KVM: MMU: introduce for_each_slot_rmap_range
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
f8f55942
XG
226static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227{
00f034a1 228 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
f2fd125d
XG
231static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 unsigned access)
ce88decf 233{
f8f55942
XG
234 unsigned int gen = kvm_current_mmio_generation(kvm);
235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
f2fd125d
XG
261static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 265 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
f8f55942
XG
272static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(kvm);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
ce88decf
XG
360
361static bool __check_direct_spte_mmio_pf(u64 spte)
362{
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365}
a9221dd5 366#else
603e0651
XG
367union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373};
a9221dd5 374
c2a2ac2b
XG
375static void count_spte_clear(u64 *sptep, u64 spte)
376{
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385}
386
603e0651
XG
387static void __set_spte(u64 *sptep, u64 spte)
388{
389 union split_spte *ssptep, sspte;
a9221dd5 390
603e0651
XG
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
404}
405
603e0651
XG
406static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407{
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 422 count_spte_clear(sptep, spte);
603e0651
XG
423}
424
425static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426{
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437
438 return orig.spte;
439}
c2a2ac2b
XG
440
441/*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
458 */
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480}
ce88decf
XG
481
482static bool __check_direct_spte_mmio_pf(u64 spte)
483{
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497}
603e0651
XG
498#endif
499
c7ba5b48
XG
500static bool spte_is_locklessly_modifiable(u64 spte)
501{
feb3eb70
GN
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
504}
505
8672b721
XG
506static bool spte_has_volatile_bits(u64 spte)
507{
c7ba5b48
XG
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
8672b721
XG
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
4132779b
XG
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
525 return false;
526
527 return true;
528}
529
4132779b
XG
530static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531{
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533}
534
7e71a59b
KH
535static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536{
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538}
539
1df9f2dc
XG
540/* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546static void mmu_spte_set(u64 *sptep, u64 new_spte)
547{
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550}
551
552/* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
1df9f2dc 560 */
6e7d0354 561static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 562{
c7ba5b48 563 u64 old_spte = *sptep;
6e7d0354 564 bool ret = false;
4132779b
XG
565
566 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 567
6e7d0354
XG
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
4132779b 572
c7ba5b48 573 if (!spte_has_volatile_bits(old_spte))
603e0651 574 __update_clear_spte_fast(sptep, new_spte);
4132779b 575 else
603e0651 576 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 577
c7ba5b48
XG
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
7f31c959
XG
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
6e7d0354
XG
585 ret = true;
586
4132779b 587 if (!shadow_accessed_mask)
6e7d0354 588 return ret;
4132779b 589
7e71a59b
KH
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
4132779b
XG
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
602
603 return ret;
b79b93f9
AK
604}
605
1df9f2dc
XG
606/*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611static int mmu_spte_clear_track_bits(u64 *sptep)
612{
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
603e0651 617 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 618 else
603e0651 619 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
86fde74c
XG
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
bf4bea8e 631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 632
1df9f2dc
XG
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638}
639
640/*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645static void mmu_spte_clear_no_track(u64 *sptep)
646{
603e0651 647 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
648}
649
c2a2ac2b
XG
650static u64 mmu_spte_get_lockless(u64 *sptep)
651{
652 return __get_spte_lockless(sptep);
653}
654
655static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
c2a2ac2b
XG
668}
669
670static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671{
c142786c
AK
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
c2a2ac2b
XG
680}
681
e2dec939 682static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 struct kmem_cache *base_cache, int min)
714b93da
AK
684{
685 void *obj;
686
687 if (cache->nobjs >= min)
e2dec939 688 return 0;
714b93da 689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 691 if (!obj)
e2dec939 692 return -ENOMEM;
714b93da
AK
693 cache->objects[cache->nobjs++] = obj;
694 }
e2dec939 695 return 0;
714b93da
AK
696}
697
f759e2b4
XG
698static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699{
700 return cache->nobjs;
701}
702
e8ad9a70
XG
703static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
714b93da
AK
705{
706 while (mc->nobjs)
e8ad9a70 707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
708}
709
c1158e63 710static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 711 int min)
c1158e63 712{
842f22ed 713 void *page;
c1158e63
AK
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 718 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
719 if (!page)
720 return -ENOMEM;
842f22ed 721 cache->objects[cache->nobjs++] = page;
c1158e63
AK
722 }
723 return 0;
724}
725
726static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727{
728 while (mc->nobjs)
c4d198d5 729 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
730}
731
2e3e5882 732static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 733{
e2dec939
AK
734 int r;
735
53c07b18 736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
738 if (r)
739 goto out;
ad312c7c 740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
741 if (r)
742 goto out;
ad312c7c 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 744 mmu_page_header_cache, 4);
e2dec939
AK
745out:
746 return r;
714b93da
AK
747}
748
749static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750{
53c07b18
XG
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
ad312c7c 753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
714b93da
AK
756}
757
80feb89a 758static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
759{
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
714b93da
AK
764 return p;
765}
766
53c07b18 767static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 768{
80feb89a 769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
770}
771
53c07b18 772static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 773{
53c07b18 774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
775}
776
2032a93d
LJ
777static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778{
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783}
784
785static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786{
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791}
792
05da4558 793/*
d4dbf470
TY
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
05da4558 796 */
d4dbf470
TY
797static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
05da4558
MT
800{
801 unsigned long idx;
802
fb03cb6f 803 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 804 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
805}
806
807static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808{
d25797b2 809 struct kvm_memory_slot *slot;
d4dbf470 810 struct kvm_lpage_info *linfo;
d25797b2 811 int i;
05da4558 812
a1f4d395 813 slot = gfn_to_memslot(kvm, gfn);
8a3d08f1 814 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
815 linfo = lpage_info_slot(gfn, slot, i);
816 linfo->write_count += 1;
d25797b2 817 }
332b207d 818 kvm->arch.indirect_shadow_pages++;
05da4558
MT
819}
820
821static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
822{
d25797b2 823 struct kvm_memory_slot *slot;
d4dbf470 824 struct kvm_lpage_info *linfo;
d25797b2 825 int i;
05da4558 826
a1f4d395 827 slot = gfn_to_memslot(kvm, gfn);
8a3d08f1 828 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
829 linfo = lpage_info_slot(gfn, slot, i);
830 linfo->write_count -= 1;
831 WARN_ON(linfo->write_count < 0);
d25797b2 832 }
332b207d 833 kvm->arch.indirect_shadow_pages--;
05da4558
MT
834}
835
d25797b2
JR
836static int has_wrprotected_page(struct kvm *kvm,
837 gfn_t gfn,
838 int level)
05da4558 839{
2843099f 840 struct kvm_memory_slot *slot;
d4dbf470 841 struct kvm_lpage_info *linfo;
05da4558 842
a1f4d395 843 slot = gfn_to_memslot(kvm, gfn);
05da4558 844 if (slot) {
d4dbf470
TY
845 linfo = lpage_info_slot(gfn, slot, level);
846 return linfo->write_count;
05da4558
MT
847 }
848
849 return 1;
850}
851
d25797b2 852static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 853{
8f0b1ab6 854 unsigned long page_size;
d25797b2 855 int i, ret = 0;
05da4558 856
8f0b1ab6 857 page_size = kvm_host_page_size(kvm, gfn);
05da4558 858
8a3d08f1 859 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
860 if (page_size >= KVM_HPAGE_SIZE(i))
861 ret = i;
862 else
863 break;
864 }
865
4c2155ce 866 return ret;
05da4558
MT
867}
868
5d163b1c
XG
869static struct kvm_memory_slot *
870gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
871 bool no_dirty_log)
05da4558
MT
872{
873 struct kvm_memory_slot *slot;
5d163b1c
XG
874
875 slot = gfn_to_memslot(vcpu->kvm, gfn);
876 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
877 (no_dirty_log && slot->dirty_bitmap))
878 slot = NULL;
879
880 return slot;
881}
882
883static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884{
a0a8eaba 885 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
886}
887
888static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889{
890 int host_level, level, max_level;
05da4558 891
d25797b2
JR
892 host_level = host_mapping_level(vcpu->kvm, large_gfn);
893
894 if (host_level == PT_PAGE_TABLE_LEVEL)
895 return host_level;
896
55dd98c3 897 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
898
899 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
900 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
901 break;
d25797b2
JR
902
903 return level - 1;
05da4558
MT
904}
905
290fc38d 906/*
53c07b18 907 * Pte mapping structures:
cd4a4e53 908 *
53c07b18 909 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 910 *
53c07b18
XG
911 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
912 * pte_list_desc containing more mappings.
53a27b39 913 *
53c07b18 914 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
915 * the spte was not added.
916 *
cd4a4e53 917 */
53c07b18
XG
918static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
919 unsigned long *pte_list)
cd4a4e53 920{
53c07b18 921 struct pte_list_desc *desc;
53a27b39 922 int i, count = 0;
cd4a4e53 923
53c07b18
XG
924 if (!*pte_list) {
925 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
926 *pte_list = (unsigned long)spte;
927 } else if (!(*pte_list & 1)) {
928 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
929 desc = mmu_alloc_pte_list_desc(vcpu);
930 desc->sptes[0] = (u64 *)*pte_list;
d555c333 931 desc->sptes[1] = spte;
53c07b18 932 *pte_list = (unsigned long)desc | 1;
cb16a7b3 933 ++count;
cd4a4e53 934 } else {
53c07b18
XG
935 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
936 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
937 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 938 desc = desc->more;
53c07b18 939 count += PTE_LIST_EXT;
53a27b39 940 }
53c07b18
XG
941 if (desc->sptes[PTE_LIST_EXT-1]) {
942 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
943 desc = desc->more;
944 }
d555c333 945 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 946 ++count;
d555c333 947 desc->sptes[i] = spte;
cd4a4e53 948 }
53a27b39 949 return count;
cd4a4e53
AK
950}
951
53c07b18
XG
952static void
953pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
954 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
955{
956 int j;
957
53c07b18 958 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 959 ;
d555c333
AK
960 desc->sptes[i] = desc->sptes[j];
961 desc->sptes[j] = NULL;
cd4a4e53
AK
962 if (j != 0)
963 return;
964 if (!prev_desc && !desc->more)
53c07b18 965 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
966 else
967 if (prev_desc)
968 prev_desc->more = desc->more;
969 else
53c07b18
XG
970 *pte_list = (unsigned long)desc->more | 1;
971 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
972}
973
53c07b18 974static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 975{
53c07b18
XG
976 struct pte_list_desc *desc;
977 struct pte_list_desc *prev_desc;
cd4a4e53
AK
978 int i;
979
53c07b18
XG
980 if (!*pte_list) {
981 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 982 BUG();
53c07b18
XG
983 } else if (!(*pte_list & 1)) {
984 rmap_printk("pte_list_remove: %p 1->0\n", spte);
985 if ((u64 *)*pte_list != spte) {
986 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
987 BUG();
988 }
53c07b18 989 *pte_list = 0;
cd4a4e53 990 } else {
53c07b18
XG
991 rmap_printk("pte_list_remove: %p many->many\n", spte);
992 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
993 prev_desc = NULL;
994 while (desc) {
53c07b18 995 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 996 if (desc->sptes[i] == spte) {
53c07b18 997 pte_list_desc_remove_entry(pte_list,
714b93da 998 desc, i,
cd4a4e53
AK
999 prev_desc);
1000 return;
1001 }
1002 prev_desc = desc;
1003 desc = desc->more;
1004 }
53c07b18 1005 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1006 BUG();
1007 }
1008}
1009
67052b35
XG
1010typedef void (*pte_list_walk_fn) (u64 *spte);
1011static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1012{
1013 struct pte_list_desc *desc;
1014 int i;
1015
1016 if (!*pte_list)
1017 return;
1018
1019 if (!(*pte_list & 1))
1020 return fn((u64 *)*pte_list);
1021
1022 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1023 while (desc) {
1024 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1025 fn(desc->sptes[i]);
1026 desc = desc->more;
1027 }
1028}
1029
9373e2c0 1030static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1031 struct kvm_memory_slot *slot)
53c07b18 1032{
77d11309 1033 unsigned long idx;
53c07b18 1034
77d11309 1035 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1036 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1037}
1038
9b9b1492
TY
1039/*
1040 * Take gfn and return the reverse mapping to it.
1041 */
1042static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1043{
1044 struct kvm_memory_slot *slot;
1045
1046 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1047 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1048}
1049
f759e2b4
XG
1050static bool rmap_can_add(struct kvm_vcpu *vcpu)
1051{
1052 struct kvm_mmu_memory_cache *cache;
1053
1054 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1055 return mmu_memory_cache_free_objects(cache);
1056}
1057
53c07b18
XG
1058static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1059{
1060 struct kvm_mmu_page *sp;
1061 unsigned long *rmapp;
1062
53c07b18
XG
1063 sp = page_header(__pa(spte));
1064 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1065 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1066 return pte_list_add(vcpu, spte, rmapp);
1067}
1068
53c07b18
XG
1069static void rmap_remove(struct kvm *kvm, u64 *spte)
1070{
1071 struct kvm_mmu_page *sp;
1072 gfn_t gfn;
1073 unsigned long *rmapp;
1074
1075 sp = page_header(__pa(spte));
1076 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1077 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1078 pte_list_remove(spte, rmapp);
1079}
1080
1e3f42f0
TY
1081/*
1082 * Used by the following functions to iterate through the sptes linked by a
1083 * rmap. All fields are private and not assumed to be used outside.
1084 */
1085struct rmap_iterator {
1086 /* private fields */
1087 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1088 int pos; /* index of the sptep */
1089};
1090
1091/*
1092 * Iteration must be started by this function. This should also be used after
1093 * removing/dropping sptes from the rmap link because in such cases the
1094 * information in the itererator may not be valid.
1095 *
1096 * Returns sptep if found, NULL otherwise.
1097 */
1098static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1099{
1100 if (!rmap)
1101 return NULL;
1102
1103 if (!(rmap & 1)) {
1104 iter->desc = NULL;
1105 return (u64 *)rmap;
1106 }
1107
1108 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1109 iter->pos = 0;
1110 return iter->desc->sptes[iter->pos];
1111}
1112
1113/*
1114 * Must be used with a valid iterator: e.g. after rmap_get_first().
1115 *
1116 * Returns sptep if found, NULL otherwise.
1117 */
1118static u64 *rmap_get_next(struct rmap_iterator *iter)
1119{
1120 if (iter->desc) {
1121 if (iter->pos < PTE_LIST_EXT - 1) {
1122 u64 *sptep;
1123
1124 ++iter->pos;
1125 sptep = iter->desc->sptes[iter->pos];
1126 if (sptep)
1127 return sptep;
1128 }
1129
1130 iter->desc = iter->desc->more;
1131
1132 if (iter->desc) {
1133 iter->pos = 0;
1134 /* desc->sptes[0] cannot be NULL */
1135 return iter->desc->sptes[iter->pos];
1136 }
1137 }
1138
1139 return NULL;
1140}
1141
0d536790
XG
1142#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1143 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1144 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1145 _spte_ = rmap_get_next(_iter_))
1146
c3707958 1147static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1148{
1df9f2dc 1149 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1150 rmap_remove(kvm, sptep);
be38d276
AK
1151}
1152
8e22f955
XG
1153
1154static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155{
1156 if (is_large_pte(*sptep)) {
1157 WARN_ON(page_header(__pa(sptep))->role.level ==
1158 PT_PAGE_TABLE_LEVEL);
1159 drop_spte(kvm, sptep);
1160 --kvm->stat.lpages;
1161 return true;
1162 }
1163
1164 return false;
1165}
1166
1167static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168{
1169 if (__drop_large_spte(vcpu->kvm, sptep))
1170 kvm_flush_remote_tlbs(vcpu->kvm);
1171}
1172
1173/*
49fde340 1174 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1175 * spte write-protection is caused by protecting shadow page table.
49fde340 1176 *
b4619660 1177 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1178 * protection:
1179 * - for dirty logging, the spte can be set to writable at anytime if
1180 * its dirty bitmap is properly set.
1181 * - for spte protection, the spte can be writable only after unsync-ing
1182 * shadow page.
8e22f955 1183 *
c126d94f 1184 * Return true if tlb need be flushed.
8e22f955 1185 */
c126d94f 1186static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1187{
1188 u64 spte = *sptep;
1189
49fde340
XG
1190 if (!is_writable_pte(spte) &&
1191 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1192 return false;
1193
1194 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
49fde340
XG
1196 if (pt_protect)
1197 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1198 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1199
c126d94f 1200 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1201}
1202
49fde340 1203static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1204 bool pt_protect)
98348e95 1205{
1e3f42f0
TY
1206 u64 *sptep;
1207 struct rmap_iterator iter;
d13bc5b5 1208 bool flush = false;
374cbac0 1209
0d536790 1210 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1211 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1212
d13bc5b5 1213 return flush;
a0ed4607
TY
1214}
1215
f4b4b180
KH
1216static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1217{
1218 u64 spte = *sptep;
1219
1220 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1221
1222 spte &= ~shadow_dirty_mask;
1223
1224 return mmu_spte_update(sptep, spte);
1225}
1226
1227static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1228{
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 bool flush = false;
1232
0d536790 1233 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1234 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1235
1236 return flush;
1237}
1238
1239static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1240{
1241 u64 spte = *sptep;
1242
1243 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1244
1245 spte |= shadow_dirty_mask;
1246
1247 return mmu_spte_update(sptep, spte);
1248}
1249
1250static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1251{
1252 u64 *sptep;
1253 struct rmap_iterator iter;
1254 bool flush = false;
1255
0d536790 1256 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1257 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1258
1259 return flush;
1260}
1261
5dc99b23 1262/**
3b0f1d01 1263 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1264 * @kvm: kvm instance
1265 * @slot: slot to protect
1266 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1267 * @mask: indicates which pages we should protect
1268 *
1269 * Used when we do not need to care about huge page mappings: e.g. during dirty
1270 * logging we do not have any such mappings.
1271 */
3b0f1d01 1272static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1273 struct kvm_memory_slot *slot,
1274 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1275{
1276 unsigned long *rmapp;
a0ed4607 1277
5dc99b23 1278 while (mask) {
65fbe37c
TY
1279 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1280 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1281 __rmap_write_protect(kvm, rmapp, false);
05da4558 1282
5dc99b23
TY
1283 /* clear the first set bit */
1284 mask &= mask - 1;
1285 }
374cbac0
AK
1286}
1287
f4b4b180
KH
1288/**
1289 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1290 * @kvm: kvm instance
1291 * @slot: slot to clear D-bit
1292 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1293 * @mask: indicates which pages we should clear D-bit
1294 *
1295 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1296 */
1297void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1298 struct kvm_memory_slot *slot,
1299 gfn_t gfn_offset, unsigned long mask)
1300{
1301 unsigned long *rmapp;
1302
1303 while (mask) {
1304 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305 PT_PAGE_TABLE_LEVEL, slot);
1306 __rmap_clear_dirty(kvm, rmapp);
1307
1308 /* clear the first set bit */
1309 mask &= mask - 1;
1310 }
1311}
1312EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1313
3b0f1d01
KH
1314/**
1315 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1316 * PT level pages.
1317 *
1318 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1319 * enable dirty logging for them.
1320 *
1321 * Used when we do not need to care about huge page mappings: e.g. during dirty
1322 * logging we do not have any such mappings.
1323 */
1324void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1325 struct kvm_memory_slot *slot,
1326 gfn_t gfn_offset, unsigned long mask)
1327{
88178fd4
KH
1328 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1329 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1330 mask);
1331 else
1332 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1333}
1334
2f84569f 1335static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1336{
1337 struct kvm_memory_slot *slot;
5dc99b23
TY
1338 unsigned long *rmapp;
1339 int i;
2f84569f 1340 bool write_protected = false;
95d4c16c
TY
1341
1342 slot = gfn_to_memslot(kvm, gfn);
5dc99b23 1343
8a3d08f1 1344 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1345 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1346 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1347 }
1348
1349 return write_protected;
95d4c16c
TY
1350}
1351
8a8365c5 1352static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1353 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1354 unsigned long data)
e930bffe 1355{
1e3f42f0
TY
1356 u64 *sptep;
1357 struct rmap_iterator iter;
e930bffe
AA
1358 int need_tlb_flush = 0;
1359
1e3f42f0
TY
1360 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1361 BUG_ON(!(*sptep & PT_PRESENT_MASK));
8a9522d2
ALC
1362 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1363 sptep, *sptep, gfn, level);
1e3f42f0
TY
1364
1365 drop_spte(kvm, sptep);
e930bffe
AA
1366 need_tlb_flush = 1;
1367 }
1e3f42f0 1368
e930bffe
AA
1369 return need_tlb_flush;
1370}
1371
8a8365c5 1372static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1373 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1374 unsigned long data)
3da0dd43 1375{
1e3f42f0
TY
1376 u64 *sptep;
1377 struct rmap_iterator iter;
3da0dd43 1378 int need_flush = 0;
1e3f42f0 1379 u64 new_spte;
3da0dd43
IE
1380 pte_t *ptep = (pte_t *)data;
1381 pfn_t new_pfn;
1382
1383 WARN_ON(pte_huge(*ptep));
1384 new_pfn = pte_pfn(*ptep);
1e3f42f0 1385
0d536790
XG
1386restart:
1387 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1388 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1389 sptep, *sptep, gfn, level);
1e3f42f0 1390
3da0dd43 1391 need_flush = 1;
1e3f42f0 1392
3da0dd43 1393 if (pte_write(*ptep)) {
1e3f42f0 1394 drop_spte(kvm, sptep);
0d536790 1395 goto restart;
3da0dd43 1396 } else {
1e3f42f0 1397 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1398 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1399
1400 new_spte &= ~PT_WRITABLE_MASK;
1401 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1402 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1403
1404 mmu_spte_clear_track_bits(sptep);
1405 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1406 }
1407 }
1e3f42f0 1408
3da0dd43
IE
1409 if (need_flush)
1410 kvm_flush_remote_tlbs(kvm);
1411
1412 return 0;
1413}
1414
6ce1f4e2
XG
1415struct slot_rmap_walk_iterator {
1416 /* input fields. */
1417 struct kvm_memory_slot *slot;
1418 gfn_t start_gfn;
1419 gfn_t end_gfn;
1420 int start_level;
1421 int end_level;
1422
1423 /* output fields. */
1424 gfn_t gfn;
1425 unsigned long *rmap;
1426 int level;
1427
1428 /* private field. */
1429 unsigned long *end_rmap;
1430};
1431
1432static void
1433rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1434{
1435 iterator->level = level;
1436 iterator->gfn = iterator->start_gfn;
1437 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1438 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1439 iterator->slot);
1440}
1441
1442static void
1443slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1444 struct kvm_memory_slot *slot, int start_level,
1445 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1446{
1447 iterator->slot = slot;
1448 iterator->start_level = start_level;
1449 iterator->end_level = end_level;
1450 iterator->start_gfn = start_gfn;
1451 iterator->end_gfn = end_gfn;
1452
1453 rmap_walk_init_level(iterator, iterator->start_level);
1454}
1455
1456static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1457{
1458 return !!iterator->rmap;
1459}
1460
1461static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1462{
1463 if (++iterator->rmap <= iterator->end_rmap) {
1464 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1465 return;
1466 }
1467
1468 if (++iterator->level > iterator->end_level) {
1469 iterator->rmap = NULL;
1470 return;
1471 }
1472
1473 rmap_walk_init_level(iterator, iterator->level);
1474}
1475
1476#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1477 _start_gfn, _end_gfn, _iter_) \
1478 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1479 _end_level_, _start_gfn, _end_gfn); \
1480 slot_rmap_walk_okay(_iter_); \
1481 slot_rmap_walk_next(_iter_))
1482
84504ef3
TY
1483static int kvm_handle_hva_range(struct kvm *kvm,
1484 unsigned long start,
1485 unsigned long end,
1486 unsigned long data,
1487 int (*handler)(struct kvm *kvm,
1488 unsigned long *rmapp,
048212d0 1489 struct kvm_memory_slot *slot,
8a9522d2
ALC
1490 gfn_t gfn,
1491 int level,
84504ef3 1492 unsigned long data))
e930bffe 1493{
bc6678a3 1494 struct kvm_memslots *slots;
be6ba0f0 1495 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1496 struct slot_rmap_walk_iterator iterator;
1497 int ret = 0;
bc6678a3 1498
90d83dc3 1499 slots = kvm_memslots(kvm);
e930bffe 1500
be6ba0f0 1501 kvm_for_each_memslot(memslot, slots) {
84504ef3 1502 unsigned long hva_start, hva_end;
bcd3ef58 1503 gfn_t gfn_start, gfn_end;
e930bffe 1504
84504ef3
TY
1505 hva_start = max(start, memslot->userspace_addr);
1506 hva_end = min(end, memslot->userspace_addr +
1507 (memslot->npages << PAGE_SHIFT));
1508 if (hva_start >= hva_end)
1509 continue;
1510 /*
1511 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1512 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1513 */
bcd3ef58 1514 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1515 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1516
6ce1f4e2
XG
1517 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1518 PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
1519 &iterator)
1520 ret |= handler(kvm, iterator.rmap, memslot,
1521 iterator.gfn, iterator.level, data);
e930bffe
AA
1522 }
1523
f395302e 1524 return ret;
e930bffe
AA
1525}
1526
84504ef3
TY
1527static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1528 unsigned long data,
1529 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1530 struct kvm_memory_slot *slot,
8a9522d2 1531 gfn_t gfn, int level,
84504ef3
TY
1532 unsigned long data))
1533{
1534 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1535}
1536
1537int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1538{
3da0dd43
IE
1539 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1540}
1541
b3ae2096
TY
1542int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1543{
1544 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1545}
1546
3da0dd43
IE
1547void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1548{
8a8365c5 1549 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1550}
1551
8a8365c5 1552static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1553 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1554 unsigned long data)
e930bffe 1555{
1e3f42f0 1556 u64 *sptep;
79f702a6 1557 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1558 int young = 0;
1559
57128468 1560 BUG_ON(!shadow_accessed_mask);
534e38b4 1561
0d536790 1562 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1563 if (*sptep & shadow_accessed_mask) {
e930bffe 1564 young = 1;
3f6d8c8a
XH
1565 clear_bit((ffs(shadow_accessed_mask) - 1),
1566 (unsigned long *)sptep);
e930bffe 1567 }
0d536790 1568
8a9522d2 1569 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1570 return young;
1571}
1572
8ee53820 1573static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1574 struct kvm_memory_slot *slot, gfn_t gfn,
1575 int level, unsigned long data)
8ee53820 1576{
1e3f42f0
TY
1577 u64 *sptep;
1578 struct rmap_iterator iter;
8ee53820
AA
1579 int young = 0;
1580
1581 /*
1582 * If there's no access bit in the secondary pte set by the
1583 * hardware it's up to gup-fast/gup to set the access bit in
1584 * the primary pte or in the page structure.
1585 */
1586 if (!shadow_accessed_mask)
1587 goto out;
1588
0d536790 1589 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1590 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1591 young = 1;
1592 break;
1593 }
8ee53820
AA
1594out:
1595 return young;
1596}
1597
53a27b39
MT
1598#define RMAP_RECYCLE_THRESHOLD 1000
1599
852e3c19 1600static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1601{
1602 unsigned long *rmapp;
852e3c19
JR
1603 struct kvm_mmu_page *sp;
1604
1605 sp = page_header(__pa(spte));
53a27b39 1606
852e3c19 1607 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1608
8a9522d2 1609 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1610 kvm_flush_remote_tlbs(vcpu->kvm);
1611}
1612
57128468 1613int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1614{
57128468
ALC
1615 /*
1616 * In case of absence of EPT Access and Dirty Bits supports,
1617 * emulate the accessed bit for EPT, by checking if this page has
1618 * an EPT mapping, and clearing it if it does. On the next access,
1619 * a new EPT mapping will be established.
1620 * This has some overhead, but not as much as the cost of swapping
1621 * out actively used pages or breaking up actively used hugepages.
1622 */
1623 if (!shadow_accessed_mask) {
1624 /*
1625 * We are holding the kvm->mmu_lock, and we are blowing up
1626 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1627 * This is correct as long as we don't decouple the mmu_lock
1628 * protected regions (like invalidate_range_start|end does).
1629 */
1630 kvm->mmu_notifier_seq++;
1631 return kvm_handle_hva_range(kvm, start, end, 0,
1632 kvm_unmap_rmapp);
1633 }
1634
1635 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1636}
1637
8ee53820
AA
1638int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1639{
1640 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1641}
1642
d6c69ee9 1643#ifdef MMU_DEBUG
47ad8e68 1644static int is_empty_shadow_page(u64 *spt)
6aa8b732 1645{
139bdb2d
AK
1646 u64 *pos;
1647 u64 *end;
1648
47ad8e68 1649 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1650 if (is_shadow_present_pte(*pos)) {
b8688d51 1651 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1652 pos, *pos);
6aa8b732 1653 return 0;
139bdb2d 1654 }
6aa8b732
AK
1655 return 1;
1656}
d6c69ee9 1657#endif
6aa8b732 1658
45221ab6
DH
1659/*
1660 * This value is the sum of all of the kvm instances's
1661 * kvm->arch.n_used_mmu_pages values. We need a global,
1662 * aggregate version in order to make the slab shrinker
1663 * faster
1664 */
1665static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1666{
1667 kvm->arch.n_used_mmu_pages += nr;
1668 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1669}
1670
834be0d8 1671static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1672{
fa4a2c08 1673 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1674 hlist_del(&sp->hash_link);
bd4c86ea
XG
1675 list_del(&sp->link);
1676 free_page((unsigned long)sp->spt);
834be0d8
GN
1677 if (!sp->role.direct)
1678 free_page((unsigned long)sp->gfns);
e8ad9a70 1679 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1680}
1681
cea0f0e7
AK
1682static unsigned kvm_page_table_hashfn(gfn_t gfn)
1683{
1ae0a13d 1684 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1685}
1686
714b93da 1687static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1688 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1689{
cea0f0e7
AK
1690 if (!parent_pte)
1691 return;
cea0f0e7 1692
67052b35 1693 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1694}
1695
4db35314 1696static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1697 u64 *parent_pte)
1698{
67052b35 1699 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1700}
1701
bcdd9a93
XG
1702static void drop_parent_pte(struct kvm_mmu_page *sp,
1703 u64 *parent_pte)
1704{
1705 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1706 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1707}
1708
67052b35
XG
1709static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1710 u64 *parent_pte, int direct)
ad8cfbe3 1711{
67052b35 1712 struct kvm_mmu_page *sp;
7ddca7e4 1713
80feb89a
TY
1714 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1715 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1716 if (!direct)
80feb89a 1717 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1718 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1719
1720 /*
1721 * The active_mmu_pages list is the FIFO list, do not move the
1722 * page until it is zapped. kvm_zap_obsolete_pages depends on
1723 * this feature. See the comments in kvm_zap_obsolete_pages().
1724 */
67052b35 1725 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1726 sp->parent_ptes = 0;
1727 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1728 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1729 return sp;
ad8cfbe3
MT
1730}
1731
67052b35 1732static void mark_unsync(u64 *spte);
1047df1f 1733static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1734{
67052b35 1735 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1736}
1737
67052b35 1738static void mark_unsync(u64 *spte)
0074ff63 1739{
67052b35 1740 struct kvm_mmu_page *sp;
1047df1f 1741 unsigned int index;
0074ff63 1742
67052b35 1743 sp = page_header(__pa(spte));
1047df1f
XG
1744 index = spte - sp->spt;
1745 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1746 return;
1047df1f 1747 if (sp->unsync_children++)
0074ff63 1748 return;
1047df1f 1749 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1750}
1751
e8bc217a 1752static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1753 struct kvm_mmu_page *sp)
e8bc217a
MT
1754{
1755 return 1;
1756}
1757
a7052897
MT
1758static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1759{
1760}
1761
0f53b5b1
XG
1762static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1763 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1764 const void *pte)
0f53b5b1
XG
1765{
1766 WARN_ON(1);
1767}
1768
60c8aec6
MT
1769#define KVM_PAGE_ARRAY_NR 16
1770
1771struct kvm_mmu_pages {
1772 struct mmu_page_and_offset {
1773 struct kvm_mmu_page *sp;
1774 unsigned int idx;
1775 } page[KVM_PAGE_ARRAY_NR];
1776 unsigned int nr;
1777};
1778
cded19f3
HE
1779static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1780 int idx)
4731d4c7 1781{
60c8aec6 1782 int i;
4731d4c7 1783
60c8aec6
MT
1784 if (sp->unsync)
1785 for (i=0; i < pvec->nr; i++)
1786 if (pvec->page[i].sp == sp)
1787 return 0;
1788
1789 pvec->page[pvec->nr].sp = sp;
1790 pvec->page[pvec->nr].idx = idx;
1791 pvec->nr++;
1792 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1793}
1794
1795static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1796 struct kvm_mmu_pages *pvec)
1797{
1798 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1799
37178b8b 1800 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1801 struct kvm_mmu_page *child;
4731d4c7
MT
1802 u64 ent = sp->spt[i];
1803
7a8f1a74
XG
1804 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1805 goto clear_child_bitmap;
1806
1807 child = page_header(ent & PT64_BASE_ADDR_MASK);
1808
1809 if (child->unsync_children) {
1810 if (mmu_pages_add(pvec, child, i))
1811 return -ENOSPC;
1812
1813 ret = __mmu_unsync_walk(child, pvec);
1814 if (!ret)
1815 goto clear_child_bitmap;
1816 else if (ret > 0)
1817 nr_unsync_leaf += ret;
1818 else
1819 return ret;
1820 } else if (child->unsync) {
1821 nr_unsync_leaf++;
1822 if (mmu_pages_add(pvec, child, i))
1823 return -ENOSPC;
1824 } else
1825 goto clear_child_bitmap;
1826
1827 continue;
1828
1829clear_child_bitmap:
1830 __clear_bit(i, sp->unsync_child_bitmap);
1831 sp->unsync_children--;
1832 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1833 }
1834
4731d4c7 1835
60c8aec6
MT
1836 return nr_unsync_leaf;
1837}
1838
1839static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1840 struct kvm_mmu_pages *pvec)
1841{
1842 if (!sp->unsync_children)
1843 return 0;
1844
1845 mmu_pages_add(pvec, sp, 0);
1846 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1847}
1848
4731d4c7
MT
1849static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1850{
1851 WARN_ON(!sp->unsync);
5e1b3ddb 1852 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1853 sp->unsync = 0;
1854 --kvm->stat.mmu_unsync;
1855}
1856
7775834a
XG
1857static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1858 struct list_head *invalid_list);
1859static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1860 struct list_head *invalid_list);
4731d4c7 1861
f34d251d
XG
1862/*
1863 * NOTE: we should pay more attention on the zapped-obsolete page
1864 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1865 * since it has been deleted from active_mmu_pages but still can be found
1866 * at hast list.
1867 *
1868 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1869 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1870 * all the obsolete pages.
1871 */
1044b030
TY
1872#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1873 hlist_for_each_entry(_sp, \
1874 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1875 if ((_sp)->gfn != (_gfn)) {} else
1876
1877#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1878 for_each_gfn_sp(_kvm, _sp, _gfn) \
1879 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1880
f918b443 1881/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1882static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1883 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1884{
5b7e0102 1885 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1886 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1887 return 1;
1888 }
1889
f918b443 1890 if (clear_unsync)
1d9dc7e0 1891 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1892
a4a8e6f7 1893 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1894 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1895 return 1;
1896 }
1897
77c3913b 1898 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1899 return 0;
1900}
1901
1d9dc7e0
XG
1902static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1903 struct kvm_mmu_page *sp)
1904{
d98ba053 1905 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1906 int ret;
1907
d98ba053 1908 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1909 if (ret)
d98ba053
XG
1910 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1911
1d9dc7e0
XG
1912 return ret;
1913}
1914
e37fa785
XG
1915#ifdef CONFIG_KVM_MMU_AUDIT
1916#include "mmu_audit.c"
1917#else
1918static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1919static void mmu_audit_disable(void) { }
1920#endif
1921
d98ba053
XG
1922static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1923 struct list_head *invalid_list)
1d9dc7e0 1924{
d98ba053 1925 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1926}
1927
9f1a122f
XG
1928/* @gfn should be write-protected at the call site */
1929static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1930{
9f1a122f 1931 struct kvm_mmu_page *s;
d98ba053 1932 LIST_HEAD(invalid_list);
9f1a122f
XG
1933 bool flush = false;
1934
b67bfe0d 1935 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1936 if (!s->unsync)
9f1a122f
XG
1937 continue;
1938
1939 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1940 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1941 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1942 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1943 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1944 continue;
1945 }
9f1a122f
XG
1946 flush = true;
1947 }
1948
d98ba053 1949 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1950 if (flush)
77c3913b 1951 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1952}
1953
60c8aec6
MT
1954struct mmu_page_path {
1955 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1956 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1957};
1958
60c8aec6
MT
1959#define for_each_sp(pvec, sp, parents, i) \
1960 for (i = mmu_pages_next(&pvec, &parents, -1), \
1961 sp = pvec.page[i].sp; \
1962 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1963 i = mmu_pages_next(&pvec, &parents, i))
1964
cded19f3
HE
1965static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1966 struct mmu_page_path *parents,
1967 int i)
60c8aec6
MT
1968{
1969 int n;
1970
1971 for (n = i+1; n < pvec->nr; n++) {
1972 struct kvm_mmu_page *sp = pvec->page[n].sp;
1973
1974 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1975 parents->idx[0] = pvec->page[n].idx;
1976 return n;
1977 }
1978
1979 parents->parent[sp->role.level-2] = sp;
1980 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1981 }
1982
1983 return n;
1984}
1985
cded19f3 1986static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1987{
60c8aec6
MT
1988 struct kvm_mmu_page *sp;
1989 unsigned int level = 0;
1990
1991 do {
1992 unsigned int idx = parents->idx[level];
4731d4c7 1993
60c8aec6
MT
1994 sp = parents->parent[level];
1995 if (!sp)
1996 return;
1997
1998 --sp->unsync_children;
1999 WARN_ON((int)sp->unsync_children < 0);
2000 __clear_bit(idx, sp->unsync_child_bitmap);
2001 level++;
2002 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2003}
2004
60c8aec6
MT
2005static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2006 struct mmu_page_path *parents,
2007 struct kvm_mmu_pages *pvec)
4731d4c7 2008{
60c8aec6
MT
2009 parents->parent[parent->role.level-1] = NULL;
2010 pvec->nr = 0;
2011}
4731d4c7 2012
60c8aec6
MT
2013static void mmu_sync_children(struct kvm_vcpu *vcpu,
2014 struct kvm_mmu_page *parent)
2015{
2016 int i;
2017 struct kvm_mmu_page *sp;
2018 struct mmu_page_path parents;
2019 struct kvm_mmu_pages pages;
d98ba053 2020 LIST_HEAD(invalid_list);
60c8aec6
MT
2021
2022 kvm_mmu_pages_init(parent, &parents, &pages);
2023 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2024 bool protected = false;
b1a36821
MT
2025
2026 for_each_sp(pages, sp, parents, i)
2027 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
2028
2029 if (protected)
2030 kvm_flush_remote_tlbs(vcpu->kvm);
2031
60c8aec6 2032 for_each_sp(pages, sp, parents, i) {
d98ba053 2033 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2034 mmu_pages_clear_parents(&parents);
2035 }
d98ba053 2036 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2037 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2038 kvm_mmu_pages_init(parent, &parents, &pages);
2039 }
4731d4c7
MT
2040}
2041
c3707958
XG
2042static void init_shadow_page_table(struct kvm_mmu_page *sp)
2043{
2044 int i;
2045
2046 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2047 sp->spt[i] = 0ull;
2048}
2049
a30f47cb
XG
2050static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2051{
2052 sp->write_flooding_count = 0;
2053}
2054
2055static void clear_sp_write_flooding_count(u64 *spte)
2056{
2057 struct kvm_mmu_page *sp = page_header(__pa(spte));
2058
2059 __clear_sp_write_flooding_count(sp);
2060}
2061
5304b8d3
XG
2062static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2063{
2064 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2065}
2066
cea0f0e7
AK
2067static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2068 gfn_t gfn,
2069 gva_t gaddr,
2070 unsigned level,
f6e2c02b 2071 int direct,
41074d07 2072 unsigned access,
f7d9c7b7 2073 u64 *parent_pte)
cea0f0e7
AK
2074{
2075 union kvm_mmu_page_role role;
cea0f0e7 2076 unsigned quadrant;
9f1a122f 2077 struct kvm_mmu_page *sp;
9f1a122f 2078 bool need_sync = false;
cea0f0e7 2079
a770f6f2 2080 role = vcpu->arch.mmu.base_role;
cea0f0e7 2081 role.level = level;
f6e2c02b 2082 role.direct = direct;
84b0c8c6 2083 if (role.direct)
5b7e0102 2084 role.cr4_pae = 0;
41074d07 2085 role.access = access;
c5a78f2b
JR
2086 if (!vcpu->arch.mmu.direct_map
2087 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2088 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2089 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2090 role.quadrant = quadrant;
2091 }
b67bfe0d 2092 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2093 if (is_obsolete_sp(vcpu->kvm, sp))
2094 continue;
2095
7ae680eb
XG
2096 if (!need_sync && sp->unsync)
2097 need_sync = true;
4731d4c7 2098
7ae680eb
XG
2099 if (sp->role.word != role.word)
2100 continue;
4731d4c7 2101
7ae680eb
XG
2102 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2103 break;
e02aa901 2104
7ae680eb
XG
2105 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2106 if (sp->unsync_children) {
a8eeb04a 2107 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2108 kvm_mmu_mark_parents_unsync(sp);
2109 } else if (sp->unsync)
2110 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2111
a30f47cb 2112 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2113 trace_kvm_mmu_get_page(sp, false);
2114 return sp;
2115 }
dfc5aa00 2116 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2117 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2118 if (!sp)
2119 return sp;
4db35314
AK
2120 sp->gfn = gfn;
2121 sp->role = role;
7ae680eb
XG
2122 hlist_add_head(&sp->hash_link,
2123 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2124 if (!direct) {
b1a36821
MT
2125 if (rmap_write_protect(vcpu->kvm, gfn))
2126 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2127 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2128 kvm_sync_pages(vcpu, gfn);
2129
4731d4c7
MT
2130 account_shadowed(vcpu->kvm, gfn);
2131 }
5304b8d3 2132 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2133 init_shadow_page_table(sp);
f691fe1d 2134 trace_kvm_mmu_get_page(sp, true);
4db35314 2135 return sp;
cea0f0e7
AK
2136}
2137
2d11123a
AK
2138static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2139 struct kvm_vcpu *vcpu, u64 addr)
2140{
2141 iterator->addr = addr;
2142 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2143 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2144
2145 if (iterator->level == PT64_ROOT_LEVEL &&
2146 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2147 !vcpu->arch.mmu.direct_map)
2148 --iterator->level;
2149
2d11123a
AK
2150 if (iterator->level == PT32E_ROOT_LEVEL) {
2151 iterator->shadow_addr
2152 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2153 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2154 --iterator->level;
2155 if (!iterator->shadow_addr)
2156 iterator->level = 0;
2157 }
2158}
2159
2160static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2161{
2162 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2163 return false;
4d88954d 2164
2d11123a
AK
2165 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2166 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2167 return true;
2168}
2169
c2a2ac2b
XG
2170static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2171 u64 spte)
2d11123a 2172{
c2a2ac2b 2173 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2174 iterator->level = 0;
2175 return;
2176 }
2177
c2a2ac2b 2178 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2179 --iterator->level;
2180}
2181
c2a2ac2b
XG
2182static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2183{
2184 return __shadow_walk_next(iterator, *iterator->sptep);
2185}
2186
7a1638ce 2187static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2188{
2189 u64 spte;
2190
7a1638ce
YZ
2191 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2192 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2193
24db2734 2194 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2195 shadow_user_mask | shadow_x_mask;
2196
2197 if (accessed)
2198 spte |= shadow_accessed_mask;
24db2734 2199
1df9f2dc 2200 mmu_spte_set(sptep, spte);
32ef26a3
AK
2201}
2202
a357bd22
AK
2203static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2204 unsigned direct_access)
2205{
2206 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2207 struct kvm_mmu_page *child;
2208
2209 /*
2210 * For the direct sp, if the guest pte's dirty bit
2211 * changed form clean to dirty, it will corrupt the
2212 * sp's access: allow writable in the read-only sp,
2213 * so we should update the spte at this point to get
2214 * a new sp with the correct access.
2215 */
2216 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2217 if (child->role.access == direct_access)
2218 return;
2219
bcdd9a93 2220 drop_parent_pte(child, sptep);
a357bd22
AK
2221 kvm_flush_remote_tlbs(vcpu->kvm);
2222 }
2223}
2224
505aef8f 2225static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2226 u64 *spte)
2227{
2228 u64 pte;
2229 struct kvm_mmu_page *child;
2230
2231 pte = *spte;
2232 if (is_shadow_present_pte(pte)) {
505aef8f 2233 if (is_last_spte(pte, sp->role.level)) {
c3707958 2234 drop_spte(kvm, spte);
505aef8f
XG
2235 if (is_large_pte(pte))
2236 --kvm->stat.lpages;
2237 } else {
38e3b2b2 2238 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2239 drop_parent_pte(child, spte);
38e3b2b2 2240 }
505aef8f
XG
2241 return true;
2242 }
2243
2244 if (is_mmio_spte(pte))
ce88decf 2245 mmu_spte_clear_no_track(spte);
c3707958 2246
505aef8f 2247 return false;
38e3b2b2
XG
2248}
2249
90cb0529 2250static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2251 struct kvm_mmu_page *sp)
a436036b 2252{
697fe2e2 2253 unsigned i;
697fe2e2 2254
38e3b2b2
XG
2255 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2256 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2257}
2258
4db35314 2259static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2260{
4db35314 2261 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2262}
2263
31aa2b44 2264static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2265{
1e3f42f0
TY
2266 u64 *sptep;
2267 struct rmap_iterator iter;
a436036b 2268
1e3f42f0
TY
2269 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2270 drop_parent_pte(sp, sptep);
31aa2b44
AK
2271}
2272
60c8aec6 2273static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2274 struct kvm_mmu_page *parent,
2275 struct list_head *invalid_list)
4731d4c7 2276{
60c8aec6
MT
2277 int i, zapped = 0;
2278 struct mmu_page_path parents;
2279 struct kvm_mmu_pages pages;
4731d4c7 2280
60c8aec6 2281 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2282 return 0;
60c8aec6
MT
2283
2284 kvm_mmu_pages_init(parent, &parents, &pages);
2285 while (mmu_unsync_walk(parent, &pages)) {
2286 struct kvm_mmu_page *sp;
2287
2288 for_each_sp(pages, sp, parents, i) {
7775834a 2289 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2290 mmu_pages_clear_parents(&parents);
77662e00 2291 zapped++;
60c8aec6 2292 }
60c8aec6
MT
2293 kvm_mmu_pages_init(parent, &parents, &pages);
2294 }
2295
2296 return zapped;
4731d4c7
MT
2297}
2298
7775834a
XG
2299static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2300 struct list_head *invalid_list)
31aa2b44 2301{
4731d4c7 2302 int ret;
f691fe1d 2303
7775834a 2304 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2305 ++kvm->stat.mmu_shadow_zapped;
7775834a 2306 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2307 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2308 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2309
f6e2c02b 2310 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2311 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2312
4731d4c7
MT
2313 if (sp->unsync)
2314 kvm_unlink_unsync_page(kvm, sp);
4db35314 2315 if (!sp->root_count) {
54a4f023
GJ
2316 /* Count self */
2317 ret++;
7775834a 2318 list_move(&sp->link, invalid_list);
aa6bd187 2319 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2320 } else {
5b5c6a5a 2321 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2322
2323 /*
2324 * The obsolete pages can not be used on any vcpus.
2325 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2326 */
2327 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2328 kvm_reload_remote_mmus(kvm);
2e53d63a 2329 }
7775834a
XG
2330
2331 sp->role.invalid = 1;
4731d4c7 2332 return ret;
a436036b
AK
2333}
2334
7775834a
XG
2335static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2336 struct list_head *invalid_list)
2337{
945315b9 2338 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2339
2340 if (list_empty(invalid_list))
2341 return;
2342
c142786c
AK
2343 /*
2344 * wmb: make sure everyone sees our modifications to the page tables
2345 * rmb: make sure we see changes to vcpu->mode
2346 */
2347 smp_mb();
4f022648 2348
c142786c
AK
2349 /*
2350 * Wait for all vcpus to exit guest mode and/or lockless shadow
2351 * page table walks.
2352 */
2353 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2354
945315b9 2355 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2356 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2357 kvm_mmu_free_page(sp);
945315b9 2358 }
7775834a
XG
2359}
2360
5da59607
TY
2361static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2362 struct list_head *invalid_list)
2363{
2364 struct kvm_mmu_page *sp;
2365
2366 if (list_empty(&kvm->arch.active_mmu_pages))
2367 return false;
2368
2369 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2370 struct kvm_mmu_page, link);
2371 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2372
2373 return true;
2374}
2375
82ce2c96
IE
2376/*
2377 * Changing the number of mmu pages allocated to the vm
49d5ca26 2378 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2379 */
49d5ca26 2380void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2381{
d98ba053 2382 LIST_HEAD(invalid_list);
82ce2c96 2383
b34cb590
TY
2384 spin_lock(&kvm->mmu_lock);
2385
49d5ca26 2386 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2387 /* Need to free some mmu pages to achieve the goal. */
2388 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2389 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2390 break;
82ce2c96 2391
aa6bd187 2392 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2393 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2394 }
82ce2c96 2395
49d5ca26 2396 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2397
2398 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2399}
2400
1cb3f3ae 2401int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2402{
4db35314 2403 struct kvm_mmu_page *sp;
d98ba053 2404 LIST_HEAD(invalid_list);
a436036b
AK
2405 int r;
2406
9ad17b10 2407 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2408 r = 0;
1cb3f3ae 2409 spin_lock(&kvm->mmu_lock);
b67bfe0d 2410 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2411 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2412 sp->role.word);
2413 r = 1;
f41d335a 2414 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2415 }
d98ba053 2416 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2417 spin_unlock(&kvm->mmu_lock);
2418
a436036b 2419 return r;
cea0f0e7 2420}
1cb3f3ae 2421EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2422
74be52e3
SY
2423/*
2424 * The function is based on mtrr_type_lookup() in
2425 * arch/x86/kernel/cpu/mtrr/generic.c
2426 */
2427static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2428 u64 start, u64 end)
2429{
2430 int i;
2431 u64 base, mask;
2432 u8 prev_match, curr_match;
2433 int num_var_ranges = KVM_NR_VAR_MTRR;
2434
2435 if (!mtrr_state->enabled)
2436 return 0xFF;
2437
2438 /* Make end inclusive end, instead of exclusive */
2439 end--;
2440
2441 /* Look in fixed ranges. Just return the type as per start */
2442 if (mtrr_state->have_fixed && (start < 0x100000)) {
2443 int idx;
2444
2445 if (start < 0x80000) {
2446 idx = 0;
2447 idx += (start >> 16);
2448 return mtrr_state->fixed_ranges[idx];
2449 } else if (start < 0xC0000) {
2450 idx = 1 * 8;
2451 idx += ((start - 0x80000) >> 14);
2452 return mtrr_state->fixed_ranges[idx];
2453 } else if (start < 0x1000000) {
2454 idx = 3 * 8;
2455 idx += ((start - 0xC0000) >> 12);
2456 return mtrr_state->fixed_ranges[idx];
2457 }
2458 }
2459
2460 /*
2461 * Look in variable ranges
2462 * Look of multiple ranges matching this address and pick type
2463 * as per MTRR precedence
2464 */
2465 if (!(mtrr_state->enabled & 2))
2466 return mtrr_state->def_type;
2467
2468 prev_match = 0xFF;
2469 for (i = 0; i < num_var_ranges; ++i) {
2470 unsigned short start_state, end_state;
2471
2472 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2473 continue;
2474
2475 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2476 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2477 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2478 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2479
2480 start_state = ((start & mask) == (base & mask));
2481 end_state = ((end & mask) == (base & mask));
2482 if (start_state != end_state)
2483 return 0xFE;
2484
2485 if ((start & mask) != (base & mask))
2486 continue;
2487
2488 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2489 if (prev_match == 0xFF) {
2490 prev_match = curr_match;
2491 continue;
2492 }
2493
2494 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2495 curr_match == MTRR_TYPE_UNCACHABLE)
2496 return MTRR_TYPE_UNCACHABLE;
2497
2498 if ((prev_match == MTRR_TYPE_WRBACK &&
2499 curr_match == MTRR_TYPE_WRTHROUGH) ||
2500 (prev_match == MTRR_TYPE_WRTHROUGH &&
2501 curr_match == MTRR_TYPE_WRBACK)) {
2502 prev_match = MTRR_TYPE_WRTHROUGH;
2503 curr_match = MTRR_TYPE_WRTHROUGH;
2504 }
2505
2506 if (prev_match != curr_match)
2507 return MTRR_TYPE_UNCACHABLE;
2508 }
2509
2510 if (prev_match != 0xFF)
2511 return prev_match;
2512
2513 return mtrr_state->def_type;
2514}
2515
4b12f0de 2516u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2517{
2518 u8 mtrr;
2519
2520 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2521 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2522 if (mtrr == 0xfe || mtrr == 0xff)
2523 mtrr = MTRR_TYPE_WRBACK;
2524 return mtrr;
2525}
4b12f0de 2526EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2527
9cf5cf5a
XG
2528static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2529{
2530 trace_kvm_mmu_unsync_page(sp);
2531 ++vcpu->kvm->stat.mmu_unsync;
2532 sp->unsync = 1;
2533
2534 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2535}
2536
2537static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2538{
4731d4c7 2539 struct kvm_mmu_page *s;
9cf5cf5a 2540
b67bfe0d 2541 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2542 if (s->unsync)
4731d4c7 2543 continue;
9cf5cf5a
XG
2544 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2545 __kvm_unsync_page(vcpu, s);
4731d4c7 2546 }
4731d4c7
MT
2547}
2548
2549static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2550 bool can_unsync)
2551{
9cf5cf5a 2552 struct kvm_mmu_page *s;
9cf5cf5a
XG
2553 bool need_unsync = false;
2554
b67bfe0d 2555 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2556 if (!can_unsync)
2557 return 1;
2558
9cf5cf5a 2559 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2560 return 1;
9cf5cf5a 2561
9bb4f6b1 2562 if (!s->unsync)
9cf5cf5a 2563 need_unsync = true;
4731d4c7 2564 }
9cf5cf5a
XG
2565 if (need_unsync)
2566 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2567 return 0;
2568}
2569
d555c333 2570static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2571 unsigned pte_access, int level,
c2d0ee46 2572 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2573 bool can_unsync, bool host_writable)
1c4f1fd6 2574{
6e7d0354 2575 u64 spte;
1e73f9dd 2576 int ret = 0;
64d4d521 2577
f2fd125d 2578 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2579 return 0;
2580
982c2565 2581 spte = PT_PRESENT_MASK;
947da538 2582 if (!speculative)
3201b5d9 2583 spte |= shadow_accessed_mask;
640d9b0d 2584
7b52345e
SY
2585 if (pte_access & ACC_EXEC_MASK)
2586 spte |= shadow_x_mask;
2587 else
2588 spte |= shadow_nx_mask;
49fde340 2589
1c4f1fd6 2590 if (pte_access & ACC_USER_MASK)
7b52345e 2591 spte |= shadow_user_mask;
49fde340 2592
852e3c19 2593 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2594 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2595 if (tdp_enabled)
4b12f0de 2596 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
bf4bea8e 2597 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2598
9bdbba13 2599 if (host_writable)
1403283a 2600 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2601 else
2602 pte_access &= ~ACC_WRITE_MASK;
1403283a 2603
35149e21 2604 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2605
c2288505 2606 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2607
c2193463 2608 /*
7751babd
XG
2609 * Other vcpu creates new sp in the window between
2610 * mapping_level() and acquiring mmu-lock. We can
2611 * allow guest to retry the access, the mapping can
2612 * be fixed if guest refault.
c2193463 2613 */
852e3c19 2614 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2615 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2616 goto done;
38187c83 2617
49fde340 2618 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2619
ecc5589f
MT
2620 /*
2621 * Optimization: for pte sync, if spte was writable the hash
2622 * lookup is unnecessary (and expensive). Write protection
2623 * is responsibility of mmu_get_page / kvm_sync_page.
2624 * Same reasoning can be applied to dirty page accounting.
2625 */
8dae4445 2626 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2627 goto set_pte;
2628
4731d4c7 2629 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2630 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2631 __func__, gfn);
1e73f9dd 2632 ret = 1;
1c4f1fd6 2633 pte_access &= ~ACC_WRITE_MASK;
49fde340 2634 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2635 }
2636 }
2637
9b51a630 2638 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2639 mark_page_dirty(vcpu->kvm, gfn);
9b51a630
KH
2640 spte |= shadow_dirty_mask;
2641 }
1c4f1fd6 2642
38187c83 2643set_pte:
6e7d0354 2644 if (mmu_spte_update(sptep, spte))
b330aa0c 2645 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2646done:
1e73f9dd
MT
2647 return ret;
2648}
2649
d555c333 2650static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2651 unsigned pte_access, int write_fault, int *emulate,
2652 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2653 bool host_writable)
1e73f9dd
MT
2654{
2655 int was_rmapped = 0;
53a27b39 2656 int rmap_count;
1e73f9dd 2657
f7616203
XG
2658 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2659 *sptep, write_fault, gfn);
1e73f9dd 2660
d555c333 2661 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2662 /*
2663 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2664 * the parent of the now unreachable PTE.
2665 */
852e3c19
JR
2666 if (level > PT_PAGE_TABLE_LEVEL &&
2667 !is_large_pte(*sptep)) {
1e73f9dd 2668 struct kvm_mmu_page *child;
d555c333 2669 u64 pte = *sptep;
1e73f9dd
MT
2670
2671 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2672 drop_parent_pte(child, sptep);
3be2264b 2673 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2674 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2675 pgprintk("hfn old %llx new %llx\n",
d555c333 2676 spte_to_pfn(*sptep), pfn);
c3707958 2677 drop_spte(vcpu->kvm, sptep);
91546356 2678 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2679 } else
2680 was_rmapped = 1;
1e73f9dd 2681 }
852e3c19 2682
c2288505
XG
2683 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2684 true, host_writable)) {
1e73f9dd 2685 if (write_fault)
b90a0e6c 2686 *emulate = 1;
77c3913b 2687 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2688 }
1e73f9dd 2689
ce88decf
XG
2690 if (unlikely(is_mmio_spte(*sptep) && emulate))
2691 *emulate = 1;
2692
d555c333 2693 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2694 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2695 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2696 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2697 *sptep, sptep);
d555c333 2698 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2699 ++vcpu->kvm->stat.lpages;
2700
ffb61bb3 2701 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2702 if (!was_rmapped) {
2703 rmap_count = rmap_add(vcpu, sptep, gfn);
2704 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2705 rmap_recycle(vcpu, sptep, gfn);
2706 }
1c4f1fd6 2707 }
cb9aaa30 2708
f3ac1a4b 2709 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2710}
2711
957ed9ef
XG
2712static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2713 bool no_dirty_log)
2714{
2715 struct kvm_memory_slot *slot;
957ed9ef 2716
5d163b1c 2717 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2718 if (!slot)
6c8ee57b 2719 return KVM_PFN_ERR_FAULT;
957ed9ef 2720
037d92dc 2721 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2722}
2723
2724static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2725 struct kvm_mmu_page *sp,
2726 u64 *start, u64 *end)
2727{
2728 struct page *pages[PTE_PREFETCH_NUM];
2729 unsigned access = sp->role.access;
2730 int i, ret;
2731 gfn_t gfn;
2732
2733 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2734 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2735 return -1;
2736
2737 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2738 if (ret <= 0)
2739 return -1;
2740
2741 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2742 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2743 sp->role.level, gfn, page_to_pfn(pages[i]),
2744 true, true);
957ed9ef
XG
2745
2746 return 0;
2747}
2748
2749static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2750 struct kvm_mmu_page *sp, u64 *sptep)
2751{
2752 u64 *spte, *start = NULL;
2753 int i;
2754
2755 WARN_ON(!sp->role.direct);
2756
2757 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2758 spte = sp->spt + i;
2759
2760 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2761 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2762 if (!start)
2763 continue;
2764 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2765 break;
2766 start = NULL;
2767 } else if (!start)
2768 start = spte;
2769 }
2770}
2771
2772static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2773{
2774 struct kvm_mmu_page *sp;
2775
2776 /*
2777 * Since it's no accessed bit on EPT, it's no way to
2778 * distinguish between actually accessed translations
2779 * and prefetched, so disable pte prefetch if EPT is
2780 * enabled.
2781 */
2782 if (!shadow_accessed_mask)
2783 return;
2784
2785 sp = page_header(__pa(sptep));
2786 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2787 return;
2788
2789 __direct_pte_prefetch(vcpu, sp, sptep);
2790}
2791
9f652d21 2792static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2793 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2794 bool prefault)
140754bc 2795{
9f652d21 2796 struct kvm_shadow_walk_iterator iterator;
140754bc 2797 struct kvm_mmu_page *sp;
b90a0e6c 2798 int emulate = 0;
140754bc 2799 gfn_t pseudo_gfn;
6aa8b732 2800
989c6b34
MT
2801 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2802 return 0;
2803
9f652d21 2804 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2805 if (iterator.level == level) {
f7616203 2806 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2807 write, &emulate, level, gfn, pfn,
2808 prefault, map_writable);
957ed9ef 2809 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2810 ++vcpu->stat.pf_fixed;
2811 break;
6aa8b732
AK
2812 }
2813
404381c5 2814 drop_large_spte(vcpu, iterator.sptep);
c3707958 2815 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2816 u64 base_addr = iterator.addr;
2817
2818 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2819 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2820 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2821 iterator.level - 1,
2822 1, ACC_ALL, iterator.sptep);
140754bc 2823
7a1638ce 2824 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2825 }
2826 }
b90a0e6c 2827 return emulate;
6aa8b732
AK
2828}
2829
77db5cbd 2830static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2831{
77db5cbd
HY
2832 siginfo_t info;
2833
2834 info.si_signo = SIGBUS;
2835 info.si_errno = 0;
2836 info.si_code = BUS_MCEERR_AR;
2837 info.si_addr = (void __user *)address;
2838 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2839
77db5cbd 2840 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2841}
2842
d7c55201 2843static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2844{
4d8b81ab
XG
2845 /*
2846 * Do not cache the mmio info caused by writing the readonly gfn
2847 * into the spte otherwise read access on readonly gfn also can
2848 * caused mmio page fault and treat it as mmio access.
2849 * Return 1 to tell kvm to emulate it.
2850 */
2851 if (pfn == KVM_PFN_ERR_RO_FAULT)
2852 return 1;
2853
e6c1502b 2854 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2855 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2856 return 0;
d7c55201 2857 }
edba23e5 2858
d7c55201 2859 return -EFAULT;
bf998156
HY
2860}
2861
936a5fe6
AA
2862static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2863 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2864{
2865 pfn_t pfn = *pfnp;
2866 gfn_t gfn = *gfnp;
2867 int level = *levelp;
2868
2869 /*
2870 * Check if it's a transparent hugepage. If this would be an
2871 * hugetlbfs page, level wouldn't be set to
2872 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2873 * here.
2874 */
bf4bea8e 2875 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2876 level == PT_PAGE_TABLE_LEVEL &&
2877 PageTransCompound(pfn_to_page(pfn)) &&
2878 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2879 unsigned long mask;
2880 /*
2881 * mmu_notifier_retry was successful and we hold the
2882 * mmu_lock here, so the pmd can't become splitting
2883 * from under us, and in turn
2884 * __split_huge_page_refcount() can't run from under
2885 * us and we can safely transfer the refcount from
2886 * PG_tail to PG_head as we switch the pfn to tail to
2887 * head.
2888 */
2889 *levelp = level = PT_DIRECTORY_LEVEL;
2890 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2891 VM_BUG_ON((gfn & mask) != (pfn & mask));
2892 if (pfn & mask) {
2893 gfn &= ~mask;
2894 *gfnp = gfn;
2895 kvm_release_pfn_clean(pfn);
2896 pfn &= ~mask;
c3586667 2897 kvm_get_pfn(pfn);
936a5fe6
AA
2898 *pfnp = pfn;
2899 }
2900 }
2901}
2902
d7c55201
XG
2903static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2904 pfn_t pfn, unsigned access, int *ret_val)
2905{
2906 bool ret = true;
2907
2908 /* The pfn is invalid, report the error! */
81c52c56 2909 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2910 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2911 goto exit;
2912 }
2913
ce88decf 2914 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2915 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2916
2917 ret = false;
2918exit:
2919 return ret;
2920}
2921
e5552fd2 2922static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2923{
1c118b82
XG
2924 /*
2925 * Do not fix the mmio spte with invalid generation number which
2926 * need to be updated by slow page fault path.
2927 */
2928 if (unlikely(error_code & PFERR_RSVD_MASK))
2929 return false;
2930
c7ba5b48
XG
2931 /*
2932 * #PF can be fast only if the shadow page table is present and it
2933 * is caused by write-protect, that means we just need change the
2934 * W bit of the spte which can be done out of mmu-lock.
2935 */
2936 if (!(error_code & PFERR_PRESENT_MASK) ||
2937 !(error_code & PFERR_WRITE_MASK))
2938 return false;
2939
2940 return true;
2941}
2942
2943static bool
92a476cb
XG
2944fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2945 u64 *sptep, u64 spte)
c7ba5b48 2946{
c7ba5b48
XG
2947 gfn_t gfn;
2948
2949 WARN_ON(!sp->role.direct);
2950
2951 /*
2952 * The gfn of direct spte is stable since it is calculated
2953 * by sp->gfn.
2954 */
2955 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2956
9b51a630
KH
2957 /*
2958 * Theoretically we could also set dirty bit (and flush TLB) here in
2959 * order to eliminate unnecessary PML logging. See comments in
2960 * set_spte. But fast_page_fault is very unlikely to happen with PML
2961 * enabled, so we do not do this. This might result in the same GPA
2962 * to be logged in PML buffer again when the write really happens, and
2963 * eventually to be called by mark_page_dirty twice. But it's also no
2964 * harm. This also avoids the TLB flush needed after setting dirty bit
2965 * so non-PML cases won't be impacted.
2966 *
2967 * Compare with set_spte where instead shadow_dirty_mask is set.
2968 */
c7ba5b48
XG
2969 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2970 mark_page_dirty(vcpu->kvm, gfn);
2971
2972 return true;
2973}
2974
2975/*
2976 * Return value:
2977 * - true: let the vcpu to access on the same address again.
2978 * - false: let the real page fault path to fix it.
2979 */
2980static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2981 u32 error_code)
2982{
2983 struct kvm_shadow_walk_iterator iterator;
92a476cb 2984 struct kvm_mmu_page *sp;
c7ba5b48
XG
2985 bool ret = false;
2986 u64 spte = 0ull;
2987
37f6a4e2
MT
2988 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2989 return false;
2990
e5552fd2 2991 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2992 return false;
2993
2994 walk_shadow_page_lockless_begin(vcpu);
2995 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2996 if (!is_shadow_present_pte(spte) || iterator.level < level)
2997 break;
2998
2999 /*
3000 * If the mapping has been changed, let the vcpu fault on the
3001 * same address again.
3002 */
3003 if (!is_rmap_spte(spte)) {
3004 ret = true;
3005 goto exit;
3006 }
3007
92a476cb
XG
3008 sp = page_header(__pa(iterator.sptep));
3009 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
3010 goto exit;
3011
3012 /*
3013 * Check if it is a spurious fault caused by TLB lazily flushed.
3014 *
3015 * Need not check the access of upper level table entries since
3016 * they are always ACC_ALL.
3017 */
3018 if (is_writable_pte(spte)) {
3019 ret = true;
3020 goto exit;
3021 }
3022
3023 /*
3024 * Currently, to simplify the code, only the spte write-protected
3025 * by dirty-log can be fast fixed.
3026 */
3027 if (!spte_is_locklessly_modifiable(spte))
3028 goto exit;
3029
c126d94f
XG
3030 /*
3031 * Do not fix write-permission on the large spte since we only dirty
3032 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
3033 * that means other pages are missed if its slot is dirty-logged.
3034 *
3035 * Instead, we let the slow page fault path create a normal spte to
3036 * fix the access.
3037 *
3038 * See the comments in kvm_arch_commit_memory_region().
3039 */
3040 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3041 goto exit;
3042
c7ba5b48
XG
3043 /*
3044 * Currently, fast page fault only works for direct mapping since
3045 * the gfn is not stable for indirect shadow page.
3046 * See Documentation/virtual/kvm/locking.txt to get more detail.
3047 */
92a476cb 3048 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 3049exit:
a72faf25
XG
3050 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3051 spte, ret);
c7ba5b48
XG
3052 walk_shadow_page_lockless_end(vcpu);
3053
3054 return ret;
3055}
3056
78b2c54a 3057static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 3058 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 3059static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3060
c7ba5b48
XG
3061static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3062 gfn_t gfn, bool prefault)
10589a46
MT
3063{
3064 int r;
852e3c19 3065 int level;
936a5fe6 3066 int force_pt_level;
35149e21 3067 pfn_t pfn;
e930bffe 3068 unsigned long mmu_seq;
c7ba5b48 3069 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3070
936a5fe6
AA
3071 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3072 if (likely(!force_pt_level)) {
3073 level = mapping_level(vcpu, gfn);
3074 /*
3075 * This path builds a PAE pagetable - so we can map
3076 * 2mb pages at maximum. Therefore check if the level
3077 * is larger than that.
3078 */
3079 if (level > PT_DIRECTORY_LEVEL)
3080 level = PT_DIRECTORY_LEVEL;
852e3c19 3081
936a5fe6
AA
3082 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3083 } else
3084 level = PT_PAGE_TABLE_LEVEL;
05da4558 3085
c7ba5b48
XG
3086 if (fast_page_fault(vcpu, v, level, error_code))
3087 return 0;
3088
e930bffe 3089 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3090 smp_rmb();
060c2abe 3091
78b2c54a 3092 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3093 return 0;
aaee2c94 3094
d7c55201
XG
3095 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3096 return r;
d196e343 3097
aaee2c94 3098 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3099 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3100 goto out_unlock;
450e0b41 3101 make_mmu_pages_available(vcpu);
936a5fe6
AA
3102 if (likely(!force_pt_level))
3103 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3104 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3105 prefault);
aaee2c94
MT
3106 spin_unlock(&vcpu->kvm->mmu_lock);
3107
aaee2c94 3108
10589a46 3109 return r;
e930bffe
AA
3110
3111out_unlock:
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113 kvm_release_pfn_clean(pfn);
3114 return 0;
10589a46
MT
3115}
3116
3117
17ac10ad
AK
3118static void mmu_free_roots(struct kvm_vcpu *vcpu)
3119{
3120 int i;
4db35314 3121 struct kvm_mmu_page *sp;
d98ba053 3122 LIST_HEAD(invalid_list);
17ac10ad 3123
ad312c7c 3124 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3125 return;
35af577a 3126
81407ca5
JR
3127 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3128 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3129 vcpu->arch.mmu.direct_map)) {
ad312c7c 3130 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3131
35af577a 3132 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3133 sp = page_header(root);
3134 --sp->root_count;
d98ba053
XG
3135 if (!sp->root_count && sp->role.invalid) {
3136 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3137 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3138 }
aaee2c94 3139 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3140 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3141 return;
3142 }
35af577a
GN
3143
3144 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3145 for (i = 0; i < 4; ++i) {
ad312c7c 3146 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3147
417726a3 3148 if (root) {
417726a3 3149 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3150 sp = page_header(root);
3151 --sp->root_count;
2e53d63a 3152 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3153 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3154 &invalid_list);
417726a3 3155 }
ad312c7c 3156 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3157 }
d98ba053 3158 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3159 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3160 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3161}
3162
8986ecc0
MT
3163static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3164{
3165 int ret = 0;
3166
3167 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3168 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3169 ret = 1;
3170 }
3171
3172 return ret;
3173}
3174
651dd37a
JR
3175static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3176{
3177 struct kvm_mmu_page *sp;
7ebaf15e 3178 unsigned i;
651dd37a
JR
3179
3180 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3181 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3182 make_mmu_pages_available(vcpu);
651dd37a
JR
3183 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3184 1, ACC_ALL, NULL);
3185 ++sp->root_count;
3186 spin_unlock(&vcpu->kvm->mmu_lock);
3187 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3188 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3189 for (i = 0; i < 4; ++i) {
3190 hpa_t root = vcpu->arch.mmu.pae_root[i];
3191
fa4a2c08 3192 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3193 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3194 make_mmu_pages_available(vcpu);
649497d1
AK
3195 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3196 i << 30,
651dd37a
JR
3197 PT32_ROOT_LEVEL, 1, ACC_ALL,
3198 NULL);
3199 root = __pa(sp->spt);
3200 ++sp->root_count;
3201 spin_unlock(&vcpu->kvm->mmu_lock);
3202 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3203 }
6292757f 3204 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3205 } else
3206 BUG();
3207
3208 return 0;
3209}
3210
3211static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3212{
4db35314 3213 struct kvm_mmu_page *sp;
81407ca5
JR
3214 u64 pdptr, pm_mask;
3215 gfn_t root_gfn;
3216 int i;
3bb65a22 3217
5777ed34 3218 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3219
651dd37a
JR
3220 if (mmu_check_root(vcpu, root_gfn))
3221 return 1;
3222
3223 /*
3224 * Do we shadow a long mode page table? If so we need to
3225 * write-protect the guests page table root.
3226 */
3227 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3228 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3229
fa4a2c08 3230 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3231
8facbbff 3232 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3233 make_mmu_pages_available(vcpu);
651dd37a
JR
3234 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3235 0, ACC_ALL, NULL);
4db35314
AK
3236 root = __pa(sp->spt);
3237 ++sp->root_count;
8facbbff 3238 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3239 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3240 return 0;
17ac10ad 3241 }
f87f9288 3242
651dd37a
JR
3243 /*
3244 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3245 * or a PAE 3-level page table. In either case we need to be aware that
3246 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3247 */
81407ca5
JR
3248 pm_mask = PT_PRESENT_MASK;
3249 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3250 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3251
17ac10ad 3252 for (i = 0; i < 4; ++i) {
ad312c7c 3253 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3254
fa4a2c08 3255 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3256 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3257 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3258 if (!is_present_gpte(pdptr)) {
ad312c7c 3259 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3260 continue;
3261 }
6de4f3ad 3262 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3263 if (mmu_check_root(vcpu, root_gfn))
3264 return 1;
5a7388c2 3265 }
8facbbff 3266 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3267 make_mmu_pages_available(vcpu);
4db35314 3268 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3269 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3270 ACC_ALL, NULL);
4db35314
AK
3271 root = __pa(sp->spt);
3272 ++sp->root_count;
8facbbff
AK
3273 spin_unlock(&vcpu->kvm->mmu_lock);
3274
81407ca5 3275 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3276 }
6292757f 3277 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3278
3279 /*
3280 * If we shadow a 32 bit page table with a long mode page
3281 * table we enter this path.
3282 */
3283 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3284 if (vcpu->arch.mmu.lm_root == NULL) {
3285 /*
3286 * The additional page necessary for this is only
3287 * allocated on demand.
3288 */
3289
3290 u64 *lm_root;
3291
3292 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3293 if (lm_root == NULL)
3294 return 1;
3295
3296 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3297
3298 vcpu->arch.mmu.lm_root = lm_root;
3299 }
3300
3301 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3302 }
3303
8986ecc0 3304 return 0;
17ac10ad
AK
3305}
3306
651dd37a
JR
3307static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3308{
3309 if (vcpu->arch.mmu.direct_map)
3310 return mmu_alloc_direct_roots(vcpu);
3311 else
3312 return mmu_alloc_shadow_roots(vcpu);
3313}
3314
0ba73cda
MT
3315static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3316{
3317 int i;
3318 struct kvm_mmu_page *sp;
3319
81407ca5
JR
3320 if (vcpu->arch.mmu.direct_map)
3321 return;
3322
0ba73cda
MT
3323 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3324 return;
6903074c 3325
56f17dd3 3326 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3327 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3328 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3329 hpa_t root = vcpu->arch.mmu.root_hpa;
3330 sp = page_header(root);
3331 mmu_sync_children(vcpu, sp);
0375f7fa 3332 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3333 return;
3334 }
3335 for (i = 0; i < 4; ++i) {
3336 hpa_t root = vcpu->arch.mmu.pae_root[i];
3337
8986ecc0 3338 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3339 root &= PT64_BASE_ADDR_MASK;
3340 sp = page_header(root);
3341 mmu_sync_children(vcpu, sp);
3342 }
3343 }
0375f7fa 3344 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3345}
3346
3347void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3348{
3349 spin_lock(&vcpu->kvm->mmu_lock);
3350 mmu_sync_roots(vcpu);
6cffe8ca 3351 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3352}
bfd0a56b 3353EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3354
1871c602 3355static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3356 u32 access, struct x86_exception *exception)
6aa8b732 3357{
ab9ae313
AK
3358 if (exception)
3359 exception->error_code = 0;
6aa8b732
AK
3360 return vaddr;
3361}
3362
6539e738 3363static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3364 u32 access,
3365 struct x86_exception *exception)
6539e738 3366{
ab9ae313
AK
3367 if (exception)
3368 exception->error_code = 0;
54987b7a 3369 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3370}
3371
ce88decf
XG
3372static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3373{
3374 if (direct)
3375 return vcpu_match_mmio_gpa(vcpu, addr);
3376
3377 return vcpu_match_mmio_gva(vcpu, addr);
3378}
3379
3380
3381/*
3382 * On direct hosts, the last spte is only allows two states
3383 * for mmio page fault:
3384 * - It is the mmio spte
3385 * - It is zapped or it is being zapped.
3386 *
3387 * This function completely checks the spte when the last spte
3388 * is not the mmio spte.
3389 */
3390static bool check_direct_spte_mmio_pf(u64 spte)
3391{
3392 return __check_direct_spte_mmio_pf(spte);
3393}
3394
3395static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3396{
3397 struct kvm_shadow_walk_iterator iterator;
3398 u64 spte = 0ull;
3399
37f6a4e2
MT
3400 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3401 return spte;
3402
ce88decf
XG
3403 walk_shadow_page_lockless_begin(vcpu);
3404 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3405 if (!is_shadow_present_pte(spte))
3406 break;
3407 walk_shadow_page_lockless_end(vcpu);
3408
3409 return spte;
3410}
3411
ce88decf
XG
3412int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3413{
3414 u64 spte;
3415
3416 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3417 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3418
3419 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3420
3421 if (is_mmio_spte(spte)) {
3422 gfn_t gfn = get_mmio_spte_gfn(spte);
3423 unsigned access = get_mmio_spte_access(spte);
3424
f8f55942
XG
3425 if (!check_mmio_spte(vcpu->kvm, spte))
3426 return RET_MMIO_PF_INVALID;
3427
ce88decf
XG
3428 if (direct)
3429 addr = 0;
4f022648
XG
3430
3431 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3432 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3433 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3434 }
3435
3436 /*
3437 * It's ok if the gva is remapped by other cpus on shadow guest,
3438 * it's a BUG if the gfn is not a mmio page.
3439 */
3440 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3441 return RET_MMIO_PF_BUG;
ce88decf
XG
3442
3443 /*
3444 * If the page table is zapped by other cpus, let CPU fault again on
3445 * the address.
3446 */
b37fbea6 3447 return RET_MMIO_PF_RETRY;
ce88decf
XG
3448}
3449EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3450
3451static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3452 u32 error_code, bool direct)
3453{
3454 int ret;
3455
3456 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3457 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3458 return ret;
3459}
3460
6aa8b732 3461static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3462 u32 error_code, bool prefault)
6aa8b732 3463{
e833240f 3464 gfn_t gfn;
e2dec939 3465 int r;
6aa8b732 3466
b8688d51 3467 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3468
f8f55942
XG
3469 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3470 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3471
3472 if (likely(r != RET_MMIO_PF_INVALID))
3473 return r;
3474 }
ce88decf 3475
e2dec939
AK
3476 r = mmu_topup_memory_caches(vcpu);
3477 if (r)
3478 return r;
714b93da 3479
fa4a2c08 3480 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3481
e833240f 3482 gfn = gva >> PAGE_SHIFT;
6aa8b732 3483
e833240f 3484 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3485 error_code, gfn, prefault);
6aa8b732
AK
3486}
3487
7e1fbeac 3488static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3489{
3490 struct kvm_arch_async_pf arch;
fb67e14f 3491
7c90705b 3492 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3493 arch.gfn = gfn;
c4806acd 3494 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3495 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3496
e0ead41a 3497 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3498}
3499
3500static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3501{
3502 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3503 kvm_event_needs_reinjection(vcpu)))
3504 return false;
3505
3506 return kvm_x86_ops->interrupt_allowed(vcpu);
3507}
3508
78b2c54a 3509static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3510 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3511{
3512 bool async;
3513
612819c3 3514 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3515
3516 if (!async)
3517 return false; /* *pfn has correct page already */
3518
78b2c54a 3519 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3520 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3521 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3522 trace_kvm_async_pf_doublefault(gva, gfn);
3523 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3524 return true;
3525 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3526 return true;
3527 }
3528
612819c3 3529 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3530
3531 return false;
3532}
3533
56028d08 3534static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3535 bool prefault)
fb72d167 3536{
35149e21 3537 pfn_t pfn;
fb72d167 3538 int r;
852e3c19 3539 int level;
936a5fe6 3540 int force_pt_level;
05da4558 3541 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3542 unsigned long mmu_seq;
612819c3
MT
3543 int write = error_code & PFERR_WRITE_MASK;
3544 bool map_writable;
fb72d167 3545
fa4a2c08 3546 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3547
f8f55942
XG
3548 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3549 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3550
3551 if (likely(r != RET_MMIO_PF_INVALID))
3552 return r;
3553 }
ce88decf 3554
fb72d167
JR
3555 r = mmu_topup_memory_caches(vcpu);
3556 if (r)
3557 return r;
3558
936a5fe6
AA
3559 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3560 if (likely(!force_pt_level)) {
3561 level = mapping_level(vcpu, gfn);
3562 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3563 } else
3564 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3565
c7ba5b48
XG
3566 if (fast_page_fault(vcpu, gpa, level, error_code))
3567 return 0;
3568
e930bffe 3569 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3570 smp_rmb();
af585b92 3571
78b2c54a 3572 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3573 return 0;
3574
d7c55201
XG
3575 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3576 return r;
3577
fb72d167 3578 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3579 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3580 goto out_unlock;
450e0b41 3581 make_mmu_pages_available(vcpu);
936a5fe6
AA
3582 if (likely(!force_pt_level))
3583 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3584 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3585 level, gfn, pfn, prefault);
fb72d167 3586 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3587
3588 return r;
e930bffe
AA
3589
3590out_unlock:
3591 spin_unlock(&vcpu->kvm->mmu_lock);
3592 kvm_release_pfn_clean(pfn);
3593 return 0;
fb72d167
JR
3594}
3595
8a3c1a33
PB
3596static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3597 struct kvm_mmu *context)
6aa8b732 3598{
6aa8b732 3599 context->page_fault = nonpaging_page_fault;
6aa8b732 3600 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3601 context->sync_page = nonpaging_sync_page;
a7052897 3602 context->invlpg = nonpaging_invlpg;
0f53b5b1 3603 context->update_pte = nonpaging_update_pte;
cea0f0e7 3604 context->root_level = 0;
6aa8b732 3605 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3606 context->root_hpa = INVALID_PAGE;
c5a78f2b 3607 context->direct_map = true;
2d48a985 3608 context->nx = false;
6aa8b732
AK
3609}
3610
d8d173da 3611void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3612{
cea0f0e7 3613 mmu_free_roots(vcpu);
6aa8b732
AK
3614}
3615
5777ed34
JR
3616static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3617{
9f8fe504 3618 return kvm_read_cr3(vcpu);
5777ed34
JR
3619}
3620
6389ee94
AK
3621static void inject_page_fault(struct kvm_vcpu *vcpu,
3622 struct x86_exception *fault)
6aa8b732 3623{
6389ee94 3624 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3625}
3626
f2fd125d
XG
3627static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3628 unsigned access, int *nr_present)
ce88decf
XG
3629{
3630 if (unlikely(is_mmio_spte(*sptep))) {
3631 if (gfn != get_mmio_spte_gfn(*sptep)) {
3632 mmu_spte_clear_no_track(sptep);
3633 return true;
3634 }
3635
3636 (*nr_present)++;
f2fd125d 3637 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3638 return true;
3639 }
3640
3641 return false;
3642}
3643
6fd01b71
AK
3644static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3645{
3646 unsigned index;
3647
3648 index = level - 1;
3649 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3650 return mmu->last_pte_bitmap & (1 << index);
3651}
3652
37406aaa
NHE
3653#define PTTYPE_EPT 18 /* arbitrary */
3654#define PTTYPE PTTYPE_EPT
3655#include "paging_tmpl.h"
3656#undef PTTYPE
3657
6aa8b732
AK
3658#define PTTYPE 64
3659#include "paging_tmpl.h"
3660#undef PTTYPE
3661
3662#define PTTYPE 32
3663#include "paging_tmpl.h"
3664#undef PTTYPE
3665
52fde8df 3666static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3667 struct kvm_mmu *context)
82725b20 3668{
82725b20
DE
3669 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3670 u64 exb_bit_rsvd = 0;
5f7dde7b 3671 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3672 u64 nonleaf_bit8_rsvd = 0;
82725b20 3673
25d92081
YZ
3674 context->bad_mt_xwr = 0;
3675
2d48a985 3676 if (!context->nx)
82725b20 3677 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3678 if (!guest_cpuid_has_gbpages(vcpu))
3679 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3680
3681 /*
3682 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3683 * leaf entries) on AMD CPUs only.
3684 */
3685 if (guest_cpuid_is_amd(vcpu))
3686 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3687
4d6931c3 3688 switch (context->root_level) {
82725b20
DE
3689 case PT32_ROOT_LEVEL:
3690 /* no rsvd bits for 2 level 4K page table entries */
3691 context->rsvd_bits_mask[0][1] = 0;
3692 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3693 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3694
3695 if (!is_pse(vcpu)) {
3696 context->rsvd_bits_mask[1][1] = 0;
3697 break;
3698 }
3699
82725b20
DE
3700 if (is_cpuid_PSE36())
3701 /* 36bits PSE 4MB page */
3702 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3703 else
3704 /* 32 bits PSE 4MB page */
3705 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3706 break;
3707 case PT32E_ROOT_LEVEL:
20c466b5
DE
3708 context->rsvd_bits_mask[0][2] =
3709 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3710 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3711 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3712 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3713 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3714 rsvd_bits(maxphyaddr, 62); /* PTE */
3715 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3716 rsvd_bits(maxphyaddr, 62) |
3717 rsvd_bits(13, 20); /* large page */
f815bce8 3718 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3719 break;
3720 case PT64_ROOT_LEVEL:
3721 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3722 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3723 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3724 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3725 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3726 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3727 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3728 rsvd_bits(maxphyaddr, 51);
3729 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3730 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3731 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3732 rsvd_bits(13, 29);
82725b20 3733 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3734 rsvd_bits(maxphyaddr, 51) |
3735 rsvd_bits(13, 20); /* large page */
f815bce8 3736 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3737 break;
3738 }
3739}
3740
25d92081
YZ
3741static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3742 struct kvm_mmu *context, bool execonly)
3743{
3744 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3745 int pte;
3746
3747 context->rsvd_bits_mask[0][3] =
3748 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3749 context->rsvd_bits_mask[0][2] =
3750 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3751 context->rsvd_bits_mask[0][1] =
3752 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3753 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3754
3755 /* large page */
3756 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3757 context->rsvd_bits_mask[1][2] =
3758 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3759 context->rsvd_bits_mask[1][1] =
3760 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3761 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3762
3763 for (pte = 0; pte < 64; pte++) {
3764 int rwx_bits = pte & 7;
3765 int mt = pte >> 3;
3766 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3767 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3768 (rwx_bits == 0x4 && !execonly))
3769 context->bad_mt_xwr |= (1ull << pte);
3770 }
3771}
3772
edc90b7d
XG
3773static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3774 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3775{
3776 unsigned bit, byte, pfec;
3777 u8 map;
66386ade 3778 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3779
66386ade 3780 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3781 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3782 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3783 pfec = byte << 1;
3784 map = 0;
3785 wf = pfec & PFERR_WRITE_MASK;
3786 uf = pfec & PFERR_USER_MASK;
3787 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3788 /*
3789 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3790 * subject to SMAP restrictions, and cleared otherwise. The
3791 * bit is only meaningful if the SMAP bit is set in CR4.
3792 */
3793 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3794 for (bit = 0; bit < 8; ++bit) {
3795 x = bit & ACC_EXEC_MASK;
3796 w = bit & ACC_WRITE_MASK;
3797 u = bit & ACC_USER_MASK;
3798
25d92081
YZ
3799 if (!ept) {
3800 /* Not really needed: !nx will cause pte.nx to fault */
3801 x |= !mmu->nx;
3802 /* Allow supervisor writes if !cr0.wp */
3803 w |= !is_write_protection(vcpu) && !uf;
3804 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3805 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3806
3807 /*
3808 * SMAP:kernel-mode data accesses from user-mode
3809 * mappings should fault. A fault is considered
3810 * as a SMAP violation if all of the following
3811 * conditions are ture:
3812 * - X86_CR4_SMAP is set in CR4
3813 * - An user page is accessed
3814 * - Page fault in kernel mode
3815 * - if CPL = 3 or X86_EFLAGS_AC is clear
3816 *
3817 * Here, we cover the first three conditions.
3818 * The fourth is computed dynamically in
3819 * permission_fault() and is in smapf.
3820 *
3821 * Also, SMAP does not affect instruction
3822 * fetches, add the !ff check here to make it
3823 * clearer.
3824 */
3825 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3826 } else
3827 /* Not really needed: no U/S accesses on ept */
3828 u = 1;
97d64b78 3829
97ec8c06
FW
3830 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3831 (smapf && smap);
97d64b78
AK
3832 map |= fault << bit;
3833 }
3834 mmu->permissions[byte] = map;
3835 }
3836}
3837
6fd01b71
AK
3838static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3839{
3840 u8 map;
3841 unsigned level, root_level = mmu->root_level;
3842 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3843
3844 if (root_level == PT32E_ROOT_LEVEL)
3845 --root_level;
3846 /* PT_PAGE_TABLE_LEVEL always terminates */
3847 map = 1 | (1 << ps_set_index);
3848 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3849 if (level <= PT_PDPE_LEVEL
3850 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3851 map |= 1 << (ps_set_index | (level - 1));
3852 }
3853 mmu->last_pte_bitmap = map;
3854}
3855
8a3c1a33
PB
3856static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3857 struct kvm_mmu *context,
3858 int level)
6aa8b732 3859{
2d48a985 3860 context->nx = is_nx(vcpu);
4d6931c3 3861 context->root_level = level;
2d48a985 3862
4d6931c3 3863 reset_rsvds_bits_mask(vcpu, context);
25d92081 3864 update_permission_bitmask(vcpu, context, false);
6fd01b71 3865 update_last_pte_bitmap(vcpu, context);
6aa8b732 3866
fa4a2c08 3867 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3868 context->page_fault = paging64_page_fault;
6aa8b732 3869 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3870 context->sync_page = paging64_sync_page;
a7052897 3871 context->invlpg = paging64_invlpg;
0f53b5b1 3872 context->update_pte = paging64_update_pte;
17ac10ad 3873 context->shadow_root_level = level;
17c3ba9d 3874 context->root_hpa = INVALID_PAGE;
c5a78f2b 3875 context->direct_map = false;
6aa8b732
AK
3876}
3877
8a3c1a33
PB
3878static void paging64_init_context(struct kvm_vcpu *vcpu,
3879 struct kvm_mmu *context)
17ac10ad 3880{
8a3c1a33 3881 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3882}
3883
8a3c1a33
PB
3884static void paging32_init_context(struct kvm_vcpu *vcpu,
3885 struct kvm_mmu *context)
6aa8b732 3886{
2d48a985 3887 context->nx = false;
4d6931c3 3888 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3889
4d6931c3 3890 reset_rsvds_bits_mask(vcpu, context);
25d92081 3891 update_permission_bitmask(vcpu, context, false);
6fd01b71 3892 update_last_pte_bitmap(vcpu, context);
6aa8b732 3893
6aa8b732 3894 context->page_fault = paging32_page_fault;
6aa8b732 3895 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3896 context->sync_page = paging32_sync_page;
a7052897 3897 context->invlpg = paging32_invlpg;
0f53b5b1 3898 context->update_pte = paging32_update_pte;
6aa8b732 3899 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3900 context->root_hpa = INVALID_PAGE;
c5a78f2b 3901 context->direct_map = false;
6aa8b732
AK
3902}
3903
8a3c1a33
PB
3904static void paging32E_init_context(struct kvm_vcpu *vcpu,
3905 struct kvm_mmu *context)
6aa8b732 3906{
8a3c1a33 3907 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3908}
3909
8a3c1a33 3910static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3911{
ad896af0 3912 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3913
c445f8ef 3914 context->base_role.word = 0;
fb72d167 3915 context->page_fault = tdp_page_fault;
e8bc217a 3916 context->sync_page = nonpaging_sync_page;
a7052897 3917 context->invlpg = nonpaging_invlpg;
0f53b5b1 3918 context->update_pte = nonpaging_update_pte;
67253af5 3919 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3920 context->root_hpa = INVALID_PAGE;
c5a78f2b 3921 context->direct_map = true;
1c97f0a0 3922 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3923 context->get_cr3 = get_cr3;
e4e517b4 3924 context->get_pdptr = kvm_pdptr_read;
cb659db8 3925 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3926
3927 if (!is_paging(vcpu)) {
2d48a985 3928 context->nx = false;
fb72d167
JR
3929 context->gva_to_gpa = nonpaging_gva_to_gpa;
3930 context->root_level = 0;
3931 } else if (is_long_mode(vcpu)) {
2d48a985 3932 context->nx = is_nx(vcpu);
fb72d167 3933 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3934 reset_rsvds_bits_mask(vcpu, context);
3935 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3936 } else if (is_pae(vcpu)) {
2d48a985 3937 context->nx = is_nx(vcpu);
fb72d167 3938 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3939 reset_rsvds_bits_mask(vcpu, context);
3940 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3941 } else {
2d48a985 3942 context->nx = false;
fb72d167 3943 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3944 reset_rsvds_bits_mask(vcpu, context);
3945 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3946 }
3947
25d92081 3948 update_permission_bitmask(vcpu, context, false);
6fd01b71 3949 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3950}
3951
ad896af0 3952void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3953{
411c588d 3954 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3955 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3956 struct kvm_mmu *context = &vcpu->arch.mmu;
3957
fa4a2c08 3958 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3959
3960 if (!is_paging(vcpu))
8a3c1a33 3961 nonpaging_init_context(vcpu, context);
a9058ecd 3962 else if (is_long_mode(vcpu))
8a3c1a33 3963 paging64_init_context(vcpu, context);
6aa8b732 3964 else if (is_pae(vcpu))
8a3c1a33 3965 paging32E_init_context(vcpu, context);
6aa8b732 3966 else
8a3c1a33 3967 paging32_init_context(vcpu, context);
a770f6f2 3968
ad896af0
PB
3969 context->base_role.nxe = is_nx(vcpu);
3970 context->base_role.cr4_pae = !!is_pae(vcpu);
3971 context->base_role.cr0_wp = is_write_protection(vcpu);
3972 context->base_role.smep_andnot_wp
411c588d 3973 = smep && !is_write_protection(vcpu);
edc90b7d
XG
3974 context->base_role.smap_andnot_wp
3975 = smap && !is_write_protection(vcpu);
52fde8df
JR
3976}
3977EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3978
ad896af0 3979void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3980{
ad896af0
PB
3981 struct kvm_mmu *context = &vcpu->arch.mmu;
3982
fa4a2c08 3983 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3984
3985 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3986
3987 context->nx = true;
155a97a3
NHE
3988 context->page_fault = ept_page_fault;
3989 context->gva_to_gpa = ept_gva_to_gpa;
3990 context->sync_page = ept_sync_page;
3991 context->invlpg = ept_invlpg;
3992 context->update_pte = ept_update_pte;
155a97a3
NHE
3993 context->root_level = context->shadow_root_level;
3994 context->root_hpa = INVALID_PAGE;
3995 context->direct_map = false;
3996
3997 update_permission_bitmask(vcpu, context, true);
3998 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3999}
4000EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4001
8a3c1a33 4002static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4003{
ad896af0
PB
4004 struct kvm_mmu *context = &vcpu->arch.mmu;
4005
4006 kvm_init_shadow_mmu(vcpu);
4007 context->set_cr3 = kvm_x86_ops->set_cr3;
4008 context->get_cr3 = get_cr3;
4009 context->get_pdptr = kvm_pdptr_read;
4010 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4011}
4012
8a3c1a33 4013static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4014{
4015 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4016
4017 g_context->get_cr3 = get_cr3;
e4e517b4 4018 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4019 g_context->inject_page_fault = kvm_inject_page_fault;
4020
4021 /*
4022 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4023 * translation of l2_gpa to l1_gpa addresses is done using the
4024 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4025 * functions between mmu and nested_mmu are swapped.
4026 */
4027 if (!is_paging(vcpu)) {
2d48a985 4028 g_context->nx = false;
02f59dc9
JR
4029 g_context->root_level = 0;
4030 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4031 } else if (is_long_mode(vcpu)) {
2d48a985 4032 g_context->nx = is_nx(vcpu);
02f59dc9 4033 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4034 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4035 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4036 } else if (is_pae(vcpu)) {
2d48a985 4037 g_context->nx = is_nx(vcpu);
02f59dc9 4038 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4039 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4040 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4041 } else {
2d48a985 4042 g_context->nx = false;
02f59dc9 4043 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4044 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4045 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4046 }
4047
25d92081 4048 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4049 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4050}
4051
8a3c1a33 4052static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4053{
02f59dc9 4054 if (mmu_is_nested(vcpu))
e0c6db3e 4055 init_kvm_nested_mmu(vcpu);
02f59dc9 4056 else if (tdp_enabled)
e0c6db3e 4057 init_kvm_tdp_mmu(vcpu);
fb72d167 4058 else
e0c6db3e 4059 init_kvm_softmmu(vcpu);
fb72d167
JR
4060}
4061
8a3c1a33 4062void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4063{
95f93af4 4064 kvm_mmu_unload(vcpu);
8a3c1a33 4065 init_kvm_mmu(vcpu);
17c3ba9d 4066}
8668a3c4 4067EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4068
4069int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4070{
714b93da
AK
4071 int r;
4072
e2dec939 4073 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4074 if (r)
4075 goto out;
8986ecc0 4076 r = mmu_alloc_roots(vcpu);
e2858b4a 4077 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4078 if (r)
4079 goto out;
3662cb1c 4080 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4081 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4082out:
4083 return r;
6aa8b732 4084}
17c3ba9d
AK
4085EXPORT_SYMBOL_GPL(kvm_mmu_load);
4086
4087void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4088{
4089 mmu_free_roots(vcpu);
95f93af4 4090 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4091}
4b16184c 4092EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4093
0028425f 4094static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4095 struct kvm_mmu_page *sp, u64 *spte,
4096 const void *new)
0028425f 4097{
30945387 4098 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4099 ++vcpu->kvm->stat.mmu_pde_zapped;
4100 return;
30945387 4101 }
0028425f 4102
4cee5764 4103 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4104 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4105}
4106
79539cec
AK
4107static bool need_remote_flush(u64 old, u64 new)
4108{
4109 if (!is_shadow_present_pte(old))
4110 return false;
4111 if (!is_shadow_present_pte(new))
4112 return true;
4113 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4114 return true;
53166229
GN
4115 old ^= shadow_nx_mask;
4116 new ^= shadow_nx_mask;
79539cec
AK
4117 return (old & ~new & PT64_PERM_MASK) != 0;
4118}
4119
0671a8e7
XG
4120static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4121 bool remote_flush, bool local_flush)
79539cec 4122{
0671a8e7
XG
4123 if (zap_page)
4124 return;
4125
4126 if (remote_flush)
79539cec 4127 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4128 else if (local_flush)
77c3913b 4129 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4130}
4131
889e5cbc
XG
4132static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4133 const u8 *new, int *bytes)
da4a00f0 4134{
889e5cbc
XG
4135 u64 gentry;
4136 int r;
72016f3a 4137
72016f3a
AK
4138 /*
4139 * Assume that the pte write on a page table of the same type
49b26e26
XG
4140 * as the current vcpu paging mode since we update the sptes only
4141 * when they have the same mode.
72016f3a 4142 */
889e5cbc 4143 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4144 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4145 *gpa &= ~(gpa_t)7;
4146 *bytes = 8;
116eb3d3 4147 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
4148 if (r)
4149 gentry = 0;
08e850c6
AK
4150 new = (const u8 *)&gentry;
4151 }
4152
889e5cbc 4153 switch (*bytes) {
08e850c6
AK
4154 case 4:
4155 gentry = *(const u32 *)new;
4156 break;
4157 case 8:
4158 gentry = *(const u64 *)new;
4159 break;
4160 default:
4161 gentry = 0;
4162 break;
72016f3a
AK
4163 }
4164
889e5cbc
XG
4165 return gentry;
4166}
4167
4168/*
4169 * If we're seeing too many writes to a page, it may no longer be a page table,
4170 * or we may be forking, in which case it is better to unmap the page.
4171 */
a138fe75 4172static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4173{
a30f47cb
XG
4174 /*
4175 * Skip write-flooding detected for the sp whose level is 1, because
4176 * it can become unsync, then the guest page is not write-protected.
4177 */
f71fa31f 4178 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4179 return false;
3246af0e 4180
a30f47cb 4181 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4182}
4183
4184/*
4185 * Misaligned accesses are too much trouble to fix up; also, they usually
4186 * indicate a page is not used as a page table.
4187 */
4188static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4189 int bytes)
4190{
4191 unsigned offset, pte_size, misaligned;
4192
4193 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4194 gpa, bytes, sp->role.word);
4195
4196 offset = offset_in_page(gpa);
4197 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4198
4199 /*
4200 * Sometimes, the OS only writes the last one bytes to update status
4201 * bits, for example, in linux, andb instruction is used in clear_bit().
4202 */
4203 if (!(offset & (pte_size - 1)) && bytes == 1)
4204 return false;
4205
889e5cbc
XG
4206 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4207 misaligned |= bytes < 4;
4208
4209 return misaligned;
4210}
4211
4212static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4213{
4214 unsigned page_offset, quadrant;
4215 u64 *spte;
4216 int level;
4217
4218 page_offset = offset_in_page(gpa);
4219 level = sp->role.level;
4220 *nspte = 1;
4221 if (!sp->role.cr4_pae) {
4222 page_offset <<= 1; /* 32->64 */
4223 /*
4224 * A 32-bit pde maps 4MB while the shadow pdes map
4225 * only 2MB. So we need to double the offset again
4226 * and zap two pdes instead of one.
4227 */
4228 if (level == PT32_ROOT_LEVEL) {
4229 page_offset &= ~7; /* kill rounding error */
4230 page_offset <<= 1;
4231 *nspte = 2;
4232 }
4233 quadrant = page_offset >> PAGE_SHIFT;
4234 page_offset &= ~PAGE_MASK;
4235 if (quadrant != sp->role.quadrant)
4236 return NULL;
4237 }
4238
4239 spte = &sp->spt[page_offset / sizeof(*spte)];
4240 return spte;
4241}
4242
4243void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4244 const u8 *new, int bytes)
4245{
4246 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4247 struct kvm_mmu_page *sp;
889e5cbc
XG
4248 LIST_HEAD(invalid_list);
4249 u64 entry, gentry, *spte;
4250 int npte;
a30f47cb 4251 bool remote_flush, local_flush, zap_page;
edc90b7d
XG
4252 union kvm_mmu_page_role mask = (union kvm_mmu_page_role) {
4253 .cr0_wp = 1,
4254 .cr4_pae = 1,
4255 .nxe = 1,
4256 .smep_andnot_wp = 1,
4257 .smap_andnot_wp = 1,
4258 };
889e5cbc
XG
4259
4260 /*
4261 * If we don't have indirect shadow pages, it means no page is
4262 * write-protected, so we can exit simply.
4263 */
4264 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4265 return;
4266
4267 zap_page = remote_flush = local_flush = false;
4268
4269 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4270
4271 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4272
4273 /*
4274 * No need to care whether allocation memory is successful
4275 * or not since pte prefetch is skiped if it does not have
4276 * enough objects in the cache.
4277 */
4278 mmu_topup_memory_caches(vcpu);
4279
4280 spin_lock(&vcpu->kvm->mmu_lock);
4281 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4282 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4283
b67bfe0d 4284 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4285 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4286 detect_write_flooding(sp)) {
0671a8e7 4287 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4288 &invalid_list);
4cee5764 4289 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4290 continue;
4291 }
889e5cbc
XG
4292
4293 spte = get_written_sptes(sp, gpa, &npte);
4294 if (!spte)
4295 continue;
4296
0671a8e7 4297 local_flush = true;
ac1b714e 4298 while (npte--) {
79539cec 4299 entry = *spte;
38e3b2b2 4300 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4301 if (gentry &&
4302 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4303 & mask.word) && rmap_can_add(vcpu))
7c562522 4304 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4305 if (need_remote_flush(entry, *spte))
0671a8e7 4306 remote_flush = true;
ac1b714e 4307 ++spte;
9b7a0325 4308 }
9b7a0325 4309 }
0671a8e7 4310 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4311 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4312 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4313 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4314}
4315
a436036b
AK
4316int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4317{
10589a46
MT
4318 gpa_t gpa;
4319 int r;
a436036b 4320
c5a78f2b 4321 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4322 return 0;
4323
1871c602 4324 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4325
10589a46 4326 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4327
10589a46 4328 return r;
a436036b 4329}
577bdc49 4330EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4331
81f4f76b 4332static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4333{
d98ba053 4334 LIST_HEAD(invalid_list);
103ad25a 4335
81f4f76b
TY
4336 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4337 return;
4338
5da59607
TY
4339 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4340 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4341 break;
ebeace86 4342
4cee5764 4343 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4344 }
aa6bd187 4345 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4346}
ebeace86 4347
1cb3f3ae
XG
4348static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4349{
4350 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4351 return vcpu_match_mmio_gpa(vcpu, addr);
4352
4353 return vcpu_match_mmio_gva(vcpu, addr);
4354}
4355
dc25e89e
AP
4356int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4357 void *insn, int insn_len)
3067714c 4358{
1cb3f3ae 4359 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4360 enum emulation_result er;
4361
56028d08 4362 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4363 if (r < 0)
4364 goto out;
4365
4366 if (!r) {
4367 r = 1;
4368 goto out;
4369 }
4370
1cb3f3ae
XG
4371 if (is_mmio_page_fault(vcpu, cr2))
4372 emulation_type = 0;
4373
4374 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4375
4376 switch (er) {
4377 case EMULATE_DONE:
4378 return 1;
ac0a48c3 4379 case EMULATE_USER_EXIT:
3067714c 4380 ++vcpu->stat.mmio_exits;
6d77dbfc 4381 /* fall through */
3067714c 4382 case EMULATE_FAIL:
3f5d18a9 4383 return 0;
3067714c
AK
4384 default:
4385 BUG();
4386 }
4387out:
3067714c
AK
4388 return r;
4389}
4390EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4391
a7052897
MT
4392void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4393{
a7052897 4394 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4395 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4396 ++vcpu->stat.invlpg;
4397}
4398EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4399
18552672
JR
4400void kvm_enable_tdp(void)
4401{
4402 tdp_enabled = true;
4403}
4404EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4405
5f4cb662
JR
4406void kvm_disable_tdp(void)
4407{
4408 tdp_enabled = false;
4409}
4410EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4411
6aa8b732
AK
4412static void free_mmu_pages(struct kvm_vcpu *vcpu)
4413{
ad312c7c 4414 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4415 if (vcpu->arch.mmu.lm_root != NULL)
4416 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4417}
4418
4419static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4420{
17ac10ad 4421 struct page *page;
6aa8b732
AK
4422 int i;
4423
17ac10ad
AK
4424 /*
4425 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4426 * Therefore we need to allocate shadow page tables in the first
4427 * 4GB of memory, which happens to fit the DMA32 zone.
4428 */
4429 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4430 if (!page)
d7fa6ab2
WY
4431 return -ENOMEM;
4432
ad312c7c 4433 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4434 for (i = 0; i < 4; ++i)
ad312c7c 4435 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4436
6aa8b732 4437 return 0;
6aa8b732
AK
4438}
4439
8018c27b 4440int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4441{
e459e322
XG
4442 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4443 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4444 vcpu->arch.mmu.translate_gpa = translate_gpa;
4445 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4446
8018c27b
IM
4447 return alloc_mmu_pages(vcpu);
4448}
6aa8b732 4449
8a3c1a33 4450void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4451{
fa4a2c08 4452 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4453
8a3c1a33 4454 init_kvm_mmu(vcpu);
6aa8b732
AK
4455}
4456
1c91cad4
KH
4457void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4458 struct kvm_memory_slot *memslot)
6aa8b732 4459{
b99db1d3
TY
4460 gfn_t last_gfn;
4461 int i;
d91ffee9 4462 bool flush = false;
6aa8b732 4463
b99db1d3 4464 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4465
9d1beefb
TY
4466 spin_lock(&kvm->mmu_lock);
4467
8a3d08f1 4468 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
b99db1d3
TY
4469 unsigned long *rmapp;
4470 unsigned long last_index, index;
6aa8b732 4471
b99db1d3
TY
4472 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4473 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4474
b99db1d3
TY
4475 for (index = 0; index <= last_index; ++index, ++rmapp) {
4476 if (*rmapp)
d91ffee9
KH
4477 flush |= __rmap_write_protect(kvm, rmapp,
4478 false);
6b81b05e 4479
198c74f4 4480 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4481 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4482 }
6aa8b732 4483 }
b99db1d3 4484
9d1beefb 4485 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4486
4487 /*
4488 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4489 * which do tlb flush out of mmu-lock should be serialized by
4490 * kvm->slots_lock otherwise tlb flush would be missed.
4491 */
4492 lockdep_assert_held(&kvm->slots_lock);
4493
4494 /*
4495 * We can flush all the TLBs out of the mmu lock without TLB
4496 * corruption since we just change the spte from writable to
4497 * readonly so that we only need to care the case of changing
4498 * spte from present to present (changing the spte from present
4499 * to nonpresent will flush all the TLBs immediately), in other
4500 * words, the only case we care is mmu_spte_update() where we
4501 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4502 * instead of PT_WRITABLE_MASK, that means it does not depend
4503 * on PT_WRITABLE_MASK anymore.
4504 */
d91ffee9
KH
4505 if (flush)
4506 kvm_flush_remote_tlbs(kvm);
6aa8b732 4507}
37a7d8b0 4508
3ea3b7fa
WL
4509static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4510 unsigned long *rmapp)
4511{
4512 u64 *sptep;
4513 struct rmap_iterator iter;
4514 int need_tlb_flush = 0;
4515 pfn_t pfn;
4516 struct kvm_mmu_page *sp;
4517
0d536790
XG
4518restart:
4519 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4520 sp = page_header(__pa(sptep));
4521 pfn = spte_to_pfn(*sptep);
4522
4523 /*
decf6333
XG
4524 * We cannot do huge page mapping for indirect shadow pages,
4525 * which are found on the last rmap (level = 1) when not using
4526 * tdp; such shadow pages are synced with the page table in
4527 * the guest, and the guest page table is using 4K page size
4528 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4529 */
4530 if (sp->role.direct &&
4531 !kvm_is_reserved_pfn(pfn) &&
4532 PageTransCompound(pfn_to_page(pfn))) {
4533 drop_spte(kvm, sptep);
3ea3b7fa 4534 need_tlb_flush = 1;
0d536790
XG
4535 goto restart;
4536 }
3ea3b7fa
WL
4537 }
4538
4539 return need_tlb_flush;
4540}
4541
4542void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4543 struct kvm_memory_slot *memslot)
4544{
4545 bool flush = false;
4546 unsigned long *rmapp;
4547 unsigned long last_index, index;
3ea3b7fa
WL
4548
4549 spin_lock(&kvm->mmu_lock);
4550
3ea3b7fa 4551 rmapp = memslot->arch.rmap[0];
13000523
WL
4552 last_index = gfn_to_index(memslot->base_gfn + memslot->npages - 1,
4553 memslot->base_gfn, PT_PAGE_TABLE_LEVEL);
3ea3b7fa
WL
4554
4555 for (index = 0; index <= last_index; ++index, ++rmapp) {
4556 if (*rmapp)
4557 flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp);
4558
4559 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4560 if (flush) {
4561 kvm_flush_remote_tlbs(kvm);
4562 flush = false;
4563 }
4564 cond_resched_lock(&kvm->mmu_lock);
4565 }
4566 }
4567
4568 if (flush)
4569 kvm_flush_remote_tlbs(kvm);
4570
3ea3b7fa
WL
4571 spin_unlock(&kvm->mmu_lock);
4572}
4573
f4b4b180
KH
4574void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4575 struct kvm_memory_slot *memslot)
4576{
4577 gfn_t last_gfn;
4578 unsigned long *rmapp;
4579 unsigned long last_index, index;
4580 bool flush = false;
4581
4582 last_gfn = memslot->base_gfn + memslot->npages - 1;
4583
4584 spin_lock(&kvm->mmu_lock);
4585
4586 rmapp = memslot->arch.rmap[PT_PAGE_TABLE_LEVEL - 1];
4587 last_index = gfn_to_index(last_gfn, memslot->base_gfn,
4588 PT_PAGE_TABLE_LEVEL);
4589
4590 for (index = 0; index <= last_index; ++index, ++rmapp) {
4591 if (*rmapp)
4592 flush |= __rmap_clear_dirty(kvm, rmapp);
4593
4594 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4595 cond_resched_lock(&kvm->mmu_lock);
4596 }
4597
4598 spin_unlock(&kvm->mmu_lock);
4599
4600 lockdep_assert_held(&kvm->slots_lock);
4601
4602 /*
4603 * It's also safe to flush TLBs out of mmu lock here as currently this
4604 * function is only used for dirty logging, in which case flushing TLB
4605 * out of mmu lock also guarantees no dirty pages will be lost in
4606 * dirty_bitmap.
4607 */
4608 if (flush)
4609 kvm_flush_remote_tlbs(kvm);
4610}
4611EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4612
4613void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4614 struct kvm_memory_slot *memslot)
4615{
4616 gfn_t last_gfn;
4617 int i;
4618 bool flush = false;
4619
4620 last_gfn = memslot->base_gfn + memslot->npages - 1;
4621
4622 spin_lock(&kvm->mmu_lock);
4623
8a3d08f1
XG
4624 /* skip rmap for 4K page */
4625 for (i = PT_PAGE_TABLE_LEVEL + 1; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
f4b4b180
KH
4626 unsigned long *rmapp;
4627 unsigned long last_index, index;
4628
4629 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4630 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4631
4632 for (index = 0; index <= last_index; ++index, ++rmapp) {
4633 if (*rmapp)
4634 flush |= __rmap_write_protect(kvm, rmapp,
4635 false);
4636
4637 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4638 cond_resched_lock(&kvm->mmu_lock);
4639 }
4640 }
4641 spin_unlock(&kvm->mmu_lock);
4642
4643 /* see kvm_mmu_slot_remove_write_access */
4644 lockdep_assert_held(&kvm->slots_lock);
4645
4646 if (flush)
4647 kvm_flush_remote_tlbs(kvm);
4648}
4649EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4650
4651void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4652 struct kvm_memory_slot *memslot)
4653{
4654 gfn_t last_gfn;
4655 int i;
4656 bool flush = false;
4657
4658 last_gfn = memslot->base_gfn + memslot->npages - 1;
4659
4660 spin_lock(&kvm->mmu_lock);
4661
8a3d08f1 4662 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
f4b4b180
KH
4663 unsigned long *rmapp;
4664 unsigned long last_index, index;
4665
4666 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4667 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4668
4669 for (index = 0; index <= last_index; ++index, ++rmapp) {
4670 if (*rmapp)
4671 flush |= __rmap_set_dirty(kvm, rmapp);
4672
4673 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
4674 cond_resched_lock(&kvm->mmu_lock);
4675 }
4676 }
4677
4678 spin_unlock(&kvm->mmu_lock);
4679
4680 lockdep_assert_held(&kvm->slots_lock);
4681
4682 /* see kvm_mmu_slot_leaf_clear_dirty */
4683 if (flush)
4684 kvm_flush_remote_tlbs(kvm);
4685}
4686EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4687
e7d11c7a 4688#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4689static void kvm_zap_obsolete_pages(struct kvm *kvm)
4690{
4691 struct kvm_mmu_page *sp, *node;
e7d11c7a 4692 int batch = 0;
5304b8d3
XG
4693
4694restart:
4695 list_for_each_entry_safe_reverse(sp, node,
4696 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4697 int ret;
4698
5304b8d3
XG
4699 /*
4700 * No obsolete page exists before new created page since
4701 * active_mmu_pages is the FIFO list.
4702 */
4703 if (!is_obsolete_sp(kvm, sp))
4704 break;
4705
4706 /*
5304b8d3
XG
4707 * Since we are reversely walking the list and the invalid
4708 * list will be moved to the head, skip the invalid page
4709 * can help us to avoid the infinity list walking.
4710 */
4711 if (sp->role.invalid)
4712 continue;
4713
f34d251d
XG
4714 /*
4715 * Need not flush tlb since we only zap the sp with invalid
4716 * generation number.
4717 */
e7d11c7a 4718 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4719 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4720 batch = 0;
5304b8d3
XG
4721 goto restart;
4722 }
4723
365c8868
XG
4724 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4725 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4726 batch += ret;
4727
4728 if (ret)
5304b8d3
XG
4729 goto restart;
4730 }
4731
f34d251d
XG
4732 /*
4733 * Should flush tlb before free page tables since lockless-walking
4734 * may use the pages.
4735 */
365c8868 4736 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4737}
4738
4739/*
4740 * Fast invalidate all shadow pages and use lock-break technique
4741 * to zap obsolete pages.
4742 *
4743 * It's required when memslot is being deleted or VM is being
4744 * destroyed, in these cases, we should ensure that KVM MMU does
4745 * not use any resource of the being-deleted slot or all slots
4746 * after calling the function.
4747 */
4748void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4749{
4750 spin_lock(&kvm->mmu_lock);
35006126 4751 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4752 kvm->arch.mmu_valid_gen++;
4753
f34d251d
XG
4754 /*
4755 * Notify all vcpus to reload its shadow page table
4756 * and flush TLB. Then all vcpus will switch to new
4757 * shadow page table with the new mmu_valid_gen.
4758 *
4759 * Note: we should do this under the protection of
4760 * mmu-lock, otherwise, vcpu would purge shadow page
4761 * but miss tlb flush.
4762 */
4763 kvm_reload_remote_mmus(kvm);
4764
5304b8d3
XG
4765 kvm_zap_obsolete_pages(kvm);
4766 spin_unlock(&kvm->mmu_lock);
4767}
4768
365c8868
XG
4769static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4770{
4771 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4772}
4773
f8f55942
XG
4774void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4775{
4776 /*
4777 * The very rare case: if the generation-number is round,
4778 * zap all shadow pages.
f8f55942 4779 */
ee3d1570 4780 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
a629df7e 4781 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4782 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4783 }
f8f55942
XG
4784}
4785
70534a73
DC
4786static unsigned long
4787mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4788{
4789 struct kvm *kvm;
1495f230 4790 int nr_to_scan = sc->nr_to_scan;
70534a73 4791 unsigned long freed = 0;
3ee16c81 4792
2f303b74 4793 spin_lock(&kvm_lock);
3ee16c81
IE
4794
4795 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4796 int idx;
d98ba053 4797 LIST_HEAD(invalid_list);
3ee16c81 4798
35f2d16b
TY
4799 /*
4800 * Never scan more than sc->nr_to_scan VM instances.
4801 * Will not hit this condition practically since we do not try
4802 * to shrink more than one VM and it is very unlikely to see
4803 * !n_used_mmu_pages so many times.
4804 */
4805 if (!nr_to_scan--)
4806 break;
19526396
GN
4807 /*
4808 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4809 * here. We may skip a VM instance errorneosly, but we do not
4810 * want to shrink a VM that only started to populate its MMU
4811 * anyway.
4812 */
365c8868
XG
4813 if (!kvm->arch.n_used_mmu_pages &&
4814 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4815 continue;
19526396 4816
f656ce01 4817 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4818 spin_lock(&kvm->mmu_lock);
3ee16c81 4819
365c8868
XG
4820 if (kvm_has_zapped_obsolete_pages(kvm)) {
4821 kvm_mmu_commit_zap_page(kvm,
4822 &kvm->arch.zapped_obsolete_pages);
4823 goto unlock;
4824 }
4825
70534a73
DC
4826 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4827 freed++;
d98ba053 4828 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4829
365c8868 4830unlock:
3ee16c81 4831 spin_unlock(&kvm->mmu_lock);
f656ce01 4832 srcu_read_unlock(&kvm->srcu, idx);
19526396 4833
70534a73
DC
4834 /*
4835 * unfair on small ones
4836 * per-vm shrinkers cry out
4837 * sadness comes quickly
4838 */
19526396
GN
4839 list_move_tail(&kvm->vm_list, &vm_list);
4840 break;
3ee16c81 4841 }
3ee16c81 4842
2f303b74 4843 spin_unlock(&kvm_lock);
70534a73 4844 return freed;
70534a73
DC
4845}
4846
4847static unsigned long
4848mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4849{
45221ab6 4850 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4851}
4852
4853static struct shrinker mmu_shrinker = {
70534a73
DC
4854 .count_objects = mmu_shrink_count,
4855 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4856 .seeks = DEFAULT_SEEKS * 10,
4857};
4858
2ddfd20e 4859static void mmu_destroy_caches(void)
b5a33a75 4860{
53c07b18
XG
4861 if (pte_list_desc_cache)
4862 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4863 if (mmu_page_header_cache)
4864 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4865}
4866
4867int kvm_mmu_module_init(void)
4868{
53c07b18
XG
4869 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4870 sizeof(struct pte_list_desc),
20c2df83 4871 0, 0, NULL);
53c07b18 4872 if (!pte_list_desc_cache)
b5a33a75
AK
4873 goto nomem;
4874
d3d25b04
AK
4875 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4876 sizeof(struct kvm_mmu_page),
20c2df83 4877 0, 0, NULL);
d3d25b04
AK
4878 if (!mmu_page_header_cache)
4879 goto nomem;
4880
908c7f19 4881 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4882 goto nomem;
4883
3ee16c81
IE
4884 register_shrinker(&mmu_shrinker);
4885
b5a33a75
AK
4886 return 0;
4887
4888nomem:
3ee16c81 4889 mmu_destroy_caches();
b5a33a75
AK
4890 return -ENOMEM;
4891}
4892
3ad82a7e
ZX
4893/*
4894 * Caculate mmu pages needed for kvm.
4895 */
4896unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4897{
3ad82a7e
ZX
4898 unsigned int nr_mmu_pages;
4899 unsigned int nr_pages = 0;
bc6678a3 4900 struct kvm_memslots *slots;
be6ba0f0 4901 struct kvm_memory_slot *memslot;
3ad82a7e 4902
90d83dc3
LJ
4903 slots = kvm_memslots(kvm);
4904
be6ba0f0
XG
4905 kvm_for_each_memslot(memslot, slots)
4906 nr_pages += memslot->npages;
3ad82a7e
ZX
4907
4908 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4909 nr_mmu_pages = max(nr_mmu_pages,
4910 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4911
4912 return nr_mmu_pages;
4913}
4914
94d8b056
MT
4915int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4916{
4917 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4918 u64 spte;
94d8b056
MT
4919 int nr_sptes = 0;
4920
37f6a4e2
MT
4921 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4922 return nr_sptes;
4923
c2a2ac2b
XG
4924 walk_shadow_page_lockless_begin(vcpu);
4925 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4926 sptes[iterator.level-1] = spte;
94d8b056 4927 nr_sptes++;
c2a2ac2b 4928 if (!is_shadow_present_pte(spte))
94d8b056
MT
4929 break;
4930 }
c2a2ac2b 4931 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4932
4933 return nr_sptes;
4934}
4935EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4936
c42fffe3
XG
4937void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4938{
95f93af4 4939 kvm_mmu_unload(vcpu);
c42fffe3
XG
4940 free_mmu_pages(vcpu);
4941 mmu_free_memory_caches(vcpu);
b034cf01
XG
4942}
4943
b034cf01
XG
4944void kvm_mmu_module_exit(void)
4945{
4946 mmu_destroy_caches();
4947 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4948 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4949 mmu_audit_disable();
4950}
This page took 0.951343 seconds and 5 git commands to generate.