sched: Make sleeping inside spinlock detection working in !CONFIG_PREEMPT
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
63f01241 127 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee 233/*
c4a8849a 234 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
c8b28116 296#define MAX_SHARES (1UL << (18 + SCHED_LOAD_RESOLUTION))
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
3fe1698b
PZ
315#ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317#endif
6aa645ea
IM
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
4a55bd5e
PZ
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
ac53db59 329 struct sched_entity *curr, *next, *last, *skip;
ddc97297 330
4934a4d3 331#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 332 unsigned int nr_spread_over;
4934a4d3 333#endif
ddc97297 334
62160e3f 335#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
41a2d6cf
IM
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
3d4b47b4 346 int on_list;
41a2d6cf
IM
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
349
350#ifdef CONFIG_SMP
c09595f6 351 /*
c8cba857 352 * the part of load.weight contributed by tasks
c09595f6 353 */
c8cba857 354 unsigned long task_weight;
c09595f6 355
c8cba857
PZ
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
c09595f6 363
c8cba857 364 /*
3b3d190e
PT
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 370 */
2069dd75
PZ
371 u64 load_avg;
372 u64 load_period;
3b3d190e 373 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 374
2069dd75 375 unsigned long load_contribution;
c09595f6 376#endif
6aa645ea
IM
377#endif
378};
1da177e4 379
6aa645ea
IM
380/* Real-Time classes' related field in a runqueue: */
381struct rt_rq {
382 struct rt_prio_array active;
63489e45 383 unsigned long rt_nr_running;
052f1dc7 384#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
385 struct {
386 int curr; /* highest queued rt task prio */
398a153b 387#ifdef CONFIG_SMP
e864c499 388 int next; /* next highest */
398a153b 389#endif
e864c499 390 } highest_prio;
6f505b16 391#endif
fa85ae24 392#ifdef CONFIG_SMP
73fe6aae 393 unsigned long rt_nr_migratory;
a1ba4d8b 394 unsigned long rt_nr_total;
a22d7fc1 395 int overloaded;
917b627d 396 struct plist_head pushable_tasks;
fa85ae24 397#endif
6f505b16 398 int rt_throttled;
fa85ae24 399 u64 rt_time;
ac086bc2 400 u64 rt_runtime;
ea736ed5 401 /* Nests inside the rq lock: */
0986b11b 402 raw_spinlock_t rt_runtime_lock;
6f505b16 403
052f1dc7 404#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
405 unsigned long rt_nr_boosted;
406
6f505b16
PZ
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
6f505b16 410#endif
6aa645ea
IM
411};
412
57d885fe
GH
413#ifdef CONFIG_SMP
414
415/*
416 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
57d885fe
GH
422 */
423struct root_domain {
424 atomic_t refcount;
dce840a0 425 struct rcu_head rcu;
c6c4927b
RR
426 cpumask_var_t span;
427 cpumask_var_t online;
637f5085 428
0eab9146 429 /*
637f5085
GH
430 * The "RT overload" flag: it gets set if a CPU has more than
431 * one runnable RT task.
432 */
c6c4927b 433 cpumask_var_t rto_mask;
0eab9146 434 atomic_t rto_count;
6e0534f2 435 struct cpupri cpupri;
57d885fe
GH
436};
437
dc938520
GH
438/*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
57d885fe
GH
442static struct root_domain def_root_domain;
443
ed2d372c 444#endif /* CONFIG_SMP */
57d885fe 445
1da177e4
LT
446/*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
70b97a7f 453struct rq {
d8016491 454 /* runqueue lock: */
05fa785c 455 raw_spinlock_t lock;
1da177e4
LT
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
6aa645ea
IM
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 464 unsigned long last_load_update_tick;
46cb4b7c 465#ifdef CONFIG_NO_HZ
39c0cbe2 466 u64 nohz_stamp;
83cd4fe2 467 unsigned char nohz_balance_kick;
46cb4b7c 468#endif
61eadef6 469 int skip_clock_update;
a64692a3 470
d8016491
IM
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
6aa645ea
IM
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
6f505b16 477 struct rt_rq rt;
6f505b16 478
6aa645ea 479#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
482#endif
483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 484 struct list_head leaf_rt_rq_list;
1da177e4 485#endif
1da177e4
LT
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
34f971f6 495 struct task_struct *curr, *idle, *stop;
c9819f45 496 unsigned long next_balance;
1da177e4 497 struct mm_struct *prev_mm;
6aa645ea 498
3e51f33f 499 u64 clock;
305e6835 500 u64 clock_task;
6aa645ea 501
1da177e4
LT
502 atomic_t nr_iowait;
503
504#ifdef CONFIG_SMP
0eab9146 505 struct root_domain *rd;
1da177e4
LT
506 struct sched_domain *sd;
507
e51fd5e2
PZ
508 unsigned long cpu_power;
509
a0a522ce 510 unsigned char idle_at_tick;
1da177e4 511 /* For active balancing */
3f029d3c 512 int post_schedule;
1da177e4
LT
513 int active_balance;
514 int push_cpu;
969c7921 515 struct cpu_stop_work active_balance_work;
d8016491
IM
516 /* cpu of this runqueue: */
517 int cpu;
1f11eb6a 518 int online;
1da177e4 519
a8a51d5e 520 unsigned long avg_load_per_task;
1da177e4 521
e9e9250b
PZ
522 u64 rt_avg;
523 u64 age_stamp;
1b9508f6
MG
524 u64 idle_stamp;
525 u64 avg_idle;
1da177e4
LT
526#endif
527
aa483808
VP
528#ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530#endif
531
dce48a84
TG
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
8f4d37ec 536#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
537#ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540#endif
8f4d37ec
PZ
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
9c2c4802
KC
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
549
550 /* sys_sched_yield() stats */
480b9434 551 unsigned int yld_count;
1da177e4
LT
552
553 /* schedule() stats */
480b9434
KC
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
1da177e4
LT
557
558 /* try_to_wake_up() stats */
480b9434
KC
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
1da177e4 561#endif
317f3941
PZ
562
563#ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565#endif
1da177e4
LT
566};
567
f34e3b61 568static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 569
a64692a3 570
1e5a7405 571static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 572
0a2966b4
CL
573static inline int cpu_of(struct rq *rq)
574{
575#ifdef CONFIG_SMP
576 return rq->cpu;
577#else
578 return 0;
579#endif
580}
581
497f0ab3 582#define rcu_dereference_check_sched_domain(p) \
d11c563d 583 rcu_dereference_check((p), \
dce840a0 584 rcu_read_lock_held() || \
d11c563d
PM
585 lockdep_is_held(&sched_domains_mutex))
586
674311d5
NP
587/*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 589 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
48f24c4d 594#define for_each_domain(cpu, __sd) \
497f0ab3 595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
596
597#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598#define this_rq() (&__get_cpu_var(runqueues))
599#define task_rq(p) cpu_rq(task_cpu(p))
600#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 601#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 602
dc61b1d6
PZ
603#ifdef CONFIG_CGROUP_SCHED
604
605/*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification
0122ec5b 609 * with lockdep_is_held(&p->pi_lock) because cpu_cgroup_attach()
dc61b1d6
PZ
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
612 */
613static inline struct task_group *task_group(struct task_struct *p)
614{
5091faa4 615 struct task_group *tg;
dc61b1d6
PZ
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
0122ec5b 619 lockdep_is_held(&p->pi_lock));
5091faa4
MG
620 tg = container_of(css, struct task_group, css);
621
622 return autogroup_task_group(p, tg);
dc61b1d6
PZ
623}
624
625/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
626static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
627{
628#ifdef CONFIG_FAIR_GROUP_SCHED
629 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
630 p->se.parent = task_group(p)->se[cpu];
631#endif
632
633#ifdef CONFIG_RT_GROUP_SCHED
634 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
635 p->rt.parent = task_group(p)->rt_se[cpu];
636#endif
637}
638
639#else /* CONFIG_CGROUP_SCHED */
640
641static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
642static inline struct task_group *task_group(struct task_struct *p)
643{
644 return NULL;
645}
646
647#endif /* CONFIG_CGROUP_SCHED */
648
fe44d621 649static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 650
fe44d621 651static void update_rq_clock(struct rq *rq)
3e51f33f 652{
fe44d621 653 s64 delta;
305e6835 654
61eadef6 655 if (rq->skip_clock_update > 0)
f26f9aff 656 return;
aa483808 657
fe44d621
PZ
658 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
659 rq->clock += delta;
660 update_rq_clock_task(rq, delta);
3e51f33f
PZ
661}
662
bf5c91ba
IM
663/*
664 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
665 */
666#ifdef CONFIG_SCHED_DEBUG
667# define const_debug __read_mostly
668#else
669# define const_debug static const
670#endif
671
017730c1 672/**
1fd06bb1 673 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 674 * @cpu: the processor in question.
017730c1 675 *
017730c1
IM
676 * This interface allows printk to be called with the runqueue lock
677 * held and know whether or not it is OK to wake up the klogd.
678 */
89f19f04 679int runqueue_is_locked(int cpu)
017730c1 680{
05fa785c 681 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
682}
683
bf5c91ba
IM
684/*
685 * Debugging: various feature bits
686 */
f00b45c1
PZ
687
688#define SCHED_FEAT(name, enabled) \
689 __SCHED_FEAT_##name ,
690
bf5c91ba 691enum {
f00b45c1 692#include "sched_features.h"
bf5c91ba
IM
693};
694
f00b45c1
PZ
695#undef SCHED_FEAT
696
697#define SCHED_FEAT(name, enabled) \
698 (1UL << __SCHED_FEAT_##name) * enabled |
699
bf5c91ba 700const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
701#include "sched_features.h"
702 0;
703
704#undef SCHED_FEAT
705
706#ifdef CONFIG_SCHED_DEBUG
707#define SCHED_FEAT(name, enabled) \
708 #name ,
709
983ed7a6 710static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
711#include "sched_features.h"
712 NULL
713};
714
715#undef SCHED_FEAT
716
34f3a814 717static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 718{
f00b45c1
PZ
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
722 if (!(sysctl_sched_features & (1UL << i)))
723 seq_puts(m, "NO_");
724 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 725 }
34f3a814 726 seq_puts(m, "\n");
f00b45c1 727
34f3a814 728 return 0;
f00b45c1
PZ
729}
730
731static ssize_t
732sched_feat_write(struct file *filp, const char __user *ubuf,
733 size_t cnt, loff_t *ppos)
734{
735 char buf[64];
7740191c 736 char *cmp;
f00b45c1
PZ
737 int neg = 0;
738 int i;
739
740 if (cnt > 63)
741 cnt = 63;
742
743 if (copy_from_user(&buf, ubuf, cnt))
744 return -EFAULT;
745
746 buf[cnt] = 0;
7740191c 747 cmp = strstrip(buf);
f00b45c1 748
524429c3 749 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
750 neg = 1;
751 cmp += 3;
752 }
753
754 for (i = 0; sched_feat_names[i]; i++) {
7740191c 755 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
756 if (neg)
757 sysctl_sched_features &= ~(1UL << i);
758 else
759 sysctl_sched_features |= (1UL << i);
760 break;
761 }
762 }
763
764 if (!sched_feat_names[i])
765 return -EINVAL;
766
42994724 767 *ppos += cnt;
f00b45c1
PZ
768
769 return cnt;
770}
771
34f3a814
LZ
772static int sched_feat_open(struct inode *inode, struct file *filp)
773{
774 return single_open(filp, sched_feat_show, NULL);
775}
776
828c0950 777static const struct file_operations sched_feat_fops = {
34f3a814
LZ
778 .open = sched_feat_open,
779 .write = sched_feat_write,
780 .read = seq_read,
781 .llseek = seq_lseek,
782 .release = single_release,
f00b45c1
PZ
783};
784
785static __init int sched_init_debug(void)
786{
f00b45c1
PZ
787 debugfs_create_file("sched_features", 0644, NULL, NULL,
788 &sched_feat_fops);
789
790 return 0;
791}
792late_initcall(sched_init_debug);
793
794#endif
795
796#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 797
b82d9fdd
PZ
798/*
799 * Number of tasks to iterate in a single balance run.
800 * Limited because this is done with IRQs disabled.
801 */
802const_debug unsigned int sysctl_sched_nr_migrate = 32;
803
e9e9250b
PZ
804/*
805 * period over which we average the RT time consumption, measured
806 * in ms.
807 *
808 * default: 1s
809 */
810const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
811
fa85ae24 812/*
9f0c1e56 813 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
814 * default: 1s
815 */
9f0c1e56 816unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 817
6892b75e
IM
818static __read_mostly int scheduler_running;
819
9f0c1e56
PZ
820/*
821 * part of the period that we allow rt tasks to run in us.
822 * default: 0.95s
823 */
824int sysctl_sched_rt_runtime = 950000;
fa85ae24 825
d0b27fa7
PZ
826static inline u64 global_rt_period(void)
827{
828 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
829}
830
831static inline u64 global_rt_runtime(void)
832{
e26873bb 833 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
834 return RUNTIME_INF;
835
836 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
837}
fa85ae24 838
1da177e4 839#ifndef prepare_arch_switch
4866cde0
NP
840# define prepare_arch_switch(next) do { } while (0)
841#endif
842#ifndef finish_arch_switch
843# define finish_arch_switch(prev) do { } while (0)
844#endif
845
051a1d1a
DA
846static inline int task_current(struct rq *rq, struct task_struct *p)
847{
848 return rq->curr == p;
849}
850
70b97a7f 851static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 return p->on_cpu;
855#else
051a1d1a 856 return task_current(rq, p);
3ca7a440 857#endif
4866cde0
NP
858}
859
3ca7a440 860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 861static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 862{
3ca7a440
PZ
863#ifdef CONFIG_SMP
864 /*
865 * We can optimise this out completely for !SMP, because the
866 * SMP rebalancing from interrupt is the only thing that cares
867 * here.
868 */
869 next->on_cpu = 1;
870#endif
4866cde0
NP
871}
872
70b97a7f 873static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 874{
3ca7a440
PZ
875#ifdef CONFIG_SMP
876 /*
877 * After ->on_cpu is cleared, the task can be moved to a different CPU.
878 * We must ensure this doesn't happen until the switch is completely
879 * finished.
880 */
881 smp_wmb();
882 prev->on_cpu = 0;
883#endif
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
05fa785c 895 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * We can optimise this out completely for !SMP, because the
904 * SMP rebalancing from interrupt is the only thing that cares
905 * here.
906 */
3ca7a440 907 next->on_cpu = 1;
4866cde0
NP
908#endif
909#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 910 raw_spin_unlock_irq(&rq->lock);
4866cde0 911#else
05fa785c 912 raw_spin_unlock(&rq->lock);
4866cde0
NP
913#endif
914}
915
70b97a7f 916static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
917{
918#ifdef CONFIG_SMP
919 /*
3ca7a440 920 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
921 * We must ensure this doesn't happen until the switch is completely
922 * finished.
923 */
924 smp_wmb();
3ca7a440 925 prev->on_cpu = 0;
4866cde0
NP
926#endif
927#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
928 local_irq_enable();
1da177e4 929#endif
4866cde0
NP
930}
931#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 932
0970d299 933/*
0122ec5b 934 * __task_rq_lock - lock the rq @p resides on.
b29739f9 935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
0122ec5b
PZ
941 lockdep_assert_held(&p->pi_lock);
942
3a5c359a 943 for (;;) {
0970d299 944 rq = task_rq(p);
05fa785c 945 raw_spin_lock(&rq->lock);
65cc8e48 946 if (likely(rq == task_rq(p)))
3a5c359a 947 return rq;
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4 952/*
0122ec5b 953 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 956 __acquires(p->pi_lock)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a 961 for (;;) {
0122ec5b 962 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
65cc8e48 965 if (likely(rq == task_rq(p)))
3a5c359a 966 return rq;
0122ec5b
PZ
967 raw_spin_unlock(&rq->lock);
968 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
0122ec5b
PZ
978static inline void
979task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 980 __releases(rq->lock)
0122ec5b 981 __releases(p->pi_lock)
1da177e4 982{
0122ec5b
PZ
983 raw_spin_unlock(&rq->lock);
984 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
985}
986
1da177e4 987/*
cc2a73b5 988 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 989 */
a9957449 990static struct rq *this_rq_lock(void)
1da177e4
LT
991 __acquires(rq->lock)
992{
70b97a7f 993 struct rq *rq;
1da177e4
LT
994
995 local_irq_disable();
996 rq = this_rq();
05fa785c 997 raw_spin_lock(&rq->lock);
1da177e4
LT
998
999 return rq;
1000}
1001
8f4d37ec
PZ
1002#ifdef CONFIG_SCHED_HRTICK
1003/*
1004 * Use HR-timers to deliver accurate preemption points.
1005 *
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1009 *
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1012 */
8f4d37ec
PZ
1013
1014/*
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1018 */
1019static inline int hrtick_enabled(struct rq *rq)
1020{
1021 if (!sched_feat(HRTICK))
1022 return 0;
ba42059f 1023 if (!cpu_active(cpu_of(rq)))
b328ca18 1024 return 0;
8f4d37ec
PZ
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1026}
1027
8f4d37ec
PZ
1028static void hrtick_clear(struct rq *rq)
1029{
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1032}
1033
8f4d37ec
PZ
1034/*
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1037 */
1038static enum hrtimer_restart hrtick(struct hrtimer *timer)
1039{
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1041
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1043
05fa785c 1044 raw_spin_lock(&rq->lock);
3e51f33f 1045 update_rq_clock(rq);
8f4d37ec 1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1047 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1048
1049 return HRTIMER_NORESTART;
1050}
1051
95e904c7 1052#ifdef CONFIG_SMP
31656519
PZ
1053/*
1054 * called from hardirq (IPI) context
1055 */
1056static void __hrtick_start(void *arg)
b328ca18 1057{
31656519 1058 struct rq *rq = arg;
b328ca18 1059
05fa785c 1060 raw_spin_lock(&rq->lock);
31656519
PZ
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
05fa785c 1063 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1064}
1065
31656519
PZ
1066/*
1067 * Called to set the hrtick timer state.
1068 *
1069 * called with rq->lock held and irqs disabled
1070 */
1071static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1072{
31656519
PZ
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1075
cc584b21 1076 hrtimer_set_expires(timer, time);
31656519
PZ
1077
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
6e275637 1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1082 rq->hrtick_csd_pending = 1;
1083 }
b328ca18
PZ
1084}
1085
1086static int
1087hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1088{
1089 int cpu = (int)(long)hcpu;
1090
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
31656519 1098 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1099 return NOTIFY_OK;
1100 }
1101
1102 return NOTIFY_DONE;
1103}
1104
fa748203 1105static __init void init_hrtick(void)
b328ca18
PZ
1106{
1107 hotcpu_notifier(hotplug_hrtick, 0);
1108}
31656519
PZ
1109#else
1110/*
1111 * Called to set the hrtick timer state.
1112 *
1113 * called with rq->lock held and irqs disabled
1114 */
1115static void hrtick_start(struct rq *rq, u64 delay)
1116{
7f1e2ca9 1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1118 HRTIMER_MODE_REL_PINNED, 0);
31656519 1119}
b328ca18 1120
006c75f1 1121static inline void init_hrtick(void)
8f4d37ec 1122{
8f4d37ec 1123}
31656519 1124#endif /* CONFIG_SMP */
8f4d37ec 1125
31656519 1126static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1127{
31656519
PZ
1128#ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
8f4d37ec 1130
31656519
PZ
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134#endif
8f4d37ec 1135
31656519
PZ
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
8f4d37ec 1138}
006c75f1 1139#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1140static inline void hrtick_clear(struct rq *rq)
1141{
1142}
1143
8f4d37ec
PZ
1144static inline void init_rq_hrtick(struct rq *rq)
1145{
1146}
1147
b328ca18
PZ
1148static inline void init_hrtick(void)
1149{
1150}
006c75f1 1151#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1152
c24d20db
IM
1153/*
1154 * resched_task - mark a task 'to be rescheduled now'.
1155 *
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1159 */
1160#ifdef CONFIG_SMP
1161
1162#ifndef tsk_is_polling
1163#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164#endif
1165
31656519 1166static void resched_task(struct task_struct *p)
c24d20db
IM
1167{
1168 int cpu;
1169
05fa785c 1170 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1171
5ed0cec0 1172 if (test_tsk_need_resched(p))
c24d20db
IM
1173 return;
1174
5ed0cec0 1175 set_tsk_need_resched(p);
c24d20db
IM
1176
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1180
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1185}
1186
1187static void resched_cpu(int cpu)
1188{
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1191
05fa785c 1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1193 return;
1194 resched_task(cpu_curr(cpu));
05fa785c 1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1196}
06d8308c
TG
1197
1198#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1199/*
1200 * In the semi idle case, use the nearest busy cpu for migrating timers
1201 * from an idle cpu. This is good for power-savings.
1202 *
1203 * We don't do similar optimization for completely idle system, as
1204 * selecting an idle cpu will add more delays to the timers than intended
1205 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1206 */
1207int get_nohz_timer_target(void)
1208{
1209 int cpu = smp_processor_id();
1210 int i;
1211 struct sched_domain *sd;
1212
057f3fad 1213 rcu_read_lock();
83cd4fe2 1214 for_each_domain(cpu, sd) {
057f3fad
PZ
1215 for_each_cpu(i, sched_domain_span(sd)) {
1216 if (!idle_cpu(i)) {
1217 cpu = i;
1218 goto unlock;
1219 }
1220 }
83cd4fe2 1221 }
057f3fad
PZ
1222unlock:
1223 rcu_read_unlock();
83cd4fe2
VP
1224 return cpu;
1225}
06d8308c
TG
1226/*
1227 * When add_timer_on() enqueues a timer into the timer wheel of an
1228 * idle CPU then this timer might expire before the next timer event
1229 * which is scheduled to wake up that CPU. In case of a completely
1230 * idle system the next event might even be infinite time into the
1231 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1232 * leaves the inner idle loop so the newly added timer is taken into
1233 * account when the CPU goes back to idle and evaluates the timer
1234 * wheel for the next timer event.
1235 */
1236void wake_up_idle_cpu(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239
1240 if (cpu == smp_processor_id())
1241 return;
1242
1243 /*
1244 * This is safe, as this function is called with the timer
1245 * wheel base lock of (cpu) held. When the CPU is on the way
1246 * to idle and has not yet set rq->curr to idle then it will
1247 * be serialized on the timer wheel base lock and take the new
1248 * timer into account automatically.
1249 */
1250 if (rq->curr != rq->idle)
1251 return;
1252
1253 /*
1254 * We can set TIF_RESCHED on the idle task of the other CPU
1255 * lockless. The worst case is that the other CPU runs the
1256 * idle task through an additional NOOP schedule()
1257 */
5ed0cec0 1258 set_tsk_need_resched(rq->idle);
06d8308c
TG
1259
1260 /* NEED_RESCHED must be visible before we test polling */
1261 smp_mb();
1262 if (!tsk_is_polling(rq->idle))
1263 smp_send_reschedule(cpu);
1264}
39c0cbe2 1265
6d6bc0ad 1266#endif /* CONFIG_NO_HZ */
06d8308c 1267
e9e9250b
PZ
1268static u64 sched_avg_period(void)
1269{
1270 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1271}
1272
1273static void sched_avg_update(struct rq *rq)
1274{
1275 s64 period = sched_avg_period();
1276
1277 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1278 /*
1279 * Inline assembly required to prevent the compiler
1280 * optimising this loop into a divmod call.
1281 * See __iter_div_u64_rem() for another example of this.
1282 */
1283 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1284 rq->age_stamp += period;
1285 rq->rt_avg /= 2;
1286 }
1287}
1288
1289static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1290{
1291 rq->rt_avg += rt_delta;
1292 sched_avg_update(rq);
1293}
1294
6d6bc0ad 1295#else /* !CONFIG_SMP */
31656519 1296static void resched_task(struct task_struct *p)
c24d20db 1297{
05fa785c 1298 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1299 set_tsk_need_resched(p);
c24d20db 1300}
e9e9250b
PZ
1301
1302static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303{
1304}
da2b71ed
SS
1305
1306static void sched_avg_update(struct rq *rq)
1307{
1308}
6d6bc0ad 1309#endif /* CONFIG_SMP */
c24d20db 1310
45bf76df
IM
1311#if BITS_PER_LONG == 32
1312# define WMULT_CONST (~0UL)
1313#else
1314# define WMULT_CONST (1UL << 32)
1315#endif
1316
1317#define WMULT_SHIFT 32
1318
194081eb
IM
1319/*
1320 * Shift right and round:
1321 */
cf2ab469 1322#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1323
a7be37ac
PZ
1324/*
1325 * delta *= weight / lw
1326 */
cb1c4fc9 1327static unsigned long
45bf76df
IM
1328calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1329 struct load_weight *lw)
1330{
1331 u64 tmp;
1332
c8b28116
NR
1333 /*
1334 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1335 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1336 * 2^SCHED_LOAD_RESOLUTION.
1337 */
1338 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1339 tmp = (u64)delta_exec * scale_load_down(weight);
1340 else
1341 tmp = (u64)delta_exec;
db670dac 1342
7a232e03 1343 if (!lw->inv_weight) {
c8b28116
NR
1344 unsigned long w = scale_load_down(lw->weight);
1345
1346 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1347 lw->inv_weight = 1;
c8b28116
NR
1348 else if (unlikely(!w))
1349 lw->inv_weight = WMULT_CONST;
7a232e03 1350 else
c8b28116 1351 lw->inv_weight = WMULT_CONST / w;
7a232e03 1352 }
45bf76df 1353
45bf76df
IM
1354 /*
1355 * Check whether we'd overflow the 64-bit multiplication:
1356 */
194081eb 1357 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1358 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1359 WMULT_SHIFT/2);
1360 else
cf2ab469 1361 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1362
ecf691da 1363 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1364}
1365
1091985b 1366static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1367{
1368 lw->weight += inc;
e89996ae 1369 lw->inv_weight = 0;
45bf76df
IM
1370}
1371
1091985b 1372static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1373{
1374 lw->weight -= dec;
e89996ae 1375 lw->inv_weight = 0;
45bf76df
IM
1376}
1377
2069dd75
PZ
1378static inline void update_load_set(struct load_weight *lw, unsigned long w)
1379{
1380 lw->weight = w;
1381 lw->inv_weight = 0;
1382}
1383
2dd73a4f
PW
1384/*
1385 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1386 * of tasks with abnormal "nice" values across CPUs the contribution that
1387 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1388 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1389 * scaled version of the new time slice allocation that they receive on time
1390 * slice expiry etc.
1391 */
1392
cce7ade8
PZ
1393#define WEIGHT_IDLEPRIO 3
1394#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1395
1396/*
1397 * Nice levels are multiplicative, with a gentle 10% change for every
1398 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1399 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1400 * that remained on nice 0.
1401 *
1402 * The "10% effect" is relative and cumulative: from _any_ nice level,
1403 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1404 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1405 * If a task goes up by ~10% and another task goes down by ~10% then
1406 * the relative distance between them is ~25%.)
dd41f596
IM
1407 */
1408static const int prio_to_weight[40] = {
254753dc
IM
1409 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1410 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1411 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1412 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1413 /* 0 */ 1024, 820, 655, 526, 423,
1414 /* 5 */ 335, 272, 215, 172, 137,
1415 /* 10 */ 110, 87, 70, 56, 45,
1416 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1417};
1418
5714d2de
IM
1419/*
1420 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1421 *
1422 * In cases where the weight does not change often, we can use the
1423 * precalculated inverse to speed up arithmetics by turning divisions
1424 * into multiplications:
1425 */
dd41f596 1426static const u32 prio_to_wmult[40] = {
254753dc
IM
1427 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1428 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1429 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1430 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1431 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1432 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1433 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1434 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1435};
2dd73a4f 1436
ef12fefa
BR
1437/* Time spent by the tasks of the cpu accounting group executing in ... */
1438enum cpuacct_stat_index {
1439 CPUACCT_STAT_USER, /* ... user mode */
1440 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1441
1442 CPUACCT_STAT_NSTATS,
1443};
1444
d842de87
SV
1445#ifdef CONFIG_CGROUP_CPUACCT
1446static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1447static void cpuacct_update_stats(struct task_struct *tsk,
1448 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1449#else
1450static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1451static inline void cpuacct_update_stats(struct task_struct *tsk,
1452 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1453#endif
1454
18d95a28
PZ
1455static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1456{
1457 update_load_add(&rq->load, load);
1458}
1459
1460static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1461{
1462 update_load_sub(&rq->load, load);
1463}
1464
7940ca36 1465#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1466typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1467
1468/*
1469 * Iterate the full tree, calling @down when first entering a node and @up when
1470 * leaving it for the final time.
1471 */
eb755805 1472static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1473{
1474 struct task_group *parent, *child;
eb755805 1475 int ret;
c09595f6
PZ
1476
1477 rcu_read_lock();
1478 parent = &root_task_group;
1479down:
eb755805
PZ
1480 ret = (*down)(parent, data);
1481 if (ret)
1482 goto out_unlock;
c09595f6
PZ
1483 list_for_each_entry_rcu(child, &parent->children, siblings) {
1484 parent = child;
1485 goto down;
1486
1487up:
1488 continue;
1489 }
eb755805
PZ
1490 ret = (*up)(parent, data);
1491 if (ret)
1492 goto out_unlock;
c09595f6
PZ
1493
1494 child = parent;
1495 parent = parent->parent;
1496 if (parent)
1497 goto up;
eb755805 1498out_unlock:
c09595f6 1499 rcu_read_unlock();
eb755805
PZ
1500
1501 return ret;
c09595f6
PZ
1502}
1503
eb755805
PZ
1504static int tg_nop(struct task_group *tg, void *data)
1505{
1506 return 0;
c09595f6 1507}
eb755805
PZ
1508#endif
1509
1510#ifdef CONFIG_SMP
f5f08f39
PZ
1511/* Used instead of source_load when we know the type == 0 */
1512static unsigned long weighted_cpuload(const int cpu)
1513{
1514 return cpu_rq(cpu)->load.weight;
1515}
1516
1517/*
1518 * Return a low guess at the load of a migration-source cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 *
1521 * We want to under-estimate the load of migration sources, to
1522 * balance conservatively.
1523 */
1524static unsigned long source_load(int cpu, int type)
1525{
1526 struct rq *rq = cpu_rq(cpu);
1527 unsigned long total = weighted_cpuload(cpu);
1528
1529 if (type == 0 || !sched_feat(LB_BIAS))
1530 return total;
1531
1532 return min(rq->cpu_load[type-1], total);
1533}
1534
1535/*
1536 * Return a high guess at the load of a migration-target cpu weighted
1537 * according to the scheduling class and "nice" value.
1538 */
1539static unsigned long target_load(int cpu, int type)
1540{
1541 struct rq *rq = cpu_rq(cpu);
1542 unsigned long total = weighted_cpuload(cpu);
1543
1544 if (type == 0 || !sched_feat(LB_BIAS))
1545 return total;
1546
1547 return max(rq->cpu_load[type-1], total);
1548}
1549
ae154be1
PZ
1550static unsigned long power_of(int cpu)
1551{
e51fd5e2 1552 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1553}
1554
eb755805
PZ
1555static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1556
1557static unsigned long cpu_avg_load_per_task(int cpu)
1558{
1559 struct rq *rq = cpu_rq(cpu);
af6d596f 1560 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1561
4cd42620
SR
1562 if (nr_running)
1563 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1564 else
1565 rq->avg_load_per_task = 0;
eb755805
PZ
1566
1567 return rq->avg_load_per_task;
1568}
1569
1570#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1571
c09595f6 1572/*
c8cba857
PZ
1573 * Compute the cpu's hierarchical load factor for each task group.
1574 * This needs to be done in a top-down fashion because the load of a child
1575 * group is a fraction of its parents load.
c09595f6 1576 */
eb755805 1577static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1578{
c8cba857 1579 unsigned long load;
eb755805 1580 long cpu = (long)data;
c09595f6 1581
c8cba857
PZ
1582 if (!tg->parent) {
1583 load = cpu_rq(cpu)->load.weight;
1584 } else {
1585 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1586 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1587 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1588 }
c09595f6 1589
c8cba857 1590 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1591
eb755805 1592 return 0;
c09595f6
PZ
1593}
1594
eb755805 1595static void update_h_load(long cpu)
c09595f6 1596{
eb755805 1597 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1598}
1599
18d95a28
PZ
1600#endif
1601
8f45e2b5
GH
1602#ifdef CONFIG_PREEMPT
1603
b78bb868
PZ
1604static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1605
70574a99 1606/*
8f45e2b5
GH
1607 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1608 * way at the expense of forcing extra atomic operations in all
1609 * invocations. This assures that the double_lock is acquired using the
1610 * same underlying policy as the spinlock_t on this architecture, which
1611 * reduces latency compared to the unfair variant below. However, it
1612 * also adds more overhead and therefore may reduce throughput.
70574a99 1613 */
8f45e2b5
GH
1614static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1615 __releases(this_rq->lock)
1616 __acquires(busiest->lock)
1617 __acquires(this_rq->lock)
1618{
05fa785c 1619 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1620 double_rq_lock(this_rq, busiest);
1621
1622 return 1;
1623}
1624
1625#else
1626/*
1627 * Unfair double_lock_balance: Optimizes throughput at the expense of
1628 * latency by eliminating extra atomic operations when the locks are
1629 * already in proper order on entry. This favors lower cpu-ids and will
1630 * grant the double lock to lower cpus over higher ids under contention,
1631 * regardless of entry order into the function.
1632 */
1633static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1634 __releases(this_rq->lock)
1635 __acquires(busiest->lock)
1636 __acquires(this_rq->lock)
1637{
1638 int ret = 0;
1639
05fa785c 1640 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1641 if (busiest < this_rq) {
05fa785c
TG
1642 raw_spin_unlock(&this_rq->lock);
1643 raw_spin_lock(&busiest->lock);
1644 raw_spin_lock_nested(&this_rq->lock,
1645 SINGLE_DEPTH_NESTING);
70574a99
AD
1646 ret = 1;
1647 } else
05fa785c
TG
1648 raw_spin_lock_nested(&busiest->lock,
1649 SINGLE_DEPTH_NESTING);
70574a99
AD
1650 }
1651 return ret;
1652}
1653
8f45e2b5
GH
1654#endif /* CONFIG_PREEMPT */
1655
1656/*
1657 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1658 */
1659static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1660{
1661 if (unlikely(!irqs_disabled())) {
1662 /* printk() doesn't work good under rq->lock */
05fa785c 1663 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1664 BUG_ON(1);
1665 }
1666
1667 return _double_lock_balance(this_rq, busiest);
1668}
1669
70574a99
AD
1670static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1671 __releases(busiest->lock)
1672{
05fa785c 1673 raw_spin_unlock(&busiest->lock);
70574a99
AD
1674 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1675}
1e3c88bd
PZ
1676
1677/*
1678 * double_rq_lock - safely lock two runqueues
1679 *
1680 * Note this does not disable interrupts like task_rq_lock,
1681 * you need to do so manually before calling.
1682 */
1683static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1684 __acquires(rq1->lock)
1685 __acquires(rq2->lock)
1686{
1687 BUG_ON(!irqs_disabled());
1688 if (rq1 == rq2) {
1689 raw_spin_lock(&rq1->lock);
1690 __acquire(rq2->lock); /* Fake it out ;) */
1691 } else {
1692 if (rq1 < rq2) {
1693 raw_spin_lock(&rq1->lock);
1694 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1695 } else {
1696 raw_spin_lock(&rq2->lock);
1697 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1698 }
1699 }
1e3c88bd
PZ
1700}
1701
1702/*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711{
1712 raw_spin_unlock(&rq1->lock);
1713 if (rq1 != rq2)
1714 raw_spin_unlock(&rq2->lock);
1715 else
1716 __release(rq2->lock);
1717}
1718
d95f4122
MG
1719#else /* CONFIG_SMP */
1720
1721/*
1722 * double_rq_lock - safely lock two runqueues
1723 *
1724 * Note this does not disable interrupts like task_rq_lock,
1725 * you need to do so manually before calling.
1726 */
1727static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1728 __acquires(rq1->lock)
1729 __acquires(rq2->lock)
1730{
1731 BUG_ON(!irqs_disabled());
1732 BUG_ON(rq1 != rq2);
1733 raw_spin_lock(&rq1->lock);
1734 __acquire(rq2->lock); /* Fake it out ;) */
1735}
1736
1737/*
1738 * double_rq_unlock - safely unlock two runqueues
1739 *
1740 * Note this does not restore interrupts like task_rq_unlock,
1741 * you need to do so manually after calling.
1742 */
1743static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1744 __releases(rq1->lock)
1745 __releases(rq2->lock)
1746{
1747 BUG_ON(rq1 != rq2);
1748 raw_spin_unlock(&rq1->lock);
1749 __release(rq2->lock);
1750}
1751
18d95a28
PZ
1752#endif
1753
74f5187a 1754static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1755static void update_sysctl(void);
acb4a848 1756static int get_update_sysctl_factor(void);
fdf3e95d 1757static void update_cpu_load(struct rq *this_rq);
dce48a84 1758
cd29fe6f
PZ
1759static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1760{
1761 set_task_rq(p, cpu);
1762#ifdef CONFIG_SMP
1763 /*
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1767 */
1768 smp_wmb();
1769 task_thread_info(p)->cpu = cpu;
1770#endif
1771}
dce48a84 1772
1e3c88bd 1773static const struct sched_class rt_sched_class;
dd41f596 1774
34f971f6 1775#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1776#define for_each_class(class) \
1777 for (class = sched_class_highest; class; class = class->next)
dd41f596 1778
1e3c88bd
PZ
1779#include "sched_stats.h"
1780
c09595f6 1781static void inc_nr_running(struct rq *rq)
9c217245
IM
1782{
1783 rq->nr_running++;
9c217245
IM
1784}
1785
c09595f6 1786static void dec_nr_running(struct rq *rq)
9c217245
IM
1787{
1788 rq->nr_running--;
9c217245
IM
1789}
1790
45bf76df
IM
1791static void set_load_weight(struct task_struct *p)
1792{
f05998d4
NR
1793 int prio = p->static_prio - MAX_RT_PRIO;
1794 struct load_weight *load = &p->se.load;
1795
dd41f596
IM
1796 /*
1797 * SCHED_IDLE tasks get minimal weight:
1798 */
1799 if (p->policy == SCHED_IDLE) {
c8b28116 1800 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1801 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1802 return;
1803 }
71f8bd46 1804
c8b28116 1805 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1806 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1807}
1808
371fd7e7 1809static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1810{
a64692a3 1811 update_rq_clock(rq);
dd41f596 1812 sched_info_queued(p);
371fd7e7 1813 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1814}
1815
371fd7e7 1816static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1817{
a64692a3 1818 update_rq_clock(rq);
46ac22ba 1819 sched_info_dequeued(p);
371fd7e7 1820 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1821}
1822
1e3c88bd
PZ
1823/*
1824 * activate_task - move a task to the runqueue.
1825 */
371fd7e7 1826static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1827{
1828 if (task_contributes_to_load(p))
1829 rq->nr_uninterruptible--;
1830
371fd7e7 1831 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1832 inc_nr_running(rq);
1833}
1834
1835/*
1836 * deactivate_task - remove a task from the runqueue.
1837 */
371fd7e7 1838static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1839{
1840 if (task_contributes_to_load(p))
1841 rq->nr_uninterruptible++;
1842
371fd7e7 1843 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1844 dec_nr_running(rq);
1845}
1846
b52bfee4
VP
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848
305e6835
VP
1849/*
1850 * There are no locks covering percpu hardirq/softirq time.
1851 * They are only modified in account_system_vtime, on corresponding CPU
1852 * with interrupts disabled. So, writes are safe.
1853 * They are read and saved off onto struct rq in update_rq_clock().
1854 * This may result in other CPU reading this CPU's irq time and can
1855 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1856 * or new value with a side effect of accounting a slice of irq time to wrong
1857 * task when irq is in progress while we read rq->clock. That is a worthy
1858 * compromise in place of having locks on each irq in account_system_time.
305e6835 1859 */
b52bfee4
VP
1860static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1861static DEFINE_PER_CPU(u64, cpu_softirq_time);
1862
1863static DEFINE_PER_CPU(u64, irq_start_time);
1864static int sched_clock_irqtime;
1865
1866void enable_sched_clock_irqtime(void)
1867{
1868 sched_clock_irqtime = 1;
1869}
1870
1871void disable_sched_clock_irqtime(void)
1872{
1873 sched_clock_irqtime = 0;
1874}
1875
8e92c201
PZ
1876#ifndef CONFIG_64BIT
1877static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1878
1879static inline void irq_time_write_begin(void)
1880{
1881 __this_cpu_inc(irq_time_seq.sequence);
1882 smp_wmb();
1883}
1884
1885static inline void irq_time_write_end(void)
1886{
1887 smp_wmb();
1888 __this_cpu_inc(irq_time_seq.sequence);
1889}
1890
1891static inline u64 irq_time_read(int cpu)
1892{
1893 u64 irq_time;
1894 unsigned seq;
1895
1896 do {
1897 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1898 irq_time = per_cpu(cpu_softirq_time, cpu) +
1899 per_cpu(cpu_hardirq_time, cpu);
1900 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1901
1902 return irq_time;
1903}
1904#else /* CONFIG_64BIT */
1905static inline void irq_time_write_begin(void)
1906{
1907}
1908
1909static inline void irq_time_write_end(void)
1910{
1911}
1912
1913static inline u64 irq_time_read(int cpu)
305e6835 1914{
305e6835
VP
1915 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1916}
8e92c201 1917#endif /* CONFIG_64BIT */
305e6835 1918
fe44d621
PZ
1919/*
1920 * Called before incrementing preempt_count on {soft,}irq_enter
1921 * and before decrementing preempt_count on {soft,}irq_exit.
1922 */
b52bfee4
VP
1923void account_system_vtime(struct task_struct *curr)
1924{
1925 unsigned long flags;
fe44d621 1926 s64 delta;
b52bfee4 1927 int cpu;
b52bfee4
VP
1928
1929 if (!sched_clock_irqtime)
1930 return;
1931
1932 local_irq_save(flags);
1933
b52bfee4 1934 cpu = smp_processor_id();
fe44d621
PZ
1935 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1936 __this_cpu_add(irq_start_time, delta);
1937
8e92c201 1938 irq_time_write_begin();
b52bfee4
VP
1939 /*
1940 * We do not account for softirq time from ksoftirqd here.
1941 * We want to continue accounting softirq time to ksoftirqd thread
1942 * in that case, so as not to confuse scheduler with a special task
1943 * that do not consume any time, but still wants to run.
1944 */
1945 if (hardirq_count())
fe44d621 1946 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1947 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1948 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1949
8e92c201 1950 irq_time_write_end();
b52bfee4
VP
1951 local_irq_restore(flags);
1952}
b7dadc38 1953EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1954
fe44d621 1955static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1956{
fe44d621
PZ
1957 s64 irq_delta;
1958
8e92c201 1959 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1960
1961 /*
1962 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1963 * this case when a previous update_rq_clock() happened inside a
1964 * {soft,}irq region.
1965 *
1966 * When this happens, we stop ->clock_task and only update the
1967 * prev_irq_time stamp to account for the part that fit, so that a next
1968 * update will consume the rest. This ensures ->clock_task is
1969 * monotonic.
1970 *
1971 * It does however cause some slight miss-attribution of {soft,}irq
1972 * time, a more accurate solution would be to update the irq_time using
1973 * the current rq->clock timestamp, except that would require using
1974 * atomic ops.
1975 */
1976 if (irq_delta > delta)
1977 irq_delta = delta;
1978
1979 rq->prev_irq_time += irq_delta;
1980 delta -= irq_delta;
1981 rq->clock_task += delta;
1982
1983 if (irq_delta && sched_feat(NONIRQ_POWER))
1984 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1985}
1986
abb74cef
VP
1987static int irqtime_account_hi_update(void)
1988{
1989 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1990 unsigned long flags;
1991 u64 latest_ns;
1992 int ret = 0;
1993
1994 local_irq_save(flags);
1995 latest_ns = this_cpu_read(cpu_hardirq_time);
1996 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1997 ret = 1;
1998 local_irq_restore(flags);
1999 return ret;
2000}
2001
2002static int irqtime_account_si_update(void)
2003{
2004 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2005 unsigned long flags;
2006 u64 latest_ns;
2007 int ret = 0;
2008
2009 local_irq_save(flags);
2010 latest_ns = this_cpu_read(cpu_softirq_time);
2011 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2012 ret = 1;
2013 local_irq_restore(flags);
2014 return ret;
2015}
2016
fe44d621 2017#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2018
abb74cef
VP
2019#define sched_clock_irqtime (0)
2020
fe44d621 2021static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 2022{
fe44d621 2023 rq->clock_task += delta;
305e6835
VP
2024}
2025
fe44d621 2026#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2027
1e3c88bd
PZ
2028#include "sched_idletask.c"
2029#include "sched_fair.c"
2030#include "sched_rt.c"
5091faa4 2031#include "sched_autogroup.c"
34f971f6 2032#include "sched_stoptask.c"
1e3c88bd
PZ
2033#ifdef CONFIG_SCHED_DEBUG
2034# include "sched_debug.c"
2035#endif
2036
34f971f6
PZ
2037void sched_set_stop_task(int cpu, struct task_struct *stop)
2038{
2039 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2040 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2041
2042 if (stop) {
2043 /*
2044 * Make it appear like a SCHED_FIFO task, its something
2045 * userspace knows about and won't get confused about.
2046 *
2047 * Also, it will make PI more or less work without too
2048 * much confusion -- but then, stop work should not
2049 * rely on PI working anyway.
2050 */
2051 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2052
2053 stop->sched_class = &stop_sched_class;
2054 }
2055
2056 cpu_rq(cpu)->stop = stop;
2057
2058 if (old_stop) {
2059 /*
2060 * Reset it back to a normal scheduling class so that
2061 * it can die in pieces.
2062 */
2063 old_stop->sched_class = &rt_sched_class;
2064 }
2065}
2066
14531189 2067/*
dd41f596 2068 * __normal_prio - return the priority that is based on the static prio
14531189 2069 */
14531189
IM
2070static inline int __normal_prio(struct task_struct *p)
2071{
dd41f596 2072 return p->static_prio;
14531189
IM
2073}
2074
b29739f9
IM
2075/*
2076 * Calculate the expected normal priority: i.e. priority
2077 * without taking RT-inheritance into account. Might be
2078 * boosted by interactivity modifiers. Changes upon fork,
2079 * setprio syscalls, and whenever the interactivity
2080 * estimator recalculates.
2081 */
36c8b586 2082static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2083{
2084 int prio;
2085
e05606d3 2086 if (task_has_rt_policy(p))
b29739f9
IM
2087 prio = MAX_RT_PRIO-1 - p->rt_priority;
2088 else
2089 prio = __normal_prio(p);
2090 return prio;
2091}
2092
2093/*
2094 * Calculate the current priority, i.e. the priority
2095 * taken into account by the scheduler. This value might
2096 * be boosted by RT tasks, or might be boosted by
2097 * interactivity modifiers. Will be RT if the task got
2098 * RT-boosted. If not then it returns p->normal_prio.
2099 */
36c8b586 2100static int effective_prio(struct task_struct *p)
b29739f9
IM
2101{
2102 p->normal_prio = normal_prio(p);
2103 /*
2104 * If we are RT tasks or we were boosted to RT priority,
2105 * keep the priority unchanged. Otherwise, update priority
2106 * to the normal priority:
2107 */
2108 if (!rt_prio(p->prio))
2109 return p->normal_prio;
2110 return p->prio;
2111}
2112
1da177e4
LT
2113/**
2114 * task_curr - is this task currently executing on a CPU?
2115 * @p: the task in question.
2116 */
36c8b586 2117inline int task_curr(const struct task_struct *p)
1da177e4
LT
2118{
2119 return cpu_curr(task_cpu(p)) == p;
2120}
2121
cb469845
SR
2122static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2123 const struct sched_class *prev_class,
da7a735e 2124 int oldprio)
cb469845
SR
2125{
2126 if (prev_class != p->sched_class) {
2127 if (prev_class->switched_from)
da7a735e
PZ
2128 prev_class->switched_from(rq, p);
2129 p->sched_class->switched_to(rq, p);
2130 } else if (oldprio != p->prio)
2131 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2132}
2133
1e5a7405
PZ
2134static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2135{
2136 const struct sched_class *class;
2137
2138 if (p->sched_class == rq->curr->sched_class) {
2139 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2140 } else {
2141 for_each_class(class) {
2142 if (class == rq->curr->sched_class)
2143 break;
2144 if (class == p->sched_class) {
2145 resched_task(rq->curr);
2146 break;
2147 }
2148 }
2149 }
2150
2151 /*
2152 * A queue event has occurred, and we're going to schedule. In
2153 * this case, we can save a useless back to back clock update.
2154 */
fd2f4419 2155 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2156 rq->skip_clock_update = 1;
2157}
2158
1da177e4 2159#ifdef CONFIG_SMP
cc367732
IM
2160/*
2161 * Is this task likely cache-hot:
2162 */
e7693a36 2163static int
cc367732
IM
2164task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2165{
2166 s64 delta;
2167
e6c8fba7
PZ
2168 if (p->sched_class != &fair_sched_class)
2169 return 0;
2170
ef8002f6
NR
2171 if (unlikely(p->policy == SCHED_IDLE))
2172 return 0;
2173
f540a608
IM
2174 /*
2175 * Buddy candidates are cache hot:
2176 */
f685ceac 2177 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2178 (&p->se == cfs_rq_of(&p->se)->next ||
2179 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2180 return 1;
2181
6bc1665b
IM
2182 if (sysctl_sched_migration_cost == -1)
2183 return 1;
2184 if (sysctl_sched_migration_cost == 0)
2185 return 0;
2186
cc367732
IM
2187 delta = now - p->se.exec_start;
2188
2189 return delta < (s64)sysctl_sched_migration_cost;
2190}
2191
dd41f596 2192void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2193{
e2912009
PZ
2194#ifdef CONFIG_SCHED_DEBUG
2195 /*
2196 * We should never call set_task_cpu() on a blocked task,
2197 * ttwu() will sort out the placement.
2198 */
077614ee
PZ
2199 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2200 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2201
2202#ifdef CONFIG_LOCKDEP
2203 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2204 lockdep_is_held(&task_rq(p)->lock)));
2205#endif
e2912009
PZ
2206#endif
2207
de1d7286 2208 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2209
0c69774e
PZ
2210 if (task_cpu(p) != new_cpu) {
2211 p->se.nr_migrations++;
2212 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2213 }
dd41f596
IM
2214
2215 __set_task_cpu(p, new_cpu);
c65cc870
IM
2216}
2217
969c7921 2218struct migration_arg {
36c8b586 2219 struct task_struct *task;
1da177e4 2220 int dest_cpu;
70b97a7f 2221};
1da177e4 2222
969c7921
TH
2223static int migration_cpu_stop(void *data);
2224
1da177e4
LT
2225/*
2226 * wait_task_inactive - wait for a thread to unschedule.
2227 *
85ba2d86
RM
2228 * If @match_state is nonzero, it's the @p->state value just checked and
2229 * not expected to change. If it changes, i.e. @p might have woken up,
2230 * then return zero. When we succeed in waiting for @p to be off its CPU,
2231 * we return a positive number (its total switch count). If a second call
2232 * a short while later returns the same number, the caller can be sure that
2233 * @p has remained unscheduled the whole time.
2234 *
1da177e4
LT
2235 * The caller must ensure that the task *will* unschedule sometime soon,
2236 * else this function might spin for a *long* time. This function can't
2237 * be called with interrupts off, or it may introduce deadlock with
2238 * smp_call_function() if an IPI is sent by the same process we are
2239 * waiting to become inactive.
2240 */
85ba2d86 2241unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2242{
2243 unsigned long flags;
dd41f596 2244 int running, on_rq;
85ba2d86 2245 unsigned long ncsw;
70b97a7f 2246 struct rq *rq;
1da177e4 2247
3a5c359a
AK
2248 for (;;) {
2249 /*
2250 * We do the initial early heuristics without holding
2251 * any task-queue locks at all. We'll only try to get
2252 * the runqueue lock when things look like they will
2253 * work out!
2254 */
2255 rq = task_rq(p);
fa490cfd 2256
3a5c359a
AK
2257 /*
2258 * If the task is actively running on another CPU
2259 * still, just relax and busy-wait without holding
2260 * any locks.
2261 *
2262 * NOTE! Since we don't hold any locks, it's not
2263 * even sure that "rq" stays as the right runqueue!
2264 * But we don't care, since "task_running()" will
2265 * return false if the runqueue has changed and p
2266 * is actually now running somewhere else!
2267 */
85ba2d86
RM
2268 while (task_running(rq, p)) {
2269 if (match_state && unlikely(p->state != match_state))
2270 return 0;
3a5c359a 2271 cpu_relax();
85ba2d86 2272 }
fa490cfd 2273
3a5c359a
AK
2274 /*
2275 * Ok, time to look more closely! We need the rq
2276 * lock now, to be *sure*. If we're wrong, we'll
2277 * just go back and repeat.
2278 */
2279 rq = task_rq_lock(p, &flags);
27a9da65 2280 trace_sched_wait_task(p);
3a5c359a 2281 running = task_running(rq, p);
fd2f4419 2282 on_rq = p->on_rq;
85ba2d86 2283 ncsw = 0;
f31e11d8 2284 if (!match_state || p->state == match_state)
93dcf55f 2285 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2286 task_rq_unlock(rq, p, &flags);
fa490cfd 2287
85ba2d86
RM
2288 /*
2289 * If it changed from the expected state, bail out now.
2290 */
2291 if (unlikely(!ncsw))
2292 break;
2293
3a5c359a
AK
2294 /*
2295 * Was it really running after all now that we
2296 * checked with the proper locks actually held?
2297 *
2298 * Oops. Go back and try again..
2299 */
2300 if (unlikely(running)) {
2301 cpu_relax();
2302 continue;
2303 }
fa490cfd 2304
3a5c359a
AK
2305 /*
2306 * It's not enough that it's not actively running,
2307 * it must be off the runqueue _entirely_, and not
2308 * preempted!
2309 *
80dd99b3 2310 * So if it was still runnable (but just not actively
3a5c359a
AK
2311 * running right now), it's preempted, and we should
2312 * yield - it could be a while.
2313 */
2314 if (unlikely(on_rq)) {
8eb90c30
TG
2315 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2316
2317 set_current_state(TASK_UNINTERRUPTIBLE);
2318 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2319 continue;
2320 }
fa490cfd 2321
3a5c359a
AK
2322 /*
2323 * Ahh, all good. It wasn't running, and it wasn't
2324 * runnable, which means that it will never become
2325 * running in the future either. We're all done!
2326 */
2327 break;
2328 }
85ba2d86
RM
2329
2330 return ncsw;
1da177e4
LT
2331}
2332
2333/***
2334 * kick_process - kick a running thread to enter/exit the kernel
2335 * @p: the to-be-kicked thread
2336 *
2337 * Cause a process which is running on another CPU to enter
2338 * kernel-mode, without any delay. (to get signals handled.)
2339 *
25985edc 2340 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2341 * because all it wants to ensure is that the remote task enters
2342 * the kernel. If the IPI races and the task has been migrated
2343 * to another CPU then no harm is done and the purpose has been
2344 * achieved as well.
2345 */
36c8b586 2346void kick_process(struct task_struct *p)
1da177e4
LT
2347{
2348 int cpu;
2349
2350 preempt_disable();
2351 cpu = task_cpu(p);
2352 if ((cpu != smp_processor_id()) && task_curr(p))
2353 smp_send_reschedule(cpu);
2354 preempt_enable();
2355}
b43e3521 2356EXPORT_SYMBOL_GPL(kick_process);
476d139c 2357#endif /* CONFIG_SMP */
1da177e4 2358
970b13ba 2359#ifdef CONFIG_SMP
30da688e 2360/*
013fdb80 2361 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2362 */
5da9a0fb
PZ
2363static int select_fallback_rq(int cpu, struct task_struct *p)
2364{
2365 int dest_cpu;
2366 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2367
2368 /* Look for allowed, online CPU in same node. */
2369 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2370 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2371 return dest_cpu;
2372
2373 /* Any allowed, online CPU? */
2374 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2375 if (dest_cpu < nr_cpu_ids)
2376 return dest_cpu;
2377
2378 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2379 dest_cpu = cpuset_cpus_allowed_fallback(p);
2380 /*
2381 * Don't tell them about moving exiting tasks or
2382 * kernel threads (both mm NULL), since they never
2383 * leave kernel.
2384 */
2385 if (p->mm && printk_ratelimit()) {
2386 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2387 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2388 }
2389
2390 return dest_cpu;
2391}
2392
e2912009 2393/*
013fdb80 2394 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2395 */
970b13ba 2396static inline
7608dec2 2397int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2398{
7608dec2 2399 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2400
2401 /*
2402 * In order not to call set_task_cpu() on a blocking task we need
2403 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2404 * cpu.
2405 *
2406 * Since this is common to all placement strategies, this lives here.
2407 *
2408 * [ this allows ->select_task() to simply return task_cpu(p) and
2409 * not worry about this generic constraint ]
2410 */
2411 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2412 !cpu_online(cpu)))
5da9a0fb 2413 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2414
2415 return cpu;
970b13ba 2416}
09a40af5
MG
2417
2418static void update_avg(u64 *avg, u64 sample)
2419{
2420 s64 diff = sample - *avg;
2421 *avg += diff >> 3;
2422}
970b13ba
PZ
2423#endif
2424
d7c01d27 2425static void
b84cb5df 2426ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2427{
d7c01d27 2428#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2429 struct rq *rq = this_rq();
2430
d7c01d27
PZ
2431#ifdef CONFIG_SMP
2432 int this_cpu = smp_processor_id();
2433
2434 if (cpu == this_cpu) {
2435 schedstat_inc(rq, ttwu_local);
2436 schedstat_inc(p, se.statistics.nr_wakeups_local);
2437 } else {
2438 struct sched_domain *sd;
2439
2440 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2441 rcu_read_lock();
d7c01d27
PZ
2442 for_each_domain(this_cpu, sd) {
2443 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2444 schedstat_inc(sd, ttwu_wake_remote);
2445 break;
2446 }
2447 }
057f3fad 2448 rcu_read_unlock();
d7c01d27 2449 }
f339b9dc
PZ
2450
2451 if (wake_flags & WF_MIGRATED)
2452 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2453
d7c01d27
PZ
2454#endif /* CONFIG_SMP */
2455
2456 schedstat_inc(rq, ttwu_count);
9ed3811a 2457 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2458
2459 if (wake_flags & WF_SYNC)
9ed3811a 2460 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2461
d7c01d27
PZ
2462#endif /* CONFIG_SCHEDSTATS */
2463}
2464
2465static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2466{
9ed3811a 2467 activate_task(rq, p, en_flags);
fd2f4419 2468 p->on_rq = 1;
c2f7115e
PZ
2469
2470 /* if a worker is waking up, notify workqueue */
2471 if (p->flags & PF_WQ_WORKER)
2472 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2473}
2474
23f41eeb
PZ
2475/*
2476 * Mark the task runnable and perform wakeup-preemption.
2477 */
89363381 2478static void
23f41eeb 2479ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2480{
89363381 2481 trace_sched_wakeup(p, true);
9ed3811a
TH
2482 check_preempt_curr(rq, p, wake_flags);
2483
2484 p->state = TASK_RUNNING;
2485#ifdef CONFIG_SMP
2486 if (p->sched_class->task_woken)
2487 p->sched_class->task_woken(rq, p);
2488
e69c6341 2489 if (rq->idle_stamp) {
9ed3811a
TH
2490 u64 delta = rq->clock - rq->idle_stamp;
2491 u64 max = 2*sysctl_sched_migration_cost;
2492
2493 if (delta > max)
2494 rq->avg_idle = max;
2495 else
2496 update_avg(&rq->avg_idle, delta);
2497 rq->idle_stamp = 0;
2498 }
2499#endif
2500}
2501
c05fbafb
PZ
2502static void
2503ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2504{
2505#ifdef CONFIG_SMP
2506 if (p->sched_contributes_to_load)
2507 rq->nr_uninterruptible--;
2508#endif
2509
2510 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2511 ttwu_do_wakeup(rq, p, wake_flags);
2512}
2513
2514/*
2515 * Called in case the task @p isn't fully descheduled from its runqueue,
2516 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2517 * since all we need to do is flip p->state to TASK_RUNNING, since
2518 * the task is still ->on_rq.
2519 */
2520static int ttwu_remote(struct task_struct *p, int wake_flags)
2521{
2522 struct rq *rq;
2523 int ret = 0;
2524
2525 rq = __task_rq_lock(p);
2526 if (p->on_rq) {
2527 ttwu_do_wakeup(rq, p, wake_flags);
2528 ret = 1;
2529 }
2530 __task_rq_unlock(rq);
2531
2532 return ret;
2533}
2534
317f3941
PZ
2535#ifdef CONFIG_SMP
2536static void sched_ttwu_pending(void)
2537{
2538 struct rq *rq = this_rq();
2539 struct task_struct *list = xchg(&rq->wake_list, NULL);
2540
2541 if (!list)
2542 return;
2543
2544 raw_spin_lock(&rq->lock);
2545
2546 while (list) {
2547 struct task_struct *p = list;
2548 list = list->wake_entry;
2549 ttwu_do_activate(rq, p, 0);
2550 }
2551
2552 raw_spin_unlock(&rq->lock);
2553}
2554
2555void scheduler_ipi(void)
2556{
2557 sched_ttwu_pending();
2558}
2559
2560static void ttwu_queue_remote(struct task_struct *p, int cpu)
2561{
2562 struct rq *rq = cpu_rq(cpu);
2563 struct task_struct *next = rq->wake_list;
2564
2565 for (;;) {
2566 struct task_struct *old = next;
2567
2568 p->wake_entry = next;
2569 next = cmpxchg(&rq->wake_list, old, p);
2570 if (next == old)
2571 break;
2572 }
2573
2574 if (!next)
2575 smp_send_reschedule(cpu);
2576}
d6aa8f85
PZ
2577
2578#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2579static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2580{
2581 struct rq *rq;
2582 int ret = 0;
2583
2584 rq = __task_rq_lock(p);
2585 if (p->on_cpu) {
2586 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2587 ttwu_do_wakeup(rq, p, wake_flags);
2588 ret = 1;
2589 }
2590 __task_rq_unlock(rq);
2591
2592 return ret;
2593
2594}
2595#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2596#endif /* CONFIG_SMP */
317f3941 2597
c05fbafb
PZ
2598static void ttwu_queue(struct task_struct *p, int cpu)
2599{
2600 struct rq *rq = cpu_rq(cpu);
2601
17d9f311 2602#if defined(CONFIG_SMP)
317f3941 2603 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2604 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2605 ttwu_queue_remote(p, cpu);
2606 return;
2607 }
2608#endif
2609
c05fbafb
PZ
2610 raw_spin_lock(&rq->lock);
2611 ttwu_do_activate(rq, p, 0);
2612 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2613}
2614
2615/**
1da177e4 2616 * try_to_wake_up - wake up a thread
9ed3811a 2617 * @p: the thread to be awakened
1da177e4 2618 * @state: the mask of task states that can be woken
9ed3811a 2619 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2620 *
2621 * Put it on the run-queue if it's not already there. The "current"
2622 * thread is always on the run-queue (except when the actual
2623 * re-schedule is in progress), and as such you're allowed to do
2624 * the simpler "current->state = TASK_RUNNING" to mark yourself
2625 * runnable without the overhead of this.
2626 *
9ed3811a
TH
2627 * Returns %true if @p was woken up, %false if it was already running
2628 * or @state didn't match @p's state.
1da177e4 2629 */
e4a52bcb
PZ
2630static int
2631try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2632{
1da177e4 2633 unsigned long flags;
c05fbafb 2634 int cpu, success = 0;
2398f2c6 2635
04e2f174 2636 smp_wmb();
013fdb80 2637 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2638 if (!(p->state & state))
1da177e4
LT
2639 goto out;
2640
c05fbafb 2641 success = 1; /* we're going to change ->state */
1da177e4 2642 cpu = task_cpu(p);
1da177e4 2643
c05fbafb
PZ
2644 if (p->on_rq && ttwu_remote(p, wake_flags))
2645 goto stat;
1da177e4 2646
1da177e4 2647#ifdef CONFIG_SMP
e9c84311 2648 /*
c05fbafb
PZ
2649 * If the owning (remote) cpu is still in the middle of schedule() with
2650 * this task as prev, wait until its done referencing the task.
e9c84311 2651 */
e4a52bcb
PZ
2652 while (p->on_cpu) {
2653#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2654 /*
d6aa8f85
PZ
2655 * In case the architecture enables interrupts in
2656 * context_switch(), we cannot busy wait, since that
2657 * would lead to deadlocks when an interrupt hits and
2658 * tries to wake up @prev. So bail and do a complete
2659 * remote wakeup.
e4a52bcb 2660 */
d6aa8f85 2661 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2662 goto stat;
d6aa8f85 2663#else
e4a52bcb 2664 cpu_relax();
d6aa8f85 2665#endif
371fd7e7 2666 }
0970d299 2667 /*
e4a52bcb 2668 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2669 */
e4a52bcb 2670 smp_rmb();
1da177e4 2671
a8e4f2ea 2672 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2673 p->state = TASK_WAKING;
e7693a36 2674
e4a52bcb 2675 if (p->sched_class->task_waking)
74f8e4b2 2676 p->sched_class->task_waking(p);
efbbd05a 2677
7608dec2 2678 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2679 if (task_cpu(p) != cpu) {
2680 wake_flags |= WF_MIGRATED;
e4a52bcb 2681 set_task_cpu(p, cpu);
f339b9dc 2682 }
1da177e4 2683#endif /* CONFIG_SMP */
1da177e4 2684
c05fbafb
PZ
2685 ttwu_queue(p, cpu);
2686stat:
b84cb5df 2687 ttwu_stat(p, cpu, wake_flags);
1da177e4 2688out:
013fdb80 2689 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2690
2691 return success;
2692}
2693
21aa9af0
TH
2694/**
2695 * try_to_wake_up_local - try to wake up a local task with rq lock held
2696 * @p: the thread to be awakened
2697 *
2acca55e 2698 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2699 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2700 * the current task.
21aa9af0
TH
2701 */
2702static void try_to_wake_up_local(struct task_struct *p)
2703{
2704 struct rq *rq = task_rq(p);
21aa9af0
TH
2705
2706 BUG_ON(rq != this_rq());
2707 BUG_ON(p == current);
2708 lockdep_assert_held(&rq->lock);
2709
2acca55e
PZ
2710 if (!raw_spin_trylock(&p->pi_lock)) {
2711 raw_spin_unlock(&rq->lock);
2712 raw_spin_lock(&p->pi_lock);
2713 raw_spin_lock(&rq->lock);
2714 }
2715
21aa9af0 2716 if (!(p->state & TASK_NORMAL))
2acca55e 2717 goto out;
21aa9af0 2718
fd2f4419 2719 if (!p->on_rq)
d7c01d27
PZ
2720 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2721
23f41eeb 2722 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2723 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2724out:
2725 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2726}
2727
50fa610a
DH
2728/**
2729 * wake_up_process - Wake up a specific process
2730 * @p: The process to be woken up.
2731 *
2732 * Attempt to wake up the nominated process and move it to the set of runnable
2733 * processes. Returns 1 if the process was woken up, 0 if it was already
2734 * running.
2735 *
2736 * It may be assumed that this function implies a write memory barrier before
2737 * changing the task state if and only if any tasks are woken up.
2738 */
7ad5b3a5 2739int wake_up_process(struct task_struct *p)
1da177e4 2740{
d9514f6c 2741 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2742}
1da177e4
LT
2743EXPORT_SYMBOL(wake_up_process);
2744
7ad5b3a5 2745int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2746{
2747 return try_to_wake_up(p, state, 0);
2748}
2749
1da177e4
LT
2750/*
2751 * Perform scheduler related setup for a newly forked process p.
2752 * p is forked by current.
dd41f596
IM
2753 *
2754 * __sched_fork() is basic setup used by init_idle() too:
2755 */
2756static void __sched_fork(struct task_struct *p)
2757{
fd2f4419
PZ
2758 p->on_rq = 0;
2759
2760 p->se.on_rq = 0;
dd41f596
IM
2761 p->se.exec_start = 0;
2762 p->se.sum_exec_runtime = 0;
f6cf891c 2763 p->se.prev_sum_exec_runtime = 0;
6c594c21 2764 p->se.nr_migrations = 0;
da7a735e 2765 p->se.vruntime = 0;
fd2f4419 2766 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2767
2768#ifdef CONFIG_SCHEDSTATS
41acab88 2769 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2770#endif
476d139c 2771
fa717060 2772 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2773
e107be36
AK
2774#ifdef CONFIG_PREEMPT_NOTIFIERS
2775 INIT_HLIST_HEAD(&p->preempt_notifiers);
2776#endif
dd41f596
IM
2777}
2778
2779/*
2780 * fork()/clone()-time setup:
2781 */
3e51e3ed 2782void sched_fork(struct task_struct *p)
dd41f596 2783{
0122ec5b 2784 unsigned long flags;
dd41f596
IM
2785 int cpu = get_cpu();
2786
2787 __sched_fork(p);
06b83b5f 2788 /*
0017d735 2789 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2790 * nobody will actually run it, and a signal or other external
2791 * event cannot wake it up and insert it on the runqueue either.
2792 */
0017d735 2793 p->state = TASK_RUNNING;
dd41f596 2794
b9dc29e7
MG
2795 /*
2796 * Revert to default priority/policy on fork if requested.
2797 */
2798 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2799 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2800 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2801 p->normal_prio = p->static_prio;
2802 }
b9dc29e7 2803
6c697bdf
MG
2804 if (PRIO_TO_NICE(p->static_prio) < 0) {
2805 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2806 p->normal_prio = p->static_prio;
6c697bdf
MG
2807 set_load_weight(p);
2808 }
2809
b9dc29e7
MG
2810 /*
2811 * We don't need the reset flag anymore after the fork. It has
2812 * fulfilled its duty:
2813 */
2814 p->sched_reset_on_fork = 0;
2815 }
ca94c442 2816
f83f9ac2
PW
2817 /*
2818 * Make sure we do not leak PI boosting priority to the child.
2819 */
2820 p->prio = current->normal_prio;
2821
2ddbf952
HS
2822 if (!rt_prio(p->prio))
2823 p->sched_class = &fair_sched_class;
b29739f9 2824
cd29fe6f
PZ
2825 if (p->sched_class->task_fork)
2826 p->sched_class->task_fork(p);
2827
86951599
PZ
2828 /*
2829 * The child is not yet in the pid-hash so no cgroup attach races,
2830 * and the cgroup is pinned to this child due to cgroup_fork()
2831 * is ran before sched_fork().
2832 *
2833 * Silence PROVE_RCU.
2834 */
0122ec5b 2835 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2836 set_task_cpu(p, cpu);
0122ec5b 2837 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2838
52f17b6c 2839#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2840 if (likely(sched_info_on()))
52f17b6c 2841 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2842#endif
3ca7a440
PZ
2843#if defined(CONFIG_SMP)
2844 p->on_cpu = 0;
4866cde0 2845#endif
bdd4e85d 2846#ifdef CONFIG_PREEMPT_COUNT
4866cde0 2847 /* Want to start with kernel preemption disabled. */
a1261f54 2848 task_thread_info(p)->preempt_count = 1;
1da177e4 2849#endif
806c09a7 2850#ifdef CONFIG_SMP
917b627d 2851 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2852#endif
917b627d 2853
476d139c 2854 put_cpu();
1da177e4
LT
2855}
2856
2857/*
2858 * wake_up_new_task - wake up a newly created task for the first time.
2859 *
2860 * This function will do some initial scheduler statistics housekeeping
2861 * that must be done for every newly created context, then puts the task
2862 * on the runqueue and wakes it.
2863 */
3e51e3ed 2864void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2865{
2866 unsigned long flags;
dd41f596 2867 struct rq *rq;
fabf318e 2868
ab2515c4 2869 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2870#ifdef CONFIG_SMP
2871 /*
2872 * Fork balancing, do it here and not earlier because:
2873 * - cpus_allowed can change in the fork path
2874 * - any previously selected cpu might disappear through hotplug
fabf318e 2875 */
ab2515c4 2876 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
2877#endif
2878
ab2515c4 2879 rq = __task_rq_lock(p);
cd29fe6f 2880 activate_task(rq, p, 0);
fd2f4419 2881 p->on_rq = 1;
89363381 2882 trace_sched_wakeup_new(p, true);
a7558e01 2883 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2884#ifdef CONFIG_SMP
efbbd05a
PZ
2885 if (p->sched_class->task_woken)
2886 p->sched_class->task_woken(rq, p);
9a897c5a 2887#endif
0122ec5b 2888 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2889}
2890
e107be36
AK
2891#ifdef CONFIG_PREEMPT_NOTIFIERS
2892
2893/**
80dd99b3 2894 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2895 * @notifier: notifier struct to register
e107be36
AK
2896 */
2897void preempt_notifier_register(struct preempt_notifier *notifier)
2898{
2899 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2900}
2901EXPORT_SYMBOL_GPL(preempt_notifier_register);
2902
2903/**
2904 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2905 * @notifier: notifier struct to unregister
e107be36
AK
2906 *
2907 * This is safe to call from within a preemption notifier.
2908 */
2909void preempt_notifier_unregister(struct preempt_notifier *notifier)
2910{
2911 hlist_del(&notifier->link);
2912}
2913EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2914
2915static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2916{
2917 struct preempt_notifier *notifier;
2918 struct hlist_node *node;
2919
2920 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2921 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2922}
2923
2924static void
2925fire_sched_out_preempt_notifiers(struct task_struct *curr,
2926 struct task_struct *next)
2927{
2928 struct preempt_notifier *notifier;
2929 struct hlist_node *node;
2930
2931 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2932 notifier->ops->sched_out(notifier, next);
2933}
2934
6d6bc0ad 2935#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2936
2937static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2938{
2939}
2940
2941static void
2942fire_sched_out_preempt_notifiers(struct task_struct *curr,
2943 struct task_struct *next)
2944{
2945}
2946
6d6bc0ad 2947#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2948
4866cde0
NP
2949/**
2950 * prepare_task_switch - prepare to switch tasks
2951 * @rq: the runqueue preparing to switch
421cee29 2952 * @prev: the current task that is being switched out
4866cde0
NP
2953 * @next: the task we are going to switch to.
2954 *
2955 * This is called with the rq lock held and interrupts off. It must
2956 * be paired with a subsequent finish_task_switch after the context
2957 * switch.
2958 *
2959 * prepare_task_switch sets up locking and calls architecture specific
2960 * hooks.
2961 */
e107be36
AK
2962static inline void
2963prepare_task_switch(struct rq *rq, struct task_struct *prev,
2964 struct task_struct *next)
4866cde0 2965{
fe4b04fa
PZ
2966 sched_info_switch(prev, next);
2967 perf_event_task_sched_out(prev, next);
e107be36 2968 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2969 prepare_lock_switch(rq, next);
2970 prepare_arch_switch(next);
fe4b04fa 2971 trace_sched_switch(prev, next);
4866cde0
NP
2972}
2973
1da177e4
LT
2974/**
2975 * finish_task_switch - clean up after a task-switch
344babaa 2976 * @rq: runqueue associated with task-switch
1da177e4
LT
2977 * @prev: the thread we just switched away from.
2978 *
4866cde0
NP
2979 * finish_task_switch must be called after the context switch, paired
2980 * with a prepare_task_switch call before the context switch.
2981 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2982 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2983 *
2984 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2985 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2986 * with the lock held can cause deadlocks; see schedule() for
2987 * details.)
2988 */
a9957449 2989static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2990 __releases(rq->lock)
2991{
1da177e4 2992 struct mm_struct *mm = rq->prev_mm;
55a101f8 2993 long prev_state;
1da177e4
LT
2994
2995 rq->prev_mm = NULL;
2996
2997 /*
2998 * A task struct has one reference for the use as "current".
c394cc9f 2999 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3000 * schedule one last time. The schedule call will never return, and
3001 * the scheduled task must drop that reference.
c394cc9f 3002 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3003 * still held, otherwise prev could be scheduled on another cpu, die
3004 * there before we look at prev->state, and then the reference would
3005 * be dropped twice.
3006 * Manfred Spraul <manfred@colorfullife.com>
3007 */
55a101f8 3008 prev_state = prev->state;
4866cde0 3009 finish_arch_switch(prev);
8381f65d
JI
3010#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3011 local_irq_disable();
3012#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3013 perf_event_task_sched_in(current);
8381f65d
JI
3014#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3015 local_irq_enable();
3016#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3017 finish_lock_switch(rq, prev);
e8fa1362 3018
e107be36 3019 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3020 if (mm)
3021 mmdrop(mm);
c394cc9f 3022 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3023 /*
3024 * Remove function-return probe instances associated with this
3025 * task and put them back on the free list.
9761eea8 3026 */
c6fd91f0 3027 kprobe_flush_task(prev);
1da177e4 3028 put_task_struct(prev);
c6fd91f0 3029 }
1da177e4
LT
3030}
3031
3f029d3c
GH
3032#ifdef CONFIG_SMP
3033
3034/* assumes rq->lock is held */
3035static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3036{
3037 if (prev->sched_class->pre_schedule)
3038 prev->sched_class->pre_schedule(rq, prev);
3039}
3040
3041/* rq->lock is NOT held, but preemption is disabled */
3042static inline void post_schedule(struct rq *rq)
3043{
3044 if (rq->post_schedule) {
3045 unsigned long flags;
3046
05fa785c 3047 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3048 if (rq->curr->sched_class->post_schedule)
3049 rq->curr->sched_class->post_schedule(rq);
05fa785c 3050 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3051
3052 rq->post_schedule = 0;
3053 }
3054}
3055
3056#else
da19ab51 3057
3f029d3c
GH
3058static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3059{
3060}
3061
3062static inline void post_schedule(struct rq *rq)
3063{
1da177e4
LT
3064}
3065
3f029d3c
GH
3066#endif
3067
1da177e4
LT
3068/**
3069 * schedule_tail - first thing a freshly forked thread must call.
3070 * @prev: the thread we just switched away from.
3071 */
36c8b586 3072asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3073 __releases(rq->lock)
3074{
70b97a7f
IM
3075 struct rq *rq = this_rq();
3076
4866cde0 3077 finish_task_switch(rq, prev);
da19ab51 3078
3f029d3c
GH
3079 /*
3080 * FIXME: do we need to worry about rq being invalidated by the
3081 * task_switch?
3082 */
3083 post_schedule(rq);
70b97a7f 3084
4866cde0
NP
3085#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3086 /* In this case, finish_task_switch does not reenable preemption */
3087 preempt_enable();
3088#endif
1da177e4 3089 if (current->set_child_tid)
b488893a 3090 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3091}
3092
3093/*
3094 * context_switch - switch to the new MM and the new
3095 * thread's register state.
3096 */
dd41f596 3097static inline void
70b97a7f 3098context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3099 struct task_struct *next)
1da177e4 3100{
dd41f596 3101 struct mm_struct *mm, *oldmm;
1da177e4 3102
e107be36 3103 prepare_task_switch(rq, prev, next);
fe4b04fa 3104
dd41f596
IM
3105 mm = next->mm;
3106 oldmm = prev->active_mm;
9226d125
ZA
3107 /*
3108 * For paravirt, this is coupled with an exit in switch_to to
3109 * combine the page table reload and the switch backend into
3110 * one hypercall.
3111 */
224101ed 3112 arch_start_context_switch(prev);
9226d125 3113
31915ab4 3114 if (!mm) {
1da177e4
LT
3115 next->active_mm = oldmm;
3116 atomic_inc(&oldmm->mm_count);
3117 enter_lazy_tlb(oldmm, next);
3118 } else
3119 switch_mm(oldmm, mm, next);
3120
31915ab4 3121 if (!prev->mm) {
1da177e4 3122 prev->active_mm = NULL;
1da177e4
LT
3123 rq->prev_mm = oldmm;
3124 }
3a5f5e48
IM
3125 /*
3126 * Since the runqueue lock will be released by the next
3127 * task (which is an invalid locking op but in the case
3128 * of the scheduler it's an obvious special-case), so we
3129 * do an early lockdep release here:
3130 */
3131#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3132 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3133#endif
1da177e4
LT
3134
3135 /* Here we just switch the register state and the stack. */
3136 switch_to(prev, next, prev);
3137
dd41f596
IM
3138 barrier();
3139 /*
3140 * this_rq must be evaluated again because prev may have moved
3141 * CPUs since it called schedule(), thus the 'rq' on its stack
3142 * frame will be invalid.
3143 */
3144 finish_task_switch(this_rq(), prev);
1da177e4
LT
3145}
3146
3147/*
3148 * nr_running, nr_uninterruptible and nr_context_switches:
3149 *
3150 * externally visible scheduler statistics: current number of runnable
3151 * threads, current number of uninterruptible-sleeping threads, total
3152 * number of context switches performed since bootup.
3153 */
3154unsigned long nr_running(void)
3155{
3156 unsigned long i, sum = 0;
3157
3158 for_each_online_cpu(i)
3159 sum += cpu_rq(i)->nr_running;
3160
3161 return sum;
f711f609 3162}
1da177e4
LT
3163
3164unsigned long nr_uninterruptible(void)
f711f609 3165{
1da177e4 3166 unsigned long i, sum = 0;
f711f609 3167
0a945022 3168 for_each_possible_cpu(i)
1da177e4 3169 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3170
3171 /*
1da177e4
LT
3172 * Since we read the counters lockless, it might be slightly
3173 * inaccurate. Do not allow it to go below zero though:
f711f609 3174 */
1da177e4
LT
3175 if (unlikely((long)sum < 0))
3176 sum = 0;
f711f609 3177
1da177e4 3178 return sum;
f711f609 3179}
f711f609 3180
1da177e4 3181unsigned long long nr_context_switches(void)
46cb4b7c 3182{
cc94abfc
SR
3183 int i;
3184 unsigned long long sum = 0;
46cb4b7c 3185
0a945022 3186 for_each_possible_cpu(i)
1da177e4 3187 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3188
1da177e4
LT
3189 return sum;
3190}
483b4ee6 3191
1da177e4
LT
3192unsigned long nr_iowait(void)
3193{
3194 unsigned long i, sum = 0;
483b4ee6 3195
0a945022 3196 for_each_possible_cpu(i)
1da177e4 3197 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3198
1da177e4
LT
3199 return sum;
3200}
483b4ee6 3201
8c215bd3 3202unsigned long nr_iowait_cpu(int cpu)
69d25870 3203{
8c215bd3 3204 struct rq *this = cpu_rq(cpu);
69d25870
AV
3205 return atomic_read(&this->nr_iowait);
3206}
46cb4b7c 3207
69d25870
AV
3208unsigned long this_cpu_load(void)
3209{
3210 struct rq *this = this_rq();
3211 return this->cpu_load[0];
3212}
e790fb0b 3213
46cb4b7c 3214
dce48a84
TG
3215/* Variables and functions for calc_load */
3216static atomic_long_t calc_load_tasks;
3217static unsigned long calc_load_update;
3218unsigned long avenrun[3];
3219EXPORT_SYMBOL(avenrun);
46cb4b7c 3220
74f5187a
PZ
3221static long calc_load_fold_active(struct rq *this_rq)
3222{
3223 long nr_active, delta = 0;
3224
3225 nr_active = this_rq->nr_running;
3226 nr_active += (long) this_rq->nr_uninterruptible;
3227
3228 if (nr_active != this_rq->calc_load_active) {
3229 delta = nr_active - this_rq->calc_load_active;
3230 this_rq->calc_load_active = nr_active;
3231 }
3232
3233 return delta;
3234}
3235
0f004f5a
PZ
3236static unsigned long
3237calc_load(unsigned long load, unsigned long exp, unsigned long active)
3238{
3239 load *= exp;
3240 load += active * (FIXED_1 - exp);
3241 load += 1UL << (FSHIFT - 1);
3242 return load >> FSHIFT;
3243}
3244
74f5187a
PZ
3245#ifdef CONFIG_NO_HZ
3246/*
3247 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3248 *
3249 * When making the ILB scale, we should try to pull this in as well.
3250 */
3251static atomic_long_t calc_load_tasks_idle;
3252
3253static void calc_load_account_idle(struct rq *this_rq)
3254{
3255 long delta;
3256
3257 delta = calc_load_fold_active(this_rq);
3258 if (delta)
3259 atomic_long_add(delta, &calc_load_tasks_idle);
3260}
3261
3262static long calc_load_fold_idle(void)
3263{
3264 long delta = 0;
3265
3266 /*
3267 * Its got a race, we don't care...
3268 */
3269 if (atomic_long_read(&calc_load_tasks_idle))
3270 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3271
3272 return delta;
3273}
0f004f5a
PZ
3274
3275/**
3276 * fixed_power_int - compute: x^n, in O(log n) time
3277 *
3278 * @x: base of the power
3279 * @frac_bits: fractional bits of @x
3280 * @n: power to raise @x to.
3281 *
3282 * By exploiting the relation between the definition of the natural power
3283 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3284 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3285 * (where: n_i \elem {0, 1}, the binary vector representing n),
3286 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3287 * of course trivially computable in O(log_2 n), the length of our binary
3288 * vector.
3289 */
3290static unsigned long
3291fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3292{
3293 unsigned long result = 1UL << frac_bits;
3294
3295 if (n) for (;;) {
3296 if (n & 1) {
3297 result *= x;
3298 result += 1UL << (frac_bits - 1);
3299 result >>= frac_bits;
3300 }
3301 n >>= 1;
3302 if (!n)
3303 break;
3304 x *= x;
3305 x += 1UL << (frac_bits - 1);
3306 x >>= frac_bits;
3307 }
3308
3309 return result;
3310}
3311
3312/*
3313 * a1 = a0 * e + a * (1 - e)
3314 *
3315 * a2 = a1 * e + a * (1 - e)
3316 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3317 * = a0 * e^2 + a * (1 - e) * (1 + e)
3318 *
3319 * a3 = a2 * e + a * (1 - e)
3320 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3321 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3322 *
3323 * ...
3324 *
3325 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3326 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3327 * = a0 * e^n + a * (1 - e^n)
3328 *
3329 * [1] application of the geometric series:
3330 *
3331 * n 1 - x^(n+1)
3332 * S_n := \Sum x^i = -------------
3333 * i=0 1 - x
3334 */
3335static unsigned long
3336calc_load_n(unsigned long load, unsigned long exp,
3337 unsigned long active, unsigned int n)
3338{
3339
3340 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3341}
3342
3343/*
3344 * NO_HZ can leave us missing all per-cpu ticks calling
3345 * calc_load_account_active(), but since an idle CPU folds its delta into
3346 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3347 * in the pending idle delta if our idle period crossed a load cycle boundary.
3348 *
3349 * Once we've updated the global active value, we need to apply the exponential
3350 * weights adjusted to the number of cycles missed.
3351 */
3352static void calc_global_nohz(unsigned long ticks)
3353{
3354 long delta, active, n;
3355
3356 if (time_before(jiffies, calc_load_update))
3357 return;
3358
3359 /*
3360 * If we crossed a calc_load_update boundary, make sure to fold
3361 * any pending idle changes, the respective CPUs might have
3362 * missed the tick driven calc_load_account_active() update
3363 * due to NO_HZ.
3364 */
3365 delta = calc_load_fold_idle();
3366 if (delta)
3367 atomic_long_add(delta, &calc_load_tasks);
3368
3369 /*
3370 * If we were idle for multiple load cycles, apply them.
3371 */
3372 if (ticks >= LOAD_FREQ) {
3373 n = ticks / LOAD_FREQ;
3374
3375 active = atomic_long_read(&calc_load_tasks);
3376 active = active > 0 ? active * FIXED_1 : 0;
3377
3378 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3379 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3380 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3381
3382 calc_load_update += n * LOAD_FREQ;
3383 }
3384
3385 /*
3386 * Its possible the remainder of the above division also crosses
3387 * a LOAD_FREQ period, the regular check in calc_global_load()
3388 * which comes after this will take care of that.
3389 *
3390 * Consider us being 11 ticks before a cycle completion, and us
3391 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3392 * age us 4 cycles, and the test in calc_global_load() will
3393 * pick up the final one.
3394 */
3395}
74f5187a
PZ
3396#else
3397static void calc_load_account_idle(struct rq *this_rq)
3398{
3399}
3400
3401static inline long calc_load_fold_idle(void)
3402{
3403 return 0;
3404}
0f004f5a
PZ
3405
3406static void calc_global_nohz(unsigned long ticks)
3407{
3408}
74f5187a
PZ
3409#endif
3410
2d02494f
TG
3411/**
3412 * get_avenrun - get the load average array
3413 * @loads: pointer to dest load array
3414 * @offset: offset to add
3415 * @shift: shift count to shift the result left
3416 *
3417 * These values are estimates at best, so no need for locking.
3418 */
3419void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3420{
3421 loads[0] = (avenrun[0] + offset) << shift;
3422 loads[1] = (avenrun[1] + offset) << shift;
3423 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3424}
46cb4b7c 3425
46cb4b7c 3426/*
dce48a84
TG
3427 * calc_load - update the avenrun load estimates 10 ticks after the
3428 * CPUs have updated calc_load_tasks.
7835b98b 3429 */
0f004f5a 3430void calc_global_load(unsigned long ticks)
7835b98b 3431{
dce48a84 3432 long active;
1da177e4 3433
0f004f5a
PZ
3434 calc_global_nohz(ticks);
3435
3436 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3437 return;
1da177e4 3438
dce48a84
TG
3439 active = atomic_long_read(&calc_load_tasks);
3440 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3441
dce48a84
TG
3442 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3443 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3444 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3445
dce48a84
TG
3446 calc_load_update += LOAD_FREQ;
3447}
1da177e4 3448
dce48a84 3449/*
74f5187a
PZ
3450 * Called from update_cpu_load() to periodically update this CPU's
3451 * active count.
dce48a84
TG
3452 */
3453static void calc_load_account_active(struct rq *this_rq)
3454{
74f5187a 3455 long delta;
08c183f3 3456
74f5187a
PZ
3457 if (time_before(jiffies, this_rq->calc_load_update))
3458 return;
783609c6 3459
74f5187a
PZ
3460 delta = calc_load_fold_active(this_rq);
3461 delta += calc_load_fold_idle();
3462 if (delta)
dce48a84 3463 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3464
3465 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3466}
3467
fdf3e95d
VP
3468/*
3469 * The exact cpuload at various idx values, calculated at every tick would be
3470 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3471 *
3472 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3473 * on nth tick when cpu may be busy, then we have:
3474 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3475 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3476 *
3477 * decay_load_missed() below does efficient calculation of
3478 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3479 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3480 *
3481 * The calculation is approximated on a 128 point scale.
3482 * degrade_zero_ticks is the number of ticks after which load at any
3483 * particular idx is approximated to be zero.
3484 * degrade_factor is a precomputed table, a row for each load idx.
3485 * Each column corresponds to degradation factor for a power of two ticks,
3486 * based on 128 point scale.
3487 * Example:
3488 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3489 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3490 *
3491 * With this power of 2 load factors, we can degrade the load n times
3492 * by looking at 1 bits in n and doing as many mult/shift instead of
3493 * n mult/shifts needed by the exact degradation.
3494 */
3495#define DEGRADE_SHIFT 7
3496static const unsigned char
3497 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3498static const unsigned char
3499 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3500 {0, 0, 0, 0, 0, 0, 0, 0},
3501 {64, 32, 8, 0, 0, 0, 0, 0},
3502 {96, 72, 40, 12, 1, 0, 0},
3503 {112, 98, 75, 43, 15, 1, 0},
3504 {120, 112, 98, 76, 45, 16, 2} };
3505
3506/*
3507 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3508 * would be when CPU is idle and so we just decay the old load without
3509 * adding any new load.
3510 */
3511static unsigned long
3512decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3513{
3514 int j = 0;
3515
3516 if (!missed_updates)
3517 return load;
3518
3519 if (missed_updates >= degrade_zero_ticks[idx])
3520 return 0;
3521
3522 if (idx == 1)
3523 return load >> missed_updates;
3524
3525 while (missed_updates) {
3526 if (missed_updates % 2)
3527 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3528
3529 missed_updates >>= 1;
3530 j++;
3531 }
3532 return load;
3533}
3534
46cb4b7c 3535/*
dd41f596 3536 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3537 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3538 * every tick. We fix it up based on jiffies.
46cb4b7c 3539 */
dd41f596 3540static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3541{
495eca49 3542 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3543 unsigned long curr_jiffies = jiffies;
3544 unsigned long pending_updates;
dd41f596 3545 int i, scale;
46cb4b7c 3546
dd41f596 3547 this_rq->nr_load_updates++;
46cb4b7c 3548
fdf3e95d
VP
3549 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3550 if (curr_jiffies == this_rq->last_load_update_tick)
3551 return;
3552
3553 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3554 this_rq->last_load_update_tick = curr_jiffies;
3555
dd41f596 3556 /* Update our load: */
fdf3e95d
VP
3557 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3558 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3559 unsigned long old_load, new_load;
7d1e6a9b 3560
dd41f596 3561 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3562
dd41f596 3563 old_load = this_rq->cpu_load[i];
fdf3e95d 3564 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3565 new_load = this_load;
a25707f3
IM
3566 /*
3567 * Round up the averaging division if load is increasing. This
3568 * prevents us from getting stuck on 9 if the load is 10, for
3569 * example.
3570 */
3571 if (new_load > old_load)
fdf3e95d
VP
3572 new_load += scale - 1;
3573
3574 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3575 }
da2b71ed
SS
3576
3577 sched_avg_update(this_rq);
fdf3e95d
VP
3578}
3579
3580static void update_cpu_load_active(struct rq *this_rq)
3581{
3582 update_cpu_load(this_rq);
46cb4b7c 3583
74f5187a 3584 calc_load_account_active(this_rq);
46cb4b7c
SS
3585}
3586
dd41f596 3587#ifdef CONFIG_SMP
8a0be9ef 3588
46cb4b7c 3589/*
38022906
PZ
3590 * sched_exec - execve() is a valuable balancing opportunity, because at
3591 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3592 */
38022906 3593void sched_exec(void)
46cb4b7c 3594{
38022906 3595 struct task_struct *p = current;
1da177e4 3596 unsigned long flags;
0017d735 3597 int dest_cpu;
46cb4b7c 3598
8f42ced9 3599 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3600 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3601 if (dest_cpu == smp_processor_id())
3602 goto unlock;
38022906 3603
8f42ced9 3604 if (likely(cpu_active(dest_cpu))) {
969c7921 3605 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3606
8f42ced9
PZ
3607 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3608 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3609 return;
3610 }
0017d735 3611unlock:
8f42ced9 3612 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3613}
dd41f596 3614
1da177e4
LT
3615#endif
3616
1da177e4
LT
3617DEFINE_PER_CPU(struct kernel_stat, kstat);
3618
3619EXPORT_PER_CPU_SYMBOL(kstat);
3620
3621/*
c5f8d995 3622 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3623 * @p in case that task is currently running.
c5f8d995
HS
3624 *
3625 * Called with task_rq_lock() held on @rq.
1da177e4 3626 */
c5f8d995
HS
3627static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3628{
3629 u64 ns = 0;
3630
3631 if (task_current(rq, p)) {
3632 update_rq_clock(rq);
305e6835 3633 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3634 if ((s64)ns < 0)
3635 ns = 0;
3636 }
3637
3638 return ns;
3639}
3640
bb34d92f 3641unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3642{
1da177e4 3643 unsigned long flags;
41b86e9c 3644 struct rq *rq;
bb34d92f 3645 u64 ns = 0;
48f24c4d 3646
41b86e9c 3647 rq = task_rq_lock(p, &flags);
c5f8d995 3648 ns = do_task_delta_exec(p, rq);
0122ec5b 3649 task_rq_unlock(rq, p, &flags);
1508487e 3650
c5f8d995
HS
3651 return ns;
3652}
f06febc9 3653
c5f8d995
HS
3654/*
3655 * Return accounted runtime for the task.
3656 * In case the task is currently running, return the runtime plus current's
3657 * pending runtime that have not been accounted yet.
3658 */
3659unsigned long long task_sched_runtime(struct task_struct *p)
3660{
3661 unsigned long flags;
3662 struct rq *rq;
3663 u64 ns = 0;
3664
3665 rq = task_rq_lock(p, &flags);
3666 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3667 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3668
3669 return ns;
3670}
48f24c4d 3671
c5f8d995
HS
3672/*
3673 * Return sum_exec_runtime for the thread group.
3674 * In case the task is currently running, return the sum plus current's
3675 * pending runtime that have not been accounted yet.
3676 *
3677 * Note that the thread group might have other running tasks as well,
3678 * so the return value not includes other pending runtime that other
3679 * running tasks might have.
3680 */
3681unsigned long long thread_group_sched_runtime(struct task_struct *p)
3682{
3683 struct task_cputime totals;
3684 unsigned long flags;
3685 struct rq *rq;
3686 u64 ns;
3687
3688 rq = task_rq_lock(p, &flags);
3689 thread_group_cputime(p, &totals);
3690 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3691 task_rq_unlock(rq, p, &flags);
48f24c4d 3692
1da177e4
LT
3693 return ns;
3694}
3695
1da177e4
LT
3696/*
3697 * Account user cpu time to a process.
3698 * @p: the process that the cpu time gets accounted to
1da177e4 3699 * @cputime: the cpu time spent in user space since the last update
457533a7 3700 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3701 */
457533a7
MS
3702void account_user_time(struct task_struct *p, cputime_t cputime,
3703 cputime_t cputime_scaled)
1da177e4
LT
3704{
3705 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3706 cputime64_t tmp;
3707
457533a7 3708 /* Add user time to process. */
1da177e4 3709 p->utime = cputime_add(p->utime, cputime);
457533a7 3710 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3711 account_group_user_time(p, cputime);
1da177e4
LT
3712
3713 /* Add user time to cpustat. */
3714 tmp = cputime_to_cputime64(cputime);
3715 if (TASK_NICE(p) > 0)
3716 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3717 else
3718 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3719
3720 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3721 /* Account for user time used */
3722 acct_update_integrals(p);
1da177e4
LT
3723}
3724
94886b84
LV
3725/*
3726 * Account guest cpu time to a process.
3727 * @p: the process that the cpu time gets accounted to
3728 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3729 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3730 */
457533a7
MS
3731static void account_guest_time(struct task_struct *p, cputime_t cputime,
3732 cputime_t cputime_scaled)
94886b84
LV
3733{
3734 cputime64_t tmp;
3735 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3736
3737 tmp = cputime_to_cputime64(cputime);
3738
457533a7 3739 /* Add guest time to process. */
94886b84 3740 p->utime = cputime_add(p->utime, cputime);
457533a7 3741 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3742 account_group_user_time(p, cputime);
94886b84
LV
3743 p->gtime = cputime_add(p->gtime, cputime);
3744
457533a7 3745 /* Add guest time to cpustat. */
ce0e7b28
RO
3746 if (TASK_NICE(p) > 0) {
3747 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3748 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3749 } else {
3750 cpustat->user = cputime64_add(cpustat->user, tmp);
3751 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3752 }
94886b84
LV
3753}
3754
70a89a66
VP
3755/*
3756 * Account system cpu time to a process and desired cpustat field
3757 * @p: the process that the cpu time gets accounted to
3758 * @cputime: the cpu time spent in kernel space since the last update
3759 * @cputime_scaled: cputime scaled by cpu frequency
3760 * @target_cputime64: pointer to cpustat field that has to be updated
3761 */
3762static inline
3763void __account_system_time(struct task_struct *p, cputime_t cputime,
3764 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3765{
3766 cputime64_t tmp = cputime_to_cputime64(cputime);
3767
3768 /* Add system time to process. */
3769 p->stime = cputime_add(p->stime, cputime);
3770 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3771 account_group_system_time(p, cputime);
3772
3773 /* Add system time to cpustat. */
3774 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3775 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3776
3777 /* Account for system time used */
3778 acct_update_integrals(p);
3779}
3780
1da177e4
LT
3781/*
3782 * Account system cpu time to a process.
3783 * @p: the process that the cpu time gets accounted to
3784 * @hardirq_offset: the offset to subtract from hardirq_count()
3785 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3786 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3787 */
3788void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3789 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3790{
3791 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3792 cputime64_t *target_cputime64;
1da177e4 3793
983ed7a6 3794 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3795 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3796 return;
3797 }
94886b84 3798
1da177e4 3799 if (hardirq_count() - hardirq_offset)
70a89a66 3800 target_cputime64 = &cpustat->irq;
75e1056f 3801 else if (in_serving_softirq())
70a89a66 3802 target_cputime64 = &cpustat->softirq;
1da177e4 3803 else
70a89a66 3804 target_cputime64 = &cpustat->system;
ef12fefa 3805
70a89a66 3806 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3807}
3808
c66f08be 3809/*
1da177e4 3810 * Account for involuntary wait time.
544b4a1f 3811 * @cputime: the cpu time spent in involuntary wait
c66f08be 3812 */
79741dd3 3813void account_steal_time(cputime_t cputime)
c66f08be 3814{
79741dd3
MS
3815 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3816 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3817
3818 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3819}
3820
1da177e4 3821/*
79741dd3
MS
3822 * Account for idle time.
3823 * @cputime: the cpu time spent in idle wait
1da177e4 3824 */
79741dd3 3825void account_idle_time(cputime_t cputime)
1da177e4
LT
3826{
3827 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3828 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3829 struct rq *rq = this_rq();
1da177e4 3830
79741dd3
MS
3831 if (atomic_read(&rq->nr_iowait) > 0)
3832 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3833 else
3834 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3835}
3836
79741dd3
MS
3837#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3838
abb74cef
VP
3839#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3840/*
3841 * Account a tick to a process and cpustat
3842 * @p: the process that the cpu time gets accounted to
3843 * @user_tick: is the tick from userspace
3844 * @rq: the pointer to rq
3845 *
3846 * Tick demultiplexing follows the order
3847 * - pending hardirq update
3848 * - pending softirq update
3849 * - user_time
3850 * - idle_time
3851 * - system time
3852 * - check for guest_time
3853 * - else account as system_time
3854 *
3855 * Check for hardirq is done both for system and user time as there is
3856 * no timer going off while we are on hardirq and hence we may never get an
3857 * opportunity to update it solely in system time.
3858 * p->stime and friends are only updated on system time and not on irq
3859 * softirq as those do not count in task exec_runtime any more.
3860 */
3861static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3862 struct rq *rq)
3863{
3864 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3865 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3866 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3867
3868 if (irqtime_account_hi_update()) {
3869 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3870 } else if (irqtime_account_si_update()) {
3871 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3872 } else if (this_cpu_ksoftirqd() == p) {
3873 /*
3874 * ksoftirqd time do not get accounted in cpu_softirq_time.
3875 * So, we have to handle it separately here.
3876 * Also, p->stime needs to be updated for ksoftirqd.
3877 */
3878 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3879 &cpustat->softirq);
abb74cef
VP
3880 } else if (user_tick) {
3881 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3882 } else if (p == rq->idle) {
3883 account_idle_time(cputime_one_jiffy);
3884 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3885 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3886 } else {
3887 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3888 &cpustat->system);
3889 }
3890}
3891
3892static void irqtime_account_idle_ticks(int ticks)
3893{
3894 int i;
3895 struct rq *rq = this_rq();
3896
3897 for (i = 0; i < ticks; i++)
3898 irqtime_account_process_tick(current, 0, rq);
3899}
544b4a1f 3900#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3901static void irqtime_account_idle_ticks(int ticks) {}
3902static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3903 struct rq *rq) {}
544b4a1f 3904#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3905
3906/*
3907 * Account a single tick of cpu time.
3908 * @p: the process that the cpu time gets accounted to
3909 * @user_tick: indicates if the tick is a user or a system tick
3910 */
3911void account_process_tick(struct task_struct *p, int user_tick)
3912{
a42548a1 3913 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3914 struct rq *rq = this_rq();
3915
abb74cef
VP
3916 if (sched_clock_irqtime) {
3917 irqtime_account_process_tick(p, user_tick, rq);
3918 return;
3919 }
3920
79741dd3 3921 if (user_tick)
a42548a1 3922 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3923 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3924 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3925 one_jiffy_scaled);
3926 else
a42548a1 3927 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3928}
3929
3930/*
3931 * Account multiple ticks of steal time.
3932 * @p: the process from which the cpu time has been stolen
3933 * @ticks: number of stolen ticks
3934 */
3935void account_steal_ticks(unsigned long ticks)
3936{
3937 account_steal_time(jiffies_to_cputime(ticks));
3938}
3939
3940/*
3941 * Account multiple ticks of idle time.
3942 * @ticks: number of stolen ticks
3943 */
3944void account_idle_ticks(unsigned long ticks)
3945{
abb74cef
VP
3946
3947 if (sched_clock_irqtime) {
3948 irqtime_account_idle_ticks(ticks);
3949 return;
3950 }
3951
79741dd3 3952 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3953}
3954
79741dd3
MS
3955#endif
3956
49048622
BS
3957/*
3958 * Use precise platform statistics if available:
3959 */
3960#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3961void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3962{
d99ca3b9
HS
3963 *ut = p->utime;
3964 *st = p->stime;
49048622
BS
3965}
3966
0cf55e1e 3967void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3968{
0cf55e1e
HS
3969 struct task_cputime cputime;
3970
3971 thread_group_cputime(p, &cputime);
3972
3973 *ut = cputime.utime;
3974 *st = cputime.stime;
49048622
BS
3975}
3976#else
761b1d26
HS
3977
3978#ifndef nsecs_to_cputime
b7b20df9 3979# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3980#endif
3981
d180c5bc 3982void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3983{
d99ca3b9 3984 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3985
3986 /*
3987 * Use CFS's precise accounting:
3988 */
d180c5bc 3989 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3990
3991 if (total) {
e75e863d 3992 u64 temp = rtime;
d180c5bc 3993
e75e863d 3994 temp *= utime;
49048622 3995 do_div(temp, total);
d180c5bc
HS
3996 utime = (cputime_t)temp;
3997 } else
3998 utime = rtime;
49048622 3999
d180c5bc
HS
4000 /*
4001 * Compare with previous values, to keep monotonicity:
4002 */
761b1d26 4003 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4004 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4005
d99ca3b9
HS
4006 *ut = p->prev_utime;
4007 *st = p->prev_stime;
49048622
BS
4008}
4009
0cf55e1e
HS
4010/*
4011 * Must be called with siglock held.
4012 */
4013void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4014{
0cf55e1e
HS
4015 struct signal_struct *sig = p->signal;
4016 struct task_cputime cputime;
4017 cputime_t rtime, utime, total;
49048622 4018
0cf55e1e 4019 thread_group_cputime(p, &cputime);
49048622 4020
0cf55e1e
HS
4021 total = cputime_add(cputime.utime, cputime.stime);
4022 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4023
0cf55e1e 4024 if (total) {
e75e863d 4025 u64 temp = rtime;
49048622 4026
e75e863d 4027 temp *= cputime.utime;
0cf55e1e
HS
4028 do_div(temp, total);
4029 utime = (cputime_t)temp;
4030 } else
4031 utime = rtime;
4032
4033 sig->prev_utime = max(sig->prev_utime, utime);
4034 sig->prev_stime = max(sig->prev_stime,
4035 cputime_sub(rtime, sig->prev_utime));
4036
4037 *ut = sig->prev_utime;
4038 *st = sig->prev_stime;
49048622 4039}
49048622 4040#endif
49048622 4041
7835b98b
CL
4042/*
4043 * This function gets called by the timer code, with HZ frequency.
4044 * We call it with interrupts disabled.
7835b98b
CL
4045 */
4046void scheduler_tick(void)
4047{
7835b98b
CL
4048 int cpu = smp_processor_id();
4049 struct rq *rq = cpu_rq(cpu);
dd41f596 4050 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4051
4052 sched_clock_tick();
dd41f596 4053
05fa785c 4054 raw_spin_lock(&rq->lock);
3e51f33f 4055 update_rq_clock(rq);
fdf3e95d 4056 update_cpu_load_active(rq);
fa85ae24 4057 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4058 raw_spin_unlock(&rq->lock);
7835b98b 4059
e9d2b064 4060 perf_event_task_tick();
e220d2dc 4061
e418e1c2 4062#ifdef CONFIG_SMP
dd41f596
IM
4063 rq->idle_at_tick = idle_cpu(cpu);
4064 trigger_load_balance(rq, cpu);
e418e1c2 4065#endif
1da177e4
LT
4066}
4067
132380a0 4068notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4069{
4070 if (in_lock_functions(addr)) {
4071 addr = CALLER_ADDR2;
4072 if (in_lock_functions(addr))
4073 addr = CALLER_ADDR3;
4074 }
4075 return addr;
4076}
1da177e4 4077
7e49fcce
SR
4078#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4079 defined(CONFIG_PREEMPT_TRACER))
4080
43627582 4081void __kprobes add_preempt_count(int val)
1da177e4 4082{
6cd8a4bb 4083#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4084 /*
4085 * Underflow?
4086 */
9a11b49a
IM
4087 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4088 return;
6cd8a4bb 4089#endif
1da177e4 4090 preempt_count() += val;
6cd8a4bb 4091#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4092 /*
4093 * Spinlock count overflowing soon?
4094 */
33859f7f
MOS
4095 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4096 PREEMPT_MASK - 10);
6cd8a4bb
SR
4097#endif
4098 if (preempt_count() == val)
4099 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4100}
4101EXPORT_SYMBOL(add_preempt_count);
4102
43627582 4103void __kprobes sub_preempt_count(int val)
1da177e4 4104{
6cd8a4bb 4105#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4106 /*
4107 * Underflow?
4108 */
01e3eb82 4109 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4110 return;
1da177e4
LT
4111 /*
4112 * Is the spinlock portion underflowing?
4113 */
9a11b49a
IM
4114 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4115 !(preempt_count() & PREEMPT_MASK)))
4116 return;
6cd8a4bb 4117#endif
9a11b49a 4118
6cd8a4bb
SR
4119 if (preempt_count() == val)
4120 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4121 preempt_count() -= val;
4122}
4123EXPORT_SYMBOL(sub_preempt_count);
4124
4125#endif
4126
4127/*
dd41f596 4128 * Print scheduling while atomic bug:
1da177e4 4129 */
dd41f596 4130static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4131{
838225b4
SS
4132 struct pt_regs *regs = get_irq_regs();
4133
3df0fc5b
PZ
4134 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4135 prev->comm, prev->pid, preempt_count());
838225b4 4136
dd41f596 4137 debug_show_held_locks(prev);
e21f5b15 4138 print_modules();
dd41f596
IM
4139 if (irqs_disabled())
4140 print_irqtrace_events(prev);
838225b4
SS
4141
4142 if (regs)
4143 show_regs(regs);
4144 else
4145 dump_stack();
dd41f596 4146}
1da177e4 4147
dd41f596
IM
4148/*
4149 * Various schedule()-time debugging checks and statistics:
4150 */
4151static inline void schedule_debug(struct task_struct *prev)
4152{
1da177e4 4153 /*
41a2d6cf 4154 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4155 * schedule() atomically, we ignore that path for now.
4156 * Otherwise, whine if we are scheduling when we should not be.
4157 */
3f33a7ce 4158 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4159 __schedule_bug(prev);
4160
1da177e4
LT
4161 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4162
2d72376b 4163 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4164}
4165
6cecd084 4166static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4167{
61eadef6 4168 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4169 update_rq_clock(rq);
6cecd084 4170 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4171}
4172
dd41f596
IM
4173/*
4174 * Pick up the highest-prio task:
4175 */
4176static inline struct task_struct *
b67802ea 4177pick_next_task(struct rq *rq)
dd41f596 4178{
5522d5d5 4179 const struct sched_class *class;
dd41f596 4180 struct task_struct *p;
1da177e4
LT
4181
4182 /*
dd41f596
IM
4183 * Optimization: we know that if all tasks are in
4184 * the fair class we can call that function directly:
1da177e4 4185 */
dd41f596 4186 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4187 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4188 if (likely(p))
4189 return p;
1da177e4
LT
4190 }
4191
34f971f6 4192 for_each_class(class) {
fb8d4724 4193 p = class->pick_next_task(rq);
dd41f596
IM
4194 if (p)
4195 return p;
dd41f596 4196 }
34f971f6
PZ
4197
4198 BUG(); /* the idle class will always have a runnable task */
dd41f596 4199}
1da177e4 4200
dd41f596
IM
4201/*
4202 * schedule() is the main scheduler function.
4203 */
ff743345 4204asmlinkage void __sched schedule(void)
dd41f596
IM
4205{
4206 struct task_struct *prev, *next;
67ca7bde 4207 unsigned long *switch_count;
dd41f596 4208 struct rq *rq;
31656519 4209 int cpu;
dd41f596 4210
ff743345
PZ
4211need_resched:
4212 preempt_disable();
dd41f596
IM
4213 cpu = smp_processor_id();
4214 rq = cpu_rq(cpu);
25502a6c 4215 rcu_note_context_switch(cpu);
dd41f596 4216 prev = rq->curr;
dd41f596 4217
dd41f596 4218 schedule_debug(prev);
1da177e4 4219
31656519 4220 if (sched_feat(HRTICK))
f333fdc9 4221 hrtick_clear(rq);
8f4d37ec 4222
05fa785c 4223 raw_spin_lock_irq(&rq->lock);
1da177e4 4224
246d86b5 4225 switch_count = &prev->nivcsw;
1da177e4 4226 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4227 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4228 prev->state = TASK_RUNNING;
21aa9af0 4229 } else {
2acca55e
PZ
4230 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4231 prev->on_rq = 0;
4232
21aa9af0 4233 /*
2acca55e
PZ
4234 * If a worker went to sleep, notify and ask workqueue
4235 * whether it wants to wake up a task to maintain
4236 * concurrency.
21aa9af0
TH
4237 */
4238 if (prev->flags & PF_WQ_WORKER) {
4239 struct task_struct *to_wakeup;
4240
4241 to_wakeup = wq_worker_sleeping(prev, cpu);
4242 if (to_wakeup)
4243 try_to_wake_up_local(to_wakeup);
4244 }
fd2f4419 4245
6631e635 4246 /*
2acca55e
PZ
4247 * If we are going to sleep and we have plugged IO
4248 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4249 */
4250 if (blk_needs_flush_plug(prev)) {
4251 raw_spin_unlock(&rq->lock);
a237c1c5 4252 blk_schedule_flush_plug(prev);
6631e635
LT
4253 raw_spin_lock(&rq->lock);
4254 }
21aa9af0 4255 }
dd41f596 4256 switch_count = &prev->nvcsw;
1da177e4
LT
4257 }
4258
3f029d3c 4259 pre_schedule(rq, prev);
f65eda4f 4260
dd41f596 4261 if (unlikely(!rq->nr_running))
1da177e4 4262 idle_balance(cpu, rq);
1da177e4 4263
df1c99d4 4264 put_prev_task(rq, prev);
b67802ea 4265 next = pick_next_task(rq);
f26f9aff
MG
4266 clear_tsk_need_resched(prev);
4267 rq->skip_clock_update = 0;
1da177e4 4268
1da177e4 4269 if (likely(prev != next)) {
1da177e4
LT
4270 rq->nr_switches++;
4271 rq->curr = next;
4272 ++*switch_count;
4273
dd41f596 4274 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4275 /*
246d86b5
ON
4276 * The context switch have flipped the stack from under us
4277 * and restored the local variables which were saved when
4278 * this task called schedule() in the past. prev == current
4279 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4280 */
4281 cpu = smp_processor_id();
4282 rq = cpu_rq(cpu);
1da177e4 4283 } else
05fa785c 4284 raw_spin_unlock_irq(&rq->lock);
1da177e4 4285
3f029d3c 4286 post_schedule(rq);
1da177e4 4287
1da177e4 4288 preempt_enable_no_resched();
ff743345 4289 if (need_resched())
1da177e4
LT
4290 goto need_resched;
4291}
1da177e4
LT
4292EXPORT_SYMBOL(schedule);
4293
c08f7829 4294#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4295
c6eb3dda
PZ
4296static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4297{
4298 bool ret = false;
0d66bf6d 4299
c6eb3dda
PZ
4300 rcu_read_lock();
4301 if (lock->owner != owner)
4302 goto fail;
0d66bf6d
PZ
4303
4304 /*
c6eb3dda
PZ
4305 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4306 * lock->owner still matches owner, if that fails, owner might
4307 * point to free()d memory, if it still matches, the rcu_read_lock()
4308 * ensures the memory stays valid.
0d66bf6d 4309 */
c6eb3dda 4310 barrier();
0d66bf6d 4311
c6eb3dda
PZ
4312 ret = owner->on_cpu;
4313fail:
4314 rcu_read_unlock();
0d66bf6d 4315
c6eb3dda
PZ
4316 return ret;
4317}
0d66bf6d 4318
c6eb3dda
PZ
4319/*
4320 * Look out! "owner" is an entirely speculative pointer
4321 * access and not reliable.
4322 */
4323int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4324{
4325 if (!sched_feat(OWNER_SPIN))
4326 return 0;
0d66bf6d 4327
c6eb3dda
PZ
4328 while (owner_running(lock, owner)) {
4329 if (need_resched())
0d66bf6d
PZ
4330 return 0;
4331
335d7afb 4332 arch_mutex_cpu_relax();
0d66bf6d 4333 }
4b402210 4334
c6eb3dda
PZ
4335 /*
4336 * If the owner changed to another task there is likely
4337 * heavy contention, stop spinning.
4338 */
4339 if (lock->owner)
4340 return 0;
4341
0d66bf6d
PZ
4342 return 1;
4343}
4344#endif
4345
1da177e4
LT
4346#ifdef CONFIG_PREEMPT
4347/*
2ed6e34f 4348 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4349 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4350 * occur there and call schedule directly.
4351 */
d1f74e20 4352asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4353{
4354 struct thread_info *ti = current_thread_info();
6478d880 4355
1da177e4
LT
4356 /*
4357 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4358 * we do not want to preempt the current task. Just return..
1da177e4 4359 */
beed33a8 4360 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4361 return;
4362
3a5c359a 4363 do {
d1f74e20 4364 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4365 schedule();
d1f74e20 4366 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4367
3a5c359a
AK
4368 /*
4369 * Check again in case we missed a preemption opportunity
4370 * between schedule and now.
4371 */
4372 barrier();
5ed0cec0 4373 } while (need_resched());
1da177e4 4374}
1da177e4
LT
4375EXPORT_SYMBOL(preempt_schedule);
4376
4377/*
2ed6e34f 4378 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4379 * off of irq context.
4380 * Note, that this is called and return with irqs disabled. This will
4381 * protect us against recursive calling from irq.
4382 */
4383asmlinkage void __sched preempt_schedule_irq(void)
4384{
4385 struct thread_info *ti = current_thread_info();
6478d880 4386
2ed6e34f 4387 /* Catch callers which need to be fixed */
1da177e4
LT
4388 BUG_ON(ti->preempt_count || !irqs_disabled());
4389
3a5c359a
AK
4390 do {
4391 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4392 local_irq_enable();
4393 schedule();
4394 local_irq_disable();
3a5c359a 4395 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4396
3a5c359a
AK
4397 /*
4398 * Check again in case we missed a preemption opportunity
4399 * between schedule and now.
4400 */
4401 barrier();
5ed0cec0 4402 } while (need_resched());
1da177e4
LT
4403}
4404
4405#endif /* CONFIG_PREEMPT */
4406
63859d4f 4407int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4408 void *key)
1da177e4 4409{
63859d4f 4410 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4411}
1da177e4
LT
4412EXPORT_SYMBOL(default_wake_function);
4413
4414/*
41a2d6cf
IM
4415 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4416 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4417 * number) then we wake all the non-exclusive tasks and one exclusive task.
4418 *
4419 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4420 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4421 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4422 */
78ddb08f 4423static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4424 int nr_exclusive, int wake_flags, void *key)
1da177e4 4425{
2e45874c 4426 wait_queue_t *curr, *next;
1da177e4 4427
2e45874c 4428 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4429 unsigned flags = curr->flags;
4430
63859d4f 4431 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4432 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4433 break;
4434 }
4435}
4436
4437/**
4438 * __wake_up - wake up threads blocked on a waitqueue.
4439 * @q: the waitqueue
4440 * @mode: which threads
4441 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4442 * @key: is directly passed to the wakeup function
50fa610a
DH
4443 *
4444 * It may be assumed that this function implies a write memory barrier before
4445 * changing the task state if and only if any tasks are woken up.
1da177e4 4446 */
7ad5b3a5 4447void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4448 int nr_exclusive, void *key)
1da177e4
LT
4449{
4450 unsigned long flags;
4451
4452 spin_lock_irqsave(&q->lock, flags);
4453 __wake_up_common(q, mode, nr_exclusive, 0, key);
4454 spin_unlock_irqrestore(&q->lock, flags);
4455}
1da177e4
LT
4456EXPORT_SYMBOL(__wake_up);
4457
4458/*
4459 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4460 */
7ad5b3a5 4461void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4462{
4463 __wake_up_common(q, mode, 1, 0, NULL);
4464}
22c43c81 4465EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4466
4ede816a
DL
4467void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4468{
4469 __wake_up_common(q, mode, 1, 0, key);
4470}
bf294b41 4471EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4472
1da177e4 4473/**
4ede816a 4474 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4475 * @q: the waitqueue
4476 * @mode: which threads
4477 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4478 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4479 *
4480 * The sync wakeup differs that the waker knows that it will schedule
4481 * away soon, so while the target thread will be woken up, it will not
4482 * be migrated to another CPU - ie. the two threads are 'synchronized'
4483 * with each other. This can prevent needless bouncing between CPUs.
4484 *
4485 * On UP it can prevent extra preemption.
50fa610a
DH
4486 *
4487 * It may be assumed that this function implies a write memory barrier before
4488 * changing the task state if and only if any tasks are woken up.
1da177e4 4489 */
4ede816a
DL
4490void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4491 int nr_exclusive, void *key)
1da177e4
LT
4492{
4493 unsigned long flags;
7d478721 4494 int wake_flags = WF_SYNC;
1da177e4
LT
4495
4496 if (unlikely(!q))
4497 return;
4498
4499 if (unlikely(!nr_exclusive))
7d478721 4500 wake_flags = 0;
1da177e4
LT
4501
4502 spin_lock_irqsave(&q->lock, flags);
7d478721 4503 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4504 spin_unlock_irqrestore(&q->lock, flags);
4505}
4ede816a
DL
4506EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4507
4508/*
4509 * __wake_up_sync - see __wake_up_sync_key()
4510 */
4511void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4512{
4513 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4514}
1da177e4
LT
4515EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4516
65eb3dc6
KD
4517/**
4518 * complete: - signals a single thread waiting on this completion
4519 * @x: holds the state of this particular completion
4520 *
4521 * This will wake up a single thread waiting on this completion. Threads will be
4522 * awakened in the same order in which they were queued.
4523 *
4524 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4525 *
4526 * It may be assumed that this function implies a write memory barrier before
4527 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4528 */
b15136e9 4529void complete(struct completion *x)
1da177e4
LT
4530{
4531 unsigned long flags;
4532
4533 spin_lock_irqsave(&x->wait.lock, flags);
4534 x->done++;
d9514f6c 4535 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4536 spin_unlock_irqrestore(&x->wait.lock, flags);
4537}
4538EXPORT_SYMBOL(complete);
4539
65eb3dc6
KD
4540/**
4541 * complete_all: - signals all threads waiting on this completion
4542 * @x: holds the state of this particular completion
4543 *
4544 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4545 *
4546 * It may be assumed that this function implies a write memory barrier before
4547 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4548 */
b15136e9 4549void complete_all(struct completion *x)
1da177e4
LT
4550{
4551 unsigned long flags;
4552
4553 spin_lock_irqsave(&x->wait.lock, flags);
4554 x->done += UINT_MAX/2;
d9514f6c 4555 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4556 spin_unlock_irqrestore(&x->wait.lock, flags);
4557}
4558EXPORT_SYMBOL(complete_all);
4559
8cbbe86d
AK
4560static inline long __sched
4561do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4562{
1da177e4
LT
4563 if (!x->done) {
4564 DECLARE_WAITQUEUE(wait, current);
4565
a93d2f17 4566 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4567 do {
94d3d824 4568 if (signal_pending_state(state, current)) {
ea71a546
ON
4569 timeout = -ERESTARTSYS;
4570 break;
8cbbe86d
AK
4571 }
4572 __set_current_state(state);
1da177e4
LT
4573 spin_unlock_irq(&x->wait.lock);
4574 timeout = schedule_timeout(timeout);
4575 spin_lock_irq(&x->wait.lock);
ea71a546 4576 } while (!x->done && timeout);
1da177e4 4577 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4578 if (!x->done)
4579 return timeout;
1da177e4
LT
4580 }
4581 x->done--;
ea71a546 4582 return timeout ?: 1;
1da177e4 4583}
1da177e4 4584
8cbbe86d
AK
4585static long __sched
4586wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4587{
1da177e4
LT
4588 might_sleep();
4589
4590 spin_lock_irq(&x->wait.lock);
8cbbe86d 4591 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4592 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4593 return timeout;
4594}
1da177e4 4595
65eb3dc6
KD
4596/**
4597 * wait_for_completion: - waits for completion of a task
4598 * @x: holds the state of this particular completion
4599 *
4600 * This waits to be signaled for completion of a specific task. It is NOT
4601 * interruptible and there is no timeout.
4602 *
4603 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4604 * and interrupt capability. Also see complete().
4605 */
b15136e9 4606void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4607{
4608 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4609}
8cbbe86d 4610EXPORT_SYMBOL(wait_for_completion);
1da177e4 4611
65eb3dc6
KD
4612/**
4613 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4614 * @x: holds the state of this particular completion
4615 * @timeout: timeout value in jiffies
4616 *
4617 * This waits for either a completion of a specific task to be signaled or for a
4618 * specified timeout to expire. The timeout is in jiffies. It is not
4619 * interruptible.
4620 */
b15136e9 4621unsigned long __sched
8cbbe86d 4622wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4623{
8cbbe86d 4624 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4625}
8cbbe86d 4626EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4627
65eb3dc6
KD
4628/**
4629 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4630 * @x: holds the state of this particular completion
4631 *
4632 * This waits for completion of a specific task to be signaled. It is
4633 * interruptible.
4634 */
8cbbe86d 4635int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4636{
51e97990
AK
4637 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4638 if (t == -ERESTARTSYS)
4639 return t;
4640 return 0;
0fec171c 4641}
8cbbe86d 4642EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4643
65eb3dc6
KD
4644/**
4645 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4646 * @x: holds the state of this particular completion
4647 * @timeout: timeout value in jiffies
4648 *
4649 * This waits for either a completion of a specific task to be signaled or for a
4650 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4651 */
6bf41237 4652long __sched
8cbbe86d
AK
4653wait_for_completion_interruptible_timeout(struct completion *x,
4654 unsigned long timeout)
0fec171c 4655{
8cbbe86d 4656 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4657}
8cbbe86d 4658EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4659
65eb3dc6
KD
4660/**
4661 * wait_for_completion_killable: - waits for completion of a task (killable)
4662 * @x: holds the state of this particular completion
4663 *
4664 * This waits to be signaled for completion of a specific task. It can be
4665 * interrupted by a kill signal.
4666 */
009e577e
MW
4667int __sched wait_for_completion_killable(struct completion *x)
4668{
4669 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4670 if (t == -ERESTARTSYS)
4671 return t;
4672 return 0;
4673}
4674EXPORT_SYMBOL(wait_for_completion_killable);
4675
0aa12fb4
SW
4676/**
4677 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4678 * @x: holds the state of this particular completion
4679 * @timeout: timeout value in jiffies
4680 *
4681 * This waits for either a completion of a specific task to be
4682 * signaled or for a specified timeout to expire. It can be
4683 * interrupted by a kill signal. The timeout is in jiffies.
4684 */
6bf41237 4685long __sched
0aa12fb4
SW
4686wait_for_completion_killable_timeout(struct completion *x,
4687 unsigned long timeout)
4688{
4689 return wait_for_common(x, timeout, TASK_KILLABLE);
4690}
4691EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4692
be4de352
DC
4693/**
4694 * try_wait_for_completion - try to decrement a completion without blocking
4695 * @x: completion structure
4696 *
4697 * Returns: 0 if a decrement cannot be done without blocking
4698 * 1 if a decrement succeeded.
4699 *
4700 * If a completion is being used as a counting completion,
4701 * attempt to decrement the counter without blocking. This
4702 * enables us to avoid waiting if the resource the completion
4703 * is protecting is not available.
4704 */
4705bool try_wait_for_completion(struct completion *x)
4706{
7539a3b3 4707 unsigned long flags;
be4de352
DC
4708 int ret = 1;
4709
7539a3b3 4710 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4711 if (!x->done)
4712 ret = 0;
4713 else
4714 x->done--;
7539a3b3 4715 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4716 return ret;
4717}
4718EXPORT_SYMBOL(try_wait_for_completion);
4719
4720/**
4721 * completion_done - Test to see if a completion has any waiters
4722 * @x: completion structure
4723 *
4724 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4725 * 1 if there are no waiters.
4726 *
4727 */
4728bool completion_done(struct completion *x)
4729{
7539a3b3 4730 unsigned long flags;
be4de352
DC
4731 int ret = 1;
4732
7539a3b3 4733 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4734 if (!x->done)
4735 ret = 0;
7539a3b3 4736 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4737 return ret;
4738}
4739EXPORT_SYMBOL(completion_done);
4740
8cbbe86d
AK
4741static long __sched
4742sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4743{
0fec171c
IM
4744 unsigned long flags;
4745 wait_queue_t wait;
4746
4747 init_waitqueue_entry(&wait, current);
1da177e4 4748
8cbbe86d 4749 __set_current_state(state);
1da177e4 4750
8cbbe86d
AK
4751 spin_lock_irqsave(&q->lock, flags);
4752 __add_wait_queue(q, &wait);
4753 spin_unlock(&q->lock);
4754 timeout = schedule_timeout(timeout);
4755 spin_lock_irq(&q->lock);
4756 __remove_wait_queue(q, &wait);
4757 spin_unlock_irqrestore(&q->lock, flags);
4758
4759 return timeout;
4760}
4761
4762void __sched interruptible_sleep_on(wait_queue_head_t *q)
4763{
4764 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4765}
1da177e4
LT
4766EXPORT_SYMBOL(interruptible_sleep_on);
4767
0fec171c 4768long __sched
95cdf3b7 4769interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4770{
8cbbe86d 4771 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4772}
1da177e4
LT
4773EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4774
0fec171c 4775void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4776{
8cbbe86d 4777 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4778}
1da177e4
LT
4779EXPORT_SYMBOL(sleep_on);
4780
0fec171c 4781long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4782{
8cbbe86d 4783 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4784}
1da177e4
LT
4785EXPORT_SYMBOL(sleep_on_timeout);
4786
b29739f9
IM
4787#ifdef CONFIG_RT_MUTEXES
4788
4789/*
4790 * rt_mutex_setprio - set the current priority of a task
4791 * @p: task
4792 * @prio: prio value (kernel-internal form)
4793 *
4794 * This function changes the 'effective' priority of a task. It does
4795 * not touch ->normal_prio like __setscheduler().
4796 *
4797 * Used by the rt_mutex code to implement priority inheritance logic.
4798 */
36c8b586 4799void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4800{
83b699ed 4801 int oldprio, on_rq, running;
70b97a7f 4802 struct rq *rq;
83ab0aa0 4803 const struct sched_class *prev_class;
b29739f9
IM
4804
4805 BUG_ON(prio < 0 || prio > MAX_PRIO);
4806
0122ec5b 4807 rq = __task_rq_lock(p);
b29739f9 4808
a8027073 4809 trace_sched_pi_setprio(p, prio);
d5f9f942 4810 oldprio = p->prio;
83ab0aa0 4811 prev_class = p->sched_class;
fd2f4419 4812 on_rq = p->on_rq;
051a1d1a 4813 running = task_current(rq, p);
0e1f3483 4814 if (on_rq)
69be72c1 4815 dequeue_task(rq, p, 0);
0e1f3483
HS
4816 if (running)
4817 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4818
4819 if (rt_prio(prio))
4820 p->sched_class = &rt_sched_class;
4821 else
4822 p->sched_class = &fair_sched_class;
4823
b29739f9
IM
4824 p->prio = prio;
4825
0e1f3483
HS
4826 if (running)
4827 p->sched_class->set_curr_task(rq);
da7a735e 4828 if (on_rq)
371fd7e7 4829 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4830
da7a735e 4831 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4832 __task_rq_unlock(rq);
b29739f9
IM
4833}
4834
4835#endif
4836
36c8b586 4837void set_user_nice(struct task_struct *p, long nice)
1da177e4 4838{
dd41f596 4839 int old_prio, delta, on_rq;
1da177e4 4840 unsigned long flags;
70b97a7f 4841 struct rq *rq;
1da177e4
LT
4842
4843 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4844 return;
4845 /*
4846 * We have to be careful, if called from sys_setpriority(),
4847 * the task might be in the middle of scheduling on another CPU.
4848 */
4849 rq = task_rq_lock(p, &flags);
4850 /*
4851 * The RT priorities are set via sched_setscheduler(), but we still
4852 * allow the 'normal' nice value to be set - but as expected
4853 * it wont have any effect on scheduling until the task is
dd41f596 4854 * SCHED_FIFO/SCHED_RR:
1da177e4 4855 */
e05606d3 4856 if (task_has_rt_policy(p)) {
1da177e4
LT
4857 p->static_prio = NICE_TO_PRIO(nice);
4858 goto out_unlock;
4859 }
fd2f4419 4860 on_rq = p->on_rq;
c09595f6 4861 if (on_rq)
69be72c1 4862 dequeue_task(rq, p, 0);
1da177e4 4863
1da177e4 4864 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4865 set_load_weight(p);
b29739f9
IM
4866 old_prio = p->prio;
4867 p->prio = effective_prio(p);
4868 delta = p->prio - old_prio;
1da177e4 4869
dd41f596 4870 if (on_rq) {
371fd7e7 4871 enqueue_task(rq, p, 0);
1da177e4 4872 /*
d5f9f942
AM
4873 * If the task increased its priority or is running and
4874 * lowered its priority, then reschedule its CPU:
1da177e4 4875 */
d5f9f942 4876 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4877 resched_task(rq->curr);
4878 }
4879out_unlock:
0122ec5b 4880 task_rq_unlock(rq, p, &flags);
1da177e4 4881}
1da177e4
LT
4882EXPORT_SYMBOL(set_user_nice);
4883
e43379f1
MM
4884/*
4885 * can_nice - check if a task can reduce its nice value
4886 * @p: task
4887 * @nice: nice value
4888 */
36c8b586 4889int can_nice(const struct task_struct *p, const int nice)
e43379f1 4890{
024f4747
MM
4891 /* convert nice value [19,-20] to rlimit style value [1,40] */
4892 int nice_rlim = 20 - nice;
48f24c4d 4893
78d7d407 4894 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4895 capable(CAP_SYS_NICE));
4896}
4897
1da177e4
LT
4898#ifdef __ARCH_WANT_SYS_NICE
4899
4900/*
4901 * sys_nice - change the priority of the current process.
4902 * @increment: priority increment
4903 *
4904 * sys_setpriority is a more generic, but much slower function that
4905 * does similar things.
4906 */
5add95d4 4907SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4908{
48f24c4d 4909 long nice, retval;
1da177e4
LT
4910
4911 /*
4912 * Setpriority might change our priority at the same moment.
4913 * We don't have to worry. Conceptually one call occurs first
4914 * and we have a single winner.
4915 */
e43379f1
MM
4916 if (increment < -40)
4917 increment = -40;
1da177e4
LT
4918 if (increment > 40)
4919 increment = 40;
4920
2b8f836f 4921 nice = TASK_NICE(current) + increment;
1da177e4
LT
4922 if (nice < -20)
4923 nice = -20;
4924 if (nice > 19)
4925 nice = 19;
4926
e43379f1
MM
4927 if (increment < 0 && !can_nice(current, nice))
4928 return -EPERM;
4929
1da177e4
LT
4930 retval = security_task_setnice(current, nice);
4931 if (retval)
4932 return retval;
4933
4934 set_user_nice(current, nice);
4935 return 0;
4936}
4937
4938#endif
4939
4940/**
4941 * task_prio - return the priority value of a given task.
4942 * @p: the task in question.
4943 *
4944 * This is the priority value as seen by users in /proc.
4945 * RT tasks are offset by -200. Normal tasks are centered
4946 * around 0, value goes from -16 to +15.
4947 */
36c8b586 4948int task_prio(const struct task_struct *p)
1da177e4
LT
4949{
4950 return p->prio - MAX_RT_PRIO;
4951}
4952
4953/**
4954 * task_nice - return the nice value of a given task.
4955 * @p: the task in question.
4956 */
36c8b586 4957int task_nice(const struct task_struct *p)
1da177e4
LT
4958{
4959 return TASK_NICE(p);
4960}
150d8bed 4961EXPORT_SYMBOL(task_nice);
1da177e4
LT
4962
4963/**
4964 * idle_cpu - is a given cpu idle currently?
4965 * @cpu: the processor in question.
4966 */
4967int idle_cpu(int cpu)
4968{
4969 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4970}
4971
1da177e4
LT
4972/**
4973 * idle_task - return the idle task for a given cpu.
4974 * @cpu: the processor in question.
4975 */
36c8b586 4976struct task_struct *idle_task(int cpu)
1da177e4
LT
4977{
4978 return cpu_rq(cpu)->idle;
4979}
4980
4981/**
4982 * find_process_by_pid - find a process with a matching PID value.
4983 * @pid: the pid in question.
4984 */
a9957449 4985static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4986{
228ebcbe 4987 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4988}
4989
4990/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4991static void
4992__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4993{
1da177e4
LT
4994 p->policy = policy;
4995 p->rt_priority = prio;
b29739f9
IM
4996 p->normal_prio = normal_prio(p);
4997 /* we are holding p->pi_lock already */
4998 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4999 if (rt_prio(p->prio))
5000 p->sched_class = &rt_sched_class;
5001 else
5002 p->sched_class = &fair_sched_class;
2dd73a4f 5003 set_load_weight(p);
1da177e4
LT
5004}
5005
c69e8d9c
DH
5006/*
5007 * check the target process has a UID that matches the current process's
5008 */
5009static bool check_same_owner(struct task_struct *p)
5010{
5011 const struct cred *cred = current_cred(), *pcred;
5012 bool match;
5013
5014 rcu_read_lock();
5015 pcred = __task_cred(p);
b0e77598
SH
5016 if (cred->user->user_ns == pcred->user->user_ns)
5017 match = (cred->euid == pcred->euid ||
5018 cred->euid == pcred->uid);
5019 else
5020 match = false;
c69e8d9c
DH
5021 rcu_read_unlock();
5022 return match;
5023}
5024
961ccddd 5025static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5026 const struct sched_param *param, bool user)
1da177e4 5027{
83b699ed 5028 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5029 unsigned long flags;
83ab0aa0 5030 const struct sched_class *prev_class;
70b97a7f 5031 struct rq *rq;
ca94c442 5032 int reset_on_fork;
1da177e4 5033
66e5393a
SR
5034 /* may grab non-irq protected spin_locks */
5035 BUG_ON(in_interrupt());
1da177e4
LT
5036recheck:
5037 /* double check policy once rq lock held */
ca94c442
LP
5038 if (policy < 0) {
5039 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5040 policy = oldpolicy = p->policy;
ca94c442
LP
5041 } else {
5042 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5043 policy &= ~SCHED_RESET_ON_FORK;
5044
5045 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5046 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5047 policy != SCHED_IDLE)
5048 return -EINVAL;
5049 }
5050
1da177e4
LT
5051 /*
5052 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5053 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5054 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5055 */
5056 if (param->sched_priority < 0 ||
95cdf3b7 5057 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5058 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5059 return -EINVAL;
e05606d3 5060 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5061 return -EINVAL;
5062
37e4ab3f
OC
5063 /*
5064 * Allow unprivileged RT tasks to decrease priority:
5065 */
961ccddd 5066 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5067 if (rt_policy(policy)) {
a44702e8
ON
5068 unsigned long rlim_rtprio =
5069 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5070
5071 /* can't set/change the rt policy */
5072 if (policy != p->policy && !rlim_rtprio)
5073 return -EPERM;
5074
5075 /* can't increase priority */
5076 if (param->sched_priority > p->rt_priority &&
5077 param->sched_priority > rlim_rtprio)
5078 return -EPERM;
5079 }
c02aa73b 5080
dd41f596 5081 /*
c02aa73b
DH
5082 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5083 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5084 */
c02aa73b
DH
5085 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5086 if (!can_nice(p, TASK_NICE(p)))
5087 return -EPERM;
5088 }
5fe1d75f 5089
37e4ab3f 5090 /* can't change other user's priorities */
c69e8d9c 5091 if (!check_same_owner(p))
37e4ab3f 5092 return -EPERM;
ca94c442
LP
5093
5094 /* Normal users shall not reset the sched_reset_on_fork flag */
5095 if (p->sched_reset_on_fork && !reset_on_fork)
5096 return -EPERM;
37e4ab3f 5097 }
1da177e4 5098
725aad24 5099 if (user) {
b0ae1981 5100 retval = security_task_setscheduler(p);
725aad24
JF
5101 if (retval)
5102 return retval;
5103 }
5104
b29739f9
IM
5105 /*
5106 * make sure no PI-waiters arrive (or leave) while we are
5107 * changing the priority of the task:
0122ec5b 5108 *
25985edc 5109 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5110 * runqueue lock must be held.
5111 */
0122ec5b 5112 rq = task_rq_lock(p, &flags);
dc61b1d6 5113
34f971f6
PZ
5114 /*
5115 * Changing the policy of the stop threads its a very bad idea
5116 */
5117 if (p == rq->stop) {
0122ec5b 5118 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5119 return -EINVAL;
5120 }
5121
a51e9198
DF
5122 /*
5123 * If not changing anything there's no need to proceed further:
5124 */
5125 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5126 param->sched_priority == p->rt_priority))) {
5127
5128 __task_rq_unlock(rq);
5129 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5130 return 0;
5131 }
5132
dc61b1d6
PZ
5133#ifdef CONFIG_RT_GROUP_SCHED
5134 if (user) {
5135 /*
5136 * Do not allow realtime tasks into groups that have no runtime
5137 * assigned.
5138 */
5139 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5140 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5141 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5142 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5143 return -EPERM;
5144 }
5145 }
5146#endif
5147
1da177e4
LT
5148 /* recheck policy now with rq lock held */
5149 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5150 policy = oldpolicy = -1;
0122ec5b 5151 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5152 goto recheck;
5153 }
fd2f4419 5154 on_rq = p->on_rq;
051a1d1a 5155 running = task_current(rq, p);
0e1f3483 5156 if (on_rq)
2e1cb74a 5157 deactivate_task(rq, p, 0);
0e1f3483
HS
5158 if (running)
5159 p->sched_class->put_prev_task(rq, p);
f6b53205 5160
ca94c442
LP
5161 p->sched_reset_on_fork = reset_on_fork;
5162
1da177e4 5163 oldprio = p->prio;
83ab0aa0 5164 prev_class = p->sched_class;
dd41f596 5165 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5166
0e1f3483
HS
5167 if (running)
5168 p->sched_class->set_curr_task(rq);
da7a735e 5169 if (on_rq)
dd41f596 5170 activate_task(rq, p, 0);
cb469845 5171
da7a735e 5172 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5173 task_rq_unlock(rq, p, &flags);
b29739f9 5174
95e02ca9
TG
5175 rt_mutex_adjust_pi(p);
5176
1da177e4
LT
5177 return 0;
5178}
961ccddd
RR
5179
5180/**
5181 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5182 * @p: the task in question.
5183 * @policy: new policy.
5184 * @param: structure containing the new RT priority.
5185 *
5186 * NOTE that the task may be already dead.
5187 */
5188int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5189 const struct sched_param *param)
961ccddd
RR
5190{
5191 return __sched_setscheduler(p, policy, param, true);
5192}
1da177e4
LT
5193EXPORT_SYMBOL_GPL(sched_setscheduler);
5194
961ccddd
RR
5195/**
5196 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5197 * @p: the task in question.
5198 * @policy: new policy.
5199 * @param: structure containing the new RT priority.
5200 *
5201 * Just like sched_setscheduler, only don't bother checking if the
5202 * current context has permission. For example, this is needed in
5203 * stop_machine(): we create temporary high priority worker threads,
5204 * but our caller might not have that capability.
5205 */
5206int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5207 const struct sched_param *param)
961ccddd
RR
5208{
5209 return __sched_setscheduler(p, policy, param, false);
5210}
5211
95cdf3b7
IM
5212static int
5213do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5214{
1da177e4
LT
5215 struct sched_param lparam;
5216 struct task_struct *p;
36c8b586 5217 int retval;
1da177e4
LT
5218
5219 if (!param || pid < 0)
5220 return -EINVAL;
5221 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5222 return -EFAULT;
5fe1d75f
ON
5223
5224 rcu_read_lock();
5225 retval = -ESRCH;
1da177e4 5226 p = find_process_by_pid(pid);
5fe1d75f
ON
5227 if (p != NULL)
5228 retval = sched_setscheduler(p, policy, &lparam);
5229 rcu_read_unlock();
36c8b586 5230
1da177e4
LT
5231 return retval;
5232}
5233
5234/**
5235 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5236 * @pid: the pid in question.
5237 * @policy: new policy.
5238 * @param: structure containing the new RT priority.
5239 */
5add95d4
HC
5240SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5241 struct sched_param __user *, param)
1da177e4 5242{
c21761f1
JB
5243 /* negative values for policy are not valid */
5244 if (policy < 0)
5245 return -EINVAL;
5246
1da177e4
LT
5247 return do_sched_setscheduler(pid, policy, param);
5248}
5249
5250/**
5251 * sys_sched_setparam - set/change the RT priority of a thread
5252 * @pid: the pid in question.
5253 * @param: structure containing the new RT priority.
5254 */
5add95d4 5255SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5256{
5257 return do_sched_setscheduler(pid, -1, param);
5258}
5259
5260/**
5261 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5262 * @pid: the pid in question.
5263 */
5add95d4 5264SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5265{
36c8b586 5266 struct task_struct *p;
3a5c359a 5267 int retval;
1da177e4
LT
5268
5269 if (pid < 0)
3a5c359a 5270 return -EINVAL;
1da177e4
LT
5271
5272 retval = -ESRCH;
5fe85be0 5273 rcu_read_lock();
1da177e4
LT
5274 p = find_process_by_pid(pid);
5275 if (p) {
5276 retval = security_task_getscheduler(p);
5277 if (!retval)
ca94c442
LP
5278 retval = p->policy
5279 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5280 }
5fe85be0 5281 rcu_read_unlock();
1da177e4
LT
5282 return retval;
5283}
5284
5285/**
ca94c442 5286 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5287 * @pid: the pid in question.
5288 * @param: structure containing the RT priority.
5289 */
5add95d4 5290SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5291{
5292 struct sched_param lp;
36c8b586 5293 struct task_struct *p;
3a5c359a 5294 int retval;
1da177e4
LT
5295
5296 if (!param || pid < 0)
3a5c359a 5297 return -EINVAL;
1da177e4 5298
5fe85be0 5299 rcu_read_lock();
1da177e4
LT
5300 p = find_process_by_pid(pid);
5301 retval = -ESRCH;
5302 if (!p)
5303 goto out_unlock;
5304
5305 retval = security_task_getscheduler(p);
5306 if (retval)
5307 goto out_unlock;
5308
5309 lp.sched_priority = p->rt_priority;
5fe85be0 5310 rcu_read_unlock();
1da177e4
LT
5311
5312 /*
5313 * This one might sleep, we cannot do it with a spinlock held ...
5314 */
5315 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5316
1da177e4
LT
5317 return retval;
5318
5319out_unlock:
5fe85be0 5320 rcu_read_unlock();
1da177e4
LT
5321 return retval;
5322}
5323
96f874e2 5324long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5325{
5a16f3d3 5326 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5327 struct task_struct *p;
5328 int retval;
1da177e4 5329
95402b38 5330 get_online_cpus();
23f5d142 5331 rcu_read_lock();
1da177e4
LT
5332
5333 p = find_process_by_pid(pid);
5334 if (!p) {
23f5d142 5335 rcu_read_unlock();
95402b38 5336 put_online_cpus();
1da177e4
LT
5337 return -ESRCH;
5338 }
5339
23f5d142 5340 /* Prevent p going away */
1da177e4 5341 get_task_struct(p);
23f5d142 5342 rcu_read_unlock();
1da177e4 5343
5a16f3d3
RR
5344 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5345 retval = -ENOMEM;
5346 goto out_put_task;
5347 }
5348 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5349 retval = -ENOMEM;
5350 goto out_free_cpus_allowed;
5351 }
1da177e4 5352 retval = -EPERM;
b0e77598 5353 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5354 goto out_unlock;
5355
b0ae1981 5356 retval = security_task_setscheduler(p);
e7834f8f
DQ
5357 if (retval)
5358 goto out_unlock;
5359
5a16f3d3
RR
5360 cpuset_cpus_allowed(p, cpus_allowed);
5361 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5362again:
5a16f3d3 5363 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5364
8707d8b8 5365 if (!retval) {
5a16f3d3
RR
5366 cpuset_cpus_allowed(p, cpus_allowed);
5367 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5368 /*
5369 * We must have raced with a concurrent cpuset
5370 * update. Just reset the cpus_allowed to the
5371 * cpuset's cpus_allowed
5372 */
5a16f3d3 5373 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5374 goto again;
5375 }
5376 }
1da177e4 5377out_unlock:
5a16f3d3
RR
5378 free_cpumask_var(new_mask);
5379out_free_cpus_allowed:
5380 free_cpumask_var(cpus_allowed);
5381out_put_task:
1da177e4 5382 put_task_struct(p);
95402b38 5383 put_online_cpus();
1da177e4
LT
5384 return retval;
5385}
5386
5387static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5388 struct cpumask *new_mask)
1da177e4 5389{
96f874e2
RR
5390 if (len < cpumask_size())
5391 cpumask_clear(new_mask);
5392 else if (len > cpumask_size())
5393 len = cpumask_size();
5394
1da177e4
LT
5395 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5396}
5397
5398/**
5399 * sys_sched_setaffinity - set the cpu affinity of a process
5400 * @pid: pid of the process
5401 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5402 * @user_mask_ptr: user-space pointer to the new cpu mask
5403 */
5add95d4
HC
5404SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5405 unsigned long __user *, user_mask_ptr)
1da177e4 5406{
5a16f3d3 5407 cpumask_var_t new_mask;
1da177e4
LT
5408 int retval;
5409
5a16f3d3
RR
5410 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5411 return -ENOMEM;
1da177e4 5412
5a16f3d3
RR
5413 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5414 if (retval == 0)
5415 retval = sched_setaffinity(pid, new_mask);
5416 free_cpumask_var(new_mask);
5417 return retval;
1da177e4
LT
5418}
5419
96f874e2 5420long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5421{
36c8b586 5422 struct task_struct *p;
31605683 5423 unsigned long flags;
1da177e4 5424 int retval;
1da177e4 5425
95402b38 5426 get_online_cpus();
23f5d142 5427 rcu_read_lock();
1da177e4
LT
5428
5429 retval = -ESRCH;
5430 p = find_process_by_pid(pid);
5431 if (!p)
5432 goto out_unlock;
5433
e7834f8f
DQ
5434 retval = security_task_getscheduler(p);
5435 if (retval)
5436 goto out_unlock;
5437
013fdb80 5438 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5439 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5440 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5441
5442out_unlock:
23f5d142 5443 rcu_read_unlock();
95402b38 5444 put_online_cpus();
1da177e4 5445
9531b62f 5446 return retval;
1da177e4
LT
5447}
5448
5449/**
5450 * sys_sched_getaffinity - get the cpu affinity of a process
5451 * @pid: pid of the process
5452 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5453 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5454 */
5add95d4
HC
5455SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5456 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5457{
5458 int ret;
f17c8607 5459 cpumask_var_t mask;
1da177e4 5460
84fba5ec 5461 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5462 return -EINVAL;
5463 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5464 return -EINVAL;
5465
f17c8607
RR
5466 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5467 return -ENOMEM;
1da177e4 5468
f17c8607
RR
5469 ret = sched_getaffinity(pid, mask);
5470 if (ret == 0) {
8bc037fb 5471 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5472
5473 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5474 ret = -EFAULT;
5475 else
cd3d8031 5476 ret = retlen;
f17c8607
RR
5477 }
5478 free_cpumask_var(mask);
1da177e4 5479
f17c8607 5480 return ret;
1da177e4
LT
5481}
5482
5483/**
5484 * sys_sched_yield - yield the current processor to other threads.
5485 *
dd41f596
IM
5486 * This function yields the current CPU to other tasks. If there are no
5487 * other threads running on this CPU then this function will return.
1da177e4 5488 */
5add95d4 5489SYSCALL_DEFINE0(sched_yield)
1da177e4 5490{
70b97a7f 5491 struct rq *rq = this_rq_lock();
1da177e4 5492
2d72376b 5493 schedstat_inc(rq, yld_count);
4530d7ab 5494 current->sched_class->yield_task(rq);
1da177e4
LT
5495
5496 /*
5497 * Since we are going to call schedule() anyway, there's
5498 * no need to preempt or enable interrupts:
5499 */
5500 __release(rq->lock);
8a25d5de 5501 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5502 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5503 preempt_enable_no_resched();
5504
5505 schedule();
5506
5507 return 0;
5508}
5509
d86ee480
PZ
5510static inline int should_resched(void)
5511{
5512 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5513}
5514
e7b38404 5515static void __cond_resched(void)
1da177e4 5516{
e7aaaa69
FW
5517 add_preempt_count(PREEMPT_ACTIVE);
5518 schedule();
5519 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5520}
5521
02b67cc3 5522int __sched _cond_resched(void)
1da177e4 5523{
d86ee480 5524 if (should_resched()) {
1da177e4
LT
5525 __cond_resched();
5526 return 1;
5527 }
5528 return 0;
5529}
02b67cc3 5530EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5531
5532/*
613afbf8 5533 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5534 * call schedule, and on return reacquire the lock.
5535 *
41a2d6cf 5536 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5537 * operations here to prevent schedule() from being called twice (once via
5538 * spin_unlock(), once by hand).
5539 */
613afbf8 5540int __cond_resched_lock(spinlock_t *lock)
1da177e4 5541{
d86ee480 5542 int resched = should_resched();
6df3cecb
JK
5543 int ret = 0;
5544
f607c668
PZ
5545 lockdep_assert_held(lock);
5546
95c354fe 5547 if (spin_needbreak(lock) || resched) {
1da177e4 5548 spin_unlock(lock);
d86ee480 5549 if (resched)
95c354fe
NP
5550 __cond_resched();
5551 else
5552 cpu_relax();
6df3cecb 5553 ret = 1;
1da177e4 5554 spin_lock(lock);
1da177e4 5555 }
6df3cecb 5556 return ret;
1da177e4 5557}
613afbf8 5558EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5559
613afbf8 5560int __sched __cond_resched_softirq(void)
1da177e4
LT
5561{
5562 BUG_ON(!in_softirq());
5563
d86ee480 5564 if (should_resched()) {
98d82567 5565 local_bh_enable();
1da177e4
LT
5566 __cond_resched();
5567 local_bh_disable();
5568 return 1;
5569 }
5570 return 0;
5571}
613afbf8 5572EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5573
1da177e4
LT
5574/**
5575 * yield - yield the current processor to other threads.
5576 *
72fd4a35 5577 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5578 * thread runnable and calls sys_sched_yield().
5579 */
5580void __sched yield(void)
5581{
5582 set_current_state(TASK_RUNNING);
5583 sys_sched_yield();
5584}
1da177e4
LT
5585EXPORT_SYMBOL(yield);
5586
d95f4122
MG
5587/**
5588 * yield_to - yield the current processor to another thread in
5589 * your thread group, or accelerate that thread toward the
5590 * processor it's on.
16addf95
RD
5591 * @p: target task
5592 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5593 *
5594 * It's the caller's job to ensure that the target task struct
5595 * can't go away on us before we can do any checks.
5596 *
5597 * Returns true if we indeed boosted the target task.
5598 */
5599bool __sched yield_to(struct task_struct *p, bool preempt)
5600{
5601 struct task_struct *curr = current;
5602 struct rq *rq, *p_rq;
5603 unsigned long flags;
5604 bool yielded = 0;
5605
5606 local_irq_save(flags);
5607 rq = this_rq();
5608
5609again:
5610 p_rq = task_rq(p);
5611 double_rq_lock(rq, p_rq);
5612 while (task_rq(p) != p_rq) {
5613 double_rq_unlock(rq, p_rq);
5614 goto again;
5615 }
5616
5617 if (!curr->sched_class->yield_to_task)
5618 goto out;
5619
5620 if (curr->sched_class != p->sched_class)
5621 goto out;
5622
5623 if (task_running(p_rq, p) || p->state)
5624 goto out;
5625
5626 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5627 if (yielded) {
d95f4122 5628 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5629 /*
5630 * Make p's CPU reschedule; pick_next_entity takes care of
5631 * fairness.
5632 */
5633 if (preempt && rq != p_rq)
5634 resched_task(p_rq->curr);
5635 }
d95f4122
MG
5636
5637out:
5638 double_rq_unlock(rq, p_rq);
5639 local_irq_restore(flags);
5640
5641 if (yielded)
5642 schedule();
5643
5644 return yielded;
5645}
5646EXPORT_SYMBOL_GPL(yield_to);
5647
1da177e4 5648/*
41a2d6cf 5649 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5650 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5651 */
5652void __sched io_schedule(void)
5653{
54d35f29 5654 struct rq *rq = raw_rq();
1da177e4 5655
0ff92245 5656 delayacct_blkio_start();
1da177e4 5657 atomic_inc(&rq->nr_iowait);
73c10101 5658 blk_flush_plug(current);
8f0dfc34 5659 current->in_iowait = 1;
1da177e4 5660 schedule();
8f0dfc34 5661 current->in_iowait = 0;
1da177e4 5662 atomic_dec(&rq->nr_iowait);
0ff92245 5663 delayacct_blkio_end();
1da177e4 5664}
1da177e4
LT
5665EXPORT_SYMBOL(io_schedule);
5666
5667long __sched io_schedule_timeout(long timeout)
5668{
54d35f29 5669 struct rq *rq = raw_rq();
1da177e4
LT
5670 long ret;
5671
0ff92245 5672 delayacct_blkio_start();
1da177e4 5673 atomic_inc(&rq->nr_iowait);
73c10101 5674 blk_flush_plug(current);
8f0dfc34 5675 current->in_iowait = 1;
1da177e4 5676 ret = schedule_timeout(timeout);
8f0dfc34 5677 current->in_iowait = 0;
1da177e4 5678 atomic_dec(&rq->nr_iowait);
0ff92245 5679 delayacct_blkio_end();
1da177e4
LT
5680 return ret;
5681}
5682
5683/**
5684 * sys_sched_get_priority_max - return maximum RT priority.
5685 * @policy: scheduling class.
5686 *
5687 * this syscall returns the maximum rt_priority that can be used
5688 * by a given scheduling class.
5689 */
5add95d4 5690SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5691{
5692 int ret = -EINVAL;
5693
5694 switch (policy) {
5695 case SCHED_FIFO:
5696 case SCHED_RR:
5697 ret = MAX_USER_RT_PRIO-1;
5698 break;
5699 case SCHED_NORMAL:
b0a9499c 5700 case SCHED_BATCH:
dd41f596 5701 case SCHED_IDLE:
1da177e4
LT
5702 ret = 0;
5703 break;
5704 }
5705 return ret;
5706}
5707
5708/**
5709 * sys_sched_get_priority_min - return minimum RT priority.
5710 * @policy: scheduling class.
5711 *
5712 * this syscall returns the minimum rt_priority that can be used
5713 * by a given scheduling class.
5714 */
5add95d4 5715SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5716{
5717 int ret = -EINVAL;
5718
5719 switch (policy) {
5720 case SCHED_FIFO:
5721 case SCHED_RR:
5722 ret = 1;
5723 break;
5724 case SCHED_NORMAL:
b0a9499c 5725 case SCHED_BATCH:
dd41f596 5726 case SCHED_IDLE:
1da177e4
LT
5727 ret = 0;
5728 }
5729 return ret;
5730}
5731
5732/**
5733 * sys_sched_rr_get_interval - return the default timeslice of a process.
5734 * @pid: pid of the process.
5735 * @interval: userspace pointer to the timeslice value.
5736 *
5737 * this syscall writes the default timeslice value of a given process
5738 * into the user-space timespec buffer. A value of '0' means infinity.
5739 */
17da2bd9 5740SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5741 struct timespec __user *, interval)
1da177e4 5742{
36c8b586 5743 struct task_struct *p;
a4ec24b4 5744 unsigned int time_slice;
dba091b9
TG
5745 unsigned long flags;
5746 struct rq *rq;
3a5c359a 5747 int retval;
1da177e4 5748 struct timespec t;
1da177e4
LT
5749
5750 if (pid < 0)
3a5c359a 5751 return -EINVAL;
1da177e4
LT
5752
5753 retval = -ESRCH;
1a551ae7 5754 rcu_read_lock();
1da177e4
LT
5755 p = find_process_by_pid(pid);
5756 if (!p)
5757 goto out_unlock;
5758
5759 retval = security_task_getscheduler(p);
5760 if (retval)
5761 goto out_unlock;
5762
dba091b9
TG
5763 rq = task_rq_lock(p, &flags);
5764 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5765 task_rq_unlock(rq, p, &flags);
a4ec24b4 5766
1a551ae7 5767 rcu_read_unlock();
a4ec24b4 5768 jiffies_to_timespec(time_slice, &t);
1da177e4 5769 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5770 return retval;
3a5c359a 5771
1da177e4 5772out_unlock:
1a551ae7 5773 rcu_read_unlock();
1da177e4
LT
5774 return retval;
5775}
5776
7c731e0a 5777static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5778
82a1fcb9 5779void sched_show_task(struct task_struct *p)
1da177e4 5780{
1da177e4 5781 unsigned long free = 0;
36c8b586 5782 unsigned state;
1da177e4 5783
1da177e4 5784 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5785 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5786 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5787#if BITS_PER_LONG == 32
1da177e4 5788 if (state == TASK_RUNNING)
3df0fc5b 5789 printk(KERN_CONT " running ");
1da177e4 5790 else
3df0fc5b 5791 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5792#else
5793 if (state == TASK_RUNNING)
3df0fc5b 5794 printk(KERN_CONT " running task ");
1da177e4 5795 else
3df0fc5b 5796 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5797#endif
5798#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5799 free = stack_not_used(p);
1da177e4 5800#endif
3df0fc5b 5801 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5802 task_pid_nr(p), task_pid_nr(p->real_parent),
5803 (unsigned long)task_thread_info(p)->flags);
1da177e4 5804
5fb5e6de 5805 show_stack(p, NULL);
1da177e4
LT
5806}
5807
e59e2ae2 5808void show_state_filter(unsigned long state_filter)
1da177e4 5809{
36c8b586 5810 struct task_struct *g, *p;
1da177e4 5811
4bd77321 5812#if BITS_PER_LONG == 32
3df0fc5b
PZ
5813 printk(KERN_INFO
5814 " task PC stack pid father\n");
1da177e4 5815#else
3df0fc5b
PZ
5816 printk(KERN_INFO
5817 " task PC stack pid father\n");
1da177e4
LT
5818#endif
5819 read_lock(&tasklist_lock);
5820 do_each_thread(g, p) {
5821 /*
5822 * reset the NMI-timeout, listing all files on a slow
25985edc 5823 * console might take a lot of time:
1da177e4
LT
5824 */
5825 touch_nmi_watchdog();
39bc89fd 5826 if (!state_filter || (p->state & state_filter))
82a1fcb9 5827 sched_show_task(p);
1da177e4
LT
5828 } while_each_thread(g, p);
5829
04c9167f
JF
5830 touch_all_softlockup_watchdogs();
5831
dd41f596
IM
5832#ifdef CONFIG_SCHED_DEBUG
5833 sysrq_sched_debug_show();
5834#endif
1da177e4 5835 read_unlock(&tasklist_lock);
e59e2ae2
IM
5836 /*
5837 * Only show locks if all tasks are dumped:
5838 */
93335a21 5839 if (!state_filter)
e59e2ae2 5840 debug_show_all_locks();
1da177e4
LT
5841}
5842
1df21055
IM
5843void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5844{
dd41f596 5845 idle->sched_class = &idle_sched_class;
1df21055
IM
5846}
5847
f340c0d1
IM
5848/**
5849 * init_idle - set up an idle thread for a given CPU
5850 * @idle: task in question
5851 * @cpu: cpu the idle task belongs to
5852 *
5853 * NOTE: this function does not set the idle thread's NEED_RESCHED
5854 * flag, to make booting more robust.
5855 */
5c1e1767 5856void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5857{
70b97a7f 5858 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5859 unsigned long flags;
5860
05fa785c 5861 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5862
dd41f596 5863 __sched_fork(idle);
06b83b5f 5864 idle->state = TASK_RUNNING;
dd41f596
IM
5865 idle->se.exec_start = sched_clock();
5866
1e1b6c51 5867 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5868 /*
5869 * We're having a chicken and egg problem, even though we are
5870 * holding rq->lock, the cpu isn't yet set to this cpu so the
5871 * lockdep check in task_group() will fail.
5872 *
5873 * Similar case to sched_fork(). / Alternatively we could
5874 * use task_rq_lock() here and obtain the other rq->lock.
5875 *
5876 * Silence PROVE_RCU
5877 */
5878 rcu_read_lock();
dd41f596 5879 __set_task_cpu(idle, cpu);
6506cf6c 5880 rcu_read_unlock();
1da177e4 5881
1da177e4 5882 rq->curr = rq->idle = idle;
3ca7a440
PZ
5883#if defined(CONFIG_SMP)
5884 idle->on_cpu = 1;
4866cde0 5885#endif
05fa785c 5886 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5887
5888 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5889 task_thread_info(idle)->preempt_count = 0;
625f2a37 5890
dd41f596
IM
5891 /*
5892 * The idle tasks have their own, simple scheduling class:
5893 */
5894 idle->sched_class = &idle_sched_class;
868baf07 5895 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5896}
5897
5898/*
5899 * In a system that switches off the HZ timer nohz_cpu_mask
5900 * indicates which cpus entered this state. This is used
5901 * in the rcu update to wait only for active cpus. For system
5902 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5903 * always be CPU_BITS_NONE.
1da177e4 5904 */
6a7b3dc3 5905cpumask_var_t nohz_cpu_mask;
1da177e4 5906
19978ca6
IM
5907/*
5908 * Increase the granularity value when there are more CPUs,
5909 * because with more CPUs the 'effective latency' as visible
5910 * to users decreases. But the relationship is not linear,
5911 * so pick a second-best guess by going with the log2 of the
5912 * number of CPUs.
5913 *
5914 * This idea comes from the SD scheduler of Con Kolivas:
5915 */
acb4a848 5916static int get_update_sysctl_factor(void)
19978ca6 5917{
4ca3ef71 5918 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5919 unsigned int factor;
5920
5921 switch (sysctl_sched_tunable_scaling) {
5922 case SCHED_TUNABLESCALING_NONE:
5923 factor = 1;
5924 break;
5925 case SCHED_TUNABLESCALING_LINEAR:
5926 factor = cpus;
5927 break;
5928 case SCHED_TUNABLESCALING_LOG:
5929 default:
5930 factor = 1 + ilog2(cpus);
5931 break;
5932 }
19978ca6 5933
acb4a848
CE
5934 return factor;
5935}
19978ca6 5936
acb4a848
CE
5937static void update_sysctl(void)
5938{
5939 unsigned int factor = get_update_sysctl_factor();
19978ca6 5940
0bcdcf28
CE
5941#define SET_SYSCTL(name) \
5942 (sysctl_##name = (factor) * normalized_sysctl_##name)
5943 SET_SYSCTL(sched_min_granularity);
5944 SET_SYSCTL(sched_latency);
5945 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5946#undef SET_SYSCTL
5947}
55cd5340 5948
0bcdcf28
CE
5949static inline void sched_init_granularity(void)
5950{
5951 update_sysctl();
19978ca6
IM
5952}
5953
1da177e4 5954#ifdef CONFIG_SMP
1e1b6c51
KM
5955void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5956{
5957 if (p->sched_class && p->sched_class->set_cpus_allowed)
5958 p->sched_class->set_cpus_allowed(p, new_mask);
5959 else {
5960 cpumask_copy(&p->cpus_allowed, new_mask);
5961 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5962 }
5963}
5964
1da177e4
LT
5965/*
5966 * This is how migration works:
5967 *
969c7921
TH
5968 * 1) we invoke migration_cpu_stop() on the target CPU using
5969 * stop_one_cpu().
5970 * 2) stopper starts to run (implicitly forcing the migrated thread
5971 * off the CPU)
5972 * 3) it checks whether the migrated task is still in the wrong runqueue.
5973 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5974 * it and puts it into the right queue.
969c7921
TH
5975 * 5) stopper completes and stop_one_cpu() returns and the migration
5976 * is done.
1da177e4
LT
5977 */
5978
5979/*
5980 * Change a given task's CPU affinity. Migrate the thread to a
5981 * proper CPU and schedule it away if the CPU it's executing on
5982 * is removed from the allowed bitmask.
5983 *
5984 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5985 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5986 * call is not atomic; no spinlocks may be held.
5987 */
96f874e2 5988int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5989{
5990 unsigned long flags;
70b97a7f 5991 struct rq *rq;
969c7921 5992 unsigned int dest_cpu;
48f24c4d 5993 int ret = 0;
1da177e4
LT
5994
5995 rq = task_rq_lock(p, &flags);
e2912009 5996
db44fc01
YZ
5997 if (cpumask_equal(&p->cpus_allowed, new_mask))
5998 goto out;
5999
6ad4c188 6000 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6001 ret = -EINVAL;
6002 goto out;
6003 }
6004
db44fc01 6005 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6006 ret = -EINVAL;
6007 goto out;
6008 }
6009
1e1b6c51 6010 do_set_cpus_allowed(p, new_mask);
73fe6aae 6011
1da177e4 6012 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6013 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6014 goto out;
6015
969c7921 6016 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6017 if (p->on_rq) {
969c7921 6018 struct migration_arg arg = { p, dest_cpu };
1da177e4 6019 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6020 task_rq_unlock(rq, p, &flags);
969c7921 6021 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6022 tlb_migrate_finish(p->mm);
6023 return 0;
6024 }
6025out:
0122ec5b 6026 task_rq_unlock(rq, p, &flags);
48f24c4d 6027
1da177e4
LT
6028 return ret;
6029}
cd8ba7cd 6030EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6031
6032/*
41a2d6cf 6033 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6034 * this because either it can't run here any more (set_cpus_allowed()
6035 * away from this CPU, or CPU going down), or because we're
6036 * attempting to rebalance this task on exec (sched_exec).
6037 *
6038 * So we race with normal scheduler movements, but that's OK, as long
6039 * as the task is no longer on this CPU.
efc30814
KK
6040 *
6041 * Returns non-zero if task was successfully migrated.
1da177e4 6042 */
efc30814 6043static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6044{
70b97a7f 6045 struct rq *rq_dest, *rq_src;
e2912009 6046 int ret = 0;
1da177e4 6047
e761b772 6048 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6049 return ret;
1da177e4
LT
6050
6051 rq_src = cpu_rq(src_cpu);
6052 rq_dest = cpu_rq(dest_cpu);
6053
0122ec5b 6054 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6055 double_rq_lock(rq_src, rq_dest);
6056 /* Already moved. */
6057 if (task_cpu(p) != src_cpu)
b1e38734 6058 goto done;
1da177e4 6059 /* Affinity changed (again). */
96f874e2 6060 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6061 goto fail;
1da177e4 6062
e2912009
PZ
6063 /*
6064 * If we're not on a rq, the next wake-up will ensure we're
6065 * placed properly.
6066 */
fd2f4419 6067 if (p->on_rq) {
2e1cb74a 6068 deactivate_task(rq_src, p, 0);
e2912009 6069 set_task_cpu(p, dest_cpu);
dd41f596 6070 activate_task(rq_dest, p, 0);
15afe09b 6071 check_preempt_curr(rq_dest, p, 0);
1da177e4 6072 }
b1e38734 6073done:
efc30814 6074 ret = 1;
b1e38734 6075fail:
1da177e4 6076 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6077 raw_spin_unlock(&p->pi_lock);
efc30814 6078 return ret;
1da177e4
LT
6079}
6080
6081/*
969c7921
TH
6082 * migration_cpu_stop - this will be executed by a highprio stopper thread
6083 * and performs thread migration by bumping thread off CPU then
6084 * 'pushing' onto another runqueue.
1da177e4 6085 */
969c7921 6086static int migration_cpu_stop(void *data)
1da177e4 6087{
969c7921 6088 struct migration_arg *arg = data;
f7b4cddc 6089
969c7921
TH
6090 /*
6091 * The original target cpu might have gone down and we might
6092 * be on another cpu but it doesn't matter.
6093 */
f7b4cddc 6094 local_irq_disable();
969c7921 6095 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6096 local_irq_enable();
1da177e4 6097 return 0;
f7b4cddc
ON
6098}
6099
1da177e4 6100#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6101
054b9108 6102/*
48c5ccae
PZ
6103 * Ensures that the idle task is using init_mm right before its cpu goes
6104 * offline.
054b9108 6105 */
48c5ccae 6106void idle_task_exit(void)
1da177e4 6107{
48c5ccae 6108 struct mm_struct *mm = current->active_mm;
e76bd8d9 6109
48c5ccae 6110 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6111
48c5ccae
PZ
6112 if (mm != &init_mm)
6113 switch_mm(mm, &init_mm, current);
6114 mmdrop(mm);
1da177e4
LT
6115}
6116
6117/*
6118 * While a dead CPU has no uninterruptible tasks queued at this point,
6119 * it might still have a nonzero ->nr_uninterruptible counter, because
6120 * for performance reasons the counter is not stricly tracking tasks to
6121 * their home CPUs. So we just add the counter to another CPU's counter,
6122 * to keep the global sum constant after CPU-down:
6123 */
70b97a7f 6124static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6125{
6ad4c188 6126 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6127
1da177e4
LT
6128 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6129 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6130}
6131
dd41f596 6132/*
48c5ccae 6133 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6134 */
48c5ccae 6135static void calc_global_load_remove(struct rq *rq)
1da177e4 6136{
48c5ccae
PZ
6137 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6138 rq->calc_load_active = 0;
1da177e4
LT
6139}
6140
48f24c4d 6141/*
48c5ccae
PZ
6142 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6143 * try_to_wake_up()->select_task_rq().
6144 *
6145 * Called with rq->lock held even though we'er in stop_machine() and
6146 * there's no concurrency possible, we hold the required locks anyway
6147 * because of lock validation efforts.
1da177e4 6148 */
48c5ccae 6149static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6150{
70b97a7f 6151 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6152 struct task_struct *next, *stop = rq->stop;
6153 int dest_cpu;
1da177e4
LT
6154
6155 /*
48c5ccae
PZ
6156 * Fudge the rq selection such that the below task selection loop
6157 * doesn't get stuck on the currently eligible stop task.
6158 *
6159 * We're currently inside stop_machine() and the rq is either stuck
6160 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6161 * either way we should never end up calling schedule() until we're
6162 * done here.
1da177e4 6163 */
48c5ccae 6164 rq->stop = NULL;
48f24c4d 6165
dd41f596 6166 for ( ; ; ) {
48c5ccae
PZ
6167 /*
6168 * There's this thread running, bail when that's the only
6169 * remaining thread.
6170 */
6171 if (rq->nr_running == 1)
dd41f596 6172 break;
48c5ccae 6173
b67802ea 6174 next = pick_next_task(rq);
48c5ccae 6175 BUG_ON(!next);
79c53799 6176 next->sched_class->put_prev_task(rq, next);
e692ab53 6177
48c5ccae
PZ
6178 /* Find suitable destination for @next, with force if needed. */
6179 dest_cpu = select_fallback_rq(dead_cpu, next);
6180 raw_spin_unlock(&rq->lock);
6181
6182 __migrate_task(next, dead_cpu, dest_cpu);
6183
6184 raw_spin_lock(&rq->lock);
1da177e4 6185 }
dce48a84 6186
48c5ccae 6187 rq->stop = stop;
dce48a84 6188}
48c5ccae 6189
1da177e4
LT
6190#endif /* CONFIG_HOTPLUG_CPU */
6191
e692ab53
NP
6192#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6193
6194static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6195 {
6196 .procname = "sched_domain",
c57baf1e 6197 .mode = 0555,
e0361851 6198 },
56992309 6199 {}
e692ab53
NP
6200};
6201
6202static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6203 {
6204 .procname = "kernel",
c57baf1e 6205 .mode = 0555,
e0361851
AD
6206 .child = sd_ctl_dir,
6207 },
56992309 6208 {}
e692ab53
NP
6209};
6210
6211static struct ctl_table *sd_alloc_ctl_entry(int n)
6212{
6213 struct ctl_table *entry =
5cf9f062 6214 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6215
e692ab53
NP
6216 return entry;
6217}
6218
6382bc90
MM
6219static void sd_free_ctl_entry(struct ctl_table **tablep)
6220{
cd790076 6221 struct ctl_table *entry;
6382bc90 6222
cd790076
MM
6223 /*
6224 * In the intermediate directories, both the child directory and
6225 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6226 * will always be set. In the lowest directory the names are
cd790076
MM
6227 * static strings and all have proc handlers.
6228 */
6229 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6230 if (entry->child)
6231 sd_free_ctl_entry(&entry->child);
cd790076
MM
6232 if (entry->proc_handler == NULL)
6233 kfree(entry->procname);
6234 }
6382bc90
MM
6235
6236 kfree(*tablep);
6237 *tablep = NULL;
6238}
6239
e692ab53 6240static void
e0361851 6241set_table_entry(struct ctl_table *entry,
e692ab53
NP
6242 const char *procname, void *data, int maxlen,
6243 mode_t mode, proc_handler *proc_handler)
6244{
e692ab53
NP
6245 entry->procname = procname;
6246 entry->data = data;
6247 entry->maxlen = maxlen;
6248 entry->mode = mode;
6249 entry->proc_handler = proc_handler;
6250}
6251
6252static struct ctl_table *
6253sd_alloc_ctl_domain_table(struct sched_domain *sd)
6254{
a5d8c348 6255 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6256
ad1cdc1d
MM
6257 if (table == NULL)
6258 return NULL;
6259
e0361851 6260 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6261 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6262 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6263 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6264 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6265 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6266 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6267 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6268 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6269 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6270 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6271 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6272 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6273 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6274 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6275 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6276 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6277 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6278 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6279 &sd->cache_nice_tries,
6280 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6281 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6282 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6283 set_table_entry(&table[11], "name", sd->name,
6284 CORENAME_MAX_SIZE, 0444, proc_dostring);
6285 /* &table[12] is terminator */
e692ab53
NP
6286
6287 return table;
6288}
6289
9a4e7159 6290static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6291{
6292 struct ctl_table *entry, *table;
6293 struct sched_domain *sd;
6294 int domain_num = 0, i;
6295 char buf[32];
6296
6297 for_each_domain(cpu, sd)
6298 domain_num++;
6299 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6300 if (table == NULL)
6301 return NULL;
e692ab53
NP
6302
6303 i = 0;
6304 for_each_domain(cpu, sd) {
6305 snprintf(buf, 32, "domain%d", i);
e692ab53 6306 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6307 entry->mode = 0555;
e692ab53
NP
6308 entry->child = sd_alloc_ctl_domain_table(sd);
6309 entry++;
6310 i++;
6311 }
6312 return table;
6313}
6314
6315static struct ctl_table_header *sd_sysctl_header;
6382bc90 6316static void register_sched_domain_sysctl(void)
e692ab53 6317{
6ad4c188 6318 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6319 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6320 char buf[32];
6321
7378547f
MM
6322 WARN_ON(sd_ctl_dir[0].child);
6323 sd_ctl_dir[0].child = entry;
6324
ad1cdc1d
MM
6325 if (entry == NULL)
6326 return;
6327
6ad4c188 6328 for_each_possible_cpu(i) {
e692ab53 6329 snprintf(buf, 32, "cpu%d", i);
e692ab53 6330 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6331 entry->mode = 0555;
e692ab53 6332 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6333 entry++;
e692ab53 6334 }
7378547f
MM
6335
6336 WARN_ON(sd_sysctl_header);
e692ab53
NP
6337 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6338}
6382bc90 6339
7378547f 6340/* may be called multiple times per register */
6382bc90
MM
6341static void unregister_sched_domain_sysctl(void)
6342{
7378547f
MM
6343 if (sd_sysctl_header)
6344 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6345 sd_sysctl_header = NULL;
7378547f
MM
6346 if (sd_ctl_dir[0].child)
6347 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6348}
e692ab53 6349#else
6382bc90
MM
6350static void register_sched_domain_sysctl(void)
6351{
6352}
6353static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6354{
6355}
6356#endif
6357
1f11eb6a
GH
6358static void set_rq_online(struct rq *rq)
6359{
6360 if (!rq->online) {
6361 const struct sched_class *class;
6362
c6c4927b 6363 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6364 rq->online = 1;
6365
6366 for_each_class(class) {
6367 if (class->rq_online)
6368 class->rq_online(rq);
6369 }
6370 }
6371}
6372
6373static void set_rq_offline(struct rq *rq)
6374{
6375 if (rq->online) {
6376 const struct sched_class *class;
6377
6378 for_each_class(class) {
6379 if (class->rq_offline)
6380 class->rq_offline(rq);
6381 }
6382
c6c4927b 6383 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6384 rq->online = 0;
6385 }
6386}
6387
1da177e4
LT
6388/*
6389 * migration_call - callback that gets triggered when a CPU is added.
6390 * Here we can start up the necessary migration thread for the new CPU.
6391 */
48f24c4d
IM
6392static int __cpuinit
6393migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6394{
48f24c4d 6395 int cpu = (long)hcpu;
1da177e4 6396 unsigned long flags;
969c7921 6397 struct rq *rq = cpu_rq(cpu);
1da177e4 6398
48c5ccae 6399 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6400
1da177e4 6401 case CPU_UP_PREPARE:
a468d389 6402 rq->calc_load_update = calc_load_update;
1da177e4 6403 break;
48f24c4d 6404
1da177e4 6405 case CPU_ONLINE:
1f94ef59 6406 /* Update our root-domain */
05fa785c 6407 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6408 if (rq->rd) {
c6c4927b 6409 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6410
6411 set_rq_online(rq);
1f94ef59 6412 }
05fa785c 6413 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6414 break;
48f24c4d 6415
1da177e4 6416#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6417 case CPU_DYING:
317f3941 6418 sched_ttwu_pending();
57d885fe 6419 /* Update our root-domain */
05fa785c 6420 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6421 if (rq->rd) {
c6c4927b 6422 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6423 set_rq_offline(rq);
57d885fe 6424 }
48c5ccae
PZ
6425 migrate_tasks(cpu);
6426 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6427 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6428
6429 migrate_nr_uninterruptible(rq);
6430 calc_global_load_remove(rq);
57d885fe 6431 break;
1da177e4
LT
6432#endif
6433 }
49c022e6
PZ
6434
6435 update_max_interval();
6436
1da177e4
LT
6437 return NOTIFY_OK;
6438}
6439
f38b0820
PM
6440/*
6441 * Register at high priority so that task migration (migrate_all_tasks)
6442 * happens before everything else. This has to be lower priority than
cdd6c482 6443 * the notifier in the perf_event subsystem, though.
1da177e4 6444 */
26c2143b 6445static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6446 .notifier_call = migration_call,
50a323b7 6447 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6448};
6449
3a101d05
TH
6450static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6451 unsigned long action, void *hcpu)
6452{
6453 switch (action & ~CPU_TASKS_FROZEN) {
6454 case CPU_ONLINE:
6455 case CPU_DOWN_FAILED:
6456 set_cpu_active((long)hcpu, true);
6457 return NOTIFY_OK;
6458 default:
6459 return NOTIFY_DONE;
6460 }
6461}
6462
6463static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6464 unsigned long action, void *hcpu)
6465{
6466 switch (action & ~CPU_TASKS_FROZEN) {
6467 case CPU_DOWN_PREPARE:
6468 set_cpu_active((long)hcpu, false);
6469 return NOTIFY_OK;
6470 default:
6471 return NOTIFY_DONE;
6472 }
6473}
6474
7babe8db 6475static int __init migration_init(void)
1da177e4
LT
6476{
6477 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6478 int err;
48f24c4d 6479
3a101d05 6480 /* Initialize migration for the boot CPU */
07dccf33
AM
6481 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6482 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6483 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6484 register_cpu_notifier(&migration_notifier);
7babe8db 6485
3a101d05
TH
6486 /* Register cpu active notifiers */
6487 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6488 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6489
a004cd42 6490 return 0;
1da177e4 6491}
7babe8db 6492early_initcall(migration_init);
1da177e4
LT
6493#endif
6494
6495#ifdef CONFIG_SMP
476f3534 6496
4cb98839
PZ
6497static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6498
3e9830dc 6499#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6500
f6630114
MT
6501static __read_mostly int sched_domain_debug_enabled;
6502
6503static int __init sched_domain_debug_setup(char *str)
6504{
6505 sched_domain_debug_enabled = 1;
6506
6507 return 0;
6508}
6509early_param("sched_debug", sched_domain_debug_setup);
6510
7c16ec58 6511static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6512 struct cpumask *groupmask)
1da177e4 6513{
4dcf6aff 6514 struct sched_group *group = sd->groups;
434d53b0 6515 char str[256];
1da177e4 6516
968ea6d8 6517 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6518 cpumask_clear(groupmask);
4dcf6aff
IM
6519
6520 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6521
6522 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6523 printk("does not load-balance\n");
4dcf6aff 6524 if (sd->parent)
3df0fc5b
PZ
6525 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6526 " has parent");
4dcf6aff 6527 return -1;
41c7ce9a
NP
6528 }
6529
3df0fc5b 6530 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6531
758b2cdc 6532 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6533 printk(KERN_ERR "ERROR: domain->span does not contain "
6534 "CPU%d\n", cpu);
4dcf6aff 6535 }
758b2cdc 6536 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6537 printk(KERN_ERR "ERROR: domain->groups does not contain"
6538 " CPU%d\n", cpu);
4dcf6aff 6539 }
1da177e4 6540
4dcf6aff 6541 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6542 do {
4dcf6aff 6543 if (!group) {
3df0fc5b
PZ
6544 printk("\n");
6545 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6546 break;
6547 }
6548
18a3885f 6549 if (!group->cpu_power) {
3df0fc5b
PZ
6550 printk(KERN_CONT "\n");
6551 printk(KERN_ERR "ERROR: domain->cpu_power not "
6552 "set\n");
4dcf6aff
IM
6553 break;
6554 }
1da177e4 6555
758b2cdc 6556 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6557 printk(KERN_CONT "\n");
6558 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6559 break;
6560 }
1da177e4 6561
758b2cdc 6562 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6563 printk(KERN_CONT "\n");
6564 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6565 break;
6566 }
1da177e4 6567
758b2cdc 6568 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6569
968ea6d8 6570 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6571
3df0fc5b 6572 printk(KERN_CONT " %s", str);
1399fa78 6573 if (group->cpu_power != SCHED_POWER_SCALE) {
3df0fc5b
PZ
6574 printk(KERN_CONT " (cpu_power = %d)",
6575 group->cpu_power);
381512cf 6576 }
1da177e4 6577
4dcf6aff
IM
6578 group = group->next;
6579 } while (group != sd->groups);
3df0fc5b 6580 printk(KERN_CONT "\n");
1da177e4 6581
758b2cdc 6582 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6583 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6584
758b2cdc
RR
6585 if (sd->parent &&
6586 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6587 printk(KERN_ERR "ERROR: parent span is not a superset "
6588 "of domain->span\n");
4dcf6aff
IM
6589 return 0;
6590}
1da177e4 6591
4dcf6aff
IM
6592static void sched_domain_debug(struct sched_domain *sd, int cpu)
6593{
6594 int level = 0;
1da177e4 6595
f6630114
MT
6596 if (!sched_domain_debug_enabled)
6597 return;
6598
4dcf6aff
IM
6599 if (!sd) {
6600 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6601 return;
6602 }
1da177e4 6603
4dcf6aff
IM
6604 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6605
6606 for (;;) {
4cb98839 6607 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6608 break;
1da177e4
LT
6609 level++;
6610 sd = sd->parent;
33859f7f 6611 if (!sd)
4dcf6aff
IM
6612 break;
6613 }
1da177e4 6614}
6d6bc0ad 6615#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6616# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6617#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6618
1a20ff27 6619static int sd_degenerate(struct sched_domain *sd)
245af2c7 6620{
758b2cdc 6621 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6622 return 1;
6623
6624 /* Following flags need at least 2 groups */
6625 if (sd->flags & (SD_LOAD_BALANCE |
6626 SD_BALANCE_NEWIDLE |
6627 SD_BALANCE_FORK |
89c4710e
SS
6628 SD_BALANCE_EXEC |
6629 SD_SHARE_CPUPOWER |
6630 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6631 if (sd->groups != sd->groups->next)
6632 return 0;
6633 }
6634
6635 /* Following flags don't use groups */
c88d5910 6636 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6637 return 0;
6638
6639 return 1;
6640}
6641
48f24c4d
IM
6642static int
6643sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6644{
6645 unsigned long cflags = sd->flags, pflags = parent->flags;
6646
6647 if (sd_degenerate(parent))
6648 return 1;
6649
758b2cdc 6650 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6651 return 0;
6652
245af2c7
SS
6653 /* Flags needing groups don't count if only 1 group in parent */
6654 if (parent->groups == parent->groups->next) {
6655 pflags &= ~(SD_LOAD_BALANCE |
6656 SD_BALANCE_NEWIDLE |
6657 SD_BALANCE_FORK |
89c4710e
SS
6658 SD_BALANCE_EXEC |
6659 SD_SHARE_CPUPOWER |
6660 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6661 if (nr_node_ids == 1)
6662 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6663 }
6664 if (~cflags & pflags)
6665 return 0;
6666
6667 return 1;
6668}
6669
dce840a0 6670static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6671{
dce840a0 6672 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6673
68e74568 6674 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6675 free_cpumask_var(rd->rto_mask);
6676 free_cpumask_var(rd->online);
6677 free_cpumask_var(rd->span);
6678 kfree(rd);
6679}
6680
57d885fe
GH
6681static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6682{
a0490fa3 6683 struct root_domain *old_rd = NULL;
57d885fe 6684 unsigned long flags;
57d885fe 6685
05fa785c 6686 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6687
6688 if (rq->rd) {
a0490fa3 6689 old_rd = rq->rd;
57d885fe 6690
c6c4927b 6691 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6692 set_rq_offline(rq);
57d885fe 6693
c6c4927b 6694 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6695
a0490fa3
IM
6696 /*
6697 * If we dont want to free the old_rt yet then
6698 * set old_rd to NULL to skip the freeing later
6699 * in this function:
6700 */
6701 if (!atomic_dec_and_test(&old_rd->refcount))
6702 old_rd = NULL;
57d885fe
GH
6703 }
6704
6705 atomic_inc(&rd->refcount);
6706 rq->rd = rd;
6707
c6c4927b 6708 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6709 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6710 set_rq_online(rq);
57d885fe 6711
05fa785c 6712 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6713
6714 if (old_rd)
dce840a0 6715 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6716}
6717
68c38fc3 6718static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6719{
6720 memset(rd, 0, sizeof(*rd));
6721
68c38fc3 6722 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6723 goto out;
68c38fc3 6724 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6725 goto free_span;
68c38fc3 6726 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6727 goto free_online;
6e0534f2 6728
68c38fc3 6729 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6730 goto free_rto_mask;
c6c4927b 6731 return 0;
6e0534f2 6732
68e74568
RR
6733free_rto_mask:
6734 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6735free_online:
6736 free_cpumask_var(rd->online);
6737free_span:
6738 free_cpumask_var(rd->span);
0c910d28 6739out:
c6c4927b 6740 return -ENOMEM;
57d885fe
GH
6741}
6742
6743static void init_defrootdomain(void)
6744{
68c38fc3 6745 init_rootdomain(&def_root_domain);
c6c4927b 6746
57d885fe
GH
6747 atomic_set(&def_root_domain.refcount, 1);
6748}
6749
dc938520 6750static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6751{
6752 struct root_domain *rd;
6753
6754 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6755 if (!rd)
6756 return NULL;
6757
68c38fc3 6758 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6759 kfree(rd);
6760 return NULL;
6761 }
57d885fe
GH
6762
6763 return rd;
6764}
6765
dce840a0
PZ
6766static void free_sched_domain(struct rcu_head *rcu)
6767{
6768 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6769 if (atomic_dec_and_test(&sd->groups->ref))
6770 kfree(sd->groups);
6771 kfree(sd);
6772}
6773
6774static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6775{
6776 call_rcu(&sd->rcu, free_sched_domain);
6777}
6778
6779static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6780{
6781 for (; sd; sd = sd->parent)
6782 destroy_sched_domain(sd, cpu);
6783}
6784
1da177e4 6785/*
0eab9146 6786 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6787 * hold the hotplug lock.
6788 */
0eab9146
IM
6789static void
6790cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6791{
70b97a7f 6792 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6793 struct sched_domain *tmp;
6794
6795 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6796 for (tmp = sd; tmp; ) {
245af2c7
SS
6797 struct sched_domain *parent = tmp->parent;
6798 if (!parent)
6799 break;
f29c9b1c 6800
1a848870 6801 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6802 tmp->parent = parent->parent;
1a848870
SS
6803 if (parent->parent)
6804 parent->parent->child = tmp;
dce840a0 6805 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6806 } else
6807 tmp = tmp->parent;
245af2c7
SS
6808 }
6809
1a848870 6810 if (sd && sd_degenerate(sd)) {
dce840a0 6811 tmp = sd;
245af2c7 6812 sd = sd->parent;
dce840a0 6813 destroy_sched_domain(tmp, cpu);
1a848870
SS
6814 if (sd)
6815 sd->child = NULL;
6816 }
1da177e4 6817
4cb98839 6818 sched_domain_debug(sd, cpu);
1da177e4 6819
57d885fe 6820 rq_attach_root(rq, rd);
dce840a0 6821 tmp = rq->sd;
674311d5 6822 rcu_assign_pointer(rq->sd, sd);
dce840a0 6823 destroy_sched_domains(tmp, cpu);
1da177e4
LT
6824}
6825
6826/* cpus with isolated domains */
dcc30a35 6827static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6828
6829/* Setup the mask of cpus configured for isolated domains */
6830static int __init isolated_cpu_setup(char *str)
6831{
bdddd296 6832 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6833 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6834 return 1;
6835}
6836
8927f494 6837__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6838
9c1cfda2 6839#define SD_NODES_PER_DOMAIN 16
1da177e4 6840
9c1cfda2 6841#ifdef CONFIG_NUMA
198e2f18 6842
9c1cfda2
JH
6843/**
6844 * find_next_best_node - find the next node to include in a sched_domain
6845 * @node: node whose sched_domain we're building
6846 * @used_nodes: nodes already in the sched_domain
6847 *
41a2d6cf 6848 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6849 * finds the closest node not already in the @used_nodes map.
6850 *
6851 * Should use nodemask_t.
6852 */
c5f59f08 6853static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 6854{
7142d17e 6855 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
6856
6857 min_val = INT_MAX;
6858
076ac2af 6859 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6860 /* Start at @node */
076ac2af 6861 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6862
6863 if (!nr_cpus_node(n))
6864 continue;
6865
6866 /* Skip already used nodes */
c5f59f08 6867 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6868 continue;
6869
6870 /* Simple min distance search */
6871 val = node_distance(node, n);
6872
6873 if (val < min_val) {
6874 min_val = val;
6875 best_node = n;
6876 }
6877 }
6878
7142d17e
HD
6879 if (best_node != -1)
6880 node_set(best_node, *used_nodes);
9c1cfda2
JH
6881 return best_node;
6882}
6883
6884/**
6885 * sched_domain_node_span - get a cpumask for a node's sched_domain
6886 * @node: node whose cpumask we're constructing
73486722 6887 * @span: resulting cpumask
9c1cfda2 6888 *
41a2d6cf 6889 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6890 * should be one that prevents unnecessary balancing, but also spreads tasks
6891 * out optimally.
6892 */
96f874e2 6893static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6894{
c5f59f08 6895 nodemask_t used_nodes;
48f24c4d 6896 int i;
9c1cfda2 6897
6ca09dfc 6898 cpumask_clear(span);
c5f59f08 6899 nodes_clear(used_nodes);
9c1cfda2 6900
6ca09dfc 6901 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6902 node_set(node, used_nodes);
9c1cfda2
JH
6903
6904 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6905 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
6906 if (next_node < 0)
6907 break;
6ca09dfc 6908 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6909 }
9c1cfda2 6910}
d3081f52
PZ
6911
6912static const struct cpumask *cpu_node_mask(int cpu)
6913{
6914 lockdep_assert_held(&sched_domains_mutex);
6915
6916 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6917
6918 return sched_domains_tmpmask;
6919}
2c402dc3
PZ
6920
6921static const struct cpumask *cpu_allnodes_mask(int cpu)
6922{
6923 return cpu_possible_mask;
6924}
6d6bc0ad 6925#endif /* CONFIG_NUMA */
9c1cfda2 6926
d3081f52
PZ
6927static const struct cpumask *cpu_cpu_mask(int cpu)
6928{
6929 return cpumask_of_node(cpu_to_node(cpu));
6930}
6931
5c45bf27 6932int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6933
dce840a0
PZ
6934struct sd_data {
6935 struct sched_domain **__percpu sd;
6936 struct sched_group **__percpu sg;
6937};
6938
49a02c51 6939struct s_data {
21d42ccf 6940 struct sched_domain ** __percpu sd;
49a02c51
AH
6941 struct root_domain *rd;
6942};
6943
2109b99e 6944enum s_alloc {
2109b99e 6945 sa_rootdomain,
21d42ccf 6946 sa_sd,
dce840a0 6947 sa_sd_storage,
2109b99e
AH
6948 sa_none,
6949};
6950
54ab4ff4
PZ
6951struct sched_domain_topology_level;
6952
6953typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6954typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6955
6956struct sched_domain_topology_level {
2c402dc3
PZ
6957 sched_domain_init_f init;
6958 sched_domain_mask_f mask;
54ab4ff4 6959 struct sd_data data;
eb7a74e6
PZ
6960};
6961
9c1cfda2 6962/*
dce840a0 6963 * Assumes the sched_domain tree is fully constructed
9c1cfda2 6964 */
dce840a0 6965static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6966{
dce840a0
PZ
6967 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6968 struct sched_domain *child = sd->child;
1da177e4 6969
dce840a0
PZ
6970 if (child)
6971 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6972
6711cab4 6973 if (sg)
dce840a0
PZ
6974 *sg = *per_cpu_ptr(sdd->sg, cpu);
6975
6976 return cpu;
1e9f28fa 6977}
1e9f28fa 6978
01a08546 6979/*
dce840a0
PZ
6980 * build_sched_groups takes the cpumask we wish to span, and a pointer
6981 * to a function which identifies what group(along with sched group) a CPU
6982 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6983 * (due to the fact that we keep track of groups covered with a struct cpumask).
6984 *
6985 * build_sched_groups will build a circular linked list of the groups
6986 * covered by the given span, and will set each group's ->cpumask correctly,
6987 * and ->cpu_power to 0.
01a08546 6988 */
dce840a0 6989static void
f96225fd 6990build_sched_groups(struct sched_domain *sd)
1da177e4 6991{
dce840a0
PZ
6992 struct sched_group *first = NULL, *last = NULL;
6993 struct sd_data *sdd = sd->private;
6994 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6995 struct cpumask *covered;
dce840a0 6996 int i;
9c1cfda2 6997
f96225fd
PZ
6998 lockdep_assert_held(&sched_domains_mutex);
6999 covered = sched_domains_tmpmask;
7000
dce840a0 7001 cpumask_clear(covered);
6711cab4 7002
dce840a0
PZ
7003 for_each_cpu(i, span) {
7004 struct sched_group *sg;
7005 int group = get_group(i, sdd, &sg);
7006 int j;
6711cab4 7007
dce840a0
PZ
7008 if (cpumask_test_cpu(i, covered))
7009 continue;
6711cab4 7010
dce840a0
PZ
7011 cpumask_clear(sched_group_cpus(sg));
7012 sg->cpu_power = 0;
0601a88d 7013
dce840a0
PZ
7014 for_each_cpu(j, span) {
7015 if (get_group(j, sdd, NULL) != group)
7016 continue;
0601a88d 7017
dce840a0
PZ
7018 cpumask_set_cpu(j, covered);
7019 cpumask_set_cpu(j, sched_group_cpus(sg));
7020 }
0601a88d 7021
dce840a0
PZ
7022 if (!first)
7023 first = sg;
7024 if (last)
7025 last->next = sg;
7026 last = sg;
7027 }
7028 last->next = first;
0601a88d 7029}
51888ca2 7030
89c4710e
SS
7031/*
7032 * Initialize sched groups cpu_power.
7033 *
7034 * cpu_power indicates the capacity of sched group, which is used while
7035 * distributing the load between different sched groups in a sched domain.
7036 * Typically cpu_power for all the groups in a sched domain will be same unless
7037 * there are asymmetries in the topology. If there are asymmetries, group
7038 * having more cpu_power will pickup more load compared to the group having
7039 * less cpu_power.
89c4710e
SS
7040 */
7041static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7042{
89c4710e
SS
7043 WARN_ON(!sd || !sd->groups);
7044
13318a71 7045 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7046 return;
7047
aae6d3dd
SS
7048 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7049
d274cb30 7050 update_group_power(sd, cpu);
89c4710e
SS
7051}
7052
7c16ec58
MT
7053/*
7054 * Initializers for schedule domains
7055 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7056 */
7057
a5d8c348
IM
7058#ifdef CONFIG_SCHED_DEBUG
7059# define SD_INIT_NAME(sd, type) sd->name = #type
7060#else
7061# define SD_INIT_NAME(sd, type) do { } while (0)
7062#endif
7063
54ab4ff4
PZ
7064#define SD_INIT_FUNC(type) \
7065static noinline struct sched_domain * \
7066sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7067{ \
7068 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7069 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7070 SD_INIT_NAME(sd, type); \
7071 sd->private = &tl->data; \
7072 return sd; \
7c16ec58
MT
7073}
7074
7075SD_INIT_FUNC(CPU)
7076#ifdef CONFIG_NUMA
7077 SD_INIT_FUNC(ALLNODES)
7078 SD_INIT_FUNC(NODE)
7079#endif
7080#ifdef CONFIG_SCHED_SMT
7081 SD_INIT_FUNC(SIBLING)
7082#endif
7083#ifdef CONFIG_SCHED_MC
7084 SD_INIT_FUNC(MC)
7085#endif
01a08546
HC
7086#ifdef CONFIG_SCHED_BOOK
7087 SD_INIT_FUNC(BOOK)
7088#endif
7c16ec58 7089
1d3504fc 7090static int default_relax_domain_level = -1;
60495e77 7091int sched_domain_level_max;
1d3504fc
HS
7092
7093static int __init setup_relax_domain_level(char *str)
7094{
30e0e178
LZ
7095 unsigned long val;
7096
7097 val = simple_strtoul(str, NULL, 0);
60495e77 7098 if (val < sched_domain_level_max)
30e0e178
LZ
7099 default_relax_domain_level = val;
7100
1d3504fc
HS
7101 return 1;
7102}
7103__setup("relax_domain_level=", setup_relax_domain_level);
7104
7105static void set_domain_attribute(struct sched_domain *sd,
7106 struct sched_domain_attr *attr)
7107{
7108 int request;
7109
7110 if (!attr || attr->relax_domain_level < 0) {
7111 if (default_relax_domain_level < 0)
7112 return;
7113 else
7114 request = default_relax_domain_level;
7115 } else
7116 request = attr->relax_domain_level;
7117 if (request < sd->level) {
7118 /* turn off idle balance on this domain */
c88d5910 7119 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7120 } else {
7121 /* turn on idle balance on this domain */
c88d5910 7122 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7123 }
7124}
7125
54ab4ff4
PZ
7126static void __sdt_free(const struct cpumask *cpu_map);
7127static int __sdt_alloc(const struct cpumask *cpu_map);
7128
2109b99e
AH
7129static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7130 const struct cpumask *cpu_map)
7131{
7132 switch (what) {
2109b99e 7133 case sa_rootdomain:
822ff793
PZ
7134 if (!atomic_read(&d->rd->refcount))
7135 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7136 case sa_sd:
7137 free_percpu(d->sd); /* fall through */
dce840a0 7138 case sa_sd_storage:
54ab4ff4 7139 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7140 case sa_none:
7141 break;
7142 }
7143}
3404c8d9 7144
2109b99e
AH
7145static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7146 const struct cpumask *cpu_map)
7147{
dce840a0
PZ
7148 memset(d, 0, sizeof(*d));
7149
54ab4ff4
PZ
7150 if (__sdt_alloc(cpu_map))
7151 return sa_sd_storage;
dce840a0
PZ
7152 d->sd = alloc_percpu(struct sched_domain *);
7153 if (!d->sd)
7154 return sa_sd_storage;
2109b99e 7155 d->rd = alloc_rootdomain();
dce840a0 7156 if (!d->rd)
21d42ccf 7157 return sa_sd;
2109b99e
AH
7158 return sa_rootdomain;
7159}
57d885fe 7160
dce840a0
PZ
7161/*
7162 * NULL the sd_data elements we've used to build the sched_domain and
7163 * sched_group structure so that the subsequent __free_domain_allocs()
7164 * will not free the data we're using.
7165 */
7166static void claim_allocations(int cpu, struct sched_domain *sd)
7167{
7168 struct sd_data *sdd = sd->private;
7169 struct sched_group *sg = sd->groups;
7170
7171 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7172 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7173
7174 if (cpu == cpumask_first(sched_group_cpus(sg))) {
7175 WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
7176 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7177 }
7178}
7179
2c402dc3
PZ
7180#ifdef CONFIG_SCHED_SMT
7181static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7182{
2c402dc3 7183 return topology_thread_cpumask(cpu);
3bd65a80 7184}
2c402dc3 7185#endif
7f4588f3 7186
d069b916
PZ
7187/*
7188 * Topology list, bottom-up.
7189 */
2c402dc3 7190static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7191#ifdef CONFIG_SCHED_SMT
7192 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7193#endif
1e9f28fa 7194#ifdef CONFIG_SCHED_MC
2c402dc3 7195 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7196#endif
d069b916
PZ
7197#ifdef CONFIG_SCHED_BOOK
7198 { sd_init_BOOK, cpu_book_mask, },
7199#endif
7200 { sd_init_CPU, cpu_cpu_mask, },
7201#ifdef CONFIG_NUMA
7202 { sd_init_NODE, cpu_node_mask, },
7203 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7204#endif
eb7a74e6
PZ
7205 { NULL, },
7206};
7207
7208static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7209
54ab4ff4
PZ
7210static int __sdt_alloc(const struct cpumask *cpu_map)
7211{
7212 struct sched_domain_topology_level *tl;
7213 int j;
7214
7215 for (tl = sched_domain_topology; tl->init; tl++) {
7216 struct sd_data *sdd = &tl->data;
7217
7218 sdd->sd = alloc_percpu(struct sched_domain *);
7219 if (!sdd->sd)
7220 return -ENOMEM;
7221
7222 sdd->sg = alloc_percpu(struct sched_group *);
7223 if (!sdd->sg)
7224 return -ENOMEM;
7225
7226 for_each_cpu(j, cpu_map) {
7227 struct sched_domain *sd;
7228 struct sched_group *sg;
7229
7230 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7231 GFP_KERNEL, cpu_to_node(j));
7232 if (!sd)
7233 return -ENOMEM;
7234
7235 *per_cpu_ptr(sdd->sd, j) = sd;
7236
7237 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7238 GFP_KERNEL, cpu_to_node(j));
7239 if (!sg)
7240 return -ENOMEM;
7241
7242 *per_cpu_ptr(sdd->sg, j) = sg;
7243 }
7244 }
7245
7246 return 0;
7247}
7248
7249static void __sdt_free(const struct cpumask *cpu_map)
7250{
7251 struct sched_domain_topology_level *tl;
7252 int j;
7253
7254 for (tl = sched_domain_topology; tl->init; tl++) {
7255 struct sd_data *sdd = &tl->data;
7256
7257 for_each_cpu(j, cpu_map) {
7258 kfree(*per_cpu_ptr(sdd->sd, j));
7259 kfree(*per_cpu_ptr(sdd->sg, j));
7260 }
7261 free_percpu(sdd->sd);
7262 free_percpu(sdd->sg);
7263 }
7264}
7265
2c402dc3
PZ
7266struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7267 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7268 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7269 int cpu)
7270{
54ab4ff4 7271 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7272 if (!sd)
d069b916 7273 return child;
2c402dc3
PZ
7274
7275 set_domain_attribute(sd, attr);
7276 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7277 if (child) {
7278 sd->level = child->level + 1;
7279 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7280 child->parent = sd;
60495e77 7281 }
d069b916 7282 sd->child = child;
2c402dc3
PZ
7283
7284 return sd;
7285}
7286
2109b99e
AH
7287/*
7288 * Build sched domains for a given set of cpus and attach the sched domains
7289 * to the individual cpus
7290 */
dce840a0
PZ
7291static int build_sched_domains(const struct cpumask *cpu_map,
7292 struct sched_domain_attr *attr)
2109b99e
AH
7293{
7294 enum s_alloc alloc_state = sa_none;
dce840a0 7295 struct sched_domain *sd;
2109b99e 7296 struct s_data d;
822ff793 7297 int i, ret = -ENOMEM;
9c1cfda2 7298
2109b99e
AH
7299 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7300 if (alloc_state != sa_rootdomain)
7301 goto error;
9c1cfda2 7302
dce840a0 7303 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7304 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7305 struct sched_domain_topology_level *tl;
7306
3bd65a80 7307 sd = NULL;
2c402dc3
PZ
7308 for (tl = sched_domain_topology; tl->init; tl++)
7309 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
d274cb30 7310
d069b916
PZ
7311 while (sd->child)
7312 sd = sd->child;
7313
21d42ccf 7314 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7315 }
7316
7317 /* Build the groups for the domains */
7318 for_each_cpu(i, cpu_map) {
7319 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7320 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7321 get_group(i, sd->private, &sd->groups);
7322 atomic_inc(&sd->groups->ref);
21d42ccf 7323
dce840a0
PZ
7324 if (i != cpumask_first(sched_domain_span(sd)))
7325 continue;
7326
f96225fd 7327 build_sched_groups(sd);
1cf51902 7328 }
a06dadbe 7329 }
9c1cfda2 7330
1da177e4 7331 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7332 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7333 if (!cpumask_test_cpu(i, cpu_map))
7334 continue;
9c1cfda2 7335
dce840a0
PZ
7336 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7337 claim_allocations(i, sd);
cd4ea6ae 7338 init_sched_groups_power(i, sd);
dce840a0 7339 }
f712c0c7 7340 }
9c1cfda2 7341
1da177e4 7342 /* Attach the domains */
dce840a0 7343 rcu_read_lock();
abcd083a 7344 for_each_cpu(i, cpu_map) {
21d42ccf 7345 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7346 cpu_attach_domain(sd, d.rd, i);
1da177e4 7347 }
dce840a0 7348 rcu_read_unlock();
51888ca2 7349
822ff793 7350 ret = 0;
51888ca2 7351error:
2109b99e 7352 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7353 return ret;
1da177e4 7354}
029190c5 7355
acc3f5d7 7356static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7357static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7358static struct sched_domain_attr *dattr_cur;
7359 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7360
7361/*
7362 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7363 * cpumask) fails, then fallback to a single sched domain,
7364 * as determined by the single cpumask fallback_doms.
029190c5 7365 */
4212823f 7366static cpumask_var_t fallback_doms;
029190c5 7367
ee79d1bd
HC
7368/*
7369 * arch_update_cpu_topology lets virtualized architectures update the
7370 * cpu core maps. It is supposed to return 1 if the topology changed
7371 * or 0 if it stayed the same.
7372 */
7373int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7374{
ee79d1bd 7375 return 0;
22e52b07
HC
7376}
7377
acc3f5d7
RR
7378cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7379{
7380 int i;
7381 cpumask_var_t *doms;
7382
7383 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7384 if (!doms)
7385 return NULL;
7386 for (i = 0; i < ndoms; i++) {
7387 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7388 free_sched_domains(doms, i);
7389 return NULL;
7390 }
7391 }
7392 return doms;
7393}
7394
7395void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7396{
7397 unsigned int i;
7398 for (i = 0; i < ndoms; i++)
7399 free_cpumask_var(doms[i]);
7400 kfree(doms);
7401}
7402
1a20ff27 7403/*
41a2d6cf 7404 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7405 * For now this just excludes isolated cpus, but could be used to
7406 * exclude other special cases in the future.
1a20ff27 7407 */
c4a8849a 7408static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7409{
7378547f
MM
7410 int err;
7411
22e52b07 7412 arch_update_cpu_topology();
029190c5 7413 ndoms_cur = 1;
acc3f5d7 7414 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7415 if (!doms_cur)
acc3f5d7
RR
7416 doms_cur = &fallback_doms;
7417 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7418 dattr_cur = NULL;
dce840a0 7419 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7420 register_sched_domain_sysctl();
7378547f
MM
7421
7422 return err;
1a20ff27
DG
7423}
7424
1a20ff27
DG
7425/*
7426 * Detach sched domains from a group of cpus specified in cpu_map
7427 * These cpus will now be attached to the NULL domain
7428 */
96f874e2 7429static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7430{
7431 int i;
7432
dce840a0 7433 rcu_read_lock();
abcd083a 7434 for_each_cpu(i, cpu_map)
57d885fe 7435 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7436 rcu_read_unlock();
1a20ff27
DG
7437}
7438
1d3504fc
HS
7439/* handle null as "default" */
7440static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7441 struct sched_domain_attr *new, int idx_new)
7442{
7443 struct sched_domain_attr tmp;
7444
7445 /* fast path */
7446 if (!new && !cur)
7447 return 1;
7448
7449 tmp = SD_ATTR_INIT;
7450 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7451 new ? (new + idx_new) : &tmp,
7452 sizeof(struct sched_domain_attr));
7453}
7454
029190c5
PJ
7455/*
7456 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7457 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7458 * doms_new[] to the current sched domain partitioning, doms_cur[].
7459 * It destroys each deleted domain and builds each new domain.
7460 *
acc3f5d7 7461 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7462 * The masks don't intersect (don't overlap.) We should setup one
7463 * sched domain for each mask. CPUs not in any of the cpumasks will
7464 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7465 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7466 * it as it is.
7467 *
acc3f5d7
RR
7468 * The passed in 'doms_new' should be allocated using
7469 * alloc_sched_domains. This routine takes ownership of it and will
7470 * free_sched_domains it when done with it. If the caller failed the
7471 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7472 * and partition_sched_domains() will fallback to the single partition
7473 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7474 *
96f874e2 7475 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7476 * ndoms_new == 0 is a special case for destroying existing domains,
7477 * and it will not create the default domain.
dfb512ec 7478 *
029190c5
PJ
7479 * Call with hotplug lock held
7480 */
acc3f5d7 7481void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7482 struct sched_domain_attr *dattr_new)
029190c5 7483{
dfb512ec 7484 int i, j, n;
d65bd5ec 7485 int new_topology;
029190c5 7486
712555ee 7487 mutex_lock(&sched_domains_mutex);
a1835615 7488
7378547f
MM
7489 /* always unregister in case we don't destroy any domains */
7490 unregister_sched_domain_sysctl();
7491
d65bd5ec
HC
7492 /* Let architecture update cpu core mappings. */
7493 new_topology = arch_update_cpu_topology();
7494
dfb512ec 7495 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7496
7497 /* Destroy deleted domains */
7498 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7499 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7500 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7501 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7502 goto match1;
7503 }
7504 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7505 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7506match1:
7507 ;
7508 }
7509
e761b772
MK
7510 if (doms_new == NULL) {
7511 ndoms_cur = 0;
acc3f5d7 7512 doms_new = &fallback_doms;
6ad4c188 7513 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7514 WARN_ON_ONCE(dattr_new);
e761b772
MK
7515 }
7516
029190c5
PJ
7517 /* Build new domains */
7518 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7519 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7520 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7521 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7522 goto match2;
7523 }
7524 /* no match - add a new doms_new */
dce840a0 7525 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7526match2:
7527 ;
7528 }
7529
7530 /* Remember the new sched domains */
acc3f5d7
RR
7531 if (doms_cur != &fallback_doms)
7532 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7533 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7534 doms_cur = doms_new;
1d3504fc 7535 dattr_cur = dattr_new;
029190c5 7536 ndoms_cur = ndoms_new;
7378547f
MM
7537
7538 register_sched_domain_sysctl();
a1835615 7539
712555ee 7540 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7541}
7542
5c45bf27 7543#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7544static void reinit_sched_domains(void)
5c45bf27 7545{
95402b38 7546 get_online_cpus();
dfb512ec
MK
7547
7548 /* Destroy domains first to force the rebuild */
7549 partition_sched_domains(0, NULL, NULL);
7550
e761b772 7551 rebuild_sched_domains();
95402b38 7552 put_online_cpus();
5c45bf27
SS
7553}
7554
7555static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7556{
afb8a9b7 7557 unsigned int level = 0;
5c45bf27 7558
afb8a9b7
GS
7559 if (sscanf(buf, "%u", &level) != 1)
7560 return -EINVAL;
7561
7562 /*
7563 * level is always be positive so don't check for
7564 * level < POWERSAVINGS_BALANCE_NONE which is 0
7565 * What happens on 0 or 1 byte write,
7566 * need to check for count as well?
7567 */
7568
7569 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7570 return -EINVAL;
7571
7572 if (smt)
afb8a9b7 7573 sched_smt_power_savings = level;
5c45bf27 7574 else
afb8a9b7 7575 sched_mc_power_savings = level;
5c45bf27 7576
c4a8849a 7577 reinit_sched_domains();
5c45bf27 7578
c70f22d2 7579 return count;
5c45bf27
SS
7580}
7581
5c45bf27 7582#ifdef CONFIG_SCHED_MC
f718cd4a 7583static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7584 struct sysdev_class_attribute *attr,
f718cd4a 7585 char *page)
5c45bf27
SS
7586{
7587 return sprintf(page, "%u\n", sched_mc_power_savings);
7588}
f718cd4a 7589static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7590 struct sysdev_class_attribute *attr,
48f24c4d 7591 const char *buf, size_t count)
5c45bf27
SS
7592{
7593 return sched_power_savings_store(buf, count, 0);
7594}
f718cd4a
AK
7595static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7596 sched_mc_power_savings_show,
7597 sched_mc_power_savings_store);
5c45bf27
SS
7598#endif
7599
7600#ifdef CONFIG_SCHED_SMT
f718cd4a 7601static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7602 struct sysdev_class_attribute *attr,
f718cd4a 7603 char *page)
5c45bf27
SS
7604{
7605 return sprintf(page, "%u\n", sched_smt_power_savings);
7606}
f718cd4a 7607static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7608 struct sysdev_class_attribute *attr,
48f24c4d 7609 const char *buf, size_t count)
5c45bf27
SS
7610{
7611 return sched_power_savings_store(buf, count, 1);
7612}
f718cd4a
AK
7613static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7614 sched_smt_power_savings_show,
6707de00
AB
7615 sched_smt_power_savings_store);
7616#endif
7617
39aac648 7618int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7619{
7620 int err = 0;
7621
7622#ifdef CONFIG_SCHED_SMT
7623 if (smt_capable())
7624 err = sysfs_create_file(&cls->kset.kobj,
7625 &attr_sched_smt_power_savings.attr);
7626#endif
7627#ifdef CONFIG_SCHED_MC
7628 if (!err && mc_capable())
7629 err = sysfs_create_file(&cls->kset.kobj,
7630 &attr_sched_mc_power_savings.attr);
7631#endif
7632 return err;
7633}
6d6bc0ad 7634#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7635
1da177e4 7636/*
3a101d05
TH
7637 * Update cpusets according to cpu_active mask. If cpusets are
7638 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7639 * around partition_sched_domains().
1da177e4 7640 */
0b2e918a
TH
7641static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7642 void *hcpu)
e761b772 7643{
3a101d05 7644 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7645 case CPU_ONLINE:
6ad4c188 7646 case CPU_DOWN_FAILED:
3a101d05 7647 cpuset_update_active_cpus();
e761b772 7648 return NOTIFY_OK;
3a101d05
TH
7649 default:
7650 return NOTIFY_DONE;
7651 }
7652}
e761b772 7653
0b2e918a
TH
7654static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7655 void *hcpu)
3a101d05
TH
7656{
7657 switch (action & ~CPU_TASKS_FROZEN) {
7658 case CPU_DOWN_PREPARE:
7659 cpuset_update_active_cpus();
7660 return NOTIFY_OK;
e761b772
MK
7661 default:
7662 return NOTIFY_DONE;
7663 }
7664}
e761b772
MK
7665
7666static int update_runtime(struct notifier_block *nfb,
7667 unsigned long action, void *hcpu)
1da177e4 7668{
7def2be1
PZ
7669 int cpu = (int)(long)hcpu;
7670
1da177e4 7671 switch (action) {
1da177e4 7672 case CPU_DOWN_PREPARE:
8bb78442 7673 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7674 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7675 return NOTIFY_OK;
7676
1da177e4 7677 case CPU_DOWN_FAILED:
8bb78442 7678 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7679 case CPU_ONLINE:
8bb78442 7680 case CPU_ONLINE_FROZEN:
7def2be1 7681 enable_runtime(cpu_rq(cpu));
e761b772
MK
7682 return NOTIFY_OK;
7683
1da177e4
LT
7684 default:
7685 return NOTIFY_DONE;
7686 }
1da177e4 7687}
1da177e4
LT
7688
7689void __init sched_init_smp(void)
7690{
dcc30a35
RR
7691 cpumask_var_t non_isolated_cpus;
7692
7693 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7694 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7695
95402b38 7696 get_online_cpus();
712555ee 7697 mutex_lock(&sched_domains_mutex);
c4a8849a 7698 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7699 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7700 if (cpumask_empty(non_isolated_cpus))
7701 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7702 mutex_unlock(&sched_domains_mutex);
95402b38 7703 put_online_cpus();
e761b772 7704
3a101d05
TH
7705 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7706 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7707
7708 /* RT runtime code needs to handle some hotplug events */
7709 hotcpu_notifier(update_runtime, 0);
7710
b328ca18 7711 init_hrtick();
5c1e1767
NP
7712
7713 /* Move init over to a non-isolated CPU */
dcc30a35 7714 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7715 BUG();
19978ca6 7716 sched_init_granularity();
dcc30a35 7717 free_cpumask_var(non_isolated_cpus);
4212823f 7718
0e3900e6 7719 init_sched_rt_class();
1da177e4
LT
7720}
7721#else
7722void __init sched_init_smp(void)
7723{
19978ca6 7724 sched_init_granularity();
1da177e4
LT
7725}
7726#endif /* CONFIG_SMP */
7727
cd1bb94b
AB
7728const_debug unsigned int sysctl_timer_migration = 1;
7729
1da177e4
LT
7730int in_sched_functions(unsigned long addr)
7731{
1da177e4
LT
7732 return in_lock_functions(addr) ||
7733 (addr >= (unsigned long)__sched_text_start
7734 && addr < (unsigned long)__sched_text_end);
7735}
7736
a9957449 7737static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7738{
7739 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7740 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7741#ifdef CONFIG_FAIR_GROUP_SCHED
7742 cfs_rq->rq = rq;
f07333bf 7743 /* allow initial update_cfs_load() to truncate */
6ea72f12 7744#ifdef CONFIG_SMP
f07333bf 7745 cfs_rq->load_stamp = 1;
6ea72f12 7746#endif
dd41f596 7747#endif
67e9fb2a 7748 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7749}
7750
fa85ae24
PZ
7751static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7752{
7753 struct rt_prio_array *array;
7754 int i;
7755
7756 array = &rt_rq->active;
7757 for (i = 0; i < MAX_RT_PRIO; i++) {
7758 INIT_LIST_HEAD(array->queue + i);
7759 __clear_bit(i, array->bitmap);
7760 }
7761 /* delimiter for bitsearch: */
7762 __set_bit(MAX_RT_PRIO, array->bitmap);
7763
052f1dc7 7764#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7765 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7766#ifdef CONFIG_SMP
e864c499 7767 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7768#endif
48d5e258 7769#endif
fa85ae24
PZ
7770#ifdef CONFIG_SMP
7771 rt_rq->rt_nr_migratory = 0;
fa85ae24 7772 rt_rq->overloaded = 0;
05fa785c 7773 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7774#endif
7775
7776 rt_rq->rt_time = 0;
7777 rt_rq->rt_throttled = 0;
ac086bc2 7778 rt_rq->rt_runtime = 0;
0986b11b 7779 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7780
052f1dc7 7781#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7782 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7783 rt_rq->rq = rq;
7784#endif
fa85ae24
PZ
7785}
7786
6f505b16 7787#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 7788static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 7789 struct sched_entity *se, int cpu,
ec7dc8ac 7790 struct sched_entity *parent)
6f505b16 7791{
ec7dc8ac 7792 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7793 tg->cfs_rq[cpu] = cfs_rq;
7794 init_cfs_rq(cfs_rq, rq);
7795 cfs_rq->tg = tg;
6f505b16
PZ
7796
7797 tg->se[cpu] = se;
07e06b01 7798 /* se could be NULL for root_task_group */
354d60c2
DG
7799 if (!se)
7800 return;
7801
ec7dc8ac
DG
7802 if (!parent)
7803 se->cfs_rq = &rq->cfs;
7804 else
7805 se->cfs_rq = parent->my_q;
7806
6f505b16 7807 se->my_q = cfs_rq;
9437178f 7808 update_load_set(&se->load, 0);
ec7dc8ac 7809 se->parent = parent;
6f505b16 7810}
052f1dc7 7811#endif
6f505b16 7812
052f1dc7 7813#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 7814static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 7815 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 7816 struct sched_rt_entity *parent)
6f505b16 7817{
ec7dc8ac
DG
7818 struct rq *rq = cpu_rq(cpu);
7819
6f505b16
PZ
7820 tg->rt_rq[cpu] = rt_rq;
7821 init_rt_rq(rt_rq, rq);
7822 rt_rq->tg = tg;
ac086bc2 7823 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7824
7825 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7826 if (!rt_se)
7827 return;
7828
ec7dc8ac
DG
7829 if (!parent)
7830 rt_se->rt_rq = &rq->rt;
7831 else
7832 rt_se->rt_rq = parent->my_q;
7833
6f505b16 7834 rt_se->my_q = rt_rq;
ec7dc8ac 7835 rt_se->parent = parent;
6f505b16
PZ
7836 INIT_LIST_HEAD(&rt_se->run_list);
7837}
7838#endif
7839
1da177e4
LT
7840void __init sched_init(void)
7841{
dd41f596 7842 int i, j;
434d53b0
MT
7843 unsigned long alloc_size = 0, ptr;
7844
7845#ifdef CONFIG_FAIR_GROUP_SCHED
7846 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7847#endif
7848#ifdef CONFIG_RT_GROUP_SCHED
7849 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7850#endif
df7c8e84 7851#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7852 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7853#endif
434d53b0 7854 if (alloc_size) {
36b7b6d4 7855 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7856
7857#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7858 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7859 ptr += nr_cpu_ids * sizeof(void **);
7860
07e06b01 7861 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7862 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7863
6d6bc0ad 7864#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7865#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7866 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7867 ptr += nr_cpu_ids * sizeof(void **);
7868
07e06b01 7869 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7870 ptr += nr_cpu_ids * sizeof(void **);
7871
6d6bc0ad 7872#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7873#ifdef CONFIG_CPUMASK_OFFSTACK
7874 for_each_possible_cpu(i) {
7875 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7876 ptr += cpumask_size();
7877 }
7878#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7879 }
dd41f596 7880
57d885fe
GH
7881#ifdef CONFIG_SMP
7882 init_defrootdomain();
7883#endif
7884
d0b27fa7
PZ
7885 init_rt_bandwidth(&def_rt_bandwidth,
7886 global_rt_period(), global_rt_runtime());
7887
7888#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7889 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7890 global_rt_period(), global_rt_runtime());
6d6bc0ad 7891#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7892
7c941438 7893#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7894 list_add(&root_task_group.list, &task_groups);
7895 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 7896 autogroup_init(&init_task);
7c941438 7897#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7898
0a945022 7899 for_each_possible_cpu(i) {
70b97a7f 7900 struct rq *rq;
1da177e4
LT
7901
7902 rq = cpu_rq(i);
05fa785c 7903 raw_spin_lock_init(&rq->lock);
7897986b 7904 rq->nr_running = 0;
dce48a84
TG
7905 rq->calc_load_active = 0;
7906 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7907 init_cfs_rq(&rq->cfs, rq);
6f505b16 7908 init_rt_rq(&rq->rt, rq);
dd41f596 7909#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7910 root_task_group.shares = root_task_group_load;
6f505b16 7911 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7912 /*
07e06b01 7913 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7914 *
7915 * In case of task-groups formed thr' the cgroup filesystem, it
7916 * gets 100% of the cpu resources in the system. This overall
7917 * system cpu resource is divided among the tasks of
07e06b01 7918 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7919 * based on each entity's (task or task-group's) weight
7920 * (se->load.weight).
7921 *
07e06b01 7922 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7923 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7924 * then A0's share of the cpu resource is:
7925 *
0d905bca 7926 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7927 *
07e06b01
YZ
7928 * We achieve this by letting root_task_group's tasks sit
7929 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7930 */
07e06b01 7931 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7932#endif /* CONFIG_FAIR_GROUP_SCHED */
7933
7934 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7935#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7936 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7937 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7938#endif
1da177e4 7939
dd41f596
IM
7940 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7941 rq->cpu_load[j] = 0;
fdf3e95d
VP
7942
7943 rq->last_load_update_tick = jiffies;
7944
1da177e4 7945#ifdef CONFIG_SMP
41c7ce9a 7946 rq->sd = NULL;
57d885fe 7947 rq->rd = NULL;
1399fa78 7948 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7949 rq->post_schedule = 0;
1da177e4 7950 rq->active_balance = 0;
dd41f596 7951 rq->next_balance = jiffies;
1da177e4 7952 rq->push_cpu = 0;
0a2966b4 7953 rq->cpu = i;
1f11eb6a 7954 rq->online = 0;
eae0c9df
MG
7955 rq->idle_stamp = 0;
7956 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 7957 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
7958#ifdef CONFIG_NO_HZ
7959 rq->nohz_balance_kick = 0;
7960 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7961#endif
1da177e4 7962#endif
8f4d37ec 7963 init_rq_hrtick(rq);
1da177e4 7964 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7965 }
7966
2dd73a4f 7967 set_load_weight(&init_task);
b50f60ce 7968
e107be36
AK
7969#ifdef CONFIG_PREEMPT_NOTIFIERS
7970 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7971#endif
7972
c9819f45 7973#ifdef CONFIG_SMP
962cf36c 7974 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7975#endif
7976
b50f60ce 7977#ifdef CONFIG_RT_MUTEXES
1d615482 7978 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7979#endif
7980
1da177e4
LT
7981 /*
7982 * The boot idle thread does lazy MMU switching as well:
7983 */
7984 atomic_inc(&init_mm.mm_count);
7985 enter_lazy_tlb(&init_mm, current);
7986
7987 /*
7988 * Make us the idle thread. Technically, schedule() should not be
7989 * called from this thread, however somewhere below it might be,
7990 * but because we are the idle thread, we just pick up running again
7991 * when this runqueue becomes "idle".
7992 */
7993 init_idle(current, smp_processor_id());
dce48a84
TG
7994
7995 calc_load_update = jiffies + LOAD_FREQ;
7996
dd41f596
IM
7997 /*
7998 * During early bootup we pretend to be a normal task:
7999 */
8000 current->sched_class = &fair_sched_class;
6892b75e 8001
6a7b3dc3 8002 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8003 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8004#ifdef CONFIG_SMP
4cb98839 8005 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8006#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8007 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8008 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8009 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8010 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8011 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8012#endif
bdddd296
RR
8013 /* May be allocated at isolcpus cmdline parse time */
8014 if (cpu_isolated_map == NULL)
8015 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8016#endif /* SMP */
6a7b3dc3 8017
6892b75e 8018 scheduler_running = 1;
1da177e4
LT
8019}
8020
8021#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8022static inline int preempt_count_equals(int preempt_offset)
8023{
234da7bc 8024 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8025
4ba8216c 8026 return (nested == preempt_offset);
e4aafea2
FW
8027}
8028
d894837f 8029void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8030{
1da177e4
LT
8031 static unsigned long prev_jiffy; /* ratelimiting */
8032
e4aafea2
FW
8033 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8034 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8035 return;
8036 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8037 return;
8038 prev_jiffy = jiffies;
8039
3df0fc5b
PZ
8040 printk(KERN_ERR
8041 "BUG: sleeping function called from invalid context at %s:%d\n",
8042 file, line);
8043 printk(KERN_ERR
8044 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8045 in_atomic(), irqs_disabled(),
8046 current->pid, current->comm);
aef745fc
IM
8047
8048 debug_show_held_locks(current);
8049 if (irqs_disabled())
8050 print_irqtrace_events(current);
8051 dump_stack();
1da177e4
LT
8052}
8053EXPORT_SYMBOL(__might_sleep);
8054#endif
8055
8056#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8057static void normalize_task(struct rq *rq, struct task_struct *p)
8058{
da7a735e
PZ
8059 const struct sched_class *prev_class = p->sched_class;
8060 int old_prio = p->prio;
3a5e4dc1 8061 int on_rq;
3e51f33f 8062
fd2f4419 8063 on_rq = p->on_rq;
3a5e4dc1
AK
8064 if (on_rq)
8065 deactivate_task(rq, p, 0);
8066 __setscheduler(rq, p, SCHED_NORMAL, 0);
8067 if (on_rq) {
8068 activate_task(rq, p, 0);
8069 resched_task(rq->curr);
8070 }
da7a735e
PZ
8071
8072 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8073}
8074
1da177e4
LT
8075void normalize_rt_tasks(void)
8076{
a0f98a1c 8077 struct task_struct *g, *p;
1da177e4 8078 unsigned long flags;
70b97a7f 8079 struct rq *rq;
1da177e4 8080
4cf5d77a 8081 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8082 do_each_thread(g, p) {
178be793
IM
8083 /*
8084 * Only normalize user tasks:
8085 */
8086 if (!p->mm)
8087 continue;
8088
6cfb0d5d 8089 p->se.exec_start = 0;
6cfb0d5d 8090#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8091 p->se.statistics.wait_start = 0;
8092 p->se.statistics.sleep_start = 0;
8093 p->se.statistics.block_start = 0;
6cfb0d5d 8094#endif
dd41f596
IM
8095
8096 if (!rt_task(p)) {
8097 /*
8098 * Renice negative nice level userspace
8099 * tasks back to 0:
8100 */
8101 if (TASK_NICE(p) < 0 && p->mm)
8102 set_user_nice(p, 0);
1da177e4 8103 continue;
dd41f596 8104 }
1da177e4 8105
1d615482 8106 raw_spin_lock(&p->pi_lock);
b29739f9 8107 rq = __task_rq_lock(p);
1da177e4 8108
178be793 8109 normalize_task(rq, p);
3a5e4dc1 8110
b29739f9 8111 __task_rq_unlock(rq);
1d615482 8112 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8113 } while_each_thread(g, p);
8114
4cf5d77a 8115 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8116}
8117
8118#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8119
67fc4e0c 8120#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8121/*
67fc4e0c 8122 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8123 *
8124 * They can only be called when the whole system has been
8125 * stopped - every CPU needs to be quiescent, and no scheduling
8126 * activity can take place. Using them for anything else would
8127 * be a serious bug, and as a result, they aren't even visible
8128 * under any other configuration.
8129 */
8130
8131/**
8132 * curr_task - return the current task for a given cpu.
8133 * @cpu: the processor in question.
8134 *
8135 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8136 */
36c8b586 8137struct task_struct *curr_task(int cpu)
1df5c10a
LT
8138{
8139 return cpu_curr(cpu);
8140}
8141
67fc4e0c
JW
8142#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8143
8144#ifdef CONFIG_IA64
1df5c10a
LT
8145/**
8146 * set_curr_task - set the current task for a given cpu.
8147 * @cpu: the processor in question.
8148 * @p: the task pointer to set.
8149 *
8150 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8151 * are serviced on a separate stack. It allows the architecture to switch the
8152 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8153 * must be called with all CPU's synchronized, and interrupts disabled, the
8154 * and caller must save the original value of the current task (see
8155 * curr_task() above) and restore that value before reenabling interrupts and
8156 * re-starting the system.
8157 *
8158 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8159 */
36c8b586 8160void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8161{
8162 cpu_curr(cpu) = p;
8163}
8164
8165#endif
29f59db3 8166
bccbe08a
PZ
8167#ifdef CONFIG_FAIR_GROUP_SCHED
8168static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8169{
8170 int i;
8171
8172 for_each_possible_cpu(i) {
8173 if (tg->cfs_rq)
8174 kfree(tg->cfs_rq[i]);
8175 if (tg->se)
8176 kfree(tg->se[i]);
6f505b16
PZ
8177 }
8178
8179 kfree(tg->cfs_rq);
8180 kfree(tg->se);
6f505b16
PZ
8181}
8182
ec7dc8ac
DG
8183static
8184int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8185{
29f59db3 8186 struct cfs_rq *cfs_rq;
eab17229 8187 struct sched_entity *se;
29f59db3
SV
8188 int i;
8189
434d53b0 8190 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8191 if (!tg->cfs_rq)
8192 goto err;
434d53b0 8193 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8194 if (!tg->se)
8195 goto err;
052f1dc7
PZ
8196
8197 tg->shares = NICE_0_LOAD;
29f59db3
SV
8198
8199 for_each_possible_cpu(i) {
eab17229
LZ
8200 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8201 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8202 if (!cfs_rq)
8203 goto err;
8204
eab17229
LZ
8205 se = kzalloc_node(sizeof(struct sched_entity),
8206 GFP_KERNEL, cpu_to_node(i));
29f59db3 8207 if (!se)
dfc12eb2 8208 goto err_free_rq;
29f59db3 8209
3d4b47b4 8210 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8211 }
8212
8213 return 1;
8214
49246274 8215err_free_rq:
dfc12eb2 8216 kfree(cfs_rq);
49246274 8217err:
bccbe08a
PZ
8218 return 0;
8219}
8220
bccbe08a
PZ
8221static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8222{
3d4b47b4
PZ
8223 struct rq *rq = cpu_rq(cpu);
8224 unsigned long flags;
3d4b47b4
PZ
8225
8226 /*
8227 * Only empty task groups can be destroyed; so we can speculatively
8228 * check on_list without danger of it being re-added.
8229 */
8230 if (!tg->cfs_rq[cpu]->on_list)
8231 return;
8232
8233 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8234 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8235 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8236}
6d6bc0ad 8237#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8238static inline void free_fair_sched_group(struct task_group *tg)
8239{
8240}
8241
ec7dc8ac
DG
8242static inline
8243int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8244{
8245 return 1;
8246}
8247
bccbe08a
PZ
8248static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8249{
8250}
6d6bc0ad 8251#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8252
8253#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8254static void free_rt_sched_group(struct task_group *tg)
8255{
8256 int i;
8257
d0b27fa7
PZ
8258 destroy_rt_bandwidth(&tg->rt_bandwidth);
8259
bccbe08a
PZ
8260 for_each_possible_cpu(i) {
8261 if (tg->rt_rq)
8262 kfree(tg->rt_rq[i]);
8263 if (tg->rt_se)
8264 kfree(tg->rt_se[i]);
8265 }
8266
8267 kfree(tg->rt_rq);
8268 kfree(tg->rt_se);
8269}
8270
ec7dc8ac
DG
8271static
8272int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8273{
8274 struct rt_rq *rt_rq;
eab17229 8275 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8276 int i;
8277
434d53b0 8278 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8279 if (!tg->rt_rq)
8280 goto err;
434d53b0 8281 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8282 if (!tg->rt_se)
8283 goto err;
8284
d0b27fa7
PZ
8285 init_rt_bandwidth(&tg->rt_bandwidth,
8286 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8287
8288 for_each_possible_cpu(i) {
eab17229
LZ
8289 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8290 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8291 if (!rt_rq)
8292 goto err;
29f59db3 8293
eab17229
LZ
8294 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8295 GFP_KERNEL, cpu_to_node(i));
6f505b16 8296 if (!rt_se)
dfc12eb2 8297 goto err_free_rq;
29f59db3 8298
3d4b47b4 8299 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8300 }
8301
bccbe08a
PZ
8302 return 1;
8303
49246274 8304err_free_rq:
dfc12eb2 8305 kfree(rt_rq);
49246274 8306err:
bccbe08a
PZ
8307 return 0;
8308}
6d6bc0ad 8309#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8310static inline void free_rt_sched_group(struct task_group *tg)
8311{
8312}
8313
ec7dc8ac
DG
8314static inline
8315int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8316{
8317 return 1;
8318}
6d6bc0ad 8319#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8320
7c941438 8321#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8322static void free_sched_group(struct task_group *tg)
8323{
8324 free_fair_sched_group(tg);
8325 free_rt_sched_group(tg);
e9aa1dd1 8326 autogroup_free(tg);
bccbe08a
PZ
8327 kfree(tg);
8328}
8329
8330/* allocate runqueue etc for a new task group */
ec7dc8ac 8331struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8332{
8333 struct task_group *tg;
8334 unsigned long flags;
bccbe08a
PZ
8335
8336 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8337 if (!tg)
8338 return ERR_PTR(-ENOMEM);
8339
ec7dc8ac 8340 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8341 goto err;
8342
ec7dc8ac 8343 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8344 goto err;
8345
8ed36996 8346 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8347 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8348
8349 WARN_ON(!parent); /* root should already exist */
8350
8351 tg->parent = parent;
f473aa5e 8352 INIT_LIST_HEAD(&tg->children);
09f2724a 8353 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8354 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8355
9b5b7751 8356 return tg;
29f59db3
SV
8357
8358err:
6f505b16 8359 free_sched_group(tg);
29f59db3
SV
8360 return ERR_PTR(-ENOMEM);
8361}
8362
9b5b7751 8363/* rcu callback to free various structures associated with a task group */
6f505b16 8364static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8365{
29f59db3 8366 /* now it should be safe to free those cfs_rqs */
6f505b16 8367 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8368}
8369
9b5b7751 8370/* Destroy runqueue etc associated with a task group */
4cf86d77 8371void sched_destroy_group(struct task_group *tg)
29f59db3 8372{
8ed36996 8373 unsigned long flags;
9b5b7751 8374 int i;
29f59db3 8375
3d4b47b4
PZ
8376 /* end participation in shares distribution */
8377 for_each_possible_cpu(i)
bccbe08a 8378 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8379
8380 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8381 list_del_rcu(&tg->list);
f473aa5e 8382 list_del_rcu(&tg->siblings);
8ed36996 8383 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8384
9b5b7751 8385 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8386 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8387}
8388
9b5b7751 8389/* change task's runqueue when it moves between groups.
3a252015
IM
8390 * The caller of this function should have put the task in its new group
8391 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8392 * reflect its new group.
9b5b7751
SV
8393 */
8394void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8395{
8396 int on_rq, running;
8397 unsigned long flags;
8398 struct rq *rq;
8399
8400 rq = task_rq_lock(tsk, &flags);
8401
051a1d1a 8402 running = task_current(rq, tsk);
fd2f4419 8403 on_rq = tsk->on_rq;
29f59db3 8404
0e1f3483 8405 if (on_rq)
29f59db3 8406 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8407 if (unlikely(running))
8408 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8409
810b3817 8410#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8411 if (tsk->sched_class->task_move_group)
8412 tsk->sched_class->task_move_group(tsk, on_rq);
8413 else
810b3817 8414#endif
b2b5ce02 8415 set_task_rq(tsk, task_cpu(tsk));
810b3817 8416
0e1f3483
HS
8417 if (unlikely(running))
8418 tsk->sched_class->set_curr_task(rq);
8419 if (on_rq)
371fd7e7 8420 enqueue_task(rq, tsk, 0);
29f59db3 8421
0122ec5b 8422 task_rq_unlock(rq, tsk, &flags);
29f59db3 8423}
7c941438 8424#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8425
052f1dc7 8426#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8427static DEFINE_MUTEX(shares_mutex);
8428
4cf86d77 8429int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8430{
8431 int i;
8ed36996 8432 unsigned long flags;
c61935fd 8433
ec7dc8ac
DG
8434 /*
8435 * We can't change the weight of the root cgroup.
8436 */
8437 if (!tg->se[0])
8438 return -EINVAL;
8439
18d95a28
PZ
8440 if (shares < MIN_SHARES)
8441 shares = MIN_SHARES;
cb4ad1ff
MX
8442 else if (shares > MAX_SHARES)
8443 shares = MAX_SHARES;
62fb1851 8444
8ed36996 8445 mutex_lock(&shares_mutex);
9b5b7751 8446 if (tg->shares == shares)
5cb350ba 8447 goto done;
29f59db3 8448
9b5b7751 8449 tg->shares = shares;
c09595f6 8450 for_each_possible_cpu(i) {
9437178f
PT
8451 struct rq *rq = cpu_rq(i);
8452 struct sched_entity *se;
8453
8454 se = tg->se[i];
8455 /* Propagate contribution to hierarchy */
8456 raw_spin_lock_irqsave(&rq->lock, flags);
8457 for_each_sched_entity(se)
6d5ab293 8458 update_cfs_shares(group_cfs_rq(se));
9437178f 8459 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8460 }
29f59db3 8461
5cb350ba 8462done:
8ed36996 8463 mutex_unlock(&shares_mutex);
9b5b7751 8464 return 0;
29f59db3
SV
8465}
8466
5cb350ba
DG
8467unsigned long sched_group_shares(struct task_group *tg)
8468{
8469 return tg->shares;
8470}
052f1dc7 8471#endif
5cb350ba 8472
052f1dc7 8473#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8474/*
9f0c1e56 8475 * Ensure that the real time constraints are schedulable.
6f505b16 8476 */
9f0c1e56
PZ
8477static DEFINE_MUTEX(rt_constraints_mutex);
8478
8479static unsigned long to_ratio(u64 period, u64 runtime)
8480{
8481 if (runtime == RUNTIME_INF)
9a7e0b18 8482 return 1ULL << 20;
9f0c1e56 8483
9a7e0b18 8484 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8485}
8486
9a7e0b18
PZ
8487/* Must be called with tasklist_lock held */
8488static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8489{
9a7e0b18 8490 struct task_struct *g, *p;
b40b2e8e 8491
9a7e0b18
PZ
8492 do_each_thread(g, p) {
8493 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8494 return 1;
8495 } while_each_thread(g, p);
b40b2e8e 8496
9a7e0b18
PZ
8497 return 0;
8498}
b40b2e8e 8499
9a7e0b18
PZ
8500struct rt_schedulable_data {
8501 struct task_group *tg;
8502 u64 rt_period;
8503 u64 rt_runtime;
8504};
b40b2e8e 8505
9a7e0b18
PZ
8506static int tg_schedulable(struct task_group *tg, void *data)
8507{
8508 struct rt_schedulable_data *d = data;
8509 struct task_group *child;
8510 unsigned long total, sum = 0;
8511 u64 period, runtime;
b40b2e8e 8512
9a7e0b18
PZ
8513 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8514 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8515
9a7e0b18
PZ
8516 if (tg == d->tg) {
8517 period = d->rt_period;
8518 runtime = d->rt_runtime;
b40b2e8e 8519 }
b40b2e8e 8520
4653f803
PZ
8521 /*
8522 * Cannot have more runtime than the period.
8523 */
8524 if (runtime > period && runtime != RUNTIME_INF)
8525 return -EINVAL;
6f505b16 8526
4653f803
PZ
8527 /*
8528 * Ensure we don't starve existing RT tasks.
8529 */
9a7e0b18
PZ
8530 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8531 return -EBUSY;
6f505b16 8532
9a7e0b18 8533 total = to_ratio(period, runtime);
6f505b16 8534
4653f803
PZ
8535 /*
8536 * Nobody can have more than the global setting allows.
8537 */
8538 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8539 return -EINVAL;
6f505b16 8540
4653f803
PZ
8541 /*
8542 * The sum of our children's runtime should not exceed our own.
8543 */
9a7e0b18
PZ
8544 list_for_each_entry_rcu(child, &tg->children, siblings) {
8545 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8546 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8547
9a7e0b18
PZ
8548 if (child == d->tg) {
8549 period = d->rt_period;
8550 runtime = d->rt_runtime;
8551 }
6f505b16 8552
9a7e0b18 8553 sum += to_ratio(period, runtime);
9f0c1e56 8554 }
6f505b16 8555
9a7e0b18
PZ
8556 if (sum > total)
8557 return -EINVAL;
8558
8559 return 0;
6f505b16
PZ
8560}
8561
9a7e0b18 8562static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8563{
9a7e0b18
PZ
8564 struct rt_schedulable_data data = {
8565 .tg = tg,
8566 .rt_period = period,
8567 .rt_runtime = runtime,
8568 };
8569
8570 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8571}
8572
d0b27fa7
PZ
8573static int tg_set_bandwidth(struct task_group *tg,
8574 u64 rt_period, u64 rt_runtime)
6f505b16 8575{
ac086bc2 8576 int i, err = 0;
9f0c1e56 8577
9f0c1e56 8578 mutex_lock(&rt_constraints_mutex);
521f1a24 8579 read_lock(&tasklist_lock);
9a7e0b18
PZ
8580 err = __rt_schedulable(tg, rt_period, rt_runtime);
8581 if (err)
9f0c1e56 8582 goto unlock;
ac086bc2 8583
0986b11b 8584 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8585 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8586 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8587
8588 for_each_possible_cpu(i) {
8589 struct rt_rq *rt_rq = tg->rt_rq[i];
8590
0986b11b 8591 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8592 rt_rq->rt_runtime = rt_runtime;
0986b11b 8593 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8594 }
0986b11b 8595 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8596unlock:
521f1a24 8597 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8598 mutex_unlock(&rt_constraints_mutex);
8599
8600 return err;
6f505b16
PZ
8601}
8602
d0b27fa7
PZ
8603int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8604{
8605 u64 rt_runtime, rt_period;
8606
8607 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8608 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8609 if (rt_runtime_us < 0)
8610 rt_runtime = RUNTIME_INF;
8611
8612 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8613}
8614
9f0c1e56
PZ
8615long sched_group_rt_runtime(struct task_group *tg)
8616{
8617 u64 rt_runtime_us;
8618
d0b27fa7 8619 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8620 return -1;
8621
d0b27fa7 8622 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8623 do_div(rt_runtime_us, NSEC_PER_USEC);
8624 return rt_runtime_us;
8625}
d0b27fa7
PZ
8626
8627int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8628{
8629 u64 rt_runtime, rt_period;
8630
8631 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8632 rt_runtime = tg->rt_bandwidth.rt_runtime;
8633
619b0488
R
8634 if (rt_period == 0)
8635 return -EINVAL;
8636
d0b27fa7
PZ
8637 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8638}
8639
8640long sched_group_rt_period(struct task_group *tg)
8641{
8642 u64 rt_period_us;
8643
8644 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8645 do_div(rt_period_us, NSEC_PER_USEC);
8646 return rt_period_us;
8647}
8648
8649static int sched_rt_global_constraints(void)
8650{
4653f803 8651 u64 runtime, period;
d0b27fa7
PZ
8652 int ret = 0;
8653
ec5d4989
HS
8654 if (sysctl_sched_rt_period <= 0)
8655 return -EINVAL;
8656
4653f803
PZ
8657 runtime = global_rt_runtime();
8658 period = global_rt_period();
8659
8660 /*
8661 * Sanity check on the sysctl variables.
8662 */
8663 if (runtime > period && runtime != RUNTIME_INF)
8664 return -EINVAL;
10b612f4 8665
d0b27fa7 8666 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8667 read_lock(&tasklist_lock);
4653f803 8668 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8669 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8670 mutex_unlock(&rt_constraints_mutex);
8671
8672 return ret;
8673}
54e99124
DG
8674
8675int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8676{
8677 /* Don't accept realtime tasks when there is no way for them to run */
8678 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8679 return 0;
8680
8681 return 1;
8682}
8683
6d6bc0ad 8684#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8685static int sched_rt_global_constraints(void)
8686{
ac086bc2
PZ
8687 unsigned long flags;
8688 int i;
8689
ec5d4989
HS
8690 if (sysctl_sched_rt_period <= 0)
8691 return -EINVAL;
8692
60aa605d
PZ
8693 /*
8694 * There's always some RT tasks in the root group
8695 * -- migration, kstopmachine etc..
8696 */
8697 if (sysctl_sched_rt_runtime == 0)
8698 return -EBUSY;
8699
0986b11b 8700 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8701 for_each_possible_cpu(i) {
8702 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8703
0986b11b 8704 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8705 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8706 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8707 }
0986b11b 8708 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8709
d0b27fa7
PZ
8710 return 0;
8711}
6d6bc0ad 8712#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8713
8714int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8715 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8716 loff_t *ppos)
8717{
8718 int ret;
8719 int old_period, old_runtime;
8720 static DEFINE_MUTEX(mutex);
8721
8722 mutex_lock(&mutex);
8723 old_period = sysctl_sched_rt_period;
8724 old_runtime = sysctl_sched_rt_runtime;
8725
8d65af78 8726 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8727
8728 if (!ret && write) {
8729 ret = sched_rt_global_constraints();
8730 if (ret) {
8731 sysctl_sched_rt_period = old_period;
8732 sysctl_sched_rt_runtime = old_runtime;
8733 } else {
8734 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8735 def_rt_bandwidth.rt_period =
8736 ns_to_ktime(global_rt_period());
8737 }
8738 }
8739 mutex_unlock(&mutex);
8740
8741 return ret;
8742}
68318b8e 8743
052f1dc7 8744#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8745
8746/* return corresponding task_group object of a cgroup */
2b01dfe3 8747static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8748{
2b01dfe3
PM
8749 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8750 struct task_group, css);
68318b8e
SV
8751}
8752
8753static struct cgroup_subsys_state *
2b01dfe3 8754cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8755{
ec7dc8ac 8756 struct task_group *tg, *parent;
68318b8e 8757
2b01dfe3 8758 if (!cgrp->parent) {
68318b8e 8759 /* This is early initialization for the top cgroup */
07e06b01 8760 return &root_task_group.css;
68318b8e
SV
8761 }
8762
ec7dc8ac
DG
8763 parent = cgroup_tg(cgrp->parent);
8764 tg = sched_create_group(parent);
68318b8e
SV
8765 if (IS_ERR(tg))
8766 return ERR_PTR(-ENOMEM);
8767
68318b8e
SV
8768 return &tg->css;
8769}
8770
41a2d6cf
IM
8771static void
8772cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8773{
2b01dfe3 8774 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8775
8776 sched_destroy_group(tg);
8777}
8778
41a2d6cf 8779static int
be367d09 8780cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8781{
b68aa230 8782#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8783 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8784 return -EINVAL;
8785#else
68318b8e
SV
8786 /* We don't support RT-tasks being in separate groups */
8787 if (tsk->sched_class != &fair_sched_class)
8788 return -EINVAL;
b68aa230 8789#endif
be367d09
BB
8790 return 0;
8791}
68318b8e 8792
68318b8e 8793static void
f780bdb7 8794cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
8795{
8796 sched_move_task(tsk);
8797}
8798
068c5cc5 8799static void
d41d5a01
PZ
8800cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8801 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
8802{
8803 /*
8804 * cgroup_exit() is called in the copy_process() failure path.
8805 * Ignore this case since the task hasn't ran yet, this avoids
8806 * trying to poke a half freed task state from generic code.
8807 */
8808 if (!(task->flags & PF_EXITING))
8809 return;
8810
8811 sched_move_task(task);
8812}
8813
052f1dc7 8814#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8815static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8816 u64 shareval)
68318b8e 8817{
c8b28116 8818 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8819}
8820
f4c753b7 8821static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8822{
2b01dfe3 8823 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8824
c8b28116 8825 return (u64) scale_load_down(tg->shares);
68318b8e 8826}
6d6bc0ad 8827#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8828
052f1dc7 8829#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8830static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8831 s64 val)
6f505b16 8832{
06ecb27c 8833 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8834}
8835
06ecb27c 8836static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8837{
06ecb27c 8838 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8839}
d0b27fa7
PZ
8840
8841static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8842 u64 rt_period_us)
8843{
8844 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8845}
8846
8847static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8848{
8849 return sched_group_rt_period(cgroup_tg(cgrp));
8850}
6d6bc0ad 8851#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8852
fe5c7cc2 8853static struct cftype cpu_files[] = {
052f1dc7 8854#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8855 {
8856 .name = "shares",
f4c753b7
PM
8857 .read_u64 = cpu_shares_read_u64,
8858 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8859 },
052f1dc7
PZ
8860#endif
8861#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8862 {
9f0c1e56 8863 .name = "rt_runtime_us",
06ecb27c
PM
8864 .read_s64 = cpu_rt_runtime_read,
8865 .write_s64 = cpu_rt_runtime_write,
6f505b16 8866 },
d0b27fa7
PZ
8867 {
8868 .name = "rt_period_us",
f4c753b7
PM
8869 .read_u64 = cpu_rt_period_read_uint,
8870 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8871 },
052f1dc7 8872#endif
68318b8e
SV
8873};
8874
8875static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8876{
fe5c7cc2 8877 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8878}
8879
8880struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8881 .name = "cpu",
8882 .create = cpu_cgroup_create,
8883 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
8884 .can_attach_task = cpu_cgroup_can_attach_task,
8885 .attach_task = cpu_cgroup_attach_task,
068c5cc5 8886 .exit = cpu_cgroup_exit,
38605cae
IM
8887 .populate = cpu_cgroup_populate,
8888 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8889 .early_init = 1,
8890};
8891
052f1dc7 8892#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8893
8894#ifdef CONFIG_CGROUP_CPUACCT
8895
8896/*
8897 * CPU accounting code for task groups.
8898 *
8899 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8900 * (balbir@in.ibm.com).
8901 */
8902
934352f2 8903/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8904struct cpuacct {
8905 struct cgroup_subsys_state css;
8906 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8907 u64 __percpu *cpuusage;
ef12fefa 8908 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8909 struct cpuacct *parent;
d842de87
SV
8910};
8911
8912struct cgroup_subsys cpuacct_subsys;
8913
8914/* return cpu accounting group corresponding to this container */
32cd756a 8915static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8916{
32cd756a 8917 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8918 struct cpuacct, css);
8919}
8920
8921/* return cpu accounting group to which this task belongs */
8922static inline struct cpuacct *task_ca(struct task_struct *tsk)
8923{
8924 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8925 struct cpuacct, css);
8926}
8927
8928/* create a new cpu accounting group */
8929static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8930 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8931{
8932 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8933 int i;
d842de87
SV
8934
8935 if (!ca)
ef12fefa 8936 goto out;
d842de87
SV
8937
8938 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8939 if (!ca->cpuusage)
8940 goto out_free_ca;
8941
8942 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8943 if (percpu_counter_init(&ca->cpustat[i], 0))
8944 goto out_free_counters;
d842de87 8945
934352f2
BR
8946 if (cgrp->parent)
8947 ca->parent = cgroup_ca(cgrp->parent);
8948
d842de87 8949 return &ca->css;
ef12fefa
BR
8950
8951out_free_counters:
8952 while (--i >= 0)
8953 percpu_counter_destroy(&ca->cpustat[i]);
8954 free_percpu(ca->cpuusage);
8955out_free_ca:
8956 kfree(ca);
8957out:
8958 return ERR_PTR(-ENOMEM);
d842de87
SV
8959}
8960
8961/* destroy an existing cpu accounting group */
41a2d6cf 8962static void
32cd756a 8963cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8964{
32cd756a 8965 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8966 int i;
d842de87 8967
ef12fefa
BR
8968 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8969 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8970 free_percpu(ca->cpuusage);
8971 kfree(ca);
8972}
8973
720f5498
KC
8974static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8975{
b36128c8 8976 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8977 u64 data;
8978
8979#ifndef CONFIG_64BIT
8980 /*
8981 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8982 */
05fa785c 8983 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8984 data = *cpuusage;
05fa785c 8985 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8986#else
8987 data = *cpuusage;
8988#endif
8989
8990 return data;
8991}
8992
8993static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8994{
b36128c8 8995 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8996
8997#ifndef CONFIG_64BIT
8998 /*
8999 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9000 */
05fa785c 9001 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9002 *cpuusage = val;
05fa785c 9003 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9004#else
9005 *cpuusage = val;
9006#endif
9007}
9008
d842de87 9009/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9010static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9011{
32cd756a 9012 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9013 u64 totalcpuusage = 0;
9014 int i;
9015
720f5498
KC
9016 for_each_present_cpu(i)
9017 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9018
9019 return totalcpuusage;
9020}
9021
0297b803
DG
9022static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9023 u64 reset)
9024{
9025 struct cpuacct *ca = cgroup_ca(cgrp);
9026 int err = 0;
9027 int i;
9028
9029 if (reset) {
9030 err = -EINVAL;
9031 goto out;
9032 }
9033
720f5498
KC
9034 for_each_present_cpu(i)
9035 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9036
0297b803
DG
9037out:
9038 return err;
9039}
9040
e9515c3c
KC
9041static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9042 struct seq_file *m)
9043{
9044 struct cpuacct *ca = cgroup_ca(cgroup);
9045 u64 percpu;
9046 int i;
9047
9048 for_each_present_cpu(i) {
9049 percpu = cpuacct_cpuusage_read(ca, i);
9050 seq_printf(m, "%llu ", (unsigned long long) percpu);
9051 }
9052 seq_printf(m, "\n");
9053 return 0;
9054}
9055
ef12fefa
BR
9056static const char *cpuacct_stat_desc[] = {
9057 [CPUACCT_STAT_USER] = "user",
9058 [CPUACCT_STAT_SYSTEM] = "system",
9059};
9060
9061static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9062 struct cgroup_map_cb *cb)
9063{
9064 struct cpuacct *ca = cgroup_ca(cgrp);
9065 int i;
9066
9067 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9068 s64 val = percpu_counter_read(&ca->cpustat[i]);
9069 val = cputime64_to_clock_t(val);
9070 cb->fill(cb, cpuacct_stat_desc[i], val);
9071 }
9072 return 0;
9073}
9074
d842de87
SV
9075static struct cftype files[] = {
9076 {
9077 .name = "usage",
f4c753b7
PM
9078 .read_u64 = cpuusage_read,
9079 .write_u64 = cpuusage_write,
d842de87 9080 },
e9515c3c
KC
9081 {
9082 .name = "usage_percpu",
9083 .read_seq_string = cpuacct_percpu_seq_read,
9084 },
ef12fefa
BR
9085 {
9086 .name = "stat",
9087 .read_map = cpuacct_stats_show,
9088 },
d842de87
SV
9089};
9090
32cd756a 9091static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9092{
32cd756a 9093 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9094}
9095
9096/*
9097 * charge this task's execution time to its accounting group.
9098 *
9099 * called with rq->lock held.
9100 */
9101static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9102{
9103 struct cpuacct *ca;
934352f2 9104 int cpu;
d842de87 9105
c40c6f85 9106 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9107 return;
9108
934352f2 9109 cpu = task_cpu(tsk);
a18b83b7
BR
9110
9111 rcu_read_lock();
9112
d842de87 9113 ca = task_ca(tsk);
d842de87 9114
934352f2 9115 for (; ca; ca = ca->parent) {
b36128c8 9116 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9117 *cpuusage += cputime;
9118 }
a18b83b7
BR
9119
9120 rcu_read_unlock();
d842de87
SV
9121}
9122
fa535a77
AB
9123/*
9124 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9125 * in cputime_t units. As a result, cpuacct_update_stats calls
9126 * percpu_counter_add with values large enough to always overflow the
9127 * per cpu batch limit causing bad SMP scalability.
9128 *
9129 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9130 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9131 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9132 */
9133#ifdef CONFIG_SMP
9134#define CPUACCT_BATCH \
9135 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9136#else
9137#define CPUACCT_BATCH 0
9138#endif
9139
ef12fefa
BR
9140/*
9141 * Charge the system/user time to the task's accounting group.
9142 */
9143static void cpuacct_update_stats(struct task_struct *tsk,
9144 enum cpuacct_stat_index idx, cputime_t val)
9145{
9146 struct cpuacct *ca;
fa535a77 9147 int batch = CPUACCT_BATCH;
ef12fefa
BR
9148
9149 if (unlikely(!cpuacct_subsys.active))
9150 return;
9151
9152 rcu_read_lock();
9153 ca = task_ca(tsk);
9154
9155 do {
fa535a77 9156 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9157 ca = ca->parent;
9158 } while (ca);
9159 rcu_read_unlock();
9160}
9161
d842de87
SV
9162struct cgroup_subsys cpuacct_subsys = {
9163 .name = "cpuacct",
9164 .create = cpuacct_create,
9165 .destroy = cpuacct_destroy,
9166 .populate = cpuacct_populate,
9167 .subsys_id = cpuacct_subsys_id,
9168};
9169#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9170
This page took 2.126284 seconds and 5 git commands to generate.