Merge commit 'v3.1-rc9' into sched/core
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
d8b4986d 262 struct hrtimer period_timer, slack_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
e8da1b18
NR
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
ab84d31e
PT
268#endif
269};
270
29f59db3 271/* task group related information */
4cf86d77 272struct task_group {
68318b8e 273 struct cgroup_subsys_state css;
6c415b92 274
052f1dc7 275#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
2069dd75
PZ
281
282 atomic_t load_weight;
052f1dc7
PZ
283#endif
284
285#ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
d0b27fa7 289 struct rt_bandwidth rt_bandwidth;
052f1dc7 290#endif
6b2d7700 291
ae8393e5 292 struct rcu_head rcu;
6f505b16 293 struct list_head list;
f473aa5e
PZ
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
5091faa4
MG
298
299#ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301#endif
ab84d31e
PT
302
303 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
304};
305
3d4b47b4 306/* task_group_lock serializes the addition/removal of task groups */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
e9036b36
CG
309#ifdef CONFIG_FAIR_GROUP_SCHED
310
07e06b01 311# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 312
cb4ad1ff 313/*
2e084786
LJ
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
cb4ad1ff
MX
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
cd62287e
MG
321#define MIN_SHARES (1UL << 1)
322#define MAX_SHARES (1UL << 18)
18d95a28 323
07e06b01 324static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
325#endif
326
29f59db3 327/* Default task group.
3a252015 328 * Every task in system belong to this group at bootup.
29f59db3 329 */
07e06b01 330struct task_group root_task_group;
29f59db3 331
7c941438 332#endif /* CONFIG_CGROUP_SCHED */
29f59db3 333
6aa645ea
IM
334/* CFS-related fields in a runqueue */
335struct cfs_rq {
336 struct load_weight load;
953bfcd1 337 unsigned long nr_running, h_nr_running;
6aa645ea 338
6aa645ea 339 u64 exec_clock;
e9acbff6 340 u64 min_vruntime;
3fe1698b
PZ
341#ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343#endif
6aa645ea
IM
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
4a55bd5e
PZ
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
ac53db59 355 struct sched_entity *curr, *next, *last, *skip;
ddc97297 356
4934a4d3 357#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 358 unsigned int nr_spread_over;
4934a4d3 359#endif
ddc97297 360
62160e3f 361#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
41a2d6cf
IM
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
3d4b47b4 372 int on_list;
41a2d6cf
IM
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
375
376#ifdef CONFIG_SMP
c09595f6 377 /*
c8cba857 378 * the part of load.weight contributed by tasks
c09595f6 379 */
c8cba857 380 unsigned long task_weight;
c09595f6 381
c8cba857
PZ
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
c09595f6 389
c8cba857 390 /*
3b3d190e
PT
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 396 */
2069dd75
PZ
397 u64 load_avg;
398 u64 load_period;
3b3d190e 399 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 400
2069dd75 401 unsigned long load_contribution;
c09595f6 402#endif
ab84d31e
PT
403#ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
a9cf55b2 405 u64 runtime_expires;
ab84d31e 406 s64 runtime_remaining;
85dac906 407
e8da1b18 408 u64 throttled_timestamp;
64660c86 409 int throttled, throttle_count;
85dac906 410 struct list_head throttled_list;
ab84d31e 411#endif
6aa645ea
IM
412#endif
413};
1da177e4 414
ab84d31e
PT
415#ifdef CONFIG_FAIR_GROUP_SCHED
416#ifdef CONFIG_CFS_BANDWIDTH
417static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418{
419 return &tg->cfs_bandwidth;
420}
421
422static inline u64 default_cfs_period(void);
58088ad0 423static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
d8b4986d
PT
424static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427{
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433}
58088ad0
PT
434
435static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436{
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454}
ab84d31e
PT
455
456static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457{
458 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 459 cfs_b->runtime = 0;
ab84d31e
PT
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 462
85dac906 463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
d8b4986d
PT
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
ab84d31e
PT
468}
469
470static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471{
472 cfs_rq->runtime_enabled = 0;
85dac906 473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
474}
475
58088ad0
PT
476/* requires cfs_b->lock, may release to reprogram timer */
477static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478{
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498}
499
ab84d31e 500static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
501{
502 hrtimer_cancel(&cfs_b->period_timer);
d8b4986d 503 hrtimer_cancel(&cfs_b->slack_timer);
58088ad0 504}
ab84d31e
PT
505#else
506static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511{
512 return NULL;
513}
514#endif /* CONFIG_CFS_BANDWIDTH */
515#endif /* CONFIG_FAIR_GROUP_SCHED */
516
6aa645ea
IM
517/* Real-Time classes' related field in a runqueue: */
518struct rt_rq {
519 struct rt_prio_array active;
63489e45 520 unsigned long rt_nr_running;
052f1dc7 521#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
522 struct {
523 int curr; /* highest queued rt task prio */
398a153b 524#ifdef CONFIG_SMP
e864c499 525 int next; /* next highest */
398a153b 526#endif
e864c499 527 } highest_prio;
6f505b16 528#endif
fa85ae24 529#ifdef CONFIG_SMP
73fe6aae 530 unsigned long rt_nr_migratory;
a1ba4d8b 531 unsigned long rt_nr_total;
a22d7fc1 532 int overloaded;
917b627d 533 struct plist_head pushable_tasks;
fa85ae24 534#endif
6f505b16 535 int rt_throttled;
fa85ae24 536 u64 rt_time;
ac086bc2 537 u64 rt_runtime;
ea736ed5 538 /* Nests inside the rq lock: */
0986b11b 539 raw_spinlock_t rt_runtime_lock;
6f505b16 540
052f1dc7 541#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
542 unsigned long rt_nr_boosted;
543
6f505b16
PZ
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
6f505b16 547#endif
6aa645ea
IM
548};
549
57d885fe
GH
550#ifdef CONFIG_SMP
551
552/*
553 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
57d885fe
GH
559 */
560struct root_domain {
561 atomic_t refcount;
26a148eb 562 atomic_t rto_count;
dce840a0 563 struct rcu_head rcu;
c6c4927b
RR
564 cpumask_var_t span;
565 cpumask_var_t online;
637f5085 566
0eab9146 567 /*
637f5085
GH
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
c6c4927b 571 cpumask_var_t rto_mask;
6e0534f2 572 struct cpupri cpupri;
57d885fe
GH
573};
574
dc938520
GH
575/*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
57d885fe
GH
579static struct root_domain def_root_domain;
580
ed2d372c 581#endif /* CONFIG_SMP */
57d885fe 582
1da177e4
LT
583/*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
70b97a7f 590struct rq {
d8016491 591 /* runqueue lock: */
05fa785c 592 raw_spinlock_t lock;
1da177e4
LT
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
6aa645ea
IM
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 601 unsigned long last_load_update_tick;
46cb4b7c 602#ifdef CONFIG_NO_HZ
39c0cbe2 603 u64 nohz_stamp;
83cd4fe2 604 unsigned char nohz_balance_kick;
46cb4b7c 605#endif
61eadef6 606 int skip_clock_update;
a64692a3 607
d8016491
IM
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
6aa645ea
IM
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
6f505b16 614 struct rt_rq rt;
6f505b16 615
6aa645ea 616#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
619#endif
620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 621 struct list_head leaf_rt_rq_list;
1da177e4 622#endif
1da177e4
LT
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
34f971f6 632 struct task_struct *curr, *idle, *stop;
c9819f45 633 unsigned long next_balance;
1da177e4 634 struct mm_struct *prev_mm;
6aa645ea 635
3e51f33f 636 u64 clock;
305e6835 637 u64 clock_task;
6aa645ea 638
1da177e4
LT
639 atomic_t nr_iowait;
640
641#ifdef CONFIG_SMP
0eab9146 642 struct root_domain *rd;
1da177e4
LT
643 struct sched_domain *sd;
644
e51fd5e2
PZ
645 unsigned long cpu_power;
646
a0a522ce 647 unsigned char idle_at_tick;
1da177e4 648 /* For active balancing */
3f029d3c 649 int post_schedule;
1da177e4
LT
650 int active_balance;
651 int push_cpu;
969c7921 652 struct cpu_stop_work active_balance_work;
d8016491
IM
653 /* cpu of this runqueue: */
654 int cpu;
1f11eb6a 655 int online;
1da177e4 656
e9e9250b
PZ
657 u64 rt_avg;
658 u64 age_stamp;
1b9508f6
MG
659 u64 idle_stamp;
660 u64 avg_idle;
1da177e4
LT
661#endif
662
aa483808
VP
663#ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665#endif
e6e6685a
GC
666#ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668#endif
095c0aa8
GC
669#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671#endif
aa483808 672
dce48a84
TG
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
8f4d37ec 677#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
678#ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681#endif
8f4d37ec
PZ
682 struct hrtimer hrtick_timer;
683#endif
684
1da177e4
LT
685#ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
9c2c4802
KC
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
690
691 /* sys_sched_yield() stats */
480b9434 692 unsigned int yld_count;
1da177e4
LT
693
694 /* schedule() stats */
480b9434
KC
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
1da177e4
LT
698
699 /* try_to_wake_up() stats */
480b9434
KC
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
1da177e4 702#endif
317f3941
PZ
703
704#ifdef CONFIG_SMP
fa14ff4a 705 struct llist_head wake_list;
317f3941 706#endif
1da177e4
LT
707};
708
f34e3b61 709static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 710
a64692a3 711
1e5a7405 712static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 713
0a2966b4
CL
714static inline int cpu_of(struct rq *rq)
715{
716#ifdef CONFIG_SMP
717 return rq->cpu;
718#else
719 return 0;
720#endif
721}
722
497f0ab3 723#define rcu_dereference_check_sched_domain(p) \
d11c563d 724 rcu_dereference_check((p), \
d11c563d
PM
725 lockdep_is_held(&sched_domains_mutex))
726
674311d5
NP
727/*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 729 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
48f24c4d 734#define for_each_domain(cpu, __sd) \
497f0ab3 735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
736
737#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738#define this_rq() (&__get_cpu_var(runqueues))
739#define task_rq(p) cpu_rq(task_cpu(p))
740#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 741#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 742
dc61b1d6
PZ
743#ifdef CONFIG_CGROUP_SCHED
744
745/*
746 * Return the group to which this tasks belongs.
747 *
6c6c54e1
PZ
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
dc61b1d6
PZ
752 */
753static inline struct task_group *task_group(struct task_struct *p)
754{
5091faa4 755 struct task_group *tg;
dc61b1d6
PZ
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
dc61b1d6
PZ
764}
765
766/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768{
769#ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772#endif
773
774#ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777#endif
778}
779
780#else /* CONFIG_CGROUP_SCHED */
781
782static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783static inline struct task_group *task_group(struct task_struct *p)
784{
785 return NULL;
786}
787
788#endif /* CONFIG_CGROUP_SCHED */
789
fe44d621 790static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 791
fe44d621 792static void update_rq_clock(struct rq *rq)
3e51f33f 793{
fe44d621 794 s64 delta;
305e6835 795
61eadef6 796 if (rq->skip_clock_update > 0)
f26f9aff 797 return;
aa483808 798
fe44d621
PZ
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
3e51f33f
PZ
802}
803
bf5c91ba
IM
804/*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807#ifdef CONFIG_SCHED_DEBUG
808# define const_debug __read_mostly
809#else
810# define const_debug static const
811#endif
812
017730c1 813/**
1fd06bb1 814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 815 * @cpu: the processor in question.
017730c1 816 *
017730c1
IM
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
89f19f04 820int runqueue_is_locked(int cpu)
017730c1 821{
05fa785c 822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
823}
824
bf5c91ba
IM
825/*
826 * Debugging: various feature bits
827 */
f00b45c1
PZ
828
829#define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
bf5c91ba 832enum {
f00b45c1 833#include "sched_features.h"
bf5c91ba
IM
834};
835
f00b45c1
PZ
836#undef SCHED_FEAT
837
838#define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
bf5c91ba 841const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
842#include "sched_features.h"
843 0;
844
845#undef SCHED_FEAT
846
847#ifdef CONFIG_SCHED_DEBUG
848#define SCHED_FEAT(name, enabled) \
849 #name ,
850
983ed7a6 851static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
852#include "sched_features.h"
853 NULL
854};
855
856#undef SCHED_FEAT
857
34f3a814 858static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 859{
f00b45c1
PZ
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 866 }
34f3a814 867 seq_puts(m, "\n");
f00b45c1 868
34f3a814 869 return 0;
f00b45c1
PZ
870}
871
872static ssize_t
873sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875{
876 char buf[64];
7740191c 877 char *cmp;
f00b45c1
PZ
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
7740191c 888 cmp = strstrip(buf);
f00b45c1 889
524429c3 890 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
7740191c 896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
42994724 908 *ppos += cnt;
f00b45c1
PZ
909
910 return cnt;
911}
912
34f3a814
LZ
913static int sched_feat_open(struct inode *inode, struct file *filp)
914{
915 return single_open(filp, sched_feat_show, NULL);
916}
917
828c0950 918static const struct file_operations sched_feat_fops = {
34f3a814
LZ
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
f00b45c1
PZ
924};
925
926static __init int sched_init_debug(void)
927{
f00b45c1
PZ
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932}
933late_initcall(sched_init_debug);
934
935#endif
936
937#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 938
b82d9fdd
PZ
939/*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
e9e9250b
PZ
945/*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
fa85ae24 953/*
9f0c1e56 954 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
955 * default: 1s
956 */
9f0c1e56 957unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 958
6892b75e
IM
959static __read_mostly int scheduler_running;
960
9f0c1e56
PZ
961/*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965int sysctl_sched_rt_runtime = 950000;
fa85ae24 966
d0b27fa7
PZ
967static inline u64 global_rt_period(void)
968{
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970}
971
972static inline u64 global_rt_runtime(void)
973{
e26873bb 974 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978}
fa85ae24 979
1da177e4 980#ifndef prepare_arch_switch
4866cde0
NP
981# define prepare_arch_switch(next) do { } while (0)
982#endif
983#ifndef finish_arch_switch
984# define finish_arch_switch(prev) do { } while (0)
985#endif
986
051a1d1a
DA
987static inline int task_current(struct rq *rq, struct task_struct *p)
988{
989 return rq->curr == p;
990}
991
70b97a7f 992static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 993{
3ca7a440
PZ
994#ifdef CONFIG_SMP
995 return p->on_cpu;
996#else
051a1d1a 997 return task_current(rq, p);
3ca7a440 998#endif
4866cde0
NP
999}
1000
3ca7a440 1001#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 1002static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 1003{
3ca7a440
PZ
1004#ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011#endif
4866cde0
NP
1012}
1013
70b97a7f 1014static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 1015{
3ca7a440
PZ
1016#ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024#endif
da04c035
IM
1025#ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028#endif
8a25d5de
IM
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
05fa785c 1036 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1037}
1038
1039#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1040static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
3ca7a440 1048 next->on_cpu = 1;
4866cde0
NP
1049#endif
1050#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1051 raw_spin_unlock_irq(&rq->lock);
4866cde0 1052#else
05fa785c 1053 raw_spin_unlock(&rq->lock);
4866cde0
NP
1054#endif
1055}
1056
70b97a7f 1057static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1058{
1059#ifdef CONFIG_SMP
1060 /*
3ca7a440 1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
3ca7a440 1066 prev->on_cpu = 0;
4866cde0
NP
1067#endif
1068#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1da177e4 1070#endif
4866cde0
NP
1071}
1072#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1073
0970d299 1074/*
0122ec5b 1075 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1076 */
70b97a7f 1077static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1078 __acquires(rq->lock)
1079{
0970d299
PZ
1080 struct rq *rq;
1081
0122ec5b
PZ
1082 lockdep_assert_held(&p->pi_lock);
1083
3a5c359a 1084 for (;;) {
0970d299 1085 rq = task_rq(p);
05fa785c 1086 raw_spin_lock(&rq->lock);
65cc8e48 1087 if (likely(rq == task_rq(p)))
3a5c359a 1088 return rq;
05fa785c 1089 raw_spin_unlock(&rq->lock);
b29739f9 1090 }
b29739f9
IM
1091}
1092
1da177e4 1093/*
0122ec5b 1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1095 */
70b97a7f 1096static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1097 __acquires(p->pi_lock)
1da177e4
LT
1098 __acquires(rq->lock)
1099{
70b97a7f 1100 struct rq *rq;
1da177e4 1101
3a5c359a 1102 for (;;) {
0122ec5b 1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1104 rq = task_rq(p);
05fa785c 1105 raw_spin_lock(&rq->lock);
65cc8e48 1106 if (likely(rq == task_rq(p)))
3a5c359a 1107 return rq;
0122ec5b
PZ
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1110 }
1da177e4
LT
1111}
1112
a9957449 1113static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1114 __releases(rq->lock)
1115{
05fa785c 1116 raw_spin_unlock(&rq->lock);
b29739f9
IM
1117}
1118
0122ec5b
PZ
1119static inline void
1120task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1121 __releases(rq->lock)
0122ec5b 1122 __releases(p->pi_lock)
1da177e4 1123{
0122ec5b
PZ
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1126}
1127
1da177e4 1128/*
cc2a73b5 1129 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1130 */
a9957449 1131static struct rq *this_rq_lock(void)
1da177e4
LT
1132 __acquires(rq->lock)
1133{
70b97a7f 1134 struct rq *rq;
1da177e4
LT
1135
1136 local_irq_disable();
1137 rq = this_rq();
05fa785c 1138 raw_spin_lock(&rq->lock);
1da177e4
LT
1139
1140 return rq;
1141}
1142
8f4d37ec
PZ
1143#ifdef CONFIG_SCHED_HRTICK
1144/*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
8f4d37ec
PZ
1154
1155/*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160static inline int hrtick_enabled(struct rq *rq)
1161{
1162 if (!sched_feat(HRTICK))
1163 return 0;
ba42059f 1164 if (!cpu_active(cpu_of(rq)))
b328ca18 1165 return 0;
8f4d37ec
PZ
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167}
1168
8f4d37ec
PZ
1169static void hrtick_clear(struct rq *rq)
1170{
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173}
1174
8f4d37ec
PZ
1175/*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180{
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
05fa785c 1185 raw_spin_lock(&rq->lock);
3e51f33f 1186 update_rq_clock(rq);
8f4d37ec 1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1188 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1189
1190 return HRTIMER_NORESTART;
1191}
1192
95e904c7 1193#ifdef CONFIG_SMP
31656519
PZ
1194/*
1195 * called from hardirq (IPI) context
1196 */
1197static void __hrtick_start(void *arg)
b328ca18 1198{
31656519 1199 struct rq *rq = arg;
b328ca18 1200
05fa785c 1201 raw_spin_lock(&rq->lock);
31656519
PZ
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
05fa785c 1204 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1205}
1206
31656519
PZ
1207/*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1213{
31656519
PZ
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1216
cc584b21 1217 hrtimer_set_expires(timer, time);
31656519
PZ
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
6e275637 1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1223 rq->hrtick_csd_pending = 1;
1224 }
b328ca18
PZ
1225}
1226
1227static int
1228hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229{
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
31656519 1239 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244}
1245
fa748203 1246static __init void init_hrtick(void)
b328ca18
PZ
1247{
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249}
31656519
PZ
1250#else
1251/*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256static void hrtick_start(struct rq *rq, u64 delay)
1257{
7f1e2ca9 1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1259 HRTIMER_MODE_REL_PINNED, 0);
31656519 1260}
b328ca18 1261
006c75f1 1262static inline void init_hrtick(void)
8f4d37ec 1263{
8f4d37ec 1264}
31656519 1265#endif /* CONFIG_SMP */
8f4d37ec 1266
31656519 1267static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1268{
31656519
PZ
1269#ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
8f4d37ec 1271
31656519
PZ
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275#endif
8f4d37ec 1276
31656519
PZ
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
8f4d37ec 1279}
006c75f1 1280#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1281static inline void hrtick_clear(struct rq *rq)
1282{
1283}
1284
8f4d37ec
PZ
1285static inline void init_rq_hrtick(struct rq *rq)
1286{
1287}
1288
b328ca18
PZ
1289static inline void init_hrtick(void)
1290{
1291}
006c75f1 1292#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1293
c24d20db
IM
1294/*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301#ifdef CONFIG_SMP
1302
1303#ifndef tsk_is_polling
1304#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305#endif
1306
31656519 1307static void resched_task(struct task_struct *p)
c24d20db
IM
1308{
1309 int cpu;
1310
05fa785c 1311 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1312
5ed0cec0 1313 if (test_tsk_need_resched(p))
c24d20db
IM
1314 return;
1315
5ed0cec0 1316 set_tsk_need_resched(p);
c24d20db
IM
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326}
1327
1328static void resched_cpu(int cpu)
1329{
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
05fa785c 1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1334 return;
1335 resched_task(cpu_curr(cpu));
05fa785c 1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1337}
06d8308c
TG
1338
1339#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1340/*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348int get_nohz_timer_target(void)
1349{
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
057f3fad 1354 rcu_read_lock();
83cd4fe2 1355 for_each_domain(cpu, sd) {
057f3fad
PZ
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
83cd4fe2 1362 }
057f3fad
PZ
1363unlock:
1364 rcu_read_unlock();
83cd4fe2
VP
1365 return cpu;
1366}
06d8308c
TG
1367/*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377void wake_up_idle_cpu(int cpu)
1378{
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
5ed0cec0 1399 set_tsk_need_resched(rq->idle);
06d8308c
TG
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405}
39c0cbe2 1406
6d6bc0ad 1407#endif /* CONFIG_NO_HZ */
06d8308c 1408
e9e9250b
PZ
1409static u64 sched_avg_period(void)
1410{
1411 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1412}
1413
1414static void sched_avg_update(struct rq *rq)
1415{
1416 s64 period = sched_avg_period();
1417
1418 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1419 /*
1420 * Inline assembly required to prevent the compiler
1421 * optimising this loop into a divmod call.
1422 * See __iter_div_u64_rem() for another example of this.
1423 */
1424 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1425 rq->age_stamp += period;
1426 rq->rt_avg /= 2;
1427 }
1428}
1429
1430static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1431{
1432 rq->rt_avg += rt_delta;
1433 sched_avg_update(rq);
1434}
1435
6d6bc0ad 1436#else /* !CONFIG_SMP */
31656519 1437static void resched_task(struct task_struct *p)
c24d20db 1438{
05fa785c 1439 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1440 set_tsk_need_resched(p);
c24d20db 1441}
e9e9250b
PZ
1442
1443static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1444{
1445}
da2b71ed
SS
1446
1447static void sched_avg_update(struct rq *rq)
1448{
1449}
6d6bc0ad 1450#endif /* CONFIG_SMP */
c24d20db 1451
45bf76df
IM
1452#if BITS_PER_LONG == 32
1453# define WMULT_CONST (~0UL)
1454#else
1455# define WMULT_CONST (1UL << 32)
1456#endif
1457
1458#define WMULT_SHIFT 32
1459
194081eb
IM
1460/*
1461 * Shift right and round:
1462 */
cf2ab469 1463#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1464
a7be37ac
PZ
1465/*
1466 * delta *= weight / lw
1467 */
cb1c4fc9 1468static unsigned long
45bf76df
IM
1469calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1470 struct load_weight *lw)
1471{
1472 u64 tmp;
1473
c8b28116
NR
1474 /*
1475 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1476 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1477 * 2^SCHED_LOAD_RESOLUTION.
1478 */
1479 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1480 tmp = (u64)delta_exec * scale_load_down(weight);
1481 else
1482 tmp = (u64)delta_exec;
db670dac 1483
7a232e03 1484 if (!lw->inv_weight) {
c8b28116
NR
1485 unsigned long w = scale_load_down(lw->weight);
1486
1487 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1488 lw->inv_weight = 1;
c8b28116
NR
1489 else if (unlikely(!w))
1490 lw->inv_weight = WMULT_CONST;
7a232e03 1491 else
c8b28116 1492 lw->inv_weight = WMULT_CONST / w;
7a232e03 1493 }
45bf76df 1494
45bf76df
IM
1495 /*
1496 * Check whether we'd overflow the 64-bit multiplication:
1497 */
194081eb 1498 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1499 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1500 WMULT_SHIFT/2);
1501 else
cf2ab469 1502 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1503
ecf691da 1504 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1505}
1506
1091985b 1507static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1508{
1509 lw->weight += inc;
e89996ae 1510 lw->inv_weight = 0;
45bf76df
IM
1511}
1512
1091985b 1513static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1514{
1515 lw->weight -= dec;
e89996ae 1516 lw->inv_weight = 0;
45bf76df
IM
1517}
1518
2069dd75
PZ
1519static inline void update_load_set(struct load_weight *lw, unsigned long w)
1520{
1521 lw->weight = w;
1522 lw->inv_weight = 0;
1523}
1524
2dd73a4f
PW
1525/*
1526 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1527 * of tasks with abnormal "nice" values across CPUs the contribution that
1528 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1529 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1530 * scaled version of the new time slice allocation that they receive on time
1531 * slice expiry etc.
1532 */
1533
cce7ade8
PZ
1534#define WEIGHT_IDLEPRIO 3
1535#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1536
1537/*
1538 * Nice levels are multiplicative, with a gentle 10% change for every
1539 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1540 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1541 * that remained on nice 0.
1542 *
1543 * The "10% effect" is relative and cumulative: from _any_ nice level,
1544 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1545 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1546 * If a task goes up by ~10% and another task goes down by ~10% then
1547 * the relative distance between them is ~25%.)
dd41f596
IM
1548 */
1549static const int prio_to_weight[40] = {
254753dc
IM
1550 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1551 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1552 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1553 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1554 /* 0 */ 1024, 820, 655, 526, 423,
1555 /* 5 */ 335, 272, 215, 172, 137,
1556 /* 10 */ 110, 87, 70, 56, 45,
1557 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1558};
1559
5714d2de
IM
1560/*
1561 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1562 *
1563 * In cases where the weight does not change often, we can use the
1564 * precalculated inverse to speed up arithmetics by turning divisions
1565 * into multiplications:
1566 */
dd41f596 1567static const u32 prio_to_wmult[40] = {
254753dc
IM
1568 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1569 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1570 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1571 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1572 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1573 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1574 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1575 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1576};
2dd73a4f 1577
ef12fefa
BR
1578/* Time spent by the tasks of the cpu accounting group executing in ... */
1579enum cpuacct_stat_index {
1580 CPUACCT_STAT_USER, /* ... user mode */
1581 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1582
1583 CPUACCT_STAT_NSTATS,
1584};
1585
d842de87
SV
1586#ifdef CONFIG_CGROUP_CPUACCT
1587static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1588static void cpuacct_update_stats(struct task_struct *tsk,
1589 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1590#else
1591static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1592static inline void cpuacct_update_stats(struct task_struct *tsk,
1593 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1594#endif
1595
18d95a28
PZ
1596static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1597{
1598 update_load_add(&rq->load, load);
1599}
1600
1601static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1602{
1603 update_load_sub(&rq->load, load);
1604}
1605
a790de99
PT
1606#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1607 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1608typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1609
1610/*
8277434e
PT
1611 * Iterate task_group tree rooted at *from, calling @down when first entering a
1612 * node and @up when leaving it for the final time.
1613 *
1614 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1615 */
8277434e
PT
1616static int walk_tg_tree_from(struct task_group *from,
1617 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1618{
1619 struct task_group *parent, *child;
eb755805 1620 int ret;
c09595f6 1621
8277434e
PT
1622 parent = from;
1623
c09595f6 1624down:
eb755805
PZ
1625 ret = (*down)(parent, data);
1626 if (ret)
8277434e 1627 goto out;
c09595f6
PZ
1628 list_for_each_entry_rcu(child, &parent->children, siblings) {
1629 parent = child;
1630 goto down;
1631
1632up:
1633 continue;
1634 }
eb755805 1635 ret = (*up)(parent, data);
8277434e
PT
1636 if (ret || parent == from)
1637 goto out;
c09595f6
PZ
1638
1639 child = parent;
1640 parent = parent->parent;
1641 if (parent)
1642 goto up;
8277434e 1643out:
eb755805 1644 return ret;
c09595f6
PZ
1645}
1646
8277434e
PT
1647/*
1648 * Iterate the full tree, calling @down when first entering a node and @up when
1649 * leaving it for the final time.
1650 *
1651 * Caller must hold rcu_lock or sufficient equivalent.
1652 */
1653
1654static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1655{
1656 return walk_tg_tree_from(&root_task_group, down, up, data);
1657}
1658
eb755805
PZ
1659static int tg_nop(struct task_group *tg, void *data)
1660{
1661 return 0;
c09595f6 1662}
eb755805
PZ
1663#endif
1664
1665#ifdef CONFIG_SMP
f5f08f39
PZ
1666/* Used instead of source_load when we know the type == 0 */
1667static unsigned long weighted_cpuload(const int cpu)
1668{
1669 return cpu_rq(cpu)->load.weight;
1670}
1671
1672/*
1673 * Return a low guess at the load of a migration-source cpu weighted
1674 * according to the scheduling class and "nice" value.
1675 *
1676 * We want to under-estimate the load of migration sources, to
1677 * balance conservatively.
1678 */
1679static unsigned long source_load(int cpu, int type)
1680{
1681 struct rq *rq = cpu_rq(cpu);
1682 unsigned long total = weighted_cpuload(cpu);
1683
1684 if (type == 0 || !sched_feat(LB_BIAS))
1685 return total;
1686
1687 return min(rq->cpu_load[type-1], total);
1688}
1689
1690/*
1691 * Return a high guess at the load of a migration-target cpu weighted
1692 * according to the scheduling class and "nice" value.
1693 */
1694static unsigned long target_load(int cpu, int type)
1695{
1696 struct rq *rq = cpu_rq(cpu);
1697 unsigned long total = weighted_cpuload(cpu);
1698
1699 if (type == 0 || !sched_feat(LB_BIAS))
1700 return total;
1701
1702 return max(rq->cpu_load[type-1], total);
1703}
1704
ae154be1
PZ
1705static unsigned long power_of(int cpu)
1706{
e51fd5e2 1707 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1708}
1709
eb755805
PZ
1710static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1711
1712static unsigned long cpu_avg_load_per_task(int cpu)
1713{
1714 struct rq *rq = cpu_rq(cpu);
af6d596f 1715 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1716
4cd42620 1717 if (nr_running)
e2b245f8 1718 return rq->load.weight / nr_running;
eb755805 1719
e2b245f8 1720 return 0;
eb755805
PZ
1721}
1722
8f45e2b5
GH
1723#ifdef CONFIG_PREEMPT
1724
b78bb868
PZ
1725static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1726
70574a99 1727/*
8f45e2b5
GH
1728 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1729 * way at the expense of forcing extra atomic operations in all
1730 * invocations. This assures that the double_lock is acquired using the
1731 * same underlying policy as the spinlock_t on this architecture, which
1732 * reduces latency compared to the unfair variant below. However, it
1733 * also adds more overhead and therefore may reduce throughput.
70574a99 1734 */
8f45e2b5
GH
1735static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1736 __releases(this_rq->lock)
1737 __acquires(busiest->lock)
1738 __acquires(this_rq->lock)
1739{
05fa785c 1740 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1741 double_rq_lock(this_rq, busiest);
1742
1743 return 1;
1744}
1745
1746#else
1747/*
1748 * Unfair double_lock_balance: Optimizes throughput at the expense of
1749 * latency by eliminating extra atomic operations when the locks are
1750 * already in proper order on entry. This favors lower cpu-ids and will
1751 * grant the double lock to lower cpus over higher ids under contention,
1752 * regardless of entry order into the function.
1753 */
1754static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1755 __releases(this_rq->lock)
1756 __acquires(busiest->lock)
1757 __acquires(this_rq->lock)
1758{
1759 int ret = 0;
1760
05fa785c 1761 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1762 if (busiest < this_rq) {
05fa785c
TG
1763 raw_spin_unlock(&this_rq->lock);
1764 raw_spin_lock(&busiest->lock);
1765 raw_spin_lock_nested(&this_rq->lock,
1766 SINGLE_DEPTH_NESTING);
70574a99
AD
1767 ret = 1;
1768 } else
05fa785c
TG
1769 raw_spin_lock_nested(&busiest->lock,
1770 SINGLE_DEPTH_NESTING);
70574a99
AD
1771 }
1772 return ret;
1773}
1774
8f45e2b5
GH
1775#endif /* CONFIG_PREEMPT */
1776
1777/*
1778 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1779 */
1780static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1781{
1782 if (unlikely(!irqs_disabled())) {
1783 /* printk() doesn't work good under rq->lock */
05fa785c 1784 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1785 BUG_ON(1);
1786 }
1787
1788 return _double_lock_balance(this_rq, busiest);
1789}
1790
70574a99
AD
1791static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1792 __releases(busiest->lock)
1793{
05fa785c 1794 raw_spin_unlock(&busiest->lock);
70574a99
AD
1795 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1796}
1e3c88bd
PZ
1797
1798/*
1799 * double_rq_lock - safely lock two runqueues
1800 *
1801 * Note this does not disable interrupts like task_rq_lock,
1802 * you need to do so manually before calling.
1803 */
1804static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1805 __acquires(rq1->lock)
1806 __acquires(rq2->lock)
1807{
1808 BUG_ON(!irqs_disabled());
1809 if (rq1 == rq2) {
1810 raw_spin_lock(&rq1->lock);
1811 __acquire(rq2->lock); /* Fake it out ;) */
1812 } else {
1813 if (rq1 < rq2) {
1814 raw_spin_lock(&rq1->lock);
1815 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1816 } else {
1817 raw_spin_lock(&rq2->lock);
1818 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1819 }
1820 }
1e3c88bd
PZ
1821}
1822
1823/*
1824 * double_rq_unlock - safely unlock two runqueues
1825 *
1826 * Note this does not restore interrupts like task_rq_unlock,
1827 * you need to do so manually after calling.
1828 */
1829static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1830 __releases(rq1->lock)
1831 __releases(rq2->lock)
1832{
1833 raw_spin_unlock(&rq1->lock);
1834 if (rq1 != rq2)
1835 raw_spin_unlock(&rq2->lock);
1836 else
1837 __release(rq2->lock);
1838}
1839
d95f4122
MG
1840#else /* CONFIG_SMP */
1841
1842/*
1843 * double_rq_lock - safely lock two runqueues
1844 *
1845 * Note this does not disable interrupts like task_rq_lock,
1846 * you need to do so manually before calling.
1847 */
1848static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1849 __acquires(rq1->lock)
1850 __acquires(rq2->lock)
1851{
1852 BUG_ON(!irqs_disabled());
1853 BUG_ON(rq1 != rq2);
1854 raw_spin_lock(&rq1->lock);
1855 __acquire(rq2->lock); /* Fake it out ;) */
1856}
1857
1858/*
1859 * double_rq_unlock - safely unlock two runqueues
1860 *
1861 * Note this does not restore interrupts like task_rq_unlock,
1862 * you need to do so manually after calling.
1863 */
1864static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1865 __releases(rq1->lock)
1866 __releases(rq2->lock)
1867{
1868 BUG_ON(rq1 != rq2);
1869 raw_spin_unlock(&rq1->lock);
1870 __release(rq2->lock);
1871}
1872
18d95a28
PZ
1873#endif
1874
74f5187a 1875static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1876static void update_sysctl(void);
acb4a848 1877static int get_update_sysctl_factor(void);
fdf3e95d 1878static void update_cpu_load(struct rq *this_rq);
dce48a84 1879
cd29fe6f
PZ
1880static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1881{
1882 set_task_rq(p, cpu);
1883#ifdef CONFIG_SMP
1884 /*
1885 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1886 * successfuly executed on another CPU. We must ensure that updates of
1887 * per-task data have been completed by this moment.
1888 */
1889 smp_wmb();
1890 task_thread_info(p)->cpu = cpu;
1891#endif
1892}
dce48a84 1893
1e3c88bd 1894static const struct sched_class rt_sched_class;
dd41f596 1895
34f971f6 1896#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1897#define for_each_class(class) \
1898 for (class = sched_class_highest; class; class = class->next)
dd41f596 1899
1e3c88bd
PZ
1900#include "sched_stats.h"
1901
c09595f6 1902static void inc_nr_running(struct rq *rq)
9c217245
IM
1903{
1904 rq->nr_running++;
9c217245
IM
1905}
1906
c09595f6 1907static void dec_nr_running(struct rq *rq)
9c217245
IM
1908{
1909 rq->nr_running--;
9c217245
IM
1910}
1911
45bf76df
IM
1912static void set_load_weight(struct task_struct *p)
1913{
f05998d4
NR
1914 int prio = p->static_prio - MAX_RT_PRIO;
1915 struct load_weight *load = &p->se.load;
1916
dd41f596
IM
1917 /*
1918 * SCHED_IDLE tasks get minimal weight:
1919 */
1920 if (p->policy == SCHED_IDLE) {
c8b28116 1921 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1922 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1923 return;
1924 }
71f8bd46 1925
c8b28116 1926 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1927 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1928}
1929
371fd7e7 1930static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1931{
a64692a3 1932 update_rq_clock(rq);
dd41f596 1933 sched_info_queued(p);
371fd7e7 1934 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1935}
1936
371fd7e7 1937static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1938{
a64692a3 1939 update_rq_clock(rq);
46ac22ba 1940 sched_info_dequeued(p);
371fd7e7 1941 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1942}
1943
1e3c88bd
PZ
1944/*
1945 * activate_task - move a task to the runqueue.
1946 */
371fd7e7 1947static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1948{
1949 if (task_contributes_to_load(p))
1950 rq->nr_uninterruptible--;
1951
371fd7e7 1952 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1953}
1954
1955/*
1956 * deactivate_task - remove a task from the runqueue.
1957 */
371fd7e7 1958static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1959{
1960 if (task_contributes_to_load(p))
1961 rq->nr_uninterruptible++;
1962
371fd7e7 1963 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1964}
1965
b52bfee4
VP
1966#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1967
305e6835
VP
1968/*
1969 * There are no locks covering percpu hardirq/softirq time.
1970 * They are only modified in account_system_vtime, on corresponding CPU
1971 * with interrupts disabled. So, writes are safe.
1972 * They are read and saved off onto struct rq in update_rq_clock().
1973 * This may result in other CPU reading this CPU's irq time and can
1974 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1975 * or new value with a side effect of accounting a slice of irq time to wrong
1976 * task when irq is in progress while we read rq->clock. That is a worthy
1977 * compromise in place of having locks on each irq in account_system_time.
305e6835 1978 */
b52bfee4
VP
1979static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1980static DEFINE_PER_CPU(u64, cpu_softirq_time);
1981
1982static DEFINE_PER_CPU(u64, irq_start_time);
1983static int sched_clock_irqtime;
1984
1985void enable_sched_clock_irqtime(void)
1986{
1987 sched_clock_irqtime = 1;
1988}
1989
1990void disable_sched_clock_irqtime(void)
1991{
1992 sched_clock_irqtime = 0;
1993}
1994
8e92c201
PZ
1995#ifndef CONFIG_64BIT
1996static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1997
1998static inline void irq_time_write_begin(void)
1999{
2000 __this_cpu_inc(irq_time_seq.sequence);
2001 smp_wmb();
2002}
2003
2004static inline void irq_time_write_end(void)
2005{
2006 smp_wmb();
2007 __this_cpu_inc(irq_time_seq.sequence);
2008}
2009
2010static inline u64 irq_time_read(int cpu)
2011{
2012 u64 irq_time;
2013 unsigned seq;
2014
2015 do {
2016 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2017 irq_time = per_cpu(cpu_softirq_time, cpu) +
2018 per_cpu(cpu_hardirq_time, cpu);
2019 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2020
2021 return irq_time;
2022}
2023#else /* CONFIG_64BIT */
2024static inline void irq_time_write_begin(void)
2025{
2026}
2027
2028static inline void irq_time_write_end(void)
2029{
2030}
2031
2032static inline u64 irq_time_read(int cpu)
305e6835 2033{
305e6835
VP
2034 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2035}
8e92c201 2036#endif /* CONFIG_64BIT */
305e6835 2037
fe44d621
PZ
2038/*
2039 * Called before incrementing preempt_count on {soft,}irq_enter
2040 * and before decrementing preempt_count on {soft,}irq_exit.
2041 */
b52bfee4
VP
2042void account_system_vtime(struct task_struct *curr)
2043{
2044 unsigned long flags;
fe44d621 2045 s64 delta;
b52bfee4 2046 int cpu;
b52bfee4
VP
2047
2048 if (!sched_clock_irqtime)
2049 return;
2050
2051 local_irq_save(flags);
2052
b52bfee4 2053 cpu = smp_processor_id();
fe44d621
PZ
2054 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2055 __this_cpu_add(irq_start_time, delta);
2056
8e92c201 2057 irq_time_write_begin();
b52bfee4
VP
2058 /*
2059 * We do not account for softirq time from ksoftirqd here.
2060 * We want to continue accounting softirq time to ksoftirqd thread
2061 * in that case, so as not to confuse scheduler with a special task
2062 * that do not consume any time, but still wants to run.
2063 */
2064 if (hardirq_count())
fe44d621 2065 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2066 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2067 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2068
8e92c201 2069 irq_time_write_end();
b52bfee4
VP
2070 local_irq_restore(flags);
2071}
b7dadc38 2072EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2073
e6e6685a
GC
2074#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2075
2076#ifdef CONFIG_PARAVIRT
2077static inline u64 steal_ticks(u64 steal)
aa483808 2078{
e6e6685a
GC
2079 if (unlikely(steal > NSEC_PER_SEC))
2080 return div_u64(steal, TICK_NSEC);
fe44d621 2081
e6e6685a
GC
2082 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2083}
2084#endif
2085
fe44d621 2086static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2087{
095c0aa8
GC
2088/*
2089 * In theory, the compile should just see 0 here, and optimize out the call
2090 * to sched_rt_avg_update. But I don't trust it...
2091 */
2092#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2093 s64 steal = 0, irq_delta = 0;
2094#endif
2095#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2096 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2097
2098 /*
2099 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2100 * this case when a previous update_rq_clock() happened inside a
2101 * {soft,}irq region.
2102 *
2103 * When this happens, we stop ->clock_task and only update the
2104 * prev_irq_time stamp to account for the part that fit, so that a next
2105 * update will consume the rest. This ensures ->clock_task is
2106 * monotonic.
2107 *
2108 * It does however cause some slight miss-attribution of {soft,}irq
2109 * time, a more accurate solution would be to update the irq_time using
2110 * the current rq->clock timestamp, except that would require using
2111 * atomic ops.
2112 */
2113 if (irq_delta > delta)
2114 irq_delta = delta;
2115
2116 rq->prev_irq_time += irq_delta;
2117 delta -= irq_delta;
095c0aa8
GC
2118#endif
2119#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2120 if (static_branch((&paravirt_steal_rq_enabled))) {
2121 u64 st;
2122
2123 steal = paravirt_steal_clock(cpu_of(rq));
2124 steal -= rq->prev_steal_time_rq;
2125
2126 if (unlikely(steal > delta))
2127 steal = delta;
2128
2129 st = steal_ticks(steal);
2130 steal = st * TICK_NSEC;
2131
2132 rq->prev_steal_time_rq += steal;
2133
2134 delta -= steal;
2135 }
2136#endif
2137
fe44d621
PZ
2138 rq->clock_task += delta;
2139
095c0aa8
GC
2140#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2141 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2142 sched_rt_avg_update(rq, irq_delta + steal);
2143#endif
aa483808
VP
2144}
2145
095c0aa8 2146#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2147static int irqtime_account_hi_update(void)
2148{
2149 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2150 unsigned long flags;
2151 u64 latest_ns;
2152 int ret = 0;
2153
2154 local_irq_save(flags);
2155 latest_ns = this_cpu_read(cpu_hardirq_time);
2156 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2157 ret = 1;
2158 local_irq_restore(flags);
2159 return ret;
2160}
2161
2162static int irqtime_account_si_update(void)
2163{
2164 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2165 unsigned long flags;
2166 u64 latest_ns;
2167 int ret = 0;
2168
2169 local_irq_save(flags);
2170 latest_ns = this_cpu_read(cpu_softirq_time);
2171 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2172 ret = 1;
2173 local_irq_restore(flags);
2174 return ret;
2175}
2176
fe44d621 2177#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2178
abb74cef
VP
2179#define sched_clock_irqtime (0)
2180
095c0aa8 2181#endif
b52bfee4 2182
1e3c88bd
PZ
2183#include "sched_idletask.c"
2184#include "sched_fair.c"
2185#include "sched_rt.c"
5091faa4 2186#include "sched_autogroup.c"
34f971f6 2187#include "sched_stoptask.c"
1e3c88bd
PZ
2188#ifdef CONFIG_SCHED_DEBUG
2189# include "sched_debug.c"
2190#endif
2191
34f971f6
PZ
2192void sched_set_stop_task(int cpu, struct task_struct *stop)
2193{
2194 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2195 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2196
2197 if (stop) {
2198 /*
2199 * Make it appear like a SCHED_FIFO task, its something
2200 * userspace knows about and won't get confused about.
2201 *
2202 * Also, it will make PI more or less work without too
2203 * much confusion -- but then, stop work should not
2204 * rely on PI working anyway.
2205 */
2206 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2207
2208 stop->sched_class = &stop_sched_class;
2209 }
2210
2211 cpu_rq(cpu)->stop = stop;
2212
2213 if (old_stop) {
2214 /*
2215 * Reset it back to a normal scheduling class so that
2216 * it can die in pieces.
2217 */
2218 old_stop->sched_class = &rt_sched_class;
2219 }
2220}
2221
14531189 2222/*
dd41f596 2223 * __normal_prio - return the priority that is based on the static prio
14531189 2224 */
14531189
IM
2225static inline int __normal_prio(struct task_struct *p)
2226{
dd41f596 2227 return p->static_prio;
14531189
IM
2228}
2229
b29739f9
IM
2230/*
2231 * Calculate the expected normal priority: i.e. priority
2232 * without taking RT-inheritance into account. Might be
2233 * boosted by interactivity modifiers. Changes upon fork,
2234 * setprio syscalls, and whenever the interactivity
2235 * estimator recalculates.
2236 */
36c8b586 2237static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2238{
2239 int prio;
2240
e05606d3 2241 if (task_has_rt_policy(p))
b29739f9
IM
2242 prio = MAX_RT_PRIO-1 - p->rt_priority;
2243 else
2244 prio = __normal_prio(p);
2245 return prio;
2246}
2247
2248/*
2249 * Calculate the current priority, i.e. the priority
2250 * taken into account by the scheduler. This value might
2251 * be boosted by RT tasks, or might be boosted by
2252 * interactivity modifiers. Will be RT if the task got
2253 * RT-boosted. If not then it returns p->normal_prio.
2254 */
36c8b586 2255static int effective_prio(struct task_struct *p)
b29739f9
IM
2256{
2257 p->normal_prio = normal_prio(p);
2258 /*
2259 * If we are RT tasks or we were boosted to RT priority,
2260 * keep the priority unchanged. Otherwise, update priority
2261 * to the normal priority:
2262 */
2263 if (!rt_prio(p->prio))
2264 return p->normal_prio;
2265 return p->prio;
2266}
2267
1da177e4
LT
2268/**
2269 * task_curr - is this task currently executing on a CPU?
2270 * @p: the task in question.
2271 */
36c8b586 2272inline int task_curr(const struct task_struct *p)
1da177e4
LT
2273{
2274 return cpu_curr(task_cpu(p)) == p;
2275}
2276
cb469845
SR
2277static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2278 const struct sched_class *prev_class,
da7a735e 2279 int oldprio)
cb469845
SR
2280{
2281 if (prev_class != p->sched_class) {
2282 if (prev_class->switched_from)
da7a735e
PZ
2283 prev_class->switched_from(rq, p);
2284 p->sched_class->switched_to(rq, p);
2285 } else if (oldprio != p->prio)
2286 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2287}
2288
1e5a7405
PZ
2289static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2290{
2291 const struct sched_class *class;
2292
2293 if (p->sched_class == rq->curr->sched_class) {
2294 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2295 } else {
2296 for_each_class(class) {
2297 if (class == rq->curr->sched_class)
2298 break;
2299 if (class == p->sched_class) {
2300 resched_task(rq->curr);
2301 break;
2302 }
2303 }
2304 }
2305
2306 /*
2307 * A queue event has occurred, and we're going to schedule. In
2308 * this case, we can save a useless back to back clock update.
2309 */
fd2f4419 2310 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2311 rq->skip_clock_update = 1;
2312}
2313
1da177e4 2314#ifdef CONFIG_SMP
cc367732
IM
2315/*
2316 * Is this task likely cache-hot:
2317 */
e7693a36 2318static int
cc367732
IM
2319task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2320{
2321 s64 delta;
2322
e6c8fba7
PZ
2323 if (p->sched_class != &fair_sched_class)
2324 return 0;
2325
ef8002f6
NR
2326 if (unlikely(p->policy == SCHED_IDLE))
2327 return 0;
2328
f540a608
IM
2329 /*
2330 * Buddy candidates are cache hot:
2331 */
f685ceac 2332 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2333 (&p->se == cfs_rq_of(&p->se)->next ||
2334 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2335 return 1;
2336
6bc1665b
IM
2337 if (sysctl_sched_migration_cost == -1)
2338 return 1;
2339 if (sysctl_sched_migration_cost == 0)
2340 return 0;
2341
cc367732
IM
2342 delta = now - p->se.exec_start;
2343
2344 return delta < (s64)sysctl_sched_migration_cost;
2345}
2346
dd41f596 2347void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2348{
e2912009
PZ
2349#ifdef CONFIG_SCHED_DEBUG
2350 /*
2351 * We should never call set_task_cpu() on a blocked task,
2352 * ttwu() will sort out the placement.
2353 */
077614ee
PZ
2354 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2355 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2356
2357#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2358 /*
2359 * The caller should hold either p->pi_lock or rq->lock, when changing
2360 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2361 *
2362 * sched_move_task() holds both and thus holding either pins the cgroup,
2363 * see set_task_rq().
2364 *
2365 * Furthermore, all task_rq users should acquire both locks, see
2366 * task_rq_lock().
2367 */
0122ec5b
PZ
2368 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2369 lockdep_is_held(&task_rq(p)->lock)));
2370#endif
e2912009
PZ
2371#endif
2372
de1d7286 2373 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2374
0c69774e
PZ
2375 if (task_cpu(p) != new_cpu) {
2376 p->se.nr_migrations++;
a8b0ca17 2377 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2378 }
dd41f596
IM
2379
2380 __set_task_cpu(p, new_cpu);
c65cc870
IM
2381}
2382
969c7921 2383struct migration_arg {
36c8b586 2384 struct task_struct *task;
1da177e4 2385 int dest_cpu;
70b97a7f 2386};
1da177e4 2387
969c7921
TH
2388static int migration_cpu_stop(void *data);
2389
1da177e4
LT
2390/*
2391 * wait_task_inactive - wait for a thread to unschedule.
2392 *
85ba2d86
RM
2393 * If @match_state is nonzero, it's the @p->state value just checked and
2394 * not expected to change. If it changes, i.e. @p might have woken up,
2395 * then return zero. When we succeed in waiting for @p to be off its CPU,
2396 * we return a positive number (its total switch count). If a second call
2397 * a short while later returns the same number, the caller can be sure that
2398 * @p has remained unscheduled the whole time.
2399 *
1da177e4
LT
2400 * The caller must ensure that the task *will* unschedule sometime soon,
2401 * else this function might spin for a *long* time. This function can't
2402 * be called with interrupts off, or it may introduce deadlock with
2403 * smp_call_function() if an IPI is sent by the same process we are
2404 * waiting to become inactive.
2405 */
85ba2d86 2406unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2407{
2408 unsigned long flags;
dd41f596 2409 int running, on_rq;
85ba2d86 2410 unsigned long ncsw;
70b97a7f 2411 struct rq *rq;
1da177e4 2412
3a5c359a
AK
2413 for (;;) {
2414 /*
2415 * We do the initial early heuristics without holding
2416 * any task-queue locks at all. We'll only try to get
2417 * the runqueue lock when things look like they will
2418 * work out!
2419 */
2420 rq = task_rq(p);
fa490cfd 2421
3a5c359a
AK
2422 /*
2423 * If the task is actively running on another CPU
2424 * still, just relax and busy-wait without holding
2425 * any locks.
2426 *
2427 * NOTE! Since we don't hold any locks, it's not
2428 * even sure that "rq" stays as the right runqueue!
2429 * But we don't care, since "task_running()" will
2430 * return false if the runqueue has changed and p
2431 * is actually now running somewhere else!
2432 */
85ba2d86
RM
2433 while (task_running(rq, p)) {
2434 if (match_state && unlikely(p->state != match_state))
2435 return 0;
3a5c359a 2436 cpu_relax();
85ba2d86 2437 }
fa490cfd 2438
3a5c359a
AK
2439 /*
2440 * Ok, time to look more closely! We need the rq
2441 * lock now, to be *sure*. If we're wrong, we'll
2442 * just go back and repeat.
2443 */
2444 rq = task_rq_lock(p, &flags);
27a9da65 2445 trace_sched_wait_task(p);
3a5c359a 2446 running = task_running(rq, p);
fd2f4419 2447 on_rq = p->on_rq;
85ba2d86 2448 ncsw = 0;
f31e11d8 2449 if (!match_state || p->state == match_state)
93dcf55f 2450 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2451 task_rq_unlock(rq, p, &flags);
fa490cfd 2452
85ba2d86
RM
2453 /*
2454 * If it changed from the expected state, bail out now.
2455 */
2456 if (unlikely(!ncsw))
2457 break;
2458
3a5c359a
AK
2459 /*
2460 * Was it really running after all now that we
2461 * checked with the proper locks actually held?
2462 *
2463 * Oops. Go back and try again..
2464 */
2465 if (unlikely(running)) {
2466 cpu_relax();
2467 continue;
2468 }
fa490cfd 2469
3a5c359a
AK
2470 /*
2471 * It's not enough that it's not actively running,
2472 * it must be off the runqueue _entirely_, and not
2473 * preempted!
2474 *
80dd99b3 2475 * So if it was still runnable (but just not actively
3a5c359a
AK
2476 * running right now), it's preempted, and we should
2477 * yield - it could be a while.
2478 */
2479 if (unlikely(on_rq)) {
8eb90c30
TG
2480 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2481
2482 set_current_state(TASK_UNINTERRUPTIBLE);
2483 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2484 continue;
2485 }
fa490cfd 2486
3a5c359a
AK
2487 /*
2488 * Ahh, all good. It wasn't running, and it wasn't
2489 * runnable, which means that it will never become
2490 * running in the future either. We're all done!
2491 */
2492 break;
2493 }
85ba2d86
RM
2494
2495 return ncsw;
1da177e4
LT
2496}
2497
2498/***
2499 * kick_process - kick a running thread to enter/exit the kernel
2500 * @p: the to-be-kicked thread
2501 *
2502 * Cause a process which is running on another CPU to enter
2503 * kernel-mode, without any delay. (to get signals handled.)
2504 *
25985edc 2505 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2506 * because all it wants to ensure is that the remote task enters
2507 * the kernel. If the IPI races and the task has been migrated
2508 * to another CPU then no harm is done and the purpose has been
2509 * achieved as well.
2510 */
36c8b586 2511void kick_process(struct task_struct *p)
1da177e4
LT
2512{
2513 int cpu;
2514
2515 preempt_disable();
2516 cpu = task_cpu(p);
2517 if ((cpu != smp_processor_id()) && task_curr(p))
2518 smp_send_reschedule(cpu);
2519 preempt_enable();
2520}
b43e3521 2521EXPORT_SYMBOL_GPL(kick_process);
476d139c 2522#endif /* CONFIG_SMP */
1da177e4 2523
970b13ba 2524#ifdef CONFIG_SMP
30da688e 2525/*
013fdb80 2526 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2527 */
5da9a0fb
PZ
2528static int select_fallback_rq(int cpu, struct task_struct *p)
2529{
2530 int dest_cpu;
2531 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2532
2533 /* Look for allowed, online CPU in same node. */
2534 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2535 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2536 return dest_cpu;
2537
2538 /* Any allowed, online CPU? */
2539 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2540 if (dest_cpu < nr_cpu_ids)
2541 return dest_cpu;
2542
2543 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2544 dest_cpu = cpuset_cpus_allowed_fallback(p);
2545 /*
2546 * Don't tell them about moving exiting tasks or
2547 * kernel threads (both mm NULL), since they never
2548 * leave kernel.
2549 */
2550 if (p->mm && printk_ratelimit()) {
2551 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2552 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2553 }
2554
2555 return dest_cpu;
2556}
2557
e2912009 2558/*
013fdb80 2559 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2560 */
970b13ba 2561static inline
7608dec2 2562int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2563{
7608dec2 2564 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2565
2566 /*
2567 * In order not to call set_task_cpu() on a blocking task we need
2568 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2569 * cpu.
2570 *
2571 * Since this is common to all placement strategies, this lives here.
2572 *
2573 * [ this allows ->select_task() to simply return task_cpu(p) and
2574 * not worry about this generic constraint ]
2575 */
2576 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2577 !cpu_online(cpu)))
5da9a0fb 2578 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2579
2580 return cpu;
970b13ba 2581}
09a40af5
MG
2582
2583static void update_avg(u64 *avg, u64 sample)
2584{
2585 s64 diff = sample - *avg;
2586 *avg += diff >> 3;
2587}
970b13ba
PZ
2588#endif
2589
d7c01d27 2590static void
b84cb5df 2591ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2592{
d7c01d27 2593#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2594 struct rq *rq = this_rq();
2595
d7c01d27
PZ
2596#ifdef CONFIG_SMP
2597 int this_cpu = smp_processor_id();
2598
2599 if (cpu == this_cpu) {
2600 schedstat_inc(rq, ttwu_local);
2601 schedstat_inc(p, se.statistics.nr_wakeups_local);
2602 } else {
2603 struct sched_domain *sd;
2604
2605 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2606 rcu_read_lock();
d7c01d27
PZ
2607 for_each_domain(this_cpu, sd) {
2608 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2609 schedstat_inc(sd, ttwu_wake_remote);
2610 break;
2611 }
2612 }
057f3fad 2613 rcu_read_unlock();
d7c01d27 2614 }
f339b9dc
PZ
2615
2616 if (wake_flags & WF_MIGRATED)
2617 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2618
d7c01d27
PZ
2619#endif /* CONFIG_SMP */
2620
2621 schedstat_inc(rq, ttwu_count);
9ed3811a 2622 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2623
2624 if (wake_flags & WF_SYNC)
9ed3811a 2625 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2626
d7c01d27
PZ
2627#endif /* CONFIG_SCHEDSTATS */
2628}
2629
2630static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2631{
9ed3811a 2632 activate_task(rq, p, en_flags);
fd2f4419 2633 p->on_rq = 1;
c2f7115e
PZ
2634
2635 /* if a worker is waking up, notify workqueue */
2636 if (p->flags & PF_WQ_WORKER)
2637 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2638}
2639
23f41eeb
PZ
2640/*
2641 * Mark the task runnable and perform wakeup-preemption.
2642 */
89363381 2643static void
23f41eeb 2644ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2645{
89363381 2646 trace_sched_wakeup(p, true);
9ed3811a
TH
2647 check_preempt_curr(rq, p, wake_flags);
2648
2649 p->state = TASK_RUNNING;
2650#ifdef CONFIG_SMP
2651 if (p->sched_class->task_woken)
2652 p->sched_class->task_woken(rq, p);
2653
e69c6341 2654 if (rq->idle_stamp) {
9ed3811a
TH
2655 u64 delta = rq->clock - rq->idle_stamp;
2656 u64 max = 2*sysctl_sched_migration_cost;
2657
2658 if (delta > max)
2659 rq->avg_idle = max;
2660 else
2661 update_avg(&rq->avg_idle, delta);
2662 rq->idle_stamp = 0;
2663 }
2664#endif
2665}
2666
c05fbafb
PZ
2667static void
2668ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2669{
2670#ifdef CONFIG_SMP
2671 if (p->sched_contributes_to_load)
2672 rq->nr_uninterruptible--;
2673#endif
2674
2675 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2676 ttwu_do_wakeup(rq, p, wake_flags);
2677}
2678
2679/*
2680 * Called in case the task @p isn't fully descheduled from its runqueue,
2681 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2682 * since all we need to do is flip p->state to TASK_RUNNING, since
2683 * the task is still ->on_rq.
2684 */
2685static int ttwu_remote(struct task_struct *p, int wake_flags)
2686{
2687 struct rq *rq;
2688 int ret = 0;
2689
2690 rq = __task_rq_lock(p);
2691 if (p->on_rq) {
2692 ttwu_do_wakeup(rq, p, wake_flags);
2693 ret = 1;
2694 }
2695 __task_rq_unlock(rq);
2696
2697 return ret;
2698}
2699
317f3941 2700#ifdef CONFIG_SMP
fa14ff4a 2701static void sched_ttwu_pending(void)
317f3941
PZ
2702{
2703 struct rq *rq = this_rq();
fa14ff4a
PZ
2704 struct llist_node *llist = llist_del_all(&rq->wake_list);
2705 struct task_struct *p;
317f3941
PZ
2706
2707 raw_spin_lock(&rq->lock);
2708
fa14ff4a
PZ
2709 while (llist) {
2710 p = llist_entry(llist, struct task_struct, wake_entry);
2711 llist = llist_next(llist);
317f3941
PZ
2712 ttwu_do_activate(rq, p, 0);
2713 }
2714
2715 raw_spin_unlock(&rq->lock);
2716}
2717
2718void scheduler_ipi(void)
2719{
fa14ff4a 2720 if (llist_empty(&this_rq()->wake_list))
c5d753a5
PZ
2721 return;
2722
2723 /*
2724 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2725 * traditionally all their work was done from the interrupt return
2726 * path. Now that we actually do some work, we need to make sure
2727 * we do call them.
2728 *
2729 * Some archs already do call them, luckily irq_enter/exit nest
2730 * properly.
2731 *
2732 * Arguably we should visit all archs and update all handlers,
2733 * however a fair share of IPIs are still resched only so this would
2734 * somewhat pessimize the simple resched case.
2735 */
2736 irq_enter();
fa14ff4a 2737 sched_ttwu_pending();
c5d753a5 2738 irq_exit();
317f3941
PZ
2739}
2740
2741static void ttwu_queue_remote(struct task_struct *p, int cpu)
2742{
fa14ff4a 2743 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
2744 smp_send_reschedule(cpu);
2745}
d6aa8f85
PZ
2746
2747#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2748static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2749{
2750 struct rq *rq;
2751 int ret = 0;
2752
2753 rq = __task_rq_lock(p);
2754 if (p->on_cpu) {
2755 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2756 ttwu_do_wakeup(rq, p, wake_flags);
2757 ret = 1;
2758 }
2759 __task_rq_unlock(rq);
2760
2761 return ret;
2762
2763}
2764#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2765#endif /* CONFIG_SMP */
317f3941 2766
c05fbafb
PZ
2767static void ttwu_queue(struct task_struct *p, int cpu)
2768{
2769 struct rq *rq = cpu_rq(cpu);
2770
17d9f311 2771#if defined(CONFIG_SMP)
317f3941 2772 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2773 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2774 ttwu_queue_remote(p, cpu);
2775 return;
2776 }
2777#endif
2778
c05fbafb
PZ
2779 raw_spin_lock(&rq->lock);
2780 ttwu_do_activate(rq, p, 0);
2781 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2782}
2783
2784/**
1da177e4 2785 * try_to_wake_up - wake up a thread
9ed3811a 2786 * @p: the thread to be awakened
1da177e4 2787 * @state: the mask of task states that can be woken
9ed3811a 2788 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2789 *
2790 * Put it on the run-queue if it's not already there. The "current"
2791 * thread is always on the run-queue (except when the actual
2792 * re-schedule is in progress), and as such you're allowed to do
2793 * the simpler "current->state = TASK_RUNNING" to mark yourself
2794 * runnable without the overhead of this.
2795 *
9ed3811a
TH
2796 * Returns %true if @p was woken up, %false if it was already running
2797 * or @state didn't match @p's state.
1da177e4 2798 */
e4a52bcb
PZ
2799static int
2800try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2801{
1da177e4 2802 unsigned long flags;
c05fbafb 2803 int cpu, success = 0;
2398f2c6 2804
04e2f174 2805 smp_wmb();
013fdb80 2806 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2807 if (!(p->state & state))
1da177e4
LT
2808 goto out;
2809
c05fbafb 2810 success = 1; /* we're going to change ->state */
1da177e4 2811 cpu = task_cpu(p);
1da177e4 2812
c05fbafb
PZ
2813 if (p->on_rq && ttwu_remote(p, wake_flags))
2814 goto stat;
1da177e4 2815
1da177e4 2816#ifdef CONFIG_SMP
e9c84311 2817 /*
c05fbafb
PZ
2818 * If the owning (remote) cpu is still in the middle of schedule() with
2819 * this task as prev, wait until its done referencing the task.
e9c84311 2820 */
e4a52bcb
PZ
2821 while (p->on_cpu) {
2822#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2823 /*
d6aa8f85
PZ
2824 * In case the architecture enables interrupts in
2825 * context_switch(), we cannot busy wait, since that
2826 * would lead to deadlocks when an interrupt hits and
2827 * tries to wake up @prev. So bail and do a complete
2828 * remote wakeup.
e4a52bcb 2829 */
d6aa8f85 2830 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2831 goto stat;
d6aa8f85 2832#else
e4a52bcb 2833 cpu_relax();
d6aa8f85 2834#endif
371fd7e7 2835 }
0970d299 2836 /*
e4a52bcb 2837 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2838 */
e4a52bcb 2839 smp_rmb();
1da177e4 2840
a8e4f2ea 2841 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2842 p->state = TASK_WAKING;
e7693a36 2843
e4a52bcb 2844 if (p->sched_class->task_waking)
74f8e4b2 2845 p->sched_class->task_waking(p);
efbbd05a 2846
7608dec2 2847 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2848 if (task_cpu(p) != cpu) {
2849 wake_flags |= WF_MIGRATED;
e4a52bcb 2850 set_task_cpu(p, cpu);
f339b9dc 2851 }
1da177e4 2852#endif /* CONFIG_SMP */
1da177e4 2853
c05fbafb
PZ
2854 ttwu_queue(p, cpu);
2855stat:
b84cb5df 2856 ttwu_stat(p, cpu, wake_flags);
1da177e4 2857out:
013fdb80 2858 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2859
2860 return success;
2861}
2862
21aa9af0
TH
2863/**
2864 * try_to_wake_up_local - try to wake up a local task with rq lock held
2865 * @p: the thread to be awakened
2866 *
2acca55e 2867 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2868 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2869 * the current task.
21aa9af0
TH
2870 */
2871static void try_to_wake_up_local(struct task_struct *p)
2872{
2873 struct rq *rq = task_rq(p);
21aa9af0
TH
2874
2875 BUG_ON(rq != this_rq());
2876 BUG_ON(p == current);
2877 lockdep_assert_held(&rq->lock);
2878
2acca55e
PZ
2879 if (!raw_spin_trylock(&p->pi_lock)) {
2880 raw_spin_unlock(&rq->lock);
2881 raw_spin_lock(&p->pi_lock);
2882 raw_spin_lock(&rq->lock);
2883 }
2884
21aa9af0 2885 if (!(p->state & TASK_NORMAL))
2acca55e 2886 goto out;
21aa9af0 2887
fd2f4419 2888 if (!p->on_rq)
d7c01d27
PZ
2889 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2890
23f41eeb 2891 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2892 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2893out:
2894 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2895}
2896
50fa610a
DH
2897/**
2898 * wake_up_process - Wake up a specific process
2899 * @p: The process to be woken up.
2900 *
2901 * Attempt to wake up the nominated process and move it to the set of runnable
2902 * processes. Returns 1 if the process was woken up, 0 if it was already
2903 * running.
2904 *
2905 * It may be assumed that this function implies a write memory barrier before
2906 * changing the task state if and only if any tasks are woken up.
2907 */
7ad5b3a5 2908int wake_up_process(struct task_struct *p)
1da177e4 2909{
d9514f6c 2910 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2911}
1da177e4
LT
2912EXPORT_SYMBOL(wake_up_process);
2913
7ad5b3a5 2914int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2915{
2916 return try_to_wake_up(p, state, 0);
2917}
2918
1da177e4
LT
2919/*
2920 * Perform scheduler related setup for a newly forked process p.
2921 * p is forked by current.
dd41f596
IM
2922 *
2923 * __sched_fork() is basic setup used by init_idle() too:
2924 */
2925static void __sched_fork(struct task_struct *p)
2926{
fd2f4419
PZ
2927 p->on_rq = 0;
2928
2929 p->se.on_rq = 0;
dd41f596
IM
2930 p->se.exec_start = 0;
2931 p->se.sum_exec_runtime = 0;
f6cf891c 2932 p->se.prev_sum_exec_runtime = 0;
6c594c21 2933 p->se.nr_migrations = 0;
da7a735e 2934 p->se.vruntime = 0;
fd2f4419 2935 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2936
2937#ifdef CONFIG_SCHEDSTATS
41acab88 2938 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2939#endif
476d139c 2940
fa717060 2941 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2942
e107be36
AK
2943#ifdef CONFIG_PREEMPT_NOTIFIERS
2944 INIT_HLIST_HEAD(&p->preempt_notifiers);
2945#endif
dd41f596
IM
2946}
2947
2948/*
2949 * fork()/clone()-time setup:
2950 */
3e51e3ed 2951void sched_fork(struct task_struct *p)
dd41f596 2952{
0122ec5b 2953 unsigned long flags;
dd41f596
IM
2954 int cpu = get_cpu();
2955
2956 __sched_fork(p);
06b83b5f 2957 /*
0017d735 2958 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2959 * nobody will actually run it, and a signal or other external
2960 * event cannot wake it up and insert it on the runqueue either.
2961 */
0017d735 2962 p->state = TASK_RUNNING;
dd41f596 2963
c350a04e
MG
2964 /*
2965 * Make sure we do not leak PI boosting priority to the child.
2966 */
2967 p->prio = current->normal_prio;
2968
b9dc29e7
MG
2969 /*
2970 * Revert to default priority/policy on fork if requested.
2971 */
2972 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2973 if (task_has_rt_policy(p)) {
b9dc29e7 2974 p->policy = SCHED_NORMAL;
6c697bdf 2975 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2976 p->rt_priority = 0;
2977 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2978 p->static_prio = NICE_TO_PRIO(0);
2979
2980 p->prio = p->normal_prio = __normal_prio(p);
2981 set_load_weight(p);
6c697bdf 2982
b9dc29e7
MG
2983 /*
2984 * We don't need the reset flag anymore after the fork. It has
2985 * fulfilled its duty:
2986 */
2987 p->sched_reset_on_fork = 0;
2988 }
ca94c442 2989
2ddbf952
HS
2990 if (!rt_prio(p->prio))
2991 p->sched_class = &fair_sched_class;
b29739f9 2992
cd29fe6f
PZ
2993 if (p->sched_class->task_fork)
2994 p->sched_class->task_fork(p);
2995
86951599
PZ
2996 /*
2997 * The child is not yet in the pid-hash so no cgroup attach races,
2998 * and the cgroup is pinned to this child due to cgroup_fork()
2999 * is ran before sched_fork().
3000 *
3001 * Silence PROVE_RCU.
3002 */
0122ec5b 3003 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3004 set_task_cpu(p, cpu);
0122ec5b 3005 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3006
52f17b6c 3007#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3008 if (likely(sched_info_on()))
52f17b6c 3009 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3010#endif
3ca7a440
PZ
3011#if defined(CONFIG_SMP)
3012 p->on_cpu = 0;
4866cde0 3013#endif
bdd4e85d 3014#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3015 /* Want to start with kernel preemption disabled. */
a1261f54 3016 task_thread_info(p)->preempt_count = 1;
1da177e4 3017#endif
806c09a7 3018#ifdef CONFIG_SMP
917b627d 3019 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3020#endif
917b627d 3021
476d139c 3022 put_cpu();
1da177e4
LT
3023}
3024
3025/*
3026 * wake_up_new_task - wake up a newly created task for the first time.
3027 *
3028 * This function will do some initial scheduler statistics housekeeping
3029 * that must be done for every newly created context, then puts the task
3030 * on the runqueue and wakes it.
3031 */
3e51e3ed 3032void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3033{
3034 unsigned long flags;
dd41f596 3035 struct rq *rq;
fabf318e 3036
ab2515c4 3037 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3038#ifdef CONFIG_SMP
3039 /*
3040 * Fork balancing, do it here and not earlier because:
3041 * - cpus_allowed can change in the fork path
3042 * - any previously selected cpu might disappear through hotplug
fabf318e 3043 */
ab2515c4 3044 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3045#endif
3046
ab2515c4 3047 rq = __task_rq_lock(p);
cd29fe6f 3048 activate_task(rq, p, 0);
fd2f4419 3049 p->on_rq = 1;
89363381 3050 trace_sched_wakeup_new(p, true);
a7558e01 3051 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3052#ifdef CONFIG_SMP
efbbd05a
PZ
3053 if (p->sched_class->task_woken)
3054 p->sched_class->task_woken(rq, p);
9a897c5a 3055#endif
0122ec5b 3056 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3057}
3058
e107be36
AK
3059#ifdef CONFIG_PREEMPT_NOTIFIERS
3060
3061/**
80dd99b3 3062 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3063 * @notifier: notifier struct to register
e107be36
AK
3064 */
3065void preempt_notifier_register(struct preempt_notifier *notifier)
3066{
3067 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3068}
3069EXPORT_SYMBOL_GPL(preempt_notifier_register);
3070
3071/**
3072 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3073 * @notifier: notifier struct to unregister
e107be36
AK
3074 *
3075 * This is safe to call from within a preemption notifier.
3076 */
3077void preempt_notifier_unregister(struct preempt_notifier *notifier)
3078{
3079 hlist_del(&notifier->link);
3080}
3081EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3082
3083static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3084{
3085 struct preempt_notifier *notifier;
3086 struct hlist_node *node;
3087
3088 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3089 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3090}
3091
3092static void
3093fire_sched_out_preempt_notifiers(struct task_struct *curr,
3094 struct task_struct *next)
3095{
3096 struct preempt_notifier *notifier;
3097 struct hlist_node *node;
3098
3099 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3100 notifier->ops->sched_out(notifier, next);
3101}
3102
6d6bc0ad 3103#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3104
3105static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3106{
3107}
3108
3109static void
3110fire_sched_out_preempt_notifiers(struct task_struct *curr,
3111 struct task_struct *next)
3112{
3113}
3114
6d6bc0ad 3115#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3116
4866cde0
NP
3117/**
3118 * prepare_task_switch - prepare to switch tasks
3119 * @rq: the runqueue preparing to switch
421cee29 3120 * @prev: the current task that is being switched out
4866cde0
NP
3121 * @next: the task we are going to switch to.
3122 *
3123 * This is called with the rq lock held and interrupts off. It must
3124 * be paired with a subsequent finish_task_switch after the context
3125 * switch.
3126 *
3127 * prepare_task_switch sets up locking and calls architecture specific
3128 * hooks.
3129 */
e107be36
AK
3130static inline void
3131prepare_task_switch(struct rq *rq, struct task_struct *prev,
3132 struct task_struct *next)
4866cde0 3133{
fe4b04fa
PZ
3134 sched_info_switch(prev, next);
3135 perf_event_task_sched_out(prev, next);
e107be36 3136 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3137 prepare_lock_switch(rq, next);
3138 prepare_arch_switch(next);
fe4b04fa 3139 trace_sched_switch(prev, next);
4866cde0
NP
3140}
3141
1da177e4
LT
3142/**
3143 * finish_task_switch - clean up after a task-switch
344babaa 3144 * @rq: runqueue associated with task-switch
1da177e4
LT
3145 * @prev: the thread we just switched away from.
3146 *
4866cde0
NP
3147 * finish_task_switch must be called after the context switch, paired
3148 * with a prepare_task_switch call before the context switch.
3149 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3150 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3151 *
3152 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3153 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3154 * with the lock held can cause deadlocks; see schedule() for
3155 * details.)
3156 */
a9957449 3157static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3158 __releases(rq->lock)
3159{
1da177e4 3160 struct mm_struct *mm = rq->prev_mm;
55a101f8 3161 long prev_state;
1da177e4
LT
3162
3163 rq->prev_mm = NULL;
3164
3165 /*
3166 * A task struct has one reference for the use as "current".
c394cc9f 3167 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3168 * schedule one last time. The schedule call will never return, and
3169 * the scheduled task must drop that reference.
c394cc9f 3170 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3171 * still held, otherwise prev could be scheduled on another cpu, die
3172 * there before we look at prev->state, and then the reference would
3173 * be dropped twice.
3174 * Manfred Spraul <manfred@colorfullife.com>
3175 */
55a101f8 3176 prev_state = prev->state;
4866cde0 3177 finish_arch_switch(prev);
8381f65d
JI
3178#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3179 local_irq_disable();
3180#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 3181 perf_event_task_sched_in(prev, current);
8381f65d
JI
3182#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3183 local_irq_enable();
3184#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3185 finish_lock_switch(rq, prev);
e8fa1362 3186
e107be36 3187 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3188 if (mm)
3189 mmdrop(mm);
c394cc9f 3190 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3191 /*
3192 * Remove function-return probe instances associated with this
3193 * task and put them back on the free list.
9761eea8 3194 */
c6fd91f0 3195 kprobe_flush_task(prev);
1da177e4 3196 put_task_struct(prev);
c6fd91f0 3197 }
1da177e4
LT
3198}
3199
3f029d3c
GH
3200#ifdef CONFIG_SMP
3201
3202/* assumes rq->lock is held */
3203static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3204{
3205 if (prev->sched_class->pre_schedule)
3206 prev->sched_class->pre_schedule(rq, prev);
3207}
3208
3209/* rq->lock is NOT held, but preemption is disabled */
3210static inline void post_schedule(struct rq *rq)
3211{
3212 if (rq->post_schedule) {
3213 unsigned long flags;
3214
05fa785c 3215 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3216 if (rq->curr->sched_class->post_schedule)
3217 rq->curr->sched_class->post_schedule(rq);
05fa785c 3218 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3219
3220 rq->post_schedule = 0;
3221 }
3222}
3223
3224#else
da19ab51 3225
3f029d3c
GH
3226static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3227{
3228}
3229
3230static inline void post_schedule(struct rq *rq)
3231{
1da177e4
LT
3232}
3233
3f029d3c
GH
3234#endif
3235
1da177e4
LT
3236/**
3237 * schedule_tail - first thing a freshly forked thread must call.
3238 * @prev: the thread we just switched away from.
3239 */
36c8b586 3240asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3241 __releases(rq->lock)
3242{
70b97a7f
IM
3243 struct rq *rq = this_rq();
3244
4866cde0 3245 finish_task_switch(rq, prev);
da19ab51 3246
3f029d3c
GH
3247 /*
3248 * FIXME: do we need to worry about rq being invalidated by the
3249 * task_switch?
3250 */
3251 post_schedule(rq);
70b97a7f 3252
4866cde0
NP
3253#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3254 /* In this case, finish_task_switch does not reenable preemption */
3255 preempt_enable();
3256#endif
1da177e4 3257 if (current->set_child_tid)
b488893a 3258 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3259}
3260
3261/*
3262 * context_switch - switch to the new MM and the new
3263 * thread's register state.
3264 */
dd41f596 3265static inline void
70b97a7f 3266context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3267 struct task_struct *next)
1da177e4 3268{
dd41f596 3269 struct mm_struct *mm, *oldmm;
1da177e4 3270
e107be36 3271 prepare_task_switch(rq, prev, next);
fe4b04fa 3272
dd41f596
IM
3273 mm = next->mm;
3274 oldmm = prev->active_mm;
9226d125
ZA
3275 /*
3276 * For paravirt, this is coupled with an exit in switch_to to
3277 * combine the page table reload and the switch backend into
3278 * one hypercall.
3279 */
224101ed 3280 arch_start_context_switch(prev);
9226d125 3281
31915ab4 3282 if (!mm) {
1da177e4
LT
3283 next->active_mm = oldmm;
3284 atomic_inc(&oldmm->mm_count);
3285 enter_lazy_tlb(oldmm, next);
3286 } else
3287 switch_mm(oldmm, mm, next);
3288
31915ab4 3289 if (!prev->mm) {
1da177e4 3290 prev->active_mm = NULL;
1da177e4
LT
3291 rq->prev_mm = oldmm;
3292 }
3a5f5e48
IM
3293 /*
3294 * Since the runqueue lock will be released by the next
3295 * task (which is an invalid locking op but in the case
3296 * of the scheduler it's an obvious special-case), so we
3297 * do an early lockdep release here:
3298 */
3299#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3300 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3301#endif
1da177e4
LT
3302
3303 /* Here we just switch the register state and the stack. */
3304 switch_to(prev, next, prev);
3305
dd41f596
IM
3306 barrier();
3307 /*
3308 * this_rq must be evaluated again because prev may have moved
3309 * CPUs since it called schedule(), thus the 'rq' on its stack
3310 * frame will be invalid.
3311 */
3312 finish_task_switch(this_rq(), prev);
1da177e4
LT
3313}
3314
3315/*
3316 * nr_running, nr_uninterruptible and nr_context_switches:
3317 *
3318 * externally visible scheduler statistics: current number of runnable
3319 * threads, current number of uninterruptible-sleeping threads, total
3320 * number of context switches performed since bootup.
3321 */
3322unsigned long nr_running(void)
3323{
3324 unsigned long i, sum = 0;
3325
3326 for_each_online_cpu(i)
3327 sum += cpu_rq(i)->nr_running;
3328
3329 return sum;
f711f609 3330}
1da177e4
LT
3331
3332unsigned long nr_uninterruptible(void)
f711f609 3333{
1da177e4 3334 unsigned long i, sum = 0;
f711f609 3335
0a945022 3336 for_each_possible_cpu(i)
1da177e4 3337 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3338
3339 /*
1da177e4
LT
3340 * Since we read the counters lockless, it might be slightly
3341 * inaccurate. Do not allow it to go below zero though:
f711f609 3342 */
1da177e4
LT
3343 if (unlikely((long)sum < 0))
3344 sum = 0;
f711f609 3345
1da177e4 3346 return sum;
f711f609 3347}
f711f609 3348
1da177e4 3349unsigned long long nr_context_switches(void)
46cb4b7c 3350{
cc94abfc
SR
3351 int i;
3352 unsigned long long sum = 0;
46cb4b7c 3353
0a945022 3354 for_each_possible_cpu(i)
1da177e4 3355 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3356
1da177e4
LT
3357 return sum;
3358}
483b4ee6 3359
1da177e4
LT
3360unsigned long nr_iowait(void)
3361{
3362 unsigned long i, sum = 0;
483b4ee6 3363
0a945022 3364 for_each_possible_cpu(i)
1da177e4 3365 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3366
1da177e4
LT
3367 return sum;
3368}
483b4ee6 3369
8c215bd3 3370unsigned long nr_iowait_cpu(int cpu)
69d25870 3371{
8c215bd3 3372 struct rq *this = cpu_rq(cpu);
69d25870
AV
3373 return atomic_read(&this->nr_iowait);
3374}
46cb4b7c 3375
69d25870
AV
3376unsigned long this_cpu_load(void)
3377{
3378 struct rq *this = this_rq();
3379 return this->cpu_load[0];
3380}
e790fb0b 3381
46cb4b7c 3382
dce48a84
TG
3383/* Variables and functions for calc_load */
3384static atomic_long_t calc_load_tasks;
3385static unsigned long calc_load_update;
3386unsigned long avenrun[3];
3387EXPORT_SYMBOL(avenrun);
46cb4b7c 3388
74f5187a
PZ
3389static long calc_load_fold_active(struct rq *this_rq)
3390{
3391 long nr_active, delta = 0;
3392
3393 nr_active = this_rq->nr_running;
3394 nr_active += (long) this_rq->nr_uninterruptible;
3395
3396 if (nr_active != this_rq->calc_load_active) {
3397 delta = nr_active - this_rq->calc_load_active;
3398 this_rq->calc_load_active = nr_active;
3399 }
3400
3401 return delta;
3402}
3403
0f004f5a
PZ
3404static unsigned long
3405calc_load(unsigned long load, unsigned long exp, unsigned long active)
3406{
3407 load *= exp;
3408 load += active * (FIXED_1 - exp);
3409 load += 1UL << (FSHIFT - 1);
3410 return load >> FSHIFT;
3411}
3412
74f5187a
PZ
3413#ifdef CONFIG_NO_HZ
3414/*
3415 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3416 *
3417 * When making the ILB scale, we should try to pull this in as well.
3418 */
3419static atomic_long_t calc_load_tasks_idle;
3420
3421static void calc_load_account_idle(struct rq *this_rq)
3422{
3423 long delta;
3424
3425 delta = calc_load_fold_active(this_rq);
3426 if (delta)
3427 atomic_long_add(delta, &calc_load_tasks_idle);
3428}
3429
3430static long calc_load_fold_idle(void)
3431{
3432 long delta = 0;
3433
3434 /*
3435 * Its got a race, we don't care...
3436 */
3437 if (atomic_long_read(&calc_load_tasks_idle))
3438 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3439
3440 return delta;
3441}
0f004f5a
PZ
3442
3443/**
3444 * fixed_power_int - compute: x^n, in O(log n) time
3445 *
3446 * @x: base of the power
3447 * @frac_bits: fractional bits of @x
3448 * @n: power to raise @x to.
3449 *
3450 * By exploiting the relation between the definition of the natural power
3451 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3452 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3453 * (where: n_i \elem {0, 1}, the binary vector representing n),
3454 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3455 * of course trivially computable in O(log_2 n), the length of our binary
3456 * vector.
3457 */
3458static unsigned long
3459fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3460{
3461 unsigned long result = 1UL << frac_bits;
3462
3463 if (n) for (;;) {
3464 if (n & 1) {
3465 result *= x;
3466 result += 1UL << (frac_bits - 1);
3467 result >>= frac_bits;
3468 }
3469 n >>= 1;
3470 if (!n)
3471 break;
3472 x *= x;
3473 x += 1UL << (frac_bits - 1);
3474 x >>= frac_bits;
3475 }
3476
3477 return result;
3478}
3479
3480/*
3481 * a1 = a0 * e + a * (1 - e)
3482 *
3483 * a2 = a1 * e + a * (1 - e)
3484 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3485 * = a0 * e^2 + a * (1 - e) * (1 + e)
3486 *
3487 * a3 = a2 * e + a * (1 - e)
3488 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3489 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3490 *
3491 * ...
3492 *
3493 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3494 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3495 * = a0 * e^n + a * (1 - e^n)
3496 *
3497 * [1] application of the geometric series:
3498 *
3499 * n 1 - x^(n+1)
3500 * S_n := \Sum x^i = -------------
3501 * i=0 1 - x
3502 */
3503static unsigned long
3504calc_load_n(unsigned long load, unsigned long exp,
3505 unsigned long active, unsigned int n)
3506{
3507
3508 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3509}
3510
3511/*
3512 * NO_HZ can leave us missing all per-cpu ticks calling
3513 * calc_load_account_active(), but since an idle CPU folds its delta into
3514 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3515 * in the pending idle delta if our idle period crossed a load cycle boundary.
3516 *
3517 * Once we've updated the global active value, we need to apply the exponential
3518 * weights adjusted to the number of cycles missed.
3519 */
3520static void calc_global_nohz(unsigned long ticks)
3521{
3522 long delta, active, n;
3523
3524 if (time_before(jiffies, calc_load_update))
3525 return;
3526
3527 /*
3528 * If we crossed a calc_load_update boundary, make sure to fold
3529 * any pending idle changes, the respective CPUs might have
3530 * missed the tick driven calc_load_account_active() update
3531 * due to NO_HZ.
3532 */
3533 delta = calc_load_fold_idle();
3534 if (delta)
3535 atomic_long_add(delta, &calc_load_tasks);
3536
3537 /*
3538 * If we were idle for multiple load cycles, apply them.
3539 */
3540 if (ticks >= LOAD_FREQ) {
3541 n = ticks / LOAD_FREQ;
3542
3543 active = atomic_long_read(&calc_load_tasks);
3544 active = active > 0 ? active * FIXED_1 : 0;
3545
3546 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3547 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3548 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3549
3550 calc_load_update += n * LOAD_FREQ;
3551 }
3552
3553 /*
3554 * Its possible the remainder of the above division also crosses
3555 * a LOAD_FREQ period, the regular check in calc_global_load()
3556 * which comes after this will take care of that.
3557 *
3558 * Consider us being 11 ticks before a cycle completion, and us
3559 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3560 * age us 4 cycles, and the test in calc_global_load() will
3561 * pick up the final one.
3562 */
3563}
74f5187a
PZ
3564#else
3565static void calc_load_account_idle(struct rq *this_rq)
3566{
3567}
3568
3569static inline long calc_load_fold_idle(void)
3570{
3571 return 0;
3572}
0f004f5a
PZ
3573
3574static void calc_global_nohz(unsigned long ticks)
3575{
3576}
74f5187a
PZ
3577#endif
3578
2d02494f
TG
3579/**
3580 * get_avenrun - get the load average array
3581 * @loads: pointer to dest load array
3582 * @offset: offset to add
3583 * @shift: shift count to shift the result left
3584 *
3585 * These values are estimates at best, so no need for locking.
3586 */
3587void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3588{
3589 loads[0] = (avenrun[0] + offset) << shift;
3590 loads[1] = (avenrun[1] + offset) << shift;
3591 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3592}
46cb4b7c 3593
46cb4b7c 3594/*
dce48a84
TG
3595 * calc_load - update the avenrun load estimates 10 ticks after the
3596 * CPUs have updated calc_load_tasks.
7835b98b 3597 */
0f004f5a 3598void calc_global_load(unsigned long ticks)
7835b98b 3599{
dce48a84 3600 long active;
1da177e4 3601
0f004f5a
PZ
3602 calc_global_nohz(ticks);
3603
3604 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3605 return;
1da177e4 3606
dce48a84
TG
3607 active = atomic_long_read(&calc_load_tasks);
3608 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3609
dce48a84
TG
3610 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3611 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3612 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3613
dce48a84
TG
3614 calc_load_update += LOAD_FREQ;
3615}
1da177e4 3616
dce48a84 3617/*
74f5187a
PZ
3618 * Called from update_cpu_load() to periodically update this CPU's
3619 * active count.
dce48a84
TG
3620 */
3621static void calc_load_account_active(struct rq *this_rq)
3622{
74f5187a 3623 long delta;
08c183f3 3624
74f5187a
PZ
3625 if (time_before(jiffies, this_rq->calc_load_update))
3626 return;
783609c6 3627
74f5187a
PZ
3628 delta = calc_load_fold_active(this_rq);
3629 delta += calc_load_fold_idle();
3630 if (delta)
dce48a84 3631 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3632
3633 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3634}
3635
fdf3e95d
VP
3636/*
3637 * The exact cpuload at various idx values, calculated at every tick would be
3638 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3639 *
3640 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3641 * on nth tick when cpu may be busy, then we have:
3642 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3643 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3644 *
3645 * decay_load_missed() below does efficient calculation of
3646 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3647 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3648 *
3649 * The calculation is approximated on a 128 point scale.
3650 * degrade_zero_ticks is the number of ticks after which load at any
3651 * particular idx is approximated to be zero.
3652 * degrade_factor is a precomputed table, a row for each load idx.
3653 * Each column corresponds to degradation factor for a power of two ticks,
3654 * based on 128 point scale.
3655 * Example:
3656 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3657 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3658 *
3659 * With this power of 2 load factors, we can degrade the load n times
3660 * by looking at 1 bits in n and doing as many mult/shift instead of
3661 * n mult/shifts needed by the exact degradation.
3662 */
3663#define DEGRADE_SHIFT 7
3664static const unsigned char
3665 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3666static const unsigned char
3667 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3668 {0, 0, 0, 0, 0, 0, 0, 0},
3669 {64, 32, 8, 0, 0, 0, 0, 0},
3670 {96, 72, 40, 12, 1, 0, 0},
3671 {112, 98, 75, 43, 15, 1, 0},
3672 {120, 112, 98, 76, 45, 16, 2} };
3673
3674/*
3675 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3676 * would be when CPU is idle and so we just decay the old load without
3677 * adding any new load.
3678 */
3679static unsigned long
3680decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3681{
3682 int j = 0;
3683
3684 if (!missed_updates)
3685 return load;
3686
3687 if (missed_updates >= degrade_zero_ticks[idx])
3688 return 0;
3689
3690 if (idx == 1)
3691 return load >> missed_updates;
3692
3693 while (missed_updates) {
3694 if (missed_updates % 2)
3695 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3696
3697 missed_updates >>= 1;
3698 j++;
3699 }
3700 return load;
3701}
3702
46cb4b7c 3703/*
dd41f596 3704 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3705 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3706 * every tick. We fix it up based on jiffies.
46cb4b7c 3707 */
dd41f596 3708static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3709{
495eca49 3710 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3711 unsigned long curr_jiffies = jiffies;
3712 unsigned long pending_updates;
dd41f596 3713 int i, scale;
46cb4b7c 3714
dd41f596 3715 this_rq->nr_load_updates++;
46cb4b7c 3716
fdf3e95d
VP
3717 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3718 if (curr_jiffies == this_rq->last_load_update_tick)
3719 return;
3720
3721 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3722 this_rq->last_load_update_tick = curr_jiffies;
3723
dd41f596 3724 /* Update our load: */
fdf3e95d
VP
3725 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3726 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3727 unsigned long old_load, new_load;
7d1e6a9b 3728
dd41f596 3729 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3730
dd41f596 3731 old_load = this_rq->cpu_load[i];
fdf3e95d 3732 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3733 new_load = this_load;
a25707f3
IM
3734 /*
3735 * Round up the averaging division if load is increasing. This
3736 * prevents us from getting stuck on 9 if the load is 10, for
3737 * example.
3738 */
3739 if (new_load > old_load)
fdf3e95d
VP
3740 new_load += scale - 1;
3741
3742 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3743 }
da2b71ed
SS
3744
3745 sched_avg_update(this_rq);
fdf3e95d
VP
3746}
3747
3748static void update_cpu_load_active(struct rq *this_rq)
3749{
3750 update_cpu_load(this_rq);
46cb4b7c 3751
74f5187a 3752 calc_load_account_active(this_rq);
46cb4b7c
SS
3753}
3754
dd41f596 3755#ifdef CONFIG_SMP
8a0be9ef 3756
46cb4b7c 3757/*
38022906
PZ
3758 * sched_exec - execve() is a valuable balancing opportunity, because at
3759 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3760 */
38022906 3761void sched_exec(void)
46cb4b7c 3762{
38022906 3763 struct task_struct *p = current;
1da177e4 3764 unsigned long flags;
0017d735 3765 int dest_cpu;
46cb4b7c 3766
8f42ced9 3767 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3768 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3769 if (dest_cpu == smp_processor_id())
3770 goto unlock;
38022906 3771
8f42ced9 3772 if (likely(cpu_active(dest_cpu))) {
969c7921 3773 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3774
8f42ced9
PZ
3775 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3776 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3777 return;
3778 }
0017d735 3779unlock:
8f42ced9 3780 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3781}
dd41f596 3782
1da177e4
LT
3783#endif
3784
1da177e4
LT
3785DEFINE_PER_CPU(struct kernel_stat, kstat);
3786
3787EXPORT_PER_CPU_SYMBOL(kstat);
3788
3789/*
c5f8d995 3790 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3791 * @p in case that task is currently running.
c5f8d995
HS
3792 *
3793 * Called with task_rq_lock() held on @rq.
1da177e4 3794 */
c5f8d995
HS
3795static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3796{
3797 u64 ns = 0;
3798
3799 if (task_current(rq, p)) {
3800 update_rq_clock(rq);
305e6835 3801 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3802 if ((s64)ns < 0)
3803 ns = 0;
3804 }
3805
3806 return ns;
3807}
3808
bb34d92f 3809unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3810{
1da177e4 3811 unsigned long flags;
41b86e9c 3812 struct rq *rq;
bb34d92f 3813 u64 ns = 0;
48f24c4d 3814
41b86e9c 3815 rq = task_rq_lock(p, &flags);
c5f8d995 3816 ns = do_task_delta_exec(p, rq);
0122ec5b 3817 task_rq_unlock(rq, p, &flags);
1508487e 3818
c5f8d995
HS
3819 return ns;
3820}
f06febc9 3821
c5f8d995
HS
3822/*
3823 * Return accounted runtime for the task.
3824 * In case the task is currently running, return the runtime plus current's
3825 * pending runtime that have not been accounted yet.
3826 */
3827unsigned long long task_sched_runtime(struct task_struct *p)
3828{
3829 unsigned long flags;
3830 struct rq *rq;
3831 u64 ns = 0;
3832
3833 rq = task_rq_lock(p, &flags);
3834 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3835 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3836
3837 return ns;
3838}
48f24c4d 3839
1da177e4
LT
3840/*
3841 * Account user cpu time to a process.
3842 * @p: the process that the cpu time gets accounted to
1da177e4 3843 * @cputime: the cpu time spent in user space since the last update
457533a7 3844 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3845 */
457533a7
MS
3846void account_user_time(struct task_struct *p, cputime_t cputime,
3847 cputime_t cputime_scaled)
1da177e4
LT
3848{
3849 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3850 cputime64_t tmp;
3851
457533a7 3852 /* Add user time to process. */
1da177e4 3853 p->utime = cputime_add(p->utime, cputime);
457533a7 3854 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3855 account_group_user_time(p, cputime);
1da177e4
LT
3856
3857 /* Add user time to cpustat. */
3858 tmp = cputime_to_cputime64(cputime);
3859 if (TASK_NICE(p) > 0)
3860 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3861 else
3862 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3863
3864 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3865 /* Account for user time used */
3866 acct_update_integrals(p);
1da177e4
LT
3867}
3868
94886b84
LV
3869/*
3870 * Account guest cpu time to a process.
3871 * @p: the process that the cpu time gets accounted to
3872 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3873 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3874 */
457533a7
MS
3875static void account_guest_time(struct task_struct *p, cputime_t cputime,
3876 cputime_t cputime_scaled)
94886b84
LV
3877{
3878 cputime64_t tmp;
3879 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3880
3881 tmp = cputime_to_cputime64(cputime);
3882
457533a7 3883 /* Add guest time to process. */
94886b84 3884 p->utime = cputime_add(p->utime, cputime);
457533a7 3885 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3886 account_group_user_time(p, cputime);
94886b84
LV
3887 p->gtime = cputime_add(p->gtime, cputime);
3888
457533a7 3889 /* Add guest time to cpustat. */
ce0e7b28
RO
3890 if (TASK_NICE(p) > 0) {
3891 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3892 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3893 } else {
3894 cpustat->user = cputime64_add(cpustat->user, tmp);
3895 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3896 }
94886b84
LV
3897}
3898
70a89a66
VP
3899/*
3900 * Account system cpu time to a process and desired cpustat field
3901 * @p: the process that the cpu time gets accounted to
3902 * @cputime: the cpu time spent in kernel space since the last update
3903 * @cputime_scaled: cputime scaled by cpu frequency
3904 * @target_cputime64: pointer to cpustat field that has to be updated
3905 */
3906static inline
3907void __account_system_time(struct task_struct *p, cputime_t cputime,
3908 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3909{
3910 cputime64_t tmp = cputime_to_cputime64(cputime);
3911
3912 /* Add system time to process. */
3913 p->stime = cputime_add(p->stime, cputime);
3914 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3915 account_group_system_time(p, cputime);
3916
3917 /* Add system time to cpustat. */
3918 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3919 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3920
3921 /* Account for system time used */
3922 acct_update_integrals(p);
3923}
3924
1da177e4
LT
3925/*
3926 * Account system cpu time to a process.
3927 * @p: the process that the cpu time gets accounted to
3928 * @hardirq_offset: the offset to subtract from hardirq_count()
3929 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3930 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3931 */
3932void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3933 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3934{
3935 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3936 cputime64_t *target_cputime64;
1da177e4 3937
983ed7a6 3938 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3939 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3940 return;
3941 }
94886b84 3942
1da177e4 3943 if (hardirq_count() - hardirq_offset)
70a89a66 3944 target_cputime64 = &cpustat->irq;
75e1056f 3945 else if (in_serving_softirq())
70a89a66 3946 target_cputime64 = &cpustat->softirq;
1da177e4 3947 else
70a89a66 3948 target_cputime64 = &cpustat->system;
ef12fefa 3949
70a89a66 3950 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3951}
3952
c66f08be 3953/*
1da177e4 3954 * Account for involuntary wait time.
544b4a1f 3955 * @cputime: the cpu time spent in involuntary wait
c66f08be 3956 */
79741dd3 3957void account_steal_time(cputime_t cputime)
c66f08be 3958{
79741dd3
MS
3959 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3960 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3961
3962 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3963}
3964
1da177e4 3965/*
79741dd3
MS
3966 * Account for idle time.
3967 * @cputime: the cpu time spent in idle wait
1da177e4 3968 */
79741dd3 3969void account_idle_time(cputime_t cputime)
1da177e4
LT
3970{
3971 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3972 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3973 struct rq *rq = this_rq();
1da177e4 3974
79741dd3
MS
3975 if (atomic_read(&rq->nr_iowait) > 0)
3976 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3977 else
3978 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3979}
3980
e6e6685a
GC
3981static __always_inline bool steal_account_process_tick(void)
3982{
3983#ifdef CONFIG_PARAVIRT
3984 if (static_branch(&paravirt_steal_enabled)) {
3985 u64 steal, st = 0;
3986
3987 steal = paravirt_steal_clock(smp_processor_id());
3988 steal -= this_rq()->prev_steal_time;
3989
3990 st = steal_ticks(steal);
3991 this_rq()->prev_steal_time += st * TICK_NSEC;
3992
3993 account_steal_time(st);
3994 return st;
3995 }
3996#endif
3997 return false;
3998}
3999
79741dd3
MS
4000#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4001
abb74cef
VP
4002#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4003/*
4004 * Account a tick to a process and cpustat
4005 * @p: the process that the cpu time gets accounted to
4006 * @user_tick: is the tick from userspace
4007 * @rq: the pointer to rq
4008 *
4009 * Tick demultiplexing follows the order
4010 * - pending hardirq update
4011 * - pending softirq update
4012 * - user_time
4013 * - idle_time
4014 * - system time
4015 * - check for guest_time
4016 * - else account as system_time
4017 *
4018 * Check for hardirq is done both for system and user time as there is
4019 * no timer going off while we are on hardirq and hence we may never get an
4020 * opportunity to update it solely in system time.
4021 * p->stime and friends are only updated on system time and not on irq
4022 * softirq as those do not count in task exec_runtime any more.
4023 */
4024static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4025 struct rq *rq)
4026{
4027 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4028 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4029 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4030
e6e6685a
GC
4031 if (steal_account_process_tick())
4032 return;
4033
abb74cef
VP
4034 if (irqtime_account_hi_update()) {
4035 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4036 } else if (irqtime_account_si_update()) {
4037 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4038 } else if (this_cpu_ksoftirqd() == p) {
4039 /*
4040 * ksoftirqd time do not get accounted in cpu_softirq_time.
4041 * So, we have to handle it separately here.
4042 * Also, p->stime needs to be updated for ksoftirqd.
4043 */
4044 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4045 &cpustat->softirq);
abb74cef
VP
4046 } else if (user_tick) {
4047 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4048 } else if (p == rq->idle) {
4049 account_idle_time(cputime_one_jiffy);
4050 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4051 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4052 } else {
4053 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4054 &cpustat->system);
4055 }
4056}
4057
4058static void irqtime_account_idle_ticks(int ticks)
4059{
4060 int i;
4061 struct rq *rq = this_rq();
4062
4063 for (i = 0; i < ticks; i++)
4064 irqtime_account_process_tick(current, 0, rq);
4065}
544b4a1f 4066#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4067static void irqtime_account_idle_ticks(int ticks) {}
4068static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4069 struct rq *rq) {}
544b4a1f 4070#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4071
4072/*
4073 * Account a single tick of cpu time.
4074 * @p: the process that the cpu time gets accounted to
4075 * @user_tick: indicates if the tick is a user or a system tick
4076 */
4077void account_process_tick(struct task_struct *p, int user_tick)
4078{
a42548a1 4079 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4080 struct rq *rq = this_rq();
4081
abb74cef
VP
4082 if (sched_clock_irqtime) {
4083 irqtime_account_process_tick(p, user_tick, rq);
4084 return;
4085 }
4086
e6e6685a
GC
4087 if (steal_account_process_tick())
4088 return;
4089
79741dd3 4090 if (user_tick)
a42548a1 4091 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4092 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4093 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4094 one_jiffy_scaled);
4095 else
a42548a1 4096 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4097}
4098
4099/*
4100 * Account multiple ticks of steal time.
4101 * @p: the process from which the cpu time has been stolen
4102 * @ticks: number of stolen ticks
4103 */
4104void account_steal_ticks(unsigned long ticks)
4105{
4106 account_steal_time(jiffies_to_cputime(ticks));
4107}
4108
4109/*
4110 * Account multiple ticks of idle time.
4111 * @ticks: number of stolen ticks
4112 */
4113void account_idle_ticks(unsigned long ticks)
4114{
abb74cef
VP
4115
4116 if (sched_clock_irqtime) {
4117 irqtime_account_idle_ticks(ticks);
4118 return;
4119 }
4120
79741dd3 4121 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4122}
4123
79741dd3
MS
4124#endif
4125
49048622
BS
4126/*
4127 * Use precise platform statistics if available:
4128 */
4129#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4130void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4131{
d99ca3b9
HS
4132 *ut = p->utime;
4133 *st = p->stime;
49048622
BS
4134}
4135
0cf55e1e 4136void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4137{
0cf55e1e
HS
4138 struct task_cputime cputime;
4139
4140 thread_group_cputime(p, &cputime);
4141
4142 *ut = cputime.utime;
4143 *st = cputime.stime;
49048622
BS
4144}
4145#else
761b1d26
HS
4146
4147#ifndef nsecs_to_cputime
b7b20df9 4148# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4149#endif
4150
d180c5bc 4151void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4152{
d99ca3b9 4153 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4154
4155 /*
4156 * Use CFS's precise accounting:
4157 */
d180c5bc 4158 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4159
4160 if (total) {
e75e863d 4161 u64 temp = rtime;
d180c5bc 4162
e75e863d 4163 temp *= utime;
49048622 4164 do_div(temp, total);
d180c5bc
HS
4165 utime = (cputime_t)temp;
4166 } else
4167 utime = rtime;
49048622 4168
d180c5bc
HS
4169 /*
4170 * Compare with previous values, to keep monotonicity:
4171 */
761b1d26 4172 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4173 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4174
d99ca3b9
HS
4175 *ut = p->prev_utime;
4176 *st = p->prev_stime;
49048622
BS
4177}
4178
0cf55e1e
HS
4179/*
4180 * Must be called with siglock held.
4181 */
4182void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4183{
0cf55e1e
HS
4184 struct signal_struct *sig = p->signal;
4185 struct task_cputime cputime;
4186 cputime_t rtime, utime, total;
49048622 4187
0cf55e1e 4188 thread_group_cputime(p, &cputime);
49048622 4189
0cf55e1e
HS
4190 total = cputime_add(cputime.utime, cputime.stime);
4191 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4192
0cf55e1e 4193 if (total) {
e75e863d 4194 u64 temp = rtime;
49048622 4195
e75e863d 4196 temp *= cputime.utime;
0cf55e1e
HS
4197 do_div(temp, total);
4198 utime = (cputime_t)temp;
4199 } else
4200 utime = rtime;
4201
4202 sig->prev_utime = max(sig->prev_utime, utime);
4203 sig->prev_stime = max(sig->prev_stime,
4204 cputime_sub(rtime, sig->prev_utime));
4205
4206 *ut = sig->prev_utime;
4207 *st = sig->prev_stime;
49048622 4208}
49048622 4209#endif
49048622 4210
7835b98b
CL
4211/*
4212 * This function gets called by the timer code, with HZ frequency.
4213 * We call it with interrupts disabled.
7835b98b
CL
4214 */
4215void scheduler_tick(void)
4216{
7835b98b
CL
4217 int cpu = smp_processor_id();
4218 struct rq *rq = cpu_rq(cpu);
dd41f596 4219 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4220
4221 sched_clock_tick();
dd41f596 4222
05fa785c 4223 raw_spin_lock(&rq->lock);
3e51f33f 4224 update_rq_clock(rq);
fdf3e95d 4225 update_cpu_load_active(rq);
fa85ae24 4226 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4227 raw_spin_unlock(&rq->lock);
7835b98b 4228
e9d2b064 4229 perf_event_task_tick();
e220d2dc 4230
e418e1c2 4231#ifdef CONFIG_SMP
dd41f596
IM
4232 rq->idle_at_tick = idle_cpu(cpu);
4233 trigger_load_balance(rq, cpu);
e418e1c2 4234#endif
1da177e4
LT
4235}
4236
132380a0 4237notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4238{
4239 if (in_lock_functions(addr)) {
4240 addr = CALLER_ADDR2;
4241 if (in_lock_functions(addr))
4242 addr = CALLER_ADDR3;
4243 }
4244 return addr;
4245}
1da177e4 4246
7e49fcce
SR
4247#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4248 defined(CONFIG_PREEMPT_TRACER))
4249
43627582 4250void __kprobes add_preempt_count(int val)
1da177e4 4251{
6cd8a4bb 4252#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4253 /*
4254 * Underflow?
4255 */
9a11b49a
IM
4256 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4257 return;
6cd8a4bb 4258#endif
1da177e4 4259 preempt_count() += val;
6cd8a4bb 4260#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4261 /*
4262 * Spinlock count overflowing soon?
4263 */
33859f7f
MOS
4264 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4265 PREEMPT_MASK - 10);
6cd8a4bb
SR
4266#endif
4267 if (preempt_count() == val)
4268 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4269}
4270EXPORT_SYMBOL(add_preempt_count);
4271
43627582 4272void __kprobes sub_preempt_count(int val)
1da177e4 4273{
6cd8a4bb 4274#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4275 /*
4276 * Underflow?
4277 */
01e3eb82 4278 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4279 return;
1da177e4
LT
4280 /*
4281 * Is the spinlock portion underflowing?
4282 */
9a11b49a
IM
4283 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4284 !(preempt_count() & PREEMPT_MASK)))
4285 return;
6cd8a4bb 4286#endif
9a11b49a 4287
6cd8a4bb
SR
4288 if (preempt_count() == val)
4289 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4290 preempt_count() -= val;
4291}
4292EXPORT_SYMBOL(sub_preempt_count);
4293
4294#endif
4295
4296/*
dd41f596 4297 * Print scheduling while atomic bug:
1da177e4 4298 */
dd41f596 4299static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4300{
838225b4
SS
4301 struct pt_regs *regs = get_irq_regs();
4302
3df0fc5b
PZ
4303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4304 prev->comm, prev->pid, preempt_count());
838225b4 4305
dd41f596 4306 debug_show_held_locks(prev);
e21f5b15 4307 print_modules();
dd41f596
IM
4308 if (irqs_disabled())
4309 print_irqtrace_events(prev);
838225b4
SS
4310
4311 if (regs)
4312 show_regs(regs);
4313 else
4314 dump_stack();
dd41f596 4315}
1da177e4 4316
dd41f596
IM
4317/*
4318 * Various schedule()-time debugging checks and statistics:
4319 */
4320static inline void schedule_debug(struct task_struct *prev)
4321{
1da177e4 4322 /*
41a2d6cf 4323 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4324 * schedule() atomically, we ignore that path for now.
4325 * Otherwise, whine if we are scheduling when we should not be.
4326 */
3f33a7ce 4327 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4328 __schedule_bug(prev);
4329
1da177e4
LT
4330 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4331
2d72376b 4332 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4333}
4334
6cecd084 4335static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4336{
61eadef6 4337 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4338 update_rq_clock(rq);
6cecd084 4339 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4340}
4341
dd41f596
IM
4342/*
4343 * Pick up the highest-prio task:
4344 */
4345static inline struct task_struct *
b67802ea 4346pick_next_task(struct rq *rq)
dd41f596 4347{
5522d5d5 4348 const struct sched_class *class;
dd41f596 4349 struct task_struct *p;
1da177e4
LT
4350
4351 /*
dd41f596
IM
4352 * Optimization: we know that if all tasks are in
4353 * the fair class we can call that function directly:
1da177e4 4354 */
953bfcd1 4355 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4356 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4357 if (likely(p))
4358 return p;
1da177e4
LT
4359 }
4360
34f971f6 4361 for_each_class(class) {
fb8d4724 4362 p = class->pick_next_task(rq);
dd41f596
IM
4363 if (p)
4364 return p;
dd41f596 4365 }
34f971f6
PZ
4366
4367 BUG(); /* the idle class will always have a runnable task */
dd41f596 4368}
1da177e4 4369
dd41f596 4370/*
c259e01a 4371 * __schedule() is the main scheduler function.
dd41f596 4372 */
c259e01a 4373static void __sched __schedule(void)
dd41f596
IM
4374{
4375 struct task_struct *prev, *next;
67ca7bde 4376 unsigned long *switch_count;
dd41f596 4377 struct rq *rq;
31656519 4378 int cpu;
dd41f596 4379
ff743345
PZ
4380need_resched:
4381 preempt_disable();
dd41f596
IM
4382 cpu = smp_processor_id();
4383 rq = cpu_rq(cpu);
25502a6c 4384 rcu_note_context_switch(cpu);
dd41f596 4385 prev = rq->curr;
dd41f596 4386
dd41f596 4387 schedule_debug(prev);
1da177e4 4388
31656519 4389 if (sched_feat(HRTICK))
f333fdc9 4390 hrtick_clear(rq);
8f4d37ec 4391
05fa785c 4392 raw_spin_lock_irq(&rq->lock);
1da177e4 4393
246d86b5 4394 switch_count = &prev->nivcsw;
1da177e4 4395 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4396 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4397 prev->state = TASK_RUNNING;
21aa9af0 4398 } else {
2acca55e
PZ
4399 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4400 prev->on_rq = 0;
4401
21aa9af0 4402 /*
2acca55e
PZ
4403 * If a worker went to sleep, notify and ask workqueue
4404 * whether it wants to wake up a task to maintain
4405 * concurrency.
21aa9af0
TH
4406 */
4407 if (prev->flags & PF_WQ_WORKER) {
4408 struct task_struct *to_wakeup;
4409
4410 to_wakeup = wq_worker_sleeping(prev, cpu);
4411 if (to_wakeup)
4412 try_to_wake_up_local(to_wakeup);
4413 }
21aa9af0 4414 }
dd41f596 4415 switch_count = &prev->nvcsw;
1da177e4
LT
4416 }
4417
3f029d3c 4418 pre_schedule(rq, prev);
f65eda4f 4419
dd41f596 4420 if (unlikely(!rq->nr_running))
1da177e4 4421 idle_balance(cpu, rq);
1da177e4 4422
df1c99d4 4423 put_prev_task(rq, prev);
b67802ea 4424 next = pick_next_task(rq);
f26f9aff
MG
4425 clear_tsk_need_resched(prev);
4426 rq->skip_clock_update = 0;
1da177e4 4427
1da177e4 4428 if (likely(prev != next)) {
1da177e4
LT
4429 rq->nr_switches++;
4430 rq->curr = next;
4431 ++*switch_count;
4432
dd41f596 4433 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4434 /*
246d86b5
ON
4435 * The context switch have flipped the stack from under us
4436 * and restored the local variables which were saved when
4437 * this task called schedule() in the past. prev == current
4438 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4439 */
4440 cpu = smp_processor_id();
4441 rq = cpu_rq(cpu);
1da177e4 4442 } else
05fa785c 4443 raw_spin_unlock_irq(&rq->lock);
1da177e4 4444
3f029d3c 4445 post_schedule(rq);
1da177e4 4446
1da177e4 4447 preempt_enable_no_resched();
ff743345 4448 if (need_resched())
1da177e4
LT
4449 goto need_resched;
4450}
c259e01a 4451
9c40cef2
TG
4452static inline void sched_submit_work(struct task_struct *tsk)
4453{
4454 if (!tsk->state)
4455 return;
4456 /*
4457 * If we are going to sleep and we have plugged IO queued,
4458 * make sure to submit it to avoid deadlocks.
4459 */
4460 if (blk_needs_flush_plug(tsk))
4461 blk_schedule_flush_plug(tsk);
4462}
4463
6ebbe7a0 4464asmlinkage void __sched schedule(void)
c259e01a 4465{
9c40cef2
TG
4466 struct task_struct *tsk = current;
4467
4468 sched_submit_work(tsk);
c259e01a
TG
4469 __schedule();
4470}
1da177e4
LT
4471EXPORT_SYMBOL(schedule);
4472
c08f7829 4473#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4474
c6eb3dda
PZ
4475static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4476{
c6eb3dda 4477 if (lock->owner != owner)
307bf980 4478 return false;
0d66bf6d
PZ
4479
4480 /*
c6eb3dda
PZ
4481 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4482 * lock->owner still matches owner, if that fails, owner might
4483 * point to free()d memory, if it still matches, the rcu_read_lock()
4484 * ensures the memory stays valid.
0d66bf6d 4485 */
c6eb3dda 4486 barrier();
0d66bf6d 4487
307bf980 4488 return owner->on_cpu;
c6eb3dda 4489}
0d66bf6d 4490
c6eb3dda
PZ
4491/*
4492 * Look out! "owner" is an entirely speculative pointer
4493 * access and not reliable.
4494 */
4495int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4496{
4497 if (!sched_feat(OWNER_SPIN))
4498 return 0;
0d66bf6d 4499
307bf980 4500 rcu_read_lock();
c6eb3dda
PZ
4501 while (owner_running(lock, owner)) {
4502 if (need_resched())
307bf980 4503 break;
0d66bf6d 4504
335d7afb 4505 arch_mutex_cpu_relax();
0d66bf6d 4506 }
307bf980 4507 rcu_read_unlock();
4b402210 4508
c6eb3dda 4509 /*
307bf980
TG
4510 * We break out the loop above on need_resched() and when the
4511 * owner changed, which is a sign for heavy contention. Return
4512 * success only when lock->owner is NULL.
c6eb3dda 4513 */
307bf980 4514 return lock->owner == NULL;
0d66bf6d
PZ
4515}
4516#endif
4517
1da177e4
LT
4518#ifdef CONFIG_PREEMPT
4519/*
2ed6e34f 4520 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4521 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4522 * occur there and call schedule directly.
4523 */
d1f74e20 4524asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4525{
4526 struct thread_info *ti = current_thread_info();
6478d880 4527
1da177e4
LT
4528 /*
4529 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4530 * we do not want to preempt the current task. Just return..
1da177e4 4531 */
beed33a8 4532 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4533 return;
4534
3a5c359a 4535 do {
d1f74e20 4536 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 4537 __schedule();
d1f74e20 4538 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4539
3a5c359a
AK
4540 /*
4541 * Check again in case we missed a preemption opportunity
4542 * between schedule and now.
4543 */
4544 barrier();
5ed0cec0 4545 } while (need_resched());
1da177e4 4546}
1da177e4
LT
4547EXPORT_SYMBOL(preempt_schedule);
4548
4549/*
2ed6e34f 4550 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4551 * off of irq context.
4552 * Note, that this is called and return with irqs disabled. This will
4553 * protect us against recursive calling from irq.
4554 */
4555asmlinkage void __sched preempt_schedule_irq(void)
4556{
4557 struct thread_info *ti = current_thread_info();
6478d880 4558
2ed6e34f 4559 /* Catch callers which need to be fixed */
1da177e4
LT
4560 BUG_ON(ti->preempt_count || !irqs_disabled());
4561
3a5c359a
AK
4562 do {
4563 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4564 local_irq_enable();
c259e01a 4565 __schedule();
3a5c359a 4566 local_irq_disable();
3a5c359a 4567 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4568
3a5c359a
AK
4569 /*
4570 * Check again in case we missed a preemption opportunity
4571 * between schedule and now.
4572 */
4573 barrier();
5ed0cec0 4574 } while (need_resched());
1da177e4
LT
4575}
4576
4577#endif /* CONFIG_PREEMPT */
4578
63859d4f 4579int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4580 void *key)
1da177e4 4581{
63859d4f 4582 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4583}
1da177e4
LT
4584EXPORT_SYMBOL(default_wake_function);
4585
4586/*
41a2d6cf
IM
4587 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4588 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4589 * number) then we wake all the non-exclusive tasks and one exclusive task.
4590 *
4591 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4592 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4593 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4594 */
78ddb08f 4595static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4596 int nr_exclusive, int wake_flags, void *key)
1da177e4 4597{
2e45874c 4598 wait_queue_t *curr, *next;
1da177e4 4599
2e45874c 4600 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4601 unsigned flags = curr->flags;
4602
63859d4f 4603 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4604 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4605 break;
4606 }
4607}
4608
4609/**
4610 * __wake_up - wake up threads blocked on a waitqueue.
4611 * @q: the waitqueue
4612 * @mode: which threads
4613 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4614 * @key: is directly passed to the wakeup function
50fa610a
DH
4615 *
4616 * It may be assumed that this function implies a write memory barrier before
4617 * changing the task state if and only if any tasks are woken up.
1da177e4 4618 */
7ad5b3a5 4619void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4620 int nr_exclusive, void *key)
1da177e4
LT
4621{
4622 unsigned long flags;
4623
4624 spin_lock_irqsave(&q->lock, flags);
4625 __wake_up_common(q, mode, nr_exclusive, 0, key);
4626 spin_unlock_irqrestore(&q->lock, flags);
4627}
1da177e4
LT
4628EXPORT_SYMBOL(__wake_up);
4629
4630/*
4631 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4632 */
7ad5b3a5 4633void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4634{
4635 __wake_up_common(q, mode, 1, 0, NULL);
4636}
22c43c81 4637EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4638
4ede816a
DL
4639void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4640{
4641 __wake_up_common(q, mode, 1, 0, key);
4642}
bf294b41 4643EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4644
1da177e4 4645/**
4ede816a 4646 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4647 * @q: the waitqueue
4648 * @mode: which threads
4649 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4650 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4651 *
4652 * The sync wakeup differs that the waker knows that it will schedule
4653 * away soon, so while the target thread will be woken up, it will not
4654 * be migrated to another CPU - ie. the two threads are 'synchronized'
4655 * with each other. This can prevent needless bouncing between CPUs.
4656 *
4657 * On UP it can prevent extra preemption.
50fa610a
DH
4658 *
4659 * It may be assumed that this function implies a write memory barrier before
4660 * changing the task state if and only if any tasks are woken up.
1da177e4 4661 */
4ede816a
DL
4662void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4663 int nr_exclusive, void *key)
1da177e4
LT
4664{
4665 unsigned long flags;
7d478721 4666 int wake_flags = WF_SYNC;
1da177e4
LT
4667
4668 if (unlikely(!q))
4669 return;
4670
4671 if (unlikely(!nr_exclusive))
7d478721 4672 wake_flags = 0;
1da177e4
LT
4673
4674 spin_lock_irqsave(&q->lock, flags);
7d478721 4675 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4676 spin_unlock_irqrestore(&q->lock, flags);
4677}
4ede816a
DL
4678EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4679
4680/*
4681 * __wake_up_sync - see __wake_up_sync_key()
4682 */
4683void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4684{
4685 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4686}
1da177e4
LT
4687EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4688
65eb3dc6
KD
4689/**
4690 * complete: - signals a single thread waiting on this completion
4691 * @x: holds the state of this particular completion
4692 *
4693 * This will wake up a single thread waiting on this completion. Threads will be
4694 * awakened in the same order in which they were queued.
4695 *
4696 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4697 *
4698 * It may be assumed that this function implies a write memory barrier before
4699 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4700 */
b15136e9 4701void complete(struct completion *x)
1da177e4
LT
4702{
4703 unsigned long flags;
4704
4705 spin_lock_irqsave(&x->wait.lock, flags);
4706 x->done++;
d9514f6c 4707 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4708 spin_unlock_irqrestore(&x->wait.lock, flags);
4709}
4710EXPORT_SYMBOL(complete);
4711
65eb3dc6
KD
4712/**
4713 * complete_all: - signals all threads waiting on this completion
4714 * @x: holds the state of this particular completion
4715 *
4716 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4717 *
4718 * It may be assumed that this function implies a write memory barrier before
4719 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4720 */
b15136e9 4721void complete_all(struct completion *x)
1da177e4
LT
4722{
4723 unsigned long flags;
4724
4725 spin_lock_irqsave(&x->wait.lock, flags);
4726 x->done += UINT_MAX/2;
d9514f6c 4727 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4728 spin_unlock_irqrestore(&x->wait.lock, flags);
4729}
4730EXPORT_SYMBOL(complete_all);
4731
8cbbe86d
AK
4732static inline long __sched
4733do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4734{
1da177e4
LT
4735 if (!x->done) {
4736 DECLARE_WAITQUEUE(wait, current);
4737
a93d2f17 4738 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4739 do {
94d3d824 4740 if (signal_pending_state(state, current)) {
ea71a546
ON
4741 timeout = -ERESTARTSYS;
4742 break;
8cbbe86d
AK
4743 }
4744 __set_current_state(state);
1da177e4
LT
4745 spin_unlock_irq(&x->wait.lock);
4746 timeout = schedule_timeout(timeout);
4747 spin_lock_irq(&x->wait.lock);
ea71a546 4748 } while (!x->done && timeout);
1da177e4 4749 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4750 if (!x->done)
4751 return timeout;
1da177e4
LT
4752 }
4753 x->done--;
ea71a546 4754 return timeout ?: 1;
1da177e4 4755}
1da177e4 4756
8cbbe86d
AK
4757static long __sched
4758wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4759{
1da177e4
LT
4760 might_sleep();
4761
4762 spin_lock_irq(&x->wait.lock);
8cbbe86d 4763 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4764 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4765 return timeout;
4766}
1da177e4 4767
65eb3dc6
KD
4768/**
4769 * wait_for_completion: - waits for completion of a task
4770 * @x: holds the state of this particular completion
4771 *
4772 * This waits to be signaled for completion of a specific task. It is NOT
4773 * interruptible and there is no timeout.
4774 *
4775 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4776 * and interrupt capability. Also see complete().
4777 */
b15136e9 4778void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4779{
4780 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4781}
8cbbe86d 4782EXPORT_SYMBOL(wait_for_completion);
1da177e4 4783
65eb3dc6
KD
4784/**
4785 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4786 * @x: holds the state of this particular completion
4787 * @timeout: timeout value in jiffies
4788 *
4789 * This waits for either a completion of a specific task to be signaled or for a
4790 * specified timeout to expire. The timeout is in jiffies. It is not
4791 * interruptible.
4792 */
b15136e9 4793unsigned long __sched
8cbbe86d 4794wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4795{
8cbbe86d 4796 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4797}
8cbbe86d 4798EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4799
65eb3dc6
KD
4800/**
4801 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4802 * @x: holds the state of this particular completion
4803 *
4804 * This waits for completion of a specific task to be signaled. It is
4805 * interruptible.
4806 */
8cbbe86d 4807int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4808{
51e97990
AK
4809 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4810 if (t == -ERESTARTSYS)
4811 return t;
4812 return 0;
0fec171c 4813}
8cbbe86d 4814EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4815
65eb3dc6
KD
4816/**
4817 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4818 * @x: holds the state of this particular completion
4819 * @timeout: timeout value in jiffies
4820 *
4821 * This waits for either a completion of a specific task to be signaled or for a
4822 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4823 */
6bf41237 4824long __sched
8cbbe86d
AK
4825wait_for_completion_interruptible_timeout(struct completion *x,
4826 unsigned long timeout)
0fec171c 4827{
8cbbe86d 4828 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4829}
8cbbe86d 4830EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4831
65eb3dc6
KD
4832/**
4833 * wait_for_completion_killable: - waits for completion of a task (killable)
4834 * @x: holds the state of this particular completion
4835 *
4836 * This waits to be signaled for completion of a specific task. It can be
4837 * interrupted by a kill signal.
4838 */
009e577e
MW
4839int __sched wait_for_completion_killable(struct completion *x)
4840{
4841 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4842 if (t == -ERESTARTSYS)
4843 return t;
4844 return 0;
4845}
4846EXPORT_SYMBOL(wait_for_completion_killable);
4847
0aa12fb4
SW
4848/**
4849 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4850 * @x: holds the state of this particular completion
4851 * @timeout: timeout value in jiffies
4852 *
4853 * This waits for either a completion of a specific task to be
4854 * signaled or for a specified timeout to expire. It can be
4855 * interrupted by a kill signal. The timeout is in jiffies.
4856 */
6bf41237 4857long __sched
0aa12fb4
SW
4858wait_for_completion_killable_timeout(struct completion *x,
4859 unsigned long timeout)
4860{
4861 return wait_for_common(x, timeout, TASK_KILLABLE);
4862}
4863EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4864
be4de352
DC
4865/**
4866 * try_wait_for_completion - try to decrement a completion without blocking
4867 * @x: completion structure
4868 *
4869 * Returns: 0 if a decrement cannot be done without blocking
4870 * 1 if a decrement succeeded.
4871 *
4872 * If a completion is being used as a counting completion,
4873 * attempt to decrement the counter without blocking. This
4874 * enables us to avoid waiting if the resource the completion
4875 * is protecting is not available.
4876 */
4877bool try_wait_for_completion(struct completion *x)
4878{
7539a3b3 4879 unsigned long flags;
be4de352
DC
4880 int ret = 1;
4881
7539a3b3 4882 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4883 if (!x->done)
4884 ret = 0;
4885 else
4886 x->done--;
7539a3b3 4887 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4888 return ret;
4889}
4890EXPORT_SYMBOL(try_wait_for_completion);
4891
4892/**
4893 * completion_done - Test to see if a completion has any waiters
4894 * @x: completion structure
4895 *
4896 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4897 * 1 if there are no waiters.
4898 *
4899 */
4900bool completion_done(struct completion *x)
4901{
7539a3b3 4902 unsigned long flags;
be4de352
DC
4903 int ret = 1;
4904
7539a3b3 4905 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4906 if (!x->done)
4907 ret = 0;
7539a3b3 4908 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4909 return ret;
4910}
4911EXPORT_SYMBOL(completion_done);
4912
8cbbe86d
AK
4913static long __sched
4914sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4915{
0fec171c
IM
4916 unsigned long flags;
4917 wait_queue_t wait;
4918
4919 init_waitqueue_entry(&wait, current);
1da177e4 4920
8cbbe86d 4921 __set_current_state(state);
1da177e4 4922
8cbbe86d
AK
4923 spin_lock_irqsave(&q->lock, flags);
4924 __add_wait_queue(q, &wait);
4925 spin_unlock(&q->lock);
4926 timeout = schedule_timeout(timeout);
4927 spin_lock_irq(&q->lock);
4928 __remove_wait_queue(q, &wait);
4929 spin_unlock_irqrestore(&q->lock, flags);
4930
4931 return timeout;
4932}
4933
4934void __sched interruptible_sleep_on(wait_queue_head_t *q)
4935{
4936 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4937}
1da177e4
LT
4938EXPORT_SYMBOL(interruptible_sleep_on);
4939
0fec171c 4940long __sched
95cdf3b7 4941interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4942{
8cbbe86d 4943 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4944}
1da177e4
LT
4945EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4946
0fec171c 4947void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4948{
8cbbe86d 4949 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4950}
1da177e4
LT
4951EXPORT_SYMBOL(sleep_on);
4952
0fec171c 4953long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4954{
8cbbe86d 4955 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4956}
1da177e4
LT
4957EXPORT_SYMBOL(sleep_on_timeout);
4958
b29739f9
IM
4959#ifdef CONFIG_RT_MUTEXES
4960
4961/*
4962 * rt_mutex_setprio - set the current priority of a task
4963 * @p: task
4964 * @prio: prio value (kernel-internal form)
4965 *
4966 * This function changes the 'effective' priority of a task. It does
4967 * not touch ->normal_prio like __setscheduler().
4968 *
4969 * Used by the rt_mutex code to implement priority inheritance logic.
4970 */
36c8b586 4971void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4972{
83b699ed 4973 int oldprio, on_rq, running;
70b97a7f 4974 struct rq *rq;
83ab0aa0 4975 const struct sched_class *prev_class;
b29739f9
IM
4976
4977 BUG_ON(prio < 0 || prio > MAX_PRIO);
4978
0122ec5b 4979 rq = __task_rq_lock(p);
b29739f9 4980
a8027073 4981 trace_sched_pi_setprio(p, prio);
d5f9f942 4982 oldprio = p->prio;
83ab0aa0 4983 prev_class = p->sched_class;
fd2f4419 4984 on_rq = p->on_rq;
051a1d1a 4985 running = task_current(rq, p);
0e1f3483 4986 if (on_rq)
69be72c1 4987 dequeue_task(rq, p, 0);
0e1f3483
HS
4988 if (running)
4989 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4990
4991 if (rt_prio(prio))
4992 p->sched_class = &rt_sched_class;
4993 else
4994 p->sched_class = &fair_sched_class;
4995
b29739f9
IM
4996 p->prio = prio;
4997
0e1f3483
HS
4998 if (running)
4999 p->sched_class->set_curr_task(rq);
da7a735e 5000 if (on_rq)
371fd7e7 5001 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5002
da7a735e 5003 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5004 __task_rq_unlock(rq);
b29739f9
IM
5005}
5006
5007#endif
5008
36c8b586 5009void set_user_nice(struct task_struct *p, long nice)
1da177e4 5010{
dd41f596 5011 int old_prio, delta, on_rq;
1da177e4 5012 unsigned long flags;
70b97a7f 5013 struct rq *rq;
1da177e4
LT
5014
5015 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5016 return;
5017 /*
5018 * We have to be careful, if called from sys_setpriority(),
5019 * the task might be in the middle of scheduling on another CPU.
5020 */
5021 rq = task_rq_lock(p, &flags);
5022 /*
5023 * The RT priorities are set via sched_setscheduler(), but we still
5024 * allow the 'normal' nice value to be set - but as expected
5025 * it wont have any effect on scheduling until the task is
dd41f596 5026 * SCHED_FIFO/SCHED_RR:
1da177e4 5027 */
e05606d3 5028 if (task_has_rt_policy(p)) {
1da177e4
LT
5029 p->static_prio = NICE_TO_PRIO(nice);
5030 goto out_unlock;
5031 }
fd2f4419 5032 on_rq = p->on_rq;
c09595f6 5033 if (on_rq)
69be72c1 5034 dequeue_task(rq, p, 0);
1da177e4 5035
1da177e4 5036 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5037 set_load_weight(p);
b29739f9
IM
5038 old_prio = p->prio;
5039 p->prio = effective_prio(p);
5040 delta = p->prio - old_prio;
1da177e4 5041
dd41f596 5042 if (on_rq) {
371fd7e7 5043 enqueue_task(rq, p, 0);
1da177e4 5044 /*
d5f9f942
AM
5045 * If the task increased its priority or is running and
5046 * lowered its priority, then reschedule its CPU:
1da177e4 5047 */
d5f9f942 5048 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5049 resched_task(rq->curr);
5050 }
5051out_unlock:
0122ec5b 5052 task_rq_unlock(rq, p, &flags);
1da177e4 5053}
1da177e4
LT
5054EXPORT_SYMBOL(set_user_nice);
5055
e43379f1
MM
5056/*
5057 * can_nice - check if a task can reduce its nice value
5058 * @p: task
5059 * @nice: nice value
5060 */
36c8b586 5061int can_nice(const struct task_struct *p, const int nice)
e43379f1 5062{
024f4747
MM
5063 /* convert nice value [19,-20] to rlimit style value [1,40] */
5064 int nice_rlim = 20 - nice;
48f24c4d 5065
78d7d407 5066 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5067 capable(CAP_SYS_NICE));
5068}
5069
1da177e4
LT
5070#ifdef __ARCH_WANT_SYS_NICE
5071
5072/*
5073 * sys_nice - change the priority of the current process.
5074 * @increment: priority increment
5075 *
5076 * sys_setpriority is a more generic, but much slower function that
5077 * does similar things.
5078 */
5add95d4 5079SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5080{
48f24c4d 5081 long nice, retval;
1da177e4
LT
5082
5083 /*
5084 * Setpriority might change our priority at the same moment.
5085 * We don't have to worry. Conceptually one call occurs first
5086 * and we have a single winner.
5087 */
e43379f1
MM
5088 if (increment < -40)
5089 increment = -40;
1da177e4
LT
5090 if (increment > 40)
5091 increment = 40;
5092
2b8f836f 5093 nice = TASK_NICE(current) + increment;
1da177e4
LT
5094 if (nice < -20)
5095 nice = -20;
5096 if (nice > 19)
5097 nice = 19;
5098
e43379f1
MM
5099 if (increment < 0 && !can_nice(current, nice))
5100 return -EPERM;
5101
1da177e4
LT
5102 retval = security_task_setnice(current, nice);
5103 if (retval)
5104 return retval;
5105
5106 set_user_nice(current, nice);
5107 return 0;
5108}
5109
5110#endif
5111
5112/**
5113 * task_prio - return the priority value of a given task.
5114 * @p: the task in question.
5115 *
5116 * This is the priority value as seen by users in /proc.
5117 * RT tasks are offset by -200. Normal tasks are centered
5118 * around 0, value goes from -16 to +15.
5119 */
36c8b586 5120int task_prio(const struct task_struct *p)
1da177e4
LT
5121{
5122 return p->prio - MAX_RT_PRIO;
5123}
5124
5125/**
5126 * task_nice - return the nice value of a given task.
5127 * @p: the task in question.
5128 */
36c8b586 5129int task_nice(const struct task_struct *p)
1da177e4
LT
5130{
5131 return TASK_NICE(p);
5132}
150d8bed 5133EXPORT_SYMBOL(task_nice);
1da177e4
LT
5134
5135/**
5136 * idle_cpu - is a given cpu idle currently?
5137 * @cpu: the processor in question.
5138 */
5139int idle_cpu(int cpu)
5140{
908a3283
TG
5141 struct rq *rq = cpu_rq(cpu);
5142
5143 if (rq->curr != rq->idle)
5144 return 0;
5145
5146 if (rq->nr_running)
5147 return 0;
5148
5149#ifdef CONFIG_SMP
5150 if (!llist_empty(&rq->wake_list))
5151 return 0;
5152#endif
5153
5154 return 1;
1da177e4
LT
5155}
5156
1da177e4
LT
5157/**
5158 * idle_task - return the idle task for a given cpu.
5159 * @cpu: the processor in question.
5160 */
36c8b586 5161struct task_struct *idle_task(int cpu)
1da177e4
LT
5162{
5163 return cpu_rq(cpu)->idle;
5164}
5165
5166/**
5167 * find_process_by_pid - find a process with a matching PID value.
5168 * @pid: the pid in question.
5169 */
a9957449 5170static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5171{
228ebcbe 5172 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5173}
5174
5175/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5176static void
5177__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5178{
1da177e4
LT
5179 p->policy = policy;
5180 p->rt_priority = prio;
b29739f9
IM
5181 p->normal_prio = normal_prio(p);
5182 /* we are holding p->pi_lock already */
5183 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5184 if (rt_prio(p->prio))
5185 p->sched_class = &rt_sched_class;
5186 else
5187 p->sched_class = &fair_sched_class;
2dd73a4f 5188 set_load_weight(p);
1da177e4
LT
5189}
5190
c69e8d9c
DH
5191/*
5192 * check the target process has a UID that matches the current process's
5193 */
5194static bool check_same_owner(struct task_struct *p)
5195{
5196 const struct cred *cred = current_cred(), *pcred;
5197 bool match;
5198
5199 rcu_read_lock();
5200 pcred = __task_cred(p);
b0e77598
SH
5201 if (cred->user->user_ns == pcred->user->user_ns)
5202 match = (cred->euid == pcred->euid ||
5203 cred->euid == pcred->uid);
5204 else
5205 match = false;
c69e8d9c
DH
5206 rcu_read_unlock();
5207 return match;
5208}
5209
961ccddd 5210static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5211 const struct sched_param *param, bool user)
1da177e4 5212{
83b699ed 5213 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5214 unsigned long flags;
83ab0aa0 5215 const struct sched_class *prev_class;
70b97a7f 5216 struct rq *rq;
ca94c442 5217 int reset_on_fork;
1da177e4 5218
66e5393a
SR
5219 /* may grab non-irq protected spin_locks */
5220 BUG_ON(in_interrupt());
1da177e4
LT
5221recheck:
5222 /* double check policy once rq lock held */
ca94c442
LP
5223 if (policy < 0) {
5224 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5225 policy = oldpolicy = p->policy;
ca94c442
LP
5226 } else {
5227 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5228 policy &= ~SCHED_RESET_ON_FORK;
5229
5230 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5231 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5232 policy != SCHED_IDLE)
5233 return -EINVAL;
5234 }
5235
1da177e4
LT
5236 /*
5237 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5238 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5239 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5240 */
5241 if (param->sched_priority < 0 ||
95cdf3b7 5242 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5243 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5244 return -EINVAL;
e05606d3 5245 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5246 return -EINVAL;
5247
37e4ab3f
OC
5248 /*
5249 * Allow unprivileged RT tasks to decrease priority:
5250 */
961ccddd 5251 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5252 if (rt_policy(policy)) {
a44702e8
ON
5253 unsigned long rlim_rtprio =
5254 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5255
5256 /* can't set/change the rt policy */
5257 if (policy != p->policy && !rlim_rtprio)
5258 return -EPERM;
5259
5260 /* can't increase priority */
5261 if (param->sched_priority > p->rt_priority &&
5262 param->sched_priority > rlim_rtprio)
5263 return -EPERM;
5264 }
c02aa73b 5265
dd41f596 5266 /*
c02aa73b
DH
5267 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5268 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5269 */
c02aa73b
DH
5270 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5271 if (!can_nice(p, TASK_NICE(p)))
5272 return -EPERM;
5273 }
5fe1d75f 5274
37e4ab3f 5275 /* can't change other user's priorities */
c69e8d9c 5276 if (!check_same_owner(p))
37e4ab3f 5277 return -EPERM;
ca94c442
LP
5278
5279 /* Normal users shall not reset the sched_reset_on_fork flag */
5280 if (p->sched_reset_on_fork && !reset_on_fork)
5281 return -EPERM;
37e4ab3f 5282 }
1da177e4 5283
725aad24 5284 if (user) {
b0ae1981 5285 retval = security_task_setscheduler(p);
725aad24
JF
5286 if (retval)
5287 return retval;
5288 }
5289
b29739f9
IM
5290 /*
5291 * make sure no PI-waiters arrive (or leave) while we are
5292 * changing the priority of the task:
0122ec5b 5293 *
25985edc 5294 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5295 * runqueue lock must be held.
5296 */
0122ec5b 5297 rq = task_rq_lock(p, &flags);
dc61b1d6 5298
34f971f6
PZ
5299 /*
5300 * Changing the policy of the stop threads its a very bad idea
5301 */
5302 if (p == rq->stop) {
0122ec5b 5303 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5304 return -EINVAL;
5305 }
5306
a51e9198
DF
5307 /*
5308 * If not changing anything there's no need to proceed further:
5309 */
5310 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5311 param->sched_priority == p->rt_priority))) {
5312
5313 __task_rq_unlock(rq);
5314 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5315 return 0;
5316 }
5317
dc61b1d6
PZ
5318#ifdef CONFIG_RT_GROUP_SCHED
5319 if (user) {
5320 /*
5321 * Do not allow realtime tasks into groups that have no runtime
5322 * assigned.
5323 */
5324 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5325 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5326 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5327 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5328 return -EPERM;
5329 }
5330 }
5331#endif
5332
1da177e4
LT
5333 /* recheck policy now with rq lock held */
5334 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5335 policy = oldpolicy = -1;
0122ec5b 5336 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5337 goto recheck;
5338 }
fd2f4419 5339 on_rq = p->on_rq;
051a1d1a 5340 running = task_current(rq, p);
0e1f3483 5341 if (on_rq)
2e1cb74a 5342 deactivate_task(rq, p, 0);
0e1f3483
HS
5343 if (running)
5344 p->sched_class->put_prev_task(rq, p);
f6b53205 5345
ca94c442
LP
5346 p->sched_reset_on_fork = reset_on_fork;
5347
1da177e4 5348 oldprio = p->prio;
83ab0aa0 5349 prev_class = p->sched_class;
dd41f596 5350 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5351
0e1f3483
HS
5352 if (running)
5353 p->sched_class->set_curr_task(rq);
da7a735e 5354 if (on_rq)
dd41f596 5355 activate_task(rq, p, 0);
cb469845 5356
da7a735e 5357 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5358 task_rq_unlock(rq, p, &flags);
b29739f9 5359
95e02ca9
TG
5360 rt_mutex_adjust_pi(p);
5361
1da177e4
LT
5362 return 0;
5363}
961ccddd
RR
5364
5365/**
5366 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5367 * @p: the task in question.
5368 * @policy: new policy.
5369 * @param: structure containing the new RT priority.
5370 *
5371 * NOTE that the task may be already dead.
5372 */
5373int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5374 const struct sched_param *param)
961ccddd
RR
5375{
5376 return __sched_setscheduler(p, policy, param, true);
5377}
1da177e4
LT
5378EXPORT_SYMBOL_GPL(sched_setscheduler);
5379
961ccddd
RR
5380/**
5381 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5382 * @p: the task in question.
5383 * @policy: new policy.
5384 * @param: structure containing the new RT priority.
5385 *
5386 * Just like sched_setscheduler, only don't bother checking if the
5387 * current context has permission. For example, this is needed in
5388 * stop_machine(): we create temporary high priority worker threads,
5389 * but our caller might not have that capability.
5390 */
5391int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5392 const struct sched_param *param)
961ccddd
RR
5393{
5394 return __sched_setscheduler(p, policy, param, false);
5395}
5396
95cdf3b7
IM
5397static int
5398do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5399{
1da177e4
LT
5400 struct sched_param lparam;
5401 struct task_struct *p;
36c8b586 5402 int retval;
1da177e4
LT
5403
5404 if (!param || pid < 0)
5405 return -EINVAL;
5406 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5407 return -EFAULT;
5fe1d75f
ON
5408
5409 rcu_read_lock();
5410 retval = -ESRCH;
1da177e4 5411 p = find_process_by_pid(pid);
5fe1d75f
ON
5412 if (p != NULL)
5413 retval = sched_setscheduler(p, policy, &lparam);
5414 rcu_read_unlock();
36c8b586 5415
1da177e4
LT
5416 return retval;
5417}
5418
5419/**
5420 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5421 * @pid: the pid in question.
5422 * @policy: new policy.
5423 * @param: structure containing the new RT priority.
5424 */
5add95d4
HC
5425SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5426 struct sched_param __user *, param)
1da177e4 5427{
c21761f1
JB
5428 /* negative values for policy are not valid */
5429 if (policy < 0)
5430 return -EINVAL;
5431
1da177e4
LT
5432 return do_sched_setscheduler(pid, policy, param);
5433}
5434
5435/**
5436 * sys_sched_setparam - set/change the RT priority of a thread
5437 * @pid: the pid in question.
5438 * @param: structure containing the new RT priority.
5439 */
5add95d4 5440SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5441{
5442 return do_sched_setscheduler(pid, -1, param);
5443}
5444
5445/**
5446 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5447 * @pid: the pid in question.
5448 */
5add95d4 5449SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5450{
36c8b586 5451 struct task_struct *p;
3a5c359a 5452 int retval;
1da177e4
LT
5453
5454 if (pid < 0)
3a5c359a 5455 return -EINVAL;
1da177e4
LT
5456
5457 retval = -ESRCH;
5fe85be0 5458 rcu_read_lock();
1da177e4
LT
5459 p = find_process_by_pid(pid);
5460 if (p) {
5461 retval = security_task_getscheduler(p);
5462 if (!retval)
ca94c442
LP
5463 retval = p->policy
5464 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5465 }
5fe85be0 5466 rcu_read_unlock();
1da177e4
LT
5467 return retval;
5468}
5469
5470/**
ca94c442 5471 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5472 * @pid: the pid in question.
5473 * @param: structure containing the RT priority.
5474 */
5add95d4 5475SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5476{
5477 struct sched_param lp;
36c8b586 5478 struct task_struct *p;
3a5c359a 5479 int retval;
1da177e4
LT
5480
5481 if (!param || pid < 0)
3a5c359a 5482 return -EINVAL;
1da177e4 5483
5fe85be0 5484 rcu_read_lock();
1da177e4
LT
5485 p = find_process_by_pid(pid);
5486 retval = -ESRCH;
5487 if (!p)
5488 goto out_unlock;
5489
5490 retval = security_task_getscheduler(p);
5491 if (retval)
5492 goto out_unlock;
5493
5494 lp.sched_priority = p->rt_priority;
5fe85be0 5495 rcu_read_unlock();
1da177e4
LT
5496
5497 /*
5498 * This one might sleep, we cannot do it with a spinlock held ...
5499 */
5500 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5501
1da177e4
LT
5502 return retval;
5503
5504out_unlock:
5fe85be0 5505 rcu_read_unlock();
1da177e4
LT
5506 return retval;
5507}
5508
96f874e2 5509long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5510{
5a16f3d3 5511 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5512 struct task_struct *p;
5513 int retval;
1da177e4 5514
95402b38 5515 get_online_cpus();
23f5d142 5516 rcu_read_lock();
1da177e4
LT
5517
5518 p = find_process_by_pid(pid);
5519 if (!p) {
23f5d142 5520 rcu_read_unlock();
95402b38 5521 put_online_cpus();
1da177e4
LT
5522 return -ESRCH;
5523 }
5524
23f5d142 5525 /* Prevent p going away */
1da177e4 5526 get_task_struct(p);
23f5d142 5527 rcu_read_unlock();
1da177e4 5528
5a16f3d3
RR
5529 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5530 retval = -ENOMEM;
5531 goto out_put_task;
5532 }
5533 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5534 retval = -ENOMEM;
5535 goto out_free_cpus_allowed;
5536 }
1da177e4 5537 retval = -EPERM;
b0e77598 5538 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5539 goto out_unlock;
5540
b0ae1981 5541 retval = security_task_setscheduler(p);
e7834f8f
DQ
5542 if (retval)
5543 goto out_unlock;
5544
5a16f3d3
RR
5545 cpuset_cpus_allowed(p, cpus_allowed);
5546 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5547again:
5a16f3d3 5548 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5549
8707d8b8 5550 if (!retval) {
5a16f3d3
RR
5551 cpuset_cpus_allowed(p, cpus_allowed);
5552 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5553 /*
5554 * We must have raced with a concurrent cpuset
5555 * update. Just reset the cpus_allowed to the
5556 * cpuset's cpus_allowed
5557 */
5a16f3d3 5558 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5559 goto again;
5560 }
5561 }
1da177e4 5562out_unlock:
5a16f3d3
RR
5563 free_cpumask_var(new_mask);
5564out_free_cpus_allowed:
5565 free_cpumask_var(cpus_allowed);
5566out_put_task:
1da177e4 5567 put_task_struct(p);
95402b38 5568 put_online_cpus();
1da177e4
LT
5569 return retval;
5570}
5571
5572static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5573 struct cpumask *new_mask)
1da177e4 5574{
96f874e2
RR
5575 if (len < cpumask_size())
5576 cpumask_clear(new_mask);
5577 else if (len > cpumask_size())
5578 len = cpumask_size();
5579
1da177e4
LT
5580 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5581}
5582
5583/**
5584 * sys_sched_setaffinity - set the cpu affinity of a process
5585 * @pid: pid of the process
5586 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5587 * @user_mask_ptr: user-space pointer to the new cpu mask
5588 */
5add95d4
HC
5589SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5590 unsigned long __user *, user_mask_ptr)
1da177e4 5591{
5a16f3d3 5592 cpumask_var_t new_mask;
1da177e4
LT
5593 int retval;
5594
5a16f3d3
RR
5595 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5596 return -ENOMEM;
1da177e4 5597
5a16f3d3
RR
5598 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5599 if (retval == 0)
5600 retval = sched_setaffinity(pid, new_mask);
5601 free_cpumask_var(new_mask);
5602 return retval;
1da177e4
LT
5603}
5604
96f874e2 5605long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5606{
36c8b586 5607 struct task_struct *p;
31605683 5608 unsigned long flags;
1da177e4 5609 int retval;
1da177e4 5610
95402b38 5611 get_online_cpus();
23f5d142 5612 rcu_read_lock();
1da177e4
LT
5613
5614 retval = -ESRCH;
5615 p = find_process_by_pid(pid);
5616 if (!p)
5617 goto out_unlock;
5618
e7834f8f
DQ
5619 retval = security_task_getscheduler(p);
5620 if (retval)
5621 goto out_unlock;
5622
013fdb80 5623 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5624 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5625 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5626
5627out_unlock:
23f5d142 5628 rcu_read_unlock();
95402b38 5629 put_online_cpus();
1da177e4 5630
9531b62f 5631 return retval;
1da177e4
LT
5632}
5633
5634/**
5635 * sys_sched_getaffinity - get the cpu affinity of a process
5636 * @pid: pid of the process
5637 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5638 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5639 */
5add95d4
HC
5640SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5641 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5642{
5643 int ret;
f17c8607 5644 cpumask_var_t mask;
1da177e4 5645
84fba5ec 5646 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5647 return -EINVAL;
5648 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5649 return -EINVAL;
5650
f17c8607
RR
5651 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5652 return -ENOMEM;
1da177e4 5653
f17c8607
RR
5654 ret = sched_getaffinity(pid, mask);
5655 if (ret == 0) {
8bc037fb 5656 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5657
5658 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5659 ret = -EFAULT;
5660 else
cd3d8031 5661 ret = retlen;
f17c8607
RR
5662 }
5663 free_cpumask_var(mask);
1da177e4 5664
f17c8607 5665 return ret;
1da177e4
LT
5666}
5667
5668/**
5669 * sys_sched_yield - yield the current processor to other threads.
5670 *
dd41f596
IM
5671 * This function yields the current CPU to other tasks. If there are no
5672 * other threads running on this CPU then this function will return.
1da177e4 5673 */
5add95d4 5674SYSCALL_DEFINE0(sched_yield)
1da177e4 5675{
70b97a7f 5676 struct rq *rq = this_rq_lock();
1da177e4 5677
2d72376b 5678 schedstat_inc(rq, yld_count);
4530d7ab 5679 current->sched_class->yield_task(rq);
1da177e4
LT
5680
5681 /*
5682 * Since we are going to call schedule() anyway, there's
5683 * no need to preempt or enable interrupts:
5684 */
5685 __release(rq->lock);
8a25d5de 5686 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5687 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5688 preempt_enable_no_resched();
5689
5690 schedule();
5691
5692 return 0;
5693}
5694
d86ee480
PZ
5695static inline int should_resched(void)
5696{
5697 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5698}
5699
e7b38404 5700static void __cond_resched(void)
1da177e4 5701{
e7aaaa69 5702 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 5703 __schedule();
e7aaaa69 5704 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5705}
5706
02b67cc3 5707int __sched _cond_resched(void)
1da177e4 5708{
d86ee480 5709 if (should_resched()) {
1da177e4
LT
5710 __cond_resched();
5711 return 1;
5712 }
5713 return 0;
5714}
02b67cc3 5715EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5716
5717/*
613afbf8 5718 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5719 * call schedule, and on return reacquire the lock.
5720 *
41a2d6cf 5721 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5722 * operations here to prevent schedule() from being called twice (once via
5723 * spin_unlock(), once by hand).
5724 */
613afbf8 5725int __cond_resched_lock(spinlock_t *lock)
1da177e4 5726{
d86ee480 5727 int resched = should_resched();
6df3cecb
JK
5728 int ret = 0;
5729
f607c668
PZ
5730 lockdep_assert_held(lock);
5731
95c354fe 5732 if (spin_needbreak(lock) || resched) {
1da177e4 5733 spin_unlock(lock);
d86ee480 5734 if (resched)
95c354fe
NP
5735 __cond_resched();
5736 else
5737 cpu_relax();
6df3cecb 5738 ret = 1;
1da177e4 5739 spin_lock(lock);
1da177e4 5740 }
6df3cecb 5741 return ret;
1da177e4 5742}
613afbf8 5743EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5744
613afbf8 5745int __sched __cond_resched_softirq(void)
1da177e4
LT
5746{
5747 BUG_ON(!in_softirq());
5748
d86ee480 5749 if (should_resched()) {
98d82567 5750 local_bh_enable();
1da177e4
LT
5751 __cond_resched();
5752 local_bh_disable();
5753 return 1;
5754 }
5755 return 0;
5756}
613afbf8 5757EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5758
1da177e4
LT
5759/**
5760 * yield - yield the current processor to other threads.
5761 *
72fd4a35 5762 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5763 * thread runnable and calls sys_sched_yield().
5764 */
5765void __sched yield(void)
5766{
5767 set_current_state(TASK_RUNNING);
5768 sys_sched_yield();
5769}
1da177e4
LT
5770EXPORT_SYMBOL(yield);
5771
d95f4122
MG
5772/**
5773 * yield_to - yield the current processor to another thread in
5774 * your thread group, or accelerate that thread toward the
5775 * processor it's on.
16addf95
RD
5776 * @p: target task
5777 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5778 *
5779 * It's the caller's job to ensure that the target task struct
5780 * can't go away on us before we can do any checks.
5781 *
5782 * Returns true if we indeed boosted the target task.
5783 */
5784bool __sched yield_to(struct task_struct *p, bool preempt)
5785{
5786 struct task_struct *curr = current;
5787 struct rq *rq, *p_rq;
5788 unsigned long flags;
5789 bool yielded = 0;
5790
5791 local_irq_save(flags);
5792 rq = this_rq();
5793
5794again:
5795 p_rq = task_rq(p);
5796 double_rq_lock(rq, p_rq);
5797 while (task_rq(p) != p_rq) {
5798 double_rq_unlock(rq, p_rq);
5799 goto again;
5800 }
5801
5802 if (!curr->sched_class->yield_to_task)
5803 goto out;
5804
5805 if (curr->sched_class != p->sched_class)
5806 goto out;
5807
5808 if (task_running(p_rq, p) || p->state)
5809 goto out;
5810
5811 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5812 if (yielded) {
d95f4122 5813 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5814 /*
5815 * Make p's CPU reschedule; pick_next_entity takes care of
5816 * fairness.
5817 */
5818 if (preempt && rq != p_rq)
5819 resched_task(p_rq->curr);
5820 }
d95f4122
MG
5821
5822out:
5823 double_rq_unlock(rq, p_rq);
5824 local_irq_restore(flags);
5825
5826 if (yielded)
5827 schedule();
5828
5829 return yielded;
5830}
5831EXPORT_SYMBOL_GPL(yield_to);
5832
1da177e4 5833/*
41a2d6cf 5834 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5835 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5836 */
5837void __sched io_schedule(void)
5838{
54d35f29 5839 struct rq *rq = raw_rq();
1da177e4 5840
0ff92245 5841 delayacct_blkio_start();
1da177e4 5842 atomic_inc(&rq->nr_iowait);
73c10101 5843 blk_flush_plug(current);
8f0dfc34 5844 current->in_iowait = 1;
1da177e4 5845 schedule();
8f0dfc34 5846 current->in_iowait = 0;
1da177e4 5847 atomic_dec(&rq->nr_iowait);
0ff92245 5848 delayacct_blkio_end();
1da177e4 5849}
1da177e4
LT
5850EXPORT_SYMBOL(io_schedule);
5851
5852long __sched io_schedule_timeout(long timeout)
5853{
54d35f29 5854 struct rq *rq = raw_rq();
1da177e4
LT
5855 long ret;
5856
0ff92245 5857 delayacct_blkio_start();
1da177e4 5858 atomic_inc(&rq->nr_iowait);
73c10101 5859 blk_flush_plug(current);
8f0dfc34 5860 current->in_iowait = 1;
1da177e4 5861 ret = schedule_timeout(timeout);
8f0dfc34 5862 current->in_iowait = 0;
1da177e4 5863 atomic_dec(&rq->nr_iowait);
0ff92245 5864 delayacct_blkio_end();
1da177e4
LT
5865 return ret;
5866}
5867
5868/**
5869 * sys_sched_get_priority_max - return maximum RT priority.
5870 * @policy: scheduling class.
5871 *
5872 * this syscall returns the maximum rt_priority that can be used
5873 * by a given scheduling class.
5874 */
5add95d4 5875SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5876{
5877 int ret = -EINVAL;
5878
5879 switch (policy) {
5880 case SCHED_FIFO:
5881 case SCHED_RR:
5882 ret = MAX_USER_RT_PRIO-1;
5883 break;
5884 case SCHED_NORMAL:
b0a9499c 5885 case SCHED_BATCH:
dd41f596 5886 case SCHED_IDLE:
1da177e4
LT
5887 ret = 0;
5888 break;
5889 }
5890 return ret;
5891}
5892
5893/**
5894 * sys_sched_get_priority_min - return minimum RT priority.
5895 * @policy: scheduling class.
5896 *
5897 * this syscall returns the minimum rt_priority that can be used
5898 * by a given scheduling class.
5899 */
5add95d4 5900SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5901{
5902 int ret = -EINVAL;
5903
5904 switch (policy) {
5905 case SCHED_FIFO:
5906 case SCHED_RR:
5907 ret = 1;
5908 break;
5909 case SCHED_NORMAL:
b0a9499c 5910 case SCHED_BATCH:
dd41f596 5911 case SCHED_IDLE:
1da177e4
LT
5912 ret = 0;
5913 }
5914 return ret;
5915}
5916
5917/**
5918 * sys_sched_rr_get_interval - return the default timeslice of a process.
5919 * @pid: pid of the process.
5920 * @interval: userspace pointer to the timeslice value.
5921 *
5922 * this syscall writes the default timeslice value of a given process
5923 * into the user-space timespec buffer. A value of '0' means infinity.
5924 */
17da2bd9 5925SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5926 struct timespec __user *, interval)
1da177e4 5927{
36c8b586 5928 struct task_struct *p;
a4ec24b4 5929 unsigned int time_slice;
dba091b9
TG
5930 unsigned long flags;
5931 struct rq *rq;
3a5c359a 5932 int retval;
1da177e4 5933 struct timespec t;
1da177e4
LT
5934
5935 if (pid < 0)
3a5c359a 5936 return -EINVAL;
1da177e4
LT
5937
5938 retval = -ESRCH;
1a551ae7 5939 rcu_read_lock();
1da177e4
LT
5940 p = find_process_by_pid(pid);
5941 if (!p)
5942 goto out_unlock;
5943
5944 retval = security_task_getscheduler(p);
5945 if (retval)
5946 goto out_unlock;
5947
dba091b9
TG
5948 rq = task_rq_lock(p, &flags);
5949 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5950 task_rq_unlock(rq, p, &flags);
a4ec24b4 5951
1a551ae7 5952 rcu_read_unlock();
a4ec24b4 5953 jiffies_to_timespec(time_slice, &t);
1da177e4 5954 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5955 return retval;
3a5c359a 5956
1da177e4 5957out_unlock:
1a551ae7 5958 rcu_read_unlock();
1da177e4
LT
5959 return retval;
5960}
5961
7c731e0a 5962static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5963
82a1fcb9 5964void sched_show_task(struct task_struct *p)
1da177e4 5965{
1da177e4 5966 unsigned long free = 0;
36c8b586 5967 unsigned state;
1da177e4 5968
1da177e4 5969 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5970 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5971 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5972#if BITS_PER_LONG == 32
1da177e4 5973 if (state == TASK_RUNNING)
3df0fc5b 5974 printk(KERN_CONT " running ");
1da177e4 5975 else
3df0fc5b 5976 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5977#else
5978 if (state == TASK_RUNNING)
3df0fc5b 5979 printk(KERN_CONT " running task ");
1da177e4 5980 else
3df0fc5b 5981 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5982#endif
5983#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5984 free = stack_not_used(p);
1da177e4 5985#endif
3df0fc5b 5986 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5987 task_pid_nr(p), task_pid_nr(p->real_parent),
5988 (unsigned long)task_thread_info(p)->flags);
1da177e4 5989
5fb5e6de 5990 show_stack(p, NULL);
1da177e4
LT
5991}
5992
e59e2ae2 5993void show_state_filter(unsigned long state_filter)
1da177e4 5994{
36c8b586 5995 struct task_struct *g, *p;
1da177e4 5996
4bd77321 5997#if BITS_PER_LONG == 32
3df0fc5b
PZ
5998 printk(KERN_INFO
5999 " task PC stack pid father\n");
1da177e4 6000#else
3df0fc5b
PZ
6001 printk(KERN_INFO
6002 " task PC stack pid father\n");
1da177e4
LT
6003#endif
6004 read_lock(&tasklist_lock);
6005 do_each_thread(g, p) {
6006 /*
6007 * reset the NMI-timeout, listing all files on a slow
25985edc 6008 * console might take a lot of time:
1da177e4
LT
6009 */
6010 touch_nmi_watchdog();
39bc89fd 6011 if (!state_filter || (p->state & state_filter))
82a1fcb9 6012 sched_show_task(p);
1da177e4
LT
6013 } while_each_thread(g, p);
6014
04c9167f
JF
6015 touch_all_softlockup_watchdogs();
6016
dd41f596
IM
6017#ifdef CONFIG_SCHED_DEBUG
6018 sysrq_sched_debug_show();
6019#endif
1da177e4 6020 read_unlock(&tasklist_lock);
e59e2ae2
IM
6021 /*
6022 * Only show locks if all tasks are dumped:
6023 */
93335a21 6024 if (!state_filter)
e59e2ae2 6025 debug_show_all_locks();
1da177e4
LT
6026}
6027
1df21055
IM
6028void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6029{
dd41f596 6030 idle->sched_class = &idle_sched_class;
1df21055
IM
6031}
6032
f340c0d1
IM
6033/**
6034 * init_idle - set up an idle thread for a given CPU
6035 * @idle: task in question
6036 * @cpu: cpu the idle task belongs to
6037 *
6038 * NOTE: this function does not set the idle thread's NEED_RESCHED
6039 * flag, to make booting more robust.
6040 */
5c1e1767 6041void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6042{
70b97a7f 6043 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6044 unsigned long flags;
6045
05fa785c 6046 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6047
dd41f596 6048 __sched_fork(idle);
06b83b5f 6049 idle->state = TASK_RUNNING;
dd41f596
IM
6050 idle->se.exec_start = sched_clock();
6051
1e1b6c51 6052 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6053 /*
6054 * We're having a chicken and egg problem, even though we are
6055 * holding rq->lock, the cpu isn't yet set to this cpu so the
6056 * lockdep check in task_group() will fail.
6057 *
6058 * Similar case to sched_fork(). / Alternatively we could
6059 * use task_rq_lock() here and obtain the other rq->lock.
6060 *
6061 * Silence PROVE_RCU
6062 */
6063 rcu_read_lock();
dd41f596 6064 __set_task_cpu(idle, cpu);
6506cf6c 6065 rcu_read_unlock();
1da177e4 6066
1da177e4 6067 rq->curr = rq->idle = idle;
3ca7a440
PZ
6068#if defined(CONFIG_SMP)
6069 idle->on_cpu = 1;
4866cde0 6070#endif
05fa785c 6071 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6072
6073 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6074 task_thread_info(idle)->preempt_count = 0;
625f2a37 6075
dd41f596
IM
6076 /*
6077 * The idle tasks have their own, simple scheduling class:
6078 */
6079 idle->sched_class = &idle_sched_class;
868baf07 6080 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6081}
6082
6083/*
6084 * In a system that switches off the HZ timer nohz_cpu_mask
6085 * indicates which cpus entered this state. This is used
6086 * in the rcu update to wait only for active cpus. For system
6087 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6088 * always be CPU_BITS_NONE.
1da177e4 6089 */
6a7b3dc3 6090cpumask_var_t nohz_cpu_mask;
1da177e4 6091
19978ca6
IM
6092/*
6093 * Increase the granularity value when there are more CPUs,
6094 * because with more CPUs the 'effective latency' as visible
6095 * to users decreases. But the relationship is not linear,
6096 * so pick a second-best guess by going with the log2 of the
6097 * number of CPUs.
6098 *
6099 * This idea comes from the SD scheduler of Con Kolivas:
6100 */
acb4a848 6101static int get_update_sysctl_factor(void)
19978ca6 6102{
4ca3ef71 6103 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6104 unsigned int factor;
6105
6106 switch (sysctl_sched_tunable_scaling) {
6107 case SCHED_TUNABLESCALING_NONE:
6108 factor = 1;
6109 break;
6110 case SCHED_TUNABLESCALING_LINEAR:
6111 factor = cpus;
6112 break;
6113 case SCHED_TUNABLESCALING_LOG:
6114 default:
6115 factor = 1 + ilog2(cpus);
6116 break;
6117 }
19978ca6 6118
acb4a848
CE
6119 return factor;
6120}
19978ca6 6121
acb4a848
CE
6122static void update_sysctl(void)
6123{
6124 unsigned int factor = get_update_sysctl_factor();
19978ca6 6125
0bcdcf28
CE
6126#define SET_SYSCTL(name) \
6127 (sysctl_##name = (factor) * normalized_sysctl_##name)
6128 SET_SYSCTL(sched_min_granularity);
6129 SET_SYSCTL(sched_latency);
6130 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6131#undef SET_SYSCTL
6132}
55cd5340 6133
0bcdcf28
CE
6134static inline void sched_init_granularity(void)
6135{
6136 update_sysctl();
19978ca6
IM
6137}
6138
1da177e4 6139#ifdef CONFIG_SMP
1e1b6c51
KM
6140void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6141{
6142 if (p->sched_class && p->sched_class->set_cpus_allowed)
6143 p->sched_class->set_cpus_allowed(p, new_mask);
6144 else {
6145 cpumask_copy(&p->cpus_allowed, new_mask);
6146 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6147 }
6148}
6149
1da177e4
LT
6150/*
6151 * This is how migration works:
6152 *
969c7921
TH
6153 * 1) we invoke migration_cpu_stop() on the target CPU using
6154 * stop_one_cpu().
6155 * 2) stopper starts to run (implicitly forcing the migrated thread
6156 * off the CPU)
6157 * 3) it checks whether the migrated task is still in the wrong runqueue.
6158 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6159 * it and puts it into the right queue.
969c7921
TH
6160 * 5) stopper completes and stop_one_cpu() returns and the migration
6161 * is done.
1da177e4
LT
6162 */
6163
6164/*
6165 * Change a given task's CPU affinity. Migrate the thread to a
6166 * proper CPU and schedule it away if the CPU it's executing on
6167 * is removed from the allowed bitmask.
6168 *
6169 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6170 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6171 * call is not atomic; no spinlocks may be held.
6172 */
96f874e2 6173int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6174{
6175 unsigned long flags;
70b97a7f 6176 struct rq *rq;
969c7921 6177 unsigned int dest_cpu;
48f24c4d 6178 int ret = 0;
1da177e4
LT
6179
6180 rq = task_rq_lock(p, &flags);
e2912009 6181
db44fc01
YZ
6182 if (cpumask_equal(&p->cpus_allowed, new_mask))
6183 goto out;
6184
6ad4c188 6185 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6186 ret = -EINVAL;
6187 goto out;
6188 }
6189
db44fc01 6190 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6191 ret = -EINVAL;
6192 goto out;
6193 }
6194
1e1b6c51 6195 do_set_cpus_allowed(p, new_mask);
73fe6aae 6196
1da177e4 6197 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6198 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6199 goto out;
6200
969c7921 6201 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6202 if (p->on_rq) {
969c7921 6203 struct migration_arg arg = { p, dest_cpu };
1da177e4 6204 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6205 task_rq_unlock(rq, p, &flags);
969c7921 6206 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6207 tlb_migrate_finish(p->mm);
6208 return 0;
6209 }
6210out:
0122ec5b 6211 task_rq_unlock(rq, p, &flags);
48f24c4d 6212
1da177e4
LT
6213 return ret;
6214}
cd8ba7cd 6215EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6216
6217/*
41a2d6cf 6218 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6219 * this because either it can't run here any more (set_cpus_allowed()
6220 * away from this CPU, or CPU going down), or because we're
6221 * attempting to rebalance this task on exec (sched_exec).
6222 *
6223 * So we race with normal scheduler movements, but that's OK, as long
6224 * as the task is no longer on this CPU.
efc30814
KK
6225 *
6226 * Returns non-zero if task was successfully migrated.
1da177e4 6227 */
efc30814 6228static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6229{
70b97a7f 6230 struct rq *rq_dest, *rq_src;
e2912009 6231 int ret = 0;
1da177e4 6232
e761b772 6233 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6234 return ret;
1da177e4
LT
6235
6236 rq_src = cpu_rq(src_cpu);
6237 rq_dest = cpu_rq(dest_cpu);
6238
0122ec5b 6239 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6240 double_rq_lock(rq_src, rq_dest);
6241 /* Already moved. */
6242 if (task_cpu(p) != src_cpu)
b1e38734 6243 goto done;
1da177e4 6244 /* Affinity changed (again). */
96f874e2 6245 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6246 goto fail;
1da177e4 6247
e2912009
PZ
6248 /*
6249 * If we're not on a rq, the next wake-up will ensure we're
6250 * placed properly.
6251 */
fd2f4419 6252 if (p->on_rq) {
2e1cb74a 6253 deactivate_task(rq_src, p, 0);
e2912009 6254 set_task_cpu(p, dest_cpu);
dd41f596 6255 activate_task(rq_dest, p, 0);
15afe09b 6256 check_preempt_curr(rq_dest, p, 0);
1da177e4 6257 }
b1e38734 6258done:
efc30814 6259 ret = 1;
b1e38734 6260fail:
1da177e4 6261 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6262 raw_spin_unlock(&p->pi_lock);
efc30814 6263 return ret;
1da177e4
LT
6264}
6265
6266/*
969c7921
TH
6267 * migration_cpu_stop - this will be executed by a highprio stopper thread
6268 * and performs thread migration by bumping thread off CPU then
6269 * 'pushing' onto another runqueue.
1da177e4 6270 */
969c7921 6271static int migration_cpu_stop(void *data)
1da177e4 6272{
969c7921 6273 struct migration_arg *arg = data;
f7b4cddc 6274
969c7921
TH
6275 /*
6276 * The original target cpu might have gone down and we might
6277 * be on another cpu but it doesn't matter.
6278 */
f7b4cddc 6279 local_irq_disable();
969c7921 6280 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6281 local_irq_enable();
1da177e4 6282 return 0;
f7b4cddc
ON
6283}
6284
1da177e4 6285#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6286
054b9108 6287/*
48c5ccae
PZ
6288 * Ensures that the idle task is using init_mm right before its cpu goes
6289 * offline.
054b9108 6290 */
48c5ccae 6291void idle_task_exit(void)
1da177e4 6292{
48c5ccae 6293 struct mm_struct *mm = current->active_mm;
e76bd8d9 6294
48c5ccae 6295 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6296
48c5ccae
PZ
6297 if (mm != &init_mm)
6298 switch_mm(mm, &init_mm, current);
6299 mmdrop(mm);
1da177e4
LT
6300}
6301
6302/*
6303 * While a dead CPU has no uninterruptible tasks queued at this point,
6304 * it might still have a nonzero ->nr_uninterruptible counter, because
6305 * for performance reasons the counter is not stricly tracking tasks to
6306 * their home CPUs. So we just add the counter to another CPU's counter,
6307 * to keep the global sum constant after CPU-down:
6308 */
70b97a7f 6309static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6310{
6ad4c188 6311 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6312
1da177e4
LT
6313 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6314 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6315}
6316
dd41f596 6317/*
48c5ccae 6318 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6319 */
48c5ccae 6320static void calc_global_load_remove(struct rq *rq)
1da177e4 6321{
48c5ccae
PZ
6322 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6323 rq->calc_load_active = 0;
1da177e4
LT
6324}
6325
8cb120d3
PT
6326#ifdef CONFIG_CFS_BANDWIDTH
6327static void unthrottle_offline_cfs_rqs(struct rq *rq)
6328{
6329 struct cfs_rq *cfs_rq;
6330
6331 for_each_leaf_cfs_rq(rq, cfs_rq) {
6332 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6333
6334 if (!cfs_rq->runtime_enabled)
6335 continue;
6336
6337 /*
6338 * clock_task is not advancing so we just need to make sure
6339 * there's some valid quota amount
6340 */
6341 cfs_rq->runtime_remaining = cfs_b->quota;
6342 if (cfs_rq_throttled(cfs_rq))
6343 unthrottle_cfs_rq(cfs_rq);
6344 }
6345}
6346#else
6347static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6348#endif
6349
48f24c4d 6350/*
48c5ccae
PZ
6351 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6352 * try_to_wake_up()->select_task_rq().
6353 *
6354 * Called with rq->lock held even though we'er in stop_machine() and
6355 * there's no concurrency possible, we hold the required locks anyway
6356 * because of lock validation efforts.
1da177e4 6357 */
48c5ccae 6358static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6359{
70b97a7f 6360 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6361 struct task_struct *next, *stop = rq->stop;
6362 int dest_cpu;
1da177e4
LT
6363
6364 /*
48c5ccae
PZ
6365 * Fudge the rq selection such that the below task selection loop
6366 * doesn't get stuck on the currently eligible stop task.
6367 *
6368 * We're currently inside stop_machine() and the rq is either stuck
6369 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6370 * either way we should never end up calling schedule() until we're
6371 * done here.
1da177e4 6372 */
48c5ccae 6373 rq->stop = NULL;
48f24c4d 6374
8cb120d3
PT
6375 /* Ensure any throttled groups are reachable by pick_next_task */
6376 unthrottle_offline_cfs_rqs(rq);
6377
dd41f596 6378 for ( ; ; ) {
48c5ccae
PZ
6379 /*
6380 * There's this thread running, bail when that's the only
6381 * remaining thread.
6382 */
6383 if (rq->nr_running == 1)
dd41f596 6384 break;
48c5ccae 6385
b67802ea 6386 next = pick_next_task(rq);
48c5ccae 6387 BUG_ON(!next);
79c53799 6388 next->sched_class->put_prev_task(rq, next);
e692ab53 6389
48c5ccae
PZ
6390 /* Find suitable destination for @next, with force if needed. */
6391 dest_cpu = select_fallback_rq(dead_cpu, next);
6392 raw_spin_unlock(&rq->lock);
6393
6394 __migrate_task(next, dead_cpu, dest_cpu);
6395
6396 raw_spin_lock(&rq->lock);
1da177e4 6397 }
dce48a84 6398
48c5ccae 6399 rq->stop = stop;
dce48a84 6400}
48c5ccae 6401
1da177e4
LT
6402#endif /* CONFIG_HOTPLUG_CPU */
6403
e692ab53
NP
6404#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6405
6406static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6407 {
6408 .procname = "sched_domain",
c57baf1e 6409 .mode = 0555,
e0361851 6410 },
56992309 6411 {}
e692ab53
NP
6412};
6413
6414static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6415 {
6416 .procname = "kernel",
c57baf1e 6417 .mode = 0555,
e0361851
AD
6418 .child = sd_ctl_dir,
6419 },
56992309 6420 {}
e692ab53
NP
6421};
6422
6423static struct ctl_table *sd_alloc_ctl_entry(int n)
6424{
6425 struct ctl_table *entry =
5cf9f062 6426 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6427
e692ab53
NP
6428 return entry;
6429}
6430
6382bc90
MM
6431static void sd_free_ctl_entry(struct ctl_table **tablep)
6432{
cd790076 6433 struct ctl_table *entry;
6382bc90 6434
cd790076
MM
6435 /*
6436 * In the intermediate directories, both the child directory and
6437 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6438 * will always be set. In the lowest directory the names are
cd790076
MM
6439 * static strings and all have proc handlers.
6440 */
6441 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6442 if (entry->child)
6443 sd_free_ctl_entry(&entry->child);
cd790076
MM
6444 if (entry->proc_handler == NULL)
6445 kfree(entry->procname);
6446 }
6382bc90
MM
6447
6448 kfree(*tablep);
6449 *tablep = NULL;
6450}
6451
e692ab53 6452static void
e0361851 6453set_table_entry(struct ctl_table *entry,
e692ab53
NP
6454 const char *procname, void *data, int maxlen,
6455 mode_t mode, proc_handler *proc_handler)
6456{
e692ab53
NP
6457 entry->procname = procname;
6458 entry->data = data;
6459 entry->maxlen = maxlen;
6460 entry->mode = mode;
6461 entry->proc_handler = proc_handler;
6462}
6463
6464static struct ctl_table *
6465sd_alloc_ctl_domain_table(struct sched_domain *sd)
6466{
a5d8c348 6467 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6468
ad1cdc1d
MM
6469 if (table == NULL)
6470 return NULL;
6471
e0361851 6472 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6473 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6474 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6475 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6476 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6477 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6478 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6479 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6480 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6481 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6482 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6483 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6484 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6485 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6486 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6487 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6488 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6489 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6490 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6491 &sd->cache_nice_tries,
6492 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6493 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6494 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6495 set_table_entry(&table[11], "name", sd->name,
6496 CORENAME_MAX_SIZE, 0444, proc_dostring);
6497 /* &table[12] is terminator */
e692ab53
NP
6498
6499 return table;
6500}
6501
9a4e7159 6502static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6503{
6504 struct ctl_table *entry, *table;
6505 struct sched_domain *sd;
6506 int domain_num = 0, i;
6507 char buf[32];
6508
6509 for_each_domain(cpu, sd)
6510 domain_num++;
6511 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6512 if (table == NULL)
6513 return NULL;
e692ab53
NP
6514
6515 i = 0;
6516 for_each_domain(cpu, sd) {
6517 snprintf(buf, 32, "domain%d", i);
e692ab53 6518 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6519 entry->mode = 0555;
e692ab53
NP
6520 entry->child = sd_alloc_ctl_domain_table(sd);
6521 entry++;
6522 i++;
6523 }
6524 return table;
6525}
6526
6527static struct ctl_table_header *sd_sysctl_header;
6382bc90 6528static void register_sched_domain_sysctl(void)
e692ab53 6529{
6ad4c188 6530 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6531 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6532 char buf[32];
6533
7378547f
MM
6534 WARN_ON(sd_ctl_dir[0].child);
6535 sd_ctl_dir[0].child = entry;
6536
ad1cdc1d
MM
6537 if (entry == NULL)
6538 return;
6539
6ad4c188 6540 for_each_possible_cpu(i) {
e692ab53 6541 snprintf(buf, 32, "cpu%d", i);
e692ab53 6542 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6543 entry->mode = 0555;
e692ab53 6544 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6545 entry++;
e692ab53 6546 }
7378547f
MM
6547
6548 WARN_ON(sd_sysctl_header);
e692ab53
NP
6549 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6550}
6382bc90 6551
7378547f 6552/* may be called multiple times per register */
6382bc90
MM
6553static void unregister_sched_domain_sysctl(void)
6554{
7378547f
MM
6555 if (sd_sysctl_header)
6556 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6557 sd_sysctl_header = NULL;
7378547f
MM
6558 if (sd_ctl_dir[0].child)
6559 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6560}
e692ab53 6561#else
6382bc90
MM
6562static void register_sched_domain_sysctl(void)
6563{
6564}
6565static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6566{
6567}
6568#endif
6569
1f11eb6a
GH
6570static void set_rq_online(struct rq *rq)
6571{
6572 if (!rq->online) {
6573 const struct sched_class *class;
6574
c6c4927b 6575 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6576 rq->online = 1;
6577
6578 for_each_class(class) {
6579 if (class->rq_online)
6580 class->rq_online(rq);
6581 }
6582 }
6583}
6584
6585static void set_rq_offline(struct rq *rq)
6586{
6587 if (rq->online) {
6588 const struct sched_class *class;
6589
6590 for_each_class(class) {
6591 if (class->rq_offline)
6592 class->rq_offline(rq);
6593 }
6594
c6c4927b 6595 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6596 rq->online = 0;
6597 }
6598}
6599
1da177e4
LT
6600/*
6601 * migration_call - callback that gets triggered when a CPU is added.
6602 * Here we can start up the necessary migration thread for the new CPU.
6603 */
48f24c4d
IM
6604static int __cpuinit
6605migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6606{
48f24c4d 6607 int cpu = (long)hcpu;
1da177e4 6608 unsigned long flags;
969c7921 6609 struct rq *rq = cpu_rq(cpu);
1da177e4 6610
48c5ccae 6611 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6612
1da177e4 6613 case CPU_UP_PREPARE:
a468d389 6614 rq->calc_load_update = calc_load_update;
1da177e4 6615 break;
48f24c4d 6616
1da177e4 6617 case CPU_ONLINE:
1f94ef59 6618 /* Update our root-domain */
05fa785c 6619 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6620 if (rq->rd) {
c6c4927b 6621 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6622
6623 set_rq_online(rq);
1f94ef59 6624 }
05fa785c 6625 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6626 break;
48f24c4d 6627
1da177e4 6628#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6629 case CPU_DYING:
317f3941 6630 sched_ttwu_pending();
57d885fe 6631 /* Update our root-domain */
05fa785c 6632 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6633 if (rq->rd) {
c6c4927b 6634 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6635 set_rq_offline(rq);
57d885fe 6636 }
48c5ccae
PZ
6637 migrate_tasks(cpu);
6638 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6639 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6640
6641 migrate_nr_uninterruptible(rq);
6642 calc_global_load_remove(rq);
57d885fe 6643 break;
1da177e4
LT
6644#endif
6645 }
49c022e6
PZ
6646
6647 update_max_interval();
6648
1da177e4
LT
6649 return NOTIFY_OK;
6650}
6651
f38b0820
PM
6652/*
6653 * Register at high priority so that task migration (migrate_all_tasks)
6654 * happens before everything else. This has to be lower priority than
cdd6c482 6655 * the notifier in the perf_event subsystem, though.
1da177e4 6656 */
26c2143b 6657static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6658 .notifier_call = migration_call,
50a323b7 6659 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6660};
6661
3a101d05
TH
6662static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6663 unsigned long action, void *hcpu)
6664{
6665 switch (action & ~CPU_TASKS_FROZEN) {
6666 case CPU_ONLINE:
6667 case CPU_DOWN_FAILED:
6668 set_cpu_active((long)hcpu, true);
6669 return NOTIFY_OK;
6670 default:
6671 return NOTIFY_DONE;
6672 }
6673}
6674
6675static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6676 unsigned long action, void *hcpu)
6677{
6678 switch (action & ~CPU_TASKS_FROZEN) {
6679 case CPU_DOWN_PREPARE:
6680 set_cpu_active((long)hcpu, false);
6681 return NOTIFY_OK;
6682 default:
6683 return NOTIFY_DONE;
6684 }
6685}
6686
7babe8db 6687static int __init migration_init(void)
1da177e4
LT
6688{
6689 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6690 int err;
48f24c4d 6691
3a101d05 6692 /* Initialize migration for the boot CPU */
07dccf33
AM
6693 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6694 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6695 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6696 register_cpu_notifier(&migration_notifier);
7babe8db 6697
3a101d05
TH
6698 /* Register cpu active notifiers */
6699 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6700 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6701
a004cd42 6702 return 0;
1da177e4 6703}
7babe8db 6704early_initcall(migration_init);
1da177e4
LT
6705#endif
6706
6707#ifdef CONFIG_SMP
476f3534 6708
4cb98839
PZ
6709static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6710
3e9830dc 6711#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6712
f6630114
MT
6713static __read_mostly int sched_domain_debug_enabled;
6714
6715static int __init sched_domain_debug_setup(char *str)
6716{
6717 sched_domain_debug_enabled = 1;
6718
6719 return 0;
6720}
6721early_param("sched_debug", sched_domain_debug_setup);
6722
7c16ec58 6723static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6724 struct cpumask *groupmask)
1da177e4 6725{
4dcf6aff 6726 struct sched_group *group = sd->groups;
434d53b0 6727 char str[256];
1da177e4 6728
968ea6d8 6729 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6730 cpumask_clear(groupmask);
4dcf6aff
IM
6731
6732 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6733
6734 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6735 printk("does not load-balance\n");
4dcf6aff 6736 if (sd->parent)
3df0fc5b
PZ
6737 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6738 " has parent");
4dcf6aff 6739 return -1;
41c7ce9a
NP
6740 }
6741
3df0fc5b 6742 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6743
758b2cdc 6744 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6745 printk(KERN_ERR "ERROR: domain->span does not contain "
6746 "CPU%d\n", cpu);
4dcf6aff 6747 }
758b2cdc 6748 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6749 printk(KERN_ERR "ERROR: domain->groups does not contain"
6750 " CPU%d\n", cpu);
4dcf6aff 6751 }
1da177e4 6752
4dcf6aff 6753 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6754 do {
4dcf6aff 6755 if (!group) {
3df0fc5b
PZ
6756 printk("\n");
6757 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6758 break;
6759 }
6760
9c3f75cb 6761 if (!group->sgp->power) {
3df0fc5b
PZ
6762 printk(KERN_CONT "\n");
6763 printk(KERN_ERR "ERROR: domain->cpu_power not "
6764 "set\n");
4dcf6aff
IM
6765 break;
6766 }
1da177e4 6767
758b2cdc 6768 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6769 printk(KERN_CONT "\n");
6770 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6771 break;
6772 }
1da177e4 6773
758b2cdc 6774 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6775 printk(KERN_CONT "\n");
6776 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6777 break;
6778 }
1da177e4 6779
758b2cdc 6780 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6781
968ea6d8 6782 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6783
3df0fc5b 6784 printk(KERN_CONT " %s", str);
9c3f75cb 6785 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6786 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6787 group->sgp->power);
381512cf 6788 }
1da177e4 6789
4dcf6aff
IM
6790 group = group->next;
6791 } while (group != sd->groups);
3df0fc5b 6792 printk(KERN_CONT "\n");
1da177e4 6793
758b2cdc 6794 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6795 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6796
758b2cdc
RR
6797 if (sd->parent &&
6798 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6799 printk(KERN_ERR "ERROR: parent span is not a superset "
6800 "of domain->span\n");
4dcf6aff
IM
6801 return 0;
6802}
1da177e4 6803
4dcf6aff
IM
6804static void sched_domain_debug(struct sched_domain *sd, int cpu)
6805{
6806 int level = 0;
1da177e4 6807
f6630114
MT
6808 if (!sched_domain_debug_enabled)
6809 return;
6810
4dcf6aff
IM
6811 if (!sd) {
6812 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6813 return;
6814 }
1da177e4 6815
4dcf6aff
IM
6816 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6817
6818 for (;;) {
4cb98839 6819 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6820 break;
1da177e4
LT
6821 level++;
6822 sd = sd->parent;
33859f7f 6823 if (!sd)
4dcf6aff
IM
6824 break;
6825 }
1da177e4 6826}
6d6bc0ad 6827#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6828# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6829#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6830
1a20ff27 6831static int sd_degenerate(struct sched_domain *sd)
245af2c7 6832{
758b2cdc 6833 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6834 return 1;
6835
6836 /* Following flags need at least 2 groups */
6837 if (sd->flags & (SD_LOAD_BALANCE |
6838 SD_BALANCE_NEWIDLE |
6839 SD_BALANCE_FORK |
89c4710e
SS
6840 SD_BALANCE_EXEC |
6841 SD_SHARE_CPUPOWER |
6842 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6843 if (sd->groups != sd->groups->next)
6844 return 0;
6845 }
6846
6847 /* Following flags don't use groups */
c88d5910 6848 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6849 return 0;
6850
6851 return 1;
6852}
6853
48f24c4d
IM
6854static int
6855sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6856{
6857 unsigned long cflags = sd->flags, pflags = parent->flags;
6858
6859 if (sd_degenerate(parent))
6860 return 1;
6861
758b2cdc 6862 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6863 return 0;
6864
245af2c7
SS
6865 /* Flags needing groups don't count if only 1 group in parent */
6866 if (parent->groups == parent->groups->next) {
6867 pflags &= ~(SD_LOAD_BALANCE |
6868 SD_BALANCE_NEWIDLE |
6869 SD_BALANCE_FORK |
89c4710e
SS
6870 SD_BALANCE_EXEC |
6871 SD_SHARE_CPUPOWER |
6872 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6873 if (nr_node_ids == 1)
6874 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6875 }
6876 if (~cflags & pflags)
6877 return 0;
6878
6879 return 1;
6880}
6881
dce840a0 6882static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6883{
dce840a0 6884 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6885
68e74568 6886 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6887 free_cpumask_var(rd->rto_mask);
6888 free_cpumask_var(rd->online);
6889 free_cpumask_var(rd->span);
6890 kfree(rd);
6891}
6892
57d885fe
GH
6893static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6894{
a0490fa3 6895 struct root_domain *old_rd = NULL;
57d885fe 6896 unsigned long flags;
57d885fe 6897
05fa785c 6898 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6899
6900 if (rq->rd) {
a0490fa3 6901 old_rd = rq->rd;
57d885fe 6902
c6c4927b 6903 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6904 set_rq_offline(rq);
57d885fe 6905
c6c4927b 6906 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6907
a0490fa3
IM
6908 /*
6909 * If we dont want to free the old_rt yet then
6910 * set old_rd to NULL to skip the freeing later
6911 * in this function:
6912 */
6913 if (!atomic_dec_and_test(&old_rd->refcount))
6914 old_rd = NULL;
57d885fe
GH
6915 }
6916
6917 atomic_inc(&rd->refcount);
6918 rq->rd = rd;
6919
c6c4927b 6920 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6921 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6922 set_rq_online(rq);
57d885fe 6923
05fa785c 6924 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6925
6926 if (old_rd)
dce840a0 6927 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6928}
6929
68c38fc3 6930static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6931{
6932 memset(rd, 0, sizeof(*rd));
6933
68c38fc3 6934 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6935 goto out;
68c38fc3 6936 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6937 goto free_span;
68c38fc3 6938 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6939 goto free_online;
6e0534f2 6940
68c38fc3 6941 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6942 goto free_rto_mask;
c6c4927b 6943 return 0;
6e0534f2 6944
68e74568
RR
6945free_rto_mask:
6946 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6947free_online:
6948 free_cpumask_var(rd->online);
6949free_span:
6950 free_cpumask_var(rd->span);
0c910d28 6951out:
c6c4927b 6952 return -ENOMEM;
57d885fe
GH
6953}
6954
6955static void init_defrootdomain(void)
6956{
68c38fc3 6957 init_rootdomain(&def_root_domain);
c6c4927b 6958
57d885fe
GH
6959 atomic_set(&def_root_domain.refcount, 1);
6960}
6961
dc938520 6962static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6963{
6964 struct root_domain *rd;
6965
6966 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6967 if (!rd)
6968 return NULL;
6969
68c38fc3 6970 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6971 kfree(rd);
6972 return NULL;
6973 }
57d885fe
GH
6974
6975 return rd;
6976}
6977
e3589f6c
PZ
6978static void free_sched_groups(struct sched_group *sg, int free_sgp)
6979{
6980 struct sched_group *tmp, *first;
6981
6982 if (!sg)
6983 return;
6984
6985 first = sg;
6986 do {
6987 tmp = sg->next;
6988
6989 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6990 kfree(sg->sgp);
6991
6992 kfree(sg);
6993 sg = tmp;
6994 } while (sg != first);
6995}
6996
dce840a0
PZ
6997static void free_sched_domain(struct rcu_head *rcu)
6998{
6999 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
7000
7001 /*
7002 * If its an overlapping domain it has private groups, iterate and
7003 * nuke them all.
7004 */
7005 if (sd->flags & SD_OVERLAP) {
7006 free_sched_groups(sd->groups, 1);
7007 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 7008 kfree(sd->groups->sgp);
dce840a0 7009 kfree(sd->groups);
9c3f75cb 7010 }
dce840a0
PZ
7011 kfree(sd);
7012}
7013
7014static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7015{
7016 call_rcu(&sd->rcu, free_sched_domain);
7017}
7018
7019static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7020{
7021 for (; sd; sd = sd->parent)
7022 destroy_sched_domain(sd, cpu);
7023}
7024
1da177e4 7025/*
0eab9146 7026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7027 * hold the hotplug lock.
7028 */
0eab9146
IM
7029static void
7030cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7031{
70b97a7f 7032 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7033 struct sched_domain *tmp;
7034
7035 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7036 for (tmp = sd; tmp; ) {
245af2c7
SS
7037 struct sched_domain *parent = tmp->parent;
7038 if (!parent)
7039 break;
f29c9b1c 7040
1a848870 7041 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7042 tmp->parent = parent->parent;
1a848870
SS
7043 if (parent->parent)
7044 parent->parent->child = tmp;
dce840a0 7045 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7046 } else
7047 tmp = tmp->parent;
245af2c7
SS
7048 }
7049
1a848870 7050 if (sd && sd_degenerate(sd)) {
dce840a0 7051 tmp = sd;
245af2c7 7052 sd = sd->parent;
dce840a0 7053 destroy_sched_domain(tmp, cpu);
1a848870
SS
7054 if (sd)
7055 sd->child = NULL;
7056 }
1da177e4 7057
4cb98839 7058 sched_domain_debug(sd, cpu);
1da177e4 7059
57d885fe 7060 rq_attach_root(rq, rd);
dce840a0 7061 tmp = rq->sd;
674311d5 7062 rcu_assign_pointer(rq->sd, sd);
dce840a0 7063 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7064}
7065
7066/* cpus with isolated domains */
dcc30a35 7067static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7068
7069/* Setup the mask of cpus configured for isolated domains */
7070static int __init isolated_cpu_setup(char *str)
7071{
bdddd296 7072 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7073 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7074 return 1;
7075}
7076
8927f494 7077__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7078
9c1cfda2 7079#define SD_NODES_PER_DOMAIN 16
1da177e4 7080
9c1cfda2 7081#ifdef CONFIG_NUMA
198e2f18 7082
9c1cfda2
JH
7083/**
7084 * find_next_best_node - find the next node to include in a sched_domain
7085 * @node: node whose sched_domain we're building
7086 * @used_nodes: nodes already in the sched_domain
7087 *
41a2d6cf 7088 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7089 * finds the closest node not already in the @used_nodes map.
7090 *
7091 * Should use nodemask_t.
7092 */
c5f59f08 7093static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7094{
7142d17e 7095 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7096
7097 min_val = INT_MAX;
7098
076ac2af 7099 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7100 /* Start at @node */
076ac2af 7101 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7102
7103 if (!nr_cpus_node(n))
7104 continue;
7105
7106 /* Skip already used nodes */
c5f59f08 7107 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7108 continue;
7109
7110 /* Simple min distance search */
7111 val = node_distance(node, n);
7112
7113 if (val < min_val) {
7114 min_val = val;
7115 best_node = n;
7116 }
7117 }
7118
7142d17e
HD
7119 if (best_node != -1)
7120 node_set(best_node, *used_nodes);
9c1cfda2
JH
7121 return best_node;
7122}
7123
7124/**
7125 * sched_domain_node_span - get a cpumask for a node's sched_domain
7126 * @node: node whose cpumask we're constructing
73486722 7127 * @span: resulting cpumask
9c1cfda2 7128 *
41a2d6cf 7129 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7130 * should be one that prevents unnecessary balancing, but also spreads tasks
7131 * out optimally.
7132 */
96f874e2 7133static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7134{
c5f59f08 7135 nodemask_t used_nodes;
48f24c4d 7136 int i;
9c1cfda2 7137
6ca09dfc 7138 cpumask_clear(span);
c5f59f08 7139 nodes_clear(used_nodes);
9c1cfda2 7140
6ca09dfc 7141 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7142 node_set(node, used_nodes);
9c1cfda2
JH
7143
7144 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7145 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7146 if (next_node < 0)
7147 break;
6ca09dfc 7148 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7149 }
9c1cfda2 7150}
d3081f52
PZ
7151
7152static const struct cpumask *cpu_node_mask(int cpu)
7153{
7154 lockdep_assert_held(&sched_domains_mutex);
7155
7156 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7157
7158 return sched_domains_tmpmask;
7159}
2c402dc3
PZ
7160
7161static const struct cpumask *cpu_allnodes_mask(int cpu)
7162{
7163 return cpu_possible_mask;
7164}
6d6bc0ad 7165#endif /* CONFIG_NUMA */
9c1cfda2 7166
d3081f52
PZ
7167static const struct cpumask *cpu_cpu_mask(int cpu)
7168{
7169 return cpumask_of_node(cpu_to_node(cpu));
7170}
7171
5c45bf27 7172int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7173
dce840a0
PZ
7174struct sd_data {
7175 struct sched_domain **__percpu sd;
7176 struct sched_group **__percpu sg;
9c3f75cb 7177 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7178};
7179
49a02c51 7180struct s_data {
21d42ccf 7181 struct sched_domain ** __percpu sd;
49a02c51
AH
7182 struct root_domain *rd;
7183};
7184
2109b99e 7185enum s_alloc {
2109b99e 7186 sa_rootdomain,
21d42ccf 7187 sa_sd,
dce840a0 7188 sa_sd_storage,
2109b99e
AH
7189 sa_none,
7190};
7191
54ab4ff4
PZ
7192struct sched_domain_topology_level;
7193
7194typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7195typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7196
e3589f6c
PZ
7197#define SDTL_OVERLAP 0x01
7198
eb7a74e6 7199struct sched_domain_topology_level {
2c402dc3
PZ
7200 sched_domain_init_f init;
7201 sched_domain_mask_f mask;
e3589f6c 7202 int flags;
54ab4ff4 7203 struct sd_data data;
eb7a74e6
PZ
7204};
7205
e3589f6c
PZ
7206static int
7207build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7208{
7209 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7210 const struct cpumask *span = sched_domain_span(sd);
7211 struct cpumask *covered = sched_domains_tmpmask;
7212 struct sd_data *sdd = sd->private;
7213 struct sched_domain *child;
7214 int i;
7215
7216 cpumask_clear(covered);
7217
7218 for_each_cpu(i, span) {
7219 struct cpumask *sg_span;
7220
7221 if (cpumask_test_cpu(i, covered))
7222 continue;
7223
7224 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7225 GFP_KERNEL, cpu_to_node(i));
7226
7227 if (!sg)
7228 goto fail;
7229
7230 sg_span = sched_group_cpus(sg);
7231
7232 child = *per_cpu_ptr(sdd->sd, i);
7233 if (child->child) {
7234 child = child->child;
7235 cpumask_copy(sg_span, sched_domain_span(child));
7236 } else
7237 cpumask_set_cpu(i, sg_span);
7238
7239 cpumask_or(covered, covered, sg_span);
7240
7241 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7242 atomic_inc(&sg->sgp->ref);
7243
7244 if (cpumask_test_cpu(cpu, sg_span))
7245 groups = sg;
7246
7247 if (!first)
7248 first = sg;
7249 if (last)
7250 last->next = sg;
7251 last = sg;
7252 last->next = first;
7253 }
7254 sd->groups = groups;
7255
7256 return 0;
7257
7258fail:
7259 free_sched_groups(first, 0);
7260
7261 return -ENOMEM;
7262}
7263
dce840a0 7264static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7265{
dce840a0
PZ
7266 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7267 struct sched_domain *child = sd->child;
1da177e4 7268
dce840a0
PZ
7269 if (child)
7270 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7271
9c3f75cb 7272 if (sg) {
dce840a0 7273 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7274 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7275 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7276 }
dce840a0
PZ
7277
7278 return cpu;
1e9f28fa 7279}
1e9f28fa 7280
01a08546 7281/*
dce840a0
PZ
7282 * build_sched_groups will build a circular linked list of the groups
7283 * covered by the given span, and will set each group's ->cpumask correctly,
7284 * and ->cpu_power to 0.
e3589f6c
PZ
7285 *
7286 * Assumes the sched_domain tree is fully constructed
01a08546 7287 */
e3589f6c
PZ
7288static int
7289build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7290{
dce840a0
PZ
7291 struct sched_group *first = NULL, *last = NULL;
7292 struct sd_data *sdd = sd->private;
7293 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7294 struct cpumask *covered;
dce840a0 7295 int i;
9c1cfda2 7296
e3589f6c
PZ
7297 get_group(cpu, sdd, &sd->groups);
7298 atomic_inc(&sd->groups->ref);
7299
7300 if (cpu != cpumask_first(sched_domain_span(sd)))
7301 return 0;
7302
f96225fd
PZ
7303 lockdep_assert_held(&sched_domains_mutex);
7304 covered = sched_domains_tmpmask;
7305
dce840a0 7306 cpumask_clear(covered);
6711cab4 7307
dce840a0
PZ
7308 for_each_cpu(i, span) {
7309 struct sched_group *sg;
7310 int group = get_group(i, sdd, &sg);
7311 int j;
6711cab4 7312
dce840a0
PZ
7313 if (cpumask_test_cpu(i, covered))
7314 continue;
6711cab4 7315
dce840a0 7316 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7317 sg->sgp->power = 0;
0601a88d 7318
dce840a0
PZ
7319 for_each_cpu(j, span) {
7320 if (get_group(j, sdd, NULL) != group)
7321 continue;
0601a88d 7322
dce840a0
PZ
7323 cpumask_set_cpu(j, covered);
7324 cpumask_set_cpu(j, sched_group_cpus(sg));
7325 }
0601a88d 7326
dce840a0
PZ
7327 if (!first)
7328 first = sg;
7329 if (last)
7330 last->next = sg;
7331 last = sg;
7332 }
7333 last->next = first;
e3589f6c
PZ
7334
7335 return 0;
0601a88d 7336}
51888ca2 7337
89c4710e
SS
7338/*
7339 * Initialize sched groups cpu_power.
7340 *
7341 * cpu_power indicates the capacity of sched group, which is used while
7342 * distributing the load between different sched groups in a sched domain.
7343 * Typically cpu_power for all the groups in a sched domain will be same unless
7344 * there are asymmetries in the topology. If there are asymmetries, group
7345 * having more cpu_power will pickup more load compared to the group having
7346 * less cpu_power.
89c4710e
SS
7347 */
7348static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7349{
e3589f6c 7350 struct sched_group *sg = sd->groups;
89c4710e 7351
e3589f6c
PZ
7352 WARN_ON(!sd || !sg);
7353
7354 do {
7355 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7356 sg = sg->next;
7357 } while (sg != sd->groups);
89c4710e 7358
e3589f6c
PZ
7359 if (cpu != group_first_cpu(sg))
7360 return;
aae6d3dd 7361
d274cb30 7362 update_group_power(sd, cpu);
89c4710e
SS
7363}
7364
7c16ec58
MT
7365/*
7366 * Initializers for schedule domains
7367 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7368 */
7369
a5d8c348
IM
7370#ifdef CONFIG_SCHED_DEBUG
7371# define SD_INIT_NAME(sd, type) sd->name = #type
7372#else
7373# define SD_INIT_NAME(sd, type) do { } while (0)
7374#endif
7375
54ab4ff4
PZ
7376#define SD_INIT_FUNC(type) \
7377static noinline struct sched_domain * \
7378sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7379{ \
7380 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7381 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7382 SD_INIT_NAME(sd, type); \
7383 sd->private = &tl->data; \
7384 return sd; \
7c16ec58
MT
7385}
7386
7387SD_INIT_FUNC(CPU)
7388#ifdef CONFIG_NUMA
7389 SD_INIT_FUNC(ALLNODES)
7390 SD_INIT_FUNC(NODE)
7391#endif
7392#ifdef CONFIG_SCHED_SMT
7393 SD_INIT_FUNC(SIBLING)
7394#endif
7395#ifdef CONFIG_SCHED_MC
7396 SD_INIT_FUNC(MC)
7397#endif
01a08546
HC
7398#ifdef CONFIG_SCHED_BOOK
7399 SD_INIT_FUNC(BOOK)
7400#endif
7c16ec58 7401
1d3504fc 7402static int default_relax_domain_level = -1;
60495e77 7403int sched_domain_level_max;
1d3504fc
HS
7404
7405static int __init setup_relax_domain_level(char *str)
7406{
30e0e178
LZ
7407 unsigned long val;
7408
7409 val = simple_strtoul(str, NULL, 0);
60495e77 7410 if (val < sched_domain_level_max)
30e0e178
LZ
7411 default_relax_domain_level = val;
7412
1d3504fc
HS
7413 return 1;
7414}
7415__setup("relax_domain_level=", setup_relax_domain_level);
7416
7417static void set_domain_attribute(struct sched_domain *sd,
7418 struct sched_domain_attr *attr)
7419{
7420 int request;
7421
7422 if (!attr || attr->relax_domain_level < 0) {
7423 if (default_relax_domain_level < 0)
7424 return;
7425 else
7426 request = default_relax_domain_level;
7427 } else
7428 request = attr->relax_domain_level;
7429 if (request < sd->level) {
7430 /* turn off idle balance on this domain */
c88d5910 7431 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7432 } else {
7433 /* turn on idle balance on this domain */
c88d5910 7434 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7435 }
7436}
7437
54ab4ff4
PZ
7438static void __sdt_free(const struct cpumask *cpu_map);
7439static int __sdt_alloc(const struct cpumask *cpu_map);
7440
2109b99e
AH
7441static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7442 const struct cpumask *cpu_map)
7443{
7444 switch (what) {
2109b99e 7445 case sa_rootdomain:
822ff793
PZ
7446 if (!atomic_read(&d->rd->refcount))
7447 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7448 case sa_sd:
7449 free_percpu(d->sd); /* fall through */
dce840a0 7450 case sa_sd_storage:
54ab4ff4 7451 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7452 case sa_none:
7453 break;
7454 }
7455}
3404c8d9 7456
2109b99e
AH
7457static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7458 const struct cpumask *cpu_map)
7459{
dce840a0
PZ
7460 memset(d, 0, sizeof(*d));
7461
54ab4ff4
PZ
7462 if (__sdt_alloc(cpu_map))
7463 return sa_sd_storage;
dce840a0
PZ
7464 d->sd = alloc_percpu(struct sched_domain *);
7465 if (!d->sd)
7466 return sa_sd_storage;
2109b99e 7467 d->rd = alloc_rootdomain();
dce840a0 7468 if (!d->rd)
21d42ccf 7469 return sa_sd;
2109b99e
AH
7470 return sa_rootdomain;
7471}
57d885fe 7472
dce840a0
PZ
7473/*
7474 * NULL the sd_data elements we've used to build the sched_domain and
7475 * sched_group structure so that the subsequent __free_domain_allocs()
7476 * will not free the data we're using.
7477 */
7478static void claim_allocations(int cpu, struct sched_domain *sd)
7479{
7480 struct sd_data *sdd = sd->private;
dce840a0
PZ
7481
7482 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7483 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7484
e3589f6c 7485 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7486 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7487
7488 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7489 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7490}
7491
2c402dc3
PZ
7492#ifdef CONFIG_SCHED_SMT
7493static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7494{
2c402dc3 7495 return topology_thread_cpumask(cpu);
3bd65a80 7496}
2c402dc3 7497#endif
7f4588f3 7498
d069b916
PZ
7499/*
7500 * Topology list, bottom-up.
7501 */
2c402dc3 7502static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7503#ifdef CONFIG_SCHED_SMT
7504 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7505#endif
1e9f28fa 7506#ifdef CONFIG_SCHED_MC
2c402dc3 7507 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7508#endif
d069b916
PZ
7509#ifdef CONFIG_SCHED_BOOK
7510 { sd_init_BOOK, cpu_book_mask, },
7511#endif
7512 { sd_init_CPU, cpu_cpu_mask, },
7513#ifdef CONFIG_NUMA
e3589f6c 7514 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7515 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7516#endif
eb7a74e6
PZ
7517 { NULL, },
7518};
7519
7520static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7521
54ab4ff4
PZ
7522static int __sdt_alloc(const struct cpumask *cpu_map)
7523{
7524 struct sched_domain_topology_level *tl;
7525 int j;
7526
7527 for (tl = sched_domain_topology; tl->init; tl++) {
7528 struct sd_data *sdd = &tl->data;
7529
7530 sdd->sd = alloc_percpu(struct sched_domain *);
7531 if (!sdd->sd)
7532 return -ENOMEM;
7533
7534 sdd->sg = alloc_percpu(struct sched_group *);
7535 if (!sdd->sg)
7536 return -ENOMEM;
7537
9c3f75cb
PZ
7538 sdd->sgp = alloc_percpu(struct sched_group_power *);
7539 if (!sdd->sgp)
7540 return -ENOMEM;
7541
54ab4ff4
PZ
7542 for_each_cpu(j, cpu_map) {
7543 struct sched_domain *sd;
7544 struct sched_group *sg;
9c3f75cb 7545 struct sched_group_power *sgp;
54ab4ff4
PZ
7546
7547 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7548 GFP_KERNEL, cpu_to_node(j));
7549 if (!sd)
7550 return -ENOMEM;
7551
7552 *per_cpu_ptr(sdd->sd, j) = sd;
7553
7554 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7555 GFP_KERNEL, cpu_to_node(j));
7556 if (!sg)
7557 return -ENOMEM;
7558
7559 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7560
7561 sgp = kzalloc_node(sizeof(struct sched_group_power),
7562 GFP_KERNEL, cpu_to_node(j));
7563 if (!sgp)
7564 return -ENOMEM;
7565
7566 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7567 }
7568 }
7569
7570 return 0;
7571}
7572
7573static void __sdt_free(const struct cpumask *cpu_map)
7574{
7575 struct sched_domain_topology_level *tl;
7576 int j;
7577
7578 for (tl = sched_domain_topology; tl->init; tl++) {
7579 struct sd_data *sdd = &tl->data;
7580
7581 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7582 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7583 if (sd && (sd->flags & SD_OVERLAP))
7584 free_sched_groups(sd->groups, 0);
feff8fa0 7585 kfree(*per_cpu_ptr(sdd->sd, j));
54ab4ff4 7586 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7587 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7588 }
7589 free_percpu(sdd->sd);
7590 free_percpu(sdd->sg);
9c3f75cb 7591 free_percpu(sdd->sgp);
54ab4ff4
PZ
7592 }
7593}
7594
2c402dc3
PZ
7595struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7596 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7597 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7598 int cpu)
7599{
54ab4ff4 7600 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7601 if (!sd)
d069b916 7602 return child;
2c402dc3
PZ
7603
7604 set_domain_attribute(sd, attr);
7605 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7606 if (child) {
7607 sd->level = child->level + 1;
7608 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7609 child->parent = sd;
60495e77 7610 }
d069b916 7611 sd->child = child;
2c402dc3
PZ
7612
7613 return sd;
7614}
7615
2109b99e
AH
7616/*
7617 * Build sched domains for a given set of cpus and attach the sched domains
7618 * to the individual cpus
7619 */
dce840a0
PZ
7620static int build_sched_domains(const struct cpumask *cpu_map,
7621 struct sched_domain_attr *attr)
2109b99e
AH
7622{
7623 enum s_alloc alloc_state = sa_none;
dce840a0 7624 struct sched_domain *sd;
2109b99e 7625 struct s_data d;
822ff793 7626 int i, ret = -ENOMEM;
9c1cfda2 7627
2109b99e
AH
7628 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7629 if (alloc_state != sa_rootdomain)
7630 goto error;
9c1cfda2 7631
dce840a0 7632 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7633 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7634 struct sched_domain_topology_level *tl;
7635
3bd65a80 7636 sd = NULL;
e3589f6c 7637 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7638 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7639 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7640 sd->flags |= SD_OVERLAP;
d110235d
PZ
7641 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7642 break;
e3589f6c 7643 }
d274cb30 7644
d069b916
PZ
7645 while (sd->child)
7646 sd = sd->child;
7647
21d42ccf 7648 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7649 }
7650
7651 /* Build the groups for the domains */
7652 for_each_cpu(i, cpu_map) {
7653 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7654 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7655 if (sd->flags & SD_OVERLAP) {
7656 if (build_overlap_sched_groups(sd, i))
7657 goto error;
7658 } else {
7659 if (build_sched_groups(sd, i))
7660 goto error;
7661 }
1cf51902 7662 }
a06dadbe 7663 }
9c1cfda2 7664
1da177e4 7665 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7666 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7667 if (!cpumask_test_cpu(i, cpu_map))
7668 continue;
9c1cfda2 7669
dce840a0
PZ
7670 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7671 claim_allocations(i, sd);
cd4ea6ae 7672 init_sched_groups_power(i, sd);
dce840a0 7673 }
f712c0c7 7674 }
9c1cfda2 7675
1da177e4 7676 /* Attach the domains */
dce840a0 7677 rcu_read_lock();
abcd083a 7678 for_each_cpu(i, cpu_map) {
21d42ccf 7679 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7680 cpu_attach_domain(sd, d.rd, i);
1da177e4 7681 }
dce840a0 7682 rcu_read_unlock();
51888ca2 7683
822ff793 7684 ret = 0;
51888ca2 7685error:
2109b99e 7686 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7687 return ret;
1da177e4 7688}
029190c5 7689
acc3f5d7 7690static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7691static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7692static struct sched_domain_attr *dattr_cur;
7693 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7694
7695/*
7696 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7697 * cpumask) fails, then fallback to a single sched domain,
7698 * as determined by the single cpumask fallback_doms.
029190c5 7699 */
4212823f 7700static cpumask_var_t fallback_doms;
029190c5 7701
ee79d1bd
HC
7702/*
7703 * arch_update_cpu_topology lets virtualized architectures update the
7704 * cpu core maps. It is supposed to return 1 if the topology changed
7705 * or 0 if it stayed the same.
7706 */
7707int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7708{
ee79d1bd 7709 return 0;
22e52b07
HC
7710}
7711
acc3f5d7
RR
7712cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7713{
7714 int i;
7715 cpumask_var_t *doms;
7716
7717 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7718 if (!doms)
7719 return NULL;
7720 for (i = 0; i < ndoms; i++) {
7721 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7722 free_sched_domains(doms, i);
7723 return NULL;
7724 }
7725 }
7726 return doms;
7727}
7728
7729void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7730{
7731 unsigned int i;
7732 for (i = 0; i < ndoms; i++)
7733 free_cpumask_var(doms[i]);
7734 kfree(doms);
7735}
7736
1a20ff27 7737/*
41a2d6cf 7738 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7739 * For now this just excludes isolated cpus, but could be used to
7740 * exclude other special cases in the future.
1a20ff27 7741 */
c4a8849a 7742static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7743{
7378547f
MM
7744 int err;
7745
22e52b07 7746 arch_update_cpu_topology();
029190c5 7747 ndoms_cur = 1;
acc3f5d7 7748 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7749 if (!doms_cur)
acc3f5d7
RR
7750 doms_cur = &fallback_doms;
7751 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7752 dattr_cur = NULL;
dce840a0 7753 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7754 register_sched_domain_sysctl();
7378547f
MM
7755
7756 return err;
1a20ff27
DG
7757}
7758
1a20ff27
DG
7759/*
7760 * Detach sched domains from a group of cpus specified in cpu_map
7761 * These cpus will now be attached to the NULL domain
7762 */
96f874e2 7763static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7764{
7765 int i;
7766
dce840a0 7767 rcu_read_lock();
abcd083a 7768 for_each_cpu(i, cpu_map)
57d885fe 7769 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7770 rcu_read_unlock();
1a20ff27
DG
7771}
7772
1d3504fc
HS
7773/* handle null as "default" */
7774static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7775 struct sched_domain_attr *new, int idx_new)
7776{
7777 struct sched_domain_attr tmp;
7778
7779 /* fast path */
7780 if (!new && !cur)
7781 return 1;
7782
7783 tmp = SD_ATTR_INIT;
7784 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7785 new ? (new + idx_new) : &tmp,
7786 sizeof(struct sched_domain_attr));
7787}
7788
029190c5
PJ
7789/*
7790 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7791 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7792 * doms_new[] to the current sched domain partitioning, doms_cur[].
7793 * It destroys each deleted domain and builds each new domain.
7794 *
acc3f5d7 7795 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7796 * The masks don't intersect (don't overlap.) We should setup one
7797 * sched domain for each mask. CPUs not in any of the cpumasks will
7798 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7799 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7800 * it as it is.
7801 *
acc3f5d7
RR
7802 * The passed in 'doms_new' should be allocated using
7803 * alloc_sched_domains. This routine takes ownership of it and will
7804 * free_sched_domains it when done with it. If the caller failed the
7805 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7806 * and partition_sched_domains() will fallback to the single partition
7807 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7808 *
96f874e2 7809 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7810 * ndoms_new == 0 is a special case for destroying existing domains,
7811 * and it will not create the default domain.
dfb512ec 7812 *
029190c5
PJ
7813 * Call with hotplug lock held
7814 */
acc3f5d7 7815void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7816 struct sched_domain_attr *dattr_new)
029190c5 7817{
dfb512ec 7818 int i, j, n;
d65bd5ec 7819 int new_topology;
029190c5 7820
712555ee 7821 mutex_lock(&sched_domains_mutex);
a1835615 7822
7378547f
MM
7823 /* always unregister in case we don't destroy any domains */
7824 unregister_sched_domain_sysctl();
7825
d65bd5ec
HC
7826 /* Let architecture update cpu core mappings. */
7827 new_topology = arch_update_cpu_topology();
7828
dfb512ec 7829 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7830
7831 /* Destroy deleted domains */
7832 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7833 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7834 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7835 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7836 goto match1;
7837 }
7838 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7839 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7840match1:
7841 ;
7842 }
7843
e761b772
MK
7844 if (doms_new == NULL) {
7845 ndoms_cur = 0;
acc3f5d7 7846 doms_new = &fallback_doms;
6ad4c188 7847 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7848 WARN_ON_ONCE(dattr_new);
e761b772
MK
7849 }
7850
029190c5
PJ
7851 /* Build new domains */
7852 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7853 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7854 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7855 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7856 goto match2;
7857 }
7858 /* no match - add a new doms_new */
dce840a0 7859 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7860match2:
7861 ;
7862 }
7863
7864 /* Remember the new sched domains */
acc3f5d7
RR
7865 if (doms_cur != &fallback_doms)
7866 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7867 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7868 doms_cur = doms_new;
1d3504fc 7869 dattr_cur = dattr_new;
029190c5 7870 ndoms_cur = ndoms_new;
7378547f
MM
7871
7872 register_sched_domain_sysctl();
a1835615 7873
712555ee 7874 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7875}
7876
5c45bf27 7877#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7878static void reinit_sched_domains(void)
5c45bf27 7879{
95402b38 7880 get_online_cpus();
dfb512ec
MK
7881
7882 /* Destroy domains first to force the rebuild */
7883 partition_sched_domains(0, NULL, NULL);
7884
e761b772 7885 rebuild_sched_domains();
95402b38 7886 put_online_cpus();
5c45bf27
SS
7887}
7888
7889static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7890{
afb8a9b7 7891 unsigned int level = 0;
5c45bf27 7892
afb8a9b7
GS
7893 if (sscanf(buf, "%u", &level) != 1)
7894 return -EINVAL;
7895
7896 /*
7897 * level is always be positive so don't check for
7898 * level < POWERSAVINGS_BALANCE_NONE which is 0
7899 * What happens on 0 or 1 byte write,
7900 * need to check for count as well?
7901 */
7902
7903 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7904 return -EINVAL;
7905
7906 if (smt)
afb8a9b7 7907 sched_smt_power_savings = level;
5c45bf27 7908 else
afb8a9b7 7909 sched_mc_power_savings = level;
5c45bf27 7910
c4a8849a 7911 reinit_sched_domains();
5c45bf27 7912
c70f22d2 7913 return count;
5c45bf27
SS
7914}
7915
5c45bf27 7916#ifdef CONFIG_SCHED_MC
f718cd4a 7917static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7918 struct sysdev_class_attribute *attr,
f718cd4a 7919 char *page)
5c45bf27
SS
7920{
7921 return sprintf(page, "%u\n", sched_mc_power_savings);
7922}
f718cd4a 7923static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7924 struct sysdev_class_attribute *attr,
48f24c4d 7925 const char *buf, size_t count)
5c45bf27
SS
7926{
7927 return sched_power_savings_store(buf, count, 0);
7928}
f718cd4a
AK
7929static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7930 sched_mc_power_savings_show,
7931 sched_mc_power_savings_store);
5c45bf27
SS
7932#endif
7933
7934#ifdef CONFIG_SCHED_SMT
f718cd4a 7935static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7936 struct sysdev_class_attribute *attr,
f718cd4a 7937 char *page)
5c45bf27
SS
7938{
7939 return sprintf(page, "%u\n", sched_smt_power_savings);
7940}
f718cd4a 7941static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7942 struct sysdev_class_attribute *attr,
48f24c4d 7943 const char *buf, size_t count)
5c45bf27
SS
7944{
7945 return sched_power_savings_store(buf, count, 1);
7946}
f718cd4a
AK
7947static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7948 sched_smt_power_savings_show,
6707de00
AB
7949 sched_smt_power_savings_store);
7950#endif
7951
39aac648 7952int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7953{
7954 int err = 0;
7955
7956#ifdef CONFIG_SCHED_SMT
7957 if (smt_capable())
7958 err = sysfs_create_file(&cls->kset.kobj,
7959 &attr_sched_smt_power_savings.attr);
7960#endif
7961#ifdef CONFIG_SCHED_MC
7962 if (!err && mc_capable())
7963 err = sysfs_create_file(&cls->kset.kobj,
7964 &attr_sched_mc_power_savings.attr);
7965#endif
7966 return err;
7967}
6d6bc0ad 7968#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7969
1da177e4 7970/*
3a101d05
TH
7971 * Update cpusets according to cpu_active mask. If cpusets are
7972 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7973 * around partition_sched_domains().
1da177e4 7974 */
0b2e918a
TH
7975static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7976 void *hcpu)
e761b772 7977{
3a101d05 7978 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7979 case CPU_ONLINE:
6ad4c188 7980 case CPU_DOWN_FAILED:
3a101d05 7981 cpuset_update_active_cpus();
e761b772 7982 return NOTIFY_OK;
3a101d05
TH
7983 default:
7984 return NOTIFY_DONE;
7985 }
7986}
e761b772 7987
0b2e918a
TH
7988static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7989 void *hcpu)
3a101d05
TH
7990{
7991 switch (action & ~CPU_TASKS_FROZEN) {
7992 case CPU_DOWN_PREPARE:
7993 cpuset_update_active_cpus();
7994 return NOTIFY_OK;
e761b772
MK
7995 default:
7996 return NOTIFY_DONE;
7997 }
7998}
e761b772
MK
7999
8000static int update_runtime(struct notifier_block *nfb,
8001 unsigned long action, void *hcpu)
1da177e4 8002{
7def2be1
PZ
8003 int cpu = (int)(long)hcpu;
8004
1da177e4 8005 switch (action) {
1da177e4 8006 case CPU_DOWN_PREPARE:
8bb78442 8007 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8008 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8009 return NOTIFY_OK;
8010
1da177e4 8011 case CPU_DOWN_FAILED:
8bb78442 8012 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8013 case CPU_ONLINE:
8bb78442 8014 case CPU_ONLINE_FROZEN:
7def2be1 8015 enable_runtime(cpu_rq(cpu));
e761b772
MK
8016 return NOTIFY_OK;
8017
1da177e4
LT
8018 default:
8019 return NOTIFY_DONE;
8020 }
1da177e4 8021}
1da177e4
LT
8022
8023void __init sched_init_smp(void)
8024{
dcc30a35
RR
8025 cpumask_var_t non_isolated_cpus;
8026
8027 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 8028 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8029
95402b38 8030 get_online_cpus();
712555ee 8031 mutex_lock(&sched_domains_mutex);
c4a8849a 8032 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8033 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8034 if (cpumask_empty(non_isolated_cpus))
8035 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8036 mutex_unlock(&sched_domains_mutex);
95402b38 8037 put_online_cpus();
e761b772 8038
3a101d05
TH
8039 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8040 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8041
8042 /* RT runtime code needs to handle some hotplug events */
8043 hotcpu_notifier(update_runtime, 0);
8044
b328ca18 8045 init_hrtick();
5c1e1767
NP
8046
8047 /* Move init over to a non-isolated CPU */
dcc30a35 8048 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8049 BUG();
19978ca6 8050 sched_init_granularity();
dcc30a35 8051 free_cpumask_var(non_isolated_cpus);
4212823f 8052
0e3900e6 8053 init_sched_rt_class();
1da177e4
LT
8054}
8055#else
8056void __init sched_init_smp(void)
8057{
19978ca6 8058 sched_init_granularity();
1da177e4
LT
8059}
8060#endif /* CONFIG_SMP */
8061
cd1bb94b
AB
8062const_debug unsigned int sysctl_timer_migration = 1;
8063
1da177e4
LT
8064int in_sched_functions(unsigned long addr)
8065{
1da177e4
LT
8066 return in_lock_functions(addr) ||
8067 (addr >= (unsigned long)__sched_text_start
8068 && addr < (unsigned long)__sched_text_end);
8069}
8070
acb5a9ba 8071static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8072{
8073 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8074 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8075 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8076#ifndef CONFIG_64BIT
8077 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8078#endif
dd41f596
IM
8079}
8080
fa85ae24
PZ
8081static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8082{
8083 struct rt_prio_array *array;
8084 int i;
8085
8086 array = &rt_rq->active;
8087 for (i = 0; i < MAX_RT_PRIO; i++) {
8088 INIT_LIST_HEAD(array->queue + i);
8089 __clear_bit(i, array->bitmap);
8090 }
8091 /* delimiter for bitsearch: */
8092 __set_bit(MAX_RT_PRIO, array->bitmap);
8093
acb5a9ba 8094#if defined CONFIG_SMP
e864c499
GH
8095 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8096 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8097 rt_rq->rt_nr_migratory = 0;
fa85ae24 8098 rt_rq->overloaded = 0;
732375c6 8099 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8100#endif
8101
8102 rt_rq->rt_time = 0;
8103 rt_rq->rt_throttled = 0;
ac086bc2 8104 rt_rq->rt_runtime = 0;
0986b11b 8105 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8106}
8107
6f505b16 8108#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8109static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8110 struct sched_entity *se, int cpu,
ec7dc8ac 8111 struct sched_entity *parent)
6f505b16 8112{
ec7dc8ac 8113 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8114
6f505b16 8115 cfs_rq->tg = tg;
acb5a9ba
JS
8116 cfs_rq->rq = rq;
8117#ifdef CONFIG_SMP
8118 /* allow initial update_cfs_load() to truncate */
8119 cfs_rq->load_stamp = 1;
8120#endif
ab84d31e 8121 init_cfs_rq_runtime(cfs_rq);
6f505b16 8122
acb5a9ba 8123 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8124 tg->se[cpu] = se;
acb5a9ba 8125
07e06b01 8126 /* se could be NULL for root_task_group */
354d60c2
DG
8127 if (!se)
8128 return;
8129
ec7dc8ac
DG
8130 if (!parent)
8131 se->cfs_rq = &rq->cfs;
8132 else
8133 se->cfs_rq = parent->my_q;
8134
6f505b16 8135 se->my_q = cfs_rq;
9437178f 8136 update_load_set(&se->load, 0);
ec7dc8ac 8137 se->parent = parent;
6f505b16 8138}
052f1dc7 8139#endif
6f505b16 8140
052f1dc7 8141#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8142static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8143 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8144 struct sched_rt_entity *parent)
6f505b16 8145{
ec7dc8ac
DG
8146 struct rq *rq = cpu_rq(cpu);
8147
acb5a9ba
JS
8148 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8149 rt_rq->rt_nr_boosted = 0;
8150 rt_rq->rq = rq;
6f505b16 8151 rt_rq->tg = tg;
6f505b16 8152
acb5a9ba 8153 tg->rt_rq[cpu] = rt_rq;
6f505b16 8154 tg->rt_se[cpu] = rt_se;
acb5a9ba 8155
354d60c2
DG
8156 if (!rt_se)
8157 return;
8158
ec7dc8ac
DG
8159 if (!parent)
8160 rt_se->rt_rq = &rq->rt;
8161 else
8162 rt_se->rt_rq = parent->my_q;
8163
6f505b16 8164 rt_se->my_q = rt_rq;
ec7dc8ac 8165 rt_se->parent = parent;
6f505b16
PZ
8166 INIT_LIST_HEAD(&rt_se->run_list);
8167}
8168#endif
8169
1da177e4
LT
8170void __init sched_init(void)
8171{
dd41f596 8172 int i, j;
434d53b0
MT
8173 unsigned long alloc_size = 0, ptr;
8174
8175#ifdef CONFIG_FAIR_GROUP_SCHED
8176 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8177#endif
8178#ifdef CONFIG_RT_GROUP_SCHED
8179 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8180#endif
df7c8e84 8181#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8182 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8183#endif
434d53b0 8184 if (alloc_size) {
36b7b6d4 8185 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8186
8187#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8188 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8189 ptr += nr_cpu_ids * sizeof(void **);
8190
07e06b01 8191 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8192 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8193
6d6bc0ad 8194#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8195#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8196 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8197 ptr += nr_cpu_ids * sizeof(void **);
8198
07e06b01 8199 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8200 ptr += nr_cpu_ids * sizeof(void **);
8201
6d6bc0ad 8202#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8203#ifdef CONFIG_CPUMASK_OFFSTACK
8204 for_each_possible_cpu(i) {
8205 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8206 ptr += cpumask_size();
8207 }
8208#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8209 }
dd41f596 8210
57d885fe
GH
8211#ifdef CONFIG_SMP
8212 init_defrootdomain();
8213#endif
8214
d0b27fa7
PZ
8215 init_rt_bandwidth(&def_rt_bandwidth,
8216 global_rt_period(), global_rt_runtime());
8217
8218#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8219 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8220 global_rt_period(), global_rt_runtime());
6d6bc0ad 8221#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8222
7c941438 8223#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8224 list_add(&root_task_group.list, &task_groups);
8225 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8226 autogroup_init(&init_task);
7c941438 8227#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8228
0a945022 8229 for_each_possible_cpu(i) {
70b97a7f 8230 struct rq *rq;
1da177e4
LT
8231
8232 rq = cpu_rq(i);
05fa785c 8233 raw_spin_lock_init(&rq->lock);
7897986b 8234 rq->nr_running = 0;
dce48a84
TG
8235 rq->calc_load_active = 0;
8236 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8237 init_cfs_rq(&rq->cfs);
6f505b16 8238 init_rt_rq(&rq->rt, rq);
dd41f596 8239#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8240 root_task_group.shares = root_task_group_load;
6f505b16 8241 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8242 /*
07e06b01 8243 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8244 *
8245 * In case of task-groups formed thr' the cgroup filesystem, it
8246 * gets 100% of the cpu resources in the system. This overall
8247 * system cpu resource is divided among the tasks of
07e06b01 8248 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8249 * based on each entity's (task or task-group's) weight
8250 * (se->load.weight).
8251 *
07e06b01 8252 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8253 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8254 * then A0's share of the cpu resource is:
8255 *
0d905bca 8256 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8257 *
07e06b01
YZ
8258 * We achieve this by letting root_task_group's tasks sit
8259 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8260 */
ab84d31e 8261 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8262 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8263#endif /* CONFIG_FAIR_GROUP_SCHED */
8264
8265 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8266#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8267 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8268 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8269#endif
1da177e4 8270
dd41f596
IM
8271 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8272 rq->cpu_load[j] = 0;
fdf3e95d
VP
8273
8274 rq->last_load_update_tick = jiffies;
8275
1da177e4 8276#ifdef CONFIG_SMP
41c7ce9a 8277 rq->sd = NULL;
57d885fe 8278 rq->rd = NULL;
1399fa78 8279 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8280 rq->post_schedule = 0;
1da177e4 8281 rq->active_balance = 0;
dd41f596 8282 rq->next_balance = jiffies;
1da177e4 8283 rq->push_cpu = 0;
0a2966b4 8284 rq->cpu = i;
1f11eb6a 8285 rq->online = 0;
eae0c9df
MG
8286 rq->idle_stamp = 0;
8287 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8288 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8289#ifdef CONFIG_NO_HZ
8290 rq->nohz_balance_kick = 0;
8291 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8292#endif
1da177e4 8293#endif
8f4d37ec 8294 init_rq_hrtick(rq);
1da177e4 8295 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8296 }
8297
2dd73a4f 8298 set_load_weight(&init_task);
b50f60ce 8299
e107be36
AK
8300#ifdef CONFIG_PREEMPT_NOTIFIERS
8301 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8302#endif
8303
c9819f45 8304#ifdef CONFIG_SMP
962cf36c 8305 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8306#endif
8307
b50f60ce 8308#ifdef CONFIG_RT_MUTEXES
732375c6 8309 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8310#endif
8311
1da177e4
LT
8312 /*
8313 * The boot idle thread does lazy MMU switching as well:
8314 */
8315 atomic_inc(&init_mm.mm_count);
8316 enter_lazy_tlb(&init_mm, current);
8317
8318 /*
8319 * Make us the idle thread. Technically, schedule() should not be
8320 * called from this thread, however somewhere below it might be,
8321 * but because we are the idle thread, we just pick up running again
8322 * when this runqueue becomes "idle".
8323 */
8324 init_idle(current, smp_processor_id());
dce48a84
TG
8325
8326 calc_load_update = jiffies + LOAD_FREQ;
8327
dd41f596
IM
8328 /*
8329 * During early bootup we pretend to be a normal task:
8330 */
8331 current->sched_class = &fair_sched_class;
6892b75e 8332
6a7b3dc3 8333 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8334 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8335#ifdef CONFIG_SMP
4cb98839 8336 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8337#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8338 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8339 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8340 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8341 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8342 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8343#endif
bdddd296
RR
8344 /* May be allocated at isolcpus cmdline parse time */
8345 if (cpu_isolated_map == NULL)
8346 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8347#endif /* SMP */
6a7b3dc3 8348
6892b75e 8349 scheduler_running = 1;
1da177e4
LT
8350}
8351
d902db1e 8352#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8353static inline int preempt_count_equals(int preempt_offset)
8354{
234da7bc 8355 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8356
4ba8216c 8357 return (nested == preempt_offset);
e4aafea2
FW
8358}
8359
d894837f 8360void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8361{
1da177e4
LT
8362 static unsigned long prev_jiffy; /* ratelimiting */
8363
e4aafea2
FW
8364 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8365 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8366 return;
8367 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8368 return;
8369 prev_jiffy = jiffies;
8370
3df0fc5b
PZ
8371 printk(KERN_ERR
8372 "BUG: sleeping function called from invalid context at %s:%d\n",
8373 file, line);
8374 printk(KERN_ERR
8375 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8376 in_atomic(), irqs_disabled(),
8377 current->pid, current->comm);
aef745fc
IM
8378
8379 debug_show_held_locks(current);
8380 if (irqs_disabled())
8381 print_irqtrace_events(current);
8382 dump_stack();
1da177e4
LT
8383}
8384EXPORT_SYMBOL(__might_sleep);
8385#endif
8386
8387#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8388static void normalize_task(struct rq *rq, struct task_struct *p)
8389{
da7a735e
PZ
8390 const struct sched_class *prev_class = p->sched_class;
8391 int old_prio = p->prio;
3a5e4dc1 8392 int on_rq;
3e51f33f 8393
fd2f4419 8394 on_rq = p->on_rq;
3a5e4dc1
AK
8395 if (on_rq)
8396 deactivate_task(rq, p, 0);
8397 __setscheduler(rq, p, SCHED_NORMAL, 0);
8398 if (on_rq) {
8399 activate_task(rq, p, 0);
8400 resched_task(rq->curr);
8401 }
da7a735e
PZ
8402
8403 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8404}
8405
1da177e4
LT
8406void normalize_rt_tasks(void)
8407{
a0f98a1c 8408 struct task_struct *g, *p;
1da177e4 8409 unsigned long flags;
70b97a7f 8410 struct rq *rq;
1da177e4 8411
4cf5d77a 8412 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8413 do_each_thread(g, p) {
178be793
IM
8414 /*
8415 * Only normalize user tasks:
8416 */
8417 if (!p->mm)
8418 continue;
8419
6cfb0d5d 8420 p->se.exec_start = 0;
6cfb0d5d 8421#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8422 p->se.statistics.wait_start = 0;
8423 p->se.statistics.sleep_start = 0;
8424 p->se.statistics.block_start = 0;
6cfb0d5d 8425#endif
dd41f596
IM
8426
8427 if (!rt_task(p)) {
8428 /*
8429 * Renice negative nice level userspace
8430 * tasks back to 0:
8431 */
8432 if (TASK_NICE(p) < 0 && p->mm)
8433 set_user_nice(p, 0);
1da177e4 8434 continue;
dd41f596 8435 }
1da177e4 8436
1d615482 8437 raw_spin_lock(&p->pi_lock);
b29739f9 8438 rq = __task_rq_lock(p);
1da177e4 8439
178be793 8440 normalize_task(rq, p);
3a5e4dc1 8441
b29739f9 8442 __task_rq_unlock(rq);
1d615482 8443 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8444 } while_each_thread(g, p);
8445
4cf5d77a 8446 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8447}
8448
8449#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8450
67fc4e0c 8451#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8452/*
67fc4e0c 8453 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8454 *
8455 * They can only be called when the whole system has been
8456 * stopped - every CPU needs to be quiescent, and no scheduling
8457 * activity can take place. Using them for anything else would
8458 * be a serious bug, and as a result, they aren't even visible
8459 * under any other configuration.
8460 */
8461
8462/**
8463 * curr_task - return the current task for a given cpu.
8464 * @cpu: the processor in question.
8465 *
8466 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8467 */
36c8b586 8468struct task_struct *curr_task(int cpu)
1df5c10a
LT
8469{
8470 return cpu_curr(cpu);
8471}
8472
67fc4e0c
JW
8473#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8474
8475#ifdef CONFIG_IA64
1df5c10a
LT
8476/**
8477 * set_curr_task - set the current task for a given cpu.
8478 * @cpu: the processor in question.
8479 * @p: the task pointer to set.
8480 *
8481 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8482 * are serviced on a separate stack. It allows the architecture to switch the
8483 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8484 * must be called with all CPU's synchronized, and interrupts disabled, the
8485 * and caller must save the original value of the current task (see
8486 * curr_task() above) and restore that value before reenabling interrupts and
8487 * re-starting the system.
8488 *
8489 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8490 */
36c8b586 8491void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8492{
8493 cpu_curr(cpu) = p;
8494}
8495
8496#endif
29f59db3 8497
bccbe08a
PZ
8498#ifdef CONFIG_FAIR_GROUP_SCHED
8499static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8500{
8501 int i;
8502
ab84d31e
PT
8503 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8504
6f505b16
PZ
8505 for_each_possible_cpu(i) {
8506 if (tg->cfs_rq)
8507 kfree(tg->cfs_rq[i]);
8508 if (tg->se)
8509 kfree(tg->se[i]);
6f505b16
PZ
8510 }
8511
8512 kfree(tg->cfs_rq);
8513 kfree(tg->se);
6f505b16
PZ
8514}
8515
ec7dc8ac
DG
8516static
8517int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8518{
29f59db3 8519 struct cfs_rq *cfs_rq;
eab17229 8520 struct sched_entity *se;
29f59db3
SV
8521 int i;
8522
434d53b0 8523 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8524 if (!tg->cfs_rq)
8525 goto err;
434d53b0 8526 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8527 if (!tg->se)
8528 goto err;
052f1dc7
PZ
8529
8530 tg->shares = NICE_0_LOAD;
29f59db3 8531
ab84d31e
PT
8532 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8533
29f59db3 8534 for_each_possible_cpu(i) {
eab17229
LZ
8535 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8536 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8537 if (!cfs_rq)
8538 goto err;
8539
eab17229
LZ
8540 se = kzalloc_node(sizeof(struct sched_entity),
8541 GFP_KERNEL, cpu_to_node(i));
29f59db3 8542 if (!se)
dfc12eb2 8543 goto err_free_rq;
29f59db3 8544
acb5a9ba 8545 init_cfs_rq(cfs_rq);
3d4b47b4 8546 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8547 }
8548
8549 return 1;
8550
49246274 8551err_free_rq:
dfc12eb2 8552 kfree(cfs_rq);
49246274 8553err:
bccbe08a
PZ
8554 return 0;
8555}
8556
bccbe08a
PZ
8557static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8558{
3d4b47b4
PZ
8559 struct rq *rq = cpu_rq(cpu);
8560 unsigned long flags;
3d4b47b4
PZ
8561
8562 /*
8563 * Only empty task groups can be destroyed; so we can speculatively
8564 * check on_list without danger of it being re-added.
8565 */
8566 if (!tg->cfs_rq[cpu]->on_list)
8567 return;
8568
8569 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8570 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8571 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8572}
5f817d67 8573#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8574static inline void free_fair_sched_group(struct task_group *tg)
8575{
8576}
8577
ec7dc8ac
DG
8578static inline
8579int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8580{
8581 return 1;
8582}
8583
bccbe08a
PZ
8584static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8585{
8586}
6d6bc0ad 8587#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8588
8589#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8590static void free_rt_sched_group(struct task_group *tg)
8591{
8592 int i;
8593
99bc5242
BL
8594 if (tg->rt_se)
8595 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8596
bccbe08a
PZ
8597 for_each_possible_cpu(i) {
8598 if (tg->rt_rq)
8599 kfree(tg->rt_rq[i]);
8600 if (tg->rt_se)
8601 kfree(tg->rt_se[i]);
8602 }
8603
8604 kfree(tg->rt_rq);
8605 kfree(tg->rt_se);
8606}
8607
ec7dc8ac
DG
8608static
8609int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8610{
8611 struct rt_rq *rt_rq;
eab17229 8612 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8613 int i;
8614
434d53b0 8615 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8616 if (!tg->rt_rq)
8617 goto err;
434d53b0 8618 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8619 if (!tg->rt_se)
8620 goto err;
8621
d0b27fa7
PZ
8622 init_rt_bandwidth(&tg->rt_bandwidth,
8623 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8624
8625 for_each_possible_cpu(i) {
eab17229
LZ
8626 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8627 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8628 if (!rt_rq)
8629 goto err;
29f59db3 8630
eab17229
LZ
8631 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8632 GFP_KERNEL, cpu_to_node(i));
6f505b16 8633 if (!rt_se)
dfc12eb2 8634 goto err_free_rq;
29f59db3 8635
acb5a9ba
JS
8636 init_rt_rq(rt_rq, cpu_rq(i));
8637 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8638 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8639 }
8640
bccbe08a
PZ
8641 return 1;
8642
49246274 8643err_free_rq:
dfc12eb2 8644 kfree(rt_rq);
49246274 8645err:
bccbe08a
PZ
8646 return 0;
8647}
6d6bc0ad 8648#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8649static inline void free_rt_sched_group(struct task_group *tg)
8650{
8651}
8652
ec7dc8ac
DG
8653static inline
8654int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8655{
8656 return 1;
8657}
6d6bc0ad 8658#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8659
7c941438 8660#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8661static void free_sched_group(struct task_group *tg)
8662{
8663 free_fair_sched_group(tg);
8664 free_rt_sched_group(tg);
e9aa1dd1 8665 autogroup_free(tg);
bccbe08a
PZ
8666 kfree(tg);
8667}
8668
8669/* allocate runqueue etc for a new task group */
ec7dc8ac 8670struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8671{
8672 struct task_group *tg;
8673 unsigned long flags;
bccbe08a
PZ
8674
8675 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8676 if (!tg)
8677 return ERR_PTR(-ENOMEM);
8678
ec7dc8ac 8679 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8680 goto err;
8681
ec7dc8ac 8682 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8683 goto err;
8684
8ed36996 8685 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8686 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8687
8688 WARN_ON(!parent); /* root should already exist */
8689
8690 tg->parent = parent;
f473aa5e 8691 INIT_LIST_HEAD(&tg->children);
09f2724a 8692 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8693 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8694
9b5b7751 8695 return tg;
29f59db3
SV
8696
8697err:
6f505b16 8698 free_sched_group(tg);
29f59db3
SV
8699 return ERR_PTR(-ENOMEM);
8700}
8701
9b5b7751 8702/* rcu callback to free various structures associated with a task group */
6f505b16 8703static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8704{
29f59db3 8705 /* now it should be safe to free those cfs_rqs */
6f505b16 8706 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8707}
8708
9b5b7751 8709/* Destroy runqueue etc associated with a task group */
4cf86d77 8710void sched_destroy_group(struct task_group *tg)
29f59db3 8711{
8ed36996 8712 unsigned long flags;
9b5b7751 8713 int i;
29f59db3 8714
3d4b47b4
PZ
8715 /* end participation in shares distribution */
8716 for_each_possible_cpu(i)
bccbe08a 8717 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8718
8719 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8720 list_del_rcu(&tg->list);
f473aa5e 8721 list_del_rcu(&tg->siblings);
8ed36996 8722 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8723
9b5b7751 8724 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8725 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8726}
8727
9b5b7751 8728/* change task's runqueue when it moves between groups.
3a252015
IM
8729 * The caller of this function should have put the task in its new group
8730 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8731 * reflect its new group.
9b5b7751
SV
8732 */
8733void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8734{
8735 int on_rq, running;
8736 unsigned long flags;
8737 struct rq *rq;
8738
8739 rq = task_rq_lock(tsk, &flags);
8740
051a1d1a 8741 running = task_current(rq, tsk);
fd2f4419 8742 on_rq = tsk->on_rq;
29f59db3 8743
0e1f3483 8744 if (on_rq)
29f59db3 8745 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8746 if (unlikely(running))
8747 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8748
810b3817 8749#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8750 if (tsk->sched_class->task_move_group)
8751 tsk->sched_class->task_move_group(tsk, on_rq);
8752 else
810b3817 8753#endif
b2b5ce02 8754 set_task_rq(tsk, task_cpu(tsk));
810b3817 8755
0e1f3483
HS
8756 if (unlikely(running))
8757 tsk->sched_class->set_curr_task(rq);
8758 if (on_rq)
371fd7e7 8759 enqueue_task(rq, tsk, 0);
29f59db3 8760
0122ec5b 8761 task_rq_unlock(rq, tsk, &flags);
29f59db3 8762}
7c941438 8763#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8764
052f1dc7 8765#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8766static DEFINE_MUTEX(shares_mutex);
8767
4cf86d77 8768int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8769{
8770 int i;
8ed36996 8771 unsigned long flags;
c61935fd 8772
ec7dc8ac
DG
8773 /*
8774 * We can't change the weight of the root cgroup.
8775 */
8776 if (!tg->se[0])
8777 return -EINVAL;
8778
cd62287e 8779 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8780
8ed36996 8781 mutex_lock(&shares_mutex);
9b5b7751 8782 if (tg->shares == shares)
5cb350ba 8783 goto done;
29f59db3 8784
9b5b7751 8785 tg->shares = shares;
c09595f6 8786 for_each_possible_cpu(i) {
9437178f
PT
8787 struct rq *rq = cpu_rq(i);
8788 struct sched_entity *se;
8789
8790 se = tg->se[i];
8791 /* Propagate contribution to hierarchy */
8792 raw_spin_lock_irqsave(&rq->lock, flags);
8793 for_each_sched_entity(se)
6d5ab293 8794 update_cfs_shares(group_cfs_rq(se));
9437178f 8795 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8796 }
29f59db3 8797
5cb350ba 8798done:
8ed36996 8799 mutex_unlock(&shares_mutex);
9b5b7751 8800 return 0;
29f59db3
SV
8801}
8802
5cb350ba
DG
8803unsigned long sched_group_shares(struct task_group *tg)
8804{
8805 return tg->shares;
8806}
052f1dc7 8807#endif
5cb350ba 8808
a790de99 8809#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8810static unsigned long to_ratio(u64 period, u64 runtime)
8811{
8812 if (runtime == RUNTIME_INF)
9a7e0b18 8813 return 1ULL << 20;
9f0c1e56 8814
9a7e0b18 8815 return div64_u64(runtime << 20, period);
9f0c1e56 8816}
a790de99
PT
8817#endif
8818
8819#ifdef CONFIG_RT_GROUP_SCHED
8820/*
8821 * Ensure that the real time constraints are schedulable.
8822 */
8823static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8824
9a7e0b18
PZ
8825/* Must be called with tasklist_lock held */
8826static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8827{
9a7e0b18 8828 struct task_struct *g, *p;
b40b2e8e 8829
9a7e0b18
PZ
8830 do_each_thread(g, p) {
8831 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8832 return 1;
8833 } while_each_thread(g, p);
b40b2e8e 8834
9a7e0b18
PZ
8835 return 0;
8836}
b40b2e8e 8837
9a7e0b18
PZ
8838struct rt_schedulable_data {
8839 struct task_group *tg;
8840 u64 rt_period;
8841 u64 rt_runtime;
8842};
b40b2e8e 8843
a790de99 8844static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8845{
8846 struct rt_schedulable_data *d = data;
8847 struct task_group *child;
8848 unsigned long total, sum = 0;
8849 u64 period, runtime;
b40b2e8e 8850
9a7e0b18
PZ
8851 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8852 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8853
9a7e0b18
PZ
8854 if (tg == d->tg) {
8855 period = d->rt_period;
8856 runtime = d->rt_runtime;
b40b2e8e 8857 }
b40b2e8e 8858
4653f803
PZ
8859 /*
8860 * Cannot have more runtime than the period.
8861 */
8862 if (runtime > period && runtime != RUNTIME_INF)
8863 return -EINVAL;
6f505b16 8864
4653f803
PZ
8865 /*
8866 * Ensure we don't starve existing RT tasks.
8867 */
9a7e0b18
PZ
8868 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8869 return -EBUSY;
6f505b16 8870
9a7e0b18 8871 total = to_ratio(period, runtime);
6f505b16 8872
4653f803
PZ
8873 /*
8874 * Nobody can have more than the global setting allows.
8875 */
8876 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8877 return -EINVAL;
6f505b16 8878
4653f803
PZ
8879 /*
8880 * The sum of our children's runtime should not exceed our own.
8881 */
9a7e0b18
PZ
8882 list_for_each_entry_rcu(child, &tg->children, siblings) {
8883 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8884 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8885
9a7e0b18
PZ
8886 if (child == d->tg) {
8887 period = d->rt_period;
8888 runtime = d->rt_runtime;
8889 }
6f505b16 8890
9a7e0b18 8891 sum += to_ratio(period, runtime);
9f0c1e56 8892 }
6f505b16 8893
9a7e0b18
PZ
8894 if (sum > total)
8895 return -EINVAL;
8896
8897 return 0;
6f505b16
PZ
8898}
8899
9a7e0b18 8900static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8901{
8277434e
PT
8902 int ret;
8903
9a7e0b18
PZ
8904 struct rt_schedulable_data data = {
8905 .tg = tg,
8906 .rt_period = period,
8907 .rt_runtime = runtime,
8908 };
8909
8277434e
PT
8910 rcu_read_lock();
8911 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8912 rcu_read_unlock();
8913
8914 return ret;
521f1a24
DG
8915}
8916
ab84d31e 8917static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8918 u64 rt_period, u64 rt_runtime)
6f505b16 8919{
ac086bc2 8920 int i, err = 0;
9f0c1e56 8921
9f0c1e56 8922 mutex_lock(&rt_constraints_mutex);
521f1a24 8923 read_lock(&tasklist_lock);
9a7e0b18
PZ
8924 err = __rt_schedulable(tg, rt_period, rt_runtime);
8925 if (err)
9f0c1e56 8926 goto unlock;
ac086bc2 8927
0986b11b 8928 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8929 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8930 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8931
8932 for_each_possible_cpu(i) {
8933 struct rt_rq *rt_rq = tg->rt_rq[i];
8934
0986b11b 8935 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8936 rt_rq->rt_runtime = rt_runtime;
0986b11b 8937 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8938 }
0986b11b 8939 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8940unlock:
521f1a24 8941 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8942 mutex_unlock(&rt_constraints_mutex);
8943
8944 return err;
6f505b16
PZ
8945}
8946
d0b27fa7
PZ
8947int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8948{
8949 u64 rt_runtime, rt_period;
8950
8951 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8952 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8953 if (rt_runtime_us < 0)
8954 rt_runtime = RUNTIME_INF;
8955
ab84d31e 8956 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8957}
8958
9f0c1e56
PZ
8959long sched_group_rt_runtime(struct task_group *tg)
8960{
8961 u64 rt_runtime_us;
8962
d0b27fa7 8963 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8964 return -1;
8965
d0b27fa7 8966 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8967 do_div(rt_runtime_us, NSEC_PER_USEC);
8968 return rt_runtime_us;
8969}
d0b27fa7
PZ
8970
8971int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8972{
8973 u64 rt_runtime, rt_period;
8974
8975 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8976 rt_runtime = tg->rt_bandwidth.rt_runtime;
8977
619b0488
R
8978 if (rt_period == 0)
8979 return -EINVAL;
8980
ab84d31e 8981 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8982}
8983
8984long sched_group_rt_period(struct task_group *tg)
8985{
8986 u64 rt_period_us;
8987
8988 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8989 do_div(rt_period_us, NSEC_PER_USEC);
8990 return rt_period_us;
8991}
8992
8993static int sched_rt_global_constraints(void)
8994{
4653f803 8995 u64 runtime, period;
d0b27fa7
PZ
8996 int ret = 0;
8997
ec5d4989
HS
8998 if (sysctl_sched_rt_period <= 0)
8999 return -EINVAL;
9000
4653f803
PZ
9001 runtime = global_rt_runtime();
9002 period = global_rt_period();
9003
9004 /*
9005 * Sanity check on the sysctl variables.
9006 */
9007 if (runtime > period && runtime != RUNTIME_INF)
9008 return -EINVAL;
10b612f4 9009
d0b27fa7 9010 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9011 read_lock(&tasklist_lock);
4653f803 9012 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9013 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9014 mutex_unlock(&rt_constraints_mutex);
9015
9016 return ret;
9017}
54e99124
DG
9018
9019int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9020{
9021 /* Don't accept realtime tasks when there is no way for them to run */
9022 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9023 return 0;
9024
9025 return 1;
9026}
9027
6d6bc0ad 9028#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9029static int sched_rt_global_constraints(void)
9030{
ac086bc2
PZ
9031 unsigned long flags;
9032 int i;
9033
ec5d4989
HS
9034 if (sysctl_sched_rt_period <= 0)
9035 return -EINVAL;
9036
60aa605d
PZ
9037 /*
9038 * There's always some RT tasks in the root group
9039 * -- migration, kstopmachine etc..
9040 */
9041 if (sysctl_sched_rt_runtime == 0)
9042 return -EBUSY;
9043
0986b11b 9044 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9045 for_each_possible_cpu(i) {
9046 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9047
0986b11b 9048 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9049 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9050 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9051 }
0986b11b 9052 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9053
d0b27fa7
PZ
9054 return 0;
9055}
6d6bc0ad 9056#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9057
9058int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9059 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9060 loff_t *ppos)
9061{
9062 int ret;
9063 int old_period, old_runtime;
9064 static DEFINE_MUTEX(mutex);
9065
9066 mutex_lock(&mutex);
9067 old_period = sysctl_sched_rt_period;
9068 old_runtime = sysctl_sched_rt_runtime;
9069
8d65af78 9070 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9071
9072 if (!ret && write) {
9073 ret = sched_rt_global_constraints();
9074 if (ret) {
9075 sysctl_sched_rt_period = old_period;
9076 sysctl_sched_rt_runtime = old_runtime;
9077 } else {
9078 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9079 def_rt_bandwidth.rt_period =
9080 ns_to_ktime(global_rt_period());
9081 }
9082 }
9083 mutex_unlock(&mutex);
9084
9085 return ret;
9086}
68318b8e 9087
052f1dc7 9088#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9089
9090/* return corresponding task_group object of a cgroup */
2b01dfe3 9091static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9092{
2b01dfe3
PM
9093 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9094 struct task_group, css);
68318b8e
SV
9095}
9096
9097static struct cgroup_subsys_state *
2b01dfe3 9098cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9099{
ec7dc8ac 9100 struct task_group *tg, *parent;
68318b8e 9101
2b01dfe3 9102 if (!cgrp->parent) {
68318b8e 9103 /* This is early initialization for the top cgroup */
07e06b01 9104 return &root_task_group.css;
68318b8e
SV
9105 }
9106
ec7dc8ac
DG
9107 parent = cgroup_tg(cgrp->parent);
9108 tg = sched_create_group(parent);
68318b8e
SV
9109 if (IS_ERR(tg))
9110 return ERR_PTR(-ENOMEM);
9111
68318b8e
SV
9112 return &tg->css;
9113}
9114
41a2d6cf
IM
9115static void
9116cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9117{
2b01dfe3 9118 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9119
9120 sched_destroy_group(tg);
9121}
9122
41a2d6cf 9123static int
be367d09 9124cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9125{
b68aa230 9126#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9127 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9128 return -EINVAL;
9129#else
68318b8e
SV
9130 /* We don't support RT-tasks being in separate groups */
9131 if (tsk->sched_class != &fair_sched_class)
9132 return -EINVAL;
b68aa230 9133#endif
be367d09
BB
9134 return 0;
9135}
68318b8e 9136
68318b8e 9137static void
f780bdb7 9138cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9139{
9140 sched_move_task(tsk);
9141}
9142
068c5cc5 9143static void
d41d5a01
PZ
9144cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9145 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9146{
9147 /*
9148 * cgroup_exit() is called in the copy_process() failure path.
9149 * Ignore this case since the task hasn't ran yet, this avoids
9150 * trying to poke a half freed task state from generic code.
9151 */
9152 if (!(task->flags & PF_EXITING))
9153 return;
9154
9155 sched_move_task(task);
9156}
9157
052f1dc7 9158#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9159static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9160 u64 shareval)
68318b8e 9161{
c8b28116 9162 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9163}
9164
f4c753b7 9165static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9166{
2b01dfe3 9167 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9168
c8b28116 9169 return (u64) scale_load_down(tg->shares);
68318b8e 9170}
ab84d31e
PT
9171
9172#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9173static DEFINE_MUTEX(cfs_constraints_mutex);
9174
ab84d31e
PT
9175const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9176const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9177
a790de99
PT
9178static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9179
ab84d31e
PT
9180static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9181{
58088ad0 9182 int i, ret = 0, runtime_enabled;
ab84d31e 9183 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9184
9185 if (tg == &root_task_group)
9186 return -EINVAL;
9187
9188 /*
9189 * Ensure we have at some amount of bandwidth every period. This is
9190 * to prevent reaching a state of large arrears when throttled via
9191 * entity_tick() resulting in prolonged exit starvation.
9192 */
9193 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9194 return -EINVAL;
9195
9196 /*
9197 * Likewise, bound things on the otherside by preventing insane quota
9198 * periods. This also allows us to normalize in computing quota
9199 * feasibility.
9200 */
9201 if (period > max_cfs_quota_period)
9202 return -EINVAL;
9203
a790de99
PT
9204 mutex_lock(&cfs_constraints_mutex);
9205 ret = __cfs_schedulable(tg, period, quota);
9206 if (ret)
9207 goto out_unlock;
9208
58088ad0 9209 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9210 raw_spin_lock_irq(&cfs_b->lock);
9211 cfs_b->period = ns_to_ktime(period);
9212 cfs_b->quota = quota;
58088ad0 9213
a9cf55b2 9214 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9215 /* restart the period timer (if active) to handle new period expiry */
9216 if (runtime_enabled && cfs_b->timer_active) {
9217 /* force a reprogram */
9218 cfs_b->timer_active = 0;
9219 __start_cfs_bandwidth(cfs_b);
9220 }
ab84d31e
PT
9221 raw_spin_unlock_irq(&cfs_b->lock);
9222
9223 for_each_possible_cpu(i) {
9224 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9225 struct rq *rq = rq_of(cfs_rq);
9226
9227 raw_spin_lock_irq(&rq->lock);
58088ad0 9228 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 9229 cfs_rq->runtime_remaining = 0;
671fd9da
PT
9230
9231 if (cfs_rq_throttled(cfs_rq))
9232 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
9233 raw_spin_unlock_irq(&rq->lock);
9234 }
a790de99
PT
9235out_unlock:
9236 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9237
a790de99 9238 return ret;
ab84d31e
PT
9239}
9240
9241int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9242{
9243 u64 quota, period;
9244
9245 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9246 if (cfs_quota_us < 0)
9247 quota = RUNTIME_INF;
9248 else
9249 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9250
9251 return tg_set_cfs_bandwidth(tg, period, quota);
9252}
9253
9254long tg_get_cfs_quota(struct task_group *tg)
9255{
9256 u64 quota_us;
9257
9258 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9259 return -1;
9260
9261 quota_us = tg_cfs_bandwidth(tg)->quota;
9262 do_div(quota_us, NSEC_PER_USEC);
9263
9264 return quota_us;
9265}
9266
9267int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9268{
9269 u64 quota, period;
9270
9271 period = (u64)cfs_period_us * NSEC_PER_USEC;
9272 quota = tg_cfs_bandwidth(tg)->quota;
9273
9274 if (period <= 0)
9275 return -EINVAL;
9276
9277 return tg_set_cfs_bandwidth(tg, period, quota);
9278}
9279
9280long tg_get_cfs_period(struct task_group *tg)
9281{
9282 u64 cfs_period_us;
9283
9284 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9285 do_div(cfs_period_us, NSEC_PER_USEC);
9286
9287 return cfs_period_us;
9288}
9289
9290static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9291{
9292 return tg_get_cfs_quota(cgroup_tg(cgrp));
9293}
9294
9295static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9296 s64 cfs_quota_us)
9297{
9298 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9299}
9300
9301static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9302{
9303 return tg_get_cfs_period(cgroup_tg(cgrp));
9304}
9305
9306static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9307 u64 cfs_period_us)
9308{
9309 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9310}
9311
a790de99
PT
9312struct cfs_schedulable_data {
9313 struct task_group *tg;
9314 u64 period, quota;
9315};
9316
9317/*
9318 * normalize group quota/period to be quota/max_period
9319 * note: units are usecs
9320 */
9321static u64 normalize_cfs_quota(struct task_group *tg,
9322 struct cfs_schedulable_data *d)
9323{
9324 u64 quota, period;
9325
9326 if (tg == d->tg) {
9327 period = d->period;
9328 quota = d->quota;
9329 } else {
9330 period = tg_get_cfs_period(tg);
9331 quota = tg_get_cfs_quota(tg);
9332 }
9333
9334 /* note: these should typically be equivalent */
9335 if (quota == RUNTIME_INF || quota == -1)
9336 return RUNTIME_INF;
9337
9338 return to_ratio(period, quota);
9339}
9340
9341static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9342{
9343 struct cfs_schedulable_data *d = data;
9344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9345 s64 quota = 0, parent_quota = -1;
9346
9347 if (!tg->parent) {
9348 quota = RUNTIME_INF;
9349 } else {
9350 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9351
9352 quota = normalize_cfs_quota(tg, d);
9353 parent_quota = parent_b->hierarchal_quota;
9354
9355 /*
9356 * ensure max(child_quota) <= parent_quota, inherit when no
9357 * limit is set
9358 */
9359 if (quota == RUNTIME_INF)
9360 quota = parent_quota;
9361 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9362 return -EINVAL;
9363 }
9364 cfs_b->hierarchal_quota = quota;
9365
9366 return 0;
9367}
9368
9369static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9370{
8277434e 9371 int ret;
a790de99
PT
9372 struct cfs_schedulable_data data = {
9373 .tg = tg,
9374 .period = period,
9375 .quota = quota,
9376 };
9377
9378 if (quota != RUNTIME_INF) {
9379 do_div(data.period, NSEC_PER_USEC);
9380 do_div(data.quota, NSEC_PER_USEC);
9381 }
9382
8277434e
PT
9383 rcu_read_lock();
9384 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9385 rcu_read_unlock();
9386
9387 return ret;
a790de99 9388}
e8da1b18
NR
9389
9390static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9391 struct cgroup_map_cb *cb)
9392{
9393 struct task_group *tg = cgroup_tg(cgrp);
9394 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9395
9396 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9397 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9398 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9399
9400 return 0;
9401}
ab84d31e 9402#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9403#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9404
052f1dc7 9405#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9406static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9407 s64 val)
6f505b16 9408{
06ecb27c 9409 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9410}
9411
06ecb27c 9412static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9413{
06ecb27c 9414 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9415}
d0b27fa7
PZ
9416
9417static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9418 u64 rt_period_us)
9419{
9420 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9421}
9422
9423static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9424{
9425 return sched_group_rt_period(cgroup_tg(cgrp));
9426}
6d6bc0ad 9427#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9428
fe5c7cc2 9429static struct cftype cpu_files[] = {
052f1dc7 9430#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9431 {
9432 .name = "shares",
f4c753b7
PM
9433 .read_u64 = cpu_shares_read_u64,
9434 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9435 },
052f1dc7 9436#endif
ab84d31e
PT
9437#ifdef CONFIG_CFS_BANDWIDTH
9438 {
9439 .name = "cfs_quota_us",
9440 .read_s64 = cpu_cfs_quota_read_s64,
9441 .write_s64 = cpu_cfs_quota_write_s64,
9442 },
9443 {
9444 .name = "cfs_period_us",
9445 .read_u64 = cpu_cfs_period_read_u64,
9446 .write_u64 = cpu_cfs_period_write_u64,
9447 },
e8da1b18
NR
9448 {
9449 .name = "stat",
9450 .read_map = cpu_stats_show,
9451 },
ab84d31e 9452#endif
052f1dc7 9453#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9454 {
9f0c1e56 9455 .name = "rt_runtime_us",
06ecb27c
PM
9456 .read_s64 = cpu_rt_runtime_read,
9457 .write_s64 = cpu_rt_runtime_write,
6f505b16 9458 },
d0b27fa7
PZ
9459 {
9460 .name = "rt_period_us",
f4c753b7
PM
9461 .read_u64 = cpu_rt_period_read_uint,
9462 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9463 },
052f1dc7 9464#endif
68318b8e
SV
9465};
9466
9467static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9468{
fe5c7cc2 9469 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9470}
9471
9472struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9473 .name = "cpu",
9474 .create = cpu_cgroup_create,
9475 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9476 .can_attach_task = cpu_cgroup_can_attach_task,
9477 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9478 .exit = cpu_cgroup_exit,
38605cae
IM
9479 .populate = cpu_cgroup_populate,
9480 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9481 .early_init = 1,
9482};
9483
052f1dc7 9484#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9485
9486#ifdef CONFIG_CGROUP_CPUACCT
9487
9488/*
9489 * CPU accounting code for task groups.
9490 *
9491 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9492 * (balbir@in.ibm.com).
9493 */
9494
934352f2 9495/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9496struct cpuacct {
9497 struct cgroup_subsys_state css;
9498 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9499 u64 __percpu *cpuusage;
ef12fefa 9500 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9501 struct cpuacct *parent;
d842de87
SV
9502};
9503
9504struct cgroup_subsys cpuacct_subsys;
9505
9506/* return cpu accounting group corresponding to this container */
32cd756a 9507static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9508{
32cd756a 9509 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9510 struct cpuacct, css);
9511}
9512
9513/* return cpu accounting group to which this task belongs */
9514static inline struct cpuacct *task_ca(struct task_struct *tsk)
9515{
9516 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9517 struct cpuacct, css);
9518}
9519
9520/* create a new cpu accounting group */
9521static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9522 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9523{
9524 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9525 int i;
d842de87
SV
9526
9527 if (!ca)
ef12fefa 9528 goto out;
d842de87
SV
9529
9530 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9531 if (!ca->cpuusage)
9532 goto out_free_ca;
9533
9534 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9535 if (percpu_counter_init(&ca->cpustat[i], 0))
9536 goto out_free_counters;
d842de87 9537
934352f2
BR
9538 if (cgrp->parent)
9539 ca->parent = cgroup_ca(cgrp->parent);
9540
d842de87 9541 return &ca->css;
ef12fefa
BR
9542
9543out_free_counters:
9544 while (--i >= 0)
9545 percpu_counter_destroy(&ca->cpustat[i]);
9546 free_percpu(ca->cpuusage);
9547out_free_ca:
9548 kfree(ca);
9549out:
9550 return ERR_PTR(-ENOMEM);
d842de87
SV
9551}
9552
9553/* destroy an existing cpu accounting group */
41a2d6cf 9554static void
32cd756a 9555cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9556{
32cd756a 9557 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9558 int i;
d842de87 9559
ef12fefa
BR
9560 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9561 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9562 free_percpu(ca->cpuusage);
9563 kfree(ca);
9564}
9565
720f5498
KC
9566static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9567{
b36128c8 9568 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9569 u64 data;
9570
9571#ifndef CONFIG_64BIT
9572 /*
9573 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9574 */
05fa785c 9575 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9576 data = *cpuusage;
05fa785c 9577 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9578#else
9579 data = *cpuusage;
9580#endif
9581
9582 return data;
9583}
9584
9585static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9586{
b36128c8 9587 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9588
9589#ifndef CONFIG_64BIT
9590 /*
9591 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9592 */
05fa785c 9593 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9594 *cpuusage = val;
05fa785c 9595 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9596#else
9597 *cpuusage = val;
9598#endif
9599}
9600
d842de87 9601/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9602static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9603{
32cd756a 9604 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9605 u64 totalcpuusage = 0;
9606 int i;
9607
720f5498
KC
9608 for_each_present_cpu(i)
9609 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9610
9611 return totalcpuusage;
9612}
9613
0297b803
DG
9614static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9615 u64 reset)
9616{
9617 struct cpuacct *ca = cgroup_ca(cgrp);
9618 int err = 0;
9619 int i;
9620
9621 if (reset) {
9622 err = -EINVAL;
9623 goto out;
9624 }
9625
720f5498
KC
9626 for_each_present_cpu(i)
9627 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9628
0297b803
DG
9629out:
9630 return err;
9631}
9632
e9515c3c
KC
9633static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9634 struct seq_file *m)
9635{
9636 struct cpuacct *ca = cgroup_ca(cgroup);
9637 u64 percpu;
9638 int i;
9639
9640 for_each_present_cpu(i) {
9641 percpu = cpuacct_cpuusage_read(ca, i);
9642 seq_printf(m, "%llu ", (unsigned long long) percpu);
9643 }
9644 seq_printf(m, "\n");
9645 return 0;
9646}
9647
ef12fefa
BR
9648static const char *cpuacct_stat_desc[] = {
9649 [CPUACCT_STAT_USER] = "user",
9650 [CPUACCT_STAT_SYSTEM] = "system",
9651};
9652
9653static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9654 struct cgroup_map_cb *cb)
9655{
9656 struct cpuacct *ca = cgroup_ca(cgrp);
9657 int i;
9658
9659 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9660 s64 val = percpu_counter_read(&ca->cpustat[i]);
9661 val = cputime64_to_clock_t(val);
9662 cb->fill(cb, cpuacct_stat_desc[i], val);
9663 }
9664 return 0;
9665}
9666
d842de87
SV
9667static struct cftype files[] = {
9668 {
9669 .name = "usage",
f4c753b7
PM
9670 .read_u64 = cpuusage_read,
9671 .write_u64 = cpuusage_write,
d842de87 9672 },
e9515c3c
KC
9673 {
9674 .name = "usage_percpu",
9675 .read_seq_string = cpuacct_percpu_seq_read,
9676 },
ef12fefa
BR
9677 {
9678 .name = "stat",
9679 .read_map = cpuacct_stats_show,
9680 },
d842de87
SV
9681};
9682
32cd756a 9683static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9684{
32cd756a 9685 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9686}
9687
9688/*
9689 * charge this task's execution time to its accounting group.
9690 *
9691 * called with rq->lock held.
9692 */
9693static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9694{
9695 struct cpuacct *ca;
934352f2 9696 int cpu;
d842de87 9697
c40c6f85 9698 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9699 return;
9700
934352f2 9701 cpu = task_cpu(tsk);
a18b83b7
BR
9702
9703 rcu_read_lock();
9704
d842de87 9705 ca = task_ca(tsk);
d842de87 9706
934352f2 9707 for (; ca; ca = ca->parent) {
b36128c8 9708 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9709 *cpuusage += cputime;
9710 }
a18b83b7
BR
9711
9712 rcu_read_unlock();
d842de87
SV
9713}
9714
fa535a77
AB
9715/*
9716 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9717 * in cputime_t units. As a result, cpuacct_update_stats calls
9718 * percpu_counter_add with values large enough to always overflow the
9719 * per cpu batch limit causing bad SMP scalability.
9720 *
9721 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9722 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9723 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9724 */
9725#ifdef CONFIG_SMP
9726#define CPUACCT_BATCH \
9727 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9728#else
9729#define CPUACCT_BATCH 0
9730#endif
9731
ef12fefa
BR
9732/*
9733 * Charge the system/user time to the task's accounting group.
9734 */
9735static void cpuacct_update_stats(struct task_struct *tsk,
9736 enum cpuacct_stat_index idx, cputime_t val)
9737{
9738 struct cpuacct *ca;
fa535a77 9739 int batch = CPUACCT_BATCH;
ef12fefa
BR
9740
9741 if (unlikely(!cpuacct_subsys.active))
9742 return;
9743
9744 rcu_read_lock();
9745 ca = task_ca(tsk);
9746
9747 do {
fa535a77 9748 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9749 ca = ca->parent;
9750 } while (ca);
9751 rcu_read_unlock();
9752}
9753
d842de87
SV
9754struct cgroup_subsys cpuacct_subsys = {
9755 .name = "cpuacct",
9756 .create = cpuacct_create,
9757 .destroy = cpuacct_destroy,
9758 .populate = cpuacct_populate,
9759 .subsys_id = cpuacct_subsys_id,
9760};
9761#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.136876 seconds and 5 git commands to generate.