drm/i915: make DP work on LPT-LP machines
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
0206e353 44bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 45static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 46static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
47
48typedef struct {
0206e353
AJ
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
79e53945
JB
58} intel_clock_t;
59
60typedef struct {
0206e353 61 int min, max;
79e53945
JB
62} intel_range_t;
63
64typedef struct {
0206e353
AJ
65 int dot_limit;
66 int p2_slow, p2_fast;
79e53945
JB
67} intel_p2_t;
68
69#define INTEL_P2_NUM 2
d4906093
ML
70typedef struct intel_limit intel_limit_t;
71struct intel_limit {
0206e353
AJ
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 75 int, int, intel_clock_t *, intel_clock_t *);
d4906093 76};
79e53945 77
2377b741
JB
78/* FDI */
79#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
d2acd215
DV
81int
82intel_pch_rawclk(struct drm_device *dev)
83{
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89}
90
d4906093
ML
91static bool
92intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
d4906093
ML
95static bool
96intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
79e53945 99
a4fc5ed6
KP
100static bool
101intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
5eb08b69 104static bool
f2b115e6 105intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
a4fc5ed6 108
a0c4da24
JB
109static bool
110intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
021357ac
CW
114static inline u32 /* units of 100MHz */
115intel_fdi_link_freq(struct drm_device *dev)
116{
8b99e68c
CW
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
021357ac
CW
122}
123
e4b36699 124static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
d4906093 135 .find_pll = intel_find_best_PLL,
e4b36699
KP
136};
137
138static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
d4906093 149 .find_pll = intel_find_best_PLL,
e4b36699 150};
273e27ca 151
e4b36699 152static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
d4906093 163 .find_pll = intel_find_best_PLL,
e4b36699
KP
164};
165
166static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
d4906093 177 .find_pll = intel_find_best_PLL,
e4b36699
KP
178};
179
273e27ca 180
e4b36699 181static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
044c7c41 193 },
d4906093 194 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
195};
196
197static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
d4906093 208 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
209};
210
211static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
044c7c41 222 },
d4906093 223 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
224};
225
226static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
044c7c41 237 },
d4906093 238 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
273e27ca 251 .p2_slow = 10, .p2_fast = 10 },
0206e353 252 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 258 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
273e27ca 261 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
6115707b 268 .find_pll = intel_find_best_PLL,
e4b36699
KP
269};
270
f2b115e6 271static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
6115707b 282 .find_pll = intel_find_best_PLL,
e4b36699
KP
283};
284
273e27ca
EA
285/* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
b91ad0ec 290static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
4547668a 301 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
302};
303
b91ad0ec 304static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
315 .find_pll = intel_g4x_find_best_PLL,
316};
317
318static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
329 .find_pll = intel_g4x_find_best_PLL,
330};
331
273e27ca 332/* LVDS 100mhz refclk limits. */
b91ad0ec 333static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
0206e353 341 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
344 .find_pll = intel_g4x_find_best_PLL,
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358 .find_pll = intel_g4x_find_best_PLL,
359};
360
361static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
273e27ca 371 .p2_slow = 10, .p2_fast = 10 },
0206e353 372 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
373};
374
a0c4da24
JB
375static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387};
388
389static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
17dc9257 391 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401};
402
403static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 406 .n = { .min = 1, .max = 7 },
74a4dd2e 407 .m = { .min = 22, .max = 450 },
a0c4da24
JB
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415};
416
57f350b6
JB
417u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418{
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440}
441
a0c4da24
JB
442static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462}
463
57f350b6
JB
464static void vlv_init_dpio(struct drm_device *dev)
465{
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473}
474
618563e3
DV
475static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
476{
477 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
478 return 1;
479}
480
481static const struct dmi_system_id intel_dual_link_lvds[] = {
482 {
483 .callback = intel_dual_link_lvds_callback,
484 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
485 .matches = {
486 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
487 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
488 },
489 },
490 { } /* terminating entry */
491};
492
b0354385
TI
493static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
494 unsigned int reg)
495{
496 unsigned int val;
497
121d527a
TI
498 /* use the module option value if specified */
499 if (i915_lvds_channel_mode > 0)
500 return i915_lvds_channel_mode == 2;
501
618563e3
DV
502 if (dmi_check_system(intel_dual_link_lvds))
503 return true;
504
b0354385
TI
505 if (dev_priv->lvds_val)
506 val = dev_priv->lvds_val;
507 else {
508 /* BIOS should set the proper LVDS register value at boot, but
509 * in reality, it doesn't set the value when the lid is closed;
510 * we need to check "the value to be set" in VBT when LVDS
511 * register is uninitialized.
512 */
513 val = I915_READ(reg);
14d94a3d 514 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
515 val = dev_priv->bios_lvds_val;
516 dev_priv->lvds_val = val;
517 }
518 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
519}
520
1b894b59
CW
521static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
522 int refclk)
2c07245f 523{
b91ad0ec
ZW
524 struct drm_device *dev = crtc->dev;
525 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 526 const intel_limit_t *limit;
b91ad0ec
ZW
527
528 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 529 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 530 /* LVDS dual channel */
1b894b59 531 if (refclk == 100000)
b91ad0ec
ZW
532 limit = &intel_limits_ironlake_dual_lvds_100m;
533 else
534 limit = &intel_limits_ironlake_dual_lvds;
535 } else {
1b894b59 536 if (refclk == 100000)
b91ad0ec
ZW
537 limit = &intel_limits_ironlake_single_lvds_100m;
538 else
539 limit = &intel_limits_ironlake_single_lvds;
540 }
541 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
547dc041 542 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
4547668a 543 limit = &intel_limits_ironlake_display_port;
2c07245f 544 else
b91ad0ec 545 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
546
547 return limit;
548}
549
044c7c41
ML
550static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
551{
552 struct drm_device *dev = crtc->dev;
553 struct drm_i915_private *dev_priv = dev->dev_private;
554 const intel_limit_t *limit;
555
556 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 557 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 558 /* LVDS with dual channel */
e4b36699 559 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
560 else
561 /* LVDS with dual channel */
e4b36699 562 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
563 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
564 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 565 limit = &intel_limits_g4x_hdmi;
044c7c41 566 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 567 limit = &intel_limits_g4x_sdvo;
0206e353 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 569 limit = &intel_limits_g4x_display_port;
044c7c41 570 } else /* The option is for other outputs */
e4b36699 571 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
572
573 return limit;
574}
575
1b894b59 576static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
577{
578 struct drm_device *dev = crtc->dev;
579 const intel_limit_t *limit;
580
bad720ff 581 if (HAS_PCH_SPLIT(dev))
1b894b59 582 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 583 else if (IS_G4X(dev)) {
044c7c41 584 limit = intel_g4x_limit(crtc);
f2b115e6 585 } else if (IS_PINEVIEW(dev)) {
2177832f 586 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 587 limit = &intel_limits_pineview_lvds;
2177832f 588 else
f2b115e6 589 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
590 } else if (IS_VALLEYVIEW(dev)) {
591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
592 limit = &intel_limits_vlv_dac;
593 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
594 limit = &intel_limits_vlv_hdmi;
595 else
596 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
597 } else if (!IS_GEN2(dev)) {
598 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
599 limit = &intel_limits_i9xx_lvds;
600 else
601 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
602 } else {
603 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 604 limit = &intel_limits_i8xx_lvds;
79e53945 605 else
e4b36699 606 limit = &intel_limits_i8xx_dvo;
79e53945
JB
607 }
608 return limit;
609}
610
f2b115e6
AJ
611/* m1 is reserved as 0 in Pineview, n is a ring counter */
612static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 613{
2177832f
SL
614 clock->m = clock->m2 + 2;
615 clock->p = clock->p1 * clock->p2;
616 clock->vco = refclk * clock->m / clock->n;
617 clock->dot = clock->vco / clock->p;
618}
619
620static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
621{
f2b115e6
AJ
622 if (IS_PINEVIEW(dev)) {
623 pineview_clock(refclk, clock);
2177832f
SL
624 return;
625 }
79e53945
JB
626 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
627 clock->p = clock->p1 * clock->p2;
628 clock->vco = refclk * clock->m / (clock->n + 2);
629 clock->dot = clock->vco / clock->p;
630}
631
79e53945
JB
632/**
633 * Returns whether any output on the specified pipe is of the specified type
634 */
4ef69c7a 635bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 636{
4ef69c7a 637 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
638 struct intel_encoder *encoder;
639
6c2b7c12
DV
640 for_each_encoder_on_crtc(dev, crtc, encoder)
641 if (encoder->type == type)
4ef69c7a
CW
642 return true;
643
644 return false;
79e53945
JB
645}
646
7c04d1d9 647#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
648/**
649 * Returns whether the given set of divisors are valid for a given refclk with
650 * the given connectors.
651 */
652
1b894b59
CW
653static bool intel_PLL_is_valid(struct drm_device *dev,
654 const intel_limit_t *limit,
655 const intel_clock_t *clock)
79e53945 656{
79e53945 657 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 658 INTELPllInvalid("p1 out of range\n");
79e53945 659 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 660 INTELPllInvalid("p out of range\n");
79e53945 661 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 662 INTELPllInvalid("m2 out of range\n");
79e53945 663 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 664 INTELPllInvalid("m1 out of range\n");
f2b115e6 665 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 666 INTELPllInvalid("m1 <= m2\n");
79e53945 667 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 668 INTELPllInvalid("m out of range\n");
79e53945 669 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 670 INTELPllInvalid("n out of range\n");
79e53945 671 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 672 INTELPllInvalid("vco out of range\n");
79e53945
JB
673 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
674 * connector, etc., rather than just a single range.
675 */
676 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 677 INTELPllInvalid("dot out of range\n");
79e53945
JB
678
679 return true;
680}
681
d4906093
ML
682static bool
683intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
684 int target, int refclk, intel_clock_t *match_clock,
685 intel_clock_t *best_clock)
d4906093 686
79e53945
JB
687{
688 struct drm_device *dev = crtc->dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 intel_clock_t clock;
79e53945
JB
691 int err = target;
692
bc5e5718 693 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 694 (I915_READ(LVDS)) != 0) {
79e53945
JB
695 /*
696 * For LVDS, if the panel is on, just rely on its current
697 * settings for dual-channel. We haven't figured out how to
698 * reliably set up different single/dual channel state, if we
699 * even can.
700 */
b0354385 701 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
702 clock.p2 = limit->p2.p2_fast;
703 else
704 clock.p2 = limit->p2.p2_slow;
705 } else {
706 if (target < limit->p2.dot_limit)
707 clock.p2 = limit->p2.p2_slow;
708 else
709 clock.p2 = limit->p2.p2_fast;
710 }
711
0206e353 712 memset(best_clock, 0, sizeof(*best_clock));
79e53945 713
42158660
ZY
714 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
715 clock.m1++) {
716 for (clock.m2 = limit->m2.min;
717 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
718 /* m1 is always 0 in Pineview */
719 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
720 break;
721 for (clock.n = limit->n.min;
722 clock.n <= limit->n.max; clock.n++) {
723 for (clock.p1 = limit->p1.min;
724 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
725 int this_err;
726
2177832f 727 intel_clock(dev, refclk, &clock);
1b894b59
CW
728 if (!intel_PLL_is_valid(dev, limit,
729 &clock))
79e53945 730 continue;
cec2f356
SP
731 if (match_clock &&
732 clock.p != match_clock->p)
733 continue;
79e53945
JB
734
735 this_err = abs(clock.dot - target);
736 if (this_err < err) {
737 *best_clock = clock;
738 err = this_err;
739 }
740 }
741 }
742 }
743 }
744
745 return (err != target);
746}
747
d4906093
ML
748static bool
749intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
750 int target, int refclk, intel_clock_t *match_clock,
751 intel_clock_t *best_clock)
d4906093
ML
752{
753 struct drm_device *dev = crtc->dev;
754 struct drm_i915_private *dev_priv = dev->dev_private;
755 intel_clock_t clock;
756 int max_n;
757 bool found;
6ba770dc
AJ
758 /* approximately equals target * 0.00585 */
759 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
760 found = false;
761
762 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
763 int lvds_reg;
764
c619eed4 765 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
766 lvds_reg = PCH_LVDS;
767 else
768 lvds_reg = LVDS;
769 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
770 LVDS_CLKB_POWER_UP)
771 clock.p2 = limit->p2.p2_fast;
772 else
773 clock.p2 = limit->p2.p2_slow;
774 } else {
775 if (target < limit->p2.dot_limit)
776 clock.p2 = limit->p2.p2_slow;
777 else
778 clock.p2 = limit->p2.p2_fast;
779 }
780
781 memset(best_clock, 0, sizeof(*best_clock));
782 max_n = limit->n.max;
f77f13e2 783 /* based on hardware requirement, prefer smaller n to precision */
d4906093 784 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 785 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
786 for (clock.m1 = limit->m1.max;
787 clock.m1 >= limit->m1.min; clock.m1--) {
788 for (clock.m2 = limit->m2.max;
789 clock.m2 >= limit->m2.min; clock.m2--) {
790 for (clock.p1 = limit->p1.max;
791 clock.p1 >= limit->p1.min; clock.p1--) {
792 int this_err;
793
2177832f 794 intel_clock(dev, refclk, &clock);
1b894b59
CW
795 if (!intel_PLL_is_valid(dev, limit,
796 &clock))
d4906093 797 continue;
cec2f356
SP
798 if (match_clock &&
799 clock.p != match_clock->p)
800 continue;
1b894b59
CW
801
802 this_err = abs(clock.dot - target);
d4906093
ML
803 if (this_err < err_most) {
804 *best_clock = clock;
805 err_most = this_err;
806 max_n = clock.n;
807 found = true;
808 }
809 }
810 }
811 }
812 }
2c07245f
ZW
813 return found;
814}
815
5eb08b69 816static bool
f2b115e6 817intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
5eb08b69
ZW
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
4547668a 823
5eb08b69
ZW
824 if (target < 200000) {
825 clock.n = 1;
826 clock.p1 = 2;
827 clock.p2 = 10;
828 clock.m1 = 12;
829 clock.m2 = 9;
830 } else {
831 clock.n = 2;
832 clock.p1 = 1;
833 clock.p2 = 10;
834 clock.m1 = 14;
835 clock.m2 = 8;
836 }
837 intel_clock(dev, refclk, &clock);
838 memcpy(best_clock, &clock, sizeof(intel_clock_t));
839 return true;
840}
841
a4fc5ed6
KP
842/* DisplayPort has only two frequencies, 162MHz and 270MHz */
843static bool
844intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
845 int target, int refclk, intel_clock_t *match_clock,
846 intel_clock_t *best_clock)
a4fc5ed6 847{
5eddb70b
CW
848 intel_clock_t clock;
849 if (target < 200000) {
850 clock.p1 = 2;
851 clock.p2 = 10;
852 clock.n = 2;
853 clock.m1 = 23;
854 clock.m2 = 8;
855 } else {
856 clock.p1 = 1;
857 clock.p2 = 10;
858 clock.n = 1;
859 clock.m1 = 14;
860 clock.m2 = 2;
861 }
862 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
863 clock.p = (clock.p1 * clock.p2);
864 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
865 clock.vco = 0;
866 memcpy(best_clock, &clock, sizeof(intel_clock_t));
867 return true;
a4fc5ed6 868}
a0c4da24
JB
869static bool
870intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
871 int target, int refclk, intel_clock_t *match_clock,
872 intel_clock_t *best_clock)
873{
874 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
875 u32 m, n, fastclk;
876 u32 updrate, minupdate, fracbits, p;
877 unsigned long bestppm, ppm, absppm;
878 int dotclk, flag;
879
af447bd3 880 flag = 0;
a0c4da24
JB
881 dotclk = target * 1000;
882 bestppm = 1000000;
883 ppm = absppm = 0;
884 fastclk = dotclk / (2*100);
885 updrate = 0;
886 minupdate = 19200;
887 fracbits = 1;
888 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
889 bestm1 = bestm2 = bestp1 = bestp2 = 0;
890
891 /* based on hardware requirement, prefer smaller n to precision */
892 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
893 updrate = refclk / n;
894 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
895 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
896 if (p2 > 10)
897 p2 = p2 - 1;
898 p = p1 * p2;
899 /* based on hardware requirement, prefer bigger m1,m2 values */
900 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
901 m2 = (((2*(fastclk * p * n / m1 )) +
902 refclk) / (2*refclk));
903 m = m1 * m2;
904 vco = updrate * m;
905 if (vco >= limit->vco.min && vco < limit->vco.max) {
906 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
907 absppm = (ppm > 0) ? ppm : (-ppm);
908 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
909 bestppm = 0;
910 flag = 1;
911 }
912 if (absppm < bestppm - 10) {
913 bestppm = absppm;
914 flag = 1;
915 }
916 if (flag) {
917 bestn = n;
918 bestm1 = m1;
919 bestm2 = m2;
920 bestp1 = p1;
921 bestp2 = p2;
922 flag = 0;
923 }
924 }
925 }
926 }
927 }
928 }
929 best_clock->n = bestn;
930 best_clock->m1 = bestm1;
931 best_clock->m2 = bestm2;
932 best_clock->p1 = bestp1;
933 best_clock->p2 = bestp2;
934
935 return true;
936}
a4fc5ed6 937
a5c961d1
PZ
938enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
939 enum pipe pipe)
940{
941 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
943
944 return intel_crtc->cpu_transcoder;
945}
946
a928d536
PZ
947static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
948{
949 struct drm_i915_private *dev_priv = dev->dev_private;
950 u32 frame, frame_reg = PIPEFRAME(pipe);
951
952 frame = I915_READ(frame_reg);
953
954 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
955 DRM_DEBUG_KMS("vblank wait timed out\n");
956}
957
9d0498a2
JB
958/**
959 * intel_wait_for_vblank - wait for vblank on a given pipe
960 * @dev: drm device
961 * @pipe: pipe to wait for
962 *
963 * Wait for vblank to occur on a given pipe. Needed for various bits of
964 * mode setting code.
965 */
966void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 967{
9d0498a2 968 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 969 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 970
a928d536
PZ
971 if (INTEL_INFO(dev)->gen >= 5) {
972 ironlake_wait_for_vblank(dev, pipe);
973 return;
974 }
975
300387c0
CW
976 /* Clear existing vblank status. Note this will clear any other
977 * sticky status fields as well.
978 *
979 * This races with i915_driver_irq_handler() with the result
980 * that either function could miss a vblank event. Here it is not
981 * fatal, as we will either wait upon the next vblank interrupt or
982 * timeout. Generally speaking intel_wait_for_vblank() is only
983 * called during modeset at which time the GPU should be idle and
984 * should *not* be performing page flips and thus not waiting on
985 * vblanks...
986 * Currently, the result of us stealing a vblank from the irq
987 * handler is that a single frame will be skipped during swapbuffers.
988 */
989 I915_WRITE(pipestat_reg,
990 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
991
9d0498a2 992 /* Wait for vblank interrupt bit to set */
481b6af3
CW
993 if (wait_for(I915_READ(pipestat_reg) &
994 PIPE_VBLANK_INTERRUPT_STATUS,
995 50))
9d0498a2
JB
996 DRM_DEBUG_KMS("vblank wait timed out\n");
997}
998
ab7ad7f6
KP
999/*
1000 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
1001 * @dev: drm device
1002 * @pipe: pipe to wait for
1003 *
1004 * After disabling a pipe, we can't wait for vblank in the usual way,
1005 * spinning on the vblank interrupt status bit, since we won't actually
1006 * see an interrupt when the pipe is disabled.
1007 *
ab7ad7f6
KP
1008 * On Gen4 and above:
1009 * wait for the pipe register state bit to turn off
1010 *
1011 * Otherwise:
1012 * wait for the display line value to settle (it usually
1013 * ends up stopping at the start of the next frame).
58e10eb9 1014 *
9d0498a2 1015 */
58e10eb9 1016void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1017{
1018 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
1019 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1020 pipe);
ab7ad7f6
KP
1021
1022 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1023 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1024
1025 /* Wait for the Pipe State to go off */
58e10eb9
CW
1026 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1027 100))
284637d9 1028 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1029 } else {
837ba00f 1030 u32 last_line, line_mask;
58e10eb9 1031 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1032 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1033
837ba00f
PZ
1034 if (IS_GEN2(dev))
1035 line_mask = DSL_LINEMASK_GEN2;
1036 else
1037 line_mask = DSL_LINEMASK_GEN3;
1038
ab7ad7f6
KP
1039 /* Wait for the display line to settle */
1040 do {
837ba00f 1041 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1042 mdelay(5);
837ba00f 1043 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1044 time_after(timeout, jiffies));
1045 if (time_after(jiffies, timeout))
284637d9 1046 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1047 }
79e53945
JB
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
1056static void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
1070#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1071#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1072
040484af
JB
1073/* For ILK+ */
1074static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1075 struct intel_pch_pll *pll,
1076 struct intel_crtc *crtc,
1077 bool state)
040484af 1078{
040484af
JB
1079 u32 val;
1080 bool cur_state;
1081
9d82aa17
ED
1082 if (HAS_PCH_LPT(dev_priv->dev)) {
1083 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1084 return;
1085 }
1086
92b27b08
CW
1087 if (WARN (!pll,
1088 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1089 return;
ee7b9f93 1090
92b27b08
CW
1091 val = I915_READ(pll->pll_reg);
1092 cur_state = !!(val & DPLL_VCO_ENABLE);
1093 WARN(cur_state != state,
1094 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1095 pll->pll_reg, state_string(state), state_string(cur_state), val);
1096
1097 /* Make sure the selected PLL is correctly attached to the transcoder */
1098 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1099 u32 pch_dpll;
1100
1101 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1102 cur_state = pll->pll_reg == _PCH_DPLL_B;
1103 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1104 "PLL[%d] not attached to this transcoder %d: %08x\n",
1105 cur_state, crtc->pipe, pch_dpll)) {
1106 cur_state = !!(val >> (4*crtc->pipe + 3));
1107 WARN(cur_state != state,
1108 "PLL[%d] not %s on this transcoder %d: %08x\n",
1109 pll->pll_reg == _PCH_DPLL_B,
1110 state_string(state),
1111 crtc->pipe,
1112 val);
1113 }
d3ccbe86 1114 }
040484af 1115}
92b27b08
CW
1116#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1117#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1118
1119static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121{
1122 int reg;
1123 u32 val;
1124 bool cur_state;
ad80a810
PZ
1125 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1126 pipe);
040484af 1127
bf507ef7
ED
1128 if (IS_HASWELL(dev_priv->dev)) {
1129 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1130 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1131 val = I915_READ(reg);
ad80a810 1132 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1133 } else {
1134 reg = FDI_TX_CTL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
040484af
JB
1138 WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 state_string(state), state_string(cur_state));
1141}
1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147{
1148 int reg;
1149 u32 val;
1150 bool cur_state;
1151
d63fa0dc
PZ
1152 reg = FDI_RX_CTL(pipe);
1153 val = I915_READ(reg);
1154 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1155 WARN(cur_state != state,
1156 "FDI RX state assertion failure (expected %s, current %s)\n",
1157 state_string(state), state_string(cur_state));
1158}
1159#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1160#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1161
1162static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1163 enum pipe pipe)
1164{
1165 int reg;
1166 u32 val;
1167
1168 /* ILK FDI PLL is always enabled */
1169 if (dev_priv->info->gen == 5)
1170 return;
1171
bf507ef7
ED
1172 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1173 if (IS_HASWELL(dev_priv->dev))
1174 return;
1175
040484af
JB
1176 reg = FDI_TX_CTL(pipe);
1177 val = I915_READ(reg);
1178 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1179}
1180
1181static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1182 enum pipe pipe)
1183{
1184 int reg;
1185 u32 val;
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
1189 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
b840d907
JB
1221void assert_pipe(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
b24e7179
JB
1223{
1224 int reg;
1225 u32 val;
63d7bbe9 1226 bool cur_state;
702e7a56
PZ
1227 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1228 pipe);
b24e7179 1229
8e636784
DV
1230 /* if we need the pipe A quirk it must be always on */
1231 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1232 state = true;
1233
702e7a56 1234 reg = PIPECONF(cpu_transcoder);
b24e7179 1235 val = I915_READ(reg);
63d7bbe9
JB
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 WARN(cur_state != state,
1238 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1239 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1240}
1241
931872fc
CW
1242static void assert_plane(struct drm_i915_private *dev_priv,
1243 enum plane plane, bool state)
b24e7179
JB
1244{
1245 int reg;
1246 u32 val;
931872fc 1247 bool cur_state;
b24e7179
JB
1248
1249 reg = DSPCNTR(plane);
1250 val = I915_READ(reg);
931872fc
CW
1251 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1252 WARN(cur_state != state,
1253 "plane %c assertion failure (expected %s, current %s)\n",
1254 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1255}
1256
931872fc
CW
1257#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1258#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1259
b24e7179
JB
1260static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1261 enum pipe pipe)
1262{
1263 int reg, i;
1264 u32 val;
1265 int cur_pipe;
1266
19ec1358 1267 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1268 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1269 reg = DSPCNTR(pipe);
1270 val = I915_READ(reg);
1271 WARN((val & DISPLAY_PLANE_ENABLE),
1272 "plane %c assertion failure, should be disabled but not\n",
1273 plane_name(pipe));
19ec1358 1274 return;
28c05794 1275 }
19ec1358 1276
b24e7179
JB
1277 /* Need to check both planes against the pipe */
1278 for (i = 0; i < 2; i++) {
1279 reg = DSPCNTR(i);
1280 val = I915_READ(reg);
1281 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1282 DISPPLANE_SEL_PIPE_SHIFT;
1283 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1284 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1285 plane_name(i), pipe_name(pipe));
b24e7179
JB
1286 }
1287}
1288
92f2584a
JB
1289static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1290{
1291 u32 val;
1292 bool enabled;
1293
9d82aa17
ED
1294 if (HAS_PCH_LPT(dev_priv->dev)) {
1295 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1296 return;
1297 }
1298
92f2584a
JB
1299 val = I915_READ(PCH_DREF_CONTROL);
1300 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1301 DREF_SUPERSPREAD_SOURCE_MASK));
1302 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1303}
1304
1305static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1306 enum pipe pipe)
1307{
1308 int reg;
1309 u32 val;
1310 bool enabled;
1311
1312 reg = TRANSCONF(pipe);
1313 val = I915_READ(reg);
1314 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1315 WARN(enabled,
1316 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1317 pipe_name(pipe));
92f2584a
JB
1318}
1319
4e634389
KP
1320static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1322{
1323 if ((val & DP_PORT_EN) == 0)
1324 return false;
1325
1326 if (HAS_PCH_CPT(dev_priv->dev)) {
1327 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1328 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1329 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1330 return false;
1331 } else {
1332 if ((val & DP_PIPE_MASK) != (pipe << 30))
1333 return false;
1334 }
1335 return true;
1336}
1337
1519b995
KP
1338static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1339 enum pipe pipe, u32 val)
1340{
1341 if ((val & PORT_ENABLE) == 0)
1342 return false;
1343
1344 if (HAS_PCH_CPT(dev_priv->dev)) {
1345 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1346 return false;
1347 } else {
1348 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1349 return false;
1350 }
1351 return true;
1352}
1353
1354static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe, u32 val)
1356{
1357 if ((val & LVDS_PORT_EN) == 0)
1358 return false;
1359
1360 if (HAS_PCH_CPT(dev_priv->dev)) {
1361 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362 return false;
1363 } else {
1364 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1365 return false;
1366 }
1367 return true;
1368}
1369
1370static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe, u32 val)
1372{
1373 if ((val & ADPA_DAC_ENABLE) == 0)
1374 return false;
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1377 return false;
1378 } else {
1379 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1380 return false;
1381 }
1382 return true;
1383}
1384
291906f1 1385static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1386 enum pipe pipe, int reg, u32 port_sel)
291906f1 1387{
47a05eca 1388 u32 val = I915_READ(reg);
4e634389 1389 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1390 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1391 reg, pipe_name(pipe));
de9a35ab 1392
75c5da27
DV
1393 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1394 && (val & DP_PIPEB_SELECT),
de9a35ab 1395 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1396}
1397
1398static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1399 enum pipe pipe, int reg)
1400{
47a05eca 1401 u32 val = I915_READ(reg);
b70ad586 1402 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1403 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1404 reg, pipe_name(pipe));
de9a35ab 1405
75c5da27
DV
1406 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1407 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1408 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1409}
1410
1411static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe)
1413{
1414 int reg;
1415 u32 val;
291906f1 1416
f0575e92
KP
1417 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1418 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1419 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1420
1421 reg = PCH_ADPA;
1422 val = I915_READ(reg);
b70ad586 1423 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1424 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1425 pipe_name(pipe));
291906f1
JB
1426
1427 reg = PCH_LVDS;
1428 val = I915_READ(reg);
b70ad586 1429 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1430 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1431 pipe_name(pipe));
291906f1
JB
1432
1433 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1434 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1435 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1436}
1437
63d7bbe9
JB
1438/**
1439 * intel_enable_pll - enable a PLL
1440 * @dev_priv: i915 private structure
1441 * @pipe: pipe PLL to enable
1442 *
1443 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1444 * make sure the PLL reg is writable first though, since the panel write
1445 * protect mechanism may be enabled.
1446 *
1447 * Note! This is for pre-ILK only.
7434a255
TR
1448 *
1449 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9
JB
1450 */
1451static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1452{
1453 int reg;
1454 u32 val;
1455
1456 /* No really, not for ILK+ */
a0c4da24 1457 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1458
1459 /* PLL is protected by panel, make sure we can write it */
1460 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1461 assert_panel_unlocked(dev_priv, pipe);
1462
1463 reg = DPLL(pipe);
1464 val = I915_READ(reg);
1465 val |= DPLL_VCO_ENABLE;
1466
1467 /* We do this three times for luck */
1468 I915_WRITE(reg, val);
1469 POSTING_READ(reg);
1470 udelay(150); /* wait for warmup */
1471 I915_WRITE(reg, val);
1472 POSTING_READ(reg);
1473 udelay(150); /* wait for warmup */
1474 I915_WRITE(reg, val);
1475 POSTING_READ(reg);
1476 udelay(150); /* wait for warmup */
1477}
1478
1479/**
1480 * intel_disable_pll - disable a PLL
1481 * @dev_priv: i915 private structure
1482 * @pipe: pipe PLL to disable
1483 *
1484 * Disable the PLL for @pipe, making sure the pipe is off first.
1485 *
1486 * Note! This is for pre-ILK only.
1487 */
1488static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1489{
1490 int reg;
1491 u32 val;
1492
1493 /* Don't disable pipe A or pipe A PLLs if needed */
1494 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1495 return;
1496
1497 /* Make sure the pipe isn't still relying on us */
1498 assert_pipe_disabled(dev_priv, pipe);
1499
1500 reg = DPLL(pipe);
1501 val = I915_READ(reg);
1502 val &= ~DPLL_VCO_ENABLE;
1503 I915_WRITE(reg, val);
1504 POSTING_READ(reg);
1505}
1506
a416edef
ED
1507/* SBI access */
1508static void
1509intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1510{
1511 unsigned long flags;
1512
1513 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1514 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to become ready\n");
1517 goto out_unlock;
1518 }
1519
1520 I915_WRITE(SBI_ADDR,
1521 (reg << 16));
1522 I915_WRITE(SBI_DATA,
1523 value);
1524 I915_WRITE(SBI_CTL_STAT,
1525 SBI_BUSY |
1526 SBI_CTL_OP_CRWR);
1527
39fb50f6 1528 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1529 100)) {
1530 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1531 goto out_unlock;
1532 }
1533
1534out_unlock:
1535 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1536}
1537
1538static u32
1539intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1540{
1541 unsigned long flags;
39fb50f6 1542 u32 value = 0;
a416edef
ED
1543
1544 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1545 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1546 100)) {
1547 DRM_ERROR("timeout waiting for SBI to become ready\n");
1548 goto out_unlock;
1549 }
1550
1551 I915_WRITE(SBI_ADDR,
1552 (reg << 16));
1553 I915_WRITE(SBI_CTL_STAT,
1554 SBI_BUSY |
1555 SBI_CTL_OP_CRRD);
1556
39fb50f6 1557 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1558 100)) {
1559 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1560 goto out_unlock;
1561 }
1562
1563 value = I915_READ(SBI_DATA);
1564
1565out_unlock:
1566 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1567 return value;
1568}
1569
92f2584a 1570/**
b6b4e185 1571 * ironlake_enable_pch_pll - enable PCH PLL
92f2584a
JB
1572 * @dev_priv: i915 private structure
1573 * @pipe: pipe PLL to enable
1574 *
1575 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1576 * drives the transcoder clock.
1577 */
b6b4e185 1578static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1579{
ee7b9f93 1580 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1581 struct intel_pch_pll *pll;
92f2584a
JB
1582 int reg;
1583 u32 val;
1584
48da64a8 1585 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1586 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1587 pll = intel_crtc->pch_pll;
1588 if (pll == NULL)
1589 return;
1590
1591 if (WARN_ON(pll->refcount == 0))
1592 return;
ee7b9f93
JB
1593
1594 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1595 pll->pll_reg, pll->active, pll->on,
1596 intel_crtc->base.base.id);
92f2584a
JB
1597
1598 /* PCH refclock must be enabled first */
1599 assert_pch_refclk_enabled(dev_priv);
1600
ee7b9f93 1601 if (pll->active++ && pll->on) {
92b27b08 1602 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1603 return;
1604 }
1605
1606 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1607
1608 reg = pll->pll_reg;
92f2584a
JB
1609 val = I915_READ(reg);
1610 val |= DPLL_VCO_ENABLE;
1611 I915_WRITE(reg, val);
1612 POSTING_READ(reg);
1613 udelay(200);
ee7b9f93
JB
1614
1615 pll->on = true;
92f2584a
JB
1616}
1617
ee7b9f93 1618static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1619{
ee7b9f93
JB
1620 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1621 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1622 int reg;
ee7b9f93 1623 u32 val;
4c609cb8 1624
92f2584a
JB
1625 /* PCH only available on ILK+ */
1626 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1627 if (pll == NULL)
1628 return;
92f2584a 1629
48da64a8
CW
1630 if (WARN_ON(pll->refcount == 0))
1631 return;
7a419866 1632
ee7b9f93
JB
1633 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1634 pll->pll_reg, pll->active, pll->on,
1635 intel_crtc->base.base.id);
7a419866 1636
48da64a8 1637 if (WARN_ON(pll->active == 0)) {
92b27b08 1638 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1639 return;
1640 }
1641
ee7b9f93 1642 if (--pll->active) {
92b27b08 1643 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1644 return;
ee7b9f93
JB
1645 }
1646
1647 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1648
1649 /* Make sure transcoder isn't still depending on us */
1650 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1651
ee7b9f93 1652 reg = pll->pll_reg;
92f2584a
JB
1653 val = I915_READ(reg);
1654 val &= ~DPLL_VCO_ENABLE;
1655 I915_WRITE(reg, val);
1656 POSTING_READ(reg);
1657 udelay(200);
ee7b9f93
JB
1658
1659 pll->on = false;
92f2584a
JB
1660}
1661
b8a4f404
PZ
1662static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1663 enum pipe pipe)
040484af 1664{
23670b32 1665 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1666 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
23670b32 1667 uint32_t reg, val, pipeconf_val;
040484af
JB
1668
1669 /* PCH only available on ILK+ */
1670 BUG_ON(dev_priv->info->gen < 5);
1671
1672 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1673 assert_pch_pll_enabled(dev_priv,
1674 to_intel_crtc(crtc)->pch_pll,
1675 to_intel_crtc(crtc));
040484af
JB
1676
1677 /* FDI must be feeding us bits for PCH ports */
1678 assert_fdi_tx_enabled(dev_priv, pipe);
1679 assert_fdi_rx_enabled(dev_priv, pipe);
1680
23670b32
DV
1681 if (HAS_PCH_CPT(dev)) {
1682 /* Workaround: Set the timing override bit before enabling the
1683 * pch transcoder. */
1684 reg = TRANS_CHICKEN2(pipe);
1685 val = I915_READ(reg);
1686 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1687 I915_WRITE(reg, val);
59c859d6 1688 }
23670b32 1689
040484af
JB
1690 reg = TRANSCONF(pipe);
1691 val = I915_READ(reg);
5f7f726d 1692 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1693
1694 if (HAS_PCH_IBX(dev_priv->dev)) {
1695 /*
1696 * make the BPC in transcoder be consistent with
1697 * that in pipeconf reg.
1698 */
1699 val &= ~PIPE_BPC_MASK;
5f7f726d 1700 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1701 }
5f7f726d
PZ
1702
1703 val &= ~TRANS_INTERLACE_MASK;
1704 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1705 if (HAS_PCH_IBX(dev_priv->dev) &&
1706 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1707 val |= TRANS_LEGACY_INTERLACED_ILK;
1708 else
1709 val |= TRANS_INTERLACED;
5f7f726d
PZ
1710 else
1711 val |= TRANS_PROGRESSIVE;
1712
040484af
JB
1713 I915_WRITE(reg, val | TRANS_ENABLE);
1714 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1715 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1716}
1717
8fb033d7 1718static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1719 enum transcoder cpu_transcoder)
040484af 1720{
8fb033d7 1721 u32 val, pipeconf_val;
8fb033d7
PZ
1722
1723 /* PCH only available on ILK+ */
1724 BUG_ON(dev_priv->info->gen < 5);
1725
8fb033d7 1726 /* FDI must be feeding us bits for PCH ports */
937bb610
PZ
1727 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1728 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1729
223a6fdf
PZ
1730 /* Workaround: set timing override bit. */
1731 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1732 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1733 I915_WRITE(_TRANSA_CHICKEN2, val);
1734
25f3ef11 1735 val = TRANS_ENABLE;
937bb610 1736 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1737
9a76b1c6
PZ
1738 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1739 PIPECONF_INTERLACED_ILK)
a35f2679 1740 val |= TRANS_INTERLACED;
8fb033d7
PZ
1741 else
1742 val |= TRANS_PROGRESSIVE;
1743
25f3ef11 1744 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
937bb610
PZ
1745 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1746 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1747}
1748
b8a4f404
PZ
1749static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1750 enum pipe pipe)
040484af 1751{
23670b32
DV
1752 struct drm_device *dev = dev_priv->dev;
1753 uint32_t reg, val;
040484af
JB
1754
1755 /* FDI relies on the transcoder */
1756 assert_fdi_tx_disabled(dev_priv, pipe);
1757 assert_fdi_rx_disabled(dev_priv, pipe);
1758
291906f1
JB
1759 /* Ports must be off as well */
1760 assert_pch_ports_disabled(dev_priv, pipe);
1761
040484af
JB
1762 reg = TRANSCONF(pipe);
1763 val = I915_READ(reg);
1764 val &= ~TRANS_ENABLE;
1765 I915_WRITE(reg, val);
1766 /* wait for PCH transcoder off, transcoder state */
1767 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1768 DRM_ERROR("failed to disable transcoder %d\n", pipe);
23670b32
DV
1769
1770 if (!HAS_PCH_IBX(dev)) {
1771 /* Workaround: Clear the timing override chicken bit again. */
1772 reg = TRANS_CHICKEN2(pipe);
1773 val = I915_READ(reg);
1774 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1775 I915_WRITE(reg, val);
1776 }
040484af
JB
1777}
1778
ab4d966c 1779static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1780{
8fb033d7
PZ
1781 u32 val;
1782
8a52fd9f 1783 val = I915_READ(_TRANSACONF);
8fb033d7 1784 val &= ~TRANS_ENABLE;
8a52fd9f 1785 I915_WRITE(_TRANSACONF, val);
8fb033d7 1786 /* wait for PCH transcoder off, transcoder state */
8a52fd9f
PZ
1787 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1788 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1789
1790 /* Workaround: clear timing override bit. */
1791 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1792 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1793 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1794}
1795
b24e7179 1796/**
309cfea8 1797 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1798 * @dev_priv: i915 private structure
1799 * @pipe: pipe to enable
040484af 1800 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1801 *
1802 * Enable @pipe, making sure that various hardware specific requirements
1803 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1804 *
1805 * @pipe should be %PIPE_A or %PIPE_B.
1806 *
1807 * Will wait until the pipe is actually running (i.e. first vblank) before
1808 * returning.
1809 */
040484af
JB
1810static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1811 bool pch_port)
b24e7179 1812{
702e7a56
PZ
1813 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1814 pipe);
cc391bbb 1815 enum transcoder pch_transcoder;
b24e7179
JB
1816 int reg;
1817 u32 val;
1818
cc391bbb
PZ
1819 if (IS_HASWELL(dev_priv->dev))
1820 pch_transcoder = TRANSCODER_A;
1821 else
1822 pch_transcoder = pipe;
1823
b24e7179
JB
1824 /*
1825 * A pipe without a PLL won't actually be able to drive bits from
1826 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1827 * need the check.
1828 */
1829 if (!HAS_PCH_SPLIT(dev_priv->dev))
1830 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1831 else {
1832 if (pch_port) {
1833 /* if driving the PCH, we need FDI enabled */
cc391bbb
PZ
1834 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1835 assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
040484af
JB
1836 }
1837 /* FIXME: assert CPU port conditions for SNB+ */
1838 }
b24e7179 1839
702e7a56 1840 reg = PIPECONF(cpu_transcoder);
b24e7179 1841 val = I915_READ(reg);
00d70b15
CW
1842 if (val & PIPECONF_ENABLE)
1843 return;
1844
1845 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1846 intel_wait_for_vblank(dev_priv->dev, pipe);
1847}
1848
1849/**
309cfea8 1850 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1851 * @dev_priv: i915 private structure
1852 * @pipe: pipe to disable
1853 *
1854 * Disable @pipe, making sure that various hardware specific requirements
1855 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1856 *
1857 * @pipe should be %PIPE_A or %PIPE_B.
1858 *
1859 * Will wait until the pipe has shut down before returning.
1860 */
1861static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1862 enum pipe pipe)
1863{
702e7a56
PZ
1864 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1865 pipe);
b24e7179
JB
1866 int reg;
1867 u32 val;
1868
1869 /*
1870 * Make sure planes won't keep trying to pump pixels to us,
1871 * or we might hang the display.
1872 */
1873 assert_planes_disabled(dev_priv, pipe);
1874
1875 /* Don't disable pipe A or pipe A PLLs if needed */
1876 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1877 return;
1878
702e7a56 1879 reg = PIPECONF(cpu_transcoder);
b24e7179 1880 val = I915_READ(reg);
00d70b15
CW
1881 if ((val & PIPECONF_ENABLE) == 0)
1882 return;
1883
1884 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1885 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1886}
1887
d74362c9
KP
1888/*
1889 * Plane regs are double buffered, going from enabled->disabled needs a
1890 * trigger in order to latch. The display address reg provides this.
1891 */
6f1d69b0 1892void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1893 enum plane plane)
1894{
14f86147
DL
1895 if (dev_priv->info->gen >= 4)
1896 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1897 else
1898 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
d74362c9
KP
1899}
1900
b24e7179
JB
1901/**
1902 * intel_enable_plane - enable a display plane on a given pipe
1903 * @dev_priv: i915 private structure
1904 * @plane: plane to enable
1905 * @pipe: pipe being fed
1906 *
1907 * Enable @plane on @pipe, making sure that @pipe is running first.
1908 */
1909static void intel_enable_plane(struct drm_i915_private *dev_priv,
1910 enum plane plane, enum pipe pipe)
1911{
1912 int reg;
1913 u32 val;
1914
1915 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1916 assert_pipe_enabled(dev_priv, pipe);
1917
1918 reg = DSPCNTR(plane);
1919 val = I915_READ(reg);
00d70b15
CW
1920 if (val & DISPLAY_PLANE_ENABLE)
1921 return;
1922
1923 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1924 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1925 intel_wait_for_vblank(dev_priv->dev, pipe);
1926}
1927
b24e7179
JB
1928/**
1929 * intel_disable_plane - disable a display plane
1930 * @dev_priv: i915 private structure
1931 * @plane: plane to disable
1932 * @pipe: pipe consuming the data
1933 *
1934 * Disable @plane; should be an independent operation.
1935 */
1936static void intel_disable_plane(struct drm_i915_private *dev_priv,
1937 enum plane plane, enum pipe pipe)
1938{
1939 int reg;
1940 u32 val;
1941
1942 reg = DSPCNTR(plane);
1943 val = I915_READ(reg);
00d70b15
CW
1944 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1945 return;
1946
1947 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1948 intel_flush_display_plane(dev_priv, plane);
1949 intel_wait_for_vblank(dev_priv->dev, pipe);
1950}
1951
127bd2ac 1952int
48b956c5 1953intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1954 struct drm_i915_gem_object *obj,
919926ae 1955 struct intel_ring_buffer *pipelined)
6b95a207 1956{
ce453d81 1957 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1958 u32 alignment;
1959 int ret;
1960
05394f39 1961 switch (obj->tiling_mode) {
6b95a207 1962 case I915_TILING_NONE:
534843da
CW
1963 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1964 alignment = 128 * 1024;
a6c45cf0 1965 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1966 alignment = 4 * 1024;
1967 else
1968 alignment = 64 * 1024;
6b95a207
KH
1969 break;
1970 case I915_TILING_X:
1971 /* pin() will align the object as required by fence */
1972 alignment = 0;
1973 break;
1974 case I915_TILING_Y:
1975 /* FIXME: Is this true? */
1976 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1977 return -EINVAL;
1978 default:
1979 BUG();
1980 }
1981
ce453d81 1982 dev_priv->mm.interruptible = false;
2da3b9b9 1983 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1984 if (ret)
ce453d81 1985 goto err_interruptible;
6b95a207
KH
1986
1987 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1988 * fence, whereas 965+ only requires a fence if using
1989 * framebuffer compression. For simplicity, we always install
1990 * a fence as the cost is not that onerous.
1991 */
06d98131 1992 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1993 if (ret)
1994 goto err_unpin;
1690e1eb 1995
9a5a53b3 1996 i915_gem_object_pin_fence(obj);
6b95a207 1997
ce453d81 1998 dev_priv->mm.interruptible = true;
6b95a207 1999 return 0;
48b956c5
CW
2000
2001err_unpin:
2002 i915_gem_object_unpin(obj);
ce453d81
CW
2003err_interruptible:
2004 dev_priv->mm.interruptible = true;
48b956c5 2005 return ret;
6b95a207
KH
2006}
2007
1690e1eb
CW
2008void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2009{
2010 i915_gem_object_unpin_fence(obj);
2011 i915_gem_object_unpin(obj);
2012}
2013
c2c75131
DV
2014/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2015 * is assumed to be a power-of-two. */
5a35e99e
DL
2016unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2017 unsigned int bpp,
2018 unsigned int pitch)
c2c75131
DV
2019{
2020 int tile_rows, tiles;
2021
2022 tile_rows = *y / 8;
2023 *y %= 8;
2024 tiles = *x / (512/bpp);
2025 *x %= 512/bpp;
2026
2027 return tile_rows * pitch * 8 + tiles * 4096;
2028}
2029
17638cd6
JB
2030static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2031 int x, int y)
81255565
JB
2032{
2033 struct drm_device *dev = crtc->dev;
2034 struct drm_i915_private *dev_priv = dev->dev_private;
2035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2036 struct intel_framebuffer *intel_fb;
05394f39 2037 struct drm_i915_gem_object *obj;
81255565 2038 int plane = intel_crtc->plane;
e506a0c6 2039 unsigned long linear_offset;
81255565 2040 u32 dspcntr;
5eddb70b 2041 u32 reg;
81255565
JB
2042
2043 switch (plane) {
2044 case 0:
2045 case 1:
2046 break;
2047 default:
2048 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2049 return -EINVAL;
2050 }
2051
2052 intel_fb = to_intel_framebuffer(fb);
2053 obj = intel_fb->obj;
81255565 2054
5eddb70b
CW
2055 reg = DSPCNTR(plane);
2056 dspcntr = I915_READ(reg);
81255565
JB
2057 /* Mask out pixel format bits in case we change it */
2058 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2059 switch (fb->pixel_format) {
2060 case DRM_FORMAT_C8:
81255565
JB
2061 dspcntr |= DISPPLANE_8BPP;
2062 break;
57779d06
VS
2063 case DRM_FORMAT_XRGB1555:
2064 case DRM_FORMAT_ARGB1555:
2065 dspcntr |= DISPPLANE_BGRX555;
81255565 2066 break;
57779d06
VS
2067 case DRM_FORMAT_RGB565:
2068 dspcntr |= DISPPLANE_BGRX565;
2069 break;
2070 case DRM_FORMAT_XRGB8888:
2071 case DRM_FORMAT_ARGB8888:
2072 dspcntr |= DISPPLANE_BGRX888;
2073 break;
2074 case DRM_FORMAT_XBGR8888:
2075 case DRM_FORMAT_ABGR8888:
2076 dspcntr |= DISPPLANE_RGBX888;
2077 break;
2078 case DRM_FORMAT_XRGB2101010:
2079 case DRM_FORMAT_ARGB2101010:
2080 dspcntr |= DISPPLANE_BGRX101010;
2081 break;
2082 case DRM_FORMAT_XBGR2101010:
2083 case DRM_FORMAT_ABGR2101010:
2084 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2085 break;
2086 default:
57779d06 2087 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
81255565
JB
2088 return -EINVAL;
2089 }
57779d06 2090
a6c45cf0 2091 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2092 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2093 dspcntr |= DISPPLANE_TILED;
2094 else
2095 dspcntr &= ~DISPPLANE_TILED;
2096 }
2097
5eddb70b 2098 I915_WRITE(reg, dspcntr);
81255565 2099
e506a0c6 2100 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2101
c2c75131
DV
2102 if (INTEL_INFO(dev)->gen >= 4) {
2103 intel_crtc->dspaddr_offset =
5a35e99e
DL
2104 intel_gen4_compute_offset_xtiled(&x, &y,
2105 fb->bits_per_pixel / 8,
2106 fb->pitches[0]);
c2c75131
DV
2107 linear_offset -= intel_crtc->dspaddr_offset;
2108 } else {
e506a0c6 2109 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2110 }
e506a0c6
DV
2111
2112 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2113 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2114 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2115 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2116 I915_MODIFY_DISPBASE(DSPSURF(plane),
2117 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2118 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2119 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2120 } else
e506a0c6 2121 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2122 POSTING_READ(reg);
81255565 2123
17638cd6
JB
2124 return 0;
2125}
2126
2127static int ironlake_update_plane(struct drm_crtc *crtc,
2128 struct drm_framebuffer *fb, int x, int y)
2129{
2130 struct drm_device *dev = crtc->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133 struct intel_framebuffer *intel_fb;
2134 struct drm_i915_gem_object *obj;
2135 int plane = intel_crtc->plane;
e506a0c6 2136 unsigned long linear_offset;
17638cd6
JB
2137 u32 dspcntr;
2138 u32 reg;
2139
2140 switch (plane) {
2141 case 0:
2142 case 1:
27f8227b 2143 case 2:
17638cd6
JB
2144 break;
2145 default:
2146 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2147 return -EINVAL;
2148 }
2149
2150 intel_fb = to_intel_framebuffer(fb);
2151 obj = intel_fb->obj;
2152
2153 reg = DSPCNTR(plane);
2154 dspcntr = I915_READ(reg);
2155 /* Mask out pixel format bits in case we change it */
2156 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2157 switch (fb->pixel_format) {
2158 case DRM_FORMAT_C8:
17638cd6
JB
2159 dspcntr |= DISPPLANE_8BPP;
2160 break;
57779d06
VS
2161 case DRM_FORMAT_RGB565:
2162 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2163 break;
57779d06
VS
2164 case DRM_FORMAT_XRGB8888:
2165 case DRM_FORMAT_ARGB8888:
2166 dspcntr |= DISPPLANE_BGRX888;
2167 break;
2168 case DRM_FORMAT_XBGR8888:
2169 case DRM_FORMAT_ABGR8888:
2170 dspcntr |= DISPPLANE_RGBX888;
2171 break;
2172 case DRM_FORMAT_XRGB2101010:
2173 case DRM_FORMAT_ARGB2101010:
2174 dspcntr |= DISPPLANE_BGRX101010;
2175 break;
2176 case DRM_FORMAT_XBGR2101010:
2177 case DRM_FORMAT_ABGR2101010:
2178 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2179 break;
2180 default:
57779d06 2181 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
17638cd6
JB
2182 return -EINVAL;
2183 }
2184
2185 if (obj->tiling_mode != I915_TILING_NONE)
2186 dspcntr |= DISPPLANE_TILED;
2187 else
2188 dspcntr &= ~DISPPLANE_TILED;
2189
2190 /* must disable */
2191 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2192
2193 I915_WRITE(reg, dspcntr);
2194
e506a0c6 2195 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2196 intel_crtc->dspaddr_offset =
5a35e99e
DL
2197 intel_gen4_compute_offset_xtiled(&x, &y,
2198 fb->bits_per_pixel / 8,
2199 fb->pitches[0]);
c2c75131 2200 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2201
e506a0c6
DV
2202 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2203 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2204 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2205 I915_MODIFY_DISPBASE(DSPSURF(plane),
2206 obj->gtt_offset + intel_crtc->dspaddr_offset);
bc1c91eb
DL
2207 if (IS_HASWELL(dev)) {
2208 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2209 } else {
2210 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2211 I915_WRITE(DSPLINOFF(plane), linear_offset);
2212 }
17638cd6
JB
2213 POSTING_READ(reg);
2214
2215 return 0;
2216}
2217
2218/* Assume fb object is pinned & idle & fenced and just update base pointers */
2219static int
2220intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2221 int x, int y, enum mode_set_atomic state)
2222{
2223 struct drm_device *dev = crtc->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2225
6b8e6ed0
CW
2226 if (dev_priv->display.disable_fbc)
2227 dev_priv->display.disable_fbc(dev);
3dec0095 2228 intel_increase_pllclock(crtc);
81255565 2229
6b8e6ed0 2230 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2231}
2232
14667a4b
CW
2233static int
2234intel_finish_fb(struct drm_framebuffer *old_fb)
2235{
2236 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2238 bool was_interruptible = dev_priv->mm.interruptible;
2239 int ret;
2240
2241 wait_event(dev_priv->pending_flip_queue,
2242 atomic_read(&dev_priv->mm.wedged) ||
2243 atomic_read(&obj->pending_flip) == 0);
2244
2245 /* Big Hammer, we also need to ensure that any pending
2246 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2247 * current scanout is retired before unpinning the old
2248 * framebuffer.
2249 *
2250 * This should only fail upon a hung GPU, in which case we
2251 * can safely continue.
2252 */
2253 dev_priv->mm.interruptible = false;
2254 ret = i915_gem_object_finish_gpu(obj);
2255 dev_priv->mm.interruptible = was_interruptible;
2256
2257 return ret;
2258}
2259
198598d0
VS
2260static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2261{
2262 struct drm_device *dev = crtc->dev;
2263 struct drm_i915_master_private *master_priv;
2264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265
2266 if (!dev->primary->master)
2267 return;
2268
2269 master_priv = dev->primary->master->driver_priv;
2270 if (!master_priv->sarea_priv)
2271 return;
2272
2273 switch (intel_crtc->pipe) {
2274 case 0:
2275 master_priv->sarea_priv->pipeA_x = x;
2276 master_priv->sarea_priv->pipeA_y = y;
2277 break;
2278 case 1:
2279 master_priv->sarea_priv->pipeB_x = x;
2280 master_priv->sarea_priv->pipeB_y = y;
2281 break;
2282 default:
2283 break;
2284 }
2285}
2286
5c3b82e2 2287static int
3c4fdcfb 2288intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2289 struct drm_framebuffer *fb)
79e53945
JB
2290{
2291 struct drm_device *dev = crtc->dev;
6b8e6ed0 2292 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2294 struct drm_framebuffer *old_fb;
5c3b82e2 2295 int ret;
79e53945
JB
2296
2297 /* no fb bound */
94352cf9 2298 if (!fb) {
a5071c2f 2299 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2300 return 0;
2301 }
2302
5826eca5
ED
2303 if(intel_crtc->plane > dev_priv->num_pipe) {
2304 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2305 intel_crtc->plane,
2306 dev_priv->num_pipe);
5c3b82e2 2307 return -EINVAL;
79e53945
JB
2308 }
2309
5c3b82e2 2310 mutex_lock(&dev->struct_mutex);
265db958 2311 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2312 to_intel_framebuffer(fb)->obj,
919926ae 2313 NULL);
5c3b82e2
CW
2314 if (ret != 0) {
2315 mutex_unlock(&dev->struct_mutex);
a5071c2f 2316 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2317 return ret;
2318 }
79e53945 2319
94352cf9
DV
2320 if (crtc->fb)
2321 intel_finish_fb(crtc->fb);
265db958 2322
94352cf9 2323 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2324 if (ret) {
94352cf9 2325 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2326 mutex_unlock(&dev->struct_mutex);
a5071c2f 2327 DRM_ERROR("failed to update base address\n");
4e6cfefc 2328 return ret;
79e53945 2329 }
3c4fdcfb 2330
94352cf9
DV
2331 old_fb = crtc->fb;
2332 crtc->fb = fb;
6c4c86f5
DV
2333 crtc->x = x;
2334 crtc->y = y;
94352cf9 2335
b7f1de28
CW
2336 if (old_fb) {
2337 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2338 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2339 }
652c393a 2340
6b8e6ed0 2341 intel_update_fbc(dev);
5c3b82e2 2342 mutex_unlock(&dev->struct_mutex);
79e53945 2343
198598d0 2344 intel_crtc_update_sarea_pos(crtc, x, y);
5c3b82e2
CW
2345
2346 return 0;
79e53945
JB
2347}
2348
5eddb70b 2349static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2350{
2351 struct drm_device *dev = crtc->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 dpa_ctl;
2354
28c97730 2355 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2356 dpa_ctl = I915_READ(DP_A);
2357 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2358
2359 if (clock < 200000) {
2360 u32 temp;
2361 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2362 /* workaround for 160Mhz:
2363 1) program 0x4600c bits 15:0 = 0x8124
2364 2) program 0x46010 bit 0 = 1
2365 3) program 0x46034 bit 24 = 1
2366 4) program 0x64000 bit 14 = 1
2367 */
2368 temp = I915_READ(0x4600c);
2369 temp &= 0xffff0000;
2370 I915_WRITE(0x4600c, temp | 0x8124);
2371
2372 temp = I915_READ(0x46010);
2373 I915_WRITE(0x46010, temp | 1);
2374
2375 temp = I915_READ(0x46034);
2376 I915_WRITE(0x46034, temp | (1 << 24));
2377 } else {
2378 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2379 }
2380 I915_WRITE(DP_A, dpa_ctl);
2381
5eddb70b 2382 POSTING_READ(DP_A);
32f9d658
ZW
2383 udelay(500);
2384}
2385
5e84e1a4
ZW
2386static void intel_fdi_normal_train(struct drm_crtc *crtc)
2387{
2388 struct drm_device *dev = crtc->dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2391 int pipe = intel_crtc->pipe;
2392 u32 reg, temp;
2393
2394 /* enable normal train */
2395 reg = FDI_TX_CTL(pipe);
2396 temp = I915_READ(reg);
61e499bf 2397 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2398 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2399 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2400 } else {
2401 temp &= ~FDI_LINK_TRAIN_NONE;
2402 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2403 }
5e84e1a4
ZW
2404 I915_WRITE(reg, temp);
2405
2406 reg = FDI_RX_CTL(pipe);
2407 temp = I915_READ(reg);
2408 if (HAS_PCH_CPT(dev)) {
2409 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2410 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2411 } else {
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_NONE;
2414 }
2415 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2416
2417 /* wait one idle pattern time */
2418 POSTING_READ(reg);
2419 udelay(1000);
357555c0
JB
2420
2421 /* IVB wants error correction enabled */
2422 if (IS_IVYBRIDGE(dev))
2423 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2424 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2425}
2426
291427f5
JB
2427static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2428{
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 u32 flags = I915_READ(SOUTH_CHICKEN1);
2431
2432 flags |= FDI_PHASE_SYNC_OVR(pipe);
2433 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2434 flags |= FDI_PHASE_SYNC_EN(pipe);
2435 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2436 POSTING_READ(SOUTH_CHICKEN1);
2437}
2438
01a415fd
DV
2439static void ivb_modeset_global_resources(struct drm_device *dev)
2440{
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct intel_crtc *pipe_B_crtc =
2443 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2444 struct intel_crtc *pipe_C_crtc =
2445 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2446 uint32_t temp;
2447
2448 /* When everything is off disable fdi C so that we could enable fdi B
2449 * with all lanes. XXX: This misses the case where a pipe is not using
2450 * any pch resources and so doesn't need any fdi lanes. */
2451 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2453 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2454
2455 temp = I915_READ(SOUTH_CHICKEN1);
2456 temp &= ~FDI_BC_BIFURCATION_SELECT;
2457 DRM_DEBUG_KMS("disabling fdi C rx\n");
2458 I915_WRITE(SOUTH_CHICKEN1, temp);
2459 }
2460}
2461
8db9d77b
ZW
2462/* The FDI link training functions for ILK/Ibexpeak. */
2463static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2464{
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468 int pipe = intel_crtc->pipe;
0fc932b8 2469 int plane = intel_crtc->plane;
5eddb70b 2470 u32 reg, temp, tries;
8db9d77b 2471
0fc932b8
JB
2472 /* FDI needs bits from pipe & plane first */
2473 assert_pipe_enabled(dev_priv, pipe);
2474 assert_plane_enabled(dev_priv, plane);
2475
e1a44743
AJ
2476 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2477 for train result */
5eddb70b
CW
2478 reg = FDI_RX_IMR(pipe);
2479 temp = I915_READ(reg);
e1a44743
AJ
2480 temp &= ~FDI_RX_SYMBOL_LOCK;
2481 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2482 I915_WRITE(reg, temp);
2483 I915_READ(reg);
e1a44743
AJ
2484 udelay(150);
2485
8db9d77b 2486 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
77ffb597
AJ
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2494
5eddb70b
CW
2495 reg = FDI_RX_CTL(pipe);
2496 temp = I915_READ(reg);
8db9d77b
ZW
2497 temp &= ~FDI_LINK_TRAIN_NONE;
2498 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2499 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2500
2501 POSTING_READ(reg);
8db9d77b
ZW
2502 udelay(150);
2503
5b2adf89 2504 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2505 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2506 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2507 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2508
5eddb70b 2509 reg = FDI_RX_IIR(pipe);
e1a44743 2510 for (tries = 0; tries < 5; tries++) {
5eddb70b 2511 temp = I915_READ(reg);
8db9d77b
ZW
2512 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2513
2514 if ((temp & FDI_RX_BIT_LOCK)) {
2515 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2516 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2517 break;
2518 }
8db9d77b 2519 }
e1a44743 2520 if (tries == 5)
5eddb70b 2521 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2522
2523 /* Train 2 */
5eddb70b
CW
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
8db9d77b
ZW
2526 temp &= ~FDI_LINK_TRAIN_NONE;
2527 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2528 I915_WRITE(reg, temp);
8db9d77b 2529
5eddb70b
CW
2530 reg = FDI_RX_CTL(pipe);
2531 temp = I915_READ(reg);
8db9d77b
ZW
2532 temp &= ~FDI_LINK_TRAIN_NONE;
2533 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2534 I915_WRITE(reg, temp);
8db9d77b 2535
5eddb70b
CW
2536 POSTING_READ(reg);
2537 udelay(150);
8db9d77b 2538
5eddb70b 2539 reg = FDI_RX_IIR(pipe);
e1a44743 2540 for (tries = 0; tries < 5; tries++) {
5eddb70b 2541 temp = I915_READ(reg);
8db9d77b
ZW
2542 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2543
2544 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2545 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2546 DRM_DEBUG_KMS("FDI train 2 done.\n");
2547 break;
2548 }
8db9d77b 2549 }
e1a44743 2550 if (tries == 5)
5eddb70b 2551 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2552
2553 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2554
8db9d77b
ZW
2555}
2556
0206e353 2557static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2558 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2559 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2560 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2561 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2562};
2563
2564/* The FDI link training functions for SNB/Cougarpoint. */
2565static void gen6_fdi_link_train(struct drm_crtc *crtc)
2566{
2567 struct drm_device *dev = crtc->dev;
2568 struct drm_i915_private *dev_priv = dev->dev_private;
2569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2570 int pipe = intel_crtc->pipe;
fa37d39e 2571 u32 reg, temp, i, retry;
8db9d77b 2572
e1a44743
AJ
2573 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2574 for train result */
5eddb70b
CW
2575 reg = FDI_RX_IMR(pipe);
2576 temp = I915_READ(reg);
e1a44743
AJ
2577 temp &= ~FDI_RX_SYMBOL_LOCK;
2578 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2579 I915_WRITE(reg, temp);
2580
2581 POSTING_READ(reg);
e1a44743
AJ
2582 udelay(150);
2583
8db9d77b 2584 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2585 reg = FDI_TX_CTL(pipe);
2586 temp = I915_READ(reg);
77ffb597
AJ
2587 temp &= ~(7 << 19);
2588 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2589 temp &= ~FDI_LINK_TRAIN_NONE;
2590 temp |= FDI_LINK_TRAIN_PATTERN_1;
2591 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2592 /* SNB-B */
2593 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2594 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2595
d74cf324
DV
2596 I915_WRITE(FDI_RX_MISC(pipe),
2597 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2598
5eddb70b
CW
2599 reg = FDI_RX_CTL(pipe);
2600 temp = I915_READ(reg);
8db9d77b
ZW
2601 if (HAS_PCH_CPT(dev)) {
2602 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2603 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2604 } else {
2605 temp &= ~FDI_LINK_TRAIN_NONE;
2606 temp |= FDI_LINK_TRAIN_PATTERN_1;
2607 }
5eddb70b
CW
2608 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2609
2610 POSTING_READ(reg);
8db9d77b
ZW
2611 udelay(150);
2612
8f5718a6 2613 cpt_phase_pointer_enable(dev, pipe);
291427f5 2614
0206e353 2615 for (i = 0; i < 4; i++) {
5eddb70b
CW
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
8db9d77b
ZW
2618 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2620 I915_WRITE(reg, temp);
2621
2622 POSTING_READ(reg);
8db9d77b
ZW
2623 udelay(500);
2624
fa37d39e
SP
2625 for (retry = 0; retry < 5; retry++) {
2626 reg = FDI_RX_IIR(pipe);
2627 temp = I915_READ(reg);
2628 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629 if (temp & FDI_RX_BIT_LOCK) {
2630 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2631 DRM_DEBUG_KMS("FDI train 1 done.\n");
2632 break;
2633 }
2634 udelay(50);
8db9d77b 2635 }
fa37d39e
SP
2636 if (retry < 5)
2637 break;
8db9d77b
ZW
2638 }
2639 if (i == 4)
5eddb70b 2640 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2641
2642 /* Train 2 */
5eddb70b
CW
2643 reg = FDI_TX_CTL(pipe);
2644 temp = I915_READ(reg);
8db9d77b
ZW
2645 temp &= ~FDI_LINK_TRAIN_NONE;
2646 temp |= FDI_LINK_TRAIN_PATTERN_2;
2647 if (IS_GEN6(dev)) {
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 /* SNB-B */
2650 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2651 }
5eddb70b 2652 I915_WRITE(reg, temp);
8db9d77b 2653
5eddb70b
CW
2654 reg = FDI_RX_CTL(pipe);
2655 temp = I915_READ(reg);
8db9d77b
ZW
2656 if (HAS_PCH_CPT(dev)) {
2657 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2658 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2659 } else {
2660 temp &= ~FDI_LINK_TRAIN_NONE;
2661 temp |= FDI_LINK_TRAIN_PATTERN_2;
2662 }
5eddb70b
CW
2663 I915_WRITE(reg, temp);
2664
2665 POSTING_READ(reg);
8db9d77b
ZW
2666 udelay(150);
2667
0206e353 2668 for (i = 0; i < 4; i++) {
5eddb70b
CW
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
8db9d77b
ZW
2671 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2673 I915_WRITE(reg, temp);
2674
2675 POSTING_READ(reg);
8db9d77b
ZW
2676 udelay(500);
2677
fa37d39e
SP
2678 for (retry = 0; retry < 5; retry++) {
2679 reg = FDI_RX_IIR(pipe);
2680 temp = I915_READ(reg);
2681 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2682 if (temp & FDI_RX_SYMBOL_LOCK) {
2683 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2684 DRM_DEBUG_KMS("FDI train 2 done.\n");
2685 break;
2686 }
2687 udelay(50);
8db9d77b 2688 }
fa37d39e
SP
2689 if (retry < 5)
2690 break;
8db9d77b
ZW
2691 }
2692 if (i == 4)
5eddb70b 2693 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2694
2695 DRM_DEBUG_KMS("FDI train done.\n");
2696}
2697
357555c0
JB
2698/* Manual link training for Ivy Bridge A0 parts */
2699static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2700{
2701 struct drm_device *dev = crtc->dev;
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2704 int pipe = intel_crtc->pipe;
2705 u32 reg, temp, i;
2706
2707 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2708 for train result */
2709 reg = FDI_RX_IMR(pipe);
2710 temp = I915_READ(reg);
2711 temp &= ~FDI_RX_SYMBOL_LOCK;
2712 temp &= ~FDI_RX_BIT_LOCK;
2713 I915_WRITE(reg, temp);
2714
2715 POSTING_READ(reg);
2716 udelay(150);
2717
01a415fd
DV
2718 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2719 I915_READ(FDI_RX_IIR(pipe)));
2720
357555c0
JB
2721 /* enable CPU FDI TX and PCH FDI RX */
2722 reg = FDI_TX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 temp &= ~(7 << 19);
2725 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2726 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2727 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2728 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2729 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2730 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2731 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2732
d74cf324
DV
2733 I915_WRITE(FDI_RX_MISC(pipe),
2734 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2735
357555c0
JB
2736 reg = FDI_RX_CTL(pipe);
2737 temp = I915_READ(reg);
2738 temp &= ~FDI_LINK_TRAIN_AUTO;
2739 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2740 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2741 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2742 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2743
2744 POSTING_READ(reg);
2745 udelay(150);
2746
8f5718a6 2747 cpt_phase_pointer_enable(dev, pipe);
291427f5 2748
0206e353 2749 for (i = 0; i < 4; i++) {
357555c0
JB
2750 reg = FDI_TX_CTL(pipe);
2751 temp = I915_READ(reg);
2752 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2753 temp |= snb_b_fdi_train_param[i];
2754 I915_WRITE(reg, temp);
2755
2756 POSTING_READ(reg);
2757 udelay(500);
2758
2759 reg = FDI_RX_IIR(pipe);
2760 temp = I915_READ(reg);
2761 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2762
2763 if (temp & FDI_RX_BIT_LOCK ||
2764 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2765 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
01a415fd 2766 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
357555c0
JB
2767 break;
2768 }
2769 }
2770 if (i == 4)
2771 DRM_ERROR("FDI train 1 fail!\n");
2772
2773 /* Train 2 */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2777 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2778 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2779 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2780 I915_WRITE(reg, temp);
2781
2782 reg = FDI_RX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2785 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2786 I915_WRITE(reg, temp);
2787
2788 POSTING_READ(reg);
2789 udelay(150);
2790
0206e353 2791 for (i = 0; i < 4; i++) {
357555c0
JB
2792 reg = FDI_TX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2795 temp |= snb_b_fdi_train_param[i];
2796 I915_WRITE(reg, temp);
2797
2798 POSTING_READ(reg);
2799 udelay(500);
2800
2801 reg = FDI_RX_IIR(pipe);
2802 temp = I915_READ(reg);
2803 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2804
2805 if (temp & FDI_RX_SYMBOL_LOCK) {
2806 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
01a415fd 2807 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
357555c0
JB
2808 break;
2809 }
2810 }
2811 if (i == 4)
2812 DRM_ERROR("FDI train 2 fail!\n");
2813
2814 DRM_DEBUG_KMS("FDI train done.\n");
2815}
2816
88cefb6c 2817static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2818{
88cefb6c 2819 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2820 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2821 int pipe = intel_crtc->pipe;
5eddb70b 2822 u32 reg, temp;
79e53945 2823
c64e311e 2824
c98e9dcf 2825 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2826 reg = FDI_RX_CTL(pipe);
2827 temp = I915_READ(reg);
2828 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2829 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2830 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2831 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2832
2833 POSTING_READ(reg);
c98e9dcf
JB
2834 udelay(200);
2835
2836 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2837 temp = I915_READ(reg);
2838 I915_WRITE(reg, temp | FDI_PCDCLK);
2839
2840 POSTING_READ(reg);
c98e9dcf
JB
2841 udelay(200);
2842
bf507ef7
ED
2843 /* On Haswell, the PLL configuration for ports and pipes is handled
2844 * separately, as part of DDI setup */
2845 if (!IS_HASWELL(dev)) {
2846 /* Enable CPU FDI TX PLL, always on for Ironlake */
2847 reg = FDI_TX_CTL(pipe);
2848 temp = I915_READ(reg);
2849 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2850 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2851
bf507ef7
ED
2852 POSTING_READ(reg);
2853 udelay(100);
2854 }
6be4a607 2855 }
0e23b99d
JB
2856}
2857
88cefb6c
DV
2858static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2859{
2860 struct drm_device *dev = intel_crtc->base.dev;
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 int pipe = intel_crtc->pipe;
2863 u32 reg, temp;
2864
2865 /* Switch from PCDclk to Rawclk */
2866 reg = FDI_RX_CTL(pipe);
2867 temp = I915_READ(reg);
2868 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2869
2870 /* Disable CPU FDI TX PLL */
2871 reg = FDI_TX_CTL(pipe);
2872 temp = I915_READ(reg);
2873 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2874
2875 POSTING_READ(reg);
2876 udelay(100);
2877
2878 reg = FDI_RX_CTL(pipe);
2879 temp = I915_READ(reg);
2880 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2881
2882 /* Wait for the clocks to turn off. */
2883 POSTING_READ(reg);
2884 udelay(100);
2885}
2886
291427f5
JB
2887static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2888{
2889 struct drm_i915_private *dev_priv = dev->dev_private;
2890 u32 flags = I915_READ(SOUTH_CHICKEN1);
2891
2892 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2893 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2894 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2895 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2896 POSTING_READ(SOUTH_CHICKEN1);
2897}
0fc932b8
JB
2898static void ironlake_fdi_disable(struct drm_crtc *crtc)
2899{
2900 struct drm_device *dev = crtc->dev;
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903 int pipe = intel_crtc->pipe;
2904 u32 reg, temp;
2905
2906 /* disable CPU FDI tx and PCH FDI rx */
2907 reg = FDI_TX_CTL(pipe);
2908 temp = I915_READ(reg);
2909 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2910 POSTING_READ(reg);
2911
2912 reg = FDI_RX_CTL(pipe);
2913 temp = I915_READ(reg);
2914 temp &= ~(0x7 << 16);
2915 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2916 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2917
2918 POSTING_READ(reg);
2919 udelay(100);
2920
2921 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2922 if (HAS_PCH_IBX(dev)) {
2923 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
291427f5
JB
2924 } else if (HAS_PCH_CPT(dev)) {
2925 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2926 }
0fc932b8
JB
2927
2928 /* still set train pattern 1 */
2929 reg = FDI_TX_CTL(pipe);
2930 temp = I915_READ(reg);
2931 temp &= ~FDI_LINK_TRAIN_NONE;
2932 temp |= FDI_LINK_TRAIN_PATTERN_1;
2933 I915_WRITE(reg, temp);
2934
2935 reg = FDI_RX_CTL(pipe);
2936 temp = I915_READ(reg);
2937 if (HAS_PCH_CPT(dev)) {
2938 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2939 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2940 } else {
2941 temp &= ~FDI_LINK_TRAIN_NONE;
2942 temp |= FDI_LINK_TRAIN_PATTERN_1;
2943 }
2944 /* BPC in FDI rx is consistent with that in PIPECONF */
2945 temp &= ~(0x07 << 16);
2946 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2947 I915_WRITE(reg, temp);
2948
2949 POSTING_READ(reg);
2950 udelay(100);
2951}
2952
5bb61643
CW
2953static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2954{
2955 struct drm_device *dev = crtc->dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 unsigned long flags;
2958 bool pending;
2959
2960 if (atomic_read(&dev_priv->mm.wedged))
2961 return false;
2962
2963 spin_lock_irqsave(&dev->event_lock, flags);
2964 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2965 spin_unlock_irqrestore(&dev->event_lock, flags);
2966
2967 return pending;
2968}
2969
e6c3a2a6
CW
2970static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2971{
0f91128d 2972 struct drm_device *dev = crtc->dev;
5bb61643 2973 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2974
2975 if (crtc->fb == NULL)
2976 return;
2977
5bb61643
CW
2978 wait_event(dev_priv->pending_flip_queue,
2979 !intel_crtc_has_pending_flip(crtc));
2980
0f91128d
CW
2981 mutex_lock(&dev->struct_mutex);
2982 intel_finish_fb(crtc->fb);
2983 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2984}
2985
fc316cbe 2986static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2987{
2988 struct drm_device *dev = crtc->dev;
228d3e36 2989 struct intel_encoder *intel_encoder;
040484af
JB
2990
2991 /*
2992 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2993 * must be driven by its own crtc; no sharing is possible.
2994 */
228d3e36 2995 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2996 switch (intel_encoder->type) {
040484af 2997 case INTEL_OUTPUT_EDP:
228d3e36 2998 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2999 return false;
3000 continue;
3001 }
3002 }
3003
3004 return true;
3005}
3006
fc316cbe
PZ
3007static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3008{
3009 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3010}
3011
e615efe4
ED
3012/* Program iCLKIP clock to the desired frequency */
3013static void lpt_program_iclkip(struct drm_crtc *crtc)
3014{
3015 struct drm_device *dev = crtc->dev;
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3018 u32 temp;
3019
3020 /* It is necessary to ungate the pixclk gate prior to programming
3021 * the divisors, and gate it back when it is done.
3022 */
3023 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3024
3025 /* Disable SSCCTL */
3026 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3027 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3028 SBI_SSCCTL_DISABLE);
3029
3030 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3031 if (crtc->mode.clock == 20000) {
3032 auxdiv = 1;
3033 divsel = 0x41;
3034 phaseinc = 0x20;
3035 } else {
3036 /* The iCLK virtual clock root frequency is in MHz,
3037 * but the crtc->mode.clock in in KHz. To get the divisors,
3038 * it is necessary to divide one by another, so we
3039 * convert the virtual clock precision to KHz here for higher
3040 * precision.
3041 */
3042 u32 iclk_virtual_root_freq = 172800 * 1000;
3043 u32 iclk_pi_range = 64;
3044 u32 desired_divisor, msb_divisor_value, pi_value;
3045
3046 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3047 msb_divisor_value = desired_divisor / iclk_pi_range;
3048 pi_value = desired_divisor % iclk_pi_range;
3049
3050 auxdiv = 0;
3051 divsel = msb_divisor_value - 2;
3052 phaseinc = pi_value;
3053 }
3054
3055 /* This should not happen with any sane values */
3056 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3057 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3058 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3059 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3060
3061 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3062 crtc->mode.clock,
3063 auxdiv,
3064 divsel,
3065 phasedir,
3066 phaseinc);
3067
3068 /* Program SSCDIVINTPHASE6 */
3069 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3070 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3071 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3072 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3073 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3074 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3075 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3076
3077 intel_sbi_write(dev_priv,
3078 SBI_SSCDIVINTPHASE6,
3079 temp);
3080
3081 /* Program SSCAUXDIV */
3082 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3083 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3084 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3085 intel_sbi_write(dev_priv,
3086 SBI_SSCAUXDIV6,
3087 temp);
3088
3089
3090 /* Enable modulator and associated divider */
3091 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3092 temp &= ~SBI_SSCCTL_DISABLE;
3093 intel_sbi_write(dev_priv,
3094 SBI_SSCCTL6,
3095 temp);
3096
3097 /* Wait for initialization time */
3098 udelay(24);
3099
3100 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3101}
3102
f67a559d
JB
3103/*
3104 * Enable PCH resources required for PCH ports:
3105 * - PCH PLLs
3106 * - FDI training & RX/TX
3107 * - update transcoder timings
3108 * - DP transcoding bits
3109 * - transcoder
3110 */
3111static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3112{
3113 struct drm_device *dev = crtc->dev;
3114 struct drm_i915_private *dev_priv = dev->dev_private;
3115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3116 int pipe = intel_crtc->pipe;
ee7b9f93 3117 u32 reg, temp;
2c07245f 3118
e7e164db
CW
3119 assert_transcoder_disabled(dev_priv, pipe);
3120
cd986abb
DV
3121 /* Write the TU size bits before fdi link training, so that error
3122 * detection works. */
3123 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3124 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3125
c98e9dcf 3126 /* For PCH output, training FDI link */
674cf967 3127 dev_priv->display.fdi_link_train(crtc);
2c07245f 3128
572deb37
DV
3129 /* XXX: pch pll's can be enabled any time before we enable the PCH
3130 * transcoder, and we actually should do this to not upset any PCH
3131 * transcoder that already use the clock when we share it.
3132 *
3133 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3134 * unconditionally resets the pll - we need that to have the right LVDS
3135 * enable sequence. */
b6b4e185 3136 ironlake_enable_pch_pll(intel_crtc);
6f13b7b5 3137
303b81e0 3138 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3139 u32 sel;
4b645f14 3140
c98e9dcf 3141 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3142 switch (pipe) {
3143 default:
3144 case 0:
3145 temp |= TRANSA_DPLL_ENABLE;
3146 sel = TRANSA_DPLLB_SEL;
3147 break;
3148 case 1:
3149 temp |= TRANSB_DPLL_ENABLE;
3150 sel = TRANSB_DPLLB_SEL;
3151 break;
3152 case 2:
3153 temp |= TRANSC_DPLL_ENABLE;
3154 sel = TRANSC_DPLLB_SEL;
3155 break;
d64311ab 3156 }
ee7b9f93
JB
3157 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3158 temp |= sel;
3159 else
3160 temp &= ~sel;
c98e9dcf 3161 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3162 }
5eddb70b 3163
d9b6cb56
JB
3164 /* set transcoder timing, panel must allow it */
3165 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3166 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3167 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3168 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3169
5eddb70b
CW
3170 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3171 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3172 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3173 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3174
303b81e0 3175 intel_fdi_normal_train(crtc);
5e84e1a4 3176
c98e9dcf
JB
3177 /* For PCH DP, enable TRANS_DP_CTL */
3178 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3179 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3180 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3181 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3182 reg = TRANS_DP_CTL(pipe);
3183 temp = I915_READ(reg);
3184 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3185 TRANS_DP_SYNC_MASK |
3186 TRANS_DP_BPC_MASK);
5eddb70b
CW
3187 temp |= (TRANS_DP_OUTPUT_ENABLE |
3188 TRANS_DP_ENH_FRAMING);
9325c9f0 3189 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3190
3191 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3192 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3193 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3194 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3195
3196 switch (intel_trans_dp_port_sel(crtc)) {
3197 case PCH_DP_B:
5eddb70b 3198 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3199 break;
3200 case PCH_DP_C:
5eddb70b 3201 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3202 break;
3203 case PCH_DP_D:
5eddb70b 3204 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3205 break;
3206 default:
e95d41e1 3207 BUG();
32f9d658 3208 }
2c07245f 3209
5eddb70b 3210 I915_WRITE(reg, temp);
6be4a607 3211 }
b52eb4dc 3212
b8a4f404 3213 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3214}
3215
1507e5bd
PZ
3216static void lpt_pch_enable(struct drm_crtc *crtc)
3217{
3218 struct drm_device *dev = crtc->dev;
3219 struct drm_i915_private *dev_priv = dev->dev_private;
3220 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
daed2dbb 3221 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
1507e5bd 3222
daed2dbb 3223 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3224
8c52b5e8 3225 lpt_program_iclkip(crtc);
1507e5bd 3226
0540e488 3227 /* Set transcoder timing. */
daed2dbb
PZ
3228 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3229 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3230 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
1507e5bd 3231
daed2dbb
PZ
3232 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3233 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3234 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3235 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
1507e5bd 3236
937bb610 3237 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3238}
3239
ee7b9f93
JB
3240static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3241{
3242 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3243
3244 if (pll == NULL)
3245 return;
3246
3247 if (pll->refcount == 0) {
3248 WARN(1, "bad PCH PLL refcount\n");
3249 return;
3250 }
3251
3252 --pll->refcount;
3253 intel_crtc->pch_pll = NULL;
3254}
3255
3256static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3257{
3258 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3259 struct intel_pch_pll *pll;
3260 int i;
3261
3262 pll = intel_crtc->pch_pll;
3263 if (pll) {
3264 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3265 intel_crtc->base.base.id, pll->pll_reg);
3266 goto prepare;
3267 }
3268
98b6bd99
DV
3269 if (HAS_PCH_IBX(dev_priv->dev)) {
3270 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3271 i = intel_crtc->pipe;
3272 pll = &dev_priv->pch_plls[i];
3273
3274 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3275 intel_crtc->base.base.id, pll->pll_reg);
3276
3277 goto found;
3278 }
3279
ee7b9f93
JB
3280 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3281 pll = &dev_priv->pch_plls[i];
3282
3283 /* Only want to check enabled timings first */
3284 if (pll->refcount == 0)
3285 continue;
3286
3287 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3288 fp == I915_READ(pll->fp0_reg)) {
3289 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3290 intel_crtc->base.base.id,
3291 pll->pll_reg, pll->refcount, pll->active);
3292
3293 goto found;
3294 }
3295 }
3296
3297 /* Ok no matching timings, maybe there's a free one? */
3298 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3299 pll = &dev_priv->pch_plls[i];
3300 if (pll->refcount == 0) {
3301 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3302 intel_crtc->base.base.id, pll->pll_reg);
3303 goto found;
3304 }
3305 }
3306
3307 return NULL;
3308
3309found:
3310 intel_crtc->pch_pll = pll;
3311 pll->refcount++;
3312 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3313prepare: /* separate function? */
3314 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3315
e04c7350
CW
3316 /* Wait for the clocks to stabilize before rewriting the regs */
3317 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3318 POSTING_READ(pll->pll_reg);
3319 udelay(150);
e04c7350
CW
3320
3321 I915_WRITE(pll->fp0_reg, fp);
3322 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3323 pll->on = false;
3324 return pll;
3325}
3326
d4270e57
JB
3327void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3328{
3329 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3330 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3331 u32 temp;
3332
3333 temp = I915_READ(dslreg);
3334 udelay(500);
3335 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57
JB
3336 if (wait_for(I915_READ(dslreg) != temp, 5))
3337 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3338 }
3339}
3340
f67a559d
JB
3341static void ironlake_crtc_enable(struct drm_crtc *crtc)
3342{
3343 struct drm_device *dev = crtc->dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3346 struct intel_encoder *encoder;
f67a559d
JB
3347 int pipe = intel_crtc->pipe;
3348 int plane = intel_crtc->plane;
3349 u32 temp;
3350 bool is_pch_port;
3351
08a48469
DV
3352 WARN_ON(!crtc->enabled);
3353
f67a559d
JB
3354 if (intel_crtc->active)
3355 return;
3356
3357 intel_crtc->active = true;
3358 intel_update_watermarks(dev);
3359
3360 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3361 temp = I915_READ(PCH_LVDS);
3362 if ((temp & LVDS_PORT_EN) == 0)
3363 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3364 }
3365
fc316cbe 3366 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3367
46b6f814 3368 if (is_pch_port) {
fff367c7
DV
3369 /* Note: FDI PLL enabling _must_ be done before we enable the
3370 * cpu pipes, hence this is separate from all the other fdi/pch
3371 * enabling. */
88cefb6c 3372 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3373 } else {
3374 assert_fdi_tx_disabled(dev_priv, pipe);
3375 assert_fdi_rx_disabled(dev_priv, pipe);
3376 }
f67a559d 3377
bf49ec8c
DV
3378 for_each_encoder_on_crtc(dev, crtc, encoder)
3379 if (encoder->pre_enable)
3380 encoder->pre_enable(encoder);
f67a559d
JB
3381
3382 /* Enable panel fitting for LVDS */
3383 if (dev_priv->pch_pf_size &&
547dc041
JN
3384 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3385 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
f67a559d
JB
3386 /* Force use of hard-coded filter coefficients
3387 * as some pre-programmed values are broken,
3388 * e.g. x201.
3389 */
9db4a9c7
JB
3390 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3391 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3392 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3393 }
3394
9c54c0dd
JB
3395 /*
3396 * On ILK+ LUT must be loaded before the pipe is running but with
3397 * clocks enabled
3398 */
3399 intel_crtc_load_lut(crtc);
3400
f67a559d
JB
3401 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3402 intel_enable_plane(dev_priv, plane, pipe);
3403
3404 if (is_pch_port)
3405 ironlake_pch_enable(crtc);
c98e9dcf 3406
d1ebd816 3407 mutex_lock(&dev->struct_mutex);
bed4a673 3408 intel_update_fbc(dev);
d1ebd816
BW
3409 mutex_unlock(&dev->struct_mutex);
3410
6b383a7f 3411 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3412
fa5c73b1
DV
3413 for_each_encoder_on_crtc(dev, crtc, encoder)
3414 encoder->enable(encoder);
61b77ddd
DV
3415
3416 if (HAS_PCH_CPT(dev))
3417 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3418
3419 /*
3420 * There seems to be a race in PCH platform hw (at least on some
3421 * outputs) where an enabled pipe still completes any pageflip right
3422 * away (as if the pipe is off) instead of waiting for vblank. As soon
3423 * as the first vblank happend, everything works as expected. Hence just
3424 * wait for one vblank before returning to avoid strange things
3425 * happening.
3426 */
3427 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3428}
3429
4f771f10
PZ
3430static void haswell_crtc_enable(struct drm_crtc *crtc)
3431{
3432 struct drm_device *dev = crtc->dev;
3433 struct drm_i915_private *dev_priv = dev->dev_private;
3434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3435 struct intel_encoder *encoder;
3436 int pipe = intel_crtc->pipe;
3437 int plane = intel_crtc->plane;
4f771f10
PZ
3438 bool is_pch_port;
3439
3440 WARN_ON(!crtc->enabled);
3441
3442 if (intel_crtc->active)
3443 return;
3444
3445 intel_crtc->active = true;
3446 intel_update_watermarks(dev);
3447
fc316cbe 3448 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3449
83616634 3450 if (is_pch_port)
04945641 3451 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
3452
3453 for_each_encoder_on_crtc(dev, crtc, encoder)
3454 if (encoder->pre_enable)
3455 encoder->pre_enable(encoder);
3456
1f544388 3457 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3458
1f544388 3459 /* Enable panel fitting for eDP */
547dc041
JN
3460 if (dev_priv->pch_pf_size &&
3461 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4f771f10
PZ
3462 /* Force use of hard-coded filter coefficients
3463 * as some pre-programmed values are broken,
3464 * e.g. x201.
3465 */
3466 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3467 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3468 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3469 }
3470
3471 /*
3472 * On ILK+ LUT must be loaded before the pipe is running but with
3473 * clocks enabled
3474 */
3475 intel_crtc_load_lut(crtc);
3476
1f544388
PZ
3477 intel_ddi_set_pipe_settings(crtc);
3478 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3479
3480 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3481 intel_enable_plane(dev_priv, plane, pipe);
3482
3483 if (is_pch_port)
1507e5bd 3484 lpt_pch_enable(crtc);
4f771f10
PZ
3485
3486 mutex_lock(&dev->struct_mutex);
3487 intel_update_fbc(dev);
3488 mutex_unlock(&dev->struct_mutex);
3489
3490 intel_crtc_update_cursor(crtc, true);
3491
3492 for_each_encoder_on_crtc(dev, crtc, encoder)
3493 encoder->enable(encoder);
3494
4f771f10
PZ
3495 /*
3496 * There seems to be a race in PCH platform hw (at least on some
3497 * outputs) where an enabled pipe still completes any pageflip right
3498 * away (as if the pipe is off) instead of waiting for vblank. As soon
3499 * as the first vblank happend, everything works as expected. Hence just
3500 * wait for one vblank before returning to avoid strange things
3501 * happening.
3502 */
3503 intel_wait_for_vblank(dev, intel_crtc->pipe);
3504}
3505
6be4a607
JB
3506static void ironlake_crtc_disable(struct drm_crtc *crtc)
3507{
3508 struct drm_device *dev = crtc->dev;
3509 struct drm_i915_private *dev_priv = dev->dev_private;
3510 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3511 struct intel_encoder *encoder;
6be4a607
JB
3512 int pipe = intel_crtc->pipe;
3513 int plane = intel_crtc->plane;
5eddb70b 3514 u32 reg, temp;
b52eb4dc 3515
ef9c3aee 3516
f7abfe8b
CW
3517 if (!intel_crtc->active)
3518 return;
3519
ea9d758d
DV
3520 for_each_encoder_on_crtc(dev, crtc, encoder)
3521 encoder->disable(encoder);
3522
e6c3a2a6 3523 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3524 drm_vblank_off(dev, pipe);
6b383a7f 3525 intel_crtc_update_cursor(crtc, false);
5eddb70b 3526
b24e7179 3527 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3528
973d04f9
CW
3529 if (dev_priv->cfb_plane == plane)
3530 intel_disable_fbc(dev);
2c07245f 3531
b24e7179 3532 intel_disable_pipe(dev_priv, pipe);
32f9d658 3533
6be4a607 3534 /* Disable PF */
9db4a9c7
JB
3535 I915_WRITE(PF_CTL(pipe), 0);
3536 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3537
bf49ec8c
DV
3538 for_each_encoder_on_crtc(dev, crtc, encoder)
3539 if (encoder->post_disable)
3540 encoder->post_disable(encoder);
2c07245f 3541
0fc932b8 3542 ironlake_fdi_disable(crtc);
249c0e64 3543
b8a4f404 3544 ironlake_disable_pch_transcoder(dev_priv, pipe);
913d8d11 3545
6be4a607
JB
3546 if (HAS_PCH_CPT(dev)) {
3547 /* disable TRANS_DP_CTL */
5eddb70b
CW
3548 reg = TRANS_DP_CTL(pipe);
3549 temp = I915_READ(reg);
3550 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3551 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3552 I915_WRITE(reg, temp);
6be4a607
JB
3553
3554 /* disable DPLL_SEL */
3555 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3556 switch (pipe) {
3557 case 0:
d64311ab 3558 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3559 break;
3560 case 1:
6be4a607 3561 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3562 break;
3563 case 2:
4b645f14 3564 /* C shares PLL A or B */
d64311ab 3565 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3566 break;
3567 default:
3568 BUG(); /* wtf */
3569 }
6be4a607 3570 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3571 }
e3421a18 3572
6be4a607 3573 /* disable PCH DPLL */
ee7b9f93 3574 intel_disable_pch_pll(intel_crtc);
8db9d77b 3575
88cefb6c 3576 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3577
f7abfe8b 3578 intel_crtc->active = false;
6b383a7f 3579 intel_update_watermarks(dev);
d1ebd816
BW
3580
3581 mutex_lock(&dev->struct_mutex);
6b383a7f 3582 intel_update_fbc(dev);
d1ebd816 3583 mutex_unlock(&dev->struct_mutex);
6be4a607 3584}
1b3c7a47 3585
4f771f10 3586static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 3587{
4f771f10
PZ
3588 struct drm_device *dev = crtc->dev;
3589 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 3590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
3591 struct intel_encoder *encoder;
3592 int pipe = intel_crtc->pipe;
3593 int plane = intel_crtc->plane;
ad80a810 3594 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3595 bool is_pch_port;
ee7b9f93 3596
4f771f10
PZ
3597 if (!intel_crtc->active)
3598 return;
3599
83616634
PZ
3600 is_pch_port = haswell_crtc_driving_pch(crtc);
3601
4f771f10
PZ
3602 for_each_encoder_on_crtc(dev, crtc, encoder)
3603 encoder->disable(encoder);
3604
3605 intel_crtc_wait_for_pending_flips(crtc);
3606 drm_vblank_off(dev, pipe);
3607 intel_crtc_update_cursor(crtc, false);
3608
3609 intel_disable_plane(dev_priv, plane, pipe);
3610
3611 if (dev_priv->cfb_plane == plane)
3612 intel_disable_fbc(dev);
3613
3614 intel_disable_pipe(dev_priv, pipe);
3615
ad80a810 3616 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3617
3618 /* Disable PF */
3619 I915_WRITE(PF_CTL(pipe), 0);
3620 I915_WRITE(PF_WIN_SZ(pipe), 0);
3621
1f544388 3622 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3623
3624 for_each_encoder_on_crtc(dev, crtc, encoder)
3625 if (encoder->post_disable)
3626 encoder->post_disable(encoder);
3627
83616634 3628 if (is_pch_port) {
ab4d966c 3629 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 3630 intel_ddi_fdi_disable(crtc);
83616634 3631 }
4f771f10
PZ
3632
3633 intel_crtc->active = false;
3634 intel_update_watermarks(dev);
3635
3636 mutex_lock(&dev->struct_mutex);
3637 intel_update_fbc(dev);
3638 mutex_unlock(&dev->struct_mutex);
3639}
3640
ee7b9f93
JB
3641static void ironlake_crtc_off(struct drm_crtc *crtc)
3642{
3643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3644 intel_put_pch_pll(intel_crtc);
3645}
3646
6441ab5f
PZ
3647static void haswell_crtc_off(struct drm_crtc *crtc)
3648{
a5c961d1
PZ
3649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3650
3651 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3652 * start using it. */
3653 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3654
6441ab5f
PZ
3655 intel_ddi_put_crtc_pll(crtc);
3656}
3657
02e792fb
DV
3658static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3659{
02e792fb 3660 if (!enable && intel_crtc->overlay) {
23f09ce3 3661 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3662 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3663
23f09ce3 3664 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3665 dev_priv->mm.interruptible = false;
3666 (void) intel_overlay_switch_off(intel_crtc->overlay);
3667 dev_priv->mm.interruptible = true;
23f09ce3 3668 mutex_unlock(&dev->struct_mutex);
02e792fb 3669 }
02e792fb 3670
5dcdbcb0
CW
3671 /* Let userspace switch the overlay on again. In most cases userspace
3672 * has to recompute where to put it anyway.
3673 */
02e792fb
DV
3674}
3675
0b8765c6 3676static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3677{
3678 struct drm_device *dev = crtc->dev;
79e53945
JB
3679 struct drm_i915_private *dev_priv = dev->dev_private;
3680 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3681 struct intel_encoder *encoder;
79e53945 3682 int pipe = intel_crtc->pipe;
80824003 3683 int plane = intel_crtc->plane;
79e53945 3684
08a48469
DV
3685 WARN_ON(!crtc->enabled);
3686
f7abfe8b
CW
3687 if (intel_crtc->active)
3688 return;
3689
3690 intel_crtc->active = true;
6b383a7f
CW
3691 intel_update_watermarks(dev);
3692
63d7bbe9 3693 intel_enable_pll(dev_priv, pipe);
040484af 3694 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3695 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3696
0b8765c6 3697 intel_crtc_load_lut(crtc);
bed4a673 3698 intel_update_fbc(dev);
79e53945 3699
0b8765c6
JB
3700 /* Give the overlay scaler a chance to enable if it's on this pipe */
3701 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3702 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3703
fa5c73b1
DV
3704 for_each_encoder_on_crtc(dev, crtc, encoder)
3705 encoder->enable(encoder);
0b8765c6 3706}
79e53945 3707
0b8765c6
JB
3708static void i9xx_crtc_disable(struct drm_crtc *crtc)
3709{
3710 struct drm_device *dev = crtc->dev;
3711 struct drm_i915_private *dev_priv = dev->dev_private;
3712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3713 struct intel_encoder *encoder;
0b8765c6
JB
3714 int pipe = intel_crtc->pipe;
3715 int plane = intel_crtc->plane;
b690e96c 3716
ef9c3aee 3717
f7abfe8b
CW
3718 if (!intel_crtc->active)
3719 return;
3720
ea9d758d
DV
3721 for_each_encoder_on_crtc(dev, crtc, encoder)
3722 encoder->disable(encoder);
3723
0b8765c6 3724 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3725 intel_crtc_wait_for_pending_flips(crtc);
3726 drm_vblank_off(dev, pipe);
0b8765c6 3727 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3728 intel_crtc_update_cursor(crtc, false);
0b8765c6 3729
973d04f9
CW
3730 if (dev_priv->cfb_plane == plane)
3731 intel_disable_fbc(dev);
79e53945 3732
b24e7179 3733 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3734 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3735 intel_disable_pll(dev_priv, pipe);
0b8765c6 3736
f7abfe8b 3737 intel_crtc->active = false;
6b383a7f
CW
3738 intel_update_fbc(dev);
3739 intel_update_watermarks(dev);
0b8765c6
JB
3740}
3741
ee7b9f93
JB
3742static void i9xx_crtc_off(struct drm_crtc *crtc)
3743{
3744}
3745
976f8a20
DV
3746static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3747 bool enabled)
2c07245f
ZW
3748{
3749 struct drm_device *dev = crtc->dev;
3750 struct drm_i915_master_private *master_priv;
3751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3752 int pipe = intel_crtc->pipe;
79e53945
JB
3753
3754 if (!dev->primary->master)
3755 return;
3756
3757 master_priv = dev->primary->master->driver_priv;
3758 if (!master_priv->sarea_priv)
3759 return;
3760
79e53945
JB
3761 switch (pipe) {
3762 case 0:
3763 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3764 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3765 break;
3766 case 1:
3767 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3768 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3769 break;
3770 default:
9db4a9c7 3771 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3772 break;
3773 }
79e53945
JB
3774}
3775
976f8a20
DV
3776/**
3777 * Sets the power management mode of the pipe and plane.
3778 */
3779void intel_crtc_update_dpms(struct drm_crtc *crtc)
3780{
3781 struct drm_device *dev = crtc->dev;
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783 struct intel_encoder *intel_encoder;
3784 bool enable = false;
3785
3786 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3787 enable |= intel_encoder->connectors_active;
3788
3789 if (enable)
3790 dev_priv->display.crtc_enable(crtc);
3791 else
3792 dev_priv->display.crtc_disable(crtc);
3793
3794 intel_crtc_update_sarea(crtc, enable);
3795}
3796
3797static void intel_crtc_noop(struct drm_crtc *crtc)
3798{
3799}
3800
cdd59983
CW
3801static void intel_crtc_disable(struct drm_crtc *crtc)
3802{
cdd59983 3803 struct drm_device *dev = crtc->dev;
976f8a20 3804 struct drm_connector *connector;
ee7b9f93 3805 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3806
976f8a20
DV
3807 /* crtc should still be enabled when we disable it. */
3808 WARN_ON(!crtc->enabled);
3809
3810 dev_priv->display.crtc_disable(crtc);
3811 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3812 dev_priv->display.off(crtc);
3813
931872fc
CW
3814 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3815 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3816
3817 if (crtc->fb) {
3818 mutex_lock(&dev->struct_mutex);
1690e1eb 3819 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3820 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3821 crtc->fb = NULL;
3822 }
3823
3824 /* Update computed state. */
3825 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3826 if (!connector->encoder || !connector->encoder->crtc)
3827 continue;
3828
3829 if (connector->encoder->crtc != crtc)
3830 continue;
3831
3832 connector->dpms = DRM_MODE_DPMS_OFF;
3833 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3834 }
3835}
3836
a261b246 3837void intel_modeset_disable(struct drm_device *dev)
79e53945 3838{
a261b246
DV
3839 struct drm_crtc *crtc;
3840
3841 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3842 if (crtc->enabled)
3843 intel_crtc_disable(crtc);
3844 }
79e53945
JB
3845}
3846
1f703855 3847void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3848{
7e7d76c3
JB
3849}
3850
ea5b213a 3851void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3852{
4ef69c7a 3853 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3854
ea5b213a
CW
3855 drm_encoder_cleanup(encoder);
3856 kfree(intel_encoder);
7e7d76c3
JB
3857}
3858
5ab432ef
DV
3859/* Simple dpms helper for encodres with just one connector, no cloning and only
3860 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3861 * state of the entire output pipe. */
3862void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3863{
5ab432ef
DV
3864 if (mode == DRM_MODE_DPMS_ON) {
3865 encoder->connectors_active = true;
3866
b2cabb0e 3867 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3868 } else {
3869 encoder->connectors_active = false;
3870
b2cabb0e 3871 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3872 }
79e53945
JB
3873}
3874
0a91ca29
DV
3875/* Cross check the actual hw state with our own modeset state tracking (and it's
3876 * internal consistency). */
b980514c 3877static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3878{
0a91ca29
DV
3879 if (connector->get_hw_state(connector)) {
3880 struct intel_encoder *encoder = connector->encoder;
3881 struct drm_crtc *crtc;
3882 bool encoder_enabled;
3883 enum pipe pipe;
3884
3885 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3886 connector->base.base.id,
3887 drm_get_connector_name(&connector->base));
3888
3889 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3890 "wrong connector dpms state\n");
3891 WARN(connector->base.encoder != &encoder->base,
3892 "active connector not linked to encoder\n");
3893 WARN(!encoder->connectors_active,
3894 "encoder->connectors_active not set\n");
3895
3896 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3897 WARN(!encoder_enabled, "encoder not enabled\n");
3898 if (WARN_ON(!encoder->base.crtc))
3899 return;
3900
3901 crtc = encoder->base.crtc;
3902
3903 WARN(!crtc->enabled, "crtc not enabled\n");
3904 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3905 WARN(pipe != to_intel_crtc(crtc)->pipe,
3906 "encoder active on the wrong pipe\n");
3907 }
79e53945
JB
3908}
3909
5ab432ef
DV
3910/* Even simpler default implementation, if there's really no special case to
3911 * consider. */
3912void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3913{
5ab432ef 3914 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3915
5ab432ef
DV
3916 /* All the simple cases only support two dpms states. */
3917 if (mode != DRM_MODE_DPMS_ON)
3918 mode = DRM_MODE_DPMS_OFF;
d4270e57 3919
5ab432ef
DV
3920 if (mode == connector->dpms)
3921 return;
3922
3923 connector->dpms = mode;
3924
3925 /* Only need to change hw state when actually enabled */
3926 if (encoder->base.crtc)
3927 intel_encoder_dpms(encoder, mode);
3928 else
8af6cf88 3929 WARN_ON(encoder->connectors_active != false);
0a91ca29 3930
b980514c 3931 intel_modeset_check_state(connector->dev);
79e53945
JB
3932}
3933
f0947c37
DV
3934/* Simple connector->get_hw_state implementation for encoders that support only
3935 * one connector and no cloning and hence the encoder state determines the state
3936 * of the connector. */
3937bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3938{
24929352 3939 enum pipe pipe = 0;
f0947c37 3940 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3941
f0947c37 3942 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3943}
3944
79e53945 3945static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3946 const struct drm_display_mode *mode,
79e53945
JB
3947 struct drm_display_mode *adjusted_mode)
3948{
2c07245f 3949 struct drm_device *dev = crtc->dev;
89749350 3950
bad720ff 3951 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3952 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3953 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3954 return false;
2c07245f 3955 }
89749350 3956
f9bef081
DV
3957 /* All interlaced capable intel hw wants timings in frames. Note though
3958 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3959 * timings, so we need to be careful not to clobber these.*/
3960 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3961 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3962
44f46b42
CW
3963 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3964 * with a hsync front porch of 0.
3965 */
3966 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3967 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3968 return false;
3969
79e53945
JB
3970 return true;
3971}
3972
25eb05fc
JB
3973static int valleyview_get_display_clock_speed(struct drm_device *dev)
3974{
3975 return 400000; /* FIXME */
3976}
3977
e70236a8
JB
3978static int i945_get_display_clock_speed(struct drm_device *dev)
3979{
3980 return 400000;
3981}
79e53945 3982
e70236a8 3983static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3984{
e70236a8
JB
3985 return 333000;
3986}
79e53945 3987
e70236a8
JB
3988static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3989{
3990 return 200000;
3991}
79e53945 3992
e70236a8
JB
3993static int i915gm_get_display_clock_speed(struct drm_device *dev)
3994{
3995 u16 gcfgc = 0;
79e53945 3996
e70236a8
JB
3997 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3998
3999 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4000 return 133000;
4001 else {
4002 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4003 case GC_DISPLAY_CLOCK_333_MHZ:
4004 return 333000;
4005 default:
4006 case GC_DISPLAY_CLOCK_190_200_MHZ:
4007 return 190000;
79e53945 4008 }
e70236a8
JB
4009 }
4010}
4011
4012static int i865_get_display_clock_speed(struct drm_device *dev)
4013{
4014 return 266000;
4015}
4016
4017static int i855_get_display_clock_speed(struct drm_device *dev)
4018{
4019 u16 hpllcc = 0;
4020 /* Assume that the hardware is in the high speed state. This
4021 * should be the default.
4022 */
4023 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4024 case GC_CLOCK_133_200:
4025 case GC_CLOCK_100_200:
4026 return 200000;
4027 case GC_CLOCK_166_250:
4028 return 250000;
4029 case GC_CLOCK_100_133:
79e53945 4030 return 133000;
e70236a8 4031 }
79e53945 4032
e70236a8
JB
4033 /* Shouldn't happen */
4034 return 0;
4035}
79e53945 4036
e70236a8
JB
4037static int i830_get_display_clock_speed(struct drm_device *dev)
4038{
4039 return 133000;
79e53945
JB
4040}
4041
2c07245f
ZW
4042struct fdi_m_n {
4043 u32 tu;
4044 u32 gmch_m;
4045 u32 gmch_n;
4046 u32 link_m;
4047 u32 link_n;
4048};
4049
4050static void
4051fdi_reduce_ratio(u32 *num, u32 *den)
4052{
4053 while (*num > 0xffffff || *den > 0xffffff) {
4054 *num >>= 1;
4055 *den >>= 1;
4056 }
4057}
4058
2c07245f 4059static void
f2b115e6
AJ
4060ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4061 int link_clock, struct fdi_m_n *m_n)
2c07245f 4062{
2c07245f
ZW
4063 m_n->tu = 64; /* default size */
4064
22ed1113
CW
4065 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4066 m_n->gmch_m = bits_per_pixel * pixel_clock;
4067 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
4068 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4069
22ed1113
CW
4070 m_n->link_m = pixel_clock;
4071 m_n->link_n = link_clock;
2c07245f
ZW
4072 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4073}
4074
a7615030
CW
4075static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4076{
72bbe58c
KP
4077 if (i915_panel_use_ssc >= 0)
4078 return i915_panel_use_ssc != 0;
4079 return dev_priv->lvds_use_ssc
435793df 4080 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4081}
4082
5a354204
JB
4083/**
4084 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4085 * @crtc: CRTC structure
3b5c78a3 4086 * @mode: requested mode
5a354204
JB
4087 *
4088 * A pipe may be connected to one or more outputs. Based on the depth of the
4089 * attached framebuffer, choose a good color depth to use on the pipe.
4090 *
4091 * If possible, match the pipe depth to the fb depth. In some cases, this
4092 * isn't ideal, because the connected output supports a lesser or restricted
4093 * set of depths. Resolve that here:
4094 * LVDS typically supports only 6bpc, so clamp down in that case
4095 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4096 * Displays may support a restricted set as well, check EDID and clamp as
4097 * appropriate.
3b5c78a3 4098 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4099 *
4100 * RETURNS:
4101 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4102 * true if they don't match).
4103 */
4104static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 4105 struct drm_framebuffer *fb,
3b5c78a3
AJ
4106 unsigned int *pipe_bpp,
4107 struct drm_display_mode *mode)
5a354204
JB
4108{
4109 struct drm_device *dev = crtc->dev;
4110 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 4111 struct drm_connector *connector;
6c2b7c12 4112 struct intel_encoder *intel_encoder;
5a354204
JB
4113 unsigned int display_bpc = UINT_MAX, bpc;
4114
4115 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 4116 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
4117
4118 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4119 unsigned int lvds_bpc;
4120
4121 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4122 LVDS_A3_POWER_UP)
4123 lvds_bpc = 8;
4124 else
4125 lvds_bpc = 6;
4126
4127 if (lvds_bpc < display_bpc) {
82820490 4128 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4129 display_bpc = lvds_bpc;
4130 }
4131 continue;
4132 }
4133
5a354204
JB
4134 /* Not one of the known troublemakers, check the EDID */
4135 list_for_each_entry(connector, &dev->mode_config.connector_list,
4136 head) {
6c2b7c12 4137 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4138 continue;
4139
62ac41a6
JB
4140 /* Don't use an invalid EDID bpc value */
4141 if (connector->display_info.bpc &&
4142 connector->display_info.bpc < display_bpc) {
82820490 4143 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4144 display_bpc = connector->display_info.bpc;
4145 }
4146 }
4147
4148 /*
4149 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4150 * through, clamp it down. (Note: >12bpc will be caught below.)
4151 */
4152 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4153 if (display_bpc > 8 && display_bpc < 12) {
82820490 4154 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4155 display_bpc = 12;
4156 } else {
82820490 4157 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4158 display_bpc = 8;
4159 }
4160 }
4161 }
4162
3b5c78a3
AJ
4163 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4164 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4165 display_bpc = 6;
4166 }
4167
5a354204
JB
4168 /*
4169 * We could just drive the pipe at the highest bpc all the time and
4170 * enable dithering as needed, but that costs bandwidth. So choose
4171 * the minimum value that expresses the full color range of the fb but
4172 * also stays within the max display bpc discovered above.
4173 */
4174
94352cf9 4175 switch (fb->depth) {
5a354204
JB
4176 case 8:
4177 bpc = 8; /* since we go through a colormap */
4178 break;
4179 case 15:
4180 case 16:
4181 bpc = 6; /* min is 18bpp */
4182 break;
4183 case 24:
578393cd 4184 bpc = 8;
5a354204
JB
4185 break;
4186 case 30:
578393cd 4187 bpc = 10;
5a354204
JB
4188 break;
4189 case 48:
578393cd 4190 bpc = 12;
5a354204
JB
4191 break;
4192 default:
4193 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4194 bpc = min((unsigned int)8, display_bpc);
4195 break;
4196 }
4197
578393cd
KP
4198 display_bpc = min(display_bpc, bpc);
4199
82820490
AJ
4200 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4201 bpc, display_bpc);
5a354204 4202
578393cd 4203 *pipe_bpp = display_bpc * 3;
5a354204
JB
4204
4205 return display_bpc != bpc;
4206}
4207
a0c4da24
JB
4208static int vlv_get_refclk(struct drm_crtc *crtc)
4209{
4210 struct drm_device *dev = crtc->dev;
4211 struct drm_i915_private *dev_priv = dev->dev_private;
4212 int refclk = 27000; /* for DP & HDMI */
4213
4214 return 100000; /* only one validated so far */
4215
4216 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4217 refclk = 96000;
4218 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4219 if (intel_panel_use_ssc(dev_priv))
4220 refclk = 100000;
4221 else
4222 refclk = 96000;
4223 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4224 refclk = 100000;
4225 }
4226
4227 return refclk;
4228}
4229
c65d77d8
JB
4230static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4231{
4232 struct drm_device *dev = crtc->dev;
4233 struct drm_i915_private *dev_priv = dev->dev_private;
4234 int refclk;
4235
a0c4da24
JB
4236 if (IS_VALLEYVIEW(dev)) {
4237 refclk = vlv_get_refclk(crtc);
4238 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4239 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4240 refclk = dev_priv->lvds_ssc_freq * 1000;
4241 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4242 refclk / 1000);
4243 } else if (!IS_GEN2(dev)) {
4244 refclk = 96000;
4245 } else {
4246 refclk = 48000;
4247 }
4248
4249 return refclk;
4250}
4251
4252static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4253 intel_clock_t *clock)
4254{
4255 /* SDVO TV has fixed PLL values depend on its clock range,
4256 this mirrors vbios setting. */
4257 if (adjusted_mode->clock >= 100000
4258 && adjusted_mode->clock < 140500) {
4259 clock->p1 = 2;
4260 clock->p2 = 10;
4261 clock->n = 3;
4262 clock->m1 = 16;
4263 clock->m2 = 8;
4264 } else if (adjusted_mode->clock >= 140500
4265 && adjusted_mode->clock <= 200000) {
4266 clock->p1 = 1;
4267 clock->p2 = 10;
4268 clock->n = 6;
4269 clock->m1 = 12;
4270 clock->m2 = 8;
4271 }
4272}
4273
a7516a05
JB
4274static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4275 intel_clock_t *clock,
4276 intel_clock_t *reduced_clock)
4277{
4278 struct drm_device *dev = crtc->dev;
4279 struct drm_i915_private *dev_priv = dev->dev_private;
4280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4281 int pipe = intel_crtc->pipe;
4282 u32 fp, fp2 = 0;
4283
4284 if (IS_PINEVIEW(dev)) {
4285 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4286 if (reduced_clock)
4287 fp2 = (1 << reduced_clock->n) << 16 |
4288 reduced_clock->m1 << 8 | reduced_clock->m2;
4289 } else {
4290 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4291 if (reduced_clock)
4292 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4293 reduced_clock->m2;
4294 }
4295
4296 I915_WRITE(FP0(pipe), fp);
4297
4298 intel_crtc->lowfreq_avail = false;
4299 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4300 reduced_clock && i915_powersave) {
4301 I915_WRITE(FP1(pipe), fp2);
4302 intel_crtc->lowfreq_avail = true;
4303 } else {
4304 I915_WRITE(FP1(pipe), fp);
4305 }
4306}
4307
93e537a1
DV
4308static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4309 struct drm_display_mode *adjusted_mode)
4310{
4311 struct drm_device *dev = crtc->dev;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4314 int pipe = intel_crtc->pipe;
284d5df5 4315 u32 temp;
93e537a1
DV
4316
4317 temp = I915_READ(LVDS);
4318 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4319 if (pipe == 1) {
4320 temp |= LVDS_PIPEB_SELECT;
4321 } else {
4322 temp &= ~LVDS_PIPEB_SELECT;
4323 }
4324 /* set the corresponsding LVDS_BORDER bit */
4325 temp |= dev_priv->lvds_border_bits;
4326 /* Set the B0-B3 data pairs corresponding to whether we're going to
4327 * set the DPLLs for dual-channel mode or not.
4328 */
4329 if (clock->p2 == 7)
4330 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4331 else
4332 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4333
4334 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4335 * appropriately here, but we need to look more thoroughly into how
4336 * panels behave in the two modes.
4337 */
4338 /* set the dithering flag on LVDS as needed */
4339 if (INTEL_INFO(dev)->gen >= 4) {
4340 if (dev_priv->lvds_dither)
4341 temp |= LVDS_ENABLE_DITHER;
4342 else
4343 temp &= ~LVDS_ENABLE_DITHER;
4344 }
284d5df5 4345 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4346 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4347 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4348 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4349 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4350 I915_WRITE(LVDS, temp);
4351}
4352
a0c4da24
JB
4353static void vlv_update_pll(struct drm_crtc *crtc,
4354 struct drm_display_mode *mode,
4355 struct drm_display_mode *adjusted_mode,
4356 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4357 int num_connectors)
a0c4da24
JB
4358{
4359 struct drm_device *dev = crtc->dev;
4360 struct drm_i915_private *dev_priv = dev->dev_private;
4361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4362 int pipe = intel_crtc->pipe;
4363 u32 dpll, mdiv, pdiv;
4364 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4365 bool is_sdvo;
4366 u32 temp;
a0c4da24 4367
2a8f64ca
VP
4368 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4369 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4370
2a8f64ca
VP
4371 dpll = DPLL_VGA_MODE_DIS;
4372 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4373 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4374 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4375
4376 I915_WRITE(DPLL(pipe), dpll);
4377 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4378
4379 bestn = clock->n;
4380 bestm1 = clock->m1;
4381 bestm2 = clock->m2;
4382 bestp1 = clock->p1;
4383 bestp2 = clock->p2;
4384
2a8f64ca
VP
4385 /*
4386 * In Valleyview PLL and program lane counter registers are exposed
4387 * through DPIO interface
4388 */
a0c4da24
JB
4389 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4390 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4391 mdiv |= ((bestn << DPIO_N_SHIFT));
4392 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4393 mdiv |= (1 << DPIO_K_SHIFT);
4394 mdiv |= DPIO_ENABLE_CALIBRATION;
4395 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4396
4397 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4398
2a8f64ca 4399 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4400 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4401 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4402 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4403 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4404
2a8f64ca 4405 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4406
4407 dpll |= DPLL_VCO_ENABLE;
4408 I915_WRITE(DPLL(pipe), dpll);
4409 POSTING_READ(DPLL(pipe));
4410 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4411 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4412
2a8f64ca
VP
4413 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4414
4415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4416 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4417
4418 I915_WRITE(DPLL(pipe), dpll);
4419
4420 /* Wait for the clocks to stabilize. */
4421 POSTING_READ(DPLL(pipe));
4422 udelay(150);
a0c4da24 4423
2a8f64ca
VP
4424 temp = 0;
4425 if (is_sdvo) {
4426 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4427 if (temp > 1)
4428 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4429 else
4430 temp = 0;
a0c4da24 4431 }
2a8f64ca
VP
4432 I915_WRITE(DPLL_MD(pipe), temp);
4433 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4434
2a8f64ca
VP
4435 /* Now program lane control registers */
4436 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4437 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4438 {
4439 temp = 0x1000C4;
4440 if(pipe == 1)
4441 temp |= (1 << 21);
4442 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4443 }
4444 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4445 {
4446 temp = 0x1000C4;
4447 if(pipe == 1)
4448 temp |= (1 << 21);
4449 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4450 }
a0c4da24
JB
4451}
4452
eb1cbe48
DV
4453static void i9xx_update_pll(struct drm_crtc *crtc,
4454 struct drm_display_mode *mode,
4455 struct drm_display_mode *adjusted_mode,
4456 intel_clock_t *clock, intel_clock_t *reduced_clock,
4457 int num_connectors)
4458{
4459 struct drm_device *dev = crtc->dev;
4460 struct drm_i915_private *dev_priv = dev->dev_private;
4461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4462 int pipe = intel_crtc->pipe;
4463 u32 dpll;
4464 bool is_sdvo;
4465
2a8f64ca
VP
4466 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4467
eb1cbe48
DV
4468 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4469 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4470
4471 dpll = DPLL_VGA_MODE_DIS;
4472
4473 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4474 dpll |= DPLLB_MODE_LVDS;
4475 else
4476 dpll |= DPLLB_MODE_DAC_SERIAL;
4477 if (is_sdvo) {
4478 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4479 if (pixel_multiplier > 1) {
4480 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4481 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4482 }
4483 dpll |= DPLL_DVO_HIGH_SPEED;
4484 }
4485 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4486 dpll |= DPLL_DVO_HIGH_SPEED;
4487
4488 /* compute bitmask from p1 value */
4489 if (IS_PINEVIEW(dev))
4490 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4491 else {
4492 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4493 if (IS_G4X(dev) && reduced_clock)
4494 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4495 }
4496 switch (clock->p2) {
4497 case 5:
4498 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4499 break;
4500 case 7:
4501 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4502 break;
4503 case 10:
4504 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4505 break;
4506 case 14:
4507 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4508 break;
4509 }
4510 if (INTEL_INFO(dev)->gen >= 4)
4511 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4512
4513 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4514 dpll |= PLL_REF_INPUT_TVCLKINBC;
4515 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4516 /* XXX: just matching BIOS for now */
4517 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4518 dpll |= 3;
4519 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4520 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4521 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4522 else
4523 dpll |= PLL_REF_INPUT_DREFCLK;
4524
4525 dpll |= DPLL_VCO_ENABLE;
4526 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4527 POSTING_READ(DPLL(pipe));
4528 udelay(150);
4529
4530 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4531 * This is an exception to the general rule that mode_set doesn't turn
4532 * things on.
4533 */
4534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4535 intel_update_lvds(crtc, clock, adjusted_mode);
4536
4537 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4538 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4539
4540 I915_WRITE(DPLL(pipe), dpll);
4541
4542 /* Wait for the clocks to stabilize. */
4543 POSTING_READ(DPLL(pipe));
4544 udelay(150);
4545
4546 if (INTEL_INFO(dev)->gen >= 4) {
4547 u32 temp = 0;
4548 if (is_sdvo) {
4549 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4550 if (temp > 1)
4551 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4552 else
4553 temp = 0;
4554 }
4555 I915_WRITE(DPLL_MD(pipe), temp);
4556 } else {
4557 /* The pixel multiplier can only be updated once the
4558 * DPLL is enabled and the clocks are stable.
4559 *
4560 * So write it again.
4561 */
4562 I915_WRITE(DPLL(pipe), dpll);
4563 }
4564}
4565
4566static void i8xx_update_pll(struct drm_crtc *crtc,
4567 struct drm_display_mode *adjusted_mode,
2a8f64ca 4568 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4569 int num_connectors)
4570{
4571 struct drm_device *dev = crtc->dev;
4572 struct drm_i915_private *dev_priv = dev->dev_private;
4573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4574 int pipe = intel_crtc->pipe;
4575 u32 dpll;
4576
2a8f64ca
VP
4577 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4578
eb1cbe48
DV
4579 dpll = DPLL_VGA_MODE_DIS;
4580
4581 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4582 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4583 } else {
4584 if (clock->p1 == 2)
4585 dpll |= PLL_P1_DIVIDE_BY_TWO;
4586 else
4587 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4588 if (clock->p2 == 4)
4589 dpll |= PLL_P2_DIVIDE_BY_4;
4590 }
4591
4592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4593 /* XXX: just matching BIOS for now */
4594 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4595 dpll |= 3;
4596 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4597 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4598 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4599 else
4600 dpll |= PLL_REF_INPUT_DREFCLK;
4601
4602 dpll |= DPLL_VCO_ENABLE;
4603 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4604 POSTING_READ(DPLL(pipe));
4605 udelay(150);
4606
eb1cbe48
DV
4607 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4608 * This is an exception to the general rule that mode_set doesn't turn
4609 * things on.
4610 */
4611 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4612 intel_update_lvds(crtc, clock, adjusted_mode);
4613
5b5896e4
DV
4614 I915_WRITE(DPLL(pipe), dpll);
4615
4616 /* Wait for the clocks to stabilize. */
4617 POSTING_READ(DPLL(pipe));
4618 udelay(150);
4619
eb1cbe48
DV
4620 /* The pixel multiplier can only be updated once the
4621 * DPLL is enabled and the clocks are stable.
4622 *
4623 * So write it again.
4624 */
4625 I915_WRITE(DPLL(pipe), dpll);
4626}
4627
b0e77b9c
PZ
4628static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4629 struct drm_display_mode *mode,
4630 struct drm_display_mode *adjusted_mode)
4631{
4632 struct drm_device *dev = intel_crtc->base.dev;
4633 struct drm_i915_private *dev_priv = dev->dev_private;
4634 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4635 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4636 uint32_t vsyncshift;
4637
4638 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4639 /* the chip adds 2 halflines automatically */
4640 adjusted_mode->crtc_vtotal -= 1;
4641 adjusted_mode->crtc_vblank_end -= 1;
4642 vsyncshift = adjusted_mode->crtc_hsync_start
4643 - adjusted_mode->crtc_htotal / 2;
4644 } else {
4645 vsyncshift = 0;
4646 }
4647
4648 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4649 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4650
fe2b8f9d 4651 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4652 (adjusted_mode->crtc_hdisplay - 1) |
4653 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4654 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4655 (adjusted_mode->crtc_hblank_start - 1) |
4656 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4657 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4658 (adjusted_mode->crtc_hsync_start - 1) |
4659 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4660
fe2b8f9d 4661 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4662 (adjusted_mode->crtc_vdisplay - 1) |
4663 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4664 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4665 (adjusted_mode->crtc_vblank_start - 1) |
4666 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4667 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4668 (adjusted_mode->crtc_vsync_start - 1) |
4669 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4670
b5e508d4
PZ
4671 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4672 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4673 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4674 * bits. */
4675 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4676 (pipe == PIPE_B || pipe == PIPE_C))
4677 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4678
b0e77b9c
PZ
4679 /* pipesrc controls the size that is scaled from, which should
4680 * always be the user's requested size.
4681 */
4682 I915_WRITE(PIPESRC(pipe),
4683 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4684}
4685
f564048e
EA
4686static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4687 struct drm_display_mode *mode,
4688 struct drm_display_mode *adjusted_mode,
4689 int x, int y,
94352cf9 4690 struct drm_framebuffer *fb)
79e53945
JB
4691{
4692 struct drm_device *dev = crtc->dev;
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4695 int pipe = intel_crtc->pipe;
80824003 4696 int plane = intel_crtc->plane;
c751ce4f 4697 int refclk, num_connectors = 0;
652c393a 4698 intel_clock_t clock, reduced_clock;
b0e77b9c 4699 u32 dspcntr, pipeconf;
eb1cbe48
DV
4700 bool ok, has_reduced_clock = false, is_sdvo = false;
4701 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4702 struct intel_encoder *encoder;
d4906093 4703 const intel_limit_t *limit;
5c3b82e2 4704 int ret;
79e53945 4705
6c2b7c12 4706 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4707 switch (encoder->type) {
79e53945
JB
4708 case INTEL_OUTPUT_LVDS:
4709 is_lvds = true;
4710 break;
4711 case INTEL_OUTPUT_SDVO:
7d57382e 4712 case INTEL_OUTPUT_HDMI:
79e53945 4713 is_sdvo = true;
5eddb70b 4714 if (encoder->needs_tv_clock)
e2f0ba97 4715 is_tv = true;
79e53945 4716 break;
79e53945
JB
4717 case INTEL_OUTPUT_TVOUT:
4718 is_tv = true;
4719 break;
a4fc5ed6
KP
4720 case INTEL_OUTPUT_DISPLAYPORT:
4721 is_dp = true;
4722 break;
79e53945 4723 }
43565a06 4724
c751ce4f 4725 num_connectors++;
79e53945
JB
4726 }
4727
c65d77d8 4728 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4729
d4906093
ML
4730 /*
4731 * Returns a set of divisors for the desired target clock with the given
4732 * refclk, or FALSE. The returned values represent the clock equation:
4733 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4734 */
1b894b59 4735 limit = intel_limit(crtc, refclk);
cec2f356
SP
4736 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4737 &clock);
79e53945
JB
4738 if (!ok) {
4739 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4740 return -EINVAL;
79e53945
JB
4741 }
4742
cda4b7d3 4743 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4744 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4745
ddc9003c 4746 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4747 /*
4748 * Ensure we match the reduced clock's P to the target clock.
4749 * If the clocks don't match, we can't switch the display clock
4750 * by using the FP0/FP1. In such case we will disable the LVDS
4751 * downclock feature.
4752 */
ddc9003c 4753 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4754 dev_priv->lvds_downclock,
4755 refclk,
cec2f356 4756 &clock,
5eddb70b 4757 &reduced_clock);
7026d4ac
ZW
4758 }
4759
c65d77d8
JB
4760 if (is_sdvo && is_tv)
4761 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4762
eb1cbe48 4763 if (IS_GEN2(dev))
2a8f64ca
VP
4764 i8xx_update_pll(crtc, adjusted_mode, &clock,
4765 has_reduced_clock ? &reduced_clock : NULL,
4766 num_connectors);
a0c4da24 4767 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4768 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4769 has_reduced_clock ? &reduced_clock : NULL,
4770 num_connectors);
79e53945 4771 else
eb1cbe48
DV
4772 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4773 has_reduced_clock ? &reduced_clock : NULL,
4774 num_connectors);
79e53945
JB
4775
4776 /* setup pipeconf */
5eddb70b 4777 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4778
4779 /* Set up the display plane register */
4780 dspcntr = DISPPLANE_GAMMA_ENABLE;
4781
929c77fb
EA
4782 if (pipe == 0)
4783 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4784 else
4785 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4786
a6c45cf0 4787 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4788 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4789 * core speed.
4790 *
4791 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4792 * pipe == 0 check?
4793 */
e70236a8
JB
4794 if (mode->clock >
4795 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4796 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4797 else
5eddb70b 4798 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4799 }
4800
3b5c78a3
AJ
4801 /* default to 8bpc */
4802 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4803 if (is_dp) {
0c96c65b 4804 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4805 pipeconf |= PIPECONF_BPP_6 |
4806 PIPECONF_DITHER_EN |
4807 PIPECONF_DITHER_TYPE_SP;
4808 }
4809 }
4810
19c03924
GB
4811 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4812 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4813 pipeconf |= PIPECONF_BPP_6 |
4814 PIPECONF_ENABLE |
4815 I965_PIPECONF_ACTIVE;
4816 }
4817 }
4818
28c97730 4819 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4820 drm_mode_debug_printmodeline(mode);
4821
a7516a05
JB
4822 if (HAS_PIPE_CXSR(dev)) {
4823 if (intel_crtc->lowfreq_avail) {
28c97730 4824 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4825 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4826 } else {
28c97730 4827 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4828 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4829 }
4830 }
4831
617cf884 4832 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4833 if (!IS_GEN2(dev) &&
b0e77b9c 4834 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4835 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4836 else
617cf884 4837 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4838
b0e77b9c 4839 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4840
4841 /* pipesrc and dspsize control the size that is scaled from,
4842 * which should always be the user's requested size.
79e53945 4843 */
929c77fb
EA
4844 I915_WRITE(DSPSIZE(plane),
4845 ((mode->vdisplay - 1) << 16) |
4846 (mode->hdisplay - 1));
4847 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4848
f564048e
EA
4849 I915_WRITE(PIPECONF(pipe), pipeconf);
4850 POSTING_READ(PIPECONF(pipe));
929c77fb 4851 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4852
4853 intel_wait_for_vblank(dev, pipe);
4854
f564048e
EA
4855 I915_WRITE(DSPCNTR(plane), dspcntr);
4856 POSTING_READ(DSPCNTR(plane));
4857
94352cf9 4858 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4859
4860 intel_update_watermarks(dev);
4861
f564048e
EA
4862 return ret;
4863}
4864
9fb526db
KP
4865/*
4866 * Initialize reference clocks when the driver loads
4867 */
4868void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4869{
4870 struct drm_i915_private *dev_priv = dev->dev_private;
4871 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4872 struct intel_encoder *encoder;
13d83a67
JB
4873 u32 temp;
4874 bool has_lvds = false;
199e5d79
KP
4875 bool has_cpu_edp = false;
4876 bool has_pch_edp = false;
4877 bool has_panel = false;
99eb6a01
KP
4878 bool has_ck505 = false;
4879 bool can_ssc = false;
13d83a67
JB
4880
4881 /* We need to take the global config into account */
199e5d79
KP
4882 list_for_each_entry(encoder, &mode_config->encoder_list,
4883 base.head) {
4884 switch (encoder->type) {
4885 case INTEL_OUTPUT_LVDS:
4886 has_panel = true;
4887 has_lvds = true;
4888 break;
4889 case INTEL_OUTPUT_EDP:
4890 has_panel = true;
4891 if (intel_encoder_is_pch_edp(&encoder->base))
4892 has_pch_edp = true;
4893 else
4894 has_cpu_edp = true;
4895 break;
13d83a67
JB
4896 }
4897 }
4898
99eb6a01
KP
4899 if (HAS_PCH_IBX(dev)) {
4900 has_ck505 = dev_priv->display_clock_mode;
4901 can_ssc = has_ck505;
4902 } else {
4903 has_ck505 = false;
4904 can_ssc = true;
4905 }
4906
4907 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4908 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4909 has_ck505);
13d83a67
JB
4910
4911 /* Ironlake: try to setup display ref clock before DPLL
4912 * enabling. This is only under driver's control after
4913 * PCH B stepping, previous chipset stepping should be
4914 * ignoring this setting.
4915 */
4916 temp = I915_READ(PCH_DREF_CONTROL);
4917 /* Always enable nonspread source */
4918 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4919
99eb6a01
KP
4920 if (has_ck505)
4921 temp |= DREF_NONSPREAD_CK505_ENABLE;
4922 else
4923 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4924
199e5d79
KP
4925 if (has_panel) {
4926 temp &= ~DREF_SSC_SOURCE_MASK;
4927 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4928
199e5d79 4929 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4930 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4931 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4932 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4933 } else
4934 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4935
4936 /* Get SSC going before enabling the outputs */
4937 I915_WRITE(PCH_DREF_CONTROL, temp);
4938 POSTING_READ(PCH_DREF_CONTROL);
4939 udelay(200);
4940
13d83a67
JB
4941 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4942
4943 /* Enable CPU source on CPU attached eDP */
199e5d79 4944 if (has_cpu_edp) {
99eb6a01 4945 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4946 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4947 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4948 }
13d83a67
JB
4949 else
4950 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4951 } else
4952 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4953
4954 I915_WRITE(PCH_DREF_CONTROL, temp);
4955 POSTING_READ(PCH_DREF_CONTROL);
4956 udelay(200);
4957 } else {
4958 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4959
4960 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4961
4962 /* Turn off CPU output */
4963 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4964
4965 I915_WRITE(PCH_DREF_CONTROL, temp);
4966 POSTING_READ(PCH_DREF_CONTROL);
4967 udelay(200);
4968
4969 /* Turn off the SSC source */
4970 temp &= ~DREF_SSC_SOURCE_MASK;
4971 temp |= DREF_SSC_SOURCE_DISABLE;
4972
4973 /* Turn off SSC1 */
4974 temp &= ~ DREF_SSC1_ENABLE;
4975
13d83a67
JB
4976 I915_WRITE(PCH_DREF_CONTROL, temp);
4977 POSTING_READ(PCH_DREF_CONTROL);
4978 udelay(200);
4979 }
4980}
4981
d9d444cb
JB
4982static int ironlake_get_refclk(struct drm_crtc *crtc)
4983{
4984 struct drm_device *dev = crtc->dev;
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986 struct intel_encoder *encoder;
d9d444cb
JB
4987 struct intel_encoder *edp_encoder = NULL;
4988 int num_connectors = 0;
4989 bool is_lvds = false;
4990
6c2b7c12 4991 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4992 switch (encoder->type) {
4993 case INTEL_OUTPUT_LVDS:
4994 is_lvds = true;
4995 break;
4996 case INTEL_OUTPUT_EDP:
4997 edp_encoder = encoder;
4998 break;
4999 }
5000 num_connectors++;
5001 }
5002
5003 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5004 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5005 dev_priv->lvds_ssc_freq);
5006 return dev_priv->lvds_ssc_freq * 1000;
5007 }
5008
5009 return 120000;
5010}
5011
c8203565 5012static void ironlake_set_pipeconf(struct drm_crtc *crtc,
f564048e 5013 struct drm_display_mode *adjusted_mode,
c8203565 5014 bool dither)
79e53945 5015{
c8203565 5016 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
5017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5018 int pipe = intel_crtc->pipe;
c8203565
PZ
5019 uint32_t val;
5020
5021 val = I915_READ(PIPECONF(pipe));
5022
5023 val &= ~PIPE_BPC_MASK;
5024 switch (intel_crtc->bpp) {
5025 case 18:
5026 val |= PIPE_6BPC;
5027 break;
5028 case 24:
5029 val |= PIPE_8BPC;
5030 break;
5031 case 30:
5032 val |= PIPE_10BPC;
5033 break;
5034 case 36:
5035 val |= PIPE_12BPC;
5036 break;
5037 default:
cc769b62
PZ
5038 /* Case prevented by intel_choose_pipe_bpp_dither. */
5039 BUG();
c8203565
PZ
5040 }
5041
5042 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5043 if (dither)
5044 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5045
5046 val &= ~PIPECONF_INTERLACE_MASK;
5047 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5048 val |= PIPECONF_INTERLACED_ILK;
5049 else
5050 val |= PIPECONF_PROGRESSIVE;
5051
5052 I915_WRITE(PIPECONF(pipe), val);
5053 POSTING_READ(PIPECONF(pipe));
5054}
5055
ee2b0b38
PZ
5056static void haswell_set_pipeconf(struct drm_crtc *crtc,
5057 struct drm_display_mode *adjusted_mode,
5058 bool dither)
5059{
5060 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 5062 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
5063 uint32_t val;
5064
702e7a56 5065 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5066
5067 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5068 if (dither)
5069 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5070
5071 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5072 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5073 val |= PIPECONF_INTERLACED_ILK;
5074 else
5075 val |= PIPECONF_PROGRESSIVE;
5076
702e7a56
PZ
5077 I915_WRITE(PIPECONF(cpu_transcoder), val);
5078 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5079}
5080
6591c6e4
PZ
5081static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5082 struct drm_display_mode *adjusted_mode,
5083 intel_clock_t *clock,
5084 bool *has_reduced_clock,
5085 intel_clock_t *reduced_clock)
5086{
5087 struct drm_device *dev = crtc->dev;
5088 struct drm_i915_private *dev_priv = dev->dev_private;
5089 struct intel_encoder *intel_encoder;
5090 int refclk;
d4906093 5091 const intel_limit_t *limit;
6591c6e4 5092 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
79e53945 5093
6591c6e4
PZ
5094 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5095 switch (intel_encoder->type) {
79e53945
JB
5096 case INTEL_OUTPUT_LVDS:
5097 is_lvds = true;
5098 break;
5099 case INTEL_OUTPUT_SDVO:
7d57382e 5100 case INTEL_OUTPUT_HDMI:
79e53945 5101 is_sdvo = true;
6591c6e4 5102 if (intel_encoder->needs_tv_clock)
e2f0ba97 5103 is_tv = true;
79e53945 5104 break;
79e53945
JB
5105 case INTEL_OUTPUT_TVOUT:
5106 is_tv = true;
5107 break;
79e53945
JB
5108 }
5109 }
5110
d9d444cb 5111 refclk = ironlake_get_refclk(crtc);
79e53945 5112
d4906093
ML
5113 /*
5114 * Returns a set of divisors for the desired target clock with the given
5115 * refclk, or FALSE. The returned values represent the clock equation:
5116 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5117 */
1b894b59 5118 limit = intel_limit(crtc, refclk);
6591c6e4
PZ
5119 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5120 clock);
5121 if (!ret)
5122 return false;
cda4b7d3 5123
ddc9003c 5124 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
5125 /*
5126 * Ensure we match the reduced clock's P to the target clock.
5127 * If the clocks don't match, we can't switch the display clock
5128 * by using the FP0/FP1. In such case we will disable the LVDS
5129 * downclock feature.
5130 */
6591c6e4
PZ
5131 *has_reduced_clock = limit->find_pll(limit, crtc,
5132 dev_priv->lvds_downclock,
5133 refclk,
5134 clock,
5135 reduced_clock);
652c393a 5136 }
61e9653f
DV
5137
5138 if (is_sdvo && is_tv)
6591c6e4
PZ
5139 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5140
5141 return true;
5142}
5143
01a415fd
DV
5144static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5145{
5146 struct drm_i915_private *dev_priv = dev->dev_private;
5147 uint32_t temp;
5148
5149 temp = I915_READ(SOUTH_CHICKEN1);
5150 if (temp & FDI_BC_BIFURCATION_SELECT)
5151 return;
5152
5153 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5154 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5155
5156 temp |= FDI_BC_BIFURCATION_SELECT;
5157 DRM_DEBUG_KMS("enabling fdi C rx\n");
5158 I915_WRITE(SOUTH_CHICKEN1, temp);
5159 POSTING_READ(SOUTH_CHICKEN1);
5160}
5161
5162static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5163{
5164 struct drm_device *dev = intel_crtc->base.dev;
5165 struct drm_i915_private *dev_priv = dev->dev_private;
5166 struct intel_crtc *pipe_B_crtc =
5167 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5168
5169 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5170 intel_crtc->pipe, intel_crtc->fdi_lanes);
5171 if (intel_crtc->fdi_lanes > 4) {
5172 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5173 intel_crtc->pipe, intel_crtc->fdi_lanes);
5174 /* Clamp lanes to avoid programming the hw with bogus values. */
5175 intel_crtc->fdi_lanes = 4;
5176
5177 return false;
5178 }
5179
5180 if (dev_priv->num_pipe == 2)
5181 return true;
5182
5183 switch (intel_crtc->pipe) {
5184 case PIPE_A:
5185 return true;
5186 case PIPE_B:
5187 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5188 intel_crtc->fdi_lanes > 2) {
5189 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5190 intel_crtc->pipe, intel_crtc->fdi_lanes);
5191 /* Clamp lanes to avoid programming the hw with bogus values. */
5192 intel_crtc->fdi_lanes = 2;
5193
5194 return false;
5195 }
5196
5197 if (intel_crtc->fdi_lanes > 2)
5198 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5199 else
5200 cpt_enable_fdi_bc_bifurcation(dev);
5201
5202 return true;
5203 case PIPE_C:
5204 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5205 if (intel_crtc->fdi_lanes > 2) {
5206 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5207 intel_crtc->pipe, intel_crtc->fdi_lanes);
5208 /* Clamp lanes to avoid programming the hw with bogus values. */
5209 intel_crtc->fdi_lanes = 2;
5210
5211 return false;
5212 }
5213 } else {
5214 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5215 return false;
5216 }
5217
5218 cpt_enable_fdi_bc_bifurcation(dev);
5219
5220 return true;
5221 default:
5222 BUG();
5223 }
5224}
5225
f48d8f23
PZ
5226static void ironlake_set_m_n(struct drm_crtc *crtc,
5227 struct drm_display_mode *mode,
5228 struct drm_display_mode *adjusted_mode)
79e53945
JB
5229{
5230 struct drm_device *dev = crtc->dev;
5231 struct drm_i915_private *dev_priv = dev->dev_private;
5232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5233 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23 5234 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
2c07245f 5235 struct fdi_m_n m_n = {0};
f48d8f23
PZ
5236 int target_clock, pixel_multiplier, lane, link_bw;
5237 bool is_dp = false, is_cpu_edp = false;
79e53945 5238
f48d8f23
PZ
5239 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5240 switch (intel_encoder->type) {
a4fc5ed6
KP
5241 case INTEL_OUTPUT_DISPLAYPORT:
5242 is_dp = true;
5243 break;
32f9d658 5244 case INTEL_OUTPUT_EDP:
e3aef172 5245 is_dp = true;
f48d8f23 5246 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5247 is_cpu_edp = true;
f48d8f23 5248 edp_encoder = intel_encoder;
32f9d658 5249 break;
79e53945 5250 }
79e53945 5251 }
61e9653f 5252
2c07245f 5253 /* FDI link */
8febb297
EA
5254 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5255 lane = 0;
5256 /* CPU eDP doesn't require FDI link, so just set DP M/N
5257 according to current link config */
e3aef172 5258 if (is_cpu_edp) {
e3aef172 5259 intel_edp_link_config(edp_encoder, &lane, &link_bw);
8febb297 5260 } else {
8febb297
EA
5261 /* FDI is a binary signal running at ~2.7GHz, encoding
5262 * each output octet as 10 bits. The actual frequency
5263 * is stored as a divider into a 100MHz clock, and the
5264 * mode pixel clock is stored in units of 1KHz.
5265 * Hence the bw of each lane in terms of the mode signal
5266 * is:
5267 */
5268 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5269 }
58a27471 5270
94bf2ced
DV
5271 /* [e]DP over FDI requires target mode clock instead of link clock. */
5272 if (edp_encoder)
5273 target_clock = intel_edp_target_clock(edp_encoder, mode);
5274 else if (is_dp)
5275 target_clock = mode->clock;
5276 else
5277 target_clock = adjusted_mode->clock;
5278
8febb297
EA
5279 if (!lane) {
5280 /*
5281 * Account for spread spectrum to avoid
5282 * oversubscribing the link. Max center spread
5283 * is 2.5%; use 5% for safety's sake.
5284 */
5a354204 5285 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5286 lane = bps / (link_bw * 8) + 1;
5eb08b69 5287 }
2c07245f 5288
8febb297
EA
5289 intel_crtc->fdi_lanes = lane;
5290
5291 if (pixel_multiplier > 1)
5292 link_bw *= pixel_multiplier;
5a354204
JB
5293 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5294 &m_n);
8febb297 5295
afe2fcf5
PZ
5296 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5297 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5298 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5299 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5300}
5301
de13a2e3
PZ
5302static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5303 struct drm_display_mode *adjusted_mode,
5304 intel_clock_t *clock, u32 fp)
79e53945 5305{
de13a2e3 5306 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5307 struct drm_device *dev = crtc->dev;
5308 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5309 struct intel_encoder *intel_encoder;
5310 uint32_t dpll;
5311 int factor, pixel_multiplier, num_connectors = 0;
5312 bool is_lvds = false, is_sdvo = false, is_tv = false;
5313 bool is_dp = false, is_cpu_edp = false;
79e53945 5314
de13a2e3
PZ
5315 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5316 switch (intel_encoder->type) {
79e53945
JB
5317 case INTEL_OUTPUT_LVDS:
5318 is_lvds = true;
5319 break;
5320 case INTEL_OUTPUT_SDVO:
7d57382e 5321 case INTEL_OUTPUT_HDMI:
79e53945 5322 is_sdvo = true;
de13a2e3 5323 if (intel_encoder->needs_tv_clock)
e2f0ba97 5324 is_tv = true;
79e53945 5325 break;
79e53945
JB
5326 case INTEL_OUTPUT_TVOUT:
5327 is_tv = true;
5328 break;
a4fc5ed6
KP
5329 case INTEL_OUTPUT_DISPLAYPORT:
5330 is_dp = true;
5331 break;
32f9d658 5332 case INTEL_OUTPUT_EDP:
e3aef172 5333 is_dp = true;
de13a2e3 5334 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5335 is_cpu_edp = true;
32f9d658 5336 break;
79e53945 5337 }
43565a06 5338
c751ce4f 5339 num_connectors++;
79e53945 5340 }
79e53945 5341
c1858123 5342 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5343 factor = 21;
5344 if (is_lvds) {
5345 if ((intel_panel_use_ssc(dev_priv) &&
5346 dev_priv->lvds_ssc_freq == 100) ||
5347 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5348 factor = 25;
5349 } else if (is_sdvo && is_tv)
5350 factor = 20;
c1858123 5351
de13a2e3 5352 if (clock->m < factor * clock->n)
8febb297 5353 fp |= FP_CB_TUNE;
2c07245f 5354
5eddb70b 5355 dpll = 0;
2c07245f 5356
a07d6787
EA
5357 if (is_lvds)
5358 dpll |= DPLLB_MODE_LVDS;
5359 else
5360 dpll |= DPLLB_MODE_DAC_SERIAL;
5361 if (is_sdvo) {
de13a2e3 5362 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5363 if (pixel_multiplier > 1) {
5364 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5365 }
a07d6787
EA
5366 dpll |= DPLL_DVO_HIGH_SPEED;
5367 }
e3aef172 5368 if (is_dp && !is_cpu_edp)
a07d6787 5369 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5370
a07d6787 5371 /* compute bitmask from p1 value */
de13a2e3 5372 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5373 /* also FPA1 */
de13a2e3 5374 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5375
de13a2e3 5376 switch (clock->p2) {
a07d6787
EA
5377 case 5:
5378 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5379 break;
5380 case 7:
5381 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5382 break;
5383 case 10:
5384 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5385 break;
5386 case 14:
5387 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5388 break;
79e53945
JB
5389 }
5390
43565a06
KH
5391 if (is_sdvo && is_tv)
5392 dpll |= PLL_REF_INPUT_TVCLKINBC;
5393 else if (is_tv)
79e53945 5394 /* XXX: just matching BIOS for now */
43565a06 5395 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5396 dpll |= 3;
a7615030 5397 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5398 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5399 else
5400 dpll |= PLL_REF_INPUT_DREFCLK;
5401
de13a2e3
PZ
5402 return dpll;
5403}
5404
5405static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5406 struct drm_display_mode *mode,
5407 struct drm_display_mode *adjusted_mode,
5408 int x, int y,
5409 struct drm_framebuffer *fb)
5410{
5411 struct drm_device *dev = crtc->dev;
5412 struct drm_i915_private *dev_priv = dev->dev_private;
5413 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5414 int pipe = intel_crtc->pipe;
5415 int plane = intel_crtc->plane;
5416 int num_connectors = 0;
5417 intel_clock_t clock, reduced_clock;
5418 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5419 bool ok, has_reduced_clock = false;
5420 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5421 struct intel_encoder *encoder;
5422 u32 temp;
5423 int ret;
01a415fd 5424 bool dither, fdi_config_ok;
de13a2e3
PZ
5425
5426 for_each_encoder_on_crtc(dev, crtc, encoder) {
5427 switch (encoder->type) {
5428 case INTEL_OUTPUT_LVDS:
5429 is_lvds = true;
5430 break;
de13a2e3
PZ
5431 case INTEL_OUTPUT_DISPLAYPORT:
5432 is_dp = true;
5433 break;
5434 case INTEL_OUTPUT_EDP:
5435 is_dp = true;
e2f12b07 5436 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5437 is_cpu_edp = true;
5438 break;
5439 }
5440
5441 num_connectors++;
a07d6787 5442 }
79e53945 5443
5dc5298b
PZ
5444 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5445 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 5446
de13a2e3
PZ
5447 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5448 &has_reduced_clock, &reduced_clock);
5449 if (!ok) {
5450 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5451 return -EINVAL;
79e53945
JB
5452 }
5453
de13a2e3
PZ
5454 /* Ensure that the cursor is valid for the new mode before changing... */
5455 intel_crtc_update_cursor(crtc, true);
5456
5457 /* determine panel color depth */
c8241969
JN
5458 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5459 adjusted_mode);
de13a2e3
PZ
5460 if (is_lvds && dev_priv->lvds_dither)
5461 dither = true;
5462
5463 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5464 if (has_reduced_clock)
5465 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5466 reduced_clock.m2;
5467
5468 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
79e53945 5469
f7cb34d4 5470 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5471 drm_mode_debug_printmodeline(mode);
5472
5dc5298b
PZ
5473 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5474 if (!is_cpu_edp) {
ee7b9f93 5475 struct intel_pch_pll *pll;
4b645f14 5476
ee7b9f93
JB
5477 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5478 if (pll == NULL) {
5479 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5480 pipe);
4b645f14
JB
5481 return -EINVAL;
5482 }
ee7b9f93
JB
5483 } else
5484 intel_put_pch_pll(intel_crtc);
79e53945
JB
5485
5486 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5487 * This is an exception to the general rule that mode_set doesn't turn
5488 * things on.
5489 */
5490 if (is_lvds) {
fae14981 5491 temp = I915_READ(PCH_LVDS);
5eddb70b 5492 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5493 if (HAS_PCH_CPT(dev)) {
5494 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5495 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5496 } else {
5497 if (pipe == 1)
5498 temp |= LVDS_PIPEB_SELECT;
5499 else
5500 temp &= ~LVDS_PIPEB_SELECT;
5501 }
4b645f14 5502
a3e17eb8 5503 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5504 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5505 /* Set the B0-B3 data pairs corresponding to whether we're going to
5506 * set the DPLLs for dual-channel mode or not.
5507 */
5508 if (clock.p2 == 7)
5eddb70b 5509 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5510 else
5eddb70b 5511 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5512
5513 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5514 * appropriately here, but we need to look more thoroughly into how
5515 * panels behave in the two modes.
5516 */
284d5df5 5517 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5518 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5519 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5520 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5521 temp |= LVDS_VSYNC_POLARITY;
fae14981 5522 I915_WRITE(PCH_LVDS, temp);
79e53945 5523 }
434ed097 5524
e3aef172 5525 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5526 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5527 } else {
8db9d77b 5528 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5529 I915_WRITE(TRANSDATA_M1(pipe), 0);
5530 I915_WRITE(TRANSDATA_N1(pipe), 0);
5531 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5532 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5533 }
79e53945 5534
ee7b9f93
JB
5535 if (intel_crtc->pch_pll) {
5536 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5537
32f9d658 5538 /* Wait for the clocks to stabilize. */
ee7b9f93 5539 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5540 udelay(150);
5541
8febb297
EA
5542 /* The pixel multiplier can only be updated once the
5543 * DPLL is enabled and the clocks are stable.
5544 *
5545 * So write it again.
5546 */
ee7b9f93 5547 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5548 }
79e53945 5549
5eddb70b 5550 intel_crtc->lowfreq_avail = false;
ee7b9f93 5551 if (intel_crtc->pch_pll) {
4b645f14 5552 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5553 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5554 intel_crtc->lowfreq_avail = true;
4b645f14 5555 } else {
ee7b9f93 5556 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5557 }
5558 }
5559
b0e77b9c 5560 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b 5561
01a415fd
DV
5562 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5563 * ironlake_check_fdi_lanes. */
f48d8f23 5564 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5565
01a415fd 5566 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
2c07245f 5567
e3aef172 5568 if (is_cpu_edp)
8febb297 5569 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5570
c8203565 5571 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5572
9d0498a2 5573 intel_wait_for_vblank(dev, pipe);
79e53945 5574
a1f9e77e
PZ
5575 /* Set up the display plane register */
5576 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5577 POSTING_READ(DSPCNTR(plane));
79e53945 5578
94352cf9 5579 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5580
5581 intel_update_watermarks(dev);
5582
1f8eeabf
ED
5583 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5584
01a415fd 5585 return fdi_config_ok ? ret : -EINVAL;
79e53945
JB
5586}
5587
09b4ddf9
PZ
5588static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5589 struct drm_display_mode *mode,
5590 struct drm_display_mode *adjusted_mode,
5591 int x, int y,
5592 struct drm_framebuffer *fb)
5593{
5594 struct drm_device *dev = crtc->dev;
5595 struct drm_i915_private *dev_priv = dev->dev_private;
5596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5597 int pipe = intel_crtc->pipe;
5598 int plane = intel_crtc->plane;
5599 int num_connectors = 0;
5600 intel_clock_t clock, reduced_clock;
5dc5298b 5601 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5602 bool ok, has_reduced_clock = false;
5603 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5604 struct intel_encoder *encoder;
5605 u32 temp;
5606 int ret;
5607 bool dither;
5608
5609 for_each_encoder_on_crtc(dev, crtc, encoder) {
5610 switch (encoder->type) {
5611 case INTEL_OUTPUT_LVDS:
5612 is_lvds = true;
5613 break;
5614 case INTEL_OUTPUT_DISPLAYPORT:
5615 is_dp = true;
5616 break;
5617 case INTEL_OUTPUT_EDP:
5618 is_dp = true;
5619 if (!intel_encoder_is_pch_edp(&encoder->base))
5620 is_cpu_edp = true;
5621 break;
5622 }
5623
5624 num_connectors++;
5625 }
5626
a5c961d1
PZ
5627 if (is_cpu_edp)
5628 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5629 else
5630 intel_crtc->cpu_transcoder = pipe;
5631
5dc5298b
PZ
5632 /* We are not sure yet this won't happen. */
5633 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5634 INTEL_PCH_TYPE(dev));
5635
5636 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5637 num_connectors, pipe_name(pipe));
5638
702e7a56 5639 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5640 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5641
5642 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5643
6441ab5f
PZ
5644 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5645 return -EINVAL;
5646
5dc5298b
PZ
5647 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5648 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5649 &has_reduced_clock,
5650 &reduced_clock);
5651 if (!ok) {
5652 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5653 return -EINVAL;
5654 }
09b4ddf9
PZ
5655 }
5656
5657 /* Ensure that the cursor is valid for the new mode before changing... */
5658 intel_crtc_update_cursor(crtc, true);
5659
5660 /* determine panel color depth */
c8241969
JN
5661 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5662 adjusted_mode);
09b4ddf9
PZ
5663 if (is_lvds && dev_priv->lvds_dither)
5664 dither = true;
5665
09b4ddf9
PZ
5666 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5667 drm_mode_debug_printmodeline(mode);
5668
5dc5298b
PZ
5669 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5670 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5671 if (has_reduced_clock)
5672 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5673 reduced_clock.m2;
5674
5675 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5676 fp);
5677
5678 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5679 * own on pre-Haswell/LPT generation */
5680 if (!is_cpu_edp) {
5681 struct intel_pch_pll *pll;
5682
5683 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5684 if (pll == NULL) {
5685 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5686 pipe);
5687 return -EINVAL;
5688 }
5689 } else
5690 intel_put_pch_pll(intel_crtc);
09b4ddf9 5691
5dc5298b
PZ
5692 /* The LVDS pin pair needs to be on before the DPLLs are
5693 * enabled. This is an exception to the general rule that
5694 * mode_set doesn't turn things on.
5695 */
5696 if (is_lvds) {
5697 temp = I915_READ(PCH_LVDS);
5698 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5699 if (HAS_PCH_CPT(dev)) {
5700 temp &= ~PORT_TRANS_SEL_MASK;
5701 temp |= PORT_TRANS_SEL_CPT(pipe);
5702 } else {
5703 if (pipe == 1)
5704 temp |= LVDS_PIPEB_SELECT;
5705 else
5706 temp &= ~LVDS_PIPEB_SELECT;
5707 }
09b4ddf9 5708
5dc5298b
PZ
5709 /* set the corresponsding LVDS_BORDER bit */
5710 temp |= dev_priv->lvds_border_bits;
5711 /* Set the B0-B3 data pairs corresponding to whether
5712 * we're going to set the DPLLs for dual-channel mode or
5713 * not.
5714 */
5715 if (clock.p2 == 7)
5716 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5717 else
5dc5298b
PZ
5718 temp &= ~(LVDS_B0B3_POWER_UP |
5719 LVDS_CLKB_POWER_UP);
5720
5721 /* It would be nice to set 24 vs 18-bit mode
5722 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5723 * look more thoroughly into how panels behave in the
5724 * two modes.
5725 */
5726 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5727 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5728 temp |= LVDS_HSYNC_POLARITY;
5729 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5730 temp |= LVDS_VSYNC_POLARITY;
5731 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5732 }
09b4ddf9
PZ
5733 }
5734
5735 if (is_dp && !is_cpu_edp) {
5736 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5737 } else {
5dc5298b
PZ
5738 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5739 /* For non-DP output, clear any trans DP clock recovery
5740 * setting.*/
5741 I915_WRITE(TRANSDATA_M1(pipe), 0);
5742 I915_WRITE(TRANSDATA_N1(pipe), 0);
5743 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5744 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5745 }
09b4ddf9
PZ
5746 }
5747
5748 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5749 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5750 if (intel_crtc->pch_pll) {
5751 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5752
5753 /* Wait for the clocks to stabilize. */
5754 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5755 udelay(150);
5756
5757 /* The pixel multiplier can only be updated once the
5758 * DPLL is enabled and the clocks are stable.
5759 *
5760 * So write it again.
5761 */
5762 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5763 }
5764
5765 if (intel_crtc->pch_pll) {
5766 if (is_lvds && has_reduced_clock && i915_powersave) {
5767 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5768 intel_crtc->lowfreq_avail = true;
5769 } else {
5770 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5771 }
09b4ddf9
PZ
5772 }
5773 }
5774
5775 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5776
1eb8dfec
PZ
5777 if (!is_dp || is_cpu_edp)
5778 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5779
5dc5298b
PZ
5780 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5781 if (is_cpu_edp)
5782 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5783
ee2b0b38 5784 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5785
09b4ddf9
PZ
5786 /* Set up the display plane register */
5787 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5788 POSTING_READ(DSPCNTR(plane));
5789
5790 ret = intel_pipe_set_base(crtc, x, y, fb);
5791
5792 intel_update_watermarks(dev);
5793
5794 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5795
1f803ee5 5796 return ret;
79e53945
JB
5797}
5798
f564048e
EA
5799static int intel_crtc_mode_set(struct drm_crtc *crtc,
5800 struct drm_display_mode *mode,
5801 struct drm_display_mode *adjusted_mode,
5802 int x, int y,
94352cf9 5803 struct drm_framebuffer *fb)
f564048e
EA
5804{
5805 struct drm_device *dev = crtc->dev;
5806 struct drm_i915_private *dev_priv = dev->dev_private;
9256aa19
DV
5807 struct drm_encoder_helper_funcs *encoder_funcs;
5808 struct intel_encoder *encoder;
0b701d27
EA
5809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5810 int pipe = intel_crtc->pipe;
f564048e
EA
5811 int ret;
5812
0b701d27 5813 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5814
f564048e 5815 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5816 x, y, fb);
79e53945 5817 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5818
9256aa19
DV
5819 if (ret != 0)
5820 return ret;
5821
5822 for_each_encoder_on_crtc(dev, crtc, encoder) {
5823 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5824 encoder->base.base.id,
5825 drm_get_encoder_name(&encoder->base),
5826 mode->base.id, mode->name);
5827 encoder_funcs = encoder->base.helper_private;
5828 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5829 }
5830
5831 return 0;
79e53945
JB
5832}
5833
3a9627f4
WF
5834static bool intel_eld_uptodate(struct drm_connector *connector,
5835 int reg_eldv, uint32_t bits_eldv,
5836 int reg_elda, uint32_t bits_elda,
5837 int reg_edid)
5838{
5839 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5840 uint8_t *eld = connector->eld;
5841 uint32_t i;
5842
5843 i = I915_READ(reg_eldv);
5844 i &= bits_eldv;
5845
5846 if (!eld[0])
5847 return !i;
5848
5849 if (!i)
5850 return false;
5851
5852 i = I915_READ(reg_elda);
5853 i &= ~bits_elda;
5854 I915_WRITE(reg_elda, i);
5855
5856 for (i = 0; i < eld[2]; i++)
5857 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5858 return false;
5859
5860 return true;
5861}
5862
e0dac65e
WF
5863static void g4x_write_eld(struct drm_connector *connector,
5864 struct drm_crtc *crtc)
5865{
5866 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5867 uint8_t *eld = connector->eld;
5868 uint32_t eldv;
5869 uint32_t len;
5870 uint32_t i;
5871
5872 i = I915_READ(G4X_AUD_VID_DID);
5873
5874 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5875 eldv = G4X_ELDV_DEVCL_DEVBLC;
5876 else
5877 eldv = G4X_ELDV_DEVCTG;
5878
3a9627f4
WF
5879 if (intel_eld_uptodate(connector,
5880 G4X_AUD_CNTL_ST, eldv,
5881 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5882 G4X_HDMIW_HDMIEDID))
5883 return;
5884
e0dac65e
WF
5885 i = I915_READ(G4X_AUD_CNTL_ST);
5886 i &= ~(eldv | G4X_ELD_ADDR);
5887 len = (i >> 9) & 0x1f; /* ELD buffer size */
5888 I915_WRITE(G4X_AUD_CNTL_ST, i);
5889
5890 if (!eld[0])
5891 return;
5892
5893 len = min_t(uint8_t, eld[2], len);
5894 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5895 for (i = 0; i < len; i++)
5896 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5897
5898 i = I915_READ(G4X_AUD_CNTL_ST);
5899 i |= eldv;
5900 I915_WRITE(G4X_AUD_CNTL_ST, i);
5901}
5902
83358c85
WX
5903static void haswell_write_eld(struct drm_connector *connector,
5904 struct drm_crtc *crtc)
5905{
5906 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5907 uint8_t *eld = connector->eld;
5908 struct drm_device *dev = crtc->dev;
5909 uint32_t eldv;
5910 uint32_t i;
5911 int len;
5912 int pipe = to_intel_crtc(crtc)->pipe;
5913 int tmp;
5914
5915 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5916 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5917 int aud_config = HSW_AUD_CFG(pipe);
5918 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5919
5920
5921 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5922
5923 /* Audio output enable */
5924 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5925 tmp = I915_READ(aud_cntrl_st2);
5926 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5927 I915_WRITE(aud_cntrl_st2, tmp);
5928
5929 /* Wait for 1 vertical blank */
5930 intel_wait_for_vblank(dev, pipe);
5931
5932 /* Set ELD valid state */
5933 tmp = I915_READ(aud_cntrl_st2);
5934 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5935 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5936 I915_WRITE(aud_cntrl_st2, tmp);
5937 tmp = I915_READ(aud_cntrl_st2);
5938 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5939
5940 /* Enable HDMI mode */
5941 tmp = I915_READ(aud_config);
5942 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5943 /* clear N_programing_enable and N_value_index */
5944 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5945 I915_WRITE(aud_config, tmp);
5946
5947 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5948
5949 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5950
5951 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5952 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5953 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5954 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5955 } else
5956 I915_WRITE(aud_config, 0);
5957
5958 if (intel_eld_uptodate(connector,
5959 aud_cntrl_st2, eldv,
5960 aud_cntl_st, IBX_ELD_ADDRESS,
5961 hdmiw_hdmiedid))
5962 return;
5963
5964 i = I915_READ(aud_cntrl_st2);
5965 i &= ~eldv;
5966 I915_WRITE(aud_cntrl_st2, i);
5967
5968 if (!eld[0])
5969 return;
5970
5971 i = I915_READ(aud_cntl_st);
5972 i &= ~IBX_ELD_ADDRESS;
5973 I915_WRITE(aud_cntl_st, i);
5974 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5975 DRM_DEBUG_DRIVER("port num:%d\n", i);
5976
5977 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5978 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5979 for (i = 0; i < len; i++)
5980 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5981
5982 i = I915_READ(aud_cntrl_st2);
5983 i |= eldv;
5984 I915_WRITE(aud_cntrl_st2, i);
5985
5986}
5987
e0dac65e
WF
5988static void ironlake_write_eld(struct drm_connector *connector,
5989 struct drm_crtc *crtc)
5990{
5991 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5992 uint8_t *eld = connector->eld;
5993 uint32_t eldv;
5994 uint32_t i;
5995 int len;
5996 int hdmiw_hdmiedid;
b6daa025 5997 int aud_config;
e0dac65e
WF
5998 int aud_cntl_st;
5999 int aud_cntrl_st2;
9b138a83 6000 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 6001
b3f33cbf 6002 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
6003 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6004 aud_config = IBX_AUD_CFG(pipe);
6005 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 6006 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6007 } else {
9b138a83
WX
6008 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6009 aud_config = CPT_AUD_CFG(pipe);
6010 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 6011 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6012 }
6013
9b138a83 6014 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
6015
6016 i = I915_READ(aud_cntl_st);
9b138a83 6017 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
6018 if (!i) {
6019 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6020 /* operate blindly on all ports */
1202b4c6
WF
6021 eldv = IBX_ELD_VALIDB;
6022 eldv |= IBX_ELD_VALIDB << 4;
6023 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6024 } else {
6025 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6026 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6027 }
6028
3a9627f4
WF
6029 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6030 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6031 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
6032 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6033 } else
6034 I915_WRITE(aud_config, 0);
e0dac65e 6035
3a9627f4
WF
6036 if (intel_eld_uptodate(connector,
6037 aud_cntrl_st2, eldv,
6038 aud_cntl_st, IBX_ELD_ADDRESS,
6039 hdmiw_hdmiedid))
6040 return;
6041
e0dac65e
WF
6042 i = I915_READ(aud_cntrl_st2);
6043 i &= ~eldv;
6044 I915_WRITE(aud_cntrl_st2, i);
6045
6046 if (!eld[0])
6047 return;
6048
e0dac65e 6049 i = I915_READ(aud_cntl_st);
1202b4c6 6050 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6051 I915_WRITE(aud_cntl_st, i);
6052
6053 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6054 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6055 for (i = 0; i < len; i++)
6056 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6057
6058 i = I915_READ(aud_cntrl_st2);
6059 i |= eldv;
6060 I915_WRITE(aud_cntrl_st2, i);
6061}
6062
6063void intel_write_eld(struct drm_encoder *encoder,
6064 struct drm_display_mode *mode)
6065{
6066 struct drm_crtc *crtc = encoder->crtc;
6067 struct drm_connector *connector;
6068 struct drm_device *dev = encoder->dev;
6069 struct drm_i915_private *dev_priv = dev->dev_private;
6070
6071 connector = drm_select_eld(encoder, mode);
6072 if (!connector)
6073 return;
6074
6075 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6076 connector->base.id,
6077 drm_get_connector_name(connector),
6078 connector->encoder->base.id,
6079 drm_get_encoder_name(connector->encoder));
6080
6081 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6082
6083 if (dev_priv->display.write_eld)
6084 dev_priv->display.write_eld(connector, crtc);
6085}
6086
79e53945
JB
6087/** Loads the palette/gamma unit for the CRTC with the prepared values */
6088void intel_crtc_load_lut(struct drm_crtc *crtc)
6089{
6090 struct drm_device *dev = crtc->dev;
6091 struct drm_i915_private *dev_priv = dev->dev_private;
6092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6093 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6094 int i;
6095
6096 /* The clocks have to be on to load the palette. */
aed3f09d 6097 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
6098 return;
6099
f2b115e6 6100 /* use legacy palette for Ironlake */
bad720ff 6101 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6102 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6103
79e53945
JB
6104 for (i = 0; i < 256; i++) {
6105 I915_WRITE(palreg + 4 * i,
6106 (intel_crtc->lut_r[i] << 16) |
6107 (intel_crtc->lut_g[i] << 8) |
6108 intel_crtc->lut_b[i]);
6109 }
6110}
6111
560b85bb
CW
6112static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6113{
6114 struct drm_device *dev = crtc->dev;
6115 struct drm_i915_private *dev_priv = dev->dev_private;
6116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6117 bool visible = base != 0;
6118 u32 cntl;
6119
6120 if (intel_crtc->cursor_visible == visible)
6121 return;
6122
9db4a9c7 6123 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6124 if (visible) {
6125 /* On these chipsets we can only modify the base whilst
6126 * the cursor is disabled.
6127 */
9db4a9c7 6128 I915_WRITE(_CURABASE, base);
560b85bb
CW
6129
6130 cntl &= ~(CURSOR_FORMAT_MASK);
6131 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6132 cntl |= CURSOR_ENABLE |
6133 CURSOR_GAMMA_ENABLE |
6134 CURSOR_FORMAT_ARGB;
6135 } else
6136 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6137 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6138
6139 intel_crtc->cursor_visible = visible;
6140}
6141
6142static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6143{
6144 struct drm_device *dev = crtc->dev;
6145 struct drm_i915_private *dev_priv = dev->dev_private;
6146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6147 int pipe = intel_crtc->pipe;
6148 bool visible = base != 0;
6149
6150 if (intel_crtc->cursor_visible != visible) {
548f245b 6151 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6152 if (base) {
6153 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6154 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6155 cntl |= pipe << 28; /* Connect to correct pipe */
6156 } else {
6157 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6158 cntl |= CURSOR_MODE_DISABLE;
6159 }
9db4a9c7 6160 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6161
6162 intel_crtc->cursor_visible = visible;
6163 }
6164 /* and commit changes on next vblank */
9db4a9c7 6165 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6166}
6167
65a21cd6
JB
6168static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6169{
6170 struct drm_device *dev = crtc->dev;
6171 struct drm_i915_private *dev_priv = dev->dev_private;
6172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6173 int pipe = intel_crtc->pipe;
6174 bool visible = base != 0;
6175
6176 if (intel_crtc->cursor_visible != visible) {
6177 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6178 if (base) {
6179 cntl &= ~CURSOR_MODE;
6180 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6181 } else {
6182 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6183 cntl |= CURSOR_MODE_DISABLE;
6184 }
6185 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6186
6187 intel_crtc->cursor_visible = visible;
6188 }
6189 /* and commit changes on next vblank */
6190 I915_WRITE(CURBASE_IVB(pipe), base);
6191}
6192
cda4b7d3 6193/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6194static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6195 bool on)
cda4b7d3
CW
6196{
6197 struct drm_device *dev = crtc->dev;
6198 struct drm_i915_private *dev_priv = dev->dev_private;
6199 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6200 int pipe = intel_crtc->pipe;
6201 int x = intel_crtc->cursor_x;
6202 int y = intel_crtc->cursor_y;
560b85bb 6203 u32 base, pos;
cda4b7d3
CW
6204 bool visible;
6205
6206 pos = 0;
6207
6b383a7f 6208 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6209 base = intel_crtc->cursor_addr;
6210 if (x > (int) crtc->fb->width)
6211 base = 0;
6212
6213 if (y > (int) crtc->fb->height)
6214 base = 0;
6215 } else
6216 base = 0;
6217
6218 if (x < 0) {
6219 if (x + intel_crtc->cursor_width < 0)
6220 base = 0;
6221
6222 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6223 x = -x;
6224 }
6225 pos |= x << CURSOR_X_SHIFT;
6226
6227 if (y < 0) {
6228 if (y + intel_crtc->cursor_height < 0)
6229 base = 0;
6230
6231 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6232 y = -y;
6233 }
6234 pos |= y << CURSOR_Y_SHIFT;
6235
6236 visible = base != 0;
560b85bb 6237 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6238 return;
6239
0cd83aa9 6240 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6241 I915_WRITE(CURPOS_IVB(pipe), pos);
6242 ivb_update_cursor(crtc, base);
6243 } else {
6244 I915_WRITE(CURPOS(pipe), pos);
6245 if (IS_845G(dev) || IS_I865G(dev))
6246 i845_update_cursor(crtc, base);
6247 else
6248 i9xx_update_cursor(crtc, base);
6249 }
cda4b7d3
CW
6250}
6251
79e53945 6252static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6253 struct drm_file *file,
79e53945
JB
6254 uint32_t handle,
6255 uint32_t width, uint32_t height)
6256{
6257 struct drm_device *dev = crtc->dev;
6258 struct drm_i915_private *dev_priv = dev->dev_private;
6259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6260 struct drm_i915_gem_object *obj;
cda4b7d3 6261 uint32_t addr;
3f8bc370 6262 int ret;
79e53945 6263
79e53945
JB
6264 /* if we want to turn off the cursor ignore width and height */
6265 if (!handle) {
28c97730 6266 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6267 addr = 0;
05394f39 6268 obj = NULL;
5004417d 6269 mutex_lock(&dev->struct_mutex);
3f8bc370 6270 goto finish;
79e53945
JB
6271 }
6272
6273 /* Currently we only support 64x64 cursors */
6274 if (width != 64 || height != 64) {
6275 DRM_ERROR("we currently only support 64x64 cursors\n");
6276 return -EINVAL;
6277 }
6278
05394f39 6279 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6280 if (&obj->base == NULL)
79e53945
JB
6281 return -ENOENT;
6282
05394f39 6283 if (obj->base.size < width * height * 4) {
79e53945 6284 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6285 ret = -ENOMEM;
6286 goto fail;
79e53945
JB
6287 }
6288
71acb5eb 6289 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6290 mutex_lock(&dev->struct_mutex);
b295d1b6 6291 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6292 if (obj->tiling_mode) {
6293 DRM_ERROR("cursor cannot be tiled\n");
6294 ret = -EINVAL;
6295 goto fail_locked;
6296 }
6297
2da3b9b9 6298 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6299 if (ret) {
6300 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6301 goto fail_locked;
e7b526bb
CW
6302 }
6303
d9e86c0e
CW
6304 ret = i915_gem_object_put_fence(obj);
6305 if (ret) {
2da3b9b9 6306 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6307 goto fail_unpin;
6308 }
6309
05394f39 6310 addr = obj->gtt_offset;
71acb5eb 6311 } else {
6eeefaf3 6312 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6313 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6314 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6315 align);
71acb5eb
DA
6316 if (ret) {
6317 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6318 goto fail_locked;
71acb5eb 6319 }
05394f39 6320 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6321 }
6322
a6c45cf0 6323 if (IS_GEN2(dev))
14b60391
JB
6324 I915_WRITE(CURSIZE, (height << 12) | width);
6325
3f8bc370 6326 finish:
3f8bc370 6327 if (intel_crtc->cursor_bo) {
b295d1b6 6328 if (dev_priv->info->cursor_needs_physical) {
05394f39 6329 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6330 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6331 } else
6332 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6333 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6334 }
80824003 6335
7f9872e0 6336 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6337
6338 intel_crtc->cursor_addr = addr;
05394f39 6339 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6340 intel_crtc->cursor_width = width;
6341 intel_crtc->cursor_height = height;
6342
6b383a7f 6343 intel_crtc_update_cursor(crtc, true);
3f8bc370 6344
79e53945 6345 return 0;
e7b526bb 6346fail_unpin:
05394f39 6347 i915_gem_object_unpin(obj);
7f9872e0 6348fail_locked:
34b8686e 6349 mutex_unlock(&dev->struct_mutex);
bc9025bd 6350fail:
05394f39 6351 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6352 return ret;
79e53945
JB
6353}
6354
6355static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6356{
79e53945 6357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6358
cda4b7d3
CW
6359 intel_crtc->cursor_x = x;
6360 intel_crtc->cursor_y = y;
652c393a 6361
6b383a7f 6362 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6363
6364 return 0;
6365}
6366
6367/** Sets the color ramps on behalf of RandR */
6368void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6369 u16 blue, int regno)
6370{
6371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6372
6373 intel_crtc->lut_r[regno] = red >> 8;
6374 intel_crtc->lut_g[regno] = green >> 8;
6375 intel_crtc->lut_b[regno] = blue >> 8;
6376}
6377
b8c00ac5
DA
6378void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6379 u16 *blue, int regno)
6380{
6381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6382
6383 *red = intel_crtc->lut_r[regno] << 8;
6384 *green = intel_crtc->lut_g[regno] << 8;
6385 *blue = intel_crtc->lut_b[regno] << 8;
6386}
6387
79e53945 6388static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6389 u16 *blue, uint32_t start, uint32_t size)
79e53945 6390{
7203425a 6391 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6392 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6393
7203425a 6394 for (i = start; i < end; i++) {
79e53945
JB
6395 intel_crtc->lut_r[i] = red[i] >> 8;
6396 intel_crtc->lut_g[i] = green[i] >> 8;
6397 intel_crtc->lut_b[i] = blue[i] >> 8;
6398 }
6399
6400 intel_crtc_load_lut(crtc);
6401}
6402
6403/**
6404 * Get a pipe with a simple mode set on it for doing load-based monitor
6405 * detection.
6406 *
6407 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6408 * its requirements. The pipe will be connected to no other encoders.
79e53945 6409 *
c751ce4f 6410 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6411 * configured for it. In the future, it could choose to temporarily disable
6412 * some outputs to free up a pipe for its use.
6413 *
6414 * \return crtc, or NULL if no pipes are available.
6415 */
6416
6417/* VESA 640x480x72Hz mode to set on the pipe */
6418static struct drm_display_mode load_detect_mode = {
6419 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6420 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6421};
6422
d2dff872
CW
6423static struct drm_framebuffer *
6424intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6425 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6426 struct drm_i915_gem_object *obj)
6427{
6428 struct intel_framebuffer *intel_fb;
6429 int ret;
6430
6431 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6432 if (!intel_fb) {
6433 drm_gem_object_unreference_unlocked(&obj->base);
6434 return ERR_PTR(-ENOMEM);
6435 }
6436
6437 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6438 if (ret) {
6439 drm_gem_object_unreference_unlocked(&obj->base);
6440 kfree(intel_fb);
6441 return ERR_PTR(ret);
6442 }
6443
6444 return &intel_fb->base;
6445}
6446
6447static u32
6448intel_framebuffer_pitch_for_width(int width, int bpp)
6449{
6450 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6451 return ALIGN(pitch, 64);
6452}
6453
6454static u32
6455intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6456{
6457 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6458 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6459}
6460
6461static struct drm_framebuffer *
6462intel_framebuffer_create_for_mode(struct drm_device *dev,
6463 struct drm_display_mode *mode,
6464 int depth, int bpp)
6465{
6466 struct drm_i915_gem_object *obj;
0fed39bd 6467 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
6468
6469 obj = i915_gem_alloc_object(dev,
6470 intel_framebuffer_size_for_mode(mode, bpp));
6471 if (obj == NULL)
6472 return ERR_PTR(-ENOMEM);
6473
6474 mode_cmd.width = mode->hdisplay;
6475 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6476 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6477 bpp);
5ca0c34a 6478 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6479
6480 return intel_framebuffer_create(dev, &mode_cmd, obj);
6481}
6482
6483static struct drm_framebuffer *
6484mode_fits_in_fbdev(struct drm_device *dev,
6485 struct drm_display_mode *mode)
6486{
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488 struct drm_i915_gem_object *obj;
6489 struct drm_framebuffer *fb;
6490
6491 if (dev_priv->fbdev == NULL)
6492 return NULL;
6493
6494 obj = dev_priv->fbdev->ifb.obj;
6495 if (obj == NULL)
6496 return NULL;
6497
6498 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6499 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6500 fb->bits_per_pixel))
d2dff872
CW
6501 return NULL;
6502
01f2c773 6503 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6504 return NULL;
6505
6506 return fb;
6507}
6508
d2434ab7 6509bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6510 struct drm_display_mode *mode,
8261b191 6511 struct intel_load_detect_pipe *old)
79e53945
JB
6512{
6513 struct intel_crtc *intel_crtc;
d2434ab7
DV
6514 struct intel_encoder *intel_encoder =
6515 intel_attached_encoder(connector);
79e53945 6516 struct drm_crtc *possible_crtc;
4ef69c7a 6517 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6518 struct drm_crtc *crtc = NULL;
6519 struct drm_device *dev = encoder->dev;
94352cf9 6520 struct drm_framebuffer *fb;
79e53945
JB
6521 int i = -1;
6522
d2dff872
CW
6523 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6524 connector->base.id, drm_get_connector_name(connector),
6525 encoder->base.id, drm_get_encoder_name(encoder));
6526
79e53945
JB
6527 /*
6528 * Algorithm gets a little messy:
7a5e4805 6529 *
79e53945
JB
6530 * - if the connector already has an assigned crtc, use it (but make
6531 * sure it's on first)
7a5e4805 6532 *
79e53945
JB
6533 * - try to find the first unused crtc that can drive this connector,
6534 * and use that if we find one
79e53945
JB
6535 */
6536
6537 /* See if we already have a CRTC for this connector */
6538 if (encoder->crtc) {
6539 crtc = encoder->crtc;
8261b191 6540
24218aac 6541 old->dpms_mode = connector->dpms;
8261b191
CW
6542 old->load_detect_temp = false;
6543
6544 /* Make sure the crtc and connector are running */
24218aac
DV
6545 if (connector->dpms != DRM_MODE_DPMS_ON)
6546 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6547
7173188d 6548 return true;
79e53945
JB
6549 }
6550
6551 /* Find an unused one (if possible) */
6552 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6553 i++;
6554 if (!(encoder->possible_crtcs & (1 << i)))
6555 continue;
6556 if (!possible_crtc->enabled) {
6557 crtc = possible_crtc;
6558 break;
6559 }
79e53945
JB
6560 }
6561
6562 /*
6563 * If we didn't find an unused CRTC, don't use any.
6564 */
6565 if (!crtc) {
7173188d
CW
6566 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6567 return false;
79e53945
JB
6568 }
6569
fc303101
DV
6570 intel_encoder->new_crtc = to_intel_crtc(crtc);
6571 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6572
6573 intel_crtc = to_intel_crtc(crtc);
24218aac 6574 old->dpms_mode = connector->dpms;
8261b191 6575 old->load_detect_temp = true;
d2dff872 6576 old->release_fb = NULL;
79e53945 6577
6492711d
CW
6578 if (!mode)
6579 mode = &load_detect_mode;
79e53945 6580
d2dff872
CW
6581 /* We need a framebuffer large enough to accommodate all accesses
6582 * that the plane may generate whilst we perform load detection.
6583 * We can not rely on the fbcon either being present (we get called
6584 * during its initialisation to detect all boot displays, or it may
6585 * not even exist) or that it is large enough to satisfy the
6586 * requested mode.
6587 */
94352cf9
DV
6588 fb = mode_fits_in_fbdev(dev, mode);
6589 if (fb == NULL) {
d2dff872 6590 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6591 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6592 old->release_fb = fb;
d2dff872
CW
6593 } else
6594 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6595 if (IS_ERR(fb)) {
d2dff872 6596 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
0e8b3d3e 6597 return false;
79e53945 6598 }
79e53945 6599
94352cf9 6600 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6601 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6602 if (old->release_fb)
6603 old->release_fb->funcs->destroy(old->release_fb);
0e8b3d3e 6604 return false;
79e53945 6605 }
7173188d 6606
79e53945 6607 /* let the connector get through one full cycle before testing */
9d0498a2 6608 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 6609 return true;
79e53945
JB
6610}
6611
d2434ab7 6612void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6613 struct intel_load_detect_pipe *old)
79e53945 6614{
d2434ab7
DV
6615 struct intel_encoder *intel_encoder =
6616 intel_attached_encoder(connector);
4ef69c7a 6617 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6618
d2dff872
CW
6619 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6620 connector->base.id, drm_get_connector_name(connector),
6621 encoder->base.id, drm_get_encoder_name(encoder));
6622
8261b191 6623 if (old->load_detect_temp) {
fc303101
DV
6624 struct drm_crtc *crtc = encoder->crtc;
6625
6626 to_intel_connector(connector)->new_encoder = NULL;
6627 intel_encoder->new_crtc = NULL;
6628 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6629
6630 if (old->release_fb)
6631 old->release_fb->funcs->destroy(old->release_fb);
6632
0622a53c 6633 return;
79e53945
JB
6634 }
6635
c751ce4f 6636 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6637 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6638 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6639}
6640
6641/* Returns the clock of the currently programmed mode of the given pipe. */
6642static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6643{
6644 struct drm_i915_private *dev_priv = dev->dev_private;
6645 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6646 int pipe = intel_crtc->pipe;
548f245b 6647 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6648 u32 fp;
6649 intel_clock_t clock;
6650
6651 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6652 fp = I915_READ(FP0(pipe));
79e53945 6653 else
39adb7a5 6654 fp = I915_READ(FP1(pipe));
79e53945
JB
6655
6656 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6657 if (IS_PINEVIEW(dev)) {
6658 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6659 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6660 } else {
6661 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6662 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6663 }
6664
a6c45cf0 6665 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6666 if (IS_PINEVIEW(dev))
6667 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6668 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6669 else
6670 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6671 DPLL_FPA01_P1_POST_DIV_SHIFT);
6672
6673 switch (dpll & DPLL_MODE_MASK) {
6674 case DPLLB_MODE_DAC_SERIAL:
6675 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6676 5 : 10;
6677 break;
6678 case DPLLB_MODE_LVDS:
6679 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6680 7 : 14;
6681 break;
6682 default:
28c97730 6683 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6684 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6685 return 0;
6686 }
6687
6688 /* XXX: Handle the 100Mhz refclk */
2177832f 6689 intel_clock(dev, 96000, &clock);
79e53945
JB
6690 } else {
6691 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6692
6693 if (is_lvds) {
6694 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6695 DPLL_FPA01_P1_POST_DIV_SHIFT);
6696 clock.p2 = 14;
6697
6698 if ((dpll & PLL_REF_INPUT_MASK) ==
6699 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6700 /* XXX: might not be 66MHz */
2177832f 6701 intel_clock(dev, 66000, &clock);
79e53945 6702 } else
2177832f 6703 intel_clock(dev, 48000, &clock);
79e53945
JB
6704 } else {
6705 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6706 clock.p1 = 2;
6707 else {
6708 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6709 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6710 }
6711 if (dpll & PLL_P2_DIVIDE_BY_4)
6712 clock.p2 = 4;
6713 else
6714 clock.p2 = 2;
6715
2177832f 6716 intel_clock(dev, 48000, &clock);
79e53945
JB
6717 }
6718 }
6719
6720 /* XXX: It would be nice to validate the clocks, but we can't reuse
6721 * i830PllIsValid() because it relies on the xf86_config connector
6722 * configuration being accurate, which it isn't necessarily.
6723 */
6724
6725 return clock.dot;
6726}
6727
6728/** Returns the currently programmed mode of the given pipe. */
6729struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6730 struct drm_crtc *crtc)
6731{
548f245b 6732 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6734 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6735 struct drm_display_mode *mode;
fe2b8f9d
PZ
6736 int htot = I915_READ(HTOTAL(cpu_transcoder));
6737 int hsync = I915_READ(HSYNC(cpu_transcoder));
6738 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6739 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6740
6741 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6742 if (!mode)
6743 return NULL;
6744
6745 mode->clock = intel_crtc_clock_get(dev, crtc);
6746 mode->hdisplay = (htot & 0xffff) + 1;
6747 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6748 mode->hsync_start = (hsync & 0xffff) + 1;
6749 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6750 mode->vdisplay = (vtot & 0xffff) + 1;
6751 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6752 mode->vsync_start = (vsync & 0xffff) + 1;
6753 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6754
6755 drm_mode_set_name(mode);
79e53945
JB
6756
6757 return mode;
6758}
6759
3dec0095 6760static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6761{
6762 struct drm_device *dev = crtc->dev;
6763 drm_i915_private_t *dev_priv = dev->dev_private;
6764 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6765 int pipe = intel_crtc->pipe;
dbdc6479
JB
6766 int dpll_reg = DPLL(pipe);
6767 int dpll;
652c393a 6768
bad720ff 6769 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6770 return;
6771
6772 if (!dev_priv->lvds_downclock_avail)
6773 return;
6774
dbdc6479 6775 dpll = I915_READ(dpll_reg);
652c393a 6776 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6777 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6778
8ac5a6d5 6779 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6780
6781 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6782 I915_WRITE(dpll_reg, dpll);
9d0498a2 6783 intel_wait_for_vblank(dev, pipe);
dbdc6479 6784
652c393a
JB
6785 dpll = I915_READ(dpll_reg);
6786 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6787 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6788 }
652c393a
JB
6789}
6790
6791static void intel_decrease_pllclock(struct drm_crtc *crtc)
6792{
6793 struct drm_device *dev = crtc->dev;
6794 drm_i915_private_t *dev_priv = dev->dev_private;
6795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6796
bad720ff 6797 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6798 return;
6799
6800 if (!dev_priv->lvds_downclock_avail)
6801 return;
6802
6803 /*
6804 * Since this is called by a timer, we should never get here in
6805 * the manual case.
6806 */
6807 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6808 int pipe = intel_crtc->pipe;
6809 int dpll_reg = DPLL(pipe);
6810 int dpll;
f6e5b160 6811
44d98a61 6812 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6813
8ac5a6d5 6814 assert_panel_unlocked(dev_priv, pipe);
652c393a 6815
dc257cf1 6816 dpll = I915_READ(dpll_reg);
652c393a
JB
6817 dpll |= DISPLAY_RATE_SELECT_FPA1;
6818 I915_WRITE(dpll_reg, dpll);
9d0498a2 6819 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6820 dpll = I915_READ(dpll_reg);
6821 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6822 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6823 }
6824
6825}
6826
f047e395
CW
6827void intel_mark_busy(struct drm_device *dev)
6828{
f047e395
CW
6829 i915_update_gfx_val(dev->dev_private);
6830}
6831
6832void intel_mark_idle(struct drm_device *dev)
652c393a 6833{
f047e395
CW
6834}
6835
6836void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6837{
6838 struct drm_device *dev = obj->base.dev;
652c393a 6839 struct drm_crtc *crtc;
652c393a
JB
6840
6841 if (!i915_powersave)
6842 return;
6843
652c393a 6844 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6845 if (!crtc->fb)
6846 continue;
6847
f047e395
CW
6848 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6849 intel_increase_pllclock(crtc);
652c393a 6850 }
652c393a
JB
6851}
6852
f047e395 6853void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6854{
f047e395
CW
6855 struct drm_device *dev = obj->base.dev;
6856 struct drm_crtc *crtc;
652c393a 6857
f047e395 6858 if (!i915_powersave)
acb87dfb
CW
6859 return;
6860
652c393a
JB
6861 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6862 if (!crtc->fb)
6863 continue;
6864
f047e395
CW
6865 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6866 intel_decrease_pllclock(crtc);
652c393a
JB
6867 }
6868}
6869
79e53945
JB
6870static void intel_crtc_destroy(struct drm_crtc *crtc)
6871{
6872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6873 struct drm_device *dev = crtc->dev;
6874 struct intel_unpin_work *work;
6875 unsigned long flags;
6876
6877 spin_lock_irqsave(&dev->event_lock, flags);
6878 work = intel_crtc->unpin_work;
6879 intel_crtc->unpin_work = NULL;
6880 spin_unlock_irqrestore(&dev->event_lock, flags);
6881
6882 if (work) {
6883 cancel_work_sync(&work->work);
6884 kfree(work);
6885 }
79e53945
JB
6886
6887 drm_crtc_cleanup(crtc);
67e77c5a 6888
79e53945
JB
6889 kfree(intel_crtc);
6890}
6891
6b95a207
KH
6892static void intel_unpin_work_fn(struct work_struct *__work)
6893{
6894 struct intel_unpin_work *work =
6895 container_of(__work, struct intel_unpin_work, work);
b4a98e57 6896 struct drm_device *dev = work->crtc->dev;
6b95a207 6897
b4a98e57 6898 mutex_lock(&dev->struct_mutex);
1690e1eb 6899 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6900 drm_gem_object_unreference(&work->pending_flip_obj->base);
6901 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6902
b4a98e57
CW
6903 intel_update_fbc(dev);
6904 mutex_unlock(&dev->struct_mutex);
6905
6906 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6907 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6908
6b95a207
KH
6909 kfree(work);
6910}
6911
1afe3e9d 6912static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6913 struct drm_crtc *crtc)
6b95a207
KH
6914{
6915 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6917 struct intel_unpin_work *work;
05394f39 6918 struct drm_i915_gem_object *obj;
6b95a207 6919 struct drm_pending_vblank_event *e;
95cb1b02 6920 struct timeval tvbl;
6b95a207
KH
6921 unsigned long flags;
6922
6923 /* Ignore early vblank irqs */
6924 if (intel_crtc == NULL)
6925 return;
6926
6927 spin_lock_irqsave(&dev->event_lock, flags);
6928 work = intel_crtc->unpin_work;
6929 if (work == NULL || !work->pending) {
6930 spin_unlock_irqrestore(&dev->event_lock, flags);
6931 return;
6932 }
6933
6934 intel_crtc->unpin_work = NULL;
6b95a207
KH
6935
6936 if (work->event) {
6937 e = work->event;
49b14a5c 6938 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df 6939
49b14a5c
MK
6940 e->event.tv_sec = tvbl.tv_sec;
6941 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6942
6b95a207
KH
6943 list_add_tail(&e->base.link,
6944 &e->base.file_priv->event_list);
6945 wake_up_interruptible(&e->base.file_priv->event_wait);
6946 }
6947
0af7e4df
MK
6948 drm_vblank_put(dev, intel_crtc->pipe);
6949
6b95a207
KH
6950 spin_unlock_irqrestore(&dev->event_lock, flags);
6951
05394f39 6952 obj = work->old_fb_obj;
d9e86c0e 6953
e59f2bac 6954 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6955 &obj->pending_flip.counter);
5bb61643 6956 wake_up(&dev_priv->pending_flip_queue);
b4a98e57
CW
6957
6958 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
6959
6960 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6961}
6962
1afe3e9d
JB
6963void intel_finish_page_flip(struct drm_device *dev, int pipe)
6964{
6965 drm_i915_private_t *dev_priv = dev->dev_private;
6966 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6967
49b14a5c 6968 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6969}
6970
6971void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6972{
6973 drm_i915_private_t *dev_priv = dev->dev_private;
6974 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6975
49b14a5c 6976 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6977}
6978
6b95a207
KH
6979void intel_prepare_page_flip(struct drm_device *dev, int plane)
6980{
6981 drm_i915_private_t *dev_priv = dev->dev_private;
6982 struct intel_crtc *intel_crtc =
6983 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6984 unsigned long flags;
6985
6986 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6987 if (intel_crtc->unpin_work) {
4e5359cd
SF
6988 if ((++intel_crtc->unpin_work->pending) > 1)
6989 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6990 } else {
6991 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6992 }
6b95a207
KH
6993 spin_unlock_irqrestore(&dev->event_lock, flags);
6994}
6995
8c9f3aaf
JB
6996static int intel_gen2_queue_flip(struct drm_device *dev,
6997 struct drm_crtc *crtc,
6998 struct drm_framebuffer *fb,
6999 struct drm_i915_gem_object *obj)
7000{
7001 struct drm_i915_private *dev_priv = dev->dev_private;
7002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7003 u32 flip_mask;
6d90c952 7004 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7005 int ret;
7006
6d90c952 7007 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7008 if (ret)
83d4092b 7009 goto err;
8c9f3aaf 7010
6d90c952 7011 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7012 if (ret)
83d4092b 7013 goto err_unpin;
8c9f3aaf
JB
7014
7015 /* Can't queue multiple flips, so wait for the previous
7016 * one to finish before executing the next.
7017 */
7018 if (intel_crtc->plane)
7019 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7020 else
7021 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7022 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7023 intel_ring_emit(ring, MI_NOOP);
7024 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7025 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7026 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7027 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7028 intel_ring_emit(ring, 0); /* aux display base address, unused */
7029 intel_ring_advance(ring);
83d4092b
CW
7030 return 0;
7031
7032err_unpin:
7033 intel_unpin_fb_obj(obj);
7034err:
8c9f3aaf
JB
7035 return ret;
7036}
7037
7038static int intel_gen3_queue_flip(struct drm_device *dev,
7039 struct drm_crtc *crtc,
7040 struct drm_framebuffer *fb,
7041 struct drm_i915_gem_object *obj)
7042{
7043 struct drm_i915_private *dev_priv = dev->dev_private;
7044 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7045 u32 flip_mask;
6d90c952 7046 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7047 int ret;
7048
6d90c952 7049 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7050 if (ret)
83d4092b 7051 goto err;
8c9f3aaf 7052
6d90c952 7053 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7054 if (ret)
83d4092b 7055 goto err_unpin;
8c9f3aaf
JB
7056
7057 if (intel_crtc->plane)
7058 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7059 else
7060 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7061 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7062 intel_ring_emit(ring, MI_NOOP);
7063 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7064 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7065 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7066 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7067 intel_ring_emit(ring, MI_NOOP);
7068
7069 intel_ring_advance(ring);
83d4092b
CW
7070 return 0;
7071
7072err_unpin:
7073 intel_unpin_fb_obj(obj);
7074err:
8c9f3aaf
JB
7075 return ret;
7076}
7077
7078static int intel_gen4_queue_flip(struct drm_device *dev,
7079 struct drm_crtc *crtc,
7080 struct drm_framebuffer *fb,
7081 struct drm_i915_gem_object *obj)
7082{
7083 struct drm_i915_private *dev_priv = dev->dev_private;
7084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7085 uint32_t pf, pipesrc;
6d90c952 7086 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7087 int ret;
7088
6d90c952 7089 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7090 if (ret)
83d4092b 7091 goto err;
8c9f3aaf 7092
6d90c952 7093 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7094 if (ret)
83d4092b 7095 goto err_unpin;
8c9f3aaf
JB
7096
7097 /* i965+ uses the linear or tiled offsets from the
7098 * Display Registers (which do not change across a page-flip)
7099 * so we need only reprogram the base address.
7100 */
6d90c952
DV
7101 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7102 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7103 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
7104 intel_ring_emit(ring,
7105 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7106 obj->tiling_mode);
8c9f3aaf
JB
7107
7108 /* XXX Enabling the panel-fitter across page-flip is so far
7109 * untested on non-native modes, so ignore it for now.
7110 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7111 */
7112 pf = 0;
7113 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7114 intel_ring_emit(ring, pf | pipesrc);
7115 intel_ring_advance(ring);
83d4092b
CW
7116 return 0;
7117
7118err_unpin:
7119 intel_unpin_fb_obj(obj);
7120err:
8c9f3aaf
JB
7121 return ret;
7122}
7123
7124static int intel_gen6_queue_flip(struct drm_device *dev,
7125 struct drm_crtc *crtc,
7126 struct drm_framebuffer *fb,
7127 struct drm_i915_gem_object *obj)
7128{
7129 struct drm_i915_private *dev_priv = dev->dev_private;
7130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 7131 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7132 uint32_t pf, pipesrc;
7133 int ret;
7134
6d90c952 7135 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7136 if (ret)
83d4092b 7137 goto err;
8c9f3aaf 7138
6d90c952 7139 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7140 if (ret)
83d4092b 7141 goto err_unpin;
8c9f3aaf 7142
6d90c952
DV
7143 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7144 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7145 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 7146 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 7147
dc257cf1
DV
7148 /* Contrary to the suggestions in the documentation,
7149 * "Enable Panel Fitter" does not seem to be required when page
7150 * flipping with a non-native mode, and worse causes a normal
7151 * modeset to fail.
7152 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7153 */
7154 pf = 0;
8c9f3aaf 7155 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7156 intel_ring_emit(ring, pf | pipesrc);
7157 intel_ring_advance(ring);
83d4092b
CW
7158 return 0;
7159
7160err_unpin:
7161 intel_unpin_fb_obj(obj);
7162err:
8c9f3aaf
JB
7163 return ret;
7164}
7165
7c9017e5
JB
7166/*
7167 * On gen7 we currently use the blit ring because (in early silicon at least)
7168 * the render ring doesn't give us interrpts for page flip completion, which
7169 * means clients will hang after the first flip is queued. Fortunately the
7170 * blit ring generates interrupts properly, so use it instead.
7171 */
7172static int intel_gen7_queue_flip(struct drm_device *dev,
7173 struct drm_crtc *crtc,
7174 struct drm_framebuffer *fb,
7175 struct drm_i915_gem_object *obj)
7176{
7177 struct drm_i915_private *dev_priv = dev->dev_private;
7178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7179 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 7180 uint32_t plane_bit = 0;
7c9017e5
JB
7181 int ret;
7182
7183 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7184 if (ret)
83d4092b 7185 goto err;
7c9017e5 7186
cb05d8de
DV
7187 switch(intel_crtc->plane) {
7188 case PLANE_A:
7189 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7190 break;
7191 case PLANE_B:
7192 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7193 break;
7194 case PLANE_C:
7195 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7196 break;
7197 default:
7198 WARN_ONCE(1, "unknown plane in flip command\n");
7199 ret = -ENODEV;
ab3951eb 7200 goto err_unpin;
cb05d8de
DV
7201 }
7202
7c9017e5
JB
7203 ret = intel_ring_begin(ring, 4);
7204 if (ret)
83d4092b 7205 goto err_unpin;
7c9017e5 7206
cb05d8de 7207 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 7208 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 7209 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
7210 intel_ring_emit(ring, (MI_NOOP));
7211 intel_ring_advance(ring);
83d4092b
CW
7212 return 0;
7213
7214err_unpin:
7215 intel_unpin_fb_obj(obj);
7216err:
7c9017e5
JB
7217 return ret;
7218}
7219
8c9f3aaf
JB
7220static int intel_default_queue_flip(struct drm_device *dev,
7221 struct drm_crtc *crtc,
7222 struct drm_framebuffer *fb,
7223 struct drm_i915_gem_object *obj)
7224{
7225 return -ENODEV;
7226}
7227
6b95a207
KH
7228static int intel_crtc_page_flip(struct drm_crtc *crtc,
7229 struct drm_framebuffer *fb,
7230 struct drm_pending_vblank_event *event)
7231{
7232 struct drm_device *dev = crtc->dev;
7233 struct drm_i915_private *dev_priv = dev->dev_private;
7234 struct intel_framebuffer *intel_fb;
05394f39 7235 struct drm_i915_gem_object *obj;
6b95a207
KH
7236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7237 struct intel_unpin_work *work;
8c9f3aaf 7238 unsigned long flags;
52e68630 7239 int ret;
6b95a207 7240
e6a595d2
VS
7241 /* Can't change pixel format via MI display flips. */
7242 if (fb->pixel_format != crtc->fb->pixel_format)
7243 return -EINVAL;
7244
7245 /*
7246 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7247 * Note that pitch changes could also affect these register.
7248 */
7249 if (INTEL_INFO(dev)->gen > 3 &&
7250 (fb->offsets[0] != crtc->fb->offsets[0] ||
7251 fb->pitches[0] != crtc->fb->pitches[0]))
7252 return -EINVAL;
7253
6b95a207
KH
7254 work = kzalloc(sizeof *work, GFP_KERNEL);
7255 if (work == NULL)
7256 return -ENOMEM;
7257
6b95a207 7258 work->event = event;
b4a98e57 7259 work->crtc = crtc;
6b95a207 7260 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7261 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7262 INIT_WORK(&work->work, intel_unpin_work_fn);
7263
7317c75e
JB
7264 ret = drm_vblank_get(dev, intel_crtc->pipe);
7265 if (ret)
7266 goto free_work;
7267
6b95a207
KH
7268 /* We borrow the event spin lock for protecting unpin_work */
7269 spin_lock_irqsave(&dev->event_lock, flags);
7270 if (intel_crtc->unpin_work) {
7271 spin_unlock_irqrestore(&dev->event_lock, flags);
7272 kfree(work);
7317c75e 7273 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7274
7275 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7276 return -EBUSY;
7277 }
7278 intel_crtc->unpin_work = work;
7279 spin_unlock_irqrestore(&dev->event_lock, flags);
7280
7281 intel_fb = to_intel_framebuffer(fb);
7282 obj = intel_fb->obj;
7283
b4a98e57
CW
7284 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7285 flush_workqueue(dev_priv->wq);
7286
79158103
CW
7287 ret = i915_mutex_lock_interruptible(dev);
7288 if (ret)
7289 goto cleanup;
6b95a207 7290
75dfca80 7291 /* Reference the objects for the scheduled work. */
05394f39
CW
7292 drm_gem_object_reference(&work->old_fb_obj->base);
7293 drm_gem_object_reference(&obj->base);
6b95a207
KH
7294
7295 crtc->fb = fb;
96b099fd 7296
e1f99ce6 7297 work->pending_flip_obj = obj;
e1f99ce6 7298
4e5359cd
SF
7299 work->enable_stall_check = true;
7300
e1f99ce6
CW
7301 /* Block clients from rendering to the new back buffer until
7302 * the flip occurs and the object is no longer visible.
7303 */
05394f39 7304 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
b4a98e57 7305 atomic_inc(&intel_crtc->unpin_work_count);
e1f99ce6 7306
8c9f3aaf
JB
7307 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7308 if (ret)
7309 goto cleanup_pending;
6b95a207 7310
7782de3b 7311 intel_disable_fbc(dev);
f047e395 7312 intel_mark_fb_busy(obj);
6b95a207
KH
7313 mutex_unlock(&dev->struct_mutex);
7314
e5510fac
JB
7315 trace_i915_flip_request(intel_crtc->plane, obj);
7316
6b95a207 7317 return 0;
96b099fd 7318
8c9f3aaf 7319cleanup_pending:
b4a98e57 7320 atomic_dec(&intel_crtc->unpin_work_count);
8c9f3aaf 7321 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7322 drm_gem_object_unreference(&work->old_fb_obj->base);
7323 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7324 mutex_unlock(&dev->struct_mutex);
7325
79158103 7326cleanup:
96b099fd
CW
7327 spin_lock_irqsave(&dev->event_lock, flags);
7328 intel_crtc->unpin_work = NULL;
7329 spin_unlock_irqrestore(&dev->event_lock, flags);
7330
7317c75e
JB
7331 drm_vblank_put(dev, intel_crtc->pipe);
7332free_work:
96b099fd
CW
7333 kfree(work);
7334
7335 return ret;
6b95a207
KH
7336}
7337
f6e5b160 7338static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7339 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7340 .load_lut = intel_crtc_load_lut,
976f8a20 7341 .disable = intel_crtc_noop,
f6e5b160
CW
7342};
7343
6ed0f796 7344bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7345{
6ed0f796
DV
7346 struct intel_encoder *other_encoder;
7347 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7348
6ed0f796
DV
7349 if (WARN_ON(!crtc))
7350 return false;
7351
7352 list_for_each_entry(other_encoder,
7353 &crtc->dev->mode_config.encoder_list,
7354 base.head) {
7355
7356 if (&other_encoder->new_crtc->base != crtc ||
7357 encoder == other_encoder)
7358 continue;
7359 else
7360 return true;
f47166d2
CW
7361 }
7362
6ed0f796
DV
7363 return false;
7364}
47f1c6c9 7365
50f56119
DV
7366static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7367 struct drm_crtc *crtc)
7368{
7369 struct drm_device *dev;
7370 struct drm_crtc *tmp;
7371 int crtc_mask = 1;
47f1c6c9 7372
50f56119 7373 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7374
50f56119 7375 dev = crtc->dev;
47f1c6c9 7376
50f56119
DV
7377 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7378 if (tmp == crtc)
7379 break;
7380 crtc_mask <<= 1;
7381 }
47f1c6c9 7382
50f56119
DV
7383 if (encoder->possible_crtcs & crtc_mask)
7384 return true;
7385 return false;
47f1c6c9 7386}
79e53945 7387
9a935856
DV
7388/**
7389 * intel_modeset_update_staged_output_state
7390 *
7391 * Updates the staged output configuration state, e.g. after we've read out the
7392 * current hw state.
7393 */
7394static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7395{
9a935856
DV
7396 struct intel_encoder *encoder;
7397 struct intel_connector *connector;
f6e5b160 7398
9a935856
DV
7399 list_for_each_entry(connector, &dev->mode_config.connector_list,
7400 base.head) {
7401 connector->new_encoder =
7402 to_intel_encoder(connector->base.encoder);
7403 }
f6e5b160 7404
9a935856
DV
7405 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7406 base.head) {
7407 encoder->new_crtc =
7408 to_intel_crtc(encoder->base.crtc);
7409 }
f6e5b160
CW
7410}
7411
9a935856
DV
7412/**
7413 * intel_modeset_commit_output_state
7414 *
7415 * This function copies the stage display pipe configuration to the real one.
7416 */
7417static void intel_modeset_commit_output_state(struct drm_device *dev)
7418{
7419 struct intel_encoder *encoder;
7420 struct intel_connector *connector;
f6e5b160 7421
9a935856
DV
7422 list_for_each_entry(connector, &dev->mode_config.connector_list,
7423 base.head) {
7424 connector->base.encoder = &connector->new_encoder->base;
7425 }
f6e5b160 7426
9a935856
DV
7427 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7428 base.head) {
7429 encoder->base.crtc = &encoder->new_crtc->base;
7430 }
7431}
7432
7758a113
DV
7433static struct drm_display_mode *
7434intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7435 struct drm_display_mode *mode)
ee7b9f93 7436{
7758a113
DV
7437 struct drm_device *dev = crtc->dev;
7438 struct drm_display_mode *adjusted_mode;
7439 struct drm_encoder_helper_funcs *encoder_funcs;
7440 struct intel_encoder *encoder;
ee7b9f93 7441
7758a113
DV
7442 adjusted_mode = drm_mode_duplicate(dev, mode);
7443 if (!adjusted_mode)
7444 return ERR_PTR(-ENOMEM);
7445
7446 /* Pass our mode to the connectors and the CRTC to give them a chance to
7447 * adjust it according to limitations or connector properties, and also
7448 * a chance to reject the mode entirely.
47f1c6c9 7449 */
7758a113
DV
7450 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7451 base.head) {
47f1c6c9 7452
7758a113
DV
7453 if (&encoder->new_crtc->base != crtc)
7454 continue;
7455 encoder_funcs = encoder->base.helper_private;
7456 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7457 adjusted_mode))) {
7458 DRM_DEBUG_KMS("Encoder fixup failed\n");
7459 goto fail;
7460 }
ee7b9f93 7461 }
47f1c6c9 7462
7758a113
DV
7463 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7464 DRM_DEBUG_KMS("CRTC fixup failed\n");
7465 goto fail;
ee7b9f93 7466 }
7758a113 7467 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
47f1c6c9 7468
7758a113
DV
7469 return adjusted_mode;
7470fail:
7471 drm_mode_destroy(dev, adjusted_mode);
7472 return ERR_PTR(-EINVAL);
ee7b9f93 7473}
47f1c6c9 7474
e2e1ed41
DV
7475/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7476 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7477static void
7478intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7479 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7480{
7481 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7482 struct drm_device *dev = crtc->dev;
7483 struct intel_encoder *encoder;
7484 struct intel_connector *connector;
7485 struct drm_crtc *tmp_crtc;
79e53945 7486
e2e1ed41 7487 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7488
e2e1ed41
DV
7489 /* Check which crtcs have changed outputs connected to them, these need
7490 * to be part of the prepare_pipes mask. We don't (yet) support global
7491 * modeset across multiple crtcs, so modeset_pipes will only have one
7492 * bit set at most. */
7493 list_for_each_entry(connector, &dev->mode_config.connector_list,
7494 base.head) {
7495 if (connector->base.encoder == &connector->new_encoder->base)
7496 continue;
79e53945 7497
e2e1ed41
DV
7498 if (connector->base.encoder) {
7499 tmp_crtc = connector->base.encoder->crtc;
7500
7501 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7502 }
7503
7504 if (connector->new_encoder)
7505 *prepare_pipes |=
7506 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7507 }
7508
e2e1ed41
DV
7509 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7510 base.head) {
7511 if (encoder->base.crtc == &encoder->new_crtc->base)
7512 continue;
7513
7514 if (encoder->base.crtc) {
7515 tmp_crtc = encoder->base.crtc;
7516
7517 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7518 }
7519
7520 if (encoder->new_crtc)
7521 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7522 }
7523
e2e1ed41
DV
7524 /* Check for any pipes that will be fully disabled ... */
7525 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7526 base.head) {
7527 bool used = false;
22fd0fab 7528
e2e1ed41
DV
7529 /* Don't try to disable disabled crtcs. */
7530 if (!intel_crtc->base.enabled)
7531 continue;
7e7d76c3 7532
e2e1ed41
DV
7533 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7534 base.head) {
7535 if (encoder->new_crtc == intel_crtc)
7536 used = true;
7537 }
7538
7539 if (!used)
7540 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7541 }
7542
e2e1ed41
DV
7543
7544 /* set_mode is also used to update properties on life display pipes. */
7545 intel_crtc = to_intel_crtc(crtc);
7546 if (crtc->enabled)
7547 *prepare_pipes |= 1 << intel_crtc->pipe;
7548
7549 /* We only support modeset on one single crtc, hence we need to do that
7550 * only for the passed in crtc iff we change anything else than just
7551 * disable crtcs.
7552 *
7553 * This is actually not true, to be fully compatible with the old crtc
7554 * helper we automatically disable _any_ output (i.e. doesn't need to be
7555 * connected to the crtc we're modesetting on) if it's disconnected.
7556 * Which is a rather nutty api (since changed the output configuration
7557 * without userspace's explicit request can lead to confusion), but
7558 * alas. Hence we currently need to modeset on all pipes we prepare. */
7559 if (*prepare_pipes)
7560 *modeset_pipes = *prepare_pipes;
7561
7562 /* ... and mask these out. */
7563 *modeset_pipes &= ~(*disable_pipes);
7564 *prepare_pipes &= ~(*disable_pipes);
47f1c6c9 7565}
79e53945 7566
ea9d758d 7567static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 7568{
ea9d758d 7569 struct drm_encoder *encoder;
f6e5b160 7570 struct drm_device *dev = crtc->dev;
f6e5b160 7571
ea9d758d
DV
7572 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7573 if (encoder->crtc == crtc)
7574 return true;
7575
7576 return false;
7577}
7578
7579static void
7580intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7581{
7582 struct intel_encoder *intel_encoder;
7583 struct intel_crtc *intel_crtc;
7584 struct drm_connector *connector;
7585
7586 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7587 base.head) {
7588 if (!intel_encoder->base.crtc)
7589 continue;
7590
7591 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7592
7593 if (prepare_pipes & (1 << intel_crtc->pipe))
7594 intel_encoder->connectors_active = false;
7595 }
7596
7597 intel_modeset_commit_output_state(dev);
7598
7599 /* Update computed state. */
7600 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7601 base.head) {
7602 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7603 }
7604
7605 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7606 if (!connector->encoder || !connector->encoder->crtc)
7607 continue;
7608
7609 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7610
7611 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7612 struct drm_property *dpms_property =
7613 dev->mode_config.dpms_property;
7614
ea9d758d 7615 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
7616 drm_connector_property_set_value(connector,
7617 dpms_property,
7618 DRM_MODE_DPMS_ON);
ea9d758d
DV
7619
7620 intel_encoder = to_intel_encoder(connector->encoder);
7621 intel_encoder->connectors_active = true;
7622 }
7623 }
7624
7625}
7626
25c5b266
DV
7627#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7628 list_for_each_entry((intel_crtc), \
7629 &(dev)->mode_config.crtc_list, \
7630 base.head) \
7631 if (mask & (1 <<(intel_crtc)->pipe)) \
7632
b980514c 7633void
8af6cf88
DV
7634intel_modeset_check_state(struct drm_device *dev)
7635{
7636 struct intel_crtc *crtc;
7637 struct intel_encoder *encoder;
7638 struct intel_connector *connector;
7639
7640 list_for_each_entry(connector, &dev->mode_config.connector_list,
7641 base.head) {
7642 /* This also checks the encoder/connector hw state with the
7643 * ->get_hw_state callbacks. */
7644 intel_connector_check_state(connector);
7645
7646 WARN(&connector->new_encoder->base != connector->base.encoder,
7647 "connector's staged encoder doesn't match current encoder\n");
7648 }
7649
7650 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7651 base.head) {
7652 bool enabled = false;
7653 bool active = false;
7654 enum pipe pipe, tracked_pipe;
7655
7656 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7657 encoder->base.base.id,
7658 drm_get_encoder_name(&encoder->base));
7659
7660 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7661 "encoder's stage crtc doesn't match current crtc\n");
7662 WARN(encoder->connectors_active && !encoder->base.crtc,
7663 "encoder's active_connectors set, but no crtc\n");
7664
7665 list_for_each_entry(connector, &dev->mode_config.connector_list,
7666 base.head) {
7667 if (connector->base.encoder != &encoder->base)
7668 continue;
7669 enabled = true;
7670 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7671 active = true;
7672 }
7673 WARN(!!encoder->base.crtc != enabled,
7674 "encoder's enabled state mismatch "
7675 "(expected %i, found %i)\n",
7676 !!encoder->base.crtc, enabled);
7677 WARN(active && !encoder->base.crtc,
7678 "active encoder with no crtc\n");
7679
7680 WARN(encoder->connectors_active != active,
7681 "encoder's computed active state doesn't match tracked active state "
7682 "(expected %i, found %i)\n", active, encoder->connectors_active);
7683
7684 active = encoder->get_hw_state(encoder, &pipe);
7685 WARN(active != encoder->connectors_active,
7686 "encoder's hw state doesn't match sw tracking "
7687 "(expected %i, found %i)\n",
7688 encoder->connectors_active, active);
7689
7690 if (!encoder->base.crtc)
7691 continue;
7692
7693 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7694 WARN(active && pipe != tracked_pipe,
7695 "active encoder's pipe doesn't match"
7696 "(expected %i, found %i)\n",
7697 tracked_pipe, pipe);
7698
7699 }
7700
7701 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7702 base.head) {
7703 bool enabled = false;
7704 bool active = false;
7705
7706 DRM_DEBUG_KMS("[CRTC:%d]\n",
7707 crtc->base.base.id);
7708
7709 WARN(crtc->active && !crtc->base.enabled,
7710 "active crtc, but not enabled in sw tracking\n");
7711
7712 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7713 base.head) {
7714 if (encoder->base.crtc != &crtc->base)
7715 continue;
7716 enabled = true;
7717 if (encoder->connectors_active)
7718 active = true;
7719 }
7720 WARN(active != crtc->active,
7721 "crtc's computed active state doesn't match tracked active state "
7722 "(expected %i, found %i)\n", active, crtc->active);
7723 WARN(enabled != crtc->base.enabled,
7724 "crtc's computed enabled state doesn't match tracked enabled state "
7725 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7726
7727 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7728 }
7729}
7730
a6778b3c
DV
7731bool intel_set_mode(struct drm_crtc *crtc,
7732 struct drm_display_mode *mode,
94352cf9 7733 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7734{
7735 struct drm_device *dev = crtc->dev;
dbf2b54e 7736 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7737 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
25c5b266
DV
7738 struct intel_crtc *intel_crtc;
7739 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7740 bool ret = true;
7741
e2e1ed41 7742 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7743 &prepare_pipes, &disable_pipes);
7744
7745 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7746 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7747
976f8a20
DV
7748 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7749 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7750
a6778b3c
DV
7751 saved_hwmode = crtc->hwmode;
7752 saved_mode = crtc->mode;
a6778b3c 7753
25c5b266
DV
7754 /* Hack: Because we don't (yet) support global modeset on multiple
7755 * crtcs, we don't keep track of the new mode for more than one crtc.
7756 * Hence simply check whether any bit is set in modeset_pipes in all the
7757 * pieces of code that are not yet converted to deal with mutliple crtcs
7758 * changing their mode at the same time. */
7759 adjusted_mode = NULL;
7760 if (modeset_pipes) {
7761 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7762 if (IS_ERR(adjusted_mode)) {
7763 return false;
7764 }
25c5b266 7765 }
a6778b3c 7766
ea9d758d
DV
7767 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7768 if (intel_crtc->base.enabled)
7769 dev_priv->display.crtc_disable(&intel_crtc->base);
7770 }
a6778b3c 7771
6c4c86f5
DV
7772 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7773 * to set it here already despite that we pass it down the callchain.
f6e5b160 7774 */
6c4c86f5 7775 if (modeset_pipes)
25c5b266 7776 crtc->mode = *mode;
7758a113 7777
ea9d758d
DV
7778 /* Only after disabling all output pipelines that will be changed can we
7779 * update the the output configuration. */
7780 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 7781
47fab737
DV
7782 if (dev_priv->display.modeset_global_resources)
7783 dev_priv->display.modeset_global_resources(dev);
7784
a6778b3c
DV
7785 /* Set up the DPLL and any encoders state that needs to adjust or depend
7786 * on the DPLL.
f6e5b160 7787 */
25c5b266
DV
7788 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7789 ret = !intel_crtc_mode_set(&intel_crtc->base,
7790 mode, adjusted_mode,
7791 x, y, fb);
7792 if (!ret)
7793 goto done;
a6778b3c
DV
7794 }
7795
7796 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7797 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7798 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7799
25c5b266
DV
7800 if (modeset_pipes) {
7801 /* Store real post-adjustment hardware mode. */
7802 crtc->hwmode = *adjusted_mode;
a6778b3c 7803
25c5b266
DV
7804 /* Calculate and store various constants which
7805 * are later needed by vblank and swap-completion
7806 * timestamping. They are derived from true hwmode.
7807 */
7808 drm_calc_timestamping_constants(crtc);
7809 }
a6778b3c
DV
7810
7811 /* FIXME: add subpixel order */
7812done:
7813 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7814 if (!ret && crtc->enabled) {
a6778b3c
DV
7815 crtc->hwmode = saved_hwmode;
7816 crtc->mode = saved_mode;
8af6cf88
DV
7817 } else {
7818 intel_modeset_check_state(dev);
a6778b3c
DV
7819 }
7820
7821 return ret;
f6e5b160
CW
7822}
7823
25c5b266
DV
7824#undef for_each_intel_crtc_masked
7825
d9e55608
DV
7826static void intel_set_config_free(struct intel_set_config *config)
7827{
7828 if (!config)
7829 return;
7830
1aa4b628
DV
7831 kfree(config->save_connector_encoders);
7832 kfree(config->save_encoder_crtcs);
d9e55608
DV
7833 kfree(config);
7834}
7835
85f9eb71
DV
7836static int intel_set_config_save_state(struct drm_device *dev,
7837 struct intel_set_config *config)
7838{
85f9eb71
DV
7839 struct drm_encoder *encoder;
7840 struct drm_connector *connector;
7841 int count;
7842
1aa4b628
DV
7843 config->save_encoder_crtcs =
7844 kcalloc(dev->mode_config.num_encoder,
7845 sizeof(struct drm_crtc *), GFP_KERNEL);
7846 if (!config->save_encoder_crtcs)
85f9eb71
DV
7847 return -ENOMEM;
7848
1aa4b628
DV
7849 config->save_connector_encoders =
7850 kcalloc(dev->mode_config.num_connector,
7851 sizeof(struct drm_encoder *), GFP_KERNEL);
7852 if (!config->save_connector_encoders)
85f9eb71
DV
7853 return -ENOMEM;
7854
7855 /* Copy data. Note that driver private data is not affected.
7856 * Should anything bad happen only the expected state is
7857 * restored, not the drivers personal bookkeeping.
7858 */
85f9eb71
DV
7859 count = 0;
7860 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7861 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7862 }
7863
7864 count = 0;
7865 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7866 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7867 }
7868
7869 return 0;
7870}
7871
7872static void intel_set_config_restore_state(struct drm_device *dev,
7873 struct intel_set_config *config)
7874{
9a935856
DV
7875 struct intel_encoder *encoder;
7876 struct intel_connector *connector;
85f9eb71
DV
7877 int count;
7878
85f9eb71 7879 count = 0;
9a935856
DV
7880 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7881 encoder->new_crtc =
7882 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7883 }
7884
7885 count = 0;
9a935856
DV
7886 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7887 connector->new_encoder =
7888 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7889 }
7890}
7891
5e2b584e
DV
7892static void
7893intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7894 struct intel_set_config *config)
7895{
7896
7897 /* We should be able to check here if the fb has the same properties
7898 * and then just flip_or_move it */
7899 if (set->crtc->fb != set->fb) {
7900 /* If we have no fb then treat it as a full mode set */
7901 if (set->crtc->fb == NULL) {
7902 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7903 config->mode_changed = true;
7904 } else if (set->fb == NULL) {
7905 config->mode_changed = true;
7906 } else if (set->fb->depth != set->crtc->fb->depth) {
7907 config->mode_changed = true;
7908 } else if (set->fb->bits_per_pixel !=
7909 set->crtc->fb->bits_per_pixel) {
7910 config->mode_changed = true;
7911 } else
7912 config->fb_changed = true;
7913 }
7914
835c5873 7915 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7916 config->fb_changed = true;
7917
7918 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7919 DRM_DEBUG_KMS("modes are different, full mode set\n");
7920 drm_mode_debug_printmodeline(&set->crtc->mode);
7921 drm_mode_debug_printmodeline(set->mode);
7922 config->mode_changed = true;
7923 }
7924}
7925
2e431051 7926static int
9a935856
DV
7927intel_modeset_stage_output_state(struct drm_device *dev,
7928 struct drm_mode_set *set,
7929 struct intel_set_config *config)
50f56119 7930{
85f9eb71 7931 struct drm_crtc *new_crtc;
9a935856
DV
7932 struct intel_connector *connector;
7933 struct intel_encoder *encoder;
2e431051 7934 int count, ro;
50f56119 7935
9a935856
DV
7936 /* The upper layers ensure that we either disabl a crtc or have a list
7937 * of connectors. For paranoia, double-check this. */
7938 WARN_ON(!set->fb && (set->num_connectors != 0));
7939 WARN_ON(set->fb && (set->num_connectors == 0));
7940
50f56119 7941 count = 0;
9a935856
DV
7942 list_for_each_entry(connector, &dev->mode_config.connector_list,
7943 base.head) {
7944 /* Otherwise traverse passed in connector list and get encoders
7945 * for them. */
50f56119 7946 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7947 if (set->connectors[ro] == &connector->base) {
7948 connector->new_encoder = connector->encoder;
50f56119
DV
7949 break;
7950 }
7951 }
7952
9a935856
DV
7953 /* If we disable the crtc, disable all its connectors. Also, if
7954 * the connector is on the changing crtc but not on the new
7955 * connector list, disable it. */
7956 if ((!set->fb || ro == set->num_connectors) &&
7957 connector->base.encoder &&
7958 connector->base.encoder->crtc == set->crtc) {
7959 connector->new_encoder = NULL;
7960
7961 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7962 connector->base.base.id,
7963 drm_get_connector_name(&connector->base));
7964 }
7965
7966
7967 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7968 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7969 config->mode_changed = true;
50f56119 7970 }
9a935856
DV
7971
7972 /* Disable all disconnected encoders. */
7973 if (connector->base.status == connector_status_disconnected)
7974 connector->new_encoder = NULL;
50f56119 7975 }
9a935856 7976 /* connector->new_encoder is now updated for all connectors. */
50f56119 7977
9a935856 7978 /* Update crtc of enabled connectors. */
50f56119 7979 count = 0;
9a935856
DV
7980 list_for_each_entry(connector, &dev->mode_config.connector_list,
7981 base.head) {
7982 if (!connector->new_encoder)
50f56119
DV
7983 continue;
7984
9a935856 7985 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7986
7987 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7988 if (set->connectors[ro] == &connector->base)
50f56119
DV
7989 new_crtc = set->crtc;
7990 }
7991
7992 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7993 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7994 new_crtc)) {
5e2b584e 7995 return -EINVAL;
50f56119 7996 }
9a935856
DV
7997 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7998
7999 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8000 connector->base.base.id,
8001 drm_get_connector_name(&connector->base),
8002 new_crtc->base.id);
8003 }
8004
8005 /* Check for any encoders that needs to be disabled. */
8006 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8007 base.head) {
8008 list_for_each_entry(connector,
8009 &dev->mode_config.connector_list,
8010 base.head) {
8011 if (connector->new_encoder == encoder) {
8012 WARN_ON(!connector->new_encoder->new_crtc);
8013
8014 goto next_encoder;
8015 }
8016 }
8017 encoder->new_crtc = NULL;
8018next_encoder:
8019 /* Only now check for crtc changes so we don't miss encoders
8020 * that will be disabled. */
8021 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 8022 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 8023 config->mode_changed = true;
50f56119
DV
8024 }
8025 }
9a935856 8026 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 8027
2e431051
DV
8028 return 0;
8029}
8030
8031static int intel_crtc_set_config(struct drm_mode_set *set)
8032{
8033 struct drm_device *dev;
2e431051
DV
8034 struct drm_mode_set save_set;
8035 struct intel_set_config *config;
8036 int ret;
2e431051 8037
8d3e375e
DV
8038 BUG_ON(!set);
8039 BUG_ON(!set->crtc);
8040 BUG_ON(!set->crtc->helper_private);
2e431051
DV
8041
8042 if (!set->mode)
8043 set->fb = NULL;
8044
431e50f7
DV
8045 /* The fb helper likes to play gross jokes with ->mode_set_config.
8046 * Unfortunately the crtc helper doesn't do much at all for this case,
8047 * so we have to cope with this madness until the fb helper is fixed up. */
8048 if (set->fb && set->num_connectors == 0)
8049 return 0;
8050
2e431051
DV
8051 if (set->fb) {
8052 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8053 set->crtc->base.id, set->fb->base.id,
8054 (int)set->num_connectors, set->x, set->y);
8055 } else {
8056 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
8057 }
8058
8059 dev = set->crtc->dev;
8060
8061 ret = -ENOMEM;
8062 config = kzalloc(sizeof(*config), GFP_KERNEL);
8063 if (!config)
8064 goto out_config;
8065
8066 ret = intel_set_config_save_state(dev, config);
8067 if (ret)
8068 goto out_config;
8069
8070 save_set.crtc = set->crtc;
8071 save_set.mode = &set->crtc->mode;
8072 save_set.x = set->crtc->x;
8073 save_set.y = set->crtc->y;
8074 save_set.fb = set->crtc->fb;
8075
8076 /* Compute whether we need a full modeset, only an fb base update or no
8077 * change at all. In the future we might also check whether only the
8078 * mode changed, e.g. for LVDS where we only change the panel fitter in
8079 * such cases. */
8080 intel_set_config_compute_mode_changes(set, config);
8081
9a935856 8082 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
8083 if (ret)
8084 goto fail;
8085
5e2b584e 8086 if (config->mode_changed) {
87f1faa6 8087 if (set->mode) {
50f56119
DV
8088 DRM_DEBUG_KMS("attempting to set mode from"
8089 " userspace\n");
8090 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
8091 }
8092
8093 if (!intel_set_mode(set->crtc, set->mode,
8094 set->x, set->y, set->fb)) {
8095 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8096 set->crtc->base.id);
8097 ret = -EINVAL;
8098 goto fail;
8099 }
5e2b584e 8100 } else if (config->fb_changed) {
4f660f49 8101 ret = intel_pipe_set_base(set->crtc,
94352cf9 8102 set->x, set->y, set->fb);
50f56119
DV
8103 }
8104
d9e55608
DV
8105 intel_set_config_free(config);
8106
50f56119
DV
8107 return 0;
8108
8109fail:
85f9eb71 8110 intel_set_config_restore_state(dev, config);
50f56119
DV
8111
8112 /* Try to restore the config */
5e2b584e 8113 if (config->mode_changed &&
a6778b3c
DV
8114 !intel_set_mode(save_set.crtc, save_set.mode,
8115 save_set.x, save_set.y, save_set.fb))
50f56119
DV
8116 DRM_ERROR("failed to restore config after modeset failure\n");
8117
d9e55608
DV
8118out_config:
8119 intel_set_config_free(config);
50f56119
DV
8120 return ret;
8121}
f6e5b160
CW
8122
8123static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
8124 .cursor_set = intel_crtc_cursor_set,
8125 .cursor_move = intel_crtc_cursor_move,
8126 .gamma_set = intel_crtc_gamma_set,
50f56119 8127 .set_config = intel_crtc_set_config,
f6e5b160
CW
8128 .destroy = intel_crtc_destroy,
8129 .page_flip = intel_crtc_page_flip,
8130};
8131
79f689aa
PZ
8132static void intel_cpu_pll_init(struct drm_device *dev)
8133{
8134 if (IS_HASWELL(dev))
8135 intel_ddi_pll_init(dev);
8136}
8137
ee7b9f93
JB
8138static void intel_pch_pll_init(struct drm_device *dev)
8139{
8140 drm_i915_private_t *dev_priv = dev->dev_private;
8141 int i;
8142
8143 if (dev_priv->num_pch_pll == 0) {
8144 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8145 return;
8146 }
8147
8148 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8149 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8150 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8151 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8152 }
8153}
8154
b358d0a6 8155static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 8156{
22fd0fab 8157 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
8158 struct intel_crtc *intel_crtc;
8159 int i;
8160
8161 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8162 if (intel_crtc == NULL)
8163 return;
8164
8165 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8166
8167 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
8168 for (i = 0; i < 256; i++) {
8169 intel_crtc->lut_r[i] = i;
8170 intel_crtc->lut_g[i] = i;
8171 intel_crtc->lut_b[i] = i;
8172 }
8173
80824003
JB
8174 /* Swap pipes & planes for FBC on pre-965 */
8175 intel_crtc->pipe = pipe;
8176 intel_crtc->plane = pipe;
a5c961d1 8177 intel_crtc->cpu_transcoder = pipe;
e2e767ab 8178 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 8179 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 8180 intel_crtc->plane = !pipe;
80824003
JB
8181 }
8182
22fd0fab
JB
8183 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8184 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8185 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8186 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8187
5a354204 8188 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 8189
79e53945 8190 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
8191}
8192
08d7b3d1 8193int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 8194 struct drm_file *file)
08d7b3d1 8195{
08d7b3d1 8196 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
8197 struct drm_mode_object *drmmode_obj;
8198 struct intel_crtc *crtc;
08d7b3d1 8199
1cff8f6b
DV
8200 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8201 return -ENODEV;
08d7b3d1 8202
c05422d5
DV
8203 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8204 DRM_MODE_OBJECT_CRTC);
08d7b3d1 8205
c05422d5 8206 if (!drmmode_obj) {
08d7b3d1
CW
8207 DRM_ERROR("no such CRTC id\n");
8208 return -EINVAL;
8209 }
8210
c05422d5
DV
8211 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8212 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 8213
c05422d5 8214 return 0;
08d7b3d1
CW
8215}
8216
66a9278e 8217static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 8218{
66a9278e
DV
8219 struct drm_device *dev = encoder->base.dev;
8220 struct intel_encoder *source_encoder;
79e53945 8221 int index_mask = 0;
79e53945
JB
8222 int entry = 0;
8223
66a9278e
DV
8224 list_for_each_entry(source_encoder,
8225 &dev->mode_config.encoder_list, base.head) {
8226
8227 if (encoder == source_encoder)
79e53945 8228 index_mask |= (1 << entry);
66a9278e
DV
8229
8230 /* Intel hw has only one MUX where enocoders could be cloned. */
8231 if (encoder->cloneable && source_encoder->cloneable)
8232 index_mask |= (1 << entry);
8233
79e53945
JB
8234 entry++;
8235 }
4ef69c7a 8236
79e53945
JB
8237 return index_mask;
8238}
8239
4d302442
CW
8240static bool has_edp_a(struct drm_device *dev)
8241{
8242 struct drm_i915_private *dev_priv = dev->dev_private;
8243
8244 if (!IS_MOBILE(dev))
8245 return false;
8246
8247 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8248 return false;
8249
8250 if (IS_GEN5(dev) &&
8251 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8252 return false;
8253
8254 return true;
8255}
8256
79e53945
JB
8257static void intel_setup_outputs(struct drm_device *dev)
8258{
725e30ad 8259 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8260 struct intel_encoder *encoder;
cb0953d7 8261 bool dpd_is_edp = false;
f3cfcba6 8262 bool has_lvds;
79e53945 8263
f3cfcba6 8264 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8265 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8266 /* disable the panel fitter on everything but LVDS */
8267 I915_WRITE(PFIT_CONTROL, 0);
8268 }
79e53945 8269
cb0953d7
AJ
8270 intel_crt_init(dev);
8271
0e72a5b5
ED
8272 if (IS_HASWELL(dev)) {
8273 int found;
8274
8275 /* Haswell uses DDI functions to detect digital outputs */
8276 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8277 /* DDI A only supports eDP */
8278 if (found)
8279 intel_ddi_init(dev, PORT_A);
8280
8281 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8282 * register */
8283 found = I915_READ(SFUSE_STRAP);
8284
8285 if (found & SFUSE_STRAP_DDIB_DETECTED)
8286 intel_ddi_init(dev, PORT_B);
8287 if (found & SFUSE_STRAP_DDIC_DETECTED)
8288 intel_ddi_init(dev, PORT_C);
8289 if (found & SFUSE_STRAP_DDID_DETECTED)
8290 intel_ddi_init(dev, PORT_D);
8291 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8292 int found;
270b3042
DV
8293 dpd_is_edp = intel_dpd_is_edp(dev);
8294
8295 if (has_edp_a(dev))
8296 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 8297
30ad48b7 8298 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8299 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8300 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8301 if (!found)
08d644ad 8302 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8303 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8304 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8305 }
8306
8307 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8308 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8309
b708a1d5 8310 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8311 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8312
5eb08b69 8313 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8314 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8315
270b3042 8316 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 8317 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8318 } else if (IS_VALLEYVIEW(dev)) {
8319 int found;
8320
19c03924
GB
8321 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8322 if (I915_READ(DP_C) & DP_DETECTED)
8323 intel_dp_init(dev, DP_C, PORT_C);
8324
4a87d65d
JB
8325 if (I915_READ(SDVOB) & PORT_DETECTED) {
8326 /* SDVOB multiplex with HDMIB */
8327 found = intel_sdvo_init(dev, SDVOB, true);
8328 if (!found)
08d644ad 8329 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8330 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8331 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8332 }
8333
8334 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8335 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8336
103a196f 8337 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8338 bool found = false;
7d57382e 8339
725e30ad 8340 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8341 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8342 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8343 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8344 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8345 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8346 }
27185ae1 8347
b01f2c3a
JB
8348 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8349 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8350 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8351 }
725e30ad 8352 }
13520b05
KH
8353
8354 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8355
b01f2c3a
JB
8356 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8357 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8358 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8359 }
27185ae1
ML
8360
8361 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8362
b01f2c3a
JB
8363 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8364 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8365 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8366 }
8367 if (SUPPORTS_INTEGRATED_DP(dev)) {
8368 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8369 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8370 }
725e30ad 8371 }
27185ae1 8372
b01f2c3a
JB
8373 if (SUPPORTS_INTEGRATED_DP(dev) &&
8374 (I915_READ(DP_D) & DP_DETECTED)) {
8375 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8376 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8377 }
bad720ff 8378 } else if (IS_GEN2(dev))
79e53945
JB
8379 intel_dvo_init(dev);
8380
103a196f 8381 if (SUPPORTS_TV(dev))
79e53945
JB
8382 intel_tv_init(dev);
8383
4ef69c7a
CW
8384 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8385 encoder->base.possible_crtcs = encoder->crtc_mask;
8386 encoder->base.possible_clones =
66a9278e 8387 intel_encoder_clones(encoder);
79e53945 8388 }
47356eb6 8389
40579abe 8390 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8391 ironlake_init_pch_refclk(dev);
270b3042
DV
8392
8393 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
8394}
8395
8396static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8397{
8398 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8399
8400 drm_framebuffer_cleanup(fb);
05394f39 8401 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8402
8403 kfree(intel_fb);
8404}
8405
8406static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8407 struct drm_file *file,
79e53945
JB
8408 unsigned int *handle)
8409{
8410 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8411 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8412
05394f39 8413 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8414}
8415
8416static const struct drm_framebuffer_funcs intel_fb_funcs = {
8417 .destroy = intel_user_framebuffer_destroy,
8418 .create_handle = intel_user_framebuffer_create_handle,
8419};
8420
38651674
DA
8421int intel_framebuffer_init(struct drm_device *dev,
8422 struct intel_framebuffer *intel_fb,
308e5bcb 8423 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8424 struct drm_i915_gem_object *obj)
79e53945 8425{
79e53945
JB
8426 int ret;
8427
05394f39 8428 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8429 return -EINVAL;
8430
308e5bcb 8431 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8432 return -EINVAL;
8433
5d7bd705
VS
8434 /* FIXME <= Gen4 stride limits are bit unclear */
8435 if (mode_cmd->pitches[0] > 32768)
8436 return -EINVAL;
8437
8438 if (obj->tiling_mode != I915_TILING_NONE &&
8439 mode_cmd->pitches[0] != obj->stride)
8440 return -EINVAL;
8441
57779d06 8442 /* Reject formats not supported by any plane early. */
308e5bcb 8443 switch (mode_cmd->pixel_format) {
57779d06 8444 case DRM_FORMAT_C8:
04b3924d
VS
8445 case DRM_FORMAT_RGB565:
8446 case DRM_FORMAT_XRGB8888:
8447 case DRM_FORMAT_ARGB8888:
57779d06
VS
8448 break;
8449 case DRM_FORMAT_XRGB1555:
8450 case DRM_FORMAT_ARGB1555:
8451 if (INTEL_INFO(dev)->gen > 3)
8452 return -EINVAL;
8453 break;
8454 case DRM_FORMAT_XBGR8888:
8455 case DRM_FORMAT_ABGR8888:
04b3924d
VS
8456 case DRM_FORMAT_XRGB2101010:
8457 case DRM_FORMAT_ARGB2101010:
57779d06
VS
8458 case DRM_FORMAT_XBGR2101010:
8459 case DRM_FORMAT_ABGR2101010:
8460 if (INTEL_INFO(dev)->gen < 4)
8461 return -EINVAL;
b5626747 8462 break;
04b3924d
VS
8463 case DRM_FORMAT_YUYV:
8464 case DRM_FORMAT_UYVY:
8465 case DRM_FORMAT_YVYU:
8466 case DRM_FORMAT_VYUY:
57779d06
VS
8467 if (INTEL_INFO(dev)->gen < 6)
8468 return -EINVAL;
57cd6508
CW
8469 break;
8470 default:
57779d06 8471 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
57cd6508
CW
8472 return -EINVAL;
8473 }
8474
90f9a336
VS
8475 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8476 if (mode_cmd->offsets[0] != 0)
8477 return -EINVAL;
8478
79e53945
JB
8479 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8480 if (ret) {
8481 DRM_ERROR("framebuffer init failed %d\n", ret);
8482 return ret;
8483 }
8484
8485 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8486 intel_fb->obj = obj;
79e53945
JB
8487 return 0;
8488}
8489
79e53945
JB
8490static struct drm_framebuffer *
8491intel_user_framebuffer_create(struct drm_device *dev,
8492 struct drm_file *filp,
308e5bcb 8493 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8494{
05394f39 8495 struct drm_i915_gem_object *obj;
79e53945 8496
308e5bcb
JB
8497 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8498 mode_cmd->handles[0]));
c8725226 8499 if (&obj->base == NULL)
cce13ff7 8500 return ERR_PTR(-ENOENT);
79e53945 8501
d2dff872 8502 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8503}
8504
79e53945 8505static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8506 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8507 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8508};
8509
e70236a8
JB
8510/* Set up chip specific display functions */
8511static void intel_init_display(struct drm_device *dev)
8512{
8513 struct drm_i915_private *dev_priv = dev->dev_private;
8514
8515 /* We always want a DPMS function */
09b4ddf9
PZ
8516 if (IS_HASWELL(dev)) {
8517 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8518 dev_priv->display.crtc_enable = haswell_crtc_enable;
8519 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8520 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8521 dev_priv->display.update_plane = ironlake_update_plane;
8522 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8523 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8524 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8525 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8526 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8527 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8528 } else {
f564048e 8529 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8530 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8531 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8532 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8533 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8534 }
e70236a8 8535
e70236a8 8536 /* Returns the core display clock speed */
25eb05fc
JB
8537 if (IS_VALLEYVIEW(dev))
8538 dev_priv->display.get_display_clock_speed =
8539 valleyview_get_display_clock_speed;
8540 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8541 dev_priv->display.get_display_clock_speed =
8542 i945_get_display_clock_speed;
8543 else if (IS_I915G(dev))
8544 dev_priv->display.get_display_clock_speed =
8545 i915_get_display_clock_speed;
f2b115e6 8546 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8547 dev_priv->display.get_display_clock_speed =
8548 i9xx_misc_get_display_clock_speed;
8549 else if (IS_I915GM(dev))
8550 dev_priv->display.get_display_clock_speed =
8551 i915gm_get_display_clock_speed;
8552 else if (IS_I865G(dev))
8553 dev_priv->display.get_display_clock_speed =
8554 i865_get_display_clock_speed;
f0f8a9ce 8555 else if (IS_I85X(dev))
e70236a8
JB
8556 dev_priv->display.get_display_clock_speed =
8557 i855_get_display_clock_speed;
8558 else /* 852, 830 */
8559 dev_priv->display.get_display_clock_speed =
8560 i830_get_display_clock_speed;
8561
7f8a8569 8562 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8563 if (IS_GEN5(dev)) {
674cf967 8564 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8565 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8566 } else if (IS_GEN6(dev)) {
674cf967 8567 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8568 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8569 } else if (IS_IVYBRIDGE(dev)) {
8570 /* FIXME: detect B0+ stepping and use auto training */
8571 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8572 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
8573 dev_priv->display.modeset_global_resources =
8574 ivb_modeset_global_resources;
c82e4d26
ED
8575 } else if (IS_HASWELL(dev)) {
8576 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8577 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8578 } else
8579 dev_priv->display.update_wm = NULL;
6067aaea 8580 } else if (IS_G4X(dev)) {
e0dac65e 8581 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8582 }
8c9f3aaf
JB
8583
8584 /* Default just returns -ENODEV to indicate unsupported */
8585 dev_priv->display.queue_flip = intel_default_queue_flip;
8586
8587 switch (INTEL_INFO(dev)->gen) {
8588 case 2:
8589 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8590 break;
8591
8592 case 3:
8593 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8594 break;
8595
8596 case 4:
8597 case 5:
8598 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8599 break;
8600
8601 case 6:
8602 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8603 break;
7c9017e5
JB
8604 case 7:
8605 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8606 break;
8c9f3aaf 8607 }
e70236a8
JB
8608}
8609
b690e96c
JB
8610/*
8611 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8612 * resume, or other times. This quirk makes sure that's the case for
8613 * affected systems.
8614 */
0206e353 8615static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8616{
8617 struct drm_i915_private *dev_priv = dev->dev_private;
8618
8619 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8620 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8621}
8622
435793df
KP
8623/*
8624 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8625 */
8626static void quirk_ssc_force_disable(struct drm_device *dev)
8627{
8628 struct drm_i915_private *dev_priv = dev->dev_private;
8629 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8630 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8631}
8632
4dca20ef 8633/*
5a15ab5b
CE
8634 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8635 * brightness value
4dca20ef
CE
8636 */
8637static void quirk_invert_brightness(struct drm_device *dev)
8638{
8639 struct drm_i915_private *dev_priv = dev->dev_private;
8640 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8641 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8642}
8643
b690e96c
JB
8644struct intel_quirk {
8645 int device;
8646 int subsystem_vendor;
8647 int subsystem_device;
8648 void (*hook)(struct drm_device *dev);
8649};
8650
5f85f176
EE
8651/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8652struct intel_dmi_quirk {
8653 void (*hook)(struct drm_device *dev);
8654 const struct dmi_system_id (*dmi_id_list)[];
8655};
8656
8657static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8658{
8659 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8660 return 1;
8661}
8662
8663static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8664 {
8665 .dmi_id_list = &(const struct dmi_system_id[]) {
8666 {
8667 .callback = intel_dmi_reverse_brightness,
8668 .ident = "NCR Corporation",
8669 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8670 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8671 },
8672 },
8673 { } /* terminating entry */
8674 },
8675 .hook = quirk_invert_brightness,
8676 },
8677};
8678
c43b5634 8679static struct intel_quirk intel_quirks[] = {
b690e96c 8680 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8681 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8682
b690e96c
JB
8683 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8684 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8685
b690e96c
JB
8686 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8687 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8688
ccd0d36e 8689 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8690 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8691 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8692
8693 /* Lenovo U160 cannot use SSC on LVDS */
8694 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8695
8696 /* Sony Vaio Y cannot use SSC on LVDS */
8697 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8698
8699 /* Acer Aspire 5734Z must invert backlight brightness */
8700 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8701};
8702
8703static void intel_init_quirks(struct drm_device *dev)
8704{
8705 struct pci_dev *d = dev->pdev;
8706 int i;
8707
8708 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8709 struct intel_quirk *q = &intel_quirks[i];
8710
8711 if (d->device == q->device &&
8712 (d->subsystem_vendor == q->subsystem_vendor ||
8713 q->subsystem_vendor == PCI_ANY_ID) &&
8714 (d->subsystem_device == q->subsystem_device ||
8715 q->subsystem_device == PCI_ANY_ID))
8716 q->hook(dev);
8717 }
5f85f176
EE
8718 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8719 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8720 intel_dmi_quirks[i].hook(dev);
8721 }
b690e96c
JB
8722}
8723
9cce37f4
JB
8724/* Disable the VGA plane that we never use */
8725static void i915_disable_vga(struct drm_device *dev)
8726{
8727 struct drm_i915_private *dev_priv = dev->dev_private;
8728 u8 sr1;
8729 u32 vga_reg;
8730
8731 if (HAS_PCH_SPLIT(dev))
8732 vga_reg = CPU_VGACNTRL;
8733 else
8734 vga_reg = VGACNTRL;
8735
8736 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8737 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8738 sr1 = inb(VGA_SR_DATA);
8739 outb(sr1 | 1<<5, VGA_SR_DATA);
8740 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8741 udelay(300);
8742
8743 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8744 POSTING_READ(vga_reg);
8745}
8746
f817586c
DV
8747void intel_modeset_init_hw(struct drm_device *dev)
8748{
0232e927
ED
8749 /* We attempt to init the necessary power wells early in the initialization
8750 * time, so the subsystems that expect power to be enabled can work.
8751 */
8752 intel_init_power_wells(dev);
8753
a8f78b58
ED
8754 intel_prepare_ddi(dev);
8755
f817586c
DV
8756 intel_init_clock_gating(dev);
8757
79f5b2c7 8758 mutex_lock(&dev->struct_mutex);
8090c6b9 8759 intel_enable_gt_powersave(dev);
79f5b2c7 8760 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8761}
8762
79e53945
JB
8763void intel_modeset_init(struct drm_device *dev)
8764{
652c393a 8765 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8766 int i, ret;
79e53945
JB
8767
8768 drm_mode_config_init(dev);
8769
8770 dev->mode_config.min_width = 0;
8771 dev->mode_config.min_height = 0;
8772
019d96cb
DA
8773 dev->mode_config.preferred_depth = 24;
8774 dev->mode_config.prefer_shadow = 1;
8775
e6ecefaa 8776 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8777
b690e96c
JB
8778 intel_init_quirks(dev);
8779
1fa61106
ED
8780 intel_init_pm(dev);
8781
e70236a8
JB
8782 intel_init_display(dev);
8783
a6c45cf0
CW
8784 if (IS_GEN2(dev)) {
8785 dev->mode_config.max_width = 2048;
8786 dev->mode_config.max_height = 2048;
8787 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8788 dev->mode_config.max_width = 4096;
8789 dev->mode_config.max_height = 4096;
79e53945 8790 } else {
a6c45cf0
CW
8791 dev->mode_config.max_width = 8192;
8792 dev->mode_config.max_height = 8192;
79e53945 8793 }
dd2757f8 8794 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8795
28c97730 8796 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8797 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8798
a3524f1b 8799 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8800 intel_crtc_init(dev, i);
00c2064b
JB
8801 ret = intel_plane_init(dev, i);
8802 if (ret)
8803 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8804 }
8805
79f689aa 8806 intel_cpu_pll_init(dev);
ee7b9f93
JB
8807 intel_pch_pll_init(dev);
8808
9cce37f4
JB
8809 /* Just disable it once at startup */
8810 i915_disable_vga(dev);
79e53945 8811 intel_setup_outputs(dev);
2c7111db
CW
8812}
8813
24929352
DV
8814static void
8815intel_connector_break_all_links(struct intel_connector *connector)
8816{
8817 connector->base.dpms = DRM_MODE_DPMS_OFF;
8818 connector->base.encoder = NULL;
8819 connector->encoder->connectors_active = false;
8820 connector->encoder->base.crtc = NULL;
8821}
8822
7fad798e
DV
8823static void intel_enable_pipe_a(struct drm_device *dev)
8824{
8825 struct intel_connector *connector;
8826 struct drm_connector *crt = NULL;
8827 struct intel_load_detect_pipe load_detect_temp;
8828
8829 /* We can't just switch on the pipe A, we need to set things up with a
8830 * proper mode and output configuration. As a gross hack, enable pipe A
8831 * by enabling the load detect pipe once. */
8832 list_for_each_entry(connector,
8833 &dev->mode_config.connector_list,
8834 base.head) {
8835 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8836 crt = &connector->base;
8837 break;
8838 }
8839 }
8840
8841 if (!crt)
8842 return;
8843
8844 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8845 intel_release_load_detect_pipe(crt, &load_detect_temp);
8846
652c393a 8847
7fad798e
DV
8848}
8849
fa555837
DV
8850static bool
8851intel_check_plane_mapping(struct intel_crtc *crtc)
8852{
8853 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8854 u32 reg, val;
8855
8856 if (dev_priv->num_pipe == 1)
8857 return true;
8858
8859 reg = DSPCNTR(!crtc->plane);
8860 val = I915_READ(reg);
8861
8862 if ((val & DISPLAY_PLANE_ENABLE) &&
8863 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8864 return false;
8865
8866 return true;
8867}
8868
24929352
DV
8869static void intel_sanitize_crtc(struct intel_crtc *crtc)
8870{
8871 struct drm_device *dev = crtc->base.dev;
8872 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8873 u32 reg;
24929352 8874
24929352 8875 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 8876 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
8877 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8878
8879 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8880 * disable the crtc (and hence change the state) if it is wrong. Note
8881 * that gen4+ has a fixed plane -> pipe mapping. */
8882 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8883 struct intel_connector *connector;
8884 bool plane;
8885
24929352
DV
8886 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8887 crtc->base.base.id);
8888
8889 /* Pipe has the wrong plane attached and the plane is active.
8890 * Temporarily change the plane mapping and disable everything
8891 * ... */
8892 plane = crtc->plane;
8893 crtc->plane = !plane;
8894 dev_priv->display.crtc_disable(&crtc->base);
8895 crtc->plane = plane;
8896
8897 /* ... and break all links. */
8898 list_for_each_entry(connector, &dev->mode_config.connector_list,
8899 base.head) {
8900 if (connector->encoder->base.crtc != &crtc->base)
8901 continue;
8902
8903 intel_connector_break_all_links(connector);
8904 }
8905
8906 WARN_ON(crtc->active);
8907 crtc->base.enabled = false;
8908 }
24929352 8909
7fad798e
DV
8910 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8911 crtc->pipe == PIPE_A && !crtc->active) {
8912 /* BIOS forgot to enable pipe A, this mostly happens after
8913 * resume. Force-enable the pipe to fix this, the update_dpms
8914 * call below we restore the pipe to the right state, but leave
8915 * the required bits on. */
8916 intel_enable_pipe_a(dev);
8917 }
8918
24929352
DV
8919 /* Adjust the state of the output pipe according to whether we
8920 * have active connectors/encoders. */
8921 intel_crtc_update_dpms(&crtc->base);
8922
8923 if (crtc->active != crtc->base.enabled) {
8924 struct intel_encoder *encoder;
8925
8926 /* This can happen either due to bugs in the get_hw_state
8927 * functions or because the pipe is force-enabled due to the
8928 * pipe A quirk. */
8929 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8930 crtc->base.base.id,
8931 crtc->base.enabled ? "enabled" : "disabled",
8932 crtc->active ? "enabled" : "disabled");
8933
8934 crtc->base.enabled = crtc->active;
8935
8936 /* Because we only establish the connector -> encoder ->
8937 * crtc links if something is active, this means the
8938 * crtc is now deactivated. Break the links. connector
8939 * -> encoder links are only establish when things are
8940 * actually up, hence no need to break them. */
8941 WARN_ON(crtc->active);
8942
8943 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8944 WARN_ON(encoder->connectors_active);
8945 encoder->base.crtc = NULL;
8946 }
8947 }
8948}
8949
8950static void intel_sanitize_encoder(struct intel_encoder *encoder)
8951{
8952 struct intel_connector *connector;
8953 struct drm_device *dev = encoder->base.dev;
8954
8955 /* We need to check both for a crtc link (meaning that the
8956 * encoder is active and trying to read from a pipe) and the
8957 * pipe itself being active. */
8958 bool has_active_crtc = encoder->base.crtc &&
8959 to_intel_crtc(encoder->base.crtc)->active;
8960
8961 if (encoder->connectors_active && !has_active_crtc) {
8962 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8963 encoder->base.base.id,
8964 drm_get_encoder_name(&encoder->base));
8965
8966 /* Connector is active, but has no active pipe. This is
8967 * fallout from our resume register restoring. Disable
8968 * the encoder manually again. */
8969 if (encoder->base.crtc) {
8970 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8971 encoder->base.base.id,
8972 drm_get_encoder_name(&encoder->base));
8973 encoder->disable(encoder);
8974 }
8975
8976 /* Inconsistent output/port/pipe state happens presumably due to
8977 * a bug in one of the get_hw_state functions. Or someplace else
8978 * in our code, like the register restore mess on resume. Clamp
8979 * things to off as a safer default. */
8980 list_for_each_entry(connector,
8981 &dev->mode_config.connector_list,
8982 base.head) {
8983 if (connector->encoder != encoder)
8984 continue;
8985
8986 intel_connector_break_all_links(connector);
8987 }
8988 }
8989 /* Enabled encoders without active connectors will be fixed in
8990 * the crtc fixup. */
8991}
8992
8993/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8994 * and i915 state tracking structures. */
8995void intel_modeset_setup_hw_state(struct drm_device *dev)
8996{
8997 struct drm_i915_private *dev_priv = dev->dev_private;
8998 enum pipe pipe;
8999 u32 tmp;
9000 struct intel_crtc *crtc;
9001 struct intel_encoder *encoder;
9002 struct intel_connector *connector;
9003
e28d54cb
PZ
9004 if (IS_HASWELL(dev)) {
9005 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9006
9007 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9008 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9009 case TRANS_DDI_EDP_INPUT_A_ON:
9010 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9011 pipe = PIPE_A;
9012 break;
9013 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9014 pipe = PIPE_B;
9015 break;
9016 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9017 pipe = PIPE_C;
9018 break;
9019 }
9020
9021 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9022 crtc->cpu_transcoder = TRANSCODER_EDP;
9023
9024 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9025 pipe_name(pipe));
9026 }
9027 }
9028
24929352
DV
9029 for_each_pipe(pipe) {
9030 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9031
702e7a56 9032 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
9033 if (tmp & PIPECONF_ENABLE)
9034 crtc->active = true;
9035 else
9036 crtc->active = false;
9037
9038 crtc->base.enabled = crtc->active;
9039
9040 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9041 crtc->base.base.id,
9042 crtc->active ? "enabled" : "disabled");
9043 }
9044
6441ab5f
PZ
9045 if (IS_HASWELL(dev))
9046 intel_ddi_setup_hw_pll_state(dev);
9047
24929352
DV
9048 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9049 base.head) {
9050 pipe = 0;
9051
9052 if (encoder->get_hw_state(encoder, &pipe)) {
9053 encoder->base.crtc =
9054 dev_priv->pipe_to_crtc_mapping[pipe];
9055 } else {
9056 encoder->base.crtc = NULL;
9057 }
9058
9059 encoder->connectors_active = false;
9060 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9061 encoder->base.base.id,
9062 drm_get_encoder_name(&encoder->base),
9063 encoder->base.crtc ? "enabled" : "disabled",
9064 pipe);
9065 }
9066
9067 list_for_each_entry(connector, &dev->mode_config.connector_list,
9068 base.head) {
9069 if (connector->get_hw_state(connector)) {
9070 connector->base.dpms = DRM_MODE_DPMS_ON;
9071 connector->encoder->connectors_active = true;
9072 connector->base.encoder = &connector->encoder->base;
9073 } else {
9074 connector->base.dpms = DRM_MODE_DPMS_OFF;
9075 connector->base.encoder = NULL;
9076 }
9077 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9078 connector->base.base.id,
9079 drm_get_connector_name(&connector->base),
9080 connector->base.encoder ? "enabled" : "disabled");
9081 }
9082
9083 /* HW state is read out, now we need to sanitize this mess. */
9084 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9085 base.head) {
9086 intel_sanitize_encoder(encoder);
9087 }
9088
9089 for_each_pipe(pipe) {
9090 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9091 intel_sanitize_crtc(crtc);
9092 }
9a935856
DV
9093
9094 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
9095
9096 intel_modeset_check_state(dev);
2e938892
DV
9097
9098 drm_mode_config_reset(dev);
2c7111db
CW
9099}
9100
9101void intel_modeset_gem_init(struct drm_device *dev)
9102{
1833b134 9103 intel_modeset_init_hw(dev);
02e792fb
DV
9104
9105 intel_setup_overlay(dev);
24929352
DV
9106
9107 intel_modeset_setup_hw_state(dev);
79e53945
JB
9108}
9109
9110void intel_modeset_cleanup(struct drm_device *dev)
9111{
652c393a
JB
9112 struct drm_i915_private *dev_priv = dev->dev_private;
9113 struct drm_crtc *crtc;
9114 struct intel_crtc *intel_crtc;
9115
f87ea761 9116 drm_kms_helper_poll_fini(dev);
652c393a
JB
9117 mutex_lock(&dev->struct_mutex);
9118
723bfd70
JB
9119 intel_unregister_dsm_handler();
9120
9121
652c393a
JB
9122 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9123 /* Skip inactive CRTCs */
9124 if (!crtc->fb)
9125 continue;
9126
9127 intel_crtc = to_intel_crtc(crtc);
3dec0095 9128 intel_increase_pllclock(crtc);
652c393a
JB
9129 }
9130
973d04f9 9131 intel_disable_fbc(dev);
e70236a8 9132
8090c6b9 9133 intel_disable_gt_powersave(dev);
0cdab21f 9134
930ebb46
DV
9135 ironlake_teardown_rc6(dev);
9136
57f350b6
JB
9137 if (IS_VALLEYVIEW(dev))
9138 vlv_init_dpio(dev);
9139
69341a5e
KH
9140 mutex_unlock(&dev->struct_mutex);
9141
6c0d9350
DV
9142 /* Disable the irq before mode object teardown, for the irq might
9143 * enqueue unpin/hotplug work. */
9144 drm_irq_uninstall(dev);
9145 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 9146 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 9147
1630fe75
CW
9148 /* flush any delayed tasks or pending work */
9149 flush_scheduled_work();
9150
79e53945
JB
9151 drm_mode_config_cleanup(dev);
9152}
9153
f1c79df3
ZW
9154/*
9155 * Return which encoder is currently attached for connector.
9156 */
df0e9248 9157struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9158{
df0e9248
CW
9159 return &intel_attached_encoder(connector)->base;
9160}
f1c79df3 9161
df0e9248
CW
9162void intel_connector_attach_encoder(struct intel_connector *connector,
9163 struct intel_encoder *encoder)
9164{
9165 connector->encoder = encoder;
9166 drm_mode_connector_attach_encoder(&connector->base,
9167 &encoder->base);
79e53945 9168}
28d52043
DA
9169
9170/*
9171 * set vga decode state - true == enable VGA decode
9172 */
9173int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9174{
9175 struct drm_i915_private *dev_priv = dev->dev_private;
9176 u16 gmch_ctrl;
9177
9178 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9179 if (state)
9180 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9181 else
9182 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9183 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9184 return 0;
9185}
c4a1d9e4
CW
9186
9187#ifdef CONFIG_DEBUG_FS
9188#include <linux/seq_file.h>
9189
9190struct intel_display_error_state {
9191 struct intel_cursor_error_state {
9192 u32 control;
9193 u32 position;
9194 u32 base;
9195 u32 size;
52331309 9196 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
9197
9198 struct intel_pipe_error_state {
9199 u32 conf;
9200 u32 source;
9201
9202 u32 htotal;
9203 u32 hblank;
9204 u32 hsync;
9205 u32 vtotal;
9206 u32 vblank;
9207 u32 vsync;
52331309 9208 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
9209
9210 struct intel_plane_error_state {
9211 u32 control;
9212 u32 stride;
9213 u32 size;
9214 u32 pos;
9215 u32 addr;
9216 u32 surface;
9217 u32 tile_offset;
52331309 9218 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
9219};
9220
9221struct intel_display_error_state *
9222intel_display_capture_error_state(struct drm_device *dev)
9223{
0206e353 9224 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 9225 struct intel_display_error_state *error;
702e7a56 9226 enum transcoder cpu_transcoder;
c4a1d9e4
CW
9227 int i;
9228
9229 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9230 if (error == NULL)
9231 return NULL;
9232
52331309 9233 for_each_pipe(i) {
702e7a56
PZ
9234 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9235
c4a1d9e4
CW
9236 error->cursor[i].control = I915_READ(CURCNTR(i));
9237 error->cursor[i].position = I915_READ(CURPOS(i));
9238 error->cursor[i].base = I915_READ(CURBASE(i));
9239
9240 error->plane[i].control = I915_READ(DSPCNTR(i));
9241 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9242 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9243 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9244 error->plane[i].addr = I915_READ(DSPADDR(i));
9245 if (INTEL_INFO(dev)->gen >= 4) {
9246 error->plane[i].surface = I915_READ(DSPSURF(i));
9247 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9248 }
9249
702e7a56 9250 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 9251 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
9252 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9253 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9254 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9255 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9256 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9257 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
9258 }
9259
9260 return error;
9261}
9262
9263void
9264intel_display_print_error_state(struct seq_file *m,
9265 struct drm_device *dev,
9266 struct intel_display_error_state *error)
9267{
52331309 9268 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9269 int i;
9270
52331309
DL
9271 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9272 for_each_pipe(i) {
c4a1d9e4
CW
9273 seq_printf(m, "Pipe [%d]:\n", i);
9274 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9275 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9276 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9277 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9278 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9279 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9280 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9281 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9282
9283 seq_printf(m, "Plane [%d]:\n", i);
9284 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9285 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9286 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9287 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9288 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9289 if (INTEL_INFO(dev)->gen >= 4) {
9290 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9291 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9292 }
9293
9294 seq_printf(m, "Cursor [%d]:\n", i);
9295 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9296 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9297 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9298 }
9299}
9300#endif
This page took 1.276 seconds and 5 git commands to generate.