sched, cgroup: Reduce rq->lock hold times for large cgroup hierarchies
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 897 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1099 * see task_group().
6c6c54e1
PZ
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
5da9a0fb 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb
PZ
1269
1270 /* Look for allowed, online CPU in same node. */
e3831edd 1271 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1277 return dest_cpu;
2baab4e9 1278 }
5da9a0fb 1279
2baab4e9
PZ
1280 for (;;) {
1281 /* Any allowed, online CPU? */
e3831edd 1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
5da9a0fb
PZ
1319 }
1320
1321 return dest_cpu;
1322}
1323
e2912009 1324/*
013fdb80 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1326 */
970b13ba 1327static inline
7608dec2 1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1329{
7608dec2 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
fa17b507 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1343 !cpu_online(cpu)))
5da9a0fb 1344 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1345
1346 return cpu;
970b13ba 1347}
09a40af5
MG
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353}
970b13ba
PZ
1354#endif
1355
d7c01d27 1356static void
b84cb5df 1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1358{
d7c01d27 1359#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1360 struct rq *rq = this_rq();
1361
d7c01d27
PZ
1362#ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1372 rcu_read_lock();
d7c01d27
PZ
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
057f3fad 1379 rcu_read_unlock();
d7c01d27 1380 }
f339b9dc
PZ
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
d7c01d27
PZ
1385#endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
9ed3811a 1388 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1389
1390 if (wake_flags & WF_SYNC)
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1392
d7c01d27
PZ
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
9ed3811a 1398 activate_task(rq, p, en_flags);
fd2f4419 1399 p->on_rq = 1;
c2f7115e
PZ
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1404}
1405
23f41eeb
PZ
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
89363381 1409static void
23f41eeb 1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1411{
89363381 1412 trace_sched_wakeup(p, true);
9ed3811a
TH
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
e69c6341 1420 if (rq->idle_stamp) {
9ed3811a
TH
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430#endif
1431}
1432
c05fbafb
PZ
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439#endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464}
1465
317f3941 1466#ifdef CONFIG_SMP
fa14ff4a 1467static void sched_ttwu_pending(void)
317f3941
PZ
1468{
1469 struct rq *rq = this_rq();
fa14ff4a
PZ
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
317f3941
PZ
1472
1473 raw_spin_lock(&rq->lock);
1474
fa14ff4a
PZ
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
317f3941
PZ
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
ca38062e 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
fa14ff4a 1503 sched_ttwu_pending();
ca38062e
SS
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
6eb57e0d
SS
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
ca38062e 1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1511 }
c5d753a5 1512 irq_exit();
317f3941
PZ
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
fa14ff4a 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1518 smp_send_reschedule(cpu);
1519}
d6aa8f85
PZ
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
9ed3811a
TH
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
04e2f174 1584 smp_wmb();
013fdb80 1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1586 if (!(p->state & state))
1da177e4
LT
1587 goto out;
1588
c05fbafb 1589 success = 1; /* we're going to change ->state */
1da177e4 1590 cpu = task_cpu(p);
1da177e4 1591
c05fbafb
PZ
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1da177e4 1594
1da177e4 1595#ifdef CONFIG_SMP
e9c84311 1596 /*
c05fbafb
PZ
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
e9c84311 1599 */
e4a52bcb
PZ
1600 while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
d6aa8f85
PZ
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
e4a52bcb 1608 */
d6aa8f85 1609 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1610 goto stat;
d6aa8f85 1611#else
e4a52bcb 1612 cpu_relax();
d6aa8f85 1613#endif
371fd7e7 1614 }
0970d299 1615 /*
e4a52bcb 1616 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1617 */
e4a52bcb 1618 smp_rmb();
1da177e4 1619
a8e4f2ea 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1621 p->state = TASK_WAKING;
e7693a36 1622
e4a52bcb 1623 if (p->sched_class->task_waking)
74f8e4b2 1624 p->sched_class->task_waking(p);
efbbd05a 1625
7608dec2 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
e4a52bcb 1629 set_task_cpu(p, cpu);
f339b9dc 1630 }
1da177e4 1631#endif /* CONFIG_SMP */
1da177e4 1632
c05fbafb
PZ
1633 ttwu_queue(p, cpu);
1634stat:
b84cb5df 1635 ttwu_stat(p, cpu, wake_flags);
1da177e4 1636out:
013fdb80 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1638
1639 return success;
1640}
1641
21aa9af0
TH
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
2acca55e 1646 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1648 * the current task.
21aa9af0
TH
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652 struct rq *rq = task_rq(p);
21aa9af0
TH
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
7ad5b3a5 1687int wake_up_process(struct task_struct *p)
1da177e4 1688{
d9514f6c 1689 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
dd41f596
IM
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
3e51e3ed 1730void sched_fork(struct task_struct *p)
dd41f596 1731{
0122ec5b 1732 unsigned long flags;
dd41f596
IM
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
06b83b5f 1736 /*
0017d735 1737 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
0017d735 1741 p->state = TASK_RUNNING;
dd41f596 1742
c350a04e
MG
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
b9dc29e7
MG
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1752 if (task_has_rt_policy(p)) {
b9dc29e7 1753 p->policy = SCHED_NORMAL;
6c697bdf 1754 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
6c697bdf 1761
b9dc29e7
MG
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
ca94c442 1768
2ddbf952
HS
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
b29739f9 1771
cd29fe6f
PZ
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
86951599
PZ
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
0122ec5b 1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1783 set_task_cpu(p, cpu);
0122ec5b 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1785
52f17b6c 1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1787 if (likely(sched_info_on()))
52f17b6c 1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1789#endif
3ca7a440
PZ
1790#if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
4866cde0 1792#endif
bdd4e85d 1793#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1794 /* Want to start with kernel preemption disabled. */
a1261f54 1795 task_thread_info(p)->preempt_count = 1;
1da177e4 1796#endif
806c09a7 1797#ifdef CONFIG_SMP
917b627d 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1799#endif
917b627d 1800
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
3e51e3ed 1811void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
fabf318e 1815
ab2515c4 1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1817#ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
fabf318e 1822 */
ab2515c4 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1824#endif
1825
ab2515c4 1826 rq = __task_rq_lock(p);
cd29fe6f 1827 activate_task(rq, p, 0);
fd2f4419 1828 p->on_rq = 1;
89363381 1829 trace_sched_wakeup_new(p, true);
a7558e01 1830 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1831#ifdef CONFIG_SMP
efbbd05a
PZ
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
9a897c5a 1834#endif
0122ec5b 1835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1836}
1837
e107be36
AK
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
80dd99b3 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1842 * @notifier: notifier struct to register
e107be36
AK
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1852 * @notifier: notifier struct to unregister
e107be36
AK
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
6d6bc0ad 1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
6d6bc0ad 1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1895
4866cde0
NP
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
421cee29 1899 * @prev: the current task that is being switched out
4866cde0
NP
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
e107be36
AK
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
4866cde0 1912{
fe4b04fa
PZ
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
e107be36 1915 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
fe4b04fa 1918 trace_sched_switch(prev, next);
4866cde0
NP
1919}
1920
1da177e4
LT
1921/**
1922 * finish_task_switch - clean up after a task-switch
344babaa 1923 * @rq: runqueue associated with task-switch
1da177e4
LT
1924 * @prev: the thread we just switched away from.
1925 *
4866cde0
NP
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
a9957449 1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1937 __releases(rq->lock)
1938{
1da177e4 1939 struct mm_struct *mm = rq->prev_mm;
55a101f8 1940 long prev_state;
1da177e4
LT
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
c394cc9f 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
c394cc9f 1949 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
55a101f8 1955 prev_state = prev->state;
4866cde0 1956 finish_arch_switch(prev);
8381f65d
JI
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1960 perf_event_task_sched_in(prev, current);
8381f65d
JI
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1964 finish_lock_switch(rq, prev);
01f23e16 1965 finish_arch_post_lock_switch();
e8fa1362 1966
e107be36 1967 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1968 if (mm)
1969 mmdrop(mm);
c394cc9f 1970 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
9761eea8 1974 */
c6fd91f0 1975 kprobe_flush_task(prev);
1da177e4 1976 put_task_struct(prev);
c6fd91f0 1977 }
1da177e4
LT
1978}
1979
3f029d3c
GH
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
05fa785c 1995 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
05fa785c 1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1999
2000 rq->post_schedule = 0;
2001 }
2002}
2003
2004#else
da19ab51 2005
3f029d3c
GH
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
1da177e4
LT
2012}
2013
3f029d3c
GH
2014#endif
2015
1da177e4
LT
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
36c8b586 2020asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2021 __releases(rq->lock)
2022{
70b97a7f
IM
2023 struct rq *rq = this_rq();
2024
4866cde0 2025 finish_task_switch(rq, prev);
da19ab51 2026
3f029d3c
GH
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
70b97a7f 2032
4866cde0
NP
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036#endif
1da177e4 2037 if (current->set_child_tid)
b488893a 2038 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
dd41f596 2045static inline void
70b97a7f 2046context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2047 struct task_struct *next)
1da177e4 2048{
dd41f596 2049 struct mm_struct *mm, *oldmm;
1da177e4 2050
e107be36 2051 prepare_task_switch(rq, prev, next);
fe4b04fa 2052
dd41f596
IM
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
9226d125
ZA
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
224101ed 2060 arch_start_context_switch(prev);
9226d125 2061
31915ab4 2062 if (!mm) {
1da177e4
LT
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
31915ab4 2069 if (!prev->mm) {
1da177e4 2070 prev->active_mm = NULL;
1da177e4
LT
2071 rq->prev_mm = oldmm;
2072 }
3a5f5e48
IM
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2081#endif
1da177e4
LT
2082
2083 /* Here we just switch the register state and the stack. */
2084 switch_to(prev, next, prev);
2085
dd41f596
IM
2086 barrier();
2087 /*
2088 * this_rq must be evaluated again because prev may have moved
2089 * CPUs since it called schedule(), thus the 'rq' on its stack
2090 * frame will be invalid.
2091 */
2092 finish_task_switch(this_rq(), prev);
1da177e4
LT
2093}
2094
2095/*
2096 * nr_running, nr_uninterruptible and nr_context_switches:
2097 *
2098 * externally visible scheduler statistics: current number of runnable
2099 * threads, current number of uninterruptible-sleeping threads, total
2100 * number of context switches performed since bootup.
2101 */
2102unsigned long nr_running(void)
2103{
2104 unsigned long i, sum = 0;
2105
2106 for_each_online_cpu(i)
2107 sum += cpu_rq(i)->nr_running;
2108
2109 return sum;
f711f609 2110}
1da177e4
LT
2111
2112unsigned long nr_uninterruptible(void)
f711f609 2113{
1da177e4 2114 unsigned long i, sum = 0;
f711f609 2115
0a945022 2116 for_each_possible_cpu(i)
1da177e4 2117 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2118
2119 /*
1da177e4
LT
2120 * Since we read the counters lockless, it might be slightly
2121 * inaccurate. Do not allow it to go below zero though:
f711f609 2122 */
1da177e4
LT
2123 if (unlikely((long)sum < 0))
2124 sum = 0;
f711f609 2125
1da177e4 2126 return sum;
f711f609 2127}
f711f609 2128
1da177e4 2129unsigned long long nr_context_switches(void)
46cb4b7c 2130{
cc94abfc
SR
2131 int i;
2132 unsigned long long sum = 0;
46cb4b7c 2133
0a945022 2134 for_each_possible_cpu(i)
1da177e4 2135 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2136
1da177e4
LT
2137 return sum;
2138}
483b4ee6 2139
1da177e4
LT
2140unsigned long nr_iowait(void)
2141{
2142 unsigned long i, sum = 0;
483b4ee6 2143
0a945022 2144 for_each_possible_cpu(i)
1da177e4 2145 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2146
1da177e4
LT
2147 return sum;
2148}
483b4ee6 2149
8c215bd3 2150unsigned long nr_iowait_cpu(int cpu)
69d25870 2151{
8c215bd3 2152 struct rq *this = cpu_rq(cpu);
69d25870
AV
2153 return atomic_read(&this->nr_iowait);
2154}
46cb4b7c 2155
69d25870
AV
2156unsigned long this_cpu_load(void)
2157{
2158 struct rq *this = this_rq();
2159 return this->cpu_load[0];
2160}
e790fb0b 2161
46cb4b7c 2162
5167e8d5
PZ
2163/*
2164 * Global load-average calculations
2165 *
2166 * We take a distributed and async approach to calculating the global load-avg
2167 * in order to minimize overhead.
2168 *
2169 * The global load average is an exponentially decaying average of nr_running +
2170 * nr_uninterruptible.
2171 *
2172 * Once every LOAD_FREQ:
2173 *
2174 * nr_active = 0;
2175 * for_each_possible_cpu(cpu)
2176 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2177 *
2178 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2179 *
2180 * Due to a number of reasons the above turns in the mess below:
2181 *
2182 * - for_each_possible_cpu() is prohibitively expensive on machines with
2183 * serious number of cpus, therefore we need to take a distributed approach
2184 * to calculating nr_active.
2185 *
2186 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2187 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2188 *
2189 * So assuming nr_active := 0 when we start out -- true per definition, we
2190 * can simply take per-cpu deltas and fold those into a global accumulate
2191 * to obtain the same result. See calc_load_fold_active().
2192 *
2193 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2194 * across the machine, we assume 10 ticks is sufficient time for every
2195 * cpu to have completed this task.
2196 *
2197 * This places an upper-bound on the IRQ-off latency of the machine. Then
2198 * again, being late doesn't loose the delta, just wrecks the sample.
2199 *
2200 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2201 * this would add another cross-cpu cacheline miss and atomic operation
2202 * to the wakeup path. Instead we increment on whatever cpu the task ran
2203 * when it went into uninterruptible state and decrement on whatever cpu
2204 * did the wakeup. This means that only the sum of nr_uninterruptible over
2205 * all cpus yields the correct result.
2206 *
2207 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2208 */
2209
dce48a84
TG
2210/* Variables and functions for calc_load */
2211static atomic_long_t calc_load_tasks;
2212static unsigned long calc_load_update;
2213unsigned long avenrun[3];
5167e8d5
PZ
2214EXPORT_SYMBOL(avenrun); /* should be removed */
2215
2216/**
2217 * get_avenrun - get the load average array
2218 * @loads: pointer to dest load array
2219 * @offset: offset to add
2220 * @shift: shift count to shift the result left
2221 *
2222 * These values are estimates at best, so no need for locking.
2223 */
2224void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2225{
2226 loads[0] = (avenrun[0] + offset) << shift;
2227 loads[1] = (avenrun[1] + offset) << shift;
2228 loads[2] = (avenrun[2] + offset) << shift;
2229}
46cb4b7c 2230
74f5187a
PZ
2231static long calc_load_fold_active(struct rq *this_rq)
2232{
2233 long nr_active, delta = 0;
2234
2235 nr_active = this_rq->nr_running;
2236 nr_active += (long) this_rq->nr_uninterruptible;
2237
2238 if (nr_active != this_rq->calc_load_active) {
2239 delta = nr_active - this_rq->calc_load_active;
2240 this_rq->calc_load_active = nr_active;
2241 }
2242
2243 return delta;
2244}
2245
5167e8d5
PZ
2246/*
2247 * a1 = a0 * e + a * (1 - e)
2248 */
0f004f5a
PZ
2249static unsigned long
2250calc_load(unsigned long load, unsigned long exp, unsigned long active)
2251{
2252 load *= exp;
2253 load += active * (FIXED_1 - exp);
2254 load += 1UL << (FSHIFT - 1);
2255 return load >> FSHIFT;
2256}
2257
74f5187a
PZ
2258#ifdef CONFIG_NO_HZ
2259/*
5167e8d5
PZ
2260 * Handle NO_HZ for the global load-average.
2261 *
2262 * Since the above described distributed algorithm to compute the global
2263 * load-average relies on per-cpu sampling from the tick, it is affected by
2264 * NO_HZ.
2265 *
2266 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2267 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2268 * when we read the global state.
2269 *
2270 * Obviously reality has to ruin such a delightfully simple scheme:
2271 *
2272 * - When we go NO_HZ idle during the window, we can negate our sample
2273 * contribution, causing under-accounting.
2274 *
2275 * We avoid this by keeping two idle-delta counters and flipping them
2276 * when the window starts, thus separating old and new NO_HZ load.
2277 *
2278 * The only trick is the slight shift in index flip for read vs write.
2279 *
2280 * 0s 5s 10s 15s
2281 * +10 +10 +10 +10
2282 * |-|-----------|-|-----------|-|-----------|-|
2283 * r:0 0 1 1 0 0 1 1 0
2284 * w:0 1 1 0 0 1 1 0 0
2285 *
2286 * This ensures we'll fold the old idle contribution in this window while
2287 * accumlating the new one.
2288 *
2289 * - When we wake up from NO_HZ idle during the window, we push up our
2290 * contribution, since we effectively move our sample point to a known
2291 * busy state.
2292 *
2293 * This is solved by pushing the window forward, and thus skipping the
2294 * sample, for this cpu (effectively using the idle-delta for this cpu which
2295 * was in effect at the time the window opened). This also solves the issue
2296 * of having to deal with a cpu having been in NOHZ idle for multiple
2297 * LOAD_FREQ intervals.
74f5187a
PZ
2298 *
2299 * When making the ILB scale, we should try to pull this in as well.
2300 */
5167e8d5
PZ
2301static atomic_long_t calc_load_idle[2];
2302static int calc_load_idx;
74f5187a 2303
5167e8d5 2304static inline int calc_load_write_idx(void)
74f5187a 2305{
5167e8d5
PZ
2306 int idx = calc_load_idx;
2307
2308 /*
2309 * See calc_global_nohz(), if we observe the new index, we also
2310 * need to observe the new update time.
2311 */
2312 smp_rmb();
2313
2314 /*
2315 * If the folding window started, make sure we start writing in the
2316 * next idle-delta.
2317 */
2318 if (!time_before(jiffies, calc_load_update))
2319 idx++;
2320
2321 return idx & 1;
2322}
2323
2324static inline int calc_load_read_idx(void)
2325{
2326 return calc_load_idx & 1;
2327}
2328
2329void calc_load_enter_idle(void)
2330{
2331 struct rq *this_rq = this_rq();
74f5187a
PZ
2332 long delta;
2333
5167e8d5
PZ
2334 /*
2335 * We're going into NOHZ mode, if there's any pending delta, fold it
2336 * into the pending idle delta.
2337 */
74f5187a 2338 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2339 if (delta) {
2340 int idx = calc_load_write_idx();
2341 atomic_long_add(delta, &calc_load_idle[idx]);
2342 }
74f5187a
PZ
2343}
2344
5167e8d5 2345void calc_load_exit_idle(void)
74f5187a 2346{
5167e8d5
PZ
2347 struct rq *this_rq = this_rq();
2348
2349 /*
2350 * If we're still before the sample window, we're done.
2351 */
2352 if (time_before(jiffies, this_rq->calc_load_update))
2353 return;
74f5187a
PZ
2354
2355 /*
5167e8d5
PZ
2356 * We woke inside or after the sample window, this means we're already
2357 * accounted through the nohz accounting, so skip the entire deal and
2358 * sync up for the next window.
74f5187a 2359 */
5167e8d5
PZ
2360 this_rq->calc_load_update = calc_load_update;
2361 if (time_before(jiffies, this_rq->calc_load_update + 10))
2362 this_rq->calc_load_update += LOAD_FREQ;
2363}
2364
2365static long calc_load_fold_idle(void)
2366{
2367 int idx = calc_load_read_idx();
2368 long delta = 0;
2369
2370 if (atomic_long_read(&calc_load_idle[idx]))
2371 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2372
2373 return delta;
2374}
0f004f5a
PZ
2375
2376/**
2377 * fixed_power_int - compute: x^n, in O(log n) time
2378 *
2379 * @x: base of the power
2380 * @frac_bits: fractional bits of @x
2381 * @n: power to raise @x to.
2382 *
2383 * By exploiting the relation between the definition of the natural power
2384 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2385 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2386 * (where: n_i \elem {0, 1}, the binary vector representing n),
2387 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2388 * of course trivially computable in O(log_2 n), the length of our binary
2389 * vector.
2390 */
2391static unsigned long
2392fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2393{
2394 unsigned long result = 1UL << frac_bits;
2395
2396 if (n) for (;;) {
2397 if (n & 1) {
2398 result *= x;
2399 result += 1UL << (frac_bits - 1);
2400 result >>= frac_bits;
2401 }
2402 n >>= 1;
2403 if (!n)
2404 break;
2405 x *= x;
2406 x += 1UL << (frac_bits - 1);
2407 x >>= frac_bits;
2408 }
2409
2410 return result;
2411}
2412
2413/*
2414 * a1 = a0 * e + a * (1 - e)
2415 *
2416 * a2 = a1 * e + a * (1 - e)
2417 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2418 * = a0 * e^2 + a * (1 - e) * (1 + e)
2419 *
2420 * a3 = a2 * e + a * (1 - e)
2421 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2422 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2423 *
2424 * ...
2425 *
2426 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2427 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2428 * = a0 * e^n + a * (1 - e^n)
2429 *
2430 * [1] application of the geometric series:
2431 *
2432 * n 1 - x^(n+1)
2433 * S_n := \Sum x^i = -------------
2434 * i=0 1 - x
2435 */
2436static unsigned long
2437calc_load_n(unsigned long load, unsigned long exp,
2438 unsigned long active, unsigned int n)
2439{
2440
2441 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2442}
2443
2444/*
2445 * NO_HZ can leave us missing all per-cpu ticks calling
2446 * calc_load_account_active(), but since an idle CPU folds its delta into
2447 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2448 * in the pending idle delta if our idle period crossed a load cycle boundary.
2449 *
2450 * Once we've updated the global active value, we need to apply the exponential
2451 * weights adjusted to the number of cycles missed.
2452 */
c308b56b 2453static void calc_global_nohz(void)
0f004f5a
PZ
2454{
2455 long delta, active, n;
2456
5167e8d5
PZ
2457 if (!time_before(jiffies, calc_load_update + 10)) {
2458 /*
2459 * Catch-up, fold however many we are behind still
2460 */
2461 delta = jiffies - calc_load_update - 10;
2462 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2463
5167e8d5
PZ
2464 active = atomic_long_read(&calc_load_tasks);
2465 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2466
5167e8d5
PZ
2467 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2468 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2469 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2470
5167e8d5
PZ
2471 calc_load_update += n * LOAD_FREQ;
2472 }
74f5187a 2473
5167e8d5
PZ
2474 /*
2475 * Flip the idle index...
2476 *
2477 * Make sure we first write the new time then flip the index, so that
2478 * calc_load_write_idx() will see the new time when it reads the new
2479 * index, this avoids a double flip messing things up.
2480 */
2481 smp_wmb();
2482 calc_load_idx++;
74f5187a 2483}
5167e8d5 2484#else /* !CONFIG_NO_HZ */
0f004f5a 2485
5167e8d5
PZ
2486static inline long calc_load_fold_idle(void) { return 0; }
2487static inline void calc_global_nohz(void) { }
74f5187a 2488
5167e8d5 2489#endif /* CONFIG_NO_HZ */
46cb4b7c 2490
46cb4b7c 2491/*
dce48a84
TG
2492 * calc_load - update the avenrun load estimates 10 ticks after the
2493 * CPUs have updated calc_load_tasks.
7835b98b 2494 */
0f004f5a 2495void calc_global_load(unsigned long ticks)
7835b98b 2496{
5167e8d5 2497 long active, delta;
1da177e4 2498
0f004f5a 2499 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2500 return;
1da177e4 2501
5167e8d5
PZ
2502 /*
2503 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2504 */
2505 delta = calc_load_fold_idle();
2506 if (delta)
2507 atomic_long_add(delta, &calc_load_tasks);
2508
dce48a84
TG
2509 active = atomic_long_read(&calc_load_tasks);
2510 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2511
dce48a84
TG
2512 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2513 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2514 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2515
dce48a84 2516 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2517
2518 /*
5167e8d5 2519 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2520 */
2521 calc_global_nohz();
dce48a84 2522}
1da177e4 2523
dce48a84 2524/*
74f5187a
PZ
2525 * Called from update_cpu_load() to periodically update this CPU's
2526 * active count.
dce48a84
TG
2527 */
2528static void calc_load_account_active(struct rq *this_rq)
2529{
74f5187a 2530 long delta;
08c183f3 2531
74f5187a
PZ
2532 if (time_before(jiffies, this_rq->calc_load_update))
2533 return;
783609c6 2534
74f5187a 2535 delta = calc_load_fold_active(this_rq);
74f5187a 2536 if (delta)
dce48a84 2537 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2538
2539 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2540}
2541
5167e8d5
PZ
2542/*
2543 * End of global load-average stuff
2544 */
2545
fdf3e95d
VP
2546/*
2547 * The exact cpuload at various idx values, calculated at every tick would be
2548 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2549 *
2550 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2551 * on nth tick when cpu may be busy, then we have:
2552 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2553 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2554 *
2555 * decay_load_missed() below does efficient calculation of
2556 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2557 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2558 *
2559 * The calculation is approximated on a 128 point scale.
2560 * degrade_zero_ticks is the number of ticks after which load at any
2561 * particular idx is approximated to be zero.
2562 * degrade_factor is a precomputed table, a row for each load idx.
2563 * Each column corresponds to degradation factor for a power of two ticks,
2564 * based on 128 point scale.
2565 * Example:
2566 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2567 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2568 *
2569 * With this power of 2 load factors, we can degrade the load n times
2570 * by looking at 1 bits in n and doing as many mult/shift instead of
2571 * n mult/shifts needed by the exact degradation.
2572 */
2573#define DEGRADE_SHIFT 7
2574static const unsigned char
2575 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2576static const unsigned char
2577 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2578 {0, 0, 0, 0, 0, 0, 0, 0},
2579 {64, 32, 8, 0, 0, 0, 0, 0},
2580 {96, 72, 40, 12, 1, 0, 0},
2581 {112, 98, 75, 43, 15, 1, 0},
2582 {120, 112, 98, 76, 45, 16, 2} };
2583
2584/*
2585 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2586 * would be when CPU is idle and so we just decay the old load without
2587 * adding any new load.
2588 */
2589static unsigned long
2590decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2591{
2592 int j = 0;
2593
2594 if (!missed_updates)
2595 return load;
2596
2597 if (missed_updates >= degrade_zero_ticks[idx])
2598 return 0;
2599
2600 if (idx == 1)
2601 return load >> missed_updates;
2602
2603 while (missed_updates) {
2604 if (missed_updates % 2)
2605 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2606
2607 missed_updates >>= 1;
2608 j++;
2609 }
2610 return load;
2611}
2612
46cb4b7c 2613/*
dd41f596 2614 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2615 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2616 * every tick. We fix it up based on jiffies.
46cb4b7c 2617 */
556061b0
PZ
2618static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2619 unsigned long pending_updates)
46cb4b7c 2620{
dd41f596 2621 int i, scale;
46cb4b7c 2622
dd41f596 2623 this_rq->nr_load_updates++;
46cb4b7c 2624
dd41f596 2625 /* Update our load: */
fdf3e95d
VP
2626 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2627 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2628 unsigned long old_load, new_load;
7d1e6a9b 2629
dd41f596 2630 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2631
dd41f596 2632 old_load = this_rq->cpu_load[i];
fdf3e95d 2633 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2634 new_load = this_load;
a25707f3
IM
2635 /*
2636 * Round up the averaging division if load is increasing. This
2637 * prevents us from getting stuck on 9 if the load is 10, for
2638 * example.
2639 */
2640 if (new_load > old_load)
fdf3e95d
VP
2641 new_load += scale - 1;
2642
2643 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2644 }
da2b71ed
SS
2645
2646 sched_avg_update(this_rq);
fdf3e95d
VP
2647}
2648
5aaa0b7a
PZ
2649#ifdef CONFIG_NO_HZ
2650/*
2651 * There is no sane way to deal with nohz on smp when using jiffies because the
2652 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2653 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2654 *
2655 * Therefore we cannot use the delta approach from the regular tick since that
2656 * would seriously skew the load calculation. However we'll make do for those
2657 * updates happening while idle (nohz_idle_balance) or coming out of idle
2658 * (tick_nohz_idle_exit).
2659 *
2660 * This means we might still be one tick off for nohz periods.
2661 */
2662
556061b0
PZ
2663/*
2664 * Called from nohz_idle_balance() to update the load ratings before doing the
2665 * idle balance.
2666 */
2667void update_idle_cpu_load(struct rq *this_rq)
2668{
5aaa0b7a 2669 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2670 unsigned long load = this_rq->load.weight;
2671 unsigned long pending_updates;
2672
2673 /*
5aaa0b7a 2674 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2675 */
2676 if (load || curr_jiffies == this_rq->last_load_update_tick)
2677 return;
2678
2679 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2680 this_rq->last_load_update_tick = curr_jiffies;
2681
2682 __update_cpu_load(this_rq, load, pending_updates);
2683}
2684
5aaa0b7a
PZ
2685/*
2686 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2687 */
2688void update_cpu_load_nohz(void)
2689{
2690 struct rq *this_rq = this_rq();
2691 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2692 unsigned long pending_updates;
2693
2694 if (curr_jiffies == this_rq->last_load_update_tick)
2695 return;
2696
2697 raw_spin_lock(&this_rq->lock);
2698 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2699 if (pending_updates) {
2700 this_rq->last_load_update_tick = curr_jiffies;
2701 /*
2702 * We were idle, this means load 0, the current load might be
2703 * !0 due to remote wakeups and the sort.
2704 */
2705 __update_cpu_load(this_rq, 0, pending_updates);
2706 }
2707 raw_spin_unlock(&this_rq->lock);
2708}
2709#endif /* CONFIG_NO_HZ */
2710
556061b0
PZ
2711/*
2712 * Called from scheduler_tick()
2713 */
fdf3e95d
VP
2714static void update_cpu_load_active(struct rq *this_rq)
2715{
556061b0 2716 /*
5aaa0b7a 2717 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2718 */
2719 this_rq->last_load_update_tick = jiffies;
2720 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2721
74f5187a 2722 calc_load_account_active(this_rq);
46cb4b7c
SS
2723}
2724
dd41f596 2725#ifdef CONFIG_SMP
8a0be9ef 2726
46cb4b7c 2727/*
38022906
PZ
2728 * sched_exec - execve() is a valuable balancing opportunity, because at
2729 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2730 */
38022906 2731void sched_exec(void)
46cb4b7c 2732{
38022906 2733 struct task_struct *p = current;
1da177e4 2734 unsigned long flags;
0017d735 2735 int dest_cpu;
46cb4b7c 2736
8f42ced9 2737 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2738 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2739 if (dest_cpu == smp_processor_id())
2740 goto unlock;
38022906 2741
8f42ced9 2742 if (likely(cpu_active(dest_cpu))) {
969c7921 2743 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2744
8f42ced9
PZ
2745 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2746 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2747 return;
2748 }
0017d735 2749unlock:
8f42ced9 2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2751}
dd41f596 2752
1da177e4
LT
2753#endif
2754
1da177e4 2755DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2756DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2757
2758EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2759EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2760
2761/*
c5f8d995 2762 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2763 * @p in case that task is currently running.
c5f8d995
HS
2764 *
2765 * Called with task_rq_lock() held on @rq.
1da177e4 2766 */
c5f8d995
HS
2767static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2768{
2769 u64 ns = 0;
2770
2771 if (task_current(rq, p)) {
2772 update_rq_clock(rq);
305e6835 2773 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2774 if ((s64)ns < 0)
2775 ns = 0;
2776 }
2777
2778 return ns;
2779}
2780
bb34d92f 2781unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2782{
1da177e4 2783 unsigned long flags;
41b86e9c 2784 struct rq *rq;
bb34d92f 2785 u64 ns = 0;
48f24c4d 2786
41b86e9c 2787 rq = task_rq_lock(p, &flags);
c5f8d995 2788 ns = do_task_delta_exec(p, rq);
0122ec5b 2789 task_rq_unlock(rq, p, &flags);
1508487e 2790
c5f8d995
HS
2791 return ns;
2792}
f06febc9 2793
c5f8d995
HS
2794/*
2795 * Return accounted runtime for the task.
2796 * In case the task is currently running, return the runtime plus current's
2797 * pending runtime that have not been accounted yet.
2798 */
2799unsigned long long task_sched_runtime(struct task_struct *p)
2800{
2801 unsigned long flags;
2802 struct rq *rq;
2803 u64 ns = 0;
2804
2805 rq = task_rq_lock(p, &flags);
2806 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2807 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2808
2809 return ns;
2810}
48f24c4d 2811
54c707e9
GC
2812#ifdef CONFIG_CGROUP_CPUACCT
2813struct cgroup_subsys cpuacct_subsys;
2814struct cpuacct root_cpuacct;
2815#endif
2816
be726ffd
GC
2817static inline void task_group_account_field(struct task_struct *p, int index,
2818 u64 tmp)
54c707e9
GC
2819{
2820#ifdef CONFIG_CGROUP_CPUACCT
2821 struct kernel_cpustat *kcpustat;
2822 struct cpuacct *ca;
2823#endif
2824 /*
2825 * Since all updates are sure to touch the root cgroup, we
2826 * get ourselves ahead and touch it first. If the root cgroup
2827 * is the only cgroup, then nothing else should be necessary.
2828 *
2829 */
2830 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2831
2832#ifdef CONFIG_CGROUP_CPUACCT
2833 if (unlikely(!cpuacct_subsys.active))
2834 return;
2835
2836 rcu_read_lock();
2837 ca = task_ca(p);
2838 while (ca && (ca != &root_cpuacct)) {
2839 kcpustat = this_cpu_ptr(ca->cpustat);
2840 kcpustat->cpustat[index] += tmp;
2841 ca = parent_ca(ca);
2842 }
2843 rcu_read_unlock();
2844#endif
2845}
2846
2847
1da177e4
LT
2848/*
2849 * Account user cpu time to a process.
2850 * @p: the process that the cpu time gets accounted to
1da177e4 2851 * @cputime: the cpu time spent in user space since the last update
457533a7 2852 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2853 */
457533a7
MS
2854void account_user_time(struct task_struct *p, cputime_t cputime,
2855 cputime_t cputime_scaled)
1da177e4 2856{
3292beb3 2857 int index;
1da177e4 2858
457533a7 2859 /* Add user time to process. */
64861634
MS
2860 p->utime += cputime;
2861 p->utimescaled += cputime_scaled;
f06febc9 2862 account_group_user_time(p, cputime);
1da177e4 2863
3292beb3 2864 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2865
1da177e4 2866 /* Add user time to cpustat. */
612ef28a 2867 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2868
49b5cf34
JL
2869 /* Account for user time used */
2870 acct_update_integrals(p);
1da177e4
LT
2871}
2872
94886b84
LV
2873/*
2874 * Account guest cpu time to a process.
2875 * @p: the process that the cpu time gets accounted to
2876 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2877 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2878 */
457533a7
MS
2879static void account_guest_time(struct task_struct *p, cputime_t cputime,
2880 cputime_t cputime_scaled)
94886b84 2881{
3292beb3 2882 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2883
457533a7 2884 /* Add guest time to process. */
64861634
MS
2885 p->utime += cputime;
2886 p->utimescaled += cputime_scaled;
f06febc9 2887 account_group_user_time(p, cputime);
64861634 2888 p->gtime += cputime;
94886b84 2889
457533a7 2890 /* Add guest time to cpustat. */
ce0e7b28 2891 if (TASK_NICE(p) > 0) {
612ef28a
MS
2892 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2893 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2894 } else {
612ef28a
MS
2895 cpustat[CPUTIME_USER] += (__force u64) cputime;
2896 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2897 }
94886b84
LV
2898}
2899
70a89a66
VP
2900/*
2901 * Account system cpu time to a process and desired cpustat field
2902 * @p: the process that the cpu time gets accounted to
2903 * @cputime: the cpu time spent in kernel space since the last update
2904 * @cputime_scaled: cputime scaled by cpu frequency
2905 * @target_cputime64: pointer to cpustat field that has to be updated
2906 */
2907static inline
2908void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2909 cputime_t cputime_scaled, int index)
70a89a66 2910{
70a89a66 2911 /* Add system time to process. */
64861634
MS
2912 p->stime += cputime;
2913 p->stimescaled += cputime_scaled;
70a89a66
VP
2914 account_group_system_time(p, cputime);
2915
2916 /* Add system time to cpustat. */
612ef28a 2917 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2918
2919 /* Account for system time used */
2920 acct_update_integrals(p);
2921}
2922
1da177e4
LT
2923/*
2924 * Account system cpu time to a process.
2925 * @p: the process that the cpu time gets accounted to
2926 * @hardirq_offset: the offset to subtract from hardirq_count()
2927 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2928 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2929 */
2930void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2931 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2932{
3292beb3 2933 int index;
1da177e4 2934
983ed7a6 2935 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2936 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2937 return;
2938 }
94886b84 2939
1da177e4 2940 if (hardirq_count() - hardirq_offset)
3292beb3 2941 index = CPUTIME_IRQ;
75e1056f 2942 else if (in_serving_softirq())
3292beb3 2943 index = CPUTIME_SOFTIRQ;
1da177e4 2944 else
3292beb3 2945 index = CPUTIME_SYSTEM;
ef12fefa 2946
3292beb3 2947 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2948}
2949
c66f08be 2950/*
1da177e4 2951 * Account for involuntary wait time.
544b4a1f 2952 * @cputime: the cpu time spent in involuntary wait
c66f08be 2953 */
79741dd3 2954void account_steal_time(cputime_t cputime)
c66f08be 2955{
3292beb3 2956 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2957
612ef28a 2958 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2959}
2960
1da177e4 2961/*
79741dd3
MS
2962 * Account for idle time.
2963 * @cputime: the cpu time spent in idle wait
1da177e4 2964 */
79741dd3 2965void account_idle_time(cputime_t cputime)
1da177e4 2966{
3292beb3 2967 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2968 struct rq *rq = this_rq();
1da177e4 2969
79741dd3 2970 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2971 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2972 else
612ef28a 2973 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2974}
2975
e6e6685a
GC
2976static __always_inline bool steal_account_process_tick(void)
2977{
2978#ifdef CONFIG_PARAVIRT
c5905afb 2979 if (static_key_false(&paravirt_steal_enabled)) {
e6e6685a
GC
2980 u64 steal, st = 0;
2981
2982 steal = paravirt_steal_clock(smp_processor_id());
2983 steal -= this_rq()->prev_steal_time;
2984
2985 st = steal_ticks(steal);
2986 this_rq()->prev_steal_time += st * TICK_NSEC;
2987
2988 account_steal_time(st);
2989 return st;
2990 }
2991#endif
2992 return false;
2993}
2994
79741dd3
MS
2995#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2996
abb74cef
VP
2997#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2998/*
2999 * Account a tick to a process and cpustat
3000 * @p: the process that the cpu time gets accounted to
3001 * @user_tick: is the tick from userspace
3002 * @rq: the pointer to rq
3003 *
3004 * Tick demultiplexing follows the order
3005 * - pending hardirq update
3006 * - pending softirq update
3007 * - user_time
3008 * - idle_time
3009 * - system time
3010 * - check for guest_time
3011 * - else account as system_time
3012 *
3013 * Check for hardirq is done both for system and user time as there is
3014 * no timer going off while we are on hardirq and hence we may never get an
3015 * opportunity to update it solely in system time.
3016 * p->stime and friends are only updated on system time and not on irq
3017 * softirq as those do not count in task exec_runtime any more.
3018 */
3019static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3020 struct rq *rq)
3021{
3022 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 3023 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 3024
e6e6685a
GC
3025 if (steal_account_process_tick())
3026 return;
3027
abb74cef 3028 if (irqtime_account_hi_update()) {
612ef28a 3029 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 3030 } else if (irqtime_account_si_update()) {
612ef28a 3031 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
3032 } else if (this_cpu_ksoftirqd() == p) {
3033 /*
3034 * ksoftirqd time do not get accounted in cpu_softirq_time.
3035 * So, we have to handle it separately here.
3036 * Also, p->stime needs to be updated for ksoftirqd.
3037 */
3038 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 3039 CPUTIME_SOFTIRQ);
abb74cef
VP
3040 } else if (user_tick) {
3041 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3042 } else if (p == rq->idle) {
3043 account_idle_time(cputime_one_jiffy);
3044 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3045 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3046 } else {
3047 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 3048 CPUTIME_SYSTEM);
abb74cef
VP
3049 }
3050}
3051
3052static void irqtime_account_idle_ticks(int ticks)
3053{
3054 int i;
3055 struct rq *rq = this_rq();
3056
3057 for (i = 0; i < ticks; i++)
3058 irqtime_account_process_tick(current, 0, rq);
3059}
544b4a1f 3060#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3061static void irqtime_account_idle_ticks(int ticks) {}
3062static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3063 struct rq *rq) {}
544b4a1f 3064#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3065
3066/*
3067 * Account a single tick of cpu time.
3068 * @p: the process that the cpu time gets accounted to
3069 * @user_tick: indicates if the tick is a user or a system tick
3070 */
3071void account_process_tick(struct task_struct *p, int user_tick)
3072{
a42548a1 3073 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3074 struct rq *rq = this_rq();
3075
abb74cef
VP
3076 if (sched_clock_irqtime) {
3077 irqtime_account_process_tick(p, user_tick, rq);
3078 return;
3079 }
3080
e6e6685a
GC
3081 if (steal_account_process_tick())
3082 return;
3083
79741dd3 3084 if (user_tick)
a42548a1 3085 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3086 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3087 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3088 one_jiffy_scaled);
3089 else
a42548a1 3090 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3091}
3092
3093/*
3094 * Account multiple ticks of steal time.
3095 * @p: the process from which the cpu time has been stolen
3096 * @ticks: number of stolen ticks
3097 */
3098void account_steal_ticks(unsigned long ticks)
3099{
3100 account_steal_time(jiffies_to_cputime(ticks));
3101}
3102
3103/*
3104 * Account multiple ticks of idle time.
3105 * @ticks: number of stolen ticks
3106 */
3107void account_idle_ticks(unsigned long ticks)
3108{
abb74cef
VP
3109
3110 if (sched_clock_irqtime) {
3111 irqtime_account_idle_ticks(ticks);
3112 return;
3113 }
3114
79741dd3 3115 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3116}
3117
79741dd3
MS
3118#endif
3119
49048622
BS
3120/*
3121 * Use precise platform statistics if available:
3122 */
3123#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3124void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3125{
d99ca3b9
HS
3126 *ut = p->utime;
3127 *st = p->stime;
49048622
BS
3128}
3129
0cf55e1e 3130void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3131{
0cf55e1e
HS
3132 struct task_cputime cputime;
3133
3134 thread_group_cputime(p, &cputime);
3135
3136 *ut = cputime.utime;
3137 *st = cputime.stime;
49048622
BS
3138}
3139#else
761b1d26
HS
3140
3141#ifndef nsecs_to_cputime
b7b20df9 3142# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3143#endif
3144
d180c5bc 3145void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3146{
64861634 3147 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
3148
3149 /*
3150 * Use CFS's precise accounting:
3151 */
d180c5bc 3152 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3153
3154 if (total) {
64861634 3155 u64 temp = (__force u64) rtime;
d180c5bc 3156
64861634
MS
3157 temp *= (__force u64) utime;
3158 do_div(temp, (__force u32) total);
3159 utime = (__force cputime_t) temp;
d180c5bc
HS
3160 } else
3161 utime = rtime;
49048622 3162
d180c5bc
HS
3163 /*
3164 * Compare with previous values, to keep monotonicity:
3165 */
761b1d26 3166 p->prev_utime = max(p->prev_utime, utime);
64861634 3167 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 3168
d99ca3b9
HS
3169 *ut = p->prev_utime;
3170 *st = p->prev_stime;
49048622
BS
3171}
3172
0cf55e1e
HS
3173/*
3174 * Must be called with siglock held.
3175 */
3176void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3177{
0cf55e1e
HS
3178 struct signal_struct *sig = p->signal;
3179 struct task_cputime cputime;
3180 cputime_t rtime, utime, total;
49048622 3181
0cf55e1e 3182 thread_group_cputime(p, &cputime);
49048622 3183
64861634 3184 total = cputime.utime + cputime.stime;
0cf55e1e 3185 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3186
0cf55e1e 3187 if (total) {
64861634 3188 u64 temp = (__force u64) rtime;
49048622 3189
64861634
MS
3190 temp *= (__force u64) cputime.utime;
3191 do_div(temp, (__force u32) total);
3192 utime = (__force cputime_t) temp;
0cf55e1e
HS
3193 } else
3194 utime = rtime;
3195
3196 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3197 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3198
3199 *ut = sig->prev_utime;
3200 *st = sig->prev_stime;
49048622 3201}
49048622 3202#endif
49048622 3203
7835b98b
CL
3204/*
3205 * This function gets called by the timer code, with HZ frequency.
3206 * We call it with interrupts disabled.
7835b98b
CL
3207 */
3208void scheduler_tick(void)
3209{
7835b98b
CL
3210 int cpu = smp_processor_id();
3211 struct rq *rq = cpu_rq(cpu);
dd41f596 3212 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3213
3214 sched_clock_tick();
dd41f596 3215
05fa785c 3216 raw_spin_lock(&rq->lock);
3e51f33f 3217 update_rq_clock(rq);
fdf3e95d 3218 update_cpu_load_active(rq);
fa85ae24 3219 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3220 raw_spin_unlock(&rq->lock);
7835b98b 3221
e9d2b064 3222 perf_event_task_tick();
e220d2dc 3223
e418e1c2 3224#ifdef CONFIG_SMP
6eb57e0d 3225 rq->idle_balance = idle_cpu(cpu);
dd41f596 3226 trigger_load_balance(rq, cpu);
e418e1c2 3227#endif
1da177e4
LT
3228}
3229
132380a0 3230notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3231{
3232 if (in_lock_functions(addr)) {
3233 addr = CALLER_ADDR2;
3234 if (in_lock_functions(addr))
3235 addr = CALLER_ADDR3;
3236 }
3237 return addr;
3238}
1da177e4 3239
7e49fcce
SR
3240#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3241 defined(CONFIG_PREEMPT_TRACER))
3242
43627582 3243void __kprobes add_preempt_count(int val)
1da177e4 3244{
6cd8a4bb 3245#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3246 /*
3247 * Underflow?
3248 */
9a11b49a
IM
3249 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3250 return;
6cd8a4bb 3251#endif
1da177e4 3252 preempt_count() += val;
6cd8a4bb 3253#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3254 /*
3255 * Spinlock count overflowing soon?
3256 */
33859f7f
MOS
3257 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3258 PREEMPT_MASK - 10);
6cd8a4bb
SR
3259#endif
3260 if (preempt_count() == val)
3261 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3262}
3263EXPORT_SYMBOL(add_preempt_count);
3264
43627582 3265void __kprobes sub_preempt_count(int val)
1da177e4 3266{
6cd8a4bb 3267#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3268 /*
3269 * Underflow?
3270 */
01e3eb82 3271 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3272 return;
1da177e4
LT
3273 /*
3274 * Is the spinlock portion underflowing?
3275 */
9a11b49a
IM
3276 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3277 !(preempt_count() & PREEMPT_MASK)))
3278 return;
6cd8a4bb 3279#endif
9a11b49a 3280
6cd8a4bb
SR
3281 if (preempt_count() == val)
3282 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3283 preempt_count() -= val;
3284}
3285EXPORT_SYMBOL(sub_preempt_count);
3286
3287#endif
3288
3289/*
dd41f596 3290 * Print scheduling while atomic bug:
1da177e4 3291 */
dd41f596 3292static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3293{
664dfa65
DJ
3294 if (oops_in_progress)
3295 return;
3296
3df0fc5b
PZ
3297 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3298 prev->comm, prev->pid, preempt_count());
838225b4 3299
dd41f596 3300 debug_show_held_locks(prev);
e21f5b15 3301 print_modules();
dd41f596
IM
3302 if (irqs_disabled())
3303 print_irqtrace_events(prev);
6135fc1e 3304 dump_stack();
1c2927f1 3305 add_taint(TAINT_WARN);
dd41f596 3306}
1da177e4 3307
dd41f596
IM
3308/*
3309 * Various schedule()-time debugging checks and statistics:
3310 */
3311static inline void schedule_debug(struct task_struct *prev)
3312{
1da177e4 3313 /*
41a2d6cf 3314 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3315 * schedule() atomically, we ignore that path for now.
3316 * Otherwise, whine if we are scheduling when we should not be.
3317 */
3f33a7ce 3318 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3319 __schedule_bug(prev);
b3fbab05 3320 rcu_sleep_check();
dd41f596 3321
1da177e4
LT
3322 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3323
2d72376b 3324 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3325}
3326
6cecd084 3327static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3328{
61eadef6 3329 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3330 update_rq_clock(rq);
6cecd084 3331 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3332}
3333
dd41f596
IM
3334/*
3335 * Pick up the highest-prio task:
3336 */
3337static inline struct task_struct *
b67802ea 3338pick_next_task(struct rq *rq)
dd41f596 3339{
5522d5d5 3340 const struct sched_class *class;
dd41f596 3341 struct task_struct *p;
1da177e4
LT
3342
3343 /*
dd41f596
IM
3344 * Optimization: we know that if all tasks are in
3345 * the fair class we can call that function directly:
1da177e4 3346 */
953bfcd1 3347 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3348 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3349 if (likely(p))
3350 return p;
1da177e4
LT
3351 }
3352
34f971f6 3353 for_each_class(class) {
fb8d4724 3354 p = class->pick_next_task(rq);
dd41f596
IM
3355 if (p)
3356 return p;
dd41f596 3357 }
34f971f6
PZ
3358
3359 BUG(); /* the idle class will always have a runnable task */
dd41f596 3360}
1da177e4 3361
dd41f596 3362/*
c259e01a 3363 * __schedule() is the main scheduler function.
dd41f596 3364 */
c259e01a 3365static void __sched __schedule(void)
dd41f596
IM
3366{
3367 struct task_struct *prev, *next;
67ca7bde 3368 unsigned long *switch_count;
dd41f596 3369 struct rq *rq;
31656519 3370 int cpu;
dd41f596 3371
ff743345
PZ
3372need_resched:
3373 preempt_disable();
dd41f596
IM
3374 cpu = smp_processor_id();
3375 rq = cpu_rq(cpu);
25502a6c 3376 rcu_note_context_switch(cpu);
dd41f596 3377 prev = rq->curr;
dd41f596 3378
dd41f596 3379 schedule_debug(prev);
1da177e4 3380
31656519 3381 if (sched_feat(HRTICK))
f333fdc9 3382 hrtick_clear(rq);
8f4d37ec 3383
05fa785c 3384 raw_spin_lock_irq(&rq->lock);
1da177e4 3385
246d86b5 3386 switch_count = &prev->nivcsw;
1da177e4 3387 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3388 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3389 prev->state = TASK_RUNNING;
21aa9af0 3390 } else {
2acca55e
PZ
3391 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3392 prev->on_rq = 0;
3393
21aa9af0 3394 /*
2acca55e
PZ
3395 * If a worker went to sleep, notify and ask workqueue
3396 * whether it wants to wake up a task to maintain
3397 * concurrency.
21aa9af0
TH
3398 */
3399 if (prev->flags & PF_WQ_WORKER) {
3400 struct task_struct *to_wakeup;
3401
3402 to_wakeup = wq_worker_sleeping(prev, cpu);
3403 if (to_wakeup)
3404 try_to_wake_up_local(to_wakeup);
3405 }
21aa9af0 3406 }
dd41f596 3407 switch_count = &prev->nvcsw;
1da177e4
LT
3408 }
3409
3f029d3c 3410 pre_schedule(rq, prev);
f65eda4f 3411
dd41f596 3412 if (unlikely(!rq->nr_running))
1da177e4 3413 idle_balance(cpu, rq);
1da177e4 3414
df1c99d4 3415 put_prev_task(rq, prev);
b67802ea 3416 next = pick_next_task(rq);
f26f9aff
MG
3417 clear_tsk_need_resched(prev);
3418 rq->skip_clock_update = 0;
1da177e4 3419
1da177e4 3420 if (likely(prev != next)) {
1da177e4
LT
3421 rq->nr_switches++;
3422 rq->curr = next;
3423 ++*switch_count;
3424
dd41f596 3425 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3426 /*
246d86b5
ON
3427 * The context switch have flipped the stack from under us
3428 * and restored the local variables which were saved when
3429 * this task called schedule() in the past. prev == current
3430 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3431 */
3432 cpu = smp_processor_id();
3433 rq = cpu_rq(cpu);
1da177e4 3434 } else
05fa785c 3435 raw_spin_unlock_irq(&rq->lock);
1da177e4 3436
3f029d3c 3437 post_schedule(rq);
1da177e4 3438
ba74c144 3439 sched_preempt_enable_no_resched();
ff743345 3440 if (need_resched())
1da177e4
LT
3441 goto need_resched;
3442}
c259e01a 3443
9c40cef2
TG
3444static inline void sched_submit_work(struct task_struct *tsk)
3445{
3c7d5184 3446 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3447 return;
3448 /*
3449 * If we are going to sleep and we have plugged IO queued,
3450 * make sure to submit it to avoid deadlocks.
3451 */
3452 if (blk_needs_flush_plug(tsk))
3453 blk_schedule_flush_plug(tsk);
3454}
3455
6ebbe7a0 3456asmlinkage void __sched schedule(void)
c259e01a 3457{
9c40cef2
TG
3458 struct task_struct *tsk = current;
3459
3460 sched_submit_work(tsk);
c259e01a
TG
3461 __schedule();
3462}
1da177e4
LT
3463EXPORT_SYMBOL(schedule);
3464
c5491ea7
TG
3465/**
3466 * schedule_preempt_disabled - called with preemption disabled
3467 *
3468 * Returns with preemption disabled. Note: preempt_count must be 1
3469 */
3470void __sched schedule_preempt_disabled(void)
3471{
ba74c144 3472 sched_preempt_enable_no_resched();
c5491ea7
TG
3473 schedule();
3474 preempt_disable();
3475}
3476
c08f7829 3477#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3478
c6eb3dda
PZ
3479static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3480{
c6eb3dda 3481 if (lock->owner != owner)
307bf980 3482 return false;
0d66bf6d
PZ
3483
3484 /*
c6eb3dda
PZ
3485 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3486 * lock->owner still matches owner, if that fails, owner might
3487 * point to free()d memory, if it still matches, the rcu_read_lock()
3488 * ensures the memory stays valid.
0d66bf6d 3489 */
c6eb3dda 3490 barrier();
0d66bf6d 3491
307bf980 3492 return owner->on_cpu;
c6eb3dda 3493}
0d66bf6d 3494
c6eb3dda
PZ
3495/*
3496 * Look out! "owner" is an entirely speculative pointer
3497 * access and not reliable.
3498 */
3499int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3500{
3501 if (!sched_feat(OWNER_SPIN))
3502 return 0;
0d66bf6d 3503
307bf980 3504 rcu_read_lock();
c6eb3dda
PZ
3505 while (owner_running(lock, owner)) {
3506 if (need_resched())
307bf980 3507 break;
0d66bf6d 3508
335d7afb 3509 arch_mutex_cpu_relax();
0d66bf6d 3510 }
307bf980 3511 rcu_read_unlock();
4b402210 3512
c6eb3dda 3513 /*
307bf980
TG
3514 * We break out the loop above on need_resched() and when the
3515 * owner changed, which is a sign for heavy contention. Return
3516 * success only when lock->owner is NULL.
c6eb3dda 3517 */
307bf980 3518 return lock->owner == NULL;
0d66bf6d
PZ
3519}
3520#endif
3521
1da177e4
LT
3522#ifdef CONFIG_PREEMPT
3523/*
2ed6e34f 3524 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3525 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3526 * occur there and call schedule directly.
3527 */
d1f74e20 3528asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3529{
3530 struct thread_info *ti = current_thread_info();
6478d880 3531
1da177e4
LT
3532 /*
3533 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3534 * we do not want to preempt the current task. Just return..
1da177e4 3535 */
beed33a8 3536 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3537 return;
3538
3a5c359a 3539 do {
d1f74e20 3540 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3541 __schedule();
d1f74e20 3542 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3543
3a5c359a
AK
3544 /*
3545 * Check again in case we missed a preemption opportunity
3546 * between schedule and now.
3547 */
3548 barrier();
5ed0cec0 3549 } while (need_resched());
1da177e4 3550}
1da177e4
LT
3551EXPORT_SYMBOL(preempt_schedule);
3552
3553/*
2ed6e34f 3554 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3555 * off of irq context.
3556 * Note, that this is called and return with irqs disabled. This will
3557 * protect us against recursive calling from irq.
3558 */
3559asmlinkage void __sched preempt_schedule_irq(void)
3560{
3561 struct thread_info *ti = current_thread_info();
6478d880 3562
2ed6e34f 3563 /* Catch callers which need to be fixed */
1da177e4
LT
3564 BUG_ON(ti->preempt_count || !irqs_disabled());
3565
3a5c359a
AK
3566 do {
3567 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3568 local_irq_enable();
c259e01a 3569 __schedule();
3a5c359a 3570 local_irq_disable();
3a5c359a 3571 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3572
3a5c359a
AK
3573 /*
3574 * Check again in case we missed a preemption opportunity
3575 * between schedule and now.
3576 */
3577 barrier();
5ed0cec0 3578 } while (need_resched());
1da177e4
LT
3579}
3580
3581#endif /* CONFIG_PREEMPT */
3582
63859d4f 3583int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3584 void *key)
1da177e4 3585{
63859d4f 3586 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3587}
1da177e4
LT
3588EXPORT_SYMBOL(default_wake_function);
3589
3590/*
41a2d6cf
IM
3591 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3592 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3593 * number) then we wake all the non-exclusive tasks and one exclusive task.
3594 *
3595 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3596 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3597 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3598 */
78ddb08f 3599static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3600 int nr_exclusive, int wake_flags, void *key)
1da177e4 3601{
2e45874c 3602 wait_queue_t *curr, *next;
1da177e4 3603
2e45874c 3604 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3605 unsigned flags = curr->flags;
3606
63859d4f 3607 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3608 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3609 break;
3610 }
3611}
3612
3613/**
3614 * __wake_up - wake up threads blocked on a waitqueue.
3615 * @q: the waitqueue
3616 * @mode: which threads
3617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3618 * @key: is directly passed to the wakeup function
50fa610a
DH
3619 *
3620 * It may be assumed that this function implies a write memory barrier before
3621 * changing the task state if and only if any tasks are woken up.
1da177e4 3622 */
7ad5b3a5 3623void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3624 int nr_exclusive, void *key)
1da177e4
LT
3625{
3626 unsigned long flags;
3627
3628 spin_lock_irqsave(&q->lock, flags);
3629 __wake_up_common(q, mode, nr_exclusive, 0, key);
3630 spin_unlock_irqrestore(&q->lock, flags);
3631}
1da177e4
LT
3632EXPORT_SYMBOL(__wake_up);
3633
3634/*
3635 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3636 */
63b20011 3637void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3638{
63b20011 3639 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3640}
22c43c81 3641EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3642
4ede816a
DL
3643void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3644{
3645 __wake_up_common(q, mode, 1, 0, key);
3646}
bf294b41 3647EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3648
1da177e4 3649/**
4ede816a 3650 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3651 * @q: the waitqueue
3652 * @mode: which threads
3653 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3654 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3655 *
3656 * The sync wakeup differs that the waker knows that it will schedule
3657 * away soon, so while the target thread will be woken up, it will not
3658 * be migrated to another CPU - ie. the two threads are 'synchronized'
3659 * with each other. This can prevent needless bouncing between CPUs.
3660 *
3661 * On UP it can prevent extra preemption.
50fa610a
DH
3662 *
3663 * It may be assumed that this function implies a write memory barrier before
3664 * changing the task state if and only if any tasks are woken up.
1da177e4 3665 */
4ede816a
DL
3666void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3667 int nr_exclusive, void *key)
1da177e4
LT
3668{
3669 unsigned long flags;
7d478721 3670 int wake_flags = WF_SYNC;
1da177e4
LT
3671
3672 if (unlikely(!q))
3673 return;
3674
3675 if (unlikely(!nr_exclusive))
7d478721 3676 wake_flags = 0;
1da177e4
LT
3677
3678 spin_lock_irqsave(&q->lock, flags);
7d478721 3679 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3680 spin_unlock_irqrestore(&q->lock, flags);
3681}
4ede816a
DL
3682EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3683
3684/*
3685 * __wake_up_sync - see __wake_up_sync_key()
3686 */
3687void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3688{
3689 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3690}
1da177e4
LT
3691EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3692
65eb3dc6
KD
3693/**
3694 * complete: - signals a single thread waiting on this completion
3695 * @x: holds the state of this particular completion
3696 *
3697 * This will wake up a single thread waiting on this completion. Threads will be
3698 * awakened in the same order in which they were queued.
3699 *
3700 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3701 *
3702 * It may be assumed that this function implies a write memory barrier before
3703 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3704 */
b15136e9 3705void complete(struct completion *x)
1da177e4
LT
3706{
3707 unsigned long flags;
3708
3709 spin_lock_irqsave(&x->wait.lock, flags);
3710 x->done++;
d9514f6c 3711 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3712 spin_unlock_irqrestore(&x->wait.lock, flags);
3713}
3714EXPORT_SYMBOL(complete);
3715
65eb3dc6
KD
3716/**
3717 * complete_all: - signals all threads waiting on this completion
3718 * @x: holds the state of this particular completion
3719 *
3720 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3721 *
3722 * It may be assumed that this function implies a write memory barrier before
3723 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3724 */
b15136e9 3725void complete_all(struct completion *x)
1da177e4
LT
3726{
3727 unsigned long flags;
3728
3729 spin_lock_irqsave(&x->wait.lock, flags);
3730 x->done += UINT_MAX/2;
d9514f6c 3731 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3732 spin_unlock_irqrestore(&x->wait.lock, flags);
3733}
3734EXPORT_SYMBOL(complete_all);
3735
8cbbe86d
AK
3736static inline long __sched
3737do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3738{
1da177e4
LT
3739 if (!x->done) {
3740 DECLARE_WAITQUEUE(wait, current);
3741
a93d2f17 3742 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3743 do {
94d3d824 3744 if (signal_pending_state(state, current)) {
ea71a546
ON
3745 timeout = -ERESTARTSYS;
3746 break;
8cbbe86d
AK
3747 }
3748 __set_current_state(state);
1da177e4
LT
3749 spin_unlock_irq(&x->wait.lock);
3750 timeout = schedule_timeout(timeout);
3751 spin_lock_irq(&x->wait.lock);
ea71a546 3752 } while (!x->done && timeout);
1da177e4 3753 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3754 if (!x->done)
3755 return timeout;
1da177e4
LT
3756 }
3757 x->done--;
ea71a546 3758 return timeout ?: 1;
1da177e4 3759}
1da177e4 3760
8cbbe86d
AK
3761static long __sched
3762wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3763{
1da177e4
LT
3764 might_sleep();
3765
3766 spin_lock_irq(&x->wait.lock);
8cbbe86d 3767 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3768 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3769 return timeout;
3770}
1da177e4 3771
65eb3dc6
KD
3772/**
3773 * wait_for_completion: - waits for completion of a task
3774 * @x: holds the state of this particular completion
3775 *
3776 * This waits to be signaled for completion of a specific task. It is NOT
3777 * interruptible and there is no timeout.
3778 *
3779 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3780 * and interrupt capability. Also see complete().
3781 */
b15136e9 3782void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3783{
3784 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3785}
8cbbe86d 3786EXPORT_SYMBOL(wait_for_completion);
1da177e4 3787
65eb3dc6
KD
3788/**
3789 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3790 * @x: holds the state of this particular completion
3791 * @timeout: timeout value in jiffies
3792 *
3793 * This waits for either a completion of a specific task to be signaled or for a
3794 * specified timeout to expire. The timeout is in jiffies. It is not
3795 * interruptible.
c6dc7f05
BF
3796 *
3797 * The return value is 0 if timed out, and positive (at least 1, or number of
3798 * jiffies left till timeout) if completed.
65eb3dc6 3799 */
b15136e9 3800unsigned long __sched
8cbbe86d 3801wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3802{
8cbbe86d 3803 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3804}
8cbbe86d 3805EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3806
65eb3dc6
KD
3807/**
3808 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3809 * @x: holds the state of this particular completion
3810 *
3811 * This waits for completion of a specific task to be signaled. It is
3812 * interruptible.
c6dc7f05
BF
3813 *
3814 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3815 */
8cbbe86d 3816int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3817{
51e97990
AK
3818 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3819 if (t == -ERESTARTSYS)
3820 return t;
3821 return 0;
0fec171c 3822}
8cbbe86d 3823EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3824
65eb3dc6
KD
3825/**
3826 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3827 * @x: holds the state of this particular completion
3828 * @timeout: timeout value in jiffies
3829 *
3830 * This waits for either a completion of a specific task to be signaled or for a
3831 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3832 *
3833 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3834 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3835 */
6bf41237 3836long __sched
8cbbe86d
AK
3837wait_for_completion_interruptible_timeout(struct completion *x,
3838 unsigned long timeout)
0fec171c 3839{
8cbbe86d 3840 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3841}
8cbbe86d 3842EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3843
65eb3dc6
KD
3844/**
3845 * wait_for_completion_killable: - waits for completion of a task (killable)
3846 * @x: holds the state of this particular completion
3847 *
3848 * This waits to be signaled for completion of a specific task. It can be
3849 * interrupted by a kill signal.
c6dc7f05
BF
3850 *
3851 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3852 */
009e577e
MW
3853int __sched wait_for_completion_killable(struct completion *x)
3854{
3855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3856 if (t == -ERESTARTSYS)
3857 return t;
3858 return 0;
3859}
3860EXPORT_SYMBOL(wait_for_completion_killable);
3861
0aa12fb4
SW
3862/**
3863 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3864 * @x: holds the state of this particular completion
3865 * @timeout: timeout value in jiffies
3866 *
3867 * This waits for either a completion of a specific task to be
3868 * signaled or for a specified timeout to expire. It can be
3869 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3870 *
3871 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3872 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3873 */
6bf41237 3874long __sched
0aa12fb4
SW
3875wait_for_completion_killable_timeout(struct completion *x,
3876 unsigned long timeout)
3877{
3878 return wait_for_common(x, timeout, TASK_KILLABLE);
3879}
3880EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3881
be4de352
DC
3882/**
3883 * try_wait_for_completion - try to decrement a completion without blocking
3884 * @x: completion structure
3885 *
3886 * Returns: 0 if a decrement cannot be done without blocking
3887 * 1 if a decrement succeeded.
3888 *
3889 * If a completion is being used as a counting completion,
3890 * attempt to decrement the counter without blocking. This
3891 * enables us to avoid waiting if the resource the completion
3892 * is protecting is not available.
3893 */
3894bool try_wait_for_completion(struct completion *x)
3895{
7539a3b3 3896 unsigned long flags;
be4de352
DC
3897 int ret = 1;
3898
7539a3b3 3899 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3900 if (!x->done)
3901 ret = 0;
3902 else
3903 x->done--;
7539a3b3 3904 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3905 return ret;
3906}
3907EXPORT_SYMBOL(try_wait_for_completion);
3908
3909/**
3910 * completion_done - Test to see if a completion has any waiters
3911 * @x: completion structure
3912 *
3913 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3914 * 1 if there are no waiters.
3915 *
3916 */
3917bool completion_done(struct completion *x)
3918{
7539a3b3 3919 unsigned long flags;
be4de352
DC
3920 int ret = 1;
3921
7539a3b3 3922 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3923 if (!x->done)
3924 ret = 0;
7539a3b3 3925 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3926 return ret;
3927}
3928EXPORT_SYMBOL(completion_done);
3929
8cbbe86d
AK
3930static long __sched
3931sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3932{
0fec171c
IM
3933 unsigned long flags;
3934 wait_queue_t wait;
3935
3936 init_waitqueue_entry(&wait, current);
1da177e4 3937
8cbbe86d 3938 __set_current_state(state);
1da177e4 3939
8cbbe86d
AK
3940 spin_lock_irqsave(&q->lock, flags);
3941 __add_wait_queue(q, &wait);
3942 spin_unlock(&q->lock);
3943 timeout = schedule_timeout(timeout);
3944 spin_lock_irq(&q->lock);
3945 __remove_wait_queue(q, &wait);
3946 spin_unlock_irqrestore(&q->lock, flags);
3947
3948 return timeout;
3949}
3950
3951void __sched interruptible_sleep_on(wait_queue_head_t *q)
3952{
3953 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3954}
1da177e4
LT
3955EXPORT_SYMBOL(interruptible_sleep_on);
3956
0fec171c 3957long __sched
95cdf3b7 3958interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3959{
8cbbe86d 3960 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3961}
1da177e4
LT
3962EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3963
0fec171c 3964void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3965{
8cbbe86d 3966 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3967}
1da177e4
LT
3968EXPORT_SYMBOL(sleep_on);
3969
0fec171c 3970long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3971{
8cbbe86d 3972 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3973}
1da177e4
LT
3974EXPORT_SYMBOL(sleep_on_timeout);
3975
b29739f9
IM
3976#ifdef CONFIG_RT_MUTEXES
3977
3978/*
3979 * rt_mutex_setprio - set the current priority of a task
3980 * @p: task
3981 * @prio: prio value (kernel-internal form)
3982 *
3983 * This function changes the 'effective' priority of a task. It does
3984 * not touch ->normal_prio like __setscheduler().
3985 *
3986 * Used by the rt_mutex code to implement priority inheritance logic.
3987 */
36c8b586 3988void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3989{
83b699ed 3990 int oldprio, on_rq, running;
70b97a7f 3991 struct rq *rq;
83ab0aa0 3992 const struct sched_class *prev_class;
b29739f9
IM
3993
3994 BUG_ON(prio < 0 || prio > MAX_PRIO);
3995
0122ec5b 3996 rq = __task_rq_lock(p);
b29739f9 3997
1c4dd99b
TG
3998 /*
3999 * Idle task boosting is a nono in general. There is one
4000 * exception, when PREEMPT_RT and NOHZ is active:
4001 *
4002 * The idle task calls get_next_timer_interrupt() and holds
4003 * the timer wheel base->lock on the CPU and another CPU wants
4004 * to access the timer (probably to cancel it). We can safely
4005 * ignore the boosting request, as the idle CPU runs this code
4006 * with interrupts disabled and will complete the lock
4007 * protected section without being interrupted. So there is no
4008 * real need to boost.
4009 */
4010 if (unlikely(p == rq->idle)) {
4011 WARN_ON(p != rq->curr);
4012 WARN_ON(p->pi_blocked_on);
4013 goto out_unlock;
4014 }
4015
a8027073 4016 trace_sched_pi_setprio(p, prio);
d5f9f942 4017 oldprio = p->prio;
83ab0aa0 4018 prev_class = p->sched_class;
fd2f4419 4019 on_rq = p->on_rq;
051a1d1a 4020 running = task_current(rq, p);
0e1f3483 4021 if (on_rq)
69be72c1 4022 dequeue_task(rq, p, 0);
0e1f3483
HS
4023 if (running)
4024 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4025
4026 if (rt_prio(prio))
4027 p->sched_class = &rt_sched_class;
4028 else
4029 p->sched_class = &fair_sched_class;
4030
b29739f9
IM
4031 p->prio = prio;
4032
0e1f3483
HS
4033 if (running)
4034 p->sched_class->set_curr_task(rq);
da7a735e 4035 if (on_rq)
371fd7e7 4036 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4037
da7a735e 4038 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 4039out_unlock:
0122ec5b 4040 __task_rq_unlock(rq);
b29739f9 4041}
b29739f9 4042#endif
36c8b586 4043void set_user_nice(struct task_struct *p, long nice)
1da177e4 4044{
dd41f596 4045 int old_prio, delta, on_rq;
1da177e4 4046 unsigned long flags;
70b97a7f 4047 struct rq *rq;
1da177e4
LT
4048
4049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4050 return;
4051 /*
4052 * We have to be careful, if called from sys_setpriority(),
4053 * the task might be in the middle of scheduling on another CPU.
4054 */
4055 rq = task_rq_lock(p, &flags);
4056 /*
4057 * The RT priorities are set via sched_setscheduler(), but we still
4058 * allow the 'normal' nice value to be set - but as expected
4059 * it wont have any effect on scheduling until the task is
dd41f596 4060 * SCHED_FIFO/SCHED_RR:
1da177e4 4061 */
e05606d3 4062 if (task_has_rt_policy(p)) {
1da177e4
LT
4063 p->static_prio = NICE_TO_PRIO(nice);
4064 goto out_unlock;
4065 }
fd2f4419 4066 on_rq = p->on_rq;
c09595f6 4067 if (on_rq)
69be72c1 4068 dequeue_task(rq, p, 0);
1da177e4 4069
1da177e4 4070 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4071 set_load_weight(p);
b29739f9
IM
4072 old_prio = p->prio;
4073 p->prio = effective_prio(p);
4074 delta = p->prio - old_prio;
1da177e4 4075
dd41f596 4076 if (on_rq) {
371fd7e7 4077 enqueue_task(rq, p, 0);
1da177e4 4078 /*
d5f9f942
AM
4079 * If the task increased its priority or is running and
4080 * lowered its priority, then reschedule its CPU:
1da177e4 4081 */
d5f9f942 4082 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4083 resched_task(rq->curr);
4084 }
4085out_unlock:
0122ec5b 4086 task_rq_unlock(rq, p, &flags);
1da177e4 4087}
1da177e4
LT
4088EXPORT_SYMBOL(set_user_nice);
4089
e43379f1
MM
4090/*
4091 * can_nice - check if a task can reduce its nice value
4092 * @p: task
4093 * @nice: nice value
4094 */
36c8b586 4095int can_nice(const struct task_struct *p, const int nice)
e43379f1 4096{
024f4747
MM
4097 /* convert nice value [19,-20] to rlimit style value [1,40] */
4098 int nice_rlim = 20 - nice;
48f24c4d 4099
78d7d407 4100 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4101 capable(CAP_SYS_NICE));
4102}
4103
1da177e4
LT
4104#ifdef __ARCH_WANT_SYS_NICE
4105
4106/*
4107 * sys_nice - change the priority of the current process.
4108 * @increment: priority increment
4109 *
4110 * sys_setpriority is a more generic, but much slower function that
4111 * does similar things.
4112 */
5add95d4 4113SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4114{
48f24c4d 4115 long nice, retval;
1da177e4
LT
4116
4117 /*
4118 * Setpriority might change our priority at the same moment.
4119 * We don't have to worry. Conceptually one call occurs first
4120 * and we have a single winner.
4121 */
e43379f1
MM
4122 if (increment < -40)
4123 increment = -40;
1da177e4
LT
4124 if (increment > 40)
4125 increment = 40;
4126
2b8f836f 4127 nice = TASK_NICE(current) + increment;
1da177e4
LT
4128 if (nice < -20)
4129 nice = -20;
4130 if (nice > 19)
4131 nice = 19;
4132
e43379f1
MM
4133 if (increment < 0 && !can_nice(current, nice))
4134 return -EPERM;
4135
1da177e4
LT
4136 retval = security_task_setnice(current, nice);
4137 if (retval)
4138 return retval;
4139
4140 set_user_nice(current, nice);
4141 return 0;
4142}
4143
4144#endif
4145
4146/**
4147 * task_prio - return the priority value of a given task.
4148 * @p: the task in question.
4149 *
4150 * This is the priority value as seen by users in /proc.
4151 * RT tasks are offset by -200. Normal tasks are centered
4152 * around 0, value goes from -16 to +15.
4153 */
36c8b586 4154int task_prio(const struct task_struct *p)
1da177e4
LT
4155{
4156 return p->prio - MAX_RT_PRIO;
4157}
4158
4159/**
4160 * task_nice - return the nice value of a given task.
4161 * @p: the task in question.
4162 */
36c8b586 4163int task_nice(const struct task_struct *p)
1da177e4
LT
4164{
4165 return TASK_NICE(p);
4166}
150d8bed 4167EXPORT_SYMBOL(task_nice);
1da177e4
LT
4168
4169/**
4170 * idle_cpu - is a given cpu idle currently?
4171 * @cpu: the processor in question.
4172 */
4173int idle_cpu(int cpu)
4174{
908a3283
TG
4175 struct rq *rq = cpu_rq(cpu);
4176
4177 if (rq->curr != rq->idle)
4178 return 0;
4179
4180 if (rq->nr_running)
4181 return 0;
4182
4183#ifdef CONFIG_SMP
4184 if (!llist_empty(&rq->wake_list))
4185 return 0;
4186#endif
4187
4188 return 1;
1da177e4
LT
4189}
4190
1da177e4
LT
4191/**
4192 * idle_task - return the idle task for a given cpu.
4193 * @cpu: the processor in question.
4194 */
36c8b586 4195struct task_struct *idle_task(int cpu)
1da177e4
LT
4196{
4197 return cpu_rq(cpu)->idle;
4198}
4199
4200/**
4201 * find_process_by_pid - find a process with a matching PID value.
4202 * @pid: the pid in question.
4203 */
a9957449 4204static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4205{
228ebcbe 4206 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4207}
4208
4209/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4210static void
4211__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4212{
1da177e4
LT
4213 p->policy = policy;
4214 p->rt_priority = prio;
b29739f9
IM
4215 p->normal_prio = normal_prio(p);
4216 /* we are holding p->pi_lock already */
4217 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4218 if (rt_prio(p->prio))
4219 p->sched_class = &rt_sched_class;
4220 else
4221 p->sched_class = &fair_sched_class;
2dd73a4f 4222 set_load_weight(p);
1da177e4
LT
4223}
4224
c69e8d9c
DH
4225/*
4226 * check the target process has a UID that matches the current process's
4227 */
4228static bool check_same_owner(struct task_struct *p)
4229{
4230 const struct cred *cred = current_cred(), *pcred;
4231 bool match;
4232
4233 rcu_read_lock();
4234 pcred = __task_cred(p);
9c806aa0
EB
4235 match = (uid_eq(cred->euid, pcred->euid) ||
4236 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4237 rcu_read_unlock();
4238 return match;
4239}
4240
961ccddd 4241static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4242 const struct sched_param *param, bool user)
1da177e4 4243{
83b699ed 4244 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4245 unsigned long flags;
83ab0aa0 4246 const struct sched_class *prev_class;
70b97a7f 4247 struct rq *rq;
ca94c442 4248 int reset_on_fork;
1da177e4 4249
66e5393a
SR
4250 /* may grab non-irq protected spin_locks */
4251 BUG_ON(in_interrupt());
1da177e4
LT
4252recheck:
4253 /* double check policy once rq lock held */
ca94c442
LP
4254 if (policy < 0) {
4255 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4256 policy = oldpolicy = p->policy;
ca94c442
LP
4257 } else {
4258 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4259 policy &= ~SCHED_RESET_ON_FORK;
4260
4261 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4262 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4263 policy != SCHED_IDLE)
4264 return -EINVAL;
4265 }
4266
1da177e4
LT
4267 /*
4268 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4269 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4270 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4271 */
4272 if (param->sched_priority < 0 ||
95cdf3b7 4273 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4274 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4275 return -EINVAL;
e05606d3 4276 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4277 return -EINVAL;
4278
37e4ab3f
OC
4279 /*
4280 * Allow unprivileged RT tasks to decrease priority:
4281 */
961ccddd 4282 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4283 if (rt_policy(policy)) {
a44702e8
ON
4284 unsigned long rlim_rtprio =
4285 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4286
4287 /* can't set/change the rt policy */
4288 if (policy != p->policy && !rlim_rtprio)
4289 return -EPERM;
4290
4291 /* can't increase priority */
4292 if (param->sched_priority > p->rt_priority &&
4293 param->sched_priority > rlim_rtprio)
4294 return -EPERM;
4295 }
c02aa73b 4296
dd41f596 4297 /*
c02aa73b
DH
4298 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4299 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4300 */
c02aa73b
DH
4301 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4302 if (!can_nice(p, TASK_NICE(p)))
4303 return -EPERM;
4304 }
5fe1d75f 4305
37e4ab3f 4306 /* can't change other user's priorities */
c69e8d9c 4307 if (!check_same_owner(p))
37e4ab3f 4308 return -EPERM;
ca94c442
LP
4309
4310 /* Normal users shall not reset the sched_reset_on_fork flag */
4311 if (p->sched_reset_on_fork && !reset_on_fork)
4312 return -EPERM;
37e4ab3f 4313 }
1da177e4 4314
725aad24 4315 if (user) {
b0ae1981 4316 retval = security_task_setscheduler(p);
725aad24
JF
4317 if (retval)
4318 return retval;
4319 }
4320
b29739f9
IM
4321 /*
4322 * make sure no PI-waiters arrive (or leave) while we are
4323 * changing the priority of the task:
0122ec5b 4324 *
25985edc 4325 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4326 * runqueue lock must be held.
4327 */
0122ec5b 4328 rq = task_rq_lock(p, &flags);
dc61b1d6 4329
34f971f6
PZ
4330 /*
4331 * Changing the policy of the stop threads its a very bad idea
4332 */
4333 if (p == rq->stop) {
0122ec5b 4334 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4335 return -EINVAL;
4336 }
4337
a51e9198
DF
4338 /*
4339 * If not changing anything there's no need to proceed further:
4340 */
4341 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4342 param->sched_priority == p->rt_priority))) {
45afb173 4343 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4344 return 0;
4345 }
4346
dc61b1d6
PZ
4347#ifdef CONFIG_RT_GROUP_SCHED
4348 if (user) {
4349 /*
4350 * Do not allow realtime tasks into groups that have no runtime
4351 * assigned.
4352 */
4353 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4354 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4355 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4356 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4357 return -EPERM;
4358 }
4359 }
4360#endif
4361
1da177e4
LT
4362 /* recheck policy now with rq lock held */
4363 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4364 policy = oldpolicy = -1;
0122ec5b 4365 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4366 goto recheck;
4367 }
fd2f4419 4368 on_rq = p->on_rq;
051a1d1a 4369 running = task_current(rq, p);
0e1f3483 4370 if (on_rq)
4ca9b72b 4371 dequeue_task(rq, p, 0);
0e1f3483
HS
4372 if (running)
4373 p->sched_class->put_prev_task(rq, p);
f6b53205 4374
ca94c442
LP
4375 p->sched_reset_on_fork = reset_on_fork;
4376
1da177e4 4377 oldprio = p->prio;
83ab0aa0 4378 prev_class = p->sched_class;
dd41f596 4379 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4380
0e1f3483
HS
4381 if (running)
4382 p->sched_class->set_curr_task(rq);
da7a735e 4383 if (on_rq)
4ca9b72b 4384 enqueue_task(rq, p, 0);
cb469845 4385
da7a735e 4386 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4387 task_rq_unlock(rq, p, &flags);
b29739f9 4388
95e02ca9
TG
4389 rt_mutex_adjust_pi(p);
4390
1da177e4
LT
4391 return 0;
4392}
961ccddd
RR
4393
4394/**
4395 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4396 * @p: the task in question.
4397 * @policy: new policy.
4398 * @param: structure containing the new RT priority.
4399 *
4400 * NOTE that the task may be already dead.
4401 */
4402int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4403 const struct sched_param *param)
961ccddd
RR
4404{
4405 return __sched_setscheduler(p, policy, param, true);
4406}
1da177e4
LT
4407EXPORT_SYMBOL_GPL(sched_setscheduler);
4408
961ccddd
RR
4409/**
4410 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4411 * @p: the task in question.
4412 * @policy: new policy.
4413 * @param: structure containing the new RT priority.
4414 *
4415 * Just like sched_setscheduler, only don't bother checking if the
4416 * current context has permission. For example, this is needed in
4417 * stop_machine(): we create temporary high priority worker threads,
4418 * but our caller might not have that capability.
4419 */
4420int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4421 const struct sched_param *param)
961ccddd
RR
4422{
4423 return __sched_setscheduler(p, policy, param, false);
4424}
4425
95cdf3b7
IM
4426static int
4427do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4428{
1da177e4
LT
4429 struct sched_param lparam;
4430 struct task_struct *p;
36c8b586 4431 int retval;
1da177e4
LT
4432
4433 if (!param || pid < 0)
4434 return -EINVAL;
4435 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4436 return -EFAULT;
5fe1d75f
ON
4437
4438 rcu_read_lock();
4439 retval = -ESRCH;
1da177e4 4440 p = find_process_by_pid(pid);
5fe1d75f
ON
4441 if (p != NULL)
4442 retval = sched_setscheduler(p, policy, &lparam);
4443 rcu_read_unlock();
36c8b586 4444
1da177e4
LT
4445 return retval;
4446}
4447
4448/**
4449 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4450 * @pid: the pid in question.
4451 * @policy: new policy.
4452 * @param: structure containing the new RT priority.
4453 */
5add95d4
HC
4454SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4455 struct sched_param __user *, param)
1da177e4 4456{
c21761f1
JB
4457 /* negative values for policy are not valid */
4458 if (policy < 0)
4459 return -EINVAL;
4460
1da177e4
LT
4461 return do_sched_setscheduler(pid, policy, param);
4462}
4463
4464/**
4465 * sys_sched_setparam - set/change the RT priority of a thread
4466 * @pid: the pid in question.
4467 * @param: structure containing the new RT priority.
4468 */
5add95d4 4469SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4470{
4471 return do_sched_setscheduler(pid, -1, param);
4472}
4473
4474/**
4475 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4476 * @pid: the pid in question.
4477 */
5add95d4 4478SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4479{
36c8b586 4480 struct task_struct *p;
3a5c359a 4481 int retval;
1da177e4
LT
4482
4483 if (pid < 0)
3a5c359a 4484 return -EINVAL;
1da177e4
LT
4485
4486 retval = -ESRCH;
5fe85be0 4487 rcu_read_lock();
1da177e4
LT
4488 p = find_process_by_pid(pid);
4489 if (p) {
4490 retval = security_task_getscheduler(p);
4491 if (!retval)
ca94c442
LP
4492 retval = p->policy
4493 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4494 }
5fe85be0 4495 rcu_read_unlock();
1da177e4
LT
4496 return retval;
4497}
4498
4499/**
ca94c442 4500 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4501 * @pid: the pid in question.
4502 * @param: structure containing the RT priority.
4503 */
5add95d4 4504SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4505{
4506 struct sched_param lp;
36c8b586 4507 struct task_struct *p;
3a5c359a 4508 int retval;
1da177e4
LT
4509
4510 if (!param || pid < 0)
3a5c359a 4511 return -EINVAL;
1da177e4 4512
5fe85be0 4513 rcu_read_lock();
1da177e4
LT
4514 p = find_process_by_pid(pid);
4515 retval = -ESRCH;
4516 if (!p)
4517 goto out_unlock;
4518
4519 retval = security_task_getscheduler(p);
4520 if (retval)
4521 goto out_unlock;
4522
4523 lp.sched_priority = p->rt_priority;
5fe85be0 4524 rcu_read_unlock();
1da177e4
LT
4525
4526 /*
4527 * This one might sleep, we cannot do it with a spinlock held ...
4528 */
4529 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4530
1da177e4
LT
4531 return retval;
4532
4533out_unlock:
5fe85be0 4534 rcu_read_unlock();
1da177e4
LT
4535 return retval;
4536}
4537
96f874e2 4538long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4539{
5a16f3d3 4540 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4541 struct task_struct *p;
4542 int retval;
1da177e4 4543
95402b38 4544 get_online_cpus();
23f5d142 4545 rcu_read_lock();
1da177e4
LT
4546
4547 p = find_process_by_pid(pid);
4548 if (!p) {
23f5d142 4549 rcu_read_unlock();
95402b38 4550 put_online_cpus();
1da177e4
LT
4551 return -ESRCH;
4552 }
4553
23f5d142 4554 /* Prevent p going away */
1da177e4 4555 get_task_struct(p);
23f5d142 4556 rcu_read_unlock();
1da177e4 4557
5a16f3d3
RR
4558 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4559 retval = -ENOMEM;
4560 goto out_put_task;
4561 }
4562 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4563 retval = -ENOMEM;
4564 goto out_free_cpus_allowed;
4565 }
1da177e4 4566 retval = -EPERM;
f1c84dae 4567 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4568 goto out_unlock;
4569
b0ae1981 4570 retval = security_task_setscheduler(p);
e7834f8f
DQ
4571 if (retval)
4572 goto out_unlock;
4573
5a16f3d3
RR
4574 cpuset_cpus_allowed(p, cpus_allowed);
4575 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4576again:
5a16f3d3 4577 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4578
8707d8b8 4579 if (!retval) {
5a16f3d3
RR
4580 cpuset_cpus_allowed(p, cpus_allowed);
4581 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4582 /*
4583 * We must have raced with a concurrent cpuset
4584 * update. Just reset the cpus_allowed to the
4585 * cpuset's cpus_allowed
4586 */
5a16f3d3 4587 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4588 goto again;
4589 }
4590 }
1da177e4 4591out_unlock:
5a16f3d3
RR
4592 free_cpumask_var(new_mask);
4593out_free_cpus_allowed:
4594 free_cpumask_var(cpus_allowed);
4595out_put_task:
1da177e4 4596 put_task_struct(p);
95402b38 4597 put_online_cpus();
1da177e4
LT
4598 return retval;
4599}
4600
4601static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4602 struct cpumask *new_mask)
1da177e4 4603{
96f874e2
RR
4604 if (len < cpumask_size())
4605 cpumask_clear(new_mask);
4606 else if (len > cpumask_size())
4607 len = cpumask_size();
4608
1da177e4
LT
4609 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4610}
4611
4612/**
4613 * sys_sched_setaffinity - set the cpu affinity of a process
4614 * @pid: pid of the process
4615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4616 * @user_mask_ptr: user-space pointer to the new cpu mask
4617 */
5add95d4
HC
4618SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4619 unsigned long __user *, user_mask_ptr)
1da177e4 4620{
5a16f3d3 4621 cpumask_var_t new_mask;
1da177e4
LT
4622 int retval;
4623
5a16f3d3
RR
4624 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4625 return -ENOMEM;
1da177e4 4626
5a16f3d3
RR
4627 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4628 if (retval == 0)
4629 retval = sched_setaffinity(pid, new_mask);
4630 free_cpumask_var(new_mask);
4631 return retval;
1da177e4
LT
4632}
4633
96f874e2 4634long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4635{
36c8b586 4636 struct task_struct *p;
31605683 4637 unsigned long flags;
1da177e4 4638 int retval;
1da177e4 4639
95402b38 4640 get_online_cpus();
23f5d142 4641 rcu_read_lock();
1da177e4
LT
4642
4643 retval = -ESRCH;
4644 p = find_process_by_pid(pid);
4645 if (!p)
4646 goto out_unlock;
4647
e7834f8f
DQ
4648 retval = security_task_getscheduler(p);
4649 if (retval)
4650 goto out_unlock;
4651
013fdb80 4652 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4653 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4654 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4655
4656out_unlock:
23f5d142 4657 rcu_read_unlock();
95402b38 4658 put_online_cpus();
1da177e4 4659
9531b62f 4660 return retval;
1da177e4
LT
4661}
4662
4663/**
4664 * sys_sched_getaffinity - get the cpu affinity of a process
4665 * @pid: pid of the process
4666 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4667 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4668 */
5add95d4
HC
4669SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4670 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4671{
4672 int ret;
f17c8607 4673 cpumask_var_t mask;
1da177e4 4674
84fba5ec 4675 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4676 return -EINVAL;
4677 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4678 return -EINVAL;
4679
f17c8607
RR
4680 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4681 return -ENOMEM;
1da177e4 4682
f17c8607
RR
4683 ret = sched_getaffinity(pid, mask);
4684 if (ret == 0) {
8bc037fb 4685 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4686
4687 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4688 ret = -EFAULT;
4689 else
cd3d8031 4690 ret = retlen;
f17c8607
RR
4691 }
4692 free_cpumask_var(mask);
1da177e4 4693
f17c8607 4694 return ret;
1da177e4
LT
4695}
4696
4697/**
4698 * sys_sched_yield - yield the current processor to other threads.
4699 *
dd41f596
IM
4700 * This function yields the current CPU to other tasks. If there are no
4701 * other threads running on this CPU then this function will return.
1da177e4 4702 */
5add95d4 4703SYSCALL_DEFINE0(sched_yield)
1da177e4 4704{
70b97a7f 4705 struct rq *rq = this_rq_lock();
1da177e4 4706
2d72376b 4707 schedstat_inc(rq, yld_count);
4530d7ab 4708 current->sched_class->yield_task(rq);
1da177e4
LT
4709
4710 /*
4711 * Since we are going to call schedule() anyway, there's
4712 * no need to preempt or enable interrupts:
4713 */
4714 __release(rq->lock);
8a25d5de 4715 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4716 do_raw_spin_unlock(&rq->lock);
ba74c144 4717 sched_preempt_enable_no_resched();
1da177e4
LT
4718
4719 schedule();
4720
4721 return 0;
4722}
4723
d86ee480
PZ
4724static inline int should_resched(void)
4725{
4726 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4727}
4728
e7b38404 4729static void __cond_resched(void)
1da177e4 4730{
e7aaaa69 4731 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4732 __schedule();
e7aaaa69 4733 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4734}
4735
02b67cc3 4736int __sched _cond_resched(void)
1da177e4 4737{
d86ee480 4738 if (should_resched()) {
1da177e4
LT
4739 __cond_resched();
4740 return 1;
4741 }
4742 return 0;
4743}
02b67cc3 4744EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4745
4746/*
613afbf8 4747 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4748 * call schedule, and on return reacquire the lock.
4749 *
41a2d6cf 4750 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4751 * operations here to prevent schedule() from being called twice (once via
4752 * spin_unlock(), once by hand).
4753 */
613afbf8 4754int __cond_resched_lock(spinlock_t *lock)
1da177e4 4755{
d86ee480 4756 int resched = should_resched();
6df3cecb
JK
4757 int ret = 0;
4758
f607c668
PZ
4759 lockdep_assert_held(lock);
4760
95c354fe 4761 if (spin_needbreak(lock) || resched) {
1da177e4 4762 spin_unlock(lock);
d86ee480 4763 if (resched)
95c354fe
NP
4764 __cond_resched();
4765 else
4766 cpu_relax();
6df3cecb 4767 ret = 1;
1da177e4 4768 spin_lock(lock);
1da177e4 4769 }
6df3cecb 4770 return ret;
1da177e4 4771}
613afbf8 4772EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4773
613afbf8 4774int __sched __cond_resched_softirq(void)
1da177e4
LT
4775{
4776 BUG_ON(!in_softirq());
4777
d86ee480 4778 if (should_resched()) {
98d82567 4779 local_bh_enable();
1da177e4
LT
4780 __cond_resched();
4781 local_bh_disable();
4782 return 1;
4783 }
4784 return 0;
4785}
613afbf8 4786EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4787
1da177e4
LT
4788/**
4789 * yield - yield the current processor to other threads.
4790 *
8e3fabfd
PZ
4791 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4792 *
4793 * The scheduler is at all times free to pick the calling task as the most
4794 * eligible task to run, if removing the yield() call from your code breaks
4795 * it, its already broken.
4796 *
4797 * Typical broken usage is:
4798 *
4799 * while (!event)
4800 * yield();
4801 *
4802 * where one assumes that yield() will let 'the other' process run that will
4803 * make event true. If the current task is a SCHED_FIFO task that will never
4804 * happen. Never use yield() as a progress guarantee!!
4805 *
4806 * If you want to use yield() to wait for something, use wait_event().
4807 * If you want to use yield() to be 'nice' for others, use cond_resched().
4808 * If you still want to use yield(), do not!
1da177e4
LT
4809 */
4810void __sched yield(void)
4811{
4812 set_current_state(TASK_RUNNING);
4813 sys_sched_yield();
4814}
1da177e4
LT
4815EXPORT_SYMBOL(yield);
4816
d95f4122
MG
4817/**
4818 * yield_to - yield the current processor to another thread in
4819 * your thread group, or accelerate that thread toward the
4820 * processor it's on.
16addf95
RD
4821 * @p: target task
4822 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4823 *
4824 * It's the caller's job to ensure that the target task struct
4825 * can't go away on us before we can do any checks.
4826 *
4827 * Returns true if we indeed boosted the target task.
4828 */
4829bool __sched yield_to(struct task_struct *p, bool preempt)
4830{
4831 struct task_struct *curr = current;
4832 struct rq *rq, *p_rq;
4833 unsigned long flags;
4834 bool yielded = 0;
4835
4836 local_irq_save(flags);
4837 rq = this_rq();
4838
4839again:
4840 p_rq = task_rq(p);
4841 double_rq_lock(rq, p_rq);
4842 while (task_rq(p) != p_rq) {
4843 double_rq_unlock(rq, p_rq);
4844 goto again;
4845 }
4846
4847 if (!curr->sched_class->yield_to_task)
4848 goto out;
4849
4850 if (curr->sched_class != p->sched_class)
4851 goto out;
4852
4853 if (task_running(p_rq, p) || p->state)
4854 goto out;
4855
4856 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4857 if (yielded) {
d95f4122 4858 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4859 /*
4860 * Make p's CPU reschedule; pick_next_entity takes care of
4861 * fairness.
4862 */
4863 if (preempt && rq != p_rq)
4864 resched_task(p_rq->curr);
916671c0
MG
4865 } else {
4866 /*
4867 * We might have set it in task_yield_fair(), but are
4868 * not going to schedule(), so don't want to skip
4869 * the next update.
4870 */
4871 rq->skip_clock_update = 0;
6d1cafd8 4872 }
d95f4122
MG
4873
4874out:
4875 double_rq_unlock(rq, p_rq);
4876 local_irq_restore(flags);
4877
4878 if (yielded)
4879 schedule();
4880
4881 return yielded;
4882}
4883EXPORT_SYMBOL_GPL(yield_to);
4884
1da177e4 4885/*
41a2d6cf 4886 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4887 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4888 */
4889void __sched io_schedule(void)
4890{
54d35f29 4891 struct rq *rq = raw_rq();
1da177e4 4892
0ff92245 4893 delayacct_blkio_start();
1da177e4 4894 atomic_inc(&rq->nr_iowait);
73c10101 4895 blk_flush_plug(current);
8f0dfc34 4896 current->in_iowait = 1;
1da177e4 4897 schedule();
8f0dfc34 4898 current->in_iowait = 0;
1da177e4 4899 atomic_dec(&rq->nr_iowait);
0ff92245 4900 delayacct_blkio_end();
1da177e4 4901}
1da177e4
LT
4902EXPORT_SYMBOL(io_schedule);
4903
4904long __sched io_schedule_timeout(long timeout)
4905{
54d35f29 4906 struct rq *rq = raw_rq();
1da177e4
LT
4907 long ret;
4908
0ff92245 4909 delayacct_blkio_start();
1da177e4 4910 atomic_inc(&rq->nr_iowait);
73c10101 4911 blk_flush_plug(current);
8f0dfc34 4912 current->in_iowait = 1;
1da177e4 4913 ret = schedule_timeout(timeout);
8f0dfc34 4914 current->in_iowait = 0;
1da177e4 4915 atomic_dec(&rq->nr_iowait);
0ff92245 4916 delayacct_blkio_end();
1da177e4
LT
4917 return ret;
4918}
4919
4920/**
4921 * sys_sched_get_priority_max - return maximum RT priority.
4922 * @policy: scheduling class.
4923 *
4924 * this syscall returns the maximum rt_priority that can be used
4925 * by a given scheduling class.
4926 */
5add95d4 4927SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4928{
4929 int ret = -EINVAL;
4930
4931 switch (policy) {
4932 case SCHED_FIFO:
4933 case SCHED_RR:
4934 ret = MAX_USER_RT_PRIO-1;
4935 break;
4936 case SCHED_NORMAL:
b0a9499c 4937 case SCHED_BATCH:
dd41f596 4938 case SCHED_IDLE:
1da177e4
LT
4939 ret = 0;
4940 break;
4941 }
4942 return ret;
4943}
4944
4945/**
4946 * sys_sched_get_priority_min - return minimum RT priority.
4947 * @policy: scheduling class.
4948 *
4949 * this syscall returns the minimum rt_priority that can be used
4950 * by a given scheduling class.
4951 */
5add95d4 4952SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4953{
4954 int ret = -EINVAL;
4955
4956 switch (policy) {
4957 case SCHED_FIFO:
4958 case SCHED_RR:
4959 ret = 1;
4960 break;
4961 case SCHED_NORMAL:
b0a9499c 4962 case SCHED_BATCH:
dd41f596 4963 case SCHED_IDLE:
1da177e4
LT
4964 ret = 0;
4965 }
4966 return ret;
4967}
4968
4969/**
4970 * sys_sched_rr_get_interval - return the default timeslice of a process.
4971 * @pid: pid of the process.
4972 * @interval: userspace pointer to the timeslice value.
4973 *
4974 * this syscall writes the default timeslice value of a given process
4975 * into the user-space timespec buffer. A value of '0' means infinity.
4976 */
17da2bd9 4977SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4978 struct timespec __user *, interval)
1da177e4 4979{
36c8b586 4980 struct task_struct *p;
a4ec24b4 4981 unsigned int time_slice;
dba091b9
TG
4982 unsigned long flags;
4983 struct rq *rq;
3a5c359a 4984 int retval;
1da177e4 4985 struct timespec t;
1da177e4
LT
4986
4987 if (pid < 0)
3a5c359a 4988 return -EINVAL;
1da177e4
LT
4989
4990 retval = -ESRCH;
1a551ae7 4991 rcu_read_lock();
1da177e4
LT
4992 p = find_process_by_pid(pid);
4993 if (!p)
4994 goto out_unlock;
4995
4996 retval = security_task_getscheduler(p);
4997 if (retval)
4998 goto out_unlock;
4999
dba091b9
TG
5000 rq = task_rq_lock(p, &flags);
5001 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5002 task_rq_unlock(rq, p, &flags);
a4ec24b4 5003
1a551ae7 5004 rcu_read_unlock();
a4ec24b4 5005 jiffies_to_timespec(time_slice, &t);
1da177e4 5006 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5007 return retval;
3a5c359a 5008
1da177e4 5009out_unlock:
1a551ae7 5010 rcu_read_unlock();
1da177e4
LT
5011 return retval;
5012}
5013
7c731e0a 5014static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5015
82a1fcb9 5016void sched_show_task(struct task_struct *p)
1da177e4 5017{
1da177e4 5018 unsigned long free = 0;
36c8b586 5019 unsigned state;
1da177e4 5020
1da177e4 5021 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5022 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5023 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5024#if BITS_PER_LONG == 32
1da177e4 5025 if (state == TASK_RUNNING)
3df0fc5b 5026 printk(KERN_CONT " running ");
1da177e4 5027 else
3df0fc5b 5028 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5029#else
5030 if (state == TASK_RUNNING)
3df0fc5b 5031 printk(KERN_CONT " running task ");
1da177e4 5032 else
3df0fc5b 5033 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5034#endif
5035#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5036 free = stack_not_used(p);
1da177e4 5037#endif
3df0fc5b 5038 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 5039 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 5040 (unsigned long)task_thread_info(p)->flags);
1da177e4 5041
5fb5e6de 5042 show_stack(p, NULL);
1da177e4
LT
5043}
5044
e59e2ae2 5045void show_state_filter(unsigned long state_filter)
1da177e4 5046{
36c8b586 5047 struct task_struct *g, *p;
1da177e4 5048
4bd77321 5049#if BITS_PER_LONG == 32
3df0fc5b
PZ
5050 printk(KERN_INFO
5051 " task PC stack pid father\n");
1da177e4 5052#else
3df0fc5b
PZ
5053 printk(KERN_INFO
5054 " task PC stack pid father\n");
1da177e4 5055#endif
510f5acc 5056 rcu_read_lock();
1da177e4
LT
5057 do_each_thread(g, p) {
5058 /*
5059 * reset the NMI-timeout, listing all files on a slow
25985edc 5060 * console might take a lot of time:
1da177e4
LT
5061 */
5062 touch_nmi_watchdog();
39bc89fd 5063 if (!state_filter || (p->state & state_filter))
82a1fcb9 5064 sched_show_task(p);
1da177e4
LT
5065 } while_each_thread(g, p);
5066
04c9167f
JF
5067 touch_all_softlockup_watchdogs();
5068
dd41f596
IM
5069#ifdef CONFIG_SCHED_DEBUG
5070 sysrq_sched_debug_show();
5071#endif
510f5acc 5072 rcu_read_unlock();
e59e2ae2
IM
5073 /*
5074 * Only show locks if all tasks are dumped:
5075 */
93335a21 5076 if (!state_filter)
e59e2ae2 5077 debug_show_all_locks();
1da177e4
LT
5078}
5079
1df21055
IM
5080void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5081{
dd41f596 5082 idle->sched_class = &idle_sched_class;
1df21055
IM
5083}
5084
f340c0d1
IM
5085/**
5086 * init_idle - set up an idle thread for a given CPU
5087 * @idle: task in question
5088 * @cpu: cpu the idle task belongs to
5089 *
5090 * NOTE: this function does not set the idle thread's NEED_RESCHED
5091 * flag, to make booting more robust.
5092 */
5c1e1767 5093void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5094{
70b97a7f 5095 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5096 unsigned long flags;
5097
05fa785c 5098 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5099
dd41f596 5100 __sched_fork(idle);
06b83b5f 5101 idle->state = TASK_RUNNING;
dd41f596
IM
5102 idle->se.exec_start = sched_clock();
5103
1e1b6c51 5104 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
5105 /*
5106 * We're having a chicken and egg problem, even though we are
5107 * holding rq->lock, the cpu isn't yet set to this cpu so the
5108 * lockdep check in task_group() will fail.
5109 *
5110 * Similar case to sched_fork(). / Alternatively we could
5111 * use task_rq_lock() here and obtain the other rq->lock.
5112 *
5113 * Silence PROVE_RCU
5114 */
5115 rcu_read_lock();
dd41f596 5116 __set_task_cpu(idle, cpu);
6506cf6c 5117 rcu_read_unlock();
1da177e4 5118
1da177e4 5119 rq->curr = rq->idle = idle;
3ca7a440
PZ
5120#if defined(CONFIG_SMP)
5121 idle->on_cpu = 1;
4866cde0 5122#endif
05fa785c 5123 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5124
5125 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5126 task_thread_info(idle)->preempt_count = 0;
55cd5340 5127
dd41f596
IM
5128 /*
5129 * The idle tasks have their own, simple scheduling class:
5130 */
5131 idle->sched_class = &idle_sched_class;
868baf07 5132 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
5133#if defined(CONFIG_SMP)
5134 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5135#endif
19978ca6
IM
5136}
5137
1da177e4 5138#ifdef CONFIG_SMP
1e1b6c51
KM
5139void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5140{
5141 if (p->sched_class && p->sched_class->set_cpus_allowed)
5142 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
5143
5144 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 5145 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
5146}
5147
1da177e4
LT
5148/*
5149 * This is how migration works:
5150 *
969c7921
TH
5151 * 1) we invoke migration_cpu_stop() on the target CPU using
5152 * stop_one_cpu().
5153 * 2) stopper starts to run (implicitly forcing the migrated thread
5154 * off the CPU)
5155 * 3) it checks whether the migrated task is still in the wrong runqueue.
5156 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5157 * it and puts it into the right queue.
969c7921
TH
5158 * 5) stopper completes and stop_one_cpu() returns and the migration
5159 * is done.
1da177e4
LT
5160 */
5161
5162/*
5163 * Change a given task's CPU affinity. Migrate the thread to a
5164 * proper CPU and schedule it away if the CPU it's executing on
5165 * is removed from the allowed bitmask.
5166 *
5167 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5168 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5169 * call is not atomic; no spinlocks may be held.
5170 */
96f874e2 5171int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5172{
5173 unsigned long flags;
70b97a7f 5174 struct rq *rq;
969c7921 5175 unsigned int dest_cpu;
48f24c4d 5176 int ret = 0;
1da177e4
LT
5177
5178 rq = task_rq_lock(p, &flags);
e2912009 5179
db44fc01
YZ
5180 if (cpumask_equal(&p->cpus_allowed, new_mask))
5181 goto out;
5182
6ad4c188 5183 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5184 ret = -EINVAL;
5185 goto out;
5186 }
5187
db44fc01 5188 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5189 ret = -EINVAL;
5190 goto out;
5191 }
5192
1e1b6c51 5193 do_set_cpus_allowed(p, new_mask);
73fe6aae 5194
1da177e4 5195 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5196 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5197 goto out;
5198
969c7921 5199 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5200 if (p->on_rq) {
969c7921 5201 struct migration_arg arg = { p, dest_cpu };
1da177e4 5202 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5203 task_rq_unlock(rq, p, &flags);
969c7921 5204 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5205 tlb_migrate_finish(p->mm);
5206 return 0;
5207 }
5208out:
0122ec5b 5209 task_rq_unlock(rq, p, &flags);
48f24c4d 5210
1da177e4
LT
5211 return ret;
5212}
cd8ba7cd 5213EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5214
5215/*
41a2d6cf 5216 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5217 * this because either it can't run here any more (set_cpus_allowed()
5218 * away from this CPU, or CPU going down), or because we're
5219 * attempting to rebalance this task on exec (sched_exec).
5220 *
5221 * So we race with normal scheduler movements, but that's OK, as long
5222 * as the task is no longer on this CPU.
efc30814
KK
5223 *
5224 * Returns non-zero if task was successfully migrated.
1da177e4 5225 */
efc30814 5226static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5227{
70b97a7f 5228 struct rq *rq_dest, *rq_src;
e2912009 5229 int ret = 0;
1da177e4 5230
e761b772 5231 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5232 return ret;
1da177e4
LT
5233
5234 rq_src = cpu_rq(src_cpu);
5235 rq_dest = cpu_rq(dest_cpu);
5236
0122ec5b 5237 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5238 double_rq_lock(rq_src, rq_dest);
5239 /* Already moved. */
5240 if (task_cpu(p) != src_cpu)
b1e38734 5241 goto done;
1da177e4 5242 /* Affinity changed (again). */
fa17b507 5243 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5244 goto fail;
1da177e4 5245
e2912009
PZ
5246 /*
5247 * If we're not on a rq, the next wake-up will ensure we're
5248 * placed properly.
5249 */
fd2f4419 5250 if (p->on_rq) {
4ca9b72b 5251 dequeue_task(rq_src, p, 0);
e2912009 5252 set_task_cpu(p, dest_cpu);
4ca9b72b 5253 enqueue_task(rq_dest, p, 0);
15afe09b 5254 check_preempt_curr(rq_dest, p, 0);
1da177e4 5255 }
b1e38734 5256done:
efc30814 5257 ret = 1;
b1e38734 5258fail:
1da177e4 5259 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5260 raw_spin_unlock(&p->pi_lock);
efc30814 5261 return ret;
1da177e4
LT
5262}
5263
5264/*
969c7921
TH
5265 * migration_cpu_stop - this will be executed by a highprio stopper thread
5266 * and performs thread migration by bumping thread off CPU then
5267 * 'pushing' onto another runqueue.
1da177e4 5268 */
969c7921 5269static int migration_cpu_stop(void *data)
1da177e4 5270{
969c7921 5271 struct migration_arg *arg = data;
f7b4cddc 5272
969c7921
TH
5273 /*
5274 * The original target cpu might have gone down and we might
5275 * be on another cpu but it doesn't matter.
5276 */
f7b4cddc 5277 local_irq_disable();
969c7921 5278 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5279 local_irq_enable();
1da177e4 5280 return 0;
f7b4cddc
ON
5281}
5282
1da177e4 5283#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5284
054b9108 5285/*
48c5ccae
PZ
5286 * Ensures that the idle task is using init_mm right before its cpu goes
5287 * offline.
054b9108 5288 */
48c5ccae 5289void idle_task_exit(void)
1da177e4 5290{
48c5ccae 5291 struct mm_struct *mm = current->active_mm;
e76bd8d9 5292
48c5ccae 5293 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5294
48c5ccae
PZ
5295 if (mm != &init_mm)
5296 switch_mm(mm, &init_mm, current);
5297 mmdrop(mm);
1da177e4
LT
5298}
5299
5300/*
5301 * While a dead CPU has no uninterruptible tasks queued at this point,
5302 * it might still have a nonzero ->nr_uninterruptible counter, because
5303 * for performance reasons the counter is not stricly tracking tasks to
5304 * their home CPUs. So we just add the counter to another CPU's counter,
5305 * to keep the global sum constant after CPU-down:
5306 */
70b97a7f 5307static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5308{
6ad4c188 5309 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5310
1da177e4
LT
5311 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5312 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5313}
5314
dd41f596 5315/*
48c5ccae 5316 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5317 */
48c5ccae 5318static void calc_global_load_remove(struct rq *rq)
1da177e4 5319{
48c5ccae
PZ
5320 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5321 rq->calc_load_active = 0;
1da177e4
LT
5322}
5323
48f24c4d 5324/*
48c5ccae
PZ
5325 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5326 * try_to_wake_up()->select_task_rq().
5327 *
5328 * Called with rq->lock held even though we'er in stop_machine() and
5329 * there's no concurrency possible, we hold the required locks anyway
5330 * because of lock validation efforts.
1da177e4 5331 */
48c5ccae 5332static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5333{
70b97a7f 5334 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5335 struct task_struct *next, *stop = rq->stop;
5336 int dest_cpu;
1da177e4
LT
5337
5338 /*
48c5ccae
PZ
5339 * Fudge the rq selection such that the below task selection loop
5340 * doesn't get stuck on the currently eligible stop task.
5341 *
5342 * We're currently inside stop_machine() and the rq is either stuck
5343 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5344 * either way we should never end up calling schedule() until we're
5345 * done here.
1da177e4 5346 */
48c5ccae 5347 rq->stop = NULL;
48f24c4d 5348
8cb120d3
PT
5349 /* Ensure any throttled groups are reachable by pick_next_task */
5350 unthrottle_offline_cfs_rqs(rq);
5351
dd41f596 5352 for ( ; ; ) {
48c5ccae
PZ
5353 /*
5354 * There's this thread running, bail when that's the only
5355 * remaining thread.
5356 */
5357 if (rq->nr_running == 1)
dd41f596 5358 break;
48c5ccae 5359
b67802ea 5360 next = pick_next_task(rq);
48c5ccae 5361 BUG_ON(!next);
79c53799 5362 next->sched_class->put_prev_task(rq, next);
e692ab53 5363
48c5ccae
PZ
5364 /* Find suitable destination for @next, with force if needed. */
5365 dest_cpu = select_fallback_rq(dead_cpu, next);
5366 raw_spin_unlock(&rq->lock);
5367
5368 __migrate_task(next, dead_cpu, dest_cpu);
5369
5370 raw_spin_lock(&rq->lock);
1da177e4 5371 }
dce48a84 5372
48c5ccae 5373 rq->stop = stop;
dce48a84 5374}
48c5ccae 5375
1da177e4
LT
5376#endif /* CONFIG_HOTPLUG_CPU */
5377
e692ab53
NP
5378#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5379
5380static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5381 {
5382 .procname = "sched_domain",
c57baf1e 5383 .mode = 0555,
e0361851 5384 },
56992309 5385 {}
e692ab53
NP
5386};
5387
5388static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5389 {
5390 .procname = "kernel",
c57baf1e 5391 .mode = 0555,
e0361851
AD
5392 .child = sd_ctl_dir,
5393 },
56992309 5394 {}
e692ab53
NP
5395};
5396
5397static struct ctl_table *sd_alloc_ctl_entry(int n)
5398{
5399 struct ctl_table *entry =
5cf9f062 5400 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5401
e692ab53
NP
5402 return entry;
5403}
5404
6382bc90
MM
5405static void sd_free_ctl_entry(struct ctl_table **tablep)
5406{
cd790076 5407 struct ctl_table *entry;
6382bc90 5408
cd790076
MM
5409 /*
5410 * In the intermediate directories, both the child directory and
5411 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5412 * will always be set. In the lowest directory the names are
cd790076
MM
5413 * static strings and all have proc handlers.
5414 */
5415 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5416 if (entry->child)
5417 sd_free_ctl_entry(&entry->child);
cd790076
MM
5418 if (entry->proc_handler == NULL)
5419 kfree(entry->procname);
5420 }
6382bc90
MM
5421
5422 kfree(*tablep);
5423 *tablep = NULL;
5424}
5425
e692ab53 5426static void
e0361851 5427set_table_entry(struct ctl_table *entry,
e692ab53 5428 const char *procname, void *data, int maxlen,
36fcb589 5429 umode_t mode, proc_handler *proc_handler)
e692ab53 5430{
e692ab53
NP
5431 entry->procname = procname;
5432 entry->data = data;
5433 entry->maxlen = maxlen;
5434 entry->mode = mode;
5435 entry->proc_handler = proc_handler;
5436}
5437
5438static struct ctl_table *
5439sd_alloc_ctl_domain_table(struct sched_domain *sd)
5440{
a5d8c348 5441 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5442
ad1cdc1d
MM
5443 if (table == NULL)
5444 return NULL;
5445
e0361851 5446 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5447 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5448 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5449 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5450 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5451 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5452 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5453 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5454 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5455 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5456 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5457 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5458 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5460 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5461 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5462 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5463 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5464 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5465 &sd->cache_nice_tries,
5466 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5467 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5468 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5469 set_table_entry(&table[11], "name", sd->name,
5470 CORENAME_MAX_SIZE, 0444, proc_dostring);
5471 /* &table[12] is terminator */
e692ab53
NP
5472
5473 return table;
5474}
5475
9a4e7159 5476static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5477{
5478 struct ctl_table *entry, *table;
5479 struct sched_domain *sd;
5480 int domain_num = 0, i;
5481 char buf[32];
5482
5483 for_each_domain(cpu, sd)
5484 domain_num++;
5485 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5486 if (table == NULL)
5487 return NULL;
e692ab53
NP
5488
5489 i = 0;
5490 for_each_domain(cpu, sd) {
5491 snprintf(buf, 32, "domain%d", i);
e692ab53 5492 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5493 entry->mode = 0555;
e692ab53
NP
5494 entry->child = sd_alloc_ctl_domain_table(sd);
5495 entry++;
5496 i++;
5497 }
5498 return table;
5499}
5500
5501static struct ctl_table_header *sd_sysctl_header;
6382bc90 5502static void register_sched_domain_sysctl(void)
e692ab53 5503{
6ad4c188 5504 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5505 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5506 char buf[32];
5507
7378547f
MM
5508 WARN_ON(sd_ctl_dir[0].child);
5509 sd_ctl_dir[0].child = entry;
5510
ad1cdc1d
MM
5511 if (entry == NULL)
5512 return;
5513
6ad4c188 5514 for_each_possible_cpu(i) {
e692ab53 5515 snprintf(buf, 32, "cpu%d", i);
e692ab53 5516 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5517 entry->mode = 0555;
e692ab53 5518 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5519 entry++;
e692ab53 5520 }
7378547f
MM
5521
5522 WARN_ON(sd_sysctl_header);
e692ab53
NP
5523 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5524}
6382bc90 5525
7378547f 5526/* may be called multiple times per register */
6382bc90
MM
5527static void unregister_sched_domain_sysctl(void)
5528{
7378547f
MM
5529 if (sd_sysctl_header)
5530 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5531 sd_sysctl_header = NULL;
7378547f
MM
5532 if (sd_ctl_dir[0].child)
5533 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5534}
e692ab53 5535#else
6382bc90
MM
5536static void register_sched_domain_sysctl(void)
5537{
5538}
5539static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5540{
5541}
5542#endif
5543
1f11eb6a
GH
5544static void set_rq_online(struct rq *rq)
5545{
5546 if (!rq->online) {
5547 const struct sched_class *class;
5548
c6c4927b 5549 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5550 rq->online = 1;
5551
5552 for_each_class(class) {
5553 if (class->rq_online)
5554 class->rq_online(rq);
5555 }
5556 }
5557}
5558
5559static void set_rq_offline(struct rq *rq)
5560{
5561 if (rq->online) {
5562 const struct sched_class *class;
5563
5564 for_each_class(class) {
5565 if (class->rq_offline)
5566 class->rq_offline(rq);
5567 }
5568
c6c4927b 5569 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5570 rq->online = 0;
5571 }
5572}
5573
1da177e4
LT
5574/*
5575 * migration_call - callback that gets triggered when a CPU is added.
5576 * Here we can start up the necessary migration thread for the new CPU.
5577 */
48f24c4d
IM
5578static int __cpuinit
5579migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5580{
48f24c4d 5581 int cpu = (long)hcpu;
1da177e4 5582 unsigned long flags;
969c7921 5583 struct rq *rq = cpu_rq(cpu);
1da177e4 5584
48c5ccae 5585 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5586
1da177e4 5587 case CPU_UP_PREPARE:
a468d389 5588 rq->calc_load_update = calc_load_update;
1da177e4 5589 break;
48f24c4d 5590
1da177e4 5591 case CPU_ONLINE:
1f94ef59 5592 /* Update our root-domain */
05fa785c 5593 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5594 if (rq->rd) {
c6c4927b 5595 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5596
5597 set_rq_online(rq);
1f94ef59 5598 }
05fa785c 5599 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5600 break;
48f24c4d 5601
1da177e4 5602#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5603 case CPU_DYING:
317f3941 5604 sched_ttwu_pending();
57d885fe 5605 /* Update our root-domain */
05fa785c 5606 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5607 if (rq->rd) {
c6c4927b 5608 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5609 set_rq_offline(rq);
57d885fe 5610 }
48c5ccae
PZ
5611 migrate_tasks(cpu);
5612 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5613 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5614
5615 migrate_nr_uninterruptible(rq);
5616 calc_global_load_remove(rq);
57d885fe 5617 break;
1da177e4
LT
5618#endif
5619 }
49c022e6
PZ
5620
5621 update_max_interval();
5622
1da177e4
LT
5623 return NOTIFY_OK;
5624}
5625
f38b0820
PM
5626/*
5627 * Register at high priority so that task migration (migrate_all_tasks)
5628 * happens before everything else. This has to be lower priority than
cdd6c482 5629 * the notifier in the perf_event subsystem, though.
1da177e4 5630 */
26c2143b 5631static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5632 .notifier_call = migration_call,
50a323b7 5633 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5634};
5635
3a101d05
TH
5636static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5637 unsigned long action, void *hcpu)
5638{
5639 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5640 case CPU_STARTING:
3a101d05
TH
5641 case CPU_DOWN_FAILED:
5642 set_cpu_active((long)hcpu, true);
5643 return NOTIFY_OK;
5644 default:
5645 return NOTIFY_DONE;
5646 }
5647}
5648
5649static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5650 unsigned long action, void *hcpu)
5651{
5652 switch (action & ~CPU_TASKS_FROZEN) {
5653 case CPU_DOWN_PREPARE:
5654 set_cpu_active((long)hcpu, false);
5655 return NOTIFY_OK;
5656 default:
5657 return NOTIFY_DONE;
5658 }
5659}
5660
7babe8db 5661static int __init migration_init(void)
1da177e4
LT
5662{
5663 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5664 int err;
48f24c4d 5665
3a101d05 5666 /* Initialize migration for the boot CPU */
07dccf33
AM
5667 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5668 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5669 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5670 register_cpu_notifier(&migration_notifier);
7babe8db 5671
3a101d05
TH
5672 /* Register cpu active notifiers */
5673 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5674 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5675
a004cd42 5676 return 0;
1da177e4 5677}
7babe8db 5678early_initcall(migration_init);
1da177e4
LT
5679#endif
5680
5681#ifdef CONFIG_SMP
476f3534 5682
4cb98839
PZ
5683static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5684
3e9830dc 5685#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5686
d039ac60 5687static __read_mostly int sched_debug_enabled;
f6630114 5688
d039ac60 5689static int __init sched_debug_setup(char *str)
f6630114 5690{
d039ac60 5691 sched_debug_enabled = 1;
f6630114
MT
5692
5693 return 0;
5694}
d039ac60
PZ
5695early_param("sched_debug", sched_debug_setup);
5696
5697static inline bool sched_debug(void)
5698{
5699 return sched_debug_enabled;
5700}
f6630114 5701
7c16ec58 5702static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5703 struct cpumask *groupmask)
1da177e4 5704{
4dcf6aff 5705 struct sched_group *group = sd->groups;
434d53b0 5706 char str[256];
1da177e4 5707
968ea6d8 5708 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5709 cpumask_clear(groupmask);
4dcf6aff
IM
5710
5711 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5712
5713 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5714 printk("does not load-balance\n");
4dcf6aff 5715 if (sd->parent)
3df0fc5b
PZ
5716 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5717 " has parent");
4dcf6aff 5718 return -1;
41c7ce9a
NP
5719 }
5720
3df0fc5b 5721 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5722
758b2cdc 5723 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5724 printk(KERN_ERR "ERROR: domain->span does not contain "
5725 "CPU%d\n", cpu);
4dcf6aff 5726 }
758b2cdc 5727 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5728 printk(KERN_ERR "ERROR: domain->groups does not contain"
5729 " CPU%d\n", cpu);
4dcf6aff 5730 }
1da177e4 5731
4dcf6aff 5732 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5733 do {
4dcf6aff 5734 if (!group) {
3df0fc5b
PZ
5735 printk("\n");
5736 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5737 break;
5738 }
5739
c3decf0d
PZ
5740 /*
5741 * Even though we initialize ->power to something semi-sane,
5742 * we leave power_orig unset. This allows us to detect if
5743 * domain iteration is still funny without causing /0 traps.
5744 */
5745 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5746 printk(KERN_CONT "\n");
5747 printk(KERN_ERR "ERROR: domain->cpu_power not "
5748 "set\n");
4dcf6aff
IM
5749 break;
5750 }
1da177e4 5751
758b2cdc 5752 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5753 printk(KERN_CONT "\n");
5754 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5755 break;
5756 }
1da177e4 5757
cb83b629
PZ
5758 if (!(sd->flags & SD_OVERLAP) &&
5759 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5760 printk(KERN_CONT "\n");
5761 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5762 break;
5763 }
1da177e4 5764
758b2cdc 5765 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5766
968ea6d8 5767 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5768
3df0fc5b 5769 printk(KERN_CONT " %s", str);
9c3f75cb 5770 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5771 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5772 group->sgp->power);
381512cf 5773 }
1da177e4 5774
4dcf6aff
IM
5775 group = group->next;
5776 } while (group != sd->groups);
3df0fc5b 5777 printk(KERN_CONT "\n");
1da177e4 5778
758b2cdc 5779 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5780 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5781
758b2cdc
RR
5782 if (sd->parent &&
5783 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5784 printk(KERN_ERR "ERROR: parent span is not a superset "
5785 "of domain->span\n");
4dcf6aff
IM
5786 return 0;
5787}
1da177e4 5788
4dcf6aff
IM
5789static void sched_domain_debug(struct sched_domain *sd, int cpu)
5790{
5791 int level = 0;
1da177e4 5792
d039ac60 5793 if (!sched_debug_enabled)
f6630114
MT
5794 return;
5795
4dcf6aff
IM
5796 if (!sd) {
5797 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5798 return;
5799 }
1da177e4 5800
4dcf6aff
IM
5801 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5802
5803 for (;;) {
4cb98839 5804 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5805 break;
1da177e4
LT
5806 level++;
5807 sd = sd->parent;
33859f7f 5808 if (!sd)
4dcf6aff
IM
5809 break;
5810 }
1da177e4 5811}
6d6bc0ad 5812#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5813# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5814static inline bool sched_debug(void)
5815{
5816 return false;
5817}
6d6bc0ad 5818#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5819
1a20ff27 5820static int sd_degenerate(struct sched_domain *sd)
245af2c7 5821{
758b2cdc 5822 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5823 return 1;
5824
5825 /* Following flags need at least 2 groups */
5826 if (sd->flags & (SD_LOAD_BALANCE |
5827 SD_BALANCE_NEWIDLE |
5828 SD_BALANCE_FORK |
89c4710e
SS
5829 SD_BALANCE_EXEC |
5830 SD_SHARE_CPUPOWER |
5831 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5832 if (sd->groups != sd->groups->next)
5833 return 0;
5834 }
5835
5836 /* Following flags don't use groups */
c88d5910 5837 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5838 return 0;
5839
5840 return 1;
5841}
5842
48f24c4d
IM
5843static int
5844sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5845{
5846 unsigned long cflags = sd->flags, pflags = parent->flags;
5847
5848 if (sd_degenerate(parent))
5849 return 1;
5850
758b2cdc 5851 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5852 return 0;
5853
245af2c7
SS
5854 /* Flags needing groups don't count if only 1 group in parent */
5855 if (parent->groups == parent->groups->next) {
5856 pflags &= ~(SD_LOAD_BALANCE |
5857 SD_BALANCE_NEWIDLE |
5858 SD_BALANCE_FORK |
89c4710e
SS
5859 SD_BALANCE_EXEC |
5860 SD_SHARE_CPUPOWER |
5861 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5862 if (nr_node_ids == 1)
5863 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5864 }
5865 if (~cflags & pflags)
5866 return 0;
5867
5868 return 1;
5869}
5870
dce840a0 5871static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5872{
dce840a0 5873 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5874
68e74568 5875 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5876 free_cpumask_var(rd->rto_mask);
5877 free_cpumask_var(rd->online);
5878 free_cpumask_var(rd->span);
5879 kfree(rd);
5880}
5881
57d885fe
GH
5882static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5883{
a0490fa3 5884 struct root_domain *old_rd = NULL;
57d885fe 5885 unsigned long flags;
57d885fe 5886
05fa785c 5887 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5888
5889 if (rq->rd) {
a0490fa3 5890 old_rd = rq->rd;
57d885fe 5891
c6c4927b 5892 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5893 set_rq_offline(rq);
57d885fe 5894
c6c4927b 5895 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5896
a0490fa3
IM
5897 /*
5898 * If we dont want to free the old_rt yet then
5899 * set old_rd to NULL to skip the freeing later
5900 * in this function:
5901 */
5902 if (!atomic_dec_and_test(&old_rd->refcount))
5903 old_rd = NULL;
57d885fe
GH
5904 }
5905
5906 atomic_inc(&rd->refcount);
5907 rq->rd = rd;
5908
c6c4927b 5909 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5910 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5911 set_rq_online(rq);
57d885fe 5912
05fa785c 5913 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5914
5915 if (old_rd)
dce840a0 5916 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5917}
5918
68c38fc3 5919static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5920{
5921 memset(rd, 0, sizeof(*rd));
5922
68c38fc3 5923 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5924 goto out;
68c38fc3 5925 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5926 goto free_span;
68c38fc3 5927 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5928 goto free_online;
6e0534f2 5929
68c38fc3 5930 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5931 goto free_rto_mask;
c6c4927b 5932 return 0;
6e0534f2 5933
68e74568
RR
5934free_rto_mask:
5935 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5936free_online:
5937 free_cpumask_var(rd->online);
5938free_span:
5939 free_cpumask_var(rd->span);
0c910d28 5940out:
c6c4927b 5941 return -ENOMEM;
57d885fe
GH
5942}
5943
029632fb
PZ
5944/*
5945 * By default the system creates a single root-domain with all cpus as
5946 * members (mimicking the global state we have today).
5947 */
5948struct root_domain def_root_domain;
5949
57d885fe
GH
5950static void init_defrootdomain(void)
5951{
68c38fc3 5952 init_rootdomain(&def_root_domain);
c6c4927b 5953
57d885fe
GH
5954 atomic_set(&def_root_domain.refcount, 1);
5955}
5956
dc938520 5957static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5958{
5959 struct root_domain *rd;
5960
5961 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5962 if (!rd)
5963 return NULL;
5964
68c38fc3 5965 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5966 kfree(rd);
5967 return NULL;
5968 }
57d885fe
GH
5969
5970 return rd;
5971}
5972
e3589f6c
PZ
5973static void free_sched_groups(struct sched_group *sg, int free_sgp)
5974{
5975 struct sched_group *tmp, *first;
5976
5977 if (!sg)
5978 return;
5979
5980 first = sg;
5981 do {
5982 tmp = sg->next;
5983
5984 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5985 kfree(sg->sgp);
5986
5987 kfree(sg);
5988 sg = tmp;
5989 } while (sg != first);
5990}
5991
dce840a0
PZ
5992static void free_sched_domain(struct rcu_head *rcu)
5993{
5994 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5995
5996 /*
5997 * If its an overlapping domain it has private groups, iterate and
5998 * nuke them all.
5999 */
6000 if (sd->flags & SD_OVERLAP) {
6001 free_sched_groups(sd->groups, 1);
6002 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6003 kfree(sd->groups->sgp);
dce840a0 6004 kfree(sd->groups);
9c3f75cb 6005 }
dce840a0
PZ
6006 kfree(sd);
6007}
6008
6009static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6010{
6011 call_rcu(&sd->rcu, free_sched_domain);
6012}
6013
6014static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6015{
6016 for (; sd; sd = sd->parent)
6017 destroy_sched_domain(sd, cpu);
6018}
6019
518cd623
PZ
6020/*
6021 * Keep a special pointer to the highest sched_domain that has
6022 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6023 * allows us to avoid some pointer chasing select_idle_sibling().
6024 *
970e1789
MG
6025 * Iterate domains and sched_groups downward, assigning CPUs to be
6026 * select_idle_sibling() hw buddy. Cross-wiring hw makes bouncing
6027 * due to random perturbation self canceling, ie sw buddies pull
6028 * their counterpart to their CPU's hw counterpart.
6029 *
518cd623
PZ
6030 * Also keep a unique ID per domain (we use the first cpu number in
6031 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6032 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6033 */
6034DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6035DEFINE_PER_CPU(int, sd_llc_id);
6036
6037static void update_top_cache_domain(int cpu)
6038{
6039 struct sched_domain *sd;
6040 int id = cpu;
6041
6042 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
970e1789
MG
6043 if (sd) {
6044 struct sched_domain *tmp = sd;
6045 struct sched_group *sg, *prev;
6046 bool right;
6047
6048 /*
6049 * Traverse to first CPU in group, and count hops
6050 * to cpu from there, switching direction on each
6051 * hop, never ever pointing the last CPU rightward.
6052 */
6053 do {
6054 id = cpumask_first(sched_domain_span(tmp));
6055 prev = sg = tmp->groups;
6056 right = 1;
6057
6058 while (cpumask_first(sched_group_cpus(sg)) != id)
6059 sg = sg->next;
6060
6061 while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
6062 prev = sg;
6063 sg = sg->next;
6064 right = !right;
6065 }
6066
6067 /* A CPU went down, never point back to domain start. */
6068 if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
6069 right = false;
6070
6071 sg = right ? sg->next : prev;
6072 tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
6073 } while ((tmp = tmp->child));
6074
518cd623 6075 id = cpumask_first(sched_domain_span(sd));
970e1789 6076 }
518cd623
PZ
6077
6078 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6079 per_cpu(sd_llc_id, cpu) = id;
6080}
6081
1da177e4 6082/*
0eab9146 6083 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6084 * hold the hotplug lock.
6085 */
0eab9146
IM
6086static void
6087cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6088{
70b97a7f 6089 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6090 struct sched_domain *tmp;
6091
6092 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6093 for (tmp = sd; tmp; ) {
245af2c7
SS
6094 struct sched_domain *parent = tmp->parent;
6095 if (!parent)
6096 break;
f29c9b1c 6097
1a848870 6098 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6099 tmp->parent = parent->parent;
1a848870
SS
6100 if (parent->parent)
6101 parent->parent->child = tmp;
dce840a0 6102 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6103 } else
6104 tmp = tmp->parent;
245af2c7
SS
6105 }
6106
1a848870 6107 if (sd && sd_degenerate(sd)) {
dce840a0 6108 tmp = sd;
245af2c7 6109 sd = sd->parent;
dce840a0 6110 destroy_sched_domain(tmp, cpu);
1a848870
SS
6111 if (sd)
6112 sd->child = NULL;
6113 }
1da177e4 6114
4cb98839 6115 sched_domain_debug(sd, cpu);
1da177e4 6116
57d885fe 6117 rq_attach_root(rq, rd);
dce840a0 6118 tmp = rq->sd;
674311d5 6119 rcu_assign_pointer(rq->sd, sd);
dce840a0 6120 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6121
6122 update_top_cache_domain(cpu);
1da177e4
LT
6123}
6124
6125/* cpus with isolated domains */
dcc30a35 6126static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6127
6128/* Setup the mask of cpus configured for isolated domains */
6129static int __init isolated_cpu_setup(char *str)
6130{
bdddd296 6131 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6132 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6133 return 1;
6134}
6135
8927f494 6136__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6137
d3081f52
PZ
6138static const struct cpumask *cpu_cpu_mask(int cpu)
6139{
6140 return cpumask_of_node(cpu_to_node(cpu));
6141}
6142
dce840a0
PZ
6143struct sd_data {
6144 struct sched_domain **__percpu sd;
6145 struct sched_group **__percpu sg;
9c3f75cb 6146 struct sched_group_power **__percpu sgp;
dce840a0
PZ
6147};
6148
49a02c51 6149struct s_data {
21d42ccf 6150 struct sched_domain ** __percpu sd;
49a02c51
AH
6151 struct root_domain *rd;
6152};
6153
2109b99e 6154enum s_alloc {
2109b99e 6155 sa_rootdomain,
21d42ccf 6156 sa_sd,
dce840a0 6157 sa_sd_storage,
2109b99e
AH
6158 sa_none,
6159};
6160
54ab4ff4
PZ
6161struct sched_domain_topology_level;
6162
6163typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
6164typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6165
e3589f6c
PZ
6166#define SDTL_OVERLAP 0x01
6167
eb7a74e6 6168struct sched_domain_topology_level {
2c402dc3
PZ
6169 sched_domain_init_f init;
6170 sched_domain_mask_f mask;
e3589f6c 6171 int flags;
cb83b629 6172 int numa_level;
54ab4ff4 6173 struct sd_data data;
eb7a74e6
PZ
6174};
6175
c1174876
PZ
6176/*
6177 * Build an iteration mask that can exclude certain CPUs from the upwards
6178 * domain traversal.
6179 *
6180 * Asymmetric node setups can result in situations where the domain tree is of
6181 * unequal depth, make sure to skip domains that already cover the entire
6182 * range.
6183 *
6184 * In that case build_sched_domains() will have terminated the iteration early
6185 * and our sibling sd spans will be empty. Domains should always include the
6186 * cpu they're built on, so check that.
6187 *
6188 */
6189static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6190{
6191 const struct cpumask *span = sched_domain_span(sd);
6192 struct sd_data *sdd = sd->private;
6193 struct sched_domain *sibling;
6194 int i;
6195
6196 for_each_cpu(i, span) {
6197 sibling = *per_cpu_ptr(sdd->sd, i);
6198 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6199 continue;
6200
6201 cpumask_set_cpu(i, sched_group_mask(sg));
6202 }
6203}
6204
6205/*
6206 * Return the canonical balance cpu for this group, this is the first cpu
6207 * of this group that's also in the iteration mask.
6208 */
6209int group_balance_cpu(struct sched_group *sg)
6210{
6211 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6212}
6213
e3589f6c
PZ
6214static int
6215build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6216{
6217 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6218 const struct cpumask *span = sched_domain_span(sd);
6219 struct cpumask *covered = sched_domains_tmpmask;
6220 struct sd_data *sdd = sd->private;
6221 struct sched_domain *child;
6222 int i;
6223
6224 cpumask_clear(covered);
6225
6226 for_each_cpu(i, span) {
6227 struct cpumask *sg_span;
6228
6229 if (cpumask_test_cpu(i, covered))
6230 continue;
6231
c1174876
PZ
6232 child = *per_cpu_ptr(sdd->sd, i);
6233
6234 /* See the comment near build_group_mask(). */
6235 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6236 continue;
6237
e3589f6c 6238 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6239 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6240
6241 if (!sg)
6242 goto fail;
6243
6244 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
6245 if (child->child) {
6246 child = child->child;
6247 cpumask_copy(sg_span, sched_domain_span(child));
6248 } else
6249 cpumask_set_cpu(i, sg_span);
6250
6251 cpumask_or(covered, covered, sg_span);
6252
74a5ce20 6253 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
6254 if (atomic_inc_return(&sg->sgp->ref) == 1)
6255 build_group_mask(sd, sg);
6256
c3decf0d
PZ
6257 /*
6258 * Initialize sgp->power such that even if we mess up the
6259 * domains and no possible iteration will get us here, we won't
6260 * die on a /0 trap.
6261 */
6262 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 6263
c1174876
PZ
6264 /*
6265 * Make sure the first group of this domain contains the
6266 * canonical balance cpu. Otherwise the sched_domain iteration
6267 * breaks. See update_sg_lb_stats().
6268 */
74a5ce20 6269 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6270 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6271 groups = sg;
6272
6273 if (!first)
6274 first = sg;
6275 if (last)
6276 last->next = sg;
6277 last = sg;
6278 last->next = first;
6279 }
6280 sd->groups = groups;
6281
6282 return 0;
6283
6284fail:
6285 free_sched_groups(first, 0);
6286
6287 return -ENOMEM;
6288}
6289
dce840a0 6290static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6291{
dce840a0
PZ
6292 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6293 struct sched_domain *child = sd->child;
1da177e4 6294
dce840a0
PZ
6295 if (child)
6296 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6297
9c3f75cb 6298 if (sg) {
dce840a0 6299 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6300 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6301 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6302 }
dce840a0
PZ
6303
6304 return cpu;
1e9f28fa 6305}
1e9f28fa 6306
01a08546 6307/*
dce840a0
PZ
6308 * build_sched_groups will build a circular linked list of the groups
6309 * covered by the given span, and will set each group's ->cpumask correctly,
6310 * and ->cpu_power to 0.
e3589f6c
PZ
6311 *
6312 * Assumes the sched_domain tree is fully constructed
01a08546 6313 */
e3589f6c
PZ
6314static int
6315build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6316{
dce840a0
PZ
6317 struct sched_group *first = NULL, *last = NULL;
6318 struct sd_data *sdd = sd->private;
6319 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6320 struct cpumask *covered;
dce840a0 6321 int i;
9c1cfda2 6322
e3589f6c
PZ
6323 get_group(cpu, sdd, &sd->groups);
6324 atomic_inc(&sd->groups->ref);
6325
6326 if (cpu != cpumask_first(sched_domain_span(sd)))
6327 return 0;
6328
f96225fd
PZ
6329 lockdep_assert_held(&sched_domains_mutex);
6330 covered = sched_domains_tmpmask;
6331
dce840a0 6332 cpumask_clear(covered);
6711cab4 6333
dce840a0
PZ
6334 for_each_cpu(i, span) {
6335 struct sched_group *sg;
6336 int group = get_group(i, sdd, &sg);
6337 int j;
6711cab4 6338
dce840a0
PZ
6339 if (cpumask_test_cpu(i, covered))
6340 continue;
6711cab4 6341
dce840a0 6342 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6343 sg->sgp->power = 0;
c1174876 6344 cpumask_setall(sched_group_mask(sg));
0601a88d 6345
dce840a0
PZ
6346 for_each_cpu(j, span) {
6347 if (get_group(j, sdd, NULL) != group)
6348 continue;
0601a88d 6349
dce840a0
PZ
6350 cpumask_set_cpu(j, covered);
6351 cpumask_set_cpu(j, sched_group_cpus(sg));
6352 }
0601a88d 6353
dce840a0
PZ
6354 if (!first)
6355 first = sg;
6356 if (last)
6357 last->next = sg;
6358 last = sg;
6359 }
6360 last->next = first;
e3589f6c
PZ
6361
6362 return 0;
0601a88d 6363}
51888ca2 6364
89c4710e
SS
6365/*
6366 * Initialize sched groups cpu_power.
6367 *
6368 * cpu_power indicates the capacity of sched group, which is used while
6369 * distributing the load between different sched groups in a sched domain.
6370 * Typically cpu_power for all the groups in a sched domain will be same unless
6371 * there are asymmetries in the topology. If there are asymmetries, group
6372 * having more cpu_power will pickup more load compared to the group having
6373 * less cpu_power.
89c4710e
SS
6374 */
6375static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6376{
e3589f6c 6377 struct sched_group *sg = sd->groups;
89c4710e 6378
e3589f6c
PZ
6379 WARN_ON(!sd || !sg);
6380
6381 do {
6382 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6383 sg = sg->next;
6384 } while (sg != sd->groups);
89c4710e 6385
c1174876 6386 if (cpu != group_balance_cpu(sg))
e3589f6c 6387 return;
aae6d3dd 6388
d274cb30 6389 update_group_power(sd, cpu);
69e1e811 6390 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6391}
6392
029632fb
PZ
6393int __weak arch_sd_sibling_asym_packing(void)
6394{
6395 return 0*SD_ASYM_PACKING;
89c4710e
SS
6396}
6397
7c16ec58
MT
6398/*
6399 * Initializers for schedule domains
6400 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6401 */
6402
a5d8c348
IM
6403#ifdef CONFIG_SCHED_DEBUG
6404# define SD_INIT_NAME(sd, type) sd->name = #type
6405#else
6406# define SD_INIT_NAME(sd, type) do { } while (0)
6407#endif
6408
54ab4ff4
PZ
6409#define SD_INIT_FUNC(type) \
6410static noinline struct sched_domain * \
6411sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6412{ \
6413 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6414 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6415 SD_INIT_NAME(sd, type); \
6416 sd->private = &tl->data; \
6417 return sd; \
7c16ec58
MT
6418}
6419
6420SD_INIT_FUNC(CPU)
7c16ec58
MT
6421#ifdef CONFIG_SCHED_SMT
6422 SD_INIT_FUNC(SIBLING)
6423#endif
6424#ifdef CONFIG_SCHED_MC
6425 SD_INIT_FUNC(MC)
6426#endif
01a08546
HC
6427#ifdef CONFIG_SCHED_BOOK
6428 SD_INIT_FUNC(BOOK)
6429#endif
7c16ec58 6430
1d3504fc 6431static int default_relax_domain_level = -1;
60495e77 6432int sched_domain_level_max;
1d3504fc
HS
6433
6434static int __init setup_relax_domain_level(char *str)
6435{
a841f8ce
DS
6436 if (kstrtoint(str, 0, &default_relax_domain_level))
6437 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6438
1d3504fc
HS
6439 return 1;
6440}
6441__setup("relax_domain_level=", setup_relax_domain_level);
6442
6443static void set_domain_attribute(struct sched_domain *sd,
6444 struct sched_domain_attr *attr)
6445{
6446 int request;
6447
6448 if (!attr || attr->relax_domain_level < 0) {
6449 if (default_relax_domain_level < 0)
6450 return;
6451 else
6452 request = default_relax_domain_level;
6453 } else
6454 request = attr->relax_domain_level;
6455 if (request < sd->level) {
6456 /* turn off idle balance on this domain */
c88d5910 6457 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6458 } else {
6459 /* turn on idle balance on this domain */
c88d5910 6460 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6461 }
6462}
6463
54ab4ff4
PZ
6464static void __sdt_free(const struct cpumask *cpu_map);
6465static int __sdt_alloc(const struct cpumask *cpu_map);
6466
2109b99e
AH
6467static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6468 const struct cpumask *cpu_map)
6469{
6470 switch (what) {
2109b99e 6471 case sa_rootdomain:
822ff793
PZ
6472 if (!atomic_read(&d->rd->refcount))
6473 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6474 case sa_sd:
6475 free_percpu(d->sd); /* fall through */
dce840a0 6476 case sa_sd_storage:
54ab4ff4 6477 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6478 case sa_none:
6479 break;
6480 }
6481}
3404c8d9 6482
2109b99e
AH
6483static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6484 const struct cpumask *cpu_map)
6485{
dce840a0
PZ
6486 memset(d, 0, sizeof(*d));
6487
54ab4ff4
PZ
6488 if (__sdt_alloc(cpu_map))
6489 return sa_sd_storage;
dce840a0
PZ
6490 d->sd = alloc_percpu(struct sched_domain *);
6491 if (!d->sd)
6492 return sa_sd_storage;
2109b99e 6493 d->rd = alloc_rootdomain();
dce840a0 6494 if (!d->rd)
21d42ccf 6495 return sa_sd;
2109b99e
AH
6496 return sa_rootdomain;
6497}
57d885fe 6498
dce840a0
PZ
6499/*
6500 * NULL the sd_data elements we've used to build the sched_domain and
6501 * sched_group structure so that the subsequent __free_domain_allocs()
6502 * will not free the data we're using.
6503 */
6504static void claim_allocations(int cpu, struct sched_domain *sd)
6505{
6506 struct sd_data *sdd = sd->private;
dce840a0
PZ
6507
6508 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6509 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6510
e3589f6c 6511 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6512 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6513
6514 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6515 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6516}
6517
2c402dc3
PZ
6518#ifdef CONFIG_SCHED_SMT
6519static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6520{
2c402dc3 6521 return topology_thread_cpumask(cpu);
3bd65a80 6522}
2c402dc3 6523#endif
7f4588f3 6524
d069b916
PZ
6525/*
6526 * Topology list, bottom-up.
6527 */
2c402dc3 6528static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6529#ifdef CONFIG_SCHED_SMT
6530 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6531#endif
1e9f28fa 6532#ifdef CONFIG_SCHED_MC
2c402dc3 6533 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6534#endif
d069b916
PZ
6535#ifdef CONFIG_SCHED_BOOK
6536 { sd_init_BOOK, cpu_book_mask, },
6537#endif
6538 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6539 { NULL, },
6540};
6541
6542static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6543
cb83b629
PZ
6544#ifdef CONFIG_NUMA
6545
6546static int sched_domains_numa_levels;
cb83b629
PZ
6547static int *sched_domains_numa_distance;
6548static struct cpumask ***sched_domains_numa_masks;
6549static int sched_domains_curr_level;
6550
cb83b629
PZ
6551static inline int sd_local_flags(int level)
6552{
10717dcd 6553 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6554 return 0;
6555
6556 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6557}
6558
6559static struct sched_domain *
6560sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6561{
6562 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6563 int level = tl->numa_level;
6564 int sd_weight = cpumask_weight(
6565 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6566
6567 *sd = (struct sched_domain){
6568 .min_interval = sd_weight,
6569 .max_interval = 2*sd_weight,
6570 .busy_factor = 32,
870a0bb5 6571 .imbalance_pct = 125,
cb83b629
PZ
6572 .cache_nice_tries = 2,
6573 .busy_idx = 3,
6574 .idle_idx = 2,
6575 .newidle_idx = 0,
6576 .wake_idx = 0,
6577 .forkexec_idx = 0,
6578
6579 .flags = 1*SD_LOAD_BALANCE
6580 | 1*SD_BALANCE_NEWIDLE
6581 | 0*SD_BALANCE_EXEC
6582 | 0*SD_BALANCE_FORK
6583 | 0*SD_BALANCE_WAKE
6584 | 0*SD_WAKE_AFFINE
6585 | 0*SD_PREFER_LOCAL
6586 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6587 | 0*SD_SHARE_PKG_RESOURCES
6588 | 1*SD_SERIALIZE
6589 | 0*SD_PREFER_SIBLING
6590 | sd_local_flags(level)
6591 ,
6592 .last_balance = jiffies,
6593 .balance_interval = sd_weight,
6594 };
6595 SD_INIT_NAME(sd, NUMA);
6596 sd->private = &tl->data;
6597
6598 /*
6599 * Ugly hack to pass state to sd_numa_mask()...
6600 */
6601 sched_domains_curr_level = tl->numa_level;
6602
6603 return sd;
6604}
6605
6606static const struct cpumask *sd_numa_mask(int cpu)
6607{
6608 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6609}
6610
d039ac60
PZ
6611static void sched_numa_warn(const char *str)
6612{
6613 static int done = false;
6614 int i,j;
6615
6616 if (done)
6617 return;
6618
6619 done = true;
6620
6621 printk(KERN_WARNING "ERROR: %s\n\n", str);
6622
6623 for (i = 0; i < nr_node_ids; i++) {
6624 printk(KERN_WARNING " ");
6625 for (j = 0; j < nr_node_ids; j++)
6626 printk(KERN_CONT "%02d ", node_distance(i,j));
6627 printk(KERN_CONT "\n");
6628 }
6629 printk(KERN_WARNING "\n");
6630}
6631
6632static bool find_numa_distance(int distance)
6633{
6634 int i;
6635
6636 if (distance == node_distance(0, 0))
6637 return true;
6638
6639 for (i = 0; i < sched_domains_numa_levels; i++) {
6640 if (sched_domains_numa_distance[i] == distance)
6641 return true;
6642 }
6643
6644 return false;
6645}
6646
cb83b629
PZ
6647static void sched_init_numa(void)
6648{
6649 int next_distance, curr_distance = node_distance(0, 0);
6650 struct sched_domain_topology_level *tl;
6651 int level = 0;
6652 int i, j, k;
6653
cb83b629
PZ
6654 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6655 if (!sched_domains_numa_distance)
6656 return;
6657
6658 /*
6659 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6660 * unique distances in the node_distance() table.
6661 *
6662 * Assumes node_distance(0,j) includes all distances in
6663 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6664 */
6665 next_distance = curr_distance;
6666 for (i = 0; i < nr_node_ids; i++) {
6667 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6668 for (k = 0; k < nr_node_ids; k++) {
6669 int distance = node_distance(i, k);
6670
6671 if (distance > curr_distance &&
6672 (distance < next_distance ||
6673 next_distance == curr_distance))
6674 next_distance = distance;
6675
6676 /*
6677 * While not a strong assumption it would be nice to know
6678 * about cases where if node A is connected to B, B is not
6679 * equally connected to A.
6680 */
6681 if (sched_debug() && node_distance(k, i) != distance)
6682 sched_numa_warn("Node-distance not symmetric");
6683
6684 if (sched_debug() && i && !find_numa_distance(distance))
6685 sched_numa_warn("Node-0 not representative");
6686 }
6687 if (next_distance != curr_distance) {
6688 sched_domains_numa_distance[level++] = next_distance;
6689 sched_domains_numa_levels = level;
6690 curr_distance = next_distance;
6691 } else break;
cb83b629 6692 }
d039ac60
PZ
6693
6694 /*
6695 * In case of sched_debug() we verify the above assumption.
6696 */
6697 if (!sched_debug())
6698 break;
cb83b629
PZ
6699 }
6700 /*
6701 * 'level' contains the number of unique distances, excluding the
6702 * identity distance node_distance(i,i).
6703 *
6704 * The sched_domains_nume_distance[] array includes the actual distance
6705 * numbers.
6706 */
6707
6708 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6709 if (!sched_domains_numa_masks)
6710 return;
6711
6712 /*
6713 * Now for each level, construct a mask per node which contains all
6714 * cpus of nodes that are that many hops away from us.
6715 */
6716 for (i = 0; i < level; i++) {
6717 sched_domains_numa_masks[i] =
6718 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6719 if (!sched_domains_numa_masks[i])
6720 return;
6721
6722 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6723 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6724 if (!mask)
6725 return;
6726
6727 sched_domains_numa_masks[i][j] = mask;
6728
6729 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6730 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6731 continue;
6732
6733 cpumask_or(mask, mask, cpumask_of_node(k));
6734 }
6735 }
6736 }
6737
6738 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6739 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6740 if (!tl)
6741 return;
6742
6743 /*
6744 * Copy the default topology bits..
6745 */
6746 for (i = 0; default_topology[i].init; i++)
6747 tl[i] = default_topology[i];
6748
6749 /*
6750 * .. and append 'j' levels of NUMA goodness.
6751 */
6752 for (j = 0; j < level; i++, j++) {
6753 tl[i] = (struct sched_domain_topology_level){
6754 .init = sd_numa_init,
6755 .mask = sd_numa_mask,
6756 .flags = SDTL_OVERLAP,
6757 .numa_level = j,
6758 };
6759 }
6760
6761 sched_domain_topology = tl;
6762}
6763#else
6764static inline void sched_init_numa(void)
6765{
6766}
6767#endif /* CONFIG_NUMA */
6768
54ab4ff4
PZ
6769static int __sdt_alloc(const struct cpumask *cpu_map)
6770{
6771 struct sched_domain_topology_level *tl;
6772 int j;
6773
6774 for (tl = sched_domain_topology; tl->init; tl++) {
6775 struct sd_data *sdd = &tl->data;
6776
6777 sdd->sd = alloc_percpu(struct sched_domain *);
6778 if (!sdd->sd)
6779 return -ENOMEM;
6780
6781 sdd->sg = alloc_percpu(struct sched_group *);
6782 if (!sdd->sg)
6783 return -ENOMEM;
6784
9c3f75cb
PZ
6785 sdd->sgp = alloc_percpu(struct sched_group_power *);
6786 if (!sdd->sgp)
6787 return -ENOMEM;
6788
54ab4ff4
PZ
6789 for_each_cpu(j, cpu_map) {
6790 struct sched_domain *sd;
6791 struct sched_group *sg;
9c3f75cb 6792 struct sched_group_power *sgp;
54ab4ff4
PZ
6793
6794 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6795 GFP_KERNEL, cpu_to_node(j));
6796 if (!sd)
6797 return -ENOMEM;
6798
6799 *per_cpu_ptr(sdd->sd, j) = sd;
6800
6801 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6802 GFP_KERNEL, cpu_to_node(j));
6803 if (!sg)
6804 return -ENOMEM;
6805
30b4e9eb
IM
6806 sg->next = sg;
6807
54ab4ff4 6808 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6809
c1174876 6810 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6811 GFP_KERNEL, cpu_to_node(j));
6812 if (!sgp)
6813 return -ENOMEM;
6814
6815 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6816 }
6817 }
6818
6819 return 0;
6820}
6821
6822static void __sdt_free(const struct cpumask *cpu_map)
6823{
6824 struct sched_domain_topology_level *tl;
6825 int j;
6826
6827 for (tl = sched_domain_topology; tl->init; tl++) {
6828 struct sd_data *sdd = &tl->data;
6829
6830 for_each_cpu(j, cpu_map) {
fb2cf2c6 6831 struct sched_domain *sd;
6832
6833 if (sdd->sd) {
6834 sd = *per_cpu_ptr(sdd->sd, j);
6835 if (sd && (sd->flags & SD_OVERLAP))
6836 free_sched_groups(sd->groups, 0);
6837 kfree(*per_cpu_ptr(sdd->sd, j));
6838 }
6839
6840 if (sdd->sg)
6841 kfree(*per_cpu_ptr(sdd->sg, j));
6842 if (sdd->sgp)
6843 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6844 }
6845 free_percpu(sdd->sd);
fb2cf2c6 6846 sdd->sd = NULL;
54ab4ff4 6847 free_percpu(sdd->sg);
fb2cf2c6 6848 sdd->sg = NULL;
9c3f75cb 6849 free_percpu(sdd->sgp);
fb2cf2c6 6850 sdd->sgp = NULL;
54ab4ff4
PZ
6851 }
6852}
6853
2c402dc3
PZ
6854struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6855 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6856 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6857 int cpu)
6858{
54ab4ff4 6859 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6860 if (!sd)
d069b916 6861 return child;
2c402dc3 6862
2c402dc3 6863 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6864 if (child) {
6865 sd->level = child->level + 1;
6866 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6867 child->parent = sd;
60495e77 6868 }
d069b916 6869 sd->child = child;
a841f8ce 6870 set_domain_attribute(sd, attr);
2c402dc3
PZ
6871
6872 return sd;
6873}
6874
2109b99e
AH
6875/*
6876 * Build sched domains for a given set of cpus and attach the sched domains
6877 * to the individual cpus
6878 */
dce840a0
PZ
6879static int build_sched_domains(const struct cpumask *cpu_map,
6880 struct sched_domain_attr *attr)
2109b99e
AH
6881{
6882 enum s_alloc alloc_state = sa_none;
dce840a0 6883 struct sched_domain *sd;
2109b99e 6884 struct s_data d;
822ff793 6885 int i, ret = -ENOMEM;
9c1cfda2 6886
2109b99e
AH
6887 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6888 if (alloc_state != sa_rootdomain)
6889 goto error;
9c1cfda2 6890
dce840a0 6891 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6892 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6893 struct sched_domain_topology_level *tl;
6894
3bd65a80 6895 sd = NULL;
e3589f6c 6896 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6897 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6898 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6899 sd->flags |= SD_OVERLAP;
d110235d
PZ
6900 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6901 break;
e3589f6c 6902 }
d274cb30 6903
d069b916
PZ
6904 while (sd->child)
6905 sd = sd->child;
6906
21d42ccf 6907 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6908 }
6909
6910 /* Build the groups for the domains */
6911 for_each_cpu(i, cpu_map) {
6912 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6913 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6914 if (sd->flags & SD_OVERLAP) {
6915 if (build_overlap_sched_groups(sd, i))
6916 goto error;
6917 } else {
6918 if (build_sched_groups(sd, i))
6919 goto error;
6920 }
1cf51902 6921 }
a06dadbe 6922 }
9c1cfda2 6923
1da177e4 6924 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6925 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6926 if (!cpumask_test_cpu(i, cpu_map))
6927 continue;
9c1cfda2 6928
dce840a0
PZ
6929 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6930 claim_allocations(i, sd);
cd4ea6ae 6931 init_sched_groups_power(i, sd);
dce840a0 6932 }
f712c0c7 6933 }
9c1cfda2 6934
1da177e4 6935 /* Attach the domains */
dce840a0 6936 rcu_read_lock();
abcd083a 6937 for_each_cpu(i, cpu_map) {
21d42ccf 6938 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6939 cpu_attach_domain(sd, d.rd, i);
1da177e4 6940 }
dce840a0 6941 rcu_read_unlock();
51888ca2 6942
822ff793 6943 ret = 0;
51888ca2 6944error:
2109b99e 6945 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6946 return ret;
1da177e4 6947}
029190c5 6948
acc3f5d7 6949static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6950static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6951static struct sched_domain_attr *dattr_cur;
6952 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6953
6954/*
6955 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6956 * cpumask) fails, then fallback to a single sched domain,
6957 * as determined by the single cpumask fallback_doms.
029190c5 6958 */
4212823f 6959static cpumask_var_t fallback_doms;
029190c5 6960
ee79d1bd
HC
6961/*
6962 * arch_update_cpu_topology lets virtualized architectures update the
6963 * cpu core maps. It is supposed to return 1 if the topology changed
6964 * or 0 if it stayed the same.
6965 */
6966int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6967{
ee79d1bd 6968 return 0;
22e52b07
HC
6969}
6970
acc3f5d7
RR
6971cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6972{
6973 int i;
6974 cpumask_var_t *doms;
6975
6976 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6977 if (!doms)
6978 return NULL;
6979 for (i = 0; i < ndoms; i++) {
6980 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6981 free_sched_domains(doms, i);
6982 return NULL;
6983 }
6984 }
6985 return doms;
6986}
6987
6988void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6989{
6990 unsigned int i;
6991 for (i = 0; i < ndoms; i++)
6992 free_cpumask_var(doms[i]);
6993 kfree(doms);
6994}
6995
1a20ff27 6996/*
41a2d6cf 6997 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6998 * For now this just excludes isolated cpus, but could be used to
6999 * exclude other special cases in the future.
1a20ff27 7000 */
c4a8849a 7001static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7002{
7378547f
MM
7003 int err;
7004
22e52b07 7005 arch_update_cpu_topology();
029190c5 7006 ndoms_cur = 1;
acc3f5d7 7007 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7008 if (!doms_cur)
acc3f5d7
RR
7009 doms_cur = &fallback_doms;
7010 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7011 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7012 register_sched_domain_sysctl();
7378547f
MM
7013
7014 return err;
1a20ff27
DG
7015}
7016
1a20ff27
DG
7017/*
7018 * Detach sched domains from a group of cpus specified in cpu_map
7019 * These cpus will now be attached to the NULL domain
7020 */
96f874e2 7021static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7022{
7023 int i;
7024
dce840a0 7025 rcu_read_lock();
abcd083a 7026 for_each_cpu(i, cpu_map)
57d885fe 7027 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7028 rcu_read_unlock();
1a20ff27
DG
7029}
7030
1d3504fc
HS
7031/* handle null as "default" */
7032static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7033 struct sched_domain_attr *new, int idx_new)
7034{
7035 struct sched_domain_attr tmp;
7036
7037 /* fast path */
7038 if (!new && !cur)
7039 return 1;
7040
7041 tmp = SD_ATTR_INIT;
7042 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7043 new ? (new + idx_new) : &tmp,
7044 sizeof(struct sched_domain_attr));
7045}
7046
029190c5
PJ
7047/*
7048 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7049 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7050 * doms_new[] to the current sched domain partitioning, doms_cur[].
7051 * It destroys each deleted domain and builds each new domain.
7052 *
acc3f5d7 7053 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7054 * The masks don't intersect (don't overlap.) We should setup one
7055 * sched domain for each mask. CPUs not in any of the cpumasks will
7056 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7057 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7058 * it as it is.
7059 *
acc3f5d7
RR
7060 * The passed in 'doms_new' should be allocated using
7061 * alloc_sched_domains. This routine takes ownership of it and will
7062 * free_sched_domains it when done with it. If the caller failed the
7063 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7064 * and partition_sched_domains() will fallback to the single partition
7065 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7066 *
96f874e2 7067 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7068 * ndoms_new == 0 is a special case for destroying existing domains,
7069 * and it will not create the default domain.
dfb512ec 7070 *
029190c5
PJ
7071 * Call with hotplug lock held
7072 */
acc3f5d7 7073void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7074 struct sched_domain_attr *dattr_new)
029190c5 7075{
dfb512ec 7076 int i, j, n;
d65bd5ec 7077 int new_topology;
029190c5 7078
712555ee 7079 mutex_lock(&sched_domains_mutex);
a1835615 7080
7378547f
MM
7081 /* always unregister in case we don't destroy any domains */
7082 unregister_sched_domain_sysctl();
7083
d65bd5ec
HC
7084 /* Let architecture update cpu core mappings. */
7085 new_topology = arch_update_cpu_topology();
7086
dfb512ec 7087 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7088
7089 /* Destroy deleted domains */
7090 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7091 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7092 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7093 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7094 goto match1;
7095 }
7096 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7097 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7098match1:
7099 ;
7100 }
7101
e761b772
MK
7102 if (doms_new == NULL) {
7103 ndoms_cur = 0;
acc3f5d7 7104 doms_new = &fallback_doms;
6ad4c188 7105 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7106 WARN_ON_ONCE(dattr_new);
e761b772
MK
7107 }
7108
029190c5
PJ
7109 /* Build new domains */
7110 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7111 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7112 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7113 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7114 goto match2;
7115 }
7116 /* no match - add a new doms_new */
dce840a0 7117 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7118match2:
7119 ;
7120 }
7121
7122 /* Remember the new sched domains */
acc3f5d7
RR
7123 if (doms_cur != &fallback_doms)
7124 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7125 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7126 doms_cur = doms_new;
1d3504fc 7127 dattr_cur = dattr_new;
029190c5 7128 ndoms_cur = ndoms_new;
7378547f
MM
7129
7130 register_sched_domain_sysctl();
a1835615 7131
712555ee 7132 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7133}
7134
d35be8ba
SB
7135static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7136
1da177e4 7137/*
3a101d05
TH
7138 * Update cpusets according to cpu_active mask. If cpusets are
7139 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7140 * around partition_sched_domains().
d35be8ba
SB
7141 *
7142 * If we come here as part of a suspend/resume, don't touch cpusets because we
7143 * want to restore it back to its original state upon resume anyway.
1da177e4 7144 */
0b2e918a
TH
7145static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7146 void *hcpu)
e761b772 7147{
d35be8ba
SB
7148 switch (action) {
7149 case CPU_ONLINE_FROZEN:
7150 case CPU_DOWN_FAILED_FROZEN:
7151
7152 /*
7153 * num_cpus_frozen tracks how many CPUs are involved in suspend
7154 * resume sequence. As long as this is not the last online
7155 * operation in the resume sequence, just build a single sched
7156 * domain, ignoring cpusets.
7157 */
7158 num_cpus_frozen--;
7159 if (likely(num_cpus_frozen)) {
7160 partition_sched_domains(1, NULL, NULL);
7161 break;
7162 }
7163
7164 /*
7165 * This is the last CPU online operation. So fall through and
7166 * restore the original sched domains by considering the
7167 * cpuset configurations.
7168 */
7169
e761b772 7170 case CPU_ONLINE:
6ad4c188 7171 case CPU_DOWN_FAILED:
7ddf96b0 7172 cpuset_update_active_cpus(true);
d35be8ba 7173 break;
3a101d05
TH
7174 default:
7175 return NOTIFY_DONE;
7176 }
d35be8ba 7177 return NOTIFY_OK;
3a101d05 7178}
e761b772 7179
0b2e918a
TH
7180static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7181 void *hcpu)
3a101d05 7182{
d35be8ba 7183 switch (action) {
3a101d05 7184 case CPU_DOWN_PREPARE:
7ddf96b0 7185 cpuset_update_active_cpus(false);
d35be8ba
SB
7186 break;
7187 case CPU_DOWN_PREPARE_FROZEN:
7188 num_cpus_frozen++;
7189 partition_sched_domains(1, NULL, NULL);
7190 break;
e761b772
MK
7191 default:
7192 return NOTIFY_DONE;
7193 }
d35be8ba 7194 return NOTIFY_OK;
e761b772 7195}
e761b772 7196
1da177e4
LT
7197void __init sched_init_smp(void)
7198{
dcc30a35
RR
7199 cpumask_var_t non_isolated_cpus;
7200
7201 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7202 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7203
cb83b629
PZ
7204 sched_init_numa();
7205
95402b38 7206 get_online_cpus();
712555ee 7207 mutex_lock(&sched_domains_mutex);
c4a8849a 7208 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7209 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7210 if (cpumask_empty(non_isolated_cpus))
7211 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7212 mutex_unlock(&sched_domains_mutex);
95402b38 7213 put_online_cpus();
e761b772 7214
3a101d05
TH
7215 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7216 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7217
7218 /* RT runtime code needs to handle some hotplug events */
7219 hotcpu_notifier(update_runtime, 0);
7220
b328ca18 7221 init_hrtick();
5c1e1767
NP
7222
7223 /* Move init over to a non-isolated CPU */
dcc30a35 7224 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7225 BUG();
19978ca6 7226 sched_init_granularity();
dcc30a35 7227 free_cpumask_var(non_isolated_cpus);
4212823f 7228
0e3900e6 7229 init_sched_rt_class();
1da177e4
LT
7230}
7231#else
7232void __init sched_init_smp(void)
7233{
19978ca6 7234 sched_init_granularity();
1da177e4
LT
7235}
7236#endif /* CONFIG_SMP */
7237
cd1bb94b
AB
7238const_debug unsigned int sysctl_timer_migration = 1;
7239
1da177e4
LT
7240int in_sched_functions(unsigned long addr)
7241{
1da177e4
LT
7242 return in_lock_functions(addr) ||
7243 (addr >= (unsigned long)__sched_text_start
7244 && addr < (unsigned long)__sched_text_end);
7245}
7246
029632fb
PZ
7247#ifdef CONFIG_CGROUP_SCHED
7248struct task_group root_task_group;
052f1dc7 7249#endif
6f505b16 7250
029632fb 7251DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 7252
1da177e4
LT
7253void __init sched_init(void)
7254{
dd41f596 7255 int i, j;
434d53b0
MT
7256 unsigned long alloc_size = 0, ptr;
7257
7258#ifdef CONFIG_FAIR_GROUP_SCHED
7259 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7260#endif
7261#ifdef CONFIG_RT_GROUP_SCHED
7262 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7263#endif
df7c8e84 7264#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7265 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7266#endif
434d53b0 7267 if (alloc_size) {
36b7b6d4 7268 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7269
7270#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7271 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7272 ptr += nr_cpu_ids * sizeof(void **);
7273
07e06b01 7274 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7275 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7276
6d6bc0ad 7277#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7278#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7279 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7280 ptr += nr_cpu_ids * sizeof(void **);
7281
07e06b01 7282 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7283 ptr += nr_cpu_ids * sizeof(void **);
7284
6d6bc0ad 7285#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7286#ifdef CONFIG_CPUMASK_OFFSTACK
7287 for_each_possible_cpu(i) {
7288 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7289 ptr += cpumask_size();
7290 }
7291#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7292 }
dd41f596 7293
57d885fe
GH
7294#ifdef CONFIG_SMP
7295 init_defrootdomain();
7296#endif
7297
d0b27fa7
PZ
7298 init_rt_bandwidth(&def_rt_bandwidth,
7299 global_rt_period(), global_rt_runtime());
7300
7301#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7302 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7303 global_rt_period(), global_rt_runtime());
6d6bc0ad 7304#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7305
7c941438 7306#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7307 list_add(&root_task_group.list, &task_groups);
7308 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7309 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7310 autogroup_init(&init_task);
54c707e9 7311
7c941438 7312#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7313
54c707e9
GC
7314#ifdef CONFIG_CGROUP_CPUACCT
7315 root_cpuacct.cpustat = &kernel_cpustat;
7316 root_cpuacct.cpuusage = alloc_percpu(u64);
7317 /* Too early, not expected to fail */
7318 BUG_ON(!root_cpuacct.cpuusage);
7319#endif
0a945022 7320 for_each_possible_cpu(i) {
70b97a7f 7321 struct rq *rq;
1da177e4
LT
7322
7323 rq = cpu_rq(i);
05fa785c 7324 raw_spin_lock_init(&rq->lock);
7897986b 7325 rq->nr_running = 0;
dce48a84
TG
7326 rq->calc_load_active = 0;
7327 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7328 init_cfs_rq(&rq->cfs);
6f505b16 7329 init_rt_rq(&rq->rt, rq);
dd41f596 7330#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7331 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7332 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7333 /*
07e06b01 7334 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7335 *
7336 * In case of task-groups formed thr' the cgroup filesystem, it
7337 * gets 100% of the cpu resources in the system. This overall
7338 * system cpu resource is divided among the tasks of
07e06b01 7339 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7340 * based on each entity's (task or task-group's) weight
7341 * (se->load.weight).
7342 *
07e06b01 7343 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7344 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7345 * then A0's share of the cpu resource is:
7346 *
0d905bca 7347 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7348 *
07e06b01
YZ
7349 * We achieve this by letting root_task_group's tasks sit
7350 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7351 */
ab84d31e 7352 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7353 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7354#endif /* CONFIG_FAIR_GROUP_SCHED */
7355
7356 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7357#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7358 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7359 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7360#endif
1da177e4 7361
dd41f596
IM
7362 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7363 rq->cpu_load[j] = 0;
fdf3e95d
VP
7364
7365 rq->last_load_update_tick = jiffies;
7366
1da177e4 7367#ifdef CONFIG_SMP
41c7ce9a 7368 rq->sd = NULL;
57d885fe 7369 rq->rd = NULL;
1399fa78 7370 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7371 rq->post_schedule = 0;
1da177e4 7372 rq->active_balance = 0;
dd41f596 7373 rq->next_balance = jiffies;
1da177e4 7374 rq->push_cpu = 0;
0a2966b4 7375 rq->cpu = i;
1f11eb6a 7376 rq->online = 0;
eae0c9df
MG
7377 rq->idle_stamp = 0;
7378 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7379
7380 INIT_LIST_HEAD(&rq->cfs_tasks);
7381
dc938520 7382 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7383#ifdef CONFIG_NO_HZ
1c792db7 7384 rq->nohz_flags = 0;
83cd4fe2 7385#endif
1da177e4 7386#endif
8f4d37ec 7387 init_rq_hrtick(rq);
1da177e4 7388 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7389 }
7390
2dd73a4f 7391 set_load_weight(&init_task);
b50f60ce 7392
e107be36
AK
7393#ifdef CONFIG_PREEMPT_NOTIFIERS
7394 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7395#endif
7396
b50f60ce 7397#ifdef CONFIG_RT_MUTEXES
732375c6 7398 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7399#endif
7400
1da177e4
LT
7401 /*
7402 * The boot idle thread does lazy MMU switching as well:
7403 */
7404 atomic_inc(&init_mm.mm_count);
7405 enter_lazy_tlb(&init_mm, current);
7406
7407 /*
7408 * Make us the idle thread. Technically, schedule() should not be
7409 * called from this thread, however somewhere below it might be,
7410 * but because we are the idle thread, we just pick up running again
7411 * when this runqueue becomes "idle".
7412 */
7413 init_idle(current, smp_processor_id());
dce48a84
TG
7414
7415 calc_load_update = jiffies + LOAD_FREQ;
7416
dd41f596
IM
7417 /*
7418 * During early bootup we pretend to be a normal task:
7419 */
7420 current->sched_class = &fair_sched_class;
6892b75e 7421
bf4d83f6 7422#ifdef CONFIG_SMP
4cb98839 7423 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7424 /* May be allocated at isolcpus cmdline parse time */
7425 if (cpu_isolated_map == NULL)
7426 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7427 idle_thread_set_boot_cpu();
029632fb
PZ
7428#endif
7429 init_sched_fair_class();
6a7b3dc3 7430
6892b75e 7431 scheduler_running = 1;
1da177e4
LT
7432}
7433
d902db1e 7434#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7435static inline int preempt_count_equals(int preempt_offset)
7436{
234da7bc 7437 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7438
4ba8216c 7439 return (nested == preempt_offset);
e4aafea2
FW
7440}
7441
d894837f 7442void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7443{
1da177e4
LT
7444 static unsigned long prev_jiffy; /* ratelimiting */
7445
b3fbab05 7446 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7447 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7448 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7449 return;
7450 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7451 return;
7452 prev_jiffy = jiffies;
7453
3df0fc5b
PZ
7454 printk(KERN_ERR
7455 "BUG: sleeping function called from invalid context at %s:%d\n",
7456 file, line);
7457 printk(KERN_ERR
7458 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7459 in_atomic(), irqs_disabled(),
7460 current->pid, current->comm);
aef745fc
IM
7461
7462 debug_show_held_locks(current);
7463 if (irqs_disabled())
7464 print_irqtrace_events(current);
7465 dump_stack();
1da177e4
LT
7466}
7467EXPORT_SYMBOL(__might_sleep);
7468#endif
7469
7470#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7471static void normalize_task(struct rq *rq, struct task_struct *p)
7472{
da7a735e
PZ
7473 const struct sched_class *prev_class = p->sched_class;
7474 int old_prio = p->prio;
3a5e4dc1 7475 int on_rq;
3e51f33f 7476
fd2f4419 7477 on_rq = p->on_rq;
3a5e4dc1 7478 if (on_rq)
4ca9b72b 7479 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7480 __setscheduler(rq, p, SCHED_NORMAL, 0);
7481 if (on_rq) {
4ca9b72b 7482 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7483 resched_task(rq->curr);
7484 }
da7a735e
PZ
7485
7486 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7487}
7488
1da177e4
LT
7489void normalize_rt_tasks(void)
7490{
a0f98a1c 7491 struct task_struct *g, *p;
1da177e4 7492 unsigned long flags;
70b97a7f 7493 struct rq *rq;
1da177e4 7494
4cf5d77a 7495 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7496 do_each_thread(g, p) {
178be793
IM
7497 /*
7498 * Only normalize user tasks:
7499 */
7500 if (!p->mm)
7501 continue;
7502
6cfb0d5d 7503 p->se.exec_start = 0;
6cfb0d5d 7504#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7505 p->se.statistics.wait_start = 0;
7506 p->se.statistics.sleep_start = 0;
7507 p->se.statistics.block_start = 0;
6cfb0d5d 7508#endif
dd41f596
IM
7509
7510 if (!rt_task(p)) {
7511 /*
7512 * Renice negative nice level userspace
7513 * tasks back to 0:
7514 */
7515 if (TASK_NICE(p) < 0 && p->mm)
7516 set_user_nice(p, 0);
1da177e4 7517 continue;
dd41f596 7518 }
1da177e4 7519
1d615482 7520 raw_spin_lock(&p->pi_lock);
b29739f9 7521 rq = __task_rq_lock(p);
1da177e4 7522
178be793 7523 normalize_task(rq, p);
3a5e4dc1 7524
b29739f9 7525 __task_rq_unlock(rq);
1d615482 7526 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7527 } while_each_thread(g, p);
7528
4cf5d77a 7529 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7530}
7531
7532#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7533
67fc4e0c 7534#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7535/*
67fc4e0c 7536 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7537 *
7538 * They can only be called when the whole system has been
7539 * stopped - every CPU needs to be quiescent, and no scheduling
7540 * activity can take place. Using them for anything else would
7541 * be a serious bug, and as a result, they aren't even visible
7542 * under any other configuration.
7543 */
7544
7545/**
7546 * curr_task - return the current task for a given cpu.
7547 * @cpu: the processor in question.
7548 *
7549 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7550 */
36c8b586 7551struct task_struct *curr_task(int cpu)
1df5c10a
LT
7552{
7553 return cpu_curr(cpu);
7554}
7555
67fc4e0c
JW
7556#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7557
7558#ifdef CONFIG_IA64
1df5c10a
LT
7559/**
7560 * set_curr_task - set the current task for a given cpu.
7561 * @cpu: the processor in question.
7562 * @p: the task pointer to set.
7563 *
7564 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7565 * are serviced on a separate stack. It allows the architecture to switch the
7566 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7567 * must be called with all CPU's synchronized, and interrupts disabled, the
7568 * and caller must save the original value of the current task (see
7569 * curr_task() above) and restore that value before reenabling interrupts and
7570 * re-starting the system.
7571 *
7572 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7573 */
36c8b586 7574void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7575{
7576 cpu_curr(cpu) = p;
7577}
7578
7579#endif
29f59db3 7580
7c941438 7581#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7582/* task_group_lock serializes the addition/removal of task groups */
7583static DEFINE_SPINLOCK(task_group_lock);
7584
bccbe08a
PZ
7585static void free_sched_group(struct task_group *tg)
7586{
7587 free_fair_sched_group(tg);
7588 free_rt_sched_group(tg);
e9aa1dd1 7589 autogroup_free(tg);
bccbe08a
PZ
7590 kfree(tg);
7591}
7592
7593/* allocate runqueue etc for a new task group */
ec7dc8ac 7594struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7595{
7596 struct task_group *tg;
7597 unsigned long flags;
bccbe08a
PZ
7598
7599 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7600 if (!tg)
7601 return ERR_PTR(-ENOMEM);
7602
ec7dc8ac 7603 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7604 goto err;
7605
ec7dc8ac 7606 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7607 goto err;
7608
8ed36996 7609 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7610 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7611
7612 WARN_ON(!parent); /* root should already exist */
7613
7614 tg->parent = parent;
f473aa5e 7615 INIT_LIST_HEAD(&tg->children);
09f2724a 7616 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7617 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7618
9b5b7751 7619 return tg;
29f59db3
SV
7620
7621err:
6f505b16 7622 free_sched_group(tg);
29f59db3
SV
7623 return ERR_PTR(-ENOMEM);
7624}
7625
9b5b7751 7626/* rcu callback to free various structures associated with a task group */
6f505b16 7627static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7628{
29f59db3 7629 /* now it should be safe to free those cfs_rqs */
6f505b16 7630 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7631}
7632
9b5b7751 7633/* Destroy runqueue etc associated with a task group */
4cf86d77 7634void sched_destroy_group(struct task_group *tg)
29f59db3 7635{
8ed36996 7636 unsigned long flags;
9b5b7751 7637 int i;
29f59db3 7638
3d4b47b4
PZ
7639 /* end participation in shares distribution */
7640 for_each_possible_cpu(i)
bccbe08a 7641 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7642
7643 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7644 list_del_rcu(&tg->list);
f473aa5e 7645 list_del_rcu(&tg->siblings);
8ed36996 7646 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7647
9b5b7751 7648 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7649 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7650}
7651
9b5b7751 7652/* change task's runqueue when it moves between groups.
3a252015
IM
7653 * The caller of this function should have put the task in its new group
7654 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7655 * reflect its new group.
9b5b7751
SV
7656 */
7657void sched_move_task(struct task_struct *tsk)
29f59db3 7658{
8323f26c 7659 struct task_group *tg;
29f59db3
SV
7660 int on_rq, running;
7661 unsigned long flags;
7662 struct rq *rq;
7663
7664 rq = task_rq_lock(tsk, &flags);
7665
051a1d1a 7666 running = task_current(rq, tsk);
fd2f4419 7667 on_rq = tsk->on_rq;
29f59db3 7668
0e1f3483 7669 if (on_rq)
29f59db3 7670 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7671 if (unlikely(running))
7672 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7673
8323f26c
PZ
7674 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7675 lockdep_is_held(&tsk->sighand->siglock)),
7676 struct task_group, css);
7677 tg = autogroup_task_group(tsk, tg);
7678 tsk->sched_task_group = tg;
7679
810b3817 7680#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7681 if (tsk->sched_class->task_move_group)
7682 tsk->sched_class->task_move_group(tsk, on_rq);
7683 else
810b3817 7684#endif
b2b5ce02 7685 set_task_rq(tsk, task_cpu(tsk));
810b3817 7686
0e1f3483
HS
7687 if (unlikely(running))
7688 tsk->sched_class->set_curr_task(rq);
7689 if (on_rq)
371fd7e7 7690 enqueue_task(rq, tsk, 0);
29f59db3 7691
0122ec5b 7692 task_rq_unlock(rq, tsk, &flags);
29f59db3 7693}
7c941438 7694#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7695
a790de99 7696#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7697static unsigned long to_ratio(u64 period, u64 runtime)
7698{
7699 if (runtime == RUNTIME_INF)
9a7e0b18 7700 return 1ULL << 20;
9f0c1e56 7701
9a7e0b18 7702 return div64_u64(runtime << 20, period);
9f0c1e56 7703}
a790de99
PT
7704#endif
7705
7706#ifdef CONFIG_RT_GROUP_SCHED
7707/*
7708 * Ensure that the real time constraints are schedulable.
7709 */
7710static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7711
9a7e0b18
PZ
7712/* Must be called with tasklist_lock held */
7713static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7714{
9a7e0b18 7715 struct task_struct *g, *p;
b40b2e8e 7716
9a7e0b18 7717 do_each_thread(g, p) {
029632fb 7718 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7719 return 1;
7720 } while_each_thread(g, p);
b40b2e8e 7721
9a7e0b18
PZ
7722 return 0;
7723}
b40b2e8e 7724
9a7e0b18
PZ
7725struct rt_schedulable_data {
7726 struct task_group *tg;
7727 u64 rt_period;
7728 u64 rt_runtime;
7729};
b40b2e8e 7730
a790de99 7731static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7732{
7733 struct rt_schedulable_data *d = data;
7734 struct task_group *child;
7735 unsigned long total, sum = 0;
7736 u64 period, runtime;
b40b2e8e 7737
9a7e0b18
PZ
7738 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7739 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7740
9a7e0b18
PZ
7741 if (tg == d->tg) {
7742 period = d->rt_period;
7743 runtime = d->rt_runtime;
b40b2e8e 7744 }
b40b2e8e 7745
4653f803
PZ
7746 /*
7747 * Cannot have more runtime than the period.
7748 */
7749 if (runtime > period && runtime != RUNTIME_INF)
7750 return -EINVAL;
6f505b16 7751
4653f803
PZ
7752 /*
7753 * Ensure we don't starve existing RT tasks.
7754 */
9a7e0b18
PZ
7755 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7756 return -EBUSY;
6f505b16 7757
9a7e0b18 7758 total = to_ratio(period, runtime);
6f505b16 7759
4653f803
PZ
7760 /*
7761 * Nobody can have more than the global setting allows.
7762 */
7763 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7764 return -EINVAL;
6f505b16 7765
4653f803
PZ
7766 /*
7767 * The sum of our children's runtime should not exceed our own.
7768 */
9a7e0b18
PZ
7769 list_for_each_entry_rcu(child, &tg->children, siblings) {
7770 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7771 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7772
9a7e0b18
PZ
7773 if (child == d->tg) {
7774 period = d->rt_period;
7775 runtime = d->rt_runtime;
7776 }
6f505b16 7777
9a7e0b18 7778 sum += to_ratio(period, runtime);
9f0c1e56 7779 }
6f505b16 7780
9a7e0b18
PZ
7781 if (sum > total)
7782 return -EINVAL;
7783
7784 return 0;
6f505b16
PZ
7785}
7786
9a7e0b18 7787static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7788{
8277434e
PT
7789 int ret;
7790
9a7e0b18
PZ
7791 struct rt_schedulable_data data = {
7792 .tg = tg,
7793 .rt_period = period,
7794 .rt_runtime = runtime,
7795 };
7796
8277434e
PT
7797 rcu_read_lock();
7798 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7799 rcu_read_unlock();
7800
7801 return ret;
521f1a24
DG
7802}
7803
ab84d31e 7804static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7805 u64 rt_period, u64 rt_runtime)
6f505b16 7806{
ac086bc2 7807 int i, err = 0;
9f0c1e56 7808
9f0c1e56 7809 mutex_lock(&rt_constraints_mutex);
521f1a24 7810 read_lock(&tasklist_lock);
9a7e0b18
PZ
7811 err = __rt_schedulable(tg, rt_period, rt_runtime);
7812 if (err)
9f0c1e56 7813 goto unlock;
ac086bc2 7814
0986b11b 7815 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7816 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7817 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7818
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = tg->rt_rq[i];
7821
0986b11b 7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7823 rt_rq->rt_runtime = rt_runtime;
0986b11b 7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7825 }
0986b11b 7826 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7827unlock:
521f1a24 7828 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7829 mutex_unlock(&rt_constraints_mutex);
7830
7831 return err;
6f505b16
PZ
7832}
7833
d0b27fa7
PZ
7834int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7835{
7836 u64 rt_runtime, rt_period;
7837
7838 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7839 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7840 if (rt_runtime_us < 0)
7841 rt_runtime = RUNTIME_INF;
7842
ab84d31e 7843 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7844}
7845
9f0c1e56
PZ
7846long sched_group_rt_runtime(struct task_group *tg)
7847{
7848 u64 rt_runtime_us;
7849
d0b27fa7 7850 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7851 return -1;
7852
d0b27fa7 7853 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7854 do_div(rt_runtime_us, NSEC_PER_USEC);
7855 return rt_runtime_us;
7856}
d0b27fa7
PZ
7857
7858int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7859{
7860 u64 rt_runtime, rt_period;
7861
7862 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7863 rt_runtime = tg->rt_bandwidth.rt_runtime;
7864
619b0488
R
7865 if (rt_period == 0)
7866 return -EINVAL;
7867
ab84d31e 7868 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7869}
7870
7871long sched_group_rt_period(struct task_group *tg)
7872{
7873 u64 rt_period_us;
7874
7875 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7876 do_div(rt_period_us, NSEC_PER_USEC);
7877 return rt_period_us;
7878}
7879
7880static int sched_rt_global_constraints(void)
7881{
4653f803 7882 u64 runtime, period;
d0b27fa7
PZ
7883 int ret = 0;
7884
ec5d4989
HS
7885 if (sysctl_sched_rt_period <= 0)
7886 return -EINVAL;
7887
4653f803
PZ
7888 runtime = global_rt_runtime();
7889 period = global_rt_period();
7890
7891 /*
7892 * Sanity check on the sysctl variables.
7893 */
7894 if (runtime > period && runtime != RUNTIME_INF)
7895 return -EINVAL;
10b612f4 7896
d0b27fa7 7897 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7898 read_lock(&tasklist_lock);
4653f803 7899 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7900 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7901 mutex_unlock(&rt_constraints_mutex);
7902
7903 return ret;
7904}
54e99124
DG
7905
7906int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7907{
7908 /* Don't accept realtime tasks when there is no way for them to run */
7909 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7910 return 0;
7911
7912 return 1;
7913}
7914
6d6bc0ad 7915#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7916static int sched_rt_global_constraints(void)
7917{
ac086bc2
PZ
7918 unsigned long flags;
7919 int i;
7920
ec5d4989
HS
7921 if (sysctl_sched_rt_period <= 0)
7922 return -EINVAL;
7923
60aa605d
PZ
7924 /*
7925 * There's always some RT tasks in the root group
7926 * -- migration, kstopmachine etc..
7927 */
7928 if (sysctl_sched_rt_runtime == 0)
7929 return -EBUSY;
7930
0986b11b 7931 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7932 for_each_possible_cpu(i) {
7933 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7934
0986b11b 7935 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7936 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7937 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7938 }
0986b11b 7939 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7940
d0b27fa7
PZ
7941 return 0;
7942}
6d6bc0ad 7943#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7944
7945int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7946 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7947 loff_t *ppos)
7948{
7949 int ret;
7950 int old_period, old_runtime;
7951 static DEFINE_MUTEX(mutex);
7952
7953 mutex_lock(&mutex);
7954 old_period = sysctl_sched_rt_period;
7955 old_runtime = sysctl_sched_rt_runtime;
7956
8d65af78 7957 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7958
7959 if (!ret && write) {
7960 ret = sched_rt_global_constraints();
7961 if (ret) {
7962 sysctl_sched_rt_period = old_period;
7963 sysctl_sched_rt_runtime = old_runtime;
7964 } else {
7965 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7966 def_rt_bandwidth.rt_period =
7967 ns_to_ktime(global_rt_period());
7968 }
7969 }
7970 mutex_unlock(&mutex);
7971
7972 return ret;
7973}
68318b8e 7974
052f1dc7 7975#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7976
7977/* return corresponding task_group object of a cgroup */
2b01dfe3 7978static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7979{
2b01dfe3
PM
7980 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7981 struct task_group, css);
68318b8e
SV
7982}
7983
761b3ef5 7984static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7985{
ec7dc8ac 7986 struct task_group *tg, *parent;
68318b8e 7987
2b01dfe3 7988 if (!cgrp->parent) {
68318b8e 7989 /* This is early initialization for the top cgroup */
07e06b01 7990 return &root_task_group.css;
68318b8e
SV
7991 }
7992
ec7dc8ac
DG
7993 parent = cgroup_tg(cgrp->parent);
7994 tg = sched_create_group(parent);
68318b8e
SV
7995 if (IS_ERR(tg))
7996 return ERR_PTR(-ENOMEM);
7997
68318b8e
SV
7998 return &tg->css;
7999}
8000
761b3ef5 8001static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 8002{
2b01dfe3 8003 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8004
8005 sched_destroy_group(tg);
8006}
8007
761b3ef5 8008static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 8009 struct cgroup_taskset *tset)
68318b8e 8010{
bb9d97b6
TH
8011 struct task_struct *task;
8012
8013 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 8014#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
8015 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
8016 return -EINVAL;
b68aa230 8017#else
bb9d97b6
TH
8018 /* We don't support RT-tasks being in separate groups */
8019 if (task->sched_class != &fair_sched_class)
8020 return -EINVAL;
b68aa230 8021#endif
bb9d97b6 8022 }
be367d09
BB
8023 return 0;
8024}
68318b8e 8025
761b3ef5 8026static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 8027 struct cgroup_taskset *tset)
68318b8e 8028{
bb9d97b6
TH
8029 struct task_struct *task;
8030
8031 cgroup_taskset_for_each(task, cgrp, tset)
8032 sched_move_task(task);
68318b8e
SV
8033}
8034
068c5cc5 8035static void
761b3ef5
LZ
8036cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
8037 struct task_struct *task)
068c5cc5
PZ
8038{
8039 /*
8040 * cgroup_exit() is called in the copy_process() failure path.
8041 * Ignore this case since the task hasn't ran yet, this avoids
8042 * trying to poke a half freed task state from generic code.
8043 */
8044 if (!(task->flags & PF_EXITING))
8045 return;
8046
8047 sched_move_task(task);
8048}
8049
052f1dc7 8050#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8051static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8052 u64 shareval)
68318b8e 8053{
c8b28116 8054 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
8055}
8056
f4c753b7 8057static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8058{
2b01dfe3 8059 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 8060
c8b28116 8061 return (u64) scale_load_down(tg->shares);
68318b8e 8062}
ab84d31e
PT
8063
8064#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8065static DEFINE_MUTEX(cfs_constraints_mutex);
8066
ab84d31e
PT
8067const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8068const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8069
a790de99
PT
8070static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8071
ab84d31e
PT
8072static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8073{
56f570e5 8074 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8075 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8076
8077 if (tg == &root_task_group)
8078 return -EINVAL;
8079
8080 /*
8081 * Ensure we have at some amount of bandwidth every period. This is
8082 * to prevent reaching a state of large arrears when throttled via
8083 * entity_tick() resulting in prolonged exit starvation.
8084 */
8085 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8086 return -EINVAL;
8087
8088 /*
8089 * Likewise, bound things on the otherside by preventing insane quota
8090 * periods. This also allows us to normalize in computing quota
8091 * feasibility.
8092 */
8093 if (period > max_cfs_quota_period)
8094 return -EINVAL;
8095
a790de99
PT
8096 mutex_lock(&cfs_constraints_mutex);
8097 ret = __cfs_schedulable(tg, period, quota);
8098 if (ret)
8099 goto out_unlock;
8100
58088ad0 8101 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
8102 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8103 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
8104 raw_spin_lock_irq(&cfs_b->lock);
8105 cfs_b->period = ns_to_ktime(period);
8106 cfs_b->quota = quota;
58088ad0 8107
a9cf55b2 8108 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8109 /* restart the period timer (if active) to handle new period expiry */
8110 if (runtime_enabled && cfs_b->timer_active) {
8111 /* force a reprogram */
8112 cfs_b->timer_active = 0;
8113 __start_cfs_bandwidth(cfs_b);
8114 }
ab84d31e
PT
8115 raw_spin_unlock_irq(&cfs_b->lock);
8116
8117 for_each_possible_cpu(i) {
8118 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8119 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8120
8121 raw_spin_lock_irq(&rq->lock);
58088ad0 8122 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8123 cfs_rq->runtime_remaining = 0;
671fd9da 8124
029632fb 8125 if (cfs_rq->throttled)
671fd9da 8126 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8127 raw_spin_unlock_irq(&rq->lock);
8128 }
a790de99
PT
8129out_unlock:
8130 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 8131
a790de99 8132 return ret;
ab84d31e
PT
8133}
8134
8135int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8136{
8137 u64 quota, period;
8138
029632fb 8139 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8140 if (cfs_quota_us < 0)
8141 quota = RUNTIME_INF;
8142 else
8143 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8144
8145 return tg_set_cfs_bandwidth(tg, period, quota);
8146}
8147
8148long tg_get_cfs_quota(struct task_group *tg)
8149{
8150 u64 quota_us;
8151
029632fb 8152 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8153 return -1;
8154
029632fb 8155 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8156 do_div(quota_us, NSEC_PER_USEC);
8157
8158 return quota_us;
8159}
8160
8161int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8162{
8163 u64 quota, period;
8164
8165 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8166 quota = tg->cfs_bandwidth.quota;
ab84d31e 8167
ab84d31e
PT
8168 return tg_set_cfs_bandwidth(tg, period, quota);
8169}
8170
8171long tg_get_cfs_period(struct task_group *tg)
8172{
8173 u64 cfs_period_us;
8174
029632fb 8175 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8176 do_div(cfs_period_us, NSEC_PER_USEC);
8177
8178 return cfs_period_us;
8179}
8180
8181static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
8182{
8183 return tg_get_cfs_quota(cgroup_tg(cgrp));
8184}
8185
8186static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
8187 s64 cfs_quota_us)
8188{
8189 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
8190}
8191
8192static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
8193{
8194 return tg_get_cfs_period(cgroup_tg(cgrp));
8195}
8196
8197static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8198 u64 cfs_period_us)
8199{
8200 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
8201}
8202
a790de99
PT
8203struct cfs_schedulable_data {
8204 struct task_group *tg;
8205 u64 period, quota;
8206};
8207
8208/*
8209 * normalize group quota/period to be quota/max_period
8210 * note: units are usecs
8211 */
8212static u64 normalize_cfs_quota(struct task_group *tg,
8213 struct cfs_schedulable_data *d)
8214{
8215 u64 quota, period;
8216
8217 if (tg == d->tg) {
8218 period = d->period;
8219 quota = d->quota;
8220 } else {
8221 period = tg_get_cfs_period(tg);
8222 quota = tg_get_cfs_quota(tg);
8223 }
8224
8225 /* note: these should typically be equivalent */
8226 if (quota == RUNTIME_INF || quota == -1)
8227 return RUNTIME_INF;
8228
8229 return to_ratio(period, quota);
8230}
8231
8232static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8233{
8234 struct cfs_schedulable_data *d = data;
029632fb 8235 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8236 s64 quota = 0, parent_quota = -1;
8237
8238 if (!tg->parent) {
8239 quota = RUNTIME_INF;
8240 } else {
029632fb 8241 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8242
8243 quota = normalize_cfs_quota(tg, d);
8244 parent_quota = parent_b->hierarchal_quota;
8245
8246 /*
8247 * ensure max(child_quota) <= parent_quota, inherit when no
8248 * limit is set
8249 */
8250 if (quota == RUNTIME_INF)
8251 quota = parent_quota;
8252 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8253 return -EINVAL;
8254 }
8255 cfs_b->hierarchal_quota = quota;
8256
8257 return 0;
8258}
8259
8260static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8261{
8277434e 8262 int ret;
a790de99
PT
8263 struct cfs_schedulable_data data = {
8264 .tg = tg,
8265 .period = period,
8266 .quota = quota,
8267 };
8268
8269 if (quota != RUNTIME_INF) {
8270 do_div(data.period, NSEC_PER_USEC);
8271 do_div(data.quota, NSEC_PER_USEC);
8272 }
8273
8277434e
PT
8274 rcu_read_lock();
8275 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8276 rcu_read_unlock();
8277
8278 return ret;
a790de99 8279}
e8da1b18
NR
8280
8281static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8282 struct cgroup_map_cb *cb)
8283{
8284 struct task_group *tg = cgroup_tg(cgrp);
029632fb 8285 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
8286
8287 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8288 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8289 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8290
8291 return 0;
8292}
ab84d31e 8293#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8294#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8295
052f1dc7 8296#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8297static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8298 s64 val)
6f505b16 8299{
06ecb27c 8300 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8301}
8302
06ecb27c 8303static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8304{
06ecb27c 8305 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8306}
d0b27fa7
PZ
8307
8308static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8309 u64 rt_period_us)
8310{
8311 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8312}
8313
8314static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8315{
8316 return sched_group_rt_period(cgroup_tg(cgrp));
8317}
6d6bc0ad 8318#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8319
fe5c7cc2 8320static struct cftype cpu_files[] = {
052f1dc7 8321#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8322 {
8323 .name = "shares",
f4c753b7
PM
8324 .read_u64 = cpu_shares_read_u64,
8325 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8326 },
052f1dc7 8327#endif
ab84d31e
PT
8328#ifdef CONFIG_CFS_BANDWIDTH
8329 {
8330 .name = "cfs_quota_us",
8331 .read_s64 = cpu_cfs_quota_read_s64,
8332 .write_s64 = cpu_cfs_quota_write_s64,
8333 },
8334 {
8335 .name = "cfs_period_us",
8336 .read_u64 = cpu_cfs_period_read_u64,
8337 .write_u64 = cpu_cfs_period_write_u64,
8338 },
e8da1b18
NR
8339 {
8340 .name = "stat",
8341 .read_map = cpu_stats_show,
8342 },
ab84d31e 8343#endif
052f1dc7 8344#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8345 {
9f0c1e56 8346 .name = "rt_runtime_us",
06ecb27c
PM
8347 .read_s64 = cpu_rt_runtime_read,
8348 .write_s64 = cpu_rt_runtime_write,
6f505b16 8349 },
d0b27fa7
PZ
8350 {
8351 .name = "rt_period_us",
f4c753b7
PM
8352 .read_u64 = cpu_rt_period_read_uint,
8353 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8354 },
052f1dc7 8355#endif
4baf6e33 8356 { } /* terminate */
68318b8e
SV
8357};
8358
68318b8e 8359struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8360 .name = "cpu",
8361 .create = cpu_cgroup_create,
8362 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
8363 .can_attach = cpu_cgroup_can_attach,
8364 .attach = cpu_cgroup_attach,
068c5cc5 8365 .exit = cpu_cgroup_exit,
38605cae 8366 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8367 .base_cftypes = cpu_files,
68318b8e
SV
8368 .early_init = 1,
8369};
8370
052f1dc7 8371#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8372
8373#ifdef CONFIG_CGROUP_CPUACCT
8374
8375/*
8376 * CPU accounting code for task groups.
8377 *
8378 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8379 * (balbir@in.ibm.com).
8380 */
8381
d842de87 8382/* create a new cpu accounting group */
761b3ef5 8383static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 8384{
54c707e9 8385 struct cpuacct *ca;
d842de87 8386
54c707e9
GC
8387 if (!cgrp->parent)
8388 return &root_cpuacct.css;
8389
8390 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8391 if (!ca)
ef12fefa 8392 goto out;
d842de87
SV
8393
8394 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8395 if (!ca->cpuusage)
8396 goto out_free_ca;
8397
54c707e9
GC
8398 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8399 if (!ca->cpustat)
8400 goto out_free_cpuusage;
934352f2 8401
d842de87 8402 return &ca->css;
ef12fefa 8403
54c707e9 8404out_free_cpuusage:
ef12fefa
BR
8405 free_percpu(ca->cpuusage);
8406out_free_ca:
8407 kfree(ca);
8408out:
8409 return ERR_PTR(-ENOMEM);
d842de87
SV
8410}
8411
8412/* destroy an existing cpu accounting group */
761b3ef5 8413static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 8414{
32cd756a 8415 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8416
54c707e9 8417 free_percpu(ca->cpustat);
d842de87
SV
8418 free_percpu(ca->cpuusage);
8419 kfree(ca);
8420}
8421
720f5498
KC
8422static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8423{
b36128c8 8424 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8425 u64 data;
8426
8427#ifndef CONFIG_64BIT
8428 /*
8429 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8430 */
05fa785c 8431 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8432 data = *cpuusage;
05fa785c 8433 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8434#else
8435 data = *cpuusage;
8436#endif
8437
8438 return data;
8439}
8440
8441static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8442{
b36128c8 8443 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8444
8445#ifndef CONFIG_64BIT
8446 /*
8447 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8448 */
05fa785c 8449 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8450 *cpuusage = val;
05fa785c 8451 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8452#else
8453 *cpuusage = val;
8454#endif
8455}
8456
d842de87 8457/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8458static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8459{
32cd756a 8460 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8461 u64 totalcpuusage = 0;
8462 int i;
8463
720f5498
KC
8464 for_each_present_cpu(i)
8465 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8466
8467 return totalcpuusage;
8468}
8469
0297b803
DG
8470static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8471 u64 reset)
8472{
8473 struct cpuacct *ca = cgroup_ca(cgrp);
8474 int err = 0;
8475 int i;
8476
8477 if (reset) {
8478 err = -EINVAL;
8479 goto out;
8480 }
8481
720f5498
KC
8482 for_each_present_cpu(i)
8483 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8484
0297b803
DG
8485out:
8486 return err;
8487}
8488
e9515c3c
KC
8489static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8490 struct seq_file *m)
8491{
8492 struct cpuacct *ca = cgroup_ca(cgroup);
8493 u64 percpu;
8494 int i;
8495
8496 for_each_present_cpu(i) {
8497 percpu = cpuacct_cpuusage_read(ca, i);
8498 seq_printf(m, "%llu ", (unsigned long long) percpu);
8499 }
8500 seq_printf(m, "\n");
8501 return 0;
8502}
8503
ef12fefa
BR
8504static const char *cpuacct_stat_desc[] = {
8505 [CPUACCT_STAT_USER] = "user",
8506 [CPUACCT_STAT_SYSTEM] = "system",
8507};
8508
8509static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8510 struct cgroup_map_cb *cb)
ef12fefa
BR
8511{
8512 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8513 int cpu;
8514 s64 val = 0;
ef12fefa 8515
54c707e9
GC
8516 for_each_online_cpu(cpu) {
8517 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8518 val += kcpustat->cpustat[CPUTIME_USER];
8519 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8520 }
54c707e9
GC
8521 val = cputime64_to_clock_t(val);
8522 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8523
54c707e9
GC
8524 val = 0;
8525 for_each_online_cpu(cpu) {
8526 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8527 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8528 val += kcpustat->cpustat[CPUTIME_IRQ];
8529 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8530 }
54c707e9
GC
8531
8532 val = cputime64_to_clock_t(val);
8533 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8534
ef12fefa
BR
8535 return 0;
8536}
8537
d842de87
SV
8538static struct cftype files[] = {
8539 {
8540 .name = "usage",
f4c753b7
PM
8541 .read_u64 = cpuusage_read,
8542 .write_u64 = cpuusage_write,
d842de87 8543 },
e9515c3c
KC
8544 {
8545 .name = "usage_percpu",
8546 .read_seq_string = cpuacct_percpu_seq_read,
8547 },
ef12fefa
BR
8548 {
8549 .name = "stat",
8550 .read_map = cpuacct_stats_show,
8551 },
4baf6e33 8552 { } /* terminate */
d842de87
SV
8553};
8554
d842de87
SV
8555/*
8556 * charge this task's execution time to its accounting group.
8557 *
8558 * called with rq->lock held.
8559 */
029632fb 8560void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8561{
8562 struct cpuacct *ca;
934352f2 8563 int cpu;
d842de87 8564
c40c6f85 8565 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8566 return;
8567
934352f2 8568 cpu = task_cpu(tsk);
a18b83b7
BR
8569
8570 rcu_read_lock();
8571
d842de87 8572 ca = task_ca(tsk);
d842de87 8573
44252e42 8574 for (; ca; ca = parent_ca(ca)) {
b36128c8 8575 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8576 *cpuusage += cputime;
8577 }
a18b83b7
BR
8578
8579 rcu_read_unlock();
d842de87
SV
8580}
8581
8582struct cgroup_subsys cpuacct_subsys = {
8583 .name = "cpuacct",
8584 .create = cpuacct_create,
8585 .destroy = cpuacct_destroy,
d842de87 8586 .subsys_id = cpuacct_subsys_id,
4baf6e33 8587 .base_cftypes = files,
d842de87
SV
8588};
8589#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.238294 seconds and 5 git commands to generate.