Linux 3.14-rc3
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
53166229
GN
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
136 | shadow_x_mask | shadow_nx_mask)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
f2fd125d
XG
200/*
201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203 * number.
204 */
205#define MMIO_SPTE_GEN_LOW_SHIFT 3
206#define MMIO_SPTE_GEN_HIGH_SHIFT 52
207
f8f55942 208#define MMIO_GEN_SHIFT 19
f2fd125d
XG
209#define MMIO_GEN_LOW_SHIFT 9
210#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
f8f55942
XG
211#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
212#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
213
214static u64 generation_mmio_spte_mask(unsigned int gen)
215{
216 u64 mask;
217
218 WARN_ON(gen > MMIO_MAX_GEN);
219
220 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222 return mask;
223}
224
225static unsigned int get_mmio_spte_generation(u64 spte)
226{
227 unsigned int gen;
228
229 spte &= ~shadow_mmio_mask;
230
231 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233 return gen;
234}
235
f8f55942
XG
236static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237{
69c9ea93
XG
238 /*
239 * Init kvm generation close to MMIO_MAX_GEN to easily test the
240 * code of handling generation number wrap-around.
241 */
242 return (kvm_memslots(kvm)->generation +
243 MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
f8f55942
XG
244}
245
f2fd125d
XG
246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
ce88decf 248{
f8f55942
XG
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 251
ce88decf 252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 254
f8f55942 255 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 256 mmu_spte_set(sptep, mask);
ce88decf
XG
257}
258
259static bool is_mmio_spte(u64 spte)
260{
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262}
263
264static gfn_t get_mmio_spte_gfn(u64 spte)
265{
f2fd125d
XG
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
268}
269
270static unsigned get_mmio_spte_access(u64 spte)
271{
f2fd125d
XG
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
274}
275
f2fd125d
XG
276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
ce88decf
XG
278{
279 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 280 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
281 return true;
282 }
283
284 return false;
285}
c7addb90 286
f8f55942
XG
287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288{
089504c0
XG
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
f8f55942
XG
296}
297
82725b20
DE
298static inline u64 rsvd_bits(int s, int e)
299{
300 return ((1ULL << (e - s + 1)) - 1) << s;
301}
302
7b52345e 303void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 304 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
305{
306 shadow_user_mask = user_mask;
307 shadow_accessed_mask = accessed_mask;
308 shadow_dirty_mask = dirty_mask;
309 shadow_nx_mask = nx_mask;
310 shadow_x_mask = x_mask;
311}
312EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
6aa8b732
AK
314static int is_cpuid_PSE36(void)
315{
316 return 1;
317}
318
73b1087e
AK
319static int is_nx(struct kvm_vcpu *vcpu)
320{
f6801dff 321 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
322}
323
c7addb90
AK
324static int is_shadow_present_pte(u64 pte)
325{
ce88decf 326 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
327}
328
05da4558
MT
329static int is_large_pte(u64 pte)
330{
331 return pte & PT_PAGE_SIZE_MASK;
332}
333
43a3795a 334static int is_rmap_spte(u64 pte)
cd4a4e53 335{
4b1a80fa 336 return is_shadow_present_pte(pte);
cd4a4e53
AK
337}
338
776e6633
MT
339static int is_last_spte(u64 pte, int level)
340{
341 if (level == PT_PAGE_TABLE_LEVEL)
342 return 1;
852e3c19 343 if (is_large_pte(pte))
776e6633
MT
344 return 1;
345 return 0;
346}
347
35149e21 348static pfn_t spte_to_pfn(u64 pte)
0b49ea86 349{
35149e21 350 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
351}
352
da928521
AK
353static gfn_t pse36_gfn_delta(u32 gpte)
354{
355 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
356
357 return (gpte & PT32_DIR_PSE36_MASK) << shift;
358}
359
603e0651 360#ifdef CONFIG_X86_64
d555c333 361static void __set_spte(u64 *sptep, u64 spte)
e663ee64 362{
603e0651 363 *sptep = spte;
e663ee64
AK
364}
365
603e0651 366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 367{
603e0651
XG
368 *sptep = spte;
369}
370
371static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
372{
373 return xchg(sptep, spte);
374}
c2a2ac2b
XG
375
376static u64 __get_spte_lockless(u64 *sptep)
377{
378 return ACCESS_ONCE(*sptep);
379}
ce88decf
XG
380
381static bool __check_direct_spte_mmio_pf(u64 spte)
382{
383 /* It is valid if the spte is zapped. */
384 return spte == 0ull;
385}
a9221dd5 386#else
603e0651
XG
387union split_spte {
388 struct {
389 u32 spte_low;
390 u32 spte_high;
391 };
392 u64 spte;
393};
a9221dd5 394
c2a2ac2b
XG
395static void count_spte_clear(u64 *sptep, u64 spte)
396{
397 struct kvm_mmu_page *sp = page_header(__pa(sptep));
398
399 if (is_shadow_present_pte(spte))
400 return;
401
402 /* Ensure the spte is completely set before we increase the count */
403 smp_wmb();
404 sp->clear_spte_count++;
405}
406
603e0651
XG
407static void __set_spte(u64 *sptep, u64 spte)
408{
409 union split_spte *ssptep, sspte;
a9221dd5 410
603e0651
XG
411 ssptep = (union split_spte *)sptep;
412 sspte = (union split_spte)spte;
413
414 ssptep->spte_high = sspte.spte_high;
415
416 /*
417 * If we map the spte from nonpresent to present, We should store
418 * the high bits firstly, then set present bit, so cpu can not
419 * fetch this spte while we are setting the spte.
420 */
421 smp_wmb();
422
423 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
424}
425
603e0651
XG
426static void __update_clear_spte_fast(u64 *sptep, u64 spte)
427{
428 union split_spte *ssptep, sspte;
429
430 ssptep = (union split_spte *)sptep;
431 sspte = (union split_spte)spte;
432
433 ssptep->spte_low = sspte.spte_low;
434
435 /*
436 * If we map the spte from present to nonpresent, we should clear
437 * present bit firstly to avoid vcpu fetch the old high bits.
438 */
439 smp_wmb();
440
441 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 442 count_spte_clear(sptep, spte);
603e0651
XG
443}
444
445static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
446{
447 union split_spte *ssptep, sspte, orig;
448
449 ssptep = (union split_spte *)sptep;
450 sspte = (union split_spte)spte;
451
452 /* xchg acts as a barrier before the setting of the high bits */
453 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
454 orig.spte_high = ssptep->spte_high;
455 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 456 count_spte_clear(sptep, spte);
603e0651
XG
457
458 return orig.spte;
459}
c2a2ac2b
XG
460
461/*
462 * The idea using the light way get the spte on x86_32 guest is from
463 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
464 *
465 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
466 * coalesces them and we are running out of the MMU lock. Therefore
467 * we need to protect against in-progress updates of the spte.
468 *
469 * Reading the spte while an update is in progress may get the old value
470 * for the high part of the spte. The race is fine for a present->non-present
471 * change (because the high part of the spte is ignored for non-present spte),
472 * but for a present->present change we must reread the spte.
473 *
474 * All such changes are done in two steps (present->non-present and
475 * non-present->present), hence it is enough to count the number of
476 * present->non-present updates: if it changed while reading the spte,
477 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
478 */
479static u64 __get_spte_lockless(u64 *sptep)
480{
481 struct kvm_mmu_page *sp = page_header(__pa(sptep));
482 union split_spte spte, *orig = (union split_spte *)sptep;
483 int count;
484
485retry:
486 count = sp->clear_spte_count;
487 smp_rmb();
488
489 spte.spte_low = orig->spte_low;
490 smp_rmb();
491
492 spte.spte_high = orig->spte_high;
493 smp_rmb();
494
495 if (unlikely(spte.spte_low != orig->spte_low ||
496 count != sp->clear_spte_count))
497 goto retry;
498
499 return spte.spte;
500}
ce88decf
XG
501
502static bool __check_direct_spte_mmio_pf(u64 spte)
503{
504 union split_spte sspte = (union split_spte)spte;
505 u32 high_mmio_mask = shadow_mmio_mask >> 32;
506
507 /* It is valid if the spte is zapped. */
508 if (spte == 0ull)
509 return true;
510
511 /* It is valid if the spte is being zapped. */
512 if (sspte.spte_low == 0ull &&
513 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
514 return true;
515
516 return false;
517}
603e0651
XG
518#endif
519
c7ba5b48
XG
520static bool spte_is_locklessly_modifiable(u64 spte)
521{
feb3eb70
GN
522 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
523 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
524}
525
8672b721
XG
526static bool spte_has_volatile_bits(u64 spte)
527{
c7ba5b48
XG
528 /*
529 * Always atomicly update spte if it can be updated
530 * out of mmu-lock, it can ensure dirty bit is not lost,
531 * also, it can help us to get a stable is_writable_pte()
532 * to ensure tlb flush is not missed.
533 */
534 if (spte_is_locklessly_modifiable(spte))
535 return true;
536
8672b721
XG
537 if (!shadow_accessed_mask)
538 return false;
539
540 if (!is_shadow_present_pte(spte))
541 return false;
542
4132779b
XG
543 if ((spte & shadow_accessed_mask) &&
544 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
545 return false;
546
547 return true;
548}
549
4132779b
XG
550static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
551{
552 return (old_spte & bit_mask) && !(new_spte & bit_mask);
553}
554
1df9f2dc
XG
555/* Rules for using mmu_spte_set:
556 * Set the sptep from nonpresent to present.
557 * Note: the sptep being assigned *must* be either not present
558 * or in a state where the hardware will not attempt to update
559 * the spte.
560 */
561static void mmu_spte_set(u64 *sptep, u64 new_spte)
562{
563 WARN_ON(is_shadow_present_pte(*sptep));
564 __set_spte(sptep, new_spte);
565}
566
567/* Rules for using mmu_spte_update:
568 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
569 *
570 * Whenever we overwrite a writable spte with a read-only one we
571 * should flush remote TLBs. Otherwise rmap_write_protect
572 * will find a read-only spte, even though the writable spte
573 * might be cached on a CPU's TLB, the return value indicates this
574 * case.
1df9f2dc 575 */
6e7d0354 576static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 577{
c7ba5b48 578 u64 old_spte = *sptep;
6e7d0354 579 bool ret = false;
4132779b
XG
580
581 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 582
6e7d0354
XG
583 if (!is_shadow_present_pte(old_spte)) {
584 mmu_spte_set(sptep, new_spte);
585 return ret;
586 }
4132779b 587
c7ba5b48 588 if (!spte_has_volatile_bits(old_spte))
603e0651 589 __update_clear_spte_fast(sptep, new_spte);
4132779b 590 else
603e0651 591 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 592
c7ba5b48
XG
593 /*
594 * For the spte updated out of mmu-lock is safe, since
595 * we always atomicly update it, see the comments in
596 * spte_has_volatile_bits().
597 */
6e7d0354
XG
598 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
599 ret = true;
600
4132779b 601 if (!shadow_accessed_mask)
6e7d0354 602 return ret;
4132779b
XG
603
604 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
605 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
606 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
607 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
608
609 return ret;
b79b93f9
AK
610}
611
1df9f2dc
XG
612/*
613 * Rules for using mmu_spte_clear_track_bits:
614 * It sets the sptep from present to nonpresent, and track the
615 * state bits, it is used to clear the last level sptep.
616 */
617static int mmu_spte_clear_track_bits(u64 *sptep)
618{
619 pfn_t pfn;
620 u64 old_spte = *sptep;
621
622 if (!spte_has_volatile_bits(old_spte))
603e0651 623 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 624 else
603e0651 625 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
626
627 if (!is_rmap_spte(old_spte))
628 return 0;
629
630 pfn = spte_to_pfn(old_spte);
86fde74c
XG
631
632 /*
633 * KVM does not hold the refcount of the page used by
634 * kvm mmu, before reclaiming the page, we should
635 * unmap it from mmu first.
636 */
637 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
638
1df9f2dc
XG
639 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
640 kvm_set_pfn_accessed(pfn);
641 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
642 kvm_set_pfn_dirty(pfn);
643 return 1;
644}
645
646/*
647 * Rules for using mmu_spte_clear_no_track:
648 * Directly clear spte without caring the state bits of sptep,
649 * it is used to set the upper level spte.
650 */
651static void mmu_spte_clear_no_track(u64 *sptep)
652{
603e0651 653 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
654}
655
c2a2ac2b
XG
656static u64 mmu_spte_get_lockless(u64 *sptep)
657{
658 return __get_spte_lockless(sptep);
659}
660
661static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
662{
c142786c
AK
663 /*
664 * Prevent page table teardown by making any free-er wait during
665 * kvm_flush_remote_tlbs() IPI to all active vcpus.
666 */
667 local_irq_disable();
668 vcpu->mode = READING_SHADOW_PAGE_TABLES;
669 /*
670 * Make sure a following spte read is not reordered ahead of the write
671 * to vcpu->mode.
672 */
673 smp_mb();
c2a2ac2b
XG
674}
675
676static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
677{
c142786c
AK
678 /*
679 * Make sure the write to vcpu->mode is not reordered in front of
680 * reads to sptes. If it does, kvm_commit_zap_page() can see us
681 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
682 */
683 smp_mb();
684 vcpu->mode = OUTSIDE_GUEST_MODE;
685 local_irq_enable();
c2a2ac2b
XG
686}
687
e2dec939 688static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 689 struct kmem_cache *base_cache, int min)
714b93da
AK
690{
691 void *obj;
692
693 if (cache->nobjs >= min)
e2dec939 694 return 0;
714b93da 695 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 696 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 697 if (!obj)
e2dec939 698 return -ENOMEM;
714b93da
AK
699 cache->objects[cache->nobjs++] = obj;
700 }
e2dec939 701 return 0;
714b93da
AK
702}
703
f759e2b4
XG
704static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
705{
706 return cache->nobjs;
707}
708
e8ad9a70
XG
709static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
710 struct kmem_cache *cache)
714b93da
AK
711{
712 while (mc->nobjs)
e8ad9a70 713 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
714}
715
c1158e63 716static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 717 int min)
c1158e63 718{
842f22ed 719 void *page;
c1158e63
AK
720
721 if (cache->nobjs >= min)
722 return 0;
723 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 724 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
725 if (!page)
726 return -ENOMEM;
842f22ed 727 cache->objects[cache->nobjs++] = page;
c1158e63
AK
728 }
729 return 0;
730}
731
732static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
733{
734 while (mc->nobjs)
c4d198d5 735 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
736}
737
2e3e5882 738static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 739{
e2dec939
AK
740 int r;
741
53c07b18 742 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 743 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
744 if (r)
745 goto out;
ad312c7c 746 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
747 if (r)
748 goto out;
ad312c7c 749 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 750 mmu_page_header_cache, 4);
e2dec939
AK
751out:
752 return r;
714b93da
AK
753}
754
755static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
756{
53c07b18
XG
757 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
758 pte_list_desc_cache);
ad312c7c 759 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
760 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
761 mmu_page_header_cache);
714b93da
AK
762}
763
80feb89a 764static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
765{
766 void *p;
767
768 BUG_ON(!mc->nobjs);
769 p = mc->objects[--mc->nobjs];
714b93da
AK
770 return p;
771}
772
53c07b18 773static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 774{
80feb89a 775 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
776}
777
53c07b18 778static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 779{
53c07b18 780 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
781}
782
2032a93d
LJ
783static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
784{
785 if (!sp->role.direct)
786 return sp->gfns[index];
787
788 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
789}
790
791static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
792{
793 if (sp->role.direct)
794 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
795 else
796 sp->gfns[index] = gfn;
797}
798
05da4558 799/*
d4dbf470
TY
800 * Return the pointer to the large page information for a given gfn,
801 * handling slots that are not large page aligned.
05da4558 802 */
d4dbf470
TY
803static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
804 struct kvm_memory_slot *slot,
805 int level)
05da4558
MT
806{
807 unsigned long idx;
808
fb03cb6f 809 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 810 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
811}
812
813static void account_shadowed(struct kvm *kvm, gfn_t gfn)
814{
d25797b2 815 struct kvm_memory_slot *slot;
d4dbf470 816 struct kvm_lpage_info *linfo;
d25797b2 817 int i;
05da4558 818
a1f4d395 819 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
820 for (i = PT_DIRECTORY_LEVEL;
821 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
822 linfo = lpage_info_slot(gfn, slot, i);
823 linfo->write_count += 1;
d25797b2 824 }
332b207d 825 kvm->arch.indirect_shadow_pages++;
05da4558
MT
826}
827
828static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
829{
d25797b2 830 struct kvm_memory_slot *slot;
d4dbf470 831 struct kvm_lpage_info *linfo;
d25797b2 832 int i;
05da4558 833
a1f4d395 834 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
835 for (i = PT_DIRECTORY_LEVEL;
836 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
837 linfo = lpage_info_slot(gfn, slot, i);
838 linfo->write_count -= 1;
839 WARN_ON(linfo->write_count < 0);
d25797b2 840 }
332b207d 841 kvm->arch.indirect_shadow_pages--;
05da4558
MT
842}
843
d25797b2
JR
844static int has_wrprotected_page(struct kvm *kvm,
845 gfn_t gfn,
846 int level)
05da4558 847{
2843099f 848 struct kvm_memory_slot *slot;
d4dbf470 849 struct kvm_lpage_info *linfo;
05da4558 850
a1f4d395 851 slot = gfn_to_memslot(kvm, gfn);
05da4558 852 if (slot) {
d4dbf470
TY
853 linfo = lpage_info_slot(gfn, slot, level);
854 return linfo->write_count;
05da4558
MT
855 }
856
857 return 1;
858}
859
d25797b2 860static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 861{
8f0b1ab6 862 unsigned long page_size;
d25797b2 863 int i, ret = 0;
05da4558 864
8f0b1ab6 865 page_size = kvm_host_page_size(kvm, gfn);
05da4558 866
d25797b2
JR
867 for (i = PT_PAGE_TABLE_LEVEL;
868 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
873 }
874
4c2155ce 875 return ret;
05da4558
MT
876}
877
5d163b1c
XG
878static struct kvm_memory_slot *
879gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
880 bool no_dirty_log)
05da4558
MT
881{
882 struct kvm_memory_slot *slot;
5d163b1c
XG
883
884 slot = gfn_to_memslot(vcpu->kvm, gfn);
885 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
886 (no_dirty_log && slot->dirty_bitmap))
887 slot = NULL;
888
889 return slot;
890}
891
892static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
893{
a0a8eaba 894 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
895}
896
897static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
898{
899 int host_level, level, max_level;
05da4558 900
d25797b2
JR
901 host_level = host_mapping_level(vcpu->kvm, large_gfn);
902
903 if (host_level == PT_PAGE_TABLE_LEVEL)
904 return host_level;
905
55dd98c3 906 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
907
908 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
909 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
910 break;
d25797b2
JR
911
912 return level - 1;
05da4558
MT
913}
914
290fc38d 915/*
53c07b18 916 * Pte mapping structures:
cd4a4e53 917 *
53c07b18 918 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 919 *
53c07b18
XG
920 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
921 * pte_list_desc containing more mappings.
53a27b39 922 *
53c07b18 923 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
924 * the spte was not added.
925 *
cd4a4e53 926 */
53c07b18
XG
927static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
928 unsigned long *pte_list)
cd4a4e53 929{
53c07b18 930 struct pte_list_desc *desc;
53a27b39 931 int i, count = 0;
cd4a4e53 932
53c07b18
XG
933 if (!*pte_list) {
934 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
935 *pte_list = (unsigned long)spte;
936 } else if (!(*pte_list & 1)) {
937 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
938 desc = mmu_alloc_pte_list_desc(vcpu);
939 desc->sptes[0] = (u64 *)*pte_list;
d555c333 940 desc->sptes[1] = spte;
53c07b18 941 *pte_list = (unsigned long)desc | 1;
cb16a7b3 942 ++count;
cd4a4e53 943 } else {
53c07b18
XG
944 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
945 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
946 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 947 desc = desc->more;
53c07b18 948 count += PTE_LIST_EXT;
53a27b39 949 }
53c07b18
XG
950 if (desc->sptes[PTE_LIST_EXT-1]) {
951 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
952 desc = desc->more;
953 }
d555c333 954 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 955 ++count;
d555c333 956 desc->sptes[i] = spte;
cd4a4e53 957 }
53a27b39 958 return count;
cd4a4e53
AK
959}
960
53c07b18
XG
961static void
962pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
963 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
964{
965 int j;
966
53c07b18 967 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 968 ;
d555c333
AK
969 desc->sptes[i] = desc->sptes[j];
970 desc->sptes[j] = NULL;
cd4a4e53
AK
971 if (j != 0)
972 return;
973 if (!prev_desc && !desc->more)
53c07b18 974 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
975 else
976 if (prev_desc)
977 prev_desc->more = desc->more;
978 else
53c07b18
XG
979 *pte_list = (unsigned long)desc->more | 1;
980 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
981}
982
53c07b18 983static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 984{
53c07b18
XG
985 struct pte_list_desc *desc;
986 struct pte_list_desc *prev_desc;
cd4a4e53
AK
987 int i;
988
53c07b18
XG
989 if (!*pte_list) {
990 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 991 BUG();
53c07b18
XG
992 } else if (!(*pte_list & 1)) {
993 rmap_printk("pte_list_remove: %p 1->0\n", spte);
994 if ((u64 *)*pte_list != spte) {
995 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
996 BUG();
997 }
53c07b18 998 *pte_list = 0;
cd4a4e53 999 } else {
53c07b18
XG
1000 rmap_printk("pte_list_remove: %p many->many\n", spte);
1001 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
1002 prev_desc = NULL;
1003 while (desc) {
53c07b18 1004 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1005 if (desc->sptes[i] == spte) {
53c07b18 1006 pte_list_desc_remove_entry(pte_list,
714b93da 1007 desc, i,
cd4a4e53
AK
1008 prev_desc);
1009 return;
1010 }
1011 prev_desc = desc;
1012 desc = desc->more;
1013 }
53c07b18 1014 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1015 BUG();
1016 }
1017}
1018
67052b35
XG
1019typedef void (*pte_list_walk_fn) (u64 *spte);
1020static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1021{
1022 struct pte_list_desc *desc;
1023 int i;
1024
1025 if (!*pte_list)
1026 return;
1027
1028 if (!(*pte_list & 1))
1029 return fn((u64 *)*pte_list);
1030
1031 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1032 while (desc) {
1033 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1034 fn(desc->sptes[i]);
1035 desc = desc->more;
1036 }
1037}
1038
9373e2c0 1039static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1040 struct kvm_memory_slot *slot)
53c07b18 1041{
77d11309 1042 unsigned long idx;
53c07b18 1043
77d11309 1044 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1045 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1046}
1047
9b9b1492
TY
1048/*
1049 * Take gfn and return the reverse mapping to it.
1050 */
1051static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1052{
1053 struct kvm_memory_slot *slot;
1054
1055 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1056 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1057}
1058
f759e2b4
XG
1059static bool rmap_can_add(struct kvm_vcpu *vcpu)
1060{
1061 struct kvm_mmu_memory_cache *cache;
1062
1063 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1064 return mmu_memory_cache_free_objects(cache);
1065}
1066
53c07b18
XG
1067static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1068{
1069 struct kvm_mmu_page *sp;
1070 unsigned long *rmapp;
1071
53c07b18
XG
1072 sp = page_header(__pa(spte));
1073 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1074 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1075 return pte_list_add(vcpu, spte, rmapp);
1076}
1077
53c07b18
XG
1078static void rmap_remove(struct kvm *kvm, u64 *spte)
1079{
1080 struct kvm_mmu_page *sp;
1081 gfn_t gfn;
1082 unsigned long *rmapp;
1083
1084 sp = page_header(__pa(spte));
1085 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1086 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1087 pte_list_remove(spte, rmapp);
1088}
1089
1e3f42f0
TY
1090/*
1091 * Used by the following functions to iterate through the sptes linked by a
1092 * rmap. All fields are private and not assumed to be used outside.
1093 */
1094struct rmap_iterator {
1095 /* private fields */
1096 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1097 int pos; /* index of the sptep */
1098};
1099
1100/*
1101 * Iteration must be started by this function. This should also be used after
1102 * removing/dropping sptes from the rmap link because in such cases the
1103 * information in the itererator may not be valid.
1104 *
1105 * Returns sptep if found, NULL otherwise.
1106 */
1107static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1108{
1109 if (!rmap)
1110 return NULL;
1111
1112 if (!(rmap & 1)) {
1113 iter->desc = NULL;
1114 return (u64 *)rmap;
1115 }
1116
1117 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1118 iter->pos = 0;
1119 return iter->desc->sptes[iter->pos];
1120}
1121
1122/*
1123 * Must be used with a valid iterator: e.g. after rmap_get_first().
1124 *
1125 * Returns sptep if found, NULL otherwise.
1126 */
1127static u64 *rmap_get_next(struct rmap_iterator *iter)
1128{
1129 if (iter->desc) {
1130 if (iter->pos < PTE_LIST_EXT - 1) {
1131 u64 *sptep;
1132
1133 ++iter->pos;
1134 sptep = iter->desc->sptes[iter->pos];
1135 if (sptep)
1136 return sptep;
1137 }
1138
1139 iter->desc = iter->desc->more;
1140
1141 if (iter->desc) {
1142 iter->pos = 0;
1143 /* desc->sptes[0] cannot be NULL */
1144 return iter->desc->sptes[iter->pos];
1145 }
1146 }
1147
1148 return NULL;
1149}
1150
c3707958 1151static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1152{
1df9f2dc 1153 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1154 rmap_remove(kvm, sptep);
be38d276
AK
1155}
1156
8e22f955
XG
1157
1158static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1159{
1160 if (is_large_pte(*sptep)) {
1161 WARN_ON(page_header(__pa(sptep))->role.level ==
1162 PT_PAGE_TABLE_LEVEL);
1163 drop_spte(kvm, sptep);
1164 --kvm->stat.lpages;
1165 return true;
1166 }
1167
1168 return false;
1169}
1170
1171static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1172{
1173 if (__drop_large_spte(vcpu->kvm, sptep))
1174 kvm_flush_remote_tlbs(vcpu->kvm);
1175}
1176
1177/*
49fde340 1178 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1179 * spte writ-protection is caused by protecting shadow page table.
1180 * @flush indicates whether tlb need be flushed.
49fde340
XG
1181 *
1182 * Note: write protection is difference between drity logging and spte
1183 * protection:
1184 * - for dirty logging, the spte can be set to writable at anytime if
1185 * its dirty bitmap is properly set.
1186 * - for spte protection, the spte can be writable only after unsync-ing
1187 * shadow page.
8e22f955 1188 *
6b73a960 1189 * Return true if the spte is dropped.
8e22f955 1190 */
6b73a960
MT
1191static bool
1192spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1193{
1194 u64 spte = *sptep;
1195
49fde340
XG
1196 if (!is_writable_pte(spte) &&
1197 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1198 return false;
1199
1200 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1201
6b73a960
MT
1202 if (__drop_large_spte(kvm, sptep)) {
1203 *flush |= true;
1204 return true;
1205 }
1206
49fde340
XG
1207 if (pt_protect)
1208 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1209 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1210
6b73a960
MT
1211 *flush |= mmu_spte_update(sptep, spte);
1212 return false;
d13bc5b5
XG
1213}
1214
49fde340 1215static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1216 bool pt_protect)
98348e95 1217{
1e3f42f0
TY
1218 u64 *sptep;
1219 struct rmap_iterator iter;
d13bc5b5 1220 bool flush = false;
374cbac0 1221
1e3f42f0
TY
1222 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1223 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1224 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1225 sptep = rmap_get_first(*rmapp, &iter);
1226 continue;
1227 }
a0ed4607 1228
d13bc5b5 1229 sptep = rmap_get_next(&iter);
374cbac0 1230 }
855149aa 1231
d13bc5b5 1232 return flush;
a0ed4607
TY
1233}
1234
5dc99b23
TY
1235/**
1236 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1237 * @kvm: kvm instance
1238 * @slot: slot to protect
1239 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1240 * @mask: indicates which pages we should protect
1241 *
1242 * Used when we do not need to care about huge page mappings: e.g. during dirty
1243 * logging we do not have any such mappings.
1244 */
1245void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1246 struct kvm_memory_slot *slot,
1247 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1248{
1249 unsigned long *rmapp;
a0ed4607 1250
5dc99b23 1251 while (mask) {
65fbe37c
TY
1252 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1253 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1254 __rmap_write_protect(kvm, rmapp, false);
05da4558 1255
5dc99b23
TY
1256 /* clear the first set bit */
1257 mask &= mask - 1;
1258 }
374cbac0
AK
1259}
1260
2f84569f 1261static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1262{
1263 struct kvm_memory_slot *slot;
5dc99b23
TY
1264 unsigned long *rmapp;
1265 int i;
2f84569f 1266 bool write_protected = false;
95d4c16c
TY
1267
1268 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1269
1270 for (i = PT_PAGE_TABLE_LEVEL;
1271 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1272 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1273 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1274 }
1275
1276 return write_protected;
95d4c16c
TY
1277}
1278
8a8365c5 1279static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1280 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1281{
1e3f42f0
TY
1282 u64 *sptep;
1283 struct rmap_iterator iter;
e930bffe
AA
1284 int need_tlb_flush = 0;
1285
1e3f42f0
TY
1286 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1287 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1288 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1289
1290 drop_spte(kvm, sptep);
e930bffe
AA
1291 need_tlb_flush = 1;
1292 }
1e3f42f0 1293
e930bffe
AA
1294 return need_tlb_flush;
1295}
1296
8a8365c5 1297static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1298 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1299{
1e3f42f0
TY
1300 u64 *sptep;
1301 struct rmap_iterator iter;
3da0dd43 1302 int need_flush = 0;
1e3f42f0 1303 u64 new_spte;
3da0dd43
IE
1304 pte_t *ptep = (pte_t *)data;
1305 pfn_t new_pfn;
1306
1307 WARN_ON(pte_huge(*ptep));
1308 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1309
1310 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1311 BUG_ON(!is_shadow_present_pte(*sptep));
1312 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1313
3da0dd43 1314 need_flush = 1;
1e3f42f0 1315
3da0dd43 1316 if (pte_write(*ptep)) {
1e3f42f0
TY
1317 drop_spte(kvm, sptep);
1318 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1319 } else {
1e3f42f0 1320 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1321 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1322
1323 new_spte &= ~PT_WRITABLE_MASK;
1324 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1325 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1326
1327 mmu_spte_clear_track_bits(sptep);
1328 mmu_spte_set(sptep, new_spte);
1329 sptep = rmap_get_next(&iter);
3da0dd43
IE
1330 }
1331 }
1e3f42f0 1332
3da0dd43
IE
1333 if (need_flush)
1334 kvm_flush_remote_tlbs(kvm);
1335
1336 return 0;
1337}
1338
84504ef3
TY
1339static int kvm_handle_hva_range(struct kvm *kvm,
1340 unsigned long start,
1341 unsigned long end,
1342 unsigned long data,
1343 int (*handler)(struct kvm *kvm,
1344 unsigned long *rmapp,
048212d0 1345 struct kvm_memory_slot *slot,
84504ef3 1346 unsigned long data))
e930bffe 1347{
be6ba0f0 1348 int j;
f395302e 1349 int ret = 0;
bc6678a3 1350 struct kvm_memslots *slots;
be6ba0f0 1351 struct kvm_memory_slot *memslot;
bc6678a3 1352
90d83dc3 1353 slots = kvm_memslots(kvm);
e930bffe 1354
be6ba0f0 1355 kvm_for_each_memslot(memslot, slots) {
84504ef3 1356 unsigned long hva_start, hva_end;
bcd3ef58 1357 gfn_t gfn_start, gfn_end;
e930bffe 1358
84504ef3
TY
1359 hva_start = max(start, memslot->userspace_addr);
1360 hva_end = min(end, memslot->userspace_addr +
1361 (memslot->npages << PAGE_SHIFT));
1362 if (hva_start >= hva_end)
1363 continue;
1364 /*
1365 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1366 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1367 */
bcd3ef58 1368 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1369 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1370
bcd3ef58
TY
1371 for (j = PT_PAGE_TABLE_LEVEL;
1372 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1373 unsigned long idx, idx_end;
1374 unsigned long *rmapp;
d4dbf470 1375
bcd3ef58
TY
1376 /*
1377 * {idx(page_j) | page_j intersects with
1378 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1379 */
1380 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1381 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1382
bcd3ef58 1383 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1384
bcd3ef58
TY
1385 for (; idx <= idx_end; ++idx)
1386 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1387 }
1388 }
1389
f395302e 1390 return ret;
e930bffe
AA
1391}
1392
84504ef3
TY
1393static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1394 unsigned long data,
1395 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1396 struct kvm_memory_slot *slot,
84504ef3
TY
1397 unsigned long data))
1398{
1399 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1400}
1401
1402int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1403{
3da0dd43
IE
1404 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1405}
1406
b3ae2096
TY
1407int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1408{
1409 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1410}
1411
3da0dd43
IE
1412void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1413{
8a8365c5 1414 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1415}
1416
8a8365c5 1417static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1418 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1419{
1e3f42f0 1420 u64 *sptep;
79f702a6 1421 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1422 int young = 0;
1423
6316e1c8 1424 /*
3f6d8c8a
XH
1425 * In case of absence of EPT Access and Dirty Bits supports,
1426 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1427 * an EPT mapping, and clearing it if it does. On the next access,
1428 * a new EPT mapping will be established.
1429 * This has some overhead, but not as much as the cost of swapping
1430 * out actively used pages or breaking up actively used hugepages.
1431 */
f395302e
TY
1432 if (!shadow_accessed_mask) {
1433 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1434 goto out;
1435 }
534e38b4 1436
1e3f42f0
TY
1437 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1438 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1439 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1440
3f6d8c8a 1441 if (*sptep & shadow_accessed_mask) {
e930bffe 1442 young = 1;
3f6d8c8a
XH
1443 clear_bit((ffs(shadow_accessed_mask) - 1),
1444 (unsigned long *)sptep);
e930bffe 1445 }
e930bffe 1446 }
f395302e
TY
1447out:
1448 /* @data has hva passed to kvm_age_hva(). */
1449 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1450 return young;
1451}
1452
8ee53820 1453static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1454 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1455{
1e3f42f0
TY
1456 u64 *sptep;
1457 struct rmap_iterator iter;
8ee53820
AA
1458 int young = 0;
1459
1460 /*
1461 * If there's no access bit in the secondary pte set by the
1462 * hardware it's up to gup-fast/gup to set the access bit in
1463 * the primary pte or in the page structure.
1464 */
1465 if (!shadow_accessed_mask)
1466 goto out;
1467
1e3f42f0
TY
1468 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1469 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1470 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1471
3f6d8c8a 1472 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1473 young = 1;
1474 break;
1475 }
8ee53820
AA
1476 }
1477out:
1478 return young;
1479}
1480
53a27b39
MT
1481#define RMAP_RECYCLE_THRESHOLD 1000
1482
852e3c19 1483static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1484{
1485 unsigned long *rmapp;
852e3c19
JR
1486 struct kvm_mmu_page *sp;
1487
1488 sp = page_header(__pa(spte));
53a27b39 1489
852e3c19 1490 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1491
048212d0 1492 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1493 kvm_flush_remote_tlbs(vcpu->kvm);
1494}
1495
e930bffe
AA
1496int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1497{
f395302e 1498 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1499}
1500
8ee53820
AA
1501int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1502{
1503 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1504}
1505
d6c69ee9 1506#ifdef MMU_DEBUG
47ad8e68 1507static int is_empty_shadow_page(u64 *spt)
6aa8b732 1508{
139bdb2d
AK
1509 u64 *pos;
1510 u64 *end;
1511
47ad8e68 1512 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1513 if (is_shadow_present_pte(*pos)) {
b8688d51 1514 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1515 pos, *pos);
6aa8b732 1516 return 0;
139bdb2d 1517 }
6aa8b732
AK
1518 return 1;
1519}
d6c69ee9 1520#endif
6aa8b732 1521
45221ab6
DH
1522/*
1523 * This value is the sum of all of the kvm instances's
1524 * kvm->arch.n_used_mmu_pages values. We need a global,
1525 * aggregate version in order to make the slab shrinker
1526 * faster
1527 */
1528static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1529{
1530 kvm->arch.n_used_mmu_pages += nr;
1531 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1532}
1533
834be0d8 1534static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1535{
4db35314 1536 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1537 hlist_del(&sp->hash_link);
bd4c86ea
XG
1538 list_del(&sp->link);
1539 free_page((unsigned long)sp->spt);
834be0d8
GN
1540 if (!sp->role.direct)
1541 free_page((unsigned long)sp->gfns);
e8ad9a70 1542 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1543}
1544
cea0f0e7
AK
1545static unsigned kvm_page_table_hashfn(gfn_t gfn)
1546{
1ae0a13d 1547 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1548}
1549
714b93da 1550static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1551 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1552{
cea0f0e7
AK
1553 if (!parent_pte)
1554 return;
cea0f0e7 1555
67052b35 1556 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1557}
1558
4db35314 1559static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1560 u64 *parent_pte)
1561{
67052b35 1562 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1563}
1564
bcdd9a93
XG
1565static void drop_parent_pte(struct kvm_mmu_page *sp,
1566 u64 *parent_pte)
1567{
1568 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1569 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1570}
1571
67052b35
XG
1572static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1573 u64 *parent_pte, int direct)
ad8cfbe3 1574{
67052b35 1575 struct kvm_mmu_page *sp;
7ddca7e4 1576
80feb89a
TY
1577 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1578 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1579 if (!direct)
80feb89a 1580 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1581 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1582
1583 /*
1584 * The active_mmu_pages list is the FIFO list, do not move the
1585 * page until it is zapped. kvm_zap_obsolete_pages depends on
1586 * this feature. See the comments in kvm_zap_obsolete_pages().
1587 */
67052b35 1588 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1589 sp->parent_ptes = 0;
1590 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1591 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1592 return sp;
ad8cfbe3
MT
1593}
1594
67052b35 1595static void mark_unsync(u64 *spte);
1047df1f 1596static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1597{
67052b35 1598 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1599}
1600
67052b35 1601static void mark_unsync(u64 *spte)
0074ff63 1602{
67052b35 1603 struct kvm_mmu_page *sp;
1047df1f 1604 unsigned int index;
0074ff63 1605
67052b35 1606 sp = page_header(__pa(spte));
1047df1f
XG
1607 index = spte - sp->spt;
1608 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1609 return;
1047df1f 1610 if (sp->unsync_children++)
0074ff63 1611 return;
1047df1f 1612 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1613}
1614
e8bc217a 1615static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1616 struct kvm_mmu_page *sp)
e8bc217a
MT
1617{
1618 return 1;
1619}
1620
a7052897
MT
1621static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1622{
1623}
1624
0f53b5b1
XG
1625static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1626 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1627 const void *pte)
0f53b5b1
XG
1628{
1629 WARN_ON(1);
1630}
1631
60c8aec6
MT
1632#define KVM_PAGE_ARRAY_NR 16
1633
1634struct kvm_mmu_pages {
1635 struct mmu_page_and_offset {
1636 struct kvm_mmu_page *sp;
1637 unsigned int idx;
1638 } page[KVM_PAGE_ARRAY_NR];
1639 unsigned int nr;
1640};
1641
cded19f3
HE
1642static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1643 int idx)
4731d4c7 1644{
60c8aec6 1645 int i;
4731d4c7 1646
60c8aec6
MT
1647 if (sp->unsync)
1648 for (i=0; i < pvec->nr; i++)
1649 if (pvec->page[i].sp == sp)
1650 return 0;
1651
1652 pvec->page[pvec->nr].sp = sp;
1653 pvec->page[pvec->nr].idx = idx;
1654 pvec->nr++;
1655 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1656}
1657
1658static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1659 struct kvm_mmu_pages *pvec)
1660{
1661 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1662
37178b8b 1663 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1664 struct kvm_mmu_page *child;
4731d4c7
MT
1665 u64 ent = sp->spt[i];
1666
7a8f1a74
XG
1667 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1668 goto clear_child_bitmap;
1669
1670 child = page_header(ent & PT64_BASE_ADDR_MASK);
1671
1672 if (child->unsync_children) {
1673 if (mmu_pages_add(pvec, child, i))
1674 return -ENOSPC;
1675
1676 ret = __mmu_unsync_walk(child, pvec);
1677 if (!ret)
1678 goto clear_child_bitmap;
1679 else if (ret > 0)
1680 nr_unsync_leaf += ret;
1681 else
1682 return ret;
1683 } else if (child->unsync) {
1684 nr_unsync_leaf++;
1685 if (mmu_pages_add(pvec, child, i))
1686 return -ENOSPC;
1687 } else
1688 goto clear_child_bitmap;
1689
1690 continue;
1691
1692clear_child_bitmap:
1693 __clear_bit(i, sp->unsync_child_bitmap);
1694 sp->unsync_children--;
1695 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1696 }
1697
4731d4c7 1698
60c8aec6
MT
1699 return nr_unsync_leaf;
1700}
1701
1702static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1703 struct kvm_mmu_pages *pvec)
1704{
1705 if (!sp->unsync_children)
1706 return 0;
1707
1708 mmu_pages_add(pvec, sp, 0);
1709 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1710}
1711
4731d4c7
MT
1712static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1713{
1714 WARN_ON(!sp->unsync);
5e1b3ddb 1715 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1716 sp->unsync = 0;
1717 --kvm->stat.mmu_unsync;
1718}
1719
7775834a
XG
1720static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1721 struct list_head *invalid_list);
1722static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1723 struct list_head *invalid_list);
4731d4c7 1724
f34d251d
XG
1725/*
1726 * NOTE: we should pay more attention on the zapped-obsolete page
1727 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1728 * since it has been deleted from active_mmu_pages but still can be found
1729 * at hast list.
1730 *
1731 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1732 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1733 * all the obsolete pages.
1734 */
1044b030
TY
1735#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1736 hlist_for_each_entry(_sp, \
1737 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1738 if ((_sp)->gfn != (_gfn)) {} else
1739
1740#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1741 for_each_gfn_sp(_kvm, _sp, _gfn) \
1742 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1743
f918b443 1744/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1745static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1746 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1747{
5b7e0102 1748 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1749 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1750 return 1;
1751 }
1752
f918b443 1753 if (clear_unsync)
1d9dc7e0 1754 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1755
a4a8e6f7 1756 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1757 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1758 return 1;
1759 }
1760
1761 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1762 return 0;
1763}
1764
1d9dc7e0
XG
1765static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1766 struct kvm_mmu_page *sp)
1767{
d98ba053 1768 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1769 int ret;
1770
d98ba053 1771 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1772 if (ret)
d98ba053
XG
1773 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1774
1d9dc7e0
XG
1775 return ret;
1776}
1777
e37fa785
XG
1778#ifdef CONFIG_KVM_MMU_AUDIT
1779#include "mmu_audit.c"
1780#else
1781static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1782static void mmu_audit_disable(void) { }
1783#endif
1784
d98ba053
XG
1785static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1786 struct list_head *invalid_list)
1d9dc7e0 1787{
d98ba053 1788 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1789}
1790
9f1a122f
XG
1791/* @gfn should be write-protected at the call site */
1792static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1793{
9f1a122f 1794 struct kvm_mmu_page *s;
d98ba053 1795 LIST_HEAD(invalid_list);
9f1a122f
XG
1796 bool flush = false;
1797
b67bfe0d 1798 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1799 if (!s->unsync)
9f1a122f
XG
1800 continue;
1801
1802 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1803 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1804 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1805 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1806 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1807 continue;
1808 }
9f1a122f
XG
1809 flush = true;
1810 }
1811
d98ba053 1812 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1813 if (flush)
1814 kvm_mmu_flush_tlb(vcpu);
1815}
1816
60c8aec6
MT
1817struct mmu_page_path {
1818 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1819 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1820};
1821
60c8aec6
MT
1822#define for_each_sp(pvec, sp, parents, i) \
1823 for (i = mmu_pages_next(&pvec, &parents, -1), \
1824 sp = pvec.page[i].sp; \
1825 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1826 i = mmu_pages_next(&pvec, &parents, i))
1827
cded19f3
HE
1828static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1829 struct mmu_page_path *parents,
1830 int i)
60c8aec6
MT
1831{
1832 int n;
1833
1834 for (n = i+1; n < pvec->nr; n++) {
1835 struct kvm_mmu_page *sp = pvec->page[n].sp;
1836
1837 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1838 parents->idx[0] = pvec->page[n].idx;
1839 return n;
1840 }
1841
1842 parents->parent[sp->role.level-2] = sp;
1843 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1844 }
1845
1846 return n;
1847}
1848
cded19f3 1849static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1850{
60c8aec6
MT
1851 struct kvm_mmu_page *sp;
1852 unsigned int level = 0;
1853
1854 do {
1855 unsigned int idx = parents->idx[level];
4731d4c7 1856
60c8aec6
MT
1857 sp = parents->parent[level];
1858 if (!sp)
1859 return;
1860
1861 --sp->unsync_children;
1862 WARN_ON((int)sp->unsync_children < 0);
1863 __clear_bit(idx, sp->unsync_child_bitmap);
1864 level++;
1865 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1866}
1867
60c8aec6
MT
1868static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1869 struct mmu_page_path *parents,
1870 struct kvm_mmu_pages *pvec)
4731d4c7 1871{
60c8aec6
MT
1872 parents->parent[parent->role.level-1] = NULL;
1873 pvec->nr = 0;
1874}
4731d4c7 1875
60c8aec6
MT
1876static void mmu_sync_children(struct kvm_vcpu *vcpu,
1877 struct kvm_mmu_page *parent)
1878{
1879 int i;
1880 struct kvm_mmu_page *sp;
1881 struct mmu_page_path parents;
1882 struct kvm_mmu_pages pages;
d98ba053 1883 LIST_HEAD(invalid_list);
60c8aec6
MT
1884
1885 kvm_mmu_pages_init(parent, &parents, &pages);
1886 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1887 bool protected = false;
b1a36821
MT
1888
1889 for_each_sp(pages, sp, parents, i)
1890 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1891
1892 if (protected)
1893 kvm_flush_remote_tlbs(vcpu->kvm);
1894
60c8aec6 1895 for_each_sp(pages, sp, parents, i) {
d98ba053 1896 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1897 mmu_pages_clear_parents(&parents);
1898 }
d98ba053 1899 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1900 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1901 kvm_mmu_pages_init(parent, &parents, &pages);
1902 }
4731d4c7
MT
1903}
1904
c3707958
XG
1905static void init_shadow_page_table(struct kvm_mmu_page *sp)
1906{
1907 int i;
1908
1909 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1910 sp->spt[i] = 0ull;
1911}
1912
a30f47cb
XG
1913static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1914{
1915 sp->write_flooding_count = 0;
1916}
1917
1918static void clear_sp_write_flooding_count(u64 *spte)
1919{
1920 struct kvm_mmu_page *sp = page_header(__pa(spte));
1921
1922 __clear_sp_write_flooding_count(sp);
1923}
1924
5304b8d3
XG
1925static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1926{
1927 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1928}
1929
cea0f0e7
AK
1930static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1931 gfn_t gfn,
1932 gva_t gaddr,
1933 unsigned level,
f6e2c02b 1934 int direct,
41074d07 1935 unsigned access,
f7d9c7b7 1936 u64 *parent_pte)
cea0f0e7
AK
1937{
1938 union kvm_mmu_page_role role;
cea0f0e7 1939 unsigned quadrant;
9f1a122f 1940 struct kvm_mmu_page *sp;
9f1a122f 1941 bool need_sync = false;
cea0f0e7 1942
a770f6f2 1943 role = vcpu->arch.mmu.base_role;
cea0f0e7 1944 role.level = level;
f6e2c02b 1945 role.direct = direct;
84b0c8c6 1946 if (role.direct)
5b7e0102 1947 role.cr4_pae = 0;
41074d07 1948 role.access = access;
c5a78f2b
JR
1949 if (!vcpu->arch.mmu.direct_map
1950 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1951 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1952 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1953 role.quadrant = quadrant;
1954 }
b67bfe0d 1955 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1956 if (is_obsolete_sp(vcpu->kvm, sp))
1957 continue;
1958
7ae680eb
XG
1959 if (!need_sync && sp->unsync)
1960 need_sync = true;
4731d4c7 1961
7ae680eb
XG
1962 if (sp->role.word != role.word)
1963 continue;
4731d4c7 1964
7ae680eb
XG
1965 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1966 break;
e02aa901 1967
7ae680eb
XG
1968 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1969 if (sp->unsync_children) {
a8eeb04a 1970 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1971 kvm_mmu_mark_parents_unsync(sp);
1972 } else if (sp->unsync)
1973 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1974
a30f47cb 1975 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1976 trace_kvm_mmu_get_page(sp, false);
1977 return sp;
1978 }
dfc5aa00 1979 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1980 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1981 if (!sp)
1982 return sp;
4db35314
AK
1983 sp->gfn = gfn;
1984 sp->role = role;
7ae680eb
XG
1985 hlist_add_head(&sp->hash_link,
1986 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1987 if (!direct) {
b1a36821
MT
1988 if (rmap_write_protect(vcpu->kvm, gfn))
1989 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1990 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1991 kvm_sync_pages(vcpu, gfn);
1992
4731d4c7
MT
1993 account_shadowed(vcpu->kvm, gfn);
1994 }
5304b8d3 1995 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1996 init_shadow_page_table(sp);
f691fe1d 1997 trace_kvm_mmu_get_page(sp, true);
4db35314 1998 return sp;
cea0f0e7
AK
1999}
2000
2d11123a
AK
2001static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2002 struct kvm_vcpu *vcpu, u64 addr)
2003{
2004 iterator->addr = addr;
2005 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2006 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2007
2008 if (iterator->level == PT64_ROOT_LEVEL &&
2009 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2010 !vcpu->arch.mmu.direct_map)
2011 --iterator->level;
2012
2d11123a
AK
2013 if (iterator->level == PT32E_ROOT_LEVEL) {
2014 iterator->shadow_addr
2015 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2016 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2017 --iterator->level;
2018 if (!iterator->shadow_addr)
2019 iterator->level = 0;
2020 }
2021}
2022
2023static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2024{
2025 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2026 return false;
4d88954d 2027
2d11123a
AK
2028 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2029 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2030 return true;
2031}
2032
c2a2ac2b
XG
2033static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2034 u64 spte)
2d11123a 2035{
c2a2ac2b 2036 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2037 iterator->level = 0;
2038 return;
2039 }
2040
c2a2ac2b 2041 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2042 --iterator->level;
2043}
2044
c2a2ac2b
XG
2045static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2046{
2047 return __shadow_walk_next(iterator, *iterator->sptep);
2048}
2049
7a1638ce 2050static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2051{
2052 u64 spte;
2053
7a1638ce
YZ
2054 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2055 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2056
24db2734 2057 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2058 shadow_user_mask | shadow_x_mask;
2059
2060 if (accessed)
2061 spte |= shadow_accessed_mask;
24db2734 2062
1df9f2dc 2063 mmu_spte_set(sptep, spte);
32ef26a3
AK
2064}
2065
a357bd22
AK
2066static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2067 unsigned direct_access)
2068{
2069 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2070 struct kvm_mmu_page *child;
2071
2072 /*
2073 * For the direct sp, if the guest pte's dirty bit
2074 * changed form clean to dirty, it will corrupt the
2075 * sp's access: allow writable in the read-only sp,
2076 * so we should update the spte at this point to get
2077 * a new sp with the correct access.
2078 */
2079 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2080 if (child->role.access == direct_access)
2081 return;
2082
bcdd9a93 2083 drop_parent_pte(child, sptep);
a357bd22
AK
2084 kvm_flush_remote_tlbs(vcpu->kvm);
2085 }
2086}
2087
505aef8f 2088static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2089 u64 *spte)
2090{
2091 u64 pte;
2092 struct kvm_mmu_page *child;
2093
2094 pte = *spte;
2095 if (is_shadow_present_pte(pte)) {
505aef8f 2096 if (is_last_spte(pte, sp->role.level)) {
c3707958 2097 drop_spte(kvm, spte);
505aef8f
XG
2098 if (is_large_pte(pte))
2099 --kvm->stat.lpages;
2100 } else {
38e3b2b2 2101 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2102 drop_parent_pte(child, spte);
38e3b2b2 2103 }
505aef8f
XG
2104 return true;
2105 }
2106
2107 if (is_mmio_spte(pte))
ce88decf 2108 mmu_spte_clear_no_track(spte);
c3707958 2109
505aef8f 2110 return false;
38e3b2b2
XG
2111}
2112
90cb0529 2113static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2114 struct kvm_mmu_page *sp)
a436036b 2115{
697fe2e2 2116 unsigned i;
697fe2e2 2117
38e3b2b2
XG
2118 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2119 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2120}
2121
4db35314 2122static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2123{
4db35314 2124 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2125}
2126
31aa2b44 2127static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2128{
1e3f42f0
TY
2129 u64 *sptep;
2130 struct rmap_iterator iter;
a436036b 2131
1e3f42f0
TY
2132 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2133 drop_parent_pte(sp, sptep);
31aa2b44
AK
2134}
2135
60c8aec6 2136static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2137 struct kvm_mmu_page *parent,
2138 struct list_head *invalid_list)
4731d4c7 2139{
60c8aec6
MT
2140 int i, zapped = 0;
2141 struct mmu_page_path parents;
2142 struct kvm_mmu_pages pages;
4731d4c7 2143
60c8aec6 2144 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2145 return 0;
60c8aec6
MT
2146
2147 kvm_mmu_pages_init(parent, &parents, &pages);
2148 while (mmu_unsync_walk(parent, &pages)) {
2149 struct kvm_mmu_page *sp;
2150
2151 for_each_sp(pages, sp, parents, i) {
7775834a 2152 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2153 mmu_pages_clear_parents(&parents);
77662e00 2154 zapped++;
60c8aec6 2155 }
60c8aec6
MT
2156 kvm_mmu_pages_init(parent, &parents, &pages);
2157 }
2158
2159 return zapped;
4731d4c7
MT
2160}
2161
7775834a
XG
2162static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2163 struct list_head *invalid_list)
31aa2b44 2164{
4731d4c7 2165 int ret;
f691fe1d 2166
7775834a 2167 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2168 ++kvm->stat.mmu_shadow_zapped;
7775834a 2169 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2170 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2171 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2172
f6e2c02b 2173 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2174 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2175
4731d4c7
MT
2176 if (sp->unsync)
2177 kvm_unlink_unsync_page(kvm, sp);
4db35314 2178 if (!sp->root_count) {
54a4f023
GJ
2179 /* Count self */
2180 ret++;
7775834a 2181 list_move(&sp->link, invalid_list);
aa6bd187 2182 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2183 } else {
5b5c6a5a 2184 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2185
2186 /*
2187 * The obsolete pages can not be used on any vcpus.
2188 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2189 */
2190 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2191 kvm_reload_remote_mmus(kvm);
2e53d63a 2192 }
7775834a
XG
2193
2194 sp->role.invalid = 1;
4731d4c7 2195 return ret;
a436036b
AK
2196}
2197
7775834a
XG
2198static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2199 struct list_head *invalid_list)
2200{
945315b9 2201 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2202
2203 if (list_empty(invalid_list))
2204 return;
2205
c142786c
AK
2206 /*
2207 * wmb: make sure everyone sees our modifications to the page tables
2208 * rmb: make sure we see changes to vcpu->mode
2209 */
2210 smp_mb();
4f022648 2211
c142786c
AK
2212 /*
2213 * Wait for all vcpus to exit guest mode and/or lockless shadow
2214 * page table walks.
2215 */
2216 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2217
945315b9 2218 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2219 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2220 kvm_mmu_free_page(sp);
945315b9 2221 }
7775834a
XG
2222}
2223
5da59607
TY
2224static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2225 struct list_head *invalid_list)
2226{
2227 struct kvm_mmu_page *sp;
2228
2229 if (list_empty(&kvm->arch.active_mmu_pages))
2230 return false;
2231
2232 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2233 struct kvm_mmu_page, link);
2234 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2235
2236 return true;
2237}
2238
82ce2c96
IE
2239/*
2240 * Changing the number of mmu pages allocated to the vm
49d5ca26 2241 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2242 */
49d5ca26 2243void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2244{
d98ba053 2245 LIST_HEAD(invalid_list);
82ce2c96 2246
b34cb590
TY
2247 spin_lock(&kvm->mmu_lock);
2248
49d5ca26 2249 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2250 /* Need to free some mmu pages to achieve the goal. */
2251 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2252 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2253 break;
82ce2c96 2254
aa6bd187 2255 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2256 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2257 }
82ce2c96 2258
49d5ca26 2259 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2260
2261 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2262}
2263
1cb3f3ae 2264int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2265{
4db35314 2266 struct kvm_mmu_page *sp;
d98ba053 2267 LIST_HEAD(invalid_list);
a436036b
AK
2268 int r;
2269
9ad17b10 2270 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2271 r = 0;
1cb3f3ae 2272 spin_lock(&kvm->mmu_lock);
b67bfe0d 2273 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2274 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2275 sp->role.word);
2276 r = 1;
f41d335a 2277 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2278 }
d98ba053 2279 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2280 spin_unlock(&kvm->mmu_lock);
2281
a436036b 2282 return r;
cea0f0e7 2283}
1cb3f3ae 2284EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2285
74be52e3
SY
2286/*
2287 * The function is based on mtrr_type_lookup() in
2288 * arch/x86/kernel/cpu/mtrr/generic.c
2289 */
2290static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2291 u64 start, u64 end)
2292{
2293 int i;
2294 u64 base, mask;
2295 u8 prev_match, curr_match;
2296 int num_var_ranges = KVM_NR_VAR_MTRR;
2297
2298 if (!mtrr_state->enabled)
2299 return 0xFF;
2300
2301 /* Make end inclusive end, instead of exclusive */
2302 end--;
2303
2304 /* Look in fixed ranges. Just return the type as per start */
2305 if (mtrr_state->have_fixed && (start < 0x100000)) {
2306 int idx;
2307
2308 if (start < 0x80000) {
2309 idx = 0;
2310 idx += (start >> 16);
2311 return mtrr_state->fixed_ranges[idx];
2312 } else if (start < 0xC0000) {
2313 idx = 1 * 8;
2314 idx += ((start - 0x80000) >> 14);
2315 return mtrr_state->fixed_ranges[idx];
2316 } else if (start < 0x1000000) {
2317 idx = 3 * 8;
2318 idx += ((start - 0xC0000) >> 12);
2319 return mtrr_state->fixed_ranges[idx];
2320 }
2321 }
2322
2323 /*
2324 * Look in variable ranges
2325 * Look of multiple ranges matching this address and pick type
2326 * as per MTRR precedence
2327 */
2328 if (!(mtrr_state->enabled & 2))
2329 return mtrr_state->def_type;
2330
2331 prev_match = 0xFF;
2332 for (i = 0; i < num_var_ranges; ++i) {
2333 unsigned short start_state, end_state;
2334
2335 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2336 continue;
2337
2338 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2339 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2340 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2341 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2342
2343 start_state = ((start & mask) == (base & mask));
2344 end_state = ((end & mask) == (base & mask));
2345 if (start_state != end_state)
2346 return 0xFE;
2347
2348 if ((start & mask) != (base & mask))
2349 continue;
2350
2351 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2352 if (prev_match == 0xFF) {
2353 prev_match = curr_match;
2354 continue;
2355 }
2356
2357 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2358 curr_match == MTRR_TYPE_UNCACHABLE)
2359 return MTRR_TYPE_UNCACHABLE;
2360
2361 if ((prev_match == MTRR_TYPE_WRBACK &&
2362 curr_match == MTRR_TYPE_WRTHROUGH) ||
2363 (prev_match == MTRR_TYPE_WRTHROUGH &&
2364 curr_match == MTRR_TYPE_WRBACK)) {
2365 prev_match = MTRR_TYPE_WRTHROUGH;
2366 curr_match = MTRR_TYPE_WRTHROUGH;
2367 }
2368
2369 if (prev_match != curr_match)
2370 return MTRR_TYPE_UNCACHABLE;
2371 }
2372
2373 if (prev_match != 0xFF)
2374 return prev_match;
2375
2376 return mtrr_state->def_type;
2377}
2378
4b12f0de 2379u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2380{
2381 u8 mtrr;
2382
2383 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2384 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2385 if (mtrr == 0xfe || mtrr == 0xff)
2386 mtrr = MTRR_TYPE_WRBACK;
2387 return mtrr;
2388}
4b12f0de 2389EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2390
9cf5cf5a
XG
2391static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2392{
2393 trace_kvm_mmu_unsync_page(sp);
2394 ++vcpu->kvm->stat.mmu_unsync;
2395 sp->unsync = 1;
2396
2397 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2398}
2399
2400static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2401{
4731d4c7 2402 struct kvm_mmu_page *s;
9cf5cf5a 2403
b67bfe0d 2404 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2405 if (s->unsync)
4731d4c7 2406 continue;
9cf5cf5a
XG
2407 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2408 __kvm_unsync_page(vcpu, s);
4731d4c7 2409 }
4731d4c7
MT
2410}
2411
2412static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2413 bool can_unsync)
2414{
9cf5cf5a 2415 struct kvm_mmu_page *s;
9cf5cf5a
XG
2416 bool need_unsync = false;
2417
b67bfe0d 2418 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2419 if (!can_unsync)
2420 return 1;
2421
9cf5cf5a 2422 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2423 return 1;
9cf5cf5a 2424
9bb4f6b1 2425 if (!s->unsync)
9cf5cf5a 2426 need_unsync = true;
4731d4c7 2427 }
9cf5cf5a
XG
2428 if (need_unsync)
2429 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2430 return 0;
2431}
2432
d555c333 2433static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2434 unsigned pte_access, int level,
c2d0ee46 2435 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2436 bool can_unsync, bool host_writable)
1c4f1fd6 2437{
6e7d0354 2438 u64 spte;
1e73f9dd 2439 int ret = 0;
64d4d521 2440
f2fd125d 2441 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2442 return 0;
2443
982c2565 2444 spte = PT_PRESENT_MASK;
947da538 2445 if (!speculative)
3201b5d9 2446 spte |= shadow_accessed_mask;
640d9b0d 2447
7b52345e
SY
2448 if (pte_access & ACC_EXEC_MASK)
2449 spte |= shadow_x_mask;
2450 else
2451 spte |= shadow_nx_mask;
49fde340 2452
1c4f1fd6 2453 if (pte_access & ACC_USER_MASK)
7b52345e 2454 spte |= shadow_user_mask;
49fde340 2455
852e3c19 2456 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2457 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2458 if (tdp_enabled)
4b12f0de
SY
2459 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2460 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2461
9bdbba13 2462 if (host_writable)
1403283a 2463 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2464 else
2465 pte_access &= ~ACC_WRITE_MASK;
1403283a 2466
35149e21 2467 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2468
c2288505 2469 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2470
c2193463 2471 /*
7751babd
XG
2472 * Other vcpu creates new sp in the window between
2473 * mapping_level() and acquiring mmu-lock. We can
2474 * allow guest to retry the access, the mapping can
2475 * be fixed if guest refault.
c2193463 2476 */
852e3c19 2477 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2478 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2479 goto done;
38187c83 2480
49fde340 2481 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2482
ecc5589f
MT
2483 /*
2484 * Optimization: for pte sync, if spte was writable the hash
2485 * lookup is unnecessary (and expensive). Write protection
2486 * is responsibility of mmu_get_page / kvm_sync_page.
2487 * Same reasoning can be applied to dirty page accounting.
2488 */
8dae4445 2489 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2490 goto set_pte;
2491
4731d4c7 2492 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2493 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2494 __func__, gfn);
1e73f9dd 2495 ret = 1;
1c4f1fd6 2496 pte_access &= ~ACC_WRITE_MASK;
49fde340 2497 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2498 }
2499 }
2500
1c4f1fd6
AK
2501 if (pte_access & ACC_WRITE_MASK)
2502 mark_page_dirty(vcpu->kvm, gfn);
2503
38187c83 2504set_pte:
6e7d0354 2505 if (mmu_spte_update(sptep, spte))
b330aa0c 2506 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2507done:
1e73f9dd
MT
2508 return ret;
2509}
2510
d555c333 2511static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2512 unsigned pte_access, int write_fault, int *emulate,
2513 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2514 bool host_writable)
1e73f9dd
MT
2515{
2516 int was_rmapped = 0;
53a27b39 2517 int rmap_count;
1e73f9dd 2518
f7616203
XG
2519 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2520 *sptep, write_fault, gfn);
1e73f9dd 2521
d555c333 2522 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2523 /*
2524 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2525 * the parent of the now unreachable PTE.
2526 */
852e3c19
JR
2527 if (level > PT_PAGE_TABLE_LEVEL &&
2528 !is_large_pte(*sptep)) {
1e73f9dd 2529 struct kvm_mmu_page *child;
d555c333 2530 u64 pte = *sptep;
1e73f9dd
MT
2531
2532 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2533 drop_parent_pte(child, sptep);
3be2264b 2534 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2535 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2536 pgprintk("hfn old %llx new %llx\n",
d555c333 2537 spte_to_pfn(*sptep), pfn);
c3707958 2538 drop_spte(vcpu->kvm, sptep);
91546356 2539 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2540 } else
2541 was_rmapped = 1;
1e73f9dd 2542 }
852e3c19 2543
c2288505
XG
2544 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2545 true, host_writable)) {
1e73f9dd 2546 if (write_fault)
b90a0e6c 2547 *emulate = 1;
5304efde 2548 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2549 }
1e73f9dd 2550
ce88decf
XG
2551 if (unlikely(is_mmio_spte(*sptep) && emulate))
2552 *emulate = 1;
2553
d555c333 2554 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2555 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2556 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2557 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2558 *sptep, sptep);
d555c333 2559 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2560 ++vcpu->kvm->stat.lpages;
2561
ffb61bb3 2562 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2563 if (!was_rmapped) {
2564 rmap_count = rmap_add(vcpu, sptep, gfn);
2565 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2566 rmap_recycle(vcpu, sptep, gfn);
2567 }
1c4f1fd6 2568 }
cb9aaa30 2569
f3ac1a4b 2570 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2571}
2572
957ed9ef
XG
2573static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2574 bool no_dirty_log)
2575{
2576 struct kvm_memory_slot *slot;
957ed9ef 2577
5d163b1c 2578 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2579 if (!slot)
6c8ee57b 2580 return KVM_PFN_ERR_FAULT;
957ed9ef 2581
037d92dc 2582 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2583}
2584
2585static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2586 struct kvm_mmu_page *sp,
2587 u64 *start, u64 *end)
2588{
2589 struct page *pages[PTE_PREFETCH_NUM];
2590 unsigned access = sp->role.access;
2591 int i, ret;
2592 gfn_t gfn;
2593
2594 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2595 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2596 return -1;
2597
2598 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2599 if (ret <= 0)
2600 return -1;
2601
2602 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2603 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2604 sp->role.level, gfn, page_to_pfn(pages[i]),
2605 true, true);
957ed9ef
XG
2606
2607 return 0;
2608}
2609
2610static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2611 struct kvm_mmu_page *sp, u64 *sptep)
2612{
2613 u64 *spte, *start = NULL;
2614 int i;
2615
2616 WARN_ON(!sp->role.direct);
2617
2618 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2619 spte = sp->spt + i;
2620
2621 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2622 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2623 if (!start)
2624 continue;
2625 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2626 break;
2627 start = NULL;
2628 } else if (!start)
2629 start = spte;
2630 }
2631}
2632
2633static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2634{
2635 struct kvm_mmu_page *sp;
2636
2637 /*
2638 * Since it's no accessed bit on EPT, it's no way to
2639 * distinguish between actually accessed translations
2640 * and prefetched, so disable pte prefetch if EPT is
2641 * enabled.
2642 */
2643 if (!shadow_accessed_mask)
2644 return;
2645
2646 sp = page_header(__pa(sptep));
2647 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2648 return;
2649
2650 __direct_pte_prefetch(vcpu, sp, sptep);
2651}
2652
9f652d21 2653static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2654 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2655 bool prefault)
140754bc 2656{
9f652d21 2657 struct kvm_shadow_walk_iterator iterator;
140754bc 2658 struct kvm_mmu_page *sp;
b90a0e6c 2659 int emulate = 0;
140754bc 2660 gfn_t pseudo_gfn;
6aa8b732 2661
989c6b34
MT
2662 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2663 return 0;
2664
9f652d21 2665 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2666 if (iterator.level == level) {
f7616203 2667 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2668 write, &emulate, level, gfn, pfn,
2669 prefault, map_writable);
957ed9ef 2670 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2671 ++vcpu->stat.pf_fixed;
2672 break;
6aa8b732
AK
2673 }
2674
c3707958 2675 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2676 u64 base_addr = iterator.addr;
2677
2678 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2679 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2680 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2681 iterator.level - 1,
2682 1, ACC_ALL, iterator.sptep);
140754bc 2683
7a1638ce 2684 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2685 }
2686 }
b90a0e6c 2687 return emulate;
6aa8b732
AK
2688}
2689
77db5cbd 2690static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2691{
77db5cbd
HY
2692 siginfo_t info;
2693
2694 info.si_signo = SIGBUS;
2695 info.si_errno = 0;
2696 info.si_code = BUS_MCEERR_AR;
2697 info.si_addr = (void __user *)address;
2698 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2699
77db5cbd 2700 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2701}
2702
d7c55201 2703static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2704{
4d8b81ab
XG
2705 /*
2706 * Do not cache the mmio info caused by writing the readonly gfn
2707 * into the spte otherwise read access on readonly gfn also can
2708 * caused mmio page fault and treat it as mmio access.
2709 * Return 1 to tell kvm to emulate it.
2710 */
2711 if (pfn == KVM_PFN_ERR_RO_FAULT)
2712 return 1;
2713
e6c1502b 2714 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2715 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2716 return 0;
d7c55201 2717 }
edba23e5 2718
d7c55201 2719 return -EFAULT;
bf998156
HY
2720}
2721
936a5fe6
AA
2722static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2723 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2724{
2725 pfn_t pfn = *pfnp;
2726 gfn_t gfn = *gfnp;
2727 int level = *levelp;
2728
2729 /*
2730 * Check if it's a transparent hugepage. If this would be an
2731 * hugetlbfs page, level wouldn't be set to
2732 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2733 * here.
2734 */
81c52c56 2735 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2736 level == PT_PAGE_TABLE_LEVEL &&
2737 PageTransCompound(pfn_to_page(pfn)) &&
2738 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2739 unsigned long mask;
2740 /*
2741 * mmu_notifier_retry was successful and we hold the
2742 * mmu_lock here, so the pmd can't become splitting
2743 * from under us, and in turn
2744 * __split_huge_page_refcount() can't run from under
2745 * us and we can safely transfer the refcount from
2746 * PG_tail to PG_head as we switch the pfn to tail to
2747 * head.
2748 */
2749 *levelp = level = PT_DIRECTORY_LEVEL;
2750 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2751 VM_BUG_ON((gfn & mask) != (pfn & mask));
2752 if (pfn & mask) {
2753 gfn &= ~mask;
2754 *gfnp = gfn;
2755 kvm_release_pfn_clean(pfn);
2756 pfn &= ~mask;
c3586667 2757 kvm_get_pfn(pfn);
936a5fe6
AA
2758 *pfnp = pfn;
2759 }
2760 }
2761}
2762
d7c55201
XG
2763static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2764 pfn_t pfn, unsigned access, int *ret_val)
2765{
2766 bool ret = true;
2767
2768 /* The pfn is invalid, report the error! */
81c52c56 2769 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2770 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2771 goto exit;
2772 }
2773
ce88decf 2774 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2775 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2776
2777 ret = false;
2778exit:
2779 return ret;
2780}
2781
e5552fd2 2782static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2783{
1c118b82
XG
2784 /*
2785 * Do not fix the mmio spte with invalid generation number which
2786 * need to be updated by slow page fault path.
2787 */
2788 if (unlikely(error_code & PFERR_RSVD_MASK))
2789 return false;
2790
c7ba5b48
XG
2791 /*
2792 * #PF can be fast only if the shadow page table is present and it
2793 * is caused by write-protect, that means we just need change the
2794 * W bit of the spte which can be done out of mmu-lock.
2795 */
2796 if (!(error_code & PFERR_PRESENT_MASK) ||
2797 !(error_code & PFERR_WRITE_MASK))
2798 return false;
2799
2800 return true;
2801}
2802
2803static bool
2804fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2805{
2806 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2807 gfn_t gfn;
2808
2809 WARN_ON(!sp->role.direct);
2810
2811 /*
2812 * The gfn of direct spte is stable since it is calculated
2813 * by sp->gfn.
2814 */
2815 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2816
2817 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2818 mark_page_dirty(vcpu->kvm, gfn);
2819
2820 return true;
2821}
2822
2823/*
2824 * Return value:
2825 * - true: let the vcpu to access on the same address again.
2826 * - false: let the real page fault path to fix it.
2827 */
2828static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2829 u32 error_code)
2830{
2831 struct kvm_shadow_walk_iterator iterator;
2832 bool ret = false;
2833 u64 spte = 0ull;
2834
37f6a4e2
MT
2835 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2836 return false;
2837
e5552fd2 2838 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2839 return false;
2840
2841 walk_shadow_page_lockless_begin(vcpu);
2842 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2843 if (!is_shadow_present_pte(spte) || iterator.level < level)
2844 break;
2845
2846 /*
2847 * If the mapping has been changed, let the vcpu fault on the
2848 * same address again.
2849 */
2850 if (!is_rmap_spte(spte)) {
2851 ret = true;
2852 goto exit;
2853 }
2854
2855 if (!is_last_spte(spte, level))
2856 goto exit;
2857
2858 /*
2859 * Check if it is a spurious fault caused by TLB lazily flushed.
2860 *
2861 * Need not check the access of upper level table entries since
2862 * they are always ACC_ALL.
2863 */
2864 if (is_writable_pte(spte)) {
2865 ret = true;
2866 goto exit;
2867 }
2868
2869 /*
2870 * Currently, to simplify the code, only the spte write-protected
2871 * by dirty-log can be fast fixed.
2872 */
2873 if (!spte_is_locklessly_modifiable(spte))
2874 goto exit;
2875
2876 /*
2877 * Currently, fast page fault only works for direct mapping since
2878 * the gfn is not stable for indirect shadow page.
2879 * See Documentation/virtual/kvm/locking.txt to get more detail.
2880 */
2881 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2882exit:
a72faf25
XG
2883 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2884 spte, ret);
c7ba5b48
XG
2885 walk_shadow_page_lockless_end(vcpu);
2886
2887 return ret;
2888}
2889
78b2c54a 2890static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2891 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2892static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2893
c7ba5b48
XG
2894static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2895 gfn_t gfn, bool prefault)
10589a46
MT
2896{
2897 int r;
852e3c19 2898 int level;
936a5fe6 2899 int force_pt_level;
35149e21 2900 pfn_t pfn;
e930bffe 2901 unsigned long mmu_seq;
c7ba5b48 2902 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2903
936a5fe6
AA
2904 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2905 if (likely(!force_pt_level)) {
2906 level = mapping_level(vcpu, gfn);
2907 /*
2908 * This path builds a PAE pagetable - so we can map
2909 * 2mb pages at maximum. Therefore check if the level
2910 * is larger than that.
2911 */
2912 if (level > PT_DIRECTORY_LEVEL)
2913 level = PT_DIRECTORY_LEVEL;
852e3c19 2914
936a5fe6
AA
2915 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2916 } else
2917 level = PT_PAGE_TABLE_LEVEL;
05da4558 2918
c7ba5b48
XG
2919 if (fast_page_fault(vcpu, v, level, error_code))
2920 return 0;
2921
e930bffe 2922 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2923 smp_rmb();
060c2abe 2924
78b2c54a 2925 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2926 return 0;
aaee2c94 2927
d7c55201
XG
2928 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2929 return r;
d196e343 2930
aaee2c94 2931 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2932 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2933 goto out_unlock;
450e0b41 2934 make_mmu_pages_available(vcpu);
936a5fe6
AA
2935 if (likely(!force_pt_level))
2936 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2937 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2938 prefault);
aaee2c94
MT
2939 spin_unlock(&vcpu->kvm->mmu_lock);
2940
aaee2c94 2941
10589a46 2942 return r;
e930bffe
AA
2943
2944out_unlock:
2945 spin_unlock(&vcpu->kvm->mmu_lock);
2946 kvm_release_pfn_clean(pfn);
2947 return 0;
10589a46
MT
2948}
2949
2950
17ac10ad
AK
2951static void mmu_free_roots(struct kvm_vcpu *vcpu)
2952{
2953 int i;
4db35314 2954 struct kvm_mmu_page *sp;
d98ba053 2955 LIST_HEAD(invalid_list);
17ac10ad 2956
ad312c7c 2957 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2958 return;
35af577a 2959
81407ca5
JR
2960 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2961 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2962 vcpu->arch.mmu.direct_map)) {
ad312c7c 2963 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2964
35af577a 2965 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2966 sp = page_header(root);
2967 --sp->root_count;
d98ba053
XG
2968 if (!sp->root_count && sp->role.invalid) {
2969 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2970 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2971 }
aaee2c94 2972 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2973 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2974 return;
2975 }
35af577a
GN
2976
2977 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2978 for (i = 0; i < 4; ++i) {
ad312c7c 2979 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2980
417726a3 2981 if (root) {
417726a3 2982 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2983 sp = page_header(root);
2984 --sp->root_count;
2e53d63a 2985 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2986 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2987 &invalid_list);
417726a3 2988 }
ad312c7c 2989 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2990 }
d98ba053 2991 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2992 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2993 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2994}
2995
8986ecc0
MT
2996static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2997{
2998 int ret = 0;
2999
3000 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3001 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3002 ret = 1;
3003 }
3004
3005 return ret;
3006}
3007
651dd37a
JR
3008static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3009{
3010 struct kvm_mmu_page *sp;
7ebaf15e 3011 unsigned i;
651dd37a
JR
3012
3013 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3014 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3015 make_mmu_pages_available(vcpu);
651dd37a
JR
3016 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3017 1, ACC_ALL, NULL);
3018 ++sp->root_count;
3019 spin_unlock(&vcpu->kvm->mmu_lock);
3020 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3021 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3022 for (i = 0; i < 4; ++i) {
3023 hpa_t root = vcpu->arch.mmu.pae_root[i];
3024
3025 ASSERT(!VALID_PAGE(root));
3026 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3027 make_mmu_pages_available(vcpu);
649497d1
AK
3028 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3029 i << 30,
651dd37a
JR
3030 PT32_ROOT_LEVEL, 1, ACC_ALL,
3031 NULL);
3032 root = __pa(sp->spt);
3033 ++sp->root_count;
3034 spin_unlock(&vcpu->kvm->mmu_lock);
3035 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3036 }
6292757f 3037 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3038 } else
3039 BUG();
3040
3041 return 0;
3042}
3043
3044static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3045{
4db35314 3046 struct kvm_mmu_page *sp;
81407ca5
JR
3047 u64 pdptr, pm_mask;
3048 gfn_t root_gfn;
3049 int i;
3bb65a22 3050
5777ed34 3051 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3052
651dd37a
JR
3053 if (mmu_check_root(vcpu, root_gfn))
3054 return 1;
3055
3056 /*
3057 * Do we shadow a long mode page table? If so we need to
3058 * write-protect the guests page table root.
3059 */
3060 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3061 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3062
3063 ASSERT(!VALID_PAGE(root));
651dd37a 3064
8facbbff 3065 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3066 make_mmu_pages_available(vcpu);
651dd37a
JR
3067 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3068 0, ACC_ALL, NULL);
4db35314
AK
3069 root = __pa(sp->spt);
3070 ++sp->root_count;
8facbbff 3071 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3072 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3073 return 0;
17ac10ad 3074 }
f87f9288 3075
651dd37a
JR
3076 /*
3077 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3078 * or a PAE 3-level page table. In either case we need to be aware that
3079 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3080 */
81407ca5
JR
3081 pm_mask = PT_PRESENT_MASK;
3082 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3083 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3084
17ac10ad 3085 for (i = 0; i < 4; ++i) {
ad312c7c 3086 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3087
3088 ASSERT(!VALID_PAGE(root));
ad312c7c 3089 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3090 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3091 if (!is_present_gpte(pdptr)) {
ad312c7c 3092 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3093 continue;
3094 }
6de4f3ad 3095 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3096 if (mmu_check_root(vcpu, root_gfn))
3097 return 1;
5a7388c2 3098 }
8facbbff 3099 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3100 make_mmu_pages_available(vcpu);
4db35314 3101 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3102 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3103 ACC_ALL, NULL);
4db35314
AK
3104 root = __pa(sp->spt);
3105 ++sp->root_count;
8facbbff
AK
3106 spin_unlock(&vcpu->kvm->mmu_lock);
3107
81407ca5 3108 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3109 }
6292757f 3110 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3111
3112 /*
3113 * If we shadow a 32 bit page table with a long mode page
3114 * table we enter this path.
3115 */
3116 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3117 if (vcpu->arch.mmu.lm_root == NULL) {
3118 /*
3119 * The additional page necessary for this is only
3120 * allocated on demand.
3121 */
3122
3123 u64 *lm_root;
3124
3125 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3126 if (lm_root == NULL)
3127 return 1;
3128
3129 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3130
3131 vcpu->arch.mmu.lm_root = lm_root;
3132 }
3133
3134 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3135 }
3136
8986ecc0 3137 return 0;
17ac10ad
AK
3138}
3139
651dd37a
JR
3140static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3141{
3142 if (vcpu->arch.mmu.direct_map)
3143 return mmu_alloc_direct_roots(vcpu);
3144 else
3145 return mmu_alloc_shadow_roots(vcpu);
3146}
3147
0ba73cda
MT
3148static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3149{
3150 int i;
3151 struct kvm_mmu_page *sp;
3152
81407ca5
JR
3153 if (vcpu->arch.mmu.direct_map)
3154 return;
3155
0ba73cda
MT
3156 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3157 return;
6903074c 3158
bebb106a 3159 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3160 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3161 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3162 hpa_t root = vcpu->arch.mmu.root_hpa;
3163 sp = page_header(root);
3164 mmu_sync_children(vcpu, sp);
0375f7fa 3165 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3166 return;
3167 }
3168 for (i = 0; i < 4; ++i) {
3169 hpa_t root = vcpu->arch.mmu.pae_root[i];
3170
8986ecc0 3171 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3172 root &= PT64_BASE_ADDR_MASK;
3173 sp = page_header(root);
3174 mmu_sync_children(vcpu, sp);
3175 }
3176 }
0375f7fa 3177 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3178}
3179
3180void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3181{
3182 spin_lock(&vcpu->kvm->mmu_lock);
3183 mmu_sync_roots(vcpu);
6cffe8ca 3184 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3185}
bfd0a56b 3186EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3187
1871c602 3188static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3189 u32 access, struct x86_exception *exception)
6aa8b732 3190{
ab9ae313
AK
3191 if (exception)
3192 exception->error_code = 0;
6aa8b732
AK
3193 return vaddr;
3194}
3195
6539e738 3196static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3197 u32 access,
3198 struct x86_exception *exception)
6539e738 3199{
ab9ae313
AK
3200 if (exception)
3201 exception->error_code = 0;
6539e738
JR
3202 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3203}
3204
ce88decf
XG
3205static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3206{
3207 if (direct)
3208 return vcpu_match_mmio_gpa(vcpu, addr);
3209
3210 return vcpu_match_mmio_gva(vcpu, addr);
3211}
3212
3213
3214/*
3215 * On direct hosts, the last spte is only allows two states
3216 * for mmio page fault:
3217 * - It is the mmio spte
3218 * - It is zapped or it is being zapped.
3219 *
3220 * This function completely checks the spte when the last spte
3221 * is not the mmio spte.
3222 */
3223static bool check_direct_spte_mmio_pf(u64 spte)
3224{
3225 return __check_direct_spte_mmio_pf(spte);
3226}
3227
3228static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3229{
3230 struct kvm_shadow_walk_iterator iterator;
3231 u64 spte = 0ull;
3232
37f6a4e2
MT
3233 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3234 return spte;
3235
ce88decf
XG
3236 walk_shadow_page_lockless_begin(vcpu);
3237 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3238 if (!is_shadow_present_pte(spte))
3239 break;
3240 walk_shadow_page_lockless_end(vcpu);
3241
3242 return spte;
3243}
3244
ce88decf
XG
3245int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3246{
3247 u64 spte;
3248
3249 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3250 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3251
3252 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3253
3254 if (is_mmio_spte(spte)) {
3255 gfn_t gfn = get_mmio_spte_gfn(spte);
3256 unsigned access = get_mmio_spte_access(spte);
3257
f8f55942
XG
3258 if (!check_mmio_spte(vcpu->kvm, spte))
3259 return RET_MMIO_PF_INVALID;
3260
ce88decf
XG
3261 if (direct)
3262 addr = 0;
4f022648
XG
3263
3264 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3265 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3266 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3267 }
3268
3269 /*
3270 * It's ok if the gva is remapped by other cpus on shadow guest,
3271 * it's a BUG if the gfn is not a mmio page.
3272 */
3273 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3274 return RET_MMIO_PF_BUG;
ce88decf
XG
3275
3276 /*
3277 * If the page table is zapped by other cpus, let CPU fault again on
3278 * the address.
3279 */
b37fbea6 3280 return RET_MMIO_PF_RETRY;
ce88decf
XG
3281}
3282EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3283
3284static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3285 u32 error_code, bool direct)
3286{
3287 int ret;
3288
3289 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3290 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3291 return ret;
3292}
3293
6aa8b732 3294static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3295 u32 error_code, bool prefault)
6aa8b732 3296{
e833240f 3297 gfn_t gfn;
e2dec939 3298 int r;
6aa8b732 3299
b8688d51 3300 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3301
f8f55942
XG
3302 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3303 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3304
3305 if (likely(r != RET_MMIO_PF_INVALID))
3306 return r;
3307 }
ce88decf 3308
e2dec939
AK
3309 r = mmu_topup_memory_caches(vcpu);
3310 if (r)
3311 return r;
714b93da 3312
6aa8b732 3313 ASSERT(vcpu);
ad312c7c 3314 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3315
e833240f 3316 gfn = gva >> PAGE_SHIFT;
6aa8b732 3317
e833240f 3318 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3319 error_code, gfn, prefault);
6aa8b732
AK
3320}
3321
7e1fbeac 3322static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3323{
3324 struct kvm_arch_async_pf arch;
fb67e14f 3325
7c90705b 3326 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3327 arch.gfn = gfn;
c4806acd 3328 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3329 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3330
3331 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3332}
3333
3334static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3335{
3336 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3337 kvm_event_needs_reinjection(vcpu)))
3338 return false;
3339
3340 return kvm_x86_ops->interrupt_allowed(vcpu);
3341}
3342
78b2c54a 3343static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3344 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3345{
3346 bool async;
3347
612819c3 3348 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3349
3350 if (!async)
3351 return false; /* *pfn has correct page already */
3352
78b2c54a 3353 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3354 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3355 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3356 trace_kvm_async_pf_doublefault(gva, gfn);
3357 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3358 return true;
3359 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3360 return true;
3361 }
3362
612819c3 3363 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3364
3365 return false;
3366}
3367
56028d08 3368static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3369 bool prefault)
fb72d167 3370{
35149e21 3371 pfn_t pfn;
fb72d167 3372 int r;
852e3c19 3373 int level;
936a5fe6 3374 int force_pt_level;
05da4558 3375 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3376 unsigned long mmu_seq;
612819c3
MT
3377 int write = error_code & PFERR_WRITE_MASK;
3378 bool map_writable;
fb72d167
JR
3379
3380 ASSERT(vcpu);
3381 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3382
f8f55942
XG
3383 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3384 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3385
3386 if (likely(r != RET_MMIO_PF_INVALID))
3387 return r;
3388 }
ce88decf 3389
fb72d167
JR
3390 r = mmu_topup_memory_caches(vcpu);
3391 if (r)
3392 return r;
3393
936a5fe6
AA
3394 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3395 if (likely(!force_pt_level)) {
3396 level = mapping_level(vcpu, gfn);
3397 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3398 } else
3399 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3400
c7ba5b48
XG
3401 if (fast_page_fault(vcpu, gpa, level, error_code))
3402 return 0;
3403
e930bffe 3404 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3405 smp_rmb();
af585b92 3406
78b2c54a 3407 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3408 return 0;
3409
d7c55201
XG
3410 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3411 return r;
3412
fb72d167 3413 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3414 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3415 goto out_unlock;
450e0b41 3416 make_mmu_pages_available(vcpu);
936a5fe6
AA
3417 if (likely(!force_pt_level))
3418 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3419 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3420 level, gfn, pfn, prefault);
fb72d167 3421 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3422
3423 return r;
e930bffe
AA
3424
3425out_unlock:
3426 spin_unlock(&vcpu->kvm->mmu_lock);
3427 kvm_release_pfn_clean(pfn);
3428 return 0;
fb72d167
JR
3429}
3430
8a3c1a33
PB
3431static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3432 struct kvm_mmu *context)
6aa8b732 3433{
6aa8b732 3434 context->page_fault = nonpaging_page_fault;
6aa8b732 3435 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3436 context->sync_page = nonpaging_sync_page;
a7052897 3437 context->invlpg = nonpaging_invlpg;
0f53b5b1 3438 context->update_pte = nonpaging_update_pte;
cea0f0e7 3439 context->root_level = 0;
6aa8b732 3440 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3441 context->root_hpa = INVALID_PAGE;
c5a78f2b 3442 context->direct_map = true;
2d48a985 3443 context->nx = false;
6aa8b732
AK
3444}
3445
d835dfec 3446void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3447{
1165f5fe 3448 ++vcpu->stat.tlb_flush;
a8eeb04a 3449 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732 3450}
bfd0a56b 3451EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
6aa8b732 3452
d8d173da 3453void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3454{
cea0f0e7 3455 mmu_free_roots(vcpu);
6aa8b732
AK
3456}
3457
5777ed34
JR
3458static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3459{
9f8fe504 3460 return kvm_read_cr3(vcpu);
5777ed34
JR
3461}
3462
6389ee94
AK
3463static void inject_page_fault(struct kvm_vcpu *vcpu,
3464 struct x86_exception *fault)
6aa8b732 3465{
6389ee94 3466 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3467}
3468
f2fd125d
XG
3469static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3470 unsigned access, int *nr_present)
ce88decf
XG
3471{
3472 if (unlikely(is_mmio_spte(*sptep))) {
3473 if (gfn != get_mmio_spte_gfn(*sptep)) {
3474 mmu_spte_clear_no_track(sptep);
3475 return true;
3476 }
3477
3478 (*nr_present)++;
f2fd125d 3479 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3480 return true;
3481 }
3482
3483 return false;
3484}
3485
6fd01b71
AK
3486static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3487{
3488 unsigned index;
3489
3490 index = level - 1;
3491 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3492 return mmu->last_pte_bitmap & (1 << index);
3493}
3494
37406aaa
NHE
3495#define PTTYPE_EPT 18 /* arbitrary */
3496#define PTTYPE PTTYPE_EPT
3497#include "paging_tmpl.h"
3498#undef PTTYPE
3499
6aa8b732
AK
3500#define PTTYPE 64
3501#include "paging_tmpl.h"
3502#undef PTTYPE
3503
3504#define PTTYPE 32
3505#include "paging_tmpl.h"
3506#undef PTTYPE
3507
52fde8df 3508static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3509 struct kvm_mmu *context)
82725b20 3510{
82725b20
DE
3511 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3512 u64 exb_bit_rsvd = 0;
3513
25d92081
YZ
3514 context->bad_mt_xwr = 0;
3515
2d48a985 3516 if (!context->nx)
82725b20 3517 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3518 switch (context->root_level) {
82725b20
DE
3519 case PT32_ROOT_LEVEL:
3520 /* no rsvd bits for 2 level 4K page table entries */
3521 context->rsvd_bits_mask[0][1] = 0;
3522 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3523 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3524
3525 if (!is_pse(vcpu)) {
3526 context->rsvd_bits_mask[1][1] = 0;
3527 break;
3528 }
3529
82725b20
DE
3530 if (is_cpuid_PSE36())
3531 /* 36bits PSE 4MB page */
3532 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3533 else
3534 /* 32 bits PSE 4MB page */
3535 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3536 break;
3537 case PT32E_ROOT_LEVEL:
20c466b5
DE
3538 context->rsvd_bits_mask[0][2] =
3539 rsvd_bits(maxphyaddr, 63) |
3540 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3541 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3542 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3543 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3544 rsvd_bits(maxphyaddr, 62); /* PTE */
3545 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3546 rsvd_bits(maxphyaddr, 62) |
3547 rsvd_bits(13, 20); /* large page */
f815bce8 3548 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3549 break;
3550 case PT64_ROOT_LEVEL:
3551 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3552 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3553 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3554 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3555 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3556 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3557 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3558 rsvd_bits(maxphyaddr, 51);
3559 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3560 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3561 rsvd_bits(maxphyaddr, 51) |
3562 rsvd_bits(13, 29);
82725b20 3563 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3564 rsvd_bits(maxphyaddr, 51) |
3565 rsvd_bits(13, 20); /* large page */
f815bce8 3566 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3567 break;
3568 }
3569}
3570
25d92081
YZ
3571static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3572 struct kvm_mmu *context, bool execonly)
3573{
3574 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3575 int pte;
3576
3577 context->rsvd_bits_mask[0][3] =
3578 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3579 context->rsvd_bits_mask[0][2] =
3580 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3581 context->rsvd_bits_mask[0][1] =
3582 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3583 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3584
3585 /* large page */
3586 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3587 context->rsvd_bits_mask[1][2] =
3588 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3589 context->rsvd_bits_mask[1][1] =
3590 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3591 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3592
3593 for (pte = 0; pte < 64; pte++) {
3594 int rwx_bits = pte & 7;
3595 int mt = pte >> 3;
3596 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3597 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3598 (rwx_bits == 0x4 && !execonly))
3599 context->bad_mt_xwr |= (1ull << pte);
3600 }
3601}
3602
3603static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3604 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3605{
3606 unsigned bit, byte, pfec;
3607 u8 map;
3608 bool fault, x, w, u, wf, uf, ff, smep;
3609
3610 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3611 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3612 pfec = byte << 1;
3613 map = 0;
3614 wf = pfec & PFERR_WRITE_MASK;
3615 uf = pfec & PFERR_USER_MASK;
3616 ff = pfec & PFERR_FETCH_MASK;
3617 for (bit = 0; bit < 8; ++bit) {
3618 x = bit & ACC_EXEC_MASK;
3619 w = bit & ACC_WRITE_MASK;
3620 u = bit & ACC_USER_MASK;
3621
25d92081
YZ
3622 if (!ept) {
3623 /* Not really needed: !nx will cause pte.nx to fault */
3624 x |= !mmu->nx;
3625 /* Allow supervisor writes if !cr0.wp */
3626 w |= !is_write_protection(vcpu) && !uf;
3627 /* Disallow supervisor fetches of user code if cr4.smep */
3628 x &= !(smep && u && !uf);
3629 } else
3630 /* Not really needed: no U/S accesses on ept */
3631 u = 1;
97d64b78
AK
3632
3633 fault = (ff && !x) || (uf && !u) || (wf && !w);
3634 map |= fault << bit;
3635 }
3636 mmu->permissions[byte] = map;
3637 }
3638}
3639
6fd01b71
AK
3640static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3641{
3642 u8 map;
3643 unsigned level, root_level = mmu->root_level;
3644 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3645
3646 if (root_level == PT32E_ROOT_LEVEL)
3647 --root_level;
3648 /* PT_PAGE_TABLE_LEVEL always terminates */
3649 map = 1 | (1 << ps_set_index);
3650 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3651 if (level <= PT_PDPE_LEVEL
3652 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3653 map |= 1 << (ps_set_index | (level - 1));
3654 }
3655 mmu->last_pte_bitmap = map;
3656}
3657
8a3c1a33
PB
3658static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3659 struct kvm_mmu *context,
3660 int level)
6aa8b732 3661{
2d48a985 3662 context->nx = is_nx(vcpu);
4d6931c3 3663 context->root_level = level;
2d48a985 3664
4d6931c3 3665 reset_rsvds_bits_mask(vcpu, context);
25d92081 3666 update_permission_bitmask(vcpu, context, false);
6fd01b71 3667 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3668
3669 ASSERT(is_pae(vcpu));
6aa8b732 3670 context->page_fault = paging64_page_fault;
6aa8b732 3671 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3672 context->sync_page = paging64_sync_page;
a7052897 3673 context->invlpg = paging64_invlpg;
0f53b5b1 3674 context->update_pte = paging64_update_pte;
17ac10ad 3675 context->shadow_root_level = level;
17c3ba9d 3676 context->root_hpa = INVALID_PAGE;
c5a78f2b 3677 context->direct_map = false;
6aa8b732
AK
3678}
3679
8a3c1a33
PB
3680static void paging64_init_context(struct kvm_vcpu *vcpu,
3681 struct kvm_mmu *context)
17ac10ad 3682{
8a3c1a33 3683 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3684}
3685
8a3c1a33
PB
3686static void paging32_init_context(struct kvm_vcpu *vcpu,
3687 struct kvm_mmu *context)
6aa8b732 3688{
2d48a985 3689 context->nx = false;
4d6931c3 3690 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3691
4d6931c3 3692 reset_rsvds_bits_mask(vcpu, context);
25d92081 3693 update_permission_bitmask(vcpu, context, false);
6fd01b71 3694 update_last_pte_bitmap(vcpu, context);
6aa8b732 3695
6aa8b732 3696 context->page_fault = paging32_page_fault;
6aa8b732 3697 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3698 context->sync_page = paging32_sync_page;
a7052897 3699 context->invlpg = paging32_invlpg;
0f53b5b1 3700 context->update_pte = paging32_update_pte;
6aa8b732 3701 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3702 context->root_hpa = INVALID_PAGE;
c5a78f2b 3703 context->direct_map = false;
6aa8b732
AK
3704}
3705
8a3c1a33
PB
3706static void paging32E_init_context(struct kvm_vcpu *vcpu,
3707 struct kvm_mmu *context)
6aa8b732 3708{
8a3c1a33 3709 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3710}
3711
8a3c1a33 3712static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3713{
14dfe855 3714 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3715
c445f8ef 3716 context->base_role.word = 0;
fb72d167 3717 context->page_fault = tdp_page_fault;
e8bc217a 3718 context->sync_page = nonpaging_sync_page;
a7052897 3719 context->invlpg = nonpaging_invlpg;
0f53b5b1 3720 context->update_pte = nonpaging_update_pte;
67253af5 3721 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3722 context->root_hpa = INVALID_PAGE;
c5a78f2b 3723 context->direct_map = true;
1c97f0a0 3724 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3725 context->get_cr3 = get_cr3;
e4e517b4 3726 context->get_pdptr = kvm_pdptr_read;
cb659db8 3727 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3728
3729 if (!is_paging(vcpu)) {
2d48a985 3730 context->nx = false;
fb72d167
JR
3731 context->gva_to_gpa = nonpaging_gva_to_gpa;
3732 context->root_level = 0;
3733 } else if (is_long_mode(vcpu)) {
2d48a985 3734 context->nx = is_nx(vcpu);
fb72d167 3735 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3736 reset_rsvds_bits_mask(vcpu, context);
3737 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3738 } else if (is_pae(vcpu)) {
2d48a985 3739 context->nx = is_nx(vcpu);
fb72d167 3740 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3741 reset_rsvds_bits_mask(vcpu, context);
3742 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3743 } else {
2d48a985 3744 context->nx = false;
fb72d167 3745 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3746 reset_rsvds_bits_mask(vcpu, context);
3747 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3748 }
3749
25d92081 3750 update_permission_bitmask(vcpu, context, false);
6fd01b71 3751 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3752}
3753
8a3c1a33 3754void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3755{
411c588d 3756 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3757 ASSERT(vcpu);
ad312c7c 3758 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3759
3760 if (!is_paging(vcpu))
8a3c1a33 3761 nonpaging_init_context(vcpu, context);
a9058ecd 3762 else if (is_long_mode(vcpu))
8a3c1a33 3763 paging64_init_context(vcpu, context);
6aa8b732 3764 else if (is_pae(vcpu))
8a3c1a33 3765 paging32E_init_context(vcpu, context);
6aa8b732 3766 else
8a3c1a33 3767 paging32_init_context(vcpu, context);
a770f6f2 3768
2c9afa52 3769 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3770 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3771 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3772 vcpu->arch.mmu.base_role.smep_andnot_wp
3773 = smep && !is_write_protection(vcpu);
52fde8df
JR
3774}
3775EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3776
8a3c1a33 3777void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
155a97a3
NHE
3778 bool execonly)
3779{
3780 ASSERT(vcpu);
3781 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3782
3783 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3784
3785 context->nx = true;
155a97a3
NHE
3786 context->page_fault = ept_page_fault;
3787 context->gva_to_gpa = ept_gva_to_gpa;
3788 context->sync_page = ept_sync_page;
3789 context->invlpg = ept_invlpg;
3790 context->update_pte = ept_update_pte;
155a97a3
NHE
3791 context->root_level = context->shadow_root_level;
3792 context->root_hpa = INVALID_PAGE;
3793 context->direct_map = false;
3794
3795 update_permission_bitmask(vcpu, context, true);
3796 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3797}
3798EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3799
8a3c1a33 3800static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3801{
8a3c1a33 3802 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
14dfe855
JR
3803 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3804 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3805 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3806 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3807}
3808
8a3c1a33 3809static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3810{
3811 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3812
3813 g_context->get_cr3 = get_cr3;
e4e517b4 3814 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3815 g_context->inject_page_fault = kvm_inject_page_fault;
3816
3817 /*
3818 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3819 * translation of l2_gpa to l1_gpa addresses is done using the
3820 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3821 * functions between mmu and nested_mmu are swapped.
3822 */
3823 if (!is_paging(vcpu)) {
2d48a985 3824 g_context->nx = false;
02f59dc9
JR
3825 g_context->root_level = 0;
3826 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3827 } else if (is_long_mode(vcpu)) {
2d48a985 3828 g_context->nx = is_nx(vcpu);
02f59dc9 3829 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3830 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3831 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3832 } else if (is_pae(vcpu)) {
2d48a985 3833 g_context->nx = is_nx(vcpu);
02f59dc9 3834 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3835 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3836 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3837 } else {
2d48a985 3838 g_context->nx = false;
02f59dc9 3839 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3840 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3841 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3842 }
3843
25d92081 3844 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3845 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3846}
3847
8a3c1a33 3848static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3849{
02f59dc9
JR
3850 if (mmu_is_nested(vcpu))
3851 return init_kvm_nested_mmu(vcpu);
3852 else if (tdp_enabled)
fb72d167
JR
3853 return init_kvm_tdp_mmu(vcpu);
3854 else
3855 return init_kvm_softmmu(vcpu);
3856}
3857
8a3c1a33 3858void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732
AK
3859{
3860 ASSERT(vcpu);
6aa8b732 3861
95f93af4 3862 kvm_mmu_unload(vcpu);
8a3c1a33 3863 init_kvm_mmu(vcpu);
17c3ba9d 3864}
8668a3c4 3865EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3866
3867int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3868{
714b93da
AK
3869 int r;
3870
e2dec939 3871 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3872 if (r)
3873 goto out;
8986ecc0 3874 r = mmu_alloc_roots(vcpu);
e2858b4a 3875 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3876 if (r)
3877 goto out;
3662cb1c 3878 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3879 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3880out:
3881 return r;
6aa8b732 3882}
17c3ba9d
AK
3883EXPORT_SYMBOL_GPL(kvm_mmu_load);
3884
3885void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3886{
3887 mmu_free_roots(vcpu);
95f93af4 3888 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3889}
4b16184c 3890EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3891
0028425f 3892static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3893 struct kvm_mmu_page *sp, u64 *spte,
3894 const void *new)
0028425f 3895{
30945387 3896 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3897 ++vcpu->kvm->stat.mmu_pde_zapped;
3898 return;
30945387 3899 }
0028425f 3900
4cee5764 3901 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3902 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3903}
3904
79539cec
AK
3905static bool need_remote_flush(u64 old, u64 new)
3906{
3907 if (!is_shadow_present_pte(old))
3908 return false;
3909 if (!is_shadow_present_pte(new))
3910 return true;
3911 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3912 return true;
53166229
GN
3913 old ^= shadow_nx_mask;
3914 new ^= shadow_nx_mask;
79539cec
AK
3915 return (old & ~new & PT64_PERM_MASK) != 0;
3916}
3917
0671a8e7
XG
3918static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3919 bool remote_flush, bool local_flush)
79539cec 3920{
0671a8e7
XG
3921 if (zap_page)
3922 return;
3923
3924 if (remote_flush)
79539cec 3925 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3926 else if (local_flush)
79539cec
AK
3927 kvm_mmu_flush_tlb(vcpu);
3928}
3929
889e5cbc
XG
3930static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3931 const u8 *new, int *bytes)
da4a00f0 3932{
889e5cbc
XG
3933 u64 gentry;
3934 int r;
72016f3a 3935
72016f3a
AK
3936 /*
3937 * Assume that the pte write on a page table of the same type
49b26e26
XG
3938 * as the current vcpu paging mode since we update the sptes only
3939 * when they have the same mode.
72016f3a 3940 */
889e5cbc 3941 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3942 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3943 *gpa &= ~(gpa_t)7;
3944 *bytes = 8;
116eb3d3 3945 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3946 if (r)
3947 gentry = 0;
08e850c6
AK
3948 new = (const u8 *)&gentry;
3949 }
3950
889e5cbc 3951 switch (*bytes) {
08e850c6
AK
3952 case 4:
3953 gentry = *(const u32 *)new;
3954 break;
3955 case 8:
3956 gentry = *(const u64 *)new;
3957 break;
3958 default:
3959 gentry = 0;
3960 break;
72016f3a
AK
3961 }
3962
889e5cbc
XG
3963 return gentry;
3964}
3965
3966/*
3967 * If we're seeing too many writes to a page, it may no longer be a page table,
3968 * or we may be forking, in which case it is better to unmap the page.
3969 */
a138fe75 3970static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3971{
a30f47cb
XG
3972 /*
3973 * Skip write-flooding detected for the sp whose level is 1, because
3974 * it can become unsync, then the guest page is not write-protected.
3975 */
f71fa31f 3976 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3977 return false;
3246af0e 3978
a30f47cb 3979 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3980}
3981
3982/*
3983 * Misaligned accesses are too much trouble to fix up; also, they usually
3984 * indicate a page is not used as a page table.
3985 */
3986static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3987 int bytes)
3988{
3989 unsigned offset, pte_size, misaligned;
3990
3991 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3992 gpa, bytes, sp->role.word);
3993
3994 offset = offset_in_page(gpa);
3995 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3996
3997 /*
3998 * Sometimes, the OS only writes the last one bytes to update status
3999 * bits, for example, in linux, andb instruction is used in clear_bit().
4000 */
4001 if (!(offset & (pte_size - 1)) && bytes == 1)
4002 return false;
4003
889e5cbc
XG
4004 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4005 misaligned |= bytes < 4;
4006
4007 return misaligned;
4008}
4009
4010static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4011{
4012 unsigned page_offset, quadrant;
4013 u64 *spte;
4014 int level;
4015
4016 page_offset = offset_in_page(gpa);
4017 level = sp->role.level;
4018 *nspte = 1;
4019 if (!sp->role.cr4_pae) {
4020 page_offset <<= 1; /* 32->64 */
4021 /*
4022 * A 32-bit pde maps 4MB while the shadow pdes map
4023 * only 2MB. So we need to double the offset again
4024 * and zap two pdes instead of one.
4025 */
4026 if (level == PT32_ROOT_LEVEL) {
4027 page_offset &= ~7; /* kill rounding error */
4028 page_offset <<= 1;
4029 *nspte = 2;
4030 }
4031 quadrant = page_offset >> PAGE_SHIFT;
4032 page_offset &= ~PAGE_MASK;
4033 if (quadrant != sp->role.quadrant)
4034 return NULL;
4035 }
4036
4037 spte = &sp->spt[page_offset / sizeof(*spte)];
4038 return spte;
4039}
4040
4041void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4042 const u8 *new, int bytes)
4043{
4044 gfn_t gfn = gpa >> PAGE_SHIFT;
4045 union kvm_mmu_page_role mask = { .word = 0 };
4046 struct kvm_mmu_page *sp;
889e5cbc
XG
4047 LIST_HEAD(invalid_list);
4048 u64 entry, gentry, *spte;
4049 int npte;
a30f47cb 4050 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4051
4052 /*
4053 * If we don't have indirect shadow pages, it means no page is
4054 * write-protected, so we can exit simply.
4055 */
4056 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4057 return;
4058
4059 zap_page = remote_flush = local_flush = false;
4060
4061 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4062
4063 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4064
4065 /*
4066 * No need to care whether allocation memory is successful
4067 * or not since pte prefetch is skiped if it does not have
4068 * enough objects in the cache.
4069 */
4070 mmu_topup_memory_caches(vcpu);
4071
4072 spin_lock(&vcpu->kvm->mmu_lock);
4073 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4074 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4075
fa1de2bf 4076 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4077 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4078 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4079 detect_write_flooding(sp)) {
0671a8e7 4080 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4081 &invalid_list);
4cee5764 4082 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4083 continue;
4084 }
889e5cbc
XG
4085
4086 spte = get_written_sptes(sp, gpa, &npte);
4087 if (!spte)
4088 continue;
4089
0671a8e7 4090 local_flush = true;
ac1b714e 4091 while (npte--) {
79539cec 4092 entry = *spte;
38e3b2b2 4093 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4094 if (gentry &&
4095 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4096 & mask.word) && rmap_can_add(vcpu))
7c562522 4097 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4098 if (need_remote_flush(entry, *spte))
0671a8e7 4099 remote_flush = true;
ac1b714e 4100 ++spte;
9b7a0325 4101 }
9b7a0325 4102 }
0671a8e7 4103 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4104 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4105 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4106 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4107}
4108
a436036b
AK
4109int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4110{
10589a46
MT
4111 gpa_t gpa;
4112 int r;
a436036b 4113
c5a78f2b 4114 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4115 return 0;
4116
1871c602 4117 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4118
10589a46 4119 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4120
10589a46 4121 return r;
a436036b 4122}
577bdc49 4123EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4124
81f4f76b 4125static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4126{
d98ba053 4127 LIST_HEAD(invalid_list);
103ad25a 4128
81f4f76b
TY
4129 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4130 return;
4131
5da59607
TY
4132 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4133 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4134 break;
ebeace86 4135
4cee5764 4136 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4137 }
aa6bd187 4138 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4139}
ebeace86 4140
1cb3f3ae
XG
4141static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4142{
4143 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4144 return vcpu_match_mmio_gpa(vcpu, addr);
4145
4146 return vcpu_match_mmio_gva(vcpu, addr);
4147}
4148
dc25e89e
AP
4149int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4150 void *insn, int insn_len)
3067714c 4151{
1cb3f3ae 4152 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4153 enum emulation_result er;
4154
56028d08 4155 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4156 if (r < 0)
4157 goto out;
4158
4159 if (!r) {
4160 r = 1;
4161 goto out;
4162 }
4163
1cb3f3ae
XG
4164 if (is_mmio_page_fault(vcpu, cr2))
4165 emulation_type = 0;
4166
4167 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4168
4169 switch (er) {
4170 case EMULATE_DONE:
4171 return 1;
ac0a48c3 4172 case EMULATE_USER_EXIT:
3067714c 4173 ++vcpu->stat.mmio_exits;
6d77dbfc 4174 /* fall through */
3067714c 4175 case EMULATE_FAIL:
3f5d18a9 4176 return 0;
3067714c
AK
4177 default:
4178 BUG();
4179 }
4180out:
3067714c
AK
4181 return r;
4182}
4183EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4184
a7052897
MT
4185void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4186{
a7052897 4187 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4188 kvm_mmu_flush_tlb(vcpu);
4189 ++vcpu->stat.invlpg;
4190}
4191EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4192
18552672
JR
4193void kvm_enable_tdp(void)
4194{
4195 tdp_enabled = true;
4196}
4197EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4198
5f4cb662
JR
4199void kvm_disable_tdp(void)
4200{
4201 tdp_enabled = false;
4202}
4203EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4204
6aa8b732
AK
4205static void free_mmu_pages(struct kvm_vcpu *vcpu)
4206{
ad312c7c 4207 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4208 if (vcpu->arch.mmu.lm_root != NULL)
4209 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4210}
4211
4212static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4213{
17ac10ad 4214 struct page *page;
6aa8b732
AK
4215 int i;
4216
4217 ASSERT(vcpu);
4218
17ac10ad
AK
4219 /*
4220 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4221 * Therefore we need to allocate shadow page tables in the first
4222 * 4GB of memory, which happens to fit the DMA32 zone.
4223 */
4224 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4225 if (!page)
d7fa6ab2
WY
4226 return -ENOMEM;
4227
ad312c7c 4228 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4229 for (i = 0; i < 4; ++i)
ad312c7c 4230 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4231
6aa8b732 4232 return 0;
6aa8b732
AK
4233}
4234
8018c27b 4235int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4236{
6aa8b732 4237 ASSERT(vcpu);
e459e322
XG
4238
4239 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4240 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4241 vcpu->arch.mmu.translate_gpa = translate_gpa;
4242 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4243
8018c27b
IM
4244 return alloc_mmu_pages(vcpu);
4245}
6aa8b732 4246
8a3c1a33 4247void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b
IM
4248{
4249 ASSERT(vcpu);
ad312c7c 4250 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4251
8a3c1a33 4252 init_kvm_mmu(vcpu);
6aa8b732
AK
4253}
4254
90cb0529 4255void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4256{
b99db1d3
TY
4257 struct kvm_memory_slot *memslot;
4258 gfn_t last_gfn;
4259 int i;
6aa8b732 4260
b99db1d3
TY
4261 memslot = id_to_memslot(kvm->memslots, slot);
4262 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4263
9d1beefb
TY
4264 spin_lock(&kvm->mmu_lock);
4265
b99db1d3
TY
4266 for (i = PT_PAGE_TABLE_LEVEL;
4267 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4268 unsigned long *rmapp;
4269 unsigned long last_index, index;
6aa8b732 4270
b99db1d3
TY
4271 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4272 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4273
b99db1d3
TY
4274 for (index = 0; index <= last_index; ++index, ++rmapp) {
4275 if (*rmapp)
4276 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4277
4278 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4279 kvm_flush_remote_tlbs(kvm);
4280 cond_resched_lock(&kvm->mmu_lock);
4281 }
8234b22e 4282 }
6aa8b732 4283 }
b99db1d3 4284
171d595d 4285 kvm_flush_remote_tlbs(kvm);
9d1beefb 4286 spin_unlock(&kvm->mmu_lock);
6aa8b732 4287}
37a7d8b0 4288
e7d11c7a 4289#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4290static void kvm_zap_obsolete_pages(struct kvm *kvm)
4291{
4292 struct kvm_mmu_page *sp, *node;
e7d11c7a 4293 int batch = 0;
5304b8d3
XG
4294
4295restart:
4296 list_for_each_entry_safe_reverse(sp, node,
4297 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4298 int ret;
4299
5304b8d3
XG
4300 /*
4301 * No obsolete page exists before new created page since
4302 * active_mmu_pages is the FIFO list.
4303 */
4304 if (!is_obsolete_sp(kvm, sp))
4305 break;
4306
4307 /*
5304b8d3
XG
4308 * Since we are reversely walking the list and the invalid
4309 * list will be moved to the head, skip the invalid page
4310 * can help us to avoid the infinity list walking.
4311 */
4312 if (sp->role.invalid)
4313 continue;
4314
f34d251d
XG
4315 /*
4316 * Need not flush tlb since we only zap the sp with invalid
4317 * generation number.
4318 */
e7d11c7a 4319 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4320 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4321 batch = 0;
5304b8d3
XG
4322 goto restart;
4323 }
4324
365c8868
XG
4325 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4326 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4327 batch += ret;
4328
4329 if (ret)
5304b8d3
XG
4330 goto restart;
4331 }
4332
f34d251d
XG
4333 /*
4334 * Should flush tlb before free page tables since lockless-walking
4335 * may use the pages.
4336 */
365c8868 4337 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4338}
4339
4340/*
4341 * Fast invalidate all shadow pages and use lock-break technique
4342 * to zap obsolete pages.
4343 *
4344 * It's required when memslot is being deleted or VM is being
4345 * destroyed, in these cases, we should ensure that KVM MMU does
4346 * not use any resource of the being-deleted slot or all slots
4347 * after calling the function.
4348 */
4349void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4350{
4351 spin_lock(&kvm->mmu_lock);
35006126 4352 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4353 kvm->arch.mmu_valid_gen++;
4354
f34d251d
XG
4355 /*
4356 * Notify all vcpus to reload its shadow page table
4357 * and flush TLB. Then all vcpus will switch to new
4358 * shadow page table with the new mmu_valid_gen.
4359 *
4360 * Note: we should do this under the protection of
4361 * mmu-lock, otherwise, vcpu would purge shadow page
4362 * but miss tlb flush.
4363 */
4364 kvm_reload_remote_mmus(kvm);
4365
5304b8d3
XG
4366 kvm_zap_obsolete_pages(kvm);
4367 spin_unlock(&kvm->mmu_lock);
4368}
4369
365c8868
XG
4370static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4371{
4372 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4373}
4374
f8f55942
XG
4375void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4376{
4377 /*
4378 * The very rare case: if the generation-number is round,
4379 * zap all shadow pages.
f8f55942 4380 */
e6dff7d1 4381 if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
7a2e8aaf 4382 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4383 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4384 }
f8f55942
XG
4385}
4386
70534a73
DC
4387static unsigned long
4388mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4389{
4390 struct kvm *kvm;
1495f230 4391 int nr_to_scan = sc->nr_to_scan;
70534a73 4392 unsigned long freed = 0;
3ee16c81 4393
2f303b74 4394 spin_lock(&kvm_lock);
3ee16c81
IE
4395
4396 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4397 int idx;
d98ba053 4398 LIST_HEAD(invalid_list);
3ee16c81 4399
35f2d16b
TY
4400 /*
4401 * Never scan more than sc->nr_to_scan VM instances.
4402 * Will not hit this condition practically since we do not try
4403 * to shrink more than one VM and it is very unlikely to see
4404 * !n_used_mmu_pages so many times.
4405 */
4406 if (!nr_to_scan--)
4407 break;
19526396
GN
4408 /*
4409 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4410 * here. We may skip a VM instance errorneosly, but we do not
4411 * want to shrink a VM that only started to populate its MMU
4412 * anyway.
4413 */
365c8868
XG
4414 if (!kvm->arch.n_used_mmu_pages &&
4415 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4416 continue;
19526396 4417
f656ce01 4418 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4419 spin_lock(&kvm->mmu_lock);
3ee16c81 4420
365c8868
XG
4421 if (kvm_has_zapped_obsolete_pages(kvm)) {
4422 kvm_mmu_commit_zap_page(kvm,
4423 &kvm->arch.zapped_obsolete_pages);
4424 goto unlock;
4425 }
4426
70534a73
DC
4427 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4428 freed++;
d98ba053 4429 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4430
365c8868 4431unlock:
3ee16c81 4432 spin_unlock(&kvm->mmu_lock);
f656ce01 4433 srcu_read_unlock(&kvm->srcu, idx);
19526396 4434
70534a73
DC
4435 /*
4436 * unfair on small ones
4437 * per-vm shrinkers cry out
4438 * sadness comes quickly
4439 */
19526396
GN
4440 list_move_tail(&kvm->vm_list, &vm_list);
4441 break;
3ee16c81 4442 }
3ee16c81 4443
2f303b74 4444 spin_unlock(&kvm_lock);
70534a73 4445 return freed;
70534a73
DC
4446}
4447
4448static unsigned long
4449mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4450{
45221ab6 4451 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4452}
4453
4454static struct shrinker mmu_shrinker = {
70534a73
DC
4455 .count_objects = mmu_shrink_count,
4456 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4457 .seeks = DEFAULT_SEEKS * 10,
4458};
4459
2ddfd20e 4460static void mmu_destroy_caches(void)
b5a33a75 4461{
53c07b18
XG
4462 if (pte_list_desc_cache)
4463 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4464 if (mmu_page_header_cache)
4465 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4466}
4467
4468int kvm_mmu_module_init(void)
4469{
53c07b18
XG
4470 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4471 sizeof(struct pte_list_desc),
20c2df83 4472 0, 0, NULL);
53c07b18 4473 if (!pte_list_desc_cache)
b5a33a75
AK
4474 goto nomem;
4475
d3d25b04
AK
4476 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4477 sizeof(struct kvm_mmu_page),
20c2df83 4478 0, 0, NULL);
d3d25b04
AK
4479 if (!mmu_page_header_cache)
4480 goto nomem;
4481
45bf21a8
WY
4482 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4483 goto nomem;
4484
3ee16c81
IE
4485 register_shrinker(&mmu_shrinker);
4486
b5a33a75
AK
4487 return 0;
4488
4489nomem:
3ee16c81 4490 mmu_destroy_caches();
b5a33a75
AK
4491 return -ENOMEM;
4492}
4493
3ad82a7e
ZX
4494/*
4495 * Caculate mmu pages needed for kvm.
4496 */
4497unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4498{
3ad82a7e
ZX
4499 unsigned int nr_mmu_pages;
4500 unsigned int nr_pages = 0;
bc6678a3 4501 struct kvm_memslots *slots;
be6ba0f0 4502 struct kvm_memory_slot *memslot;
3ad82a7e 4503
90d83dc3
LJ
4504 slots = kvm_memslots(kvm);
4505
be6ba0f0
XG
4506 kvm_for_each_memslot(memslot, slots)
4507 nr_pages += memslot->npages;
3ad82a7e
ZX
4508
4509 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4510 nr_mmu_pages = max(nr_mmu_pages,
4511 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4512
4513 return nr_mmu_pages;
4514}
4515
94d8b056
MT
4516int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4517{
4518 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4519 u64 spte;
94d8b056
MT
4520 int nr_sptes = 0;
4521
37f6a4e2
MT
4522 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4523 return nr_sptes;
4524
c2a2ac2b
XG
4525 walk_shadow_page_lockless_begin(vcpu);
4526 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4527 sptes[iterator.level-1] = spte;
94d8b056 4528 nr_sptes++;
c2a2ac2b 4529 if (!is_shadow_present_pte(spte))
94d8b056
MT
4530 break;
4531 }
c2a2ac2b 4532 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4533
4534 return nr_sptes;
4535}
4536EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4537
c42fffe3
XG
4538void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4539{
4540 ASSERT(vcpu);
4541
95f93af4 4542 kvm_mmu_unload(vcpu);
c42fffe3
XG
4543 free_mmu_pages(vcpu);
4544 mmu_free_memory_caches(vcpu);
b034cf01
XG
4545}
4546
b034cf01
XG
4547void kvm_mmu_module_exit(void)
4548{
4549 mmu_destroy_caches();
4550 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4551 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4552 mmu_audit_disable();
4553}
This page took 0.920626 seconds and 5 git commands to generate.