KVM: MMU: show mmu_valid_gen in shadow page related tracepoints
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
95b0430d
TY
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
ce88decf
XG
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
95b0430d 206 sp->mmio_cached = true;
4f022648 207 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209}
210
211static bool is_mmio_spte(u64 spte)
212{
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214}
215
216static gfn_t get_mmio_spte_gfn(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219}
220
221static unsigned get_mmio_spte_access(u64 spte)
222{
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224}
225
226static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227{
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234}
c7addb90 235
82725b20
DE
236static inline u64 rsvd_bits(int s, int e)
237{
238 return ((1ULL << (e - s + 1)) - 1) << s;
239}
240
7b52345e 241void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
243{
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249}
250EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
6aa8b732
AK
252static int is_cpuid_PSE36(void)
253{
254 return 1;
255}
256
73b1087e
AK
257static int is_nx(struct kvm_vcpu *vcpu)
258{
f6801dff 259 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
260}
261
c7addb90
AK
262static int is_shadow_present_pte(u64 pte)
263{
ce88decf 264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
265}
266
05da4558
MT
267static int is_large_pte(u64 pte)
268{
269 return pte & PT_PAGE_SIZE_MASK;
270}
271
43a3795a 272static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 273{
439e218a 274 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
275}
276
43a3795a 277static int is_rmap_spte(u64 pte)
cd4a4e53 278{
4b1a80fa 279 return is_shadow_present_pte(pte);
cd4a4e53
AK
280}
281
776e6633
MT
282static int is_last_spte(u64 pte, int level)
283{
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
852e3c19 286 if (is_large_pte(pte))
776e6633
MT
287 return 1;
288 return 0;
289}
290
35149e21 291static pfn_t spte_to_pfn(u64 pte)
0b49ea86 292{
35149e21 293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
294}
295
da928521
AK
296static gfn_t pse36_gfn_delta(u32 gpte)
297{
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301}
302
603e0651 303#ifdef CONFIG_X86_64
d555c333 304static void __set_spte(u64 *sptep, u64 spte)
e663ee64 305{
603e0651 306 *sptep = spte;
e663ee64
AK
307}
308
603e0651 309static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 310{
603e0651
XG
311 *sptep = spte;
312}
313
314static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315{
316 return xchg(sptep, spte);
317}
c2a2ac2b
XG
318
319static u64 __get_spte_lockless(u64 *sptep)
320{
321 return ACCESS_ONCE(*sptep);
322}
ce88decf
XG
323
324static bool __check_direct_spte_mmio_pf(u64 spte)
325{
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328}
a9221dd5 329#else
603e0651
XG
330union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336};
a9221dd5 337
c2a2ac2b
XG
338static void count_spte_clear(u64 *sptep, u64 spte)
339{
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348}
349
603e0651
XG
350static void __set_spte(u64 *sptep, u64 spte)
351{
352 union split_spte *ssptep, sspte;
a9221dd5 353
603e0651
XG
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
367}
368
603e0651
XG
369static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370{
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 385 count_spte_clear(sptep, spte);
603e0651
XG
386}
387
388static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389{
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 399 count_spte_clear(sptep, spte);
603e0651
XG
400
401 return orig.spte;
402}
c2a2ac2b
XG
403
404/*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
411static u64 __get_spte_lockless(u64 *sptep)
412{
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432}
ce88decf
XG
433
434static bool __check_direct_spte_mmio_pf(u64 spte)
435{
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449}
603e0651
XG
450#endif
451
c7ba5b48
XG
452static bool spte_is_locklessly_modifiable(u64 spte)
453{
feb3eb70
GN
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
456}
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
c7ba5b48
XG
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
8672b721
XG
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
4132779b
XG
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
477 return false;
478
479 return true;
480}
481
4132779b
XG
482static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483{
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485}
486
1df9f2dc
XG
487/* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
493static void mmu_spte_set(u64 *sptep, u64 new_spte)
494{
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497}
498
499/* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
1df9f2dc 507 */
6e7d0354 508static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 509{
c7ba5b48 510 u64 old_spte = *sptep;
6e7d0354 511 bool ret = false;
4132779b
XG
512
513 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 514
6e7d0354
XG
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
4132779b 519
c7ba5b48 520 if (!spte_has_volatile_bits(old_spte))
603e0651 521 __update_clear_spte_fast(sptep, new_spte);
4132779b 522 else
603e0651 523 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 524
c7ba5b48
XG
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
6e7d0354
XG
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
4132779b 533 if (!shadow_accessed_mask)
6e7d0354 534 return ret;
4132779b
XG
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
540
541 return ret;
b79b93f9
AK
542}
543
1df9f2dc
XG
544/*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
549static int mmu_spte_clear_track_bits(u64 *sptep)
550{
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 556 else
603e0651 557 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
86fde74c
XG
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
1df9f2dc
XG
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576}
577
578/*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
583static void mmu_spte_clear_no_track(u64 *sptep)
584{
603e0651 585 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
586}
587
c2a2ac2b
XG
588static u64 mmu_spte_get_lockless(u64 *sptep)
589{
590 return __get_spte_lockless(sptep);
591}
592
593static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594{
c142786c
AK
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
c2a2ac2b
XG
606}
607
608static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609{
c142786c
AK
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
c2a2ac2b
XG
618}
619
e2dec939 620static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 621 struct kmem_cache *base_cache, int min)
714b93da
AK
622{
623 void *obj;
624
625 if (cache->nobjs >= min)
e2dec939 626 return 0;
714b93da 627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 629 if (!obj)
e2dec939 630 return -ENOMEM;
714b93da
AK
631 cache->objects[cache->nobjs++] = obj;
632 }
e2dec939 633 return 0;
714b93da
AK
634}
635
f759e2b4
XG
636static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637{
638 return cache->nobjs;
639}
640
e8ad9a70
XG
641static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
714b93da
AK
643{
644 while (mc->nobjs)
e8ad9a70 645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
646}
647
c1158e63 648static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 649 int min)
c1158e63 650{
842f22ed 651 void *page;
c1158e63
AK
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 656 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
657 if (!page)
658 return -ENOMEM;
842f22ed 659 cache->objects[cache->nobjs++] = page;
c1158e63
AK
660 }
661 return 0;
662}
663
664static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665{
666 while (mc->nobjs)
c4d198d5 667 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
668}
669
2e3e5882 670static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 671{
e2dec939
AK
672 int r;
673
53c07b18 674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
679 if (r)
680 goto out;
ad312c7c 681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 682 mmu_page_header_cache, 4);
e2dec939
AK
683out:
684 return r;
714b93da
AK
685}
686
687static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688{
53c07b18
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
ad312c7c 691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
714b93da
AK
694}
695
80feb89a 696static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
697{
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
714b93da
AK
702 return p;
703}
704
53c07b18 705static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 706{
80feb89a 707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
708}
709
53c07b18 710static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 711{
53c07b18 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
713}
714
2032a93d
LJ
715static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716{
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721}
722
723static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724{
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729}
730
05da4558 731/*
d4dbf470
TY
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
05da4558 734 */
d4dbf470
TY
735static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
05da4558
MT
738{
739 unsigned long idx;
740
fb03cb6f 741 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 742 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
743}
744
745static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746{
d25797b2 747 struct kvm_memory_slot *slot;
d4dbf470 748 struct kvm_lpage_info *linfo;
d25797b2 749 int i;
05da4558 750
a1f4d395 751 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
d25797b2 756 }
332b207d 757 kvm->arch.indirect_shadow_pages++;
05da4558
MT
758}
759
760static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761{
d25797b2 762 struct kvm_memory_slot *slot;
d4dbf470 763 struct kvm_lpage_info *linfo;
d25797b2 764 int i;
05da4558 765
a1f4d395 766 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
d25797b2 772 }
332b207d 773 kvm->arch.indirect_shadow_pages--;
05da4558
MT
774}
775
d25797b2
JR
776static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
05da4558 779{
2843099f 780 struct kvm_memory_slot *slot;
d4dbf470 781 struct kvm_lpage_info *linfo;
05da4558 782
a1f4d395 783 slot = gfn_to_memslot(kvm, gfn);
05da4558 784 if (slot) {
d4dbf470
TY
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
05da4558
MT
787 }
788
789 return 1;
790}
791
d25797b2 792static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 793{
8f0b1ab6 794 unsigned long page_size;
d25797b2 795 int i, ret = 0;
05da4558 796
8f0b1ab6 797 page_size = kvm_host_page_size(kvm, gfn);
05da4558 798
d25797b2
JR
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
4c2155ce 807 return ret;
05da4558
MT
808}
809
5d163b1c
XG
810static struct kvm_memory_slot *
811gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
05da4558
MT
813{
814 struct kvm_memory_slot *slot;
5d163b1c
XG
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822}
823
824static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825{
a0a8eaba 826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
827}
828
829static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830{
831 int host_level, level, max_level;
05da4558 832
d25797b2
JR
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
55dd98c3 838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
d25797b2
JR
843
844 return level - 1;
05da4558
MT
845}
846
290fc38d 847/*
53c07b18 848 * Pte mapping structures:
cd4a4e53 849 *
53c07b18 850 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 851 *
53c07b18
XG
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
53a27b39 854 *
53c07b18 855 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
856 * the spte was not added.
857 *
cd4a4e53 858 */
53c07b18
XG
859static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
cd4a4e53 861{
53c07b18 862 struct pte_list_desc *desc;
53a27b39 863 int i, count = 0;
cd4a4e53 864
53c07b18
XG
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
d555c333 872 desc->sptes[1] = spte;
53c07b18 873 *pte_list = (unsigned long)desc | 1;
cb16a7b3 874 ++count;
cd4a4e53 875 } else {
53c07b18
XG
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 879 desc = desc->more;
53c07b18 880 count += PTE_LIST_EXT;
53a27b39 881 }
53c07b18
XG
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
884 desc = desc->more;
885 }
d555c333 886 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 887 ++count;
d555c333 888 desc->sptes[i] = spte;
cd4a4e53 889 }
53a27b39 890 return count;
cd4a4e53
AK
891}
892
53c07b18
XG
893static void
894pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
896{
897 int j;
898
53c07b18 899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 900 ;
d555c333
AK
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
cd4a4e53
AK
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
53c07b18 906 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
53c07b18
XG
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
913}
914
53c07b18 915static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 916{
53c07b18
XG
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
cd4a4e53
AK
919 int i;
920
53c07b18
XG
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 923 BUG();
53c07b18
XG
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
928 BUG();
929 }
53c07b18 930 *pte_list = 0;
cd4a4e53 931 } else {
53c07b18
XG
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
934 prev_desc = NULL;
935 while (desc) {
53c07b18 936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 937 if (desc->sptes[i] == spte) {
53c07b18 938 pte_list_desc_remove_entry(pte_list,
714b93da 939 desc, i,
cd4a4e53
AK
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
53c07b18 946 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
947 BUG();
948 }
949}
950
67052b35
XG
951typedef void (*pte_list_walk_fn) (u64 *spte);
952static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953{
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969}
970
9373e2c0 971static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 972 struct kvm_memory_slot *slot)
53c07b18 973{
77d11309 974 unsigned long idx;
53c07b18 975
77d11309 976 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
978}
979
9b9b1492
TY
980/*
981 * Take gfn and return the reverse mapping to it.
982 */
983static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984{
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 988 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
989}
990
f759e2b4
XG
991static bool rmap_can_add(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997}
998
53c07b18
XG
999static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000{
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
53c07b18
XG
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008}
1009
53c07b18
XG
1010static void rmap_remove(struct kvm *kvm, u64 *spte)
1011{
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020}
1021
1e3f42f0
TY
1022/*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030};
1031
1032/*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040{
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052}
1053
1054/*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059static u64 *rmap_get_next(struct rmap_iterator *iter)
1060{
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081}
1082
c3707958 1083static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1084{
1df9f2dc 1085 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1086 rmap_remove(kvm, sptep);
be38d276
AK
1087}
1088
8e22f955
XG
1089
1090static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091{
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101}
1102
1103static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104{
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107}
1108
1109/*
49fde340 1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
49fde340
XG
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
8e22f955 1120 *
6b73a960 1121 * Return true if the spte is dropped.
8e22f955 1122 */
6b73a960
MT
1123static bool
1124spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1125{
1126 u64 spte = *sptep;
1127
49fde340
XG
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
6b73a960
MT
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
49fde340
XG
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1141 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1142
6b73a960
MT
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
d13bc5b5
XG
1145}
1146
49fde340 1147static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1148 bool pt_protect)
98348e95 1149{
1e3f42f0
TY
1150 u64 *sptep;
1151 struct rmap_iterator iter;
d13bc5b5 1152 bool flush = false;
374cbac0 1153
1e3f42f0
TY
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
a0ed4607 1160
d13bc5b5 1161 sptep = rmap_get_next(&iter);
374cbac0 1162 }
855149aa 1163
d13bc5b5 1164 return flush;
a0ed4607
TY
1165}
1166
5dc99b23
TY
1167/**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1180{
1181 unsigned long *rmapp;
a0ed4607 1182
5dc99b23 1183 while (mask) {
65fbe37c
TY
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1186 __rmap_write_protect(kvm, rmapp, false);
05da4558 1187
5dc99b23
TY
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
374cbac0
AK
1191}
1192
2f84569f 1193static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1194{
1195 struct kvm_memory_slot *slot;
5dc99b23
TY
1196 unsigned long *rmapp;
1197 int i;
2f84569f 1198 bool write_protected = false;
95d4c16c
TY
1199
1200 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1206 }
1207
1208 return write_protected;
95d4c16c
TY
1209}
1210
8a8365c5 1211static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1212 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1213{
1e3f42f0
TY
1214 u64 *sptep;
1215 struct rmap_iterator iter;
e930bffe
AA
1216 int need_tlb_flush = 0;
1217
1e3f42f0
TY
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
e930bffe
AA
1223 need_tlb_flush = 1;
1224 }
1e3f42f0 1225
e930bffe
AA
1226 return need_tlb_flush;
1227}
1228
8a8365c5 1229static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1230 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1231{
1e3f42f0
TY
1232 u64 *sptep;
1233 struct rmap_iterator iter;
3da0dd43 1234 int need_flush = 0;
1e3f42f0 1235 u64 new_spte;
3da0dd43
IE
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
3da0dd43 1246 need_flush = 1;
1e3f42f0 1247
3da0dd43 1248 if (pte_write(*ptep)) {
1e3f42f0
TY
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1251 } else {
1e3f42f0 1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1257 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
3da0dd43
IE
1262 }
1263 }
1e3f42f0 1264
3da0dd43
IE
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269}
1270
84504ef3
TY
1271static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
048212d0 1277 struct kvm_memory_slot *slot,
84504ef3 1278 unsigned long data))
e930bffe 1279{
be6ba0f0 1280 int j;
f395302e 1281 int ret = 0;
bc6678a3 1282 struct kvm_memslots *slots;
be6ba0f0 1283 struct kvm_memory_slot *memslot;
bc6678a3 1284
90d83dc3 1285 slots = kvm_memslots(kvm);
e930bffe 1286
be6ba0f0 1287 kvm_for_each_memslot(memslot, slots) {
84504ef3 1288 unsigned long hva_start, hva_end;
bcd3ef58 1289 gfn_t gfn_start, gfn_end;
e930bffe 1290
84504ef3
TY
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1299 */
bcd3ef58 1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1302
bcd3ef58
TY
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
d4dbf470 1307
bcd3ef58
TY
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1314
bcd3ef58 1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1316
bcd3ef58
TY
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1319 }
1320 }
1321
f395302e 1322 return ret;
e930bffe
AA
1323}
1324
84504ef3
TY
1325static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1328 struct kvm_memory_slot *slot,
84504ef3
TY
1329 unsigned long data))
1330{
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1332}
1333
1334int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335{
3da0dd43
IE
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337}
1338
b3ae2096
TY
1339int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340{
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342}
1343
3da0dd43
IE
1344void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345{
8a8365c5 1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1347}
1348
8a8365c5 1349static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1350 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1351{
1e3f42f0 1352 u64 *sptep;
79f702a6 1353 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1354 int young = 0;
1355
6316e1c8 1356 /*
3f6d8c8a
XH
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
f395302e
TY
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
534e38b4 1368
1e3f42f0
TY
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1371 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1372
3f6d8c8a 1373 if (*sptep & shadow_accessed_mask) {
e930bffe 1374 young = 1;
3f6d8c8a
XH
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
e930bffe 1377 }
e930bffe 1378 }
f395302e
TY
1379out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1382 return young;
1383}
1384
8ee53820 1385static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1386 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1387{
1e3f42f0
TY
1388 u64 *sptep;
1389 struct rmap_iterator iter;
8ee53820
AA
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1e3f42f0
TY
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1402 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1403
3f6d8c8a 1404 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1405 young = 1;
1406 break;
1407 }
8ee53820
AA
1408 }
1409out:
1410 return young;
1411}
1412
53a27b39
MT
1413#define RMAP_RECYCLE_THRESHOLD 1000
1414
852e3c19 1415static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1416{
1417 unsigned long *rmapp;
852e3c19
JR
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
53a27b39 1421
852e3c19 1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1423
048212d0 1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426}
1427
e930bffe
AA
1428int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429{
f395302e 1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1431}
1432
8ee53820
AA
1433int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434{
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436}
1437
d6c69ee9 1438#ifdef MMU_DEBUG
47ad8e68 1439static int is_empty_shadow_page(u64 *spt)
6aa8b732 1440{
139bdb2d
AK
1441 u64 *pos;
1442 u64 *end;
1443
47ad8e68 1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1445 if (is_shadow_present_pte(*pos)) {
b8688d51 1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1447 pos, *pos);
6aa8b732 1448 return 0;
139bdb2d 1449 }
6aa8b732
AK
1450 return 1;
1451}
d6c69ee9 1452#endif
6aa8b732 1453
45221ab6
DH
1454/*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461{
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464}
1465
834be0d8 1466static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1467{
4db35314 1468 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1469 hlist_del(&sp->hash_link);
bd4c86ea
XG
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
834be0d8
GN
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
e8ad9a70 1474 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1475}
1476
cea0f0e7
AK
1477static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478{
1ae0a13d 1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1480}
1481
714b93da 1482static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1483 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1484{
cea0f0e7
AK
1485 if (!parent_pte)
1486 return;
cea0f0e7 1487
67052b35 1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1489}
1490
4db35314 1491static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1492 u64 *parent_pte)
1493{
67052b35 1494 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1495}
1496
bcdd9a93
XG
1497static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499{
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1501 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1502}
1503
67052b35
XG
1504static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
ad8cfbe3 1506{
67052b35 1507 struct kvm_mmu_page *sp;
7ddca7e4 1508
80feb89a
TY
1509 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1511 if (!direct)
80feb89a 1512 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1513 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1514
1515 /*
1516 * The active_mmu_pages list is the FIFO list, do not move the
1517 * page until it is zapped. kvm_zap_obsolete_pages depends on
1518 * this feature. See the comments in kvm_zap_obsolete_pages().
1519 */
67052b35 1520 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1521 sp->parent_ptes = 0;
1522 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1523 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1524 return sp;
ad8cfbe3
MT
1525}
1526
67052b35 1527static void mark_unsync(u64 *spte);
1047df1f 1528static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1529{
67052b35 1530 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1531}
1532
67052b35 1533static void mark_unsync(u64 *spte)
0074ff63 1534{
67052b35 1535 struct kvm_mmu_page *sp;
1047df1f 1536 unsigned int index;
0074ff63 1537
67052b35 1538 sp = page_header(__pa(spte));
1047df1f
XG
1539 index = spte - sp->spt;
1540 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1541 return;
1047df1f 1542 if (sp->unsync_children++)
0074ff63 1543 return;
1047df1f 1544 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1545}
1546
e8bc217a 1547static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1548 struct kvm_mmu_page *sp)
e8bc217a
MT
1549{
1550 return 1;
1551}
1552
a7052897
MT
1553static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1554{
1555}
1556
0f53b5b1
XG
1557static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1558 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1559 const void *pte)
0f53b5b1
XG
1560{
1561 WARN_ON(1);
1562}
1563
60c8aec6
MT
1564#define KVM_PAGE_ARRAY_NR 16
1565
1566struct kvm_mmu_pages {
1567 struct mmu_page_and_offset {
1568 struct kvm_mmu_page *sp;
1569 unsigned int idx;
1570 } page[KVM_PAGE_ARRAY_NR];
1571 unsigned int nr;
1572};
1573
cded19f3
HE
1574static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1575 int idx)
4731d4c7 1576{
60c8aec6 1577 int i;
4731d4c7 1578
60c8aec6
MT
1579 if (sp->unsync)
1580 for (i=0; i < pvec->nr; i++)
1581 if (pvec->page[i].sp == sp)
1582 return 0;
1583
1584 pvec->page[pvec->nr].sp = sp;
1585 pvec->page[pvec->nr].idx = idx;
1586 pvec->nr++;
1587 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1588}
1589
1590static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1591 struct kvm_mmu_pages *pvec)
1592{
1593 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1594
37178b8b 1595 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1596 struct kvm_mmu_page *child;
4731d4c7
MT
1597 u64 ent = sp->spt[i];
1598
7a8f1a74
XG
1599 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1600 goto clear_child_bitmap;
1601
1602 child = page_header(ent & PT64_BASE_ADDR_MASK);
1603
1604 if (child->unsync_children) {
1605 if (mmu_pages_add(pvec, child, i))
1606 return -ENOSPC;
1607
1608 ret = __mmu_unsync_walk(child, pvec);
1609 if (!ret)
1610 goto clear_child_bitmap;
1611 else if (ret > 0)
1612 nr_unsync_leaf += ret;
1613 else
1614 return ret;
1615 } else if (child->unsync) {
1616 nr_unsync_leaf++;
1617 if (mmu_pages_add(pvec, child, i))
1618 return -ENOSPC;
1619 } else
1620 goto clear_child_bitmap;
1621
1622 continue;
1623
1624clear_child_bitmap:
1625 __clear_bit(i, sp->unsync_child_bitmap);
1626 sp->unsync_children--;
1627 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1628 }
1629
4731d4c7 1630
60c8aec6
MT
1631 return nr_unsync_leaf;
1632}
1633
1634static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1635 struct kvm_mmu_pages *pvec)
1636{
1637 if (!sp->unsync_children)
1638 return 0;
1639
1640 mmu_pages_add(pvec, sp, 0);
1641 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1642}
1643
4731d4c7
MT
1644static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1645{
1646 WARN_ON(!sp->unsync);
5e1b3ddb 1647 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1648 sp->unsync = 0;
1649 --kvm->stat.mmu_unsync;
1650}
1651
7775834a
XG
1652static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653 struct list_head *invalid_list);
1654static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1655 struct list_head *invalid_list);
4731d4c7 1656
1044b030
TY
1657#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1658 hlist_for_each_entry(_sp, \
1659 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1660 if ((_sp)->gfn != (_gfn)) {} else
1661
1662#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1663 for_each_gfn_sp(_kvm, _sp, _gfn) \
1664 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1665
f918b443 1666/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1667static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1668 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1669{
5b7e0102 1670 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1671 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1672 return 1;
1673 }
1674
f918b443 1675 if (clear_unsync)
1d9dc7e0 1676 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1677
a4a8e6f7 1678 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1679 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1680 return 1;
1681 }
1682
1683 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1684 return 0;
1685}
1686
1d9dc7e0
XG
1687static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1688 struct kvm_mmu_page *sp)
1689{
d98ba053 1690 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1691 int ret;
1692
d98ba053 1693 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1694 if (ret)
d98ba053
XG
1695 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1696
1d9dc7e0
XG
1697 return ret;
1698}
1699
e37fa785
XG
1700#ifdef CONFIG_KVM_MMU_AUDIT
1701#include "mmu_audit.c"
1702#else
1703static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1704static void mmu_audit_disable(void) { }
1705#endif
1706
d98ba053
XG
1707static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1708 struct list_head *invalid_list)
1d9dc7e0 1709{
d98ba053 1710 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1711}
1712
9f1a122f
XG
1713/* @gfn should be write-protected at the call site */
1714static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1715{
9f1a122f 1716 struct kvm_mmu_page *s;
d98ba053 1717 LIST_HEAD(invalid_list);
9f1a122f
XG
1718 bool flush = false;
1719
b67bfe0d 1720 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1721 if (!s->unsync)
9f1a122f
XG
1722 continue;
1723
1724 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1725 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1726 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1727 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1728 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1729 continue;
1730 }
9f1a122f
XG
1731 flush = true;
1732 }
1733
d98ba053 1734 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1735 if (flush)
1736 kvm_mmu_flush_tlb(vcpu);
1737}
1738
60c8aec6
MT
1739struct mmu_page_path {
1740 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1741 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1742};
1743
60c8aec6
MT
1744#define for_each_sp(pvec, sp, parents, i) \
1745 for (i = mmu_pages_next(&pvec, &parents, -1), \
1746 sp = pvec.page[i].sp; \
1747 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1748 i = mmu_pages_next(&pvec, &parents, i))
1749
cded19f3
HE
1750static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1751 struct mmu_page_path *parents,
1752 int i)
60c8aec6
MT
1753{
1754 int n;
1755
1756 for (n = i+1; n < pvec->nr; n++) {
1757 struct kvm_mmu_page *sp = pvec->page[n].sp;
1758
1759 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1760 parents->idx[0] = pvec->page[n].idx;
1761 return n;
1762 }
1763
1764 parents->parent[sp->role.level-2] = sp;
1765 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1766 }
1767
1768 return n;
1769}
1770
cded19f3 1771static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1772{
60c8aec6
MT
1773 struct kvm_mmu_page *sp;
1774 unsigned int level = 0;
1775
1776 do {
1777 unsigned int idx = parents->idx[level];
4731d4c7 1778
60c8aec6
MT
1779 sp = parents->parent[level];
1780 if (!sp)
1781 return;
1782
1783 --sp->unsync_children;
1784 WARN_ON((int)sp->unsync_children < 0);
1785 __clear_bit(idx, sp->unsync_child_bitmap);
1786 level++;
1787 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1788}
1789
60c8aec6
MT
1790static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1791 struct mmu_page_path *parents,
1792 struct kvm_mmu_pages *pvec)
4731d4c7 1793{
60c8aec6
MT
1794 parents->parent[parent->role.level-1] = NULL;
1795 pvec->nr = 0;
1796}
4731d4c7 1797
60c8aec6
MT
1798static void mmu_sync_children(struct kvm_vcpu *vcpu,
1799 struct kvm_mmu_page *parent)
1800{
1801 int i;
1802 struct kvm_mmu_page *sp;
1803 struct mmu_page_path parents;
1804 struct kvm_mmu_pages pages;
d98ba053 1805 LIST_HEAD(invalid_list);
60c8aec6
MT
1806
1807 kvm_mmu_pages_init(parent, &parents, &pages);
1808 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1809 bool protected = false;
b1a36821
MT
1810
1811 for_each_sp(pages, sp, parents, i)
1812 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1813
1814 if (protected)
1815 kvm_flush_remote_tlbs(vcpu->kvm);
1816
60c8aec6 1817 for_each_sp(pages, sp, parents, i) {
d98ba053 1818 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1819 mmu_pages_clear_parents(&parents);
1820 }
d98ba053 1821 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1822 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1823 kvm_mmu_pages_init(parent, &parents, &pages);
1824 }
4731d4c7
MT
1825}
1826
c3707958
XG
1827static void init_shadow_page_table(struct kvm_mmu_page *sp)
1828{
1829 int i;
1830
1831 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1832 sp->spt[i] = 0ull;
1833}
1834
a30f47cb
XG
1835static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1836{
1837 sp->write_flooding_count = 0;
1838}
1839
1840static void clear_sp_write_flooding_count(u64 *spte)
1841{
1842 struct kvm_mmu_page *sp = page_header(__pa(spte));
1843
1844 __clear_sp_write_flooding_count(sp);
1845}
1846
5304b8d3
XG
1847static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1848{
1849 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1850}
1851
cea0f0e7
AK
1852static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1853 gfn_t gfn,
1854 gva_t gaddr,
1855 unsigned level,
f6e2c02b 1856 int direct,
41074d07 1857 unsigned access,
f7d9c7b7 1858 u64 *parent_pte)
cea0f0e7
AK
1859{
1860 union kvm_mmu_page_role role;
cea0f0e7 1861 unsigned quadrant;
9f1a122f 1862 struct kvm_mmu_page *sp;
9f1a122f 1863 bool need_sync = false;
cea0f0e7 1864
a770f6f2 1865 role = vcpu->arch.mmu.base_role;
cea0f0e7 1866 role.level = level;
f6e2c02b 1867 role.direct = direct;
84b0c8c6 1868 if (role.direct)
5b7e0102 1869 role.cr4_pae = 0;
41074d07 1870 role.access = access;
c5a78f2b
JR
1871 if (!vcpu->arch.mmu.direct_map
1872 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1873 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1874 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1875 role.quadrant = quadrant;
1876 }
b67bfe0d 1877 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
1878 if (!need_sync && sp->unsync)
1879 need_sync = true;
4731d4c7 1880
7ae680eb
XG
1881 if (sp->role.word != role.word)
1882 continue;
4731d4c7 1883
7ae680eb
XG
1884 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1885 break;
e02aa901 1886
7ae680eb
XG
1887 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1888 if (sp->unsync_children) {
a8eeb04a 1889 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1890 kvm_mmu_mark_parents_unsync(sp);
1891 } else if (sp->unsync)
1892 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1893
a30f47cb 1894 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1895 trace_kvm_mmu_get_page(sp, false);
1896 return sp;
1897 }
dfc5aa00 1898 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1899 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1900 if (!sp)
1901 return sp;
4db35314
AK
1902 sp->gfn = gfn;
1903 sp->role = role;
7ae680eb
XG
1904 hlist_add_head(&sp->hash_link,
1905 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1906 if (!direct) {
b1a36821
MT
1907 if (rmap_write_protect(vcpu->kvm, gfn))
1908 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1909 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1910 kvm_sync_pages(vcpu, gfn);
1911
4731d4c7
MT
1912 account_shadowed(vcpu->kvm, gfn);
1913 }
5304b8d3 1914 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1915 init_shadow_page_table(sp);
f691fe1d 1916 trace_kvm_mmu_get_page(sp, true);
4db35314 1917 return sp;
cea0f0e7
AK
1918}
1919
2d11123a
AK
1920static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1921 struct kvm_vcpu *vcpu, u64 addr)
1922{
1923 iterator->addr = addr;
1924 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1925 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1926
1927 if (iterator->level == PT64_ROOT_LEVEL &&
1928 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1929 !vcpu->arch.mmu.direct_map)
1930 --iterator->level;
1931
2d11123a
AK
1932 if (iterator->level == PT32E_ROOT_LEVEL) {
1933 iterator->shadow_addr
1934 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1935 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1936 --iterator->level;
1937 if (!iterator->shadow_addr)
1938 iterator->level = 0;
1939 }
1940}
1941
1942static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1943{
1944 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1945 return false;
4d88954d 1946
2d11123a
AK
1947 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1948 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1949 return true;
1950}
1951
c2a2ac2b
XG
1952static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1953 u64 spte)
2d11123a 1954{
c2a2ac2b 1955 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1956 iterator->level = 0;
1957 return;
1958 }
1959
c2a2ac2b 1960 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1961 --iterator->level;
1962}
1963
c2a2ac2b
XG
1964static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1965{
1966 return __shadow_walk_next(iterator, *iterator->sptep);
1967}
1968
32ef26a3
AK
1969static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1970{
1971 u64 spte;
1972
24db2734
XG
1973 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1974 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1975
1df9f2dc 1976 mmu_spte_set(sptep, spte);
32ef26a3
AK
1977}
1978
a357bd22
AK
1979static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1980 unsigned direct_access)
1981{
1982 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1983 struct kvm_mmu_page *child;
1984
1985 /*
1986 * For the direct sp, if the guest pte's dirty bit
1987 * changed form clean to dirty, it will corrupt the
1988 * sp's access: allow writable in the read-only sp,
1989 * so we should update the spte at this point to get
1990 * a new sp with the correct access.
1991 */
1992 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1993 if (child->role.access == direct_access)
1994 return;
1995
bcdd9a93 1996 drop_parent_pte(child, sptep);
a357bd22
AK
1997 kvm_flush_remote_tlbs(vcpu->kvm);
1998 }
1999}
2000
505aef8f 2001static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2002 u64 *spte)
2003{
2004 u64 pte;
2005 struct kvm_mmu_page *child;
2006
2007 pte = *spte;
2008 if (is_shadow_present_pte(pte)) {
505aef8f 2009 if (is_last_spte(pte, sp->role.level)) {
c3707958 2010 drop_spte(kvm, spte);
505aef8f
XG
2011 if (is_large_pte(pte))
2012 --kvm->stat.lpages;
2013 } else {
38e3b2b2 2014 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2015 drop_parent_pte(child, spte);
38e3b2b2 2016 }
505aef8f
XG
2017 return true;
2018 }
2019
2020 if (is_mmio_spte(pte))
ce88decf 2021 mmu_spte_clear_no_track(spte);
c3707958 2022
505aef8f 2023 return false;
38e3b2b2
XG
2024}
2025
90cb0529 2026static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2027 struct kvm_mmu_page *sp)
a436036b 2028{
697fe2e2 2029 unsigned i;
697fe2e2 2030
38e3b2b2
XG
2031 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2032 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2033}
2034
4db35314 2035static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2036{
4db35314 2037 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2038}
2039
31aa2b44 2040static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2041{
1e3f42f0
TY
2042 u64 *sptep;
2043 struct rmap_iterator iter;
a436036b 2044
1e3f42f0
TY
2045 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2046 drop_parent_pte(sp, sptep);
31aa2b44
AK
2047}
2048
60c8aec6 2049static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2050 struct kvm_mmu_page *parent,
2051 struct list_head *invalid_list)
4731d4c7 2052{
60c8aec6
MT
2053 int i, zapped = 0;
2054 struct mmu_page_path parents;
2055 struct kvm_mmu_pages pages;
4731d4c7 2056
60c8aec6 2057 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2058 return 0;
60c8aec6
MT
2059
2060 kvm_mmu_pages_init(parent, &parents, &pages);
2061 while (mmu_unsync_walk(parent, &pages)) {
2062 struct kvm_mmu_page *sp;
2063
2064 for_each_sp(pages, sp, parents, i) {
7775834a 2065 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2066 mmu_pages_clear_parents(&parents);
77662e00 2067 zapped++;
60c8aec6 2068 }
60c8aec6
MT
2069 kvm_mmu_pages_init(parent, &parents, &pages);
2070 }
2071
2072 return zapped;
4731d4c7
MT
2073}
2074
7775834a
XG
2075static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2076 struct list_head *invalid_list)
31aa2b44 2077{
4731d4c7 2078 int ret;
f691fe1d 2079
7775834a 2080 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2081 ++kvm->stat.mmu_shadow_zapped;
7775834a 2082 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2083 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2084 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2085
f6e2c02b 2086 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2087 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2088
4731d4c7
MT
2089 if (sp->unsync)
2090 kvm_unlink_unsync_page(kvm, sp);
4db35314 2091 if (!sp->root_count) {
54a4f023
GJ
2092 /* Count self */
2093 ret++;
7775834a 2094 list_move(&sp->link, invalid_list);
aa6bd187 2095 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2096 } else {
5b5c6a5a 2097 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2098 kvm_reload_remote_mmus(kvm);
2099 }
7775834a
XG
2100
2101 sp->role.invalid = 1;
4731d4c7 2102 return ret;
a436036b
AK
2103}
2104
7775834a
XG
2105static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2106 struct list_head *invalid_list)
2107{
945315b9 2108 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2109
2110 if (list_empty(invalid_list))
2111 return;
2112
c142786c
AK
2113 /*
2114 * wmb: make sure everyone sees our modifications to the page tables
2115 * rmb: make sure we see changes to vcpu->mode
2116 */
2117 smp_mb();
4f022648 2118
c142786c
AK
2119 /*
2120 * Wait for all vcpus to exit guest mode and/or lockless shadow
2121 * page table walks.
2122 */
2123 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2124
945315b9 2125 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2126 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2127 kvm_mmu_free_page(sp);
945315b9 2128 }
7775834a
XG
2129}
2130
5da59607
TY
2131static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2132 struct list_head *invalid_list)
2133{
2134 struct kvm_mmu_page *sp;
2135
2136 if (list_empty(&kvm->arch.active_mmu_pages))
2137 return false;
2138
2139 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2140 struct kvm_mmu_page, link);
2141 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2142
2143 return true;
2144}
2145
82ce2c96
IE
2146/*
2147 * Changing the number of mmu pages allocated to the vm
49d5ca26 2148 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2149 */
49d5ca26 2150void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2151{
d98ba053 2152 LIST_HEAD(invalid_list);
82ce2c96 2153
b34cb590
TY
2154 spin_lock(&kvm->mmu_lock);
2155
49d5ca26 2156 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2157 /* Need to free some mmu pages to achieve the goal. */
2158 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2159 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2160 break;
82ce2c96 2161
aa6bd187 2162 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2163 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2164 }
82ce2c96 2165
49d5ca26 2166 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2167
2168 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2169}
2170
1cb3f3ae 2171int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2172{
4db35314 2173 struct kvm_mmu_page *sp;
d98ba053 2174 LIST_HEAD(invalid_list);
a436036b
AK
2175 int r;
2176
9ad17b10 2177 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2178 r = 0;
1cb3f3ae 2179 spin_lock(&kvm->mmu_lock);
b67bfe0d 2180 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2181 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2182 sp->role.word);
2183 r = 1;
f41d335a 2184 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2185 }
d98ba053 2186 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2187 spin_unlock(&kvm->mmu_lock);
2188
a436036b 2189 return r;
cea0f0e7 2190}
1cb3f3ae 2191EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2192
74be52e3
SY
2193/*
2194 * The function is based on mtrr_type_lookup() in
2195 * arch/x86/kernel/cpu/mtrr/generic.c
2196 */
2197static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2198 u64 start, u64 end)
2199{
2200 int i;
2201 u64 base, mask;
2202 u8 prev_match, curr_match;
2203 int num_var_ranges = KVM_NR_VAR_MTRR;
2204
2205 if (!mtrr_state->enabled)
2206 return 0xFF;
2207
2208 /* Make end inclusive end, instead of exclusive */
2209 end--;
2210
2211 /* Look in fixed ranges. Just return the type as per start */
2212 if (mtrr_state->have_fixed && (start < 0x100000)) {
2213 int idx;
2214
2215 if (start < 0x80000) {
2216 idx = 0;
2217 idx += (start >> 16);
2218 return mtrr_state->fixed_ranges[idx];
2219 } else if (start < 0xC0000) {
2220 idx = 1 * 8;
2221 idx += ((start - 0x80000) >> 14);
2222 return mtrr_state->fixed_ranges[idx];
2223 } else if (start < 0x1000000) {
2224 idx = 3 * 8;
2225 idx += ((start - 0xC0000) >> 12);
2226 return mtrr_state->fixed_ranges[idx];
2227 }
2228 }
2229
2230 /*
2231 * Look in variable ranges
2232 * Look of multiple ranges matching this address and pick type
2233 * as per MTRR precedence
2234 */
2235 if (!(mtrr_state->enabled & 2))
2236 return mtrr_state->def_type;
2237
2238 prev_match = 0xFF;
2239 for (i = 0; i < num_var_ranges; ++i) {
2240 unsigned short start_state, end_state;
2241
2242 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2243 continue;
2244
2245 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2246 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2247 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2248 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2249
2250 start_state = ((start & mask) == (base & mask));
2251 end_state = ((end & mask) == (base & mask));
2252 if (start_state != end_state)
2253 return 0xFE;
2254
2255 if ((start & mask) != (base & mask))
2256 continue;
2257
2258 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2259 if (prev_match == 0xFF) {
2260 prev_match = curr_match;
2261 continue;
2262 }
2263
2264 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2265 curr_match == MTRR_TYPE_UNCACHABLE)
2266 return MTRR_TYPE_UNCACHABLE;
2267
2268 if ((prev_match == MTRR_TYPE_WRBACK &&
2269 curr_match == MTRR_TYPE_WRTHROUGH) ||
2270 (prev_match == MTRR_TYPE_WRTHROUGH &&
2271 curr_match == MTRR_TYPE_WRBACK)) {
2272 prev_match = MTRR_TYPE_WRTHROUGH;
2273 curr_match = MTRR_TYPE_WRTHROUGH;
2274 }
2275
2276 if (prev_match != curr_match)
2277 return MTRR_TYPE_UNCACHABLE;
2278 }
2279
2280 if (prev_match != 0xFF)
2281 return prev_match;
2282
2283 return mtrr_state->def_type;
2284}
2285
4b12f0de 2286u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2287{
2288 u8 mtrr;
2289
2290 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2291 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2292 if (mtrr == 0xfe || mtrr == 0xff)
2293 mtrr = MTRR_TYPE_WRBACK;
2294 return mtrr;
2295}
4b12f0de 2296EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2297
9cf5cf5a
XG
2298static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2299{
2300 trace_kvm_mmu_unsync_page(sp);
2301 ++vcpu->kvm->stat.mmu_unsync;
2302 sp->unsync = 1;
2303
2304 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2305}
2306
2307static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2308{
4731d4c7 2309 struct kvm_mmu_page *s;
9cf5cf5a 2310
b67bfe0d 2311 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2312 if (s->unsync)
4731d4c7 2313 continue;
9cf5cf5a
XG
2314 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2315 __kvm_unsync_page(vcpu, s);
4731d4c7 2316 }
4731d4c7
MT
2317}
2318
2319static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2320 bool can_unsync)
2321{
9cf5cf5a 2322 struct kvm_mmu_page *s;
9cf5cf5a
XG
2323 bool need_unsync = false;
2324
b67bfe0d 2325 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2326 if (!can_unsync)
2327 return 1;
2328
9cf5cf5a 2329 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2330 return 1;
9cf5cf5a 2331
9bb4f6b1 2332 if (!s->unsync)
9cf5cf5a 2333 need_unsync = true;
4731d4c7 2334 }
9cf5cf5a
XG
2335 if (need_unsync)
2336 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2337 return 0;
2338}
2339
d555c333 2340static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2341 unsigned pte_access, int level,
c2d0ee46 2342 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2343 bool can_unsync, bool host_writable)
1c4f1fd6 2344{
6e7d0354 2345 u64 spte;
1e73f9dd 2346 int ret = 0;
64d4d521 2347
ce88decf
XG
2348 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2349 return 0;
2350
982c2565 2351 spte = PT_PRESENT_MASK;
947da538 2352 if (!speculative)
3201b5d9 2353 spte |= shadow_accessed_mask;
640d9b0d 2354
7b52345e
SY
2355 if (pte_access & ACC_EXEC_MASK)
2356 spte |= shadow_x_mask;
2357 else
2358 spte |= shadow_nx_mask;
49fde340 2359
1c4f1fd6 2360 if (pte_access & ACC_USER_MASK)
7b52345e 2361 spte |= shadow_user_mask;
49fde340 2362
852e3c19 2363 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2364 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2365 if (tdp_enabled)
4b12f0de
SY
2366 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2367 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2368
9bdbba13 2369 if (host_writable)
1403283a 2370 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2371 else
2372 pte_access &= ~ACC_WRITE_MASK;
1403283a 2373
35149e21 2374 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2375
c2288505 2376 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2377
c2193463 2378 /*
7751babd
XG
2379 * Other vcpu creates new sp in the window between
2380 * mapping_level() and acquiring mmu-lock. We can
2381 * allow guest to retry the access, the mapping can
2382 * be fixed if guest refault.
c2193463 2383 */
852e3c19 2384 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2385 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2386 goto done;
38187c83 2387
49fde340 2388 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2389
ecc5589f
MT
2390 /*
2391 * Optimization: for pte sync, if spte was writable the hash
2392 * lookup is unnecessary (and expensive). Write protection
2393 * is responsibility of mmu_get_page / kvm_sync_page.
2394 * Same reasoning can be applied to dirty page accounting.
2395 */
8dae4445 2396 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2397 goto set_pte;
2398
4731d4c7 2399 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2400 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2401 __func__, gfn);
1e73f9dd 2402 ret = 1;
1c4f1fd6 2403 pte_access &= ~ACC_WRITE_MASK;
49fde340 2404 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2405 }
2406 }
2407
1c4f1fd6
AK
2408 if (pte_access & ACC_WRITE_MASK)
2409 mark_page_dirty(vcpu->kvm, gfn);
2410
38187c83 2411set_pte:
6e7d0354 2412 if (mmu_spte_update(sptep, spte))
b330aa0c 2413 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2414done:
1e73f9dd
MT
2415 return ret;
2416}
2417
d555c333 2418static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2419 unsigned pte_access, int write_fault, int *emulate,
2420 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2421 bool host_writable)
1e73f9dd
MT
2422{
2423 int was_rmapped = 0;
53a27b39 2424 int rmap_count;
1e73f9dd 2425
f7616203
XG
2426 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2427 *sptep, write_fault, gfn);
1e73f9dd 2428
d555c333 2429 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2430 /*
2431 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2432 * the parent of the now unreachable PTE.
2433 */
852e3c19
JR
2434 if (level > PT_PAGE_TABLE_LEVEL &&
2435 !is_large_pte(*sptep)) {
1e73f9dd 2436 struct kvm_mmu_page *child;
d555c333 2437 u64 pte = *sptep;
1e73f9dd
MT
2438
2439 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2440 drop_parent_pte(child, sptep);
3be2264b 2441 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2442 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2443 pgprintk("hfn old %llx new %llx\n",
d555c333 2444 spte_to_pfn(*sptep), pfn);
c3707958 2445 drop_spte(vcpu->kvm, sptep);
91546356 2446 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2447 } else
2448 was_rmapped = 1;
1e73f9dd 2449 }
852e3c19 2450
c2288505
XG
2451 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2452 true, host_writable)) {
1e73f9dd 2453 if (write_fault)
b90a0e6c 2454 *emulate = 1;
5304efde 2455 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2456 }
1e73f9dd 2457
ce88decf
XG
2458 if (unlikely(is_mmio_spte(*sptep) && emulate))
2459 *emulate = 1;
2460
d555c333 2461 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2462 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2463 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2464 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2465 *sptep, sptep);
d555c333 2466 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2467 ++vcpu->kvm->stat.lpages;
2468
ffb61bb3 2469 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2470 if (!was_rmapped) {
2471 rmap_count = rmap_add(vcpu, sptep, gfn);
2472 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2473 rmap_recycle(vcpu, sptep, gfn);
2474 }
1c4f1fd6 2475 }
cb9aaa30 2476
f3ac1a4b 2477 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2478}
2479
6aa8b732
AK
2480static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2481{
e676505a 2482 mmu_free_roots(vcpu);
6aa8b732
AK
2483}
2484
a052b42b
XG
2485static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2486{
2487 int bit7;
2488
2489 bit7 = (gpte >> 7) & 1;
2490 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2491}
2492
957ed9ef
XG
2493static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2494 bool no_dirty_log)
2495{
2496 struct kvm_memory_slot *slot;
957ed9ef 2497
5d163b1c 2498 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2499 if (!slot)
6c8ee57b 2500 return KVM_PFN_ERR_FAULT;
957ed9ef 2501
037d92dc 2502 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2503}
2504
a052b42b
XG
2505static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2506 struct kvm_mmu_page *sp, u64 *spte,
2507 u64 gpte)
2508{
2509 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2510 goto no_present;
2511
2512 if (!is_present_gpte(gpte))
2513 goto no_present;
2514
2515 if (!(gpte & PT_ACCESSED_MASK))
2516 goto no_present;
2517
2518 return false;
2519
2520no_present:
2521 drop_spte(vcpu->kvm, spte);
2522 return true;
2523}
2524
957ed9ef
XG
2525static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2526 struct kvm_mmu_page *sp,
2527 u64 *start, u64 *end)
2528{
2529 struct page *pages[PTE_PREFETCH_NUM];
2530 unsigned access = sp->role.access;
2531 int i, ret;
2532 gfn_t gfn;
2533
2534 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2535 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2536 return -1;
2537
2538 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2539 if (ret <= 0)
2540 return -1;
2541
2542 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2543 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2544 sp->role.level, gfn, page_to_pfn(pages[i]),
2545 true, true);
957ed9ef
XG
2546
2547 return 0;
2548}
2549
2550static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2551 struct kvm_mmu_page *sp, u64 *sptep)
2552{
2553 u64 *spte, *start = NULL;
2554 int i;
2555
2556 WARN_ON(!sp->role.direct);
2557
2558 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2559 spte = sp->spt + i;
2560
2561 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2562 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2563 if (!start)
2564 continue;
2565 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2566 break;
2567 start = NULL;
2568 } else if (!start)
2569 start = spte;
2570 }
2571}
2572
2573static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2574{
2575 struct kvm_mmu_page *sp;
2576
2577 /*
2578 * Since it's no accessed bit on EPT, it's no way to
2579 * distinguish between actually accessed translations
2580 * and prefetched, so disable pte prefetch if EPT is
2581 * enabled.
2582 */
2583 if (!shadow_accessed_mask)
2584 return;
2585
2586 sp = page_header(__pa(sptep));
2587 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2588 return;
2589
2590 __direct_pte_prefetch(vcpu, sp, sptep);
2591}
2592
9f652d21 2593static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2594 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2595 bool prefault)
140754bc 2596{
9f652d21 2597 struct kvm_shadow_walk_iterator iterator;
140754bc 2598 struct kvm_mmu_page *sp;
b90a0e6c 2599 int emulate = 0;
140754bc 2600 gfn_t pseudo_gfn;
6aa8b732 2601
9f652d21 2602 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2603 if (iterator.level == level) {
f7616203 2604 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2605 write, &emulate, level, gfn, pfn,
2606 prefault, map_writable);
957ed9ef 2607 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2608 ++vcpu->stat.pf_fixed;
2609 break;
6aa8b732
AK
2610 }
2611
c3707958 2612 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2613 u64 base_addr = iterator.addr;
2614
2615 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2616 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2617 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2618 iterator.level - 1,
2619 1, ACC_ALL, iterator.sptep);
140754bc 2620
24db2734 2621 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2622 }
2623 }
b90a0e6c 2624 return emulate;
6aa8b732
AK
2625}
2626
77db5cbd 2627static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2628{
77db5cbd
HY
2629 siginfo_t info;
2630
2631 info.si_signo = SIGBUS;
2632 info.si_errno = 0;
2633 info.si_code = BUS_MCEERR_AR;
2634 info.si_addr = (void __user *)address;
2635 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2636
77db5cbd 2637 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2638}
2639
d7c55201 2640static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2641{
4d8b81ab
XG
2642 /*
2643 * Do not cache the mmio info caused by writing the readonly gfn
2644 * into the spte otherwise read access on readonly gfn also can
2645 * caused mmio page fault and treat it as mmio access.
2646 * Return 1 to tell kvm to emulate it.
2647 */
2648 if (pfn == KVM_PFN_ERR_RO_FAULT)
2649 return 1;
2650
e6c1502b 2651 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2652 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2653 return 0;
d7c55201 2654 }
edba23e5 2655
d7c55201 2656 return -EFAULT;
bf998156
HY
2657}
2658
936a5fe6
AA
2659static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2660 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2661{
2662 pfn_t pfn = *pfnp;
2663 gfn_t gfn = *gfnp;
2664 int level = *levelp;
2665
2666 /*
2667 * Check if it's a transparent hugepage. If this would be an
2668 * hugetlbfs page, level wouldn't be set to
2669 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2670 * here.
2671 */
81c52c56 2672 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2673 level == PT_PAGE_TABLE_LEVEL &&
2674 PageTransCompound(pfn_to_page(pfn)) &&
2675 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2676 unsigned long mask;
2677 /*
2678 * mmu_notifier_retry was successful and we hold the
2679 * mmu_lock here, so the pmd can't become splitting
2680 * from under us, and in turn
2681 * __split_huge_page_refcount() can't run from under
2682 * us and we can safely transfer the refcount from
2683 * PG_tail to PG_head as we switch the pfn to tail to
2684 * head.
2685 */
2686 *levelp = level = PT_DIRECTORY_LEVEL;
2687 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2688 VM_BUG_ON((gfn & mask) != (pfn & mask));
2689 if (pfn & mask) {
2690 gfn &= ~mask;
2691 *gfnp = gfn;
2692 kvm_release_pfn_clean(pfn);
2693 pfn &= ~mask;
c3586667 2694 kvm_get_pfn(pfn);
936a5fe6
AA
2695 *pfnp = pfn;
2696 }
2697 }
2698}
2699
d7c55201
XG
2700static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2701 pfn_t pfn, unsigned access, int *ret_val)
2702{
2703 bool ret = true;
2704
2705 /* The pfn is invalid, report the error! */
81c52c56 2706 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2707 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2708 goto exit;
2709 }
2710
ce88decf 2711 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2712 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2713
2714 ret = false;
2715exit:
2716 return ret;
2717}
2718
c7ba5b48
XG
2719static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2720{
2721 /*
2722 * #PF can be fast only if the shadow page table is present and it
2723 * is caused by write-protect, that means we just need change the
2724 * W bit of the spte which can be done out of mmu-lock.
2725 */
2726 if (!(error_code & PFERR_PRESENT_MASK) ||
2727 !(error_code & PFERR_WRITE_MASK))
2728 return false;
2729
2730 return true;
2731}
2732
2733static bool
2734fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2735{
2736 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2737 gfn_t gfn;
2738
2739 WARN_ON(!sp->role.direct);
2740
2741 /*
2742 * The gfn of direct spte is stable since it is calculated
2743 * by sp->gfn.
2744 */
2745 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2746
2747 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2748 mark_page_dirty(vcpu->kvm, gfn);
2749
2750 return true;
2751}
2752
2753/*
2754 * Return value:
2755 * - true: let the vcpu to access on the same address again.
2756 * - false: let the real page fault path to fix it.
2757 */
2758static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2759 u32 error_code)
2760{
2761 struct kvm_shadow_walk_iterator iterator;
2762 bool ret = false;
2763 u64 spte = 0ull;
2764
2765 if (!page_fault_can_be_fast(vcpu, error_code))
2766 return false;
2767
2768 walk_shadow_page_lockless_begin(vcpu);
2769 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2770 if (!is_shadow_present_pte(spte) || iterator.level < level)
2771 break;
2772
2773 /*
2774 * If the mapping has been changed, let the vcpu fault on the
2775 * same address again.
2776 */
2777 if (!is_rmap_spte(spte)) {
2778 ret = true;
2779 goto exit;
2780 }
2781
2782 if (!is_last_spte(spte, level))
2783 goto exit;
2784
2785 /*
2786 * Check if it is a spurious fault caused by TLB lazily flushed.
2787 *
2788 * Need not check the access of upper level table entries since
2789 * they are always ACC_ALL.
2790 */
2791 if (is_writable_pte(spte)) {
2792 ret = true;
2793 goto exit;
2794 }
2795
2796 /*
2797 * Currently, to simplify the code, only the spte write-protected
2798 * by dirty-log can be fast fixed.
2799 */
2800 if (!spte_is_locklessly_modifiable(spte))
2801 goto exit;
2802
2803 /*
2804 * Currently, fast page fault only works for direct mapping since
2805 * the gfn is not stable for indirect shadow page.
2806 * See Documentation/virtual/kvm/locking.txt to get more detail.
2807 */
2808 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2809exit:
a72faf25
XG
2810 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2811 spte, ret);
c7ba5b48
XG
2812 walk_shadow_page_lockless_end(vcpu);
2813
2814 return ret;
2815}
2816
78b2c54a 2817static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2818 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2819static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2820
c7ba5b48
XG
2821static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2822 gfn_t gfn, bool prefault)
10589a46
MT
2823{
2824 int r;
852e3c19 2825 int level;
936a5fe6 2826 int force_pt_level;
35149e21 2827 pfn_t pfn;
e930bffe 2828 unsigned long mmu_seq;
c7ba5b48 2829 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2830
936a5fe6
AA
2831 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2832 if (likely(!force_pt_level)) {
2833 level = mapping_level(vcpu, gfn);
2834 /*
2835 * This path builds a PAE pagetable - so we can map
2836 * 2mb pages at maximum. Therefore check if the level
2837 * is larger than that.
2838 */
2839 if (level > PT_DIRECTORY_LEVEL)
2840 level = PT_DIRECTORY_LEVEL;
852e3c19 2841
936a5fe6
AA
2842 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2843 } else
2844 level = PT_PAGE_TABLE_LEVEL;
05da4558 2845
c7ba5b48
XG
2846 if (fast_page_fault(vcpu, v, level, error_code))
2847 return 0;
2848
e930bffe 2849 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2850 smp_rmb();
060c2abe 2851
78b2c54a 2852 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2853 return 0;
aaee2c94 2854
d7c55201
XG
2855 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2856 return r;
d196e343 2857
aaee2c94 2858 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2859 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2860 goto out_unlock;
450e0b41 2861 make_mmu_pages_available(vcpu);
936a5fe6
AA
2862 if (likely(!force_pt_level))
2863 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2864 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2865 prefault);
aaee2c94
MT
2866 spin_unlock(&vcpu->kvm->mmu_lock);
2867
aaee2c94 2868
10589a46 2869 return r;
e930bffe
AA
2870
2871out_unlock:
2872 spin_unlock(&vcpu->kvm->mmu_lock);
2873 kvm_release_pfn_clean(pfn);
2874 return 0;
10589a46
MT
2875}
2876
2877
17ac10ad
AK
2878static void mmu_free_roots(struct kvm_vcpu *vcpu)
2879{
2880 int i;
4db35314 2881 struct kvm_mmu_page *sp;
d98ba053 2882 LIST_HEAD(invalid_list);
17ac10ad 2883
ad312c7c 2884 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2885 return;
35af577a 2886
81407ca5
JR
2887 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2888 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2889 vcpu->arch.mmu.direct_map)) {
ad312c7c 2890 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2891
35af577a 2892 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2893 sp = page_header(root);
2894 --sp->root_count;
d98ba053
XG
2895 if (!sp->root_count && sp->role.invalid) {
2896 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2897 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2898 }
aaee2c94 2899 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2900 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2901 return;
2902 }
35af577a
GN
2903
2904 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2905 for (i = 0; i < 4; ++i) {
ad312c7c 2906 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2907
417726a3 2908 if (root) {
417726a3 2909 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2910 sp = page_header(root);
2911 --sp->root_count;
2e53d63a 2912 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2913 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2914 &invalid_list);
417726a3 2915 }
ad312c7c 2916 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2917 }
d98ba053 2918 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2919 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2920 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2921}
2922
8986ecc0
MT
2923static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2924{
2925 int ret = 0;
2926
2927 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2928 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2929 ret = 1;
2930 }
2931
2932 return ret;
2933}
2934
651dd37a
JR
2935static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2936{
2937 struct kvm_mmu_page *sp;
7ebaf15e 2938 unsigned i;
651dd37a
JR
2939
2940 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2941 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 2942 make_mmu_pages_available(vcpu);
651dd37a
JR
2943 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2944 1, ACC_ALL, NULL);
2945 ++sp->root_count;
2946 spin_unlock(&vcpu->kvm->mmu_lock);
2947 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2948 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2949 for (i = 0; i < 4; ++i) {
2950 hpa_t root = vcpu->arch.mmu.pae_root[i];
2951
2952 ASSERT(!VALID_PAGE(root));
2953 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 2954 make_mmu_pages_available(vcpu);
649497d1
AK
2955 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2956 i << 30,
651dd37a
JR
2957 PT32_ROOT_LEVEL, 1, ACC_ALL,
2958 NULL);
2959 root = __pa(sp->spt);
2960 ++sp->root_count;
2961 spin_unlock(&vcpu->kvm->mmu_lock);
2962 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2963 }
6292757f 2964 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2965 } else
2966 BUG();
2967
2968 return 0;
2969}
2970
2971static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2972{
4db35314 2973 struct kvm_mmu_page *sp;
81407ca5
JR
2974 u64 pdptr, pm_mask;
2975 gfn_t root_gfn;
2976 int i;
3bb65a22 2977
5777ed34 2978 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2979
651dd37a
JR
2980 if (mmu_check_root(vcpu, root_gfn))
2981 return 1;
2982
2983 /*
2984 * Do we shadow a long mode page table? If so we need to
2985 * write-protect the guests page table root.
2986 */
2987 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2988 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2989
2990 ASSERT(!VALID_PAGE(root));
651dd37a 2991
8facbbff 2992 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 2993 make_mmu_pages_available(vcpu);
651dd37a
JR
2994 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2995 0, ACC_ALL, NULL);
4db35314
AK
2996 root = __pa(sp->spt);
2997 ++sp->root_count;
8facbbff 2998 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2999 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3000 return 0;
17ac10ad 3001 }
f87f9288 3002
651dd37a
JR
3003 /*
3004 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3005 * or a PAE 3-level page table. In either case we need to be aware that
3006 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3007 */
81407ca5
JR
3008 pm_mask = PT_PRESENT_MASK;
3009 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3010 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3011
17ac10ad 3012 for (i = 0; i < 4; ++i) {
ad312c7c 3013 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3014
3015 ASSERT(!VALID_PAGE(root));
ad312c7c 3016 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3017 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3018 if (!is_present_gpte(pdptr)) {
ad312c7c 3019 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3020 continue;
3021 }
6de4f3ad 3022 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3023 if (mmu_check_root(vcpu, root_gfn))
3024 return 1;
5a7388c2 3025 }
8facbbff 3026 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3027 make_mmu_pages_available(vcpu);
4db35314 3028 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3029 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3030 ACC_ALL, NULL);
4db35314
AK
3031 root = __pa(sp->spt);
3032 ++sp->root_count;
8facbbff
AK
3033 spin_unlock(&vcpu->kvm->mmu_lock);
3034
81407ca5 3035 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3036 }
6292757f 3037 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3038
3039 /*
3040 * If we shadow a 32 bit page table with a long mode page
3041 * table we enter this path.
3042 */
3043 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3044 if (vcpu->arch.mmu.lm_root == NULL) {
3045 /*
3046 * The additional page necessary for this is only
3047 * allocated on demand.
3048 */
3049
3050 u64 *lm_root;
3051
3052 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3053 if (lm_root == NULL)
3054 return 1;
3055
3056 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3057
3058 vcpu->arch.mmu.lm_root = lm_root;
3059 }
3060
3061 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3062 }
3063
8986ecc0 3064 return 0;
17ac10ad
AK
3065}
3066
651dd37a
JR
3067static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3068{
3069 if (vcpu->arch.mmu.direct_map)
3070 return mmu_alloc_direct_roots(vcpu);
3071 else
3072 return mmu_alloc_shadow_roots(vcpu);
3073}
3074
0ba73cda
MT
3075static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3076{
3077 int i;
3078 struct kvm_mmu_page *sp;
3079
81407ca5
JR
3080 if (vcpu->arch.mmu.direct_map)
3081 return;
3082
0ba73cda
MT
3083 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3084 return;
6903074c 3085
bebb106a 3086 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3087 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3088 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3089 hpa_t root = vcpu->arch.mmu.root_hpa;
3090 sp = page_header(root);
3091 mmu_sync_children(vcpu, sp);
0375f7fa 3092 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3093 return;
3094 }
3095 for (i = 0; i < 4; ++i) {
3096 hpa_t root = vcpu->arch.mmu.pae_root[i];
3097
8986ecc0 3098 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3099 root &= PT64_BASE_ADDR_MASK;
3100 sp = page_header(root);
3101 mmu_sync_children(vcpu, sp);
3102 }
3103 }
0375f7fa 3104 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3105}
3106
3107void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3108{
3109 spin_lock(&vcpu->kvm->mmu_lock);
3110 mmu_sync_roots(vcpu);
6cffe8ca 3111 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3112}
3113
1871c602 3114static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3115 u32 access, struct x86_exception *exception)
6aa8b732 3116{
ab9ae313
AK
3117 if (exception)
3118 exception->error_code = 0;
6aa8b732
AK
3119 return vaddr;
3120}
3121
6539e738 3122static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3123 u32 access,
3124 struct x86_exception *exception)
6539e738 3125{
ab9ae313
AK
3126 if (exception)
3127 exception->error_code = 0;
6539e738
JR
3128 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3129}
3130
ce88decf
XG
3131static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3132{
3133 if (direct)
3134 return vcpu_match_mmio_gpa(vcpu, addr);
3135
3136 return vcpu_match_mmio_gva(vcpu, addr);
3137}
3138
3139
3140/*
3141 * On direct hosts, the last spte is only allows two states
3142 * for mmio page fault:
3143 * - It is the mmio spte
3144 * - It is zapped or it is being zapped.
3145 *
3146 * This function completely checks the spte when the last spte
3147 * is not the mmio spte.
3148 */
3149static bool check_direct_spte_mmio_pf(u64 spte)
3150{
3151 return __check_direct_spte_mmio_pf(spte);
3152}
3153
3154static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3155{
3156 struct kvm_shadow_walk_iterator iterator;
3157 u64 spte = 0ull;
3158
3159 walk_shadow_page_lockless_begin(vcpu);
3160 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3161 if (!is_shadow_present_pte(spte))
3162 break;
3163 walk_shadow_page_lockless_end(vcpu);
3164
3165 return spte;
3166}
3167
3168/*
3169 * If it is a real mmio page fault, return 1 and emulat the instruction
3170 * directly, return 0 to let CPU fault again on the address, -1 is
3171 * returned if bug is detected.
3172 */
3173int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3174{
3175 u64 spte;
3176
3177 if (quickly_check_mmio_pf(vcpu, addr, direct))
3178 return 1;
3179
3180 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3181
3182 if (is_mmio_spte(spte)) {
3183 gfn_t gfn = get_mmio_spte_gfn(spte);
3184 unsigned access = get_mmio_spte_access(spte);
3185
3186 if (direct)
3187 addr = 0;
4f022648
XG
3188
3189 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3190 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3191 return 1;
3192 }
3193
3194 /*
3195 * It's ok if the gva is remapped by other cpus on shadow guest,
3196 * it's a BUG if the gfn is not a mmio page.
3197 */
3198 if (direct && !check_direct_spte_mmio_pf(spte))
3199 return -1;
3200
3201 /*
3202 * If the page table is zapped by other cpus, let CPU fault again on
3203 * the address.
3204 */
3205 return 0;
3206}
3207EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3208
3209static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3210 u32 error_code, bool direct)
3211{
3212 int ret;
3213
3214 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3215 WARN_ON(ret < 0);
3216 return ret;
3217}
3218
6aa8b732 3219static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3220 u32 error_code, bool prefault)
6aa8b732 3221{
e833240f 3222 gfn_t gfn;
e2dec939 3223 int r;
6aa8b732 3224
b8688d51 3225 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3226
3227 if (unlikely(error_code & PFERR_RSVD_MASK))
3228 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3229
e2dec939
AK
3230 r = mmu_topup_memory_caches(vcpu);
3231 if (r)
3232 return r;
714b93da 3233
6aa8b732 3234 ASSERT(vcpu);
ad312c7c 3235 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3236
e833240f 3237 gfn = gva >> PAGE_SHIFT;
6aa8b732 3238
e833240f 3239 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3240 error_code, gfn, prefault);
6aa8b732
AK
3241}
3242
7e1fbeac 3243static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3244{
3245 struct kvm_arch_async_pf arch;
fb67e14f 3246
7c90705b 3247 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3248 arch.gfn = gfn;
c4806acd 3249 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3250 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3251
3252 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3253}
3254
3255static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3256{
3257 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3258 kvm_event_needs_reinjection(vcpu)))
3259 return false;
3260
3261 return kvm_x86_ops->interrupt_allowed(vcpu);
3262}
3263
78b2c54a 3264static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3265 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3266{
3267 bool async;
3268
612819c3 3269 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3270
3271 if (!async)
3272 return false; /* *pfn has correct page already */
3273
78b2c54a 3274 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3275 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3276 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3277 trace_kvm_async_pf_doublefault(gva, gfn);
3278 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3279 return true;
3280 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3281 return true;
3282 }
3283
612819c3 3284 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3285
3286 return false;
3287}
3288
56028d08 3289static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3290 bool prefault)
fb72d167 3291{
35149e21 3292 pfn_t pfn;
fb72d167 3293 int r;
852e3c19 3294 int level;
936a5fe6 3295 int force_pt_level;
05da4558 3296 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3297 unsigned long mmu_seq;
612819c3
MT
3298 int write = error_code & PFERR_WRITE_MASK;
3299 bool map_writable;
fb72d167
JR
3300
3301 ASSERT(vcpu);
3302 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3303
ce88decf
XG
3304 if (unlikely(error_code & PFERR_RSVD_MASK))
3305 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3306
fb72d167
JR
3307 r = mmu_topup_memory_caches(vcpu);
3308 if (r)
3309 return r;
3310
936a5fe6
AA
3311 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3312 if (likely(!force_pt_level)) {
3313 level = mapping_level(vcpu, gfn);
3314 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3315 } else
3316 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3317
c7ba5b48
XG
3318 if (fast_page_fault(vcpu, gpa, level, error_code))
3319 return 0;
3320
e930bffe 3321 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3322 smp_rmb();
af585b92 3323
78b2c54a 3324 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3325 return 0;
3326
d7c55201
XG
3327 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3328 return r;
3329
fb72d167 3330 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3331 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3332 goto out_unlock;
450e0b41 3333 make_mmu_pages_available(vcpu);
936a5fe6
AA
3334 if (likely(!force_pt_level))
3335 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3336 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3337 level, gfn, pfn, prefault);
fb72d167 3338 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3339
3340 return r;
e930bffe
AA
3341
3342out_unlock:
3343 spin_unlock(&vcpu->kvm->mmu_lock);
3344 kvm_release_pfn_clean(pfn);
3345 return 0;
fb72d167
JR
3346}
3347
6aa8b732
AK
3348static void nonpaging_free(struct kvm_vcpu *vcpu)
3349{
17ac10ad 3350 mmu_free_roots(vcpu);
6aa8b732
AK
3351}
3352
52fde8df
JR
3353static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3354 struct kvm_mmu *context)
6aa8b732 3355{
6aa8b732
AK
3356 context->new_cr3 = nonpaging_new_cr3;
3357 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3358 context->gva_to_gpa = nonpaging_gva_to_gpa;
3359 context->free = nonpaging_free;
e8bc217a 3360 context->sync_page = nonpaging_sync_page;
a7052897 3361 context->invlpg = nonpaging_invlpg;
0f53b5b1 3362 context->update_pte = nonpaging_update_pte;
cea0f0e7 3363 context->root_level = 0;
6aa8b732 3364 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3365 context->root_hpa = INVALID_PAGE;
c5a78f2b 3366 context->direct_map = true;
2d48a985 3367 context->nx = false;
6aa8b732
AK
3368 return 0;
3369}
3370
d835dfec 3371void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3372{
1165f5fe 3373 ++vcpu->stat.tlb_flush;
a8eeb04a 3374 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3375}
3376
3377static void paging_new_cr3(struct kvm_vcpu *vcpu)
3378{
9f8fe504 3379 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3380 mmu_free_roots(vcpu);
6aa8b732
AK
3381}
3382
5777ed34
JR
3383static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3384{
9f8fe504 3385 return kvm_read_cr3(vcpu);
5777ed34
JR
3386}
3387
6389ee94
AK
3388static void inject_page_fault(struct kvm_vcpu *vcpu,
3389 struct x86_exception *fault)
6aa8b732 3390{
6389ee94 3391 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3392}
3393
6aa8b732
AK
3394static void paging_free(struct kvm_vcpu *vcpu)
3395{
3396 nonpaging_free(vcpu);
3397}
3398
8ea667f2
AK
3399static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3400{
3401 unsigned mask;
3402
3403 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3404
3405 mask = (unsigned)~ACC_WRITE_MASK;
3406 /* Allow write access to dirty gptes */
3407 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3408 *access &= mask;
3409}
3410
ce88decf
XG
3411static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3412 int *nr_present)
3413{
3414 if (unlikely(is_mmio_spte(*sptep))) {
3415 if (gfn != get_mmio_spte_gfn(*sptep)) {
3416 mmu_spte_clear_no_track(sptep);
3417 return true;
3418 }
3419
3420 (*nr_present)++;
3421 mark_mmio_spte(sptep, gfn, access);
3422 return true;
3423 }
3424
3425 return false;
3426}
3427
3d34adec
AK
3428static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3429{
3430 unsigned access;
3431
3432 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3433 access &= ~(gpte >> PT64_NX_SHIFT);
3434
3435 return access;
3436}
3437
6fd01b71
AK
3438static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3439{
3440 unsigned index;
3441
3442 index = level - 1;
3443 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3444 return mmu->last_pte_bitmap & (1 << index);
3445}
3446
6aa8b732
AK
3447#define PTTYPE 64
3448#include "paging_tmpl.h"
3449#undef PTTYPE
3450
3451#define PTTYPE 32
3452#include "paging_tmpl.h"
3453#undef PTTYPE
3454
52fde8df 3455static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3456 struct kvm_mmu *context)
82725b20 3457{
82725b20
DE
3458 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3459 u64 exb_bit_rsvd = 0;
3460
2d48a985 3461 if (!context->nx)
82725b20 3462 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3463 switch (context->root_level) {
82725b20
DE
3464 case PT32_ROOT_LEVEL:
3465 /* no rsvd bits for 2 level 4K page table entries */
3466 context->rsvd_bits_mask[0][1] = 0;
3467 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3468 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3469
3470 if (!is_pse(vcpu)) {
3471 context->rsvd_bits_mask[1][1] = 0;
3472 break;
3473 }
3474
82725b20
DE
3475 if (is_cpuid_PSE36())
3476 /* 36bits PSE 4MB page */
3477 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3478 else
3479 /* 32 bits PSE 4MB page */
3480 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3481 break;
3482 case PT32E_ROOT_LEVEL:
20c466b5
DE
3483 context->rsvd_bits_mask[0][2] =
3484 rsvd_bits(maxphyaddr, 63) |
3485 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3486 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3487 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3488 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3489 rsvd_bits(maxphyaddr, 62); /* PTE */
3490 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3491 rsvd_bits(maxphyaddr, 62) |
3492 rsvd_bits(13, 20); /* large page */
f815bce8 3493 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3494 break;
3495 case PT64_ROOT_LEVEL:
3496 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3497 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3498 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3499 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3500 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3501 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3502 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3503 rsvd_bits(maxphyaddr, 51);
3504 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3505 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3506 rsvd_bits(maxphyaddr, 51) |
3507 rsvd_bits(13, 29);
82725b20 3508 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3509 rsvd_bits(maxphyaddr, 51) |
3510 rsvd_bits(13, 20); /* large page */
f815bce8 3511 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3512 break;
3513 }
3514}
3515
97d64b78
AK
3516static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3517{
3518 unsigned bit, byte, pfec;
3519 u8 map;
3520 bool fault, x, w, u, wf, uf, ff, smep;
3521
3522 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3523 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3524 pfec = byte << 1;
3525 map = 0;
3526 wf = pfec & PFERR_WRITE_MASK;
3527 uf = pfec & PFERR_USER_MASK;
3528 ff = pfec & PFERR_FETCH_MASK;
3529 for (bit = 0; bit < 8; ++bit) {
3530 x = bit & ACC_EXEC_MASK;
3531 w = bit & ACC_WRITE_MASK;
3532 u = bit & ACC_USER_MASK;
3533
3534 /* Not really needed: !nx will cause pte.nx to fault */
3535 x |= !mmu->nx;
3536 /* Allow supervisor writes if !cr0.wp */
3537 w |= !is_write_protection(vcpu) && !uf;
3538 /* Disallow supervisor fetches of user code if cr4.smep */
3539 x &= !(smep && u && !uf);
3540
3541 fault = (ff && !x) || (uf && !u) || (wf && !w);
3542 map |= fault << bit;
3543 }
3544 mmu->permissions[byte] = map;
3545 }
3546}
3547
6fd01b71
AK
3548static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3549{
3550 u8 map;
3551 unsigned level, root_level = mmu->root_level;
3552 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3553
3554 if (root_level == PT32E_ROOT_LEVEL)
3555 --root_level;
3556 /* PT_PAGE_TABLE_LEVEL always terminates */
3557 map = 1 | (1 << ps_set_index);
3558 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3559 if (level <= PT_PDPE_LEVEL
3560 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3561 map |= 1 << (ps_set_index | (level - 1));
3562 }
3563 mmu->last_pte_bitmap = map;
3564}
3565
52fde8df
JR
3566static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3567 struct kvm_mmu *context,
3568 int level)
6aa8b732 3569{
2d48a985 3570 context->nx = is_nx(vcpu);
4d6931c3 3571 context->root_level = level;
2d48a985 3572
4d6931c3 3573 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3574 update_permission_bitmask(vcpu, context);
6fd01b71 3575 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3576
3577 ASSERT(is_pae(vcpu));
3578 context->new_cr3 = paging_new_cr3;
3579 context->page_fault = paging64_page_fault;
6aa8b732 3580 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3581 context->sync_page = paging64_sync_page;
a7052897 3582 context->invlpg = paging64_invlpg;
0f53b5b1 3583 context->update_pte = paging64_update_pte;
6aa8b732 3584 context->free = paging_free;
17ac10ad 3585 context->shadow_root_level = level;
17c3ba9d 3586 context->root_hpa = INVALID_PAGE;
c5a78f2b 3587 context->direct_map = false;
6aa8b732
AK
3588 return 0;
3589}
3590
52fde8df
JR
3591static int paging64_init_context(struct kvm_vcpu *vcpu,
3592 struct kvm_mmu *context)
17ac10ad 3593{
52fde8df 3594 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3595}
3596
52fde8df
JR
3597static int paging32_init_context(struct kvm_vcpu *vcpu,
3598 struct kvm_mmu *context)
6aa8b732 3599{
2d48a985 3600 context->nx = false;
4d6931c3 3601 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3602
4d6931c3 3603 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3604 update_permission_bitmask(vcpu, context);
6fd01b71 3605 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3606
3607 context->new_cr3 = paging_new_cr3;
3608 context->page_fault = paging32_page_fault;
6aa8b732
AK
3609 context->gva_to_gpa = paging32_gva_to_gpa;
3610 context->free = paging_free;
e8bc217a 3611 context->sync_page = paging32_sync_page;
a7052897 3612 context->invlpg = paging32_invlpg;
0f53b5b1 3613 context->update_pte = paging32_update_pte;
6aa8b732 3614 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3615 context->root_hpa = INVALID_PAGE;
c5a78f2b 3616 context->direct_map = false;
6aa8b732
AK
3617 return 0;
3618}
3619
52fde8df
JR
3620static int paging32E_init_context(struct kvm_vcpu *vcpu,
3621 struct kvm_mmu *context)
6aa8b732 3622{
52fde8df 3623 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3624}
3625
fb72d167
JR
3626static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3627{
14dfe855 3628 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3629
c445f8ef 3630 context->base_role.word = 0;
fb72d167
JR
3631 context->new_cr3 = nonpaging_new_cr3;
3632 context->page_fault = tdp_page_fault;
3633 context->free = nonpaging_free;
e8bc217a 3634 context->sync_page = nonpaging_sync_page;
a7052897 3635 context->invlpg = nonpaging_invlpg;
0f53b5b1 3636 context->update_pte = nonpaging_update_pte;
67253af5 3637 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3638 context->root_hpa = INVALID_PAGE;
c5a78f2b 3639 context->direct_map = true;
1c97f0a0 3640 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3641 context->get_cr3 = get_cr3;
e4e517b4 3642 context->get_pdptr = kvm_pdptr_read;
cb659db8 3643 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3644
3645 if (!is_paging(vcpu)) {
2d48a985 3646 context->nx = false;
fb72d167
JR
3647 context->gva_to_gpa = nonpaging_gva_to_gpa;
3648 context->root_level = 0;
3649 } else if (is_long_mode(vcpu)) {
2d48a985 3650 context->nx = is_nx(vcpu);
fb72d167 3651 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3652 reset_rsvds_bits_mask(vcpu, context);
3653 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3654 } else if (is_pae(vcpu)) {
2d48a985 3655 context->nx = is_nx(vcpu);
fb72d167 3656 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3657 reset_rsvds_bits_mask(vcpu, context);
3658 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3659 } else {
2d48a985 3660 context->nx = false;
fb72d167 3661 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3662 reset_rsvds_bits_mask(vcpu, context);
3663 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3664 }
3665
97d64b78 3666 update_permission_bitmask(vcpu, context);
6fd01b71 3667 update_last_pte_bitmap(vcpu, context);
97d64b78 3668
fb72d167
JR
3669 return 0;
3670}
3671
52fde8df 3672int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3673{
a770f6f2 3674 int r;
411c588d 3675 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3676 ASSERT(vcpu);
ad312c7c 3677 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3678
3679 if (!is_paging(vcpu))
52fde8df 3680 r = nonpaging_init_context(vcpu, context);
a9058ecd 3681 else if (is_long_mode(vcpu))
52fde8df 3682 r = paging64_init_context(vcpu, context);
6aa8b732 3683 else if (is_pae(vcpu))
52fde8df 3684 r = paging32E_init_context(vcpu, context);
6aa8b732 3685 else
52fde8df 3686 r = paging32_init_context(vcpu, context);
a770f6f2 3687
2c9afa52 3688 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3689 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3690 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3691 vcpu->arch.mmu.base_role.smep_andnot_wp
3692 = smep && !is_write_protection(vcpu);
52fde8df
JR
3693
3694 return r;
3695}
3696EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3697
3698static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3699{
14dfe855 3700 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3701
14dfe855
JR
3702 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3703 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3704 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3705 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3706
3707 return r;
6aa8b732
AK
3708}
3709
02f59dc9
JR
3710static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3711{
3712 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3713
3714 g_context->get_cr3 = get_cr3;
e4e517b4 3715 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3716 g_context->inject_page_fault = kvm_inject_page_fault;
3717
3718 /*
3719 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3720 * translation of l2_gpa to l1_gpa addresses is done using the
3721 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3722 * functions between mmu and nested_mmu are swapped.
3723 */
3724 if (!is_paging(vcpu)) {
2d48a985 3725 g_context->nx = false;
02f59dc9
JR
3726 g_context->root_level = 0;
3727 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3728 } else if (is_long_mode(vcpu)) {
2d48a985 3729 g_context->nx = is_nx(vcpu);
02f59dc9 3730 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3731 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3732 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3733 } else if (is_pae(vcpu)) {
2d48a985 3734 g_context->nx = is_nx(vcpu);
02f59dc9 3735 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3736 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3737 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3738 } else {
2d48a985 3739 g_context->nx = false;
02f59dc9 3740 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3741 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3742 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3743 }
3744
97d64b78 3745 update_permission_bitmask(vcpu, g_context);
6fd01b71 3746 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3747
02f59dc9
JR
3748 return 0;
3749}
3750
fb72d167
JR
3751static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3752{
02f59dc9
JR
3753 if (mmu_is_nested(vcpu))
3754 return init_kvm_nested_mmu(vcpu);
3755 else if (tdp_enabled)
fb72d167
JR
3756 return init_kvm_tdp_mmu(vcpu);
3757 else
3758 return init_kvm_softmmu(vcpu);
3759}
3760
6aa8b732
AK
3761static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3762{
3763 ASSERT(vcpu);
62ad0755
SY
3764 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3765 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3766 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3767}
3768
3769int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3770{
3771 destroy_kvm_mmu(vcpu);
f8f7e5ee 3772 return init_kvm_mmu(vcpu);
17c3ba9d 3773}
8668a3c4 3774EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3775
3776int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3777{
714b93da
AK
3778 int r;
3779
e2dec939 3780 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3781 if (r)
3782 goto out;
8986ecc0 3783 r = mmu_alloc_roots(vcpu);
e2858b4a 3784 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3785 if (r)
3786 goto out;
3662cb1c 3787 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3788 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3789out:
3790 return r;
6aa8b732 3791}
17c3ba9d
AK
3792EXPORT_SYMBOL_GPL(kvm_mmu_load);
3793
3794void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3795{
3796 mmu_free_roots(vcpu);
3797}
4b16184c 3798EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3799
0028425f 3800static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3801 struct kvm_mmu_page *sp, u64 *spte,
3802 const void *new)
0028425f 3803{
30945387 3804 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3805 ++vcpu->kvm->stat.mmu_pde_zapped;
3806 return;
30945387 3807 }
0028425f 3808
4cee5764 3809 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3810 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3811}
3812
79539cec
AK
3813static bool need_remote_flush(u64 old, u64 new)
3814{
3815 if (!is_shadow_present_pte(old))
3816 return false;
3817 if (!is_shadow_present_pte(new))
3818 return true;
3819 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3820 return true;
3821 old ^= PT64_NX_MASK;
3822 new ^= PT64_NX_MASK;
3823 return (old & ~new & PT64_PERM_MASK) != 0;
3824}
3825
0671a8e7
XG
3826static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3827 bool remote_flush, bool local_flush)
79539cec 3828{
0671a8e7
XG
3829 if (zap_page)
3830 return;
3831
3832 if (remote_flush)
79539cec 3833 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3834 else if (local_flush)
79539cec
AK
3835 kvm_mmu_flush_tlb(vcpu);
3836}
3837
889e5cbc
XG
3838static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3839 const u8 *new, int *bytes)
da4a00f0 3840{
889e5cbc
XG
3841 u64 gentry;
3842 int r;
72016f3a 3843
72016f3a
AK
3844 /*
3845 * Assume that the pte write on a page table of the same type
49b26e26
XG
3846 * as the current vcpu paging mode since we update the sptes only
3847 * when they have the same mode.
72016f3a 3848 */
889e5cbc 3849 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3850 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3851 *gpa &= ~(gpa_t)7;
3852 *bytes = 8;
116eb3d3 3853 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3854 if (r)
3855 gentry = 0;
08e850c6
AK
3856 new = (const u8 *)&gentry;
3857 }
3858
889e5cbc 3859 switch (*bytes) {
08e850c6
AK
3860 case 4:
3861 gentry = *(const u32 *)new;
3862 break;
3863 case 8:
3864 gentry = *(const u64 *)new;
3865 break;
3866 default:
3867 gentry = 0;
3868 break;
72016f3a
AK
3869 }
3870
889e5cbc
XG
3871 return gentry;
3872}
3873
3874/*
3875 * If we're seeing too many writes to a page, it may no longer be a page table,
3876 * or we may be forking, in which case it is better to unmap the page.
3877 */
a138fe75 3878static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3879{
a30f47cb
XG
3880 /*
3881 * Skip write-flooding detected for the sp whose level is 1, because
3882 * it can become unsync, then the guest page is not write-protected.
3883 */
f71fa31f 3884 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3885 return false;
3246af0e 3886
a30f47cb 3887 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3888}
3889
3890/*
3891 * Misaligned accesses are too much trouble to fix up; also, they usually
3892 * indicate a page is not used as a page table.
3893 */
3894static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3895 int bytes)
3896{
3897 unsigned offset, pte_size, misaligned;
3898
3899 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3900 gpa, bytes, sp->role.word);
3901
3902 offset = offset_in_page(gpa);
3903 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3904
3905 /*
3906 * Sometimes, the OS only writes the last one bytes to update status
3907 * bits, for example, in linux, andb instruction is used in clear_bit().
3908 */
3909 if (!(offset & (pte_size - 1)) && bytes == 1)
3910 return false;
3911
889e5cbc
XG
3912 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3913 misaligned |= bytes < 4;
3914
3915 return misaligned;
3916}
3917
3918static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3919{
3920 unsigned page_offset, quadrant;
3921 u64 *spte;
3922 int level;
3923
3924 page_offset = offset_in_page(gpa);
3925 level = sp->role.level;
3926 *nspte = 1;
3927 if (!sp->role.cr4_pae) {
3928 page_offset <<= 1; /* 32->64 */
3929 /*
3930 * A 32-bit pde maps 4MB while the shadow pdes map
3931 * only 2MB. So we need to double the offset again
3932 * and zap two pdes instead of one.
3933 */
3934 if (level == PT32_ROOT_LEVEL) {
3935 page_offset &= ~7; /* kill rounding error */
3936 page_offset <<= 1;
3937 *nspte = 2;
3938 }
3939 quadrant = page_offset >> PAGE_SHIFT;
3940 page_offset &= ~PAGE_MASK;
3941 if (quadrant != sp->role.quadrant)
3942 return NULL;
3943 }
3944
3945 spte = &sp->spt[page_offset / sizeof(*spte)];
3946 return spte;
3947}
3948
3949void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3950 const u8 *new, int bytes)
3951{
3952 gfn_t gfn = gpa >> PAGE_SHIFT;
3953 union kvm_mmu_page_role mask = { .word = 0 };
3954 struct kvm_mmu_page *sp;
889e5cbc
XG
3955 LIST_HEAD(invalid_list);
3956 u64 entry, gentry, *spte;
3957 int npte;
a30f47cb 3958 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3959
3960 /*
3961 * If we don't have indirect shadow pages, it means no page is
3962 * write-protected, so we can exit simply.
3963 */
3964 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3965 return;
3966
3967 zap_page = remote_flush = local_flush = false;
3968
3969 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3970
3971 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3972
3973 /*
3974 * No need to care whether allocation memory is successful
3975 * or not since pte prefetch is skiped if it does not have
3976 * enough objects in the cache.
3977 */
3978 mmu_topup_memory_caches(vcpu);
3979
3980 spin_lock(&vcpu->kvm->mmu_lock);
3981 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3982 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3983
fa1de2bf 3984 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 3985 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 3986 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3987 detect_write_flooding(sp)) {
0671a8e7 3988 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3989 &invalid_list);
4cee5764 3990 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3991 continue;
3992 }
889e5cbc
XG
3993
3994 spte = get_written_sptes(sp, gpa, &npte);
3995 if (!spte)
3996 continue;
3997
0671a8e7 3998 local_flush = true;
ac1b714e 3999 while (npte--) {
79539cec 4000 entry = *spte;
38e3b2b2 4001 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4002 if (gentry &&
4003 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4004 & mask.word) && rmap_can_add(vcpu))
7c562522 4005 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4006 if (need_remote_flush(entry, *spte))
0671a8e7 4007 remote_flush = true;
ac1b714e 4008 ++spte;
9b7a0325 4009 }
9b7a0325 4010 }
0671a8e7 4011 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4012 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4013 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4014 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4015}
4016
a436036b
AK
4017int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4018{
10589a46
MT
4019 gpa_t gpa;
4020 int r;
a436036b 4021
c5a78f2b 4022 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4023 return 0;
4024
1871c602 4025 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4026
10589a46 4027 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4028
10589a46 4029 return r;
a436036b 4030}
577bdc49 4031EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4032
81f4f76b 4033static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4034{
d98ba053 4035 LIST_HEAD(invalid_list);
103ad25a 4036
81f4f76b
TY
4037 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4038 return;
4039
5da59607
TY
4040 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4041 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4042 break;
ebeace86 4043
4cee5764 4044 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4045 }
aa6bd187 4046 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4047}
ebeace86 4048
1cb3f3ae
XG
4049static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4050{
4051 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4052 return vcpu_match_mmio_gpa(vcpu, addr);
4053
4054 return vcpu_match_mmio_gva(vcpu, addr);
4055}
4056
dc25e89e
AP
4057int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4058 void *insn, int insn_len)
3067714c 4059{
1cb3f3ae 4060 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4061 enum emulation_result er;
4062
56028d08 4063 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4064 if (r < 0)
4065 goto out;
4066
4067 if (!r) {
4068 r = 1;
4069 goto out;
4070 }
4071
1cb3f3ae
XG
4072 if (is_mmio_page_fault(vcpu, cr2))
4073 emulation_type = 0;
4074
4075 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4076
4077 switch (er) {
4078 case EMULATE_DONE:
4079 return 1;
4080 case EMULATE_DO_MMIO:
4081 ++vcpu->stat.mmio_exits;
6d77dbfc 4082 /* fall through */
3067714c 4083 case EMULATE_FAIL:
3f5d18a9 4084 return 0;
3067714c
AK
4085 default:
4086 BUG();
4087 }
4088out:
3067714c
AK
4089 return r;
4090}
4091EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4092
a7052897
MT
4093void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4094{
a7052897 4095 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4096 kvm_mmu_flush_tlb(vcpu);
4097 ++vcpu->stat.invlpg;
4098}
4099EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4100
18552672
JR
4101void kvm_enable_tdp(void)
4102{
4103 tdp_enabled = true;
4104}
4105EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4106
5f4cb662
JR
4107void kvm_disable_tdp(void)
4108{
4109 tdp_enabled = false;
4110}
4111EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4112
6aa8b732
AK
4113static void free_mmu_pages(struct kvm_vcpu *vcpu)
4114{
ad312c7c 4115 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4116 if (vcpu->arch.mmu.lm_root != NULL)
4117 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4118}
4119
4120static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4121{
17ac10ad 4122 struct page *page;
6aa8b732
AK
4123 int i;
4124
4125 ASSERT(vcpu);
4126
17ac10ad
AK
4127 /*
4128 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4129 * Therefore we need to allocate shadow page tables in the first
4130 * 4GB of memory, which happens to fit the DMA32 zone.
4131 */
4132 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4133 if (!page)
d7fa6ab2
WY
4134 return -ENOMEM;
4135
ad312c7c 4136 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4137 for (i = 0; i < 4; ++i)
ad312c7c 4138 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4139
6aa8b732 4140 return 0;
6aa8b732
AK
4141}
4142
8018c27b 4143int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4144{
6aa8b732 4145 ASSERT(vcpu);
e459e322
XG
4146
4147 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4148 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4149 vcpu->arch.mmu.translate_gpa = translate_gpa;
4150 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4151
8018c27b
IM
4152 return alloc_mmu_pages(vcpu);
4153}
6aa8b732 4154
8018c27b
IM
4155int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4156{
4157 ASSERT(vcpu);
ad312c7c 4158 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4159
8018c27b 4160 return init_kvm_mmu(vcpu);
6aa8b732
AK
4161}
4162
90cb0529 4163void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4164{
b99db1d3
TY
4165 struct kvm_memory_slot *memslot;
4166 gfn_t last_gfn;
4167 int i;
6aa8b732 4168
b99db1d3
TY
4169 memslot = id_to_memslot(kvm->memslots, slot);
4170 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4171
9d1beefb
TY
4172 spin_lock(&kvm->mmu_lock);
4173
b99db1d3
TY
4174 for (i = PT_PAGE_TABLE_LEVEL;
4175 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4176 unsigned long *rmapp;
4177 unsigned long last_index, index;
6aa8b732 4178
b99db1d3
TY
4179 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4180 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4181
b99db1d3
TY
4182 for (index = 0; index <= last_index; ++index, ++rmapp) {
4183 if (*rmapp)
4184 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4185
4186 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4187 kvm_flush_remote_tlbs(kvm);
4188 cond_resched_lock(&kvm->mmu_lock);
4189 }
8234b22e 4190 }
6aa8b732 4191 }
b99db1d3 4192
171d595d 4193 kvm_flush_remote_tlbs(kvm);
9d1beefb 4194 spin_unlock(&kvm->mmu_lock);
6aa8b732 4195}
37a7d8b0 4196
5304b8d3
XG
4197static void kvm_zap_obsolete_pages(struct kvm *kvm)
4198{
4199 struct kvm_mmu_page *sp, *node;
4200 LIST_HEAD(invalid_list);
4201
4202restart:
4203 list_for_each_entry_safe_reverse(sp, node,
4204 &kvm->arch.active_mmu_pages, link) {
4205 /*
4206 * No obsolete page exists before new created page since
4207 * active_mmu_pages is the FIFO list.
4208 */
4209 if (!is_obsolete_sp(kvm, sp))
4210 break;
4211
4212 /*
4213 * Do not repeatedly zap a root page to avoid unnecessary
4214 * KVM_REQ_MMU_RELOAD, otherwise we may not be able to
4215 * progress:
4216 * vcpu 0 vcpu 1
4217 * call vcpu_enter_guest():
4218 * 1): handle KVM_REQ_MMU_RELOAD
4219 * and require mmu-lock to
4220 * load mmu
4221 * repeat:
4222 * 1): zap root page and
4223 * send KVM_REQ_MMU_RELOAD
4224 *
4225 * 2): if (cond_resched_lock(mmu-lock))
4226 *
4227 * 2): hold mmu-lock and load mmu
4228 *
4229 * 3): see KVM_REQ_MMU_RELOAD bit
4230 * on vcpu->requests is set
4231 * then return 1 to call
4232 * vcpu_enter_guest() again.
4233 * goto repeat;
4234 *
4235 * Since we are reversely walking the list and the invalid
4236 * list will be moved to the head, skip the invalid page
4237 * can help us to avoid the infinity list walking.
4238 */
4239 if (sp->role.invalid)
4240 continue;
4241
4242 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4243 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4244 cond_resched_lock(&kvm->mmu_lock);
4245 goto restart;
4246 }
4247
4248 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4249 goto restart;
4250 }
4251
4252 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4253}
4254
4255/*
4256 * Fast invalidate all shadow pages and use lock-break technique
4257 * to zap obsolete pages.
4258 *
4259 * It's required when memslot is being deleted or VM is being
4260 * destroyed, in these cases, we should ensure that KVM MMU does
4261 * not use any resource of the being-deleted slot or all slots
4262 * after calling the function.
4263 */
4264void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4265{
4266 spin_lock(&kvm->mmu_lock);
4267 kvm->arch.mmu_valid_gen++;
4268
4269 kvm_zap_obsolete_pages(kvm);
4270 spin_unlock(&kvm->mmu_lock);
4271}
4272
982b3394
TY
4273void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4274{
4275 struct kvm_mmu_page *sp, *node;
4276 LIST_HEAD(invalid_list);
4277
4278 spin_lock(&kvm->mmu_lock);
4279restart:
4280 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4281 if (!sp->mmio_cached)
4282 continue;
4283 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4284 goto restart;
4285 }
4286
4287 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4288 spin_unlock(&kvm->mmu_lock);
4289}
4290
1495f230 4291static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4292{
4293 struct kvm *kvm;
1495f230 4294 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4295
4296 if (nr_to_scan == 0)
4297 goto out;
3ee16c81 4298
e935b837 4299 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4300
4301 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4302 int idx;
d98ba053 4303 LIST_HEAD(invalid_list);
3ee16c81 4304
35f2d16b
TY
4305 /*
4306 * Never scan more than sc->nr_to_scan VM instances.
4307 * Will not hit this condition practically since we do not try
4308 * to shrink more than one VM and it is very unlikely to see
4309 * !n_used_mmu_pages so many times.
4310 */
4311 if (!nr_to_scan--)
4312 break;
19526396
GN
4313 /*
4314 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4315 * here. We may skip a VM instance errorneosly, but we do not
4316 * want to shrink a VM that only started to populate its MMU
4317 * anyway.
4318 */
35f2d16b 4319 if (!kvm->arch.n_used_mmu_pages)
19526396 4320 continue;
19526396 4321
f656ce01 4322 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4323 spin_lock(&kvm->mmu_lock);
3ee16c81 4324
5da59607 4325 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4326 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4327
3ee16c81 4328 spin_unlock(&kvm->mmu_lock);
f656ce01 4329 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4330
4331 list_move_tail(&kvm->vm_list, &vm_list);
4332 break;
3ee16c81 4333 }
3ee16c81 4334
e935b837 4335 raw_spin_unlock(&kvm_lock);
3ee16c81 4336
45221ab6
DH
4337out:
4338 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4339}
4340
4341static struct shrinker mmu_shrinker = {
4342 .shrink = mmu_shrink,
4343 .seeks = DEFAULT_SEEKS * 10,
4344};
4345
2ddfd20e 4346static void mmu_destroy_caches(void)
b5a33a75 4347{
53c07b18
XG
4348 if (pte_list_desc_cache)
4349 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4350 if (mmu_page_header_cache)
4351 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4352}
4353
4354int kvm_mmu_module_init(void)
4355{
53c07b18
XG
4356 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4357 sizeof(struct pte_list_desc),
20c2df83 4358 0, 0, NULL);
53c07b18 4359 if (!pte_list_desc_cache)
b5a33a75
AK
4360 goto nomem;
4361
d3d25b04
AK
4362 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4363 sizeof(struct kvm_mmu_page),
20c2df83 4364 0, 0, NULL);
d3d25b04
AK
4365 if (!mmu_page_header_cache)
4366 goto nomem;
4367
45bf21a8
WY
4368 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4369 goto nomem;
4370
3ee16c81
IE
4371 register_shrinker(&mmu_shrinker);
4372
b5a33a75
AK
4373 return 0;
4374
4375nomem:
3ee16c81 4376 mmu_destroy_caches();
b5a33a75
AK
4377 return -ENOMEM;
4378}
4379
3ad82a7e
ZX
4380/*
4381 * Caculate mmu pages needed for kvm.
4382 */
4383unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4384{
3ad82a7e
ZX
4385 unsigned int nr_mmu_pages;
4386 unsigned int nr_pages = 0;
bc6678a3 4387 struct kvm_memslots *slots;
be6ba0f0 4388 struct kvm_memory_slot *memslot;
3ad82a7e 4389
90d83dc3
LJ
4390 slots = kvm_memslots(kvm);
4391
be6ba0f0
XG
4392 kvm_for_each_memslot(memslot, slots)
4393 nr_pages += memslot->npages;
3ad82a7e
ZX
4394
4395 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4396 nr_mmu_pages = max(nr_mmu_pages,
4397 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4398
4399 return nr_mmu_pages;
4400}
4401
94d8b056
MT
4402int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4403{
4404 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4405 u64 spte;
94d8b056
MT
4406 int nr_sptes = 0;
4407
c2a2ac2b
XG
4408 walk_shadow_page_lockless_begin(vcpu);
4409 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4410 sptes[iterator.level-1] = spte;
94d8b056 4411 nr_sptes++;
c2a2ac2b 4412 if (!is_shadow_present_pte(spte))
94d8b056
MT
4413 break;
4414 }
c2a2ac2b 4415 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4416
4417 return nr_sptes;
4418}
4419EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4420
c42fffe3
XG
4421void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4422{
4423 ASSERT(vcpu);
4424
4425 destroy_kvm_mmu(vcpu);
4426 free_mmu_pages(vcpu);
4427 mmu_free_memory_caches(vcpu);
b034cf01
XG
4428}
4429
b034cf01
XG
4430void kvm_mmu_module_exit(void)
4431{
4432 mmu_destroy_caches();
4433 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4434 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4435 mmu_audit_disable();
4436}
This page took 0.955056 seconds and 5 git commands to generate.