KVM: x86: MMU: Remove mapping_level_dirty_bitmap()
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
54bf36aa 226static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 227{
54bf36aa 228 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
54bf36aa 231static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 232 unsigned access)
ce88decf 233{
54bf36aa 234 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
54bf36aa 261static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 265 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
54bf36aa 272static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
54bf36aa 276 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
a9221dd5 360#else
603e0651
XG
361union split_spte {
362 struct {
363 u32 spte_low;
364 u32 spte_high;
365 };
366 u64 spte;
367};
a9221dd5 368
c2a2ac2b
XG
369static void count_spte_clear(u64 *sptep, u64 spte)
370{
371 struct kvm_mmu_page *sp = page_header(__pa(sptep));
372
373 if (is_shadow_present_pte(spte))
374 return;
375
376 /* Ensure the spte is completely set before we increase the count */
377 smp_wmb();
378 sp->clear_spte_count++;
379}
380
603e0651
XG
381static void __set_spte(u64 *sptep, u64 spte)
382{
383 union split_spte *ssptep, sspte;
a9221dd5 384
603e0651
XG
385 ssptep = (union split_spte *)sptep;
386 sspte = (union split_spte)spte;
387
388 ssptep->spte_high = sspte.spte_high;
389
390 /*
391 * If we map the spte from nonpresent to present, We should store
392 * the high bits firstly, then set present bit, so cpu can not
393 * fetch this spte while we are setting the spte.
394 */
395 smp_wmb();
396
397 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
398}
399
603e0651
XG
400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401{
402 union split_spte *ssptep, sspte;
403
404 ssptep = (union split_spte *)sptep;
405 sspte = (union split_spte)spte;
406
407 ssptep->spte_low = sspte.spte_low;
408
409 /*
410 * If we map the spte from present to nonpresent, we should clear
411 * present bit firstly to avoid vcpu fetch the old high bits.
412 */
413 smp_wmb();
414
415 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 416 count_spte_clear(sptep, spte);
603e0651
XG
417}
418
419static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420{
421 union split_spte *ssptep, sspte, orig;
422
423 ssptep = (union split_spte *)sptep;
424 sspte = (union split_spte)spte;
425
426 /* xchg acts as a barrier before the setting of the high bits */
427 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
428 orig.spte_high = ssptep->spte_high;
429 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 430 count_spte_clear(sptep, spte);
603e0651
XG
431
432 return orig.spte;
433}
c2a2ac2b
XG
434
435/*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock. Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte. The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
452 */
453static u64 __get_spte_lockless(u64 *sptep)
454{
455 struct kvm_mmu_page *sp = page_header(__pa(sptep));
456 union split_spte spte, *orig = (union split_spte *)sptep;
457 int count;
458
459retry:
460 count = sp->clear_spte_count;
461 smp_rmb();
462
463 spte.spte_low = orig->spte_low;
464 smp_rmb();
465
466 spte.spte_high = orig->spte_high;
467 smp_rmb();
468
469 if (unlikely(spte.spte_low != orig->spte_low ||
470 count != sp->clear_spte_count))
471 goto retry;
472
473 return spte.spte;
474}
603e0651
XG
475#endif
476
c7ba5b48
XG
477static bool spte_is_locklessly_modifiable(u64 spte)
478{
feb3eb70
GN
479 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
481}
482
8672b721
XG
483static bool spte_has_volatile_bits(u64 spte)
484{
c7ba5b48
XG
485 /*
486 * Always atomicly update spte if it can be updated
487 * out of mmu-lock, it can ensure dirty bit is not lost,
488 * also, it can help us to get a stable is_writable_pte()
489 * to ensure tlb flush is not missed.
490 */
491 if (spte_is_locklessly_modifiable(spte))
492 return true;
493
8672b721
XG
494 if (!shadow_accessed_mask)
495 return false;
496
497 if (!is_shadow_present_pte(spte))
498 return false;
499
4132779b
XG
500 if ((spte & shadow_accessed_mask) &&
501 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
502 return false;
503
504 return true;
505}
506
4132779b
XG
507static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508{
509 return (old_spte & bit_mask) && !(new_spte & bit_mask);
510}
511
7e71a59b
KH
512static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513{
514 return (old_spte & bit_mask) != (new_spte & bit_mask);
515}
516
1df9f2dc
XG
517/* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523static void mmu_spte_set(u64 *sptep, u64 new_spte)
524{
525 WARN_ON(is_shadow_present_pte(*sptep));
526 __set_spte(sptep, new_spte);
527}
528
529/* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
1df9f2dc 537 */
6e7d0354 538static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 539{
c7ba5b48 540 u64 old_spte = *sptep;
6e7d0354 541 bool ret = false;
4132779b
XG
542
543 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 544
6e7d0354
XG
545 if (!is_shadow_present_pte(old_spte)) {
546 mmu_spte_set(sptep, new_spte);
547 return ret;
548 }
4132779b 549
c7ba5b48 550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, new_spte);
4132779b 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 554
c7ba5b48
XG
555 /*
556 * For the spte updated out of mmu-lock is safe, since
557 * we always atomicly update it, see the comments in
558 * spte_has_volatile_bits().
559 */
7f31c959
XG
560 if (spte_is_locklessly_modifiable(old_spte) &&
561 !is_writable_pte(new_spte))
6e7d0354
XG
562 ret = true;
563
4132779b 564 if (!shadow_accessed_mask)
6e7d0354 565 return ret;
4132779b 566
7e71a59b
KH
567 /*
568 * Flush TLB when accessed/dirty bits are changed in the page tables,
569 * to guarantee consistency between TLB and page tables.
570 */
571 if (spte_is_bit_changed(old_spte, new_spte,
572 shadow_accessed_mask | shadow_dirty_mask))
573 ret = true;
574
4132779b
XG
575 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
579
580 return ret;
b79b93f9
AK
581}
582
1df9f2dc
XG
583/*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588static int mmu_spte_clear_track_bits(u64 *sptep)
589{
590 pfn_t pfn;
591 u64 old_spte = *sptep;
592
593 if (!spte_has_volatile_bits(old_spte))
603e0651 594 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 595 else
603e0651 596 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
597
598 if (!is_rmap_spte(old_spte))
599 return 0;
600
601 pfn = spte_to_pfn(old_spte);
86fde74c
XG
602
603 /*
604 * KVM does not hold the refcount of the page used by
605 * kvm mmu, before reclaiming the page, we should
606 * unmap it from mmu first.
607 */
bf4bea8e 608 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 609
1df9f2dc
XG
610 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611 kvm_set_pfn_accessed(pfn);
612 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613 kvm_set_pfn_dirty(pfn);
614 return 1;
615}
616
617/*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622static void mmu_spte_clear_no_track(u64 *sptep)
623{
603e0651 624 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
625}
626
c2a2ac2b
XG
627static u64 mmu_spte_get_lockless(u64 *sptep)
628{
629 return __get_spte_lockless(sptep);
630}
631
632static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633{
c142786c
AK
634 /*
635 * Prevent page table teardown by making any free-er wait during
636 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637 */
638 local_irq_disable();
639 vcpu->mode = READING_SHADOW_PAGE_TABLES;
640 /*
641 * Make sure a following spte read is not reordered ahead of the write
642 * to vcpu->mode.
643 */
644 smp_mb();
c2a2ac2b
XG
645}
646
647static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648{
c142786c
AK
649 /*
650 * Make sure the write to vcpu->mode is not reordered in front of
651 * reads to sptes. If it does, kvm_commit_zap_page() can see us
652 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653 */
654 smp_mb();
655 vcpu->mode = OUTSIDE_GUEST_MODE;
656 local_irq_enable();
c2a2ac2b
XG
657}
658
e2dec939 659static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 660 struct kmem_cache *base_cache, int min)
714b93da
AK
661{
662 void *obj;
663
664 if (cache->nobjs >= min)
e2dec939 665 return 0;
714b93da 666 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 667 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 668 if (!obj)
e2dec939 669 return -ENOMEM;
714b93da
AK
670 cache->objects[cache->nobjs++] = obj;
671 }
e2dec939 672 return 0;
714b93da
AK
673}
674
f759e2b4
XG
675static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676{
677 return cache->nobjs;
678}
679
e8ad9a70
XG
680static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681 struct kmem_cache *cache)
714b93da
AK
682{
683 while (mc->nobjs)
e8ad9a70 684 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
685}
686
c1158e63 687static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 688 int min)
c1158e63 689{
842f22ed 690 void *page;
c1158e63
AK
691
692 if (cache->nobjs >= min)
693 return 0;
694 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 695 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
696 if (!page)
697 return -ENOMEM;
842f22ed 698 cache->objects[cache->nobjs++] = page;
c1158e63
AK
699 }
700 return 0;
701}
702
703static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704{
705 while (mc->nobjs)
c4d198d5 706 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
707}
708
2e3e5882 709static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 710{
e2dec939
AK
711 int r;
712
53c07b18 713 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 714 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
715 if (r)
716 goto out;
ad312c7c 717 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
718 if (r)
719 goto out;
ad312c7c 720 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 721 mmu_page_header_cache, 4);
e2dec939
AK
722out:
723 return r;
714b93da
AK
724}
725
726static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727{
53c07b18
XG
728 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729 pte_list_desc_cache);
ad312c7c 730 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
731 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732 mmu_page_header_cache);
714b93da
AK
733}
734
80feb89a 735static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
736{
737 void *p;
738
739 BUG_ON(!mc->nobjs);
740 p = mc->objects[--mc->nobjs];
714b93da
AK
741 return p;
742}
743
53c07b18 744static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 745{
80feb89a 746 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
747}
748
53c07b18 749static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 750{
53c07b18 751 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
752}
753
2032a93d
LJ
754static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755{
756 if (!sp->role.direct)
757 return sp->gfns[index];
758
759 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760}
761
762static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763{
764 if (sp->role.direct)
765 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766 else
767 sp->gfns[index] = gfn;
768}
769
05da4558 770/*
d4dbf470
TY
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
05da4558 773 */
d4dbf470
TY
774static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775 struct kvm_memory_slot *slot,
776 int level)
05da4558
MT
777{
778 unsigned long idx;
779
fb03cb6f 780 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 781 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
782}
783
3ed1a478 784static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 785{
699023e2 786 struct kvm_memslots *slots;
d25797b2 787 struct kvm_memory_slot *slot;
d4dbf470 788 struct kvm_lpage_info *linfo;
3ed1a478 789 gfn_t gfn;
d25797b2 790 int i;
05da4558 791
3ed1a478 792 gfn = sp->gfn;
699023e2
PB
793 slots = kvm_memslots_for_spte_role(kvm, sp->role);
794 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 795 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
796 linfo = lpage_info_slot(gfn, slot, i);
797 linfo->write_count += 1;
d25797b2 798 }
332b207d 799 kvm->arch.indirect_shadow_pages++;
05da4558
MT
800}
801
3ed1a478 802static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 803{
699023e2 804 struct kvm_memslots *slots;
d25797b2 805 struct kvm_memory_slot *slot;
d4dbf470 806 struct kvm_lpage_info *linfo;
3ed1a478 807 gfn_t gfn;
d25797b2 808 int i;
05da4558 809
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
8a3d08f1 813 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
814 linfo = lpage_info_slot(gfn, slot, i);
815 linfo->write_count -= 1;
816 WARN_ON(linfo->write_count < 0);
d25797b2 817 }
332b207d 818 kvm->arch.indirect_shadow_pages--;
05da4558
MT
819}
820
54bf36aa 821static int has_wrprotected_page(struct kvm_vcpu *vcpu,
d25797b2
JR
822 gfn_t gfn,
823 int level)
05da4558 824{
2843099f 825 struct kvm_memory_slot *slot;
d4dbf470 826 struct kvm_lpage_info *linfo;
05da4558 827
54bf36aa 828 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
05da4558 829 if (slot) {
d4dbf470
TY
830 linfo = lpage_info_slot(gfn, slot, level);
831 return linfo->write_count;
05da4558
MT
832 }
833
834 return 1;
835}
836
d25797b2 837static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 838{
8f0b1ab6 839 unsigned long page_size;
d25797b2 840 int i, ret = 0;
05da4558 841
8f0b1ab6 842 page_size = kvm_host_page_size(kvm, gfn);
05da4558 843
8a3d08f1 844 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
845 if (page_size >= KVM_HPAGE_SIZE(i))
846 ret = i;
847 else
848 break;
849 }
850
4c2155ce 851 return ret;
05da4558
MT
852}
853
d8aacf5d
TY
854static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
855 bool no_dirty_log)
856{
857 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
858 return false;
859 if (no_dirty_log && slot->dirty_bitmap)
860 return false;
861
862 return true;
863}
864
5d163b1c
XG
865static struct kvm_memory_slot *
866gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
867 bool no_dirty_log)
05da4558
MT
868{
869 struct kvm_memory_slot *slot;
5d163b1c 870
54bf36aa 871 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 872 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
873 slot = NULL;
874
875 return slot;
876}
877
fd136902
TY
878static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
879 bool *force_pt_level)
936a5fe6
AA
880{
881 int host_level, level, max_level;
d8aacf5d
TY
882 struct kvm_memory_slot *slot;
883
884 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
05da4558 885
fd136902 886 if (likely(!*force_pt_level))
d8aacf5d 887 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
888 if (unlikely(*force_pt_level))
889 return PT_PAGE_TABLE_LEVEL;
890
d25797b2
JR
891 host_level = host_mapping_level(vcpu->kvm, large_gfn);
892
893 if (host_level == PT_PAGE_TABLE_LEVEL)
894 return host_level;
895
55dd98c3 896 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
897
898 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
54bf36aa 899 if (has_wrprotected_page(vcpu, large_gfn, level))
d25797b2 900 break;
d25797b2
JR
901
902 return level - 1;
05da4558
MT
903}
904
290fc38d 905/*
53c07b18 906 * Pte mapping structures:
cd4a4e53 907 *
53c07b18 908 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 909 *
53c07b18
XG
910 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
911 * pte_list_desc containing more mappings.
53a27b39 912 *
53c07b18 913 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
914 * the spte was not added.
915 *
cd4a4e53 916 */
53c07b18
XG
917static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
918 unsigned long *pte_list)
cd4a4e53 919{
53c07b18 920 struct pte_list_desc *desc;
53a27b39 921 int i, count = 0;
cd4a4e53 922
53c07b18
XG
923 if (!*pte_list) {
924 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
925 *pte_list = (unsigned long)spte;
926 } else if (!(*pte_list & 1)) {
927 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
928 desc = mmu_alloc_pte_list_desc(vcpu);
929 desc->sptes[0] = (u64 *)*pte_list;
d555c333 930 desc->sptes[1] = spte;
53c07b18 931 *pte_list = (unsigned long)desc | 1;
cb16a7b3 932 ++count;
cd4a4e53 933 } else {
53c07b18
XG
934 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
935 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
936 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 937 desc = desc->more;
53c07b18 938 count += PTE_LIST_EXT;
53a27b39 939 }
53c07b18
XG
940 if (desc->sptes[PTE_LIST_EXT-1]) {
941 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
942 desc = desc->more;
943 }
d555c333 944 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 945 ++count;
d555c333 946 desc->sptes[i] = spte;
cd4a4e53 947 }
53a27b39 948 return count;
cd4a4e53
AK
949}
950
53c07b18
XG
951static void
952pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
953 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
954{
955 int j;
956
53c07b18 957 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 958 ;
d555c333
AK
959 desc->sptes[i] = desc->sptes[j];
960 desc->sptes[j] = NULL;
cd4a4e53
AK
961 if (j != 0)
962 return;
963 if (!prev_desc && !desc->more)
53c07b18 964 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
965 else
966 if (prev_desc)
967 prev_desc->more = desc->more;
968 else
53c07b18
XG
969 *pte_list = (unsigned long)desc->more | 1;
970 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
971}
972
53c07b18 973static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 974{
53c07b18
XG
975 struct pte_list_desc *desc;
976 struct pte_list_desc *prev_desc;
cd4a4e53
AK
977 int i;
978
53c07b18
XG
979 if (!*pte_list) {
980 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 981 BUG();
53c07b18
XG
982 } else if (!(*pte_list & 1)) {
983 rmap_printk("pte_list_remove: %p 1->0\n", spte);
984 if ((u64 *)*pte_list != spte) {
985 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
986 BUG();
987 }
53c07b18 988 *pte_list = 0;
cd4a4e53 989 } else {
53c07b18
XG
990 rmap_printk("pte_list_remove: %p many->many\n", spte);
991 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
992 prev_desc = NULL;
993 while (desc) {
53c07b18 994 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 995 if (desc->sptes[i] == spte) {
53c07b18 996 pte_list_desc_remove_entry(pte_list,
714b93da 997 desc, i,
cd4a4e53
AK
998 prev_desc);
999 return;
1000 }
1001 prev_desc = desc;
1002 desc = desc->more;
1003 }
53c07b18 1004 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1005 BUG();
1006 }
1007}
1008
67052b35
XG
1009typedef void (*pte_list_walk_fn) (u64 *spte);
1010static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1011{
1012 struct pte_list_desc *desc;
1013 int i;
1014
1015 if (!*pte_list)
1016 return;
1017
1018 if (!(*pte_list & 1))
1019 return fn((u64 *)*pte_list);
1020
1021 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1022 while (desc) {
1023 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1024 fn(desc->sptes[i]);
1025 desc = desc->more;
1026 }
1027}
1028
9373e2c0 1029static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1030 struct kvm_memory_slot *slot)
53c07b18 1031{
77d11309 1032 unsigned long idx;
53c07b18 1033
77d11309 1034 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1035 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1036}
1037
9b9b1492
TY
1038/*
1039 * Take gfn and return the reverse mapping to it.
1040 */
e4cd1da9 1041static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
9b9b1492 1042{
699023e2 1043 struct kvm_memslots *slots;
9b9b1492
TY
1044 struct kvm_memory_slot *slot;
1045
699023e2
PB
1046 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1047 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1048 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1049}
1050
f759e2b4
XG
1051static bool rmap_can_add(struct kvm_vcpu *vcpu)
1052{
1053 struct kvm_mmu_memory_cache *cache;
1054
1055 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1056 return mmu_memory_cache_free_objects(cache);
1057}
1058
53c07b18
XG
1059static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1060{
1061 struct kvm_mmu_page *sp;
1062 unsigned long *rmapp;
1063
53c07b18
XG
1064 sp = page_header(__pa(spte));
1065 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
e4cd1da9 1066 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53c07b18
XG
1067 return pte_list_add(vcpu, spte, rmapp);
1068}
1069
53c07b18
XG
1070static void rmap_remove(struct kvm *kvm, u64 *spte)
1071{
1072 struct kvm_mmu_page *sp;
1073 gfn_t gfn;
1074 unsigned long *rmapp;
1075
1076 sp = page_header(__pa(spte));
1077 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
e4cd1da9 1078 rmapp = gfn_to_rmap(kvm, gfn, sp);
53c07b18
XG
1079 pte_list_remove(spte, rmapp);
1080}
1081
1e3f42f0
TY
1082/*
1083 * Used by the following functions to iterate through the sptes linked by a
1084 * rmap. All fields are private and not assumed to be used outside.
1085 */
1086struct rmap_iterator {
1087 /* private fields */
1088 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1089 int pos; /* index of the sptep */
1090};
1091
1092/*
1093 * Iteration must be started by this function. This should also be used after
1094 * removing/dropping sptes from the rmap link because in such cases the
1095 * information in the itererator may not be valid.
1096 *
1097 * Returns sptep if found, NULL otherwise.
1098 */
1099static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1100{
1101 if (!rmap)
1102 return NULL;
1103
1104 if (!(rmap & 1)) {
1105 iter->desc = NULL;
1106 return (u64 *)rmap;
1107 }
1108
1109 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1110 iter->pos = 0;
1111 return iter->desc->sptes[iter->pos];
1112}
1113
1114/*
1115 * Must be used with a valid iterator: e.g. after rmap_get_first().
1116 *
1117 * Returns sptep if found, NULL otherwise.
1118 */
1119static u64 *rmap_get_next(struct rmap_iterator *iter)
1120{
1121 if (iter->desc) {
1122 if (iter->pos < PTE_LIST_EXT - 1) {
1123 u64 *sptep;
1124
1125 ++iter->pos;
1126 sptep = iter->desc->sptes[iter->pos];
1127 if (sptep)
1128 return sptep;
1129 }
1130
1131 iter->desc = iter->desc->more;
1132
1133 if (iter->desc) {
1134 iter->pos = 0;
1135 /* desc->sptes[0] cannot be NULL */
1136 return iter->desc->sptes[iter->pos];
1137 }
1138 }
1139
1140 return NULL;
1141}
1142
0d536790
XG
1143#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1144 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1145 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1146 _spte_ = rmap_get_next(_iter_))
1147
c3707958 1148static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1149{
1df9f2dc 1150 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1151 rmap_remove(kvm, sptep);
be38d276
AK
1152}
1153
8e22f955
XG
1154
1155static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1156{
1157 if (is_large_pte(*sptep)) {
1158 WARN_ON(page_header(__pa(sptep))->role.level ==
1159 PT_PAGE_TABLE_LEVEL);
1160 drop_spte(kvm, sptep);
1161 --kvm->stat.lpages;
1162 return true;
1163 }
1164
1165 return false;
1166}
1167
1168static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1169{
1170 if (__drop_large_spte(vcpu->kvm, sptep))
1171 kvm_flush_remote_tlbs(vcpu->kvm);
1172}
1173
1174/*
49fde340 1175 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1176 * spte write-protection is caused by protecting shadow page table.
49fde340 1177 *
b4619660 1178 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1179 * protection:
1180 * - for dirty logging, the spte can be set to writable at anytime if
1181 * its dirty bitmap is properly set.
1182 * - for spte protection, the spte can be writable only after unsync-ing
1183 * shadow page.
8e22f955 1184 *
c126d94f 1185 * Return true if tlb need be flushed.
8e22f955 1186 */
c126d94f 1187static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1188{
1189 u64 spte = *sptep;
1190
49fde340
XG
1191 if (!is_writable_pte(spte) &&
1192 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1193 return false;
1194
1195 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1196
49fde340
XG
1197 if (pt_protect)
1198 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1199 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1200
c126d94f 1201 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1202}
1203
49fde340 1204static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1205 bool pt_protect)
98348e95 1206{
1e3f42f0
TY
1207 u64 *sptep;
1208 struct rmap_iterator iter;
d13bc5b5 1209 bool flush = false;
374cbac0 1210
0d536790 1211 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1212 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1213
d13bc5b5 1214 return flush;
a0ed4607
TY
1215}
1216
f4b4b180
KH
1217static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1218{
1219 u64 spte = *sptep;
1220
1221 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1222
1223 spte &= ~shadow_dirty_mask;
1224
1225 return mmu_spte_update(sptep, spte);
1226}
1227
1228static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1229{
1230 u64 *sptep;
1231 struct rmap_iterator iter;
1232 bool flush = false;
1233
0d536790 1234 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1235 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1236
1237 return flush;
1238}
1239
1240static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1241{
1242 u64 spte = *sptep;
1243
1244 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1245
1246 spte |= shadow_dirty_mask;
1247
1248 return mmu_spte_update(sptep, spte);
1249}
1250
1251static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1252{
1253 u64 *sptep;
1254 struct rmap_iterator iter;
1255 bool flush = false;
1256
0d536790 1257 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1258 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1259
1260 return flush;
1261}
1262
5dc99b23 1263/**
3b0f1d01 1264 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1265 * @kvm: kvm instance
1266 * @slot: slot to protect
1267 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1268 * @mask: indicates which pages we should protect
1269 *
1270 * Used when we do not need to care about huge page mappings: e.g. during dirty
1271 * logging we do not have any such mappings.
1272 */
3b0f1d01 1273static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1274 struct kvm_memory_slot *slot,
1275 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1276{
1277 unsigned long *rmapp;
a0ed4607 1278
5dc99b23 1279 while (mask) {
65fbe37c
TY
1280 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1281 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1282 __rmap_write_protect(kvm, rmapp, false);
05da4558 1283
5dc99b23
TY
1284 /* clear the first set bit */
1285 mask &= mask - 1;
1286 }
374cbac0
AK
1287}
1288
f4b4b180
KH
1289/**
1290 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1291 * @kvm: kvm instance
1292 * @slot: slot to clear D-bit
1293 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1294 * @mask: indicates which pages we should clear D-bit
1295 *
1296 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1297 */
1298void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1299 struct kvm_memory_slot *slot,
1300 gfn_t gfn_offset, unsigned long mask)
1301{
1302 unsigned long *rmapp;
1303
1304 while (mask) {
1305 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1306 PT_PAGE_TABLE_LEVEL, slot);
1307 __rmap_clear_dirty(kvm, rmapp);
1308
1309 /* clear the first set bit */
1310 mask &= mask - 1;
1311 }
1312}
1313EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1314
3b0f1d01
KH
1315/**
1316 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1317 * PT level pages.
1318 *
1319 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1320 * enable dirty logging for them.
1321 *
1322 * Used when we do not need to care about huge page mappings: e.g. during dirty
1323 * logging we do not have any such mappings.
1324 */
1325void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1326 struct kvm_memory_slot *slot,
1327 gfn_t gfn_offset, unsigned long mask)
1328{
88178fd4
KH
1329 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1330 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1331 mask);
1332 else
1333 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1334}
1335
54bf36aa 1336static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
95d4c16c
TY
1337{
1338 struct kvm_memory_slot *slot;
5dc99b23
TY
1339 unsigned long *rmapp;
1340 int i;
2f84569f 1341 bool write_protected = false;
95d4c16c 1342
54bf36aa 1343 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
5dc99b23 1344
8a3d08f1 1345 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1346 rmapp = __gfn_to_rmap(gfn, i, slot);
54bf36aa 1347 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
5dc99b23
TY
1348 }
1349
1350 return write_protected;
95d4c16c
TY
1351}
1352
6a49f85c 1353static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
e930bffe 1354{
1e3f42f0
TY
1355 u64 *sptep;
1356 struct rmap_iterator iter;
6a49f85c 1357 bool flush = false;
e930bffe 1358
1e3f42f0
TY
1359 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1360 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6a49f85c 1361 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1362
1363 drop_spte(kvm, sptep);
6a49f85c 1364 flush = true;
e930bffe 1365 }
1e3f42f0 1366
6a49f85c
XG
1367 return flush;
1368}
1369
1370static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1371 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1372 unsigned long data)
1373{
1374 return kvm_zap_rmapp(kvm, rmapp);
e930bffe
AA
1375}
1376
8a8365c5 1377static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1378 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1379 unsigned long data)
3da0dd43 1380{
1e3f42f0
TY
1381 u64 *sptep;
1382 struct rmap_iterator iter;
3da0dd43 1383 int need_flush = 0;
1e3f42f0 1384 u64 new_spte;
3da0dd43
IE
1385 pte_t *ptep = (pte_t *)data;
1386 pfn_t new_pfn;
1387
1388 WARN_ON(pte_huge(*ptep));
1389 new_pfn = pte_pfn(*ptep);
1e3f42f0 1390
0d536790
XG
1391restart:
1392 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1393 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1394 sptep, *sptep, gfn, level);
1e3f42f0 1395
3da0dd43 1396 need_flush = 1;
1e3f42f0 1397
3da0dd43 1398 if (pte_write(*ptep)) {
1e3f42f0 1399 drop_spte(kvm, sptep);
0d536790 1400 goto restart;
3da0dd43 1401 } else {
1e3f42f0 1402 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1403 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1404
1405 new_spte &= ~PT_WRITABLE_MASK;
1406 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1407 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1408
1409 mmu_spte_clear_track_bits(sptep);
1410 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1411 }
1412 }
1e3f42f0 1413
3da0dd43
IE
1414 if (need_flush)
1415 kvm_flush_remote_tlbs(kvm);
1416
1417 return 0;
1418}
1419
6ce1f4e2
XG
1420struct slot_rmap_walk_iterator {
1421 /* input fields. */
1422 struct kvm_memory_slot *slot;
1423 gfn_t start_gfn;
1424 gfn_t end_gfn;
1425 int start_level;
1426 int end_level;
1427
1428 /* output fields. */
1429 gfn_t gfn;
1430 unsigned long *rmap;
1431 int level;
1432
1433 /* private field. */
1434 unsigned long *end_rmap;
1435};
1436
1437static void
1438rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1439{
1440 iterator->level = level;
1441 iterator->gfn = iterator->start_gfn;
1442 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1443 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1444 iterator->slot);
1445}
1446
1447static void
1448slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1449 struct kvm_memory_slot *slot, int start_level,
1450 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1451{
1452 iterator->slot = slot;
1453 iterator->start_level = start_level;
1454 iterator->end_level = end_level;
1455 iterator->start_gfn = start_gfn;
1456 iterator->end_gfn = end_gfn;
1457
1458 rmap_walk_init_level(iterator, iterator->start_level);
1459}
1460
1461static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1462{
1463 return !!iterator->rmap;
1464}
1465
1466static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1467{
1468 if (++iterator->rmap <= iterator->end_rmap) {
1469 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1470 return;
1471 }
1472
1473 if (++iterator->level > iterator->end_level) {
1474 iterator->rmap = NULL;
1475 return;
1476 }
1477
1478 rmap_walk_init_level(iterator, iterator->level);
1479}
1480
1481#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1482 _start_gfn, _end_gfn, _iter_) \
1483 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1484 _end_level_, _start_gfn, _end_gfn); \
1485 slot_rmap_walk_okay(_iter_); \
1486 slot_rmap_walk_next(_iter_))
1487
84504ef3
TY
1488static int kvm_handle_hva_range(struct kvm *kvm,
1489 unsigned long start,
1490 unsigned long end,
1491 unsigned long data,
1492 int (*handler)(struct kvm *kvm,
1493 unsigned long *rmapp,
048212d0 1494 struct kvm_memory_slot *slot,
8a9522d2
ALC
1495 gfn_t gfn,
1496 int level,
84504ef3 1497 unsigned long data))
e930bffe 1498{
bc6678a3 1499 struct kvm_memslots *slots;
be6ba0f0 1500 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1501 struct slot_rmap_walk_iterator iterator;
1502 int ret = 0;
9da0e4d5 1503 int i;
bc6678a3 1504
9da0e4d5
PB
1505 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1506 slots = __kvm_memslots(kvm, i);
1507 kvm_for_each_memslot(memslot, slots) {
1508 unsigned long hva_start, hva_end;
1509 gfn_t gfn_start, gfn_end;
e930bffe 1510
9da0e4d5
PB
1511 hva_start = max(start, memslot->userspace_addr);
1512 hva_end = min(end, memslot->userspace_addr +
1513 (memslot->npages << PAGE_SHIFT));
1514 if (hva_start >= hva_end)
1515 continue;
1516 /*
1517 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1518 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1519 */
1520 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1521 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1522
1523 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1524 PT_MAX_HUGEPAGE_LEVEL,
1525 gfn_start, gfn_end - 1,
1526 &iterator)
1527 ret |= handler(kvm, iterator.rmap, memslot,
1528 iterator.gfn, iterator.level, data);
1529 }
e930bffe
AA
1530 }
1531
f395302e 1532 return ret;
e930bffe
AA
1533}
1534
84504ef3
TY
1535static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1536 unsigned long data,
1537 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1538 struct kvm_memory_slot *slot,
8a9522d2 1539 gfn_t gfn, int level,
84504ef3
TY
1540 unsigned long data))
1541{
1542 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1543}
1544
1545int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1546{
3da0dd43
IE
1547 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1548}
1549
b3ae2096
TY
1550int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1551{
1552 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1553}
1554
3da0dd43
IE
1555void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1556{
8a8365c5 1557 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1558}
1559
8a8365c5 1560static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1561 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1562 unsigned long data)
e930bffe 1563{
1e3f42f0 1564 u64 *sptep;
79f702a6 1565 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1566 int young = 0;
1567
57128468 1568 BUG_ON(!shadow_accessed_mask);
534e38b4 1569
0d536790 1570 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1571 if (*sptep & shadow_accessed_mask) {
e930bffe 1572 young = 1;
3f6d8c8a
XH
1573 clear_bit((ffs(shadow_accessed_mask) - 1),
1574 (unsigned long *)sptep);
e930bffe 1575 }
0d536790 1576
8a9522d2 1577 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1578 return young;
1579}
1580
8ee53820 1581static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1582 struct kvm_memory_slot *slot, gfn_t gfn,
1583 int level, unsigned long data)
8ee53820 1584{
1e3f42f0
TY
1585 u64 *sptep;
1586 struct rmap_iterator iter;
8ee53820
AA
1587 int young = 0;
1588
1589 /*
1590 * If there's no access bit in the secondary pte set by the
1591 * hardware it's up to gup-fast/gup to set the access bit in
1592 * the primary pte or in the page structure.
1593 */
1594 if (!shadow_accessed_mask)
1595 goto out;
1596
0d536790 1597 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1598 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1599 young = 1;
1600 break;
1601 }
8ee53820
AA
1602out:
1603 return young;
1604}
1605
53a27b39
MT
1606#define RMAP_RECYCLE_THRESHOLD 1000
1607
852e3c19 1608static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1609{
1610 unsigned long *rmapp;
852e3c19
JR
1611 struct kvm_mmu_page *sp;
1612
1613 sp = page_header(__pa(spte));
53a27b39 1614
e4cd1da9 1615 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1616
8a9522d2 1617 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1618 kvm_flush_remote_tlbs(vcpu->kvm);
1619}
1620
57128468 1621int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1622{
57128468
ALC
1623 /*
1624 * In case of absence of EPT Access and Dirty Bits supports,
1625 * emulate the accessed bit for EPT, by checking if this page has
1626 * an EPT mapping, and clearing it if it does. On the next access,
1627 * a new EPT mapping will be established.
1628 * This has some overhead, but not as much as the cost of swapping
1629 * out actively used pages or breaking up actively used hugepages.
1630 */
1631 if (!shadow_accessed_mask) {
1632 /*
1633 * We are holding the kvm->mmu_lock, and we are blowing up
1634 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1635 * This is correct as long as we don't decouple the mmu_lock
1636 * protected regions (like invalidate_range_start|end does).
1637 */
1638 kvm->mmu_notifier_seq++;
1639 return kvm_handle_hva_range(kvm, start, end, 0,
1640 kvm_unmap_rmapp);
1641 }
1642
1643 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1644}
1645
8ee53820
AA
1646int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1647{
1648 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1649}
1650
d6c69ee9 1651#ifdef MMU_DEBUG
47ad8e68 1652static int is_empty_shadow_page(u64 *spt)
6aa8b732 1653{
139bdb2d
AK
1654 u64 *pos;
1655 u64 *end;
1656
47ad8e68 1657 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1658 if (is_shadow_present_pte(*pos)) {
b8688d51 1659 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1660 pos, *pos);
6aa8b732 1661 return 0;
139bdb2d 1662 }
6aa8b732
AK
1663 return 1;
1664}
d6c69ee9 1665#endif
6aa8b732 1666
45221ab6
DH
1667/*
1668 * This value is the sum of all of the kvm instances's
1669 * kvm->arch.n_used_mmu_pages values. We need a global,
1670 * aggregate version in order to make the slab shrinker
1671 * faster
1672 */
1673static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1674{
1675 kvm->arch.n_used_mmu_pages += nr;
1676 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1677}
1678
834be0d8 1679static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1680{
fa4a2c08 1681 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1682 hlist_del(&sp->hash_link);
bd4c86ea
XG
1683 list_del(&sp->link);
1684 free_page((unsigned long)sp->spt);
834be0d8
GN
1685 if (!sp->role.direct)
1686 free_page((unsigned long)sp->gfns);
e8ad9a70 1687 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1688}
1689
cea0f0e7
AK
1690static unsigned kvm_page_table_hashfn(gfn_t gfn)
1691{
1ae0a13d 1692 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1693}
1694
714b93da 1695static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1696 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1697{
cea0f0e7
AK
1698 if (!parent_pte)
1699 return;
cea0f0e7 1700
67052b35 1701 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1702}
1703
4db35314 1704static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1705 u64 *parent_pte)
1706{
67052b35 1707 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1708}
1709
bcdd9a93
XG
1710static void drop_parent_pte(struct kvm_mmu_page *sp,
1711 u64 *parent_pte)
1712{
1713 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1714 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1715}
1716
67052b35
XG
1717static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1718 u64 *parent_pte, int direct)
ad8cfbe3 1719{
67052b35 1720 struct kvm_mmu_page *sp;
7ddca7e4 1721
80feb89a
TY
1722 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1723 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1724 if (!direct)
80feb89a 1725 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1726 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1727
1728 /*
1729 * The active_mmu_pages list is the FIFO list, do not move the
1730 * page until it is zapped. kvm_zap_obsolete_pages depends on
1731 * this feature. See the comments in kvm_zap_obsolete_pages().
1732 */
67052b35 1733 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1734 sp->parent_ptes = 0;
1735 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1736 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1737 return sp;
ad8cfbe3
MT
1738}
1739
67052b35 1740static void mark_unsync(u64 *spte);
1047df1f 1741static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1742{
67052b35 1743 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1744}
1745
67052b35 1746static void mark_unsync(u64 *spte)
0074ff63 1747{
67052b35 1748 struct kvm_mmu_page *sp;
1047df1f 1749 unsigned int index;
0074ff63 1750
67052b35 1751 sp = page_header(__pa(spte));
1047df1f
XG
1752 index = spte - sp->spt;
1753 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1754 return;
1047df1f 1755 if (sp->unsync_children++)
0074ff63 1756 return;
1047df1f 1757 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1758}
1759
e8bc217a 1760static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1761 struct kvm_mmu_page *sp)
e8bc217a
MT
1762{
1763 return 1;
1764}
1765
a7052897
MT
1766static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1767{
1768}
1769
0f53b5b1
XG
1770static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1771 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1772 const void *pte)
0f53b5b1
XG
1773{
1774 WARN_ON(1);
1775}
1776
60c8aec6
MT
1777#define KVM_PAGE_ARRAY_NR 16
1778
1779struct kvm_mmu_pages {
1780 struct mmu_page_and_offset {
1781 struct kvm_mmu_page *sp;
1782 unsigned int idx;
1783 } page[KVM_PAGE_ARRAY_NR];
1784 unsigned int nr;
1785};
1786
cded19f3
HE
1787static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1788 int idx)
4731d4c7 1789{
60c8aec6 1790 int i;
4731d4c7 1791
60c8aec6
MT
1792 if (sp->unsync)
1793 for (i=0; i < pvec->nr; i++)
1794 if (pvec->page[i].sp == sp)
1795 return 0;
1796
1797 pvec->page[pvec->nr].sp = sp;
1798 pvec->page[pvec->nr].idx = idx;
1799 pvec->nr++;
1800 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1801}
1802
1803static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1804 struct kvm_mmu_pages *pvec)
1805{
1806 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1807
37178b8b 1808 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1809 struct kvm_mmu_page *child;
4731d4c7
MT
1810 u64 ent = sp->spt[i];
1811
7a8f1a74
XG
1812 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1813 goto clear_child_bitmap;
1814
1815 child = page_header(ent & PT64_BASE_ADDR_MASK);
1816
1817 if (child->unsync_children) {
1818 if (mmu_pages_add(pvec, child, i))
1819 return -ENOSPC;
1820
1821 ret = __mmu_unsync_walk(child, pvec);
1822 if (!ret)
1823 goto clear_child_bitmap;
1824 else if (ret > 0)
1825 nr_unsync_leaf += ret;
1826 else
1827 return ret;
1828 } else if (child->unsync) {
1829 nr_unsync_leaf++;
1830 if (mmu_pages_add(pvec, child, i))
1831 return -ENOSPC;
1832 } else
1833 goto clear_child_bitmap;
1834
1835 continue;
1836
1837clear_child_bitmap:
1838 __clear_bit(i, sp->unsync_child_bitmap);
1839 sp->unsync_children--;
1840 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1841 }
1842
4731d4c7 1843
60c8aec6
MT
1844 return nr_unsync_leaf;
1845}
1846
1847static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1848 struct kvm_mmu_pages *pvec)
1849{
1850 if (!sp->unsync_children)
1851 return 0;
1852
1853 mmu_pages_add(pvec, sp, 0);
1854 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1855}
1856
4731d4c7
MT
1857static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1858{
1859 WARN_ON(!sp->unsync);
5e1b3ddb 1860 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1861 sp->unsync = 0;
1862 --kvm->stat.mmu_unsync;
1863}
1864
7775834a
XG
1865static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1866 struct list_head *invalid_list);
1867static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1868 struct list_head *invalid_list);
4731d4c7 1869
f34d251d
XG
1870/*
1871 * NOTE: we should pay more attention on the zapped-obsolete page
1872 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1873 * since it has been deleted from active_mmu_pages but still can be found
1874 * at hast list.
1875 *
1876 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1877 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1878 * all the obsolete pages.
1879 */
1044b030
TY
1880#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1881 hlist_for_each_entry(_sp, \
1882 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1883 if ((_sp)->gfn != (_gfn)) {} else
1884
1885#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1886 for_each_gfn_sp(_kvm, _sp, _gfn) \
1887 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1888
f918b443 1889/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1890static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1891 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1892{
5b7e0102 1893 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1894 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1895 return 1;
1896 }
1897
f918b443 1898 if (clear_unsync)
1d9dc7e0 1899 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1900
a4a8e6f7 1901 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1902 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1903 return 1;
1904 }
1905
77c3913b 1906 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1907 return 0;
1908}
1909
1d9dc7e0
XG
1910static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1911 struct kvm_mmu_page *sp)
1912{
d98ba053 1913 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1914 int ret;
1915
d98ba053 1916 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1917 if (ret)
d98ba053
XG
1918 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1919
1d9dc7e0
XG
1920 return ret;
1921}
1922
e37fa785
XG
1923#ifdef CONFIG_KVM_MMU_AUDIT
1924#include "mmu_audit.c"
1925#else
1926static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1927static void mmu_audit_disable(void) { }
1928#endif
1929
d98ba053
XG
1930static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1931 struct list_head *invalid_list)
1d9dc7e0 1932{
d98ba053 1933 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1934}
1935
9f1a122f
XG
1936/* @gfn should be write-protected at the call site */
1937static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1938{
9f1a122f 1939 struct kvm_mmu_page *s;
d98ba053 1940 LIST_HEAD(invalid_list);
9f1a122f
XG
1941 bool flush = false;
1942
b67bfe0d 1943 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1944 if (!s->unsync)
9f1a122f
XG
1945 continue;
1946
1947 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1948 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1949 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1950 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1951 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1952 continue;
1953 }
9f1a122f
XG
1954 flush = true;
1955 }
1956
d98ba053 1957 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1958 if (flush)
77c3913b 1959 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1960}
1961
60c8aec6
MT
1962struct mmu_page_path {
1963 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1964 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1965};
1966
60c8aec6
MT
1967#define for_each_sp(pvec, sp, parents, i) \
1968 for (i = mmu_pages_next(&pvec, &parents, -1), \
1969 sp = pvec.page[i].sp; \
1970 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1971 i = mmu_pages_next(&pvec, &parents, i))
1972
cded19f3
HE
1973static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1974 struct mmu_page_path *parents,
1975 int i)
60c8aec6
MT
1976{
1977 int n;
1978
1979 for (n = i+1; n < pvec->nr; n++) {
1980 struct kvm_mmu_page *sp = pvec->page[n].sp;
1981
1982 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1983 parents->idx[0] = pvec->page[n].idx;
1984 return n;
1985 }
1986
1987 parents->parent[sp->role.level-2] = sp;
1988 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1989 }
1990
1991 return n;
1992}
1993
cded19f3 1994static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1995{
60c8aec6
MT
1996 struct kvm_mmu_page *sp;
1997 unsigned int level = 0;
1998
1999 do {
2000 unsigned int idx = parents->idx[level];
4731d4c7 2001
60c8aec6
MT
2002 sp = parents->parent[level];
2003 if (!sp)
2004 return;
2005
2006 --sp->unsync_children;
2007 WARN_ON((int)sp->unsync_children < 0);
2008 __clear_bit(idx, sp->unsync_child_bitmap);
2009 level++;
2010 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2011}
2012
60c8aec6
MT
2013static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2014 struct mmu_page_path *parents,
2015 struct kvm_mmu_pages *pvec)
4731d4c7 2016{
60c8aec6
MT
2017 parents->parent[parent->role.level-1] = NULL;
2018 pvec->nr = 0;
2019}
4731d4c7 2020
60c8aec6
MT
2021static void mmu_sync_children(struct kvm_vcpu *vcpu,
2022 struct kvm_mmu_page *parent)
2023{
2024 int i;
2025 struct kvm_mmu_page *sp;
2026 struct mmu_page_path parents;
2027 struct kvm_mmu_pages pages;
d98ba053 2028 LIST_HEAD(invalid_list);
60c8aec6
MT
2029
2030 kvm_mmu_pages_init(parent, &parents, &pages);
2031 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2032 bool protected = false;
b1a36821
MT
2033
2034 for_each_sp(pages, sp, parents, i)
54bf36aa 2035 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2036
2037 if (protected)
2038 kvm_flush_remote_tlbs(vcpu->kvm);
2039
60c8aec6 2040 for_each_sp(pages, sp, parents, i) {
d98ba053 2041 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2042 mmu_pages_clear_parents(&parents);
2043 }
d98ba053 2044 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2045 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2046 kvm_mmu_pages_init(parent, &parents, &pages);
2047 }
4731d4c7
MT
2048}
2049
c3707958
XG
2050static void init_shadow_page_table(struct kvm_mmu_page *sp)
2051{
2052 int i;
2053
2054 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2055 sp->spt[i] = 0ull;
2056}
2057
a30f47cb
XG
2058static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2059{
2060 sp->write_flooding_count = 0;
2061}
2062
2063static void clear_sp_write_flooding_count(u64 *spte)
2064{
2065 struct kvm_mmu_page *sp = page_header(__pa(spte));
2066
2067 __clear_sp_write_flooding_count(sp);
2068}
2069
5304b8d3
XG
2070static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2071{
2072 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2073}
2074
cea0f0e7
AK
2075static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2076 gfn_t gfn,
2077 gva_t gaddr,
2078 unsigned level,
f6e2c02b 2079 int direct,
41074d07 2080 unsigned access,
f7d9c7b7 2081 u64 *parent_pte)
cea0f0e7
AK
2082{
2083 union kvm_mmu_page_role role;
cea0f0e7 2084 unsigned quadrant;
9f1a122f 2085 struct kvm_mmu_page *sp;
9f1a122f 2086 bool need_sync = false;
cea0f0e7 2087
a770f6f2 2088 role = vcpu->arch.mmu.base_role;
cea0f0e7 2089 role.level = level;
f6e2c02b 2090 role.direct = direct;
84b0c8c6 2091 if (role.direct)
5b7e0102 2092 role.cr4_pae = 0;
41074d07 2093 role.access = access;
c5a78f2b
JR
2094 if (!vcpu->arch.mmu.direct_map
2095 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2096 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2097 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2098 role.quadrant = quadrant;
2099 }
b67bfe0d 2100 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2101 if (is_obsolete_sp(vcpu->kvm, sp))
2102 continue;
2103
7ae680eb
XG
2104 if (!need_sync && sp->unsync)
2105 need_sync = true;
4731d4c7 2106
7ae680eb
XG
2107 if (sp->role.word != role.word)
2108 continue;
4731d4c7 2109
7ae680eb
XG
2110 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2111 break;
e02aa901 2112
7ae680eb
XG
2113 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2114 if (sp->unsync_children) {
a8eeb04a 2115 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2116 kvm_mmu_mark_parents_unsync(sp);
2117 } else if (sp->unsync)
2118 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2119
a30f47cb 2120 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2121 trace_kvm_mmu_get_page(sp, false);
2122 return sp;
2123 }
dfc5aa00 2124 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2125 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2126 if (!sp)
2127 return sp;
4db35314
AK
2128 sp->gfn = gfn;
2129 sp->role = role;
7ae680eb
XG
2130 hlist_add_head(&sp->hash_link,
2131 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2132 if (!direct) {
54bf36aa 2133 if (rmap_write_protect(vcpu, gfn))
b1a36821 2134 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2135 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2136 kvm_sync_pages(vcpu, gfn);
2137
3ed1a478 2138 account_shadowed(vcpu->kvm, sp);
4731d4c7 2139 }
5304b8d3 2140 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2141 init_shadow_page_table(sp);
f691fe1d 2142 trace_kvm_mmu_get_page(sp, true);
4db35314 2143 return sp;
cea0f0e7
AK
2144}
2145
2d11123a
AK
2146static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2147 struct kvm_vcpu *vcpu, u64 addr)
2148{
2149 iterator->addr = addr;
2150 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2151 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2152
2153 if (iterator->level == PT64_ROOT_LEVEL &&
2154 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2155 !vcpu->arch.mmu.direct_map)
2156 --iterator->level;
2157
2d11123a
AK
2158 if (iterator->level == PT32E_ROOT_LEVEL) {
2159 iterator->shadow_addr
2160 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2161 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2162 --iterator->level;
2163 if (!iterator->shadow_addr)
2164 iterator->level = 0;
2165 }
2166}
2167
2168static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2169{
2170 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2171 return false;
4d88954d 2172
2d11123a
AK
2173 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2174 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2175 return true;
2176}
2177
c2a2ac2b
XG
2178static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2179 u64 spte)
2d11123a 2180{
c2a2ac2b 2181 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2182 iterator->level = 0;
2183 return;
2184 }
2185
c2a2ac2b 2186 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2187 --iterator->level;
2188}
2189
c2a2ac2b
XG
2190static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2191{
2192 return __shadow_walk_next(iterator, *iterator->sptep);
2193}
2194
7a1638ce 2195static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2196{
2197 u64 spte;
2198
7a1638ce
YZ
2199 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2200 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2201
24db2734 2202 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2203 shadow_user_mask | shadow_x_mask;
2204
2205 if (accessed)
2206 spte |= shadow_accessed_mask;
24db2734 2207
1df9f2dc 2208 mmu_spte_set(sptep, spte);
32ef26a3
AK
2209}
2210
a357bd22
AK
2211static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2212 unsigned direct_access)
2213{
2214 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2215 struct kvm_mmu_page *child;
2216
2217 /*
2218 * For the direct sp, if the guest pte's dirty bit
2219 * changed form clean to dirty, it will corrupt the
2220 * sp's access: allow writable in the read-only sp,
2221 * so we should update the spte at this point to get
2222 * a new sp with the correct access.
2223 */
2224 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2225 if (child->role.access == direct_access)
2226 return;
2227
bcdd9a93 2228 drop_parent_pte(child, sptep);
a357bd22
AK
2229 kvm_flush_remote_tlbs(vcpu->kvm);
2230 }
2231}
2232
505aef8f 2233static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2234 u64 *spte)
2235{
2236 u64 pte;
2237 struct kvm_mmu_page *child;
2238
2239 pte = *spte;
2240 if (is_shadow_present_pte(pte)) {
505aef8f 2241 if (is_last_spte(pte, sp->role.level)) {
c3707958 2242 drop_spte(kvm, spte);
505aef8f
XG
2243 if (is_large_pte(pte))
2244 --kvm->stat.lpages;
2245 } else {
38e3b2b2 2246 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2247 drop_parent_pte(child, spte);
38e3b2b2 2248 }
505aef8f
XG
2249 return true;
2250 }
2251
2252 if (is_mmio_spte(pte))
ce88decf 2253 mmu_spte_clear_no_track(spte);
c3707958 2254
505aef8f 2255 return false;
38e3b2b2
XG
2256}
2257
90cb0529 2258static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2259 struct kvm_mmu_page *sp)
a436036b 2260{
697fe2e2 2261 unsigned i;
697fe2e2 2262
38e3b2b2
XG
2263 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2264 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2265}
2266
4db35314 2267static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2268{
4db35314 2269 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2270}
2271
31aa2b44 2272static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2273{
1e3f42f0
TY
2274 u64 *sptep;
2275 struct rmap_iterator iter;
a436036b 2276
1e3f42f0
TY
2277 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2278 drop_parent_pte(sp, sptep);
31aa2b44
AK
2279}
2280
60c8aec6 2281static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2282 struct kvm_mmu_page *parent,
2283 struct list_head *invalid_list)
4731d4c7 2284{
60c8aec6
MT
2285 int i, zapped = 0;
2286 struct mmu_page_path parents;
2287 struct kvm_mmu_pages pages;
4731d4c7 2288
60c8aec6 2289 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2290 return 0;
60c8aec6
MT
2291
2292 kvm_mmu_pages_init(parent, &parents, &pages);
2293 while (mmu_unsync_walk(parent, &pages)) {
2294 struct kvm_mmu_page *sp;
2295
2296 for_each_sp(pages, sp, parents, i) {
7775834a 2297 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2298 mmu_pages_clear_parents(&parents);
77662e00 2299 zapped++;
60c8aec6 2300 }
60c8aec6
MT
2301 kvm_mmu_pages_init(parent, &parents, &pages);
2302 }
2303
2304 return zapped;
4731d4c7
MT
2305}
2306
7775834a
XG
2307static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2308 struct list_head *invalid_list)
31aa2b44 2309{
4731d4c7 2310 int ret;
f691fe1d 2311
7775834a 2312 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2313 ++kvm->stat.mmu_shadow_zapped;
7775834a 2314 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2315 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2316 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2317
f6e2c02b 2318 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2319 unaccount_shadowed(kvm, sp);
5304b8d3 2320
4731d4c7
MT
2321 if (sp->unsync)
2322 kvm_unlink_unsync_page(kvm, sp);
4db35314 2323 if (!sp->root_count) {
54a4f023
GJ
2324 /* Count self */
2325 ret++;
7775834a 2326 list_move(&sp->link, invalid_list);
aa6bd187 2327 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2328 } else {
5b5c6a5a 2329 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2330
2331 /*
2332 * The obsolete pages can not be used on any vcpus.
2333 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2334 */
2335 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2336 kvm_reload_remote_mmus(kvm);
2e53d63a 2337 }
7775834a
XG
2338
2339 sp->role.invalid = 1;
4731d4c7 2340 return ret;
a436036b
AK
2341}
2342
7775834a
XG
2343static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2344 struct list_head *invalid_list)
2345{
945315b9 2346 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2347
2348 if (list_empty(invalid_list))
2349 return;
2350
c142786c
AK
2351 /*
2352 * wmb: make sure everyone sees our modifications to the page tables
2353 * rmb: make sure we see changes to vcpu->mode
2354 */
2355 smp_mb();
4f022648 2356
c142786c
AK
2357 /*
2358 * Wait for all vcpus to exit guest mode and/or lockless shadow
2359 * page table walks.
2360 */
2361 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2362
945315b9 2363 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2364 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2365 kvm_mmu_free_page(sp);
945315b9 2366 }
7775834a
XG
2367}
2368
5da59607
TY
2369static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2370 struct list_head *invalid_list)
2371{
2372 struct kvm_mmu_page *sp;
2373
2374 if (list_empty(&kvm->arch.active_mmu_pages))
2375 return false;
2376
2377 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2378 struct kvm_mmu_page, link);
2379 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2380
2381 return true;
2382}
2383
82ce2c96
IE
2384/*
2385 * Changing the number of mmu pages allocated to the vm
49d5ca26 2386 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2387 */
49d5ca26 2388void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2389{
d98ba053 2390 LIST_HEAD(invalid_list);
82ce2c96 2391
b34cb590
TY
2392 spin_lock(&kvm->mmu_lock);
2393
49d5ca26 2394 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2395 /* Need to free some mmu pages to achieve the goal. */
2396 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2397 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2398 break;
82ce2c96 2399
aa6bd187 2400 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2401 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2402 }
82ce2c96 2403
49d5ca26 2404 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2405
2406 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2407}
2408
1cb3f3ae 2409int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2410{
4db35314 2411 struct kvm_mmu_page *sp;
d98ba053 2412 LIST_HEAD(invalid_list);
a436036b
AK
2413 int r;
2414
9ad17b10 2415 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2416 r = 0;
1cb3f3ae 2417 spin_lock(&kvm->mmu_lock);
b67bfe0d 2418 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2419 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2420 sp->role.word);
2421 r = 1;
f41d335a 2422 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2423 }
d98ba053 2424 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2425 spin_unlock(&kvm->mmu_lock);
2426
a436036b 2427 return r;
cea0f0e7 2428}
1cb3f3ae 2429EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2430
9cf5cf5a
XG
2431static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2432{
2433 trace_kvm_mmu_unsync_page(sp);
2434 ++vcpu->kvm->stat.mmu_unsync;
2435 sp->unsync = 1;
2436
2437 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2438}
2439
2440static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2441{
4731d4c7 2442 struct kvm_mmu_page *s;
9cf5cf5a 2443
b67bfe0d 2444 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2445 if (s->unsync)
4731d4c7 2446 continue;
9cf5cf5a
XG
2447 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2448 __kvm_unsync_page(vcpu, s);
4731d4c7 2449 }
4731d4c7
MT
2450}
2451
2452static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2453 bool can_unsync)
2454{
9cf5cf5a 2455 struct kvm_mmu_page *s;
9cf5cf5a
XG
2456 bool need_unsync = false;
2457
b67bfe0d 2458 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2459 if (!can_unsync)
2460 return 1;
2461
9cf5cf5a 2462 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2463 return 1;
9cf5cf5a 2464
9bb4f6b1 2465 if (!s->unsync)
9cf5cf5a 2466 need_unsync = true;
4731d4c7 2467 }
9cf5cf5a
XG
2468 if (need_unsync)
2469 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2470 return 0;
2471}
2472
d1fe9219
PB
2473static bool kvm_is_mmio_pfn(pfn_t pfn)
2474{
2475 if (pfn_valid(pfn))
2476 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2477
2478 return true;
2479}
2480
d555c333 2481static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2482 unsigned pte_access, int level,
c2d0ee46 2483 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2484 bool can_unsync, bool host_writable)
1c4f1fd6 2485{
6e7d0354 2486 u64 spte;
1e73f9dd 2487 int ret = 0;
64d4d521 2488
54bf36aa 2489 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2490 return 0;
2491
982c2565 2492 spte = PT_PRESENT_MASK;
947da538 2493 if (!speculative)
3201b5d9 2494 spte |= shadow_accessed_mask;
640d9b0d 2495
7b52345e
SY
2496 if (pte_access & ACC_EXEC_MASK)
2497 spte |= shadow_x_mask;
2498 else
2499 spte |= shadow_nx_mask;
49fde340 2500
1c4f1fd6 2501 if (pte_access & ACC_USER_MASK)
7b52345e 2502 spte |= shadow_user_mask;
49fde340 2503
852e3c19 2504 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2505 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2506 if (tdp_enabled)
4b12f0de 2507 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2508 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2509
9bdbba13 2510 if (host_writable)
1403283a 2511 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2512 else
2513 pte_access &= ~ACC_WRITE_MASK;
1403283a 2514
35149e21 2515 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2516
c2288505 2517 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2518
c2193463 2519 /*
7751babd
XG
2520 * Other vcpu creates new sp in the window between
2521 * mapping_level() and acquiring mmu-lock. We can
2522 * allow guest to retry the access, the mapping can
2523 * be fixed if guest refault.
c2193463 2524 */
852e3c19 2525 if (level > PT_PAGE_TABLE_LEVEL &&
54bf36aa 2526 has_wrprotected_page(vcpu, gfn, level))
be38d276 2527 goto done;
38187c83 2528
49fde340 2529 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2530
ecc5589f
MT
2531 /*
2532 * Optimization: for pte sync, if spte was writable the hash
2533 * lookup is unnecessary (and expensive). Write protection
2534 * is responsibility of mmu_get_page / kvm_sync_page.
2535 * Same reasoning can be applied to dirty page accounting.
2536 */
8dae4445 2537 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2538 goto set_pte;
2539
4731d4c7 2540 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2541 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2542 __func__, gfn);
1e73f9dd 2543 ret = 1;
1c4f1fd6 2544 pte_access &= ~ACC_WRITE_MASK;
49fde340 2545 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2546 }
2547 }
2548
9b51a630 2549 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2550 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2551 spte |= shadow_dirty_mask;
2552 }
1c4f1fd6 2553
38187c83 2554set_pte:
6e7d0354 2555 if (mmu_spte_update(sptep, spte))
b330aa0c 2556 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2557done:
1e73f9dd
MT
2558 return ret;
2559}
2560
d555c333 2561static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2562 unsigned pte_access, int write_fault, int *emulate,
2563 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2564 bool host_writable)
1e73f9dd
MT
2565{
2566 int was_rmapped = 0;
53a27b39 2567 int rmap_count;
1e73f9dd 2568
f7616203
XG
2569 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2570 *sptep, write_fault, gfn);
1e73f9dd 2571
d555c333 2572 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2573 /*
2574 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2575 * the parent of the now unreachable PTE.
2576 */
852e3c19
JR
2577 if (level > PT_PAGE_TABLE_LEVEL &&
2578 !is_large_pte(*sptep)) {
1e73f9dd 2579 struct kvm_mmu_page *child;
d555c333 2580 u64 pte = *sptep;
1e73f9dd
MT
2581
2582 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2583 drop_parent_pte(child, sptep);
3be2264b 2584 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2585 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2586 pgprintk("hfn old %llx new %llx\n",
d555c333 2587 spte_to_pfn(*sptep), pfn);
c3707958 2588 drop_spte(vcpu->kvm, sptep);
91546356 2589 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2590 } else
2591 was_rmapped = 1;
1e73f9dd 2592 }
852e3c19 2593
c2288505
XG
2594 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2595 true, host_writable)) {
1e73f9dd 2596 if (write_fault)
b90a0e6c 2597 *emulate = 1;
77c3913b 2598 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2599 }
1e73f9dd 2600
ce88decf
XG
2601 if (unlikely(is_mmio_spte(*sptep) && emulate))
2602 *emulate = 1;
2603
d555c333 2604 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2605 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2606 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2607 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2608 *sptep, sptep);
d555c333 2609 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2610 ++vcpu->kvm->stat.lpages;
2611
ffb61bb3 2612 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2613 if (!was_rmapped) {
2614 rmap_count = rmap_add(vcpu, sptep, gfn);
2615 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2616 rmap_recycle(vcpu, sptep, gfn);
2617 }
1c4f1fd6 2618 }
cb9aaa30 2619
f3ac1a4b 2620 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2621}
2622
957ed9ef
XG
2623static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2624 bool no_dirty_log)
2625{
2626 struct kvm_memory_slot *slot;
957ed9ef 2627
5d163b1c 2628 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2629 if (!slot)
6c8ee57b 2630 return KVM_PFN_ERR_FAULT;
957ed9ef 2631
037d92dc 2632 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2633}
2634
2635static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2636 struct kvm_mmu_page *sp,
2637 u64 *start, u64 *end)
2638{
2639 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2640 struct kvm_memory_slot *slot;
957ed9ef
XG
2641 unsigned access = sp->role.access;
2642 int i, ret;
2643 gfn_t gfn;
2644
2645 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2646 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2647 if (!slot)
957ed9ef
XG
2648 return -1;
2649
d9ef13c2 2650 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2651 if (ret <= 0)
2652 return -1;
2653
2654 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2655 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2656 sp->role.level, gfn, page_to_pfn(pages[i]),
2657 true, true);
957ed9ef
XG
2658
2659 return 0;
2660}
2661
2662static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2663 struct kvm_mmu_page *sp, u64 *sptep)
2664{
2665 u64 *spte, *start = NULL;
2666 int i;
2667
2668 WARN_ON(!sp->role.direct);
2669
2670 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2671 spte = sp->spt + i;
2672
2673 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2674 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2675 if (!start)
2676 continue;
2677 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2678 break;
2679 start = NULL;
2680 } else if (!start)
2681 start = spte;
2682 }
2683}
2684
2685static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2686{
2687 struct kvm_mmu_page *sp;
2688
2689 /*
2690 * Since it's no accessed bit on EPT, it's no way to
2691 * distinguish between actually accessed translations
2692 * and prefetched, so disable pte prefetch if EPT is
2693 * enabled.
2694 */
2695 if (!shadow_accessed_mask)
2696 return;
2697
2698 sp = page_header(__pa(sptep));
2699 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2700 return;
2701
2702 __direct_pte_prefetch(vcpu, sp, sptep);
2703}
2704
9f652d21 2705static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2706 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2707 bool prefault)
140754bc 2708{
9f652d21 2709 struct kvm_shadow_walk_iterator iterator;
140754bc 2710 struct kvm_mmu_page *sp;
b90a0e6c 2711 int emulate = 0;
140754bc 2712 gfn_t pseudo_gfn;
6aa8b732 2713
989c6b34
MT
2714 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2715 return 0;
2716
9f652d21 2717 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2718 if (iterator.level == level) {
f7616203 2719 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2720 write, &emulate, level, gfn, pfn,
2721 prefault, map_writable);
957ed9ef 2722 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2723 ++vcpu->stat.pf_fixed;
2724 break;
6aa8b732
AK
2725 }
2726
404381c5 2727 drop_large_spte(vcpu, iterator.sptep);
c3707958 2728 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2729 u64 base_addr = iterator.addr;
2730
2731 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2732 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2733 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2734 iterator.level - 1,
2735 1, ACC_ALL, iterator.sptep);
140754bc 2736
7a1638ce 2737 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2738 }
2739 }
b90a0e6c 2740 return emulate;
6aa8b732
AK
2741}
2742
77db5cbd 2743static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2744{
77db5cbd
HY
2745 siginfo_t info;
2746
2747 info.si_signo = SIGBUS;
2748 info.si_errno = 0;
2749 info.si_code = BUS_MCEERR_AR;
2750 info.si_addr = (void __user *)address;
2751 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2752
77db5cbd 2753 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2754}
2755
d7c55201 2756static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2757{
4d8b81ab
XG
2758 /*
2759 * Do not cache the mmio info caused by writing the readonly gfn
2760 * into the spte otherwise read access on readonly gfn also can
2761 * caused mmio page fault and treat it as mmio access.
2762 * Return 1 to tell kvm to emulate it.
2763 */
2764 if (pfn == KVM_PFN_ERR_RO_FAULT)
2765 return 1;
2766
e6c1502b 2767 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2768 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2769 return 0;
d7c55201 2770 }
edba23e5 2771
d7c55201 2772 return -EFAULT;
bf998156
HY
2773}
2774
936a5fe6
AA
2775static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2776 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2777{
2778 pfn_t pfn = *pfnp;
2779 gfn_t gfn = *gfnp;
2780 int level = *levelp;
2781
2782 /*
2783 * Check if it's a transparent hugepage. If this would be an
2784 * hugetlbfs page, level wouldn't be set to
2785 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2786 * here.
2787 */
bf4bea8e 2788 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2789 level == PT_PAGE_TABLE_LEVEL &&
2790 PageTransCompound(pfn_to_page(pfn)) &&
54bf36aa 2791 !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2792 unsigned long mask;
2793 /*
2794 * mmu_notifier_retry was successful and we hold the
2795 * mmu_lock here, so the pmd can't become splitting
2796 * from under us, and in turn
2797 * __split_huge_page_refcount() can't run from under
2798 * us and we can safely transfer the refcount from
2799 * PG_tail to PG_head as we switch the pfn to tail to
2800 * head.
2801 */
2802 *levelp = level = PT_DIRECTORY_LEVEL;
2803 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2804 VM_BUG_ON((gfn & mask) != (pfn & mask));
2805 if (pfn & mask) {
2806 gfn &= ~mask;
2807 *gfnp = gfn;
2808 kvm_release_pfn_clean(pfn);
2809 pfn &= ~mask;
c3586667 2810 kvm_get_pfn(pfn);
936a5fe6
AA
2811 *pfnp = pfn;
2812 }
2813 }
2814}
2815
d7c55201
XG
2816static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2817 pfn_t pfn, unsigned access, int *ret_val)
2818{
2819 bool ret = true;
2820
2821 /* The pfn is invalid, report the error! */
81c52c56 2822 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2823 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2824 goto exit;
2825 }
2826
ce88decf 2827 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2828 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2829
2830 ret = false;
2831exit:
2832 return ret;
2833}
2834
e5552fd2 2835static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2836{
1c118b82
XG
2837 /*
2838 * Do not fix the mmio spte with invalid generation number which
2839 * need to be updated by slow page fault path.
2840 */
2841 if (unlikely(error_code & PFERR_RSVD_MASK))
2842 return false;
2843
c7ba5b48
XG
2844 /*
2845 * #PF can be fast only if the shadow page table is present and it
2846 * is caused by write-protect, that means we just need change the
2847 * W bit of the spte which can be done out of mmu-lock.
2848 */
2849 if (!(error_code & PFERR_PRESENT_MASK) ||
2850 !(error_code & PFERR_WRITE_MASK))
2851 return false;
2852
2853 return true;
2854}
2855
2856static bool
92a476cb
XG
2857fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2858 u64 *sptep, u64 spte)
c7ba5b48 2859{
c7ba5b48
XG
2860 gfn_t gfn;
2861
2862 WARN_ON(!sp->role.direct);
2863
2864 /*
2865 * The gfn of direct spte is stable since it is calculated
2866 * by sp->gfn.
2867 */
2868 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2869
9b51a630
KH
2870 /*
2871 * Theoretically we could also set dirty bit (and flush TLB) here in
2872 * order to eliminate unnecessary PML logging. See comments in
2873 * set_spte. But fast_page_fault is very unlikely to happen with PML
2874 * enabled, so we do not do this. This might result in the same GPA
2875 * to be logged in PML buffer again when the write really happens, and
2876 * eventually to be called by mark_page_dirty twice. But it's also no
2877 * harm. This also avoids the TLB flush needed after setting dirty bit
2878 * so non-PML cases won't be impacted.
2879 *
2880 * Compare with set_spte where instead shadow_dirty_mask is set.
2881 */
c7ba5b48 2882 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2883 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2884
2885 return true;
2886}
2887
2888/*
2889 * Return value:
2890 * - true: let the vcpu to access on the same address again.
2891 * - false: let the real page fault path to fix it.
2892 */
2893static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2894 u32 error_code)
2895{
2896 struct kvm_shadow_walk_iterator iterator;
92a476cb 2897 struct kvm_mmu_page *sp;
c7ba5b48
XG
2898 bool ret = false;
2899 u64 spte = 0ull;
2900
37f6a4e2
MT
2901 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2902 return false;
2903
e5552fd2 2904 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2905 return false;
2906
2907 walk_shadow_page_lockless_begin(vcpu);
2908 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2909 if (!is_shadow_present_pte(spte) || iterator.level < level)
2910 break;
2911
2912 /*
2913 * If the mapping has been changed, let the vcpu fault on the
2914 * same address again.
2915 */
2916 if (!is_rmap_spte(spte)) {
2917 ret = true;
2918 goto exit;
2919 }
2920
92a476cb
XG
2921 sp = page_header(__pa(iterator.sptep));
2922 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2923 goto exit;
2924
2925 /*
2926 * Check if it is a spurious fault caused by TLB lazily flushed.
2927 *
2928 * Need not check the access of upper level table entries since
2929 * they are always ACC_ALL.
2930 */
2931 if (is_writable_pte(spte)) {
2932 ret = true;
2933 goto exit;
2934 }
2935
2936 /*
2937 * Currently, to simplify the code, only the spte write-protected
2938 * by dirty-log can be fast fixed.
2939 */
2940 if (!spte_is_locklessly_modifiable(spte))
2941 goto exit;
2942
c126d94f
XG
2943 /*
2944 * Do not fix write-permission on the large spte since we only dirty
2945 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2946 * that means other pages are missed if its slot is dirty-logged.
2947 *
2948 * Instead, we let the slow page fault path create a normal spte to
2949 * fix the access.
2950 *
2951 * See the comments in kvm_arch_commit_memory_region().
2952 */
2953 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2954 goto exit;
2955
c7ba5b48
XG
2956 /*
2957 * Currently, fast page fault only works for direct mapping since
2958 * the gfn is not stable for indirect shadow page.
2959 * See Documentation/virtual/kvm/locking.txt to get more detail.
2960 */
92a476cb 2961 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2962exit:
a72faf25
XG
2963 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2964 spte, ret);
c7ba5b48
XG
2965 walk_shadow_page_lockless_end(vcpu);
2966
2967 return ret;
2968}
2969
78b2c54a 2970static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2971 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2972static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2973
c7ba5b48
XG
2974static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2975 gfn_t gfn, bool prefault)
10589a46
MT
2976{
2977 int r;
852e3c19 2978 int level;
fd136902 2979 bool force_pt_level = false;
35149e21 2980 pfn_t pfn;
e930bffe 2981 unsigned long mmu_seq;
c7ba5b48 2982 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2983
fd136902 2984 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 2985 if (likely(!force_pt_level)) {
936a5fe6
AA
2986 /*
2987 * This path builds a PAE pagetable - so we can map
2988 * 2mb pages at maximum. Therefore check if the level
2989 * is larger than that.
2990 */
2991 if (level > PT_DIRECTORY_LEVEL)
2992 level = PT_DIRECTORY_LEVEL;
852e3c19 2993
936a5fe6 2994 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 2995 }
05da4558 2996
c7ba5b48
XG
2997 if (fast_page_fault(vcpu, v, level, error_code))
2998 return 0;
2999
e930bffe 3000 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3001 smp_rmb();
060c2abe 3002
78b2c54a 3003 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3004 return 0;
aaee2c94 3005
d7c55201
XG
3006 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3007 return r;
d196e343 3008
aaee2c94 3009 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3010 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3011 goto out_unlock;
450e0b41 3012 make_mmu_pages_available(vcpu);
936a5fe6
AA
3013 if (likely(!force_pt_level))
3014 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3015 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3016 prefault);
aaee2c94
MT
3017 spin_unlock(&vcpu->kvm->mmu_lock);
3018
aaee2c94 3019
10589a46 3020 return r;
e930bffe
AA
3021
3022out_unlock:
3023 spin_unlock(&vcpu->kvm->mmu_lock);
3024 kvm_release_pfn_clean(pfn);
3025 return 0;
10589a46
MT
3026}
3027
3028
17ac10ad
AK
3029static void mmu_free_roots(struct kvm_vcpu *vcpu)
3030{
3031 int i;
4db35314 3032 struct kvm_mmu_page *sp;
d98ba053 3033 LIST_HEAD(invalid_list);
17ac10ad 3034
ad312c7c 3035 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3036 return;
35af577a 3037
81407ca5
JR
3038 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3039 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3040 vcpu->arch.mmu.direct_map)) {
ad312c7c 3041 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3042
35af577a 3043 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3044 sp = page_header(root);
3045 --sp->root_count;
d98ba053
XG
3046 if (!sp->root_count && sp->role.invalid) {
3047 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3048 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3049 }
aaee2c94 3050 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3051 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3052 return;
3053 }
35af577a
GN
3054
3055 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3056 for (i = 0; i < 4; ++i) {
ad312c7c 3057 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3058
417726a3 3059 if (root) {
417726a3 3060 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3061 sp = page_header(root);
3062 --sp->root_count;
2e53d63a 3063 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3064 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3065 &invalid_list);
417726a3 3066 }
ad312c7c 3067 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3068 }
d98ba053 3069 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3070 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3071 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3072}
3073
8986ecc0
MT
3074static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3075{
3076 int ret = 0;
3077
3078 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3079 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3080 ret = 1;
3081 }
3082
3083 return ret;
3084}
3085
651dd37a
JR
3086static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3087{
3088 struct kvm_mmu_page *sp;
7ebaf15e 3089 unsigned i;
651dd37a
JR
3090
3091 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3092 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3093 make_mmu_pages_available(vcpu);
651dd37a
JR
3094 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3095 1, ACC_ALL, NULL);
3096 ++sp->root_count;
3097 spin_unlock(&vcpu->kvm->mmu_lock);
3098 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3099 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3100 for (i = 0; i < 4; ++i) {
3101 hpa_t root = vcpu->arch.mmu.pae_root[i];
3102
fa4a2c08 3103 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3104 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3105 make_mmu_pages_available(vcpu);
649497d1
AK
3106 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3107 i << 30,
651dd37a
JR
3108 PT32_ROOT_LEVEL, 1, ACC_ALL,
3109 NULL);
3110 root = __pa(sp->spt);
3111 ++sp->root_count;
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3114 }
6292757f 3115 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3116 } else
3117 BUG();
3118
3119 return 0;
3120}
3121
3122static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3123{
4db35314 3124 struct kvm_mmu_page *sp;
81407ca5
JR
3125 u64 pdptr, pm_mask;
3126 gfn_t root_gfn;
3127 int i;
3bb65a22 3128
5777ed34 3129 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3130
651dd37a
JR
3131 if (mmu_check_root(vcpu, root_gfn))
3132 return 1;
3133
3134 /*
3135 * Do we shadow a long mode page table? If so we need to
3136 * write-protect the guests page table root.
3137 */
3138 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3139 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3140
fa4a2c08 3141 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3142
8facbbff 3143 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3144 make_mmu_pages_available(vcpu);
651dd37a
JR
3145 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3146 0, ACC_ALL, NULL);
4db35314
AK
3147 root = __pa(sp->spt);
3148 ++sp->root_count;
8facbbff 3149 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3150 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3151 return 0;
17ac10ad 3152 }
f87f9288 3153
651dd37a
JR
3154 /*
3155 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3156 * or a PAE 3-level page table. In either case we need to be aware that
3157 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3158 */
81407ca5
JR
3159 pm_mask = PT_PRESENT_MASK;
3160 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3161 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3162
17ac10ad 3163 for (i = 0; i < 4; ++i) {
ad312c7c 3164 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3165
fa4a2c08 3166 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3167 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3168 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3169 if (!is_present_gpte(pdptr)) {
ad312c7c 3170 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3171 continue;
3172 }
6de4f3ad 3173 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3174 if (mmu_check_root(vcpu, root_gfn))
3175 return 1;
5a7388c2 3176 }
8facbbff 3177 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3178 make_mmu_pages_available(vcpu);
4db35314 3179 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3180 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3181 ACC_ALL, NULL);
4db35314
AK
3182 root = __pa(sp->spt);
3183 ++sp->root_count;
8facbbff
AK
3184 spin_unlock(&vcpu->kvm->mmu_lock);
3185
81407ca5 3186 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3187 }
6292757f 3188 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3189
3190 /*
3191 * If we shadow a 32 bit page table with a long mode page
3192 * table we enter this path.
3193 */
3194 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3195 if (vcpu->arch.mmu.lm_root == NULL) {
3196 /*
3197 * The additional page necessary for this is only
3198 * allocated on demand.
3199 */
3200
3201 u64 *lm_root;
3202
3203 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3204 if (lm_root == NULL)
3205 return 1;
3206
3207 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3208
3209 vcpu->arch.mmu.lm_root = lm_root;
3210 }
3211
3212 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3213 }
3214
8986ecc0 3215 return 0;
17ac10ad
AK
3216}
3217
651dd37a
JR
3218static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3219{
3220 if (vcpu->arch.mmu.direct_map)
3221 return mmu_alloc_direct_roots(vcpu);
3222 else
3223 return mmu_alloc_shadow_roots(vcpu);
3224}
3225
0ba73cda
MT
3226static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3227{
3228 int i;
3229 struct kvm_mmu_page *sp;
3230
81407ca5
JR
3231 if (vcpu->arch.mmu.direct_map)
3232 return;
3233
0ba73cda
MT
3234 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3235 return;
6903074c 3236
56f17dd3 3237 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3238 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3239 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3240 hpa_t root = vcpu->arch.mmu.root_hpa;
3241 sp = page_header(root);
3242 mmu_sync_children(vcpu, sp);
0375f7fa 3243 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3244 return;
3245 }
3246 for (i = 0; i < 4; ++i) {
3247 hpa_t root = vcpu->arch.mmu.pae_root[i];
3248
8986ecc0 3249 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3250 root &= PT64_BASE_ADDR_MASK;
3251 sp = page_header(root);
3252 mmu_sync_children(vcpu, sp);
3253 }
3254 }
0375f7fa 3255 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3256}
3257
3258void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3259{
3260 spin_lock(&vcpu->kvm->mmu_lock);
3261 mmu_sync_roots(vcpu);
6cffe8ca 3262 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3263}
bfd0a56b 3264EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3265
1871c602 3266static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3267 u32 access, struct x86_exception *exception)
6aa8b732 3268{
ab9ae313
AK
3269 if (exception)
3270 exception->error_code = 0;
6aa8b732
AK
3271 return vaddr;
3272}
3273
6539e738 3274static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3275 u32 access,
3276 struct x86_exception *exception)
6539e738 3277{
ab9ae313
AK
3278 if (exception)
3279 exception->error_code = 0;
54987b7a 3280 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3281}
3282
d625b155
XG
3283static bool
3284__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3285{
3286 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3287
3288 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3289 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3290}
3291
3292static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3293{
3294 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3295}
3296
3297static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3298{
3299 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3300}
3301
ce88decf
XG
3302static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3303{
3304 if (direct)
3305 return vcpu_match_mmio_gpa(vcpu, addr);
3306
3307 return vcpu_match_mmio_gva(vcpu, addr);
3308}
3309
47ab8751
XG
3310/* return true if reserved bit is detected on spte. */
3311static bool
3312walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3313{
3314 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3315 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3316 int root, leaf;
3317 bool reserved = false;
ce88decf 3318
37f6a4e2 3319 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3320 goto exit;
37f6a4e2 3321
ce88decf 3322 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3323
29ecd660
PB
3324 for (shadow_walk_init(&iterator, vcpu, addr),
3325 leaf = root = iterator.level;
47ab8751
XG
3326 shadow_walk_okay(&iterator);
3327 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3328 spte = mmu_spte_get_lockless(iterator.sptep);
3329
3330 sptes[leaf - 1] = spte;
29ecd660 3331 leaf--;
47ab8751 3332
ce88decf
XG
3333 if (!is_shadow_present_pte(spte))
3334 break;
47ab8751
XG
3335
3336 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3337 iterator.level);
47ab8751
XG
3338 }
3339
ce88decf
XG
3340 walk_shadow_page_lockless_end(vcpu);
3341
47ab8751
XG
3342 if (reserved) {
3343 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3344 __func__, addr);
29ecd660 3345 while (root > leaf) {
47ab8751
XG
3346 pr_err("------ spte 0x%llx level %d.\n",
3347 sptes[root - 1], root);
3348 root--;
3349 }
3350 }
3351exit:
3352 *sptep = spte;
3353 return reserved;
ce88decf
XG
3354}
3355
ce88decf
XG
3356int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3357{
3358 u64 spte;
47ab8751 3359 bool reserved;
ce88decf
XG
3360
3361 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3362 return RET_MMIO_PF_EMULATE;
ce88decf 3363
47ab8751
XG
3364 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3365 if (unlikely(reserved))
3366 return RET_MMIO_PF_BUG;
ce88decf
XG
3367
3368 if (is_mmio_spte(spte)) {
3369 gfn_t gfn = get_mmio_spte_gfn(spte);
3370 unsigned access = get_mmio_spte_access(spte);
3371
54bf36aa 3372 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3373 return RET_MMIO_PF_INVALID;
3374
ce88decf
XG
3375 if (direct)
3376 addr = 0;
4f022648
XG
3377
3378 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3379 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3380 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3381 }
3382
ce88decf
XG
3383 /*
3384 * If the page table is zapped by other cpus, let CPU fault again on
3385 * the address.
3386 */
b37fbea6 3387 return RET_MMIO_PF_RETRY;
ce88decf
XG
3388}
3389EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3390
3391static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3392 u32 error_code, bool direct)
3393{
3394 int ret;
3395
3396 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3397 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3398 return ret;
3399}
3400
6aa8b732 3401static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3402 u32 error_code, bool prefault)
6aa8b732 3403{
e833240f 3404 gfn_t gfn;
e2dec939 3405 int r;
6aa8b732 3406
b8688d51 3407 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3408
f8f55942
XG
3409 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3410 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3411
3412 if (likely(r != RET_MMIO_PF_INVALID))
3413 return r;
3414 }
ce88decf 3415
e2dec939
AK
3416 r = mmu_topup_memory_caches(vcpu);
3417 if (r)
3418 return r;
714b93da 3419
fa4a2c08 3420 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3421
e833240f 3422 gfn = gva >> PAGE_SHIFT;
6aa8b732 3423
e833240f 3424 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3425 error_code, gfn, prefault);
6aa8b732
AK
3426}
3427
7e1fbeac 3428static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3429{
3430 struct kvm_arch_async_pf arch;
fb67e14f 3431
7c90705b 3432 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3433 arch.gfn = gfn;
c4806acd 3434 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3435 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3436
54bf36aa 3437 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3438}
3439
3440static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3441{
35754c98 3442 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3443 kvm_event_needs_reinjection(vcpu)))
3444 return false;
3445
3446 return kvm_x86_ops->interrupt_allowed(vcpu);
3447}
3448
78b2c54a 3449static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3450 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92 3451{
3520469d 3452 struct kvm_memory_slot *slot;
af585b92
GN
3453 bool async;
3454
54bf36aa 3455 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3456 async = false;
3457 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3458 if (!async)
3459 return false; /* *pfn has correct page already */
3460
78b2c54a 3461 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3462 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3463 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3464 trace_kvm_async_pf_doublefault(gva, gfn);
3465 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3466 return true;
3467 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3468 return true;
3469 }
3470
3520469d 3471 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3472 return false;
3473}
3474
6a39bbc5
XG
3475static bool
3476check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3477{
3478 int page_num = KVM_PAGES_PER_HPAGE(level);
3479
3480 gfn &= ~(page_num - 1);
3481
3482 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3483}
3484
56028d08 3485static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3486 bool prefault)
fb72d167 3487{
35149e21 3488 pfn_t pfn;
fb72d167 3489 int r;
852e3c19 3490 int level;
cd1872f0 3491 bool force_pt_level;
05da4558 3492 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3493 unsigned long mmu_seq;
612819c3
MT
3494 int write = error_code & PFERR_WRITE_MASK;
3495 bool map_writable;
fb72d167 3496
fa4a2c08 3497 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3498
f8f55942
XG
3499 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3500 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3501
3502 if (likely(r != RET_MMIO_PF_INVALID))
3503 return r;
3504 }
ce88decf 3505
fb72d167
JR
3506 r = mmu_topup_memory_caches(vcpu);
3507 if (r)
3508 return r;
3509
fd136902
TY
3510 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3511 PT_DIRECTORY_LEVEL);
3512 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3513 if (likely(!force_pt_level)) {
6a39bbc5
XG
3514 if (level > PT_DIRECTORY_LEVEL &&
3515 !check_hugepage_cache_consistency(vcpu, gfn, level))
3516 level = PT_DIRECTORY_LEVEL;
936a5fe6 3517 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3518 }
852e3c19 3519
c7ba5b48
XG
3520 if (fast_page_fault(vcpu, gpa, level, error_code))
3521 return 0;
3522
e930bffe 3523 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3524 smp_rmb();
af585b92 3525
78b2c54a 3526 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3527 return 0;
3528
d7c55201
XG
3529 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3530 return r;
3531
fb72d167 3532 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3533 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3534 goto out_unlock;
450e0b41 3535 make_mmu_pages_available(vcpu);
936a5fe6
AA
3536 if (likely(!force_pt_level))
3537 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3538 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3539 level, gfn, pfn, prefault);
fb72d167 3540 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3541
3542 return r;
e930bffe
AA
3543
3544out_unlock:
3545 spin_unlock(&vcpu->kvm->mmu_lock);
3546 kvm_release_pfn_clean(pfn);
3547 return 0;
fb72d167
JR
3548}
3549
8a3c1a33
PB
3550static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3551 struct kvm_mmu *context)
6aa8b732 3552{
6aa8b732 3553 context->page_fault = nonpaging_page_fault;
6aa8b732 3554 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3555 context->sync_page = nonpaging_sync_page;
a7052897 3556 context->invlpg = nonpaging_invlpg;
0f53b5b1 3557 context->update_pte = nonpaging_update_pte;
cea0f0e7 3558 context->root_level = 0;
6aa8b732 3559 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3560 context->root_hpa = INVALID_PAGE;
c5a78f2b 3561 context->direct_map = true;
2d48a985 3562 context->nx = false;
6aa8b732
AK
3563}
3564
d8d173da 3565void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3566{
cea0f0e7 3567 mmu_free_roots(vcpu);
6aa8b732
AK
3568}
3569
5777ed34
JR
3570static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3571{
9f8fe504 3572 return kvm_read_cr3(vcpu);
5777ed34
JR
3573}
3574
6389ee94
AK
3575static void inject_page_fault(struct kvm_vcpu *vcpu,
3576 struct x86_exception *fault)
6aa8b732 3577{
6389ee94 3578 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3579}
3580
54bf36aa 3581static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3582 unsigned access, int *nr_present)
ce88decf
XG
3583{
3584 if (unlikely(is_mmio_spte(*sptep))) {
3585 if (gfn != get_mmio_spte_gfn(*sptep)) {
3586 mmu_spte_clear_no_track(sptep);
3587 return true;
3588 }
3589
3590 (*nr_present)++;
54bf36aa 3591 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3592 return true;
3593 }
3594
3595 return false;
3596}
3597
6fd01b71
AK
3598static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3599{
3600 unsigned index;
3601
3602 index = level - 1;
3603 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3604 return mmu->last_pte_bitmap & (1 << index);
3605}
3606
37406aaa
NHE
3607#define PTTYPE_EPT 18 /* arbitrary */
3608#define PTTYPE PTTYPE_EPT
3609#include "paging_tmpl.h"
3610#undef PTTYPE
3611
6aa8b732
AK
3612#define PTTYPE 64
3613#include "paging_tmpl.h"
3614#undef PTTYPE
3615
3616#define PTTYPE 32
3617#include "paging_tmpl.h"
3618#undef PTTYPE
3619
6dc98b86
XG
3620static void
3621__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3622 struct rsvd_bits_validate *rsvd_check,
3623 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3624 bool pse, bool amd)
82725b20 3625{
82725b20 3626 u64 exb_bit_rsvd = 0;
5f7dde7b 3627 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3628 u64 nonleaf_bit8_rsvd = 0;
82725b20 3629
a0a64f50 3630 rsvd_check->bad_mt_xwr = 0;
25d92081 3631
6dc98b86 3632 if (!nx)
82725b20 3633 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3634 if (!gbpages)
5f7dde7b 3635 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3636
3637 /*
3638 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3639 * leaf entries) on AMD CPUs only.
3640 */
6fec2144 3641 if (amd)
a0c0feb5
PB
3642 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3643
6dc98b86 3644 switch (level) {
82725b20
DE
3645 case PT32_ROOT_LEVEL:
3646 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3647 rsvd_check->rsvd_bits_mask[0][1] = 0;
3648 rsvd_check->rsvd_bits_mask[0][0] = 0;
3649 rsvd_check->rsvd_bits_mask[1][0] =
3650 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3651
6dc98b86 3652 if (!pse) {
a0a64f50 3653 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3654 break;
3655 }
3656
82725b20
DE
3657 if (is_cpuid_PSE36())
3658 /* 36bits PSE 4MB page */
a0a64f50 3659 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3660 else
3661 /* 32 bits PSE 4MB page */
a0a64f50 3662 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3663 break;
3664 case PT32E_ROOT_LEVEL:
a0a64f50 3665 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3666 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3667 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3668 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3669 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3670 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3671 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3672 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3673 rsvd_bits(maxphyaddr, 62) |
3674 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3675 rsvd_check->rsvd_bits_mask[1][0] =
3676 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3677 break;
3678 case PT64_ROOT_LEVEL:
a0a64f50
XG
3679 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3680 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3681 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3682 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3683 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3684 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3685 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3686 rsvd_bits(maxphyaddr, 51);
3687 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3688 rsvd_bits(maxphyaddr, 51);
3689 rsvd_check->rsvd_bits_mask[1][3] =
3690 rsvd_check->rsvd_bits_mask[0][3];
3691 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3692 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3693 rsvd_bits(13, 29);
a0a64f50 3694 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3695 rsvd_bits(maxphyaddr, 51) |
3696 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3697 rsvd_check->rsvd_bits_mask[1][0] =
3698 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3699 break;
3700 }
3701}
3702
6dc98b86
XG
3703static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3704 struct kvm_mmu *context)
3705{
3706 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3707 cpuid_maxphyaddr(vcpu), context->root_level,
3708 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3709 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3710}
3711
81b8eebb
XG
3712static void
3713__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3714 int maxphyaddr, bool execonly)
25d92081 3715{
951f9fd7 3716 u64 bad_mt_xwr;
25d92081 3717
a0a64f50 3718 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3719 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3720 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3721 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3722 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3723 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3724 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3725
3726 /* large page */
a0a64f50
XG
3727 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3728 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3729 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3730 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3731 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3732 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3733
951f9fd7
PB
3734 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3735 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3736 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3737 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3738 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3739 if (!execonly) {
3740 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3741 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3742 }
951f9fd7 3743 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3744}
3745
81b8eebb
XG
3746static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3747 struct kvm_mmu *context, bool execonly)
3748{
3749 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3750 cpuid_maxphyaddr(vcpu), execonly);
3751}
3752
c258b62b
XG
3753/*
3754 * the page table on host is the shadow page table for the page
3755 * table in guest or amd nested guest, its mmu features completely
3756 * follow the features in guest.
3757 */
3758void
3759reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3760{
6fec2144
PB
3761 /*
3762 * Passing "true" to the last argument is okay; it adds a check
3763 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3764 */
c258b62b
XG
3765 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3766 boot_cpu_data.x86_phys_bits,
3767 context->shadow_root_level, context->nx,
6fec2144
PB
3768 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3769 true);
c258b62b
XG
3770}
3771EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3772
6fec2144
PB
3773static inline bool boot_cpu_is_amd(void)
3774{
3775 WARN_ON_ONCE(!tdp_enabled);
3776 return shadow_x_mask == 0;
3777}
3778
c258b62b
XG
3779/*
3780 * the direct page table on host, use as much mmu features as
3781 * possible, however, kvm currently does not do execution-protection.
3782 */
3783static void
3784reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3785 struct kvm_mmu *context)
3786{
6fec2144 3787 if (boot_cpu_is_amd())
c258b62b
XG
3788 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3789 boot_cpu_data.x86_phys_bits,
3790 context->shadow_root_level, false,
6fec2144 3791 cpu_has_gbpages, true, true);
c258b62b
XG
3792 else
3793 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3794 boot_cpu_data.x86_phys_bits,
3795 false);
3796
3797}
3798
3799/*
3800 * as the comments in reset_shadow_zero_bits_mask() except it
3801 * is the shadow page table for intel nested guest.
3802 */
3803static void
3804reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3805 struct kvm_mmu *context, bool execonly)
3806{
3807 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3808 boot_cpu_data.x86_phys_bits, execonly);
3809}
3810
edc90b7d
XG
3811static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3812 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3813{
3814 unsigned bit, byte, pfec;
3815 u8 map;
66386ade 3816 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3817
66386ade 3818 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3819 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3820 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3821 pfec = byte << 1;
3822 map = 0;
3823 wf = pfec & PFERR_WRITE_MASK;
3824 uf = pfec & PFERR_USER_MASK;
3825 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3826 /*
3827 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3828 * subject to SMAP restrictions, and cleared otherwise. The
3829 * bit is only meaningful if the SMAP bit is set in CR4.
3830 */
3831 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3832 for (bit = 0; bit < 8; ++bit) {
3833 x = bit & ACC_EXEC_MASK;
3834 w = bit & ACC_WRITE_MASK;
3835 u = bit & ACC_USER_MASK;
3836
25d92081
YZ
3837 if (!ept) {
3838 /* Not really needed: !nx will cause pte.nx to fault */
3839 x |= !mmu->nx;
3840 /* Allow supervisor writes if !cr0.wp */
3841 w |= !is_write_protection(vcpu) && !uf;
3842 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3843 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3844
3845 /*
3846 * SMAP:kernel-mode data accesses from user-mode
3847 * mappings should fault. A fault is considered
3848 * as a SMAP violation if all of the following
3849 * conditions are ture:
3850 * - X86_CR4_SMAP is set in CR4
3851 * - An user page is accessed
3852 * - Page fault in kernel mode
3853 * - if CPL = 3 or X86_EFLAGS_AC is clear
3854 *
3855 * Here, we cover the first three conditions.
3856 * The fourth is computed dynamically in
3857 * permission_fault() and is in smapf.
3858 *
3859 * Also, SMAP does not affect instruction
3860 * fetches, add the !ff check here to make it
3861 * clearer.
3862 */
3863 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3864 } else
3865 /* Not really needed: no U/S accesses on ept */
3866 u = 1;
97d64b78 3867
97ec8c06
FW
3868 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3869 (smapf && smap);
97d64b78
AK
3870 map |= fault << bit;
3871 }
3872 mmu->permissions[byte] = map;
3873 }
3874}
3875
6fd01b71
AK
3876static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3877{
3878 u8 map;
3879 unsigned level, root_level = mmu->root_level;
3880 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3881
3882 if (root_level == PT32E_ROOT_LEVEL)
3883 --root_level;
3884 /* PT_PAGE_TABLE_LEVEL always terminates */
3885 map = 1 | (1 << ps_set_index);
3886 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3887 if (level <= PT_PDPE_LEVEL
3888 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3889 map |= 1 << (ps_set_index | (level - 1));
3890 }
3891 mmu->last_pte_bitmap = map;
3892}
3893
8a3c1a33
PB
3894static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3895 struct kvm_mmu *context,
3896 int level)
6aa8b732 3897{
2d48a985 3898 context->nx = is_nx(vcpu);
4d6931c3 3899 context->root_level = level;
2d48a985 3900
4d6931c3 3901 reset_rsvds_bits_mask(vcpu, context);
25d92081 3902 update_permission_bitmask(vcpu, context, false);
6fd01b71 3903 update_last_pte_bitmap(vcpu, context);
6aa8b732 3904
fa4a2c08 3905 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3906 context->page_fault = paging64_page_fault;
6aa8b732 3907 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3908 context->sync_page = paging64_sync_page;
a7052897 3909 context->invlpg = paging64_invlpg;
0f53b5b1 3910 context->update_pte = paging64_update_pte;
17ac10ad 3911 context->shadow_root_level = level;
17c3ba9d 3912 context->root_hpa = INVALID_PAGE;
c5a78f2b 3913 context->direct_map = false;
6aa8b732
AK
3914}
3915
8a3c1a33
PB
3916static void paging64_init_context(struct kvm_vcpu *vcpu,
3917 struct kvm_mmu *context)
17ac10ad 3918{
8a3c1a33 3919 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3920}
3921
8a3c1a33
PB
3922static void paging32_init_context(struct kvm_vcpu *vcpu,
3923 struct kvm_mmu *context)
6aa8b732 3924{
2d48a985 3925 context->nx = false;
4d6931c3 3926 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3927
4d6931c3 3928 reset_rsvds_bits_mask(vcpu, context);
25d92081 3929 update_permission_bitmask(vcpu, context, false);
6fd01b71 3930 update_last_pte_bitmap(vcpu, context);
6aa8b732 3931
6aa8b732 3932 context->page_fault = paging32_page_fault;
6aa8b732 3933 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3934 context->sync_page = paging32_sync_page;
a7052897 3935 context->invlpg = paging32_invlpg;
0f53b5b1 3936 context->update_pte = paging32_update_pte;
6aa8b732 3937 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3938 context->root_hpa = INVALID_PAGE;
c5a78f2b 3939 context->direct_map = false;
6aa8b732
AK
3940}
3941
8a3c1a33
PB
3942static void paging32E_init_context(struct kvm_vcpu *vcpu,
3943 struct kvm_mmu *context)
6aa8b732 3944{
8a3c1a33 3945 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3946}
3947
8a3c1a33 3948static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3949{
ad896af0 3950 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3951
c445f8ef 3952 context->base_role.word = 0;
699023e2 3953 context->base_role.smm = is_smm(vcpu);
fb72d167 3954 context->page_fault = tdp_page_fault;
e8bc217a 3955 context->sync_page = nonpaging_sync_page;
a7052897 3956 context->invlpg = nonpaging_invlpg;
0f53b5b1 3957 context->update_pte = nonpaging_update_pte;
67253af5 3958 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3959 context->root_hpa = INVALID_PAGE;
c5a78f2b 3960 context->direct_map = true;
1c97f0a0 3961 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3962 context->get_cr3 = get_cr3;
e4e517b4 3963 context->get_pdptr = kvm_pdptr_read;
cb659db8 3964 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3965
3966 if (!is_paging(vcpu)) {
2d48a985 3967 context->nx = false;
fb72d167
JR
3968 context->gva_to_gpa = nonpaging_gva_to_gpa;
3969 context->root_level = 0;
3970 } else if (is_long_mode(vcpu)) {
2d48a985 3971 context->nx = is_nx(vcpu);
fb72d167 3972 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3973 reset_rsvds_bits_mask(vcpu, context);
3974 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3975 } else if (is_pae(vcpu)) {
2d48a985 3976 context->nx = is_nx(vcpu);
fb72d167 3977 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3978 reset_rsvds_bits_mask(vcpu, context);
3979 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3980 } else {
2d48a985 3981 context->nx = false;
fb72d167 3982 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3983 reset_rsvds_bits_mask(vcpu, context);
3984 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3985 }
3986
25d92081 3987 update_permission_bitmask(vcpu, context, false);
6fd01b71 3988 update_last_pte_bitmap(vcpu, context);
c258b62b 3989 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
3990}
3991
ad896af0 3992void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3993{
411c588d 3994 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3995 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3996 struct kvm_mmu *context = &vcpu->arch.mmu;
3997
fa4a2c08 3998 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3999
4000 if (!is_paging(vcpu))
8a3c1a33 4001 nonpaging_init_context(vcpu, context);
a9058ecd 4002 else if (is_long_mode(vcpu))
8a3c1a33 4003 paging64_init_context(vcpu, context);
6aa8b732 4004 else if (is_pae(vcpu))
8a3c1a33 4005 paging32E_init_context(vcpu, context);
6aa8b732 4006 else
8a3c1a33 4007 paging32_init_context(vcpu, context);
a770f6f2 4008
ad896af0
PB
4009 context->base_role.nxe = is_nx(vcpu);
4010 context->base_role.cr4_pae = !!is_pae(vcpu);
4011 context->base_role.cr0_wp = is_write_protection(vcpu);
4012 context->base_role.smep_andnot_wp
411c588d 4013 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4014 context->base_role.smap_andnot_wp
4015 = smap && !is_write_protection(vcpu);
699023e2 4016 context->base_role.smm = is_smm(vcpu);
c258b62b 4017 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4018}
4019EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4020
ad896af0 4021void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4022{
ad896af0
PB
4023 struct kvm_mmu *context = &vcpu->arch.mmu;
4024
fa4a2c08 4025 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4026
4027 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4028
4029 context->nx = true;
155a97a3
NHE
4030 context->page_fault = ept_page_fault;
4031 context->gva_to_gpa = ept_gva_to_gpa;
4032 context->sync_page = ept_sync_page;
4033 context->invlpg = ept_invlpg;
4034 context->update_pte = ept_update_pte;
155a97a3
NHE
4035 context->root_level = context->shadow_root_level;
4036 context->root_hpa = INVALID_PAGE;
4037 context->direct_map = false;
4038
4039 update_permission_bitmask(vcpu, context, true);
4040 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4041 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4042}
4043EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4044
8a3c1a33 4045static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4046{
ad896af0
PB
4047 struct kvm_mmu *context = &vcpu->arch.mmu;
4048
4049 kvm_init_shadow_mmu(vcpu);
4050 context->set_cr3 = kvm_x86_ops->set_cr3;
4051 context->get_cr3 = get_cr3;
4052 context->get_pdptr = kvm_pdptr_read;
4053 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4054}
4055
8a3c1a33 4056static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4057{
4058 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4059
4060 g_context->get_cr3 = get_cr3;
e4e517b4 4061 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4062 g_context->inject_page_fault = kvm_inject_page_fault;
4063
4064 /*
4065 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4066 * translation of l2_gpa to l1_gpa addresses is done using the
4067 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4068 * functions between mmu and nested_mmu are swapped.
4069 */
4070 if (!is_paging(vcpu)) {
2d48a985 4071 g_context->nx = false;
02f59dc9
JR
4072 g_context->root_level = 0;
4073 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4074 } else if (is_long_mode(vcpu)) {
2d48a985 4075 g_context->nx = is_nx(vcpu);
02f59dc9 4076 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4077 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4078 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4079 } else if (is_pae(vcpu)) {
2d48a985 4080 g_context->nx = is_nx(vcpu);
02f59dc9 4081 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4082 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4083 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4084 } else {
2d48a985 4085 g_context->nx = false;
02f59dc9 4086 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4087 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4088 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4089 }
4090
25d92081 4091 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4092 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4093}
4094
8a3c1a33 4095static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4096{
02f59dc9 4097 if (mmu_is_nested(vcpu))
e0c6db3e 4098 init_kvm_nested_mmu(vcpu);
02f59dc9 4099 else if (tdp_enabled)
e0c6db3e 4100 init_kvm_tdp_mmu(vcpu);
fb72d167 4101 else
e0c6db3e 4102 init_kvm_softmmu(vcpu);
fb72d167
JR
4103}
4104
8a3c1a33 4105void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4106{
95f93af4 4107 kvm_mmu_unload(vcpu);
8a3c1a33 4108 init_kvm_mmu(vcpu);
17c3ba9d 4109}
8668a3c4 4110EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4111
4112int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4113{
714b93da
AK
4114 int r;
4115
e2dec939 4116 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4117 if (r)
4118 goto out;
8986ecc0 4119 r = mmu_alloc_roots(vcpu);
e2858b4a 4120 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4121 if (r)
4122 goto out;
3662cb1c 4123 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4124 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4125out:
4126 return r;
6aa8b732 4127}
17c3ba9d
AK
4128EXPORT_SYMBOL_GPL(kvm_mmu_load);
4129
4130void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4131{
4132 mmu_free_roots(vcpu);
95f93af4 4133 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4134}
4b16184c 4135EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4136
0028425f 4137static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4138 struct kvm_mmu_page *sp, u64 *spte,
4139 const void *new)
0028425f 4140{
30945387 4141 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4142 ++vcpu->kvm->stat.mmu_pde_zapped;
4143 return;
30945387 4144 }
0028425f 4145
4cee5764 4146 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4147 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4148}
4149
79539cec
AK
4150static bool need_remote_flush(u64 old, u64 new)
4151{
4152 if (!is_shadow_present_pte(old))
4153 return false;
4154 if (!is_shadow_present_pte(new))
4155 return true;
4156 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4157 return true;
53166229
GN
4158 old ^= shadow_nx_mask;
4159 new ^= shadow_nx_mask;
79539cec
AK
4160 return (old & ~new & PT64_PERM_MASK) != 0;
4161}
4162
0671a8e7
XG
4163static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4164 bool remote_flush, bool local_flush)
79539cec 4165{
0671a8e7
XG
4166 if (zap_page)
4167 return;
4168
4169 if (remote_flush)
79539cec 4170 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4171 else if (local_flush)
77c3913b 4172 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4173}
4174
889e5cbc
XG
4175static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4176 const u8 *new, int *bytes)
da4a00f0 4177{
889e5cbc
XG
4178 u64 gentry;
4179 int r;
72016f3a 4180
72016f3a
AK
4181 /*
4182 * Assume that the pte write on a page table of the same type
49b26e26
XG
4183 * as the current vcpu paging mode since we update the sptes only
4184 * when they have the same mode.
72016f3a 4185 */
889e5cbc 4186 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4187 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4188 *gpa &= ~(gpa_t)7;
4189 *bytes = 8;
54bf36aa 4190 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4191 if (r)
4192 gentry = 0;
08e850c6
AK
4193 new = (const u8 *)&gentry;
4194 }
4195
889e5cbc 4196 switch (*bytes) {
08e850c6
AK
4197 case 4:
4198 gentry = *(const u32 *)new;
4199 break;
4200 case 8:
4201 gentry = *(const u64 *)new;
4202 break;
4203 default:
4204 gentry = 0;
4205 break;
72016f3a
AK
4206 }
4207
889e5cbc
XG
4208 return gentry;
4209}
4210
4211/*
4212 * If we're seeing too many writes to a page, it may no longer be a page table,
4213 * or we may be forking, in which case it is better to unmap the page.
4214 */
a138fe75 4215static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4216{
a30f47cb
XG
4217 /*
4218 * Skip write-flooding detected for the sp whose level is 1, because
4219 * it can become unsync, then the guest page is not write-protected.
4220 */
f71fa31f 4221 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4222 return false;
3246af0e 4223
a30f47cb 4224 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4225}
4226
4227/*
4228 * Misaligned accesses are too much trouble to fix up; also, they usually
4229 * indicate a page is not used as a page table.
4230 */
4231static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4232 int bytes)
4233{
4234 unsigned offset, pte_size, misaligned;
4235
4236 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4237 gpa, bytes, sp->role.word);
4238
4239 offset = offset_in_page(gpa);
4240 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4241
4242 /*
4243 * Sometimes, the OS only writes the last one bytes to update status
4244 * bits, for example, in linux, andb instruction is used in clear_bit().
4245 */
4246 if (!(offset & (pte_size - 1)) && bytes == 1)
4247 return false;
4248
889e5cbc
XG
4249 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4250 misaligned |= bytes < 4;
4251
4252 return misaligned;
4253}
4254
4255static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4256{
4257 unsigned page_offset, quadrant;
4258 u64 *spte;
4259 int level;
4260
4261 page_offset = offset_in_page(gpa);
4262 level = sp->role.level;
4263 *nspte = 1;
4264 if (!sp->role.cr4_pae) {
4265 page_offset <<= 1; /* 32->64 */
4266 /*
4267 * A 32-bit pde maps 4MB while the shadow pdes map
4268 * only 2MB. So we need to double the offset again
4269 * and zap two pdes instead of one.
4270 */
4271 if (level == PT32_ROOT_LEVEL) {
4272 page_offset &= ~7; /* kill rounding error */
4273 page_offset <<= 1;
4274 *nspte = 2;
4275 }
4276 quadrant = page_offset >> PAGE_SHIFT;
4277 page_offset &= ~PAGE_MASK;
4278 if (quadrant != sp->role.quadrant)
4279 return NULL;
4280 }
4281
4282 spte = &sp->spt[page_offset / sizeof(*spte)];
4283 return spte;
4284}
4285
4286void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4287 const u8 *new, int bytes)
4288{
4289 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4290 struct kvm_mmu_page *sp;
889e5cbc
XG
4291 LIST_HEAD(invalid_list);
4292 u64 entry, gentry, *spte;
4293 int npte;
a30f47cb 4294 bool remote_flush, local_flush, zap_page;
4141259b
AM
4295 union kvm_mmu_page_role mask = { };
4296
4297 mask.cr0_wp = 1;
4298 mask.cr4_pae = 1;
4299 mask.nxe = 1;
4300 mask.smep_andnot_wp = 1;
4301 mask.smap_andnot_wp = 1;
699023e2 4302 mask.smm = 1;
889e5cbc
XG
4303
4304 /*
4305 * If we don't have indirect shadow pages, it means no page is
4306 * write-protected, so we can exit simply.
4307 */
4308 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4309 return;
4310
4311 zap_page = remote_flush = local_flush = false;
4312
4313 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4314
4315 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4316
4317 /*
4318 * No need to care whether allocation memory is successful
4319 * or not since pte prefetch is skiped if it does not have
4320 * enough objects in the cache.
4321 */
4322 mmu_topup_memory_caches(vcpu);
4323
4324 spin_lock(&vcpu->kvm->mmu_lock);
4325 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4326 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4327
b67bfe0d 4328 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4329 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4330 detect_write_flooding(sp)) {
0671a8e7 4331 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4332 &invalid_list);
4cee5764 4333 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4334 continue;
4335 }
889e5cbc
XG
4336
4337 spte = get_written_sptes(sp, gpa, &npte);
4338 if (!spte)
4339 continue;
4340
0671a8e7 4341 local_flush = true;
ac1b714e 4342 while (npte--) {
79539cec 4343 entry = *spte;
38e3b2b2 4344 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4345 if (gentry &&
4346 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4347 & mask.word) && rmap_can_add(vcpu))
7c562522 4348 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4349 if (need_remote_flush(entry, *spte))
0671a8e7 4350 remote_flush = true;
ac1b714e 4351 ++spte;
9b7a0325 4352 }
9b7a0325 4353 }
0671a8e7 4354 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4355 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4356 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4357 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4358}
4359
a436036b
AK
4360int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4361{
10589a46
MT
4362 gpa_t gpa;
4363 int r;
a436036b 4364
c5a78f2b 4365 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4366 return 0;
4367
1871c602 4368 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4369
10589a46 4370 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4371
10589a46 4372 return r;
a436036b 4373}
577bdc49 4374EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4375
81f4f76b 4376static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4377{
d98ba053 4378 LIST_HEAD(invalid_list);
103ad25a 4379
81f4f76b
TY
4380 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4381 return;
4382
5da59607
TY
4383 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4384 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4385 break;
ebeace86 4386
4cee5764 4387 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4388 }
aa6bd187 4389 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4390}
ebeace86 4391
1cb3f3ae
XG
4392static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4393{
4394 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4395 return vcpu_match_mmio_gpa(vcpu, addr);
4396
4397 return vcpu_match_mmio_gva(vcpu, addr);
4398}
4399
dc25e89e
AP
4400int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4401 void *insn, int insn_len)
3067714c 4402{
1cb3f3ae 4403 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4404 enum emulation_result er;
4405
56028d08 4406 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4407 if (r < 0)
4408 goto out;
4409
4410 if (!r) {
4411 r = 1;
4412 goto out;
4413 }
4414
1cb3f3ae
XG
4415 if (is_mmio_page_fault(vcpu, cr2))
4416 emulation_type = 0;
4417
4418 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4419
4420 switch (er) {
4421 case EMULATE_DONE:
4422 return 1;
ac0a48c3 4423 case EMULATE_USER_EXIT:
3067714c 4424 ++vcpu->stat.mmio_exits;
6d77dbfc 4425 /* fall through */
3067714c 4426 case EMULATE_FAIL:
3f5d18a9 4427 return 0;
3067714c
AK
4428 default:
4429 BUG();
4430 }
4431out:
3067714c
AK
4432 return r;
4433}
4434EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4435
a7052897
MT
4436void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4437{
a7052897 4438 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4439 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4440 ++vcpu->stat.invlpg;
4441}
4442EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4443
18552672
JR
4444void kvm_enable_tdp(void)
4445{
4446 tdp_enabled = true;
4447}
4448EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4449
5f4cb662
JR
4450void kvm_disable_tdp(void)
4451{
4452 tdp_enabled = false;
4453}
4454EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4455
6aa8b732
AK
4456static void free_mmu_pages(struct kvm_vcpu *vcpu)
4457{
ad312c7c 4458 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4459 if (vcpu->arch.mmu.lm_root != NULL)
4460 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4461}
4462
4463static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4464{
17ac10ad 4465 struct page *page;
6aa8b732
AK
4466 int i;
4467
17ac10ad
AK
4468 /*
4469 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4470 * Therefore we need to allocate shadow page tables in the first
4471 * 4GB of memory, which happens to fit the DMA32 zone.
4472 */
4473 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4474 if (!page)
d7fa6ab2
WY
4475 return -ENOMEM;
4476
ad312c7c 4477 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4478 for (i = 0; i < 4; ++i)
ad312c7c 4479 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4480
6aa8b732 4481 return 0;
6aa8b732
AK
4482}
4483
8018c27b 4484int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4485{
e459e322
XG
4486 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4487 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4488 vcpu->arch.mmu.translate_gpa = translate_gpa;
4489 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4490
8018c27b
IM
4491 return alloc_mmu_pages(vcpu);
4492}
6aa8b732 4493
8a3c1a33 4494void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4495{
fa4a2c08 4496 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4497
8a3c1a33 4498 init_kvm_mmu(vcpu);
6aa8b732
AK
4499}
4500
1bad2b2a
XG
4501/* The return value indicates if tlb flush on all vcpus is needed. */
4502typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4503
4504/* The caller should hold mmu-lock before calling this function. */
4505static bool
4506slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4507 slot_level_handler fn, int start_level, int end_level,
4508 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4509{
4510 struct slot_rmap_walk_iterator iterator;
4511 bool flush = false;
4512
4513 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4514 end_gfn, &iterator) {
4515 if (iterator.rmap)
4516 flush |= fn(kvm, iterator.rmap);
4517
4518 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4519 if (flush && lock_flush_tlb) {
4520 kvm_flush_remote_tlbs(kvm);
4521 flush = false;
4522 }
4523 cond_resched_lock(&kvm->mmu_lock);
4524 }
4525 }
4526
4527 if (flush && lock_flush_tlb) {
4528 kvm_flush_remote_tlbs(kvm);
4529 flush = false;
4530 }
4531
4532 return flush;
4533}
4534
4535static bool
4536slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4537 slot_level_handler fn, int start_level, int end_level,
4538 bool lock_flush_tlb)
4539{
4540 return slot_handle_level_range(kvm, memslot, fn, start_level,
4541 end_level, memslot->base_gfn,
4542 memslot->base_gfn + memslot->npages - 1,
4543 lock_flush_tlb);
4544}
4545
4546static bool
4547slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4548 slot_level_handler fn, bool lock_flush_tlb)
4549{
4550 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4551 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4552}
4553
4554static bool
4555slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556 slot_level_handler fn, bool lock_flush_tlb)
4557{
4558 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4559 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4560}
4561
4562static bool
4563slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4564 slot_level_handler fn, bool lock_flush_tlb)
4565{
4566 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4567 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4568}
4569
efdfe536
XG
4570void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4571{
4572 struct kvm_memslots *slots;
4573 struct kvm_memory_slot *memslot;
9da0e4d5 4574 int i;
efdfe536
XG
4575
4576 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4577 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4578 slots = __kvm_memslots(kvm, i);
4579 kvm_for_each_memslot(memslot, slots) {
4580 gfn_t start, end;
4581
4582 start = max(gfn_start, memslot->base_gfn);
4583 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4584 if (start >= end)
4585 continue;
efdfe536 4586
9da0e4d5
PB
4587 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4588 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4589 start, end - 1, true);
4590 }
efdfe536
XG
4591 }
4592
4593 spin_unlock(&kvm->mmu_lock);
4594}
4595
d77aa73c
XG
4596static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4597{
4598 return __rmap_write_protect(kvm, rmapp, false);
4599}
4600
1c91cad4
KH
4601void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4602 struct kvm_memory_slot *memslot)
6aa8b732 4603{
d77aa73c 4604 bool flush;
6aa8b732 4605
9d1beefb 4606 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4607 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4608 false);
9d1beefb 4609 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4610
4611 /*
4612 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4613 * which do tlb flush out of mmu-lock should be serialized by
4614 * kvm->slots_lock otherwise tlb flush would be missed.
4615 */
4616 lockdep_assert_held(&kvm->slots_lock);
4617
4618 /*
4619 * We can flush all the TLBs out of the mmu lock without TLB
4620 * corruption since we just change the spte from writable to
4621 * readonly so that we only need to care the case of changing
4622 * spte from present to present (changing the spte from present
4623 * to nonpresent will flush all the TLBs immediately), in other
4624 * words, the only case we care is mmu_spte_update() where we
4625 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4626 * instead of PT_WRITABLE_MASK, that means it does not depend
4627 * on PT_WRITABLE_MASK anymore.
4628 */
d91ffee9
KH
4629 if (flush)
4630 kvm_flush_remote_tlbs(kvm);
6aa8b732 4631}
37a7d8b0 4632
3ea3b7fa
WL
4633static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4634 unsigned long *rmapp)
4635{
4636 u64 *sptep;
4637 struct rmap_iterator iter;
4638 int need_tlb_flush = 0;
4639 pfn_t pfn;
4640 struct kvm_mmu_page *sp;
4641
0d536790
XG
4642restart:
4643 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4644 sp = page_header(__pa(sptep));
4645 pfn = spte_to_pfn(*sptep);
4646
4647 /*
decf6333
XG
4648 * We cannot do huge page mapping for indirect shadow pages,
4649 * which are found on the last rmap (level = 1) when not using
4650 * tdp; such shadow pages are synced with the page table in
4651 * the guest, and the guest page table is using 4K page size
4652 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4653 */
4654 if (sp->role.direct &&
4655 !kvm_is_reserved_pfn(pfn) &&
4656 PageTransCompound(pfn_to_page(pfn))) {
4657 drop_spte(kvm, sptep);
3ea3b7fa 4658 need_tlb_flush = 1;
0d536790
XG
4659 goto restart;
4660 }
3ea3b7fa
WL
4661 }
4662
4663 return need_tlb_flush;
4664}
4665
4666void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4667 const struct kvm_memory_slot *memslot)
3ea3b7fa 4668{
f36f3f28 4669 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4670 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4671 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4672 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4673 spin_unlock(&kvm->mmu_lock);
4674}
4675
f4b4b180
KH
4676void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4677 struct kvm_memory_slot *memslot)
4678{
d77aa73c 4679 bool flush;
f4b4b180
KH
4680
4681 spin_lock(&kvm->mmu_lock);
d77aa73c 4682 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4683 spin_unlock(&kvm->mmu_lock);
4684
4685 lockdep_assert_held(&kvm->slots_lock);
4686
4687 /*
4688 * It's also safe to flush TLBs out of mmu lock here as currently this
4689 * function is only used for dirty logging, in which case flushing TLB
4690 * out of mmu lock also guarantees no dirty pages will be lost in
4691 * dirty_bitmap.
4692 */
4693 if (flush)
4694 kvm_flush_remote_tlbs(kvm);
4695}
4696EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4697
4698void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4699 struct kvm_memory_slot *memslot)
4700{
d77aa73c 4701 bool flush;
f4b4b180
KH
4702
4703 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4704 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4705 false);
f4b4b180
KH
4706 spin_unlock(&kvm->mmu_lock);
4707
4708 /* see kvm_mmu_slot_remove_write_access */
4709 lockdep_assert_held(&kvm->slots_lock);
4710
4711 if (flush)
4712 kvm_flush_remote_tlbs(kvm);
4713}
4714EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4715
4716void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4717 struct kvm_memory_slot *memslot)
4718{
d77aa73c 4719 bool flush;
f4b4b180
KH
4720
4721 spin_lock(&kvm->mmu_lock);
d77aa73c 4722 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4723 spin_unlock(&kvm->mmu_lock);
4724
4725 lockdep_assert_held(&kvm->slots_lock);
4726
4727 /* see kvm_mmu_slot_leaf_clear_dirty */
4728 if (flush)
4729 kvm_flush_remote_tlbs(kvm);
4730}
4731EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4732
e7d11c7a 4733#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4734static void kvm_zap_obsolete_pages(struct kvm *kvm)
4735{
4736 struct kvm_mmu_page *sp, *node;
e7d11c7a 4737 int batch = 0;
5304b8d3
XG
4738
4739restart:
4740 list_for_each_entry_safe_reverse(sp, node,
4741 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4742 int ret;
4743
5304b8d3
XG
4744 /*
4745 * No obsolete page exists before new created page since
4746 * active_mmu_pages is the FIFO list.
4747 */
4748 if (!is_obsolete_sp(kvm, sp))
4749 break;
4750
4751 /*
5304b8d3
XG
4752 * Since we are reversely walking the list and the invalid
4753 * list will be moved to the head, skip the invalid page
4754 * can help us to avoid the infinity list walking.
4755 */
4756 if (sp->role.invalid)
4757 continue;
4758
f34d251d
XG
4759 /*
4760 * Need not flush tlb since we only zap the sp with invalid
4761 * generation number.
4762 */
e7d11c7a 4763 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4764 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4765 batch = 0;
5304b8d3
XG
4766 goto restart;
4767 }
4768
365c8868
XG
4769 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4770 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4771 batch += ret;
4772
4773 if (ret)
5304b8d3
XG
4774 goto restart;
4775 }
4776
f34d251d
XG
4777 /*
4778 * Should flush tlb before free page tables since lockless-walking
4779 * may use the pages.
4780 */
365c8868 4781 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4782}
4783
4784/*
4785 * Fast invalidate all shadow pages and use lock-break technique
4786 * to zap obsolete pages.
4787 *
4788 * It's required when memslot is being deleted or VM is being
4789 * destroyed, in these cases, we should ensure that KVM MMU does
4790 * not use any resource of the being-deleted slot or all slots
4791 * after calling the function.
4792 */
4793void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4794{
4795 spin_lock(&kvm->mmu_lock);
35006126 4796 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4797 kvm->arch.mmu_valid_gen++;
4798
f34d251d
XG
4799 /*
4800 * Notify all vcpus to reload its shadow page table
4801 * and flush TLB. Then all vcpus will switch to new
4802 * shadow page table with the new mmu_valid_gen.
4803 *
4804 * Note: we should do this under the protection of
4805 * mmu-lock, otherwise, vcpu would purge shadow page
4806 * but miss tlb flush.
4807 */
4808 kvm_reload_remote_mmus(kvm);
4809
5304b8d3
XG
4810 kvm_zap_obsolete_pages(kvm);
4811 spin_unlock(&kvm->mmu_lock);
4812}
4813
365c8868
XG
4814static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4815{
4816 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4817}
4818
54bf36aa 4819void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4820{
4821 /*
4822 * The very rare case: if the generation-number is round,
4823 * zap all shadow pages.
f8f55942 4824 */
54bf36aa 4825 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4826 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4827 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4828 }
f8f55942
XG
4829}
4830
70534a73
DC
4831static unsigned long
4832mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4833{
4834 struct kvm *kvm;
1495f230 4835 int nr_to_scan = sc->nr_to_scan;
70534a73 4836 unsigned long freed = 0;
3ee16c81 4837
2f303b74 4838 spin_lock(&kvm_lock);
3ee16c81
IE
4839
4840 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4841 int idx;
d98ba053 4842 LIST_HEAD(invalid_list);
3ee16c81 4843
35f2d16b
TY
4844 /*
4845 * Never scan more than sc->nr_to_scan VM instances.
4846 * Will not hit this condition practically since we do not try
4847 * to shrink more than one VM and it is very unlikely to see
4848 * !n_used_mmu_pages so many times.
4849 */
4850 if (!nr_to_scan--)
4851 break;
19526396
GN
4852 /*
4853 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4854 * here. We may skip a VM instance errorneosly, but we do not
4855 * want to shrink a VM that only started to populate its MMU
4856 * anyway.
4857 */
365c8868
XG
4858 if (!kvm->arch.n_used_mmu_pages &&
4859 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4860 continue;
19526396 4861
f656ce01 4862 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4863 spin_lock(&kvm->mmu_lock);
3ee16c81 4864
365c8868
XG
4865 if (kvm_has_zapped_obsolete_pages(kvm)) {
4866 kvm_mmu_commit_zap_page(kvm,
4867 &kvm->arch.zapped_obsolete_pages);
4868 goto unlock;
4869 }
4870
70534a73
DC
4871 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4872 freed++;
d98ba053 4873 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4874
365c8868 4875unlock:
3ee16c81 4876 spin_unlock(&kvm->mmu_lock);
f656ce01 4877 srcu_read_unlock(&kvm->srcu, idx);
19526396 4878
70534a73
DC
4879 /*
4880 * unfair on small ones
4881 * per-vm shrinkers cry out
4882 * sadness comes quickly
4883 */
19526396
GN
4884 list_move_tail(&kvm->vm_list, &vm_list);
4885 break;
3ee16c81 4886 }
3ee16c81 4887
2f303b74 4888 spin_unlock(&kvm_lock);
70534a73 4889 return freed;
70534a73
DC
4890}
4891
4892static unsigned long
4893mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4894{
45221ab6 4895 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4896}
4897
4898static struct shrinker mmu_shrinker = {
70534a73
DC
4899 .count_objects = mmu_shrink_count,
4900 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4901 .seeks = DEFAULT_SEEKS * 10,
4902};
4903
2ddfd20e 4904static void mmu_destroy_caches(void)
b5a33a75 4905{
53c07b18
XG
4906 if (pte_list_desc_cache)
4907 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4908 if (mmu_page_header_cache)
4909 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4910}
4911
4912int kvm_mmu_module_init(void)
4913{
53c07b18
XG
4914 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4915 sizeof(struct pte_list_desc),
20c2df83 4916 0, 0, NULL);
53c07b18 4917 if (!pte_list_desc_cache)
b5a33a75
AK
4918 goto nomem;
4919
d3d25b04
AK
4920 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4921 sizeof(struct kvm_mmu_page),
20c2df83 4922 0, 0, NULL);
d3d25b04
AK
4923 if (!mmu_page_header_cache)
4924 goto nomem;
4925
908c7f19 4926 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4927 goto nomem;
4928
3ee16c81
IE
4929 register_shrinker(&mmu_shrinker);
4930
b5a33a75
AK
4931 return 0;
4932
4933nomem:
3ee16c81 4934 mmu_destroy_caches();
b5a33a75
AK
4935 return -ENOMEM;
4936}
4937
3ad82a7e
ZX
4938/*
4939 * Caculate mmu pages needed for kvm.
4940 */
4941unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4942{
3ad82a7e
ZX
4943 unsigned int nr_mmu_pages;
4944 unsigned int nr_pages = 0;
bc6678a3 4945 struct kvm_memslots *slots;
be6ba0f0 4946 struct kvm_memory_slot *memslot;
9da0e4d5 4947 int i;
3ad82a7e 4948
9da0e4d5
PB
4949 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4950 slots = __kvm_memslots(kvm, i);
90d83dc3 4951
9da0e4d5
PB
4952 kvm_for_each_memslot(memslot, slots)
4953 nr_pages += memslot->npages;
4954 }
3ad82a7e
ZX
4955
4956 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4957 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4958 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4959
4960 return nr_mmu_pages;
4961}
4962
c42fffe3
XG
4963void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4964{
95f93af4 4965 kvm_mmu_unload(vcpu);
c42fffe3
XG
4966 free_mmu_pages(vcpu);
4967 mmu_free_memory_caches(vcpu);
b034cf01
XG
4968}
4969
b034cf01
XG
4970void kvm_mmu_module_exit(void)
4971{
4972 mmu_destroy_caches();
4973 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4974 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4975 mmu_audit_disable();
4976}
This page took 0.99703 seconds and 5 git commands to generate.