KVM: MMU: drop unneeded checks.
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
feb3eb70
GN
451 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
453}
454
8672b721
XG
455static bool spte_has_volatile_bits(u64 spte)
456{
c7ba5b48
XG
457 /*
458 * Always atomicly update spte if it can be updated
459 * out of mmu-lock, it can ensure dirty bit is not lost,
460 * also, it can help us to get a stable is_writable_pte()
461 * to ensure tlb flush is not missed.
462 */
463 if (spte_is_locklessly_modifiable(spte))
464 return true;
465
8672b721
XG
466 if (!shadow_accessed_mask)
467 return false;
468
469 if (!is_shadow_present_pte(spte))
470 return false;
471
4132779b
XG
472 if ((spte & shadow_accessed_mask) &&
473 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
474 return false;
475
476 return true;
477}
478
4132779b
XG
479static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480{
481 return (old_spte & bit_mask) && !(new_spte & bit_mask);
482}
483
1df9f2dc
XG
484/* Rules for using mmu_spte_set:
485 * Set the sptep from nonpresent to present.
486 * Note: the sptep being assigned *must* be either not present
487 * or in a state where the hardware will not attempt to update
488 * the spte.
489 */
490static void mmu_spte_set(u64 *sptep, u64 new_spte)
491{
492 WARN_ON(is_shadow_present_pte(*sptep));
493 __set_spte(sptep, new_spte);
494}
495
496/* Rules for using mmu_spte_update:
497 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
498 *
499 * Whenever we overwrite a writable spte with a read-only one we
500 * should flush remote TLBs. Otherwise rmap_write_protect
501 * will find a read-only spte, even though the writable spte
502 * might be cached on a CPU's TLB, the return value indicates this
503 * case.
1df9f2dc 504 */
6e7d0354 505static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 506{
c7ba5b48 507 u64 old_spte = *sptep;
6e7d0354 508 bool ret = false;
4132779b
XG
509
510 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 511
6e7d0354
XG
512 if (!is_shadow_present_pte(old_spte)) {
513 mmu_spte_set(sptep, new_spte);
514 return ret;
515 }
4132779b 516
c7ba5b48 517 if (!spte_has_volatile_bits(old_spte))
603e0651 518 __update_clear_spte_fast(sptep, new_spte);
4132779b 519 else
603e0651 520 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 521
c7ba5b48
XG
522 /*
523 * For the spte updated out of mmu-lock is safe, since
524 * we always atomicly update it, see the comments in
525 * spte_has_volatile_bits().
526 */
6e7d0354
XG
527 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528 ret = true;
529
4132779b 530 if (!shadow_accessed_mask)
6e7d0354 531 return ret;
4132779b
XG
532
533 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
537
538 return ret;
b79b93f9
AK
539}
540
1df9f2dc
XG
541/*
542 * Rules for using mmu_spte_clear_track_bits:
543 * It sets the sptep from present to nonpresent, and track the
544 * state bits, it is used to clear the last level sptep.
545 */
546static int mmu_spte_clear_track_bits(u64 *sptep)
547{
548 pfn_t pfn;
549 u64 old_spte = *sptep;
550
551 if (!spte_has_volatile_bits(old_spte))
603e0651 552 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 553 else
603e0651 554 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
555
556 if (!is_rmap_spte(old_spte))
557 return 0;
558
559 pfn = spte_to_pfn(old_spte);
86fde74c
XG
560
561 /*
562 * KVM does not hold the refcount of the page used by
563 * kvm mmu, before reclaiming the page, we should
564 * unmap it from mmu first.
565 */
566 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
1df9f2dc
XG
568 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569 kvm_set_pfn_accessed(pfn);
570 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571 kvm_set_pfn_dirty(pfn);
572 return 1;
573}
574
575/*
576 * Rules for using mmu_spte_clear_no_track:
577 * Directly clear spte without caring the state bits of sptep,
578 * it is used to set the upper level spte.
579 */
580static void mmu_spte_clear_no_track(u64 *sptep)
581{
603e0651 582 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
583}
584
c2a2ac2b
XG
585static u64 mmu_spte_get_lockless(u64 *sptep)
586{
587 return __get_spte_lockless(sptep);
588}
589
590static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591{
c142786c
AK
592 /*
593 * Prevent page table teardown by making any free-er wait during
594 * kvm_flush_remote_tlbs() IPI to all active vcpus.
595 */
596 local_irq_disable();
597 vcpu->mode = READING_SHADOW_PAGE_TABLES;
598 /*
599 * Make sure a following spte read is not reordered ahead of the write
600 * to vcpu->mode.
601 */
602 smp_mb();
c2a2ac2b
XG
603}
604
605static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606{
c142786c
AK
607 /*
608 * Make sure the write to vcpu->mode is not reordered in front of
609 * reads to sptes. If it does, kvm_commit_zap_page() can see us
610 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611 */
612 smp_mb();
613 vcpu->mode = OUTSIDE_GUEST_MODE;
614 local_irq_enable();
c2a2ac2b
XG
615}
616
e2dec939 617static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 618 struct kmem_cache *base_cache, int min)
714b93da
AK
619{
620 void *obj;
621
622 if (cache->nobjs >= min)
e2dec939 623 return 0;
714b93da 624 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 625 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 626 if (!obj)
e2dec939 627 return -ENOMEM;
714b93da
AK
628 cache->objects[cache->nobjs++] = obj;
629 }
e2dec939 630 return 0;
714b93da
AK
631}
632
f759e2b4
XG
633static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634{
635 return cache->nobjs;
636}
637
e8ad9a70
XG
638static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639 struct kmem_cache *cache)
714b93da
AK
640{
641 while (mc->nobjs)
e8ad9a70 642 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
643}
644
c1158e63 645static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 646 int min)
c1158e63 647{
842f22ed 648 void *page;
c1158e63
AK
649
650 if (cache->nobjs >= min)
651 return 0;
652 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 653 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
654 if (!page)
655 return -ENOMEM;
842f22ed 656 cache->objects[cache->nobjs++] = page;
c1158e63
AK
657 }
658 return 0;
659}
660
661static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662{
663 while (mc->nobjs)
c4d198d5 664 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
665}
666
2e3e5882 667static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 668{
e2dec939
AK
669 int r;
670
53c07b18 671 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 672 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
673 if (r)
674 goto out;
ad312c7c 675 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 679 mmu_page_header_cache, 4);
e2dec939
AK
680out:
681 return r;
714b93da
AK
682}
683
684static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685{
53c07b18
XG
686 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687 pte_list_desc_cache);
ad312c7c 688 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690 mmu_page_header_cache);
714b93da
AK
691}
692
80feb89a 693static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
694{
695 void *p;
696
697 BUG_ON(!mc->nobjs);
698 p = mc->objects[--mc->nobjs];
714b93da
AK
699 return p;
700}
701
53c07b18 702static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 703{
80feb89a 704 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
705}
706
53c07b18 707static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 708{
53c07b18 709 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
710}
711
2032a93d
LJ
712static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713{
714 if (!sp->role.direct)
715 return sp->gfns[index];
716
717 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718}
719
720static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721{
722 if (sp->role.direct)
723 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724 else
725 sp->gfns[index] = gfn;
726}
727
05da4558 728/*
d4dbf470
TY
729 * Return the pointer to the large page information for a given gfn,
730 * handling slots that are not large page aligned.
05da4558 731 */
d4dbf470
TY
732static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733 struct kvm_memory_slot *slot,
734 int level)
05da4558
MT
735{
736 unsigned long idx;
737
fb03cb6f 738 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 739 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
740}
741
742static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743{
d25797b2 744 struct kvm_memory_slot *slot;
d4dbf470 745 struct kvm_lpage_info *linfo;
d25797b2 746 int i;
05da4558 747
a1f4d395 748 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
749 for (i = PT_DIRECTORY_LEVEL;
750 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
751 linfo = lpage_info_slot(gfn, slot, i);
752 linfo->write_count += 1;
d25797b2 753 }
332b207d 754 kvm->arch.indirect_shadow_pages++;
05da4558
MT
755}
756
757static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758{
d25797b2 759 struct kvm_memory_slot *slot;
d4dbf470 760 struct kvm_lpage_info *linfo;
d25797b2 761 int i;
05da4558 762
a1f4d395 763 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
764 for (i = PT_DIRECTORY_LEVEL;
765 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
766 linfo = lpage_info_slot(gfn, slot, i);
767 linfo->write_count -= 1;
768 WARN_ON(linfo->write_count < 0);
d25797b2 769 }
332b207d 770 kvm->arch.indirect_shadow_pages--;
05da4558
MT
771}
772
d25797b2
JR
773static int has_wrprotected_page(struct kvm *kvm,
774 gfn_t gfn,
775 int level)
05da4558 776{
2843099f 777 struct kvm_memory_slot *slot;
d4dbf470 778 struct kvm_lpage_info *linfo;
05da4558 779
a1f4d395 780 slot = gfn_to_memslot(kvm, gfn);
05da4558 781 if (slot) {
d4dbf470
TY
782 linfo = lpage_info_slot(gfn, slot, level);
783 return linfo->write_count;
05da4558
MT
784 }
785
786 return 1;
787}
788
d25797b2 789static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 790{
8f0b1ab6 791 unsigned long page_size;
d25797b2 792 int i, ret = 0;
05da4558 793
8f0b1ab6 794 page_size = kvm_host_page_size(kvm, gfn);
05da4558 795
d25797b2
JR
796 for (i = PT_PAGE_TABLE_LEVEL;
797 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798 if (page_size >= KVM_HPAGE_SIZE(i))
799 ret = i;
800 else
801 break;
802 }
803
4c2155ce 804 return ret;
05da4558
MT
805}
806
5d163b1c
XG
807static struct kvm_memory_slot *
808gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809 bool no_dirty_log)
05da4558
MT
810{
811 struct kvm_memory_slot *slot;
5d163b1c
XG
812
813 slot = gfn_to_memslot(vcpu->kvm, gfn);
814 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815 (no_dirty_log && slot->dirty_bitmap))
816 slot = NULL;
817
818 return slot;
819}
820
821static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822{
a0a8eaba 823 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
824}
825
826static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827{
828 int host_level, level, max_level;
05da4558 829
d25797b2
JR
830 host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832 if (host_level == PT_PAGE_TABLE_LEVEL)
833 return host_level;
834
878403b7
SY
835 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
836 kvm_x86_ops->get_lpage_level() : host_level;
837
838 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
839 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
840 break;
d25797b2
JR
841
842 return level - 1;
05da4558
MT
843}
844
290fc38d 845/*
53c07b18 846 * Pte mapping structures:
cd4a4e53 847 *
53c07b18 848 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 849 *
53c07b18
XG
850 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
851 * pte_list_desc containing more mappings.
53a27b39 852 *
53c07b18 853 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
854 * the spte was not added.
855 *
cd4a4e53 856 */
53c07b18
XG
857static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
858 unsigned long *pte_list)
cd4a4e53 859{
53c07b18 860 struct pte_list_desc *desc;
53a27b39 861 int i, count = 0;
cd4a4e53 862
53c07b18
XG
863 if (!*pte_list) {
864 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
865 *pte_list = (unsigned long)spte;
866 } else if (!(*pte_list & 1)) {
867 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
868 desc = mmu_alloc_pte_list_desc(vcpu);
869 desc->sptes[0] = (u64 *)*pte_list;
d555c333 870 desc->sptes[1] = spte;
53c07b18 871 *pte_list = (unsigned long)desc | 1;
cb16a7b3 872 ++count;
cd4a4e53 873 } else {
53c07b18
XG
874 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
875 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
876 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 877 desc = desc->more;
53c07b18 878 count += PTE_LIST_EXT;
53a27b39 879 }
53c07b18
XG
880 if (desc->sptes[PTE_LIST_EXT-1]) {
881 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
882 desc = desc->more;
883 }
d555c333 884 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 885 ++count;
d555c333 886 desc->sptes[i] = spte;
cd4a4e53 887 }
53a27b39 888 return count;
cd4a4e53
AK
889}
890
53c07b18
XG
891static void
892pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
893 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
894{
895 int j;
896
53c07b18 897 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 898 ;
d555c333
AK
899 desc->sptes[i] = desc->sptes[j];
900 desc->sptes[j] = NULL;
cd4a4e53
AK
901 if (j != 0)
902 return;
903 if (!prev_desc && !desc->more)
53c07b18 904 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
905 else
906 if (prev_desc)
907 prev_desc->more = desc->more;
908 else
53c07b18
XG
909 *pte_list = (unsigned long)desc->more | 1;
910 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
911}
912
53c07b18 913static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 914{
53c07b18
XG
915 struct pte_list_desc *desc;
916 struct pte_list_desc *prev_desc;
cd4a4e53
AK
917 int i;
918
53c07b18
XG
919 if (!*pte_list) {
920 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 921 BUG();
53c07b18
XG
922 } else if (!(*pte_list & 1)) {
923 rmap_printk("pte_list_remove: %p 1->0\n", spte);
924 if ((u64 *)*pte_list != spte) {
925 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
926 BUG();
927 }
53c07b18 928 *pte_list = 0;
cd4a4e53 929 } else {
53c07b18
XG
930 rmap_printk("pte_list_remove: %p many->many\n", spte);
931 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
932 prev_desc = NULL;
933 while (desc) {
53c07b18 934 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 935 if (desc->sptes[i] == spte) {
53c07b18 936 pte_list_desc_remove_entry(pte_list,
714b93da 937 desc, i,
cd4a4e53
AK
938 prev_desc);
939 return;
940 }
941 prev_desc = desc;
942 desc = desc->more;
943 }
53c07b18 944 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
945 BUG();
946 }
947}
948
67052b35
XG
949typedef void (*pte_list_walk_fn) (u64 *spte);
950static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
951{
952 struct pte_list_desc *desc;
953 int i;
954
955 if (!*pte_list)
956 return;
957
958 if (!(*pte_list & 1))
959 return fn((u64 *)*pte_list);
960
961 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
962 while (desc) {
963 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
964 fn(desc->sptes[i]);
965 desc = desc->more;
966 }
967}
968
9373e2c0 969static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 970 struct kvm_memory_slot *slot)
53c07b18 971{
77d11309 972 unsigned long idx;
53c07b18 973
77d11309 974 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 975 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
976}
977
9b9b1492
TY
978/*
979 * Take gfn and return the reverse mapping to it.
980 */
981static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
982{
983 struct kvm_memory_slot *slot;
984
985 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 986 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
987}
988
f759e2b4
XG
989static bool rmap_can_add(struct kvm_vcpu *vcpu)
990{
991 struct kvm_mmu_memory_cache *cache;
992
993 cache = &vcpu->arch.mmu_pte_list_desc_cache;
994 return mmu_memory_cache_free_objects(cache);
995}
996
53c07b18
XG
997static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
998{
999 struct kvm_mmu_page *sp;
1000 unsigned long *rmapp;
1001
53c07b18
XG
1002 sp = page_header(__pa(spte));
1003 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1004 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1005 return pte_list_add(vcpu, spte, rmapp);
1006}
1007
53c07b18
XG
1008static void rmap_remove(struct kvm *kvm, u64 *spte)
1009{
1010 struct kvm_mmu_page *sp;
1011 gfn_t gfn;
1012 unsigned long *rmapp;
1013
1014 sp = page_header(__pa(spte));
1015 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1016 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1017 pte_list_remove(spte, rmapp);
1018}
1019
1e3f42f0
TY
1020/*
1021 * Used by the following functions to iterate through the sptes linked by a
1022 * rmap. All fields are private and not assumed to be used outside.
1023 */
1024struct rmap_iterator {
1025 /* private fields */
1026 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1027 int pos; /* index of the sptep */
1028};
1029
1030/*
1031 * Iteration must be started by this function. This should also be used after
1032 * removing/dropping sptes from the rmap link because in such cases the
1033 * information in the itererator may not be valid.
1034 *
1035 * Returns sptep if found, NULL otherwise.
1036 */
1037static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1038{
1039 if (!rmap)
1040 return NULL;
1041
1042 if (!(rmap & 1)) {
1043 iter->desc = NULL;
1044 return (u64 *)rmap;
1045 }
1046
1047 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1048 iter->pos = 0;
1049 return iter->desc->sptes[iter->pos];
1050}
1051
1052/*
1053 * Must be used with a valid iterator: e.g. after rmap_get_first().
1054 *
1055 * Returns sptep if found, NULL otherwise.
1056 */
1057static u64 *rmap_get_next(struct rmap_iterator *iter)
1058{
1059 if (iter->desc) {
1060 if (iter->pos < PTE_LIST_EXT - 1) {
1061 u64 *sptep;
1062
1063 ++iter->pos;
1064 sptep = iter->desc->sptes[iter->pos];
1065 if (sptep)
1066 return sptep;
1067 }
1068
1069 iter->desc = iter->desc->more;
1070
1071 if (iter->desc) {
1072 iter->pos = 0;
1073 /* desc->sptes[0] cannot be NULL */
1074 return iter->desc->sptes[iter->pos];
1075 }
1076 }
1077
1078 return NULL;
1079}
1080
c3707958 1081static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1082{
1df9f2dc 1083 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1084 rmap_remove(kvm, sptep);
be38d276
AK
1085}
1086
8e22f955
XG
1087
1088static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1089{
1090 if (is_large_pte(*sptep)) {
1091 WARN_ON(page_header(__pa(sptep))->role.level ==
1092 PT_PAGE_TABLE_LEVEL);
1093 drop_spte(kvm, sptep);
1094 --kvm->stat.lpages;
1095 return true;
1096 }
1097
1098 return false;
1099}
1100
1101static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1102{
1103 if (__drop_large_spte(vcpu->kvm, sptep))
1104 kvm_flush_remote_tlbs(vcpu->kvm);
1105}
1106
1107/*
49fde340
XG
1108 * Write-protect on the specified @sptep, @pt_protect indicates whether
1109 * spte writ-protection is caused by protecting shadow page table.
1110 * @flush indicates whether tlb need be flushed.
1111 *
1112 * Note: write protection is difference between drity logging and spte
1113 * protection:
1114 * - for dirty logging, the spte can be set to writable at anytime if
1115 * its dirty bitmap is properly set.
1116 * - for spte protection, the spte can be writable only after unsync-ing
1117 * shadow page.
8e22f955
XG
1118 *
1119 * Return true if the spte is dropped.
1120 */
49fde340
XG
1121static bool
1122spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1123{
1124 u64 spte = *sptep;
1125
49fde340
XG
1126 if (!is_writable_pte(spte) &&
1127 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1128 return false;
1129
1130 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1131
49fde340
XG
1132 if (__drop_large_spte(kvm, sptep)) {
1133 *flush |= true;
d13bc5b5 1134 return true;
49fde340 1135 }
d13bc5b5 1136
49fde340
XG
1137 if (pt_protect)
1138 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1139 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1140
1141 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1142 return false;
1143}
1144
49fde340 1145static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1146 bool pt_protect)
98348e95 1147{
1e3f42f0
TY
1148 u64 *sptep;
1149 struct rmap_iterator iter;
d13bc5b5 1150 bool flush = false;
374cbac0 1151
1e3f42f0
TY
1152 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1153 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1154 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1155 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1156 continue;
caa5b8a5 1157 }
a0ed4607 1158
d13bc5b5 1159 sptep = rmap_get_next(&iter);
374cbac0 1160 }
855149aa 1161
d13bc5b5 1162 return flush;
a0ed4607
TY
1163}
1164
5dc99b23
TY
1165/**
1166 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1167 * @kvm: kvm instance
1168 * @slot: slot to protect
1169 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1170 * @mask: indicates which pages we should protect
1171 *
1172 * Used when we do not need to care about huge page mappings: e.g. during dirty
1173 * logging we do not have any such mappings.
1174 */
1175void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1176 struct kvm_memory_slot *slot,
1177 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1178{
1179 unsigned long *rmapp;
a0ed4607 1180
5dc99b23 1181 while (mask) {
65fbe37c
TY
1182 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1183 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1184 __rmap_write_protect(kvm, rmapp, false);
05da4558 1185
5dc99b23
TY
1186 /* clear the first set bit */
1187 mask &= mask - 1;
1188 }
374cbac0
AK
1189}
1190
2f84569f 1191static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1192{
1193 struct kvm_memory_slot *slot;
5dc99b23
TY
1194 unsigned long *rmapp;
1195 int i;
2f84569f 1196 bool write_protected = false;
95d4c16c
TY
1197
1198 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1199
1200 for (i = PT_PAGE_TABLE_LEVEL;
1201 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1202 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1203 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1204 }
1205
1206 return write_protected;
95d4c16c
TY
1207}
1208
8a8365c5 1209static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1210 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1211{
1e3f42f0
TY
1212 u64 *sptep;
1213 struct rmap_iterator iter;
e930bffe
AA
1214 int need_tlb_flush = 0;
1215
1e3f42f0
TY
1216 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1217 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1218 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1219
1220 drop_spte(kvm, sptep);
e930bffe
AA
1221 need_tlb_flush = 1;
1222 }
1e3f42f0 1223
e930bffe
AA
1224 return need_tlb_flush;
1225}
1226
8a8365c5 1227static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1228 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1229{
1e3f42f0
TY
1230 u64 *sptep;
1231 struct rmap_iterator iter;
3da0dd43 1232 int need_flush = 0;
1e3f42f0 1233 u64 new_spte;
3da0dd43
IE
1234 pte_t *ptep = (pte_t *)data;
1235 pfn_t new_pfn;
1236
1237 WARN_ON(pte_huge(*ptep));
1238 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1239
1240 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1241 BUG_ON(!is_shadow_present_pte(*sptep));
1242 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1243
3da0dd43 1244 need_flush = 1;
1e3f42f0 1245
3da0dd43 1246 if (pte_write(*ptep)) {
1e3f42f0
TY
1247 drop_spte(kvm, sptep);
1248 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1249 } else {
1e3f42f0 1250 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1251 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1252
1253 new_spte &= ~PT_WRITABLE_MASK;
1254 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1255 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1256
1257 mmu_spte_clear_track_bits(sptep);
1258 mmu_spte_set(sptep, new_spte);
1259 sptep = rmap_get_next(&iter);
3da0dd43
IE
1260 }
1261 }
1e3f42f0 1262
3da0dd43
IE
1263 if (need_flush)
1264 kvm_flush_remote_tlbs(kvm);
1265
1266 return 0;
1267}
1268
84504ef3
TY
1269static int kvm_handle_hva_range(struct kvm *kvm,
1270 unsigned long start,
1271 unsigned long end,
1272 unsigned long data,
1273 int (*handler)(struct kvm *kvm,
1274 unsigned long *rmapp,
048212d0 1275 struct kvm_memory_slot *slot,
84504ef3 1276 unsigned long data))
e930bffe 1277{
be6ba0f0 1278 int j;
f395302e 1279 int ret = 0;
bc6678a3 1280 struct kvm_memslots *slots;
be6ba0f0 1281 struct kvm_memory_slot *memslot;
bc6678a3 1282
90d83dc3 1283 slots = kvm_memslots(kvm);
e930bffe 1284
be6ba0f0 1285 kvm_for_each_memslot(memslot, slots) {
84504ef3 1286 unsigned long hva_start, hva_end;
bcd3ef58 1287 gfn_t gfn_start, gfn_end;
e930bffe 1288
84504ef3
TY
1289 hva_start = max(start, memslot->userspace_addr);
1290 hva_end = min(end, memslot->userspace_addr +
1291 (memslot->npages << PAGE_SHIFT));
1292 if (hva_start >= hva_end)
1293 continue;
1294 /*
1295 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1296 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1297 */
bcd3ef58 1298 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1299 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1300
bcd3ef58
TY
1301 for (j = PT_PAGE_TABLE_LEVEL;
1302 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1303 unsigned long idx, idx_end;
1304 unsigned long *rmapp;
d4dbf470 1305
bcd3ef58
TY
1306 /*
1307 * {idx(page_j) | page_j intersects with
1308 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1309 */
1310 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1311 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1312
bcd3ef58 1313 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1314
bcd3ef58
TY
1315 for (; idx <= idx_end; ++idx)
1316 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1317 }
1318 }
1319
f395302e 1320 return ret;
e930bffe
AA
1321}
1322
84504ef3
TY
1323static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1324 unsigned long data,
1325 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1326 struct kvm_memory_slot *slot,
84504ef3
TY
1327 unsigned long data))
1328{
1329 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1330}
1331
1332int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1333{
3da0dd43
IE
1334 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1335}
1336
b3ae2096
TY
1337int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1338{
1339 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1340}
1341
3da0dd43
IE
1342void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1343{
8a8365c5 1344 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1345}
1346
8a8365c5 1347static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1348 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1349{
1e3f42f0 1350 u64 *sptep;
79f702a6 1351 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1352 int young = 0;
1353
6316e1c8 1354 /*
3f6d8c8a
XH
1355 * In case of absence of EPT Access and Dirty Bits supports,
1356 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1357 * an EPT mapping, and clearing it if it does. On the next access,
1358 * a new EPT mapping will be established.
1359 * This has some overhead, but not as much as the cost of swapping
1360 * out actively used pages or breaking up actively used hugepages.
1361 */
f395302e
TY
1362 if (!shadow_accessed_mask) {
1363 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1364 goto out;
1365 }
534e38b4 1366
1e3f42f0
TY
1367 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1368 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1369 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1370
3f6d8c8a 1371 if (*sptep & shadow_accessed_mask) {
e930bffe 1372 young = 1;
3f6d8c8a
XH
1373 clear_bit((ffs(shadow_accessed_mask) - 1),
1374 (unsigned long *)sptep);
e930bffe 1375 }
e930bffe 1376 }
f395302e
TY
1377out:
1378 /* @data has hva passed to kvm_age_hva(). */
1379 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1380 return young;
1381}
1382
8ee53820 1383static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1384 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1385{
1e3f42f0
TY
1386 u64 *sptep;
1387 struct rmap_iterator iter;
8ee53820
AA
1388 int young = 0;
1389
1390 /*
1391 * If there's no access bit in the secondary pte set by the
1392 * hardware it's up to gup-fast/gup to set the access bit in
1393 * the primary pte or in the page structure.
1394 */
1395 if (!shadow_accessed_mask)
1396 goto out;
1397
1e3f42f0
TY
1398 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1399 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1400 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1401
3f6d8c8a 1402 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1403 young = 1;
1404 break;
1405 }
8ee53820
AA
1406 }
1407out:
1408 return young;
1409}
1410
53a27b39
MT
1411#define RMAP_RECYCLE_THRESHOLD 1000
1412
852e3c19 1413static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1414{
1415 unsigned long *rmapp;
852e3c19
JR
1416 struct kvm_mmu_page *sp;
1417
1418 sp = page_header(__pa(spte));
53a27b39 1419
852e3c19 1420 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1421
048212d0 1422 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1423 kvm_flush_remote_tlbs(vcpu->kvm);
1424}
1425
e930bffe
AA
1426int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1427{
f395302e 1428 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1429}
1430
8ee53820
AA
1431int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1432{
1433 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1434}
1435
d6c69ee9 1436#ifdef MMU_DEBUG
47ad8e68 1437static int is_empty_shadow_page(u64 *spt)
6aa8b732 1438{
139bdb2d
AK
1439 u64 *pos;
1440 u64 *end;
1441
47ad8e68 1442 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1443 if (is_shadow_present_pte(*pos)) {
b8688d51 1444 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1445 pos, *pos);
6aa8b732 1446 return 0;
139bdb2d 1447 }
6aa8b732
AK
1448 return 1;
1449}
d6c69ee9 1450#endif
6aa8b732 1451
45221ab6
DH
1452/*
1453 * This value is the sum of all of the kvm instances's
1454 * kvm->arch.n_used_mmu_pages values. We need a global,
1455 * aggregate version in order to make the slab shrinker
1456 * faster
1457 */
1458static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1459{
1460 kvm->arch.n_used_mmu_pages += nr;
1461 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1462}
1463
bd4c86ea
XG
1464/*
1465 * Remove the sp from shadow page cache, after call it,
1466 * we can not find this sp from the cache, and the shadow
1467 * page table is still valid.
1468 * It should be under the protection of mmu lock.
1469 */
1470static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1471{
4db35314 1472 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1473 hlist_del(&sp->hash_link);
2032a93d 1474 if (!sp->role.direct)
842f22ed 1475 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1476}
1477
1478/*
1479 * Free the shadow page table and the sp, we can do it
1480 * out of the protection of mmu lock.
1481 */
1482static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1483{
1484 list_del(&sp->link);
1485 free_page((unsigned long)sp->spt);
e8ad9a70 1486 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1487}
1488
cea0f0e7
AK
1489static unsigned kvm_page_table_hashfn(gfn_t gfn)
1490{
1ae0a13d 1491 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1492}
1493
714b93da 1494static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1495 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1496{
cea0f0e7
AK
1497 if (!parent_pte)
1498 return;
cea0f0e7 1499
67052b35 1500 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1501}
1502
4db35314 1503static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1504 u64 *parent_pte)
1505{
67052b35 1506 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1507}
1508
bcdd9a93
XG
1509static void drop_parent_pte(struct kvm_mmu_page *sp,
1510 u64 *parent_pte)
1511{
1512 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1513 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1514}
1515
67052b35
XG
1516static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1517 u64 *parent_pte, int direct)
ad8cfbe3 1518{
67052b35 1519 struct kvm_mmu_page *sp;
80feb89a
TY
1520 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1521 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1522 if (!direct)
80feb89a 1523 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1524 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1525 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1526 sp->parent_ptes = 0;
1527 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529 return sp;
ad8cfbe3
MT
1530}
1531
67052b35 1532static void mark_unsync(u64 *spte);
1047df1f 1533static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1534{
67052b35 1535 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1536}
1537
67052b35 1538static void mark_unsync(u64 *spte)
0074ff63 1539{
67052b35 1540 struct kvm_mmu_page *sp;
1047df1f 1541 unsigned int index;
0074ff63 1542
67052b35 1543 sp = page_header(__pa(spte));
1047df1f
XG
1544 index = spte - sp->spt;
1545 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1546 return;
1047df1f 1547 if (sp->unsync_children++)
0074ff63 1548 return;
1047df1f 1549 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1550}
1551
e8bc217a 1552static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1553 struct kvm_mmu_page *sp)
e8bc217a
MT
1554{
1555 return 1;
1556}
1557
a7052897
MT
1558static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559{
1560}
1561
0f53b5b1
XG
1562static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1564 const void *pte)
0f53b5b1
XG
1565{
1566 WARN_ON(1);
1567}
1568
60c8aec6
MT
1569#define KVM_PAGE_ARRAY_NR 16
1570
1571struct kvm_mmu_pages {
1572 struct mmu_page_and_offset {
1573 struct kvm_mmu_page *sp;
1574 unsigned int idx;
1575 } page[KVM_PAGE_ARRAY_NR];
1576 unsigned int nr;
1577};
1578
cded19f3
HE
1579static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580 int idx)
4731d4c7 1581{
60c8aec6 1582 int i;
4731d4c7 1583
60c8aec6
MT
1584 if (sp->unsync)
1585 for (i=0; i < pvec->nr; i++)
1586 if (pvec->page[i].sp == sp)
1587 return 0;
1588
1589 pvec->page[pvec->nr].sp = sp;
1590 pvec->page[pvec->nr].idx = idx;
1591 pvec->nr++;
1592 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593}
1594
1595static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596 struct kvm_mmu_pages *pvec)
1597{
1598 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1599
37178b8b 1600 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1601 struct kvm_mmu_page *child;
4731d4c7
MT
1602 u64 ent = sp->spt[i];
1603
7a8f1a74
XG
1604 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605 goto clear_child_bitmap;
1606
1607 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609 if (child->unsync_children) {
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612
1613 ret = __mmu_unsync_walk(child, pvec);
1614 if (!ret)
1615 goto clear_child_bitmap;
1616 else if (ret > 0)
1617 nr_unsync_leaf += ret;
1618 else
1619 return ret;
1620 } else if (child->unsync) {
1621 nr_unsync_leaf++;
1622 if (mmu_pages_add(pvec, child, i))
1623 return -ENOSPC;
1624 } else
1625 goto clear_child_bitmap;
1626
1627 continue;
1628
1629clear_child_bitmap:
1630 __clear_bit(i, sp->unsync_child_bitmap);
1631 sp->unsync_children--;
1632 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1633 }
1634
4731d4c7 1635
60c8aec6
MT
1636 return nr_unsync_leaf;
1637}
1638
1639static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1641{
1642 if (!sp->unsync_children)
1643 return 0;
1644
1645 mmu_pages_add(pvec, sp, 0);
1646 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1647}
1648
4731d4c7
MT
1649static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650{
1651 WARN_ON(!sp->unsync);
5e1b3ddb 1652 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1653 sp->unsync = 0;
1654 --kvm->stat.mmu_unsync;
1655}
1656
7775834a
XG
1657static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658 struct list_head *invalid_list);
1659static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660 struct list_head *invalid_list);
4731d4c7 1661
f41d335a
XG
1662#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1663 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1664 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1665 if ((sp)->gfn != (gfn)) {} else
1666
f41d335a
XG
1667#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1668 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1669 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1670 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1671 (sp)->role.invalid) {} else
1672
f918b443 1673/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1674static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1675 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1676{
5b7e0102 1677 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1678 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1679 return 1;
1680 }
1681
f918b443 1682 if (clear_unsync)
1d9dc7e0 1683 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1684
a4a8e6f7 1685 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1686 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1687 return 1;
1688 }
1689
1690 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1691 return 0;
1692}
1693
1d9dc7e0
XG
1694static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695 struct kvm_mmu_page *sp)
1696{
d98ba053 1697 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1698 int ret;
1699
d98ba053 1700 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1701 if (ret)
d98ba053
XG
1702 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1d9dc7e0
XG
1704 return ret;
1705}
1706
e37fa785
XG
1707#ifdef CONFIG_KVM_MMU_AUDIT
1708#include "mmu_audit.c"
1709#else
1710static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711static void mmu_audit_disable(void) { }
1712#endif
1713
d98ba053
XG
1714static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715 struct list_head *invalid_list)
1d9dc7e0 1716{
d98ba053 1717 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1718}
1719
9f1a122f
XG
1720/* @gfn should be write-protected at the call site */
1721static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1722{
9f1a122f 1723 struct kvm_mmu_page *s;
f41d335a 1724 struct hlist_node *node;
d98ba053 1725 LIST_HEAD(invalid_list);
9f1a122f
XG
1726 bool flush = false;
1727
f41d335a 1728 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1729 if (!s->unsync)
9f1a122f
XG
1730 continue;
1731
1732 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1733 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1734 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1735 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1736 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1737 continue;
1738 }
9f1a122f
XG
1739 flush = true;
1740 }
1741
d98ba053 1742 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1743 if (flush)
1744 kvm_mmu_flush_tlb(vcpu);
1745}
1746
60c8aec6
MT
1747struct mmu_page_path {
1748 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1750};
1751
60c8aec6
MT
1752#define for_each_sp(pvec, sp, parents, i) \
1753 for (i = mmu_pages_next(&pvec, &parents, -1), \
1754 sp = pvec.page[i].sp; \
1755 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1756 i = mmu_pages_next(&pvec, &parents, i))
1757
cded19f3
HE
1758static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759 struct mmu_page_path *parents,
1760 int i)
60c8aec6
MT
1761{
1762 int n;
1763
1764 for (n = i+1; n < pvec->nr; n++) {
1765 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768 parents->idx[0] = pvec->page[n].idx;
1769 return n;
1770 }
1771
1772 parents->parent[sp->role.level-2] = sp;
1773 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774 }
1775
1776 return n;
1777}
1778
cded19f3 1779static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1780{
60c8aec6
MT
1781 struct kvm_mmu_page *sp;
1782 unsigned int level = 0;
1783
1784 do {
1785 unsigned int idx = parents->idx[level];
4731d4c7 1786
60c8aec6
MT
1787 sp = parents->parent[level];
1788 if (!sp)
1789 return;
1790
1791 --sp->unsync_children;
1792 WARN_ON((int)sp->unsync_children < 0);
1793 __clear_bit(idx, sp->unsync_child_bitmap);
1794 level++;
1795 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1796}
1797
60c8aec6
MT
1798static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799 struct mmu_page_path *parents,
1800 struct kvm_mmu_pages *pvec)
4731d4c7 1801{
60c8aec6
MT
1802 parents->parent[parent->role.level-1] = NULL;
1803 pvec->nr = 0;
1804}
4731d4c7 1805
60c8aec6
MT
1806static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807 struct kvm_mmu_page *parent)
1808{
1809 int i;
1810 struct kvm_mmu_page *sp;
1811 struct mmu_page_path parents;
1812 struct kvm_mmu_pages pages;
d98ba053 1813 LIST_HEAD(invalid_list);
60c8aec6
MT
1814
1815 kvm_mmu_pages_init(parent, &parents, &pages);
1816 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1817 bool protected = false;
b1a36821
MT
1818
1819 for_each_sp(pages, sp, parents, i)
1820 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822 if (protected)
1823 kvm_flush_remote_tlbs(vcpu->kvm);
1824
60c8aec6 1825 for_each_sp(pages, sp, parents, i) {
d98ba053 1826 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1827 mmu_pages_clear_parents(&parents);
1828 }
d98ba053 1829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1830 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1831 kvm_mmu_pages_init(parent, &parents, &pages);
1832 }
4731d4c7
MT
1833}
1834
c3707958
XG
1835static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836{
1837 int i;
1838
1839 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840 sp->spt[i] = 0ull;
1841}
1842
a30f47cb
XG
1843static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844{
1845 sp->write_flooding_count = 0;
1846}
1847
1848static void clear_sp_write_flooding_count(u64 *spte)
1849{
1850 struct kvm_mmu_page *sp = page_header(__pa(spte));
1851
1852 __clear_sp_write_flooding_count(sp);
1853}
1854
cea0f0e7
AK
1855static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856 gfn_t gfn,
1857 gva_t gaddr,
1858 unsigned level,
f6e2c02b 1859 int direct,
41074d07 1860 unsigned access,
f7d9c7b7 1861 u64 *parent_pte)
cea0f0e7
AK
1862{
1863 union kvm_mmu_page_role role;
cea0f0e7 1864 unsigned quadrant;
9f1a122f 1865 struct kvm_mmu_page *sp;
f41d335a 1866 struct hlist_node *node;
9f1a122f 1867 bool need_sync = false;
cea0f0e7 1868
a770f6f2 1869 role = vcpu->arch.mmu.base_role;
cea0f0e7 1870 role.level = level;
f6e2c02b 1871 role.direct = direct;
84b0c8c6 1872 if (role.direct)
5b7e0102 1873 role.cr4_pae = 0;
41074d07 1874 role.access = access;
c5a78f2b
JR
1875 if (!vcpu->arch.mmu.direct_map
1876 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1877 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879 role.quadrant = quadrant;
1880 }
f41d335a 1881 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1882 if (!need_sync && sp->unsync)
1883 need_sync = true;
4731d4c7 1884
7ae680eb
XG
1885 if (sp->role.word != role.word)
1886 continue;
4731d4c7 1887
7ae680eb
XG
1888 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889 break;
e02aa901 1890
7ae680eb
XG
1891 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892 if (sp->unsync_children) {
a8eeb04a 1893 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1894 kvm_mmu_mark_parents_unsync(sp);
1895 } else if (sp->unsync)
1896 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1897
a30f47cb 1898 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1899 trace_kvm_mmu_get_page(sp, false);
1900 return sp;
1901 }
dfc5aa00 1902 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1903 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1904 if (!sp)
1905 return sp;
4db35314
AK
1906 sp->gfn = gfn;
1907 sp->role = role;
7ae680eb
XG
1908 hlist_add_head(&sp->hash_link,
1909 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1910 if (!direct) {
b1a36821
MT
1911 if (rmap_write_protect(vcpu->kvm, gfn))
1912 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1913 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914 kvm_sync_pages(vcpu, gfn);
1915
4731d4c7
MT
1916 account_shadowed(vcpu->kvm, gfn);
1917 }
c3707958 1918 init_shadow_page_table(sp);
f691fe1d 1919 trace_kvm_mmu_get_page(sp, true);
4db35314 1920 return sp;
cea0f0e7
AK
1921}
1922
2d11123a
AK
1923static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924 struct kvm_vcpu *vcpu, u64 addr)
1925{
1926 iterator->addr = addr;
1927 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1929
1930 if (iterator->level == PT64_ROOT_LEVEL &&
1931 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932 !vcpu->arch.mmu.direct_map)
1933 --iterator->level;
1934
2d11123a
AK
1935 if (iterator->level == PT32E_ROOT_LEVEL) {
1936 iterator->shadow_addr
1937 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939 --iterator->level;
1940 if (!iterator->shadow_addr)
1941 iterator->level = 0;
1942 }
1943}
1944
1945static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946{
1947 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948 return false;
4d88954d 1949
2d11123a
AK
1950 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952 return true;
1953}
1954
c2a2ac2b
XG
1955static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956 u64 spte)
2d11123a 1957{
c2a2ac2b 1958 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1959 iterator->level = 0;
1960 return;
1961 }
1962
c2a2ac2b 1963 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1964 --iterator->level;
1965}
1966
c2a2ac2b
XG
1967static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968{
1969 return __shadow_walk_next(iterator, *iterator->sptep);
1970}
1971
32ef26a3
AK
1972static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973{
1974 u64 spte;
1975
1976 spte = __pa(sp->spt)
1977 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1979 mmu_spte_set(sptep, spte);
32ef26a3
AK
1980}
1981
a357bd22
AK
1982static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983 unsigned direct_access)
1984{
1985 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986 struct kvm_mmu_page *child;
1987
1988 /*
1989 * For the direct sp, if the guest pte's dirty bit
1990 * changed form clean to dirty, it will corrupt the
1991 * sp's access: allow writable in the read-only sp,
1992 * so we should update the spte at this point to get
1993 * a new sp with the correct access.
1994 */
1995 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996 if (child->role.access == direct_access)
1997 return;
1998
bcdd9a93 1999 drop_parent_pte(child, sptep);
a357bd22
AK
2000 kvm_flush_remote_tlbs(vcpu->kvm);
2001 }
2002}
2003
505aef8f 2004static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2005 u64 *spte)
2006{
2007 u64 pte;
2008 struct kvm_mmu_page *child;
2009
2010 pte = *spte;
2011 if (is_shadow_present_pte(pte)) {
505aef8f 2012 if (is_last_spte(pte, sp->role.level)) {
c3707958 2013 drop_spte(kvm, spte);
505aef8f
XG
2014 if (is_large_pte(pte))
2015 --kvm->stat.lpages;
2016 } else {
38e3b2b2 2017 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2018 drop_parent_pte(child, spte);
38e3b2b2 2019 }
505aef8f
XG
2020 return true;
2021 }
2022
2023 if (is_mmio_spte(pte))
ce88decf 2024 mmu_spte_clear_no_track(spte);
c3707958 2025
505aef8f 2026 return false;
38e3b2b2
XG
2027}
2028
90cb0529 2029static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2030 struct kvm_mmu_page *sp)
a436036b 2031{
697fe2e2 2032 unsigned i;
697fe2e2 2033
38e3b2b2
XG
2034 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2036}
2037
4db35314 2038static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2039{
4db35314 2040 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2041}
2042
31aa2b44 2043static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2044{
1e3f42f0
TY
2045 u64 *sptep;
2046 struct rmap_iterator iter;
a436036b 2047
1e3f42f0
TY
2048 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049 drop_parent_pte(sp, sptep);
31aa2b44
AK
2050}
2051
60c8aec6 2052static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2053 struct kvm_mmu_page *parent,
2054 struct list_head *invalid_list)
4731d4c7 2055{
60c8aec6
MT
2056 int i, zapped = 0;
2057 struct mmu_page_path parents;
2058 struct kvm_mmu_pages pages;
4731d4c7 2059
60c8aec6 2060 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2061 return 0;
60c8aec6
MT
2062
2063 kvm_mmu_pages_init(parent, &parents, &pages);
2064 while (mmu_unsync_walk(parent, &pages)) {
2065 struct kvm_mmu_page *sp;
2066
2067 for_each_sp(pages, sp, parents, i) {
7775834a 2068 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2069 mmu_pages_clear_parents(&parents);
77662e00 2070 zapped++;
60c8aec6 2071 }
60c8aec6
MT
2072 kvm_mmu_pages_init(parent, &parents, &pages);
2073 }
2074
2075 return zapped;
4731d4c7
MT
2076}
2077
7775834a
XG
2078static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079 struct list_head *invalid_list)
31aa2b44 2080{
4731d4c7 2081 int ret;
f691fe1d 2082
7775834a 2083 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2084 ++kvm->stat.mmu_shadow_zapped;
7775834a 2085 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2086 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2087 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2088 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2089 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2090 if (sp->unsync)
2091 kvm_unlink_unsync_page(kvm, sp);
4db35314 2092 if (!sp->root_count) {
54a4f023
GJ
2093 /* Count self */
2094 ret++;
7775834a 2095 list_move(&sp->link, invalid_list);
aa6bd187 2096 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2097 } else {
5b5c6a5a 2098 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2099 kvm_reload_remote_mmus(kvm);
2100 }
7775834a
XG
2101
2102 sp->role.invalid = 1;
4731d4c7 2103 return ret;
a436036b
AK
2104}
2105
7775834a
XG
2106static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107 struct list_head *invalid_list)
2108{
2109 struct kvm_mmu_page *sp;
2110
2111 if (list_empty(invalid_list))
2112 return;
2113
c142786c
AK
2114 /*
2115 * wmb: make sure everyone sees our modifications to the page tables
2116 * rmb: make sure we see changes to vcpu->mode
2117 */
2118 smp_mb();
4f022648 2119
c142786c
AK
2120 /*
2121 * Wait for all vcpus to exit guest mode and/or lockless shadow
2122 * page table walks.
2123 */
2124 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2125
7775834a
XG
2126 do {
2127 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2129 kvm_mmu_isolate_page(sp);
aa6bd187 2130 kvm_mmu_free_page(sp);
7775834a 2131 } while (!list_empty(invalid_list));
7775834a
XG
2132}
2133
82ce2c96
IE
2134/*
2135 * Changing the number of mmu pages allocated to the vm
49d5ca26 2136 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2137 */
49d5ca26 2138void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2139{
d98ba053 2140 LIST_HEAD(invalid_list);
82ce2c96
IE
2141 /*
2142 * If we set the number of mmu pages to be smaller be than the
2143 * number of actived pages , we must to free some mmu pages before we
2144 * change the value
2145 */
2146
b34cb590
TY
2147 spin_lock(&kvm->mmu_lock);
2148
49d5ca26
DH
2149 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2150 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2151 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2152 struct kvm_mmu_page *page;
2153
f05e70ac 2154 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2155 struct kvm_mmu_page, link);
80b63faf 2156 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2157 }
aa6bd187 2158 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2159 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2160 }
82ce2c96 2161
49d5ca26 2162 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2163
2164 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2165}
2166
1cb3f3ae 2167int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2168{
4db35314 2169 struct kvm_mmu_page *sp;
f41d335a 2170 struct hlist_node *node;
d98ba053 2171 LIST_HEAD(invalid_list);
a436036b
AK
2172 int r;
2173
9ad17b10 2174 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2175 r = 0;
1cb3f3ae 2176 spin_lock(&kvm->mmu_lock);
f41d335a 2177 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2178 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2179 sp->role.word);
2180 r = 1;
f41d335a 2181 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2182 }
d98ba053 2183 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2184 spin_unlock(&kvm->mmu_lock);
2185
a436036b 2186 return r;
cea0f0e7 2187}
1cb3f3ae 2188EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2189
74be52e3
SY
2190/*
2191 * The function is based on mtrr_type_lookup() in
2192 * arch/x86/kernel/cpu/mtrr/generic.c
2193 */
2194static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2195 u64 start, u64 end)
2196{
2197 int i;
2198 u64 base, mask;
2199 u8 prev_match, curr_match;
2200 int num_var_ranges = KVM_NR_VAR_MTRR;
2201
2202 if (!mtrr_state->enabled)
2203 return 0xFF;
2204
2205 /* Make end inclusive end, instead of exclusive */
2206 end--;
2207
2208 /* Look in fixed ranges. Just return the type as per start */
2209 if (mtrr_state->have_fixed && (start < 0x100000)) {
2210 int idx;
2211
2212 if (start < 0x80000) {
2213 idx = 0;
2214 idx += (start >> 16);
2215 return mtrr_state->fixed_ranges[idx];
2216 } else if (start < 0xC0000) {
2217 idx = 1 * 8;
2218 idx += ((start - 0x80000) >> 14);
2219 return mtrr_state->fixed_ranges[idx];
2220 } else if (start < 0x1000000) {
2221 idx = 3 * 8;
2222 idx += ((start - 0xC0000) >> 12);
2223 return mtrr_state->fixed_ranges[idx];
2224 }
2225 }
2226
2227 /*
2228 * Look in variable ranges
2229 * Look of multiple ranges matching this address and pick type
2230 * as per MTRR precedence
2231 */
2232 if (!(mtrr_state->enabled & 2))
2233 return mtrr_state->def_type;
2234
2235 prev_match = 0xFF;
2236 for (i = 0; i < num_var_ranges; ++i) {
2237 unsigned short start_state, end_state;
2238
2239 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2240 continue;
2241
2242 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2243 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2244 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2245 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2246
2247 start_state = ((start & mask) == (base & mask));
2248 end_state = ((end & mask) == (base & mask));
2249 if (start_state != end_state)
2250 return 0xFE;
2251
2252 if ((start & mask) != (base & mask))
2253 continue;
2254
2255 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2256 if (prev_match == 0xFF) {
2257 prev_match = curr_match;
2258 continue;
2259 }
2260
2261 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2262 curr_match == MTRR_TYPE_UNCACHABLE)
2263 return MTRR_TYPE_UNCACHABLE;
2264
2265 if ((prev_match == MTRR_TYPE_WRBACK &&
2266 curr_match == MTRR_TYPE_WRTHROUGH) ||
2267 (prev_match == MTRR_TYPE_WRTHROUGH &&
2268 curr_match == MTRR_TYPE_WRBACK)) {
2269 prev_match = MTRR_TYPE_WRTHROUGH;
2270 curr_match = MTRR_TYPE_WRTHROUGH;
2271 }
2272
2273 if (prev_match != curr_match)
2274 return MTRR_TYPE_UNCACHABLE;
2275 }
2276
2277 if (prev_match != 0xFF)
2278 return prev_match;
2279
2280 return mtrr_state->def_type;
2281}
2282
4b12f0de 2283u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2284{
2285 u8 mtrr;
2286
2287 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2288 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2289 if (mtrr == 0xfe || mtrr == 0xff)
2290 mtrr = MTRR_TYPE_WRBACK;
2291 return mtrr;
2292}
4b12f0de 2293EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2294
9cf5cf5a
XG
2295static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2296{
2297 trace_kvm_mmu_unsync_page(sp);
2298 ++vcpu->kvm->stat.mmu_unsync;
2299 sp->unsync = 1;
2300
2301 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2302}
2303
2304static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2305{
4731d4c7 2306 struct kvm_mmu_page *s;
f41d335a 2307 struct hlist_node *node;
9cf5cf5a 2308
f41d335a 2309 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2310 if (s->unsync)
4731d4c7 2311 continue;
9cf5cf5a
XG
2312 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2313 __kvm_unsync_page(vcpu, s);
4731d4c7 2314 }
4731d4c7
MT
2315}
2316
2317static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2318 bool can_unsync)
2319{
9cf5cf5a 2320 struct kvm_mmu_page *s;
f41d335a 2321 struct hlist_node *node;
9cf5cf5a
XG
2322 bool need_unsync = false;
2323
f41d335a 2324 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2325 if (!can_unsync)
2326 return 1;
2327
9cf5cf5a 2328 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2329 return 1;
9cf5cf5a 2330
9bb4f6b1 2331 if (!s->unsync)
9cf5cf5a 2332 need_unsync = true;
4731d4c7 2333 }
9cf5cf5a
XG
2334 if (need_unsync)
2335 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2336 return 0;
2337}
2338
d555c333 2339static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2340 unsigned pte_access, int level,
c2d0ee46 2341 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2342 bool can_unsync, bool host_writable)
1c4f1fd6 2343{
6e7d0354 2344 u64 spte;
1e73f9dd 2345 int ret = 0;
64d4d521 2346
ce88decf
XG
2347 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2348 return 0;
2349
982c2565 2350 spte = PT_PRESENT_MASK;
947da538 2351 if (!speculative)
3201b5d9 2352 spte |= shadow_accessed_mask;
640d9b0d 2353
7b52345e
SY
2354 if (pte_access & ACC_EXEC_MASK)
2355 spte |= shadow_x_mask;
2356 else
2357 spte |= shadow_nx_mask;
49fde340 2358
1c4f1fd6 2359 if (pte_access & ACC_USER_MASK)
7b52345e 2360 spte |= shadow_user_mask;
49fde340 2361
852e3c19 2362 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2363 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2364 if (tdp_enabled)
4b12f0de
SY
2365 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2366 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2367
9bdbba13 2368 if (host_writable)
1403283a 2369 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2370 else
2371 pte_access &= ~ACC_WRITE_MASK;
1403283a 2372
35149e21 2373 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2374
c2288505 2375 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2376
c2193463 2377 /*
7751babd
XG
2378 * Other vcpu creates new sp in the window between
2379 * mapping_level() and acquiring mmu-lock. We can
2380 * allow guest to retry the access, the mapping can
2381 * be fixed if guest refault.
c2193463 2382 */
852e3c19 2383 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2384 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2385 goto done;
38187c83 2386
49fde340 2387 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2388
ecc5589f
MT
2389 /*
2390 * Optimization: for pte sync, if spte was writable the hash
2391 * lookup is unnecessary (and expensive). Write protection
2392 * is responsibility of mmu_get_page / kvm_sync_page.
2393 * Same reasoning can be applied to dirty page accounting.
2394 */
8dae4445 2395 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2396 goto set_pte;
2397
4731d4c7 2398 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2399 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2400 __func__, gfn);
1e73f9dd 2401 ret = 1;
1c4f1fd6 2402 pte_access &= ~ACC_WRITE_MASK;
49fde340 2403 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2404 }
2405 }
2406
1c4f1fd6
AK
2407 if (pte_access & ACC_WRITE_MASK)
2408 mark_page_dirty(vcpu->kvm, gfn);
2409
38187c83 2410set_pte:
6e7d0354 2411 if (mmu_spte_update(sptep, spte))
b330aa0c 2412 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2413done:
1e73f9dd
MT
2414 return ret;
2415}
2416
d555c333 2417static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2418 unsigned pt_access, unsigned pte_access,
c2288505
XG
2419 int write_fault, int *emulate, int level, gfn_t gfn,
2420 pfn_t pfn, bool speculative, bool host_writable)
1e73f9dd
MT
2421{
2422 int was_rmapped = 0;
53a27b39 2423 int rmap_count;
1e73f9dd 2424
c2288505 2425 pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
d555c333 2426 __func__, *sptep, pt_access,
c2288505 2427 write_fault, gfn);
1e73f9dd 2428
d555c333 2429 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2430 /*
2431 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2432 * the parent of the now unreachable PTE.
2433 */
852e3c19
JR
2434 if (level > PT_PAGE_TABLE_LEVEL &&
2435 !is_large_pte(*sptep)) {
1e73f9dd 2436 struct kvm_mmu_page *child;
d555c333 2437 u64 pte = *sptep;
1e73f9dd
MT
2438
2439 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2440 drop_parent_pte(child, sptep);
3be2264b 2441 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2442 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2443 pgprintk("hfn old %llx new %llx\n",
d555c333 2444 spte_to_pfn(*sptep), pfn);
c3707958 2445 drop_spte(vcpu->kvm, sptep);
91546356 2446 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2447 } else
2448 was_rmapped = 1;
1e73f9dd 2449 }
852e3c19 2450
c2288505
XG
2451 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2452 true, host_writable)) {
1e73f9dd 2453 if (write_fault)
b90a0e6c 2454 *emulate = 1;
5304efde 2455 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2456 }
1e73f9dd 2457
ce88decf
XG
2458 if (unlikely(is_mmio_spte(*sptep) && emulate))
2459 *emulate = 1;
2460
d555c333 2461 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2462 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2463 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2464 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2465 *sptep, sptep);
d555c333 2466 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2467 ++vcpu->kvm->stat.lpages;
2468
ffb61bb3 2469 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2470 if (!was_rmapped) {
2471 rmap_count = rmap_add(vcpu, sptep, gfn);
2472 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2473 rmap_recycle(vcpu, sptep, gfn);
2474 }
1c4f1fd6 2475 }
cb9aaa30 2476
f3ac1a4b 2477 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2478}
2479
6aa8b732
AK
2480static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2481{
e676505a 2482 mmu_free_roots(vcpu);
6aa8b732
AK
2483}
2484
a052b42b
XG
2485static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2486{
2487 int bit7;
2488
2489 bit7 = (gpte >> 7) & 1;
2490 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2491}
2492
957ed9ef
XG
2493static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2494 bool no_dirty_log)
2495{
2496 struct kvm_memory_slot *slot;
957ed9ef 2497
5d163b1c 2498 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2499 if (!slot)
6c8ee57b 2500 return KVM_PFN_ERR_FAULT;
957ed9ef 2501
037d92dc 2502 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2503}
2504
a052b42b
XG
2505static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2506 struct kvm_mmu_page *sp, u64 *spte,
2507 u64 gpte)
2508{
2509 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2510 goto no_present;
2511
2512 if (!is_present_gpte(gpte))
2513 goto no_present;
2514
2515 if (!(gpte & PT_ACCESSED_MASK))
2516 goto no_present;
2517
2518 return false;
2519
2520no_present:
2521 drop_spte(vcpu->kvm, spte);
2522 return true;
2523}
2524
957ed9ef
XG
2525static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2526 struct kvm_mmu_page *sp,
2527 u64 *start, u64 *end)
2528{
2529 struct page *pages[PTE_PREFETCH_NUM];
2530 unsigned access = sp->role.access;
2531 int i, ret;
2532 gfn_t gfn;
2533
2534 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2535 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2536 return -1;
2537
2538 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2539 if (ret <= 0)
2540 return -1;
2541
2542 for (i = 0; i < ret; i++, gfn++, start++)
c2288505
XG
2543 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2544 sp->role.level, gfn, page_to_pfn(pages[i]),
2545 true, true);
957ed9ef
XG
2546
2547 return 0;
2548}
2549
2550static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2551 struct kvm_mmu_page *sp, u64 *sptep)
2552{
2553 u64 *spte, *start = NULL;
2554 int i;
2555
2556 WARN_ON(!sp->role.direct);
2557
2558 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2559 spte = sp->spt + i;
2560
2561 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2562 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2563 if (!start)
2564 continue;
2565 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2566 break;
2567 start = NULL;
2568 } else if (!start)
2569 start = spte;
2570 }
2571}
2572
2573static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2574{
2575 struct kvm_mmu_page *sp;
2576
2577 /*
2578 * Since it's no accessed bit on EPT, it's no way to
2579 * distinguish between actually accessed translations
2580 * and prefetched, so disable pte prefetch if EPT is
2581 * enabled.
2582 */
2583 if (!shadow_accessed_mask)
2584 return;
2585
2586 sp = page_header(__pa(sptep));
2587 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2588 return;
2589
2590 __direct_pte_prefetch(vcpu, sp, sptep);
2591}
2592
9f652d21 2593static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2594 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2595 bool prefault)
140754bc 2596{
9f652d21 2597 struct kvm_shadow_walk_iterator iterator;
140754bc 2598 struct kvm_mmu_page *sp;
b90a0e6c 2599 int emulate = 0;
140754bc 2600 gfn_t pseudo_gfn;
6aa8b732 2601
9f652d21 2602 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2603 if (iterator.level == level) {
612819c3
MT
2604 unsigned pte_access = ACC_ALL;
2605
612819c3 2606 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
c2288505
XG
2607 write, &emulate, level, gfn, pfn,
2608 prefault, map_writable);
957ed9ef 2609 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2610 ++vcpu->stat.pf_fixed;
2611 break;
6aa8b732
AK
2612 }
2613
c3707958 2614 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2615 u64 base_addr = iterator.addr;
2616
2617 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2618 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2619 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2620 iterator.level - 1,
2621 1, ACC_ALL, iterator.sptep);
140754bc 2622
1df9f2dc
XG
2623 mmu_spte_set(iterator.sptep,
2624 __pa(sp->spt)
2625 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2626 | shadow_user_mask | shadow_x_mask
2627 | shadow_accessed_mask);
9f652d21
AK
2628 }
2629 }
b90a0e6c 2630 return emulate;
6aa8b732
AK
2631}
2632
77db5cbd 2633static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2634{
77db5cbd
HY
2635 siginfo_t info;
2636
2637 info.si_signo = SIGBUS;
2638 info.si_errno = 0;
2639 info.si_code = BUS_MCEERR_AR;
2640 info.si_addr = (void __user *)address;
2641 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2642
77db5cbd 2643 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2644}
2645
d7c55201 2646static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2647{
4d8b81ab
XG
2648 /*
2649 * Do not cache the mmio info caused by writing the readonly gfn
2650 * into the spte otherwise read access on readonly gfn also can
2651 * caused mmio page fault and treat it as mmio access.
2652 * Return 1 to tell kvm to emulate it.
2653 */
2654 if (pfn == KVM_PFN_ERR_RO_FAULT)
2655 return 1;
2656
e6c1502b 2657 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2658 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2659 return 0;
d7c55201 2660 }
edba23e5 2661
d7c55201 2662 return -EFAULT;
bf998156
HY
2663}
2664
936a5fe6
AA
2665static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2666 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2667{
2668 pfn_t pfn = *pfnp;
2669 gfn_t gfn = *gfnp;
2670 int level = *levelp;
2671
2672 /*
2673 * Check if it's a transparent hugepage. If this would be an
2674 * hugetlbfs page, level wouldn't be set to
2675 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2676 * here.
2677 */
81c52c56 2678 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2679 level == PT_PAGE_TABLE_LEVEL &&
2680 PageTransCompound(pfn_to_page(pfn)) &&
2681 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2682 unsigned long mask;
2683 /*
2684 * mmu_notifier_retry was successful and we hold the
2685 * mmu_lock here, so the pmd can't become splitting
2686 * from under us, and in turn
2687 * __split_huge_page_refcount() can't run from under
2688 * us and we can safely transfer the refcount from
2689 * PG_tail to PG_head as we switch the pfn to tail to
2690 * head.
2691 */
2692 *levelp = level = PT_DIRECTORY_LEVEL;
2693 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2694 VM_BUG_ON((gfn & mask) != (pfn & mask));
2695 if (pfn & mask) {
2696 gfn &= ~mask;
2697 *gfnp = gfn;
2698 kvm_release_pfn_clean(pfn);
2699 pfn &= ~mask;
c3586667 2700 kvm_get_pfn(pfn);
936a5fe6
AA
2701 *pfnp = pfn;
2702 }
2703 }
2704}
2705
d7c55201
XG
2706static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2707 pfn_t pfn, unsigned access, int *ret_val)
2708{
2709 bool ret = true;
2710
2711 /* The pfn is invalid, report the error! */
81c52c56 2712 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2713 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2714 goto exit;
2715 }
2716
ce88decf 2717 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2718 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2719
2720 ret = false;
2721exit:
2722 return ret;
2723}
2724
c7ba5b48
XG
2725static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2726{
2727 /*
2728 * #PF can be fast only if the shadow page table is present and it
2729 * is caused by write-protect, that means we just need change the
2730 * W bit of the spte which can be done out of mmu-lock.
2731 */
2732 if (!(error_code & PFERR_PRESENT_MASK) ||
2733 !(error_code & PFERR_WRITE_MASK))
2734 return false;
2735
2736 return true;
2737}
2738
2739static bool
2740fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2741{
2742 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2743 gfn_t gfn;
2744
2745 WARN_ON(!sp->role.direct);
2746
2747 /*
2748 * The gfn of direct spte is stable since it is calculated
2749 * by sp->gfn.
2750 */
2751 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2752
2753 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2754 mark_page_dirty(vcpu->kvm, gfn);
2755
2756 return true;
2757}
2758
2759/*
2760 * Return value:
2761 * - true: let the vcpu to access on the same address again.
2762 * - false: let the real page fault path to fix it.
2763 */
2764static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2765 u32 error_code)
2766{
2767 struct kvm_shadow_walk_iterator iterator;
2768 bool ret = false;
2769 u64 spte = 0ull;
2770
2771 if (!page_fault_can_be_fast(vcpu, error_code))
2772 return false;
2773
2774 walk_shadow_page_lockless_begin(vcpu);
2775 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2776 if (!is_shadow_present_pte(spte) || iterator.level < level)
2777 break;
2778
2779 /*
2780 * If the mapping has been changed, let the vcpu fault on the
2781 * same address again.
2782 */
2783 if (!is_rmap_spte(spte)) {
2784 ret = true;
2785 goto exit;
2786 }
2787
2788 if (!is_last_spte(spte, level))
2789 goto exit;
2790
2791 /*
2792 * Check if it is a spurious fault caused by TLB lazily flushed.
2793 *
2794 * Need not check the access of upper level table entries since
2795 * they are always ACC_ALL.
2796 */
2797 if (is_writable_pte(spte)) {
2798 ret = true;
2799 goto exit;
2800 }
2801
2802 /*
2803 * Currently, to simplify the code, only the spte write-protected
2804 * by dirty-log can be fast fixed.
2805 */
2806 if (!spte_is_locklessly_modifiable(spte))
2807 goto exit;
2808
2809 /*
2810 * Currently, fast page fault only works for direct mapping since
2811 * the gfn is not stable for indirect shadow page.
2812 * See Documentation/virtual/kvm/locking.txt to get more detail.
2813 */
2814 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2815exit:
a72faf25
XG
2816 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2817 spte, ret);
c7ba5b48
XG
2818 walk_shadow_page_lockless_end(vcpu);
2819
2820 return ret;
2821}
2822
78b2c54a 2823static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2824 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2825
c7ba5b48
XG
2826static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2827 gfn_t gfn, bool prefault)
10589a46
MT
2828{
2829 int r;
852e3c19 2830 int level;
936a5fe6 2831 int force_pt_level;
35149e21 2832 pfn_t pfn;
e930bffe 2833 unsigned long mmu_seq;
c7ba5b48 2834 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2835
936a5fe6
AA
2836 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2837 if (likely(!force_pt_level)) {
2838 level = mapping_level(vcpu, gfn);
2839 /*
2840 * This path builds a PAE pagetable - so we can map
2841 * 2mb pages at maximum. Therefore check if the level
2842 * is larger than that.
2843 */
2844 if (level > PT_DIRECTORY_LEVEL)
2845 level = PT_DIRECTORY_LEVEL;
852e3c19 2846
936a5fe6
AA
2847 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2848 } else
2849 level = PT_PAGE_TABLE_LEVEL;
05da4558 2850
c7ba5b48
XG
2851 if (fast_page_fault(vcpu, v, level, error_code))
2852 return 0;
2853
e930bffe 2854 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2855 smp_rmb();
060c2abe 2856
78b2c54a 2857 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2858 return 0;
aaee2c94 2859
d7c55201
XG
2860 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2861 return r;
d196e343 2862
aaee2c94 2863 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2864 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2865 goto out_unlock;
eb787d10 2866 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2867 if (likely(!force_pt_level))
2868 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2869 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2870 prefault);
aaee2c94
MT
2871 spin_unlock(&vcpu->kvm->mmu_lock);
2872
aaee2c94 2873
10589a46 2874 return r;
e930bffe
AA
2875
2876out_unlock:
2877 spin_unlock(&vcpu->kvm->mmu_lock);
2878 kvm_release_pfn_clean(pfn);
2879 return 0;
10589a46
MT
2880}
2881
2882
17ac10ad
AK
2883static void mmu_free_roots(struct kvm_vcpu *vcpu)
2884{
2885 int i;
4db35314 2886 struct kvm_mmu_page *sp;
d98ba053 2887 LIST_HEAD(invalid_list);
17ac10ad 2888
ad312c7c 2889 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2890 return;
aaee2c94 2891 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2892 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2893 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2894 vcpu->arch.mmu.direct_map)) {
ad312c7c 2895 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2896
4db35314
AK
2897 sp = page_header(root);
2898 --sp->root_count;
d98ba053
XG
2899 if (!sp->root_count && sp->role.invalid) {
2900 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2901 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2902 }
ad312c7c 2903 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2904 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2905 return;
2906 }
17ac10ad 2907 for (i = 0; i < 4; ++i) {
ad312c7c 2908 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2909
417726a3 2910 if (root) {
417726a3 2911 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2912 sp = page_header(root);
2913 --sp->root_count;
2e53d63a 2914 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2915 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2916 &invalid_list);
417726a3 2917 }
ad312c7c 2918 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2919 }
d98ba053 2920 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2921 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2922 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2923}
2924
8986ecc0
MT
2925static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2926{
2927 int ret = 0;
2928
2929 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2930 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2931 ret = 1;
2932 }
2933
2934 return ret;
2935}
2936
651dd37a
JR
2937static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2938{
2939 struct kvm_mmu_page *sp;
7ebaf15e 2940 unsigned i;
651dd37a
JR
2941
2942 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2943 spin_lock(&vcpu->kvm->mmu_lock);
2944 kvm_mmu_free_some_pages(vcpu);
2945 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2946 1, ACC_ALL, NULL);
2947 ++sp->root_count;
2948 spin_unlock(&vcpu->kvm->mmu_lock);
2949 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2950 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2951 for (i = 0; i < 4; ++i) {
2952 hpa_t root = vcpu->arch.mmu.pae_root[i];
2953
2954 ASSERT(!VALID_PAGE(root));
2955 spin_lock(&vcpu->kvm->mmu_lock);
2956 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2957 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2958 i << 30,
651dd37a
JR
2959 PT32_ROOT_LEVEL, 1, ACC_ALL,
2960 NULL);
2961 root = __pa(sp->spt);
2962 ++sp->root_count;
2963 spin_unlock(&vcpu->kvm->mmu_lock);
2964 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2965 }
6292757f 2966 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2967 } else
2968 BUG();
2969
2970 return 0;
2971}
2972
2973static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2974{
4db35314 2975 struct kvm_mmu_page *sp;
81407ca5
JR
2976 u64 pdptr, pm_mask;
2977 gfn_t root_gfn;
2978 int i;
3bb65a22 2979
5777ed34 2980 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2981
651dd37a
JR
2982 if (mmu_check_root(vcpu, root_gfn))
2983 return 1;
2984
2985 /*
2986 * Do we shadow a long mode page table? If so we need to
2987 * write-protect the guests page table root.
2988 */
2989 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2990 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2991
2992 ASSERT(!VALID_PAGE(root));
651dd37a 2993
8facbbff 2994 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2995 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2996 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2997 0, ACC_ALL, NULL);
4db35314
AK
2998 root = __pa(sp->spt);
2999 ++sp->root_count;
8facbbff 3000 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3001 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3002 return 0;
17ac10ad 3003 }
f87f9288 3004
651dd37a
JR
3005 /*
3006 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3007 * or a PAE 3-level page table. In either case we need to be aware that
3008 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3009 */
81407ca5
JR
3010 pm_mask = PT_PRESENT_MASK;
3011 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3012 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3013
17ac10ad 3014 for (i = 0; i < 4; ++i) {
ad312c7c 3015 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3016
3017 ASSERT(!VALID_PAGE(root));
ad312c7c 3018 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3019 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3020 if (!is_present_gpte(pdptr)) {
ad312c7c 3021 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3022 continue;
3023 }
6de4f3ad 3024 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3025 if (mmu_check_root(vcpu, root_gfn))
3026 return 1;
5a7388c2 3027 }
8facbbff 3028 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3029 kvm_mmu_free_some_pages(vcpu);
4db35314 3030 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3031 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3032 ACC_ALL, NULL);
4db35314
AK
3033 root = __pa(sp->spt);
3034 ++sp->root_count;
8facbbff
AK
3035 spin_unlock(&vcpu->kvm->mmu_lock);
3036
81407ca5 3037 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3038 }
6292757f 3039 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3040
3041 /*
3042 * If we shadow a 32 bit page table with a long mode page
3043 * table we enter this path.
3044 */
3045 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3046 if (vcpu->arch.mmu.lm_root == NULL) {
3047 /*
3048 * The additional page necessary for this is only
3049 * allocated on demand.
3050 */
3051
3052 u64 *lm_root;
3053
3054 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3055 if (lm_root == NULL)
3056 return 1;
3057
3058 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3059
3060 vcpu->arch.mmu.lm_root = lm_root;
3061 }
3062
3063 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3064 }
3065
8986ecc0 3066 return 0;
17ac10ad
AK
3067}
3068
651dd37a
JR
3069static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3070{
3071 if (vcpu->arch.mmu.direct_map)
3072 return mmu_alloc_direct_roots(vcpu);
3073 else
3074 return mmu_alloc_shadow_roots(vcpu);
3075}
3076
0ba73cda
MT
3077static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3078{
3079 int i;
3080 struct kvm_mmu_page *sp;
3081
81407ca5
JR
3082 if (vcpu->arch.mmu.direct_map)
3083 return;
3084
0ba73cda
MT
3085 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3086 return;
6903074c 3087
bebb106a 3088 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3089 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3090 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3091 hpa_t root = vcpu->arch.mmu.root_hpa;
3092 sp = page_header(root);
3093 mmu_sync_children(vcpu, sp);
0375f7fa 3094 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3095 return;
3096 }
3097 for (i = 0; i < 4; ++i) {
3098 hpa_t root = vcpu->arch.mmu.pae_root[i];
3099
8986ecc0 3100 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3101 root &= PT64_BASE_ADDR_MASK;
3102 sp = page_header(root);
3103 mmu_sync_children(vcpu, sp);
3104 }
3105 }
0375f7fa 3106 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3107}
3108
3109void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3110{
3111 spin_lock(&vcpu->kvm->mmu_lock);
3112 mmu_sync_roots(vcpu);
6cffe8ca 3113 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3114}
3115
1871c602 3116static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3117 u32 access, struct x86_exception *exception)
6aa8b732 3118{
ab9ae313
AK
3119 if (exception)
3120 exception->error_code = 0;
6aa8b732
AK
3121 return vaddr;
3122}
3123
6539e738 3124static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3125 u32 access,
3126 struct x86_exception *exception)
6539e738 3127{
ab9ae313
AK
3128 if (exception)
3129 exception->error_code = 0;
6539e738
JR
3130 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3131}
3132
ce88decf
XG
3133static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3134{
3135 if (direct)
3136 return vcpu_match_mmio_gpa(vcpu, addr);
3137
3138 return vcpu_match_mmio_gva(vcpu, addr);
3139}
3140
3141
3142/*
3143 * On direct hosts, the last spte is only allows two states
3144 * for mmio page fault:
3145 * - It is the mmio spte
3146 * - It is zapped or it is being zapped.
3147 *
3148 * This function completely checks the spte when the last spte
3149 * is not the mmio spte.
3150 */
3151static bool check_direct_spte_mmio_pf(u64 spte)
3152{
3153 return __check_direct_spte_mmio_pf(spte);
3154}
3155
3156static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3157{
3158 struct kvm_shadow_walk_iterator iterator;
3159 u64 spte = 0ull;
3160
3161 walk_shadow_page_lockless_begin(vcpu);
3162 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3163 if (!is_shadow_present_pte(spte))
3164 break;
3165 walk_shadow_page_lockless_end(vcpu);
3166
3167 return spte;
3168}
3169
3170/*
3171 * If it is a real mmio page fault, return 1 and emulat the instruction
3172 * directly, return 0 to let CPU fault again on the address, -1 is
3173 * returned if bug is detected.
3174 */
3175int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3176{
3177 u64 spte;
3178
3179 if (quickly_check_mmio_pf(vcpu, addr, direct))
3180 return 1;
3181
3182 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3183
3184 if (is_mmio_spte(spte)) {
3185 gfn_t gfn = get_mmio_spte_gfn(spte);
3186 unsigned access = get_mmio_spte_access(spte);
3187
3188 if (direct)
3189 addr = 0;
4f022648
XG
3190
3191 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3192 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3193 return 1;
3194 }
3195
3196 /*
3197 * It's ok if the gva is remapped by other cpus on shadow guest,
3198 * it's a BUG if the gfn is not a mmio page.
3199 */
3200 if (direct && !check_direct_spte_mmio_pf(spte))
3201 return -1;
3202
3203 /*
3204 * If the page table is zapped by other cpus, let CPU fault again on
3205 * the address.
3206 */
3207 return 0;
3208}
3209EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3210
3211static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3212 u32 error_code, bool direct)
3213{
3214 int ret;
3215
3216 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3217 WARN_ON(ret < 0);
3218 return ret;
3219}
3220
6aa8b732 3221static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3222 u32 error_code, bool prefault)
6aa8b732 3223{
e833240f 3224 gfn_t gfn;
e2dec939 3225 int r;
6aa8b732 3226
b8688d51 3227 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3228
3229 if (unlikely(error_code & PFERR_RSVD_MASK))
3230 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3231
e2dec939
AK
3232 r = mmu_topup_memory_caches(vcpu);
3233 if (r)
3234 return r;
714b93da 3235
6aa8b732 3236 ASSERT(vcpu);
ad312c7c 3237 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3238
e833240f 3239 gfn = gva >> PAGE_SHIFT;
6aa8b732 3240
e833240f 3241 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3242 error_code, gfn, prefault);
6aa8b732
AK
3243}
3244
7e1fbeac 3245static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3246{
3247 struct kvm_arch_async_pf arch;
fb67e14f 3248
7c90705b 3249 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3250 arch.gfn = gfn;
c4806acd 3251 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3252 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3253
3254 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3255}
3256
3257static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3258{
3259 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3260 kvm_event_needs_reinjection(vcpu)))
3261 return false;
3262
3263 return kvm_x86_ops->interrupt_allowed(vcpu);
3264}
3265
78b2c54a 3266static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3267 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3268{
3269 bool async;
3270
612819c3 3271 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3272
3273 if (!async)
3274 return false; /* *pfn has correct page already */
3275
78b2c54a 3276 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3277 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3278 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3279 trace_kvm_async_pf_doublefault(gva, gfn);
3280 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3281 return true;
3282 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3283 return true;
3284 }
3285
612819c3 3286 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3287
3288 return false;
3289}
3290
56028d08 3291static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3292 bool prefault)
fb72d167 3293{
35149e21 3294 pfn_t pfn;
fb72d167 3295 int r;
852e3c19 3296 int level;
936a5fe6 3297 int force_pt_level;
05da4558 3298 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3299 unsigned long mmu_seq;
612819c3
MT
3300 int write = error_code & PFERR_WRITE_MASK;
3301 bool map_writable;
fb72d167
JR
3302
3303 ASSERT(vcpu);
3304 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3305
ce88decf
XG
3306 if (unlikely(error_code & PFERR_RSVD_MASK))
3307 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3308
fb72d167
JR
3309 r = mmu_topup_memory_caches(vcpu);
3310 if (r)
3311 return r;
3312
936a5fe6
AA
3313 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3314 if (likely(!force_pt_level)) {
3315 level = mapping_level(vcpu, gfn);
3316 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3317 } else
3318 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3319
c7ba5b48
XG
3320 if (fast_page_fault(vcpu, gpa, level, error_code))
3321 return 0;
3322
e930bffe 3323 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3324 smp_rmb();
af585b92 3325
78b2c54a 3326 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3327 return 0;
3328
d7c55201
XG
3329 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3330 return r;
3331
fb72d167 3332 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3333 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3334 goto out_unlock;
fb72d167 3335 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3336 if (likely(!force_pt_level))
3337 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3338 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3339 level, gfn, pfn, prefault);
fb72d167 3340 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3341
3342 return r;
e930bffe
AA
3343
3344out_unlock:
3345 spin_unlock(&vcpu->kvm->mmu_lock);
3346 kvm_release_pfn_clean(pfn);
3347 return 0;
fb72d167
JR
3348}
3349
6aa8b732
AK
3350static void nonpaging_free(struct kvm_vcpu *vcpu)
3351{
17ac10ad 3352 mmu_free_roots(vcpu);
6aa8b732
AK
3353}
3354
52fde8df
JR
3355static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3356 struct kvm_mmu *context)
6aa8b732 3357{
6aa8b732
AK
3358 context->new_cr3 = nonpaging_new_cr3;
3359 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3360 context->gva_to_gpa = nonpaging_gva_to_gpa;
3361 context->free = nonpaging_free;
e8bc217a 3362 context->sync_page = nonpaging_sync_page;
a7052897 3363 context->invlpg = nonpaging_invlpg;
0f53b5b1 3364 context->update_pte = nonpaging_update_pte;
cea0f0e7 3365 context->root_level = 0;
6aa8b732 3366 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3367 context->root_hpa = INVALID_PAGE;
c5a78f2b 3368 context->direct_map = true;
2d48a985 3369 context->nx = false;
6aa8b732
AK
3370 return 0;
3371}
3372
d835dfec 3373void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3374{
1165f5fe 3375 ++vcpu->stat.tlb_flush;
a8eeb04a 3376 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3377}
3378
3379static void paging_new_cr3(struct kvm_vcpu *vcpu)
3380{
9f8fe504 3381 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3382 mmu_free_roots(vcpu);
6aa8b732
AK
3383}
3384
5777ed34
JR
3385static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3386{
9f8fe504 3387 return kvm_read_cr3(vcpu);
5777ed34
JR
3388}
3389
6389ee94
AK
3390static void inject_page_fault(struct kvm_vcpu *vcpu,
3391 struct x86_exception *fault)
6aa8b732 3392{
6389ee94 3393 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3394}
3395
6aa8b732
AK
3396static void paging_free(struct kvm_vcpu *vcpu)
3397{
3398 nonpaging_free(vcpu);
3399}
3400
8ea667f2
AK
3401static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3402{
3403 unsigned mask;
3404
3405 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3406
3407 mask = (unsigned)~ACC_WRITE_MASK;
3408 /* Allow write access to dirty gptes */
3409 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3410 *access &= mask;
3411}
3412
ce88decf
XG
3413static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3414 int *nr_present)
3415{
3416 if (unlikely(is_mmio_spte(*sptep))) {
3417 if (gfn != get_mmio_spte_gfn(*sptep)) {
3418 mmu_spte_clear_no_track(sptep);
3419 return true;
3420 }
3421
3422 (*nr_present)++;
3423 mark_mmio_spte(sptep, gfn, access);
3424 return true;
3425 }
3426
3427 return false;
3428}
3429
3d34adec
AK
3430static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3431{
3432 unsigned access;
3433
3434 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3435 access &= ~(gpte >> PT64_NX_SHIFT);
3436
3437 return access;
3438}
3439
6fd01b71
AK
3440static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3441{
3442 unsigned index;
3443
3444 index = level - 1;
3445 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3446 return mmu->last_pte_bitmap & (1 << index);
3447}
3448
6aa8b732
AK
3449#define PTTYPE 64
3450#include "paging_tmpl.h"
3451#undef PTTYPE
3452
3453#define PTTYPE 32
3454#include "paging_tmpl.h"
3455#undef PTTYPE
3456
52fde8df 3457static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3458 struct kvm_mmu *context)
82725b20 3459{
82725b20
DE
3460 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3461 u64 exb_bit_rsvd = 0;
3462
2d48a985 3463 if (!context->nx)
82725b20 3464 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3465 switch (context->root_level) {
82725b20
DE
3466 case PT32_ROOT_LEVEL:
3467 /* no rsvd bits for 2 level 4K page table entries */
3468 context->rsvd_bits_mask[0][1] = 0;
3469 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3470 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3471
3472 if (!is_pse(vcpu)) {
3473 context->rsvd_bits_mask[1][1] = 0;
3474 break;
3475 }
3476
82725b20
DE
3477 if (is_cpuid_PSE36())
3478 /* 36bits PSE 4MB page */
3479 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3480 else
3481 /* 32 bits PSE 4MB page */
3482 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3483 break;
3484 case PT32E_ROOT_LEVEL:
20c466b5
DE
3485 context->rsvd_bits_mask[0][2] =
3486 rsvd_bits(maxphyaddr, 63) |
3487 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3488 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3489 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3490 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3491 rsvd_bits(maxphyaddr, 62); /* PTE */
3492 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3493 rsvd_bits(maxphyaddr, 62) |
3494 rsvd_bits(13, 20); /* large page */
f815bce8 3495 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3496 break;
3497 case PT64_ROOT_LEVEL:
3498 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3499 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3500 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3501 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3502 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3503 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3504 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3505 rsvd_bits(maxphyaddr, 51);
3506 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3507 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3508 rsvd_bits(maxphyaddr, 51) |
3509 rsvd_bits(13, 29);
82725b20 3510 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3511 rsvd_bits(maxphyaddr, 51) |
3512 rsvd_bits(13, 20); /* large page */
f815bce8 3513 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3514 break;
3515 }
3516}
3517
97d64b78
AK
3518static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3519{
3520 unsigned bit, byte, pfec;
3521 u8 map;
3522 bool fault, x, w, u, wf, uf, ff, smep;
3523
3524 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3525 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3526 pfec = byte << 1;
3527 map = 0;
3528 wf = pfec & PFERR_WRITE_MASK;
3529 uf = pfec & PFERR_USER_MASK;
3530 ff = pfec & PFERR_FETCH_MASK;
3531 for (bit = 0; bit < 8; ++bit) {
3532 x = bit & ACC_EXEC_MASK;
3533 w = bit & ACC_WRITE_MASK;
3534 u = bit & ACC_USER_MASK;
3535
3536 /* Not really needed: !nx will cause pte.nx to fault */
3537 x |= !mmu->nx;
3538 /* Allow supervisor writes if !cr0.wp */
3539 w |= !is_write_protection(vcpu) && !uf;
3540 /* Disallow supervisor fetches of user code if cr4.smep */
3541 x &= !(smep && u && !uf);
3542
3543 fault = (ff && !x) || (uf && !u) || (wf && !w);
3544 map |= fault << bit;
3545 }
3546 mmu->permissions[byte] = map;
3547 }
3548}
3549
6fd01b71
AK
3550static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3551{
3552 u8 map;
3553 unsigned level, root_level = mmu->root_level;
3554 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3555
3556 if (root_level == PT32E_ROOT_LEVEL)
3557 --root_level;
3558 /* PT_PAGE_TABLE_LEVEL always terminates */
3559 map = 1 | (1 << ps_set_index);
3560 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3561 if (level <= PT_PDPE_LEVEL
3562 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3563 map |= 1 << (ps_set_index | (level - 1));
3564 }
3565 mmu->last_pte_bitmap = map;
3566}
3567
52fde8df
JR
3568static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3569 struct kvm_mmu *context,
3570 int level)
6aa8b732 3571{
2d48a985 3572 context->nx = is_nx(vcpu);
4d6931c3 3573 context->root_level = level;
2d48a985 3574
4d6931c3 3575 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3576 update_permission_bitmask(vcpu, context);
6fd01b71 3577 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3578
3579 ASSERT(is_pae(vcpu));
3580 context->new_cr3 = paging_new_cr3;
3581 context->page_fault = paging64_page_fault;
6aa8b732 3582 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3583 context->sync_page = paging64_sync_page;
a7052897 3584 context->invlpg = paging64_invlpg;
0f53b5b1 3585 context->update_pte = paging64_update_pte;
6aa8b732 3586 context->free = paging_free;
17ac10ad 3587 context->shadow_root_level = level;
17c3ba9d 3588 context->root_hpa = INVALID_PAGE;
c5a78f2b 3589 context->direct_map = false;
6aa8b732
AK
3590 return 0;
3591}
3592
52fde8df
JR
3593static int paging64_init_context(struct kvm_vcpu *vcpu,
3594 struct kvm_mmu *context)
17ac10ad 3595{
52fde8df 3596 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3597}
3598
52fde8df
JR
3599static int paging32_init_context(struct kvm_vcpu *vcpu,
3600 struct kvm_mmu *context)
6aa8b732 3601{
2d48a985 3602 context->nx = false;
4d6931c3 3603 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3604
4d6931c3 3605 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3606 update_permission_bitmask(vcpu, context);
6fd01b71 3607 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3608
3609 context->new_cr3 = paging_new_cr3;
3610 context->page_fault = paging32_page_fault;
6aa8b732
AK
3611 context->gva_to_gpa = paging32_gva_to_gpa;
3612 context->free = paging_free;
e8bc217a 3613 context->sync_page = paging32_sync_page;
a7052897 3614 context->invlpg = paging32_invlpg;
0f53b5b1 3615 context->update_pte = paging32_update_pte;
6aa8b732 3616 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3617 context->root_hpa = INVALID_PAGE;
c5a78f2b 3618 context->direct_map = false;
6aa8b732
AK
3619 return 0;
3620}
3621
52fde8df
JR
3622static int paging32E_init_context(struct kvm_vcpu *vcpu,
3623 struct kvm_mmu *context)
6aa8b732 3624{
52fde8df 3625 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3626}
3627
fb72d167
JR
3628static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3629{
14dfe855 3630 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3631
c445f8ef 3632 context->base_role.word = 0;
fb72d167
JR
3633 context->new_cr3 = nonpaging_new_cr3;
3634 context->page_fault = tdp_page_fault;
3635 context->free = nonpaging_free;
e8bc217a 3636 context->sync_page = nonpaging_sync_page;
a7052897 3637 context->invlpg = nonpaging_invlpg;
0f53b5b1 3638 context->update_pte = nonpaging_update_pte;
67253af5 3639 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3640 context->root_hpa = INVALID_PAGE;
c5a78f2b 3641 context->direct_map = true;
1c97f0a0 3642 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3643 context->get_cr3 = get_cr3;
e4e517b4 3644 context->get_pdptr = kvm_pdptr_read;
cb659db8 3645 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3646
3647 if (!is_paging(vcpu)) {
2d48a985 3648 context->nx = false;
fb72d167
JR
3649 context->gva_to_gpa = nonpaging_gva_to_gpa;
3650 context->root_level = 0;
3651 } else if (is_long_mode(vcpu)) {
2d48a985 3652 context->nx = is_nx(vcpu);
fb72d167 3653 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3654 reset_rsvds_bits_mask(vcpu, context);
3655 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3656 } else if (is_pae(vcpu)) {
2d48a985 3657 context->nx = is_nx(vcpu);
fb72d167 3658 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3659 reset_rsvds_bits_mask(vcpu, context);
3660 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3661 } else {
2d48a985 3662 context->nx = false;
fb72d167 3663 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3664 reset_rsvds_bits_mask(vcpu, context);
3665 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3666 }
3667
97d64b78 3668 update_permission_bitmask(vcpu, context);
6fd01b71 3669 update_last_pte_bitmap(vcpu, context);
97d64b78 3670
fb72d167
JR
3671 return 0;
3672}
3673
52fde8df 3674int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3675{
a770f6f2 3676 int r;
411c588d 3677 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3678 ASSERT(vcpu);
ad312c7c 3679 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3680
3681 if (!is_paging(vcpu))
52fde8df 3682 r = nonpaging_init_context(vcpu, context);
a9058ecd 3683 else if (is_long_mode(vcpu))
52fde8df 3684 r = paging64_init_context(vcpu, context);
6aa8b732 3685 else if (is_pae(vcpu))
52fde8df 3686 r = paging32E_init_context(vcpu, context);
6aa8b732 3687 else
52fde8df 3688 r = paging32_init_context(vcpu, context);
a770f6f2 3689
5b7e0102 3690 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3691 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3692 vcpu->arch.mmu.base_role.smep_andnot_wp
3693 = smep && !is_write_protection(vcpu);
52fde8df
JR
3694
3695 return r;
3696}
3697EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3698
3699static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3700{
14dfe855 3701 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3702
14dfe855
JR
3703 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3704 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3705 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3706 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3707
3708 return r;
6aa8b732
AK
3709}
3710
02f59dc9
JR
3711static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3712{
3713 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3714
3715 g_context->get_cr3 = get_cr3;
e4e517b4 3716 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3717 g_context->inject_page_fault = kvm_inject_page_fault;
3718
3719 /*
3720 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3721 * translation of l2_gpa to l1_gpa addresses is done using the
3722 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3723 * functions between mmu and nested_mmu are swapped.
3724 */
3725 if (!is_paging(vcpu)) {
2d48a985 3726 g_context->nx = false;
02f59dc9
JR
3727 g_context->root_level = 0;
3728 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3729 } else if (is_long_mode(vcpu)) {
2d48a985 3730 g_context->nx = is_nx(vcpu);
02f59dc9 3731 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3732 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3733 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3734 } else if (is_pae(vcpu)) {
2d48a985 3735 g_context->nx = is_nx(vcpu);
02f59dc9 3736 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3737 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3738 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3739 } else {
2d48a985 3740 g_context->nx = false;
02f59dc9 3741 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3742 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3743 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3744 }
3745
97d64b78 3746 update_permission_bitmask(vcpu, g_context);
6fd01b71 3747 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3748
02f59dc9
JR
3749 return 0;
3750}
3751
fb72d167
JR
3752static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3753{
02f59dc9
JR
3754 if (mmu_is_nested(vcpu))
3755 return init_kvm_nested_mmu(vcpu);
3756 else if (tdp_enabled)
fb72d167
JR
3757 return init_kvm_tdp_mmu(vcpu);
3758 else
3759 return init_kvm_softmmu(vcpu);
3760}
3761
6aa8b732
AK
3762static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3763{
3764 ASSERT(vcpu);
62ad0755
SY
3765 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3766 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3767 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3768}
3769
3770int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3771{
3772 destroy_kvm_mmu(vcpu);
f8f7e5ee 3773 return init_kvm_mmu(vcpu);
17c3ba9d 3774}
8668a3c4 3775EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3776
3777int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3778{
714b93da
AK
3779 int r;
3780
e2dec939 3781 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3782 if (r)
3783 goto out;
8986ecc0 3784 r = mmu_alloc_roots(vcpu);
8facbbff 3785 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3786 mmu_sync_roots(vcpu);
aaee2c94 3787 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3788 if (r)
3789 goto out;
3662cb1c 3790 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3791 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3792out:
3793 return r;
6aa8b732 3794}
17c3ba9d
AK
3795EXPORT_SYMBOL_GPL(kvm_mmu_load);
3796
3797void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3798{
3799 mmu_free_roots(vcpu);
3800}
4b16184c 3801EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3802
0028425f 3803static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3804 struct kvm_mmu_page *sp, u64 *spte,
3805 const void *new)
0028425f 3806{
30945387 3807 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3808 ++vcpu->kvm->stat.mmu_pde_zapped;
3809 return;
30945387 3810 }
0028425f 3811
4cee5764 3812 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3813 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3814}
3815
79539cec
AK
3816static bool need_remote_flush(u64 old, u64 new)
3817{
3818 if (!is_shadow_present_pte(old))
3819 return false;
3820 if (!is_shadow_present_pte(new))
3821 return true;
3822 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3823 return true;
3824 old ^= PT64_NX_MASK;
3825 new ^= PT64_NX_MASK;
3826 return (old & ~new & PT64_PERM_MASK) != 0;
3827}
3828
0671a8e7
XG
3829static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3830 bool remote_flush, bool local_flush)
79539cec 3831{
0671a8e7
XG
3832 if (zap_page)
3833 return;
3834
3835 if (remote_flush)
79539cec 3836 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3837 else if (local_flush)
79539cec
AK
3838 kvm_mmu_flush_tlb(vcpu);
3839}
3840
889e5cbc
XG
3841static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3842 const u8 *new, int *bytes)
da4a00f0 3843{
889e5cbc
XG
3844 u64 gentry;
3845 int r;
72016f3a 3846
72016f3a
AK
3847 /*
3848 * Assume that the pte write on a page table of the same type
49b26e26
XG
3849 * as the current vcpu paging mode since we update the sptes only
3850 * when they have the same mode.
72016f3a 3851 */
889e5cbc 3852 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3853 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3854 *gpa &= ~(gpa_t)7;
3855 *bytes = 8;
3856 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3857 if (r)
3858 gentry = 0;
08e850c6
AK
3859 new = (const u8 *)&gentry;
3860 }
3861
889e5cbc 3862 switch (*bytes) {
08e850c6
AK
3863 case 4:
3864 gentry = *(const u32 *)new;
3865 break;
3866 case 8:
3867 gentry = *(const u64 *)new;
3868 break;
3869 default:
3870 gentry = 0;
3871 break;
72016f3a
AK
3872 }
3873
889e5cbc
XG
3874 return gentry;
3875}
3876
3877/*
3878 * If we're seeing too many writes to a page, it may no longer be a page table,
3879 * or we may be forking, in which case it is better to unmap the page.
3880 */
a138fe75 3881static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3882{
a30f47cb
XG
3883 /*
3884 * Skip write-flooding detected for the sp whose level is 1, because
3885 * it can become unsync, then the guest page is not write-protected.
3886 */
f71fa31f 3887 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3888 return false;
3246af0e 3889
a30f47cb 3890 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3891}
3892
3893/*
3894 * Misaligned accesses are too much trouble to fix up; also, they usually
3895 * indicate a page is not used as a page table.
3896 */
3897static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3898 int bytes)
3899{
3900 unsigned offset, pte_size, misaligned;
3901
3902 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3903 gpa, bytes, sp->role.word);
3904
3905 offset = offset_in_page(gpa);
3906 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3907
3908 /*
3909 * Sometimes, the OS only writes the last one bytes to update status
3910 * bits, for example, in linux, andb instruction is used in clear_bit().
3911 */
3912 if (!(offset & (pte_size - 1)) && bytes == 1)
3913 return false;
3914
889e5cbc
XG
3915 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3916 misaligned |= bytes < 4;
3917
3918 return misaligned;
3919}
3920
3921static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3922{
3923 unsigned page_offset, quadrant;
3924 u64 *spte;
3925 int level;
3926
3927 page_offset = offset_in_page(gpa);
3928 level = sp->role.level;
3929 *nspte = 1;
3930 if (!sp->role.cr4_pae) {
3931 page_offset <<= 1; /* 32->64 */
3932 /*
3933 * A 32-bit pde maps 4MB while the shadow pdes map
3934 * only 2MB. So we need to double the offset again
3935 * and zap two pdes instead of one.
3936 */
3937 if (level == PT32_ROOT_LEVEL) {
3938 page_offset &= ~7; /* kill rounding error */
3939 page_offset <<= 1;
3940 *nspte = 2;
3941 }
3942 quadrant = page_offset >> PAGE_SHIFT;
3943 page_offset &= ~PAGE_MASK;
3944 if (quadrant != sp->role.quadrant)
3945 return NULL;
3946 }
3947
3948 spte = &sp->spt[page_offset / sizeof(*spte)];
3949 return spte;
3950}
3951
3952void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3953 const u8 *new, int bytes)
3954{
3955 gfn_t gfn = gpa >> PAGE_SHIFT;
3956 union kvm_mmu_page_role mask = { .word = 0 };
3957 struct kvm_mmu_page *sp;
3958 struct hlist_node *node;
3959 LIST_HEAD(invalid_list);
3960 u64 entry, gentry, *spte;
3961 int npte;
a30f47cb 3962 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3963
3964 /*
3965 * If we don't have indirect shadow pages, it means no page is
3966 * write-protected, so we can exit simply.
3967 */
3968 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3969 return;
3970
3971 zap_page = remote_flush = local_flush = false;
3972
3973 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3974
3975 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3976
3977 /*
3978 * No need to care whether allocation memory is successful
3979 * or not since pte prefetch is skiped if it does not have
3980 * enough objects in the cache.
3981 */
3982 mmu_topup_memory_caches(vcpu);
3983
3984 spin_lock(&vcpu->kvm->mmu_lock);
3985 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3986 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3987
fa1de2bf 3988 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3989 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3990 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3991 detect_write_flooding(sp)) {
0671a8e7 3992 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3993 &invalid_list);
4cee5764 3994 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3995 continue;
3996 }
889e5cbc
XG
3997
3998 spte = get_written_sptes(sp, gpa, &npte);
3999 if (!spte)
4000 continue;
4001
0671a8e7 4002 local_flush = true;
ac1b714e 4003 while (npte--) {
79539cec 4004 entry = *spte;
38e3b2b2 4005 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4006 if (gentry &&
4007 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4008 & mask.word) && rmap_can_add(vcpu))
7c562522 4009 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4010 if (need_remote_flush(entry, *spte))
0671a8e7 4011 remote_flush = true;
ac1b714e 4012 ++spte;
9b7a0325 4013 }
9b7a0325 4014 }
0671a8e7 4015 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4016 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4017 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4018 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4019}
4020
a436036b
AK
4021int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4022{
10589a46
MT
4023 gpa_t gpa;
4024 int r;
a436036b 4025
c5a78f2b 4026 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4027 return 0;
4028
1871c602 4029 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4030
10589a46 4031 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4032
10589a46 4033 return r;
a436036b 4034}
577bdc49 4035EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4036
22d95b12 4037void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4038{
d98ba053 4039 LIST_HEAD(invalid_list);
103ad25a 4040
e0df7b9f 4041 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 4042 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 4043 struct kvm_mmu_page *sp;
ebeace86 4044
f05e70ac 4045 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 4046 struct kvm_mmu_page, link);
e0df7b9f 4047 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4048 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4049 }
aa6bd187 4050 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4051}
ebeace86 4052
1cb3f3ae
XG
4053static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4054{
4055 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4056 return vcpu_match_mmio_gpa(vcpu, addr);
4057
4058 return vcpu_match_mmio_gva(vcpu, addr);
4059}
4060
dc25e89e
AP
4061int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4062 void *insn, int insn_len)
3067714c 4063{
1cb3f3ae 4064 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4065 enum emulation_result er;
4066
56028d08 4067 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4068 if (r < 0)
4069 goto out;
4070
4071 if (!r) {
4072 r = 1;
4073 goto out;
4074 }
4075
1cb3f3ae
XG
4076 if (is_mmio_page_fault(vcpu, cr2))
4077 emulation_type = 0;
4078
4079 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4080
4081 switch (er) {
4082 case EMULATE_DONE:
4083 return 1;
4084 case EMULATE_DO_MMIO:
4085 ++vcpu->stat.mmio_exits;
6d77dbfc 4086 /* fall through */
3067714c 4087 case EMULATE_FAIL:
3f5d18a9 4088 return 0;
3067714c
AK
4089 default:
4090 BUG();
4091 }
4092out:
3067714c
AK
4093 return r;
4094}
4095EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4096
a7052897
MT
4097void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4098{
a7052897 4099 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4100 kvm_mmu_flush_tlb(vcpu);
4101 ++vcpu->stat.invlpg;
4102}
4103EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4104
18552672
JR
4105void kvm_enable_tdp(void)
4106{
4107 tdp_enabled = true;
4108}
4109EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4110
5f4cb662
JR
4111void kvm_disable_tdp(void)
4112{
4113 tdp_enabled = false;
4114}
4115EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4116
6aa8b732
AK
4117static void free_mmu_pages(struct kvm_vcpu *vcpu)
4118{
ad312c7c 4119 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4120 if (vcpu->arch.mmu.lm_root != NULL)
4121 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4122}
4123
4124static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4125{
17ac10ad 4126 struct page *page;
6aa8b732
AK
4127 int i;
4128
4129 ASSERT(vcpu);
4130
17ac10ad
AK
4131 /*
4132 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4133 * Therefore we need to allocate shadow page tables in the first
4134 * 4GB of memory, which happens to fit the DMA32 zone.
4135 */
4136 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4137 if (!page)
d7fa6ab2
WY
4138 return -ENOMEM;
4139
ad312c7c 4140 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4141 for (i = 0; i < 4; ++i)
ad312c7c 4142 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4143
6aa8b732 4144 return 0;
6aa8b732
AK
4145}
4146
8018c27b 4147int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4148{
6aa8b732 4149 ASSERT(vcpu);
e459e322
XG
4150
4151 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4152 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4153 vcpu->arch.mmu.translate_gpa = translate_gpa;
4154 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4155
8018c27b
IM
4156 return alloc_mmu_pages(vcpu);
4157}
6aa8b732 4158
8018c27b
IM
4159int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4160{
4161 ASSERT(vcpu);
ad312c7c 4162 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4163
8018c27b 4164 return init_kvm_mmu(vcpu);
6aa8b732
AK
4165}
4166
90cb0529 4167void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4168{
b99db1d3
TY
4169 struct kvm_memory_slot *memslot;
4170 gfn_t last_gfn;
4171 int i;
6aa8b732 4172
b99db1d3
TY
4173 memslot = id_to_memslot(kvm->memslots, slot);
4174 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4175
9d1beefb
TY
4176 spin_lock(&kvm->mmu_lock);
4177
b99db1d3
TY
4178 for (i = PT_PAGE_TABLE_LEVEL;
4179 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4180 unsigned long *rmapp;
4181 unsigned long last_index, index;
6aa8b732 4182
b99db1d3
TY
4183 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4184 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4185
b99db1d3
TY
4186 for (index = 0; index <= last_index; ++index, ++rmapp) {
4187 if (*rmapp)
4188 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4189
4190 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4191 kvm_flush_remote_tlbs(kvm);
4192 cond_resched_lock(&kvm->mmu_lock);
4193 }
8234b22e 4194 }
6aa8b732 4195 }
b99db1d3 4196
171d595d 4197 kvm_flush_remote_tlbs(kvm);
9d1beefb 4198 spin_unlock(&kvm->mmu_lock);
6aa8b732 4199}
37a7d8b0 4200
90cb0529 4201void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4202{
4db35314 4203 struct kvm_mmu_page *sp, *node;
d98ba053 4204 LIST_HEAD(invalid_list);
e0fa826f 4205
aaee2c94 4206 spin_lock(&kvm->mmu_lock);
3246af0e 4207restart:
f05e70ac 4208 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4209 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4210 goto restart;
4211
d98ba053 4212 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4213 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4214}
4215
3d56cbdf
JK
4216static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4217 struct list_head *invalid_list)
3ee16c81
IE
4218{
4219 struct kvm_mmu_page *page;
4220
85b70591
XG
4221 if (list_empty(&kvm->arch.active_mmu_pages))
4222 return;
4223
3ee16c81
IE
4224 page = container_of(kvm->arch.active_mmu_pages.prev,
4225 struct kvm_mmu_page, link);
3d56cbdf 4226 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4227}
4228
1495f230 4229static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4230{
4231 struct kvm *kvm;
1495f230 4232 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4233
4234 if (nr_to_scan == 0)
4235 goto out;
3ee16c81 4236
e935b837 4237 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4238
4239 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4240 int idx;
d98ba053 4241 LIST_HEAD(invalid_list);
3ee16c81 4242
35f2d16b
TY
4243 /*
4244 * Never scan more than sc->nr_to_scan VM instances.
4245 * Will not hit this condition practically since we do not try
4246 * to shrink more than one VM and it is very unlikely to see
4247 * !n_used_mmu_pages so many times.
4248 */
4249 if (!nr_to_scan--)
4250 break;
19526396
GN
4251 /*
4252 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4253 * here. We may skip a VM instance errorneosly, but we do not
4254 * want to shrink a VM that only started to populate its MMU
4255 * anyway.
4256 */
35f2d16b 4257 if (!kvm->arch.n_used_mmu_pages)
19526396 4258 continue;
19526396 4259
f656ce01 4260 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4261 spin_lock(&kvm->mmu_lock);
3ee16c81 4262
19526396 4263 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4264 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4265
3ee16c81 4266 spin_unlock(&kvm->mmu_lock);
f656ce01 4267 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4268
4269 list_move_tail(&kvm->vm_list, &vm_list);
4270 break;
3ee16c81 4271 }
3ee16c81 4272
e935b837 4273 raw_spin_unlock(&kvm_lock);
3ee16c81 4274
45221ab6
DH
4275out:
4276 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4277}
4278
4279static struct shrinker mmu_shrinker = {
4280 .shrink = mmu_shrink,
4281 .seeks = DEFAULT_SEEKS * 10,
4282};
4283
2ddfd20e 4284static void mmu_destroy_caches(void)
b5a33a75 4285{
53c07b18
XG
4286 if (pte_list_desc_cache)
4287 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4288 if (mmu_page_header_cache)
4289 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4290}
4291
4292int kvm_mmu_module_init(void)
4293{
53c07b18
XG
4294 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4295 sizeof(struct pte_list_desc),
20c2df83 4296 0, 0, NULL);
53c07b18 4297 if (!pte_list_desc_cache)
b5a33a75
AK
4298 goto nomem;
4299
d3d25b04
AK
4300 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4301 sizeof(struct kvm_mmu_page),
20c2df83 4302 0, 0, NULL);
d3d25b04
AK
4303 if (!mmu_page_header_cache)
4304 goto nomem;
4305
45bf21a8
WY
4306 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4307 goto nomem;
4308
3ee16c81
IE
4309 register_shrinker(&mmu_shrinker);
4310
b5a33a75
AK
4311 return 0;
4312
4313nomem:
3ee16c81 4314 mmu_destroy_caches();
b5a33a75
AK
4315 return -ENOMEM;
4316}
4317
3ad82a7e
ZX
4318/*
4319 * Caculate mmu pages needed for kvm.
4320 */
4321unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4322{
3ad82a7e
ZX
4323 unsigned int nr_mmu_pages;
4324 unsigned int nr_pages = 0;
bc6678a3 4325 struct kvm_memslots *slots;
be6ba0f0 4326 struct kvm_memory_slot *memslot;
3ad82a7e 4327
90d83dc3
LJ
4328 slots = kvm_memslots(kvm);
4329
be6ba0f0
XG
4330 kvm_for_each_memslot(memslot, slots)
4331 nr_pages += memslot->npages;
3ad82a7e
ZX
4332
4333 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4334 nr_mmu_pages = max(nr_mmu_pages,
4335 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4336
4337 return nr_mmu_pages;
4338}
4339
94d8b056
MT
4340int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4341{
4342 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4343 u64 spte;
94d8b056
MT
4344 int nr_sptes = 0;
4345
c2a2ac2b
XG
4346 walk_shadow_page_lockless_begin(vcpu);
4347 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4348 sptes[iterator.level-1] = spte;
94d8b056 4349 nr_sptes++;
c2a2ac2b 4350 if (!is_shadow_present_pte(spte))
94d8b056
MT
4351 break;
4352 }
c2a2ac2b 4353 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4354
4355 return nr_sptes;
4356}
4357EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4358
c42fffe3
XG
4359void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4360{
4361 ASSERT(vcpu);
4362
4363 destroy_kvm_mmu(vcpu);
4364 free_mmu_pages(vcpu);
4365 mmu_free_memory_caches(vcpu);
b034cf01
XG
4366}
4367
b034cf01
XG
4368void kvm_mmu_module_exit(void)
4369{
4370 mmu_destroy_caches();
4371 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4372 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4373 mmu_audit_disable();
4374}
This page took 0.938856 seconds and 5 git commands to generate.