KVM: MMU: simplify mmu_need_write_protect
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
ce88decf 307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
603e0651 339 *sptep = spte;
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
603e0651
XG
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48
XG
481 /*
482 * Always atomicly update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomicly update it, see the comments in
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
4132779b 560 if (!shadow_accessed_mask)
6e7d0354 561 return ret;
4132779b 562
7e71a59b
KH
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
4132779b
XG
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
575
576 return ret;
b79b93f9
AK
577}
578
1df9f2dc
XG
579/*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584static int mmu_spte_clear_track_bits(u64 *sptep)
585{
ba049e93 586 kvm_pfn_t pfn;
1df9f2dc
XG
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
603e0651 590 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 591 else
603e0651 592 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 593
afd28fe1 594 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
86fde74c
XG
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
bf4bea8e 604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 605
1df9f2dc
XG
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611}
612
613/*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618static void mmu_spte_clear_no_track(u64 *sptep)
619{
603e0651 620 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
621}
622
c2a2ac2b
XG
623static u64 mmu_spte_get_lockless(u64 *sptep)
624{
625 return __get_spte_lockless(sptep);
626}
627
628static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629{
c142786c
AK
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635 vcpu->mode = READING_SHADOW_PAGE_TABLES;
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_mb();
c2a2ac2b
XG
641}
642
643static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644{
c142786c
AK
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_mb();
651 vcpu->mode = OUTSIDE_GUEST_MODE;
652 local_irq_enable();
c2a2ac2b
XG
653}
654
e2dec939 655static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 656 struct kmem_cache *base_cache, int min)
714b93da
AK
657{
658 void *obj;
659
660 if (cache->nobjs >= min)
e2dec939 661 return 0;
714b93da 662 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 663 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 664 if (!obj)
e2dec939 665 return -ENOMEM;
714b93da
AK
666 cache->objects[cache->nobjs++] = obj;
667 }
e2dec939 668 return 0;
714b93da
AK
669}
670
f759e2b4
XG
671static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672{
673 return cache->nobjs;
674}
675
e8ad9a70
XG
676static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677 struct kmem_cache *cache)
714b93da
AK
678{
679 while (mc->nobjs)
e8ad9a70 680 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
681}
682
c1158e63 683static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 684 int min)
c1158e63 685{
842f22ed 686 void *page;
c1158e63
AK
687
688 if (cache->nobjs >= min)
689 return 0;
690 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 691 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
692 if (!page)
693 return -ENOMEM;
842f22ed 694 cache->objects[cache->nobjs++] = page;
c1158e63
AK
695 }
696 return 0;
697}
698
699static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700{
701 while (mc->nobjs)
c4d198d5 702 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
703}
704
2e3e5882 705static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 706{
e2dec939
AK
707 int r;
708
53c07b18 709 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 710 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
711 if (r)
712 goto out;
ad312c7c 713 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
714 if (r)
715 goto out;
ad312c7c 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 717 mmu_page_header_cache, 4);
e2dec939
AK
718out:
719 return r;
714b93da
AK
720}
721
722static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723{
53c07b18
XG
724 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725 pte_list_desc_cache);
ad312c7c 726 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
727 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728 mmu_page_header_cache);
714b93da
AK
729}
730
80feb89a 731static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
732{
733 void *p;
734
735 BUG_ON(!mc->nobjs);
736 p = mc->objects[--mc->nobjs];
714b93da
AK
737 return p;
738}
739
53c07b18 740static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 741{
80feb89a 742 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
743}
744
53c07b18 745static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 746{
53c07b18 747 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
748}
749
2032a93d
LJ
750static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751{
752 if (!sp->role.direct)
753 return sp->gfns[index];
754
755 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756}
757
758static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759{
760 if (sp->role.direct)
761 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762 else
763 sp->gfns[index] = gfn;
764}
765
05da4558 766/*
d4dbf470
TY
767 * Return the pointer to the large page information for a given gfn,
768 * handling slots that are not large page aligned.
05da4558 769 */
d4dbf470
TY
770static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771 struct kvm_memory_slot *slot,
772 int level)
05da4558
MT
773{
774 unsigned long idx;
775
fb03cb6f 776 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 777 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
778}
779
547ffaed
XG
780static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781 gfn_t gfn, int count)
782{
783 struct kvm_lpage_info *linfo;
784 int i;
785
786 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787 linfo = lpage_info_slot(gfn, slot, i);
788 linfo->disallow_lpage += count;
789 WARN_ON(linfo->disallow_lpage < 0);
790 }
791}
792
793void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794{
795 update_gfn_disallow_lpage_count(slot, gfn, 1);
796}
797
798void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799{
800 update_gfn_disallow_lpage_count(slot, gfn, -1);
801}
802
3ed1a478 803static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 804{
699023e2 805 struct kvm_memslots *slots;
d25797b2 806 struct kvm_memory_slot *slot;
3ed1a478 807 gfn_t gfn;
05da4558 808
56ca57f9 809 kvm->arch.indirect_shadow_pages++;
3ed1a478 810 gfn = sp->gfn;
699023e2
PB
811 slots = kvm_memslots_for_spte_role(kvm, sp->role);
812 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
813
814 /* the non-leaf shadow pages are keeping readonly. */
815 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817 KVM_PAGE_TRACK_WRITE);
818
547ffaed 819 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
820}
821
3ed1a478 822static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 823{
699023e2 824 struct kvm_memslots *slots;
d25797b2 825 struct kvm_memory_slot *slot;
3ed1a478 826 gfn_t gfn;
05da4558 827
56ca57f9 828 kvm->arch.indirect_shadow_pages--;
3ed1a478 829 gfn = sp->gfn;
699023e2
PB
830 slots = kvm_memslots_for_spte_role(kvm, sp->role);
831 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
832 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834 KVM_PAGE_TRACK_WRITE);
835
547ffaed 836 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
837}
838
92f94f1e
XG
839static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840 struct kvm_memory_slot *slot)
05da4558 841{
d4dbf470 842 struct kvm_lpage_info *linfo;
05da4558
MT
843
844 if (slot) {
d4dbf470 845 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 846 return !!linfo->disallow_lpage;
05da4558
MT
847 }
848
92f94f1e 849 return true;
05da4558
MT
850}
851
92f94f1e
XG
852static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853 int level)
5225fdf8
TY
854{
855 struct kvm_memory_slot *slot;
856
857 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 858 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
859}
860
d25797b2 861static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 862{
8f0b1ab6 863 unsigned long page_size;
d25797b2 864 int i, ret = 0;
05da4558 865
8f0b1ab6 866 page_size = kvm_host_page_size(kvm, gfn);
05da4558 867
8a3d08f1 868 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
869 if (page_size >= KVM_HPAGE_SIZE(i))
870 ret = i;
871 else
872 break;
873 }
874
4c2155ce 875 return ret;
05da4558
MT
876}
877
d8aacf5d
TY
878static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879 bool no_dirty_log)
880{
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882 return false;
883 if (no_dirty_log && slot->dirty_bitmap)
884 return false;
885
886 return true;
887}
888
5d163b1c
XG
889static struct kvm_memory_slot *
890gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891 bool no_dirty_log)
05da4558
MT
892{
893 struct kvm_memory_slot *slot;
5d163b1c 894
54bf36aa 895 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 896 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
897 slot = NULL;
898
899 return slot;
900}
901
fd136902
TY
902static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903 bool *force_pt_level)
936a5fe6
AA
904{
905 int host_level, level, max_level;
d8aacf5d
TY
906 struct kvm_memory_slot *slot;
907
8c85ac1c
TY
908 if (unlikely(*force_pt_level))
909 return PT_PAGE_TABLE_LEVEL;
05da4558 910
8c85ac1c
TY
911 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
913 if (unlikely(*force_pt_level))
914 return PT_PAGE_TABLE_LEVEL;
915
d25797b2
JR
916 host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918 if (host_level == PT_PAGE_TABLE_LEVEL)
919 return host_level;
920
55dd98c3 921 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
922
923 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 924 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 925 break;
d25797b2
JR
926
927 return level - 1;
05da4558
MT
928}
929
290fc38d 930/*
018aabb5 931 * About rmap_head encoding:
cd4a4e53 932 *
018aabb5
TY
933 * If the bit zero of rmap_head->val is clear, then it points to the only spte
934 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 935 * pte_list_desc containing more mappings.
018aabb5
TY
936 */
937
938/*
939 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 940 */
53c07b18 941static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 942 struct kvm_rmap_head *rmap_head)
cd4a4e53 943{
53c07b18 944 struct pte_list_desc *desc;
53a27b39 945 int i, count = 0;
cd4a4e53 946
018aabb5 947 if (!rmap_head->val) {
53c07b18 948 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
949 rmap_head->val = (unsigned long)spte;
950 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
951 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 953 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 954 desc->sptes[1] = spte;
018aabb5 955 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 956 ++count;
cd4a4e53 957 } else {
53c07b18 958 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 959 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 960 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 961 desc = desc->more;
53c07b18 962 count += PTE_LIST_EXT;
53a27b39 963 }
53c07b18
XG
964 if (desc->sptes[PTE_LIST_EXT-1]) {
965 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
966 desc = desc->more;
967 }
d555c333 968 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 969 ++count;
d555c333 970 desc->sptes[i] = spte;
cd4a4e53 971 }
53a27b39 972 return count;
cd4a4e53
AK
973}
974
53c07b18 975static void
018aabb5
TY
976pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977 struct pte_list_desc *desc, int i,
978 struct pte_list_desc *prev_desc)
cd4a4e53
AK
979{
980 int j;
981
53c07b18 982 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 983 ;
d555c333
AK
984 desc->sptes[i] = desc->sptes[j];
985 desc->sptes[j] = NULL;
cd4a4e53
AK
986 if (j != 0)
987 return;
988 if (!prev_desc && !desc->more)
018aabb5 989 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
990 else
991 if (prev_desc)
992 prev_desc->more = desc->more;
993 else
018aabb5 994 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 995 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
996}
997
018aabb5 998static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 999{
53c07b18
XG
1000 struct pte_list_desc *desc;
1001 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1002 int i;
1003
018aabb5 1004 if (!rmap_head->val) {
53c07b18 1005 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1006 BUG();
018aabb5 1007 } else if (!(rmap_head->val & 1)) {
53c07b18 1008 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1009 if ((u64 *)rmap_head->val != spte) {
53c07b18 1010 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
018aabb5 1013 rmap_head->val = 0;
cd4a4e53 1014 } else {
53c07b18 1015 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1016 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1017 prev_desc = NULL;
1018 while (desc) {
018aabb5 1019 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1020 if (desc->sptes[i] == spte) {
018aabb5
TY
1021 pte_list_desc_remove_entry(rmap_head,
1022 desc, i, prev_desc);
cd4a4e53
AK
1023 return;
1024 }
018aabb5 1025 }
cd4a4e53
AK
1026 prev_desc = desc;
1027 desc = desc->more;
1028 }
53c07b18 1029 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1030 BUG();
1031 }
1032}
1033
018aabb5
TY
1034static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035 struct kvm_memory_slot *slot)
53c07b18 1036{
77d11309 1037 unsigned long idx;
53c07b18 1038
77d11309 1039 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1040 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1041}
1042
018aabb5
TY
1043static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044 struct kvm_mmu_page *sp)
9b9b1492 1045{
699023e2 1046 struct kvm_memslots *slots;
9b9b1492
TY
1047 struct kvm_memory_slot *slot;
1048
699023e2
PB
1049 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1051 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1052}
1053
f759e2b4
XG
1054static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055{
1056 struct kvm_mmu_memory_cache *cache;
1057
1058 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059 return mmu_memory_cache_free_objects(cache);
1060}
1061
53c07b18
XG
1062static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063{
1064 struct kvm_mmu_page *sp;
018aabb5 1065 struct kvm_rmap_head *rmap_head;
53c07b18 1066
53c07b18
XG
1067 sp = page_header(__pa(spte));
1068 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1069 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1071}
1072
53c07b18
XG
1073static void rmap_remove(struct kvm *kvm, u64 *spte)
1074{
1075 struct kvm_mmu_page *sp;
1076 gfn_t gfn;
018aabb5 1077 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1078
1079 sp = page_header(__pa(spte));
1080 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1081 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082 pte_list_remove(spte, rmap_head);
53c07b18
XG
1083}
1084
1e3f42f0
TY
1085/*
1086 * Used by the following functions to iterate through the sptes linked by a
1087 * rmap. All fields are private and not assumed to be used outside.
1088 */
1089struct rmap_iterator {
1090 /* private fields */
1091 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1092 int pos; /* index of the sptep */
1093};
1094
1095/*
1096 * Iteration must be started by this function. This should also be used after
1097 * removing/dropping sptes from the rmap link because in such cases the
1098 * information in the itererator may not be valid.
1099 *
1100 * Returns sptep if found, NULL otherwise.
1101 */
018aabb5
TY
1102static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103 struct rmap_iterator *iter)
1e3f42f0 1104{
77fbbbd2
TY
1105 u64 *sptep;
1106
018aabb5 1107 if (!rmap_head->val)
1e3f42f0
TY
1108 return NULL;
1109
018aabb5 1110 if (!(rmap_head->val & 1)) {
1e3f42f0 1111 iter->desc = NULL;
77fbbbd2
TY
1112 sptep = (u64 *)rmap_head->val;
1113 goto out;
1e3f42f0
TY
1114 }
1115
018aabb5 1116 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1117 iter->pos = 0;
77fbbbd2
TY
1118 sptep = iter->desc->sptes[iter->pos];
1119out:
1120 BUG_ON(!is_shadow_present_pte(*sptep));
1121 return sptep;
1e3f42f0
TY
1122}
1123
1124/*
1125 * Must be used with a valid iterator: e.g. after rmap_get_first().
1126 *
1127 * Returns sptep if found, NULL otherwise.
1128 */
1129static u64 *rmap_get_next(struct rmap_iterator *iter)
1130{
77fbbbd2
TY
1131 u64 *sptep;
1132
1e3f42f0
TY
1133 if (iter->desc) {
1134 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1135 ++iter->pos;
1136 sptep = iter->desc->sptes[iter->pos];
1137 if (sptep)
77fbbbd2 1138 goto out;
1e3f42f0
TY
1139 }
1140
1141 iter->desc = iter->desc->more;
1142
1143 if (iter->desc) {
1144 iter->pos = 0;
1145 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1146 sptep = iter->desc->sptes[iter->pos];
1147 goto out;
1e3f42f0
TY
1148 }
1149 }
1150
1151 return NULL;
77fbbbd2
TY
1152out:
1153 BUG_ON(!is_shadow_present_pte(*sptep));
1154 return sptep;
1e3f42f0
TY
1155}
1156
018aabb5
TY
1157#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1158 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1159 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1160
c3707958 1161static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1162{
1df9f2dc 1163 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1164 rmap_remove(kvm, sptep);
be38d276
AK
1165}
1166
8e22f955
XG
1167
1168static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169{
1170 if (is_large_pte(*sptep)) {
1171 WARN_ON(page_header(__pa(sptep))->role.level ==
1172 PT_PAGE_TABLE_LEVEL);
1173 drop_spte(kvm, sptep);
1174 --kvm->stat.lpages;
1175 return true;
1176 }
1177
1178 return false;
1179}
1180
1181static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182{
1183 if (__drop_large_spte(vcpu->kvm, sptep))
1184 kvm_flush_remote_tlbs(vcpu->kvm);
1185}
1186
1187/*
49fde340 1188 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1189 * spte write-protection is caused by protecting shadow page table.
49fde340 1190 *
b4619660 1191 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1192 * protection:
1193 * - for dirty logging, the spte can be set to writable at anytime if
1194 * its dirty bitmap is properly set.
1195 * - for spte protection, the spte can be writable only after unsync-ing
1196 * shadow page.
8e22f955 1197 *
c126d94f 1198 * Return true if tlb need be flushed.
8e22f955 1199 */
c126d94f 1200static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1201{
1202 u64 spte = *sptep;
1203
49fde340
XG
1204 if (!is_writable_pte(spte) &&
1205 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1206 return false;
1207
1208 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
49fde340
XG
1210 if (pt_protect)
1211 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1212 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1213
c126d94f 1214 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1215}
1216
018aabb5
TY
1217static bool __rmap_write_protect(struct kvm *kvm,
1218 struct kvm_rmap_head *rmap_head,
245c3912 1219 bool pt_protect)
98348e95 1220{
1e3f42f0
TY
1221 u64 *sptep;
1222 struct rmap_iterator iter;
d13bc5b5 1223 bool flush = false;
374cbac0 1224
018aabb5 1225 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1226 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1227
d13bc5b5 1228 return flush;
a0ed4607
TY
1229}
1230
f4b4b180
KH
1231static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232{
1233 u64 spte = *sptep;
1234
1235 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237 spte &= ~shadow_dirty_mask;
1238
1239 return mmu_spte_update(sptep, spte);
1240}
1241
018aabb5 1242static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1243{
1244 u64 *sptep;
1245 struct rmap_iterator iter;
1246 bool flush = false;
1247
018aabb5 1248 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1249 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1250
1251 return flush;
1252}
1253
1254static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255{
1256 u64 spte = *sptep;
1257
1258 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260 spte |= shadow_dirty_mask;
1261
1262 return mmu_spte_update(sptep, spte);
1263}
1264
018aabb5 1265static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1266{
1267 u64 *sptep;
1268 struct rmap_iterator iter;
1269 bool flush = false;
1270
018aabb5 1271 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1272 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1273
1274 return flush;
1275}
1276
5dc99b23 1277/**
3b0f1d01 1278 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1279 * @kvm: kvm instance
1280 * @slot: slot to protect
1281 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282 * @mask: indicates which pages we should protect
1283 *
1284 * Used when we do not need to care about huge page mappings: e.g. during dirty
1285 * logging we do not have any such mappings.
1286 */
3b0f1d01 1287static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1288 struct kvm_memory_slot *slot,
1289 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1290{
018aabb5 1291 struct kvm_rmap_head *rmap_head;
a0ed4607 1292
5dc99b23 1293 while (mask) {
018aabb5
TY
1294 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295 PT_PAGE_TABLE_LEVEL, slot);
1296 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1297
5dc99b23
TY
1298 /* clear the first set bit */
1299 mask &= mask - 1;
1300 }
374cbac0
AK
1301}
1302
f4b4b180
KH
1303/**
1304 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305 * @kvm: kvm instance
1306 * @slot: slot to clear D-bit
1307 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308 * @mask: indicates which pages we should clear D-bit
1309 *
1310 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311 */
1312void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313 struct kvm_memory_slot *slot,
1314 gfn_t gfn_offset, unsigned long mask)
1315{
018aabb5 1316 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1317
1318 while (mask) {
018aabb5
TY
1319 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320 PT_PAGE_TABLE_LEVEL, slot);
1321 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1322
1323 /* clear the first set bit */
1324 mask &= mask - 1;
1325 }
1326}
1327EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
3b0f1d01
KH
1329/**
1330 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331 * PT level pages.
1332 *
1333 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334 * enable dirty logging for them.
1335 *
1336 * Used when we do not need to care about huge page mappings: e.g. during dirty
1337 * logging we do not have any such mappings.
1338 */
1339void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340 struct kvm_memory_slot *slot,
1341 gfn_t gfn_offset, unsigned long mask)
1342{
88178fd4
KH
1343 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345 mask);
1346 else
1347 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1348}
1349
aeecee2e
XG
1350bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1352{
018aabb5 1353 struct kvm_rmap_head *rmap_head;
5dc99b23 1354 int i;
2f84569f 1355 bool write_protected = false;
95d4c16c 1356
8a3d08f1 1357 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1358 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1359 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1360 }
1361
1362 return write_protected;
95d4c16c
TY
1363}
1364
aeecee2e
XG
1365static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366{
1367 struct kvm_memory_slot *slot;
1368
1369 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371}
1372
018aabb5 1373static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1374{
1e3f42f0
TY
1375 u64 *sptep;
1376 struct rmap_iterator iter;
6a49f85c 1377 bool flush = false;
e930bffe 1378
018aabb5 1379 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1380 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1381
1382 drop_spte(kvm, sptep);
6a49f85c 1383 flush = true;
e930bffe 1384 }
1e3f42f0 1385
6a49f85c
XG
1386 return flush;
1387}
1388
018aabb5 1389static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1390 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391 unsigned long data)
1392{
018aabb5 1393 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1394}
1395
018aabb5 1396static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
3da0dd43 1399{
1e3f42f0
TY
1400 u64 *sptep;
1401 struct rmap_iterator iter;
3da0dd43 1402 int need_flush = 0;
1e3f42f0 1403 u64 new_spte;
3da0dd43 1404 pte_t *ptep = (pte_t *)data;
ba049e93 1405 kvm_pfn_t new_pfn;
3da0dd43
IE
1406
1407 WARN_ON(pte_huge(*ptep));
1408 new_pfn = pte_pfn(*ptep);
1e3f42f0 1409
0d536790 1410restart:
018aabb5 1411 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1412 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413 sptep, *sptep, gfn, level);
1e3f42f0 1414
3da0dd43 1415 need_flush = 1;
1e3f42f0 1416
3da0dd43 1417 if (pte_write(*ptep)) {
1e3f42f0 1418 drop_spte(kvm, sptep);
0d536790 1419 goto restart;
3da0dd43 1420 } else {
1e3f42f0 1421 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1422 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424 new_spte &= ~PT_WRITABLE_MASK;
1425 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1426 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1427
1428 mmu_spte_clear_track_bits(sptep);
1429 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1430 }
1431 }
1e3f42f0 1432
3da0dd43
IE
1433 if (need_flush)
1434 kvm_flush_remote_tlbs(kvm);
1435
1436 return 0;
1437}
1438
6ce1f4e2
XG
1439struct slot_rmap_walk_iterator {
1440 /* input fields. */
1441 struct kvm_memory_slot *slot;
1442 gfn_t start_gfn;
1443 gfn_t end_gfn;
1444 int start_level;
1445 int end_level;
1446
1447 /* output fields. */
1448 gfn_t gfn;
018aabb5 1449 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1450 int level;
1451
1452 /* private field. */
018aabb5 1453 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1454};
1455
1456static void
1457rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458{
1459 iterator->level = level;
1460 iterator->gfn = iterator->start_gfn;
1461 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463 iterator->slot);
1464}
1465
1466static void
1467slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468 struct kvm_memory_slot *slot, int start_level,
1469 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470{
1471 iterator->slot = slot;
1472 iterator->start_level = start_level;
1473 iterator->end_level = end_level;
1474 iterator->start_gfn = start_gfn;
1475 iterator->end_gfn = end_gfn;
1476
1477 rmap_walk_init_level(iterator, iterator->start_level);
1478}
1479
1480static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481{
1482 return !!iterator->rmap;
1483}
1484
1485static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486{
1487 if (++iterator->rmap <= iterator->end_rmap) {
1488 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489 return;
1490 }
1491
1492 if (++iterator->level > iterator->end_level) {
1493 iterator->rmap = NULL;
1494 return;
1495 }
1496
1497 rmap_walk_init_level(iterator, iterator->level);
1498}
1499
1500#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1501 _start_gfn, _end_gfn, _iter_) \
1502 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1503 _end_level_, _start_gfn, _end_gfn); \
1504 slot_rmap_walk_okay(_iter_); \
1505 slot_rmap_walk_next(_iter_))
1506
84504ef3
TY
1507static int kvm_handle_hva_range(struct kvm *kvm,
1508 unsigned long start,
1509 unsigned long end,
1510 unsigned long data,
1511 int (*handler)(struct kvm *kvm,
018aabb5 1512 struct kvm_rmap_head *rmap_head,
048212d0 1513 struct kvm_memory_slot *slot,
8a9522d2
ALC
1514 gfn_t gfn,
1515 int level,
84504ef3 1516 unsigned long data))
e930bffe 1517{
bc6678a3 1518 struct kvm_memslots *slots;
be6ba0f0 1519 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1520 struct slot_rmap_walk_iterator iterator;
1521 int ret = 0;
9da0e4d5 1522 int i;
bc6678a3 1523
9da0e4d5
PB
1524 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525 slots = __kvm_memslots(kvm, i);
1526 kvm_for_each_memslot(memslot, slots) {
1527 unsigned long hva_start, hva_end;
1528 gfn_t gfn_start, gfn_end;
e930bffe 1529
9da0e4d5
PB
1530 hva_start = max(start, memslot->userspace_addr);
1531 hva_end = min(end, memslot->userspace_addr +
1532 (memslot->npages << PAGE_SHIFT));
1533 if (hva_start >= hva_end)
1534 continue;
1535 /*
1536 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538 */
1539 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543 PT_MAX_HUGEPAGE_LEVEL,
1544 gfn_start, gfn_end - 1,
1545 &iterator)
1546 ret |= handler(kvm, iterator.rmap, memslot,
1547 iterator.gfn, iterator.level, data);
1548 }
e930bffe
AA
1549 }
1550
f395302e 1551 return ret;
e930bffe
AA
1552}
1553
84504ef3
TY
1554static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555 unsigned long data,
018aabb5
TY
1556 int (*handler)(struct kvm *kvm,
1557 struct kvm_rmap_head *rmap_head,
048212d0 1558 struct kvm_memory_slot *slot,
8a9522d2 1559 gfn_t gfn, int level,
84504ef3
TY
1560 unsigned long data))
1561{
1562 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1563}
1564
1565int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566{
3da0dd43
IE
1567 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568}
1569
b3ae2096
TY
1570int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571{
1572 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573}
1574
3da0dd43
IE
1575void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576{
8a8365c5 1577 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1578}
1579
018aabb5 1580static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1581 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582 unsigned long data)
e930bffe 1583{
1e3f42f0 1584 u64 *sptep;
79f702a6 1585 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1586 int young = 0;
1587
57128468 1588 BUG_ON(!shadow_accessed_mask);
534e38b4 1589
018aabb5 1590 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1591 if (*sptep & shadow_accessed_mask) {
e930bffe 1592 young = 1;
3f6d8c8a
XH
1593 clear_bit((ffs(shadow_accessed_mask) - 1),
1594 (unsigned long *)sptep);
e930bffe 1595 }
018aabb5 1596 }
0d536790 1597
8a9522d2 1598 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1599 return young;
1600}
1601
018aabb5 1602static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1603 struct kvm_memory_slot *slot, gfn_t gfn,
1604 int level, unsigned long data)
8ee53820 1605{
1e3f42f0
TY
1606 u64 *sptep;
1607 struct rmap_iterator iter;
8ee53820
AA
1608 int young = 0;
1609
1610 /*
1611 * If there's no access bit in the secondary pte set by the
1612 * hardware it's up to gup-fast/gup to set the access bit in
1613 * the primary pte or in the page structure.
1614 */
1615 if (!shadow_accessed_mask)
1616 goto out;
1617
018aabb5 1618 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1619 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1620 young = 1;
1621 break;
1622 }
018aabb5 1623 }
8ee53820
AA
1624out:
1625 return young;
1626}
1627
53a27b39
MT
1628#define RMAP_RECYCLE_THRESHOLD 1000
1629
852e3c19 1630static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1631{
018aabb5 1632 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1633 struct kvm_mmu_page *sp;
1634
1635 sp = page_header(__pa(spte));
53a27b39 1636
018aabb5 1637 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1638
018aabb5 1639 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1640 kvm_flush_remote_tlbs(vcpu->kvm);
1641}
1642
57128468 1643int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1644{
57128468
ALC
1645 /*
1646 * In case of absence of EPT Access and Dirty Bits supports,
1647 * emulate the accessed bit for EPT, by checking if this page has
1648 * an EPT mapping, and clearing it if it does. On the next access,
1649 * a new EPT mapping will be established.
1650 * This has some overhead, but not as much as the cost of swapping
1651 * out actively used pages or breaking up actively used hugepages.
1652 */
1653 if (!shadow_accessed_mask) {
1654 /*
1655 * We are holding the kvm->mmu_lock, and we are blowing up
1656 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657 * This is correct as long as we don't decouple the mmu_lock
1658 * protected regions (like invalidate_range_start|end does).
1659 */
1660 kvm->mmu_notifier_seq++;
1661 return kvm_handle_hva_range(kvm, start, end, 0,
1662 kvm_unmap_rmapp);
1663 }
1664
1665 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1666}
1667
8ee53820
AA
1668int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669{
1670 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671}
1672
d6c69ee9 1673#ifdef MMU_DEBUG
47ad8e68 1674static int is_empty_shadow_page(u64 *spt)
6aa8b732 1675{
139bdb2d
AK
1676 u64 *pos;
1677 u64 *end;
1678
47ad8e68 1679 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1680 if (is_shadow_present_pte(*pos)) {
b8688d51 1681 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1682 pos, *pos);
6aa8b732 1683 return 0;
139bdb2d 1684 }
6aa8b732
AK
1685 return 1;
1686}
d6c69ee9 1687#endif
6aa8b732 1688
45221ab6
DH
1689/*
1690 * This value is the sum of all of the kvm instances's
1691 * kvm->arch.n_used_mmu_pages values. We need a global,
1692 * aggregate version in order to make the slab shrinker
1693 * faster
1694 */
1695static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696{
1697 kvm->arch.n_used_mmu_pages += nr;
1698 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699}
1700
834be0d8 1701static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1702{
fa4a2c08 1703 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1704 hlist_del(&sp->hash_link);
bd4c86ea
XG
1705 list_del(&sp->link);
1706 free_page((unsigned long)sp->spt);
834be0d8
GN
1707 if (!sp->role.direct)
1708 free_page((unsigned long)sp->gfns);
e8ad9a70 1709 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1710}
1711
cea0f0e7
AK
1712static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713{
1ae0a13d 1714 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1715}
1716
714b93da 1717static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1718 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1719{
cea0f0e7
AK
1720 if (!parent_pte)
1721 return;
cea0f0e7 1722
67052b35 1723 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1724}
1725
4db35314 1726static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1727 u64 *parent_pte)
1728{
67052b35 1729 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1730}
1731
bcdd9a93
XG
1732static void drop_parent_pte(struct kvm_mmu_page *sp,
1733 u64 *parent_pte)
1734{
1735 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1736 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1737}
1738
47005792 1739static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1740{
67052b35 1741 struct kvm_mmu_page *sp;
7ddca7e4 1742
80feb89a
TY
1743 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1745 if (!direct)
80feb89a 1746 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1747 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1748
1749 /*
1750 * The active_mmu_pages list is the FIFO list, do not move the
1751 * page until it is zapped. kvm_zap_obsolete_pages depends on
1752 * this feature. See the comments in kvm_zap_obsolete_pages().
1753 */
67052b35 1754 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1755 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756 return sp;
ad8cfbe3
MT
1757}
1758
67052b35 1759static void mark_unsync(u64 *spte);
1047df1f 1760static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1761{
74c4e63a
TY
1762 u64 *sptep;
1763 struct rmap_iterator iter;
1764
1765 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766 mark_unsync(sptep);
1767 }
0074ff63
MT
1768}
1769
67052b35 1770static void mark_unsync(u64 *spte)
0074ff63 1771{
67052b35 1772 struct kvm_mmu_page *sp;
1047df1f 1773 unsigned int index;
0074ff63 1774
67052b35 1775 sp = page_header(__pa(spte));
1047df1f
XG
1776 index = spte - sp->spt;
1777 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1778 return;
1047df1f 1779 if (sp->unsync_children++)
0074ff63 1780 return;
1047df1f 1781 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1782}
1783
e8bc217a 1784static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1785 struct kvm_mmu_page *sp)
e8bc217a
MT
1786{
1787 return 1;
1788}
1789
a7052897
MT
1790static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791{
1792}
1793
0f53b5b1
XG
1794static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1796 const void *pte)
0f53b5b1
XG
1797{
1798 WARN_ON(1);
1799}
1800
60c8aec6
MT
1801#define KVM_PAGE_ARRAY_NR 16
1802
1803struct kvm_mmu_pages {
1804 struct mmu_page_and_offset {
1805 struct kvm_mmu_page *sp;
1806 unsigned int idx;
1807 } page[KVM_PAGE_ARRAY_NR];
1808 unsigned int nr;
1809};
1810
cded19f3
HE
1811static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812 int idx)
4731d4c7 1813{
60c8aec6 1814 int i;
4731d4c7 1815
60c8aec6
MT
1816 if (sp->unsync)
1817 for (i=0; i < pvec->nr; i++)
1818 if (pvec->page[i].sp == sp)
1819 return 0;
1820
1821 pvec->page[pvec->nr].sp = sp;
1822 pvec->page[pvec->nr].idx = idx;
1823 pvec->nr++;
1824 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825}
1826
fd951457
TY
1827static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828{
1829 --sp->unsync_children;
1830 WARN_ON((int)sp->unsync_children < 0);
1831 __clear_bit(idx, sp->unsync_child_bitmap);
1832}
1833
60c8aec6
MT
1834static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835 struct kvm_mmu_pages *pvec)
1836{
1837 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1838
37178b8b 1839 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1840 struct kvm_mmu_page *child;
4731d4c7
MT
1841 u64 ent = sp->spt[i];
1842
fd951457
TY
1843 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844 clear_unsync_child_bit(sp, i);
1845 continue;
1846 }
7a8f1a74
XG
1847
1848 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850 if (child->unsync_children) {
1851 if (mmu_pages_add(pvec, child, i))
1852 return -ENOSPC;
1853
1854 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1855 if (!ret) {
1856 clear_unsync_child_bit(sp, i);
1857 continue;
1858 } else if (ret > 0) {
7a8f1a74 1859 nr_unsync_leaf += ret;
fd951457 1860 } else
7a8f1a74
XG
1861 return ret;
1862 } else if (child->unsync) {
1863 nr_unsync_leaf++;
1864 if (mmu_pages_add(pvec, child, i))
1865 return -ENOSPC;
1866 } else
fd951457 1867 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1868 }
1869
60c8aec6
MT
1870 return nr_unsync_leaf;
1871}
1872
1873static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1874 struct kvm_mmu_pages *pvec)
1875{
1876 if (!sp->unsync_children)
1877 return 0;
1878
1879 mmu_pages_add(pvec, sp, 0);
1880 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1881}
1882
4731d4c7
MT
1883static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1884{
1885 WARN_ON(!sp->unsync);
5e1b3ddb 1886 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1887 sp->unsync = 0;
1888 --kvm->stat.mmu_unsync;
1889}
1890
7775834a
XG
1891static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1892 struct list_head *invalid_list);
1893static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1894 struct list_head *invalid_list);
4731d4c7 1895
f34d251d
XG
1896/*
1897 * NOTE: we should pay more attention on the zapped-obsolete page
1898 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1899 * since it has been deleted from active_mmu_pages but still can be found
1900 * at hast list.
1901 *
1902 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1903 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1904 * all the obsolete pages.
1905 */
1044b030
TY
1906#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1907 hlist_for_each_entry(_sp, \
1908 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1909 if ((_sp)->gfn != (_gfn)) {} else
1910
1911#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1912 for_each_gfn_sp(_kvm, _sp, _gfn) \
1913 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1914
f918b443 1915/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1916static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1917 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1918{
5b7e0102 1919 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1920 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1921 return 1;
1922 }
1923
f918b443 1924 if (clear_unsync)
1d9dc7e0 1925 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1926
a4a8e6f7 1927 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1928 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1929 return 1;
1930 }
1931
77c3913b 1932 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1933 return 0;
1934}
1935
1d9dc7e0
XG
1936static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1937 struct kvm_mmu_page *sp)
1938{
d98ba053 1939 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1940 int ret;
1941
d98ba053 1942 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1943 if (ret)
d98ba053
XG
1944 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1945
1d9dc7e0
XG
1946 return ret;
1947}
1948
e37fa785
XG
1949#ifdef CONFIG_KVM_MMU_AUDIT
1950#include "mmu_audit.c"
1951#else
1952static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1953static void mmu_audit_disable(void) { }
1954#endif
1955
d98ba053
XG
1956static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1957 struct list_head *invalid_list)
1d9dc7e0 1958{
d98ba053 1959 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1960}
1961
9f1a122f
XG
1962/* @gfn should be write-protected at the call site */
1963static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1964{
9f1a122f 1965 struct kvm_mmu_page *s;
d98ba053 1966 LIST_HEAD(invalid_list);
9f1a122f
XG
1967 bool flush = false;
1968
b67bfe0d 1969 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1970 if (!s->unsync)
9f1a122f
XG
1971 continue;
1972
1973 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1974 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1975 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1976 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1977 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1978 continue;
1979 }
9f1a122f
XG
1980 flush = true;
1981 }
1982
d98ba053 1983 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1984 if (flush)
77c3913b 1985 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1986}
1987
60c8aec6
MT
1988struct mmu_page_path {
1989 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1990 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1991};
1992
60c8aec6
MT
1993#define for_each_sp(pvec, sp, parents, i) \
1994 for (i = mmu_pages_next(&pvec, &parents, -1), \
1995 sp = pvec.page[i].sp; \
1996 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1997 i = mmu_pages_next(&pvec, &parents, i))
1998
cded19f3
HE
1999static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2000 struct mmu_page_path *parents,
2001 int i)
60c8aec6
MT
2002{
2003 int n;
2004
2005 for (n = i+1; n < pvec->nr; n++) {
2006 struct kvm_mmu_page *sp = pvec->page[n].sp;
2007
2008 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
2009 parents->idx[0] = pvec->page[n].idx;
2010 return n;
2011 }
2012
2013 parents->parent[sp->role.level-2] = sp;
2014 parents->idx[sp->role.level-1] = pvec->page[n].idx;
2015 }
2016
2017 return n;
2018}
2019
cded19f3 2020static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2021{
60c8aec6
MT
2022 struct kvm_mmu_page *sp;
2023 unsigned int level = 0;
2024
2025 do {
2026 unsigned int idx = parents->idx[level];
4731d4c7 2027
60c8aec6
MT
2028 sp = parents->parent[level];
2029 if (!sp)
2030 return;
2031
fd951457 2032 clear_unsync_child_bit(sp, idx);
60c8aec6
MT
2033 level++;
2034 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2035}
2036
60c8aec6
MT
2037static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2038 struct mmu_page_path *parents,
2039 struct kvm_mmu_pages *pvec)
4731d4c7 2040{
60c8aec6
MT
2041 parents->parent[parent->role.level-1] = NULL;
2042 pvec->nr = 0;
2043}
4731d4c7 2044
60c8aec6
MT
2045static void mmu_sync_children(struct kvm_vcpu *vcpu,
2046 struct kvm_mmu_page *parent)
2047{
2048 int i;
2049 struct kvm_mmu_page *sp;
2050 struct mmu_page_path parents;
2051 struct kvm_mmu_pages pages;
d98ba053 2052 LIST_HEAD(invalid_list);
60c8aec6
MT
2053
2054 kvm_mmu_pages_init(parent, &parents, &pages);
2055 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2056 bool protected = false;
b1a36821
MT
2057
2058 for_each_sp(pages, sp, parents, i)
54bf36aa 2059 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821
MT
2060
2061 if (protected)
2062 kvm_flush_remote_tlbs(vcpu->kvm);
2063
60c8aec6 2064 for_each_sp(pages, sp, parents, i) {
d98ba053 2065 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2066 mmu_pages_clear_parents(&parents);
2067 }
d98ba053 2068 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2069 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2070 kvm_mmu_pages_init(parent, &parents, &pages);
2071 }
4731d4c7
MT
2072}
2073
a30f47cb
XG
2074static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2075{
e5691a81 2076 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2077}
2078
2079static void clear_sp_write_flooding_count(u64 *spte)
2080{
2081 struct kvm_mmu_page *sp = page_header(__pa(spte));
2082
2083 __clear_sp_write_flooding_count(sp);
2084}
2085
5304b8d3
XG
2086static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2087{
2088 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2089}
2090
cea0f0e7
AK
2091static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2092 gfn_t gfn,
2093 gva_t gaddr,
2094 unsigned level,
f6e2c02b 2095 int direct,
bb11c6c9 2096 unsigned access)
cea0f0e7
AK
2097{
2098 union kvm_mmu_page_role role;
cea0f0e7 2099 unsigned quadrant;
9f1a122f 2100 struct kvm_mmu_page *sp;
9f1a122f 2101 bool need_sync = false;
cea0f0e7 2102
a770f6f2 2103 role = vcpu->arch.mmu.base_role;
cea0f0e7 2104 role.level = level;
f6e2c02b 2105 role.direct = direct;
84b0c8c6 2106 if (role.direct)
5b7e0102 2107 role.cr4_pae = 0;
41074d07 2108 role.access = access;
c5a78f2b
JR
2109 if (!vcpu->arch.mmu.direct_map
2110 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2111 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2112 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2113 role.quadrant = quadrant;
2114 }
b67bfe0d 2115 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2116 if (is_obsolete_sp(vcpu->kvm, sp))
2117 continue;
2118
7ae680eb
XG
2119 if (!need_sync && sp->unsync)
2120 need_sync = true;
4731d4c7 2121
7ae680eb
XG
2122 if (sp->role.word != role.word)
2123 continue;
4731d4c7 2124
7ae680eb
XG
2125 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2126 break;
e02aa901 2127
98bba238 2128 if (sp->unsync_children)
a8eeb04a 2129 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2130
a30f47cb 2131 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2132 trace_kvm_mmu_get_page(sp, false);
2133 return sp;
2134 }
47005792 2135
dfc5aa00 2136 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2137
2138 sp = kvm_mmu_alloc_page(vcpu, direct);
2139
4db35314
AK
2140 sp->gfn = gfn;
2141 sp->role = role;
7ae680eb
XG
2142 hlist_add_head(&sp->hash_link,
2143 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2144 if (!direct) {
56ca57f9
XG
2145 /*
2146 * we should do write protection before syncing pages
2147 * otherwise the content of the synced shadow page may
2148 * be inconsistent with guest page table.
2149 */
2150 account_shadowed(vcpu->kvm, sp);
2151 if (level == PT_PAGE_TABLE_LEVEL &&
2152 rmap_write_protect(vcpu, gfn))
b1a36821 2153 kvm_flush_remote_tlbs(vcpu->kvm);
56ca57f9 2154
9f1a122f
XG
2155 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2156 kvm_sync_pages(vcpu, gfn);
4731d4c7 2157 }
5304b8d3 2158 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2159 clear_page(sp->spt);
f691fe1d 2160 trace_kvm_mmu_get_page(sp, true);
4db35314 2161 return sp;
cea0f0e7
AK
2162}
2163
2d11123a
AK
2164static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2165 struct kvm_vcpu *vcpu, u64 addr)
2166{
2167 iterator->addr = addr;
2168 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2169 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2170
2171 if (iterator->level == PT64_ROOT_LEVEL &&
2172 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2173 !vcpu->arch.mmu.direct_map)
2174 --iterator->level;
2175
2d11123a
AK
2176 if (iterator->level == PT32E_ROOT_LEVEL) {
2177 iterator->shadow_addr
2178 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2179 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2180 --iterator->level;
2181 if (!iterator->shadow_addr)
2182 iterator->level = 0;
2183 }
2184}
2185
2186static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2187{
2188 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2189 return false;
4d88954d 2190
2d11123a
AK
2191 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2192 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2193 return true;
2194}
2195
c2a2ac2b
XG
2196static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2197 u64 spte)
2d11123a 2198{
c2a2ac2b 2199 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2200 iterator->level = 0;
2201 return;
2202 }
2203
c2a2ac2b 2204 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2205 --iterator->level;
2206}
2207
c2a2ac2b
XG
2208static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2209{
2210 return __shadow_walk_next(iterator, *iterator->sptep);
2211}
2212
98bba238
TY
2213static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2214 struct kvm_mmu_page *sp)
32ef26a3
AK
2215{
2216 u64 spte;
2217
7a1638ce
YZ
2218 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2219 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2220
24db2734 2221 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2222 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2223
1df9f2dc 2224 mmu_spte_set(sptep, spte);
98bba238
TY
2225
2226 mmu_page_add_parent_pte(vcpu, sp, sptep);
2227
2228 if (sp->unsync_children || sp->unsync)
2229 mark_unsync(sptep);
32ef26a3
AK
2230}
2231
a357bd22
AK
2232static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2233 unsigned direct_access)
2234{
2235 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2236 struct kvm_mmu_page *child;
2237
2238 /*
2239 * For the direct sp, if the guest pte's dirty bit
2240 * changed form clean to dirty, it will corrupt the
2241 * sp's access: allow writable in the read-only sp,
2242 * so we should update the spte at this point to get
2243 * a new sp with the correct access.
2244 */
2245 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2246 if (child->role.access == direct_access)
2247 return;
2248
bcdd9a93 2249 drop_parent_pte(child, sptep);
a357bd22
AK
2250 kvm_flush_remote_tlbs(vcpu->kvm);
2251 }
2252}
2253
505aef8f 2254static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2255 u64 *spte)
2256{
2257 u64 pte;
2258 struct kvm_mmu_page *child;
2259
2260 pte = *spte;
2261 if (is_shadow_present_pte(pte)) {
505aef8f 2262 if (is_last_spte(pte, sp->role.level)) {
c3707958 2263 drop_spte(kvm, spte);
505aef8f
XG
2264 if (is_large_pte(pte))
2265 --kvm->stat.lpages;
2266 } else {
38e3b2b2 2267 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2268 drop_parent_pte(child, spte);
38e3b2b2 2269 }
505aef8f
XG
2270 return true;
2271 }
2272
2273 if (is_mmio_spte(pte))
ce88decf 2274 mmu_spte_clear_no_track(spte);
c3707958 2275
505aef8f 2276 return false;
38e3b2b2
XG
2277}
2278
90cb0529 2279static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2280 struct kvm_mmu_page *sp)
a436036b 2281{
697fe2e2 2282 unsigned i;
697fe2e2 2283
38e3b2b2
XG
2284 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2285 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2286}
2287
31aa2b44 2288static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2289{
1e3f42f0
TY
2290 u64 *sptep;
2291 struct rmap_iterator iter;
a436036b 2292
018aabb5 2293 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2294 drop_parent_pte(sp, sptep);
31aa2b44
AK
2295}
2296
60c8aec6 2297static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2298 struct kvm_mmu_page *parent,
2299 struct list_head *invalid_list)
4731d4c7 2300{
60c8aec6
MT
2301 int i, zapped = 0;
2302 struct mmu_page_path parents;
2303 struct kvm_mmu_pages pages;
4731d4c7 2304
60c8aec6 2305 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2306 return 0;
60c8aec6
MT
2307
2308 kvm_mmu_pages_init(parent, &parents, &pages);
2309 while (mmu_unsync_walk(parent, &pages)) {
2310 struct kvm_mmu_page *sp;
2311
2312 for_each_sp(pages, sp, parents, i) {
7775834a 2313 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2314 mmu_pages_clear_parents(&parents);
77662e00 2315 zapped++;
60c8aec6 2316 }
60c8aec6
MT
2317 kvm_mmu_pages_init(parent, &parents, &pages);
2318 }
2319
2320 return zapped;
4731d4c7
MT
2321}
2322
7775834a
XG
2323static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2324 struct list_head *invalid_list)
31aa2b44 2325{
4731d4c7 2326 int ret;
f691fe1d 2327
7775834a 2328 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2329 ++kvm->stat.mmu_shadow_zapped;
7775834a 2330 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2331 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2332 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2333
f6e2c02b 2334 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2335 unaccount_shadowed(kvm, sp);
5304b8d3 2336
4731d4c7
MT
2337 if (sp->unsync)
2338 kvm_unlink_unsync_page(kvm, sp);
4db35314 2339 if (!sp->root_count) {
54a4f023
GJ
2340 /* Count self */
2341 ret++;
7775834a 2342 list_move(&sp->link, invalid_list);
aa6bd187 2343 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2344 } else {
5b5c6a5a 2345 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2346
2347 /*
2348 * The obsolete pages can not be used on any vcpus.
2349 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2350 */
2351 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2352 kvm_reload_remote_mmus(kvm);
2e53d63a 2353 }
7775834a
XG
2354
2355 sp->role.invalid = 1;
4731d4c7 2356 return ret;
a436036b
AK
2357}
2358
7775834a
XG
2359static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2360 struct list_head *invalid_list)
2361{
945315b9 2362 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2363
2364 if (list_empty(invalid_list))
2365 return;
2366
c142786c
AK
2367 /*
2368 * wmb: make sure everyone sees our modifications to the page tables
2369 * rmb: make sure we see changes to vcpu->mode
2370 */
2371 smp_mb();
4f022648 2372
c142786c
AK
2373 /*
2374 * Wait for all vcpus to exit guest mode and/or lockless shadow
2375 * page table walks.
2376 */
2377 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2378
945315b9 2379 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2380 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2381 kvm_mmu_free_page(sp);
945315b9 2382 }
7775834a
XG
2383}
2384
5da59607
TY
2385static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2386 struct list_head *invalid_list)
2387{
2388 struct kvm_mmu_page *sp;
2389
2390 if (list_empty(&kvm->arch.active_mmu_pages))
2391 return false;
2392
d74c0e6b
GT
2393 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2394 struct kvm_mmu_page, link);
5da59607
TY
2395 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2396
2397 return true;
2398}
2399
82ce2c96
IE
2400/*
2401 * Changing the number of mmu pages allocated to the vm
49d5ca26 2402 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2403 */
49d5ca26 2404void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2405{
d98ba053 2406 LIST_HEAD(invalid_list);
82ce2c96 2407
b34cb590
TY
2408 spin_lock(&kvm->mmu_lock);
2409
49d5ca26 2410 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2411 /* Need to free some mmu pages to achieve the goal. */
2412 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2413 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2414 break;
82ce2c96 2415
aa6bd187 2416 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2417 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2418 }
82ce2c96 2419
49d5ca26 2420 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2421
2422 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2423}
2424
1cb3f3ae 2425int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2426{
4db35314 2427 struct kvm_mmu_page *sp;
d98ba053 2428 LIST_HEAD(invalid_list);
a436036b
AK
2429 int r;
2430
9ad17b10 2431 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2432 r = 0;
1cb3f3ae 2433 spin_lock(&kvm->mmu_lock);
b67bfe0d 2434 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2435 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2436 sp->role.word);
2437 r = 1;
f41d335a 2438 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2439 }
d98ba053 2440 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2441 spin_unlock(&kvm->mmu_lock);
2442
a436036b 2443 return r;
cea0f0e7 2444}
1cb3f3ae 2445EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2446
5c520e90 2447static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2448{
2449 trace_kvm_mmu_unsync_page(sp);
2450 ++vcpu->kvm->stat.mmu_unsync;
2451 sp->unsync = 1;
2452
2453 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2454}
2455
3d0c27ad
XG
2456static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2457 bool can_unsync)
4731d4c7 2458{
5c520e90 2459 struct kvm_mmu_page *sp;
9cf5cf5a 2460
3d0c27ad
XG
2461 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2462 return true;
2463
5c520e90 2464 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2465 if (!can_unsync)
3d0c27ad 2466 return true;
36a2e677 2467
5c520e90
XG
2468 if (sp->unsync)
2469 continue;
9cf5cf5a 2470
5c520e90
XG
2471 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2472 kvm_unsync_page(vcpu, sp);
4731d4c7 2473 }
3d0c27ad
XG
2474
2475 return false;
4731d4c7
MT
2476}
2477
ba049e93 2478static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2479{
2480 if (pfn_valid(pfn))
2481 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2482
2483 return true;
2484}
2485
d555c333 2486static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2487 unsigned pte_access, int level,
ba049e93 2488 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2489 bool can_unsync, bool host_writable)
1c4f1fd6 2490{
6e7d0354 2491 u64 spte;
1e73f9dd 2492 int ret = 0;
64d4d521 2493
54bf36aa 2494 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2495 return 0;
2496
982c2565 2497 spte = PT_PRESENT_MASK;
947da538 2498 if (!speculative)
3201b5d9 2499 spte |= shadow_accessed_mask;
640d9b0d 2500
7b52345e
SY
2501 if (pte_access & ACC_EXEC_MASK)
2502 spte |= shadow_x_mask;
2503 else
2504 spte |= shadow_nx_mask;
49fde340 2505
1c4f1fd6 2506 if (pte_access & ACC_USER_MASK)
7b52345e 2507 spte |= shadow_user_mask;
49fde340 2508
852e3c19 2509 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2510 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2511 if (tdp_enabled)
4b12f0de 2512 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2513 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2514
9bdbba13 2515 if (host_writable)
1403283a 2516 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2517 else
2518 pte_access &= ~ACC_WRITE_MASK;
1403283a 2519
35149e21 2520 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2521
c2288505 2522 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2523
c2193463 2524 /*
7751babd
XG
2525 * Other vcpu creates new sp in the window between
2526 * mapping_level() and acquiring mmu-lock. We can
2527 * allow guest to retry the access, the mapping can
2528 * be fixed if guest refault.
c2193463 2529 */
852e3c19 2530 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2531 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2532 goto done;
38187c83 2533
49fde340 2534 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2535
ecc5589f
MT
2536 /*
2537 * Optimization: for pte sync, if spte was writable the hash
2538 * lookup is unnecessary (and expensive). Write protection
2539 * is responsibility of mmu_get_page / kvm_sync_page.
2540 * Same reasoning can be applied to dirty page accounting.
2541 */
8dae4445 2542 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2543 goto set_pte;
2544
4731d4c7 2545 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2546 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2547 __func__, gfn);
1e73f9dd 2548 ret = 1;
1c4f1fd6 2549 pte_access &= ~ACC_WRITE_MASK;
49fde340 2550 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2551 }
2552 }
2553
9b51a630 2554 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2555 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2556 spte |= shadow_dirty_mask;
2557 }
1c4f1fd6 2558
38187c83 2559set_pte:
6e7d0354 2560 if (mmu_spte_update(sptep, spte))
b330aa0c 2561 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2562done:
1e73f9dd
MT
2563 return ret;
2564}
2565
029499b4 2566static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2567 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2568 bool speculative, bool host_writable)
1e73f9dd
MT
2569{
2570 int was_rmapped = 0;
53a27b39 2571 int rmap_count;
029499b4 2572 bool emulate = false;
1e73f9dd 2573
f7616203
XG
2574 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2575 *sptep, write_fault, gfn);
1e73f9dd 2576
afd28fe1 2577 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2578 /*
2579 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2580 * the parent of the now unreachable PTE.
2581 */
852e3c19
JR
2582 if (level > PT_PAGE_TABLE_LEVEL &&
2583 !is_large_pte(*sptep)) {
1e73f9dd 2584 struct kvm_mmu_page *child;
d555c333 2585 u64 pte = *sptep;
1e73f9dd
MT
2586
2587 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2588 drop_parent_pte(child, sptep);
3be2264b 2589 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2590 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2591 pgprintk("hfn old %llx new %llx\n",
d555c333 2592 spte_to_pfn(*sptep), pfn);
c3707958 2593 drop_spte(vcpu->kvm, sptep);
91546356 2594 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2595 } else
2596 was_rmapped = 1;
1e73f9dd 2597 }
852e3c19 2598
c2288505
XG
2599 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2600 true, host_writable)) {
1e73f9dd 2601 if (write_fault)
029499b4 2602 emulate = true;
77c3913b 2603 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2604 }
1e73f9dd 2605
029499b4
TY
2606 if (unlikely(is_mmio_spte(*sptep)))
2607 emulate = true;
ce88decf 2608
d555c333 2609 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2610 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2611 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2612 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2613 *sptep, sptep);
d555c333 2614 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2615 ++vcpu->kvm->stat.lpages;
2616
ffb61bb3 2617 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2618 if (!was_rmapped) {
2619 rmap_count = rmap_add(vcpu, sptep, gfn);
2620 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2621 rmap_recycle(vcpu, sptep, gfn);
2622 }
1c4f1fd6 2623 }
cb9aaa30 2624
f3ac1a4b 2625 kvm_release_pfn_clean(pfn);
029499b4
TY
2626
2627 return emulate;
1c4f1fd6
AK
2628}
2629
ba049e93 2630static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2631 bool no_dirty_log)
2632{
2633 struct kvm_memory_slot *slot;
957ed9ef 2634
5d163b1c 2635 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2636 if (!slot)
6c8ee57b 2637 return KVM_PFN_ERR_FAULT;
957ed9ef 2638
037d92dc 2639 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2640}
2641
2642static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2643 struct kvm_mmu_page *sp,
2644 u64 *start, u64 *end)
2645{
2646 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2647 struct kvm_memory_slot *slot;
957ed9ef
XG
2648 unsigned access = sp->role.access;
2649 int i, ret;
2650 gfn_t gfn;
2651
2652 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2653 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2654 if (!slot)
957ed9ef
XG
2655 return -1;
2656
d9ef13c2 2657 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2658 if (ret <= 0)
2659 return -1;
2660
2661 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2662 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2663 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2664
2665 return 0;
2666}
2667
2668static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2669 struct kvm_mmu_page *sp, u64 *sptep)
2670{
2671 u64 *spte, *start = NULL;
2672 int i;
2673
2674 WARN_ON(!sp->role.direct);
2675
2676 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2677 spte = sp->spt + i;
2678
2679 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2680 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2681 if (!start)
2682 continue;
2683 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2684 break;
2685 start = NULL;
2686 } else if (!start)
2687 start = spte;
2688 }
2689}
2690
2691static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2692{
2693 struct kvm_mmu_page *sp;
2694
2695 /*
2696 * Since it's no accessed bit on EPT, it's no way to
2697 * distinguish between actually accessed translations
2698 * and prefetched, so disable pte prefetch if EPT is
2699 * enabled.
2700 */
2701 if (!shadow_accessed_mask)
2702 return;
2703
2704 sp = page_header(__pa(sptep));
2705 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2706 return;
2707
2708 __direct_pte_prefetch(vcpu, sp, sptep);
2709}
2710
7ee0e5b2 2711static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2712 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2713{
9f652d21 2714 struct kvm_shadow_walk_iterator iterator;
140754bc 2715 struct kvm_mmu_page *sp;
b90a0e6c 2716 int emulate = 0;
140754bc 2717 gfn_t pseudo_gfn;
6aa8b732 2718
989c6b34
MT
2719 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2720 return 0;
2721
9f652d21 2722 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2723 if (iterator.level == level) {
029499b4
TY
2724 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2725 write, level, gfn, pfn, prefault,
2726 map_writable);
957ed9ef 2727 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2728 ++vcpu->stat.pf_fixed;
2729 break;
6aa8b732
AK
2730 }
2731
404381c5 2732 drop_large_spte(vcpu, iterator.sptep);
c3707958 2733 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2734 u64 base_addr = iterator.addr;
2735
2736 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2737 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2738 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2739 iterator.level - 1, 1, ACC_ALL);
140754bc 2740
98bba238 2741 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2742 }
2743 }
b90a0e6c 2744 return emulate;
6aa8b732
AK
2745}
2746
77db5cbd 2747static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2748{
77db5cbd
HY
2749 siginfo_t info;
2750
2751 info.si_signo = SIGBUS;
2752 info.si_errno = 0;
2753 info.si_code = BUS_MCEERR_AR;
2754 info.si_addr = (void __user *)address;
2755 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2756
77db5cbd 2757 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2758}
2759
ba049e93 2760static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2761{
4d8b81ab
XG
2762 /*
2763 * Do not cache the mmio info caused by writing the readonly gfn
2764 * into the spte otherwise read access on readonly gfn also can
2765 * caused mmio page fault and treat it as mmio access.
2766 * Return 1 to tell kvm to emulate it.
2767 */
2768 if (pfn == KVM_PFN_ERR_RO_FAULT)
2769 return 1;
2770
e6c1502b 2771 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2772 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2773 return 0;
d7c55201 2774 }
edba23e5 2775
d7c55201 2776 return -EFAULT;
bf998156
HY
2777}
2778
936a5fe6 2779static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2780 gfn_t *gfnp, kvm_pfn_t *pfnp,
2781 int *levelp)
936a5fe6 2782{
ba049e93 2783 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2784 gfn_t gfn = *gfnp;
2785 int level = *levelp;
2786
2787 /*
2788 * Check if it's a transparent hugepage. If this would be an
2789 * hugetlbfs page, level wouldn't be set to
2790 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2791 * here.
2792 */
bf4bea8e 2793 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2794 level == PT_PAGE_TABLE_LEVEL &&
2795 PageTransCompound(pfn_to_page(pfn)) &&
92f94f1e 2796 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2797 unsigned long mask;
2798 /*
2799 * mmu_notifier_retry was successful and we hold the
2800 * mmu_lock here, so the pmd can't become splitting
2801 * from under us, and in turn
2802 * __split_huge_page_refcount() can't run from under
2803 * us and we can safely transfer the refcount from
2804 * PG_tail to PG_head as we switch the pfn to tail to
2805 * head.
2806 */
2807 *levelp = level = PT_DIRECTORY_LEVEL;
2808 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2809 VM_BUG_ON((gfn & mask) != (pfn & mask));
2810 if (pfn & mask) {
2811 gfn &= ~mask;
2812 *gfnp = gfn;
2813 kvm_release_pfn_clean(pfn);
2814 pfn &= ~mask;
c3586667 2815 kvm_get_pfn(pfn);
936a5fe6
AA
2816 *pfnp = pfn;
2817 }
2818 }
2819}
2820
d7c55201 2821static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2822 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201
XG
2823{
2824 bool ret = true;
2825
2826 /* The pfn is invalid, report the error! */
81c52c56 2827 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2828 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2829 goto exit;
2830 }
2831
ce88decf 2832 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2833 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2834
2835 ret = false;
2836exit:
2837 return ret;
2838}
2839
e5552fd2 2840static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2841{
1c118b82
XG
2842 /*
2843 * Do not fix the mmio spte with invalid generation number which
2844 * need to be updated by slow page fault path.
2845 */
2846 if (unlikely(error_code & PFERR_RSVD_MASK))
2847 return false;
2848
c7ba5b48
XG
2849 /*
2850 * #PF can be fast only if the shadow page table is present and it
2851 * is caused by write-protect, that means we just need change the
2852 * W bit of the spte which can be done out of mmu-lock.
2853 */
2854 if (!(error_code & PFERR_PRESENT_MASK) ||
2855 !(error_code & PFERR_WRITE_MASK))
2856 return false;
2857
2858 return true;
2859}
2860
2861static bool
92a476cb
XG
2862fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2863 u64 *sptep, u64 spte)
c7ba5b48 2864{
c7ba5b48
XG
2865 gfn_t gfn;
2866
2867 WARN_ON(!sp->role.direct);
2868
2869 /*
2870 * The gfn of direct spte is stable since it is calculated
2871 * by sp->gfn.
2872 */
2873 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2874
9b51a630
KH
2875 /*
2876 * Theoretically we could also set dirty bit (and flush TLB) here in
2877 * order to eliminate unnecessary PML logging. See comments in
2878 * set_spte. But fast_page_fault is very unlikely to happen with PML
2879 * enabled, so we do not do this. This might result in the same GPA
2880 * to be logged in PML buffer again when the write really happens, and
2881 * eventually to be called by mark_page_dirty twice. But it's also no
2882 * harm. This also avoids the TLB flush needed after setting dirty bit
2883 * so non-PML cases won't be impacted.
2884 *
2885 * Compare with set_spte where instead shadow_dirty_mask is set.
2886 */
c7ba5b48 2887 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2888 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2889
2890 return true;
2891}
2892
2893/*
2894 * Return value:
2895 * - true: let the vcpu to access on the same address again.
2896 * - false: let the real page fault path to fix it.
2897 */
2898static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2899 u32 error_code)
2900{
2901 struct kvm_shadow_walk_iterator iterator;
92a476cb 2902 struct kvm_mmu_page *sp;
c7ba5b48
XG
2903 bool ret = false;
2904 u64 spte = 0ull;
2905
37f6a4e2
MT
2906 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2907 return false;
2908
e5552fd2 2909 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2910 return false;
2911
2912 walk_shadow_page_lockless_begin(vcpu);
2913 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2914 if (!is_shadow_present_pte(spte) || iterator.level < level)
2915 break;
2916
2917 /*
2918 * If the mapping has been changed, let the vcpu fault on the
2919 * same address again.
2920 */
afd28fe1 2921 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2922 ret = true;
2923 goto exit;
2924 }
2925
92a476cb
XG
2926 sp = page_header(__pa(iterator.sptep));
2927 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2928 goto exit;
2929
2930 /*
2931 * Check if it is a spurious fault caused by TLB lazily flushed.
2932 *
2933 * Need not check the access of upper level table entries since
2934 * they are always ACC_ALL.
2935 */
2936 if (is_writable_pte(spte)) {
2937 ret = true;
2938 goto exit;
2939 }
2940
2941 /*
2942 * Currently, to simplify the code, only the spte write-protected
2943 * by dirty-log can be fast fixed.
2944 */
2945 if (!spte_is_locklessly_modifiable(spte))
2946 goto exit;
2947
c126d94f
XG
2948 /*
2949 * Do not fix write-permission on the large spte since we only dirty
2950 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2951 * that means other pages are missed if its slot is dirty-logged.
2952 *
2953 * Instead, we let the slow page fault path create a normal spte to
2954 * fix the access.
2955 *
2956 * See the comments in kvm_arch_commit_memory_region().
2957 */
2958 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2959 goto exit;
2960
c7ba5b48
XG
2961 /*
2962 * Currently, fast page fault only works for direct mapping since
2963 * the gfn is not stable for indirect shadow page.
2964 * See Documentation/virtual/kvm/locking.txt to get more detail.
2965 */
92a476cb 2966 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2967exit:
a72faf25
XG
2968 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2969 spte, ret);
c7ba5b48
XG
2970 walk_shadow_page_lockless_end(vcpu);
2971
2972 return ret;
2973}
2974
78b2c54a 2975static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 2976 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 2977static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2978
c7ba5b48
XG
2979static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2980 gfn_t gfn, bool prefault)
10589a46
MT
2981{
2982 int r;
852e3c19 2983 int level;
fd136902 2984 bool force_pt_level = false;
ba049e93 2985 kvm_pfn_t pfn;
e930bffe 2986 unsigned long mmu_seq;
c7ba5b48 2987 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2988
fd136902 2989 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 2990 if (likely(!force_pt_level)) {
936a5fe6
AA
2991 /*
2992 * This path builds a PAE pagetable - so we can map
2993 * 2mb pages at maximum. Therefore check if the level
2994 * is larger than that.
2995 */
2996 if (level > PT_DIRECTORY_LEVEL)
2997 level = PT_DIRECTORY_LEVEL;
852e3c19 2998
936a5fe6 2999 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3000 }
05da4558 3001
c7ba5b48
XG
3002 if (fast_page_fault(vcpu, v, level, error_code))
3003 return 0;
3004
e930bffe 3005 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3006 smp_rmb();
060c2abe 3007
78b2c54a 3008 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3009 return 0;
aaee2c94 3010
d7c55201
XG
3011 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3012 return r;
d196e343 3013
aaee2c94 3014 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3015 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3016 goto out_unlock;
450e0b41 3017 make_mmu_pages_available(vcpu);
936a5fe6
AA
3018 if (likely(!force_pt_level))
3019 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3020 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3021 spin_unlock(&vcpu->kvm->mmu_lock);
3022
10589a46 3023 return r;
e930bffe
AA
3024
3025out_unlock:
3026 spin_unlock(&vcpu->kvm->mmu_lock);
3027 kvm_release_pfn_clean(pfn);
3028 return 0;
10589a46
MT
3029}
3030
3031
17ac10ad
AK
3032static void mmu_free_roots(struct kvm_vcpu *vcpu)
3033{
3034 int i;
4db35314 3035 struct kvm_mmu_page *sp;
d98ba053 3036 LIST_HEAD(invalid_list);
17ac10ad 3037
ad312c7c 3038 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3039 return;
35af577a 3040
81407ca5
JR
3041 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3042 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3043 vcpu->arch.mmu.direct_map)) {
ad312c7c 3044 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3045
35af577a 3046 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3047 sp = page_header(root);
3048 --sp->root_count;
d98ba053
XG
3049 if (!sp->root_count && sp->role.invalid) {
3050 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3051 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3052 }
aaee2c94 3053 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3054 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3055 return;
3056 }
35af577a
GN
3057
3058 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3059 for (i = 0; i < 4; ++i) {
ad312c7c 3060 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3061
417726a3 3062 if (root) {
417726a3 3063 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3064 sp = page_header(root);
3065 --sp->root_count;
2e53d63a 3066 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3067 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3068 &invalid_list);
417726a3 3069 }
ad312c7c 3070 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3071 }
d98ba053 3072 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3073 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3074 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3075}
3076
8986ecc0
MT
3077static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3078{
3079 int ret = 0;
3080
3081 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3082 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3083 ret = 1;
3084 }
3085
3086 return ret;
3087}
3088
651dd37a
JR
3089static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3090{
3091 struct kvm_mmu_page *sp;
7ebaf15e 3092 unsigned i;
651dd37a
JR
3093
3094 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3095 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3096 make_mmu_pages_available(vcpu);
bb11c6c9 3097 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3098 ++sp->root_count;
3099 spin_unlock(&vcpu->kvm->mmu_lock);
3100 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3101 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3102 for (i = 0; i < 4; ++i) {
3103 hpa_t root = vcpu->arch.mmu.pae_root[i];
3104
fa4a2c08 3105 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3106 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3107 make_mmu_pages_available(vcpu);
649497d1 3108 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3109 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3110 root = __pa(sp->spt);
3111 ++sp->root_count;
3112 spin_unlock(&vcpu->kvm->mmu_lock);
3113 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3114 }
6292757f 3115 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3116 } else
3117 BUG();
3118
3119 return 0;
3120}
3121
3122static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3123{
4db35314 3124 struct kvm_mmu_page *sp;
81407ca5
JR
3125 u64 pdptr, pm_mask;
3126 gfn_t root_gfn;
3127 int i;
3bb65a22 3128
5777ed34 3129 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3130
651dd37a
JR
3131 if (mmu_check_root(vcpu, root_gfn))
3132 return 1;
3133
3134 /*
3135 * Do we shadow a long mode page table? If so we need to
3136 * write-protect the guests page table root.
3137 */
3138 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3139 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3140
fa4a2c08 3141 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3142
8facbbff 3143 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3144 make_mmu_pages_available(vcpu);
651dd37a 3145 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3146 0, ACC_ALL);
4db35314
AK
3147 root = __pa(sp->spt);
3148 ++sp->root_count;
8facbbff 3149 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3150 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3151 return 0;
17ac10ad 3152 }
f87f9288 3153
651dd37a
JR
3154 /*
3155 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3156 * or a PAE 3-level page table. In either case we need to be aware that
3157 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3158 */
81407ca5
JR
3159 pm_mask = PT_PRESENT_MASK;
3160 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3161 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3162
17ac10ad 3163 for (i = 0; i < 4; ++i) {
ad312c7c 3164 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3165
fa4a2c08 3166 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3167 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3168 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3169 if (!is_present_gpte(pdptr)) {
ad312c7c 3170 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3171 continue;
3172 }
6de4f3ad 3173 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3174 if (mmu_check_root(vcpu, root_gfn))
3175 return 1;
5a7388c2 3176 }
8facbbff 3177 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3178 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3179 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3180 0, ACC_ALL);
4db35314
AK
3181 root = __pa(sp->spt);
3182 ++sp->root_count;
8facbbff
AK
3183 spin_unlock(&vcpu->kvm->mmu_lock);
3184
81407ca5 3185 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3186 }
6292757f 3187 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3188
3189 /*
3190 * If we shadow a 32 bit page table with a long mode page
3191 * table we enter this path.
3192 */
3193 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3194 if (vcpu->arch.mmu.lm_root == NULL) {
3195 /*
3196 * The additional page necessary for this is only
3197 * allocated on demand.
3198 */
3199
3200 u64 *lm_root;
3201
3202 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3203 if (lm_root == NULL)
3204 return 1;
3205
3206 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3207
3208 vcpu->arch.mmu.lm_root = lm_root;
3209 }
3210
3211 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3212 }
3213
8986ecc0 3214 return 0;
17ac10ad
AK
3215}
3216
651dd37a
JR
3217static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3218{
3219 if (vcpu->arch.mmu.direct_map)
3220 return mmu_alloc_direct_roots(vcpu);
3221 else
3222 return mmu_alloc_shadow_roots(vcpu);
3223}
3224
0ba73cda
MT
3225static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3226{
3227 int i;
3228 struct kvm_mmu_page *sp;
3229
81407ca5
JR
3230 if (vcpu->arch.mmu.direct_map)
3231 return;
3232
0ba73cda
MT
3233 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3234 return;
6903074c 3235
56f17dd3 3236 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3237 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3238 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3239 hpa_t root = vcpu->arch.mmu.root_hpa;
3240 sp = page_header(root);
3241 mmu_sync_children(vcpu, sp);
0375f7fa 3242 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3243 return;
3244 }
3245 for (i = 0; i < 4; ++i) {
3246 hpa_t root = vcpu->arch.mmu.pae_root[i];
3247
8986ecc0 3248 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3249 root &= PT64_BASE_ADDR_MASK;
3250 sp = page_header(root);
3251 mmu_sync_children(vcpu, sp);
3252 }
3253 }
0375f7fa 3254 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3255}
3256
3257void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3258{
3259 spin_lock(&vcpu->kvm->mmu_lock);
3260 mmu_sync_roots(vcpu);
6cffe8ca 3261 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3262}
bfd0a56b 3263EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3264
1871c602 3265static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3266 u32 access, struct x86_exception *exception)
6aa8b732 3267{
ab9ae313
AK
3268 if (exception)
3269 exception->error_code = 0;
6aa8b732
AK
3270 return vaddr;
3271}
3272
6539e738 3273static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3274 u32 access,
3275 struct x86_exception *exception)
6539e738 3276{
ab9ae313
AK
3277 if (exception)
3278 exception->error_code = 0;
54987b7a 3279 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3280}
3281
d625b155
XG
3282static bool
3283__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3284{
3285 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3286
3287 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3288 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3289}
3290
3291static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3292{
3293 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3294}
3295
3296static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3297{
3298 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3299}
3300
ded58749 3301static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3302{
3303 if (direct)
3304 return vcpu_match_mmio_gpa(vcpu, addr);
3305
3306 return vcpu_match_mmio_gva(vcpu, addr);
3307}
3308
47ab8751
XG
3309/* return true if reserved bit is detected on spte. */
3310static bool
3311walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3312{
3313 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3314 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3315 int root, leaf;
3316 bool reserved = false;
ce88decf 3317
37f6a4e2 3318 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3319 goto exit;
37f6a4e2 3320
ce88decf 3321 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3322
29ecd660
PB
3323 for (shadow_walk_init(&iterator, vcpu, addr),
3324 leaf = root = iterator.level;
47ab8751
XG
3325 shadow_walk_okay(&iterator);
3326 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3327 spte = mmu_spte_get_lockless(iterator.sptep);
3328
3329 sptes[leaf - 1] = spte;
29ecd660 3330 leaf--;
47ab8751 3331
ce88decf
XG
3332 if (!is_shadow_present_pte(spte))
3333 break;
47ab8751
XG
3334
3335 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3336 iterator.level);
47ab8751
XG
3337 }
3338
ce88decf
XG
3339 walk_shadow_page_lockless_end(vcpu);
3340
47ab8751
XG
3341 if (reserved) {
3342 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3343 __func__, addr);
29ecd660 3344 while (root > leaf) {
47ab8751
XG
3345 pr_err("------ spte 0x%llx level %d.\n",
3346 sptes[root - 1], root);
3347 root--;
3348 }
3349 }
3350exit:
3351 *sptep = spte;
3352 return reserved;
ce88decf
XG
3353}
3354
450869d6 3355int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3356{
3357 u64 spte;
47ab8751 3358 bool reserved;
ce88decf 3359
ded58749 3360 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3361 return RET_MMIO_PF_EMULATE;
ce88decf 3362
47ab8751 3363 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3364 if (WARN_ON(reserved))
47ab8751 3365 return RET_MMIO_PF_BUG;
ce88decf
XG
3366
3367 if (is_mmio_spte(spte)) {
3368 gfn_t gfn = get_mmio_spte_gfn(spte);
3369 unsigned access = get_mmio_spte_access(spte);
3370
54bf36aa 3371 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3372 return RET_MMIO_PF_INVALID;
3373
ce88decf
XG
3374 if (direct)
3375 addr = 0;
4f022648
XG
3376
3377 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3378 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3379 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3380 }
3381
ce88decf
XG
3382 /*
3383 * If the page table is zapped by other cpus, let CPU fault again on
3384 * the address.
3385 */
b37fbea6 3386 return RET_MMIO_PF_RETRY;
ce88decf 3387}
450869d6 3388EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3389
3d0c27ad
XG
3390static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3391 u32 error_code, gfn_t gfn)
3392{
3393 if (unlikely(error_code & PFERR_RSVD_MASK))
3394 return false;
3395
3396 if (!(error_code & PFERR_PRESENT_MASK) ||
3397 !(error_code & PFERR_WRITE_MASK))
3398 return false;
3399
3400 /*
3401 * guest is writing the page which is write tracked which can
3402 * not be fixed by page fault handler.
3403 */
3404 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3405 return true;
3406
3407 return false;
3408}
3409
e5691a81
XG
3410static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3411{
3412 struct kvm_shadow_walk_iterator iterator;
3413 u64 spte;
3414
3415 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3416 return;
3417
3418 walk_shadow_page_lockless_begin(vcpu);
3419 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3420 clear_sp_write_flooding_count(iterator.sptep);
3421 if (!is_shadow_present_pte(spte))
3422 break;
3423 }
3424 walk_shadow_page_lockless_end(vcpu);
3425}
3426
6aa8b732 3427static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3428 u32 error_code, bool prefault)
6aa8b732 3429{
3d0c27ad 3430 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3431 int r;
6aa8b732 3432
b8688d51 3433 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3434
3d0c27ad
XG
3435 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3436 return 1;
3437
e2dec939
AK
3438 r = mmu_topup_memory_caches(vcpu);
3439 if (r)
3440 return r;
714b93da 3441
fa4a2c08 3442 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3443
6aa8b732 3444
e833240f 3445 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3446 error_code, gfn, prefault);
6aa8b732
AK
3447}
3448
7e1fbeac 3449static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3450{
3451 struct kvm_arch_async_pf arch;
fb67e14f 3452
7c90705b 3453 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3454 arch.gfn = gfn;
c4806acd 3455 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3456 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3457
54bf36aa 3458 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3459}
3460
3461static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3462{
35754c98 3463 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3464 kvm_event_needs_reinjection(vcpu)))
3465 return false;
3466
3467 return kvm_x86_ops->interrupt_allowed(vcpu);
3468}
3469
78b2c54a 3470static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3471 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3472{
3520469d 3473 struct kvm_memory_slot *slot;
af585b92
GN
3474 bool async;
3475
54bf36aa 3476 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3477 async = false;
3478 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3479 if (!async)
3480 return false; /* *pfn has correct page already */
3481
78b2c54a 3482 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3483 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3484 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3485 trace_kvm_async_pf_doublefault(gva, gfn);
3486 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3487 return true;
3488 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3489 return true;
3490 }
3491
3520469d 3492 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3493 return false;
3494}
3495
6a39bbc5
XG
3496static bool
3497check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3498{
3499 int page_num = KVM_PAGES_PER_HPAGE(level);
3500
3501 gfn &= ~(page_num - 1);
3502
3503 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3504}
3505
56028d08 3506static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3507 bool prefault)
fb72d167 3508{
ba049e93 3509 kvm_pfn_t pfn;
fb72d167 3510 int r;
852e3c19 3511 int level;
cd1872f0 3512 bool force_pt_level;
05da4558 3513 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3514 unsigned long mmu_seq;
612819c3
MT
3515 int write = error_code & PFERR_WRITE_MASK;
3516 bool map_writable;
fb72d167 3517
fa4a2c08 3518 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3519
3d0c27ad
XG
3520 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3521 return 1;
3522
fb72d167
JR
3523 r = mmu_topup_memory_caches(vcpu);
3524 if (r)
3525 return r;
3526
fd136902
TY
3527 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3528 PT_DIRECTORY_LEVEL);
3529 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3530 if (likely(!force_pt_level)) {
6a39bbc5
XG
3531 if (level > PT_DIRECTORY_LEVEL &&
3532 !check_hugepage_cache_consistency(vcpu, gfn, level))
3533 level = PT_DIRECTORY_LEVEL;
936a5fe6 3534 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3535 }
852e3c19 3536
c7ba5b48
XG
3537 if (fast_page_fault(vcpu, gpa, level, error_code))
3538 return 0;
3539
e930bffe 3540 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3541 smp_rmb();
af585b92 3542
78b2c54a 3543 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3544 return 0;
3545
d7c55201
XG
3546 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3547 return r;
3548
fb72d167 3549 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3550 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3551 goto out_unlock;
450e0b41 3552 make_mmu_pages_available(vcpu);
936a5fe6
AA
3553 if (likely(!force_pt_level))
3554 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3555 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3556 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3557
3558 return r;
e930bffe
AA
3559
3560out_unlock:
3561 spin_unlock(&vcpu->kvm->mmu_lock);
3562 kvm_release_pfn_clean(pfn);
3563 return 0;
fb72d167
JR
3564}
3565
8a3c1a33
PB
3566static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3567 struct kvm_mmu *context)
6aa8b732 3568{
6aa8b732 3569 context->page_fault = nonpaging_page_fault;
6aa8b732 3570 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3571 context->sync_page = nonpaging_sync_page;
a7052897 3572 context->invlpg = nonpaging_invlpg;
0f53b5b1 3573 context->update_pte = nonpaging_update_pte;
cea0f0e7 3574 context->root_level = 0;
6aa8b732 3575 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3576 context->root_hpa = INVALID_PAGE;
c5a78f2b 3577 context->direct_map = true;
2d48a985 3578 context->nx = false;
6aa8b732
AK
3579}
3580
d8d173da 3581void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3582{
cea0f0e7 3583 mmu_free_roots(vcpu);
6aa8b732
AK
3584}
3585
5777ed34
JR
3586static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3587{
9f8fe504 3588 return kvm_read_cr3(vcpu);
5777ed34
JR
3589}
3590
6389ee94
AK
3591static void inject_page_fault(struct kvm_vcpu *vcpu,
3592 struct x86_exception *fault)
6aa8b732 3593{
6389ee94 3594 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3595}
3596
54bf36aa 3597static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3598 unsigned access, int *nr_present)
ce88decf
XG
3599{
3600 if (unlikely(is_mmio_spte(*sptep))) {
3601 if (gfn != get_mmio_spte_gfn(*sptep)) {
3602 mmu_spte_clear_no_track(sptep);
3603 return true;
3604 }
3605
3606 (*nr_present)++;
54bf36aa 3607 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3608 return true;
3609 }
3610
3611 return false;
3612}
3613
6fd01b71
AK
3614static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3615{
3616 unsigned index;
3617
3618 index = level - 1;
3619 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3620 return mmu->last_pte_bitmap & (1 << index);
3621}
3622
37406aaa
NHE
3623#define PTTYPE_EPT 18 /* arbitrary */
3624#define PTTYPE PTTYPE_EPT
3625#include "paging_tmpl.h"
3626#undef PTTYPE
3627
6aa8b732
AK
3628#define PTTYPE 64
3629#include "paging_tmpl.h"
3630#undef PTTYPE
3631
3632#define PTTYPE 32
3633#include "paging_tmpl.h"
3634#undef PTTYPE
3635
6dc98b86
XG
3636static void
3637__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3638 struct rsvd_bits_validate *rsvd_check,
3639 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3640 bool pse, bool amd)
82725b20 3641{
82725b20 3642 u64 exb_bit_rsvd = 0;
5f7dde7b 3643 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3644 u64 nonleaf_bit8_rsvd = 0;
82725b20 3645
a0a64f50 3646 rsvd_check->bad_mt_xwr = 0;
25d92081 3647
6dc98b86 3648 if (!nx)
82725b20 3649 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3650 if (!gbpages)
5f7dde7b 3651 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3652
3653 /*
3654 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3655 * leaf entries) on AMD CPUs only.
3656 */
6fec2144 3657 if (amd)
a0c0feb5
PB
3658 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3659
6dc98b86 3660 switch (level) {
82725b20
DE
3661 case PT32_ROOT_LEVEL:
3662 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3663 rsvd_check->rsvd_bits_mask[0][1] = 0;
3664 rsvd_check->rsvd_bits_mask[0][0] = 0;
3665 rsvd_check->rsvd_bits_mask[1][0] =
3666 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3667
6dc98b86 3668 if (!pse) {
a0a64f50 3669 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3670 break;
3671 }
3672
82725b20
DE
3673 if (is_cpuid_PSE36())
3674 /* 36bits PSE 4MB page */
a0a64f50 3675 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3676 else
3677 /* 32 bits PSE 4MB page */
a0a64f50 3678 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3679 break;
3680 case PT32E_ROOT_LEVEL:
a0a64f50 3681 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3682 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3683 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3684 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3685 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3686 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3687 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3688 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3689 rsvd_bits(maxphyaddr, 62) |
3690 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3691 rsvd_check->rsvd_bits_mask[1][0] =
3692 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3693 break;
3694 case PT64_ROOT_LEVEL:
a0a64f50
XG
3695 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3696 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3697 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3698 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3699 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3700 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3701 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3702 rsvd_bits(maxphyaddr, 51);
3703 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3704 rsvd_bits(maxphyaddr, 51);
3705 rsvd_check->rsvd_bits_mask[1][3] =
3706 rsvd_check->rsvd_bits_mask[0][3];
3707 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3708 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3709 rsvd_bits(13, 29);
a0a64f50 3710 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3711 rsvd_bits(maxphyaddr, 51) |
3712 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3713 rsvd_check->rsvd_bits_mask[1][0] =
3714 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3715 break;
3716 }
3717}
3718
6dc98b86
XG
3719static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3720 struct kvm_mmu *context)
3721{
3722 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3723 cpuid_maxphyaddr(vcpu), context->root_level,
3724 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3725 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3726}
3727
81b8eebb
XG
3728static void
3729__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3730 int maxphyaddr, bool execonly)
25d92081 3731{
951f9fd7 3732 u64 bad_mt_xwr;
25d92081 3733
a0a64f50 3734 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3735 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3736 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3737 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3738 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3739 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3740 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3741
3742 /* large page */
a0a64f50
XG
3743 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3744 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3745 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3746 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3747 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3748 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3749
951f9fd7
PB
3750 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3751 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3752 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3753 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3754 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3755 if (!execonly) {
3756 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3757 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3758 }
951f9fd7 3759 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3760}
3761
81b8eebb
XG
3762static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3763 struct kvm_mmu *context, bool execonly)
3764{
3765 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3766 cpuid_maxphyaddr(vcpu), execonly);
3767}
3768
c258b62b
XG
3769/*
3770 * the page table on host is the shadow page table for the page
3771 * table in guest or amd nested guest, its mmu features completely
3772 * follow the features in guest.
3773 */
3774void
3775reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3776{
6fec2144
PB
3777 /*
3778 * Passing "true" to the last argument is okay; it adds a check
3779 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3780 */
c258b62b
XG
3781 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3782 boot_cpu_data.x86_phys_bits,
3783 context->shadow_root_level, context->nx,
6fec2144
PB
3784 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3785 true);
c258b62b
XG
3786}
3787EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3788
6fec2144
PB
3789static inline bool boot_cpu_is_amd(void)
3790{
3791 WARN_ON_ONCE(!tdp_enabled);
3792 return shadow_x_mask == 0;
3793}
3794
c258b62b
XG
3795/*
3796 * the direct page table on host, use as much mmu features as
3797 * possible, however, kvm currently does not do execution-protection.
3798 */
3799static void
3800reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3801 struct kvm_mmu *context)
3802{
6fec2144 3803 if (boot_cpu_is_amd())
c258b62b
XG
3804 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3805 boot_cpu_data.x86_phys_bits,
3806 context->shadow_root_level, false,
6fec2144 3807 cpu_has_gbpages, true, true);
c258b62b
XG
3808 else
3809 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3810 boot_cpu_data.x86_phys_bits,
3811 false);
3812
3813}
3814
3815/*
3816 * as the comments in reset_shadow_zero_bits_mask() except it
3817 * is the shadow page table for intel nested guest.
3818 */
3819static void
3820reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3821 struct kvm_mmu *context, bool execonly)
3822{
3823 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3824 boot_cpu_data.x86_phys_bits, execonly);
3825}
3826
edc90b7d
XG
3827static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3828 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3829{
3830 unsigned bit, byte, pfec;
3831 u8 map;
66386ade 3832 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3833
66386ade 3834 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3835 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3836 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3837 pfec = byte << 1;
3838 map = 0;
3839 wf = pfec & PFERR_WRITE_MASK;
3840 uf = pfec & PFERR_USER_MASK;
3841 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3842 /*
3843 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3844 * subject to SMAP restrictions, and cleared otherwise. The
3845 * bit is only meaningful if the SMAP bit is set in CR4.
3846 */
3847 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3848 for (bit = 0; bit < 8; ++bit) {
3849 x = bit & ACC_EXEC_MASK;
3850 w = bit & ACC_WRITE_MASK;
3851 u = bit & ACC_USER_MASK;
3852
25d92081
YZ
3853 if (!ept) {
3854 /* Not really needed: !nx will cause pte.nx to fault */
3855 x |= !mmu->nx;
3856 /* Allow supervisor writes if !cr0.wp */
3857 w |= !is_write_protection(vcpu) && !uf;
3858 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3859 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3860
3861 /*
3862 * SMAP:kernel-mode data accesses from user-mode
3863 * mappings should fault. A fault is considered
3864 * as a SMAP violation if all of the following
3865 * conditions are ture:
3866 * - X86_CR4_SMAP is set in CR4
3867 * - An user page is accessed
3868 * - Page fault in kernel mode
3869 * - if CPL = 3 or X86_EFLAGS_AC is clear
3870 *
3871 * Here, we cover the first three conditions.
3872 * The fourth is computed dynamically in
3873 * permission_fault() and is in smapf.
3874 *
3875 * Also, SMAP does not affect instruction
3876 * fetches, add the !ff check here to make it
3877 * clearer.
3878 */
3879 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3880 } else
3881 /* Not really needed: no U/S accesses on ept */
3882 u = 1;
97d64b78 3883
97ec8c06
FW
3884 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3885 (smapf && smap);
97d64b78
AK
3886 map |= fault << bit;
3887 }
3888 mmu->permissions[byte] = map;
3889 }
3890}
3891
6fd01b71
AK
3892static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3893{
3894 u8 map;
3895 unsigned level, root_level = mmu->root_level;
3896 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3897
3898 if (root_level == PT32E_ROOT_LEVEL)
3899 --root_level;
3900 /* PT_PAGE_TABLE_LEVEL always terminates */
3901 map = 1 | (1 << ps_set_index);
3902 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3903 if (level <= PT_PDPE_LEVEL
3904 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3905 map |= 1 << (ps_set_index | (level - 1));
3906 }
3907 mmu->last_pte_bitmap = map;
3908}
3909
8a3c1a33
PB
3910static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3911 struct kvm_mmu *context,
3912 int level)
6aa8b732 3913{
2d48a985 3914 context->nx = is_nx(vcpu);
4d6931c3 3915 context->root_level = level;
2d48a985 3916
4d6931c3 3917 reset_rsvds_bits_mask(vcpu, context);
25d92081 3918 update_permission_bitmask(vcpu, context, false);
6fd01b71 3919 update_last_pte_bitmap(vcpu, context);
6aa8b732 3920
fa4a2c08 3921 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3922 context->page_fault = paging64_page_fault;
6aa8b732 3923 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3924 context->sync_page = paging64_sync_page;
a7052897 3925 context->invlpg = paging64_invlpg;
0f53b5b1 3926 context->update_pte = paging64_update_pte;
17ac10ad 3927 context->shadow_root_level = level;
17c3ba9d 3928 context->root_hpa = INVALID_PAGE;
c5a78f2b 3929 context->direct_map = false;
6aa8b732
AK
3930}
3931
8a3c1a33
PB
3932static void paging64_init_context(struct kvm_vcpu *vcpu,
3933 struct kvm_mmu *context)
17ac10ad 3934{
8a3c1a33 3935 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3936}
3937
8a3c1a33
PB
3938static void paging32_init_context(struct kvm_vcpu *vcpu,
3939 struct kvm_mmu *context)
6aa8b732 3940{
2d48a985 3941 context->nx = false;
4d6931c3 3942 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3943
4d6931c3 3944 reset_rsvds_bits_mask(vcpu, context);
25d92081 3945 update_permission_bitmask(vcpu, context, false);
6fd01b71 3946 update_last_pte_bitmap(vcpu, context);
6aa8b732 3947
6aa8b732 3948 context->page_fault = paging32_page_fault;
6aa8b732 3949 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3950 context->sync_page = paging32_sync_page;
a7052897 3951 context->invlpg = paging32_invlpg;
0f53b5b1 3952 context->update_pte = paging32_update_pte;
6aa8b732 3953 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3954 context->root_hpa = INVALID_PAGE;
c5a78f2b 3955 context->direct_map = false;
6aa8b732
AK
3956}
3957
8a3c1a33
PB
3958static void paging32E_init_context(struct kvm_vcpu *vcpu,
3959 struct kvm_mmu *context)
6aa8b732 3960{
8a3c1a33 3961 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3962}
3963
8a3c1a33 3964static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3965{
ad896af0 3966 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3967
c445f8ef 3968 context->base_role.word = 0;
699023e2 3969 context->base_role.smm = is_smm(vcpu);
fb72d167 3970 context->page_fault = tdp_page_fault;
e8bc217a 3971 context->sync_page = nonpaging_sync_page;
a7052897 3972 context->invlpg = nonpaging_invlpg;
0f53b5b1 3973 context->update_pte = nonpaging_update_pte;
67253af5 3974 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3975 context->root_hpa = INVALID_PAGE;
c5a78f2b 3976 context->direct_map = true;
1c97f0a0 3977 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3978 context->get_cr3 = get_cr3;
e4e517b4 3979 context->get_pdptr = kvm_pdptr_read;
cb659db8 3980 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3981
3982 if (!is_paging(vcpu)) {
2d48a985 3983 context->nx = false;
fb72d167
JR
3984 context->gva_to_gpa = nonpaging_gva_to_gpa;
3985 context->root_level = 0;
3986 } else if (is_long_mode(vcpu)) {
2d48a985 3987 context->nx = is_nx(vcpu);
fb72d167 3988 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3989 reset_rsvds_bits_mask(vcpu, context);
3990 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3991 } else if (is_pae(vcpu)) {
2d48a985 3992 context->nx = is_nx(vcpu);
fb72d167 3993 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3994 reset_rsvds_bits_mask(vcpu, context);
3995 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3996 } else {
2d48a985 3997 context->nx = false;
fb72d167 3998 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3999 reset_rsvds_bits_mask(vcpu, context);
4000 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4001 }
4002
25d92081 4003 update_permission_bitmask(vcpu, context, false);
6fd01b71 4004 update_last_pte_bitmap(vcpu, context);
c258b62b 4005 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4006}
4007
ad896af0 4008void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4009{
411c588d 4010 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4011 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4012 struct kvm_mmu *context = &vcpu->arch.mmu;
4013
fa4a2c08 4014 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4015
4016 if (!is_paging(vcpu))
8a3c1a33 4017 nonpaging_init_context(vcpu, context);
a9058ecd 4018 else if (is_long_mode(vcpu))
8a3c1a33 4019 paging64_init_context(vcpu, context);
6aa8b732 4020 else if (is_pae(vcpu))
8a3c1a33 4021 paging32E_init_context(vcpu, context);
6aa8b732 4022 else
8a3c1a33 4023 paging32_init_context(vcpu, context);
a770f6f2 4024
ad896af0
PB
4025 context->base_role.nxe = is_nx(vcpu);
4026 context->base_role.cr4_pae = !!is_pae(vcpu);
4027 context->base_role.cr0_wp = is_write_protection(vcpu);
4028 context->base_role.smep_andnot_wp
411c588d 4029 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4030 context->base_role.smap_andnot_wp
4031 = smap && !is_write_protection(vcpu);
699023e2 4032 context->base_role.smm = is_smm(vcpu);
c258b62b 4033 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4034}
4035EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4036
ad896af0 4037void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4038{
ad896af0
PB
4039 struct kvm_mmu *context = &vcpu->arch.mmu;
4040
fa4a2c08 4041 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4042
4043 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4044
4045 context->nx = true;
155a97a3
NHE
4046 context->page_fault = ept_page_fault;
4047 context->gva_to_gpa = ept_gva_to_gpa;
4048 context->sync_page = ept_sync_page;
4049 context->invlpg = ept_invlpg;
4050 context->update_pte = ept_update_pte;
155a97a3
NHE
4051 context->root_level = context->shadow_root_level;
4052 context->root_hpa = INVALID_PAGE;
4053 context->direct_map = false;
4054
4055 update_permission_bitmask(vcpu, context, true);
4056 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4057 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4058}
4059EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4060
8a3c1a33 4061static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4062{
ad896af0
PB
4063 struct kvm_mmu *context = &vcpu->arch.mmu;
4064
4065 kvm_init_shadow_mmu(vcpu);
4066 context->set_cr3 = kvm_x86_ops->set_cr3;
4067 context->get_cr3 = get_cr3;
4068 context->get_pdptr = kvm_pdptr_read;
4069 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4070}
4071
8a3c1a33 4072static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4073{
4074 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4075
4076 g_context->get_cr3 = get_cr3;
e4e517b4 4077 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4078 g_context->inject_page_fault = kvm_inject_page_fault;
4079
4080 /*
0af2593b
DM
4081 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4082 * L1's nested page tables (e.g. EPT12). The nested translation
4083 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4084 * L2's page tables as the first level of translation and L1's
4085 * nested page tables as the second level of translation. Basically
4086 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4087 */
4088 if (!is_paging(vcpu)) {
2d48a985 4089 g_context->nx = false;
02f59dc9
JR
4090 g_context->root_level = 0;
4091 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4092 } else if (is_long_mode(vcpu)) {
2d48a985 4093 g_context->nx = is_nx(vcpu);
02f59dc9 4094 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4095 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4096 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4097 } else if (is_pae(vcpu)) {
2d48a985 4098 g_context->nx = is_nx(vcpu);
02f59dc9 4099 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4100 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4101 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4102 } else {
2d48a985 4103 g_context->nx = false;
02f59dc9 4104 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4105 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4106 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4107 }
4108
25d92081 4109 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4110 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4111}
4112
8a3c1a33 4113static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4114{
02f59dc9 4115 if (mmu_is_nested(vcpu))
e0c6db3e 4116 init_kvm_nested_mmu(vcpu);
02f59dc9 4117 else if (tdp_enabled)
e0c6db3e 4118 init_kvm_tdp_mmu(vcpu);
fb72d167 4119 else
e0c6db3e 4120 init_kvm_softmmu(vcpu);
fb72d167
JR
4121}
4122
8a3c1a33 4123void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4124{
95f93af4 4125 kvm_mmu_unload(vcpu);
8a3c1a33 4126 init_kvm_mmu(vcpu);
17c3ba9d 4127}
8668a3c4 4128EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4129
4130int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4131{
714b93da
AK
4132 int r;
4133
e2dec939 4134 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4135 if (r)
4136 goto out;
8986ecc0 4137 r = mmu_alloc_roots(vcpu);
e2858b4a 4138 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4139 if (r)
4140 goto out;
3662cb1c 4141 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4142 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4143out:
4144 return r;
6aa8b732 4145}
17c3ba9d
AK
4146EXPORT_SYMBOL_GPL(kvm_mmu_load);
4147
4148void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4149{
4150 mmu_free_roots(vcpu);
95f93af4 4151 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4152}
4b16184c 4153EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4154
0028425f 4155static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4156 struct kvm_mmu_page *sp, u64 *spte,
4157 const void *new)
0028425f 4158{
30945387 4159 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4160 ++vcpu->kvm->stat.mmu_pde_zapped;
4161 return;
30945387 4162 }
0028425f 4163
4cee5764 4164 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4165 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4166}
4167
79539cec
AK
4168static bool need_remote_flush(u64 old, u64 new)
4169{
4170 if (!is_shadow_present_pte(old))
4171 return false;
4172 if (!is_shadow_present_pte(new))
4173 return true;
4174 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4175 return true;
53166229
GN
4176 old ^= shadow_nx_mask;
4177 new ^= shadow_nx_mask;
79539cec
AK
4178 return (old & ~new & PT64_PERM_MASK) != 0;
4179}
4180
0671a8e7
XG
4181static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4182 bool remote_flush, bool local_flush)
79539cec 4183{
0671a8e7
XG
4184 if (zap_page)
4185 return;
4186
4187 if (remote_flush)
79539cec 4188 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4189 else if (local_flush)
77c3913b 4190 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4191}
4192
889e5cbc
XG
4193static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4194 const u8 *new, int *bytes)
da4a00f0 4195{
889e5cbc
XG
4196 u64 gentry;
4197 int r;
72016f3a 4198
72016f3a
AK
4199 /*
4200 * Assume that the pte write on a page table of the same type
49b26e26
XG
4201 * as the current vcpu paging mode since we update the sptes only
4202 * when they have the same mode.
72016f3a 4203 */
889e5cbc 4204 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4205 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4206 *gpa &= ~(gpa_t)7;
4207 *bytes = 8;
54bf36aa 4208 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4209 if (r)
4210 gentry = 0;
08e850c6
AK
4211 new = (const u8 *)&gentry;
4212 }
4213
889e5cbc 4214 switch (*bytes) {
08e850c6
AK
4215 case 4:
4216 gentry = *(const u32 *)new;
4217 break;
4218 case 8:
4219 gentry = *(const u64 *)new;
4220 break;
4221 default:
4222 gentry = 0;
4223 break;
72016f3a
AK
4224 }
4225
889e5cbc
XG
4226 return gentry;
4227}
4228
4229/*
4230 * If we're seeing too many writes to a page, it may no longer be a page table,
4231 * or we may be forking, in which case it is better to unmap the page.
4232 */
a138fe75 4233static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4234{
a30f47cb
XG
4235 /*
4236 * Skip write-flooding detected for the sp whose level is 1, because
4237 * it can become unsync, then the guest page is not write-protected.
4238 */
f71fa31f 4239 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4240 return false;
3246af0e 4241
e5691a81
XG
4242 atomic_inc(&sp->write_flooding_count);
4243 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4244}
4245
4246/*
4247 * Misaligned accesses are too much trouble to fix up; also, they usually
4248 * indicate a page is not used as a page table.
4249 */
4250static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4251 int bytes)
4252{
4253 unsigned offset, pte_size, misaligned;
4254
4255 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4256 gpa, bytes, sp->role.word);
4257
4258 offset = offset_in_page(gpa);
4259 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4260
4261 /*
4262 * Sometimes, the OS only writes the last one bytes to update status
4263 * bits, for example, in linux, andb instruction is used in clear_bit().
4264 */
4265 if (!(offset & (pte_size - 1)) && bytes == 1)
4266 return false;
4267
889e5cbc
XG
4268 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4269 misaligned |= bytes < 4;
4270
4271 return misaligned;
4272}
4273
4274static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4275{
4276 unsigned page_offset, quadrant;
4277 u64 *spte;
4278 int level;
4279
4280 page_offset = offset_in_page(gpa);
4281 level = sp->role.level;
4282 *nspte = 1;
4283 if (!sp->role.cr4_pae) {
4284 page_offset <<= 1; /* 32->64 */
4285 /*
4286 * A 32-bit pde maps 4MB while the shadow pdes map
4287 * only 2MB. So we need to double the offset again
4288 * and zap two pdes instead of one.
4289 */
4290 if (level == PT32_ROOT_LEVEL) {
4291 page_offset &= ~7; /* kill rounding error */
4292 page_offset <<= 1;
4293 *nspte = 2;
4294 }
4295 quadrant = page_offset >> PAGE_SHIFT;
4296 page_offset &= ~PAGE_MASK;
4297 if (quadrant != sp->role.quadrant)
4298 return NULL;
4299 }
4300
4301 spte = &sp->spt[page_offset / sizeof(*spte)];
4302 return spte;
4303}
4304
4305void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4306 const u8 *new, int bytes)
4307{
4308 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4309 struct kvm_mmu_page *sp;
889e5cbc
XG
4310 LIST_HEAD(invalid_list);
4311 u64 entry, gentry, *spte;
4312 int npte;
a30f47cb 4313 bool remote_flush, local_flush, zap_page;
4141259b
AM
4314 union kvm_mmu_page_role mask = { };
4315
4316 mask.cr0_wp = 1;
4317 mask.cr4_pae = 1;
4318 mask.nxe = 1;
4319 mask.smep_andnot_wp = 1;
4320 mask.smap_andnot_wp = 1;
699023e2 4321 mask.smm = 1;
889e5cbc
XG
4322
4323 /*
4324 * If we don't have indirect shadow pages, it means no page is
4325 * write-protected, so we can exit simply.
4326 */
4327 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4328 return;
4329
4330 zap_page = remote_flush = local_flush = false;
4331
4332 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4333
4334 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4335
4336 /*
4337 * No need to care whether allocation memory is successful
4338 * or not since pte prefetch is skiped if it does not have
4339 * enough objects in the cache.
4340 */
4341 mmu_topup_memory_caches(vcpu);
4342
4343 spin_lock(&vcpu->kvm->mmu_lock);
4344 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4345 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4346
b67bfe0d 4347 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4348 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4349 detect_write_flooding(sp)) {
0671a8e7 4350 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4351 &invalid_list);
4cee5764 4352 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4353 continue;
4354 }
889e5cbc
XG
4355
4356 spte = get_written_sptes(sp, gpa, &npte);
4357 if (!spte)
4358 continue;
4359
0671a8e7 4360 local_flush = true;
ac1b714e 4361 while (npte--) {
79539cec 4362 entry = *spte;
38e3b2b2 4363 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4364 if (gentry &&
4365 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4366 & mask.word) && rmap_can_add(vcpu))
7c562522 4367 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4368 if (need_remote_flush(entry, *spte))
0671a8e7 4369 remote_flush = true;
ac1b714e 4370 ++spte;
9b7a0325 4371 }
9b7a0325 4372 }
0671a8e7 4373 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4374 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4375 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4376 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4377}
4378
a436036b
AK
4379int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4380{
10589a46
MT
4381 gpa_t gpa;
4382 int r;
a436036b 4383
c5a78f2b 4384 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4385 return 0;
4386
1871c602 4387 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4388
10589a46 4389 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4390
10589a46 4391 return r;
a436036b 4392}
577bdc49 4393EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4394
81f4f76b 4395static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4396{
d98ba053 4397 LIST_HEAD(invalid_list);
103ad25a 4398
81f4f76b
TY
4399 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4400 return;
4401
5da59607
TY
4402 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4403 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4404 break;
ebeace86 4405
4cee5764 4406 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4407 }
aa6bd187 4408 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4409}
ebeace86 4410
dc25e89e
AP
4411int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4412 void *insn, int insn_len)
3067714c 4413{
1cb3f3ae 4414 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4415 enum emulation_result er;
ded58749 4416 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4417
e9ee956e
TY
4418 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4419 r = handle_mmio_page_fault(vcpu, cr2, direct);
4420 if (r == RET_MMIO_PF_EMULATE) {
4421 emulation_type = 0;
4422 goto emulate;
4423 }
4424 if (r == RET_MMIO_PF_RETRY)
4425 return 1;
4426 if (r < 0)
4427 return r;
4428 }
4429
56028d08 4430 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4431 if (r < 0)
e9ee956e
TY
4432 return r;
4433 if (!r)
4434 return 1;
3067714c 4435
ded58749 4436 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4437 emulation_type = 0;
e9ee956e 4438emulate:
1cb3f3ae 4439 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4440
4441 switch (er) {
4442 case EMULATE_DONE:
4443 return 1;
ac0a48c3 4444 case EMULATE_USER_EXIT:
3067714c 4445 ++vcpu->stat.mmio_exits;
6d77dbfc 4446 /* fall through */
3067714c 4447 case EMULATE_FAIL:
3f5d18a9 4448 return 0;
3067714c
AK
4449 default:
4450 BUG();
4451 }
3067714c
AK
4452}
4453EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4454
a7052897
MT
4455void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4456{
a7052897 4457 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4458 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4459 ++vcpu->stat.invlpg;
4460}
4461EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4462
18552672
JR
4463void kvm_enable_tdp(void)
4464{
4465 tdp_enabled = true;
4466}
4467EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4468
5f4cb662
JR
4469void kvm_disable_tdp(void)
4470{
4471 tdp_enabled = false;
4472}
4473EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4474
6aa8b732
AK
4475static void free_mmu_pages(struct kvm_vcpu *vcpu)
4476{
ad312c7c 4477 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4478 if (vcpu->arch.mmu.lm_root != NULL)
4479 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4480}
4481
4482static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4483{
17ac10ad 4484 struct page *page;
6aa8b732
AK
4485 int i;
4486
17ac10ad
AK
4487 /*
4488 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4489 * Therefore we need to allocate shadow page tables in the first
4490 * 4GB of memory, which happens to fit the DMA32 zone.
4491 */
4492 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4493 if (!page)
d7fa6ab2
WY
4494 return -ENOMEM;
4495
ad312c7c 4496 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4497 for (i = 0; i < 4; ++i)
ad312c7c 4498 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4499
6aa8b732 4500 return 0;
6aa8b732
AK
4501}
4502
8018c27b 4503int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4504{
e459e322
XG
4505 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4506 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4507 vcpu->arch.mmu.translate_gpa = translate_gpa;
4508 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4509
8018c27b
IM
4510 return alloc_mmu_pages(vcpu);
4511}
6aa8b732 4512
8a3c1a33 4513void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4514{
fa4a2c08 4515 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4516
8a3c1a33 4517 init_kvm_mmu(vcpu);
6aa8b732
AK
4518}
4519
1bad2b2a 4520/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4521typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4522
4523/* The caller should hold mmu-lock before calling this function. */
4524static bool
4525slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4526 slot_level_handler fn, int start_level, int end_level,
4527 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4528{
4529 struct slot_rmap_walk_iterator iterator;
4530 bool flush = false;
4531
4532 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4533 end_gfn, &iterator) {
4534 if (iterator.rmap)
4535 flush |= fn(kvm, iterator.rmap);
4536
4537 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4538 if (flush && lock_flush_tlb) {
4539 kvm_flush_remote_tlbs(kvm);
4540 flush = false;
4541 }
4542 cond_resched_lock(&kvm->mmu_lock);
4543 }
4544 }
4545
4546 if (flush && lock_flush_tlb) {
4547 kvm_flush_remote_tlbs(kvm);
4548 flush = false;
4549 }
4550
4551 return flush;
4552}
4553
4554static bool
4555slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4556 slot_level_handler fn, int start_level, int end_level,
4557 bool lock_flush_tlb)
4558{
4559 return slot_handle_level_range(kvm, memslot, fn, start_level,
4560 end_level, memslot->base_gfn,
4561 memslot->base_gfn + memslot->npages - 1,
4562 lock_flush_tlb);
4563}
4564
4565static bool
4566slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4567 slot_level_handler fn, bool lock_flush_tlb)
4568{
4569 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4570 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4571}
4572
4573static bool
4574slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4575 slot_level_handler fn, bool lock_flush_tlb)
4576{
4577 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4578 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4579}
4580
4581static bool
4582slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4583 slot_level_handler fn, bool lock_flush_tlb)
4584{
4585 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4586 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4587}
4588
efdfe536
XG
4589void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4590{
4591 struct kvm_memslots *slots;
4592 struct kvm_memory_slot *memslot;
9da0e4d5 4593 int i;
efdfe536
XG
4594
4595 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4596 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4597 slots = __kvm_memslots(kvm, i);
4598 kvm_for_each_memslot(memslot, slots) {
4599 gfn_t start, end;
4600
4601 start = max(gfn_start, memslot->base_gfn);
4602 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4603 if (start >= end)
4604 continue;
efdfe536 4605
9da0e4d5
PB
4606 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4607 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4608 start, end - 1, true);
4609 }
efdfe536
XG
4610 }
4611
4612 spin_unlock(&kvm->mmu_lock);
4613}
4614
018aabb5
TY
4615static bool slot_rmap_write_protect(struct kvm *kvm,
4616 struct kvm_rmap_head *rmap_head)
d77aa73c 4617{
018aabb5 4618 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4619}
4620
1c91cad4
KH
4621void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4622 struct kvm_memory_slot *memslot)
6aa8b732 4623{
d77aa73c 4624 bool flush;
6aa8b732 4625
9d1beefb 4626 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4627 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4628 false);
9d1beefb 4629 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4630
4631 /*
4632 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4633 * which do tlb flush out of mmu-lock should be serialized by
4634 * kvm->slots_lock otherwise tlb flush would be missed.
4635 */
4636 lockdep_assert_held(&kvm->slots_lock);
4637
4638 /*
4639 * We can flush all the TLBs out of the mmu lock without TLB
4640 * corruption since we just change the spte from writable to
4641 * readonly so that we only need to care the case of changing
4642 * spte from present to present (changing the spte from present
4643 * to nonpresent will flush all the TLBs immediately), in other
4644 * words, the only case we care is mmu_spte_update() where we
4645 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4646 * instead of PT_WRITABLE_MASK, that means it does not depend
4647 * on PT_WRITABLE_MASK anymore.
4648 */
d91ffee9
KH
4649 if (flush)
4650 kvm_flush_remote_tlbs(kvm);
6aa8b732 4651}
37a7d8b0 4652
3ea3b7fa 4653static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4654 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4655{
4656 u64 *sptep;
4657 struct rmap_iterator iter;
4658 int need_tlb_flush = 0;
ba049e93 4659 kvm_pfn_t pfn;
3ea3b7fa
WL
4660 struct kvm_mmu_page *sp;
4661
0d536790 4662restart:
018aabb5 4663 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4664 sp = page_header(__pa(sptep));
4665 pfn = spte_to_pfn(*sptep);
4666
4667 /*
decf6333
XG
4668 * We cannot do huge page mapping for indirect shadow pages,
4669 * which are found on the last rmap (level = 1) when not using
4670 * tdp; such shadow pages are synced with the page table in
4671 * the guest, and the guest page table is using 4K page size
4672 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4673 */
4674 if (sp->role.direct &&
4675 !kvm_is_reserved_pfn(pfn) &&
4676 PageTransCompound(pfn_to_page(pfn))) {
4677 drop_spte(kvm, sptep);
3ea3b7fa 4678 need_tlb_flush = 1;
0d536790
XG
4679 goto restart;
4680 }
3ea3b7fa
WL
4681 }
4682
4683 return need_tlb_flush;
4684}
4685
4686void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4687 const struct kvm_memory_slot *memslot)
3ea3b7fa 4688{
f36f3f28 4689 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4690 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4691 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4692 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4693 spin_unlock(&kvm->mmu_lock);
4694}
4695
f4b4b180
KH
4696void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4697 struct kvm_memory_slot *memslot)
4698{
d77aa73c 4699 bool flush;
f4b4b180
KH
4700
4701 spin_lock(&kvm->mmu_lock);
d77aa73c 4702 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4703 spin_unlock(&kvm->mmu_lock);
4704
4705 lockdep_assert_held(&kvm->slots_lock);
4706
4707 /*
4708 * It's also safe to flush TLBs out of mmu lock here as currently this
4709 * function is only used for dirty logging, in which case flushing TLB
4710 * out of mmu lock also guarantees no dirty pages will be lost in
4711 * dirty_bitmap.
4712 */
4713 if (flush)
4714 kvm_flush_remote_tlbs(kvm);
4715}
4716EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4717
4718void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4719 struct kvm_memory_slot *memslot)
4720{
d77aa73c 4721 bool flush;
f4b4b180
KH
4722
4723 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4724 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4725 false);
f4b4b180
KH
4726 spin_unlock(&kvm->mmu_lock);
4727
4728 /* see kvm_mmu_slot_remove_write_access */
4729 lockdep_assert_held(&kvm->slots_lock);
4730
4731 if (flush)
4732 kvm_flush_remote_tlbs(kvm);
4733}
4734EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4735
4736void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4737 struct kvm_memory_slot *memslot)
4738{
d77aa73c 4739 bool flush;
f4b4b180
KH
4740
4741 spin_lock(&kvm->mmu_lock);
d77aa73c 4742 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4743 spin_unlock(&kvm->mmu_lock);
4744
4745 lockdep_assert_held(&kvm->slots_lock);
4746
4747 /* see kvm_mmu_slot_leaf_clear_dirty */
4748 if (flush)
4749 kvm_flush_remote_tlbs(kvm);
4750}
4751EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4752
e7d11c7a 4753#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4754static void kvm_zap_obsolete_pages(struct kvm *kvm)
4755{
4756 struct kvm_mmu_page *sp, *node;
e7d11c7a 4757 int batch = 0;
5304b8d3
XG
4758
4759restart:
4760 list_for_each_entry_safe_reverse(sp, node,
4761 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4762 int ret;
4763
5304b8d3
XG
4764 /*
4765 * No obsolete page exists before new created page since
4766 * active_mmu_pages is the FIFO list.
4767 */
4768 if (!is_obsolete_sp(kvm, sp))
4769 break;
4770
4771 /*
5304b8d3
XG
4772 * Since we are reversely walking the list and the invalid
4773 * list will be moved to the head, skip the invalid page
4774 * can help us to avoid the infinity list walking.
4775 */
4776 if (sp->role.invalid)
4777 continue;
4778
f34d251d
XG
4779 /*
4780 * Need not flush tlb since we only zap the sp with invalid
4781 * generation number.
4782 */
e7d11c7a 4783 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4784 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4785 batch = 0;
5304b8d3
XG
4786 goto restart;
4787 }
4788
365c8868
XG
4789 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4790 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4791 batch += ret;
4792
4793 if (ret)
5304b8d3
XG
4794 goto restart;
4795 }
4796
f34d251d
XG
4797 /*
4798 * Should flush tlb before free page tables since lockless-walking
4799 * may use the pages.
4800 */
365c8868 4801 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4802}
4803
4804/*
4805 * Fast invalidate all shadow pages and use lock-break technique
4806 * to zap obsolete pages.
4807 *
4808 * It's required when memslot is being deleted or VM is being
4809 * destroyed, in these cases, we should ensure that KVM MMU does
4810 * not use any resource of the being-deleted slot or all slots
4811 * after calling the function.
4812 */
4813void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4814{
4815 spin_lock(&kvm->mmu_lock);
35006126 4816 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4817 kvm->arch.mmu_valid_gen++;
4818
f34d251d
XG
4819 /*
4820 * Notify all vcpus to reload its shadow page table
4821 * and flush TLB. Then all vcpus will switch to new
4822 * shadow page table with the new mmu_valid_gen.
4823 *
4824 * Note: we should do this under the protection of
4825 * mmu-lock, otherwise, vcpu would purge shadow page
4826 * but miss tlb flush.
4827 */
4828 kvm_reload_remote_mmus(kvm);
4829
5304b8d3
XG
4830 kvm_zap_obsolete_pages(kvm);
4831 spin_unlock(&kvm->mmu_lock);
4832}
4833
365c8868
XG
4834static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4835{
4836 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4837}
4838
54bf36aa 4839void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4840{
4841 /*
4842 * The very rare case: if the generation-number is round,
4843 * zap all shadow pages.
f8f55942 4844 */
54bf36aa 4845 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4846 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4847 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4848 }
f8f55942
XG
4849}
4850
70534a73
DC
4851static unsigned long
4852mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4853{
4854 struct kvm *kvm;
1495f230 4855 int nr_to_scan = sc->nr_to_scan;
70534a73 4856 unsigned long freed = 0;
3ee16c81 4857
2f303b74 4858 spin_lock(&kvm_lock);
3ee16c81
IE
4859
4860 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4861 int idx;
d98ba053 4862 LIST_HEAD(invalid_list);
3ee16c81 4863
35f2d16b
TY
4864 /*
4865 * Never scan more than sc->nr_to_scan VM instances.
4866 * Will not hit this condition practically since we do not try
4867 * to shrink more than one VM and it is very unlikely to see
4868 * !n_used_mmu_pages so many times.
4869 */
4870 if (!nr_to_scan--)
4871 break;
19526396
GN
4872 /*
4873 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4874 * here. We may skip a VM instance errorneosly, but we do not
4875 * want to shrink a VM that only started to populate its MMU
4876 * anyway.
4877 */
365c8868
XG
4878 if (!kvm->arch.n_used_mmu_pages &&
4879 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4880 continue;
19526396 4881
f656ce01 4882 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4883 spin_lock(&kvm->mmu_lock);
3ee16c81 4884
365c8868
XG
4885 if (kvm_has_zapped_obsolete_pages(kvm)) {
4886 kvm_mmu_commit_zap_page(kvm,
4887 &kvm->arch.zapped_obsolete_pages);
4888 goto unlock;
4889 }
4890
70534a73
DC
4891 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4892 freed++;
d98ba053 4893 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4894
365c8868 4895unlock:
3ee16c81 4896 spin_unlock(&kvm->mmu_lock);
f656ce01 4897 srcu_read_unlock(&kvm->srcu, idx);
19526396 4898
70534a73
DC
4899 /*
4900 * unfair on small ones
4901 * per-vm shrinkers cry out
4902 * sadness comes quickly
4903 */
19526396
GN
4904 list_move_tail(&kvm->vm_list, &vm_list);
4905 break;
3ee16c81 4906 }
3ee16c81 4907
2f303b74 4908 spin_unlock(&kvm_lock);
70534a73 4909 return freed;
70534a73
DC
4910}
4911
4912static unsigned long
4913mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4914{
45221ab6 4915 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4916}
4917
4918static struct shrinker mmu_shrinker = {
70534a73
DC
4919 .count_objects = mmu_shrink_count,
4920 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4921 .seeks = DEFAULT_SEEKS * 10,
4922};
4923
2ddfd20e 4924static void mmu_destroy_caches(void)
b5a33a75 4925{
53c07b18
XG
4926 if (pte_list_desc_cache)
4927 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4928 if (mmu_page_header_cache)
4929 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4930}
4931
4932int kvm_mmu_module_init(void)
4933{
53c07b18
XG
4934 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4935 sizeof(struct pte_list_desc),
20c2df83 4936 0, 0, NULL);
53c07b18 4937 if (!pte_list_desc_cache)
b5a33a75
AK
4938 goto nomem;
4939
d3d25b04
AK
4940 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4941 sizeof(struct kvm_mmu_page),
20c2df83 4942 0, 0, NULL);
d3d25b04
AK
4943 if (!mmu_page_header_cache)
4944 goto nomem;
4945
908c7f19 4946 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4947 goto nomem;
4948
3ee16c81
IE
4949 register_shrinker(&mmu_shrinker);
4950
b5a33a75
AK
4951 return 0;
4952
4953nomem:
3ee16c81 4954 mmu_destroy_caches();
b5a33a75
AK
4955 return -ENOMEM;
4956}
4957
3ad82a7e
ZX
4958/*
4959 * Caculate mmu pages needed for kvm.
4960 */
4961unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4962{
3ad82a7e
ZX
4963 unsigned int nr_mmu_pages;
4964 unsigned int nr_pages = 0;
bc6678a3 4965 struct kvm_memslots *slots;
be6ba0f0 4966 struct kvm_memory_slot *memslot;
9da0e4d5 4967 int i;
3ad82a7e 4968
9da0e4d5
PB
4969 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4970 slots = __kvm_memslots(kvm, i);
90d83dc3 4971
9da0e4d5
PB
4972 kvm_for_each_memslot(memslot, slots)
4973 nr_pages += memslot->npages;
4974 }
3ad82a7e
ZX
4975
4976 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4977 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 4978 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
4979
4980 return nr_mmu_pages;
4981}
4982
c42fffe3
XG
4983void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4984{
95f93af4 4985 kvm_mmu_unload(vcpu);
c42fffe3
XG
4986 free_mmu_pages(vcpu);
4987 mmu_free_memory_caches(vcpu);
b034cf01
XG
4988}
4989
b034cf01
XG
4990void kvm_mmu_module_exit(void)
4991{
4992 mmu_destroy_caches();
4993 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4994 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4995 mmu_audit_disable();
4996}
This page took 1.311354 seconds and 5 git commands to generate.