Merge branch 'for-3.9-async' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
5da9a0fb 1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1136 enum { cpuset, possible, fail } state = cpuset;
1137 int dest_cpu;
5da9a0fb
PZ
1138
1139 /* Look for allowed, online CPU in same node. */
e3831edd 1140 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1141 if (!cpu_online(dest_cpu))
1142 continue;
1143 if (!cpu_active(dest_cpu))
1144 continue;
fa17b507 1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1146 return dest_cpu;
2baab4e9 1147 }
5da9a0fb 1148
2baab4e9
PZ
1149 for (;;) {
1150 /* Any allowed, online CPU? */
e3831edd 1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1152 if (!cpu_online(dest_cpu))
1153 continue;
1154 if (!cpu_active(dest_cpu))
1155 continue;
1156 goto out;
1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 switch (state) {
1160 case cpuset:
1161 /* No more Mr. Nice Guy. */
1162 cpuset_cpus_allowed_fallback(p);
1163 state = possible;
1164 break;
1165
1166 case possible:
1167 do_set_cpus_allowed(p, cpu_possible_mask);
1168 state = fail;
1169 break;
1170
1171 case fail:
1172 BUG();
1173 break;
1174 }
1175 }
1176
1177out:
1178 if (state != cpuset) {
1179 /*
1180 * Don't tell them about moving exiting tasks or
1181 * kernel threads (both mm NULL), since they never
1182 * leave kernel.
1183 */
1184 if (p->mm && printk_ratelimit()) {
1185 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 task_pid_nr(p), p->comm, cpu);
1187 }
5da9a0fb
PZ
1188 }
1189
1190 return dest_cpu;
1191}
1192
e2912009 1193/*
013fdb80 1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1195 */
970b13ba 1196static inline
7608dec2 1197int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1198{
7608dec2 1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1200
1201 /*
1202 * In order not to call set_task_cpu() on a blocking task we need
1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 * cpu.
1205 *
1206 * Since this is common to all placement strategies, this lives here.
1207 *
1208 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 * not worry about this generic constraint ]
1210 */
fa17b507 1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1212 !cpu_online(cpu)))
5da9a0fb 1213 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1214
1215 return cpu;
970b13ba 1216}
09a40af5
MG
1217
1218static void update_avg(u64 *avg, u64 sample)
1219{
1220 s64 diff = sample - *avg;
1221 *avg += diff >> 3;
1222}
970b13ba
PZ
1223#endif
1224
d7c01d27 1225static void
b84cb5df 1226ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1227{
d7c01d27 1228#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1229 struct rq *rq = this_rq();
1230
d7c01d27
PZ
1231#ifdef CONFIG_SMP
1232 int this_cpu = smp_processor_id();
1233
1234 if (cpu == this_cpu) {
1235 schedstat_inc(rq, ttwu_local);
1236 schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 } else {
1238 struct sched_domain *sd;
1239
1240 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1241 rcu_read_lock();
d7c01d27
PZ
1242 for_each_domain(this_cpu, sd) {
1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 schedstat_inc(sd, ttwu_wake_remote);
1245 break;
1246 }
1247 }
057f3fad 1248 rcu_read_unlock();
d7c01d27 1249 }
f339b9dc
PZ
1250
1251 if (wake_flags & WF_MIGRATED)
1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
d7c01d27
PZ
1254#endif /* CONFIG_SMP */
1255
1256 schedstat_inc(rq, ttwu_count);
9ed3811a 1257 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1258
1259 if (wake_flags & WF_SYNC)
9ed3811a 1260 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1261
d7c01d27
PZ
1262#endif /* CONFIG_SCHEDSTATS */
1263}
1264
1265static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266{
9ed3811a 1267 activate_task(rq, p, en_flags);
fd2f4419 1268 p->on_rq = 1;
c2f7115e
PZ
1269
1270 /* if a worker is waking up, notify workqueue */
1271 if (p->flags & PF_WQ_WORKER)
1272 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1273}
1274
23f41eeb
PZ
1275/*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
89363381 1278static void
23f41eeb 1279ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1280{
89363381 1281 trace_sched_wakeup(p, true);
9ed3811a
TH
1282 check_preempt_curr(rq, p, wake_flags);
1283
1284 p->state = TASK_RUNNING;
1285#ifdef CONFIG_SMP
1286 if (p->sched_class->task_woken)
1287 p->sched_class->task_woken(rq, p);
1288
e69c6341 1289 if (rq->idle_stamp) {
9ed3811a
TH
1290 u64 delta = rq->clock - rq->idle_stamp;
1291 u64 max = 2*sysctl_sched_migration_cost;
1292
1293 if (delta > max)
1294 rq->avg_idle = max;
1295 else
1296 update_avg(&rq->avg_idle, delta);
1297 rq->idle_stamp = 0;
1298 }
1299#endif
1300}
1301
c05fbafb
PZ
1302static void
1303ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304{
1305#ifdef CONFIG_SMP
1306 if (p->sched_contributes_to_load)
1307 rq->nr_uninterruptible--;
1308#endif
1309
1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 ttwu_do_wakeup(rq, p, wake_flags);
1312}
1313
1314/*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320static int ttwu_remote(struct task_struct *p, int wake_flags)
1321{
1322 struct rq *rq;
1323 int ret = 0;
1324
1325 rq = __task_rq_lock(p);
1326 if (p->on_rq) {
1327 ttwu_do_wakeup(rq, p, wake_flags);
1328 ret = 1;
1329 }
1330 __task_rq_unlock(rq);
1331
1332 return ret;
1333}
1334
317f3941 1335#ifdef CONFIG_SMP
fa14ff4a 1336static void sched_ttwu_pending(void)
317f3941
PZ
1337{
1338 struct rq *rq = this_rq();
fa14ff4a
PZ
1339 struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 struct task_struct *p;
317f3941
PZ
1341
1342 raw_spin_lock(&rq->lock);
1343
fa14ff4a
PZ
1344 while (llist) {
1345 p = llist_entry(llist, struct task_struct, wake_entry);
1346 llist = llist_next(llist);
317f3941
PZ
1347 ttwu_do_activate(rq, p, 0);
1348 }
1349
1350 raw_spin_unlock(&rq->lock);
1351}
1352
1353void scheduler_ipi(void)
1354{
ca38062e 1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1356 return;
1357
1358 /*
1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 * traditionally all their work was done from the interrupt return
1361 * path. Now that we actually do some work, we need to make sure
1362 * we do call them.
1363 *
1364 * Some archs already do call them, luckily irq_enter/exit nest
1365 * properly.
1366 *
1367 * Arguably we should visit all archs and update all handlers,
1368 * however a fair share of IPIs are still resched only so this would
1369 * somewhat pessimize the simple resched case.
1370 */
1371 irq_enter();
fa14ff4a 1372 sched_ttwu_pending();
ca38062e
SS
1373
1374 /*
1375 * Check if someone kicked us for doing the nohz idle load balance.
1376 */
6eb57e0d
SS
1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 this_rq()->idle_balance = 1;
ca38062e 1379 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1380 }
c5d753a5 1381 irq_exit();
317f3941
PZ
1382}
1383
1384static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385{
fa14ff4a 1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1387 smp_send_reschedule(cpu);
1388}
d6aa8f85 1389
39be3501 1390bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1391{
1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393}
d6aa8f85 1394#endif /* CONFIG_SMP */
317f3941 1395
c05fbafb
PZ
1396static void ttwu_queue(struct task_struct *p, int cpu)
1397{
1398 struct rq *rq = cpu_rq(cpu);
1399
17d9f311 1400#if defined(CONFIG_SMP)
39be3501 1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1403 ttwu_queue_remote(p, cpu);
1404 return;
1405 }
1406#endif
1407
c05fbafb
PZ
1408 raw_spin_lock(&rq->lock);
1409 ttwu_do_activate(rq, p, 0);
1410 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1411}
1412
1413/**
1da177e4 1414 * try_to_wake_up - wake up a thread
9ed3811a 1415 * @p: the thread to be awakened
1da177e4 1416 * @state: the mask of task states that can be woken
9ed3811a 1417 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
9ed3811a
TH
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1da177e4 1427 */
e4a52bcb
PZ
1428static int
1429try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1430{
1da177e4 1431 unsigned long flags;
c05fbafb 1432 int cpu, success = 0;
2398f2c6 1433
04e2f174 1434 smp_wmb();
013fdb80 1435 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1436 if (!(p->state & state))
1da177e4
LT
1437 goto out;
1438
c05fbafb 1439 success = 1; /* we're going to change ->state */
1da177e4 1440 cpu = task_cpu(p);
1da177e4 1441
c05fbafb
PZ
1442 if (p->on_rq && ttwu_remote(p, wake_flags))
1443 goto stat;
1da177e4 1444
1da177e4 1445#ifdef CONFIG_SMP
e9c84311 1446 /*
c05fbafb
PZ
1447 * If the owning (remote) cpu is still in the middle of schedule() with
1448 * this task as prev, wait until its done referencing the task.
e9c84311 1449 */
f3e94786 1450 while (p->on_cpu)
e4a52bcb 1451 cpu_relax();
0970d299 1452 /*
e4a52bcb 1453 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1454 */
e4a52bcb 1455 smp_rmb();
1da177e4 1456
a8e4f2ea 1457 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1458 p->state = TASK_WAKING;
e7693a36 1459
e4a52bcb 1460 if (p->sched_class->task_waking)
74f8e4b2 1461 p->sched_class->task_waking(p);
efbbd05a 1462
7608dec2 1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1464 if (task_cpu(p) != cpu) {
1465 wake_flags |= WF_MIGRATED;
e4a52bcb 1466 set_task_cpu(p, cpu);
f339b9dc 1467 }
1da177e4 1468#endif /* CONFIG_SMP */
1da177e4 1469
c05fbafb
PZ
1470 ttwu_queue(p, cpu);
1471stat:
b84cb5df 1472 ttwu_stat(p, cpu, wake_flags);
1da177e4 1473out:
013fdb80 1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1475
1476 return success;
1477}
1478
21aa9af0
TH
1479/**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
2acca55e 1483 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1485 * the current task.
21aa9af0
TH
1486 */
1487static void try_to_wake_up_local(struct task_struct *p)
1488{
1489 struct rq *rq = task_rq(p);
21aa9af0
TH
1490
1491 BUG_ON(rq != this_rq());
1492 BUG_ON(p == current);
1493 lockdep_assert_held(&rq->lock);
1494
2acca55e
PZ
1495 if (!raw_spin_trylock(&p->pi_lock)) {
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_lock(&p->pi_lock);
1498 raw_spin_lock(&rq->lock);
1499 }
1500
21aa9af0 1501 if (!(p->state & TASK_NORMAL))
2acca55e 1502 goto out;
21aa9af0 1503
fd2f4419 1504 if (!p->on_rq)
d7c01d27
PZ
1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506
23f41eeb 1507 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1508 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1509out:
1510 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1511}
1512
50fa610a
DH
1513/**
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1516 *
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes. Returns 1 if the process was woken up, 0 if it was already
1519 * running.
1520 *
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1523 */
7ad5b3a5 1524int wake_up_process(struct task_struct *p)
1da177e4 1525{
9067ac85
ON
1526 WARN_ON(task_is_stopped_or_traced(p));
1527 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1528}
1da177e4
LT
1529EXPORT_SYMBOL(wake_up_process);
1530
7ad5b3a5 1531int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1532{
1533 return try_to_wake_up(p, state, 0);
1534}
1535
1da177e4
LT
1536/*
1537 * Perform scheduler related setup for a newly forked process p.
1538 * p is forked by current.
dd41f596
IM
1539 *
1540 * __sched_fork() is basic setup used by init_idle() too:
1541 */
1542static void __sched_fork(struct task_struct *p)
1543{
fd2f4419
PZ
1544 p->on_rq = 0;
1545
1546 p->se.on_rq = 0;
dd41f596
IM
1547 p->se.exec_start = 0;
1548 p->se.sum_exec_runtime = 0;
f6cf891c 1549 p->se.prev_sum_exec_runtime = 0;
6c594c21 1550 p->se.nr_migrations = 0;
da7a735e 1551 p->se.vruntime = 0;
fd2f4419 1552 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1553
f4e26b12
PT
1554/*
1555 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1556 * removed when useful for applications beyond shares distribution (e.g.
1557 * load-balance).
1558 */
1559#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1560 p->se.avg.runnable_avg_period = 0;
1561 p->se.avg.runnable_avg_sum = 0;
1562#endif
6cfb0d5d 1563#ifdef CONFIG_SCHEDSTATS
41acab88 1564 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1565#endif
476d139c 1566
fa717060 1567 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1568
e107be36
AK
1569#ifdef CONFIG_PREEMPT_NOTIFIERS
1570 INIT_HLIST_HEAD(&p->preempt_notifiers);
1571#endif
cbee9f88
PZ
1572
1573#ifdef CONFIG_NUMA_BALANCING
1574 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1575 p->mm->numa_next_scan = jiffies;
b8593bfd 1576 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1577 p->mm->numa_scan_seq = 0;
1578 }
1579
1580 p->node_stamp = 0ULL;
1581 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1582 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1583 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1584 p->numa_work.next = &p->numa_work;
1585#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1586}
1587
1a687c2e 1588#ifdef CONFIG_NUMA_BALANCING
3105b86a 1589#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1590void set_numabalancing_state(bool enabled)
1591{
1592 if (enabled)
1593 sched_feat_set("NUMA");
1594 else
1595 sched_feat_set("NO_NUMA");
1596}
3105b86a
MG
1597#else
1598__read_mostly bool numabalancing_enabled;
1599
1600void set_numabalancing_state(bool enabled)
1601{
1602 numabalancing_enabled = enabled;
dd41f596 1603}
3105b86a 1604#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1605#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1606
1607/*
1608 * fork()/clone()-time setup:
1609 */
3e51e3ed 1610void sched_fork(struct task_struct *p)
dd41f596 1611{
0122ec5b 1612 unsigned long flags;
dd41f596
IM
1613 int cpu = get_cpu();
1614
1615 __sched_fork(p);
06b83b5f 1616 /*
0017d735 1617 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1618 * nobody will actually run it, and a signal or other external
1619 * event cannot wake it up and insert it on the runqueue either.
1620 */
0017d735 1621 p->state = TASK_RUNNING;
dd41f596 1622
c350a04e
MG
1623 /*
1624 * Make sure we do not leak PI boosting priority to the child.
1625 */
1626 p->prio = current->normal_prio;
1627
b9dc29e7
MG
1628 /*
1629 * Revert to default priority/policy on fork if requested.
1630 */
1631 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1632 if (task_has_rt_policy(p)) {
b9dc29e7 1633 p->policy = SCHED_NORMAL;
6c697bdf 1634 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1635 p->rt_priority = 0;
1636 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1637 p->static_prio = NICE_TO_PRIO(0);
1638
1639 p->prio = p->normal_prio = __normal_prio(p);
1640 set_load_weight(p);
6c697bdf 1641
b9dc29e7
MG
1642 /*
1643 * We don't need the reset flag anymore after the fork. It has
1644 * fulfilled its duty:
1645 */
1646 p->sched_reset_on_fork = 0;
1647 }
ca94c442 1648
2ddbf952
HS
1649 if (!rt_prio(p->prio))
1650 p->sched_class = &fair_sched_class;
b29739f9 1651
cd29fe6f
PZ
1652 if (p->sched_class->task_fork)
1653 p->sched_class->task_fork(p);
1654
86951599
PZ
1655 /*
1656 * The child is not yet in the pid-hash so no cgroup attach races,
1657 * and the cgroup is pinned to this child due to cgroup_fork()
1658 * is ran before sched_fork().
1659 *
1660 * Silence PROVE_RCU.
1661 */
0122ec5b 1662 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1663 set_task_cpu(p, cpu);
0122ec5b 1664 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1665
52f17b6c 1666#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1667 if (likely(sched_info_on()))
52f17b6c 1668 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1669#endif
3ca7a440
PZ
1670#if defined(CONFIG_SMP)
1671 p->on_cpu = 0;
4866cde0 1672#endif
bdd4e85d 1673#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1674 /* Want to start with kernel preemption disabled. */
a1261f54 1675 task_thread_info(p)->preempt_count = 1;
1da177e4 1676#endif
806c09a7 1677#ifdef CONFIG_SMP
917b627d 1678 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1679#endif
917b627d 1680
476d139c 1681 put_cpu();
1da177e4
LT
1682}
1683
1684/*
1685 * wake_up_new_task - wake up a newly created task for the first time.
1686 *
1687 * This function will do some initial scheduler statistics housekeeping
1688 * that must be done for every newly created context, then puts the task
1689 * on the runqueue and wakes it.
1690 */
3e51e3ed 1691void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1692{
1693 unsigned long flags;
dd41f596 1694 struct rq *rq;
fabf318e 1695
ab2515c4 1696 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1697#ifdef CONFIG_SMP
1698 /*
1699 * Fork balancing, do it here and not earlier because:
1700 * - cpus_allowed can change in the fork path
1701 * - any previously selected cpu might disappear through hotplug
fabf318e 1702 */
ab2515c4 1703 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1704#endif
1705
ab2515c4 1706 rq = __task_rq_lock(p);
cd29fe6f 1707 activate_task(rq, p, 0);
fd2f4419 1708 p->on_rq = 1;
89363381 1709 trace_sched_wakeup_new(p, true);
a7558e01 1710 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1711#ifdef CONFIG_SMP
efbbd05a
PZ
1712 if (p->sched_class->task_woken)
1713 p->sched_class->task_woken(rq, p);
9a897c5a 1714#endif
0122ec5b 1715 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1716}
1717
e107be36
AK
1718#ifdef CONFIG_PREEMPT_NOTIFIERS
1719
1720/**
80dd99b3 1721 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1722 * @notifier: notifier struct to register
e107be36
AK
1723 */
1724void preempt_notifier_register(struct preempt_notifier *notifier)
1725{
1726 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1727}
1728EXPORT_SYMBOL_GPL(preempt_notifier_register);
1729
1730/**
1731 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1732 * @notifier: notifier struct to unregister
e107be36
AK
1733 *
1734 * This is safe to call from within a preemption notifier.
1735 */
1736void preempt_notifier_unregister(struct preempt_notifier *notifier)
1737{
1738 hlist_del(&notifier->link);
1739}
1740EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1741
1742static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1743{
1744 struct preempt_notifier *notifier;
1745 struct hlist_node *node;
1746
1747 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1748 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1749}
1750
1751static void
1752fire_sched_out_preempt_notifiers(struct task_struct *curr,
1753 struct task_struct *next)
1754{
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1757
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_out(notifier, next);
1760}
1761
6d6bc0ad 1762#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1763
1764static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1765{
1766}
1767
1768static void
1769fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770 struct task_struct *next)
1771{
1772}
1773
6d6bc0ad 1774#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1775
4866cde0
NP
1776/**
1777 * prepare_task_switch - prepare to switch tasks
1778 * @rq: the runqueue preparing to switch
421cee29 1779 * @prev: the current task that is being switched out
4866cde0
NP
1780 * @next: the task we are going to switch to.
1781 *
1782 * This is called with the rq lock held and interrupts off. It must
1783 * be paired with a subsequent finish_task_switch after the context
1784 * switch.
1785 *
1786 * prepare_task_switch sets up locking and calls architecture specific
1787 * hooks.
1788 */
e107be36
AK
1789static inline void
1790prepare_task_switch(struct rq *rq, struct task_struct *prev,
1791 struct task_struct *next)
4866cde0 1792{
895dd92c 1793 trace_sched_switch(prev, next);
fe4b04fa
PZ
1794 sched_info_switch(prev, next);
1795 perf_event_task_sched_out(prev, next);
e107be36 1796 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1797 prepare_lock_switch(rq, next);
1798 prepare_arch_switch(next);
1799}
1800
1da177e4
LT
1801/**
1802 * finish_task_switch - clean up after a task-switch
344babaa 1803 * @rq: runqueue associated with task-switch
1da177e4
LT
1804 * @prev: the thread we just switched away from.
1805 *
4866cde0
NP
1806 * finish_task_switch must be called after the context switch, paired
1807 * with a prepare_task_switch call before the context switch.
1808 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1809 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1810 *
1811 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1812 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1813 * with the lock held can cause deadlocks; see schedule() for
1814 * details.)
1815 */
a9957449 1816static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1817 __releases(rq->lock)
1818{
1da177e4 1819 struct mm_struct *mm = rq->prev_mm;
55a101f8 1820 long prev_state;
1da177e4
LT
1821
1822 rq->prev_mm = NULL;
1823
1824 /*
1825 * A task struct has one reference for the use as "current".
c394cc9f 1826 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1827 * schedule one last time. The schedule call will never return, and
1828 * the scheduled task must drop that reference.
c394cc9f 1829 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1830 * still held, otherwise prev could be scheduled on another cpu, die
1831 * there before we look at prev->state, and then the reference would
1832 * be dropped twice.
1833 * Manfred Spraul <manfred@colorfullife.com>
1834 */
55a101f8 1835 prev_state = prev->state;
bf9fae9f 1836 vtime_task_switch(prev);
4866cde0 1837 finish_arch_switch(prev);
a8d757ef 1838 perf_event_task_sched_in(prev, current);
4866cde0 1839 finish_lock_switch(rq, prev);
01f23e16 1840 finish_arch_post_lock_switch();
e8fa1362 1841
e107be36 1842 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1843 if (mm)
1844 mmdrop(mm);
c394cc9f 1845 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1846 /*
1847 * Remove function-return probe instances associated with this
1848 * task and put them back on the free list.
9761eea8 1849 */
c6fd91f0 1850 kprobe_flush_task(prev);
1da177e4 1851 put_task_struct(prev);
c6fd91f0 1852 }
1da177e4
LT
1853}
1854
3f029d3c
GH
1855#ifdef CONFIG_SMP
1856
1857/* assumes rq->lock is held */
1858static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1859{
1860 if (prev->sched_class->pre_schedule)
1861 prev->sched_class->pre_schedule(rq, prev);
1862}
1863
1864/* rq->lock is NOT held, but preemption is disabled */
1865static inline void post_schedule(struct rq *rq)
1866{
1867 if (rq->post_schedule) {
1868 unsigned long flags;
1869
05fa785c 1870 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1871 if (rq->curr->sched_class->post_schedule)
1872 rq->curr->sched_class->post_schedule(rq);
05fa785c 1873 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1874
1875 rq->post_schedule = 0;
1876 }
1877}
1878
1879#else
da19ab51 1880
3f029d3c
GH
1881static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1882{
1883}
1884
1885static inline void post_schedule(struct rq *rq)
1886{
1da177e4
LT
1887}
1888
3f029d3c
GH
1889#endif
1890
1da177e4
LT
1891/**
1892 * schedule_tail - first thing a freshly forked thread must call.
1893 * @prev: the thread we just switched away from.
1894 */
36c8b586 1895asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1896 __releases(rq->lock)
1897{
70b97a7f
IM
1898 struct rq *rq = this_rq();
1899
4866cde0 1900 finish_task_switch(rq, prev);
da19ab51 1901
3f029d3c
GH
1902 /*
1903 * FIXME: do we need to worry about rq being invalidated by the
1904 * task_switch?
1905 */
1906 post_schedule(rq);
70b97a7f 1907
4866cde0
NP
1908#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1909 /* In this case, finish_task_switch does not reenable preemption */
1910 preempt_enable();
1911#endif
1da177e4 1912 if (current->set_child_tid)
b488893a 1913 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1914}
1915
1916/*
1917 * context_switch - switch to the new MM and the new
1918 * thread's register state.
1919 */
dd41f596 1920static inline void
70b97a7f 1921context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1922 struct task_struct *next)
1da177e4 1923{
dd41f596 1924 struct mm_struct *mm, *oldmm;
1da177e4 1925
e107be36 1926 prepare_task_switch(rq, prev, next);
fe4b04fa 1927
dd41f596
IM
1928 mm = next->mm;
1929 oldmm = prev->active_mm;
9226d125
ZA
1930 /*
1931 * For paravirt, this is coupled with an exit in switch_to to
1932 * combine the page table reload and the switch backend into
1933 * one hypercall.
1934 */
224101ed 1935 arch_start_context_switch(prev);
9226d125 1936
31915ab4 1937 if (!mm) {
1da177e4
LT
1938 next->active_mm = oldmm;
1939 atomic_inc(&oldmm->mm_count);
1940 enter_lazy_tlb(oldmm, next);
1941 } else
1942 switch_mm(oldmm, mm, next);
1943
31915ab4 1944 if (!prev->mm) {
1da177e4 1945 prev->active_mm = NULL;
1da177e4
LT
1946 rq->prev_mm = oldmm;
1947 }
3a5f5e48
IM
1948 /*
1949 * Since the runqueue lock will be released by the next
1950 * task (which is an invalid locking op but in the case
1951 * of the scheduler it's an obvious special-case), so we
1952 * do an early lockdep release here:
1953 */
1954#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1955 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1956#endif
1da177e4 1957
91d1aa43 1958 context_tracking_task_switch(prev, next);
1da177e4
LT
1959 /* Here we just switch the register state and the stack. */
1960 switch_to(prev, next, prev);
1961
dd41f596
IM
1962 barrier();
1963 /*
1964 * this_rq must be evaluated again because prev may have moved
1965 * CPUs since it called schedule(), thus the 'rq' on its stack
1966 * frame will be invalid.
1967 */
1968 finish_task_switch(this_rq(), prev);
1da177e4
LT
1969}
1970
1971/*
1972 * nr_running, nr_uninterruptible and nr_context_switches:
1973 *
1974 * externally visible scheduler statistics: current number of runnable
1975 * threads, current number of uninterruptible-sleeping threads, total
1976 * number of context switches performed since bootup.
1977 */
1978unsigned long nr_running(void)
1979{
1980 unsigned long i, sum = 0;
1981
1982 for_each_online_cpu(i)
1983 sum += cpu_rq(i)->nr_running;
1984
1985 return sum;
f711f609 1986}
1da177e4
LT
1987
1988unsigned long nr_uninterruptible(void)
f711f609 1989{
1da177e4 1990 unsigned long i, sum = 0;
f711f609 1991
0a945022 1992 for_each_possible_cpu(i)
1da177e4 1993 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1994
1995 /*
1da177e4
LT
1996 * Since we read the counters lockless, it might be slightly
1997 * inaccurate. Do not allow it to go below zero though:
f711f609 1998 */
1da177e4
LT
1999 if (unlikely((long)sum < 0))
2000 sum = 0;
f711f609 2001
1da177e4 2002 return sum;
f711f609 2003}
f711f609 2004
1da177e4 2005unsigned long long nr_context_switches(void)
46cb4b7c 2006{
cc94abfc
SR
2007 int i;
2008 unsigned long long sum = 0;
46cb4b7c 2009
0a945022 2010 for_each_possible_cpu(i)
1da177e4 2011 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2012
1da177e4
LT
2013 return sum;
2014}
483b4ee6 2015
1da177e4
LT
2016unsigned long nr_iowait(void)
2017{
2018 unsigned long i, sum = 0;
483b4ee6 2019
0a945022 2020 for_each_possible_cpu(i)
1da177e4 2021 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2022
1da177e4
LT
2023 return sum;
2024}
483b4ee6 2025
8c215bd3 2026unsigned long nr_iowait_cpu(int cpu)
69d25870 2027{
8c215bd3 2028 struct rq *this = cpu_rq(cpu);
69d25870
AV
2029 return atomic_read(&this->nr_iowait);
2030}
46cb4b7c 2031
69d25870
AV
2032unsigned long this_cpu_load(void)
2033{
2034 struct rq *this = this_rq();
2035 return this->cpu_load[0];
2036}
e790fb0b 2037
46cb4b7c 2038
5167e8d5
PZ
2039/*
2040 * Global load-average calculations
2041 *
2042 * We take a distributed and async approach to calculating the global load-avg
2043 * in order to minimize overhead.
2044 *
2045 * The global load average is an exponentially decaying average of nr_running +
2046 * nr_uninterruptible.
2047 *
2048 * Once every LOAD_FREQ:
2049 *
2050 * nr_active = 0;
2051 * for_each_possible_cpu(cpu)
2052 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2053 *
2054 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2055 *
2056 * Due to a number of reasons the above turns in the mess below:
2057 *
2058 * - for_each_possible_cpu() is prohibitively expensive on machines with
2059 * serious number of cpus, therefore we need to take a distributed approach
2060 * to calculating nr_active.
2061 *
2062 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2063 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2064 *
2065 * So assuming nr_active := 0 when we start out -- true per definition, we
2066 * can simply take per-cpu deltas and fold those into a global accumulate
2067 * to obtain the same result. See calc_load_fold_active().
2068 *
2069 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2070 * across the machine, we assume 10 ticks is sufficient time for every
2071 * cpu to have completed this task.
2072 *
2073 * This places an upper-bound on the IRQ-off latency of the machine. Then
2074 * again, being late doesn't loose the delta, just wrecks the sample.
2075 *
2076 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2077 * this would add another cross-cpu cacheline miss and atomic operation
2078 * to the wakeup path. Instead we increment on whatever cpu the task ran
2079 * when it went into uninterruptible state and decrement on whatever cpu
2080 * did the wakeup. This means that only the sum of nr_uninterruptible over
2081 * all cpus yields the correct result.
2082 *
2083 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2084 */
2085
dce48a84
TG
2086/* Variables and functions for calc_load */
2087static atomic_long_t calc_load_tasks;
2088static unsigned long calc_load_update;
2089unsigned long avenrun[3];
5167e8d5
PZ
2090EXPORT_SYMBOL(avenrun); /* should be removed */
2091
2092/**
2093 * get_avenrun - get the load average array
2094 * @loads: pointer to dest load array
2095 * @offset: offset to add
2096 * @shift: shift count to shift the result left
2097 *
2098 * These values are estimates at best, so no need for locking.
2099 */
2100void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2101{
2102 loads[0] = (avenrun[0] + offset) << shift;
2103 loads[1] = (avenrun[1] + offset) << shift;
2104 loads[2] = (avenrun[2] + offset) << shift;
2105}
46cb4b7c 2106
74f5187a
PZ
2107static long calc_load_fold_active(struct rq *this_rq)
2108{
2109 long nr_active, delta = 0;
2110
2111 nr_active = this_rq->nr_running;
2112 nr_active += (long) this_rq->nr_uninterruptible;
2113
2114 if (nr_active != this_rq->calc_load_active) {
2115 delta = nr_active - this_rq->calc_load_active;
2116 this_rq->calc_load_active = nr_active;
2117 }
2118
2119 return delta;
2120}
2121
5167e8d5
PZ
2122/*
2123 * a1 = a0 * e + a * (1 - e)
2124 */
0f004f5a
PZ
2125static unsigned long
2126calc_load(unsigned long load, unsigned long exp, unsigned long active)
2127{
2128 load *= exp;
2129 load += active * (FIXED_1 - exp);
2130 load += 1UL << (FSHIFT - 1);
2131 return load >> FSHIFT;
2132}
2133
74f5187a
PZ
2134#ifdef CONFIG_NO_HZ
2135/*
5167e8d5
PZ
2136 * Handle NO_HZ for the global load-average.
2137 *
2138 * Since the above described distributed algorithm to compute the global
2139 * load-average relies on per-cpu sampling from the tick, it is affected by
2140 * NO_HZ.
2141 *
2142 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2143 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2144 * when we read the global state.
2145 *
2146 * Obviously reality has to ruin such a delightfully simple scheme:
2147 *
2148 * - When we go NO_HZ idle during the window, we can negate our sample
2149 * contribution, causing under-accounting.
2150 *
2151 * We avoid this by keeping two idle-delta counters and flipping them
2152 * when the window starts, thus separating old and new NO_HZ load.
2153 *
2154 * The only trick is the slight shift in index flip for read vs write.
2155 *
2156 * 0s 5s 10s 15s
2157 * +10 +10 +10 +10
2158 * |-|-----------|-|-----------|-|-----------|-|
2159 * r:0 0 1 1 0 0 1 1 0
2160 * w:0 1 1 0 0 1 1 0 0
2161 *
2162 * This ensures we'll fold the old idle contribution in this window while
2163 * accumlating the new one.
2164 *
2165 * - When we wake up from NO_HZ idle during the window, we push up our
2166 * contribution, since we effectively move our sample point to a known
2167 * busy state.
2168 *
2169 * This is solved by pushing the window forward, and thus skipping the
2170 * sample, for this cpu (effectively using the idle-delta for this cpu which
2171 * was in effect at the time the window opened). This also solves the issue
2172 * of having to deal with a cpu having been in NOHZ idle for multiple
2173 * LOAD_FREQ intervals.
74f5187a
PZ
2174 *
2175 * When making the ILB scale, we should try to pull this in as well.
2176 */
5167e8d5
PZ
2177static atomic_long_t calc_load_idle[2];
2178static int calc_load_idx;
74f5187a 2179
5167e8d5 2180static inline int calc_load_write_idx(void)
74f5187a 2181{
5167e8d5
PZ
2182 int idx = calc_load_idx;
2183
2184 /*
2185 * See calc_global_nohz(), if we observe the new index, we also
2186 * need to observe the new update time.
2187 */
2188 smp_rmb();
2189
2190 /*
2191 * If the folding window started, make sure we start writing in the
2192 * next idle-delta.
2193 */
2194 if (!time_before(jiffies, calc_load_update))
2195 idx++;
2196
2197 return idx & 1;
2198}
2199
2200static inline int calc_load_read_idx(void)
2201{
2202 return calc_load_idx & 1;
2203}
2204
2205void calc_load_enter_idle(void)
2206{
2207 struct rq *this_rq = this_rq();
74f5187a
PZ
2208 long delta;
2209
5167e8d5
PZ
2210 /*
2211 * We're going into NOHZ mode, if there's any pending delta, fold it
2212 * into the pending idle delta.
2213 */
74f5187a 2214 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2215 if (delta) {
2216 int idx = calc_load_write_idx();
2217 atomic_long_add(delta, &calc_load_idle[idx]);
2218 }
74f5187a
PZ
2219}
2220
5167e8d5 2221void calc_load_exit_idle(void)
74f5187a 2222{
5167e8d5
PZ
2223 struct rq *this_rq = this_rq();
2224
2225 /*
2226 * If we're still before the sample window, we're done.
2227 */
2228 if (time_before(jiffies, this_rq->calc_load_update))
2229 return;
74f5187a
PZ
2230
2231 /*
5167e8d5
PZ
2232 * We woke inside or after the sample window, this means we're already
2233 * accounted through the nohz accounting, so skip the entire deal and
2234 * sync up for the next window.
74f5187a 2235 */
5167e8d5
PZ
2236 this_rq->calc_load_update = calc_load_update;
2237 if (time_before(jiffies, this_rq->calc_load_update + 10))
2238 this_rq->calc_load_update += LOAD_FREQ;
2239}
2240
2241static long calc_load_fold_idle(void)
2242{
2243 int idx = calc_load_read_idx();
2244 long delta = 0;
2245
2246 if (atomic_long_read(&calc_load_idle[idx]))
2247 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2248
2249 return delta;
2250}
0f004f5a
PZ
2251
2252/**
2253 * fixed_power_int - compute: x^n, in O(log n) time
2254 *
2255 * @x: base of the power
2256 * @frac_bits: fractional bits of @x
2257 * @n: power to raise @x to.
2258 *
2259 * By exploiting the relation between the definition of the natural power
2260 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2261 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2262 * (where: n_i \elem {0, 1}, the binary vector representing n),
2263 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2264 * of course trivially computable in O(log_2 n), the length of our binary
2265 * vector.
2266 */
2267static unsigned long
2268fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2269{
2270 unsigned long result = 1UL << frac_bits;
2271
2272 if (n) for (;;) {
2273 if (n & 1) {
2274 result *= x;
2275 result += 1UL << (frac_bits - 1);
2276 result >>= frac_bits;
2277 }
2278 n >>= 1;
2279 if (!n)
2280 break;
2281 x *= x;
2282 x += 1UL << (frac_bits - 1);
2283 x >>= frac_bits;
2284 }
2285
2286 return result;
2287}
2288
2289/*
2290 * a1 = a0 * e + a * (1 - e)
2291 *
2292 * a2 = a1 * e + a * (1 - e)
2293 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2294 * = a0 * e^2 + a * (1 - e) * (1 + e)
2295 *
2296 * a3 = a2 * e + a * (1 - e)
2297 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2298 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2299 *
2300 * ...
2301 *
2302 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2303 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2304 * = a0 * e^n + a * (1 - e^n)
2305 *
2306 * [1] application of the geometric series:
2307 *
2308 * n 1 - x^(n+1)
2309 * S_n := \Sum x^i = -------------
2310 * i=0 1 - x
2311 */
2312static unsigned long
2313calc_load_n(unsigned long load, unsigned long exp,
2314 unsigned long active, unsigned int n)
2315{
2316
2317 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2318}
2319
2320/*
2321 * NO_HZ can leave us missing all per-cpu ticks calling
2322 * calc_load_account_active(), but since an idle CPU folds its delta into
2323 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2324 * in the pending idle delta if our idle period crossed a load cycle boundary.
2325 *
2326 * Once we've updated the global active value, we need to apply the exponential
2327 * weights adjusted to the number of cycles missed.
2328 */
c308b56b 2329static void calc_global_nohz(void)
0f004f5a
PZ
2330{
2331 long delta, active, n;
2332
5167e8d5
PZ
2333 if (!time_before(jiffies, calc_load_update + 10)) {
2334 /*
2335 * Catch-up, fold however many we are behind still
2336 */
2337 delta = jiffies - calc_load_update - 10;
2338 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2339
5167e8d5
PZ
2340 active = atomic_long_read(&calc_load_tasks);
2341 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2342
5167e8d5
PZ
2343 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2344 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2345 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2346
5167e8d5
PZ
2347 calc_load_update += n * LOAD_FREQ;
2348 }
74f5187a 2349
5167e8d5
PZ
2350 /*
2351 * Flip the idle index...
2352 *
2353 * Make sure we first write the new time then flip the index, so that
2354 * calc_load_write_idx() will see the new time when it reads the new
2355 * index, this avoids a double flip messing things up.
2356 */
2357 smp_wmb();
2358 calc_load_idx++;
74f5187a 2359}
5167e8d5 2360#else /* !CONFIG_NO_HZ */
0f004f5a 2361
5167e8d5
PZ
2362static inline long calc_load_fold_idle(void) { return 0; }
2363static inline void calc_global_nohz(void) { }
74f5187a 2364
5167e8d5 2365#endif /* CONFIG_NO_HZ */
46cb4b7c 2366
46cb4b7c 2367/*
dce48a84
TG
2368 * calc_load - update the avenrun load estimates 10 ticks after the
2369 * CPUs have updated calc_load_tasks.
7835b98b 2370 */
0f004f5a 2371void calc_global_load(unsigned long ticks)
7835b98b 2372{
5167e8d5 2373 long active, delta;
1da177e4 2374
0f004f5a 2375 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2376 return;
1da177e4 2377
5167e8d5
PZ
2378 /*
2379 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2380 */
2381 delta = calc_load_fold_idle();
2382 if (delta)
2383 atomic_long_add(delta, &calc_load_tasks);
2384
dce48a84
TG
2385 active = atomic_long_read(&calc_load_tasks);
2386 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2387
dce48a84
TG
2388 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2389 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2390 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2391
dce48a84 2392 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2393
2394 /*
5167e8d5 2395 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2396 */
2397 calc_global_nohz();
dce48a84 2398}
1da177e4 2399
dce48a84 2400/*
74f5187a
PZ
2401 * Called from update_cpu_load() to periodically update this CPU's
2402 * active count.
dce48a84
TG
2403 */
2404static void calc_load_account_active(struct rq *this_rq)
2405{
74f5187a 2406 long delta;
08c183f3 2407
74f5187a
PZ
2408 if (time_before(jiffies, this_rq->calc_load_update))
2409 return;
783609c6 2410
74f5187a 2411 delta = calc_load_fold_active(this_rq);
74f5187a 2412 if (delta)
dce48a84 2413 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2414
2415 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2416}
2417
5167e8d5
PZ
2418/*
2419 * End of global load-average stuff
2420 */
2421
fdf3e95d
VP
2422/*
2423 * The exact cpuload at various idx values, calculated at every tick would be
2424 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2425 *
2426 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2427 * on nth tick when cpu may be busy, then we have:
2428 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2429 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2430 *
2431 * decay_load_missed() below does efficient calculation of
2432 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2433 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2434 *
2435 * The calculation is approximated on a 128 point scale.
2436 * degrade_zero_ticks is the number of ticks after which load at any
2437 * particular idx is approximated to be zero.
2438 * degrade_factor is a precomputed table, a row for each load idx.
2439 * Each column corresponds to degradation factor for a power of two ticks,
2440 * based on 128 point scale.
2441 * Example:
2442 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2443 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2444 *
2445 * With this power of 2 load factors, we can degrade the load n times
2446 * by looking at 1 bits in n and doing as many mult/shift instead of
2447 * n mult/shifts needed by the exact degradation.
2448 */
2449#define DEGRADE_SHIFT 7
2450static const unsigned char
2451 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2452static const unsigned char
2453 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2454 {0, 0, 0, 0, 0, 0, 0, 0},
2455 {64, 32, 8, 0, 0, 0, 0, 0},
2456 {96, 72, 40, 12, 1, 0, 0},
2457 {112, 98, 75, 43, 15, 1, 0},
2458 {120, 112, 98, 76, 45, 16, 2} };
2459
2460/*
2461 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2462 * would be when CPU is idle and so we just decay the old load without
2463 * adding any new load.
2464 */
2465static unsigned long
2466decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2467{
2468 int j = 0;
2469
2470 if (!missed_updates)
2471 return load;
2472
2473 if (missed_updates >= degrade_zero_ticks[idx])
2474 return 0;
2475
2476 if (idx == 1)
2477 return load >> missed_updates;
2478
2479 while (missed_updates) {
2480 if (missed_updates % 2)
2481 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2482
2483 missed_updates >>= 1;
2484 j++;
2485 }
2486 return load;
2487}
2488
46cb4b7c 2489/*
dd41f596 2490 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2491 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2492 * every tick. We fix it up based on jiffies.
46cb4b7c 2493 */
556061b0
PZ
2494static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2495 unsigned long pending_updates)
46cb4b7c 2496{
dd41f596 2497 int i, scale;
46cb4b7c 2498
dd41f596 2499 this_rq->nr_load_updates++;
46cb4b7c 2500
dd41f596 2501 /* Update our load: */
fdf3e95d
VP
2502 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2503 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2504 unsigned long old_load, new_load;
7d1e6a9b 2505
dd41f596 2506 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2507
dd41f596 2508 old_load = this_rq->cpu_load[i];
fdf3e95d 2509 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2510 new_load = this_load;
a25707f3
IM
2511 /*
2512 * Round up the averaging division if load is increasing. This
2513 * prevents us from getting stuck on 9 if the load is 10, for
2514 * example.
2515 */
2516 if (new_load > old_load)
fdf3e95d
VP
2517 new_load += scale - 1;
2518
2519 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2520 }
da2b71ed
SS
2521
2522 sched_avg_update(this_rq);
fdf3e95d
VP
2523}
2524
5aaa0b7a
PZ
2525#ifdef CONFIG_NO_HZ
2526/*
2527 * There is no sane way to deal with nohz on smp when using jiffies because the
2528 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2529 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2530 *
2531 * Therefore we cannot use the delta approach from the regular tick since that
2532 * would seriously skew the load calculation. However we'll make do for those
2533 * updates happening while idle (nohz_idle_balance) or coming out of idle
2534 * (tick_nohz_idle_exit).
2535 *
2536 * This means we might still be one tick off for nohz periods.
2537 */
2538
556061b0
PZ
2539/*
2540 * Called from nohz_idle_balance() to update the load ratings before doing the
2541 * idle balance.
2542 */
2543void update_idle_cpu_load(struct rq *this_rq)
2544{
5aaa0b7a 2545 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2546 unsigned long load = this_rq->load.weight;
2547 unsigned long pending_updates;
2548
2549 /*
5aaa0b7a 2550 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2551 */
2552 if (load || curr_jiffies == this_rq->last_load_update_tick)
2553 return;
2554
2555 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2556 this_rq->last_load_update_tick = curr_jiffies;
2557
2558 __update_cpu_load(this_rq, load, pending_updates);
2559}
2560
5aaa0b7a
PZ
2561/*
2562 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2563 */
2564void update_cpu_load_nohz(void)
2565{
2566 struct rq *this_rq = this_rq();
2567 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2568 unsigned long pending_updates;
2569
2570 if (curr_jiffies == this_rq->last_load_update_tick)
2571 return;
2572
2573 raw_spin_lock(&this_rq->lock);
2574 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2575 if (pending_updates) {
2576 this_rq->last_load_update_tick = curr_jiffies;
2577 /*
2578 * We were idle, this means load 0, the current load might be
2579 * !0 due to remote wakeups and the sort.
2580 */
2581 __update_cpu_load(this_rq, 0, pending_updates);
2582 }
2583 raw_spin_unlock(&this_rq->lock);
2584}
2585#endif /* CONFIG_NO_HZ */
2586
556061b0
PZ
2587/*
2588 * Called from scheduler_tick()
2589 */
fdf3e95d
VP
2590static void update_cpu_load_active(struct rq *this_rq)
2591{
556061b0 2592 /*
5aaa0b7a 2593 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2594 */
2595 this_rq->last_load_update_tick = jiffies;
2596 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2597
74f5187a 2598 calc_load_account_active(this_rq);
46cb4b7c
SS
2599}
2600
dd41f596 2601#ifdef CONFIG_SMP
8a0be9ef 2602
46cb4b7c 2603/*
38022906
PZ
2604 * sched_exec - execve() is a valuable balancing opportunity, because at
2605 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2606 */
38022906 2607void sched_exec(void)
46cb4b7c 2608{
38022906 2609 struct task_struct *p = current;
1da177e4 2610 unsigned long flags;
0017d735 2611 int dest_cpu;
46cb4b7c 2612
8f42ced9 2613 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2614 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2615 if (dest_cpu == smp_processor_id())
2616 goto unlock;
38022906 2617
8f42ced9 2618 if (likely(cpu_active(dest_cpu))) {
969c7921 2619 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2620
8f42ced9
PZ
2621 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2622 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2623 return;
2624 }
0017d735 2625unlock:
8f42ced9 2626 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2627}
dd41f596 2628
1da177e4
LT
2629#endif
2630
1da177e4 2631DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2632DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2633
2634EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2635EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2636
2637/*
c5f8d995 2638 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2639 * @p in case that task is currently running.
c5f8d995
HS
2640 *
2641 * Called with task_rq_lock() held on @rq.
1da177e4 2642 */
c5f8d995
HS
2643static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2644{
2645 u64 ns = 0;
2646
2647 if (task_current(rq, p)) {
2648 update_rq_clock(rq);
305e6835 2649 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2650 if ((s64)ns < 0)
2651 ns = 0;
2652 }
2653
2654 return ns;
2655}
2656
bb34d92f 2657unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2658{
1da177e4 2659 unsigned long flags;
41b86e9c 2660 struct rq *rq;
bb34d92f 2661 u64 ns = 0;
48f24c4d 2662
41b86e9c 2663 rq = task_rq_lock(p, &flags);
c5f8d995 2664 ns = do_task_delta_exec(p, rq);
0122ec5b 2665 task_rq_unlock(rq, p, &flags);
1508487e 2666
c5f8d995
HS
2667 return ns;
2668}
f06febc9 2669
c5f8d995
HS
2670/*
2671 * Return accounted runtime for the task.
2672 * In case the task is currently running, return the runtime plus current's
2673 * pending runtime that have not been accounted yet.
2674 */
2675unsigned long long task_sched_runtime(struct task_struct *p)
2676{
2677 unsigned long flags;
2678 struct rq *rq;
2679 u64 ns = 0;
2680
2681 rq = task_rq_lock(p, &flags);
2682 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2683 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2684
2685 return ns;
2686}
48f24c4d 2687
7835b98b
CL
2688/*
2689 * This function gets called by the timer code, with HZ frequency.
2690 * We call it with interrupts disabled.
7835b98b
CL
2691 */
2692void scheduler_tick(void)
2693{
7835b98b
CL
2694 int cpu = smp_processor_id();
2695 struct rq *rq = cpu_rq(cpu);
dd41f596 2696 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2697
2698 sched_clock_tick();
dd41f596 2699
05fa785c 2700 raw_spin_lock(&rq->lock);
3e51f33f 2701 update_rq_clock(rq);
fdf3e95d 2702 update_cpu_load_active(rq);
fa85ae24 2703 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2704 raw_spin_unlock(&rq->lock);
7835b98b 2705
e9d2b064 2706 perf_event_task_tick();
e220d2dc 2707
e418e1c2 2708#ifdef CONFIG_SMP
6eb57e0d 2709 rq->idle_balance = idle_cpu(cpu);
dd41f596 2710 trigger_load_balance(rq, cpu);
e418e1c2 2711#endif
1da177e4
LT
2712}
2713
132380a0 2714notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2715{
2716 if (in_lock_functions(addr)) {
2717 addr = CALLER_ADDR2;
2718 if (in_lock_functions(addr))
2719 addr = CALLER_ADDR3;
2720 }
2721 return addr;
2722}
1da177e4 2723
7e49fcce
SR
2724#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2725 defined(CONFIG_PREEMPT_TRACER))
2726
43627582 2727void __kprobes add_preempt_count(int val)
1da177e4 2728{
6cd8a4bb 2729#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2730 /*
2731 * Underflow?
2732 */
9a11b49a
IM
2733 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2734 return;
6cd8a4bb 2735#endif
1da177e4 2736 preempt_count() += val;
6cd8a4bb 2737#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2738 /*
2739 * Spinlock count overflowing soon?
2740 */
33859f7f
MOS
2741 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2742 PREEMPT_MASK - 10);
6cd8a4bb
SR
2743#endif
2744 if (preempt_count() == val)
2745 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2746}
2747EXPORT_SYMBOL(add_preempt_count);
2748
43627582 2749void __kprobes sub_preempt_count(int val)
1da177e4 2750{
6cd8a4bb 2751#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2752 /*
2753 * Underflow?
2754 */
01e3eb82 2755 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2756 return;
1da177e4
LT
2757 /*
2758 * Is the spinlock portion underflowing?
2759 */
9a11b49a
IM
2760 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2761 !(preempt_count() & PREEMPT_MASK)))
2762 return;
6cd8a4bb 2763#endif
9a11b49a 2764
6cd8a4bb
SR
2765 if (preempt_count() == val)
2766 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2767 preempt_count() -= val;
2768}
2769EXPORT_SYMBOL(sub_preempt_count);
2770
2771#endif
2772
2773/*
dd41f596 2774 * Print scheduling while atomic bug:
1da177e4 2775 */
dd41f596 2776static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2777{
664dfa65
DJ
2778 if (oops_in_progress)
2779 return;
2780
3df0fc5b
PZ
2781 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2782 prev->comm, prev->pid, preempt_count());
838225b4 2783
dd41f596 2784 debug_show_held_locks(prev);
e21f5b15 2785 print_modules();
dd41f596
IM
2786 if (irqs_disabled())
2787 print_irqtrace_events(prev);
6135fc1e 2788 dump_stack();
1c2927f1 2789 add_taint(TAINT_WARN);
dd41f596 2790}
1da177e4 2791
dd41f596
IM
2792/*
2793 * Various schedule()-time debugging checks and statistics:
2794 */
2795static inline void schedule_debug(struct task_struct *prev)
2796{
1da177e4 2797 /*
41a2d6cf 2798 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2799 * schedule() atomically, we ignore that path for now.
2800 * Otherwise, whine if we are scheduling when we should not be.
2801 */
3f33a7ce 2802 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2803 __schedule_bug(prev);
b3fbab05 2804 rcu_sleep_check();
dd41f596 2805
1da177e4
LT
2806 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2807
2d72376b 2808 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2809}
2810
6cecd084 2811static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2812{
61eadef6 2813 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2814 update_rq_clock(rq);
6cecd084 2815 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2816}
2817
dd41f596
IM
2818/*
2819 * Pick up the highest-prio task:
2820 */
2821static inline struct task_struct *
b67802ea 2822pick_next_task(struct rq *rq)
dd41f596 2823{
5522d5d5 2824 const struct sched_class *class;
dd41f596 2825 struct task_struct *p;
1da177e4
LT
2826
2827 /*
dd41f596
IM
2828 * Optimization: we know that if all tasks are in
2829 * the fair class we can call that function directly:
1da177e4 2830 */
953bfcd1 2831 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2832 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2833 if (likely(p))
2834 return p;
1da177e4
LT
2835 }
2836
34f971f6 2837 for_each_class(class) {
fb8d4724 2838 p = class->pick_next_task(rq);
dd41f596
IM
2839 if (p)
2840 return p;
dd41f596 2841 }
34f971f6
PZ
2842
2843 BUG(); /* the idle class will always have a runnable task */
dd41f596 2844}
1da177e4 2845
dd41f596 2846/*
c259e01a 2847 * __schedule() is the main scheduler function.
edde96ea
PE
2848 *
2849 * The main means of driving the scheduler and thus entering this function are:
2850 *
2851 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2852 *
2853 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2854 * paths. For example, see arch/x86/entry_64.S.
2855 *
2856 * To drive preemption between tasks, the scheduler sets the flag in timer
2857 * interrupt handler scheduler_tick().
2858 *
2859 * 3. Wakeups don't really cause entry into schedule(). They add a
2860 * task to the run-queue and that's it.
2861 *
2862 * Now, if the new task added to the run-queue preempts the current
2863 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2864 * called on the nearest possible occasion:
2865 *
2866 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2867 *
2868 * - in syscall or exception context, at the next outmost
2869 * preempt_enable(). (this might be as soon as the wake_up()'s
2870 * spin_unlock()!)
2871 *
2872 * - in IRQ context, return from interrupt-handler to
2873 * preemptible context
2874 *
2875 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2876 * then at the next:
2877 *
2878 * - cond_resched() call
2879 * - explicit schedule() call
2880 * - return from syscall or exception to user-space
2881 * - return from interrupt-handler to user-space
dd41f596 2882 */
c259e01a 2883static void __sched __schedule(void)
dd41f596
IM
2884{
2885 struct task_struct *prev, *next;
67ca7bde 2886 unsigned long *switch_count;
dd41f596 2887 struct rq *rq;
31656519 2888 int cpu;
dd41f596 2889
ff743345
PZ
2890need_resched:
2891 preempt_disable();
dd41f596
IM
2892 cpu = smp_processor_id();
2893 rq = cpu_rq(cpu);
25502a6c 2894 rcu_note_context_switch(cpu);
dd41f596 2895 prev = rq->curr;
dd41f596 2896
dd41f596 2897 schedule_debug(prev);
1da177e4 2898
31656519 2899 if (sched_feat(HRTICK))
f333fdc9 2900 hrtick_clear(rq);
8f4d37ec 2901
05fa785c 2902 raw_spin_lock_irq(&rq->lock);
1da177e4 2903
246d86b5 2904 switch_count = &prev->nivcsw;
1da177e4 2905 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2906 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2907 prev->state = TASK_RUNNING;
21aa9af0 2908 } else {
2acca55e
PZ
2909 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2910 prev->on_rq = 0;
2911
21aa9af0 2912 /*
2acca55e
PZ
2913 * If a worker went to sleep, notify and ask workqueue
2914 * whether it wants to wake up a task to maintain
2915 * concurrency.
21aa9af0
TH
2916 */
2917 if (prev->flags & PF_WQ_WORKER) {
2918 struct task_struct *to_wakeup;
2919
2920 to_wakeup = wq_worker_sleeping(prev, cpu);
2921 if (to_wakeup)
2922 try_to_wake_up_local(to_wakeup);
2923 }
21aa9af0 2924 }
dd41f596 2925 switch_count = &prev->nvcsw;
1da177e4
LT
2926 }
2927
3f029d3c 2928 pre_schedule(rq, prev);
f65eda4f 2929
dd41f596 2930 if (unlikely(!rq->nr_running))
1da177e4 2931 idle_balance(cpu, rq);
1da177e4 2932
df1c99d4 2933 put_prev_task(rq, prev);
b67802ea 2934 next = pick_next_task(rq);
f26f9aff
MG
2935 clear_tsk_need_resched(prev);
2936 rq->skip_clock_update = 0;
1da177e4 2937
1da177e4 2938 if (likely(prev != next)) {
1da177e4
LT
2939 rq->nr_switches++;
2940 rq->curr = next;
2941 ++*switch_count;
2942
dd41f596 2943 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2944 /*
246d86b5
ON
2945 * The context switch have flipped the stack from under us
2946 * and restored the local variables which were saved when
2947 * this task called schedule() in the past. prev == current
2948 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2949 */
2950 cpu = smp_processor_id();
2951 rq = cpu_rq(cpu);
1da177e4 2952 } else
05fa785c 2953 raw_spin_unlock_irq(&rq->lock);
1da177e4 2954
3f029d3c 2955 post_schedule(rq);
1da177e4 2956
ba74c144 2957 sched_preempt_enable_no_resched();
ff743345 2958 if (need_resched())
1da177e4
LT
2959 goto need_resched;
2960}
c259e01a 2961
9c40cef2
TG
2962static inline void sched_submit_work(struct task_struct *tsk)
2963{
3c7d5184 2964 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2965 return;
2966 /*
2967 * If we are going to sleep and we have plugged IO queued,
2968 * make sure to submit it to avoid deadlocks.
2969 */
2970 if (blk_needs_flush_plug(tsk))
2971 blk_schedule_flush_plug(tsk);
2972}
2973
6ebbe7a0 2974asmlinkage void __sched schedule(void)
c259e01a 2975{
9c40cef2
TG
2976 struct task_struct *tsk = current;
2977
2978 sched_submit_work(tsk);
c259e01a
TG
2979 __schedule();
2980}
1da177e4
LT
2981EXPORT_SYMBOL(schedule);
2982
91d1aa43 2983#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2984asmlinkage void __sched schedule_user(void)
2985{
2986 /*
2987 * If we come here after a random call to set_need_resched(),
2988 * or we have been woken up remotely but the IPI has not yet arrived,
2989 * we haven't yet exited the RCU idle mode. Do it here manually until
2990 * we find a better solution.
2991 */
91d1aa43 2992 user_exit();
20ab65e3 2993 schedule();
91d1aa43 2994 user_enter();
20ab65e3
FW
2995}
2996#endif
2997
c5491ea7
TG
2998/**
2999 * schedule_preempt_disabled - called with preemption disabled
3000 *
3001 * Returns with preemption disabled. Note: preempt_count must be 1
3002 */
3003void __sched schedule_preempt_disabled(void)
3004{
ba74c144 3005 sched_preempt_enable_no_resched();
c5491ea7
TG
3006 schedule();
3007 preempt_disable();
3008}
3009
c08f7829 3010#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3011
c6eb3dda
PZ
3012static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3013{
c6eb3dda 3014 if (lock->owner != owner)
307bf980 3015 return false;
0d66bf6d
PZ
3016
3017 /*
c6eb3dda
PZ
3018 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3019 * lock->owner still matches owner, if that fails, owner might
3020 * point to free()d memory, if it still matches, the rcu_read_lock()
3021 * ensures the memory stays valid.
0d66bf6d 3022 */
c6eb3dda 3023 barrier();
0d66bf6d 3024
307bf980 3025 return owner->on_cpu;
c6eb3dda 3026}
0d66bf6d 3027
c6eb3dda
PZ
3028/*
3029 * Look out! "owner" is an entirely speculative pointer
3030 * access and not reliable.
3031 */
3032int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3033{
3034 if (!sched_feat(OWNER_SPIN))
3035 return 0;
0d66bf6d 3036
307bf980 3037 rcu_read_lock();
c6eb3dda
PZ
3038 while (owner_running(lock, owner)) {
3039 if (need_resched())
307bf980 3040 break;
0d66bf6d 3041
335d7afb 3042 arch_mutex_cpu_relax();
0d66bf6d 3043 }
307bf980 3044 rcu_read_unlock();
4b402210 3045
c6eb3dda 3046 /*
307bf980
TG
3047 * We break out the loop above on need_resched() and when the
3048 * owner changed, which is a sign for heavy contention. Return
3049 * success only when lock->owner is NULL.
c6eb3dda 3050 */
307bf980 3051 return lock->owner == NULL;
0d66bf6d
PZ
3052}
3053#endif
3054
1da177e4
LT
3055#ifdef CONFIG_PREEMPT
3056/*
2ed6e34f 3057 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3058 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3059 * occur there and call schedule directly.
3060 */
d1f74e20 3061asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3062{
3063 struct thread_info *ti = current_thread_info();
6478d880 3064
1da177e4
LT
3065 /*
3066 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3067 * we do not want to preempt the current task. Just return..
1da177e4 3068 */
beed33a8 3069 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3070 return;
3071
3a5c359a 3072 do {
d1f74e20 3073 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3074 __schedule();
d1f74e20 3075 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3076
3a5c359a
AK
3077 /*
3078 * Check again in case we missed a preemption opportunity
3079 * between schedule and now.
3080 */
3081 barrier();
5ed0cec0 3082 } while (need_resched());
1da177e4 3083}
1da177e4
LT
3084EXPORT_SYMBOL(preempt_schedule);
3085
3086/*
2ed6e34f 3087 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3088 * off of irq context.
3089 * Note, that this is called and return with irqs disabled. This will
3090 * protect us against recursive calling from irq.
3091 */
3092asmlinkage void __sched preempt_schedule_irq(void)
3093{
3094 struct thread_info *ti = current_thread_info();
6478d880 3095
2ed6e34f 3096 /* Catch callers which need to be fixed */
1da177e4
LT
3097 BUG_ON(ti->preempt_count || !irqs_disabled());
3098
91d1aa43 3099 user_exit();
3a5c359a
AK
3100 do {
3101 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3102 local_irq_enable();
c259e01a 3103 __schedule();
3a5c359a 3104 local_irq_disable();
3a5c359a 3105 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3106
3a5c359a
AK
3107 /*
3108 * Check again in case we missed a preemption opportunity
3109 * between schedule and now.
3110 */
3111 barrier();
5ed0cec0 3112 } while (need_resched());
1da177e4
LT
3113}
3114
3115#endif /* CONFIG_PREEMPT */
3116
63859d4f 3117int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3118 void *key)
1da177e4 3119{
63859d4f 3120 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3121}
1da177e4
LT
3122EXPORT_SYMBOL(default_wake_function);
3123
3124/*
41a2d6cf
IM
3125 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3126 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3127 * number) then we wake all the non-exclusive tasks and one exclusive task.
3128 *
3129 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3130 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3131 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3132 */
78ddb08f 3133static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3134 int nr_exclusive, int wake_flags, void *key)
1da177e4 3135{
2e45874c 3136 wait_queue_t *curr, *next;
1da177e4 3137
2e45874c 3138 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3139 unsigned flags = curr->flags;
3140
63859d4f 3141 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3142 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3143 break;
3144 }
3145}
3146
3147/**
3148 * __wake_up - wake up threads blocked on a waitqueue.
3149 * @q: the waitqueue
3150 * @mode: which threads
3151 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3152 * @key: is directly passed to the wakeup function
50fa610a
DH
3153 *
3154 * It may be assumed that this function implies a write memory barrier before
3155 * changing the task state if and only if any tasks are woken up.
1da177e4 3156 */
7ad5b3a5 3157void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3158 int nr_exclusive, void *key)
1da177e4
LT
3159{
3160 unsigned long flags;
3161
3162 spin_lock_irqsave(&q->lock, flags);
3163 __wake_up_common(q, mode, nr_exclusive, 0, key);
3164 spin_unlock_irqrestore(&q->lock, flags);
3165}
1da177e4
LT
3166EXPORT_SYMBOL(__wake_up);
3167
3168/*
3169 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3170 */
63b20011 3171void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3172{
63b20011 3173 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3174}
22c43c81 3175EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3176
4ede816a
DL
3177void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3178{
3179 __wake_up_common(q, mode, 1, 0, key);
3180}
bf294b41 3181EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3182
1da177e4 3183/**
4ede816a 3184 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3185 * @q: the waitqueue
3186 * @mode: which threads
3187 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3188 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3189 *
3190 * The sync wakeup differs that the waker knows that it will schedule
3191 * away soon, so while the target thread will be woken up, it will not
3192 * be migrated to another CPU - ie. the two threads are 'synchronized'
3193 * with each other. This can prevent needless bouncing between CPUs.
3194 *
3195 * On UP it can prevent extra preemption.
50fa610a
DH
3196 *
3197 * It may be assumed that this function implies a write memory barrier before
3198 * changing the task state if and only if any tasks are woken up.
1da177e4 3199 */
4ede816a
DL
3200void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3201 int nr_exclusive, void *key)
1da177e4
LT
3202{
3203 unsigned long flags;
7d478721 3204 int wake_flags = WF_SYNC;
1da177e4
LT
3205
3206 if (unlikely(!q))
3207 return;
3208
3209 if (unlikely(!nr_exclusive))
7d478721 3210 wake_flags = 0;
1da177e4
LT
3211
3212 spin_lock_irqsave(&q->lock, flags);
7d478721 3213 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3214 spin_unlock_irqrestore(&q->lock, flags);
3215}
4ede816a
DL
3216EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3217
3218/*
3219 * __wake_up_sync - see __wake_up_sync_key()
3220 */
3221void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3222{
3223 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3224}
1da177e4
LT
3225EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3226
65eb3dc6
KD
3227/**
3228 * complete: - signals a single thread waiting on this completion
3229 * @x: holds the state of this particular completion
3230 *
3231 * This will wake up a single thread waiting on this completion. Threads will be
3232 * awakened in the same order in which they were queued.
3233 *
3234 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3235 *
3236 * It may be assumed that this function implies a write memory barrier before
3237 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3238 */
b15136e9 3239void complete(struct completion *x)
1da177e4
LT
3240{
3241 unsigned long flags;
3242
3243 spin_lock_irqsave(&x->wait.lock, flags);
3244 x->done++;
d9514f6c 3245 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3246 spin_unlock_irqrestore(&x->wait.lock, flags);
3247}
3248EXPORT_SYMBOL(complete);
3249
65eb3dc6
KD
3250/**
3251 * complete_all: - signals all threads waiting on this completion
3252 * @x: holds the state of this particular completion
3253 *
3254 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3255 *
3256 * It may be assumed that this function implies a write memory barrier before
3257 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3258 */
b15136e9 3259void complete_all(struct completion *x)
1da177e4
LT
3260{
3261 unsigned long flags;
3262
3263 spin_lock_irqsave(&x->wait.lock, flags);
3264 x->done += UINT_MAX/2;
d9514f6c 3265 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3266 spin_unlock_irqrestore(&x->wait.lock, flags);
3267}
3268EXPORT_SYMBOL(complete_all);
3269
8cbbe86d
AK
3270static inline long __sched
3271do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3272{
1da177e4
LT
3273 if (!x->done) {
3274 DECLARE_WAITQUEUE(wait, current);
3275
a93d2f17 3276 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3277 do {
94d3d824 3278 if (signal_pending_state(state, current)) {
ea71a546
ON
3279 timeout = -ERESTARTSYS;
3280 break;
8cbbe86d
AK
3281 }
3282 __set_current_state(state);
1da177e4
LT
3283 spin_unlock_irq(&x->wait.lock);
3284 timeout = schedule_timeout(timeout);
3285 spin_lock_irq(&x->wait.lock);
ea71a546 3286 } while (!x->done && timeout);
1da177e4 3287 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3288 if (!x->done)
3289 return timeout;
1da177e4
LT
3290 }
3291 x->done--;
ea71a546 3292 return timeout ?: 1;
1da177e4 3293}
1da177e4 3294
8cbbe86d
AK
3295static long __sched
3296wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3297{
1da177e4
LT
3298 might_sleep();
3299
3300 spin_lock_irq(&x->wait.lock);
8cbbe86d 3301 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3302 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3303 return timeout;
3304}
1da177e4 3305
65eb3dc6
KD
3306/**
3307 * wait_for_completion: - waits for completion of a task
3308 * @x: holds the state of this particular completion
3309 *
3310 * This waits to be signaled for completion of a specific task. It is NOT
3311 * interruptible and there is no timeout.
3312 *
3313 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3314 * and interrupt capability. Also see complete().
3315 */
b15136e9 3316void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3317{
3318 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3319}
8cbbe86d 3320EXPORT_SYMBOL(wait_for_completion);
1da177e4 3321
65eb3dc6
KD
3322/**
3323 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3324 * @x: holds the state of this particular completion
3325 * @timeout: timeout value in jiffies
3326 *
3327 * This waits for either a completion of a specific task to be signaled or for a
3328 * specified timeout to expire. The timeout is in jiffies. It is not
3329 * interruptible.
c6dc7f05
BF
3330 *
3331 * The return value is 0 if timed out, and positive (at least 1, or number of
3332 * jiffies left till timeout) if completed.
65eb3dc6 3333 */
b15136e9 3334unsigned long __sched
8cbbe86d 3335wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3336{
8cbbe86d 3337 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3338}
8cbbe86d 3339EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3340
65eb3dc6
KD
3341/**
3342 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3343 * @x: holds the state of this particular completion
3344 *
3345 * This waits for completion of a specific task to be signaled. It is
3346 * interruptible.
c6dc7f05
BF
3347 *
3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3349 */
8cbbe86d 3350int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3351{
51e97990
AK
3352 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3353 if (t == -ERESTARTSYS)
3354 return t;
3355 return 0;
0fec171c 3356}
8cbbe86d 3357EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3358
65eb3dc6
KD
3359/**
3360 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be signaled or for a
3365 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3366 *
3367 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3368 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3369 */
6bf41237 3370long __sched
8cbbe86d
AK
3371wait_for_completion_interruptible_timeout(struct completion *x,
3372 unsigned long timeout)
0fec171c 3373{
8cbbe86d 3374 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3375}
8cbbe86d 3376EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3377
65eb3dc6
KD
3378/**
3379 * wait_for_completion_killable: - waits for completion of a task (killable)
3380 * @x: holds the state of this particular completion
3381 *
3382 * This waits to be signaled for completion of a specific task. It can be
3383 * interrupted by a kill signal.
c6dc7f05
BF
3384 *
3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3386 */
009e577e
MW
3387int __sched wait_for_completion_killable(struct completion *x)
3388{
3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3390 if (t == -ERESTARTSYS)
3391 return t;
3392 return 0;
3393}
3394EXPORT_SYMBOL(wait_for_completion_killable);
3395
0aa12fb4
SW
3396/**
3397 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3398 * @x: holds the state of this particular completion
3399 * @timeout: timeout value in jiffies
3400 *
3401 * This waits for either a completion of a specific task to be
3402 * signaled or for a specified timeout to expire. It can be
3403 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3404 *
3405 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3406 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3407 */
6bf41237 3408long __sched
0aa12fb4
SW
3409wait_for_completion_killable_timeout(struct completion *x,
3410 unsigned long timeout)
3411{
3412 return wait_for_common(x, timeout, TASK_KILLABLE);
3413}
3414EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3415
be4de352
DC
3416/**
3417 * try_wait_for_completion - try to decrement a completion without blocking
3418 * @x: completion structure
3419 *
3420 * Returns: 0 if a decrement cannot be done without blocking
3421 * 1 if a decrement succeeded.
3422 *
3423 * If a completion is being used as a counting completion,
3424 * attempt to decrement the counter without blocking. This
3425 * enables us to avoid waiting if the resource the completion
3426 * is protecting is not available.
3427 */
3428bool try_wait_for_completion(struct completion *x)
3429{
7539a3b3 3430 unsigned long flags;
be4de352
DC
3431 int ret = 1;
3432
7539a3b3 3433 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3434 if (!x->done)
3435 ret = 0;
3436 else
3437 x->done--;
7539a3b3 3438 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3439 return ret;
3440}
3441EXPORT_SYMBOL(try_wait_for_completion);
3442
3443/**
3444 * completion_done - Test to see if a completion has any waiters
3445 * @x: completion structure
3446 *
3447 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3448 * 1 if there are no waiters.
3449 *
3450 */
3451bool completion_done(struct completion *x)
3452{
7539a3b3 3453 unsigned long flags;
be4de352
DC
3454 int ret = 1;
3455
7539a3b3 3456 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3457 if (!x->done)
3458 ret = 0;
7539a3b3 3459 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3460 return ret;
3461}
3462EXPORT_SYMBOL(completion_done);
3463
8cbbe86d
AK
3464static long __sched
3465sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3466{
0fec171c
IM
3467 unsigned long flags;
3468 wait_queue_t wait;
3469
3470 init_waitqueue_entry(&wait, current);
1da177e4 3471
8cbbe86d 3472 __set_current_state(state);
1da177e4 3473
8cbbe86d
AK
3474 spin_lock_irqsave(&q->lock, flags);
3475 __add_wait_queue(q, &wait);
3476 spin_unlock(&q->lock);
3477 timeout = schedule_timeout(timeout);
3478 spin_lock_irq(&q->lock);
3479 __remove_wait_queue(q, &wait);
3480 spin_unlock_irqrestore(&q->lock, flags);
3481
3482 return timeout;
3483}
3484
3485void __sched interruptible_sleep_on(wait_queue_head_t *q)
3486{
3487 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3488}
1da177e4
LT
3489EXPORT_SYMBOL(interruptible_sleep_on);
3490
0fec171c 3491long __sched
95cdf3b7 3492interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3493{
8cbbe86d 3494 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3495}
1da177e4
LT
3496EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3497
0fec171c 3498void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3499{
8cbbe86d 3500 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3501}
1da177e4
LT
3502EXPORT_SYMBOL(sleep_on);
3503
0fec171c 3504long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3505{
8cbbe86d 3506 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3507}
1da177e4
LT
3508EXPORT_SYMBOL(sleep_on_timeout);
3509
b29739f9
IM
3510#ifdef CONFIG_RT_MUTEXES
3511
3512/*
3513 * rt_mutex_setprio - set the current priority of a task
3514 * @p: task
3515 * @prio: prio value (kernel-internal form)
3516 *
3517 * This function changes the 'effective' priority of a task. It does
3518 * not touch ->normal_prio like __setscheduler().
3519 *
3520 * Used by the rt_mutex code to implement priority inheritance logic.
3521 */
36c8b586 3522void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3523{
83b699ed 3524 int oldprio, on_rq, running;
70b97a7f 3525 struct rq *rq;
83ab0aa0 3526 const struct sched_class *prev_class;
b29739f9
IM
3527
3528 BUG_ON(prio < 0 || prio > MAX_PRIO);
3529
0122ec5b 3530 rq = __task_rq_lock(p);
b29739f9 3531
1c4dd99b
TG
3532 /*
3533 * Idle task boosting is a nono in general. There is one
3534 * exception, when PREEMPT_RT and NOHZ is active:
3535 *
3536 * The idle task calls get_next_timer_interrupt() and holds
3537 * the timer wheel base->lock on the CPU and another CPU wants
3538 * to access the timer (probably to cancel it). We can safely
3539 * ignore the boosting request, as the idle CPU runs this code
3540 * with interrupts disabled and will complete the lock
3541 * protected section without being interrupted. So there is no
3542 * real need to boost.
3543 */
3544 if (unlikely(p == rq->idle)) {
3545 WARN_ON(p != rq->curr);
3546 WARN_ON(p->pi_blocked_on);
3547 goto out_unlock;
3548 }
3549
a8027073 3550 trace_sched_pi_setprio(p, prio);
d5f9f942 3551 oldprio = p->prio;
83ab0aa0 3552 prev_class = p->sched_class;
fd2f4419 3553 on_rq = p->on_rq;
051a1d1a 3554 running = task_current(rq, p);
0e1f3483 3555 if (on_rq)
69be72c1 3556 dequeue_task(rq, p, 0);
0e1f3483
HS
3557 if (running)
3558 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3559
3560 if (rt_prio(prio))
3561 p->sched_class = &rt_sched_class;
3562 else
3563 p->sched_class = &fair_sched_class;
3564
b29739f9
IM
3565 p->prio = prio;
3566
0e1f3483
HS
3567 if (running)
3568 p->sched_class->set_curr_task(rq);
da7a735e 3569 if (on_rq)
371fd7e7 3570 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3571
da7a735e 3572 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3573out_unlock:
0122ec5b 3574 __task_rq_unlock(rq);
b29739f9 3575}
b29739f9 3576#endif
36c8b586 3577void set_user_nice(struct task_struct *p, long nice)
1da177e4 3578{
dd41f596 3579 int old_prio, delta, on_rq;
1da177e4 3580 unsigned long flags;
70b97a7f 3581 struct rq *rq;
1da177e4
LT
3582
3583 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3584 return;
3585 /*
3586 * We have to be careful, if called from sys_setpriority(),
3587 * the task might be in the middle of scheduling on another CPU.
3588 */
3589 rq = task_rq_lock(p, &flags);
3590 /*
3591 * The RT priorities are set via sched_setscheduler(), but we still
3592 * allow the 'normal' nice value to be set - but as expected
3593 * it wont have any effect on scheduling until the task is
dd41f596 3594 * SCHED_FIFO/SCHED_RR:
1da177e4 3595 */
e05606d3 3596 if (task_has_rt_policy(p)) {
1da177e4
LT
3597 p->static_prio = NICE_TO_PRIO(nice);
3598 goto out_unlock;
3599 }
fd2f4419 3600 on_rq = p->on_rq;
c09595f6 3601 if (on_rq)
69be72c1 3602 dequeue_task(rq, p, 0);
1da177e4 3603
1da177e4 3604 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3605 set_load_weight(p);
b29739f9
IM
3606 old_prio = p->prio;
3607 p->prio = effective_prio(p);
3608 delta = p->prio - old_prio;
1da177e4 3609
dd41f596 3610 if (on_rq) {
371fd7e7 3611 enqueue_task(rq, p, 0);
1da177e4 3612 /*
d5f9f942
AM
3613 * If the task increased its priority or is running and
3614 * lowered its priority, then reschedule its CPU:
1da177e4 3615 */
d5f9f942 3616 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3617 resched_task(rq->curr);
3618 }
3619out_unlock:
0122ec5b 3620 task_rq_unlock(rq, p, &flags);
1da177e4 3621}
1da177e4
LT
3622EXPORT_SYMBOL(set_user_nice);
3623
e43379f1
MM
3624/*
3625 * can_nice - check if a task can reduce its nice value
3626 * @p: task
3627 * @nice: nice value
3628 */
36c8b586 3629int can_nice(const struct task_struct *p, const int nice)
e43379f1 3630{
024f4747
MM
3631 /* convert nice value [19,-20] to rlimit style value [1,40] */
3632 int nice_rlim = 20 - nice;
48f24c4d 3633
78d7d407 3634 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3635 capable(CAP_SYS_NICE));
3636}
3637
1da177e4
LT
3638#ifdef __ARCH_WANT_SYS_NICE
3639
3640/*
3641 * sys_nice - change the priority of the current process.
3642 * @increment: priority increment
3643 *
3644 * sys_setpriority is a more generic, but much slower function that
3645 * does similar things.
3646 */
5add95d4 3647SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3648{
48f24c4d 3649 long nice, retval;
1da177e4
LT
3650
3651 /*
3652 * Setpriority might change our priority at the same moment.
3653 * We don't have to worry. Conceptually one call occurs first
3654 * and we have a single winner.
3655 */
e43379f1
MM
3656 if (increment < -40)
3657 increment = -40;
1da177e4
LT
3658 if (increment > 40)
3659 increment = 40;
3660
2b8f836f 3661 nice = TASK_NICE(current) + increment;
1da177e4
LT
3662 if (nice < -20)
3663 nice = -20;
3664 if (nice > 19)
3665 nice = 19;
3666
e43379f1
MM
3667 if (increment < 0 && !can_nice(current, nice))
3668 return -EPERM;
3669
1da177e4
LT
3670 retval = security_task_setnice(current, nice);
3671 if (retval)
3672 return retval;
3673
3674 set_user_nice(current, nice);
3675 return 0;
3676}
3677
3678#endif
3679
3680/**
3681 * task_prio - return the priority value of a given task.
3682 * @p: the task in question.
3683 *
3684 * This is the priority value as seen by users in /proc.
3685 * RT tasks are offset by -200. Normal tasks are centered
3686 * around 0, value goes from -16 to +15.
3687 */
36c8b586 3688int task_prio(const struct task_struct *p)
1da177e4
LT
3689{
3690 return p->prio - MAX_RT_PRIO;
3691}
3692
3693/**
3694 * task_nice - return the nice value of a given task.
3695 * @p: the task in question.
3696 */
36c8b586 3697int task_nice(const struct task_struct *p)
1da177e4
LT
3698{
3699 return TASK_NICE(p);
3700}
150d8bed 3701EXPORT_SYMBOL(task_nice);
1da177e4
LT
3702
3703/**
3704 * idle_cpu - is a given cpu idle currently?
3705 * @cpu: the processor in question.
3706 */
3707int idle_cpu(int cpu)
3708{
908a3283
TG
3709 struct rq *rq = cpu_rq(cpu);
3710
3711 if (rq->curr != rq->idle)
3712 return 0;
3713
3714 if (rq->nr_running)
3715 return 0;
3716
3717#ifdef CONFIG_SMP
3718 if (!llist_empty(&rq->wake_list))
3719 return 0;
3720#endif
3721
3722 return 1;
1da177e4
LT
3723}
3724
1da177e4
LT
3725/**
3726 * idle_task - return the idle task for a given cpu.
3727 * @cpu: the processor in question.
3728 */
36c8b586 3729struct task_struct *idle_task(int cpu)
1da177e4
LT
3730{
3731 return cpu_rq(cpu)->idle;
3732}
3733
3734/**
3735 * find_process_by_pid - find a process with a matching PID value.
3736 * @pid: the pid in question.
3737 */
a9957449 3738static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3739{
228ebcbe 3740 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3741}
3742
3743/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3744static void
3745__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3746{
1da177e4
LT
3747 p->policy = policy;
3748 p->rt_priority = prio;
b29739f9
IM
3749 p->normal_prio = normal_prio(p);
3750 /* we are holding p->pi_lock already */
3751 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3752 if (rt_prio(p->prio))
3753 p->sched_class = &rt_sched_class;
3754 else
3755 p->sched_class = &fair_sched_class;
2dd73a4f 3756 set_load_weight(p);
1da177e4
LT
3757}
3758
c69e8d9c
DH
3759/*
3760 * check the target process has a UID that matches the current process's
3761 */
3762static bool check_same_owner(struct task_struct *p)
3763{
3764 const struct cred *cred = current_cred(), *pcred;
3765 bool match;
3766
3767 rcu_read_lock();
3768 pcred = __task_cred(p);
9c806aa0
EB
3769 match = (uid_eq(cred->euid, pcred->euid) ||
3770 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3771 rcu_read_unlock();
3772 return match;
3773}
3774
961ccddd 3775static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3776 const struct sched_param *param, bool user)
1da177e4 3777{
83b699ed 3778 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3779 unsigned long flags;
83ab0aa0 3780 const struct sched_class *prev_class;
70b97a7f 3781 struct rq *rq;
ca94c442 3782 int reset_on_fork;
1da177e4 3783
66e5393a
SR
3784 /* may grab non-irq protected spin_locks */
3785 BUG_ON(in_interrupt());
1da177e4
LT
3786recheck:
3787 /* double check policy once rq lock held */
ca94c442
LP
3788 if (policy < 0) {
3789 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3790 policy = oldpolicy = p->policy;
ca94c442
LP
3791 } else {
3792 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3793 policy &= ~SCHED_RESET_ON_FORK;
3794
3795 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3796 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3797 policy != SCHED_IDLE)
3798 return -EINVAL;
3799 }
3800
1da177e4
LT
3801 /*
3802 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3803 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3804 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3805 */
3806 if (param->sched_priority < 0 ||
95cdf3b7 3807 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3808 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3809 return -EINVAL;
e05606d3 3810 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3811 return -EINVAL;
3812
37e4ab3f
OC
3813 /*
3814 * Allow unprivileged RT tasks to decrease priority:
3815 */
961ccddd 3816 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3817 if (rt_policy(policy)) {
a44702e8
ON
3818 unsigned long rlim_rtprio =
3819 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3820
3821 /* can't set/change the rt policy */
3822 if (policy != p->policy && !rlim_rtprio)
3823 return -EPERM;
3824
3825 /* can't increase priority */
3826 if (param->sched_priority > p->rt_priority &&
3827 param->sched_priority > rlim_rtprio)
3828 return -EPERM;
3829 }
c02aa73b 3830
dd41f596 3831 /*
c02aa73b
DH
3832 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3833 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3834 */
c02aa73b
DH
3835 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3836 if (!can_nice(p, TASK_NICE(p)))
3837 return -EPERM;
3838 }
5fe1d75f 3839
37e4ab3f 3840 /* can't change other user's priorities */
c69e8d9c 3841 if (!check_same_owner(p))
37e4ab3f 3842 return -EPERM;
ca94c442
LP
3843
3844 /* Normal users shall not reset the sched_reset_on_fork flag */
3845 if (p->sched_reset_on_fork && !reset_on_fork)
3846 return -EPERM;
37e4ab3f 3847 }
1da177e4 3848
725aad24 3849 if (user) {
b0ae1981 3850 retval = security_task_setscheduler(p);
725aad24
JF
3851 if (retval)
3852 return retval;
3853 }
3854
b29739f9
IM
3855 /*
3856 * make sure no PI-waiters arrive (or leave) while we are
3857 * changing the priority of the task:
0122ec5b 3858 *
25985edc 3859 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3860 * runqueue lock must be held.
3861 */
0122ec5b 3862 rq = task_rq_lock(p, &flags);
dc61b1d6 3863
34f971f6
PZ
3864 /*
3865 * Changing the policy of the stop threads its a very bad idea
3866 */
3867 if (p == rq->stop) {
0122ec5b 3868 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3869 return -EINVAL;
3870 }
3871
a51e9198
DF
3872 /*
3873 * If not changing anything there's no need to proceed further:
3874 */
3875 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3876 param->sched_priority == p->rt_priority))) {
45afb173 3877 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3878 return 0;
3879 }
3880
dc61b1d6
PZ
3881#ifdef CONFIG_RT_GROUP_SCHED
3882 if (user) {
3883 /*
3884 * Do not allow realtime tasks into groups that have no runtime
3885 * assigned.
3886 */
3887 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3888 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3889 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3890 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3891 return -EPERM;
3892 }
3893 }
3894#endif
3895
1da177e4
LT
3896 /* recheck policy now with rq lock held */
3897 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3898 policy = oldpolicy = -1;
0122ec5b 3899 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3900 goto recheck;
3901 }
fd2f4419 3902 on_rq = p->on_rq;
051a1d1a 3903 running = task_current(rq, p);
0e1f3483 3904 if (on_rq)
4ca9b72b 3905 dequeue_task(rq, p, 0);
0e1f3483
HS
3906 if (running)
3907 p->sched_class->put_prev_task(rq, p);
f6b53205 3908
ca94c442
LP
3909 p->sched_reset_on_fork = reset_on_fork;
3910
1da177e4 3911 oldprio = p->prio;
83ab0aa0 3912 prev_class = p->sched_class;
dd41f596 3913 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3914
0e1f3483
HS
3915 if (running)
3916 p->sched_class->set_curr_task(rq);
da7a735e 3917 if (on_rq)
4ca9b72b 3918 enqueue_task(rq, p, 0);
cb469845 3919
da7a735e 3920 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3921 task_rq_unlock(rq, p, &flags);
b29739f9 3922
95e02ca9
TG
3923 rt_mutex_adjust_pi(p);
3924
1da177e4
LT
3925 return 0;
3926}
961ccddd
RR
3927
3928/**
3929 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3930 * @p: the task in question.
3931 * @policy: new policy.
3932 * @param: structure containing the new RT priority.
3933 *
3934 * NOTE that the task may be already dead.
3935 */
3936int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3937 const struct sched_param *param)
961ccddd
RR
3938{
3939 return __sched_setscheduler(p, policy, param, true);
3940}
1da177e4
LT
3941EXPORT_SYMBOL_GPL(sched_setscheduler);
3942
961ccddd
RR
3943/**
3944 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3945 * @p: the task in question.
3946 * @policy: new policy.
3947 * @param: structure containing the new RT priority.
3948 *
3949 * Just like sched_setscheduler, only don't bother checking if the
3950 * current context has permission. For example, this is needed in
3951 * stop_machine(): we create temporary high priority worker threads,
3952 * but our caller might not have that capability.
3953 */
3954int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3955 const struct sched_param *param)
961ccddd
RR
3956{
3957 return __sched_setscheduler(p, policy, param, false);
3958}
3959
95cdf3b7
IM
3960static int
3961do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3962{
1da177e4
LT
3963 struct sched_param lparam;
3964 struct task_struct *p;
36c8b586 3965 int retval;
1da177e4
LT
3966
3967 if (!param || pid < 0)
3968 return -EINVAL;
3969 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3970 return -EFAULT;
5fe1d75f
ON
3971
3972 rcu_read_lock();
3973 retval = -ESRCH;
1da177e4 3974 p = find_process_by_pid(pid);
5fe1d75f
ON
3975 if (p != NULL)
3976 retval = sched_setscheduler(p, policy, &lparam);
3977 rcu_read_unlock();
36c8b586 3978
1da177e4
LT
3979 return retval;
3980}
3981
3982/**
3983 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3984 * @pid: the pid in question.
3985 * @policy: new policy.
3986 * @param: structure containing the new RT priority.
3987 */
5add95d4
HC
3988SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3989 struct sched_param __user *, param)
1da177e4 3990{
c21761f1
JB
3991 /* negative values for policy are not valid */
3992 if (policy < 0)
3993 return -EINVAL;
3994
1da177e4
LT
3995 return do_sched_setscheduler(pid, policy, param);
3996}
3997
3998/**
3999 * sys_sched_setparam - set/change the RT priority of a thread
4000 * @pid: the pid in question.
4001 * @param: structure containing the new RT priority.
4002 */
5add95d4 4003SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4004{
4005 return do_sched_setscheduler(pid, -1, param);
4006}
4007
4008/**
4009 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4010 * @pid: the pid in question.
4011 */
5add95d4 4012SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4013{
36c8b586 4014 struct task_struct *p;
3a5c359a 4015 int retval;
1da177e4
LT
4016
4017 if (pid < 0)
3a5c359a 4018 return -EINVAL;
1da177e4
LT
4019
4020 retval = -ESRCH;
5fe85be0 4021 rcu_read_lock();
1da177e4
LT
4022 p = find_process_by_pid(pid);
4023 if (p) {
4024 retval = security_task_getscheduler(p);
4025 if (!retval)
ca94c442
LP
4026 retval = p->policy
4027 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4028 }
5fe85be0 4029 rcu_read_unlock();
1da177e4
LT
4030 return retval;
4031}
4032
4033/**
ca94c442 4034 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4035 * @pid: the pid in question.
4036 * @param: structure containing the RT priority.
4037 */
5add95d4 4038SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4039{
4040 struct sched_param lp;
36c8b586 4041 struct task_struct *p;
3a5c359a 4042 int retval;
1da177e4
LT
4043
4044 if (!param || pid < 0)
3a5c359a 4045 return -EINVAL;
1da177e4 4046
5fe85be0 4047 rcu_read_lock();
1da177e4
LT
4048 p = find_process_by_pid(pid);
4049 retval = -ESRCH;
4050 if (!p)
4051 goto out_unlock;
4052
4053 retval = security_task_getscheduler(p);
4054 if (retval)
4055 goto out_unlock;
4056
4057 lp.sched_priority = p->rt_priority;
5fe85be0 4058 rcu_read_unlock();
1da177e4
LT
4059
4060 /*
4061 * This one might sleep, we cannot do it with a spinlock held ...
4062 */
4063 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4064
1da177e4
LT
4065 return retval;
4066
4067out_unlock:
5fe85be0 4068 rcu_read_unlock();
1da177e4
LT
4069 return retval;
4070}
4071
96f874e2 4072long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4073{
5a16f3d3 4074 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4075 struct task_struct *p;
4076 int retval;
1da177e4 4077
95402b38 4078 get_online_cpus();
23f5d142 4079 rcu_read_lock();
1da177e4
LT
4080
4081 p = find_process_by_pid(pid);
4082 if (!p) {
23f5d142 4083 rcu_read_unlock();
95402b38 4084 put_online_cpus();
1da177e4
LT
4085 return -ESRCH;
4086 }
4087
23f5d142 4088 /* Prevent p going away */
1da177e4 4089 get_task_struct(p);
23f5d142 4090 rcu_read_unlock();
1da177e4 4091
5a16f3d3
RR
4092 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4093 retval = -ENOMEM;
4094 goto out_put_task;
4095 }
4096 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4097 retval = -ENOMEM;
4098 goto out_free_cpus_allowed;
4099 }
1da177e4 4100 retval = -EPERM;
4c44aaaf
EB
4101 if (!check_same_owner(p)) {
4102 rcu_read_lock();
4103 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4104 rcu_read_unlock();
4105 goto out_unlock;
4106 }
4107 rcu_read_unlock();
4108 }
1da177e4 4109
b0ae1981 4110 retval = security_task_setscheduler(p);
e7834f8f
DQ
4111 if (retval)
4112 goto out_unlock;
4113
5a16f3d3
RR
4114 cpuset_cpus_allowed(p, cpus_allowed);
4115 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4116again:
5a16f3d3 4117 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4118
8707d8b8 4119 if (!retval) {
5a16f3d3
RR
4120 cpuset_cpus_allowed(p, cpus_allowed);
4121 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4122 /*
4123 * We must have raced with a concurrent cpuset
4124 * update. Just reset the cpus_allowed to the
4125 * cpuset's cpus_allowed
4126 */
5a16f3d3 4127 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4128 goto again;
4129 }
4130 }
1da177e4 4131out_unlock:
5a16f3d3
RR
4132 free_cpumask_var(new_mask);
4133out_free_cpus_allowed:
4134 free_cpumask_var(cpus_allowed);
4135out_put_task:
1da177e4 4136 put_task_struct(p);
95402b38 4137 put_online_cpus();
1da177e4
LT
4138 return retval;
4139}
4140
4141static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4142 struct cpumask *new_mask)
1da177e4 4143{
96f874e2
RR
4144 if (len < cpumask_size())
4145 cpumask_clear(new_mask);
4146 else if (len > cpumask_size())
4147 len = cpumask_size();
4148
1da177e4
LT
4149 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4150}
4151
4152/**
4153 * sys_sched_setaffinity - set the cpu affinity of a process
4154 * @pid: pid of the process
4155 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4156 * @user_mask_ptr: user-space pointer to the new cpu mask
4157 */
5add95d4
HC
4158SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4159 unsigned long __user *, user_mask_ptr)
1da177e4 4160{
5a16f3d3 4161 cpumask_var_t new_mask;
1da177e4
LT
4162 int retval;
4163
5a16f3d3
RR
4164 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4165 return -ENOMEM;
1da177e4 4166
5a16f3d3
RR
4167 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4168 if (retval == 0)
4169 retval = sched_setaffinity(pid, new_mask);
4170 free_cpumask_var(new_mask);
4171 return retval;
1da177e4
LT
4172}
4173
96f874e2 4174long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4175{
36c8b586 4176 struct task_struct *p;
31605683 4177 unsigned long flags;
1da177e4 4178 int retval;
1da177e4 4179
95402b38 4180 get_online_cpus();
23f5d142 4181 rcu_read_lock();
1da177e4
LT
4182
4183 retval = -ESRCH;
4184 p = find_process_by_pid(pid);
4185 if (!p)
4186 goto out_unlock;
4187
e7834f8f
DQ
4188 retval = security_task_getscheduler(p);
4189 if (retval)
4190 goto out_unlock;
4191
013fdb80 4192 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4193 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4194 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4195
4196out_unlock:
23f5d142 4197 rcu_read_unlock();
95402b38 4198 put_online_cpus();
1da177e4 4199
9531b62f 4200 return retval;
1da177e4
LT
4201}
4202
4203/**
4204 * sys_sched_getaffinity - get the cpu affinity of a process
4205 * @pid: pid of the process
4206 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4207 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4208 */
5add95d4
HC
4209SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4210 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4211{
4212 int ret;
f17c8607 4213 cpumask_var_t mask;
1da177e4 4214
84fba5ec 4215 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4216 return -EINVAL;
4217 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4218 return -EINVAL;
4219
f17c8607
RR
4220 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4221 return -ENOMEM;
1da177e4 4222
f17c8607
RR
4223 ret = sched_getaffinity(pid, mask);
4224 if (ret == 0) {
8bc037fb 4225 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4226
4227 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4228 ret = -EFAULT;
4229 else
cd3d8031 4230 ret = retlen;
f17c8607
RR
4231 }
4232 free_cpumask_var(mask);
1da177e4 4233
f17c8607 4234 return ret;
1da177e4
LT
4235}
4236
4237/**
4238 * sys_sched_yield - yield the current processor to other threads.
4239 *
dd41f596
IM
4240 * This function yields the current CPU to other tasks. If there are no
4241 * other threads running on this CPU then this function will return.
1da177e4 4242 */
5add95d4 4243SYSCALL_DEFINE0(sched_yield)
1da177e4 4244{
70b97a7f 4245 struct rq *rq = this_rq_lock();
1da177e4 4246
2d72376b 4247 schedstat_inc(rq, yld_count);
4530d7ab 4248 current->sched_class->yield_task(rq);
1da177e4
LT
4249
4250 /*
4251 * Since we are going to call schedule() anyway, there's
4252 * no need to preempt or enable interrupts:
4253 */
4254 __release(rq->lock);
8a25d5de 4255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4256 do_raw_spin_unlock(&rq->lock);
ba74c144 4257 sched_preempt_enable_no_resched();
1da177e4
LT
4258
4259 schedule();
4260
4261 return 0;
4262}
4263
d86ee480
PZ
4264static inline int should_resched(void)
4265{
4266 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4267}
4268
e7b38404 4269static void __cond_resched(void)
1da177e4 4270{
e7aaaa69 4271 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4272 __schedule();
e7aaaa69 4273 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4274}
4275
02b67cc3 4276int __sched _cond_resched(void)
1da177e4 4277{
d86ee480 4278 if (should_resched()) {
1da177e4
LT
4279 __cond_resched();
4280 return 1;
4281 }
4282 return 0;
4283}
02b67cc3 4284EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4285
4286/*
613afbf8 4287 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4288 * call schedule, and on return reacquire the lock.
4289 *
41a2d6cf 4290 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4291 * operations here to prevent schedule() from being called twice (once via
4292 * spin_unlock(), once by hand).
4293 */
613afbf8 4294int __cond_resched_lock(spinlock_t *lock)
1da177e4 4295{
d86ee480 4296 int resched = should_resched();
6df3cecb
JK
4297 int ret = 0;
4298
f607c668
PZ
4299 lockdep_assert_held(lock);
4300
95c354fe 4301 if (spin_needbreak(lock) || resched) {
1da177e4 4302 spin_unlock(lock);
d86ee480 4303 if (resched)
95c354fe
NP
4304 __cond_resched();
4305 else
4306 cpu_relax();
6df3cecb 4307 ret = 1;
1da177e4 4308 spin_lock(lock);
1da177e4 4309 }
6df3cecb 4310 return ret;
1da177e4 4311}
613afbf8 4312EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4313
613afbf8 4314int __sched __cond_resched_softirq(void)
1da177e4
LT
4315{
4316 BUG_ON(!in_softirq());
4317
d86ee480 4318 if (should_resched()) {
98d82567 4319 local_bh_enable();
1da177e4
LT
4320 __cond_resched();
4321 local_bh_disable();
4322 return 1;
4323 }
4324 return 0;
4325}
613afbf8 4326EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4327
1da177e4
LT
4328/**
4329 * yield - yield the current processor to other threads.
4330 *
8e3fabfd
PZ
4331 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4332 *
4333 * The scheduler is at all times free to pick the calling task as the most
4334 * eligible task to run, if removing the yield() call from your code breaks
4335 * it, its already broken.
4336 *
4337 * Typical broken usage is:
4338 *
4339 * while (!event)
4340 * yield();
4341 *
4342 * where one assumes that yield() will let 'the other' process run that will
4343 * make event true. If the current task is a SCHED_FIFO task that will never
4344 * happen. Never use yield() as a progress guarantee!!
4345 *
4346 * If you want to use yield() to wait for something, use wait_event().
4347 * If you want to use yield() to be 'nice' for others, use cond_resched().
4348 * If you still want to use yield(), do not!
1da177e4
LT
4349 */
4350void __sched yield(void)
4351{
4352 set_current_state(TASK_RUNNING);
4353 sys_sched_yield();
4354}
1da177e4
LT
4355EXPORT_SYMBOL(yield);
4356
d95f4122
MG
4357/**
4358 * yield_to - yield the current processor to another thread in
4359 * your thread group, or accelerate that thread toward the
4360 * processor it's on.
16addf95
RD
4361 * @p: target task
4362 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4363 *
4364 * It's the caller's job to ensure that the target task struct
4365 * can't go away on us before we can do any checks.
4366 *
4367 * Returns true if we indeed boosted the target task.
4368 */
4369bool __sched yield_to(struct task_struct *p, bool preempt)
4370{
4371 struct task_struct *curr = current;
4372 struct rq *rq, *p_rq;
4373 unsigned long flags;
c3c18640 4374 int yielded = 0;
d95f4122
MG
4375
4376 local_irq_save(flags);
4377 rq = this_rq();
4378
4379again:
4380 p_rq = task_rq(p);
4381 double_rq_lock(rq, p_rq);
4382 while (task_rq(p) != p_rq) {
4383 double_rq_unlock(rq, p_rq);
4384 goto again;
4385 }
4386
4387 if (!curr->sched_class->yield_to_task)
4388 goto out;
4389
4390 if (curr->sched_class != p->sched_class)
4391 goto out;
4392
4393 if (task_running(p_rq, p) || p->state)
4394 goto out;
4395
4396 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4397 if (yielded) {
d95f4122 4398 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4399 /*
4400 * Make p's CPU reschedule; pick_next_entity takes care of
4401 * fairness.
4402 */
4403 if (preempt && rq != p_rq)
4404 resched_task(p_rq->curr);
4405 }
d95f4122
MG
4406
4407out:
4408 double_rq_unlock(rq, p_rq);
4409 local_irq_restore(flags);
4410
4411 if (yielded)
4412 schedule();
4413
4414 return yielded;
4415}
4416EXPORT_SYMBOL_GPL(yield_to);
4417
1da177e4 4418/*
41a2d6cf 4419 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4420 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4421 */
4422void __sched io_schedule(void)
4423{
54d35f29 4424 struct rq *rq = raw_rq();
1da177e4 4425
0ff92245 4426 delayacct_blkio_start();
1da177e4 4427 atomic_inc(&rq->nr_iowait);
73c10101 4428 blk_flush_plug(current);
8f0dfc34 4429 current->in_iowait = 1;
1da177e4 4430 schedule();
8f0dfc34 4431 current->in_iowait = 0;
1da177e4 4432 atomic_dec(&rq->nr_iowait);
0ff92245 4433 delayacct_blkio_end();
1da177e4 4434}
1da177e4
LT
4435EXPORT_SYMBOL(io_schedule);
4436
4437long __sched io_schedule_timeout(long timeout)
4438{
54d35f29 4439 struct rq *rq = raw_rq();
1da177e4
LT
4440 long ret;
4441
0ff92245 4442 delayacct_blkio_start();
1da177e4 4443 atomic_inc(&rq->nr_iowait);
73c10101 4444 blk_flush_plug(current);
8f0dfc34 4445 current->in_iowait = 1;
1da177e4 4446 ret = schedule_timeout(timeout);
8f0dfc34 4447 current->in_iowait = 0;
1da177e4 4448 atomic_dec(&rq->nr_iowait);
0ff92245 4449 delayacct_blkio_end();
1da177e4
LT
4450 return ret;
4451}
4452
4453/**
4454 * sys_sched_get_priority_max - return maximum RT priority.
4455 * @policy: scheduling class.
4456 *
4457 * this syscall returns the maximum rt_priority that can be used
4458 * by a given scheduling class.
4459 */
5add95d4 4460SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4461{
4462 int ret = -EINVAL;
4463
4464 switch (policy) {
4465 case SCHED_FIFO:
4466 case SCHED_RR:
4467 ret = MAX_USER_RT_PRIO-1;
4468 break;
4469 case SCHED_NORMAL:
b0a9499c 4470 case SCHED_BATCH:
dd41f596 4471 case SCHED_IDLE:
1da177e4
LT
4472 ret = 0;
4473 break;
4474 }
4475 return ret;
4476}
4477
4478/**
4479 * sys_sched_get_priority_min - return minimum RT priority.
4480 * @policy: scheduling class.
4481 *
4482 * this syscall returns the minimum rt_priority that can be used
4483 * by a given scheduling class.
4484 */
5add95d4 4485SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4486{
4487 int ret = -EINVAL;
4488
4489 switch (policy) {
4490 case SCHED_FIFO:
4491 case SCHED_RR:
4492 ret = 1;
4493 break;
4494 case SCHED_NORMAL:
b0a9499c 4495 case SCHED_BATCH:
dd41f596 4496 case SCHED_IDLE:
1da177e4
LT
4497 ret = 0;
4498 }
4499 return ret;
4500}
4501
4502/**
4503 * sys_sched_rr_get_interval - return the default timeslice of a process.
4504 * @pid: pid of the process.
4505 * @interval: userspace pointer to the timeslice value.
4506 *
4507 * this syscall writes the default timeslice value of a given process
4508 * into the user-space timespec buffer. A value of '0' means infinity.
4509 */
17da2bd9 4510SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4511 struct timespec __user *, interval)
1da177e4 4512{
36c8b586 4513 struct task_struct *p;
a4ec24b4 4514 unsigned int time_slice;
dba091b9
TG
4515 unsigned long flags;
4516 struct rq *rq;
3a5c359a 4517 int retval;
1da177e4 4518 struct timespec t;
1da177e4
LT
4519
4520 if (pid < 0)
3a5c359a 4521 return -EINVAL;
1da177e4
LT
4522
4523 retval = -ESRCH;
1a551ae7 4524 rcu_read_lock();
1da177e4
LT
4525 p = find_process_by_pid(pid);
4526 if (!p)
4527 goto out_unlock;
4528
4529 retval = security_task_getscheduler(p);
4530 if (retval)
4531 goto out_unlock;
4532
dba091b9
TG
4533 rq = task_rq_lock(p, &flags);
4534 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4535 task_rq_unlock(rq, p, &flags);
a4ec24b4 4536
1a551ae7 4537 rcu_read_unlock();
a4ec24b4 4538 jiffies_to_timespec(time_slice, &t);
1da177e4 4539 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4540 return retval;
3a5c359a 4541
1da177e4 4542out_unlock:
1a551ae7 4543 rcu_read_unlock();
1da177e4
LT
4544 return retval;
4545}
4546
7c731e0a 4547static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4548
82a1fcb9 4549void sched_show_task(struct task_struct *p)
1da177e4 4550{
1da177e4 4551 unsigned long free = 0;
4e79752c 4552 int ppid;
36c8b586 4553 unsigned state;
1da177e4 4554
1da177e4 4555 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4556 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4557 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4558#if BITS_PER_LONG == 32
1da177e4 4559 if (state == TASK_RUNNING)
3df0fc5b 4560 printk(KERN_CONT " running ");
1da177e4 4561 else
3df0fc5b 4562 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4563#else
4564 if (state == TASK_RUNNING)
3df0fc5b 4565 printk(KERN_CONT " running task ");
1da177e4 4566 else
3df0fc5b 4567 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4568#endif
4569#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4570 free = stack_not_used(p);
1da177e4 4571#endif
4e79752c
PM
4572 rcu_read_lock();
4573 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4574 rcu_read_unlock();
3df0fc5b 4575 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4576 task_pid_nr(p), ppid,
aa47b7e0 4577 (unsigned long)task_thread_info(p)->flags);
1da177e4 4578
5fb5e6de 4579 show_stack(p, NULL);
1da177e4
LT
4580}
4581
e59e2ae2 4582void show_state_filter(unsigned long state_filter)
1da177e4 4583{
36c8b586 4584 struct task_struct *g, *p;
1da177e4 4585
4bd77321 4586#if BITS_PER_LONG == 32
3df0fc5b
PZ
4587 printk(KERN_INFO
4588 " task PC stack pid father\n");
1da177e4 4589#else
3df0fc5b
PZ
4590 printk(KERN_INFO
4591 " task PC stack pid father\n");
1da177e4 4592#endif
510f5acc 4593 rcu_read_lock();
1da177e4
LT
4594 do_each_thread(g, p) {
4595 /*
4596 * reset the NMI-timeout, listing all files on a slow
25985edc 4597 * console might take a lot of time:
1da177e4
LT
4598 */
4599 touch_nmi_watchdog();
39bc89fd 4600 if (!state_filter || (p->state & state_filter))
82a1fcb9 4601 sched_show_task(p);
1da177e4
LT
4602 } while_each_thread(g, p);
4603
04c9167f
JF
4604 touch_all_softlockup_watchdogs();
4605
dd41f596
IM
4606#ifdef CONFIG_SCHED_DEBUG
4607 sysrq_sched_debug_show();
4608#endif
510f5acc 4609 rcu_read_unlock();
e59e2ae2
IM
4610 /*
4611 * Only show locks if all tasks are dumped:
4612 */
93335a21 4613 if (!state_filter)
e59e2ae2 4614 debug_show_all_locks();
1da177e4
LT
4615}
4616
1df21055
IM
4617void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4618{
dd41f596 4619 idle->sched_class = &idle_sched_class;
1df21055
IM
4620}
4621
f340c0d1
IM
4622/**
4623 * init_idle - set up an idle thread for a given CPU
4624 * @idle: task in question
4625 * @cpu: cpu the idle task belongs to
4626 *
4627 * NOTE: this function does not set the idle thread's NEED_RESCHED
4628 * flag, to make booting more robust.
4629 */
5c1e1767 4630void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4631{
70b97a7f 4632 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4633 unsigned long flags;
4634
05fa785c 4635 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4636
dd41f596 4637 __sched_fork(idle);
06b83b5f 4638 idle->state = TASK_RUNNING;
dd41f596
IM
4639 idle->se.exec_start = sched_clock();
4640
1e1b6c51 4641 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4642 /*
4643 * We're having a chicken and egg problem, even though we are
4644 * holding rq->lock, the cpu isn't yet set to this cpu so the
4645 * lockdep check in task_group() will fail.
4646 *
4647 * Similar case to sched_fork(). / Alternatively we could
4648 * use task_rq_lock() here and obtain the other rq->lock.
4649 *
4650 * Silence PROVE_RCU
4651 */
4652 rcu_read_lock();
dd41f596 4653 __set_task_cpu(idle, cpu);
6506cf6c 4654 rcu_read_unlock();
1da177e4 4655
1da177e4 4656 rq->curr = rq->idle = idle;
3ca7a440
PZ
4657#if defined(CONFIG_SMP)
4658 idle->on_cpu = 1;
4866cde0 4659#endif
05fa785c 4660 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4661
4662 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4663 task_thread_info(idle)->preempt_count = 0;
55cd5340 4664
dd41f596
IM
4665 /*
4666 * The idle tasks have their own, simple scheduling class:
4667 */
4668 idle->sched_class = &idle_sched_class;
868baf07 4669 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4670 vtime_init_idle(idle);
f1c6f1a7
CE
4671#if defined(CONFIG_SMP)
4672 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4673#endif
19978ca6
IM
4674}
4675
1da177e4 4676#ifdef CONFIG_SMP
1e1b6c51
KM
4677void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4678{
4679 if (p->sched_class && p->sched_class->set_cpus_allowed)
4680 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4681
4682 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4683 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4684}
4685
1da177e4
LT
4686/*
4687 * This is how migration works:
4688 *
969c7921
TH
4689 * 1) we invoke migration_cpu_stop() on the target CPU using
4690 * stop_one_cpu().
4691 * 2) stopper starts to run (implicitly forcing the migrated thread
4692 * off the CPU)
4693 * 3) it checks whether the migrated task is still in the wrong runqueue.
4694 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4695 * it and puts it into the right queue.
969c7921
TH
4696 * 5) stopper completes and stop_one_cpu() returns and the migration
4697 * is done.
1da177e4
LT
4698 */
4699
4700/*
4701 * Change a given task's CPU affinity. Migrate the thread to a
4702 * proper CPU and schedule it away if the CPU it's executing on
4703 * is removed from the allowed bitmask.
4704 *
4705 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4706 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4707 * call is not atomic; no spinlocks may be held.
4708 */
96f874e2 4709int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4710{
4711 unsigned long flags;
70b97a7f 4712 struct rq *rq;
969c7921 4713 unsigned int dest_cpu;
48f24c4d 4714 int ret = 0;
1da177e4
LT
4715
4716 rq = task_rq_lock(p, &flags);
e2912009 4717
db44fc01
YZ
4718 if (cpumask_equal(&p->cpus_allowed, new_mask))
4719 goto out;
4720
6ad4c188 4721 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4722 ret = -EINVAL;
4723 goto out;
4724 }
4725
db44fc01 4726 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4727 ret = -EINVAL;
4728 goto out;
4729 }
4730
1e1b6c51 4731 do_set_cpus_allowed(p, new_mask);
73fe6aae 4732
1da177e4 4733 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4734 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4735 goto out;
4736
969c7921 4737 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4738 if (p->on_rq) {
969c7921 4739 struct migration_arg arg = { p, dest_cpu };
1da177e4 4740 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4741 task_rq_unlock(rq, p, &flags);
969c7921 4742 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4743 tlb_migrate_finish(p->mm);
4744 return 0;
4745 }
4746out:
0122ec5b 4747 task_rq_unlock(rq, p, &flags);
48f24c4d 4748
1da177e4
LT
4749 return ret;
4750}
cd8ba7cd 4751EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4752
4753/*
41a2d6cf 4754 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4755 * this because either it can't run here any more (set_cpus_allowed()
4756 * away from this CPU, or CPU going down), or because we're
4757 * attempting to rebalance this task on exec (sched_exec).
4758 *
4759 * So we race with normal scheduler movements, but that's OK, as long
4760 * as the task is no longer on this CPU.
efc30814
KK
4761 *
4762 * Returns non-zero if task was successfully migrated.
1da177e4 4763 */
efc30814 4764static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4765{
70b97a7f 4766 struct rq *rq_dest, *rq_src;
e2912009 4767 int ret = 0;
1da177e4 4768
e761b772 4769 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4770 return ret;
1da177e4
LT
4771
4772 rq_src = cpu_rq(src_cpu);
4773 rq_dest = cpu_rq(dest_cpu);
4774
0122ec5b 4775 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4776 double_rq_lock(rq_src, rq_dest);
4777 /* Already moved. */
4778 if (task_cpu(p) != src_cpu)
b1e38734 4779 goto done;
1da177e4 4780 /* Affinity changed (again). */
fa17b507 4781 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4782 goto fail;
1da177e4 4783
e2912009
PZ
4784 /*
4785 * If we're not on a rq, the next wake-up will ensure we're
4786 * placed properly.
4787 */
fd2f4419 4788 if (p->on_rq) {
4ca9b72b 4789 dequeue_task(rq_src, p, 0);
e2912009 4790 set_task_cpu(p, dest_cpu);
4ca9b72b 4791 enqueue_task(rq_dest, p, 0);
15afe09b 4792 check_preempt_curr(rq_dest, p, 0);
1da177e4 4793 }
b1e38734 4794done:
efc30814 4795 ret = 1;
b1e38734 4796fail:
1da177e4 4797 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4798 raw_spin_unlock(&p->pi_lock);
efc30814 4799 return ret;
1da177e4
LT
4800}
4801
4802/*
969c7921
TH
4803 * migration_cpu_stop - this will be executed by a highprio stopper thread
4804 * and performs thread migration by bumping thread off CPU then
4805 * 'pushing' onto another runqueue.
1da177e4 4806 */
969c7921 4807static int migration_cpu_stop(void *data)
1da177e4 4808{
969c7921 4809 struct migration_arg *arg = data;
f7b4cddc 4810
969c7921
TH
4811 /*
4812 * The original target cpu might have gone down and we might
4813 * be on another cpu but it doesn't matter.
4814 */
f7b4cddc 4815 local_irq_disable();
969c7921 4816 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4817 local_irq_enable();
1da177e4 4818 return 0;
f7b4cddc
ON
4819}
4820
1da177e4 4821#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4822
054b9108 4823/*
48c5ccae
PZ
4824 * Ensures that the idle task is using init_mm right before its cpu goes
4825 * offline.
054b9108 4826 */
48c5ccae 4827void idle_task_exit(void)
1da177e4 4828{
48c5ccae 4829 struct mm_struct *mm = current->active_mm;
e76bd8d9 4830
48c5ccae 4831 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4832
48c5ccae
PZ
4833 if (mm != &init_mm)
4834 switch_mm(mm, &init_mm, current);
4835 mmdrop(mm);
1da177e4
LT
4836}
4837
4838/*
5d180232
PZ
4839 * Since this CPU is going 'away' for a while, fold any nr_active delta
4840 * we might have. Assumes we're called after migrate_tasks() so that the
4841 * nr_active count is stable.
4842 *
4843 * Also see the comment "Global load-average calculations".
1da177e4 4844 */
5d180232 4845static void calc_load_migrate(struct rq *rq)
1da177e4 4846{
5d180232
PZ
4847 long delta = calc_load_fold_active(rq);
4848 if (delta)
4849 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4850}
4851
48f24c4d 4852/*
48c5ccae
PZ
4853 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4854 * try_to_wake_up()->select_task_rq().
4855 *
4856 * Called with rq->lock held even though we'er in stop_machine() and
4857 * there's no concurrency possible, we hold the required locks anyway
4858 * because of lock validation efforts.
1da177e4 4859 */
48c5ccae 4860static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4861{
70b97a7f 4862 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4863 struct task_struct *next, *stop = rq->stop;
4864 int dest_cpu;
1da177e4
LT
4865
4866 /*
48c5ccae
PZ
4867 * Fudge the rq selection such that the below task selection loop
4868 * doesn't get stuck on the currently eligible stop task.
4869 *
4870 * We're currently inside stop_machine() and the rq is either stuck
4871 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4872 * either way we should never end up calling schedule() until we're
4873 * done here.
1da177e4 4874 */
48c5ccae 4875 rq->stop = NULL;
48f24c4d 4876
dd41f596 4877 for ( ; ; ) {
48c5ccae
PZ
4878 /*
4879 * There's this thread running, bail when that's the only
4880 * remaining thread.
4881 */
4882 if (rq->nr_running == 1)
dd41f596 4883 break;
48c5ccae 4884
b67802ea 4885 next = pick_next_task(rq);
48c5ccae 4886 BUG_ON(!next);
79c53799 4887 next->sched_class->put_prev_task(rq, next);
e692ab53 4888
48c5ccae
PZ
4889 /* Find suitable destination for @next, with force if needed. */
4890 dest_cpu = select_fallback_rq(dead_cpu, next);
4891 raw_spin_unlock(&rq->lock);
4892
4893 __migrate_task(next, dead_cpu, dest_cpu);
4894
4895 raw_spin_lock(&rq->lock);
1da177e4 4896 }
dce48a84 4897
48c5ccae 4898 rq->stop = stop;
dce48a84 4899}
48c5ccae 4900
1da177e4
LT
4901#endif /* CONFIG_HOTPLUG_CPU */
4902
e692ab53
NP
4903#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4904
4905static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4906 {
4907 .procname = "sched_domain",
c57baf1e 4908 .mode = 0555,
e0361851 4909 },
56992309 4910 {}
e692ab53
NP
4911};
4912
4913static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4914 {
4915 .procname = "kernel",
c57baf1e 4916 .mode = 0555,
e0361851
AD
4917 .child = sd_ctl_dir,
4918 },
56992309 4919 {}
e692ab53
NP
4920};
4921
4922static struct ctl_table *sd_alloc_ctl_entry(int n)
4923{
4924 struct ctl_table *entry =
5cf9f062 4925 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4926
e692ab53
NP
4927 return entry;
4928}
4929
6382bc90
MM
4930static void sd_free_ctl_entry(struct ctl_table **tablep)
4931{
cd790076 4932 struct ctl_table *entry;
6382bc90 4933
cd790076
MM
4934 /*
4935 * In the intermediate directories, both the child directory and
4936 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4937 * will always be set. In the lowest directory the names are
cd790076
MM
4938 * static strings and all have proc handlers.
4939 */
4940 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4941 if (entry->child)
4942 sd_free_ctl_entry(&entry->child);
cd790076
MM
4943 if (entry->proc_handler == NULL)
4944 kfree(entry->procname);
4945 }
6382bc90
MM
4946
4947 kfree(*tablep);
4948 *tablep = NULL;
4949}
4950
201c373e
NK
4951static int min_load_idx = 0;
4952static int max_load_idx = CPU_LOAD_IDX_MAX;
4953
e692ab53 4954static void
e0361851 4955set_table_entry(struct ctl_table *entry,
e692ab53 4956 const char *procname, void *data, int maxlen,
201c373e
NK
4957 umode_t mode, proc_handler *proc_handler,
4958 bool load_idx)
e692ab53 4959{
e692ab53
NP
4960 entry->procname = procname;
4961 entry->data = data;
4962 entry->maxlen = maxlen;
4963 entry->mode = mode;
4964 entry->proc_handler = proc_handler;
201c373e
NK
4965
4966 if (load_idx) {
4967 entry->extra1 = &min_load_idx;
4968 entry->extra2 = &max_load_idx;
4969 }
e692ab53
NP
4970}
4971
4972static struct ctl_table *
4973sd_alloc_ctl_domain_table(struct sched_domain *sd)
4974{
a5d8c348 4975 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4976
ad1cdc1d
MM
4977 if (table == NULL)
4978 return NULL;
4979
e0361851 4980 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4981 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4982 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4983 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4984 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4985 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4986 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4987 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4988 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4989 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4990 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4991 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4992 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4993 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4994 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4995 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4996 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4997 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4998 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4999 &sd->cache_nice_tries,
201c373e 5000 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5001 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5002 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5003 set_table_entry(&table[11], "name", sd->name,
201c373e 5004 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5005 /* &table[12] is terminator */
e692ab53
NP
5006
5007 return table;
5008}
5009
9a4e7159 5010static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5011{
5012 struct ctl_table *entry, *table;
5013 struct sched_domain *sd;
5014 int domain_num = 0, i;
5015 char buf[32];
5016
5017 for_each_domain(cpu, sd)
5018 domain_num++;
5019 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5020 if (table == NULL)
5021 return NULL;
e692ab53
NP
5022
5023 i = 0;
5024 for_each_domain(cpu, sd) {
5025 snprintf(buf, 32, "domain%d", i);
e692ab53 5026 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5027 entry->mode = 0555;
e692ab53
NP
5028 entry->child = sd_alloc_ctl_domain_table(sd);
5029 entry++;
5030 i++;
5031 }
5032 return table;
5033}
5034
5035static struct ctl_table_header *sd_sysctl_header;
6382bc90 5036static void register_sched_domain_sysctl(void)
e692ab53 5037{
6ad4c188 5038 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5039 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5040 char buf[32];
5041
7378547f
MM
5042 WARN_ON(sd_ctl_dir[0].child);
5043 sd_ctl_dir[0].child = entry;
5044
ad1cdc1d
MM
5045 if (entry == NULL)
5046 return;
5047
6ad4c188 5048 for_each_possible_cpu(i) {
e692ab53 5049 snprintf(buf, 32, "cpu%d", i);
e692ab53 5050 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5051 entry->mode = 0555;
e692ab53 5052 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5053 entry++;
e692ab53 5054 }
7378547f
MM
5055
5056 WARN_ON(sd_sysctl_header);
e692ab53
NP
5057 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5058}
6382bc90 5059
7378547f 5060/* may be called multiple times per register */
6382bc90
MM
5061static void unregister_sched_domain_sysctl(void)
5062{
7378547f
MM
5063 if (sd_sysctl_header)
5064 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5065 sd_sysctl_header = NULL;
7378547f
MM
5066 if (sd_ctl_dir[0].child)
5067 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5068}
e692ab53 5069#else
6382bc90
MM
5070static void register_sched_domain_sysctl(void)
5071{
5072}
5073static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5074{
5075}
5076#endif
5077
1f11eb6a
GH
5078static void set_rq_online(struct rq *rq)
5079{
5080 if (!rq->online) {
5081 const struct sched_class *class;
5082
c6c4927b 5083 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5084 rq->online = 1;
5085
5086 for_each_class(class) {
5087 if (class->rq_online)
5088 class->rq_online(rq);
5089 }
5090 }
5091}
5092
5093static void set_rq_offline(struct rq *rq)
5094{
5095 if (rq->online) {
5096 const struct sched_class *class;
5097
5098 for_each_class(class) {
5099 if (class->rq_offline)
5100 class->rq_offline(rq);
5101 }
5102
c6c4927b 5103 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5104 rq->online = 0;
5105 }
5106}
5107
1da177e4
LT
5108/*
5109 * migration_call - callback that gets triggered when a CPU is added.
5110 * Here we can start up the necessary migration thread for the new CPU.
5111 */
48f24c4d
IM
5112static int __cpuinit
5113migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5114{
48f24c4d 5115 int cpu = (long)hcpu;
1da177e4 5116 unsigned long flags;
969c7921 5117 struct rq *rq = cpu_rq(cpu);
1da177e4 5118
48c5ccae 5119 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5120
1da177e4 5121 case CPU_UP_PREPARE:
a468d389 5122 rq->calc_load_update = calc_load_update;
1da177e4 5123 break;
48f24c4d 5124
1da177e4 5125 case CPU_ONLINE:
1f94ef59 5126 /* Update our root-domain */
05fa785c 5127 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5128 if (rq->rd) {
c6c4927b 5129 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5130
5131 set_rq_online(rq);
1f94ef59 5132 }
05fa785c 5133 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5134 break;
48f24c4d 5135
1da177e4 5136#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5137 case CPU_DYING:
317f3941 5138 sched_ttwu_pending();
57d885fe 5139 /* Update our root-domain */
05fa785c 5140 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5141 if (rq->rd) {
c6c4927b 5142 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5143 set_rq_offline(rq);
57d885fe 5144 }
48c5ccae
PZ
5145 migrate_tasks(cpu);
5146 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5147 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5148 break;
48c5ccae 5149
5d180232 5150 case CPU_DEAD:
f319da0c 5151 calc_load_migrate(rq);
57d885fe 5152 break;
1da177e4
LT
5153#endif
5154 }
49c022e6
PZ
5155
5156 update_max_interval();
5157
1da177e4
LT
5158 return NOTIFY_OK;
5159}
5160
f38b0820
PM
5161/*
5162 * Register at high priority so that task migration (migrate_all_tasks)
5163 * happens before everything else. This has to be lower priority than
cdd6c482 5164 * the notifier in the perf_event subsystem, though.
1da177e4 5165 */
26c2143b 5166static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5167 .notifier_call = migration_call,
50a323b7 5168 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5169};
5170
3a101d05
TH
5171static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5172 unsigned long action, void *hcpu)
5173{
5174 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5175 case CPU_STARTING:
3a101d05
TH
5176 case CPU_DOWN_FAILED:
5177 set_cpu_active((long)hcpu, true);
5178 return NOTIFY_OK;
5179 default:
5180 return NOTIFY_DONE;
5181 }
5182}
5183
5184static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5185 unsigned long action, void *hcpu)
5186{
5187 switch (action & ~CPU_TASKS_FROZEN) {
5188 case CPU_DOWN_PREPARE:
5189 set_cpu_active((long)hcpu, false);
5190 return NOTIFY_OK;
5191 default:
5192 return NOTIFY_DONE;
5193 }
5194}
5195
7babe8db 5196static int __init migration_init(void)
1da177e4
LT
5197{
5198 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5199 int err;
48f24c4d 5200
3a101d05 5201 /* Initialize migration for the boot CPU */
07dccf33
AM
5202 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5203 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5204 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5205 register_cpu_notifier(&migration_notifier);
7babe8db 5206
3a101d05
TH
5207 /* Register cpu active notifiers */
5208 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5209 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5210
a004cd42 5211 return 0;
1da177e4 5212}
7babe8db 5213early_initcall(migration_init);
1da177e4
LT
5214#endif
5215
5216#ifdef CONFIG_SMP
476f3534 5217
4cb98839
PZ
5218static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5219
3e9830dc 5220#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5221
d039ac60 5222static __read_mostly int sched_debug_enabled;
f6630114 5223
d039ac60 5224static int __init sched_debug_setup(char *str)
f6630114 5225{
d039ac60 5226 sched_debug_enabled = 1;
f6630114
MT
5227
5228 return 0;
5229}
d039ac60
PZ
5230early_param("sched_debug", sched_debug_setup);
5231
5232static inline bool sched_debug(void)
5233{
5234 return sched_debug_enabled;
5235}
f6630114 5236
7c16ec58 5237static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5238 struct cpumask *groupmask)
1da177e4 5239{
4dcf6aff 5240 struct sched_group *group = sd->groups;
434d53b0 5241 char str[256];
1da177e4 5242
968ea6d8 5243 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5244 cpumask_clear(groupmask);
4dcf6aff
IM
5245
5246 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5247
5248 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5249 printk("does not load-balance\n");
4dcf6aff 5250 if (sd->parent)
3df0fc5b
PZ
5251 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5252 " has parent");
4dcf6aff 5253 return -1;
41c7ce9a
NP
5254 }
5255
3df0fc5b 5256 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5257
758b2cdc 5258 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5259 printk(KERN_ERR "ERROR: domain->span does not contain "
5260 "CPU%d\n", cpu);
4dcf6aff 5261 }
758b2cdc 5262 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5263 printk(KERN_ERR "ERROR: domain->groups does not contain"
5264 " CPU%d\n", cpu);
4dcf6aff 5265 }
1da177e4 5266
4dcf6aff 5267 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5268 do {
4dcf6aff 5269 if (!group) {
3df0fc5b
PZ
5270 printk("\n");
5271 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5272 break;
5273 }
5274
c3decf0d
PZ
5275 /*
5276 * Even though we initialize ->power to something semi-sane,
5277 * we leave power_orig unset. This allows us to detect if
5278 * domain iteration is still funny without causing /0 traps.
5279 */
5280 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5281 printk(KERN_CONT "\n");
5282 printk(KERN_ERR "ERROR: domain->cpu_power not "
5283 "set\n");
4dcf6aff
IM
5284 break;
5285 }
1da177e4 5286
758b2cdc 5287 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5288 printk(KERN_CONT "\n");
5289 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5290 break;
5291 }
1da177e4 5292
cb83b629
PZ
5293 if (!(sd->flags & SD_OVERLAP) &&
5294 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5295 printk(KERN_CONT "\n");
5296 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5297 break;
5298 }
1da177e4 5299
758b2cdc 5300 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5301
968ea6d8 5302 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5303
3df0fc5b 5304 printk(KERN_CONT " %s", str);
9c3f75cb 5305 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5306 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5307 group->sgp->power);
381512cf 5308 }
1da177e4 5309
4dcf6aff
IM
5310 group = group->next;
5311 } while (group != sd->groups);
3df0fc5b 5312 printk(KERN_CONT "\n");
1da177e4 5313
758b2cdc 5314 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5315 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5316
758b2cdc
RR
5317 if (sd->parent &&
5318 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5319 printk(KERN_ERR "ERROR: parent span is not a superset "
5320 "of domain->span\n");
4dcf6aff
IM
5321 return 0;
5322}
1da177e4 5323
4dcf6aff
IM
5324static void sched_domain_debug(struct sched_domain *sd, int cpu)
5325{
5326 int level = 0;
1da177e4 5327
d039ac60 5328 if (!sched_debug_enabled)
f6630114
MT
5329 return;
5330
4dcf6aff
IM
5331 if (!sd) {
5332 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5333 return;
5334 }
1da177e4 5335
4dcf6aff
IM
5336 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5337
5338 for (;;) {
4cb98839 5339 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5340 break;
1da177e4
LT
5341 level++;
5342 sd = sd->parent;
33859f7f 5343 if (!sd)
4dcf6aff
IM
5344 break;
5345 }
1da177e4 5346}
6d6bc0ad 5347#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5348# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5349static inline bool sched_debug(void)
5350{
5351 return false;
5352}
6d6bc0ad 5353#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5354
1a20ff27 5355static int sd_degenerate(struct sched_domain *sd)
245af2c7 5356{
758b2cdc 5357 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5358 return 1;
5359
5360 /* Following flags need at least 2 groups */
5361 if (sd->flags & (SD_LOAD_BALANCE |
5362 SD_BALANCE_NEWIDLE |
5363 SD_BALANCE_FORK |
89c4710e
SS
5364 SD_BALANCE_EXEC |
5365 SD_SHARE_CPUPOWER |
5366 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5367 if (sd->groups != sd->groups->next)
5368 return 0;
5369 }
5370
5371 /* Following flags don't use groups */
c88d5910 5372 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5373 return 0;
5374
5375 return 1;
5376}
5377
48f24c4d
IM
5378static int
5379sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5380{
5381 unsigned long cflags = sd->flags, pflags = parent->flags;
5382
5383 if (sd_degenerate(parent))
5384 return 1;
5385
758b2cdc 5386 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5387 return 0;
5388
245af2c7
SS
5389 /* Flags needing groups don't count if only 1 group in parent */
5390 if (parent->groups == parent->groups->next) {
5391 pflags &= ~(SD_LOAD_BALANCE |
5392 SD_BALANCE_NEWIDLE |
5393 SD_BALANCE_FORK |
89c4710e
SS
5394 SD_BALANCE_EXEC |
5395 SD_SHARE_CPUPOWER |
5396 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5397 if (nr_node_ids == 1)
5398 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5399 }
5400 if (~cflags & pflags)
5401 return 0;
5402
5403 return 1;
5404}
5405
dce840a0 5406static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5407{
dce840a0 5408 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5409
68e74568 5410 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5411 free_cpumask_var(rd->rto_mask);
5412 free_cpumask_var(rd->online);
5413 free_cpumask_var(rd->span);
5414 kfree(rd);
5415}
5416
57d885fe
GH
5417static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5418{
a0490fa3 5419 struct root_domain *old_rd = NULL;
57d885fe 5420 unsigned long flags;
57d885fe 5421
05fa785c 5422 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5423
5424 if (rq->rd) {
a0490fa3 5425 old_rd = rq->rd;
57d885fe 5426
c6c4927b 5427 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5428 set_rq_offline(rq);
57d885fe 5429
c6c4927b 5430 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5431
a0490fa3
IM
5432 /*
5433 * If we dont want to free the old_rt yet then
5434 * set old_rd to NULL to skip the freeing later
5435 * in this function:
5436 */
5437 if (!atomic_dec_and_test(&old_rd->refcount))
5438 old_rd = NULL;
57d885fe
GH
5439 }
5440
5441 atomic_inc(&rd->refcount);
5442 rq->rd = rd;
5443
c6c4927b 5444 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5445 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5446 set_rq_online(rq);
57d885fe 5447
05fa785c 5448 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5449
5450 if (old_rd)
dce840a0 5451 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5452}
5453
68c38fc3 5454static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5455{
5456 memset(rd, 0, sizeof(*rd));
5457
68c38fc3 5458 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5459 goto out;
68c38fc3 5460 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5461 goto free_span;
68c38fc3 5462 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5463 goto free_online;
6e0534f2 5464
68c38fc3 5465 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5466 goto free_rto_mask;
c6c4927b 5467 return 0;
6e0534f2 5468
68e74568
RR
5469free_rto_mask:
5470 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5471free_online:
5472 free_cpumask_var(rd->online);
5473free_span:
5474 free_cpumask_var(rd->span);
0c910d28 5475out:
c6c4927b 5476 return -ENOMEM;
57d885fe
GH
5477}
5478
029632fb
PZ
5479/*
5480 * By default the system creates a single root-domain with all cpus as
5481 * members (mimicking the global state we have today).
5482 */
5483struct root_domain def_root_domain;
5484
57d885fe
GH
5485static void init_defrootdomain(void)
5486{
68c38fc3 5487 init_rootdomain(&def_root_domain);
c6c4927b 5488
57d885fe
GH
5489 atomic_set(&def_root_domain.refcount, 1);
5490}
5491
dc938520 5492static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5493{
5494 struct root_domain *rd;
5495
5496 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5497 if (!rd)
5498 return NULL;
5499
68c38fc3 5500 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5501 kfree(rd);
5502 return NULL;
5503 }
57d885fe
GH
5504
5505 return rd;
5506}
5507
e3589f6c
PZ
5508static void free_sched_groups(struct sched_group *sg, int free_sgp)
5509{
5510 struct sched_group *tmp, *first;
5511
5512 if (!sg)
5513 return;
5514
5515 first = sg;
5516 do {
5517 tmp = sg->next;
5518
5519 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5520 kfree(sg->sgp);
5521
5522 kfree(sg);
5523 sg = tmp;
5524 } while (sg != first);
5525}
5526
dce840a0
PZ
5527static void free_sched_domain(struct rcu_head *rcu)
5528{
5529 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5530
5531 /*
5532 * If its an overlapping domain it has private groups, iterate and
5533 * nuke them all.
5534 */
5535 if (sd->flags & SD_OVERLAP) {
5536 free_sched_groups(sd->groups, 1);
5537 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5538 kfree(sd->groups->sgp);
dce840a0 5539 kfree(sd->groups);
9c3f75cb 5540 }
dce840a0
PZ
5541 kfree(sd);
5542}
5543
5544static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5545{
5546 call_rcu(&sd->rcu, free_sched_domain);
5547}
5548
5549static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5550{
5551 for (; sd; sd = sd->parent)
5552 destroy_sched_domain(sd, cpu);
5553}
5554
518cd623
PZ
5555/*
5556 * Keep a special pointer to the highest sched_domain that has
5557 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5558 * allows us to avoid some pointer chasing select_idle_sibling().
5559 *
5560 * Also keep a unique ID per domain (we use the first cpu number in
5561 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5562 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5563 */
5564DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5565DEFINE_PER_CPU(int, sd_llc_id);
5566
5567static void update_top_cache_domain(int cpu)
5568{
5569 struct sched_domain *sd;
5570 int id = cpu;
5571
5572 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5573 if (sd)
518cd623
PZ
5574 id = cpumask_first(sched_domain_span(sd));
5575
5576 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5577 per_cpu(sd_llc_id, cpu) = id;
5578}
5579
1da177e4 5580/*
0eab9146 5581 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5582 * hold the hotplug lock.
5583 */
0eab9146
IM
5584static void
5585cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5586{
70b97a7f 5587 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5588 struct sched_domain *tmp;
5589
5590 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5591 for (tmp = sd; tmp; ) {
245af2c7
SS
5592 struct sched_domain *parent = tmp->parent;
5593 if (!parent)
5594 break;
f29c9b1c 5595
1a848870 5596 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5597 tmp->parent = parent->parent;
1a848870
SS
5598 if (parent->parent)
5599 parent->parent->child = tmp;
dce840a0 5600 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5601 } else
5602 tmp = tmp->parent;
245af2c7
SS
5603 }
5604
1a848870 5605 if (sd && sd_degenerate(sd)) {
dce840a0 5606 tmp = sd;
245af2c7 5607 sd = sd->parent;
dce840a0 5608 destroy_sched_domain(tmp, cpu);
1a848870
SS
5609 if (sd)
5610 sd->child = NULL;
5611 }
1da177e4 5612
4cb98839 5613 sched_domain_debug(sd, cpu);
1da177e4 5614
57d885fe 5615 rq_attach_root(rq, rd);
dce840a0 5616 tmp = rq->sd;
674311d5 5617 rcu_assign_pointer(rq->sd, sd);
dce840a0 5618 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5619
5620 update_top_cache_domain(cpu);
1da177e4
LT
5621}
5622
5623/* cpus with isolated domains */
dcc30a35 5624static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5625
5626/* Setup the mask of cpus configured for isolated domains */
5627static int __init isolated_cpu_setup(char *str)
5628{
bdddd296 5629 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5630 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5631 return 1;
5632}
5633
8927f494 5634__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5635
d3081f52
PZ
5636static const struct cpumask *cpu_cpu_mask(int cpu)
5637{
5638 return cpumask_of_node(cpu_to_node(cpu));
5639}
5640
dce840a0
PZ
5641struct sd_data {
5642 struct sched_domain **__percpu sd;
5643 struct sched_group **__percpu sg;
9c3f75cb 5644 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5645};
5646
49a02c51 5647struct s_data {
21d42ccf 5648 struct sched_domain ** __percpu sd;
49a02c51
AH
5649 struct root_domain *rd;
5650};
5651
2109b99e 5652enum s_alloc {
2109b99e 5653 sa_rootdomain,
21d42ccf 5654 sa_sd,
dce840a0 5655 sa_sd_storage,
2109b99e
AH
5656 sa_none,
5657};
5658
54ab4ff4
PZ
5659struct sched_domain_topology_level;
5660
5661typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5662typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5663
e3589f6c
PZ
5664#define SDTL_OVERLAP 0x01
5665
eb7a74e6 5666struct sched_domain_topology_level {
2c402dc3
PZ
5667 sched_domain_init_f init;
5668 sched_domain_mask_f mask;
e3589f6c 5669 int flags;
cb83b629 5670 int numa_level;
54ab4ff4 5671 struct sd_data data;
eb7a74e6
PZ
5672};
5673
c1174876
PZ
5674/*
5675 * Build an iteration mask that can exclude certain CPUs from the upwards
5676 * domain traversal.
5677 *
5678 * Asymmetric node setups can result in situations where the domain tree is of
5679 * unequal depth, make sure to skip domains that already cover the entire
5680 * range.
5681 *
5682 * In that case build_sched_domains() will have terminated the iteration early
5683 * and our sibling sd spans will be empty. Domains should always include the
5684 * cpu they're built on, so check that.
5685 *
5686 */
5687static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5688{
5689 const struct cpumask *span = sched_domain_span(sd);
5690 struct sd_data *sdd = sd->private;
5691 struct sched_domain *sibling;
5692 int i;
5693
5694 for_each_cpu(i, span) {
5695 sibling = *per_cpu_ptr(sdd->sd, i);
5696 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5697 continue;
5698
5699 cpumask_set_cpu(i, sched_group_mask(sg));
5700 }
5701}
5702
5703/*
5704 * Return the canonical balance cpu for this group, this is the first cpu
5705 * of this group that's also in the iteration mask.
5706 */
5707int group_balance_cpu(struct sched_group *sg)
5708{
5709 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5710}
5711
e3589f6c
PZ
5712static int
5713build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5714{
5715 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5716 const struct cpumask *span = sched_domain_span(sd);
5717 struct cpumask *covered = sched_domains_tmpmask;
5718 struct sd_data *sdd = sd->private;
5719 struct sched_domain *child;
5720 int i;
5721
5722 cpumask_clear(covered);
5723
5724 for_each_cpu(i, span) {
5725 struct cpumask *sg_span;
5726
5727 if (cpumask_test_cpu(i, covered))
5728 continue;
5729
c1174876
PZ
5730 child = *per_cpu_ptr(sdd->sd, i);
5731
5732 /* See the comment near build_group_mask(). */
5733 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5734 continue;
5735
e3589f6c 5736 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5737 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5738
5739 if (!sg)
5740 goto fail;
5741
5742 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5743 if (child->child) {
5744 child = child->child;
5745 cpumask_copy(sg_span, sched_domain_span(child));
5746 } else
5747 cpumask_set_cpu(i, sg_span);
5748
5749 cpumask_or(covered, covered, sg_span);
5750
74a5ce20 5751 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5752 if (atomic_inc_return(&sg->sgp->ref) == 1)
5753 build_group_mask(sd, sg);
5754
c3decf0d
PZ
5755 /*
5756 * Initialize sgp->power such that even if we mess up the
5757 * domains and no possible iteration will get us here, we won't
5758 * die on a /0 trap.
5759 */
5760 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5761
c1174876
PZ
5762 /*
5763 * Make sure the first group of this domain contains the
5764 * canonical balance cpu. Otherwise the sched_domain iteration
5765 * breaks. See update_sg_lb_stats().
5766 */
74a5ce20 5767 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5768 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5769 groups = sg;
5770
5771 if (!first)
5772 first = sg;
5773 if (last)
5774 last->next = sg;
5775 last = sg;
5776 last->next = first;
5777 }
5778 sd->groups = groups;
5779
5780 return 0;
5781
5782fail:
5783 free_sched_groups(first, 0);
5784
5785 return -ENOMEM;
5786}
5787
dce840a0 5788static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5789{
dce840a0
PZ
5790 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5791 struct sched_domain *child = sd->child;
1da177e4 5792
dce840a0
PZ
5793 if (child)
5794 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5795
9c3f75cb 5796 if (sg) {
dce840a0 5797 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5798 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5799 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5800 }
dce840a0
PZ
5801
5802 return cpu;
1e9f28fa 5803}
1e9f28fa 5804
01a08546 5805/*
dce840a0
PZ
5806 * build_sched_groups will build a circular linked list of the groups
5807 * covered by the given span, and will set each group's ->cpumask correctly,
5808 * and ->cpu_power to 0.
e3589f6c
PZ
5809 *
5810 * Assumes the sched_domain tree is fully constructed
01a08546 5811 */
e3589f6c
PZ
5812static int
5813build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5814{
dce840a0
PZ
5815 struct sched_group *first = NULL, *last = NULL;
5816 struct sd_data *sdd = sd->private;
5817 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5818 struct cpumask *covered;
dce840a0 5819 int i;
9c1cfda2 5820
e3589f6c
PZ
5821 get_group(cpu, sdd, &sd->groups);
5822 atomic_inc(&sd->groups->ref);
5823
5824 if (cpu != cpumask_first(sched_domain_span(sd)))
5825 return 0;
5826
f96225fd
PZ
5827 lockdep_assert_held(&sched_domains_mutex);
5828 covered = sched_domains_tmpmask;
5829
dce840a0 5830 cpumask_clear(covered);
6711cab4 5831
dce840a0
PZ
5832 for_each_cpu(i, span) {
5833 struct sched_group *sg;
5834 int group = get_group(i, sdd, &sg);
5835 int j;
6711cab4 5836
dce840a0
PZ
5837 if (cpumask_test_cpu(i, covered))
5838 continue;
6711cab4 5839
dce840a0 5840 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5841 sg->sgp->power = 0;
c1174876 5842 cpumask_setall(sched_group_mask(sg));
0601a88d 5843
dce840a0
PZ
5844 for_each_cpu(j, span) {
5845 if (get_group(j, sdd, NULL) != group)
5846 continue;
0601a88d 5847
dce840a0
PZ
5848 cpumask_set_cpu(j, covered);
5849 cpumask_set_cpu(j, sched_group_cpus(sg));
5850 }
0601a88d 5851
dce840a0
PZ
5852 if (!first)
5853 first = sg;
5854 if (last)
5855 last->next = sg;
5856 last = sg;
5857 }
5858 last->next = first;
e3589f6c
PZ
5859
5860 return 0;
0601a88d 5861}
51888ca2 5862
89c4710e
SS
5863/*
5864 * Initialize sched groups cpu_power.
5865 *
5866 * cpu_power indicates the capacity of sched group, which is used while
5867 * distributing the load between different sched groups in a sched domain.
5868 * Typically cpu_power for all the groups in a sched domain will be same unless
5869 * there are asymmetries in the topology. If there are asymmetries, group
5870 * having more cpu_power will pickup more load compared to the group having
5871 * less cpu_power.
89c4710e
SS
5872 */
5873static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5874{
e3589f6c 5875 struct sched_group *sg = sd->groups;
89c4710e 5876
e3589f6c
PZ
5877 WARN_ON(!sd || !sg);
5878
5879 do {
5880 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5881 sg = sg->next;
5882 } while (sg != sd->groups);
89c4710e 5883
c1174876 5884 if (cpu != group_balance_cpu(sg))
e3589f6c 5885 return;
aae6d3dd 5886
d274cb30 5887 update_group_power(sd, cpu);
69e1e811 5888 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5889}
5890
029632fb
PZ
5891int __weak arch_sd_sibling_asym_packing(void)
5892{
5893 return 0*SD_ASYM_PACKING;
89c4710e
SS
5894}
5895
7c16ec58
MT
5896/*
5897 * Initializers for schedule domains
5898 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5899 */
5900
a5d8c348
IM
5901#ifdef CONFIG_SCHED_DEBUG
5902# define SD_INIT_NAME(sd, type) sd->name = #type
5903#else
5904# define SD_INIT_NAME(sd, type) do { } while (0)
5905#endif
5906
54ab4ff4
PZ
5907#define SD_INIT_FUNC(type) \
5908static noinline struct sched_domain * \
5909sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5910{ \
5911 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5912 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5913 SD_INIT_NAME(sd, type); \
5914 sd->private = &tl->data; \
5915 return sd; \
7c16ec58
MT
5916}
5917
5918SD_INIT_FUNC(CPU)
7c16ec58
MT
5919#ifdef CONFIG_SCHED_SMT
5920 SD_INIT_FUNC(SIBLING)
5921#endif
5922#ifdef CONFIG_SCHED_MC
5923 SD_INIT_FUNC(MC)
5924#endif
01a08546
HC
5925#ifdef CONFIG_SCHED_BOOK
5926 SD_INIT_FUNC(BOOK)
5927#endif
7c16ec58 5928
1d3504fc 5929static int default_relax_domain_level = -1;
60495e77 5930int sched_domain_level_max;
1d3504fc
HS
5931
5932static int __init setup_relax_domain_level(char *str)
5933{
a841f8ce
DS
5934 if (kstrtoint(str, 0, &default_relax_domain_level))
5935 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5936
1d3504fc
HS
5937 return 1;
5938}
5939__setup("relax_domain_level=", setup_relax_domain_level);
5940
5941static void set_domain_attribute(struct sched_domain *sd,
5942 struct sched_domain_attr *attr)
5943{
5944 int request;
5945
5946 if (!attr || attr->relax_domain_level < 0) {
5947 if (default_relax_domain_level < 0)
5948 return;
5949 else
5950 request = default_relax_domain_level;
5951 } else
5952 request = attr->relax_domain_level;
5953 if (request < sd->level) {
5954 /* turn off idle balance on this domain */
c88d5910 5955 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5956 } else {
5957 /* turn on idle balance on this domain */
c88d5910 5958 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5959 }
5960}
5961
54ab4ff4
PZ
5962static void __sdt_free(const struct cpumask *cpu_map);
5963static int __sdt_alloc(const struct cpumask *cpu_map);
5964
2109b99e
AH
5965static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5966 const struct cpumask *cpu_map)
5967{
5968 switch (what) {
2109b99e 5969 case sa_rootdomain:
822ff793
PZ
5970 if (!atomic_read(&d->rd->refcount))
5971 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5972 case sa_sd:
5973 free_percpu(d->sd); /* fall through */
dce840a0 5974 case sa_sd_storage:
54ab4ff4 5975 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5976 case sa_none:
5977 break;
5978 }
5979}
3404c8d9 5980
2109b99e
AH
5981static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5982 const struct cpumask *cpu_map)
5983{
dce840a0
PZ
5984 memset(d, 0, sizeof(*d));
5985
54ab4ff4
PZ
5986 if (__sdt_alloc(cpu_map))
5987 return sa_sd_storage;
dce840a0
PZ
5988 d->sd = alloc_percpu(struct sched_domain *);
5989 if (!d->sd)
5990 return sa_sd_storage;
2109b99e 5991 d->rd = alloc_rootdomain();
dce840a0 5992 if (!d->rd)
21d42ccf 5993 return sa_sd;
2109b99e
AH
5994 return sa_rootdomain;
5995}
57d885fe 5996
dce840a0
PZ
5997/*
5998 * NULL the sd_data elements we've used to build the sched_domain and
5999 * sched_group structure so that the subsequent __free_domain_allocs()
6000 * will not free the data we're using.
6001 */
6002static void claim_allocations(int cpu, struct sched_domain *sd)
6003{
6004 struct sd_data *sdd = sd->private;
dce840a0
PZ
6005
6006 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6007 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6008
e3589f6c 6009 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6010 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6011
6012 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6013 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6014}
6015
2c402dc3
PZ
6016#ifdef CONFIG_SCHED_SMT
6017static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6018{
2c402dc3 6019 return topology_thread_cpumask(cpu);
3bd65a80 6020}
2c402dc3 6021#endif
7f4588f3 6022
d069b916
PZ
6023/*
6024 * Topology list, bottom-up.
6025 */
2c402dc3 6026static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6027#ifdef CONFIG_SCHED_SMT
6028 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6029#endif
1e9f28fa 6030#ifdef CONFIG_SCHED_MC
2c402dc3 6031 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6032#endif
d069b916
PZ
6033#ifdef CONFIG_SCHED_BOOK
6034 { sd_init_BOOK, cpu_book_mask, },
6035#endif
6036 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6037 { NULL, },
6038};
6039
6040static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6041
cb83b629
PZ
6042#ifdef CONFIG_NUMA
6043
6044static int sched_domains_numa_levels;
cb83b629
PZ
6045static int *sched_domains_numa_distance;
6046static struct cpumask ***sched_domains_numa_masks;
6047static int sched_domains_curr_level;
6048
cb83b629
PZ
6049static inline int sd_local_flags(int level)
6050{
10717dcd 6051 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6052 return 0;
6053
6054 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6055}
6056
6057static struct sched_domain *
6058sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6059{
6060 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6061 int level = tl->numa_level;
6062 int sd_weight = cpumask_weight(
6063 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6064
6065 *sd = (struct sched_domain){
6066 .min_interval = sd_weight,
6067 .max_interval = 2*sd_weight,
6068 .busy_factor = 32,
870a0bb5 6069 .imbalance_pct = 125,
cb83b629
PZ
6070 .cache_nice_tries = 2,
6071 .busy_idx = 3,
6072 .idle_idx = 2,
6073 .newidle_idx = 0,
6074 .wake_idx = 0,
6075 .forkexec_idx = 0,
6076
6077 .flags = 1*SD_LOAD_BALANCE
6078 | 1*SD_BALANCE_NEWIDLE
6079 | 0*SD_BALANCE_EXEC
6080 | 0*SD_BALANCE_FORK
6081 | 0*SD_BALANCE_WAKE
6082 | 0*SD_WAKE_AFFINE
cb83b629 6083 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6084 | 0*SD_SHARE_PKG_RESOURCES
6085 | 1*SD_SERIALIZE
6086 | 0*SD_PREFER_SIBLING
6087 | sd_local_flags(level)
6088 ,
6089 .last_balance = jiffies,
6090 .balance_interval = sd_weight,
6091 };
6092 SD_INIT_NAME(sd, NUMA);
6093 sd->private = &tl->data;
6094
6095 /*
6096 * Ugly hack to pass state to sd_numa_mask()...
6097 */
6098 sched_domains_curr_level = tl->numa_level;
6099
6100 return sd;
6101}
6102
6103static const struct cpumask *sd_numa_mask(int cpu)
6104{
6105 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6106}
6107
d039ac60
PZ
6108static void sched_numa_warn(const char *str)
6109{
6110 static int done = false;
6111 int i,j;
6112
6113 if (done)
6114 return;
6115
6116 done = true;
6117
6118 printk(KERN_WARNING "ERROR: %s\n\n", str);
6119
6120 for (i = 0; i < nr_node_ids; i++) {
6121 printk(KERN_WARNING " ");
6122 for (j = 0; j < nr_node_ids; j++)
6123 printk(KERN_CONT "%02d ", node_distance(i,j));
6124 printk(KERN_CONT "\n");
6125 }
6126 printk(KERN_WARNING "\n");
6127}
6128
6129static bool find_numa_distance(int distance)
6130{
6131 int i;
6132
6133 if (distance == node_distance(0, 0))
6134 return true;
6135
6136 for (i = 0; i < sched_domains_numa_levels; i++) {
6137 if (sched_domains_numa_distance[i] == distance)
6138 return true;
6139 }
6140
6141 return false;
6142}
6143
cb83b629
PZ
6144static void sched_init_numa(void)
6145{
6146 int next_distance, curr_distance = node_distance(0, 0);
6147 struct sched_domain_topology_level *tl;
6148 int level = 0;
6149 int i, j, k;
6150
cb83b629
PZ
6151 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6152 if (!sched_domains_numa_distance)
6153 return;
6154
6155 /*
6156 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6157 * unique distances in the node_distance() table.
6158 *
6159 * Assumes node_distance(0,j) includes all distances in
6160 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6161 */
6162 next_distance = curr_distance;
6163 for (i = 0; i < nr_node_ids; i++) {
6164 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6165 for (k = 0; k < nr_node_ids; k++) {
6166 int distance = node_distance(i, k);
6167
6168 if (distance > curr_distance &&
6169 (distance < next_distance ||
6170 next_distance == curr_distance))
6171 next_distance = distance;
6172
6173 /*
6174 * While not a strong assumption it would be nice to know
6175 * about cases where if node A is connected to B, B is not
6176 * equally connected to A.
6177 */
6178 if (sched_debug() && node_distance(k, i) != distance)
6179 sched_numa_warn("Node-distance not symmetric");
6180
6181 if (sched_debug() && i && !find_numa_distance(distance))
6182 sched_numa_warn("Node-0 not representative");
6183 }
6184 if (next_distance != curr_distance) {
6185 sched_domains_numa_distance[level++] = next_distance;
6186 sched_domains_numa_levels = level;
6187 curr_distance = next_distance;
6188 } else break;
cb83b629 6189 }
d039ac60
PZ
6190
6191 /*
6192 * In case of sched_debug() we verify the above assumption.
6193 */
6194 if (!sched_debug())
6195 break;
cb83b629
PZ
6196 }
6197 /*
6198 * 'level' contains the number of unique distances, excluding the
6199 * identity distance node_distance(i,i).
6200 *
6201 * The sched_domains_nume_distance[] array includes the actual distance
6202 * numbers.
6203 */
6204
5f7865f3
TC
6205 /*
6206 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6207 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6208 * the array will contain less then 'level' members. This could be
6209 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6210 * in other functions.
6211 *
6212 * We reset it to 'level' at the end of this function.
6213 */
6214 sched_domains_numa_levels = 0;
6215
cb83b629
PZ
6216 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6217 if (!sched_domains_numa_masks)
6218 return;
6219
6220 /*
6221 * Now for each level, construct a mask per node which contains all
6222 * cpus of nodes that are that many hops away from us.
6223 */
6224 for (i = 0; i < level; i++) {
6225 sched_domains_numa_masks[i] =
6226 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6227 if (!sched_domains_numa_masks[i])
6228 return;
6229
6230 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6231 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6232 if (!mask)
6233 return;
6234
6235 sched_domains_numa_masks[i][j] = mask;
6236
6237 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6238 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6239 continue;
6240
6241 cpumask_or(mask, mask, cpumask_of_node(k));
6242 }
6243 }
6244 }
6245
6246 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6247 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6248 if (!tl)
6249 return;
6250
6251 /*
6252 * Copy the default topology bits..
6253 */
6254 for (i = 0; default_topology[i].init; i++)
6255 tl[i] = default_topology[i];
6256
6257 /*
6258 * .. and append 'j' levels of NUMA goodness.
6259 */
6260 for (j = 0; j < level; i++, j++) {
6261 tl[i] = (struct sched_domain_topology_level){
6262 .init = sd_numa_init,
6263 .mask = sd_numa_mask,
6264 .flags = SDTL_OVERLAP,
6265 .numa_level = j,
6266 };
6267 }
6268
6269 sched_domain_topology = tl;
5f7865f3
TC
6270
6271 sched_domains_numa_levels = level;
cb83b629 6272}
301a5cba
TC
6273
6274static void sched_domains_numa_masks_set(int cpu)
6275{
6276 int i, j;
6277 int node = cpu_to_node(cpu);
6278
6279 for (i = 0; i < sched_domains_numa_levels; i++) {
6280 for (j = 0; j < nr_node_ids; j++) {
6281 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6282 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6283 }
6284 }
6285}
6286
6287static void sched_domains_numa_masks_clear(int cpu)
6288{
6289 int i, j;
6290 for (i = 0; i < sched_domains_numa_levels; i++) {
6291 for (j = 0; j < nr_node_ids; j++)
6292 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6293 }
6294}
6295
6296/*
6297 * Update sched_domains_numa_masks[level][node] array when new cpus
6298 * are onlined.
6299 */
6300static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6301 unsigned long action,
6302 void *hcpu)
6303{
6304 int cpu = (long)hcpu;
6305
6306 switch (action & ~CPU_TASKS_FROZEN) {
6307 case CPU_ONLINE:
6308 sched_domains_numa_masks_set(cpu);
6309 break;
6310
6311 case CPU_DEAD:
6312 sched_domains_numa_masks_clear(cpu);
6313 break;
6314
6315 default:
6316 return NOTIFY_DONE;
6317 }
6318
6319 return NOTIFY_OK;
cb83b629
PZ
6320}
6321#else
6322static inline void sched_init_numa(void)
6323{
6324}
301a5cba
TC
6325
6326static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6327 unsigned long action,
6328 void *hcpu)
6329{
6330 return 0;
6331}
cb83b629
PZ
6332#endif /* CONFIG_NUMA */
6333
54ab4ff4
PZ
6334static int __sdt_alloc(const struct cpumask *cpu_map)
6335{
6336 struct sched_domain_topology_level *tl;
6337 int j;
6338
6339 for (tl = sched_domain_topology; tl->init; tl++) {
6340 struct sd_data *sdd = &tl->data;
6341
6342 sdd->sd = alloc_percpu(struct sched_domain *);
6343 if (!sdd->sd)
6344 return -ENOMEM;
6345
6346 sdd->sg = alloc_percpu(struct sched_group *);
6347 if (!sdd->sg)
6348 return -ENOMEM;
6349
9c3f75cb
PZ
6350 sdd->sgp = alloc_percpu(struct sched_group_power *);
6351 if (!sdd->sgp)
6352 return -ENOMEM;
6353
54ab4ff4
PZ
6354 for_each_cpu(j, cpu_map) {
6355 struct sched_domain *sd;
6356 struct sched_group *sg;
9c3f75cb 6357 struct sched_group_power *sgp;
54ab4ff4
PZ
6358
6359 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6360 GFP_KERNEL, cpu_to_node(j));
6361 if (!sd)
6362 return -ENOMEM;
6363
6364 *per_cpu_ptr(sdd->sd, j) = sd;
6365
6366 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6367 GFP_KERNEL, cpu_to_node(j));
6368 if (!sg)
6369 return -ENOMEM;
6370
30b4e9eb
IM
6371 sg->next = sg;
6372
54ab4ff4 6373 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6374
c1174876 6375 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6376 GFP_KERNEL, cpu_to_node(j));
6377 if (!sgp)
6378 return -ENOMEM;
6379
6380 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6381 }
6382 }
6383
6384 return 0;
6385}
6386
6387static void __sdt_free(const struct cpumask *cpu_map)
6388{
6389 struct sched_domain_topology_level *tl;
6390 int j;
6391
6392 for (tl = sched_domain_topology; tl->init; tl++) {
6393 struct sd_data *sdd = &tl->data;
6394
6395 for_each_cpu(j, cpu_map) {
fb2cf2c6 6396 struct sched_domain *sd;
6397
6398 if (sdd->sd) {
6399 sd = *per_cpu_ptr(sdd->sd, j);
6400 if (sd && (sd->flags & SD_OVERLAP))
6401 free_sched_groups(sd->groups, 0);
6402 kfree(*per_cpu_ptr(sdd->sd, j));
6403 }
6404
6405 if (sdd->sg)
6406 kfree(*per_cpu_ptr(sdd->sg, j));
6407 if (sdd->sgp)
6408 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6409 }
6410 free_percpu(sdd->sd);
fb2cf2c6 6411 sdd->sd = NULL;
54ab4ff4 6412 free_percpu(sdd->sg);
fb2cf2c6 6413 sdd->sg = NULL;
9c3f75cb 6414 free_percpu(sdd->sgp);
fb2cf2c6 6415 sdd->sgp = NULL;
54ab4ff4
PZ
6416 }
6417}
6418
2c402dc3
PZ
6419struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6420 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6421 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6422 int cpu)
6423{
54ab4ff4 6424 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6425 if (!sd)
d069b916 6426 return child;
2c402dc3 6427
2c402dc3 6428 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6429 if (child) {
6430 sd->level = child->level + 1;
6431 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6432 child->parent = sd;
60495e77 6433 }
d069b916 6434 sd->child = child;
a841f8ce 6435 set_domain_attribute(sd, attr);
2c402dc3
PZ
6436
6437 return sd;
6438}
6439
2109b99e
AH
6440/*
6441 * Build sched domains for a given set of cpus and attach the sched domains
6442 * to the individual cpus
6443 */
dce840a0
PZ
6444static int build_sched_domains(const struct cpumask *cpu_map,
6445 struct sched_domain_attr *attr)
2109b99e
AH
6446{
6447 enum s_alloc alloc_state = sa_none;
dce840a0 6448 struct sched_domain *sd;
2109b99e 6449 struct s_data d;
822ff793 6450 int i, ret = -ENOMEM;
9c1cfda2 6451
2109b99e
AH
6452 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6453 if (alloc_state != sa_rootdomain)
6454 goto error;
9c1cfda2 6455
dce840a0 6456 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6457 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6458 struct sched_domain_topology_level *tl;
6459
3bd65a80 6460 sd = NULL;
e3589f6c 6461 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6462 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6463 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6464 sd->flags |= SD_OVERLAP;
d110235d
PZ
6465 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6466 break;
e3589f6c 6467 }
d274cb30 6468
d069b916
PZ
6469 while (sd->child)
6470 sd = sd->child;
6471
21d42ccf 6472 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6473 }
6474
6475 /* Build the groups for the domains */
6476 for_each_cpu(i, cpu_map) {
6477 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6478 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6479 if (sd->flags & SD_OVERLAP) {
6480 if (build_overlap_sched_groups(sd, i))
6481 goto error;
6482 } else {
6483 if (build_sched_groups(sd, i))
6484 goto error;
6485 }
1cf51902 6486 }
a06dadbe 6487 }
9c1cfda2 6488
1da177e4 6489 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6490 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6491 if (!cpumask_test_cpu(i, cpu_map))
6492 continue;
9c1cfda2 6493
dce840a0
PZ
6494 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6495 claim_allocations(i, sd);
cd4ea6ae 6496 init_sched_groups_power(i, sd);
dce840a0 6497 }
f712c0c7 6498 }
9c1cfda2 6499
1da177e4 6500 /* Attach the domains */
dce840a0 6501 rcu_read_lock();
abcd083a 6502 for_each_cpu(i, cpu_map) {
21d42ccf 6503 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6504 cpu_attach_domain(sd, d.rd, i);
1da177e4 6505 }
dce840a0 6506 rcu_read_unlock();
51888ca2 6507
822ff793 6508 ret = 0;
51888ca2 6509error:
2109b99e 6510 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6511 return ret;
1da177e4 6512}
029190c5 6513
acc3f5d7 6514static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6515static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6516static struct sched_domain_attr *dattr_cur;
6517 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6518
6519/*
6520 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6521 * cpumask) fails, then fallback to a single sched domain,
6522 * as determined by the single cpumask fallback_doms.
029190c5 6523 */
4212823f 6524static cpumask_var_t fallback_doms;
029190c5 6525
ee79d1bd
HC
6526/*
6527 * arch_update_cpu_topology lets virtualized architectures update the
6528 * cpu core maps. It is supposed to return 1 if the topology changed
6529 * or 0 if it stayed the same.
6530 */
6531int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6532{
ee79d1bd 6533 return 0;
22e52b07
HC
6534}
6535
acc3f5d7
RR
6536cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6537{
6538 int i;
6539 cpumask_var_t *doms;
6540
6541 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6542 if (!doms)
6543 return NULL;
6544 for (i = 0; i < ndoms; i++) {
6545 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6546 free_sched_domains(doms, i);
6547 return NULL;
6548 }
6549 }
6550 return doms;
6551}
6552
6553void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6554{
6555 unsigned int i;
6556 for (i = 0; i < ndoms; i++)
6557 free_cpumask_var(doms[i]);
6558 kfree(doms);
6559}
6560
1a20ff27 6561/*
41a2d6cf 6562 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6563 * For now this just excludes isolated cpus, but could be used to
6564 * exclude other special cases in the future.
1a20ff27 6565 */
c4a8849a 6566static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6567{
7378547f
MM
6568 int err;
6569
22e52b07 6570 arch_update_cpu_topology();
029190c5 6571 ndoms_cur = 1;
acc3f5d7 6572 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6573 if (!doms_cur)
acc3f5d7
RR
6574 doms_cur = &fallback_doms;
6575 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6576 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6577 register_sched_domain_sysctl();
7378547f
MM
6578
6579 return err;
1a20ff27
DG
6580}
6581
1a20ff27
DG
6582/*
6583 * Detach sched domains from a group of cpus specified in cpu_map
6584 * These cpus will now be attached to the NULL domain
6585 */
96f874e2 6586static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6587{
6588 int i;
6589
dce840a0 6590 rcu_read_lock();
abcd083a 6591 for_each_cpu(i, cpu_map)
57d885fe 6592 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6593 rcu_read_unlock();
1a20ff27
DG
6594}
6595
1d3504fc
HS
6596/* handle null as "default" */
6597static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6598 struct sched_domain_attr *new, int idx_new)
6599{
6600 struct sched_domain_attr tmp;
6601
6602 /* fast path */
6603 if (!new && !cur)
6604 return 1;
6605
6606 tmp = SD_ATTR_INIT;
6607 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6608 new ? (new + idx_new) : &tmp,
6609 sizeof(struct sched_domain_attr));
6610}
6611
029190c5
PJ
6612/*
6613 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6614 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6615 * doms_new[] to the current sched domain partitioning, doms_cur[].
6616 * It destroys each deleted domain and builds each new domain.
6617 *
acc3f5d7 6618 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6619 * The masks don't intersect (don't overlap.) We should setup one
6620 * sched domain for each mask. CPUs not in any of the cpumasks will
6621 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6622 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6623 * it as it is.
6624 *
acc3f5d7
RR
6625 * The passed in 'doms_new' should be allocated using
6626 * alloc_sched_domains. This routine takes ownership of it and will
6627 * free_sched_domains it when done with it. If the caller failed the
6628 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6629 * and partition_sched_domains() will fallback to the single partition
6630 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6631 *
96f874e2 6632 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6633 * ndoms_new == 0 is a special case for destroying existing domains,
6634 * and it will not create the default domain.
dfb512ec 6635 *
029190c5
PJ
6636 * Call with hotplug lock held
6637 */
acc3f5d7 6638void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6639 struct sched_domain_attr *dattr_new)
029190c5 6640{
dfb512ec 6641 int i, j, n;
d65bd5ec 6642 int new_topology;
029190c5 6643
712555ee 6644 mutex_lock(&sched_domains_mutex);
a1835615 6645
7378547f
MM
6646 /* always unregister in case we don't destroy any domains */
6647 unregister_sched_domain_sysctl();
6648
d65bd5ec
HC
6649 /* Let architecture update cpu core mappings. */
6650 new_topology = arch_update_cpu_topology();
6651
dfb512ec 6652 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6653
6654 /* Destroy deleted domains */
6655 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6656 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6657 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6658 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6659 goto match1;
6660 }
6661 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6662 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6663match1:
6664 ;
6665 }
6666
e761b772
MK
6667 if (doms_new == NULL) {
6668 ndoms_cur = 0;
acc3f5d7 6669 doms_new = &fallback_doms;
6ad4c188 6670 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6671 WARN_ON_ONCE(dattr_new);
e761b772
MK
6672 }
6673
029190c5
PJ
6674 /* Build new domains */
6675 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6676 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6677 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6678 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6679 goto match2;
6680 }
6681 /* no match - add a new doms_new */
dce840a0 6682 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6683match2:
6684 ;
6685 }
6686
6687 /* Remember the new sched domains */
acc3f5d7
RR
6688 if (doms_cur != &fallback_doms)
6689 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6690 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6691 doms_cur = doms_new;
1d3504fc 6692 dattr_cur = dattr_new;
029190c5 6693 ndoms_cur = ndoms_new;
7378547f
MM
6694
6695 register_sched_domain_sysctl();
a1835615 6696
712555ee 6697 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6698}
6699
d35be8ba
SB
6700static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6701
1da177e4 6702/*
3a101d05
TH
6703 * Update cpusets according to cpu_active mask. If cpusets are
6704 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6705 * around partition_sched_domains().
d35be8ba
SB
6706 *
6707 * If we come here as part of a suspend/resume, don't touch cpusets because we
6708 * want to restore it back to its original state upon resume anyway.
1da177e4 6709 */
0b2e918a
TH
6710static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6711 void *hcpu)
e761b772 6712{
d35be8ba
SB
6713 switch (action) {
6714 case CPU_ONLINE_FROZEN:
6715 case CPU_DOWN_FAILED_FROZEN:
6716
6717 /*
6718 * num_cpus_frozen tracks how many CPUs are involved in suspend
6719 * resume sequence. As long as this is not the last online
6720 * operation in the resume sequence, just build a single sched
6721 * domain, ignoring cpusets.
6722 */
6723 num_cpus_frozen--;
6724 if (likely(num_cpus_frozen)) {
6725 partition_sched_domains(1, NULL, NULL);
6726 break;
6727 }
6728
6729 /*
6730 * This is the last CPU online operation. So fall through and
6731 * restore the original sched domains by considering the
6732 * cpuset configurations.
6733 */
6734
e761b772 6735 case CPU_ONLINE:
6ad4c188 6736 case CPU_DOWN_FAILED:
7ddf96b0 6737 cpuset_update_active_cpus(true);
d35be8ba 6738 break;
3a101d05
TH
6739 default:
6740 return NOTIFY_DONE;
6741 }
d35be8ba 6742 return NOTIFY_OK;
3a101d05 6743}
e761b772 6744
0b2e918a
TH
6745static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6746 void *hcpu)
3a101d05 6747{
d35be8ba 6748 switch (action) {
3a101d05 6749 case CPU_DOWN_PREPARE:
7ddf96b0 6750 cpuset_update_active_cpus(false);
d35be8ba
SB
6751 break;
6752 case CPU_DOWN_PREPARE_FROZEN:
6753 num_cpus_frozen++;
6754 partition_sched_domains(1, NULL, NULL);
6755 break;
e761b772
MK
6756 default:
6757 return NOTIFY_DONE;
6758 }
d35be8ba 6759 return NOTIFY_OK;
e761b772 6760}
e761b772 6761
1da177e4
LT
6762void __init sched_init_smp(void)
6763{
dcc30a35
RR
6764 cpumask_var_t non_isolated_cpus;
6765
6766 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6767 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6768
cb83b629
PZ
6769 sched_init_numa();
6770
95402b38 6771 get_online_cpus();
712555ee 6772 mutex_lock(&sched_domains_mutex);
c4a8849a 6773 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6774 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6775 if (cpumask_empty(non_isolated_cpus))
6776 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6777 mutex_unlock(&sched_domains_mutex);
95402b38 6778 put_online_cpus();
e761b772 6779
301a5cba 6780 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6781 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6782 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6783
6784 /* RT runtime code needs to handle some hotplug events */
6785 hotcpu_notifier(update_runtime, 0);
6786
b328ca18 6787 init_hrtick();
5c1e1767
NP
6788
6789 /* Move init over to a non-isolated CPU */
dcc30a35 6790 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6791 BUG();
19978ca6 6792 sched_init_granularity();
dcc30a35 6793 free_cpumask_var(non_isolated_cpus);
4212823f 6794
0e3900e6 6795 init_sched_rt_class();
1da177e4
LT
6796}
6797#else
6798void __init sched_init_smp(void)
6799{
19978ca6 6800 sched_init_granularity();
1da177e4
LT
6801}
6802#endif /* CONFIG_SMP */
6803
cd1bb94b
AB
6804const_debug unsigned int sysctl_timer_migration = 1;
6805
1da177e4
LT
6806int in_sched_functions(unsigned long addr)
6807{
1da177e4
LT
6808 return in_lock_functions(addr) ||
6809 (addr >= (unsigned long)__sched_text_start
6810 && addr < (unsigned long)__sched_text_end);
6811}
6812
029632fb
PZ
6813#ifdef CONFIG_CGROUP_SCHED
6814struct task_group root_task_group;
35cf4e50 6815LIST_HEAD(task_groups);
052f1dc7 6816#endif
6f505b16 6817
029632fb 6818DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6819
1da177e4
LT
6820void __init sched_init(void)
6821{
dd41f596 6822 int i, j;
434d53b0
MT
6823 unsigned long alloc_size = 0, ptr;
6824
6825#ifdef CONFIG_FAIR_GROUP_SCHED
6826 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6827#endif
6828#ifdef CONFIG_RT_GROUP_SCHED
6829 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6830#endif
df7c8e84 6831#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6832 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6833#endif
434d53b0 6834 if (alloc_size) {
36b7b6d4 6835 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6836
6837#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6838 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6839 ptr += nr_cpu_ids * sizeof(void **);
6840
07e06b01 6841 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6842 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6843
6d6bc0ad 6844#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6845#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6846 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6847 ptr += nr_cpu_ids * sizeof(void **);
6848
07e06b01 6849 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6850 ptr += nr_cpu_ids * sizeof(void **);
6851
6d6bc0ad 6852#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6853#ifdef CONFIG_CPUMASK_OFFSTACK
6854 for_each_possible_cpu(i) {
6855 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6856 ptr += cpumask_size();
6857 }
6858#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6859 }
dd41f596 6860
57d885fe
GH
6861#ifdef CONFIG_SMP
6862 init_defrootdomain();
6863#endif
6864
d0b27fa7
PZ
6865 init_rt_bandwidth(&def_rt_bandwidth,
6866 global_rt_period(), global_rt_runtime());
6867
6868#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6869 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6870 global_rt_period(), global_rt_runtime());
6d6bc0ad 6871#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6872
7c941438 6873#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6874 list_add(&root_task_group.list, &task_groups);
6875 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6876 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6877 autogroup_init(&init_task);
54c707e9 6878
7c941438 6879#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6880
54c707e9
GC
6881#ifdef CONFIG_CGROUP_CPUACCT
6882 root_cpuacct.cpustat = &kernel_cpustat;
6883 root_cpuacct.cpuusage = alloc_percpu(u64);
6884 /* Too early, not expected to fail */
6885 BUG_ON(!root_cpuacct.cpuusage);
6886#endif
0a945022 6887 for_each_possible_cpu(i) {
70b97a7f 6888 struct rq *rq;
1da177e4
LT
6889
6890 rq = cpu_rq(i);
05fa785c 6891 raw_spin_lock_init(&rq->lock);
7897986b 6892 rq->nr_running = 0;
dce48a84
TG
6893 rq->calc_load_active = 0;
6894 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6895 init_cfs_rq(&rq->cfs);
6f505b16 6896 init_rt_rq(&rq->rt, rq);
dd41f596 6897#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6898 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6899 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6900 /*
07e06b01 6901 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6902 *
6903 * In case of task-groups formed thr' the cgroup filesystem, it
6904 * gets 100% of the cpu resources in the system. This overall
6905 * system cpu resource is divided among the tasks of
07e06b01 6906 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6907 * based on each entity's (task or task-group's) weight
6908 * (se->load.weight).
6909 *
07e06b01 6910 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6911 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6912 * then A0's share of the cpu resource is:
6913 *
0d905bca 6914 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6915 *
07e06b01
YZ
6916 * We achieve this by letting root_task_group's tasks sit
6917 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6918 */
ab84d31e 6919 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6920 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6921#endif /* CONFIG_FAIR_GROUP_SCHED */
6922
6923 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6924#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6925 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6926 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6927#endif
1da177e4 6928
dd41f596
IM
6929 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6930 rq->cpu_load[j] = 0;
fdf3e95d
VP
6931
6932 rq->last_load_update_tick = jiffies;
6933
1da177e4 6934#ifdef CONFIG_SMP
41c7ce9a 6935 rq->sd = NULL;
57d885fe 6936 rq->rd = NULL;
1399fa78 6937 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6938 rq->post_schedule = 0;
1da177e4 6939 rq->active_balance = 0;
dd41f596 6940 rq->next_balance = jiffies;
1da177e4 6941 rq->push_cpu = 0;
0a2966b4 6942 rq->cpu = i;
1f11eb6a 6943 rq->online = 0;
eae0c9df
MG
6944 rq->idle_stamp = 0;
6945 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6946
6947 INIT_LIST_HEAD(&rq->cfs_tasks);
6948
dc938520 6949 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6950#ifdef CONFIG_NO_HZ
1c792db7 6951 rq->nohz_flags = 0;
83cd4fe2 6952#endif
1da177e4 6953#endif
8f4d37ec 6954 init_rq_hrtick(rq);
1da177e4 6955 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6956 }
6957
2dd73a4f 6958 set_load_weight(&init_task);
b50f60ce 6959
e107be36
AK
6960#ifdef CONFIG_PREEMPT_NOTIFIERS
6961 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6962#endif
6963
b50f60ce 6964#ifdef CONFIG_RT_MUTEXES
732375c6 6965 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6966#endif
6967
1da177e4
LT
6968 /*
6969 * The boot idle thread does lazy MMU switching as well:
6970 */
6971 atomic_inc(&init_mm.mm_count);
6972 enter_lazy_tlb(&init_mm, current);
6973
6974 /*
6975 * Make us the idle thread. Technically, schedule() should not be
6976 * called from this thread, however somewhere below it might be,
6977 * but because we are the idle thread, we just pick up running again
6978 * when this runqueue becomes "idle".
6979 */
6980 init_idle(current, smp_processor_id());
dce48a84
TG
6981
6982 calc_load_update = jiffies + LOAD_FREQ;
6983
dd41f596
IM
6984 /*
6985 * During early bootup we pretend to be a normal task:
6986 */
6987 current->sched_class = &fair_sched_class;
6892b75e 6988
bf4d83f6 6989#ifdef CONFIG_SMP
4cb98839 6990 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6991 /* May be allocated at isolcpus cmdline parse time */
6992 if (cpu_isolated_map == NULL)
6993 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6994 idle_thread_set_boot_cpu();
029632fb
PZ
6995#endif
6996 init_sched_fair_class();
6a7b3dc3 6997
6892b75e 6998 scheduler_running = 1;
1da177e4
LT
6999}
7000
d902db1e 7001#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7002static inline int preempt_count_equals(int preempt_offset)
7003{
234da7bc 7004 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7005
4ba8216c 7006 return (nested == preempt_offset);
e4aafea2
FW
7007}
7008
d894837f 7009void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7010{
1da177e4
LT
7011 static unsigned long prev_jiffy; /* ratelimiting */
7012
b3fbab05 7013 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7014 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7015 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7016 return;
7017 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7018 return;
7019 prev_jiffy = jiffies;
7020
3df0fc5b
PZ
7021 printk(KERN_ERR
7022 "BUG: sleeping function called from invalid context at %s:%d\n",
7023 file, line);
7024 printk(KERN_ERR
7025 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7026 in_atomic(), irqs_disabled(),
7027 current->pid, current->comm);
aef745fc
IM
7028
7029 debug_show_held_locks(current);
7030 if (irqs_disabled())
7031 print_irqtrace_events(current);
7032 dump_stack();
1da177e4
LT
7033}
7034EXPORT_SYMBOL(__might_sleep);
7035#endif
7036
7037#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7038static void normalize_task(struct rq *rq, struct task_struct *p)
7039{
da7a735e
PZ
7040 const struct sched_class *prev_class = p->sched_class;
7041 int old_prio = p->prio;
3a5e4dc1 7042 int on_rq;
3e51f33f 7043
fd2f4419 7044 on_rq = p->on_rq;
3a5e4dc1 7045 if (on_rq)
4ca9b72b 7046 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7047 __setscheduler(rq, p, SCHED_NORMAL, 0);
7048 if (on_rq) {
4ca9b72b 7049 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7050 resched_task(rq->curr);
7051 }
da7a735e
PZ
7052
7053 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7054}
7055
1da177e4
LT
7056void normalize_rt_tasks(void)
7057{
a0f98a1c 7058 struct task_struct *g, *p;
1da177e4 7059 unsigned long flags;
70b97a7f 7060 struct rq *rq;
1da177e4 7061
4cf5d77a 7062 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7063 do_each_thread(g, p) {
178be793
IM
7064 /*
7065 * Only normalize user tasks:
7066 */
7067 if (!p->mm)
7068 continue;
7069
6cfb0d5d 7070 p->se.exec_start = 0;
6cfb0d5d 7071#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7072 p->se.statistics.wait_start = 0;
7073 p->se.statistics.sleep_start = 0;
7074 p->se.statistics.block_start = 0;
6cfb0d5d 7075#endif
dd41f596
IM
7076
7077 if (!rt_task(p)) {
7078 /*
7079 * Renice negative nice level userspace
7080 * tasks back to 0:
7081 */
7082 if (TASK_NICE(p) < 0 && p->mm)
7083 set_user_nice(p, 0);
1da177e4 7084 continue;
dd41f596 7085 }
1da177e4 7086
1d615482 7087 raw_spin_lock(&p->pi_lock);
b29739f9 7088 rq = __task_rq_lock(p);
1da177e4 7089
178be793 7090 normalize_task(rq, p);
3a5e4dc1 7091
b29739f9 7092 __task_rq_unlock(rq);
1d615482 7093 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7094 } while_each_thread(g, p);
7095
4cf5d77a 7096 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7097}
7098
7099#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7100
67fc4e0c 7101#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7102/*
67fc4e0c 7103 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7104 *
7105 * They can only be called when the whole system has been
7106 * stopped - every CPU needs to be quiescent, and no scheduling
7107 * activity can take place. Using them for anything else would
7108 * be a serious bug, and as a result, they aren't even visible
7109 * under any other configuration.
7110 */
7111
7112/**
7113 * curr_task - return the current task for a given cpu.
7114 * @cpu: the processor in question.
7115 *
7116 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7117 */
36c8b586 7118struct task_struct *curr_task(int cpu)
1df5c10a
LT
7119{
7120 return cpu_curr(cpu);
7121}
7122
67fc4e0c
JW
7123#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7124
7125#ifdef CONFIG_IA64
1df5c10a
LT
7126/**
7127 * set_curr_task - set the current task for a given cpu.
7128 * @cpu: the processor in question.
7129 * @p: the task pointer to set.
7130 *
7131 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7132 * are serviced on a separate stack. It allows the architecture to switch the
7133 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7134 * must be called with all CPU's synchronized, and interrupts disabled, the
7135 * and caller must save the original value of the current task (see
7136 * curr_task() above) and restore that value before reenabling interrupts and
7137 * re-starting the system.
7138 *
7139 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7140 */
36c8b586 7141void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7142{
7143 cpu_curr(cpu) = p;
7144}
7145
7146#endif
29f59db3 7147
7c941438 7148#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7149/* task_group_lock serializes the addition/removal of task groups */
7150static DEFINE_SPINLOCK(task_group_lock);
7151
bccbe08a
PZ
7152static void free_sched_group(struct task_group *tg)
7153{
7154 free_fair_sched_group(tg);
7155 free_rt_sched_group(tg);
e9aa1dd1 7156 autogroup_free(tg);
bccbe08a
PZ
7157 kfree(tg);
7158}
7159
7160/* allocate runqueue etc for a new task group */
ec7dc8ac 7161struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7162{
7163 struct task_group *tg;
7164 unsigned long flags;
bccbe08a
PZ
7165
7166 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7167 if (!tg)
7168 return ERR_PTR(-ENOMEM);
7169
ec7dc8ac 7170 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7171 goto err;
7172
ec7dc8ac 7173 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7174 goto err;
7175
8ed36996 7176 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7177 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7178
7179 WARN_ON(!parent); /* root should already exist */
7180
7181 tg->parent = parent;
f473aa5e 7182 INIT_LIST_HEAD(&tg->children);
09f2724a 7183 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7184 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7185
9b5b7751 7186 return tg;
29f59db3
SV
7187
7188err:
6f505b16 7189 free_sched_group(tg);
29f59db3
SV
7190 return ERR_PTR(-ENOMEM);
7191}
7192
9b5b7751 7193/* rcu callback to free various structures associated with a task group */
6f505b16 7194static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7195{
29f59db3 7196 /* now it should be safe to free those cfs_rqs */
6f505b16 7197 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7198}
7199
9b5b7751 7200/* Destroy runqueue etc associated with a task group */
4cf86d77 7201void sched_destroy_group(struct task_group *tg)
29f59db3 7202{
8ed36996 7203 unsigned long flags;
9b5b7751 7204 int i;
29f59db3 7205
3d4b47b4
PZ
7206 /* end participation in shares distribution */
7207 for_each_possible_cpu(i)
bccbe08a 7208 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7209
7210 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7211 list_del_rcu(&tg->list);
f473aa5e 7212 list_del_rcu(&tg->siblings);
8ed36996 7213 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7214
9b5b7751 7215 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7216 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7217}
7218
9b5b7751 7219/* change task's runqueue when it moves between groups.
3a252015
IM
7220 * The caller of this function should have put the task in its new group
7221 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7222 * reflect its new group.
9b5b7751
SV
7223 */
7224void sched_move_task(struct task_struct *tsk)
29f59db3 7225{
8323f26c 7226 struct task_group *tg;
29f59db3
SV
7227 int on_rq, running;
7228 unsigned long flags;
7229 struct rq *rq;
7230
7231 rq = task_rq_lock(tsk, &flags);
7232
051a1d1a 7233 running = task_current(rq, tsk);
fd2f4419 7234 on_rq = tsk->on_rq;
29f59db3 7235
0e1f3483 7236 if (on_rq)
29f59db3 7237 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7238 if (unlikely(running))
7239 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7240
8323f26c
PZ
7241 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7242 lockdep_is_held(&tsk->sighand->siglock)),
7243 struct task_group, css);
7244 tg = autogroup_task_group(tsk, tg);
7245 tsk->sched_task_group = tg;
7246
810b3817 7247#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7248 if (tsk->sched_class->task_move_group)
7249 tsk->sched_class->task_move_group(tsk, on_rq);
7250 else
810b3817 7251#endif
b2b5ce02 7252 set_task_rq(tsk, task_cpu(tsk));
810b3817 7253
0e1f3483
HS
7254 if (unlikely(running))
7255 tsk->sched_class->set_curr_task(rq);
7256 if (on_rq)
371fd7e7 7257 enqueue_task(rq, tsk, 0);
29f59db3 7258
0122ec5b 7259 task_rq_unlock(rq, tsk, &flags);
29f59db3 7260}
7c941438 7261#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7262
a790de99 7263#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7264static unsigned long to_ratio(u64 period, u64 runtime)
7265{
7266 if (runtime == RUNTIME_INF)
9a7e0b18 7267 return 1ULL << 20;
9f0c1e56 7268
9a7e0b18 7269 return div64_u64(runtime << 20, period);
9f0c1e56 7270}
a790de99
PT
7271#endif
7272
7273#ifdef CONFIG_RT_GROUP_SCHED
7274/*
7275 * Ensure that the real time constraints are schedulable.
7276 */
7277static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7278
9a7e0b18
PZ
7279/* Must be called with tasklist_lock held */
7280static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7281{
9a7e0b18 7282 struct task_struct *g, *p;
b40b2e8e 7283
9a7e0b18 7284 do_each_thread(g, p) {
029632fb 7285 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7286 return 1;
7287 } while_each_thread(g, p);
b40b2e8e 7288
9a7e0b18
PZ
7289 return 0;
7290}
b40b2e8e 7291
9a7e0b18
PZ
7292struct rt_schedulable_data {
7293 struct task_group *tg;
7294 u64 rt_period;
7295 u64 rt_runtime;
7296};
b40b2e8e 7297
a790de99 7298static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7299{
7300 struct rt_schedulable_data *d = data;
7301 struct task_group *child;
7302 unsigned long total, sum = 0;
7303 u64 period, runtime;
b40b2e8e 7304
9a7e0b18
PZ
7305 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7306 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7307
9a7e0b18
PZ
7308 if (tg == d->tg) {
7309 period = d->rt_period;
7310 runtime = d->rt_runtime;
b40b2e8e 7311 }
b40b2e8e 7312
4653f803
PZ
7313 /*
7314 * Cannot have more runtime than the period.
7315 */
7316 if (runtime > period && runtime != RUNTIME_INF)
7317 return -EINVAL;
6f505b16 7318
4653f803
PZ
7319 /*
7320 * Ensure we don't starve existing RT tasks.
7321 */
9a7e0b18
PZ
7322 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7323 return -EBUSY;
6f505b16 7324
9a7e0b18 7325 total = to_ratio(period, runtime);
6f505b16 7326
4653f803
PZ
7327 /*
7328 * Nobody can have more than the global setting allows.
7329 */
7330 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7331 return -EINVAL;
6f505b16 7332
4653f803
PZ
7333 /*
7334 * The sum of our children's runtime should not exceed our own.
7335 */
9a7e0b18
PZ
7336 list_for_each_entry_rcu(child, &tg->children, siblings) {
7337 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7338 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7339
9a7e0b18
PZ
7340 if (child == d->tg) {
7341 period = d->rt_period;
7342 runtime = d->rt_runtime;
7343 }
6f505b16 7344
9a7e0b18 7345 sum += to_ratio(period, runtime);
9f0c1e56 7346 }
6f505b16 7347
9a7e0b18
PZ
7348 if (sum > total)
7349 return -EINVAL;
7350
7351 return 0;
6f505b16
PZ
7352}
7353
9a7e0b18 7354static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7355{
8277434e
PT
7356 int ret;
7357
9a7e0b18
PZ
7358 struct rt_schedulable_data data = {
7359 .tg = tg,
7360 .rt_period = period,
7361 .rt_runtime = runtime,
7362 };
7363
8277434e
PT
7364 rcu_read_lock();
7365 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7366 rcu_read_unlock();
7367
7368 return ret;
521f1a24
DG
7369}
7370
ab84d31e 7371static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7372 u64 rt_period, u64 rt_runtime)
6f505b16 7373{
ac086bc2 7374 int i, err = 0;
9f0c1e56 7375
9f0c1e56 7376 mutex_lock(&rt_constraints_mutex);
521f1a24 7377 read_lock(&tasklist_lock);
9a7e0b18
PZ
7378 err = __rt_schedulable(tg, rt_period, rt_runtime);
7379 if (err)
9f0c1e56 7380 goto unlock;
ac086bc2 7381
0986b11b 7382 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7383 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7384 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7385
7386 for_each_possible_cpu(i) {
7387 struct rt_rq *rt_rq = tg->rt_rq[i];
7388
0986b11b 7389 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7390 rt_rq->rt_runtime = rt_runtime;
0986b11b 7391 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7392 }
0986b11b 7393 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7394unlock:
521f1a24 7395 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7396 mutex_unlock(&rt_constraints_mutex);
7397
7398 return err;
6f505b16
PZ
7399}
7400
d0b27fa7
PZ
7401int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7402{
7403 u64 rt_runtime, rt_period;
7404
7405 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7406 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7407 if (rt_runtime_us < 0)
7408 rt_runtime = RUNTIME_INF;
7409
ab84d31e 7410 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7411}
7412
9f0c1e56
PZ
7413long sched_group_rt_runtime(struct task_group *tg)
7414{
7415 u64 rt_runtime_us;
7416
d0b27fa7 7417 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7418 return -1;
7419
d0b27fa7 7420 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7421 do_div(rt_runtime_us, NSEC_PER_USEC);
7422 return rt_runtime_us;
7423}
d0b27fa7
PZ
7424
7425int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7426{
7427 u64 rt_runtime, rt_period;
7428
7429 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7430 rt_runtime = tg->rt_bandwidth.rt_runtime;
7431
619b0488
R
7432 if (rt_period == 0)
7433 return -EINVAL;
7434
ab84d31e 7435 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7436}
7437
7438long sched_group_rt_period(struct task_group *tg)
7439{
7440 u64 rt_period_us;
7441
7442 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7443 do_div(rt_period_us, NSEC_PER_USEC);
7444 return rt_period_us;
7445}
7446
7447static int sched_rt_global_constraints(void)
7448{
4653f803 7449 u64 runtime, period;
d0b27fa7
PZ
7450 int ret = 0;
7451
ec5d4989
HS
7452 if (sysctl_sched_rt_period <= 0)
7453 return -EINVAL;
7454
4653f803
PZ
7455 runtime = global_rt_runtime();
7456 period = global_rt_period();
7457
7458 /*
7459 * Sanity check on the sysctl variables.
7460 */
7461 if (runtime > period && runtime != RUNTIME_INF)
7462 return -EINVAL;
10b612f4 7463
d0b27fa7 7464 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7465 read_lock(&tasklist_lock);
4653f803 7466 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7467 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7468 mutex_unlock(&rt_constraints_mutex);
7469
7470 return ret;
7471}
54e99124
DG
7472
7473int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7474{
7475 /* Don't accept realtime tasks when there is no way for them to run */
7476 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7477 return 0;
7478
7479 return 1;
7480}
7481
6d6bc0ad 7482#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7483static int sched_rt_global_constraints(void)
7484{
ac086bc2
PZ
7485 unsigned long flags;
7486 int i;
7487
ec5d4989
HS
7488 if (sysctl_sched_rt_period <= 0)
7489 return -EINVAL;
7490
60aa605d
PZ
7491 /*
7492 * There's always some RT tasks in the root group
7493 * -- migration, kstopmachine etc..
7494 */
7495 if (sysctl_sched_rt_runtime == 0)
7496 return -EBUSY;
7497
0986b11b 7498 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7499 for_each_possible_cpu(i) {
7500 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7501
0986b11b 7502 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7503 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7504 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7505 }
0986b11b 7506 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7507
d0b27fa7
PZ
7508 return 0;
7509}
6d6bc0ad 7510#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7511
ce0dbbbb
CW
7512int sched_rr_handler(struct ctl_table *table, int write,
7513 void __user *buffer, size_t *lenp,
7514 loff_t *ppos)
7515{
7516 int ret;
7517 static DEFINE_MUTEX(mutex);
7518
7519 mutex_lock(&mutex);
7520 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7521 /* make sure that internally we keep jiffies */
7522 /* also, writing zero resets timeslice to default */
7523 if (!ret && write) {
7524 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7525 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7526 }
7527 mutex_unlock(&mutex);
7528 return ret;
7529}
7530
d0b27fa7 7531int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7532 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7533 loff_t *ppos)
7534{
7535 int ret;
7536 int old_period, old_runtime;
7537 static DEFINE_MUTEX(mutex);
7538
7539 mutex_lock(&mutex);
7540 old_period = sysctl_sched_rt_period;
7541 old_runtime = sysctl_sched_rt_runtime;
7542
8d65af78 7543 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7544
7545 if (!ret && write) {
7546 ret = sched_rt_global_constraints();
7547 if (ret) {
7548 sysctl_sched_rt_period = old_period;
7549 sysctl_sched_rt_runtime = old_runtime;
7550 } else {
7551 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7552 def_rt_bandwidth.rt_period =
7553 ns_to_ktime(global_rt_period());
7554 }
7555 }
7556 mutex_unlock(&mutex);
7557
7558 return ret;
7559}
68318b8e 7560
052f1dc7 7561#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7562
7563/* return corresponding task_group object of a cgroup */
2b01dfe3 7564static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7565{
2b01dfe3
PM
7566 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7567 struct task_group, css);
68318b8e
SV
7568}
7569
92fb9748 7570static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7571{
ec7dc8ac 7572 struct task_group *tg, *parent;
68318b8e 7573
2b01dfe3 7574 if (!cgrp->parent) {
68318b8e 7575 /* This is early initialization for the top cgroup */
07e06b01 7576 return &root_task_group.css;
68318b8e
SV
7577 }
7578
ec7dc8ac
DG
7579 parent = cgroup_tg(cgrp->parent);
7580 tg = sched_create_group(parent);
68318b8e
SV
7581 if (IS_ERR(tg))
7582 return ERR_PTR(-ENOMEM);
7583
68318b8e
SV
7584 return &tg->css;
7585}
7586
92fb9748 7587static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7588{
2b01dfe3 7589 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7590
7591 sched_destroy_group(tg);
7592}
7593
761b3ef5 7594static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7595 struct cgroup_taskset *tset)
68318b8e 7596{
bb9d97b6
TH
7597 struct task_struct *task;
7598
7599 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7600#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7601 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7602 return -EINVAL;
b68aa230 7603#else
bb9d97b6
TH
7604 /* We don't support RT-tasks being in separate groups */
7605 if (task->sched_class != &fair_sched_class)
7606 return -EINVAL;
b68aa230 7607#endif
bb9d97b6 7608 }
be367d09
BB
7609 return 0;
7610}
68318b8e 7611
761b3ef5 7612static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7613 struct cgroup_taskset *tset)
68318b8e 7614{
bb9d97b6
TH
7615 struct task_struct *task;
7616
7617 cgroup_taskset_for_each(task, cgrp, tset)
7618 sched_move_task(task);
68318b8e
SV
7619}
7620
068c5cc5 7621static void
761b3ef5
LZ
7622cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7623 struct task_struct *task)
068c5cc5
PZ
7624{
7625 /*
7626 * cgroup_exit() is called in the copy_process() failure path.
7627 * Ignore this case since the task hasn't ran yet, this avoids
7628 * trying to poke a half freed task state from generic code.
7629 */
7630 if (!(task->flags & PF_EXITING))
7631 return;
7632
7633 sched_move_task(task);
7634}
7635
052f1dc7 7636#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7637static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7638 u64 shareval)
68318b8e 7639{
c8b28116 7640 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7641}
7642
f4c753b7 7643static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7644{
2b01dfe3 7645 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7646
c8b28116 7647 return (u64) scale_load_down(tg->shares);
68318b8e 7648}
ab84d31e
PT
7649
7650#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7651static DEFINE_MUTEX(cfs_constraints_mutex);
7652
ab84d31e
PT
7653const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7654const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7655
a790de99
PT
7656static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7657
ab84d31e
PT
7658static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7659{
56f570e5 7660 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7661 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7662
7663 if (tg == &root_task_group)
7664 return -EINVAL;
7665
7666 /*
7667 * Ensure we have at some amount of bandwidth every period. This is
7668 * to prevent reaching a state of large arrears when throttled via
7669 * entity_tick() resulting in prolonged exit starvation.
7670 */
7671 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7672 return -EINVAL;
7673
7674 /*
7675 * Likewise, bound things on the otherside by preventing insane quota
7676 * periods. This also allows us to normalize in computing quota
7677 * feasibility.
7678 */
7679 if (period > max_cfs_quota_period)
7680 return -EINVAL;
7681
a790de99
PT
7682 mutex_lock(&cfs_constraints_mutex);
7683 ret = __cfs_schedulable(tg, period, quota);
7684 if (ret)
7685 goto out_unlock;
7686
58088ad0 7687 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7688 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7689 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7690 raw_spin_lock_irq(&cfs_b->lock);
7691 cfs_b->period = ns_to_ktime(period);
7692 cfs_b->quota = quota;
58088ad0 7693
a9cf55b2 7694 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7695 /* restart the period timer (if active) to handle new period expiry */
7696 if (runtime_enabled && cfs_b->timer_active) {
7697 /* force a reprogram */
7698 cfs_b->timer_active = 0;
7699 __start_cfs_bandwidth(cfs_b);
7700 }
ab84d31e
PT
7701 raw_spin_unlock_irq(&cfs_b->lock);
7702
7703 for_each_possible_cpu(i) {
7704 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7705 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7706
7707 raw_spin_lock_irq(&rq->lock);
58088ad0 7708 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7709 cfs_rq->runtime_remaining = 0;
671fd9da 7710
029632fb 7711 if (cfs_rq->throttled)
671fd9da 7712 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7713 raw_spin_unlock_irq(&rq->lock);
7714 }
a790de99
PT
7715out_unlock:
7716 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7717
a790de99 7718 return ret;
ab84d31e
PT
7719}
7720
7721int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7722{
7723 u64 quota, period;
7724
029632fb 7725 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7726 if (cfs_quota_us < 0)
7727 quota = RUNTIME_INF;
7728 else
7729 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7730
7731 return tg_set_cfs_bandwidth(tg, period, quota);
7732}
7733
7734long tg_get_cfs_quota(struct task_group *tg)
7735{
7736 u64 quota_us;
7737
029632fb 7738 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7739 return -1;
7740
029632fb 7741 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7742 do_div(quota_us, NSEC_PER_USEC);
7743
7744 return quota_us;
7745}
7746
7747int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7748{
7749 u64 quota, period;
7750
7751 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7752 quota = tg->cfs_bandwidth.quota;
ab84d31e 7753
ab84d31e
PT
7754 return tg_set_cfs_bandwidth(tg, period, quota);
7755}
7756
7757long tg_get_cfs_period(struct task_group *tg)
7758{
7759 u64 cfs_period_us;
7760
029632fb 7761 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7762 do_div(cfs_period_us, NSEC_PER_USEC);
7763
7764 return cfs_period_us;
7765}
7766
7767static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7768{
7769 return tg_get_cfs_quota(cgroup_tg(cgrp));
7770}
7771
7772static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7773 s64 cfs_quota_us)
7774{
7775 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7776}
7777
7778static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7779{
7780 return tg_get_cfs_period(cgroup_tg(cgrp));
7781}
7782
7783static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7784 u64 cfs_period_us)
7785{
7786 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7787}
7788
a790de99
PT
7789struct cfs_schedulable_data {
7790 struct task_group *tg;
7791 u64 period, quota;
7792};
7793
7794/*
7795 * normalize group quota/period to be quota/max_period
7796 * note: units are usecs
7797 */
7798static u64 normalize_cfs_quota(struct task_group *tg,
7799 struct cfs_schedulable_data *d)
7800{
7801 u64 quota, period;
7802
7803 if (tg == d->tg) {
7804 period = d->period;
7805 quota = d->quota;
7806 } else {
7807 period = tg_get_cfs_period(tg);
7808 quota = tg_get_cfs_quota(tg);
7809 }
7810
7811 /* note: these should typically be equivalent */
7812 if (quota == RUNTIME_INF || quota == -1)
7813 return RUNTIME_INF;
7814
7815 return to_ratio(period, quota);
7816}
7817
7818static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7819{
7820 struct cfs_schedulable_data *d = data;
029632fb 7821 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7822 s64 quota = 0, parent_quota = -1;
7823
7824 if (!tg->parent) {
7825 quota = RUNTIME_INF;
7826 } else {
029632fb 7827 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7828
7829 quota = normalize_cfs_quota(tg, d);
7830 parent_quota = parent_b->hierarchal_quota;
7831
7832 /*
7833 * ensure max(child_quota) <= parent_quota, inherit when no
7834 * limit is set
7835 */
7836 if (quota == RUNTIME_INF)
7837 quota = parent_quota;
7838 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7839 return -EINVAL;
7840 }
7841 cfs_b->hierarchal_quota = quota;
7842
7843 return 0;
7844}
7845
7846static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7847{
8277434e 7848 int ret;
a790de99
PT
7849 struct cfs_schedulable_data data = {
7850 .tg = tg,
7851 .period = period,
7852 .quota = quota,
7853 };
7854
7855 if (quota != RUNTIME_INF) {
7856 do_div(data.period, NSEC_PER_USEC);
7857 do_div(data.quota, NSEC_PER_USEC);
7858 }
7859
8277434e
PT
7860 rcu_read_lock();
7861 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7862 rcu_read_unlock();
7863
7864 return ret;
a790de99 7865}
e8da1b18
NR
7866
7867static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7868 struct cgroup_map_cb *cb)
7869{
7870 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7871 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7872
7873 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7874 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7875 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7876
7877 return 0;
7878}
ab84d31e 7879#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7880#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7881
052f1dc7 7882#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7883static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7884 s64 val)
6f505b16 7885{
06ecb27c 7886 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7887}
7888
06ecb27c 7889static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7890{
06ecb27c 7891 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7892}
d0b27fa7
PZ
7893
7894static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7895 u64 rt_period_us)
7896{
7897 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7898}
7899
7900static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7901{
7902 return sched_group_rt_period(cgroup_tg(cgrp));
7903}
6d6bc0ad 7904#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7905
fe5c7cc2 7906static struct cftype cpu_files[] = {
052f1dc7 7907#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7908 {
7909 .name = "shares",
f4c753b7
PM
7910 .read_u64 = cpu_shares_read_u64,
7911 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7912 },
052f1dc7 7913#endif
ab84d31e
PT
7914#ifdef CONFIG_CFS_BANDWIDTH
7915 {
7916 .name = "cfs_quota_us",
7917 .read_s64 = cpu_cfs_quota_read_s64,
7918 .write_s64 = cpu_cfs_quota_write_s64,
7919 },
7920 {
7921 .name = "cfs_period_us",
7922 .read_u64 = cpu_cfs_period_read_u64,
7923 .write_u64 = cpu_cfs_period_write_u64,
7924 },
e8da1b18
NR
7925 {
7926 .name = "stat",
7927 .read_map = cpu_stats_show,
7928 },
ab84d31e 7929#endif
052f1dc7 7930#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7931 {
9f0c1e56 7932 .name = "rt_runtime_us",
06ecb27c
PM
7933 .read_s64 = cpu_rt_runtime_read,
7934 .write_s64 = cpu_rt_runtime_write,
6f505b16 7935 },
d0b27fa7
PZ
7936 {
7937 .name = "rt_period_us",
f4c753b7
PM
7938 .read_u64 = cpu_rt_period_read_uint,
7939 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7940 },
052f1dc7 7941#endif
4baf6e33 7942 { } /* terminate */
68318b8e
SV
7943};
7944
68318b8e 7945struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7946 .name = "cpu",
92fb9748
TH
7947 .css_alloc = cpu_cgroup_css_alloc,
7948 .css_free = cpu_cgroup_css_free,
bb9d97b6
TH
7949 .can_attach = cpu_cgroup_can_attach,
7950 .attach = cpu_cgroup_attach,
068c5cc5 7951 .exit = cpu_cgroup_exit,
38605cae 7952 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7953 .base_cftypes = cpu_files,
68318b8e
SV
7954 .early_init = 1,
7955};
7956
052f1dc7 7957#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7958
7959#ifdef CONFIG_CGROUP_CPUACCT
7960
7961/*
7962 * CPU accounting code for task groups.
7963 *
7964 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7965 * (balbir@in.ibm.com).
7966 */
7967
73fbec60
FW
7968struct cpuacct root_cpuacct;
7969
d842de87 7970/* create a new cpu accounting group */
92fb9748 7971static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 7972{
54c707e9 7973 struct cpuacct *ca;
d842de87 7974
54c707e9
GC
7975 if (!cgrp->parent)
7976 return &root_cpuacct.css;
7977
7978 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7979 if (!ca)
ef12fefa 7980 goto out;
d842de87
SV
7981
7982 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7983 if (!ca->cpuusage)
7984 goto out_free_ca;
7985
54c707e9
GC
7986 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7987 if (!ca->cpustat)
7988 goto out_free_cpuusage;
934352f2 7989
d842de87 7990 return &ca->css;
ef12fefa 7991
54c707e9 7992out_free_cpuusage:
ef12fefa
BR
7993 free_percpu(ca->cpuusage);
7994out_free_ca:
7995 kfree(ca);
7996out:
7997 return ERR_PTR(-ENOMEM);
d842de87
SV
7998}
7999
8000/* destroy an existing cpu accounting group */
92fb9748 8001static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 8002{
32cd756a 8003 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8004
54c707e9 8005 free_percpu(ca->cpustat);
d842de87
SV
8006 free_percpu(ca->cpuusage);
8007 kfree(ca);
8008}
8009
720f5498
KC
8010static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8011{
b36128c8 8012 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8013 u64 data;
8014
8015#ifndef CONFIG_64BIT
8016 /*
8017 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8018 */
05fa785c 8019 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8020 data = *cpuusage;
05fa785c 8021 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8022#else
8023 data = *cpuusage;
8024#endif
8025
8026 return data;
8027}
8028
8029static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8030{
b36128c8 8031 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8032
8033#ifndef CONFIG_64BIT
8034 /*
8035 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8036 */
05fa785c 8037 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8038 *cpuusage = val;
05fa785c 8039 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8040#else
8041 *cpuusage = val;
8042#endif
8043}
8044
d842de87 8045/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8046static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8047{
32cd756a 8048 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8049 u64 totalcpuusage = 0;
8050 int i;
8051
720f5498
KC
8052 for_each_present_cpu(i)
8053 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8054
8055 return totalcpuusage;
8056}
8057
0297b803
DG
8058static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8059 u64 reset)
8060{
8061 struct cpuacct *ca = cgroup_ca(cgrp);
8062 int err = 0;
8063 int i;
8064
8065 if (reset) {
8066 err = -EINVAL;
8067 goto out;
8068 }
8069
720f5498
KC
8070 for_each_present_cpu(i)
8071 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8072
0297b803
DG
8073out:
8074 return err;
8075}
8076
e9515c3c
KC
8077static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8078 struct seq_file *m)
8079{
8080 struct cpuacct *ca = cgroup_ca(cgroup);
8081 u64 percpu;
8082 int i;
8083
8084 for_each_present_cpu(i) {
8085 percpu = cpuacct_cpuusage_read(ca, i);
8086 seq_printf(m, "%llu ", (unsigned long long) percpu);
8087 }
8088 seq_printf(m, "\n");
8089 return 0;
8090}
8091
ef12fefa
BR
8092static const char *cpuacct_stat_desc[] = {
8093 [CPUACCT_STAT_USER] = "user",
8094 [CPUACCT_STAT_SYSTEM] = "system",
8095};
8096
8097static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8098 struct cgroup_map_cb *cb)
ef12fefa
BR
8099{
8100 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8101 int cpu;
8102 s64 val = 0;
ef12fefa 8103
54c707e9
GC
8104 for_each_online_cpu(cpu) {
8105 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8106 val += kcpustat->cpustat[CPUTIME_USER];
8107 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8108 }
54c707e9
GC
8109 val = cputime64_to_clock_t(val);
8110 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8111
54c707e9
GC
8112 val = 0;
8113 for_each_online_cpu(cpu) {
8114 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8115 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8116 val += kcpustat->cpustat[CPUTIME_IRQ];
8117 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8118 }
54c707e9
GC
8119
8120 val = cputime64_to_clock_t(val);
8121 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8122
ef12fefa
BR
8123 return 0;
8124}
8125
d842de87
SV
8126static struct cftype files[] = {
8127 {
8128 .name = "usage",
f4c753b7
PM
8129 .read_u64 = cpuusage_read,
8130 .write_u64 = cpuusage_write,
d842de87 8131 },
e9515c3c
KC
8132 {
8133 .name = "usage_percpu",
8134 .read_seq_string = cpuacct_percpu_seq_read,
8135 },
ef12fefa
BR
8136 {
8137 .name = "stat",
8138 .read_map = cpuacct_stats_show,
8139 },
4baf6e33 8140 { } /* terminate */
d842de87
SV
8141};
8142
d842de87
SV
8143/*
8144 * charge this task's execution time to its accounting group.
8145 *
8146 * called with rq->lock held.
8147 */
029632fb 8148void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8149{
8150 struct cpuacct *ca;
934352f2 8151 int cpu;
d842de87 8152
c40c6f85 8153 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8154 return;
8155
934352f2 8156 cpu = task_cpu(tsk);
a18b83b7
BR
8157
8158 rcu_read_lock();
8159
d842de87 8160 ca = task_ca(tsk);
d842de87 8161
44252e42 8162 for (; ca; ca = parent_ca(ca)) {
b36128c8 8163 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8164 *cpuusage += cputime;
8165 }
a18b83b7
BR
8166
8167 rcu_read_unlock();
d842de87
SV
8168}
8169
8170struct cgroup_subsys cpuacct_subsys = {
8171 .name = "cpuacct",
92fb9748
TH
8172 .css_alloc = cpuacct_css_alloc,
8173 .css_free = cpuacct_css_free,
d842de87 8174 .subsys_id = cpuacct_subsys_id,
4baf6e33 8175 .base_cftypes = files,
d842de87
SV
8176};
8177#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8178
8179void dump_cpu_task(int cpu)
8180{
8181 pr_info("Task dump for CPU %d:\n", cpu);
8182 sched_show_task(cpu_curr(cpu));
8183}
This page took 2.294416 seconds and 5 git commands to generate.