mm: thp: kvm: fix memory corruption in KVM with THP enabled
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
3d0c27ad 44#include <asm/kvm_page_track.h>
6aa8b732 45
18552672
JR
46/*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
2f333bcb 53bool tdp_enabled = false;
18552672 54
8b1fe17c
XG
55enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
6903074c
XG
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
8b1fe17c 62};
37a7d8b0 63
8b1fe17c 64#undef MMU_DEBUG
37a7d8b0
AK
65
66#ifdef MMU_DEBUG
fa4a2c08
PB
67static bool dbg = 0;
68module_param(dbg, bool, 0644);
37a7d8b0
AK
69
70#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 72#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 73#else
37a7d8b0
AK
74#define pgprintk(x...) do { } while (0)
75#define rmap_printk(x...) do { } while (0)
fa4a2c08 76#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 77#endif
6aa8b732 78
957ed9ef
XG
79#define PTE_PREFETCH_NUM 8
80
00763e41 81#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
82#define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
6aa8b732
AK
84#define PT64_LEVEL_BITS 9
85
86#define PT64_LEVEL_SHIFT(level) \
d77c26fc 87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 88
6aa8b732
AK
89#define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93#define PT32_LEVEL_BITS 10
94
95#define PT32_LEVEL_SHIFT(level) \
d77c26fc 96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 97
e04da980
JR
98#define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
101
102#define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
27aba766 106#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
107#define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
109#define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112#define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
115
116#define PT32_BASE_ADDR_MASK PAGE_MASK
117#define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
119#define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
6aa8b732 122
53166229
GN
123#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
6aa8b732 125
fe135d2c
AK
126#define ACC_EXEC_MASK 1
127#define ACC_WRITE_MASK PT_WRITABLE_MASK
128#define ACC_USER_MASK PT_USER_MASK
129#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
90bb6fc5
AK
131#include <trace/events/kvm.h>
132
07420171
AK
133#define CREATE_TRACE_POINTS
134#include "mmutrace.h"
135
49fde340
XG
136#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 138
135f8c2b
AK
139#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
220f773a
TY
141/* make pte_list_desc fit well in cache line */
142#define PTE_LIST_EXT 3
143
53c07b18
XG
144struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
cd4a4e53
AK
147};
148
2d11123a
AK
149struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
2d11123a 152 u64 *sptep;
dd3bfd59 153 int level;
2d11123a
AK
154 unsigned index;
155};
156
157#define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
c2a2ac2b
XG
162#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
53c07b18 168static struct kmem_cache *pte_list_desc_cache;
d3d25b04 169static struct kmem_cache *mmu_page_header_cache;
45221ab6 170static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 171
7b52345e
SY
172static u64 __read_mostly shadow_nx_mask;
173static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174static u64 __read_mostly shadow_user_mask;
175static u64 __read_mostly shadow_accessed_mask;
176static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
177static u64 __read_mostly shadow_mmio_mask;
178
179static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 180static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
181
182void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183{
184 shadow_mmio_mask = mmio_mask;
185}
186EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
f2fd125d 188/*
ee3d1570
DM
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 196 */
ee3d1570 197#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
198#define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
ee3d1570
DM
200#define MMIO_GEN_SHIFT 20
201#define MMIO_GEN_LOW_SHIFT 10
202#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 203#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
204
205static u64 generation_mmio_spte_mask(unsigned int gen)
206{
207 u64 mask;
208
842bb26a 209 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214}
215
216static unsigned int get_mmio_spte_generation(u64 spte)
217{
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225}
226
54bf36aa 227static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 228{
54bf36aa 229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
230}
231
54bf36aa 232static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 233 unsigned access)
ce88decf 234{
54bf36aa 235 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 236 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 237
ce88decf 238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 240
f8f55942 241 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 242 mmu_spte_set(sptep, mask);
ce88decf
XG
243}
244
245static bool is_mmio_spte(u64 spte)
246{
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248}
249
250static gfn_t get_mmio_spte_gfn(u64 spte)
251{
842bb26a 252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 253 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
254}
255
256static unsigned get_mmio_spte_access(u64 spte)
257{
842bb26a 258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 259 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
260}
261
54bf36aa 262static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 263 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
264{
265 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 266 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
267 return true;
268 }
269
270 return false;
271}
c7addb90 272
54bf36aa 273static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 274{
089504c0
XG
275 unsigned int kvm_gen, spte_gen;
276
54bf36aa 277 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
f8f55942
XG
282}
283
7b52345e 284void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
286{
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292}
293EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
6aa8b732
AK
295static int is_cpuid_PSE36(void)
296{
297 return 1;
298}
299
73b1087e
AK
300static int is_nx(struct kvm_vcpu *vcpu)
301{
f6801dff 302 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
303}
304
c7addb90
AK
305static int is_shadow_present_pte(u64 pte)
306{
ce88decf 307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
308}
309
05da4558
MT
310static int is_large_pte(u64 pte)
311{
312 return pte & PT_PAGE_SIZE_MASK;
313}
314
776e6633
MT
315static int is_last_spte(u64 pte, int level)
316{
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
852e3c19 319 if (is_large_pte(pte))
776e6633
MT
320 return 1;
321 return 0;
322}
323
ba049e93 324static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 325{
35149e21 326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
327}
328
da928521
AK
329static gfn_t pse36_gfn_delta(u32 gpte)
330{
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334}
335
603e0651 336#ifdef CONFIG_X86_64
d555c333 337static void __set_spte(u64 *sptep, u64 spte)
e663ee64 338{
603e0651 339 *sptep = spte;
e663ee64
AK
340}
341
603e0651 342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 343{
603e0651
XG
344 *sptep = spte;
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
c2a2ac2b
XG
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return ACCESS_ONCE(*sptep);
355}
a9221dd5 356#else
603e0651
XG
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
a9221dd5 364
c2a2ac2b
XG
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
603e0651
XG
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
a9221dd5 380
603e0651
XG
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
394}
395
603e0651
XG
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 412 count_spte_clear(sptep, spte);
603e0651
XG
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 426 count_spte_clear(sptep, spte);
603e0651
XG
427
428 return orig.spte;
429}
c2a2ac2b
XG
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
603e0651
XG
471#endif
472
c7ba5b48
XG
473static bool spte_is_locklessly_modifiable(u64 spte)
474{
feb3eb70
GN
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
477}
478
8672b721
XG
479static bool spte_has_volatile_bits(u64 spte)
480{
c7ba5b48 481 /*
6a6256f9 482 * Always atomically update spte if it can be updated
c7ba5b48
XG
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
8672b721
XG
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
4132779b
XG
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
498 return false;
499
500 return true;
501}
502
4132779b
XG
503static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504{
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506}
507
7e71a59b
KH
508static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509{
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511}
512
1df9f2dc
XG
513/* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519static void mmu_spte_set(u64 *sptep, u64 new_spte)
520{
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523}
524
525/* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
1df9f2dc 533 */
6e7d0354 534static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 535{
c7ba5b48 536 u64 old_spte = *sptep;
6e7d0354 537 bool ret = false;
4132779b 538
afd28fe1 539 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 540
6e7d0354
XG
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
4132779b 545
c7ba5b48 546 if (!spte_has_volatile_bits(old_spte))
603e0651 547 __update_clear_spte_fast(sptep, new_spte);
4132779b 548 else
603e0651 549 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 550
c7ba5b48
XG
551 /*
552 * For the spte updated out of mmu-lock is safe, since
6a6256f9 553 * we always atomically update it, see the comments in
c7ba5b48
XG
554 * spte_has_volatile_bits().
555 */
7f31c959
XG
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
6e7d0354
XG
558 ret = true;
559
14f47605
YZ
560 if (!shadow_accessed_mask) {
561 /*
562 * We don't set page dirty when dropping non-writable spte.
563 * So do it now if the new spte is becoming non-writable.
564 */
565 if (ret)
566 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354 567 return ret;
14f47605 568 }
4132779b 569
7e71a59b
KH
570 /*
571 * Flush TLB when accessed/dirty bits are changed in the page tables,
572 * to guarantee consistency between TLB and page tables.
573 */
574 if (spte_is_bit_changed(old_spte, new_spte,
575 shadow_accessed_mask | shadow_dirty_mask))
576 ret = true;
577
4132779b
XG
578 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
579 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
580 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
581 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
582
583 return ret;
b79b93f9
AK
584}
585
1df9f2dc
XG
586/*
587 * Rules for using mmu_spte_clear_track_bits:
588 * It sets the sptep from present to nonpresent, and track the
589 * state bits, it is used to clear the last level sptep.
590 */
591static int mmu_spte_clear_track_bits(u64 *sptep)
592{
ba049e93 593 kvm_pfn_t pfn;
1df9f2dc
XG
594 u64 old_spte = *sptep;
595
596 if (!spte_has_volatile_bits(old_spte))
603e0651 597 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 598 else
603e0651 599 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 600
afd28fe1 601 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
602 return 0;
603
604 pfn = spte_to_pfn(old_spte);
86fde74c
XG
605
606 /*
607 * KVM does not hold the refcount of the page used by
608 * kvm mmu, before reclaiming the page, we should
609 * unmap it from mmu first.
610 */
bf4bea8e 611 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 612
1df9f2dc
XG
613 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
614 kvm_set_pfn_accessed(pfn);
14f47605
YZ
615 if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
616 PT_WRITABLE_MASK))
1df9f2dc
XG
617 kvm_set_pfn_dirty(pfn);
618 return 1;
619}
620
621/*
622 * Rules for using mmu_spte_clear_no_track:
623 * Directly clear spte without caring the state bits of sptep,
624 * it is used to set the upper level spte.
625 */
626static void mmu_spte_clear_no_track(u64 *sptep)
627{
603e0651 628 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
629}
630
c2a2ac2b
XG
631static u64 mmu_spte_get_lockless(u64 *sptep)
632{
633 return __get_spte_lockless(sptep);
634}
635
636static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
637{
c142786c
AK
638 /*
639 * Prevent page table teardown by making any free-er wait during
640 * kvm_flush_remote_tlbs() IPI to all active vcpus.
641 */
642 local_irq_disable();
36ca7e0a 643
c142786c
AK
644 /*
645 * Make sure a following spte read is not reordered ahead of the write
646 * to vcpu->mode.
647 */
36ca7e0a 648 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
649}
650
651static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
652{
c142786c
AK
653 /*
654 * Make sure the write to vcpu->mode is not reordered in front of
655 * reads to sptes. If it does, kvm_commit_zap_page() can see us
656 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
657 */
36ca7e0a 658 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 659 local_irq_enable();
c2a2ac2b
XG
660}
661
e2dec939 662static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 663 struct kmem_cache *base_cache, int min)
714b93da
AK
664{
665 void *obj;
666
667 if (cache->nobjs >= min)
e2dec939 668 return 0;
714b93da 669 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 670 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 671 if (!obj)
e2dec939 672 return -ENOMEM;
714b93da
AK
673 cache->objects[cache->nobjs++] = obj;
674 }
e2dec939 675 return 0;
714b93da
AK
676}
677
f759e2b4
XG
678static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
679{
680 return cache->nobjs;
681}
682
e8ad9a70
XG
683static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
684 struct kmem_cache *cache)
714b93da
AK
685{
686 while (mc->nobjs)
e8ad9a70 687 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
688}
689
c1158e63 690static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 691 int min)
c1158e63 692{
842f22ed 693 void *page;
c1158e63
AK
694
695 if (cache->nobjs >= min)
696 return 0;
697 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 698 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
699 if (!page)
700 return -ENOMEM;
842f22ed 701 cache->objects[cache->nobjs++] = page;
c1158e63
AK
702 }
703 return 0;
704}
705
706static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
707{
708 while (mc->nobjs)
c4d198d5 709 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
710}
711
2e3e5882 712static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 713{
e2dec939
AK
714 int r;
715
53c07b18 716 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 717 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
718 if (r)
719 goto out;
ad312c7c 720 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
721 if (r)
722 goto out;
ad312c7c 723 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 724 mmu_page_header_cache, 4);
e2dec939
AK
725out:
726 return r;
714b93da
AK
727}
728
729static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
730{
53c07b18
XG
731 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
732 pte_list_desc_cache);
ad312c7c 733 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
734 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
735 mmu_page_header_cache);
714b93da
AK
736}
737
80feb89a 738static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
739{
740 void *p;
741
742 BUG_ON(!mc->nobjs);
743 p = mc->objects[--mc->nobjs];
714b93da
AK
744 return p;
745}
746
53c07b18 747static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 748{
80feb89a 749 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
750}
751
53c07b18 752static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 753{
53c07b18 754 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
755}
756
2032a93d
LJ
757static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
758{
759 if (!sp->role.direct)
760 return sp->gfns[index];
761
762 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
763}
764
765static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
766{
767 if (sp->role.direct)
768 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
769 else
770 sp->gfns[index] = gfn;
771}
772
05da4558 773/*
d4dbf470
TY
774 * Return the pointer to the large page information for a given gfn,
775 * handling slots that are not large page aligned.
05da4558 776 */
d4dbf470
TY
777static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
778 struct kvm_memory_slot *slot,
779 int level)
05da4558
MT
780{
781 unsigned long idx;
782
fb03cb6f 783 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 784 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
785}
786
547ffaed
XG
787static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788 gfn_t gfn, int count)
789{
790 struct kvm_lpage_info *linfo;
791 int i;
792
793 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
794 linfo = lpage_info_slot(gfn, slot, i);
795 linfo->disallow_lpage += count;
796 WARN_ON(linfo->disallow_lpage < 0);
797 }
798}
799
800void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801{
802 update_gfn_disallow_lpage_count(slot, gfn, 1);
803}
804
805void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806{
807 update_gfn_disallow_lpage_count(slot, gfn, -1);
808}
809
3ed1a478 810static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 811{
699023e2 812 struct kvm_memslots *slots;
d25797b2 813 struct kvm_memory_slot *slot;
3ed1a478 814 gfn_t gfn;
05da4558 815
56ca57f9 816 kvm->arch.indirect_shadow_pages++;
3ed1a478 817 gfn = sp->gfn;
699023e2
PB
818 slots = kvm_memslots_for_spte_role(kvm, sp->role);
819 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
820
821 /* the non-leaf shadow pages are keeping readonly. */
822 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
823 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824 KVM_PAGE_TRACK_WRITE);
825
547ffaed 826 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
827}
828
3ed1a478 829static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 830{
699023e2 831 struct kvm_memslots *slots;
d25797b2 832 struct kvm_memory_slot *slot;
3ed1a478 833 gfn_t gfn;
05da4558 834
56ca57f9 835 kvm->arch.indirect_shadow_pages--;
3ed1a478 836 gfn = sp->gfn;
699023e2
PB
837 slots = kvm_memslots_for_spte_role(kvm, sp->role);
838 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
839 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
840 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
841 KVM_PAGE_TRACK_WRITE);
842
547ffaed 843 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
844}
845
92f94f1e
XG
846static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
847 struct kvm_memory_slot *slot)
05da4558 848{
d4dbf470 849 struct kvm_lpage_info *linfo;
05da4558
MT
850
851 if (slot) {
d4dbf470 852 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 853 return !!linfo->disallow_lpage;
05da4558
MT
854 }
855
92f94f1e 856 return true;
05da4558
MT
857}
858
92f94f1e
XG
859static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
860 int level)
5225fdf8
TY
861{
862 struct kvm_memory_slot *slot;
863
864 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 865 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
866}
867
d25797b2 868static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 869{
8f0b1ab6 870 unsigned long page_size;
d25797b2 871 int i, ret = 0;
05da4558 872
8f0b1ab6 873 page_size = kvm_host_page_size(kvm, gfn);
05da4558 874
8a3d08f1 875 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
876 if (page_size >= KVM_HPAGE_SIZE(i))
877 ret = i;
878 else
879 break;
880 }
881
4c2155ce 882 return ret;
05da4558
MT
883}
884
d8aacf5d
TY
885static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
886 bool no_dirty_log)
887{
888 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
889 return false;
890 if (no_dirty_log && slot->dirty_bitmap)
891 return false;
892
893 return true;
894}
895
5d163b1c
XG
896static struct kvm_memory_slot *
897gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
898 bool no_dirty_log)
05da4558
MT
899{
900 struct kvm_memory_slot *slot;
5d163b1c 901
54bf36aa 902 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 903 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
904 slot = NULL;
905
906 return slot;
907}
908
fd136902
TY
909static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
910 bool *force_pt_level)
936a5fe6
AA
911{
912 int host_level, level, max_level;
d8aacf5d
TY
913 struct kvm_memory_slot *slot;
914
8c85ac1c
TY
915 if (unlikely(*force_pt_level))
916 return PT_PAGE_TABLE_LEVEL;
05da4558 917
8c85ac1c
TY
918 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
919 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
920 if (unlikely(*force_pt_level))
921 return PT_PAGE_TABLE_LEVEL;
922
d25797b2
JR
923 host_level = host_mapping_level(vcpu->kvm, large_gfn);
924
925 if (host_level == PT_PAGE_TABLE_LEVEL)
926 return host_level;
927
55dd98c3 928 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
929
930 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 931 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 932 break;
d25797b2
JR
933
934 return level - 1;
05da4558
MT
935}
936
290fc38d 937/*
018aabb5 938 * About rmap_head encoding:
cd4a4e53 939 *
018aabb5
TY
940 * If the bit zero of rmap_head->val is clear, then it points to the only spte
941 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 942 * pte_list_desc containing more mappings.
018aabb5
TY
943 */
944
945/*
946 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 947 */
53c07b18 948static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 949 struct kvm_rmap_head *rmap_head)
cd4a4e53 950{
53c07b18 951 struct pte_list_desc *desc;
53a27b39 952 int i, count = 0;
cd4a4e53 953
018aabb5 954 if (!rmap_head->val) {
53c07b18 955 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
956 rmap_head->val = (unsigned long)spte;
957 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
958 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
959 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 960 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 961 desc->sptes[1] = spte;
018aabb5 962 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 963 ++count;
cd4a4e53 964 } else {
53c07b18 965 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 966 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 967 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 968 desc = desc->more;
53c07b18 969 count += PTE_LIST_EXT;
53a27b39 970 }
53c07b18
XG
971 if (desc->sptes[PTE_LIST_EXT-1]) {
972 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
973 desc = desc->more;
974 }
d555c333 975 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 976 ++count;
d555c333 977 desc->sptes[i] = spte;
cd4a4e53 978 }
53a27b39 979 return count;
cd4a4e53
AK
980}
981
53c07b18 982static void
018aabb5
TY
983pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
984 struct pte_list_desc *desc, int i,
985 struct pte_list_desc *prev_desc)
cd4a4e53
AK
986{
987 int j;
988
53c07b18 989 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 990 ;
d555c333
AK
991 desc->sptes[i] = desc->sptes[j];
992 desc->sptes[j] = NULL;
cd4a4e53
AK
993 if (j != 0)
994 return;
995 if (!prev_desc && !desc->more)
018aabb5 996 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
997 else
998 if (prev_desc)
999 prev_desc->more = desc->more;
1000 else
018aabb5 1001 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1002 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1003}
1004
018aabb5 1005static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1006{
53c07b18
XG
1007 struct pte_list_desc *desc;
1008 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1009 int i;
1010
018aabb5 1011 if (!rmap_head->val) {
53c07b18 1012 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 1013 BUG();
018aabb5 1014 } else if (!(rmap_head->val & 1)) {
53c07b18 1015 rmap_printk("pte_list_remove: %p 1->0\n", spte);
018aabb5 1016 if ((u64 *)rmap_head->val != spte) {
53c07b18 1017 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
1018 BUG();
1019 }
018aabb5 1020 rmap_head->val = 0;
cd4a4e53 1021 } else {
53c07b18 1022 rmap_printk("pte_list_remove: %p many->many\n", spte);
018aabb5 1023 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1024 prev_desc = NULL;
1025 while (desc) {
018aabb5 1026 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1027 if (desc->sptes[i] == spte) {
018aabb5
TY
1028 pte_list_desc_remove_entry(rmap_head,
1029 desc, i, prev_desc);
cd4a4e53
AK
1030 return;
1031 }
018aabb5 1032 }
cd4a4e53
AK
1033 prev_desc = desc;
1034 desc = desc->more;
1035 }
53c07b18 1036 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1037 BUG();
1038 }
1039}
1040
018aabb5
TY
1041static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1042 struct kvm_memory_slot *slot)
53c07b18 1043{
77d11309 1044 unsigned long idx;
53c07b18 1045
77d11309 1046 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1047 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1048}
1049
018aabb5
TY
1050static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1051 struct kvm_mmu_page *sp)
9b9b1492 1052{
699023e2 1053 struct kvm_memslots *slots;
9b9b1492
TY
1054 struct kvm_memory_slot *slot;
1055
699023e2
PB
1056 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1057 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1058 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1059}
1060
f759e2b4
XG
1061static bool rmap_can_add(struct kvm_vcpu *vcpu)
1062{
1063 struct kvm_mmu_memory_cache *cache;
1064
1065 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066 return mmu_memory_cache_free_objects(cache);
1067}
1068
53c07b18
XG
1069static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1070{
1071 struct kvm_mmu_page *sp;
018aabb5 1072 struct kvm_rmap_head *rmap_head;
53c07b18 1073
53c07b18
XG
1074 sp = page_header(__pa(spte));
1075 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1076 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1077 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1078}
1079
53c07b18
XG
1080static void rmap_remove(struct kvm *kvm, u64 *spte)
1081{
1082 struct kvm_mmu_page *sp;
1083 gfn_t gfn;
018aabb5 1084 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1085
1086 sp = page_header(__pa(spte));
1087 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5
TY
1088 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1089 pte_list_remove(spte, rmap_head);
53c07b18
XG
1090}
1091
1e3f42f0
TY
1092/*
1093 * Used by the following functions to iterate through the sptes linked by a
1094 * rmap. All fields are private and not assumed to be used outside.
1095 */
1096struct rmap_iterator {
1097 /* private fields */
1098 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1099 int pos; /* index of the sptep */
1100};
1101
1102/*
1103 * Iteration must be started by this function. This should also be used after
1104 * removing/dropping sptes from the rmap link because in such cases the
1105 * information in the itererator may not be valid.
1106 *
1107 * Returns sptep if found, NULL otherwise.
1108 */
018aabb5
TY
1109static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1110 struct rmap_iterator *iter)
1e3f42f0 1111{
77fbbbd2
TY
1112 u64 *sptep;
1113
018aabb5 1114 if (!rmap_head->val)
1e3f42f0
TY
1115 return NULL;
1116
018aabb5 1117 if (!(rmap_head->val & 1)) {
1e3f42f0 1118 iter->desc = NULL;
77fbbbd2
TY
1119 sptep = (u64 *)rmap_head->val;
1120 goto out;
1e3f42f0
TY
1121 }
1122
018aabb5 1123 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1124 iter->pos = 0;
77fbbbd2
TY
1125 sptep = iter->desc->sptes[iter->pos];
1126out:
1127 BUG_ON(!is_shadow_present_pte(*sptep));
1128 return sptep;
1e3f42f0
TY
1129}
1130
1131/*
1132 * Must be used with a valid iterator: e.g. after rmap_get_first().
1133 *
1134 * Returns sptep if found, NULL otherwise.
1135 */
1136static u64 *rmap_get_next(struct rmap_iterator *iter)
1137{
77fbbbd2
TY
1138 u64 *sptep;
1139
1e3f42f0
TY
1140 if (iter->desc) {
1141 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1142 ++iter->pos;
1143 sptep = iter->desc->sptes[iter->pos];
1144 if (sptep)
77fbbbd2 1145 goto out;
1e3f42f0
TY
1146 }
1147
1148 iter->desc = iter->desc->more;
1149
1150 if (iter->desc) {
1151 iter->pos = 0;
1152 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1153 sptep = iter->desc->sptes[iter->pos];
1154 goto out;
1e3f42f0
TY
1155 }
1156 }
1157
1158 return NULL;
77fbbbd2
TY
1159out:
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 return sptep;
1e3f42f0
TY
1162}
1163
018aabb5
TY
1164#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1165 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1166 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1167
c3707958 1168static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1169{
1df9f2dc 1170 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1171 rmap_remove(kvm, sptep);
be38d276
AK
1172}
1173
8e22f955
XG
1174
1175static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1176{
1177 if (is_large_pte(*sptep)) {
1178 WARN_ON(page_header(__pa(sptep))->role.level ==
1179 PT_PAGE_TABLE_LEVEL);
1180 drop_spte(kvm, sptep);
1181 --kvm->stat.lpages;
1182 return true;
1183 }
1184
1185 return false;
1186}
1187
1188static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1189{
1190 if (__drop_large_spte(vcpu->kvm, sptep))
1191 kvm_flush_remote_tlbs(vcpu->kvm);
1192}
1193
1194/*
49fde340 1195 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1196 * spte write-protection is caused by protecting shadow page table.
49fde340 1197 *
b4619660 1198 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1199 * protection:
1200 * - for dirty logging, the spte can be set to writable at anytime if
1201 * its dirty bitmap is properly set.
1202 * - for spte protection, the spte can be writable only after unsync-ing
1203 * shadow page.
8e22f955 1204 *
c126d94f 1205 * Return true if tlb need be flushed.
8e22f955 1206 */
c126d94f 1207static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1208{
1209 u64 spte = *sptep;
1210
49fde340
XG
1211 if (!is_writable_pte(spte) &&
1212 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1213 return false;
1214
1215 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1216
49fde340
XG
1217 if (pt_protect)
1218 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1219 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1220
c126d94f 1221 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1222}
1223
018aabb5
TY
1224static bool __rmap_write_protect(struct kvm *kvm,
1225 struct kvm_rmap_head *rmap_head,
245c3912 1226 bool pt_protect)
98348e95 1227{
1e3f42f0
TY
1228 u64 *sptep;
1229 struct rmap_iterator iter;
d13bc5b5 1230 bool flush = false;
374cbac0 1231
018aabb5 1232 for_each_rmap_spte(rmap_head, &iter, sptep)
c126d94f 1233 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1234
d13bc5b5 1235 return flush;
a0ed4607
TY
1236}
1237
f4b4b180
KH
1238static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1239{
1240 u64 spte = *sptep;
1241
1242 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1243
1244 spte &= ~shadow_dirty_mask;
1245
1246 return mmu_spte_update(sptep, spte);
1247}
1248
018aabb5 1249static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1250{
1251 u64 *sptep;
1252 struct rmap_iterator iter;
1253 bool flush = false;
1254
018aabb5 1255 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1256 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1257
1258 return flush;
1259}
1260
1261static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1262{
1263 u64 spte = *sptep;
1264
1265 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1266
1267 spte |= shadow_dirty_mask;
1268
1269 return mmu_spte_update(sptep, spte);
1270}
1271
018aabb5 1272static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1273{
1274 u64 *sptep;
1275 struct rmap_iterator iter;
1276 bool flush = false;
1277
018aabb5 1278 for_each_rmap_spte(rmap_head, &iter, sptep)
f4b4b180 1279 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1280
1281 return flush;
1282}
1283
5dc99b23 1284/**
3b0f1d01 1285 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1286 * @kvm: kvm instance
1287 * @slot: slot to protect
1288 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1289 * @mask: indicates which pages we should protect
1290 *
1291 * Used when we do not need to care about huge page mappings: e.g. during dirty
1292 * logging we do not have any such mappings.
1293 */
3b0f1d01 1294static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1295 struct kvm_memory_slot *slot,
1296 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1297{
018aabb5 1298 struct kvm_rmap_head *rmap_head;
a0ed4607 1299
5dc99b23 1300 while (mask) {
018aabb5
TY
1301 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1302 PT_PAGE_TABLE_LEVEL, slot);
1303 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1304
5dc99b23
TY
1305 /* clear the first set bit */
1306 mask &= mask - 1;
1307 }
374cbac0
AK
1308}
1309
f4b4b180
KH
1310/**
1311 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1312 * @kvm: kvm instance
1313 * @slot: slot to clear D-bit
1314 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1315 * @mask: indicates which pages we should clear D-bit
1316 *
1317 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1318 */
1319void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1320 struct kvm_memory_slot *slot,
1321 gfn_t gfn_offset, unsigned long mask)
1322{
018aabb5 1323 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1324
1325 while (mask) {
018aabb5
TY
1326 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1327 PT_PAGE_TABLE_LEVEL, slot);
1328 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1329
1330 /* clear the first set bit */
1331 mask &= mask - 1;
1332 }
1333}
1334EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1335
3b0f1d01
KH
1336/**
1337 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1338 * PT level pages.
1339 *
1340 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1341 * enable dirty logging for them.
1342 *
1343 * Used when we do not need to care about huge page mappings: e.g. during dirty
1344 * logging we do not have any such mappings.
1345 */
1346void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1347 struct kvm_memory_slot *slot,
1348 gfn_t gfn_offset, unsigned long mask)
1349{
88178fd4
KH
1350 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1351 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1352 mask);
1353 else
1354 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1355}
1356
aeecee2e
XG
1357bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1359{
018aabb5 1360 struct kvm_rmap_head *rmap_head;
5dc99b23 1361 int i;
2f84569f 1362 bool write_protected = false;
95d4c16c 1363
8a3d08f1 1364 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1365 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1366 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1367 }
1368
1369 return write_protected;
95d4c16c
TY
1370}
1371
aeecee2e
XG
1372static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1373{
1374 struct kvm_memory_slot *slot;
1375
1376 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1377 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1378}
1379
018aabb5 1380static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1381{
1e3f42f0
TY
1382 u64 *sptep;
1383 struct rmap_iterator iter;
6a49f85c 1384 bool flush = false;
e930bffe 1385
018aabb5 1386 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1387 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1388
1389 drop_spte(kvm, sptep);
6a49f85c 1390 flush = true;
e930bffe 1391 }
1e3f42f0 1392
6a49f85c
XG
1393 return flush;
1394}
1395
018aabb5 1396static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1397 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398 unsigned long data)
1399{
018aabb5 1400 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1401}
1402
018aabb5 1403static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1404 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405 unsigned long data)
3da0dd43 1406{
1e3f42f0
TY
1407 u64 *sptep;
1408 struct rmap_iterator iter;
3da0dd43 1409 int need_flush = 0;
1e3f42f0 1410 u64 new_spte;
3da0dd43 1411 pte_t *ptep = (pte_t *)data;
ba049e93 1412 kvm_pfn_t new_pfn;
3da0dd43
IE
1413
1414 WARN_ON(pte_huge(*ptep));
1415 new_pfn = pte_pfn(*ptep);
1e3f42f0 1416
0d536790 1417restart:
018aabb5 1418 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2
ALC
1419 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1420 sptep, *sptep, gfn, level);
1e3f42f0 1421
3da0dd43 1422 need_flush = 1;
1e3f42f0 1423
3da0dd43 1424 if (pte_write(*ptep)) {
1e3f42f0 1425 drop_spte(kvm, sptep);
0d536790 1426 goto restart;
3da0dd43 1427 } else {
1e3f42f0 1428 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1429 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1430
1431 new_spte &= ~PT_WRITABLE_MASK;
1432 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1433 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1434
1435 mmu_spte_clear_track_bits(sptep);
1436 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1437 }
1438 }
1e3f42f0 1439
3da0dd43
IE
1440 if (need_flush)
1441 kvm_flush_remote_tlbs(kvm);
1442
1443 return 0;
1444}
1445
6ce1f4e2
XG
1446struct slot_rmap_walk_iterator {
1447 /* input fields. */
1448 struct kvm_memory_slot *slot;
1449 gfn_t start_gfn;
1450 gfn_t end_gfn;
1451 int start_level;
1452 int end_level;
1453
1454 /* output fields. */
1455 gfn_t gfn;
018aabb5 1456 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1457 int level;
1458
1459 /* private field. */
018aabb5 1460 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1461};
1462
1463static void
1464rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1465{
1466 iterator->level = level;
1467 iterator->gfn = iterator->start_gfn;
1468 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1469 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1470 iterator->slot);
1471}
1472
1473static void
1474slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1475 struct kvm_memory_slot *slot, int start_level,
1476 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1477{
1478 iterator->slot = slot;
1479 iterator->start_level = start_level;
1480 iterator->end_level = end_level;
1481 iterator->start_gfn = start_gfn;
1482 iterator->end_gfn = end_gfn;
1483
1484 rmap_walk_init_level(iterator, iterator->start_level);
1485}
1486
1487static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1488{
1489 return !!iterator->rmap;
1490}
1491
1492static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1493{
1494 if (++iterator->rmap <= iterator->end_rmap) {
1495 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1496 return;
1497 }
1498
1499 if (++iterator->level > iterator->end_level) {
1500 iterator->rmap = NULL;
1501 return;
1502 }
1503
1504 rmap_walk_init_level(iterator, iterator->level);
1505}
1506
1507#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1508 _start_gfn, _end_gfn, _iter_) \
1509 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1510 _end_level_, _start_gfn, _end_gfn); \
1511 slot_rmap_walk_okay(_iter_); \
1512 slot_rmap_walk_next(_iter_))
1513
84504ef3
TY
1514static int kvm_handle_hva_range(struct kvm *kvm,
1515 unsigned long start,
1516 unsigned long end,
1517 unsigned long data,
1518 int (*handler)(struct kvm *kvm,
018aabb5 1519 struct kvm_rmap_head *rmap_head,
048212d0 1520 struct kvm_memory_slot *slot,
8a9522d2
ALC
1521 gfn_t gfn,
1522 int level,
84504ef3 1523 unsigned long data))
e930bffe 1524{
bc6678a3 1525 struct kvm_memslots *slots;
be6ba0f0 1526 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1527 struct slot_rmap_walk_iterator iterator;
1528 int ret = 0;
9da0e4d5 1529 int i;
bc6678a3 1530
9da0e4d5
PB
1531 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1532 slots = __kvm_memslots(kvm, i);
1533 kvm_for_each_memslot(memslot, slots) {
1534 unsigned long hva_start, hva_end;
1535 gfn_t gfn_start, gfn_end;
e930bffe 1536
9da0e4d5
PB
1537 hva_start = max(start, memslot->userspace_addr);
1538 hva_end = min(end, memslot->userspace_addr +
1539 (memslot->npages << PAGE_SHIFT));
1540 if (hva_start >= hva_end)
1541 continue;
1542 /*
1543 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1544 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1545 */
1546 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1547 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1548
1549 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1550 PT_MAX_HUGEPAGE_LEVEL,
1551 gfn_start, gfn_end - 1,
1552 &iterator)
1553 ret |= handler(kvm, iterator.rmap, memslot,
1554 iterator.gfn, iterator.level, data);
1555 }
e930bffe
AA
1556 }
1557
f395302e 1558 return ret;
e930bffe
AA
1559}
1560
84504ef3
TY
1561static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1562 unsigned long data,
018aabb5
TY
1563 int (*handler)(struct kvm *kvm,
1564 struct kvm_rmap_head *rmap_head,
048212d0 1565 struct kvm_memory_slot *slot,
8a9522d2 1566 gfn_t gfn, int level,
84504ef3
TY
1567 unsigned long data))
1568{
1569 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1570}
1571
1572int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1573{
3da0dd43
IE
1574 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1575}
1576
b3ae2096
TY
1577int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1578{
1579 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1580}
1581
3da0dd43
IE
1582void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1583{
8a8365c5 1584 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1585}
1586
018aabb5 1587static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1588 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1589 unsigned long data)
e930bffe 1590{
1e3f42f0 1591 u64 *sptep;
79f702a6 1592 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1593 int young = 0;
1594
57128468 1595 BUG_ON(!shadow_accessed_mask);
534e38b4 1596
018aabb5 1597 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1598 if (*sptep & shadow_accessed_mask) {
e930bffe 1599 young = 1;
3f6d8c8a
XH
1600 clear_bit((ffs(shadow_accessed_mask) - 1),
1601 (unsigned long *)sptep);
e930bffe 1602 }
018aabb5 1603 }
0d536790 1604
8a9522d2 1605 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1606 return young;
1607}
1608
018aabb5 1609static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1610 struct kvm_memory_slot *slot, gfn_t gfn,
1611 int level, unsigned long data)
8ee53820 1612{
1e3f42f0
TY
1613 u64 *sptep;
1614 struct rmap_iterator iter;
8ee53820
AA
1615 int young = 0;
1616
1617 /*
1618 * If there's no access bit in the secondary pte set by the
1619 * hardware it's up to gup-fast/gup to set the access bit in
1620 * the primary pte or in the page structure.
1621 */
1622 if (!shadow_accessed_mask)
1623 goto out;
1624
018aabb5 1625 for_each_rmap_spte(rmap_head, &iter, sptep) {
3f6d8c8a 1626 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1627 young = 1;
1628 break;
1629 }
018aabb5 1630 }
8ee53820
AA
1631out:
1632 return young;
1633}
1634
53a27b39
MT
1635#define RMAP_RECYCLE_THRESHOLD 1000
1636
852e3c19 1637static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1638{
018aabb5 1639 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1640 struct kvm_mmu_page *sp;
1641
1642 sp = page_header(__pa(spte));
53a27b39 1643
018aabb5 1644 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1645
018aabb5 1646 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1647 kvm_flush_remote_tlbs(vcpu->kvm);
1648}
1649
57128468 1650int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1651{
57128468
ALC
1652 /*
1653 * In case of absence of EPT Access and Dirty Bits supports,
1654 * emulate the accessed bit for EPT, by checking if this page has
1655 * an EPT mapping, and clearing it if it does. On the next access,
1656 * a new EPT mapping will be established.
1657 * This has some overhead, but not as much as the cost of swapping
1658 * out actively used pages or breaking up actively used hugepages.
1659 */
1660 if (!shadow_accessed_mask) {
1661 /*
1662 * We are holding the kvm->mmu_lock, and we are blowing up
1663 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1664 * This is correct as long as we don't decouple the mmu_lock
1665 * protected regions (like invalidate_range_start|end does).
1666 */
1667 kvm->mmu_notifier_seq++;
1668 return kvm_handle_hva_range(kvm, start, end, 0,
1669 kvm_unmap_rmapp);
1670 }
1671
1672 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1673}
1674
8ee53820
AA
1675int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1676{
1677 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1678}
1679
d6c69ee9 1680#ifdef MMU_DEBUG
47ad8e68 1681static int is_empty_shadow_page(u64 *spt)
6aa8b732 1682{
139bdb2d
AK
1683 u64 *pos;
1684 u64 *end;
1685
47ad8e68 1686 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1687 if (is_shadow_present_pte(*pos)) {
b8688d51 1688 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1689 pos, *pos);
6aa8b732 1690 return 0;
139bdb2d 1691 }
6aa8b732
AK
1692 return 1;
1693}
d6c69ee9 1694#endif
6aa8b732 1695
45221ab6
DH
1696/*
1697 * This value is the sum of all of the kvm instances's
1698 * kvm->arch.n_used_mmu_pages values. We need a global,
1699 * aggregate version in order to make the slab shrinker
1700 * faster
1701 */
1702static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1703{
1704 kvm->arch.n_used_mmu_pages += nr;
1705 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1706}
1707
834be0d8 1708static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1709{
fa4a2c08 1710 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1711 hlist_del(&sp->hash_link);
bd4c86ea
XG
1712 list_del(&sp->link);
1713 free_page((unsigned long)sp->spt);
834be0d8
GN
1714 if (!sp->role.direct)
1715 free_page((unsigned long)sp->gfns);
e8ad9a70 1716 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1717}
1718
cea0f0e7
AK
1719static unsigned kvm_page_table_hashfn(gfn_t gfn)
1720{
1ae0a13d 1721 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1722}
1723
714b93da 1724static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1725 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1726{
cea0f0e7
AK
1727 if (!parent_pte)
1728 return;
cea0f0e7 1729
67052b35 1730 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1731}
1732
4db35314 1733static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1734 u64 *parent_pte)
1735{
67052b35 1736 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1737}
1738
bcdd9a93
XG
1739static void drop_parent_pte(struct kvm_mmu_page *sp,
1740 u64 *parent_pte)
1741{
1742 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1743 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1744}
1745
47005792 1746static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 1747{
67052b35 1748 struct kvm_mmu_page *sp;
7ddca7e4 1749
80feb89a
TY
1750 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1751 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1752 if (!direct)
80feb89a 1753 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1754 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1755
1756 /*
1757 * The active_mmu_pages list is the FIFO list, do not move the
1758 * page until it is zapped. kvm_zap_obsolete_pages depends on
1759 * this feature. See the comments in kvm_zap_obsolete_pages().
1760 */
67052b35 1761 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1762 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1763 return sp;
ad8cfbe3
MT
1764}
1765
67052b35 1766static void mark_unsync(u64 *spte);
1047df1f 1767static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1768{
74c4e63a
TY
1769 u64 *sptep;
1770 struct rmap_iterator iter;
1771
1772 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1773 mark_unsync(sptep);
1774 }
0074ff63
MT
1775}
1776
67052b35 1777static void mark_unsync(u64 *spte)
0074ff63 1778{
67052b35 1779 struct kvm_mmu_page *sp;
1047df1f 1780 unsigned int index;
0074ff63 1781
67052b35 1782 sp = page_header(__pa(spte));
1047df1f
XG
1783 index = spte - sp->spt;
1784 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1785 return;
1047df1f 1786 if (sp->unsync_children++)
0074ff63 1787 return;
1047df1f 1788 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1789}
1790
e8bc217a 1791static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1792 struct kvm_mmu_page *sp)
e8bc217a 1793{
1f50f1b3 1794 return 0;
e8bc217a
MT
1795}
1796
a7052897
MT
1797static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1798{
1799}
1800
0f53b5b1
XG
1801static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1802 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1803 const void *pte)
0f53b5b1
XG
1804{
1805 WARN_ON(1);
1806}
1807
60c8aec6
MT
1808#define KVM_PAGE_ARRAY_NR 16
1809
1810struct kvm_mmu_pages {
1811 struct mmu_page_and_offset {
1812 struct kvm_mmu_page *sp;
1813 unsigned int idx;
1814 } page[KVM_PAGE_ARRAY_NR];
1815 unsigned int nr;
1816};
1817
cded19f3
HE
1818static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1819 int idx)
4731d4c7 1820{
60c8aec6 1821 int i;
4731d4c7 1822
60c8aec6
MT
1823 if (sp->unsync)
1824 for (i=0; i < pvec->nr; i++)
1825 if (pvec->page[i].sp == sp)
1826 return 0;
1827
1828 pvec->page[pvec->nr].sp = sp;
1829 pvec->page[pvec->nr].idx = idx;
1830 pvec->nr++;
1831 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1832}
1833
fd951457
TY
1834static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1835{
1836 --sp->unsync_children;
1837 WARN_ON((int)sp->unsync_children < 0);
1838 __clear_bit(idx, sp->unsync_child_bitmap);
1839}
1840
60c8aec6
MT
1841static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1842 struct kvm_mmu_pages *pvec)
1843{
1844 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1845
37178b8b 1846 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1847 struct kvm_mmu_page *child;
4731d4c7
MT
1848 u64 ent = sp->spt[i];
1849
fd951457
TY
1850 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1851 clear_unsync_child_bit(sp, i);
1852 continue;
1853 }
7a8f1a74
XG
1854
1855 child = page_header(ent & PT64_BASE_ADDR_MASK);
1856
1857 if (child->unsync_children) {
1858 if (mmu_pages_add(pvec, child, i))
1859 return -ENOSPC;
1860
1861 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
1862 if (!ret) {
1863 clear_unsync_child_bit(sp, i);
1864 continue;
1865 } else if (ret > 0) {
7a8f1a74 1866 nr_unsync_leaf += ret;
fd951457 1867 } else
7a8f1a74
XG
1868 return ret;
1869 } else if (child->unsync) {
1870 nr_unsync_leaf++;
1871 if (mmu_pages_add(pvec, child, i))
1872 return -ENOSPC;
1873 } else
fd951457 1874 clear_unsync_child_bit(sp, i);
4731d4c7
MT
1875 }
1876
60c8aec6
MT
1877 return nr_unsync_leaf;
1878}
1879
e23d3fef
XG
1880#define INVALID_INDEX (-1)
1881
60c8aec6
MT
1882static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1883 struct kvm_mmu_pages *pvec)
1884{
0a47cd85 1885 pvec->nr = 0;
60c8aec6
MT
1886 if (!sp->unsync_children)
1887 return 0;
1888
e23d3fef 1889 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 1890 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1891}
1892
4731d4c7
MT
1893static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1894{
1895 WARN_ON(!sp->unsync);
5e1b3ddb 1896 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1897 sp->unsync = 0;
1898 --kvm->stat.mmu_unsync;
1899}
1900
7775834a
XG
1901static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902 struct list_head *invalid_list);
1903static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1904 struct list_head *invalid_list);
4731d4c7 1905
f34d251d
XG
1906/*
1907 * NOTE: we should pay more attention on the zapped-obsolete page
1908 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1909 * since it has been deleted from active_mmu_pages but still can be found
1910 * at hast list.
1911 *
1912 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1913 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1914 * all the obsolete pages.
1915 */
1044b030
TY
1916#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1917 hlist_for_each_entry(_sp, \
1918 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919 if ((_sp)->gfn != (_gfn)) {} else
1920
1921#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1922 for_each_gfn_sp(_kvm, _sp, _gfn) \
1923 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1924
f918b443 1925/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
1926static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1927 struct list_head *invalid_list)
4731d4c7 1928{
5b7e0102 1929 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1930 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1931 return false;
4731d4c7
MT
1932 }
1933
1f50f1b3 1934 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
d98ba053 1935 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 1936 return false;
4731d4c7
MT
1937 }
1938
1f50f1b3 1939 return true;
4731d4c7
MT
1940}
1941
35a70510
PB
1942static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1943 struct list_head *invalid_list,
1944 bool remote_flush, bool local_flush)
1d9dc7e0 1945{
35a70510
PB
1946 if (!list_empty(invalid_list)) {
1947 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1948 return;
1949 }
d98ba053 1950
35a70510
PB
1951 if (remote_flush)
1952 kvm_flush_remote_tlbs(vcpu->kvm);
1953 else if (local_flush)
1954 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
1955}
1956
e37fa785
XG
1957#ifdef CONFIG_KVM_MMU_AUDIT
1958#include "mmu_audit.c"
1959#else
1960static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1961static void mmu_audit_disable(void) { }
1962#endif
1963
1f50f1b3 1964static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1965 struct list_head *invalid_list)
1d9dc7e0 1966{
9a43c5d9
PB
1967 kvm_unlink_unsync_page(vcpu->kvm, sp);
1968 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
1969}
1970
9f1a122f 1971/* @gfn should be write-protected at the call site */
2a74003a
PB
1972static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1973 struct list_head *invalid_list)
9f1a122f 1974{
9f1a122f 1975 struct kvm_mmu_page *s;
2a74003a 1976 bool ret = false;
9f1a122f 1977
b67bfe0d 1978 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1979 if (!s->unsync)
9f1a122f
XG
1980 continue;
1981
1982 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 1983 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
1984 }
1985
2a74003a 1986 return ret;
9f1a122f
XG
1987}
1988
60c8aec6 1989struct mmu_page_path {
0a47cd85
PB
1990 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1991 unsigned int idx[PT64_ROOT_LEVEL];
4731d4c7
MT
1992};
1993
60c8aec6 1994#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 1995 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
1996 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1997 i = mmu_pages_next(&pvec, &parents, i))
1998
cded19f3
HE
1999static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2000 struct mmu_page_path *parents,
2001 int i)
60c8aec6
MT
2002{
2003 int n;
2004
2005 for (n = i+1; n < pvec->nr; n++) {
2006 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2007 unsigned idx = pvec->page[n].idx;
2008 int level = sp->role.level;
60c8aec6 2009
0a47cd85
PB
2010 parents->idx[level-1] = idx;
2011 if (level == PT_PAGE_TABLE_LEVEL)
2012 break;
60c8aec6 2013
0a47cd85 2014 parents->parent[level-2] = sp;
60c8aec6
MT
2015 }
2016
2017 return n;
2018}
2019
0a47cd85
PB
2020static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2021 struct mmu_page_path *parents)
2022{
2023 struct kvm_mmu_page *sp;
2024 int level;
2025
2026 if (pvec->nr == 0)
2027 return 0;
2028
e23d3fef
XG
2029 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2030
0a47cd85
PB
2031 sp = pvec->page[0].sp;
2032 level = sp->role.level;
2033 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2034
2035 parents->parent[level-2] = sp;
2036
2037 /* Also set up a sentinel. Further entries in pvec are all
2038 * children of sp, so this element is never overwritten.
2039 */
2040 parents->parent[level-1] = NULL;
2041 return mmu_pages_next(pvec, parents, 0);
2042}
2043
cded19f3 2044static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2045{
60c8aec6
MT
2046 struct kvm_mmu_page *sp;
2047 unsigned int level = 0;
2048
2049 do {
2050 unsigned int idx = parents->idx[level];
60c8aec6
MT
2051 sp = parents->parent[level];
2052 if (!sp)
2053 return;
2054
e23d3fef 2055 WARN_ON(idx == INVALID_INDEX);
fd951457 2056 clear_unsync_child_bit(sp, idx);
60c8aec6 2057 level++;
0a47cd85 2058 } while (!sp->unsync_children);
60c8aec6 2059}
4731d4c7 2060
60c8aec6
MT
2061static void mmu_sync_children(struct kvm_vcpu *vcpu,
2062 struct kvm_mmu_page *parent)
2063{
2064 int i;
2065 struct kvm_mmu_page *sp;
2066 struct mmu_page_path parents;
2067 struct kvm_mmu_pages pages;
d98ba053 2068 LIST_HEAD(invalid_list);
50c9e6f3 2069 bool flush = false;
60c8aec6 2070
60c8aec6 2071 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2072 bool protected = false;
b1a36821
MT
2073
2074 for_each_sp(pages, sp, parents, i)
54bf36aa 2075 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2076
50c9e6f3 2077 if (protected) {
b1a36821 2078 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2079 flush = false;
2080 }
b1a36821 2081
60c8aec6 2082 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2083 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2084 mmu_pages_clear_parents(&parents);
2085 }
50c9e6f3
PB
2086 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2087 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2088 cond_resched_lock(&vcpu->kvm->mmu_lock);
2089 flush = false;
2090 }
60c8aec6 2091 }
50c9e6f3
PB
2092
2093 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2094}
2095
a30f47cb
XG
2096static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2097{
e5691a81 2098 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2099}
2100
2101static void clear_sp_write_flooding_count(u64 *spte)
2102{
2103 struct kvm_mmu_page *sp = page_header(__pa(spte));
2104
2105 __clear_sp_write_flooding_count(sp);
2106}
2107
5304b8d3
XG
2108static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2109{
2110 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2111}
2112
cea0f0e7
AK
2113static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2114 gfn_t gfn,
2115 gva_t gaddr,
2116 unsigned level,
f6e2c02b 2117 int direct,
bb11c6c9 2118 unsigned access)
cea0f0e7
AK
2119{
2120 union kvm_mmu_page_role role;
cea0f0e7 2121 unsigned quadrant;
9f1a122f 2122 struct kvm_mmu_page *sp;
9f1a122f 2123 bool need_sync = false;
2a74003a
PB
2124 bool flush = false;
2125 LIST_HEAD(invalid_list);
cea0f0e7 2126
a770f6f2 2127 role = vcpu->arch.mmu.base_role;
cea0f0e7 2128 role.level = level;
f6e2c02b 2129 role.direct = direct;
84b0c8c6 2130 if (role.direct)
5b7e0102 2131 role.cr4_pae = 0;
41074d07 2132 role.access = access;
c5a78f2b
JR
2133 if (!vcpu->arch.mmu.direct_map
2134 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2135 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2136 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2137 role.quadrant = quadrant;
2138 }
b67bfe0d 2139 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2140 if (is_obsolete_sp(vcpu->kvm, sp))
2141 continue;
2142
7ae680eb
XG
2143 if (!need_sync && sp->unsync)
2144 need_sync = true;
4731d4c7 2145
7ae680eb
XG
2146 if (sp->role.word != role.word)
2147 continue;
4731d4c7 2148
2a74003a
PB
2149 if (sp->unsync) {
2150 /* The page is good, but __kvm_sync_page might still end
2151 * up zapping it. If so, break in order to rebuild it.
2152 */
2153 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2154 break;
2155
2156 WARN_ON(!list_empty(&invalid_list));
2157 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2158 }
e02aa901 2159
98bba238 2160 if (sp->unsync_children)
a8eeb04a 2161 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2162
a30f47cb 2163 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2164 trace_kvm_mmu_get_page(sp, false);
2165 return sp;
2166 }
47005792 2167
dfc5aa00 2168 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2169
2170 sp = kvm_mmu_alloc_page(vcpu, direct);
2171
4db35314
AK
2172 sp->gfn = gfn;
2173 sp->role = role;
7ae680eb
XG
2174 hlist_add_head(&sp->hash_link,
2175 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2176 if (!direct) {
56ca57f9
XG
2177 /*
2178 * we should do write protection before syncing pages
2179 * otherwise the content of the synced shadow page may
2180 * be inconsistent with guest page table.
2181 */
2182 account_shadowed(vcpu->kvm, sp);
2183 if (level == PT_PAGE_TABLE_LEVEL &&
2184 rmap_write_protect(vcpu, gfn))
b1a36821 2185 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f 2186
9f1a122f 2187 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2188 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2189 }
5304b8d3 2190 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2191 clear_page(sp->spt);
f691fe1d 2192 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2193
2194 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4db35314 2195 return sp;
cea0f0e7
AK
2196}
2197
2d11123a
AK
2198static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2199 struct kvm_vcpu *vcpu, u64 addr)
2200{
2201 iterator->addr = addr;
2202 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2203 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2204
2205 if (iterator->level == PT64_ROOT_LEVEL &&
2206 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2207 !vcpu->arch.mmu.direct_map)
2208 --iterator->level;
2209
2d11123a
AK
2210 if (iterator->level == PT32E_ROOT_LEVEL) {
2211 iterator->shadow_addr
2212 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2213 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2214 --iterator->level;
2215 if (!iterator->shadow_addr)
2216 iterator->level = 0;
2217 }
2218}
2219
2220static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2221{
2222 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2223 return false;
4d88954d 2224
2d11123a
AK
2225 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2226 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2227 return true;
2228}
2229
c2a2ac2b
XG
2230static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2231 u64 spte)
2d11123a 2232{
c2a2ac2b 2233 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2234 iterator->level = 0;
2235 return;
2236 }
2237
c2a2ac2b 2238 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2239 --iterator->level;
2240}
2241
c2a2ac2b
XG
2242static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2243{
2244 return __shadow_walk_next(iterator, *iterator->sptep);
2245}
2246
98bba238
TY
2247static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2248 struct kvm_mmu_page *sp)
32ef26a3
AK
2249{
2250 u64 spte;
2251
7a1638ce
YZ
2252 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2253 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2254
24db2734 2255 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
0e3d0648 2256 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
24db2734 2257
1df9f2dc 2258 mmu_spte_set(sptep, spte);
98bba238
TY
2259
2260 mmu_page_add_parent_pte(vcpu, sp, sptep);
2261
2262 if (sp->unsync_children || sp->unsync)
2263 mark_unsync(sptep);
32ef26a3
AK
2264}
2265
a357bd22
AK
2266static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267 unsigned direct_access)
2268{
2269 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270 struct kvm_mmu_page *child;
2271
2272 /*
2273 * For the direct sp, if the guest pte's dirty bit
2274 * changed form clean to dirty, it will corrupt the
2275 * sp's access: allow writable in the read-only sp,
2276 * so we should update the spte at this point to get
2277 * a new sp with the correct access.
2278 */
2279 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2280 if (child->role.access == direct_access)
2281 return;
2282
bcdd9a93 2283 drop_parent_pte(child, sptep);
a357bd22
AK
2284 kvm_flush_remote_tlbs(vcpu->kvm);
2285 }
2286}
2287
505aef8f 2288static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2289 u64 *spte)
2290{
2291 u64 pte;
2292 struct kvm_mmu_page *child;
2293
2294 pte = *spte;
2295 if (is_shadow_present_pte(pte)) {
505aef8f 2296 if (is_last_spte(pte, sp->role.level)) {
c3707958 2297 drop_spte(kvm, spte);
505aef8f
XG
2298 if (is_large_pte(pte))
2299 --kvm->stat.lpages;
2300 } else {
38e3b2b2 2301 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2302 drop_parent_pte(child, spte);
38e3b2b2 2303 }
505aef8f
XG
2304 return true;
2305 }
2306
2307 if (is_mmio_spte(pte))
ce88decf 2308 mmu_spte_clear_no_track(spte);
c3707958 2309
505aef8f 2310 return false;
38e3b2b2
XG
2311}
2312
90cb0529 2313static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2314 struct kvm_mmu_page *sp)
a436036b 2315{
697fe2e2 2316 unsigned i;
697fe2e2 2317
38e3b2b2
XG
2318 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2319 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2320}
2321
31aa2b44 2322static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2323{
1e3f42f0
TY
2324 u64 *sptep;
2325 struct rmap_iterator iter;
a436036b 2326
018aabb5 2327 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2328 drop_parent_pte(sp, sptep);
31aa2b44
AK
2329}
2330
60c8aec6 2331static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2332 struct kvm_mmu_page *parent,
2333 struct list_head *invalid_list)
4731d4c7 2334{
60c8aec6
MT
2335 int i, zapped = 0;
2336 struct mmu_page_path parents;
2337 struct kvm_mmu_pages pages;
4731d4c7 2338
60c8aec6 2339 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2340 return 0;
60c8aec6 2341
60c8aec6
MT
2342 while (mmu_unsync_walk(parent, &pages)) {
2343 struct kvm_mmu_page *sp;
2344
2345 for_each_sp(pages, sp, parents, i) {
7775834a 2346 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2347 mmu_pages_clear_parents(&parents);
77662e00 2348 zapped++;
60c8aec6 2349 }
60c8aec6
MT
2350 }
2351
2352 return zapped;
4731d4c7
MT
2353}
2354
7775834a
XG
2355static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2356 struct list_head *invalid_list)
31aa2b44 2357{
4731d4c7 2358 int ret;
f691fe1d 2359
7775834a 2360 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2361 ++kvm->stat.mmu_shadow_zapped;
7775834a 2362 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2363 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2364 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2365
f6e2c02b 2366 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2367 unaccount_shadowed(kvm, sp);
5304b8d3 2368
4731d4c7
MT
2369 if (sp->unsync)
2370 kvm_unlink_unsync_page(kvm, sp);
4db35314 2371 if (!sp->root_count) {
54a4f023
GJ
2372 /* Count self */
2373 ret++;
7775834a 2374 list_move(&sp->link, invalid_list);
aa6bd187 2375 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2376 } else {
5b5c6a5a 2377 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2378
2379 /*
2380 * The obsolete pages can not be used on any vcpus.
2381 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2382 */
2383 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2384 kvm_reload_remote_mmus(kvm);
2e53d63a 2385 }
7775834a
XG
2386
2387 sp->role.invalid = 1;
4731d4c7 2388 return ret;
a436036b
AK
2389}
2390
7775834a
XG
2391static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2392 struct list_head *invalid_list)
2393{
945315b9 2394 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2395
2396 if (list_empty(invalid_list))
2397 return;
2398
c142786c 2399 /*
9753f529
LT
2400 * We need to make sure everyone sees our modifications to
2401 * the page tables and see changes to vcpu->mode here. The barrier
2402 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2403 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2404 *
2405 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2406 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2407 */
2408 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2409
945315b9 2410 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2411 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2412 kvm_mmu_free_page(sp);
945315b9 2413 }
7775834a
XG
2414}
2415
5da59607
TY
2416static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2417 struct list_head *invalid_list)
2418{
2419 struct kvm_mmu_page *sp;
2420
2421 if (list_empty(&kvm->arch.active_mmu_pages))
2422 return false;
2423
d74c0e6b
GT
2424 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2425 struct kvm_mmu_page, link);
5da59607
TY
2426 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2427
2428 return true;
2429}
2430
82ce2c96
IE
2431/*
2432 * Changing the number of mmu pages allocated to the vm
49d5ca26 2433 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2434 */
49d5ca26 2435void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2436{
d98ba053 2437 LIST_HEAD(invalid_list);
82ce2c96 2438
b34cb590
TY
2439 spin_lock(&kvm->mmu_lock);
2440
49d5ca26 2441 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2442 /* Need to free some mmu pages to achieve the goal. */
2443 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2444 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2445 break;
82ce2c96 2446
aa6bd187 2447 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2448 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2449 }
82ce2c96 2450
49d5ca26 2451 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2452
2453 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2454}
2455
1cb3f3ae 2456int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2457{
4db35314 2458 struct kvm_mmu_page *sp;
d98ba053 2459 LIST_HEAD(invalid_list);
a436036b
AK
2460 int r;
2461
9ad17b10 2462 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2463 r = 0;
1cb3f3ae 2464 spin_lock(&kvm->mmu_lock);
b67bfe0d 2465 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2466 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2467 sp->role.word);
2468 r = 1;
f41d335a 2469 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2470 }
d98ba053 2471 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2472 spin_unlock(&kvm->mmu_lock);
2473
a436036b 2474 return r;
cea0f0e7 2475}
1cb3f3ae 2476EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2477
5c520e90 2478static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2479{
2480 trace_kvm_mmu_unsync_page(sp);
2481 ++vcpu->kvm->stat.mmu_unsync;
2482 sp->unsync = 1;
2483
2484 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2485}
2486
3d0c27ad
XG
2487static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2488 bool can_unsync)
4731d4c7 2489{
5c520e90 2490 struct kvm_mmu_page *sp;
4731d4c7 2491
3d0c27ad
XG
2492 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2493 return true;
9cf5cf5a 2494
5c520e90 2495 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2496 if (!can_unsync)
3d0c27ad 2497 return true;
36a2e677 2498
5c520e90
XG
2499 if (sp->unsync)
2500 continue;
9cf5cf5a 2501
5c520e90
XG
2502 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2503 kvm_unsync_page(vcpu, sp);
4731d4c7 2504 }
3d0c27ad
XG
2505
2506 return false;
4731d4c7
MT
2507}
2508
ba049e93 2509static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2510{
2511 if (pfn_valid(pfn))
2512 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2513
2514 return true;
2515}
2516
d555c333 2517static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2518 unsigned pte_access, int level,
ba049e93 2519 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2520 bool can_unsync, bool host_writable)
1c4f1fd6 2521{
6e7d0354 2522 u64 spte;
1e73f9dd 2523 int ret = 0;
64d4d521 2524
54bf36aa 2525 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2526 return 0;
2527
982c2565 2528 spte = PT_PRESENT_MASK;
947da538 2529 if (!speculative)
3201b5d9 2530 spte |= shadow_accessed_mask;
640d9b0d 2531
7b52345e
SY
2532 if (pte_access & ACC_EXEC_MASK)
2533 spte |= shadow_x_mask;
2534 else
2535 spte |= shadow_nx_mask;
49fde340 2536
1c4f1fd6 2537 if (pte_access & ACC_USER_MASK)
7b52345e 2538 spte |= shadow_user_mask;
49fde340 2539
852e3c19 2540 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2541 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2542 if (tdp_enabled)
4b12f0de 2543 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2544 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2545
9bdbba13 2546 if (host_writable)
1403283a 2547 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2548 else
2549 pte_access &= ~ACC_WRITE_MASK;
1403283a 2550
35149e21 2551 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2552
c2288505 2553 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2554
c2193463 2555 /*
7751babd
XG
2556 * Other vcpu creates new sp in the window between
2557 * mapping_level() and acquiring mmu-lock. We can
2558 * allow guest to retry the access, the mapping can
2559 * be fixed if guest refault.
c2193463 2560 */
852e3c19 2561 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2562 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2563 goto done;
38187c83 2564
49fde340 2565 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2566
ecc5589f
MT
2567 /*
2568 * Optimization: for pte sync, if spte was writable the hash
2569 * lookup is unnecessary (and expensive). Write protection
2570 * is responsibility of mmu_get_page / kvm_sync_page.
2571 * Same reasoning can be applied to dirty page accounting.
2572 */
8dae4445 2573 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2574 goto set_pte;
2575
4731d4c7 2576 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2577 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2578 __func__, gfn);
1e73f9dd 2579 ret = 1;
1c4f1fd6 2580 pte_access &= ~ACC_WRITE_MASK;
49fde340 2581 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2582 }
2583 }
2584
9b51a630 2585 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2586 kvm_vcpu_mark_page_dirty(vcpu, gfn);
9b51a630
KH
2587 spte |= shadow_dirty_mask;
2588 }
1c4f1fd6 2589
38187c83 2590set_pte:
6e7d0354 2591 if (mmu_spte_update(sptep, spte))
b330aa0c 2592 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2593done:
1e73f9dd
MT
2594 return ret;
2595}
2596
029499b4 2597static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ba049e93 2598 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
029499b4 2599 bool speculative, bool host_writable)
1e73f9dd
MT
2600{
2601 int was_rmapped = 0;
53a27b39 2602 int rmap_count;
029499b4 2603 bool emulate = false;
1e73f9dd 2604
f7616203
XG
2605 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2606 *sptep, write_fault, gfn);
1e73f9dd 2607
afd28fe1 2608 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2609 /*
2610 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2611 * the parent of the now unreachable PTE.
2612 */
852e3c19
JR
2613 if (level > PT_PAGE_TABLE_LEVEL &&
2614 !is_large_pte(*sptep)) {
1e73f9dd 2615 struct kvm_mmu_page *child;
d555c333 2616 u64 pte = *sptep;
1e73f9dd
MT
2617
2618 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2619 drop_parent_pte(child, sptep);
3be2264b 2620 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2621 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2622 pgprintk("hfn old %llx new %llx\n",
d555c333 2623 spte_to_pfn(*sptep), pfn);
c3707958 2624 drop_spte(vcpu->kvm, sptep);
91546356 2625 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2626 } else
2627 was_rmapped = 1;
1e73f9dd 2628 }
852e3c19 2629
c2288505
XG
2630 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2631 true, host_writable)) {
1e73f9dd 2632 if (write_fault)
029499b4 2633 emulate = true;
77c3913b 2634 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2635 }
1e73f9dd 2636
029499b4
TY
2637 if (unlikely(is_mmio_spte(*sptep)))
2638 emulate = true;
ce88decf 2639
d555c333 2640 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2641 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2642 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2643 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2644 *sptep, sptep);
d555c333 2645 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2646 ++vcpu->kvm->stat.lpages;
2647
ffb61bb3 2648 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2649 if (!was_rmapped) {
2650 rmap_count = rmap_add(vcpu, sptep, gfn);
2651 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2652 rmap_recycle(vcpu, sptep, gfn);
2653 }
1c4f1fd6 2654 }
cb9aaa30 2655
f3ac1a4b 2656 kvm_release_pfn_clean(pfn);
029499b4
TY
2657
2658 return emulate;
1c4f1fd6
AK
2659}
2660
ba049e93 2661static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
2662 bool no_dirty_log)
2663{
2664 struct kvm_memory_slot *slot;
957ed9ef 2665
5d163b1c 2666 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2667 if (!slot)
6c8ee57b 2668 return KVM_PFN_ERR_FAULT;
957ed9ef 2669
037d92dc 2670 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2671}
2672
2673static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2674 struct kvm_mmu_page *sp,
2675 u64 *start, u64 *end)
2676{
2677 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 2678 struct kvm_memory_slot *slot;
957ed9ef
XG
2679 unsigned access = sp->role.access;
2680 int i, ret;
2681 gfn_t gfn;
2682
2683 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
2684 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2685 if (!slot)
957ed9ef
XG
2686 return -1;
2687
d9ef13c2 2688 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
2689 if (ret <= 0)
2690 return -1;
2691
2692 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
2693 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2694 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
2695
2696 return 0;
2697}
2698
2699static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2700 struct kvm_mmu_page *sp, u64 *sptep)
2701{
2702 u64 *spte, *start = NULL;
2703 int i;
2704
2705 WARN_ON(!sp->role.direct);
2706
2707 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2708 spte = sp->spt + i;
2709
2710 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2711 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2712 if (!start)
2713 continue;
2714 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2715 break;
2716 start = NULL;
2717 } else if (!start)
2718 start = spte;
2719 }
2720}
2721
2722static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2723{
2724 struct kvm_mmu_page *sp;
2725
2726 /*
2727 * Since it's no accessed bit on EPT, it's no way to
2728 * distinguish between actually accessed translations
2729 * and prefetched, so disable pte prefetch if EPT is
2730 * enabled.
2731 */
2732 if (!shadow_accessed_mask)
2733 return;
2734
2735 sp = page_header(__pa(sptep));
2736 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2737 return;
2738
2739 __direct_pte_prefetch(vcpu, sp, sptep);
2740}
2741
7ee0e5b2 2742static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 2743 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 2744{
9f652d21 2745 struct kvm_shadow_walk_iterator iterator;
140754bc 2746 struct kvm_mmu_page *sp;
b90a0e6c 2747 int emulate = 0;
140754bc 2748 gfn_t pseudo_gfn;
6aa8b732 2749
989c6b34
MT
2750 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2751 return 0;
2752
9f652d21 2753 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2754 if (iterator.level == level) {
029499b4
TY
2755 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2756 write, level, gfn, pfn, prefault,
2757 map_writable);
957ed9ef 2758 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2759 ++vcpu->stat.pf_fixed;
2760 break;
6aa8b732
AK
2761 }
2762
404381c5 2763 drop_large_spte(vcpu, iterator.sptep);
c3707958 2764 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2765 u64 base_addr = iterator.addr;
2766
2767 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2768 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 2769 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 2770 iterator.level - 1, 1, ACC_ALL);
140754bc 2771
98bba238 2772 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
2773 }
2774 }
b90a0e6c 2775 return emulate;
6aa8b732
AK
2776}
2777
77db5cbd 2778static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2779{
77db5cbd
HY
2780 siginfo_t info;
2781
2782 info.si_signo = SIGBUS;
2783 info.si_errno = 0;
2784 info.si_code = BUS_MCEERR_AR;
2785 info.si_addr = (void __user *)address;
2786 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2787
77db5cbd 2788 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2789}
2790
ba049e93 2791static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 2792{
4d8b81ab
XG
2793 /*
2794 * Do not cache the mmio info caused by writing the readonly gfn
2795 * into the spte otherwise read access on readonly gfn also can
2796 * caused mmio page fault and treat it as mmio access.
2797 * Return 1 to tell kvm to emulate it.
2798 */
2799 if (pfn == KVM_PFN_ERR_RO_FAULT)
2800 return 1;
2801
e6c1502b 2802 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 2803 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
bf998156 2804 return 0;
d7c55201 2805 }
edba23e5 2806
d7c55201 2807 return -EFAULT;
bf998156
HY
2808}
2809
936a5fe6 2810static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
2811 gfn_t *gfnp, kvm_pfn_t *pfnp,
2812 int *levelp)
936a5fe6 2813{
ba049e93 2814 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
2815 gfn_t gfn = *gfnp;
2816 int level = *levelp;
2817
2818 /*
2819 * Check if it's a transparent hugepage. If this would be an
2820 * hugetlbfs page, level wouldn't be set to
2821 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2822 * here.
2823 */
bf4bea8e 2824 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 2825 level == PT_PAGE_TABLE_LEVEL &&
127393fb 2826 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 2827 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
2828 unsigned long mask;
2829 /*
2830 * mmu_notifier_retry was successful and we hold the
2831 * mmu_lock here, so the pmd can't become splitting
2832 * from under us, and in turn
2833 * __split_huge_page_refcount() can't run from under
2834 * us and we can safely transfer the refcount from
2835 * PG_tail to PG_head as we switch the pfn to tail to
2836 * head.
2837 */
2838 *levelp = level = PT_DIRECTORY_LEVEL;
2839 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2840 VM_BUG_ON((gfn & mask) != (pfn & mask));
2841 if (pfn & mask) {
2842 gfn &= ~mask;
2843 *gfnp = gfn;
2844 kvm_release_pfn_clean(pfn);
2845 pfn &= ~mask;
c3586667 2846 kvm_get_pfn(pfn);
936a5fe6
AA
2847 *pfnp = pfn;
2848 }
2849 }
2850}
2851
d7c55201 2852static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 2853 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 2854{
d7c55201 2855 /* The pfn is invalid, report the error! */
81c52c56 2856 if (unlikely(is_error_pfn(pfn))) {
d7c55201 2857 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 2858 return true;
d7c55201
XG
2859 }
2860
ce88decf 2861 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2862 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 2863
798e88b3 2864 return false;
d7c55201
XG
2865}
2866
e5552fd2 2867static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2868{
1c118b82
XG
2869 /*
2870 * Do not fix the mmio spte with invalid generation number which
2871 * need to be updated by slow page fault path.
2872 */
2873 if (unlikely(error_code & PFERR_RSVD_MASK))
2874 return false;
2875
c7ba5b48
XG
2876 /*
2877 * #PF can be fast only if the shadow page table is present and it
2878 * is caused by write-protect, that means we just need change the
2879 * W bit of the spte which can be done out of mmu-lock.
2880 */
2881 if (!(error_code & PFERR_PRESENT_MASK) ||
2882 !(error_code & PFERR_WRITE_MASK))
2883 return false;
2884
2885 return true;
2886}
2887
2888static bool
92a476cb
XG
2889fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2890 u64 *sptep, u64 spte)
c7ba5b48 2891{
c7ba5b48
XG
2892 gfn_t gfn;
2893
2894 WARN_ON(!sp->role.direct);
2895
2896 /*
2897 * The gfn of direct spte is stable since it is calculated
2898 * by sp->gfn.
2899 */
2900 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2901
9b51a630
KH
2902 /*
2903 * Theoretically we could also set dirty bit (and flush TLB) here in
2904 * order to eliminate unnecessary PML logging. See comments in
2905 * set_spte. But fast_page_fault is very unlikely to happen with PML
2906 * enabled, so we do not do this. This might result in the same GPA
2907 * to be logged in PML buffer again when the write really happens, and
2908 * eventually to be called by mark_page_dirty twice. But it's also no
2909 * harm. This also avoids the TLB flush needed after setting dirty bit
2910 * so non-PML cases won't be impacted.
2911 *
2912 * Compare with set_spte where instead shadow_dirty_mask is set.
2913 */
c7ba5b48 2914 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
54bf36aa 2915 kvm_vcpu_mark_page_dirty(vcpu, gfn);
c7ba5b48
XG
2916
2917 return true;
2918}
2919
2920/*
2921 * Return value:
2922 * - true: let the vcpu to access on the same address again.
2923 * - false: let the real page fault path to fix it.
2924 */
2925static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2926 u32 error_code)
2927{
2928 struct kvm_shadow_walk_iterator iterator;
92a476cb 2929 struct kvm_mmu_page *sp;
c7ba5b48
XG
2930 bool ret = false;
2931 u64 spte = 0ull;
2932
37f6a4e2
MT
2933 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2934 return false;
2935
e5552fd2 2936 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2937 return false;
2938
2939 walk_shadow_page_lockless_begin(vcpu);
2940 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2941 if (!is_shadow_present_pte(spte) || iterator.level < level)
2942 break;
2943
2944 /*
2945 * If the mapping has been changed, let the vcpu fault on the
2946 * same address again.
2947 */
afd28fe1 2948 if (!is_shadow_present_pte(spte)) {
c7ba5b48
XG
2949 ret = true;
2950 goto exit;
2951 }
2952
92a476cb
XG
2953 sp = page_header(__pa(iterator.sptep));
2954 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2955 goto exit;
2956
2957 /*
2958 * Check if it is a spurious fault caused by TLB lazily flushed.
2959 *
2960 * Need not check the access of upper level table entries since
2961 * they are always ACC_ALL.
2962 */
2963 if (is_writable_pte(spte)) {
2964 ret = true;
2965 goto exit;
2966 }
2967
2968 /*
2969 * Currently, to simplify the code, only the spte write-protected
2970 * by dirty-log can be fast fixed.
2971 */
2972 if (!spte_is_locklessly_modifiable(spte))
2973 goto exit;
2974
c126d94f
XG
2975 /*
2976 * Do not fix write-permission on the large spte since we only dirty
2977 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2978 * that means other pages are missed if its slot is dirty-logged.
2979 *
2980 * Instead, we let the slow page fault path create a normal spte to
2981 * fix the access.
2982 *
2983 * See the comments in kvm_arch_commit_memory_region().
2984 */
2985 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2986 goto exit;
2987
c7ba5b48
XG
2988 /*
2989 * Currently, fast page fault only works for direct mapping since
2990 * the gfn is not stable for indirect shadow page.
2991 * See Documentation/virtual/kvm/locking.txt to get more detail.
2992 */
92a476cb 2993 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2994exit:
a72faf25
XG
2995 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2996 spte, ret);
c7ba5b48
XG
2997 walk_shadow_page_lockless_end(vcpu);
2998
2999 return ret;
3000}
3001
78b2c54a 3002static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3003 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
450e0b41 3004static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3005
c7ba5b48
XG
3006static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3007 gfn_t gfn, bool prefault)
10589a46
MT
3008{
3009 int r;
852e3c19 3010 int level;
fd136902 3011 bool force_pt_level = false;
ba049e93 3012 kvm_pfn_t pfn;
e930bffe 3013 unsigned long mmu_seq;
c7ba5b48 3014 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3015
fd136902 3016 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3017 if (likely(!force_pt_level)) {
936a5fe6
AA
3018 /*
3019 * This path builds a PAE pagetable - so we can map
3020 * 2mb pages at maximum. Therefore check if the level
3021 * is larger than that.
3022 */
3023 if (level > PT_DIRECTORY_LEVEL)
3024 level = PT_DIRECTORY_LEVEL;
852e3c19 3025
936a5fe6 3026 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3027 }
05da4558 3028
c7ba5b48
XG
3029 if (fast_page_fault(vcpu, v, level, error_code))
3030 return 0;
3031
e930bffe 3032 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3033 smp_rmb();
060c2abe 3034
78b2c54a 3035 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3036 return 0;
aaee2c94 3037
d7c55201
XG
3038 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3039 return r;
d196e343 3040
aaee2c94 3041 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3042 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3043 goto out_unlock;
450e0b41 3044 make_mmu_pages_available(vcpu);
936a5fe6
AA
3045 if (likely(!force_pt_level))
3046 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3047 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3048 spin_unlock(&vcpu->kvm->mmu_lock);
3049
10589a46 3050 return r;
e930bffe
AA
3051
3052out_unlock:
3053 spin_unlock(&vcpu->kvm->mmu_lock);
3054 kvm_release_pfn_clean(pfn);
3055 return 0;
10589a46
MT
3056}
3057
3058
17ac10ad
AK
3059static void mmu_free_roots(struct kvm_vcpu *vcpu)
3060{
3061 int i;
4db35314 3062 struct kvm_mmu_page *sp;
d98ba053 3063 LIST_HEAD(invalid_list);
17ac10ad 3064
ad312c7c 3065 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3066 return;
35af577a 3067
81407ca5
JR
3068 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3069 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3070 vcpu->arch.mmu.direct_map)) {
ad312c7c 3071 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3072
35af577a 3073 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3074 sp = page_header(root);
3075 --sp->root_count;
d98ba053
XG
3076 if (!sp->root_count && sp->role.invalid) {
3077 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3078 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3079 }
aaee2c94 3080 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3081 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3082 return;
3083 }
35af577a
GN
3084
3085 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3086 for (i = 0; i < 4; ++i) {
ad312c7c 3087 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3088
417726a3 3089 if (root) {
417726a3 3090 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3091 sp = page_header(root);
3092 --sp->root_count;
2e53d63a 3093 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3094 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3095 &invalid_list);
417726a3 3096 }
ad312c7c 3097 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3098 }
d98ba053 3099 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3100 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3101 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3102}
3103
8986ecc0
MT
3104static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3105{
3106 int ret = 0;
3107
3108 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3109 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3110 ret = 1;
3111 }
3112
3113 return ret;
3114}
3115
651dd37a
JR
3116static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3117{
3118 struct kvm_mmu_page *sp;
7ebaf15e 3119 unsigned i;
651dd37a
JR
3120
3121 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3122 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3123 make_mmu_pages_available(vcpu);
bb11c6c9 3124 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3125 ++sp->root_count;
3126 spin_unlock(&vcpu->kvm->mmu_lock);
3127 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3128 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3129 for (i = 0; i < 4; ++i) {
3130 hpa_t root = vcpu->arch.mmu.pae_root[i];
3131
fa4a2c08 3132 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3133 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3134 make_mmu_pages_available(vcpu);
649497d1 3135 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3136 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3137 root = __pa(sp->spt);
3138 ++sp->root_count;
3139 spin_unlock(&vcpu->kvm->mmu_lock);
3140 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3141 }
6292757f 3142 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3143 } else
3144 BUG();
3145
3146 return 0;
3147}
3148
3149static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3150{
4db35314 3151 struct kvm_mmu_page *sp;
81407ca5
JR
3152 u64 pdptr, pm_mask;
3153 gfn_t root_gfn;
3154 int i;
3bb65a22 3155
5777ed34 3156 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3157
651dd37a
JR
3158 if (mmu_check_root(vcpu, root_gfn))
3159 return 1;
3160
3161 /*
3162 * Do we shadow a long mode page table? If so we need to
3163 * write-protect the guests page table root.
3164 */
3165 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3166 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3167
fa4a2c08 3168 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3169
8facbbff 3170 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3171 make_mmu_pages_available(vcpu);
651dd37a 3172 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
bb11c6c9 3173 0, ACC_ALL);
4db35314
AK
3174 root = __pa(sp->spt);
3175 ++sp->root_count;
8facbbff 3176 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3177 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3178 return 0;
17ac10ad 3179 }
f87f9288 3180
651dd37a
JR
3181 /*
3182 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3183 * or a PAE 3-level page table. In either case we need to be aware that
3184 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3185 */
81407ca5
JR
3186 pm_mask = PT_PRESENT_MASK;
3187 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3188 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3189
17ac10ad 3190 for (i = 0; i < 4; ++i) {
ad312c7c 3191 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3192
fa4a2c08 3193 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3194 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3195 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3196 if (!is_present_gpte(pdptr)) {
ad312c7c 3197 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3198 continue;
3199 }
6de4f3ad 3200 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3201 if (mmu_check_root(vcpu, root_gfn))
3202 return 1;
5a7388c2 3203 }
8facbbff 3204 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3205 make_mmu_pages_available(vcpu);
bb11c6c9
TY
3206 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3207 0, ACC_ALL);
4db35314
AK
3208 root = __pa(sp->spt);
3209 ++sp->root_count;
8facbbff
AK
3210 spin_unlock(&vcpu->kvm->mmu_lock);
3211
81407ca5 3212 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3213 }
6292757f 3214 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3215
3216 /*
3217 * If we shadow a 32 bit page table with a long mode page
3218 * table we enter this path.
3219 */
3220 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3221 if (vcpu->arch.mmu.lm_root == NULL) {
3222 /*
3223 * The additional page necessary for this is only
3224 * allocated on demand.
3225 */
3226
3227 u64 *lm_root;
3228
3229 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3230 if (lm_root == NULL)
3231 return 1;
3232
3233 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3234
3235 vcpu->arch.mmu.lm_root = lm_root;
3236 }
3237
3238 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3239 }
3240
8986ecc0 3241 return 0;
17ac10ad
AK
3242}
3243
651dd37a
JR
3244static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3245{
3246 if (vcpu->arch.mmu.direct_map)
3247 return mmu_alloc_direct_roots(vcpu);
3248 else
3249 return mmu_alloc_shadow_roots(vcpu);
3250}
3251
0ba73cda
MT
3252static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3253{
3254 int i;
3255 struct kvm_mmu_page *sp;
3256
81407ca5
JR
3257 if (vcpu->arch.mmu.direct_map)
3258 return;
3259
0ba73cda
MT
3260 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3261 return;
6903074c 3262
56f17dd3 3263 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3264 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3265 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3266 hpa_t root = vcpu->arch.mmu.root_hpa;
3267 sp = page_header(root);
3268 mmu_sync_children(vcpu, sp);
0375f7fa 3269 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3270 return;
3271 }
3272 for (i = 0; i < 4; ++i) {
3273 hpa_t root = vcpu->arch.mmu.pae_root[i];
3274
8986ecc0 3275 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3276 root &= PT64_BASE_ADDR_MASK;
3277 sp = page_header(root);
3278 mmu_sync_children(vcpu, sp);
3279 }
3280 }
0375f7fa 3281 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3282}
3283
3284void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3285{
3286 spin_lock(&vcpu->kvm->mmu_lock);
3287 mmu_sync_roots(vcpu);
6cffe8ca 3288 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3289}
bfd0a56b 3290EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3291
1871c602 3292static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3293 u32 access, struct x86_exception *exception)
6aa8b732 3294{
ab9ae313
AK
3295 if (exception)
3296 exception->error_code = 0;
6aa8b732
AK
3297 return vaddr;
3298}
3299
6539e738 3300static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3301 u32 access,
3302 struct x86_exception *exception)
6539e738 3303{
ab9ae313
AK
3304 if (exception)
3305 exception->error_code = 0;
54987b7a 3306 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3307}
3308
d625b155
XG
3309static bool
3310__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3311{
3312 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3313
3314 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3315 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3316}
3317
3318static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3319{
3320 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3321}
3322
3323static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3324{
3325 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3326}
3327
ded58749 3328static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3329{
3330 if (direct)
3331 return vcpu_match_mmio_gpa(vcpu, addr);
3332
3333 return vcpu_match_mmio_gva(vcpu, addr);
3334}
3335
47ab8751
XG
3336/* return true if reserved bit is detected on spte. */
3337static bool
3338walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3339{
3340 struct kvm_shadow_walk_iterator iterator;
47ab8751
XG
3341 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3342 int root, leaf;
3343 bool reserved = false;
ce88decf 3344
37f6a4e2 3345 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
47ab8751 3346 goto exit;
37f6a4e2 3347
ce88decf 3348 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3349
29ecd660
PB
3350 for (shadow_walk_init(&iterator, vcpu, addr),
3351 leaf = root = iterator.level;
47ab8751
XG
3352 shadow_walk_okay(&iterator);
3353 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3354 spte = mmu_spte_get_lockless(iterator.sptep);
3355
3356 sptes[leaf - 1] = spte;
29ecd660 3357 leaf--;
47ab8751 3358
ce88decf
XG
3359 if (!is_shadow_present_pte(spte))
3360 break;
47ab8751
XG
3361
3362 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
58c95070 3363 iterator.level);
47ab8751
XG
3364 }
3365
ce88decf
XG
3366 walk_shadow_page_lockless_end(vcpu);
3367
47ab8751
XG
3368 if (reserved) {
3369 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3370 __func__, addr);
29ecd660 3371 while (root > leaf) {
47ab8751
XG
3372 pr_err("------ spte 0x%llx level %d.\n",
3373 sptes[root - 1], root);
3374 root--;
3375 }
3376 }
3377exit:
3378 *sptep = spte;
3379 return reserved;
ce88decf
XG
3380}
3381
450869d6 3382int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3383{
3384 u64 spte;
47ab8751 3385 bool reserved;
ce88decf 3386
ded58749 3387 if (mmio_info_in_cache(vcpu, addr, direct))
b37fbea6 3388 return RET_MMIO_PF_EMULATE;
ce88decf 3389
47ab8751 3390 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3391 if (WARN_ON(reserved))
47ab8751 3392 return RET_MMIO_PF_BUG;
ce88decf
XG
3393
3394 if (is_mmio_spte(spte)) {
3395 gfn_t gfn = get_mmio_spte_gfn(spte);
3396 unsigned access = get_mmio_spte_access(spte);
3397
54bf36aa 3398 if (!check_mmio_spte(vcpu, spte))
f8f55942
XG
3399 return RET_MMIO_PF_INVALID;
3400
ce88decf
XG
3401 if (direct)
3402 addr = 0;
4f022648
XG
3403
3404 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3405 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3406 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3407 }
3408
ce88decf
XG
3409 /*
3410 * If the page table is zapped by other cpus, let CPU fault again on
3411 * the address.
3412 */
b37fbea6 3413 return RET_MMIO_PF_RETRY;
ce88decf 3414}
450869d6 3415EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
ce88decf 3416
3d0c27ad
XG
3417static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3418 u32 error_code, gfn_t gfn)
3419{
3420 if (unlikely(error_code & PFERR_RSVD_MASK))
3421 return false;
3422
3423 if (!(error_code & PFERR_PRESENT_MASK) ||
3424 !(error_code & PFERR_WRITE_MASK))
3425 return false;
3426
3427 /*
3428 * guest is writing the page which is write tracked which can
3429 * not be fixed by page fault handler.
3430 */
3431 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3432 return true;
3433
3434 return false;
3435}
3436
e5691a81
XG
3437static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3438{
3439 struct kvm_shadow_walk_iterator iterator;
3440 u64 spte;
3441
3442 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3443 return;
3444
3445 walk_shadow_page_lockless_begin(vcpu);
3446 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3447 clear_sp_write_flooding_count(iterator.sptep);
3448 if (!is_shadow_present_pte(spte))
3449 break;
3450 }
3451 walk_shadow_page_lockless_end(vcpu);
3452}
3453
6aa8b732 3454static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3455 u32 error_code, bool prefault)
6aa8b732 3456{
3d0c27ad 3457 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3458 int r;
6aa8b732 3459
b8688d51 3460 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3461
3d0c27ad
XG
3462 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3463 return 1;
ce88decf 3464
e2dec939
AK
3465 r = mmu_topup_memory_caches(vcpu);
3466 if (r)
3467 return r;
714b93da 3468
fa4a2c08 3469 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3470
6aa8b732 3471
e833240f 3472 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3473 error_code, gfn, prefault);
6aa8b732
AK
3474}
3475
7e1fbeac 3476static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3477{
3478 struct kvm_arch_async_pf arch;
fb67e14f 3479
7c90705b 3480 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3481 arch.gfn = gfn;
c4806acd 3482 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3483 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3484
54bf36aa 3485 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3486}
3487
3488static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3489{
35754c98 3490 if (unlikely(!lapic_in_kernel(vcpu) ||
af585b92
GN
3491 kvm_event_needs_reinjection(vcpu)))
3492 return false;
3493
3494 return kvm_x86_ops->interrupt_allowed(vcpu);
3495}
3496
78b2c54a 3497static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3498 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 3499{
3520469d 3500 struct kvm_memory_slot *slot;
af585b92
GN
3501 bool async;
3502
54bf36aa 3503 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
3504 async = false;
3505 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
3506 if (!async)
3507 return false; /* *pfn has correct page already */
3508
78b2c54a 3509 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3510 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3511 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3512 trace_kvm_async_pf_doublefault(gva, gfn);
3513 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3514 return true;
3515 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3516 return true;
3517 }
3518
3520469d 3519 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
3520 return false;
3521}
3522
6a39bbc5
XG
3523static bool
3524check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3525{
3526 int page_num = KVM_PAGES_PER_HPAGE(level);
3527
3528 gfn &= ~(page_num - 1);
3529
3530 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3531}
3532
56028d08 3533static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3534 bool prefault)
fb72d167 3535{
ba049e93 3536 kvm_pfn_t pfn;
fb72d167 3537 int r;
852e3c19 3538 int level;
cd1872f0 3539 bool force_pt_level;
05da4558 3540 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3541 unsigned long mmu_seq;
612819c3
MT
3542 int write = error_code & PFERR_WRITE_MASK;
3543 bool map_writable;
fb72d167 3544
fa4a2c08 3545 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3546
3d0c27ad
XG
3547 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3548 return 1;
ce88decf 3549
fb72d167
JR
3550 r = mmu_topup_memory_caches(vcpu);
3551 if (r)
3552 return r;
3553
fd136902
TY
3554 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3555 PT_DIRECTORY_LEVEL);
3556 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3557 if (likely(!force_pt_level)) {
6a39bbc5
XG
3558 if (level > PT_DIRECTORY_LEVEL &&
3559 !check_hugepage_cache_consistency(vcpu, gfn, level))
3560 level = PT_DIRECTORY_LEVEL;
936a5fe6 3561 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3562 }
852e3c19 3563
c7ba5b48
XG
3564 if (fast_page_fault(vcpu, gpa, level, error_code))
3565 return 0;
3566
e930bffe 3567 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3568 smp_rmb();
af585b92 3569
78b2c54a 3570 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3571 return 0;
3572
d7c55201
XG
3573 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3574 return r;
3575
fb72d167 3576 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3577 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3578 goto out_unlock;
450e0b41 3579 make_mmu_pages_available(vcpu);
936a5fe6
AA
3580 if (likely(!force_pt_level))
3581 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3582 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 3583 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3584
3585 return r;
e930bffe
AA
3586
3587out_unlock:
3588 spin_unlock(&vcpu->kvm->mmu_lock);
3589 kvm_release_pfn_clean(pfn);
3590 return 0;
fb72d167
JR
3591}
3592
8a3c1a33
PB
3593static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3594 struct kvm_mmu *context)
6aa8b732 3595{
6aa8b732 3596 context->page_fault = nonpaging_page_fault;
6aa8b732 3597 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3598 context->sync_page = nonpaging_sync_page;
a7052897 3599 context->invlpg = nonpaging_invlpg;
0f53b5b1 3600 context->update_pte = nonpaging_update_pte;
cea0f0e7 3601 context->root_level = 0;
6aa8b732 3602 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3603 context->root_hpa = INVALID_PAGE;
c5a78f2b 3604 context->direct_map = true;
2d48a985 3605 context->nx = false;
6aa8b732
AK
3606}
3607
d8d173da 3608void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3609{
cea0f0e7 3610 mmu_free_roots(vcpu);
6aa8b732
AK
3611}
3612
5777ed34
JR
3613static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3614{
9f8fe504 3615 return kvm_read_cr3(vcpu);
5777ed34
JR
3616}
3617
6389ee94
AK
3618static void inject_page_fault(struct kvm_vcpu *vcpu,
3619 struct x86_exception *fault)
6aa8b732 3620{
6389ee94 3621 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3622}
3623
54bf36aa 3624static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 3625 unsigned access, int *nr_present)
ce88decf
XG
3626{
3627 if (unlikely(is_mmio_spte(*sptep))) {
3628 if (gfn != get_mmio_spte_gfn(*sptep)) {
3629 mmu_spte_clear_no_track(sptep);
3630 return true;
3631 }
3632
3633 (*nr_present)++;
54bf36aa 3634 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
3635 return true;
3636 }
3637
3638 return false;
3639}
3640
6bb69c9b
PB
3641static inline bool is_last_gpte(struct kvm_mmu *mmu,
3642 unsigned level, unsigned gpte)
6fd01b71 3643{
6bb69c9b
PB
3644 /*
3645 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3646 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3647 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3648 */
3649 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
6fd01b71 3650
6bb69c9b
PB
3651 /*
3652 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3653 * If it is clear, there are no large pages at this level, so clear
3654 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3655 */
3656 gpte &= level - mmu->last_nonleaf_level;
3657
3658 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
3659}
3660
37406aaa
NHE
3661#define PTTYPE_EPT 18 /* arbitrary */
3662#define PTTYPE PTTYPE_EPT
3663#include "paging_tmpl.h"
3664#undef PTTYPE
3665
6aa8b732
AK
3666#define PTTYPE 64
3667#include "paging_tmpl.h"
3668#undef PTTYPE
3669
3670#define PTTYPE 32
3671#include "paging_tmpl.h"
3672#undef PTTYPE
3673
6dc98b86
XG
3674static void
3675__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3676 struct rsvd_bits_validate *rsvd_check,
3677 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 3678 bool pse, bool amd)
82725b20 3679{
82725b20 3680 u64 exb_bit_rsvd = 0;
5f7dde7b 3681 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3682 u64 nonleaf_bit8_rsvd = 0;
82725b20 3683
a0a64f50 3684 rsvd_check->bad_mt_xwr = 0;
25d92081 3685
6dc98b86 3686 if (!nx)
82725b20 3687 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 3688 if (!gbpages)
5f7dde7b 3689 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3690
3691 /*
3692 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3693 * leaf entries) on AMD CPUs only.
3694 */
6fec2144 3695 if (amd)
a0c0feb5
PB
3696 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3697
6dc98b86 3698 switch (level) {
82725b20
DE
3699 case PT32_ROOT_LEVEL:
3700 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
3701 rsvd_check->rsvd_bits_mask[0][1] = 0;
3702 rsvd_check->rsvd_bits_mask[0][0] = 0;
3703 rsvd_check->rsvd_bits_mask[1][0] =
3704 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 3705
6dc98b86 3706 if (!pse) {
a0a64f50 3707 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
3708 break;
3709 }
3710
82725b20
DE
3711 if (is_cpuid_PSE36())
3712 /* 36bits PSE 4MB page */
a0a64f50 3713 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
3714 else
3715 /* 32 bits PSE 4MB page */
a0a64f50 3716 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3717 break;
3718 case PT32E_ROOT_LEVEL:
a0a64f50 3719 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 3720 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3721 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 3722 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3723 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 3724 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 3725 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 3726 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
3727 rsvd_bits(maxphyaddr, 62) |
3728 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3729 rsvd_check->rsvd_bits_mask[1][0] =
3730 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3731 break;
3732 case PT64_ROOT_LEVEL:
a0a64f50
XG
3733 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3734 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 3735 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3736 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3737 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 3738 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
3739 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3740 rsvd_bits(maxphyaddr, 51);
3741 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3742 rsvd_bits(maxphyaddr, 51);
3743 rsvd_check->rsvd_bits_mask[1][3] =
3744 rsvd_check->rsvd_bits_mask[0][3];
3745 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3746 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3747 rsvd_bits(13, 29);
a0a64f50 3748 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3749 rsvd_bits(maxphyaddr, 51) |
3750 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
3751 rsvd_check->rsvd_bits_mask[1][0] =
3752 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
3753 break;
3754 }
3755}
3756
6dc98b86
XG
3757static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3758 struct kvm_mmu *context)
3759{
3760 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3761 cpuid_maxphyaddr(vcpu), context->root_level,
3762 context->nx, guest_cpuid_has_gbpages(vcpu),
6fec2144 3763 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
3764}
3765
81b8eebb
XG
3766static void
3767__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3768 int maxphyaddr, bool execonly)
25d92081 3769{
951f9fd7 3770 u64 bad_mt_xwr;
25d92081 3771
a0a64f50 3772 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 3773 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 3774 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 3775 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3776 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 3777 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 3778 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
3779
3780 /* large page */
a0a64f50
XG
3781 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3782 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 3783 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 3784 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 3785 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 3786 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 3787
951f9fd7
PB
3788 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3789 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3790 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3791 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3792 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3793 if (!execonly) {
3794 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3795 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 3796 }
951f9fd7 3797 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
3798}
3799
81b8eebb
XG
3800static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3801 struct kvm_mmu *context, bool execonly)
3802{
3803 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3804 cpuid_maxphyaddr(vcpu), execonly);
3805}
3806
c258b62b
XG
3807/*
3808 * the page table on host is the shadow page table for the page
3809 * table in guest or amd nested guest, its mmu features completely
3810 * follow the features in guest.
3811 */
3812void
3813reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3814{
5f0b8199
PB
3815 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3816
6fec2144
PB
3817 /*
3818 * Passing "true" to the last argument is okay; it adds a check
3819 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3820 */
c258b62b
XG
3821 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3822 boot_cpu_data.x86_phys_bits,
5f0b8199 3823 context->shadow_root_level, uses_nx,
6fec2144
PB
3824 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3825 true);
c258b62b
XG
3826}
3827EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3828
6fec2144
PB
3829static inline bool boot_cpu_is_amd(void)
3830{
3831 WARN_ON_ONCE(!tdp_enabled);
3832 return shadow_x_mask == 0;
3833}
3834
c258b62b
XG
3835/*
3836 * the direct page table on host, use as much mmu features as
3837 * possible, however, kvm currently does not do execution-protection.
3838 */
3839static void
3840reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3841 struct kvm_mmu *context)
3842{
6fec2144 3843 if (boot_cpu_is_amd())
c258b62b
XG
3844 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3845 boot_cpu_data.x86_phys_bits,
3846 context->shadow_root_level, false,
6fec2144 3847 cpu_has_gbpages, true, true);
c258b62b
XG
3848 else
3849 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3850 boot_cpu_data.x86_phys_bits,
3851 false);
3852
3853}
3854
3855/*
3856 * as the comments in reset_shadow_zero_bits_mask() except it
3857 * is the shadow page table for intel nested guest.
3858 */
3859static void
3860reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3861 struct kvm_mmu *context, bool execonly)
3862{
3863 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3864 boot_cpu_data.x86_phys_bits, execonly);
3865}
3866
edc90b7d
XG
3867static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3868 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3869{
3870 unsigned bit, byte, pfec;
3871 u8 map;
66386ade 3872 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3873
66386ade 3874 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3875 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3876 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3877 pfec = byte << 1;
3878 map = 0;
3879 wf = pfec & PFERR_WRITE_MASK;
3880 uf = pfec & PFERR_USER_MASK;
3881 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3882 /*
3883 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3884 * subject to SMAP restrictions, and cleared otherwise. The
3885 * bit is only meaningful if the SMAP bit is set in CR4.
3886 */
3887 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3888 for (bit = 0; bit < 8; ++bit) {
3889 x = bit & ACC_EXEC_MASK;
3890 w = bit & ACC_WRITE_MASK;
3891 u = bit & ACC_USER_MASK;
3892
25d92081
YZ
3893 if (!ept) {
3894 /* Not really needed: !nx will cause pte.nx to fault */
3895 x |= !mmu->nx;
3896 /* Allow supervisor writes if !cr0.wp */
3897 w |= !is_write_protection(vcpu) && !uf;
3898 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3899 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3900
3901 /*
3902 * SMAP:kernel-mode data accesses from user-mode
3903 * mappings should fault. A fault is considered
3904 * as a SMAP violation if all of the following
3905 * conditions are ture:
3906 * - X86_CR4_SMAP is set in CR4
3907 * - An user page is accessed
3908 * - Page fault in kernel mode
3909 * - if CPL = 3 or X86_EFLAGS_AC is clear
3910 *
3911 * Here, we cover the first three conditions.
3912 * The fourth is computed dynamically in
3913 * permission_fault() and is in smapf.
3914 *
3915 * Also, SMAP does not affect instruction
3916 * fetches, add the !ff check here to make it
3917 * clearer.
3918 */
3919 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3920 } else
3921 /* Not really needed: no U/S accesses on ept */
3922 u = 1;
97d64b78 3923
97ec8c06
FW
3924 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3925 (smapf && smap);
97d64b78
AK
3926 map |= fault << bit;
3927 }
3928 mmu->permissions[byte] = map;
3929 }
3930}
3931
2d344105
HH
3932/*
3933* PKU is an additional mechanism by which the paging controls access to
3934* user-mode addresses based on the value in the PKRU register. Protection
3935* key violations are reported through a bit in the page fault error code.
3936* Unlike other bits of the error code, the PK bit is not known at the
3937* call site of e.g. gva_to_gpa; it must be computed directly in
3938* permission_fault based on two bits of PKRU, on some machine state (CR4,
3939* CR0, EFER, CPL), and on other bits of the error code and the page tables.
3940*
3941* In particular the following conditions come from the error code, the
3942* page tables and the machine state:
3943* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3944* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3945* - PK is always zero if U=0 in the page tables
3946* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3947*
3948* The PKRU bitmask caches the result of these four conditions. The error
3949* code (minus the P bit) and the page table's U bit form an index into the
3950* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3951* with the two bits of the PKRU register corresponding to the protection key.
3952* For the first three conditions above the bits will be 00, thus masking
3953* away both AD and WD. For all reads or if the last condition holds, WD
3954* only will be masked away.
3955*/
3956static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3957 bool ept)
3958{
3959 unsigned bit;
3960 bool wp;
3961
3962 if (ept) {
3963 mmu->pkru_mask = 0;
3964 return;
3965 }
3966
3967 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3968 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3969 mmu->pkru_mask = 0;
3970 return;
3971 }
3972
3973 wp = is_write_protection(vcpu);
3974
3975 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3976 unsigned pfec, pkey_bits;
3977 bool check_pkey, check_write, ff, uf, wf, pte_user;
3978
3979 pfec = bit << 1;
3980 ff = pfec & PFERR_FETCH_MASK;
3981 uf = pfec & PFERR_USER_MASK;
3982 wf = pfec & PFERR_WRITE_MASK;
3983
3984 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3985 pte_user = pfec & PFERR_RSVD_MASK;
3986
3987 /*
3988 * Only need to check the access which is not an
3989 * instruction fetch and is to a user page.
3990 */
3991 check_pkey = (!ff && pte_user);
3992 /*
3993 * write access is controlled by PKRU if it is a
3994 * user access or CR0.WP = 1.
3995 */
3996 check_write = check_pkey && wf && (uf || wp);
3997
3998 /* PKRU.AD stops both read and write access. */
3999 pkey_bits = !!check_pkey;
4000 /* PKRU.WD stops write access. */
4001 pkey_bits |= (!!check_write) << 1;
4002
4003 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4004 }
4005}
4006
6bb69c9b 4007static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4008{
6bb69c9b
PB
4009 unsigned root_level = mmu->root_level;
4010
4011 mmu->last_nonleaf_level = root_level;
4012 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4013 mmu->last_nonleaf_level++;
6fd01b71
AK
4014}
4015
8a3c1a33
PB
4016static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4017 struct kvm_mmu *context,
4018 int level)
6aa8b732 4019{
2d48a985 4020 context->nx = is_nx(vcpu);
4d6931c3 4021 context->root_level = level;
2d48a985 4022
4d6931c3 4023 reset_rsvds_bits_mask(vcpu, context);
25d92081 4024 update_permission_bitmask(vcpu, context, false);
2d344105 4025 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4026 update_last_nonleaf_level(vcpu, context);
6aa8b732 4027
fa4a2c08 4028 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4029 context->page_fault = paging64_page_fault;
6aa8b732 4030 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4031 context->sync_page = paging64_sync_page;
a7052897 4032 context->invlpg = paging64_invlpg;
0f53b5b1 4033 context->update_pte = paging64_update_pte;
17ac10ad 4034 context->shadow_root_level = level;
17c3ba9d 4035 context->root_hpa = INVALID_PAGE;
c5a78f2b 4036 context->direct_map = false;
6aa8b732
AK
4037}
4038
8a3c1a33
PB
4039static void paging64_init_context(struct kvm_vcpu *vcpu,
4040 struct kvm_mmu *context)
17ac10ad 4041{
8a3c1a33 4042 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
4043}
4044
8a3c1a33
PB
4045static void paging32_init_context(struct kvm_vcpu *vcpu,
4046 struct kvm_mmu *context)
6aa8b732 4047{
2d48a985 4048 context->nx = false;
4d6931c3 4049 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4050
4d6931c3 4051 reset_rsvds_bits_mask(vcpu, context);
25d92081 4052 update_permission_bitmask(vcpu, context, false);
2d344105 4053 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4054 update_last_nonleaf_level(vcpu, context);
6aa8b732 4055
6aa8b732 4056 context->page_fault = paging32_page_fault;
6aa8b732 4057 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4058 context->sync_page = paging32_sync_page;
a7052897 4059 context->invlpg = paging32_invlpg;
0f53b5b1 4060 context->update_pte = paging32_update_pte;
6aa8b732 4061 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 4062 context->root_hpa = INVALID_PAGE;
c5a78f2b 4063 context->direct_map = false;
6aa8b732
AK
4064}
4065
8a3c1a33
PB
4066static void paging32E_init_context(struct kvm_vcpu *vcpu,
4067 struct kvm_mmu *context)
6aa8b732 4068{
8a3c1a33 4069 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4070}
4071
8a3c1a33 4072static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4073{
ad896af0 4074 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 4075
c445f8ef 4076 context->base_role.word = 0;
699023e2 4077 context->base_role.smm = is_smm(vcpu);
fb72d167 4078 context->page_fault = tdp_page_fault;
e8bc217a 4079 context->sync_page = nonpaging_sync_page;
a7052897 4080 context->invlpg = nonpaging_invlpg;
0f53b5b1 4081 context->update_pte = nonpaging_update_pte;
67253af5 4082 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 4083 context->root_hpa = INVALID_PAGE;
c5a78f2b 4084 context->direct_map = true;
1c97f0a0 4085 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4086 context->get_cr3 = get_cr3;
e4e517b4 4087 context->get_pdptr = kvm_pdptr_read;
cb659db8 4088 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4089
4090 if (!is_paging(vcpu)) {
2d48a985 4091 context->nx = false;
fb72d167
JR
4092 context->gva_to_gpa = nonpaging_gva_to_gpa;
4093 context->root_level = 0;
4094 } else if (is_long_mode(vcpu)) {
2d48a985 4095 context->nx = is_nx(vcpu);
fb72d167 4096 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
4097 reset_rsvds_bits_mask(vcpu, context);
4098 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4099 } else if (is_pae(vcpu)) {
2d48a985 4100 context->nx = is_nx(vcpu);
fb72d167 4101 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4102 reset_rsvds_bits_mask(vcpu, context);
4103 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4104 } else {
2d48a985 4105 context->nx = false;
fb72d167 4106 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4107 reset_rsvds_bits_mask(vcpu, context);
4108 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4109 }
4110
25d92081 4111 update_permission_bitmask(vcpu, context, false);
2d344105 4112 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4113 update_last_nonleaf_level(vcpu, context);
c258b62b 4114 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4115}
4116
ad896af0 4117void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 4118{
411c588d 4119 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 4120 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
4121 struct kvm_mmu *context = &vcpu->arch.mmu;
4122
fa4a2c08 4123 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
4124
4125 if (!is_paging(vcpu))
8a3c1a33 4126 nonpaging_init_context(vcpu, context);
a9058ecd 4127 else if (is_long_mode(vcpu))
8a3c1a33 4128 paging64_init_context(vcpu, context);
6aa8b732 4129 else if (is_pae(vcpu))
8a3c1a33 4130 paging32E_init_context(vcpu, context);
6aa8b732 4131 else
8a3c1a33 4132 paging32_init_context(vcpu, context);
a770f6f2 4133
ad896af0
PB
4134 context->base_role.nxe = is_nx(vcpu);
4135 context->base_role.cr4_pae = !!is_pae(vcpu);
4136 context->base_role.cr0_wp = is_write_protection(vcpu);
4137 context->base_role.smep_andnot_wp
411c588d 4138 = smep && !is_write_protection(vcpu);
edc90b7d
XG
4139 context->base_role.smap_andnot_wp
4140 = smap && !is_write_protection(vcpu);
699023e2 4141 context->base_role.smm = is_smm(vcpu);
c258b62b 4142 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4143}
4144EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4145
ad896af0 4146void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 4147{
ad896af0
PB
4148 struct kvm_mmu *context = &vcpu->arch.mmu;
4149
fa4a2c08 4150 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
4151
4152 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4153
4154 context->nx = true;
155a97a3
NHE
4155 context->page_fault = ept_page_fault;
4156 context->gva_to_gpa = ept_gva_to_gpa;
4157 context->sync_page = ept_sync_page;
4158 context->invlpg = ept_invlpg;
4159 context->update_pte = ept_update_pte;
155a97a3
NHE
4160 context->root_level = context->shadow_root_level;
4161 context->root_hpa = INVALID_PAGE;
4162 context->direct_map = false;
4163
4164 update_permission_bitmask(vcpu, context, true);
2d344105 4165 update_pkru_bitmask(vcpu, context, true);
155a97a3 4166 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4167 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4168}
4169EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4170
8a3c1a33 4171static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4172{
ad896af0
PB
4173 struct kvm_mmu *context = &vcpu->arch.mmu;
4174
4175 kvm_init_shadow_mmu(vcpu);
4176 context->set_cr3 = kvm_x86_ops->set_cr3;
4177 context->get_cr3 = get_cr3;
4178 context->get_pdptr = kvm_pdptr_read;
4179 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4180}
4181
8a3c1a33 4182static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4183{
4184 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4185
4186 g_context->get_cr3 = get_cr3;
e4e517b4 4187 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4188 g_context->inject_page_fault = kvm_inject_page_fault;
4189
4190 /*
0af2593b
DM
4191 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4192 * L1's nested page tables (e.g. EPT12). The nested translation
4193 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4194 * L2's page tables as the first level of translation and L1's
4195 * nested page tables as the second level of translation. Basically
4196 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
4197 */
4198 if (!is_paging(vcpu)) {
2d48a985 4199 g_context->nx = false;
02f59dc9
JR
4200 g_context->root_level = 0;
4201 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4202 } else if (is_long_mode(vcpu)) {
2d48a985 4203 g_context->nx = is_nx(vcpu);
02f59dc9 4204 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4205 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4206 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4207 } else if (is_pae(vcpu)) {
2d48a985 4208 g_context->nx = is_nx(vcpu);
02f59dc9 4209 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4210 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4211 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4212 } else {
2d48a985 4213 g_context->nx = false;
02f59dc9 4214 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4215 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4216 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4217 }
4218
25d92081 4219 update_permission_bitmask(vcpu, g_context, false);
2d344105 4220 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 4221 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
4222}
4223
8a3c1a33 4224static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4225{
02f59dc9 4226 if (mmu_is_nested(vcpu))
e0c6db3e 4227 init_kvm_nested_mmu(vcpu);
02f59dc9 4228 else if (tdp_enabled)
e0c6db3e 4229 init_kvm_tdp_mmu(vcpu);
fb72d167 4230 else
e0c6db3e 4231 init_kvm_softmmu(vcpu);
fb72d167
JR
4232}
4233
8a3c1a33 4234void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4235{
95f93af4 4236 kvm_mmu_unload(vcpu);
8a3c1a33 4237 init_kvm_mmu(vcpu);
17c3ba9d 4238}
8668a3c4 4239EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4240
4241int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4242{
714b93da
AK
4243 int r;
4244
e2dec939 4245 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4246 if (r)
4247 goto out;
8986ecc0 4248 r = mmu_alloc_roots(vcpu);
e2858b4a 4249 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4250 if (r)
4251 goto out;
3662cb1c 4252 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4253 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4254out:
4255 return r;
6aa8b732 4256}
17c3ba9d
AK
4257EXPORT_SYMBOL_GPL(kvm_mmu_load);
4258
4259void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4260{
4261 mmu_free_roots(vcpu);
95f93af4 4262 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4263}
4b16184c 4264EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4265
0028425f 4266static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4267 struct kvm_mmu_page *sp, u64 *spte,
4268 const void *new)
0028425f 4269{
30945387 4270 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4271 ++vcpu->kvm->stat.mmu_pde_zapped;
4272 return;
30945387 4273 }
0028425f 4274
4cee5764 4275 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4276 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4277}
4278
79539cec
AK
4279static bool need_remote_flush(u64 old, u64 new)
4280{
4281 if (!is_shadow_present_pte(old))
4282 return false;
4283 if (!is_shadow_present_pte(new))
4284 return true;
4285 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4286 return true;
53166229
GN
4287 old ^= shadow_nx_mask;
4288 new ^= shadow_nx_mask;
79539cec
AK
4289 return (old & ~new & PT64_PERM_MASK) != 0;
4290}
4291
889e5cbc
XG
4292static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4293 const u8 *new, int *bytes)
da4a00f0 4294{
889e5cbc
XG
4295 u64 gentry;
4296 int r;
72016f3a 4297
72016f3a
AK
4298 /*
4299 * Assume that the pte write on a page table of the same type
49b26e26
XG
4300 * as the current vcpu paging mode since we update the sptes only
4301 * when they have the same mode.
72016f3a 4302 */
889e5cbc 4303 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4304 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4305 *gpa &= ~(gpa_t)7;
4306 *bytes = 8;
54bf36aa 4307 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
72016f3a
AK
4308 if (r)
4309 gentry = 0;
08e850c6
AK
4310 new = (const u8 *)&gentry;
4311 }
4312
889e5cbc 4313 switch (*bytes) {
08e850c6
AK
4314 case 4:
4315 gentry = *(const u32 *)new;
4316 break;
4317 case 8:
4318 gentry = *(const u64 *)new;
4319 break;
4320 default:
4321 gentry = 0;
4322 break;
72016f3a
AK
4323 }
4324
889e5cbc
XG
4325 return gentry;
4326}
4327
4328/*
4329 * If we're seeing too many writes to a page, it may no longer be a page table,
4330 * or we may be forking, in which case it is better to unmap the page.
4331 */
a138fe75 4332static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4333{
a30f47cb
XG
4334 /*
4335 * Skip write-flooding detected for the sp whose level is 1, because
4336 * it can become unsync, then the guest page is not write-protected.
4337 */
f71fa31f 4338 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4339 return false;
3246af0e 4340
e5691a81
XG
4341 atomic_inc(&sp->write_flooding_count);
4342 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
4343}
4344
4345/*
4346 * Misaligned accesses are too much trouble to fix up; also, they usually
4347 * indicate a page is not used as a page table.
4348 */
4349static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4350 int bytes)
4351{
4352 unsigned offset, pte_size, misaligned;
4353
4354 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4355 gpa, bytes, sp->role.word);
4356
4357 offset = offset_in_page(gpa);
4358 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4359
4360 /*
4361 * Sometimes, the OS only writes the last one bytes to update status
4362 * bits, for example, in linux, andb instruction is used in clear_bit().
4363 */
4364 if (!(offset & (pte_size - 1)) && bytes == 1)
4365 return false;
4366
889e5cbc
XG
4367 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4368 misaligned |= bytes < 4;
4369
4370 return misaligned;
4371}
4372
4373static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4374{
4375 unsigned page_offset, quadrant;
4376 u64 *spte;
4377 int level;
4378
4379 page_offset = offset_in_page(gpa);
4380 level = sp->role.level;
4381 *nspte = 1;
4382 if (!sp->role.cr4_pae) {
4383 page_offset <<= 1; /* 32->64 */
4384 /*
4385 * A 32-bit pde maps 4MB while the shadow pdes map
4386 * only 2MB. So we need to double the offset again
4387 * and zap two pdes instead of one.
4388 */
4389 if (level == PT32_ROOT_LEVEL) {
4390 page_offset &= ~7; /* kill rounding error */
4391 page_offset <<= 1;
4392 *nspte = 2;
4393 }
4394 quadrant = page_offset >> PAGE_SHIFT;
4395 page_offset &= ~PAGE_MASK;
4396 if (quadrant != sp->role.quadrant)
4397 return NULL;
4398 }
4399
4400 spte = &sp->spt[page_offset / sizeof(*spte)];
4401 return spte;
4402}
4403
13d268ca
XG
4404static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4405 const u8 *new, int bytes)
889e5cbc
XG
4406{
4407 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4408 struct kvm_mmu_page *sp;
889e5cbc
XG
4409 LIST_HEAD(invalid_list);
4410 u64 entry, gentry, *spte;
4411 int npte;
b8c67b7a 4412 bool remote_flush, local_flush;
4141259b
AM
4413 union kvm_mmu_page_role mask = { };
4414
4415 mask.cr0_wp = 1;
4416 mask.cr4_pae = 1;
4417 mask.nxe = 1;
4418 mask.smep_andnot_wp = 1;
4419 mask.smap_andnot_wp = 1;
699023e2 4420 mask.smm = 1;
889e5cbc
XG
4421
4422 /*
4423 * If we don't have indirect shadow pages, it means no page is
4424 * write-protected, so we can exit simply.
4425 */
4426 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4427 return;
4428
b8c67b7a 4429 remote_flush = local_flush = false;
889e5cbc
XG
4430
4431 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4432
4433 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4434
4435 /*
4436 * No need to care whether allocation memory is successful
4437 * or not since pte prefetch is skiped if it does not have
4438 * enough objects in the cache.
4439 */
4440 mmu_topup_memory_caches(vcpu);
4441
4442 spin_lock(&vcpu->kvm->mmu_lock);
4443 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4444 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4445
b67bfe0d 4446 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4447 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4448 detect_write_flooding(sp)) {
b8c67b7a 4449 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 4450 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4451 continue;
4452 }
889e5cbc
XG
4453
4454 spte = get_written_sptes(sp, gpa, &npte);
4455 if (!spte)
4456 continue;
4457
0671a8e7 4458 local_flush = true;
ac1b714e 4459 while (npte--) {
79539cec 4460 entry = *spte;
38e3b2b2 4461 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4462 if (gentry &&
4463 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4464 & mask.word) && rmap_can_add(vcpu))
7c562522 4465 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4466 if (need_remote_flush(entry, *spte))
0671a8e7 4467 remote_flush = true;
ac1b714e 4468 ++spte;
9b7a0325 4469 }
9b7a0325 4470 }
b8c67b7a 4471 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 4472 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4473 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4474}
4475
a436036b
AK
4476int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4477{
10589a46
MT
4478 gpa_t gpa;
4479 int r;
a436036b 4480
c5a78f2b 4481 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4482 return 0;
4483
1871c602 4484 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4485
10589a46 4486 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4487
10589a46 4488 return r;
a436036b 4489}
577bdc49 4490EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4491
81f4f76b 4492static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4493{
d98ba053 4494 LIST_HEAD(invalid_list);
103ad25a 4495
81f4f76b
TY
4496 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4497 return;
4498
5da59607
TY
4499 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4500 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4501 break;
ebeace86 4502
4cee5764 4503 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4504 }
aa6bd187 4505 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4506}
ebeace86 4507
dc25e89e
AP
4508int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4509 void *insn, int insn_len)
3067714c 4510{
1cb3f3ae 4511 int r, emulation_type = EMULTYPE_RETRY;
3067714c 4512 enum emulation_result er;
ded58749 4513 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
3067714c 4514
e9ee956e
TY
4515 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4516 r = handle_mmio_page_fault(vcpu, cr2, direct);
4517 if (r == RET_MMIO_PF_EMULATE) {
4518 emulation_type = 0;
4519 goto emulate;
4520 }
4521 if (r == RET_MMIO_PF_RETRY)
4522 return 1;
4523 if (r < 0)
4524 return r;
4525 }
3067714c 4526
56028d08 4527 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c 4528 if (r < 0)
e9ee956e
TY
4529 return r;
4530 if (!r)
4531 return 1;
3067714c 4532
ded58749 4533 if (mmio_info_in_cache(vcpu, cr2, direct))
1cb3f3ae 4534 emulation_type = 0;
e9ee956e 4535emulate:
1cb3f3ae 4536 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4537
4538 switch (er) {
4539 case EMULATE_DONE:
4540 return 1;
ac0a48c3 4541 case EMULATE_USER_EXIT:
3067714c 4542 ++vcpu->stat.mmio_exits;
6d77dbfc 4543 /* fall through */
3067714c 4544 case EMULATE_FAIL:
3f5d18a9 4545 return 0;
3067714c
AK
4546 default:
4547 BUG();
4548 }
3067714c
AK
4549}
4550EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4551
a7052897
MT
4552void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4553{
a7052897 4554 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4555 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4556 ++vcpu->stat.invlpg;
4557}
4558EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4559
18552672
JR
4560void kvm_enable_tdp(void)
4561{
4562 tdp_enabled = true;
4563}
4564EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4565
5f4cb662
JR
4566void kvm_disable_tdp(void)
4567{
4568 tdp_enabled = false;
4569}
4570EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4571
6aa8b732
AK
4572static void free_mmu_pages(struct kvm_vcpu *vcpu)
4573{
ad312c7c 4574 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4575 if (vcpu->arch.mmu.lm_root != NULL)
4576 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4577}
4578
4579static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4580{
17ac10ad 4581 struct page *page;
6aa8b732
AK
4582 int i;
4583
17ac10ad
AK
4584 /*
4585 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4586 * Therefore we need to allocate shadow page tables in the first
4587 * 4GB of memory, which happens to fit the DMA32 zone.
4588 */
4589 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4590 if (!page)
d7fa6ab2
WY
4591 return -ENOMEM;
4592
ad312c7c 4593 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4594 for (i = 0; i < 4; ++i)
ad312c7c 4595 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4596
6aa8b732 4597 return 0;
6aa8b732
AK
4598}
4599
8018c27b 4600int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4601{
e459e322
XG
4602 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4603 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4604 vcpu->arch.mmu.translate_gpa = translate_gpa;
4605 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4606
8018c27b
IM
4607 return alloc_mmu_pages(vcpu);
4608}
6aa8b732 4609
8a3c1a33 4610void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4611{
fa4a2c08 4612 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4613
8a3c1a33 4614 init_kvm_mmu(vcpu);
6aa8b732
AK
4615}
4616
13d268ca
XG
4617void kvm_mmu_init_vm(struct kvm *kvm)
4618{
4619 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4620
4621 node->track_write = kvm_mmu_pte_write;
4622 kvm_page_track_register_notifier(kvm, node);
4623}
4624
4625void kvm_mmu_uninit_vm(struct kvm *kvm)
4626{
4627 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4628
4629 kvm_page_track_unregister_notifier(kvm, node);
4630}
4631
1bad2b2a 4632/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 4633typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
4634
4635/* The caller should hold mmu-lock before calling this function. */
4636static bool
4637slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4638 slot_level_handler fn, int start_level, int end_level,
4639 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4640{
4641 struct slot_rmap_walk_iterator iterator;
4642 bool flush = false;
4643
4644 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4645 end_gfn, &iterator) {
4646 if (iterator.rmap)
4647 flush |= fn(kvm, iterator.rmap);
4648
4649 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4650 if (flush && lock_flush_tlb) {
4651 kvm_flush_remote_tlbs(kvm);
4652 flush = false;
4653 }
4654 cond_resched_lock(&kvm->mmu_lock);
4655 }
4656 }
4657
4658 if (flush && lock_flush_tlb) {
4659 kvm_flush_remote_tlbs(kvm);
4660 flush = false;
4661 }
4662
4663 return flush;
4664}
4665
4666static bool
4667slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4668 slot_level_handler fn, int start_level, int end_level,
4669 bool lock_flush_tlb)
4670{
4671 return slot_handle_level_range(kvm, memslot, fn, start_level,
4672 end_level, memslot->base_gfn,
4673 memslot->base_gfn + memslot->npages - 1,
4674 lock_flush_tlb);
4675}
4676
4677static bool
4678slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4679 slot_level_handler fn, bool lock_flush_tlb)
4680{
4681 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4682 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4683}
4684
4685static bool
4686slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4687 slot_level_handler fn, bool lock_flush_tlb)
4688{
4689 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4690 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4691}
4692
4693static bool
4694slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4695 slot_level_handler fn, bool lock_flush_tlb)
4696{
4697 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4698 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4699}
4700
efdfe536
XG
4701void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4702{
4703 struct kvm_memslots *slots;
4704 struct kvm_memory_slot *memslot;
9da0e4d5 4705 int i;
efdfe536
XG
4706
4707 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
4708 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4709 slots = __kvm_memslots(kvm, i);
4710 kvm_for_each_memslot(memslot, slots) {
4711 gfn_t start, end;
4712
4713 start = max(gfn_start, memslot->base_gfn);
4714 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4715 if (start >= end)
4716 continue;
efdfe536 4717
9da0e4d5
PB
4718 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4719 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4720 start, end - 1, true);
4721 }
efdfe536
XG
4722 }
4723
4724 spin_unlock(&kvm->mmu_lock);
4725}
4726
018aabb5
TY
4727static bool slot_rmap_write_protect(struct kvm *kvm,
4728 struct kvm_rmap_head *rmap_head)
d77aa73c 4729{
018aabb5 4730 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
4731}
4732
1c91cad4
KH
4733void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4734 struct kvm_memory_slot *memslot)
6aa8b732 4735{
d77aa73c 4736 bool flush;
6aa8b732 4737
9d1beefb 4738 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4739 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4740 false);
9d1beefb 4741 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4742
4743 /*
4744 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4745 * which do tlb flush out of mmu-lock should be serialized by
4746 * kvm->slots_lock otherwise tlb flush would be missed.
4747 */
4748 lockdep_assert_held(&kvm->slots_lock);
4749
4750 /*
4751 * We can flush all the TLBs out of the mmu lock without TLB
4752 * corruption since we just change the spte from writable to
4753 * readonly so that we only need to care the case of changing
4754 * spte from present to present (changing the spte from present
4755 * to nonpresent will flush all the TLBs immediately), in other
4756 * words, the only case we care is mmu_spte_update() where we
4757 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4758 * instead of PT_WRITABLE_MASK, that means it does not depend
4759 * on PT_WRITABLE_MASK anymore.
4760 */
d91ffee9
KH
4761 if (flush)
4762 kvm_flush_remote_tlbs(kvm);
6aa8b732 4763}
37a7d8b0 4764
3ea3b7fa 4765static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 4766 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
4767{
4768 u64 *sptep;
4769 struct rmap_iterator iter;
4770 int need_tlb_flush = 0;
ba049e93 4771 kvm_pfn_t pfn;
3ea3b7fa
WL
4772 struct kvm_mmu_page *sp;
4773
0d536790 4774restart:
018aabb5 4775 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
4776 sp = page_header(__pa(sptep));
4777 pfn = spte_to_pfn(*sptep);
4778
4779 /*
decf6333
XG
4780 * We cannot do huge page mapping for indirect shadow pages,
4781 * which are found on the last rmap (level = 1) when not using
4782 * tdp; such shadow pages are synced with the page table in
4783 * the guest, and the guest page table is using 4K page size
4784 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4785 */
4786 if (sp->role.direct &&
4787 !kvm_is_reserved_pfn(pfn) &&
127393fb 4788 PageTransCompoundMap(pfn_to_page(pfn))) {
3ea3b7fa 4789 drop_spte(kvm, sptep);
3ea3b7fa 4790 need_tlb_flush = 1;
0d536790
XG
4791 goto restart;
4792 }
3ea3b7fa
WL
4793 }
4794
4795 return need_tlb_flush;
4796}
4797
4798void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 4799 const struct kvm_memory_slot *memslot)
3ea3b7fa 4800{
f36f3f28 4801 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 4802 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
4803 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4804 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4805 spin_unlock(&kvm->mmu_lock);
4806}
4807
f4b4b180
KH
4808void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4809 struct kvm_memory_slot *memslot)
4810{
d77aa73c 4811 bool flush;
f4b4b180
KH
4812
4813 spin_lock(&kvm->mmu_lock);
d77aa73c 4814 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4815 spin_unlock(&kvm->mmu_lock);
4816
4817 lockdep_assert_held(&kvm->slots_lock);
4818
4819 /*
4820 * It's also safe to flush TLBs out of mmu lock here as currently this
4821 * function is only used for dirty logging, in which case flushing TLB
4822 * out of mmu lock also guarantees no dirty pages will be lost in
4823 * dirty_bitmap.
4824 */
4825 if (flush)
4826 kvm_flush_remote_tlbs(kvm);
4827}
4828EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4829
4830void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4831 struct kvm_memory_slot *memslot)
4832{
d77aa73c 4833 bool flush;
f4b4b180
KH
4834
4835 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4836 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4837 false);
f4b4b180
KH
4838 spin_unlock(&kvm->mmu_lock);
4839
4840 /* see kvm_mmu_slot_remove_write_access */
4841 lockdep_assert_held(&kvm->slots_lock);
4842
4843 if (flush)
4844 kvm_flush_remote_tlbs(kvm);
4845}
4846EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4847
4848void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4849 struct kvm_memory_slot *memslot)
4850{
d77aa73c 4851 bool flush;
f4b4b180
KH
4852
4853 spin_lock(&kvm->mmu_lock);
d77aa73c 4854 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4855 spin_unlock(&kvm->mmu_lock);
4856
4857 lockdep_assert_held(&kvm->slots_lock);
4858
4859 /* see kvm_mmu_slot_leaf_clear_dirty */
4860 if (flush)
4861 kvm_flush_remote_tlbs(kvm);
4862}
4863EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4864
e7d11c7a 4865#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4866static void kvm_zap_obsolete_pages(struct kvm *kvm)
4867{
4868 struct kvm_mmu_page *sp, *node;
e7d11c7a 4869 int batch = 0;
5304b8d3
XG
4870
4871restart:
4872 list_for_each_entry_safe_reverse(sp, node,
4873 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4874 int ret;
4875
5304b8d3
XG
4876 /*
4877 * No obsolete page exists before new created page since
4878 * active_mmu_pages is the FIFO list.
4879 */
4880 if (!is_obsolete_sp(kvm, sp))
4881 break;
4882
4883 /*
5304b8d3
XG
4884 * Since we are reversely walking the list and the invalid
4885 * list will be moved to the head, skip the invalid page
4886 * can help us to avoid the infinity list walking.
4887 */
4888 if (sp->role.invalid)
4889 continue;
4890
f34d251d
XG
4891 /*
4892 * Need not flush tlb since we only zap the sp with invalid
4893 * generation number.
4894 */
e7d11c7a 4895 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4896 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4897 batch = 0;
5304b8d3
XG
4898 goto restart;
4899 }
4900
365c8868
XG
4901 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4902 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4903 batch += ret;
4904
4905 if (ret)
5304b8d3
XG
4906 goto restart;
4907 }
4908
f34d251d
XG
4909 /*
4910 * Should flush tlb before free page tables since lockless-walking
4911 * may use the pages.
4912 */
365c8868 4913 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4914}
4915
4916/*
4917 * Fast invalidate all shadow pages and use lock-break technique
4918 * to zap obsolete pages.
4919 *
4920 * It's required when memslot is being deleted or VM is being
4921 * destroyed, in these cases, we should ensure that KVM MMU does
4922 * not use any resource of the being-deleted slot or all slots
4923 * after calling the function.
4924 */
4925void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4926{
4927 spin_lock(&kvm->mmu_lock);
35006126 4928 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4929 kvm->arch.mmu_valid_gen++;
4930
f34d251d
XG
4931 /*
4932 * Notify all vcpus to reload its shadow page table
4933 * and flush TLB. Then all vcpus will switch to new
4934 * shadow page table with the new mmu_valid_gen.
4935 *
4936 * Note: we should do this under the protection of
4937 * mmu-lock, otherwise, vcpu would purge shadow page
4938 * but miss tlb flush.
4939 */
4940 kvm_reload_remote_mmus(kvm);
4941
5304b8d3
XG
4942 kvm_zap_obsolete_pages(kvm);
4943 spin_unlock(&kvm->mmu_lock);
4944}
4945
365c8868
XG
4946static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4947{
4948 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4949}
4950
54bf36aa 4951void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
4952{
4953 /*
4954 * The very rare case: if the generation-number is round,
4955 * zap all shadow pages.
f8f55942 4956 */
54bf36aa 4957 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
a629df7e 4958 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4959 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4960 }
f8f55942
XG
4961}
4962
70534a73
DC
4963static unsigned long
4964mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4965{
4966 struct kvm *kvm;
1495f230 4967 int nr_to_scan = sc->nr_to_scan;
70534a73 4968 unsigned long freed = 0;
3ee16c81 4969
2f303b74 4970 spin_lock(&kvm_lock);
3ee16c81
IE
4971
4972 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4973 int idx;
d98ba053 4974 LIST_HEAD(invalid_list);
3ee16c81 4975
35f2d16b
TY
4976 /*
4977 * Never scan more than sc->nr_to_scan VM instances.
4978 * Will not hit this condition practically since we do not try
4979 * to shrink more than one VM and it is very unlikely to see
4980 * !n_used_mmu_pages so many times.
4981 */
4982 if (!nr_to_scan--)
4983 break;
19526396
GN
4984 /*
4985 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4986 * here. We may skip a VM instance errorneosly, but we do not
4987 * want to shrink a VM that only started to populate its MMU
4988 * anyway.
4989 */
365c8868
XG
4990 if (!kvm->arch.n_used_mmu_pages &&
4991 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4992 continue;
19526396 4993
f656ce01 4994 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4995 spin_lock(&kvm->mmu_lock);
3ee16c81 4996
365c8868
XG
4997 if (kvm_has_zapped_obsolete_pages(kvm)) {
4998 kvm_mmu_commit_zap_page(kvm,
4999 &kvm->arch.zapped_obsolete_pages);
5000 goto unlock;
5001 }
5002
70534a73
DC
5003 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5004 freed++;
d98ba053 5005 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5006
365c8868 5007unlock:
3ee16c81 5008 spin_unlock(&kvm->mmu_lock);
f656ce01 5009 srcu_read_unlock(&kvm->srcu, idx);
19526396 5010
70534a73
DC
5011 /*
5012 * unfair on small ones
5013 * per-vm shrinkers cry out
5014 * sadness comes quickly
5015 */
19526396
GN
5016 list_move_tail(&kvm->vm_list, &vm_list);
5017 break;
3ee16c81 5018 }
3ee16c81 5019
2f303b74 5020 spin_unlock(&kvm_lock);
70534a73 5021 return freed;
70534a73
DC
5022}
5023
5024static unsigned long
5025mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5026{
45221ab6 5027 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5028}
5029
5030static struct shrinker mmu_shrinker = {
70534a73
DC
5031 .count_objects = mmu_shrink_count,
5032 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5033 .seeks = DEFAULT_SEEKS * 10,
5034};
5035
2ddfd20e 5036static void mmu_destroy_caches(void)
b5a33a75 5037{
53c07b18
XG
5038 if (pte_list_desc_cache)
5039 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
5040 if (mmu_page_header_cache)
5041 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5042}
5043
5044int kvm_mmu_module_init(void)
5045{
53c07b18
XG
5046 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5047 sizeof(struct pte_list_desc),
20c2df83 5048 0, 0, NULL);
53c07b18 5049 if (!pte_list_desc_cache)
b5a33a75
AK
5050 goto nomem;
5051
d3d25b04
AK
5052 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5053 sizeof(struct kvm_mmu_page),
20c2df83 5054 0, 0, NULL);
d3d25b04
AK
5055 if (!mmu_page_header_cache)
5056 goto nomem;
5057
908c7f19 5058 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
5059 goto nomem;
5060
3ee16c81
IE
5061 register_shrinker(&mmu_shrinker);
5062
b5a33a75
AK
5063 return 0;
5064
5065nomem:
3ee16c81 5066 mmu_destroy_caches();
b5a33a75
AK
5067 return -ENOMEM;
5068}
5069
3ad82a7e
ZX
5070/*
5071 * Caculate mmu pages needed for kvm.
5072 */
5073unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5074{
3ad82a7e
ZX
5075 unsigned int nr_mmu_pages;
5076 unsigned int nr_pages = 0;
bc6678a3 5077 struct kvm_memslots *slots;
be6ba0f0 5078 struct kvm_memory_slot *memslot;
9da0e4d5 5079 int i;
3ad82a7e 5080
9da0e4d5
PB
5081 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5082 slots = __kvm_memslots(kvm, i);
90d83dc3 5083
9da0e4d5
PB
5084 kvm_for_each_memslot(memslot, slots)
5085 nr_pages += memslot->npages;
5086 }
3ad82a7e
ZX
5087
5088 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5089 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 5090 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
5091
5092 return nr_mmu_pages;
5093}
5094
c42fffe3
XG
5095void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5096{
95f93af4 5097 kvm_mmu_unload(vcpu);
c42fffe3
XG
5098 free_mmu_pages(vcpu);
5099 mmu_free_memory_caches(vcpu);
b034cf01
XG
5100}
5101
b034cf01
XG
5102void kvm_mmu_module_exit(void)
5103{
5104 mmu_destroy_caches();
5105 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5106 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
5107 mmu_audit_disable();
5108}
This page took 1.213241 seconds and 5 git commands to generate.