgroup filesystem, it
8171 * gets 100% of the cpu resources in the system. This overall
8172 * system cpu resource is divided among the tasks of
07e06b01 8173 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8174 * based on each entity's (task or task-group's) weight
8175 * (se->load.weight).
8176 *
07e06b01 8177 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8178 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8179 * then A0's share of the cpu resource is:
8180 *
0d905bca 8181 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8182 *
07e06b01
YZ
8183 * We achieve this by letting root_task_group's tasks sit
8184 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8185 */
07e06b01 8186 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8187#endif /* CONFIG_FAIR_GROUP_SCHED */
8188
8189 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8190#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8191 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8192 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8193#endif
1da177e4 8194
dd41f596
IM
8195 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8196 rq->cpu_load[j] = 0;
fdf3e95d
VP
8197
8198 rq->last_load_update_tick = jiffies;
8199
1da177e4 8200#ifdef CONFIG_SMP
41c7ce9a 8201 rq->sd = NULL;
57d885fe 8202 rq->rd = NULL;
e51fd5e2 8203 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8204 rq->post_schedule = 0;
1da177e4 8205 rq->active_balance = 0;
dd41f596 8206 rq->next_balance = jiffies;
1da177e4 8207 rq->push_cpu = 0;
0a2966b4 8208 rq->cpu = i;
1f11eb6a 8209 rq->online = 0;
eae0c9df
MG
8210 rq->idle_stamp = 0;
8211 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8212 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8213#ifdef CONFIG_NO_HZ
8214 rq->nohz_balance_kick = 0;
8215 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8216#endif
1da177e4 8217#endif
8f4d37ec 8218 init_rq_hrtick(rq);
1da177e4 8219 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8220 }
8221
2dd73a4f 8222 set_load_weight(&init_task);
b50f60ce 8223
e107be36
AK
8224#ifdef CONFIG_PREEMPT_NOTIFIERS
8225 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8226#endif
8227
c9819f45 8228#ifdef CONFIG_SMP
962cf36c 8229 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8230#endif
8231
b50f60ce 8232#ifdef CONFIG_RT_MUTEXES
1d615482 8233 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8234#endif
8235
1da177e4
LT
8236 /*
8237 * The boot idle thread does lazy MMU switching as well:
8238 */
8239 atomic_inc(&init_mm.mm_count);
8240 enter_lazy_tlb(&init_mm, current);
8241
8242 /*
8243 * Make us the idle thread. Technically, schedule() should not be
8244 * called from this thread, however somewhere below it might be,
8245 * but because we are the idle thread, we just pick up running again
8246 * when this runqueue becomes "idle".
8247 */
8248 init_idle(current, smp_processor_id());
dce48a84
TG
8249
8250 calc_load_update = jiffies + LOAD_FREQ;
8251
dd41f596
IM
8252 /*
8253 * During early bootup we pretend to be a normal task:
8254 */
8255 current->sched_class = &fair_sched_class;
6892b75e 8256
6a7b3dc3 8257 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8258 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8259#ifdef CONFIG_SMP
7d1e6a9b 8260#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8261 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8262 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8263 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8264 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8265 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8266#endif
bdddd296
RR
8267 /* May be allocated at isolcpus cmdline parse time */
8268 if (cpu_isolated_map == NULL)
8269 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8270#endif /* SMP */
6a7b3dc3 8271
6892b75e 8272 scheduler_running = 1;
1da177e4
LT
8273}
8274
8275#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8276static inline int preempt_count_equals(int preempt_offset)
8277{
234da7bc 8278 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
8279
8280 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8281}
8282
d894837f 8283void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8284{
48f24c4d 8285#ifdef in_atomic
1da177e4
LT
8286 static unsigned long prev_jiffy; /* ratelimiting */
8287
e4aafea2
FW
8288 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8289 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8290 return;
8291 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8292 return;
8293 prev_jiffy = jiffies;
8294
3df0fc5b
PZ
8295 printk(KERN_ERR
8296 "BUG: sleeping function called from invalid context at %s:%d\n",
8297 file, line);
8298 printk(KERN_ERR
8299 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8300 in_atomic(), irqs_disabled(),
8301 current->pid, current->comm);
aef745fc
IM
8302
8303 debug_show_held_locks(current);
8304 if (irqs_disabled())
8305 print_irqtrace_events(current);
8306 dump_stack();
1da177e4
LT
8307#endif
8308}
8309EXPORT_SYMBOL(__might_sleep);
8310#endif
8311
8312#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8313static void normalize_task(struct rq *rq, struct task_struct *p)
8314{
da7a735e
PZ
8315 const struct sched_class *prev_class = p->sched_class;
8316 int old_prio = p->prio;
3a5e4dc1 8317 int on_rq;
3e51f33f 8318
3a5e4dc1
AK
8319 on_rq = p->se.on_rq;
8320 if (on_rq)
8321 deactivate_task(rq, p, 0);
8322 __setscheduler(rq, p, SCHED_NORMAL, 0);
8323 if (on_rq) {
8324 activate_task(rq, p, 0);
8325 resched_task(rq->curr);
8326 }
da7a735e
PZ
8327
8328 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8329}
8330
1da177e4
LT
8331void normalize_rt_tasks(void)
8332{
a0f98a1c 8333 struct task_struct *g, *p;
1da177e4 8334 unsigned long flags;
70b97a7f 8335 struct rq *rq;
1da177e4 8336
4cf5d77a 8337 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8338 do_each_thread(g, p) {
178be793
IM
8339 /*
8340 * Only normalize user tasks:
8341 */
8342 if (!p->mm)
8343 continue;
8344
6cfb0d5d 8345 p->se.exec_start = 0;
6cfb0d5d 8346#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8347 p->se.statistics.wait_start = 0;
8348 p->se.statistics.sleep_start = 0;
8349 p->se.statistics.block_start = 0;
6cfb0d5d 8350#endif
dd41f596
IM
8351
8352 if (!rt_task(p)) {
8353 /*
8354 * Renice negative nice level userspace
8355 * tasks back to 0:
8356 */
8357 if (TASK_NICE(p) < 0 && p->mm)
8358 set_user_nice(p, 0);
1da177e4 8359 continue;
dd41f596 8360 }
1da177e4 8361
1d615482 8362 raw_spin_lock(&p->pi_lock);
b29739f9 8363 rq = __task_rq_lock(p);
1da177e4 8364
178be793 8365 normalize_task(rq, p);
3a5e4dc1 8366
b29739f9 8367 __task_rq_unlock(rq);
1d615482 8368 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8369 } while_each_thread(g, p);
8370
4cf5d77a 8371 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8372}
8373
8374#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8375
67fc4e0c 8376#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8377/*
67fc4e0c 8378 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8379 *
8380 * They can only be called when the whole system has been
8381 * stopped - every CPU needs to be quiescent, and no scheduling
8382 * activity can take place. Using them for anything else would
8383 * be a serious bug, and as a result, they aren't even visible
8384 * under any other configuration.
8385 */
8386
8387/**
8388 * curr_task - return the current task for a given cpu.
8389 * @cpu: the processor in question.
8390 *
8391 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8392 */
36c8b586 8393struct task_struct *curr_task(int cpu)
1df5c10a
LT
8394{
8395 return cpu_curr(cpu);
8396}
8397
67fc4e0c
JW
8398#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8399
8400#ifdef CONFIG_IA64
1df5c10a
LT
8401/**
8402 * set_curr_task - set the current task for a given cpu.
8403 * @cpu: the processor in question.
8404 * @p: the task pointer to set.
8405 *
8406 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8407 * are serviced on a separate stack. It allows the architecture to switch the
8408 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8409 * must be called with all CPU's synchronized, and interrupts disabled, the
8410 * and caller must save the original value of the current task (see
8411 * curr_task() above) and restore that value before reenabling interrupts and
8412 * re-starting the system.
8413 *
8414 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8415 */
36c8b586 8416void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8417{
8418 cpu_curr(cpu) = p;
8419}
8420
8421#endif
29f59db3 8422
bccbe08a
PZ
8423#ifdef CONFIG_FAIR_GROUP_SCHED
8424static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8425{
8426 int i;
8427
8428 for_each_possible_cpu(i) {
8429 if (tg->cfs_rq)
8430 kfree(tg->cfs_rq[i]);
8431 if (tg->se)
8432 kfree(tg->se[i]);
6f505b16
PZ
8433 }
8434
8435 kfree(tg->cfs_rq);
8436 kfree(tg->se);
6f505b16
PZ
8437}
8438
ec7dc8ac
DG
8439static
8440int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8441{
29f59db3 8442 struct cfs_rq *cfs_rq;
eab17229 8443 struct sched_entity *se;
9b5b7751 8444 struct rq *rq;
29f59db3
SV
8445 int i;
8446
434d53b0 8447 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8448 if (!tg->cfs_rq)
8449 goto err;
434d53b0 8450 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8451 if (!tg->se)
8452 goto err;
052f1dc7
PZ
8453
8454 tg->shares = NICE_0_LOAD;
29f59db3
SV
8455
8456 for_each_possible_cpu(i) {
9b5b7751 8457 rq = cpu_rq(i);
29f59db3 8458
eab17229
LZ
8459 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8460 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8461 if (!cfs_rq)
8462 goto err;
8463
eab17229
LZ
8464 se = kzalloc_node(sizeof(struct sched_entity),
8465 GFP_KERNEL, cpu_to_node(i));
29f59db3 8466 if (!se)
dfc12eb2 8467 goto err_free_rq;
29f59db3 8468
3d4b47b4 8469 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8470 }
8471
8472 return 1;
8473
49246274 8474err_free_rq:
dfc12eb2 8475 kfree(cfs_rq);
49246274 8476err:
bccbe08a
PZ
8477 return 0;
8478}
8479
bccbe08a
PZ
8480static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8481{
3d4b47b4
PZ
8482 struct rq *rq = cpu_rq(cpu);
8483 unsigned long flags;
3d4b47b4
PZ
8484
8485 /*
8486 * Only empty task groups can be destroyed; so we can speculatively
8487 * check on_list without danger of it being re-added.
8488 */
8489 if (!tg->cfs_rq[cpu]->on_list)
8490 return;
8491
8492 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8493 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8494 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8495}
6d6bc0ad 8496#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8497static inline void free_fair_sched_group(struct task_group *tg)
8498{
8499}
8500
ec7dc8ac
DG
8501static inline
8502int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8503{
8504 return 1;
8505}
8506
bccbe08a
PZ
8507static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8508{
8509}
6d6bc0ad 8510#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8511
8512#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8513static void free_rt_sched_group(struct task_group *tg)
8514{
8515 int i;
8516
d0b27fa7
PZ
8517 destroy_rt_bandwidth(&tg->rt_bandwidth);
8518
bccbe08a
PZ
8519 for_each_possible_cpu(i) {
8520 if (tg->rt_rq)
8521 kfree(tg->rt_rq[i]);
8522 if (tg->rt_se)
8523 kfree(tg->rt_se[i]);
8524 }
8525
8526 kfree(tg->rt_rq);
8527 kfree(tg->rt_se);
8528}
8529
ec7dc8ac
DG
8530static
8531int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8532{
8533 struct rt_rq *rt_rq;
eab17229 8534 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8535 struct rq *rq;
8536 int i;
8537
434d53b0 8538 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8539 if (!tg->rt_rq)
8540 goto err;
434d53b0 8541 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8542 if (!tg->rt_se)
8543 goto err;
8544
d0b27fa7
PZ
8545 init_rt_bandwidth(&tg->rt_bandwidth,
8546 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8547
8548 for_each_possible_cpu(i) {
8549 rq = cpu_rq(i);
8550
eab17229
LZ
8551 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8552 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8553 if (!rt_rq)
8554 goto err;
29f59db3 8555
eab17229
LZ
8556 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8557 GFP_KERNEL, cpu_to_node(i));
6f505b16 8558 if (!rt_se)
dfc12eb2 8559 goto err_free_rq;
29f59db3 8560
3d4b47b4 8561 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8562 }
8563
bccbe08a
PZ
8564 return 1;
8565
49246274 8566err_free_rq:
dfc12eb2 8567 kfree(rt_rq);
49246274 8568err:
bccbe08a
PZ
8569 return 0;
8570}
6d6bc0ad 8571#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8572static inline void free_rt_sched_group(struct task_group *tg)
8573{
8574}
8575
ec7dc8ac
DG
8576static inline
8577int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8578{
8579 return 1;
8580}
6d6bc0ad 8581#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8582
7c941438 8583#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8584static void free_sched_group(struct task_group *tg)
8585{
8586 free_fair_sched_group(tg);
8587 free_rt_sched_group(tg);
e9aa1dd1 8588 autogroup_free(tg);
bccbe08a
PZ
8589 kfree(tg);
8590}
8591
8592/* allocate runqueue etc for a new task group */
ec7dc8ac 8593struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8594{
8595 struct task_group *tg;
8596 unsigned long flags;
bccbe08a
PZ
8597
8598 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8599 if (!tg)
8600 return ERR_PTR(-ENOMEM);
8601
ec7dc8ac 8602 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8603 goto err;
8604
ec7dc8ac 8605 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8606 goto err;
8607
8ed36996 8608 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8609 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8610
8611 WARN_ON(!parent); /* root should already exist */
8612
8613 tg->parent = parent;
f473aa5e 8614 INIT_LIST_HEAD(&tg->children);
09f2724a 8615 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8616 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8617
9b5b7751 8618 return tg;
29f59db3
SV
8619
8620err:
6f505b16 8621 free_sched_group(tg);
29f59db3
SV
8622 return ERR_PTR(-ENOMEM);
8623}
8624
9b5b7751 8625/* rcu callback to free various structures associated with a task group */
6f505b16 8626static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8627{
29f59db3 8628 /* now it should be safe to free those cfs_rqs */
6f505b16 8629 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8630}
8631
9b5b7751 8632/* Destroy runqueue etc associated with a task group */
4cf86d77 8633void sched_destroy_group(struct task_group *tg)
29f59db3 8634{
8ed36996 8635 unsigned long flags;
9b5b7751 8636 int i;
29f59db3 8637
3d4b47b4
PZ
8638 /* end participation in shares distribution */
8639 for_each_possible_cpu(i)
bccbe08a 8640 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8641
8642 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8643 list_del_rcu(&tg->list);
f473aa5e 8644 list_del_rcu(&tg->siblings);
8ed36996 8645 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8646
9b5b7751 8647 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8648 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8649}
8650
9b5b7751 8651/* change task's runqueue when it moves between groups.
3a252015
IM
8652 * The caller of this function should have put the task in its new group
8653 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8654 * reflect its new group.
9b5b7751
SV
8655 */
8656void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8657{
8658 int on_rq, running;
8659 unsigned long flags;
8660 struct rq *rq;
8661
8662 rq = task_rq_lock(tsk, &flags);
8663
051a1d1a 8664 running = task_current(rq, tsk);
29f59db3
SV
8665 on_rq = tsk->se.on_rq;
8666
0e1f3483 8667 if (on_rq)
29f59db3 8668 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8669 if (unlikely(running))
8670 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8671
810b3817 8672#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8673 if (tsk->sched_class->task_move_group)
8674 tsk->sched_class->task_move_group(tsk, on_rq);
8675 else
810b3817 8676#endif
b2b5ce02 8677 set_task_rq(tsk, task_cpu(tsk));
810b3817 8678
0e1f3483
HS
8679 if (unlikely(running))
8680 tsk->sched_class->set_curr_task(rq);
8681 if (on_rq)
371fd7e7 8682 enqueue_task(rq, tsk, 0);
29f59db3 8683
29f59db3
SV
8684 task_rq_unlock(rq, &flags);
8685}
7c941438 8686#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8687
052f1dc7 8688#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8689static DEFINE_MUTEX(shares_mutex);
8690
4cf86d77 8691int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8692{
8693 int i;
8ed36996 8694 unsigned long flags;
c61935fd 8695
ec7dc8ac
DG
8696 /*
8697 * We can't change the weight of the root cgroup.
8698 */
8699 if (!tg->se[0])
8700 return -EINVAL;
8701
18d95a28
PZ
8702 if (shares < MIN_SHARES)
8703 shares = MIN_SHARES;
cb4ad1ff
MX
8704 else if (shares > MAX_SHARES)
8705 shares = MAX_SHARES;
62fb1851 8706
8ed36996 8707 mutex_lock(&shares_mutex);
9b5b7751 8708 if (tg->shares == shares)
5cb350ba 8709 goto done;
29f59db3 8710
9b5b7751 8711 tg->shares = shares;
c09595f6 8712 for_each_possible_cpu(i) {
9437178f
PT
8713 struct rq *rq = cpu_rq(i);
8714 struct sched_entity *se;
8715
8716 se = tg->se[i];
8717 /* Propagate contribution to hierarchy */
8718 raw_spin_lock_irqsave(&rq->lock, flags);
8719 for_each_sched_entity(se)
6d5ab293 8720 update_cfs_shares(group_cfs_rq(se));
9437178f 8721 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8722 }
29f59db3 8723
5cb350ba 8724done:
8ed36996 8725 mutex_unlock(&shares_mutex);
9b5b7751 8726 return 0;
29f59db3
SV
8727}
8728
5cb350ba
DG
8729unsigned long sched_group_shares(struct task_group *tg)
8730{
8731 return tg->shares;
8732}
052f1dc7 8733#endif
5cb350ba 8734
052f1dc7 8735#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8736/*
9f0c1e56 8737 * Ensure that the real time constraints are schedulable.
6f505b16 8738 */
9f0c1e56
PZ
8739static DEFINE_MUTEX(rt_constraints_mutex);
8740
8741static unsigned long to_ratio(u64 period, u64 runtime)
8742{
8743 if (runtime == RUNTIME_INF)
9a7e0b18 8744 return 1ULL << 20;
9f0c1e56 8745
9a7e0b18 8746 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8747}
8748
9a7e0b18
PZ
8749/* Must be called with tasklist_lock held */
8750static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8751{
9a7e0b18 8752 struct task_struct *g, *p;
b40b2e8e 8753
9a7e0b18
PZ
8754 do_each_thread(g, p) {
8755 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8756 return 1;
8757 } while_each_thread(g, p);
b40b2e8e 8758
9a7e0b18
PZ
8759 return 0;
8760}
b40b2e8e 8761
9a7e0b18
PZ
8762struct rt_schedulable_data {
8763 struct task_group *tg;
8764 u64 rt_period;
8765 u64 rt_runtime;
8766};
b40b2e8e 8767
9a7e0b18
PZ
8768static int tg_schedulable(struct task_group *tg, void *data)
8769{
8770 struct rt_schedulable_data *d = data;
8771 struct task_group *child;
8772 unsigned long total, sum = 0;
8773 u64 period, runtime;
b40b2e8e 8774
9a7e0b18
PZ
8775 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8776 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8777
9a7e0b18
PZ
8778 if (tg == d->tg) {
8779 period = d->rt_period;
8780 runtime = d->rt_runtime;
b40b2e8e 8781 }
b40b2e8e 8782
4653f803
PZ
8783 /*
8784 * Cannot have more runtime than the period.
8785 */
8786 if (runtime > period && runtime != RUNTIME_INF)
8787 return -EINVAL;
6f505b16 8788
4653f803
PZ
8789 /*
8790 * Ensure we don't starve existing RT tasks.
8791 */
9a7e0b18
PZ
8792 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8793 return -EBUSY;
6f505b16 8794
9a7e0b18 8795 total = to_ratio(period, runtime);
6f505b16 8796
4653f803
PZ
8797 /*
8798 * Nobody can have more than the global setting allows.
8799 */
8800 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8801 return -EINVAL;
6f505b16 8802
4653f803
PZ
8803 /*
8804 * The sum of our children's runtime should not exceed our own.
8805 */
9a7e0b18
PZ
8806 list_for_each_entry_rcu(child, &tg->children, siblings) {
8807 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8808 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8809
9a7e0b18
PZ
8810 if (child == d->tg) {
8811 period = d->rt_period;
8812 runtime = d->rt_runtime;
8813 }
6f505b16 8814
9a7e0b18 8815 sum += to_ratio(period, runtime);
9f0c1e56 8816 }
6f505b16 8817
9a7e0b18
PZ
8818 if (sum > total)
8819 return -EINVAL;
8820
8821 return 0;
6f505b16
PZ
8822}
8823
9a7e0b18 8824static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8825{
9a7e0b18
PZ
8826 struct rt_schedulable_data data = {
8827 .tg = tg,
8828 .rt_period = period,
8829 .rt_runtime = runtime,
8830 };
8831
8832 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8833}
8834
d0b27fa7
PZ
8835static int tg_set_bandwidth(struct task_group *tg,
8836 u64 rt_period, u64 rt_runtime)
6f505b16 8837{
ac086bc2 8838 int i, err = 0;
9f0c1e56 8839
9f0c1e56 8840 mutex_lock(&rt_constraints_mutex);
521f1a24 8841 read_lock(&tasklist_lock);
9a7e0b18
PZ
8842 err = __rt_schedulable(tg, rt_period, rt_runtime);
8843 if (err)
9f0c1e56 8844 goto unlock;
ac086bc2 8845
0986b11b 8846 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8847 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8848 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8849
8850 for_each_possible_cpu(i) {
8851 struct rt_rq *rt_rq = tg->rt_rq[i];
8852
0986b11b 8853 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8854 rt_rq->rt_runtime = rt_runtime;
0986b11b 8855 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8856 }
0986b11b 8857 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8858unlock:
521f1a24 8859 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8860 mutex_unlock(&rt_constraints_mutex);
8861
8862 return err;
6f505b16
PZ
8863}
8864
d0b27fa7
PZ
8865int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8866{
8867 u64 rt_runtime, rt_period;
8868
8869 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8870 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8871 if (rt_runtime_us < 0)
8872 rt_runtime = RUNTIME_INF;
8873
8874 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8875}
8876
9f0c1e56
PZ
8877long sched_group_rt_runtime(struct task_group *tg)
8878{
8879 u64 rt_runtime_us;
8880
d0b27fa7 8881 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8882 return -1;
8883
d0b27fa7 8884 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8885 do_div(rt_runtime_us, NSEC_PER_USEC);
8886 return rt_runtime_us;
8887}
d0b27fa7
PZ
8888
8889int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8890{
8891 u64 rt_runtime, rt_period;
8892
8893 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8894 rt_runtime = tg->rt_bandwidth.rt_runtime;
8895
619b0488
R
8896 if (rt_period == 0)
8897 return -EINVAL;
8898
d0b27fa7
PZ
8899 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8900}
8901
8902long sched_group_rt_period(struct task_group *tg)
8903{
8904 u64 rt_period_us;
8905
8906 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8907 do_div(rt_period_us, NSEC_PER_USEC);
8908 return rt_period_us;
8909}
8910
8911static int sched_rt_global_constraints(void)
8912{
4653f803 8913 u64 runtime, period;
d0b27fa7
PZ
8914 int ret = 0;
8915
ec5d4989
HS
8916 if (sysctl_sched_rt_period <= 0)
8917 return -EINVAL;
8918
4653f803
PZ
8919 runtime = global_rt_runtime();
8920 period = global_rt_period();
8921
8922 /*
8923 * Sanity check on the sysctl variables.
8924 */
8925 if (runtime > period && runtime != RUNTIME_INF)
8926 return -EINVAL;
10b612f4 8927
d0b27fa7 8928 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8929 read_lock(&tasklist_lock);
4653f803 8930 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8931 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8932 mutex_unlock(&rt_constraints_mutex);
8933
8934 return ret;
8935}
54e99124
DG
8936
8937int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8938{
8939 /* Don't accept realtime tasks when there is no way for them to run */
8940 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8941 return 0;
8942
8943 return 1;
8944}
8945
6d6bc0ad 8946#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8947static int sched_rt_global_constraints(void)
8948{
ac086bc2
PZ
8949 unsigned long flags;
8950 int i;
8951
ec5d4989
HS
8952 if (sysctl_sched_rt_period <= 0)
8953 return -EINVAL;
8954
60aa605d
PZ
8955 /*
8956 * There's always some RT tasks in the root group
8957 * -- migration, kstopmachine etc..
8958 */
8959 if (sysctl_sched_rt_runtime == 0)
8960 return -EBUSY;
8961
0986b11b 8962 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8963 for_each_possible_cpu(i) {
8964 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8965
0986b11b 8966 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8967 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8968 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8969 }
0986b11b 8970 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8971
d0b27fa7
PZ
8972 return 0;
8973}
6d6bc0ad 8974#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8975
8976int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8977 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8978 loff_t *ppos)
8979{
8980 int ret;
8981 int old_period, old_runtime;
8982 static DEFINE_MUTEX(mutex);
8983
8984 mutex_lock(&mutex);
8985 old_period = sysctl_sched_rt_period;
8986 old_runtime = sysctl_sched_rt_runtime;
8987
8d65af78 8988 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8989
8990 if (!ret && write) {
8991 ret = sched_rt_global_constraints();
8992 if (ret) {
8993 sysctl_sched_rt_period = old_period;
8994 sysctl_sched_rt_runtime = old_runtime;
8995 } else {
8996 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8997 def_rt_bandwidth.rt_period =
8998 ns_to_ktime(global_rt_period());
8999 }
9000 }
9001 mutex_unlock(&mutex);
9002
9003 return ret;
9004}
68318b8e 9005
052f1dc7 9006#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9007
9008/* return corresponding task_group object of a cgroup */
2b01dfe3 9009static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9010{
2b01dfe3
PM
9011 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9012 struct task_group, css);
68318b8e
SV
9013}
9014
9015static struct cgroup_subsys_state *
2b01dfe3 9016cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9017{
ec7dc8ac 9018 struct task_group *tg, *parent;
68318b8e 9019
2b01dfe3 9020 if (!cgrp->parent) {
68318b8e 9021 /* This is early initialization for the top cgroup */
07e06b01 9022 return &root_task_group.css;
68318b8e
SV
9023 }
9024
ec7dc8ac
DG
9025 parent = cgroup_tg(cgrp->parent);
9026 tg = sched_create_group(parent);
68318b8e
SV
9027 if (IS_ERR(tg))
9028 return ERR_PTR(-ENOMEM);
9029
68318b8e
SV
9030 return &tg->css;
9031}
9032
41a2d6cf
IM
9033static void
9034cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9035{
2b01dfe3 9036 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9037
9038 sched_destroy_group(tg);
9039}
9040
41a2d6cf 9041static int
be367d09 9042cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9043{
b68aa230 9044#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9045 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9046 return -EINVAL;
9047#else
68318b8e
SV
9048 /* We don't support RT-tasks being in separate groups */
9049 if (tsk->sched_class != &fair_sched_class)
9050 return -EINVAL;
b68aa230 9051#endif
be367d09
BB
9052 return 0;
9053}
68318b8e 9054
be367d09
BB
9055static int
9056cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9057 struct task_struct *tsk, bool threadgroup)
9058{
9059 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9060 if (retval)
9061 return retval;
9062 if (threadgroup) {
9063 struct task_struct *c;
9064 rcu_read_lock();
9065 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9066 retval = cpu_cgroup_can_attach_task(cgrp, c);
9067 if (retval) {
9068 rcu_read_unlock();
9069 return retval;
9070 }
9071 }
9072 rcu_read_unlock();
9073 }
68318b8e
SV
9074 return 0;
9075}
9076
9077static void
2b01dfe3 9078cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9079 struct cgroup *old_cont, struct task_struct *tsk,
9080 bool threadgroup)
68318b8e
SV
9081{
9082 sched_move_task(tsk);
be367d09
BB
9083 if (threadgroup) {
9084 struct task_struct *c;
9085 rcu_read_lock();
9086 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9087 sched_move_task(c);
9088 }
9089 rcu_read_unlock();
9090 }
68318b8e
SV
9091}
9092
068c5cc5 9093static void
d41d5a01
PZ
9094cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9095 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9096{
9097 /*
9098 * cgroup_exit() is called in the copy_process() failure path.
9099 * Ignore this case since the task hasn't ran yet, this avoids
9100 * trying to poke a half freed task state from generic code.
9101 */
9102 if (!(task->flags & PF_EXITING))
9103 return;
9104
9105 sched_move_task(task);
9106}
9107
052f1dc7 9108#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9109static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9110 u64 shareval)
68318b8e 9111{
2b01dfe3 9112 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9113}
9114
f4c753b7 9115static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9116{
2b01dfe3 9117 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9118
9119 return (u64) tg->shares;
9120}
6d6bc0ad 9121#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9122
052f1dc7 9123#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9124static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9125 s64 val)
6f505b16 9126{
06ecb27c 9127 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9128}
9129
06ecb27c 9130static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9131{
06ecb27c 9132 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9133}
d0b27fa7
PZ
9134
9135static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9136 u64 rt_period_us)
9137{
9138 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9139}
9140
9141static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9142{
9143 return sched_group_rt_period(cgroup_tg(cgrp));
9144}
6d6bc0ad 9145#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9146
fe5c7cc2 9147static struct cftype cpu_files[] = {
052f1dc7 9148#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9149 {
9150 .name = "shares",
f4c753b7
PM
9151 .read_u64 = cpu_shares_read_u64,
9152 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9153 },
052f1dc7
PZ
9154#endif
9155#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9156 {
9f0c1e56 9157 .name = "rt_runtime_us",
06ecb27c
PM
9158 .read_s64 = cpu_rt_runtime_read,
9159 .write_s64 = cpu_rt_runtime_write,
6f505b16 9160 },
d0b27fa7
PZ
9161 {
9162 .name = "rt_period_us",
f4c753b7
PM
9163 .read_u64 = cpu_rt_period_read_uint,
9164 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9165 },
052f1dc7 9166#endif
68318b8e
SV
9167};
9168
9169static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9170{
fe5c7cc2 9171 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9172}
9173
9174struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9175 .name = "cpu",
9176 .create = cpu_cgroup_create,
9177 .destroy = cpu_cgroup_destroy,
9178 .can_attach = cpu_cgroup_can_attach,
9179 .attach = cpu_cgroup_attach,
068c5cc5 9180 .exit = cpu_cgroup_exit,
38605cae
IM
9181 .populate = cpu_cgroup_populate,
9182 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9183 .early_init = 1,
9184};
9185
052f1dc7 9186#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9187
9188#ifdef CONFIG_CGROUP_CPUACCT
9189
9190/*
9191 * CPU accounting code for task groups.
9192 *
9193 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9194 * (balbir@in.ibm.com).
9195 */
9196
934352f2 9197/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9198struct cpuacct {
9199 struct cgroup_subsys_state css;
9200 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9201 u64 __percpu *cpuusage;
ef12fefa 9202 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9203 struct cpuacct *parent;
d842de87
SV
9204};
9205
9206struct cgroup_subsys cpuacct_subsys;
9207
9208/* return cpu accounting group corresponding to this container */
32cd756a 9209static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9210{
32cd756a 9211 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9212 struct cpuacct, css);
9213}
9214
9215/* return cpu accounting group to which this task belongs */
9216static inline struct cpuacct *task_ca(struct task_struct *tsk)
9217{
9218 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9219 struct cpuacct, css);
9220}
9221
9222/* create a new cpu accounting group */
9223static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9224 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9225{
9226 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9227 int i;
d842de87
SV
9228
9229 if (!ca)
ef12fefa 9230 goto out;
d842de87
SV
9231
9232 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9233 if (!ca->cpuusage)
9234 goto out_free_ca;
9235
9236 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9237 if (percpu_counter_init(&ca->cpustat[i], 0))
9238 goto out_free_counters;
d842de87 9239
934352f2
BR
9240 if (cgrp->parent)
9241 ca->parent = cgroup_ca(cgrp->parent);
9242
d842de87 9243 return &ca->css;
ef12fefa
BR
9244
9245out_free_counters:
9246 while (--i >= 0)
9247 percpu_counter_destroy(&ca->cpustat[i]);
9248 free_percpu(ca->cpuusage);
9249out_free_ca:
9250 kfree(ca);
9251out:
9252 return ERR_PTR(-ENOMEM);
d842de87
SV
9253}
9254
9255/* destroy an existing cpu accounting group */
41a2d6cf 9256static void
32cd756a 9257cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9258{
32cd756a 9259 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9260 int i;
d842de87 9261
ef12fefa
BR
9262 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9263 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9264 free_percpu(ca->cpuusage);
9265 kfree(ca);
9266}
9267
720f5498
KC
9268static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9269{
b36128c8 9270 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9271 u64 data;
9272
9273#ifndef CONFIG_64BIT
9274 /*
9275 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9276 */
05fa785c 9277 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9278 data = *cpuusage;
05fa785c 9279 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9280#else
9281 data = *cpuusage;
9282#endif
9283
9284 return data;
9285}
9286
9287static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9288{
b36128c8 9289 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9290
9291#ifndef CONFIG_64BIT
9292 /*
9293 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9294 */
05fa785c 9295 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9296 *cpuusage = val;
05fa785c 9297 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9298#else
9299 *cpuusage = val;
9300#endif
9301}
9302
d842de87 9303/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9304static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9305{
32cd756a 9306 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9307 u64 totalcpuusage = 0;
9308 int i;
9309
720f5498
KC
9310 for_each_present_cpu(i)
9311 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9312
9313 return totalcpuusage;
9314}
9315
0297b803
DG
9316static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9317 u64 reset)
9318{
9319 struct cpuacct *ca = cgroup_ca(cgrp);
9320 int err = 0;
9321 int i;
9322
9323 if (reset) {
9324 err = -EINVAL;
9325 goto out;
9326 }
9327
720f5498
KC
9328 for_each_present_cpu(i)
9329 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9330
0297b803
DG
9331out:
9332 return err;
9333}
9334
e9515c3c
KC
9335static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9336 struct seq_file *m)
9337{
9338 struct cpuacct *ca = cgroup_ca(cgroup);
9339 u64 percpu;
9340 int i;
9341
9342 for_each_present_cpu(i) {
9343 percpu = cpuacct_cpuusage_read(ca, i);
9344 seq_printf(m, "%llu ", (unsigned long long) percpu);
9345 }
9346 seq_printf(m, "\n");
9347 return 0;
9348}
9349
ef12fefa
BR
9350static const char *cpuacct_stat_desc[] = {
9351 [CPUACCT_STAT_USER] = "user",
9352 [CPUACCT_STAT_SYSTEM] = "system",
9353};
9354
9355static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9356 struct cgroup_map_cb *cb)
9357{
9358 struct cpuacct *ca = cgroup_ca(cgrp);
9359 int i;
9360
9361 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9362 s64 val = percpu_counter_read(&ca->cpustat[i]);
9363 val = cputime64_to_clock_t(val);
9364 cb->fill(cb, cpuacct_stat_desc[i], val);
9365 }
9366 return 0;
9367}
9368
d842de87
SV
9369static struct cftype files[] = {
9370 {
9371 .name = "usage",
f4c753b7
PM
9372 .read_u64 = cpuusage_read,
9373 .write_u64 = cpuusage_write,
d842de87 9374 },
e9515c3c
KC
9375 {
9376 .name = "usage_percpu",
9377 .read_seq_string = cpuacct_percpu_seq_read,
9378 },
ef12fefa
BR
9379 {
9380 .name = "stat",
9381 .read_map = cpuacct_stats_show,
9382 },
d842de87
SV
9383};
9384
32cd756a 9385static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9386{
32cd756a 9387 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9388}
9389
9390/*
9391 * charge this task's execution time to its accounting group.
9392 *
9393 * called with rq->lock held.
9394 */
9395static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9396{
9397 struct cpuacct *ca;
934352f2 9398 int cpu;
d842de87 9399
c40c6f85 9400 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9401 return;
9402
934352f2 9403 cpu = task_cpu(tsk);
a18b83b7
BR
9404
9405 rcu_read_lock();
9406
d842de87 9407 ca = task_ca(tsk);
d842de87 9408
934352f2 9409 for (; ca; ca = ca->parent) {
b36128c8 9410 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9411 *cpuusage += cputime;
9412 }
a18b83b7
BR
9413
9414 rcu_read_unlock();
d842de87
SV
9415}
9416
fa535a77
AB
9417/*
9418 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9419 * in cputime_t units. As a result, cpuacct_update_stats calls
9420 * percpu_counter_add with values large enough to always overflow the
9421 * per cpu batch limit causing bad SMP scalability.
9422 *
9423 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9424 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9425 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9426 */
9427#ifdef CONFIG_SMP
9428#define CPUACCT_BATCH \
9429 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9430#else
9431#define CPUACCT_BATCH 0
9432#endif
9433
ef12fefa
BR
9434/*
9435 * Charge the system/user time to the task's accounting group.
9436 */
9437static void cpuacct_update_stats(struct task_struct *tsk,
9438 enum cpuacct_stat_index idx, cputime_t val)
9439{
9440 struct cpuacct *ca;
fa535a77 9441 int batch = CPUACCT_BATCH;
ef12fefa
BR
9442
9443 if (unlikely(!cpuacct_subsys.active))
9444 return;
9445
9446 rcu_read_lock();
9447 ca = task_ca(tsk);
9448
9449 do {
fa535a77 9450 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9451 ca = ca->parent;
9452 } while (ca);
9453 rcu_read_unlock();
9454}
9455
d842de87
SV
9456struct cgroup_subsys cpuacct_subsys = {
9457 .name = "cpuacct",
9458 .create = cpuacct_create,
9459 .destroy = cpuacct_destroy,
9460 .populate = cpuacct_populate,
9461 .subsys_id = cpuacct_subsys_id,
9462};
9463#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9464
This page took 2.017949 seconds and 5 git commands to generate.