cgroup: initialize cgrp->dentry before css_alloc()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
391e43da 86#include "../workqueue_sched.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
5da9a0fb 1135 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1136 enum { cpuset, possible, fail } state = cpuset;
1137 int dest_cpu;
5da9a0fb
PZ
1138
1139 /* Look for allowed, online CPU in same node. */
e3831edd 1140 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1141 if (!cpu_online(dest_cpu))
1142 continue;
1143 if (!cpu_active(dest_cpu))
1144 continue;
fa17b507 1145 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1146 return dest_cpu;
2baab4e9 1147 }
5da9a0fb 1148
2baab4e9
PZ
1149 for (;;) {
1150 /* Any allowed, online CPU? */
e3831edd 1151 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1152 if (!cpu_online(dest_cpu))
1153 continue;
1154 if (!cpu_active(dest_cpu))
1155 continue;
1156 goto out;
1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 switch (state) {
1160 case cpuset:
1161 /* No more Mr. Nice Guy. */
1162 cpuset_cpus_allowed_fallback(p);
1163 state = possible;
1164 break;
1165
1166 case possible:
1167 do_set_cpus_allowed(p, cpu_possible_mask);
1168 state = fail;
1169 break;
1170
1171 case fail:
1172 BUG();
1173 break;
1174 }
1175 }
1176
1177out:
1178 if (state != cpuset) {
1179 /*
1180 * Don't tell them about moving exiting tasks or
1181 * kernel threads (both mm NULL), since they never
1182 * leave kernel.
1183 */
1184 if (p->mm && printk_ratelimit()) {
1185 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1186 task_pid_nr(p), p->comm, cpu);
1187 }
5da9a0fb
PZ
1188 }
1189
1190 return dest_cpu;
1191}
1192
e2912009 1193/*
013fdb80 1194 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1195 */
970b13ba 1196static inline
7608dec2 1197int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1198{
7608dec2 1199 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1200
1201 /*
1202 * In order not to call set_task_cpu() on a blocking task we need
1203 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1204 * cpu.
1205 *
1206 * Since this is common to all placement strategies, this lives here.
1207 *
1208 * [ this allows ->select_task() to simply return task_cpu(p) and
1209 * not worry about this generic constraint ]
1210 */
fa17b507 1211 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1212 !cpu_online(cpu)))
5da9a0fb 1213 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1214
1215 return cpu;
970b13ba 1216}
09a40af5
MG
1217
1218static void update_avg(u64 *avg, u64 sample)
1219{
1220 s64 diff = sample - *avg;
1221 *avg += diff >> 3;
1222}
970b13ba
PZ
1223#endif
1224
d7c01d27 1225static void
b84cb5df 1226ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1227{
d7c01d27 1228#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1229 struct rq *rq = this_rq();
1230
d7c01d27
PZ
1231#ifdef CONFIG_SMP
1232 int this_cpu = smp_processor_id();
1233
1234 if (cpu == this_cpu) {
1235 schedstat_inc(rq, ttwu_local);
1236 schedstat_inc(p, se.statistics.nr_wakeups_local);
1237 } else {
1238 struct sched_domain *sd;
1239
1240 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1241 rcu_read_lock();
d7c01d27
PZ
1242 for_each_domain(this_cpu, sd) {
1243 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1244 schedstat_inc(sd, ttwu_wake_remote);
1245 break;
1246 }
1247 }
057f3fad 1248 rcu_read_unlock();
d7c01d27 1249 }
f339b9dc
PZ
1250
1251 if (wake_flags & WF_MIGRATED)
1252 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1253
d7c01d27
PZ
1254#endif /* CONFIG_SMP */
1255
1256 schedstat_inc(rq, ttwu_count);
9ed3811a 1257 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1258
1259 if (wake_flags & WF_SYNC)
9ed3811a 1260 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1261
d7c01d27
PZ
1262#endif /* CONFIG_SCHEDSTATS */
1263}
1264
1265static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1266{
9ed3811a 1267 activate_task(rq, p, en_flags);
fd2f4419 1268 p->on_rq = 1;
c2f7115e
PZ
1269
1270 /* if a worker is waking up, notify workqueue */
1271 if (p->flags & PF_WQ_WORKER)
1272 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1273}
1274
23f41eeb
PZ
1275/*
1276 * Mark the task runnable and perform wakeup-preemption.
1277 */
89363381 1278static void
23f41eeb 1279ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1280{
89363381 1281 trace_sched_wakeup(p, true);
9ed3811a
TH
1282 check_preempt_curr(rq, p, wake_flags);
1283
1284 p->state = TASK_RUNNING;
1285#ifdef CONFIG_SMP
1286 if (p->sched_class->task_woken)
1287 p->sched_class->task_woken(rq, p);
1288
e69c6341 1289 if (rq->idle_stamp) {
9ed3811a
TH
1290 u64 delta = rq->clock - rq->idle_stamp;
1291 u64 max = 2*sysctl_sched_migration_cost;
1292
1293 if (delta > max)
1294 rq->avg_idle = max;
1295 else
1296 update_avg(&rq->avg_idle, delta);
1297 rq->idle_stamp = 0;
1298 }
1299#endif
1300}
1301
c05fbafb
PZ
1302static void
1303ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1304{
1305#ifdef CONFIG_SMP
1306 if (p->sched_contributes_to_load)
1307 rq->nr_uninterruptible--;
1308#endif
1309
1310 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1311 ttwu_do_wakeup(rq, p, wake_flags);
1312}
1313
1314/*
1315 * Called in case the task @p isn't fully descheduled from its runqueue,
1316 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1317 * since all we need to do is flip p->state to TASK_RUNNING, since
1318 * the task is still ->on_rq.
1319 */
1320static int ttwu_remote(struct task_struct *p, int wake_flags)
1321{
1322 struct rq *rq;
1323 int ret = 0;
1324
1325 rq = __task_rq_lock(p);
1326 if (p->on_rq) {
1327 ttwu_do_wakeup(rq, p, wake_flags);
1328 ret = 1;
1329 }
1330 __task_rq_unlock(rq);
1331
1332 return ret;
1333}
1334
317f3941 1335#ifdef CONFIG_SMP
fa14ff4a 1336static void sched_ttwu_pending(void)
317f3941
PZ
1337{
1338 struct rq *rq = this_rq();
fa14ff4a
PZ
1339 struct llist_node *llist = llist_del_all(&rq->wake_list);
1340 struct task_struct *p;
317f3941
PZ
1341
1342 raw_spin_lock(&rq->lock);
1343
fa14ff4a
PZ
1344 while (llist) {
1345 p = llist_entry(llist, struct task_struct, wake_entry);
1346 llist = llist_next(llist);
317f3941
PZ
1347 ttwu_do_activate(rq, p, 0);
1348 }
1349
1350 raw_spin_unlock(&rq->lock);
1351}
1352
1353void scheduler_ipi(void)
1354{
ca38062e 1355 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1356 return;
1357
1358 /*
1359 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1360 * traditionally all their work was done from the interrupt return
1361 * path. Now that we actually do some work, we need to make sure
1362 * we do call them.
1363 *
1364 * Some archs already do call them, luckily irq_enter/exit nest
1365 * properly.
1366 *
1367 * Arguably we should visit all archs and update all handlers,
1368 * however a fair share of IPIs are still resched only so this would
1369 * somewhat pessimize the simple resched case.
1370 */
1371 irq_enter();
fa14ff4a 1372 sched_ttwu_pending();
ca38062e
SS
1373
1374 /*
1375 * Check if someone kicked us for doing the nohz idle load balance.
1376 */
6eb57e0d
SS
1377 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1378 this_rq()->idle_balance = 1;
ca38062e 1379 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1380 }
c5d753a5 1381 irq_exit();
317f3941
PZ
1382}
1383
1384static void ttwu_queue_remote(struct task_struct *p, int cpu)
1385{
fa14ff4a 1386 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1387 smp_send_reschedule(cpu);
1388}
d6aa8f85 1389
39be3501 1390bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1391{
1392 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1393}
d6aa8f85 1394#endif /* CONFIG_SMP */
317f3941 1395
c05fbafb
PZ
1396static void ttwu_queue(struct task_struct *p, int cpu)
1397{
1398 struct rq *rq = cpu_rq(cpu);
1399
17d9f311 1400#if defined(CONFIG_SMP)
39be3501 1401 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1402 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1403 ttwu_queue_remote(p, cpu);
1404 return;
1405 }
1406#endif
1407
c05fbafb
PZ
1408 raw_spin_lock(&rq->lock);
1409 ttwu_do_activate(rq, p, 0);
1410 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1411}
1412
1413/**
1da177e4 1414 * try_to_wake_up - wake up a thread
9ed3811a 1415 * @p: the thread to be awakened
1da177e4 1416 * @state: the mask of task states that can be woken
9ed3811a 1417 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1418 *
1419 * Put it on the run-queue if it's not already there. The "current"
1420 * thread is always on the run-queue (except when the actual
1421 * re-schedule is in progress), and as such you're allowed to do
1422 * the simpler "current->state = TASK_RUNNING" to mark yourself
1423 * runnable without the overhead of this.
1424 *
9ed3811a
TH
1425 * Returns %true if @p was woken up, %false if it was already running
1426 * or @state didn't match @p's state.
1da177e4 1427 */
e4a52bcb
PZ
1428static int
1429try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1430{
1da177e4 1431 unsigned long flags;
c05fbafb 1432 int cpu, success = 0;
2398f2c6 1433
04e2f174 1434 smp_wmb();
013fdb80 1435 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1436 if (!(p->state & state))
1da177e4
LT
1437 goto out;
1438
c05fbafb 1439 success = 1; /* we're going to change ->state */
1da177e4 1440 cpu = task_cpu(p);
1da177e4 1441
c05fbafb
PZ
1442 if (p->on_rq && ttwu_remote(p, wake_flags))
1443 goto stat;
1da177e4 1444
1da177e4 1445#ifdef CONFIG_SMP
e9c84311 1446 /*
c05fbafb
PZ
1447 * If the owning (remote) cpu is still in the middle of schedule() with
1448 * this task as prev, wait until its done referencing the task.
e9c84311 1449 */
f3e94786 1450 while (p->on_cpu)
e4a52bcb 1451 cpu_relax();
0970d299 1452 /*
e4a52bcb 1453 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1454 */
e4a52bcb 1455 smp_rmb();
1da177e4 1456
a8e4f2ea 1457 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1458 p->state = TASK_WAKING;
e7693a36 1459
e4a52bcb 1460 if (p->sched_class->task_waking)
74f8e4b2 1461 p->sched_class->task_waking(p);
efbbd05a 1462
7608dec2 1463 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1464 if (task_cpu(p) != cpu) {
1465 wake_flags |= WF_MIGRATED;
e4a52bcb 1466 set_task_cpu(p, cpu);
f339b9dc 1467 }
1da177e4 1468#endif /* CONFIG_SMP */
1da177e4 1469
c05fbafb
PZ
1470 ttwu_queue(p, cpu);
1471stat:
b84cb5df 1472 ttwu_stat(p, cpu, wake_flags);
1da177e4 1473out:
013fdb80 1474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1475
1476 return success;
1477}
1478
21aa9af0
TH
1479/**
1480 * try_to_wake_up_local - try to wake up a local task with rq lock held
1481 * @p: the thread to be awakened
1482 *
2acca55e 1483 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1484 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1485 * the current task.
21aa9af0
TH
1486 */
1487static void try_to_wake_up_local(struct task_struct *p)
1488{
1489 struct rq *rq = task_rq(p);
21aa9af0
TH
1490
1491 BUG_ON(rq != this_rq());
1492 BUG_ON(p == current);
1493 lockdep_assert_held(&rq->lock);
1494
2acca55e
PZ
1495 if (!raw_spin_trylock(&p->pi_lock)) {
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_lock(&p->pi_lock);
1498 raw_spin_lock(&rq->lock);
1499 }
1500
21aa9af0 1501 if (!(p->state & TASK_NORMAL))
2acca55e 1502 goto out;
21aa9af0 1503
fd2f4419 1504 if (!p->on_rq)
d7c01d27
PZ
1505 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1506
23f41eeb 1507 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1508 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1509out:
1510 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1511}
1512
50fa610a
DH
1513/**
1514 * wake_up_process - Wake up a specific process
1515 * @p: The process to be woken up.
1516 *
1517 * Attempt to wake up the nominated process and move it to the set of runnable
1518 * processes. Returns 1 if the process was woken up, 0 if it was already
1519 * running.
1520 *
1521 * It may be assumed that this function implies a write memory barrier before
1522 * changing the task state if and only if any tasks are woken up.
1523 */
7ad5b3a5 1524int wake_up_process(struct task_struct *p)
1da177e4 1525{
d9514f6c 1526 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1527}
1da177e4
LT
1528EXPORT_SYMBOL(wake_up_process);
1529
7ad5b3a5 1530int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1531{
1532 return try_to_wake_up(p, state, 0);
1533}
1534
1da177e4
LT
1535/*
1536 * Perform scheduler related setup for a newly forked process p.
1537 * p is forked by current.
dd41f596
IM
1538 *
1539 * __sched_fork() is basic setup used by init_idle() too:
1540 */
1541static void __sched_fork(struct task_struct *p)
1542{
fd2f4419
PZ
1543 p->on_rq = 0;
1544
1545 p->se.on_rq = 0;
dd41f596
IM
1546 p->se.exec_start = 0;
1547 p->se.sum_exec_runtime = 0;
f6cf891c 1548 p->se.prev_sum_exec_runtime = 0;
6c594c21 1549 p->se.nr_migrations = 0;
da7a735e 1550 p->se.vruntime = 0;
fd2f4419 1551 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1552
f4e26b12
PT
1553/*
1554 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1555 * removed when useful for applications beyond shares distribution (e.g.
1556 * load-balance).
1557 */
1558#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1559 p->se.avg.runnable_avg_period = 0;
1560 p->se.avg.runnable_avg_sum = 0;
1561#endif
6cfb0d5d 1562#ifdef CONFIG_SCHEDSTATS
41acab88 1563 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1564#endif
476d139c 1565
fa717060 1566 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1567
e107be36
AK
1568#ifdef CONFIG_PREEMPT_NOTIFIERS
1569 INIT_HLIST_HEAD(&p->preempt_notifiers);
1570#endif
cbee9f88
PZ
1571
1572#ifdef CONFIG_NUMA_BALANCING
1573 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1574 p->mm->numa_next_scan = jiffies;
b8593bfd 1575 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1576 p->mm->numa_scan_seq = 0;
1577 }
1578
1579 p->node_stamp = 0ULL;
1580 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1581 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1582 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1583 p->numa_work.next = &p->numa_work;
1584#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1585}
1586
1a687c2e 1587#ifdef CONFIG_NUMA_BALANCING
3105b86a 1588#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1589void set_numabalancing_state(bool enabled)
1590{
1591 if (enabled)
1592 sched_feat_set("NUMA");
1593 else
1594 sched_feat_set("NO_NUMA");
1595}
3105b86a
MG
1596#else
1597__read_mostly bool numabalancing_enabled;
1598
1599void set_numabalancing_state(bool enabled)
1600{
1601 numabalancing_enabled = enabled;
dd41f596 1602}
3105b86a 1603#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1604#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1605
1606/*
1607 * fork()/clone()-time setup:
1608 */
3e51e3ed 1609void sched_fork(struct task_struct *p)
dd41f596 1610{
0122ec5b 1611 unsigned long flags;
dd41f596
IM
1612 int cpu = get_cpu();
1613
1614 __sched_fork(p);
06b83b5f 1615 /*
0017d735 1616 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1617 * nobody will actually run it, and a signal or other external
1618 * event cannot wake it up and insert it on the runqueue either.
1619 */
0017d735 1620 p->state = TASK_RUNNING;
dd41f596 1621
c350a04e
MG
1622 /*
1623 * Make sure we do not leak PI boosting priority to the child.
1624 */
1625 p->prio = current->normal_prio;
1626
b9dc29e7
MG
1627 /*
1628 * Revert to default priority/policy on fork if requested.
1629 */
1630 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1631 if (task_has_rt_policy(p)) {
b9dc29e7 1632 p->policy = SCHED_NORMAL;
6c697bdf 1633 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1634 p->rt_priority = 0;
1635 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1636 p->static_prio = NICE_TO_PRIO(0);
1637
1638 p->prio = p->normal_prio = __normal_prio(p);
1639 set_load_weight(p);
6c697bdf 1640
b9dc29e7
MG
1641 /*
1642 * We don't need the reset flag anymore after the fork. It has
1643 * fulfilled its duty:
1644 */
1645 p->sched_reset_on_fork = 0;
1646 }
ca94c442 1647
2ddbf952
HS
1648 if (!rt_prio(p->prio))
1649 p->sched_class = &fair_sched_class;
b29739f9 1650
cd29fe6f
PZ
1651 if (p->sched_class->task_fork)
1652 p->sched_class->task_fork(p);
1653
86951599
PZ
1654 /*
1655 * The child is not yet in the pid-hash so no cgroup attach races,
1656 * and the cgroup is pinned to this child due to cgroup_fork()
1657 * is ran before sched_fork().
1658 *
1659 * Silence PROVE_RCU.
1660 */
0122ec5b 1661 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1662 set_task_cpu(p, cpu);
0122ec5b 1663 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1664
52f17b6c 1665#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1666 if (likely(sched_info_on()))
52f17b6c 1667 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1668#endif
3ca7a440
PZ
1669#if defined(CONFIG_SMP)
1670 p->on_cpu = 0;
4866cde0 1671#endif
bdd4e85d 1672#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1673 /* Want to start with kernel preemption disabled. */
a1261f54 1674 task_thread_info(p)->preempt_count = 1;
1da177e4 1675#endif
806c09a7 1676#ifdef CONFIG_SMP
917b627d 1677 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1678#endif
917b627d 1679
476d139c 1680 put_cpu();
1da177e4
LT
1681}
1682
1683/*
1684 * wake_up_new_task - wake up a newly created task for the first time.
1685 *
1686 * This function will do some initial scheduler statistics housekeeping
1687 * that must be done for every newly created context, then puts the task
1688 * on the runqueue and wakes it.
1689 */
3e51e3ed 1690void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1691{
1692 unsigned long flags;
dd41f596 1693 struct rq *rq;
fabf318e 1694
ab2515c4 1695 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1696#ifdef CONFIG_SMP
1697 /*
1698 * Fork balancing, do it here and not earlier because:
1699 * - cpus_allowed can change in the fork path
1700 * - any previously selected cpu might disappear through hotplug
fabf318e 1701 */
ab2515c4 1702 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1703#endif
1704
ab2515c4 1705 rq = __task_rq_lock(p);
cd29fe6f 1706 activate_task(rq, p, 0);
fd2f4419 1707 p->on_rq = 1;
89363381 1708 trace_sched_wakeup_new(p, true);
a7558e01 1709 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1710#ifdef CONFIG_SMP
efbbd05a
PZ
1711 if (p->sched_class->task_woken)
1712 p->sched_class->task_woken(rq, p);
9a897c5a 1713#endif
0122ec5b 1714 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1715}
1716
e107be36
AK
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718
1719/**
80dd99b3 1720 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1721 * @notifier: notifier struct to register
e107be36
AK
1722 */
1723void preempt_notifier_register(struct preempt_notifier *notifier)
1724{
1725 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1726}
1727EXPORT_SYMBOL_GPL(preempt_notifier_register);
1728
1729/**
1730 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1731 * @notifier: notifier struct to unregister
e107be36
AK
1732 *
1733 * This is safe to call from within a preemption notifier.
1734 */
1735void preempt_notifier_unregister(struct preempt_notifier *notifier)
1736{
1737 hlist_del(&notifier->link);
1738}
1739EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1740
1741static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1742{
1743 struct preempt_notifier *notifier;
1744 struct hlist_node *node;
1745
1746 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1747 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1748}
1749
1750static void
1751fire_sched_out_preempt_notifiers(struct task_struct *curr,
1752 struct task_struct *next)
1753{
1754 struct preempt_notifier *notifier;
1755 struct hlist_node *node;
1756
1757 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758 notifier->ops->sched_out(notifier, next);
1759}
1760
6d6bc0ad 1761#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1762
1763static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1764{
1765}
1766
1767static void
1768fire_sched_out_preempt_notifiers(struct task_struct *curr,
1769 struct task_struct *next)
1770{
1771}
1772
6d6bc0ad 1773#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1774
4866cde0
NP
1775/**
1776 * prepare_task_switch - prepare to switch tasks
1777 * @rq: the runqueue preparing to switch
421cee29 1778 * @prev: the current task that is being switched out
4866cde0
NP
1779 * @next: the task we are going to switch to.
1780 *
1781 * This is called with the rq lock held and interrupts off. It must
1782 * be paired with a subsequent finish_task_switch after the context
1783 * switch.
1784 *
1785 * prepare_task_switch sets up locking and calls architecture specific
1786 * hooks.
1787 */
e107be36
AK
1788static inline void
1789prepare_task_switch(struct rq *rq, struct task_struct *prev,
1790 struct task_struct *next)
4866cde0 1791{
895dd92c 1792 trace_sched_switch(prev, next);
fe4b04fa
PZ
1793 sched_info_switch(prev, next);
1794 perf_event_task_sched_out(prev, next);
e107be36 1795 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1796 prepare_lock_switch(rq, next);
1797 prepare_arch_switch(next);
1798}
1799
1da177e4
LT
1800/**
1801 * finish_task_switch - clean up after a task-switch
344babaa 1802 * @rq: runqueue associated with task-switch
1da177e4
LT
1803 * @prev: the thread we just switched away from.
1804 *
4866cde0
NP
1805 * finish_task_switch must be called after the context switch, paired
1806 * with a prepare_task_switch call before the context switch.
1807 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1808 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1809 *
1810 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1811 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1812 * with the lock held can cause deadlocks; see schedule() for
1813 * details.)
1814 */
a9957449 1815static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1816 __releases(rq->lock)
1817{
1da177e4 1818 struct mm_struct *mm = rq->prev_mm;
55a101f8 1819 long prev_state;
1da177e4
LT
1820
1821 rq->prev_mm = NULL;
1822
1823 /*
1824 * A task struct has one reference for the use as "current".
c394cc9f 1825 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1826 * schedule one last time. The schedule call will never return, and
1827 * the scheduled task must drop that reference.
c394cc9f 1828 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1829 * still held, otherwise prev could be scheduled on another cpu, die
1830 * there before we look at prev->state, and then the reference would
1831 * be dropped twice.
1832 * Manfred Spraul <manfred@colorfullife.com>
1833 */
55a101f8 1834 prev_state = prev->state;
bf9fae9f 1835 vtime_task_switch(prev);
4866cde0 1836 finish_arch_switch(prev);
a8d757ef 1837 perf_event_task_sched_in(prev, current);
4866cde0 1838 finish_lock_switch(rq, prev);
01f23e16 1839 finish_arch_post_lock_switch();
e8fa1362 1840
e107be36 1841 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1842 if (mm)
1843 mmdrop(mm);
c394cc9f 1844 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1845 /*
1846 * Remove function-return probe instances associated with this
1847 * task and put them back on the free list.
9761eea8 1848 */
c6fd91f0 1849 kprobe_flush_task(prev);
1da177e4 1850 put_task_struct(prev);
c6fd91f0 1851 }
1da177e4
LT
1852}
1853
3f029d3c
GH
1854#ifdef CONFIG_SMP
1855
1856/* assumes rq->lock is held */
1857static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1858{
1859 if (prev->sched_class->pre_schedule)
1860 prev->sched_class->pre_schedule(rq, prev);
1861}
1862
1863/* rq->lock is NOT held, but preemption is disabled */
1864static inline void post_schedule(struct rq *rq)
1865{
1866 if (rq->post_schedule) {
1867 unsigned long flags;
1868
05fa785c 1869 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1870 if (rq->curr->sched_class->post_schedule)
1871 rq->curr->sched_class->post_schedule(rq);
05fa785c 1872 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1873
1874 rq->post_schedule = 0;
1875 }
1876}
1877
1878#else
da19ab51 1879
3f029d3c
GH
1880static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1881{
1882}
1883
1884static inline void post_schedule(struct rq *rq)
1885{
1da177e4
LT
1886}
1887
3f029d3c
GH
1888#endif
1889
1da177e4
LT
1890/**
1891 * schedule_tail - first thing a freshly forked thread must call.
1892 * @prev: the thread we just switched away from.
1893 */
36c8b586 1894asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1895 __releases(rq->lock)
1896{
70b97a7f
IM
1897 struct rq *rq = this_rq();
1898
4866cde0 1899 finish_task_switch(rq, prev);
da19ab51 1900
3f029d3c
GH
1901 /*
1902 * FIXME: do we need to worry about rq being invalidated by the
1903 * task_switch?
1904 */
1905 post_schedule(rq);
70b97a7f 1906
4866cde0
NP
1907#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1908 /* In this case, finish_task_switch does not reenable preemption */
1909 preempt_enable();
1910#endif
1da177e4 1911 if (current->set_child_tid)
b488893a 1912 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1913}
1914
1915/*
1916 * context_switch - switch to the new MM and the new
1917 * thread's register state.
1918 */
dd41f596 1919static inline void
70b97a7f 1920context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1921 struct task_struct *next)
1da177e4 1922{
dd41f596 1923 struct mm_struct *mm, *oldmm;
1da177e4 1924
e107be36 1925 prepare_task_switch(rq, prev, next);
fe4b04fa 1926
dd41f596
IM
1927 mm = next->mm;
1928 oldmm = prev->active_mm;
9226d125
ZA
1929 /*
1930 * For paravirt, this is coupled with an exit in switch_to to
1931 * combine the page table reload and the switch backend into
1932 * one hypercall.
1933 */
224101ed 1934 arch_start_context_switch(prev);
9226d125 1935
31915ab4 1936 if (!mm) {
1da177e4
LT
1937 next->active_mm = oldmm;
1938 atomic_inc(&oldmm->mm_count);
1939 enter_lazy_tlb(oldmm, next);
1940 } else
1941 switch_mm(oldmm, mm, next);
1942
31915ab4 1943 if (!prev->mm) {
1da177e4 1944 prev->active_mm = NULL;
1da177e4
LT
1945 rq->prev_mm = oldmm;
1946 }
3a5f5e48
IM
1947 /*
1948 * Since the runqueue lock will be released by the next
1949 * task (which is an invalid locking op but in the case
1950 * of the scheduler it's an obvious special-case), so we
1951 * do an early lockdep release here:
1952 */
1953#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1954 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1955#endif
1da177e4 1956
91d1aa43 1957 context_tracking_task_switch(prev, next);
1da177e4
LT
1958 /* Here we just switch the register state and the stack. */
1959 switch_to(prev, next, prev);
1960
dd41f596
IM
1961 barrier();
1962 /*
1963 * this_rq must be evaluated again because prev may have moved
1964 * CPUs since it called schedule(), thus the 'rq' on its stack
1965 * frame will be invalid.
1966 */
1967 finish_task_switch(this_rq(), prev);
1da177e4
LT
1968}
1969
1970/*
1971 * nr_running, nr_uninterruptible and nr_context_switches:
1972 *
1973 * externally visible scheduler statistics: current number of runnable
1974 * threads, current number of uninterruptible-sleeping threads, total
1975 * number of context switches performed since bootup.
1976 */
1977unsigned long nr_running(void)
1978{
1979 unsigned long i, sum = 0;
1980
1981 for_each_online_cpu(i)
1982 sum += cpu_rq(i)->nr_running;
1983
1984 return sum;
f711f609 1985}
1da177e4
LT
1986
1987unsigned long nr_uninterruptible(void)
f711f609 1988{
1da177e4 1989 unsigned long i, sum = 0;
f711f609 1990
0a945022 1991 for_each_possible_cpu(i)
1da177e4 1992 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1993
1994 /*
1da177e4
LT
1995 * Since we read the counters lockless, it might be slightly
1996 * inaccurate. Do not allow it to go below zero though:
f711f609 1997 */
1da177e4
LT
1998 if (unlikely((long)sum < 0))
1999 sum = 0;
f711f609 2000
1da177e4 2001 return sum;
f711f609 2002}
f711f609 2003
1da177e4 2004unsigned long long nr_context_switches(void)
46cb4b7c 2005{
cc94abfc
SR
2006 int i;
2007 unsigned long long sum = 0;
46cb4b7c 2008
0a945022 2009 for_each_possible_cpu(i)
1da177e4 2010 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2011
1da177e4
LT
2012 return sum;
2013}
483b4ee6 2014
1da177e4
LT
2015unsigned long nr_iowait(void)
2016{
2017 unsigned long i, sum = 0;
483b4ee6 2018
0a945022 2019 for_each_possible_cpu(i)
1da177e4 2020 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2021
1da177e4
LT
2022 return sum;
2023}
483b4ee6 2024
8c215bd3 2025unsigned long nr_iowait_cpu(int cpu)
69d25870 2026{
8c215bd3 2027 struct rq *this = cpu_rq(cpu);
69d25870
AV
2028 return atomic_read(&this->nr_iowait);
2029}
46cb4b7c 2030
69d25870
AV
2031unsigned long this_cpu_load(void)
2032{
2033 struct rq *this = this_rq();
2034 return this->cpu_load[0];
2035}
e790fb0b 2036
46cb4b7c 2037
5167e8d5
PZ
2038/*
2039 * Global load-average calculations
2040 *
2041 * We take a distributed and async approach to calculating the global load-avg
2042 * in order to minimize overhead.
2043 *
2044 * The global load average is an exponentially decaying average of nr_running +
2045 * nr_uninterruptible.
2046 *
2047 * Once every LOAD_FREQ:
2048 *
2049 * nr_active = 0;
2050 * for_each_possible_cpu(cpu)
2051 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2052 *
2053 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2054 *
2055 * Due to a number of reasons the above turns in the mess below:
2056 *
2057 * - for_each_possible_cpu() is prohibitively expensive on machines with
2058 * serious number of cpus, therefore we need to take a distributed approach
2059 * to calculating nr_active.
2060 *
2061 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2062 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2063 *
2064 * So assuming nr_active := 0 when we start out -- true per definition, we
2065 * can simply take per-cpu deltas and fold those into a global accumulate
2066 * to obtain the same result. See calc_load_fold_active().
2067 *
2068 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2069 * across the machine, we assume 10 ticks is sufficient time for every
2070 * cpu to have completed this task.
2071 *
2072 * This places an upper-bound on the IRQ-off latency of the machine. Then
2073 * again, being late doesn't loose the delta, just wrecks the sample.
2074 *
2075 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2076 * this would add another cross-cpu cacheline miss and atomic operation
2077 * to the wakeup path. Instead we increment on whatever cpu the task ran
2078 * when it went into uninterruptible state and decrement on whatever cpu
2079 * did the wakeup. This means that only the sum of nr_uninterruptible over
2080 * all cpus yields the correct result.
2081 *
2082 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2083 */
2084
dce48a84
TG
2085/* Variables and functions for calc_load */
2086static atomic_long_t calc_load_tasks;
2087static unsigned long calc_load_update;
2088unsigned long avenrun[3];
5167e8d5
PZ
2089EXPORT_SYMBOL(avenrun); /* should be removed */
2090
2091/**
2092 * get_avenrun - get the load average array
2093 * @loads: pointer to dest load array
2094 * @offset: offset to add
2095 * @shift: shift count to shift the result left
2096 *
2097 * These values are estimates at best, so no need for locking.
2098 */
2099void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2100{
2101 loads[0] = (avenrun[0] + offset) << shift;
2102 loads[1] = (avenrun[1] + offset) << shift;
2103 loads[2] = (avenrun[2] + offset) << shift;
2104}
46cb4b7c 2105
74f5187a
PZ
2106static long calc_load_fold_active(struct rq *this_rq)
2107{
2108 long nr_active, delta = 0;
2109
2110 nr_active = this_rq->nr_running;
2111 nr_active += (long) this_rq->nr_uninterruptible;
2112
2113 if (nr_active != this_rq->calc_load_active) {
2114 delta = nr_active - this_rq->calc_load_active;
2115 this_rq->calc_load_active = nr_active;
2116 }
2117
2118 return delta;
2119}
2120
5167e8d5
PZ
2121/*
2122 * a1 = a0 * e + a * (1 - e)
2123 */
0f004f5a
PZ
2124static unsigned long
2125calc_load(unsigned long load, unsigned long exp, unsigned long active)
2126{
2127 load *= exp;
2128 load += active * (FIXED_1 - exp);
2129 load += 1UL << (FSHIFT - 1);
2130 return load >> FSHIFT;
2131}
2132
74f5187a
PZ
2133#ifdef CONFIG_NO_HZ
2134/*
5167e8d5
PZ
2135 * Handle NO_HZ for the global load-average.
2136 *
2137 * Since the above described distributed algorithm to compute the global
2138 * load-average relies on per-cpu sampling from the tick, it is affected by
2139 * NO_HZ.
2140 *
2141 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2142 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2143 * when we read the global state.
2144 *
2145 * Obviously reality has to ruin such a delightfully simple scheme:
2146 *
2147 * - When we go NO_HZ idle during the window, we can negate our sample
2148 * contribution, causing under-accounting.
2149 *
2150 * We avoid this by keeping two idle-delta counters and flipping them
2151 * when the window starts, thus separating old and new NO_HZ load.
2152 *
2153 * The only trick is the slight shift in index flip for read vs write.
2154 *
2155 * 0s 5s 10s 15s
2156 * +10 +10 +10 +10
2157 * |-|-----------|-|-----------|-|-----------|-|
2158 * r:0 0 1 1 0 0 1 1 0
2159 * w:0 1 1 0 0 1 1 0 0
2160 *
2161 * This ensures we'll fold the old idle contribution in this window while
2162 * accumlating the new one.
2163 *
2164 * - When we wake up from NO_HZ idle during the window, we push up our
2165 * contribution, since we effectively move our sample point to a known
2166 * busy state.
2167 *
2168 * This is solved by pushing the window forward, and thus skipping the
2169 * sample, for this cpu (effectively using the idle-delta for this cpu which
2170 * was in effect at the time the window opened). This also solves the issue
2171 * of having to deal with a cpu having been in NOHZ idle for multiple
2172 * LOAD_FREQ intervals.
74f5187a
PZ
2173 *
2174 * When making the ILB scale, we should try to pull this in as well.
2175 */
5167e8d5
PZ
2176static atomic_long_t calc_load_idle[2];
2177static int calc_load_idx;
74f5187a 2178
5167e8d5 2179static inline int calc_load_write_idx(void)
74f5187a 2180{
5167e8d5
PZ
2181 int idx = calc_load_idx;
2182
2183 /*
2184 * See calc_global_nohz(), if we observe the new index, we also
2185 * need to observe the new update time.
2186 */
2187 smp_rmb();
2188
2189 /*
2190 * If the folding window started, make sure we start writing in the
2191 * next idle-delta.
2192 */
2193 if (!time_before(jiffies, calc_load_update))
2194 idx++;
2195
2196 return idx & 1;
2197}
2198
2199static inline int calc_load_read_idx(void)
2200{
2201 return calc_load_idx & 1;
2202}
2203
2204void calc_load_enter_idle(void)
2205{
2206 struct rq *this_rq = this_rq();
74f5187a
PZ
2207 long delta;
2208
5167e8d5
PZ
2209 /*
2210 * We're going into NOHZ mode, if there's any pending delta, fold it
2211 * into the pending idle delta.
2212 */
74f5187a 2213 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2214 if (delta) {
2215 int idx = calc_load_write_idx();
2216 atomic_long_add(delta, &calc_load_idle[idx]);
2217 }
74f5187a
PZ
2218}
2219
5167e8d5 2220void calc_load_exit_idle(void)
74f5187a 2221{
5167e8d5
PZ
2222 struct rq *this_rq = this_rq();
2223
2224 /*
2225 * If we're still before the sample window, we're done.
2226 */
2227 if (time_before(jiffies, this_rq->calc_load_update))
2228 return;
74f5187a
PZ
2229
2230 /*
5167e8d5
PZ
2231 * We woke inside or after the sample window, this means we're already
2232 * accounted through the nohz accounting, so skip the entire deal and
2233 * sync up for the next window.
74f5187a 2234 */
5167e8d5
PZ
2235 this_rq->calc_load_update = calc_load_update;
2236 if (time_before(jiffies, this_rq->calc_load_update + 10))
2237 this_rq->calc_load_update += LOAD_FREQ;
2238}
2239
2240static long calc_load_fold_idle(void)
2241{
2242 int idx = calc_load_read_idx();
2243 long delta = 0;
2244
2245 if (atomic_long_read(&calc_load_idle[idx]))
2246 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2247
2248 return delta;
2249}
0f004f5a
PZ
2250
2251/**
2252 * fixed_power_int - compute: x^n, in O(log n) time
2253 *
2254 * @x: base of the power
2255 * @frac_bits: fractional bits of @x
2256 * @n: power to raise @x to.
2257 *
2258 * By exploiting the relation between the definition of the natural power
2259 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2260 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2261 * (where: n_i \elem {0, 1}, the binary vector representing n),
2262 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2263 * of course trivially computable in O(log_2 n), the length of our binary
2264 * vector.
2265 */
2266static unsigned long
2267fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2268{
2269 unsigned long result = 1UL << frac_bits;
2270
2271 if (n) for (;;) {
2272 if (n & 1) {
2273 result *= x;
2274 result += 1UL << (frac_bits - 1);
2275 result >>= frac_bits;
2276 }
2277 n >>= 1;
2278 if (!n)
2279 break;
2280 x *= x;
2281 x += 1UL << (frac_bits - 1);
2282 x >>= frac_bits;
2283 }
2284
2285 return result;
2286}
2287
2288/*
2289 * a1 = a0 * e + a * (1 - e)
2290 *
2291 * a2 = a1 * e + a * (1 - e)
2292 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2293 * = a0 * e^2 + a * (1 - e) * (1 + e)
2294 *
2295 * a3 = a2 * e + a * (1 - e)
2296 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2297 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2298 *
2299 * ...
2300 *
2301 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2302 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2303 * = a0 * e^n + a * (1 - e^n)
2304 *
2305 * [1] application of the geometric series:
2306 *
2307 * n 1 - x^(n+1)
2308 * S_n := \Sum x^i = -------------
2309 * i=0 1 - x
2310 */
2311static unsigned long
2312calc_load_n(unsigned long load, unsigned long exp,
2313 unsigned long active, unsigned int n)
2314{
2315
2316 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2317}
2318
2319/*
2320 * NO_HZ can leave us missing all per-cpu ticks calling
2321 * calc_load_account_active(), but since an idle CPU folds its delta into
2322 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2323 * in the pending idle delta if our idle period crossed a load cycle boundary.
2324 *
2325 * Once we've updated the global active value, we need to apply the exponential
2326 * weights adjusted to the number of cycles missed.
2327 */
c308b56b 2328static void calc_global_nohz(void)
0f004f5a
PZ
2329{
2330 long delta, active, n;
2331
5167e8d5
PZ
2332 if (!time_before(jiffies, calc_load_update + 10)) {
2333 /*
2334 * Catch-up, fold however many we are behind still
2335 */
2336 delta = jiffies - calc_load_update - 10;
2337 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2338
5167e8d5
PZ
2339 active = atomic_long_read(&calc_load_tasks);
2340 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2341
5167e8d5
PZ
2342 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2343 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2344 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2345
5167e8d5
PZ
2346 calc_load_update += n * LOAD_FREQ;
2347 }
74f5187a 2348
5167e8d5
PZ
2349 /*
2350 * Flip the idle index...
2351 *
2352 * Make sure we first write the new time then flip the index, so that
2353 * calc_load_write_idx() will see the new time when it reads the new
2354 * index, this avoids a double flip messing things up.
2355 */
2356 smp_wmb();
2357 calc_load_idx++;
74f5187a 2358}
5167e8d5 2359#else /* !CONFIG_NO_HZ */
0f004f5a 2360
5167e8d5
PZ
2361static inline long calc_load_fold_idle(void) { return 0; }
2362static inline void calc_global_nohz(void) { }
74f5187a 2363
5167e8d5 2364#endif /* CONFIG_NO_HZ */
46cb4b7c 2365
46cb4b7c 2366/*
dce48a84
TG
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
7835b98b 2369 */
0f004f5a 2370void calc_global_load(unsigned long ticks)
7835b98b 2371{
5167e8d5 2372 long active, delta;
1da177e4 2373
0f004f5a 2374 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2375 return;
1da177e4 2376
5167e8d5
PZ
2377 /*
2378 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2379 */
2380 delta = calc_load_fold_idle();
2381 if (delta)
2382 atomic_long_add(delta, &calc_load_tasks);
2383
dce48a84
TG
2384 active = atomic_long_read(&calc_load_tasks);
2385 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2386
dce48a84
TG
2387 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2388 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2389 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2390
dce48a84 2391 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2392
2393 /*
5167e8d5 2394 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2395 */
2396 calc_global_nohz();
dce48a84 2397}
1da177e4 2398
dce48a84 2399/*
74f5187a
PZ
2400 * Called from update_cpu_load() to periodically update this CPU's
2401 * active count.
dce48a84
TG
2402 */
2403static void calc_load_account_active(struct rq *this_rq)
2404{
74f5187a 2405 long delta;
08c183f3 2406
74f5187a
PZ
2407 if (time_before(jiffies, this_rq->calc_load_update))
2408 return;
783609c6 2409
74f5187a 2410 delta = calc_load_fold_active(this_rq);
74f5187a 2411 if (delta)
dce48a84 2412 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2413
2414 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2415}
2416
5167e8d5
PZ
2417/*
2418 * End of global load-average stuff
2419 */
2420
fdf3e95d
VP
2421/*
2422 * The exact cpuload at various idx values, calculated at every tick would be
2423 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2424 *
2425 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2426 * on nth tick when cpu may be busy, then we have:
2427 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2428 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2429 *
2430 * decay_load_missed() below does efficient calculation of
2431 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2432 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2433 *
2434 * The calculation is approximated on a 128 point scale.
2435 * degrade_zero_ticks is the number of ticks after which load at any
2436 * particular idx is approximated to be zero.
2437 * degrade_factor is a precomputed table, a row for each load idx.
2438 * Each column corresponds to degradation factor for a power of two ticks,
2439 * based on 128 point scale.
2440 * Example:
2441 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2442 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2443 *
2444 * With this power of 2 load factors, we can degrade the load n times
2445 * by looking at 1 bits in n and doing as many mult/shift instead of
2446 * n mult/shifts needed by the exact degradation.
2447 */
2448#define DEGRADE_SHIFT 7
2449static const unsigned char
2450 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2451static const unsigned char
2452 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2453 {0, 0, 0, 0, 0, 0, 0, 0},
2454 {64, 32, 8, 0, 0, 0, 0, 0},
2455 {96, 72, 40, 12, 1, 0, 0},
2456 {112, 98, 75, 43, 15, 1, 0},
2457 {120, 112, 98, 76, 45, 16, 2} };
2458
2459/*
2460 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2461 * would be when CPU is idle and so we just decay the old load without
2462 * adding any new load.
2463 */
2464static unsigned long
2465decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2466{
2467 int j = 0;
2468
2469 if (!missed_updates)
2470 return load;
2471
2472 if (missed_updates >= degrade_zero_ticks[idx])
2473 return 0;
2474
2475 if (idx == 1)
2476 return load >> missed_updates;
2477
2478 while (missed_updates) {
2479 if (missed_updates % 2)
2480 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2481
2482 missed_updates >>= 1;
2483 j++;
2484 }
2485 return load;
2486}
2487
46cb4b7c 2488/*
dd41f596 2489 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2490 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2491 * every tick. We fix it up based on jiffies.
46cb4b7c 2492 */
556061b0
PZ
2493static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2494 unsigned long pending_updates)
46cb4b7c 2495{
dd41f596 2496 int i, scale;
46cb4b7c 2497
dd41f596 2498 this_rq->nr_load_updates++;
46cb4b7c 2499
dd41f596 2500 /* Update our load: */
fdf3e95d
VP
2501 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2502 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2503 unsigned long old_load, new_load;
7d1e6a9b 2504
dd41f596 2505 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2506
dd41f596 2507 old_load = this_rq->cpu_load[i];
fdf3e95d 2508 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2509 new_load = this_load;
a25707f3
IM
2510 /*
2511 * Round up the averaging division if load is increasing. This
2512 * prevents us from getting stuck on 9 if the load is 10, for
2513 * example.
2514 */
2515 if (new_load > old_load)
fdf3e95d
VP
2516 new_load += scale - 1;
2517
2518 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2519 }
da2b71ed
SS
2520
2521 sched_avg_update(this_rq);
fdf3e95d
VP
2522}
2523
5aaa0b7a
PZ
2524#ifdef CONFIG_NO_HZ
2525/*
2526 * There is no sane way to deal with nohz on smp when using jiffies because the
2527 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2528 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2529 *
2530 * Therefore we cannot use the delta approach from the regular tick since that
2531 * would seriously skew the load calculation. However we'll make do for those
2532 * updates happening while idle (nohz_idle_balance) or coming out of idle
2533 * (tick_nohz_idle_exit).
2534 *
2535 * This means we might still be one tick off for nohz periods.
2536 */
2537
556061b0
PZ
2538/*
2539 * Called from nohz_idle_balance() to update the load ratings before doing the
2540 * idle balance.
2541 */
2542void update_idle_cpu_load(struct rq *this_rq)
2543{
5aaa0b7a 2544 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2545 unsigned long load = this_rq->load.weight;
2546 unsigned long pending_updates;
2547
2548 /*
5aaa0b7a 2549 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2550 */
2551 if (load || curr_jiffies == this_rq->last_load_update_tick)
2552 return;
2553
2554 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2555 this_rq->last_load_update_tick = curr_jiffies;
2556
2557 __update_cpu_load(this_rq, load, pending_updates);
2558}
2559
5aaa0b7a
PZ
2560/*
2561 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2562 */
2563void update_cpu_load_nohz(void)
2564{
2565 struct rq *this_rq = this_rq();
2566 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2567 unsigned long pending_updates;
2568
2569 if (curr_jiffies == this_rq->last_load_update_tick)
2570 return;
2571
2572 raw_spin_lock(&this_rq->lock);
2573 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2574 if (pending_updates) {
2575 this_rq->last_load_update_tick = curr_jiffies;
2576 /*
2577 * We were idle, this means load 0, the current load might be
2578 * !0 due to remote wakeups and the sort.
2579 */
2580 __update_cpu_load(this_rq, 0, pending_updates);
2581 }
2582 raw_spin_unlock(&this_rq->lock);
2583}
2584#endif /* CONFIG_NO_HZ */
2585
556061b0
PZ
2586/*
2587 * Called from scheduler_tick()
2588 */
fdf3e95d
VP
2589static void update_cpu_load_active(struct rq *this_rq)
2590{
556061b0 2591 /*
5aaa0b7a 2592 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2593 */
2594 this_rq->last_load_update_tick = jiffies;
2595 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2596
74f5187a 2597 calc_load_account_active(this_rq);
46cb4b7c
SS
2598}
2599
dd41f596 2600#ifdef CONFIG_SMP
8a0be9ef 2601
46cb4b7c 2602/*
38022906
PZ
2603 * sched_exec - execve() is a valuable balancing opportunity, because at
2604 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2605 */
38022906 2606void sched_exec(void)
46cb4b7c 2607{
38022906 2608 struct task_struct *p = current;
1da177e4 2609 unsigned long flags;
0017d735 2610 int dest_cpu;
46cb4b7c 2611
8f42ced9 2612 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2613 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2614 if (dest_cpu == smp_processor_id())
2615 goto unlock;
38022906 2616
8f42ced9 2617 if (likely(cpu_active(dest_cpu))) {
969c7921 2618 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2619
8f42ced9
PZ
2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2621 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2622 return;
2623 }
0017d735 2624unlock:
8f42ced9 2625 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2626}
dd41f596 2627
1da177e4
LT
2628#endif
2629
1da177e4 2630DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2631DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2632
2633EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2634EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2635
2636/*
c5f8d995 2637 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2638 * @p in case that task is currently running.
c5f8d995
HS
2639 *
2640 * Called with task_rq_lock() held on @rq.
1da177e4 2641 */
c5f8d995
HS
2642static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2643{
2644 u64 ns = 0;
2645
2646 if (task_current(rq, p)) {
2647 update_rq_clock(rq);
305e6835 2648 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2649 if ((s64)ns < 0)
2650 ns = 0;
2651 }
2652
2653 return ns;
2654}
2655
bb34d92f 2656unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2657{
1da177e4 2658 unsigned long flags;
41b86e9c 2659 struct rq *rq;
bb34d92f 2660 u64 ns = 0;
48f24c4d 2661
41b86e9c 2662 rq = task_rq_lock(p, &flags);
c5f8d995 2663 ns = do_task_delta_exec(p, rq);
0122ec5b 2664 task_rq_unlock(rq, p, &flags);
1508487e 2665
c5f8d995
HS
2666 return ns;
2667}
f06febc9 2668
c5f8d995
HS
2669/*
2670 * Return accounted runtime for the task.
2671 * In case the task is currently running, return the runtime plus current's
2672 * pending runtime that have not been accounted yet.
2673 */
2674unsigned long long task_sched_runtime(struct task_struct *p)
2675{
2676 unsigned long flags;
2677 struct rq *rq;
2678 u64 ns = 0;
2679
2680 rq = task_rq_lock(p, &flags);
2681 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2682 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2683
2684 return ns;
2685}
48f24c4d 2686
7835b98b
CL
2687/*
2688 * This function gets called by the timer code, with HZ frequency.
2689 * We call it with interrupts disabled.
7835b98b
CL
2690 */
2691void scheduler_tick(void)
2692{
7835b98b
CL
2693 int cpu = smp_processor_id();
2694 struct rq *rq = cpu_rq(cpu);
dd41f596 2695 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2696
2697 sched_clock_tick();
dd41f596 2698
05fa785c 2699 raw_spin_lock(&rq->lock);
3e51f33f 2700 update_rq_clock(rq);
fdf3e95d 2701 update_cpu_load_active(rq);
fa85ae24 2702 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2703 raw_spin_unlock(&rq->lock);
7835b98b 2704
e9d2b064 2705 perf_event_task_tick();
e220d2dc 2706
e418e1c2 2707#ifdef CONFIG_SMP
6eb57e0d 2708 rq->idle_balance = idle_cpu(cpu);
dd41f596 2709 trigger_load_balance(rq, cpu);
e418e1c2 2710#endif
1da177e4
LT
2711}
2712
132380a0 2713notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2714{
2715 if (in_lock_functions(addr)) {
2716 addr = CALLER_ADDR2;
2717 if (in_lock_functions(addr))
2718 addr = CALLER_ADDR3;
2719 }
2720 return addr;
2721}
1da177e4 2722
7e49fcce
SR
2723#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2724 defined(CONFIG_PREEMPT_TRACER))
2725
43627582 2726void __kprobes add_preempt_count(int val)
1da177e4 2727{
6cd8a4bb 2728#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2729 /*
2730 * Underflow?
2731 */
9a11b49a
IM
2732 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2733 return;
6cd8a4bb 2734#endif
1da177e4 2735 preempt_count() += val;
6cd8a4bb 2736#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2737 /*
2738 * Spinlock count overflowing soon?
2739 */
33859f7f
MOS
2740 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2741 PREEMPT_MASK - 10);
6cd8a4bb
SR
2742#endif
2743 if (preempt_count() == val)
2744 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2745}
2746EXPORT_SYMBOL(add_preempt_count);
2747
43627582 2748void __kprobes sub_preempt_count(int val)
1da177e4 2749{
6cd8a4bb 2750#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2751 /*
2752 * Underflow?
2753 */
01e3eb82 2754 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2755 return;
1da177e4
LT
2756 /*
2757 * Is the spinlock portion underflowing?
2758 */
9a11b49a
IM
2759 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2760 !(preempt_count() & PREEMPT_MASK)))
2761 return;
6cd8a4bb 2762#endif
9a11b49a 2763
6cd8a4bb
SR
2764 if (preempt_count() == val)
2765 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2766 preempt_count() -= val;
2767}
2768EXPORT_SYMBOL(sub_preempt_count);
2769
2770#endif
2771
2772/*
dd41f596 2773 * Print scheduling while atomic bug:
1da177e4 2774 */
dd41f596 2775static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2776{
664dfa65
DJ
2777 if (oops_in_progress)
2778 return;
2779
3df0fc5b
PZ
2780 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2781 prev->comm, prev->pid, preempt_count());
838225b4 2782
dd41f596 2783 debug_show_held_locks(prev);
e21f5b15 2784 print_modules();
dd41f596
IM
2785 if (irqs_disabled())
2786 print_irqtrace_events(prev);
6135fc1e 2787 dump_stack();
1c2927f1 2788 add_taint(TAINT_WARN);
dd41f596 2789}
1da177e4 2790
dd41f596
IM
2791/*
2792 * Various schedule()-time debugging checks and statistics:
2793 */
2794static inline void schedule_debug(struct task_struct *prev)
2795{
1da177e4 2796 /*
41a2d6cf 2797 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2798 * schedule() atomically, we ignore that path for now.
2799 * Otherwise, whine if we are scheduling when we should not be.
2800 */
3f33a7ce 2801 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2802 __schedule_bug(prev);
b3fbab05 2803 rcu_sleep_check();
dd41f596 2804
1da177e4
LT
2805 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2806
2d72376b 2807 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2808}
2809
6cecd084 2810static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2811{
61eadef6 2812 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2813 update_rq_clock(rq);
6cecd084 2814 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2815}
2816
dd41f596
IM
2817/*
2818 * Pick up the highest-prio task:
2819 */
2820static inline struct task_struct *
b67802ea 2821pick_next_task(struct rq *rq)
dd41f596 2822{
5522d5d5 2823 const struct sched_class *class;
dd41f596 2824 struct task_struct *p;
1da177e4
LT
2825
2826 /*
dd41f596
IM
2827 * Optimization: we know that if all tasks are in
2828 * the fair class we can call that function directly:
1da177e4 2829 */
953bfcd1 2830 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2831 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2832 if (likely(p))
2833 return p;
1da177e4
LT
2834 }
2835
34f971f6 2836 for_each_class(class) {
fb8d4724 2837 p = class->pick_next_task(rq);
dd41f596
IM
2838 if (p)
2839 return p;
dd41f596 2840 }
34f971f6
PZ
2841
2842 BUG(); /* the idle class will always have a runnable task */
dd41f596 2843}
1da177e4 2844
dd41f596 2845/*
c259e01a 2846 * __schedule() is the main scheduler function.
edde96ea
PE
2847 *
2848 * The main means of driving the scheduler and thus entering this function are:
2849 *
2850 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2851 *
2852 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2853 * paths. For example, see arch/x86/entry_64.S.
2854 *
2855 * To drive preemption between tasks, the scheduler sets the flag in timer
2856 * interrupt handler scheduler_tick().
2857 *
2858 * 3. Wakeups don't really cause entry into schedule(). They add a
2859 * task to the run-queue and that's it.
2860 *
2861 * Now, if the new task added to the run-queue preempts the current
2862 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2863 * called on the nearest possible occasion:
2864 *
2865 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2866 *
2867 * - in syscall or exception context, at the next outmost
2868 * preempt_enable(). (this might be as soon as the wake_up()'s
2869 * spin_unlock()!)
2870 *
2871 * - in IRQ context, return from interrupt-handler to
2872 * preemptible context
2873 *
2874 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2875 * then at the next:
2876 *
2877 * - cond_resched() call
2878 * - explicit schedule() call
2879 * - return from syscall or exception to user-space
2880 * - return from interrupt-handler to user-space
dd41f596 2881 */
c259e01a 2882static void __sched __schedule(void)
dd41f596
IM
2883{
2884 struct task_struct *prev, *next;
67ca7bde 2885 unsigned long *switch_count;
dd41f596 2886 struct rq *rq;
31656519 2887 int cpu;
dd41f596 2888
ff743345
PZ
2889need_resched:
2890 preempt_disable();
dd41f596
IM
2891 cpu = smp_processor_id();
2892 rq = cpu_rq(cpu);
25502a6c 2893 rcu_note_context_switch(cpu);
dd41f596 2894 prev = rq->curr;
dd41f596 2895
dd41f596 2896 schedule_debug(prev);
1da177e4 2897
31656519 2898 if (sched_feat(HRTICK))
f333fdc9 2899 hrtick_clear(rq);
8f4d37ec 2900
05fa785c 2901 raw_spin_lock_irq(&rq->lock);
1da177e4 2902
246d86b5 2903 switch_count = &prev->nivcsw;
1da177e4 2904 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2905 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2906 prev->state = TASK_RUNNING;
21aa9af0 2907 } else {
2acca55e
PZ
2908 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2909 prev->on_rq = 0;
2910
21aa9af0 2911 /*
2acca55e
PZ
2912 * If a worker went to sleep, notify and ask workqueue
2913 * whether it wants to wake up a task to maintain
2914 * concurrency.
21aa9af0
TH
2915 */
2916 if (prev->flags & PF_WQ_WORKER) {
2917 struct task_struct *to_wakeup;
2918
2919 to_wakeup = wq_worker_sleeping(prev, cpu);
2920 if (to_wakeup)
2921 try_to_wake_up_local(to_wakeup);
2922 }
21aa9af0 2923 }
dd41f596 2924 switch_count = &prev->nvcsw;
1da177e4
LT
2925 }
2926
3f029d3c 2927 pre_schedule(rq, prev);
f65eda4f 2928
dd41f596 2929 if (unlikely(!rq->nr_running))
1da177e4 2930 idle_balance(cpu, rq);
1da177e4 2931
df1c99d4 2932 put_prev_task(rq, prev);
b67802ea 2933 next = pick_next_task(rq);
f26f9aff
MG
2934 clear_tsk_need_resched(prev);
2935 rq->skip_clock_update = 0;
1da177e4 2936
1da177e4 2937 if (likely(prev != next)) {
1da177e4
LT
2938 rq->nr_switches++;
2939 rq->curr = next;
2940 ++*switch_count;
2941
dd41f596 2942 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2943 /*
246d86b5
ON
2944 * The context switch have flipped the stack from under us
2945 * and restored the local variables which were saved when
2946 * this task called schedule() in the past. prev == current
2947 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2948 */
2949 cpu = smp_processor_id();
2950 rq = cpu_rq(cpu);
1da177e4 2951 } else
05fa785c 2952 raw_spin_unlock_irq(&rq->lock);
1da177e4 2953
3f029d3c 2954 post_schedule(rq);
1da177e4 2955
ba74c144 2956 sched_preempt_enable_no_resched();
ff743345 2957 if (need_resched())
1da177e4
LT
2958 goto need_resched;
2959}
c259e01a 2960
9c40cef2
TG
2961static inline void sched_submit_work(struct task_struct *tsk)
2962{
3c7d5184 2963 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2964 return;
2965 /*
2966 * If we are going to sleep and we have plugged IO queued,
2967 * make sure to submit it to avoid deadlocks.
2968 */
2969 if (blk_needs_flush_plug(tsk))
2970 blk_schedule_flush_plug(tsk);
2971}
2972
6ebbe7a0 2973asmlinkage void __sched schedule(void)
c259e01a 2974{
9c40cef2
TG
2975 struct task_struct *tsk = current;
2976
2977 sched_submit_work(tsk);
c259e01a
TG
2978 __schedule();
2979}
1da177e4
LT
2980EXPORT_SYMBOL(schedule);
2981
91d1aa43 2982#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2983asmlinkage void __sched schedule_user(void)
2984{
2985 /*
2986 * If we come here after a random call to set_need_resched(),
2987 * or we have been woken up remotely but the IPI has not yet arrived,
2988 * we haven't yet exited the RCU idle mode. Do it here manually until
2989 * we find a better solution.
2990 */
91d1aa43 2991 user_exit();
20ab65e3 2992 schedule();
91d1aa43 2993 user_enter();
20ab65e3
FW
2994}
2995#endif
2996
c5491ea7
TG
2997/**
2998 * schedule_preempt_disabled - called with preemption disabled
2999 *
3000 * Returns with preemption disabled. Note: preempt_count must be 1
3001 */
3002void __sched schedule_preempt_disabled(void)
3003{
ba74c144 3004 sched_preempt_enable_no_resched();
c5491ea7
TG
3005 schedule();
3006 preempt_disable();
3007}
3008
c08f7829 3009#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3010
c6eb3dda
PZ
3011static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3012{
c6eb3dda 3013 if (lock->owner != owner)
307bf980 3014 return false;
0d66bf6d
PZ
3015
3016 /*
c6eb3dda
PZ
3017 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3018 * lock->owner still matches owner, if that fails, owner might
3019 * point to free()d memory, if it still matches, the rcu_read_lock()
3020 * ensures the memory stays valid.
0d66bf6d 3021 */
c6eb3dda 3022 barrier();
0d66bf6d 3023
307bf980 3024 return owner->on_cpu;
c6eb3dda 3025}
0d66bf6d 3026
c6eb3dda
PZ
3027/*
3028 * Look out! "owner" is an entirely speculative pointer
3029 * access and not reliable.
3030 */
3031int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3032{
3033 if (!sched_feat(OWNER_SPIN))
3034 return 0;
0d66bf6d 3035
307bf980 3036 rcu_read_lock();
c6eb3dda
PZ
3037 while (owner_running(lock, owner)) {
3038 if (need_resched())
307bf980 3039 break;
0d66bf6d 3040
335d7afb 3041 arch_mutex_cpu_relax();
0d66bf6d 3042 }
307bf980 3043 rcu_read_unlock();
4b402210 3044
c6eb3dda 3045 /*
307bf980
TG
3046 * We break out the loop above on need_resched() and when the
3047 * owner changed, which is a sign for heavy contention. Return
3048 * success only when lock->owner is NULL.
c6eb3dda 3049 */
307bf980 3050 return lock->owner == NULL;
0d66bf6d
PZ
3051}
3052#endif
3053
1da177e4
LT
3054#ifdef CONFIG_PREEMPT
3055/*
2ed6e34f 3056 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3057 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3058 * occur there and call schedule directly.
3059 */
d1f74e20 3060asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3061{
3062 struct thread_info *ti = current_thread_info();
6478d880 3063
1da177e4
LT
3064 /*
3065 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3066 * we do not want to preempt the current task. Just return..
1da177e4 3067 */
beed33a8 3068 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3069 return;
3070
3a5c359a 3071 do {
d1f74e20 3072 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3073 __schedule();
d1f74e20 3074 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3075
3a5c359a
AK
3076 /*
3077 * Check again in case we missed a preemption opportunity
3078 * between schedule and now.
3079 */
3080 barrier();
5ed0cec0 3081 } while (need_resched());
1da177e4 3082}
1da177e4
LT
3083EXPORT_SYMBOL(preempt_schedule);
3084
3085/*
2ed6e34f 3086 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3087 * off of irq context.
3088 * Note, that this is called and return with irqs disabled. This will
3089 * protect us against recursive calling from irq.
3090 */
3091asmlinkage void __sched preempt_schedule_irq(void)
3092{
3093 struct thread_info *ti = current_thread_info();
6478d880 3094
2ed6e34f 3095 /* Catch callers which need to be fixed */
1da177e4
LT
3096 BUG_ON(ti->preempt_count || !irqs_disabled());
3097
91d1aa43 3098 user_exit();
3a5c359a
AK
3099 do {
3100 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3101 local_irq_enable();
c259e01a 3102 __schedule();
3a5c359a 3103 local_irq_disable();
3a5c359a 3104 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3105
3a5c359a
AK
3106 /*
3107 * Check again in case we missed a preemption opportunity
3108 * between schedule and now.
3109 */
3110 barrier();
5ed0cec0 3111 } while (need_resched());
1da177e4
LT
3112}
3113
3114#endif /* CONFIG_PREEMPT */
3115
63859d4f 3116int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3117 void *key)
1da177e4 3118{
63859d4f 3119 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3120}
1da177e4
LT
3121EXPORT_SYMBOL(default_wake_function);
3122
3123/*
41a2d6cf
IM
3124 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3125 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3126 * number) then we wake all the non-exclusive tasks and one exclusive task.
3127 *
3128 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3129 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3130 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3131 */
78ddb08f 3132static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3133 int nr_exclusive, int wake_flags, void *key)
1da177e4 3134{
2e45874c 3135 wait_queue_t *curr, *next;
1da177e4 3136
2e45874c 3137 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3138 unsigned flags = curr->flags;
3139
63859d4f 3140 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3141 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3142 break;
3143 }
3144}
3145
3146/**
3147 * __wake_up - wake up threads blocked on a waitqueue.
3148 * @q: the waitqueue
3149 * @mode: which threads
3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3151 * @key: is directly passed to the wakeup function
50fa610a
DH
3152 *
3153 * It may be assumed that this function implies a write memory barrier before
3154 * changing the task state if and only if any tasks are woken up.
1da177e4 3155 */
7ad5b3a5 3156void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3157 int nr_exclusive, void *key)
1da177e4
LT
3158{
3159 unsigned long flags;
3160
3161 spin_lock_irqsave(&q->lock, flags);
3162 __wake_up_common(q, mode, nr_exclusive, 0, key);
3163 spin_unlock_irqrestore(&q->lock, flags);
3164}
1da177e4
LT
3165EXPORT_SYMBOL(__wake_up);
3166
3167/*
3168 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3169 */
63b20011 3170void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3171{
63b20011 3172 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3173}
22c43c81 3174EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3175
4ede816a
DL
3176void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3177{
3178 __wake_up_common(q, mode, 1, 0, key);
3179}
bf294b41 3180EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3181
1da177e4 3182/**
4ede816a 3183 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3184 * @q: the waitqueue
3185 * @mode: which threads
3186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3187 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3188 *
3189 * The sync wakeup differs that the waker knows that it will schedule
3190 * away soon, so while the target thread will be woken up, it will not
3191 * be migrated to another CPU - ie. the two threads are 'synchronized'
3192 * with each other. This can prevent needless bouncing between CPUs.
3193 *
3194 * On UP it can prevent extra preemption.
50fa610a
DH
3195 *
3196 * It may be assumed that this function implies a write memory barrier before
3197 * changing the task state if and only if any tasks are woken up.
1da177e4 3198 */
4ede816a
DL
3199void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3200 int nr_exclusive, void *key)
1da177e4
LT
3201{
3202 unsigned long flags;
7d478721 3203 int wake_flags = WF_SYNC;
1da177e4
LT
3204
3205 if (unlikely(!q))
3206 return;
3207
3208 if (unlikely(!nr_exclusive))
7d478721 3209 wake_flags = 0;
1da177e4
LT
3210
3211 spin_lock_irqsave(&q->lock, flags);
7d478721 3212 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3213 spin_unlock_irqrestore(&q->lock, flags);
3214}
4ede816a
DL
3215EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3216
3217/*
3218 * __wake_up_sync - see __wake_up_sync_key()
3219 */
3220void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3221{
3222 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3223}
1da177e4
LT
3224EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3225
65eb3dc6
KD
3226/**
3227 * complete: - signals a single thread waiting on this completion
3228 * @x: holds the state of this particular completion
3229 *
3230 * This will wake up a single thread waiting on this completion. Threads will be
3231 * awakened in the same order in which they were queued.
3232 *
3233 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3234 *
3235 * It may be assumed that this function implies a write memory barrier before
3236 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3237 */
b15136e9 3238void complete(struct completion *x)
1da177e4
LT
3239{
3240 unsigned long flags;
3241
3242 spin_lock_irqsave(&x->wait.lock, flags);
3243 x->done++;
d9514f6c 3244 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3245 spin_unlock_irqrestore(&x->wait.lock, flags);
3246}
3247EXPORT_SYMBOL(complete);
3248
65eb3dc6
KD
3249/**
3250 * complete_all: - signals all threads waiting on this completion
3251 * @x: holds the state of this particular completion
3252 *
3253 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3254 *
3255 * It may be assumed that this function implies a write memory barrier before
3256 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3257 */
b15136e9 3258void complete_all(struct completion *x)
1da177e4
LT
3259{
3260 unsigned long flags;
3261
3262 spin_lock_irqsave(&x->wait.lock, flags);
3263 x->done += UINT_MAX/2;
d9514f6c 3264 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3265 spin_unlock_irqrestore(&x->wait.lock, flags);
3266}
3267EXPORT_SYMBOL(complete_all);
3268
8cbbe86d
AK
3269static inline long __sched
3270do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3271{
1da177e4
LT
3272 if (!x->done) {
3273 DECLARE_WAITQUEUE(wait, current);
3274
a93d2f17 3275 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3276 do {
94d3d824 3277 if (signal_pending_state(state, current)) {
ea71a546
ON
3278 timeout = -ERESTARTSYS;
3279 break;
8cbbe86d
AK
3280 }
3281 __set_current_state(state);
1da177e4
LT
3282 spin_unlock_irq(&x->wait.lock);
3283 timeout = schedule_timeout(timeout);
3284 spin_lock_irq(&x->wait.lock);
ea71a546 3285 } while (!x->done && timeout);
1da177e4 3286 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3287 if (!x->done)
3288 return timeout;
1da177e4
LT
3289 }
3290 x->done--;
ea71a546 3291 return timeout ?: 1;
1da177e4 3292}
1da177e4 3293
8cbbe86d
AK
3294static long __sched
3295wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3296{
1da177e4
LT
3297 might_sleep();
3298
3299 spin_lock_irq(&x->wait.lock);
8cbbe86d 3300 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3301 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3302 return timeout;
3303}
1da177e4 3304
65eb3dc6
KD
3305/**
3306 * wait_for_completion: - waits for completion of a task
3307 * @x: holds the state of this particular completion
3308 *
3309 * This waits to be signaled for completion of a specific task. It is NOT
3310 * interruptible and there is no timeout.
3311 *
3312 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3313 * and interrupt capability. Also see complete().
3314 */
b15136e9 3315void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3316{
3317 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3318}
8cbbe86d 3319EXPORT_SYMBOL(wait_for_completion);
1da177e4 3320
65eb3dc6
KD
3321/**
3322 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3323 * @x: holds the state of this particular completion
3324 * @timeout: timeout value in jiffies
3325 *
3326 * This waits for either a completion of a specific task to be signaled or for a
3327 * specified timeout to expire. The timeout is in jiffies. It is not
3328 * interruptible.
c6dc7f05
BF
3329 *
3330 * The return value is 0 if timed out, and positive (at least 1, or number of
3331 * jiffies left till timeout) if completed.
65eb3dc6 3332 */
b15136e9 3333unsigned long __sched
8cbbe86d 3334wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3335{
8cbbe86d 3336 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3337}
8cbbe86d 3338EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3339
65eb3dc6
KD
3340/**
3341 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3342 * @x: holds the state of this particular completion
3343 *
3344 * This waits for completion of a specific task to be signaled. It is
3345 * interruptible.
c6dc7f05
BF
3346 *
3347 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3348 */
8cbbe86d 3349int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3350{
51e97990
AK
3351 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3352 if (t == -ERESTARTSYS)
3353 return t;
3354 return 0;
0fec171c 3355}
8cbbe86d 3356EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3357
65eb3dc6
KD
3358/**
3359 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3360 * @x: holds the state of this particular completion
3361 * @timeout: timeout value in jiffies
3362 *
3363 * This waits for either a completion of a specific task to be signaled or for a
3364 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3365 *
3366 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3367 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3368 */
6bf41237 3369long __sched
8cbbe86d
AK
3370wait_for_completion_interruptible_timeout(struct completion *x,
3371 unsigned long timeout)
0fec171c 3372{
8cbbe86d 3373 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3374}
8cbbe86d 3375EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3376
65eb3dc6
KD
3377/**
3378 * wait_for_completion_killable: - waits for completion of a task (killable)
3379 * @x: holds the state of this particular completion
3380 *
3381 * This waits to be signaled for completion of a specific task. It can be
3382 * interrupted by a kill signal.
c6dc7f05
BF
3383 *
3384 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3385 */
009e577e
MW
3386int __sched wait_for_completion_killable(struct completion *x)
3387{
3388 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3389 if (t == -ERESTARTSYS)
3390 return t;
3391 return 0;
3392}
3393EXPORT_SYMBOL(wait_for_completion_killable);
3394
0aa12fb4
SW
3395/**
3396 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3397 * @x: holds the state of this particular completion
3398 * @timeout: timeout value in jiffies
3399 *
3400 * This waits for either a completion of a specific task to be
3401 * signaled or for a specified timeout to expire. It can be
3402 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3403 *
3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3406 */
6bf41237 3407long __sched
0aa12fb4
SW
3408wait_for_completion_killable_timeout(struct completion *x,
3409 unsigned long timeout)
3410{
3411 return wait_for_common(x, timeout, TASK_KILLABLE);
3412}
3413EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3414
be4de352
DC
3415/**
3416 * try_wait_for_completion - try to decrement a completion without blocking
3417 * @x: completion structure
3418 *
3419 * Returns: 0 if a decrement cannot be done without blocking
3420 * 1 if a decrement succeeded.
3421 *
3422 * If a completion is being used as a counting completion,
3423 * attempt to decrement the counter without blocking. This
3424 * enables us to avoid waiting if the resource the completion
3425 * is protecting is not available.
3426 */
3427bool try_wait_for_completion(struct completion *x)
3428{
7539a3b3 3429 unsigned long flags;
be4de352
DC
3430 int ret = 1;
3431
7539a3b3 3432 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3433 if (!x->done)
3434 ret = 0;
3435 else
3436 x->done--;
7539a3b3 3437 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3438 return ret;
3439}
3440EXPORT_SYMBOL(try_wait_for_completion);
3441
3442/**
3443 * completion_done - Test to see if a completion has any waiters
3444 * @x: completion structure
3445 *
3446 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3447 * 1 if there are no waiters.
3448 *
3449 */
3450bool completion_done(struct completion *x)
3451{
7539a3b3 3452 unsigned long flags;
be4de352
DC
3453 int ret = 1;
3454
7539a3b3 3455 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3456 if (!x->done)
3457 ret = 0;
7539a3b3 3458 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3459 return ret;
3460}
3461EXPORT_SYMBOL(completion_done);
3462
8cbbe86d
AK
3463static long __sched
3464sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3465{
0fec171c
IM
3466 unsigned long flags;
3467 wait_queue_t wait;
3468
3469 init_waitqueue_entry(&wait, current);
1da177e4 3470
8cbbe86d 3471 __set_current_state(state);
1da177e4 3472
8cbbe86d
AK
3473 spin_lock_irqsave(&q->lock, flags);
3474 __add_wait_queue(q, &wait);
3475 spin_unlock(&q->lock);
3476 timeout = schedule_timeout(timeout);
3477 spin_lock_irq(&q->lock);
3478 __remove_wait_queue(q, &wait);
3479 spin_unlock_irqrestore(&q->lock, flags);
3480
3481 return timeout;
3482}
3483
3484void __sched interruptible_sleep_on(wait_queue_head_t *q)
3485{
3486 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3487}
1da177e4
LT
3488EXPORT_SYMBOL(interruptible_sleep_on);
3489
0fec171c 3490long __sched
95cdf3b7 3491interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3492{
8cbbe86d 3493 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3494}
1da177e4
LT
3495EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3496
0fec171c 3497void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3498{
8cbbe86d 3499 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3500}
1da177e4
LT
3501EXPORT_SYMBOL(sleep_on);
3502
0fec171c 3503long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3504{
8cbbe86d 3505 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3506}
1da177e4
LT
3507EXPORT_SYMBOL(sleep_on_timeout);
3508
b29739f9
IM
3509#ifdef CONFIG_RT_MUTEXES
3510
3511/*
3512 * rt_mutex_setprio - set the current priority of a task
3513 * @p: task
3514 * @prio: prio value (kernel-internal form)
3515 *
3516 * This function changes the 'effective' priority of a task. It does
3517 * not touch ->normal_prio like __setscheduler().
3518 *
3519 * Used by the rt_mutex code to implement priority inheritance logic.
3520 */
36c8b586 3521void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3522{
83b699ed 3523 int oldprio, on_rq, running;
70b97a7f 3524 struct rq *rq;
83ab0aa0 3525 const struct sched_class *prev_class;
b29739f9
IM
3526
3527 BUG_ON(prio < 0 || prio > MAX_PRIO);
3528
0122ec5b 3529 rq = __task_rq_lock(p);
b29739f9 3530
1c4dd99b
TG
3531 /*
3532 * Idle task boosting is a nono in general. There is one
3533 * exception, when PREEMPT_RT and NOHZ is active:
3534 *
3535 * The idle task calls get_next_timer_interrupt() and holds
3536 * the timer wheel base->lock on the CPU and another CPU wants
3537 * to access the timer (probably to cancel it). We can safely
3538 * ignore the boosting request, as the idle CPU runs this code
3539 * with interrupts disabled and will complete the lock
3540 * protected section without being interrupted. So there is no
3541 * real need to boost.
3542 */
3543 if (unlikely(p == rq->idle)) {
3544 WARN_ON(p != rq->curr);
3545 WARN_ON(p->pi_blocked_on);
3546 goto out_unlock;
3547 }
3548
a8027073 3549 trace_sched_pi_setprio(p, prio);
d5f9f942 3550 oldprio = p->prio;
83ab0aa0 3551 prev_class = p->sched_class;
fd2f4419 3552 on_rq = p->on_rq;
051a1d1a 3553 running = task_current(rq, p);
0e1f3483 3554 if (on_rq)
69be72c1 3555 dequeue_task(rq, p, 0);
0e1f3483
HS
3556 if (running)
3557 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3558
3559 if (rt_prio(prio))
3560 p->sched_class = &rt_sched_class;
3561 else
3562 p->sched_class = &fair_sched_class;
3563
b29739f9
IM
3564 p->prio = prio;
3565
0e1f3483
HS
3566 if (running)
3567 p->sched_class->set_curr_task(rq);
da7a735e 3568 if (on_rq)
371fd7e7 3569 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3570
da7a735e 3571 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3572out_unlock:
0122ec5b 3573 __task_rq_unlock(rq);
b29739f9 3574}
b29739f9 3575#endif
36c8b586 3576void set_user_nice(struct task_struct *p, long nice)
1da177e4 3577{
dd41f596 3578 int old_prio, delta, on_rq;
1da177e4 3579 unsigned long flags;
70b97a7f 3580 struct rq *rq;
1da177e4
LT
3581
3582 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3583 return;
3584 /*
3585 * We have to be careful, if called from sys_setpriority(),
3586 * the task might be in the middle of scheduling on another CPU.
3587 */
3588 rq = task_rq_lock(p, &flags);
3589 /*
3590 * The RT priorities are set via sched_setscheduler(), but we still
3591 * allow the 'normal' nice value to be set - but as expected
3592 * it wont have any effect on scheduling until the task is
dd41f596 3593 * SCHED_FIFO/SCHED_RR:
1da177e4 3594 */
e05606d3 3595 if (task_has_rt_policy(p)) {
1da177e4
LT
3596 p->static_prio = NICE_TO_PRIO(nice);
3597 goto out_unlock;
3598 }
fd2f4419 3599 on_rq = p->on_rq;
c09595f6 3600 if (on_rq)
69be72c1 3601 dequeue_task(rq, p, 0);
1da177e4 3602
1da177e4 3603 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3604 set_load_weight(p);
b29739f9
IM
3605 old_prio = p->prio;
3606 p->prio = effective_prio(p);
3607 delta = p->prio - old_prio;
1da177e4 3608
dd41f596 3609 if (on_rq) {
371fd7e7 3610 enqueue_task(rq, p, 0);
1da177e4 3611 /*
d5f9f942
AM
3612 * If the task increased its priority or is running and
3613 * lowered its priority, then reschedule its CPU:
1da177e4 3614 */
d5f9f942 3615 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3616 resched_task(rq->curr);
3617 }
3618out_unlock:
0122ec5b 3619 task_rq_unlock(rq, p, &flags);
1da177e4 3620}
1da177e4
LT
3621EXPORT_SYMBOL(set_user_nice);
3622
e43379f1
MM
3623/*
3624 * can_nice - check if a task can reduce its nice value
3625 * @p: task
3626 * @nice: nice value
3627 */
36c8b586 3628int can_nice(const struct task_struct *p, const int nice)
e43379f1 3629{
024f4747
MM
3630 /* convert nice value [19,-20] to rlimit style value [1,40] */
3631 int nice_rlim = 20 - nice;
48f24c4d 3632
78d7d407 3633 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3634 capable(CAP_SYS_NICE));
3635}
3636
1da177e4
LT
3637#ifdef __ARCH_WANT_SYS_NICE
3638
3639/*
3640 * sys_nice - change the priority of the current process.
3641 * @increment: priority increment
3642 *
3643 * sys_setpriority is a more generic, but much slower function that
3644 * does similar things.
3645 */
5add95d4 3646SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3647{
48f24c4d 3648 long nice, retval;
1da177e4
LT
3649
3650 /*
3651 * Setpriority might change our priority at the same moment.
3652 * We don't have to worry. Conceptually one call occurs first
3653 * and we have a single winner.
3654 */
e43379f1
MM
3655 if (increment < -40)
3656 increment = -40;
1da177e4
LT
3657 if (increment > 40)
3658 increment = 40;
3659
2b8f836f 3660 nice = TASK_NICE(current) + increment;
1da177e4
LT
3661 if (nice < -20)
3662 nice = -20;
3663 if (nice > 19)
3664 nice = 19;
3665
e43379f1
MM
3666 if (increment < 0 && !can_nice(current, nice))
3667 return -EPERM;
3668
1da177e4
LT
3669 retval = security_task_setnice(current, nice);
3670 if (retval)
3671 return retval;
3672
3673 set_user_nice(current, nice);
3674 return 0;
3675}
3676
3677#endif
3678
3679/**
3680 * task_prio - return the priority value of a given task.
3681 * @p: the task in question.
3682 *
3683 * This is the priority value as seen by users in /proc.
3684 * RT tasks are offset by -200. Normal tasks are centered
3685 * around 0, value goes from -16 to +15.
3686 */
36c8b586 3687int task_prio(const struct task_struct *p)
1da177e4
LT
3688{
3689 return p->prio - MAX_RT_PRIO;
3690}
3691
3692/**
3693 * task_nice - return the nice value of a given task.
3694 * @p: the task in question.
3695 */
36c8b586 3696int task_nice(const struct task_struct *p)
1da177e4
LT
3697{
3698 return TASK_NICE(p);
3699}
150d8bed 3700EXPORT_SYMBOL(task_nice);
1da177e4
LT
3701
3702/**
3703 * idle_cpu - is a given cpu idle currently?
3704 * @cpu: the processor in question.
3705 */
3706int idle_cpu(int cpu)
3707{
908a3283
TG
3708 struct rq *rq = cpu_rq(cpu);
3709
3710 if (rq->curr != rq->idle)
3711 return 0;
3712
3713 if (rq->nr_running)
3714 return 0;
3715
3716#ifdef CONFIG_SMP
3717 if (!llist_empty(&rq->wake_list))
3718 return 0;
3719#endif
3720
3721 return 1;
1da177e4
LT
3722}
3723
1da177e4
LT
3724/**
3725 * idle_task - return the idle task for a given cpu.
3726 * @cpu: the processor in question.
3727 */
36c8b586 3728struct task_struct *idle_task(int cpu)
1da177e4
LT
3729{
3730 return cpu_rq(cpu)->idle;
3731}
3732
3733/**
3734 * find_process_by_pid - find a process with a matching PID value.
3735 * @pid: the pid in question.
3736 */
a9957449 3737static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3738{
228ebcbe 3739 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3740}
3741
3742/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3743static void
3744__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3745{
1da177e4
LT
3746 p->policy = policy;
3747 p->rt_priority = prio;
b29739f9
IM
3748 p->normal_prio = normal_prio(p);
3749 /* we are holding p->pi_lock already */
3750 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3751 if (rt_prio(p->prio))
3752 p->sched_class = &rt_sched_class;
3753 else
3754 p->sched_class = &fair_sched_class;
2dd73a4f 3755 set_load_weight(p);
1da177e4
LT
3756}
3757
c69e8d9c
DH
3758/*
3759 * check the target process has a UID that matches the current process's
3760 */
3761static bool check_same_owner(struct task_struct *p)
3762{
3763 const struct cred *cred = current_cred(), *pcred;
3764 bool match;
3765
3766 rcu_read_lock();
3767 pcred = __task_cred(p);
9c806aa0
EB
3768 match = (uid_eq(cred->euid, pcred->euid) ||
3769 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3770 rcu_read_unlock();
3771 return match;
3772}
3773
961ccddd 3774static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3775 const struct sched_param *param, bool user)
1da177e4 3776{
83b699ed 3777 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3778 unsigned long flags;
83ab0aa0 3779 const struct sched_class *prev_class;
70b97a7f 3780 struct rq *rq;
ca94c442 3781 int reset_on_fork;
1da177e4 3782
66e5393a
SR
3783 /* may grab non-irq protected spin_locks */
3784 BUG_ON(in_interrupt());
1da177e4
LT
3785recheck:
3786 /* double check policy once rq lock held */
ca94c442
LP
3787 if (policy < 0) {
3788 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3789 policy = oldpolicy = p->policy;
ca94c442
LP
3790 } else {
3791 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3792 policy &= ~SCHED_RESET_ON_FORK;
3793
3794 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3795 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3796 policy != SCHED_IDLE)
3797 return -EINVAL;
3798 }
3799
1da177e4
LT
3800 /*
3801 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3802 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3803 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3804 */
3805 if (param->sched_priority < 0 ||
95cdf3b7 3806 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3807 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3808 return -EINVAL;
e05606d3 3809 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3810 return -EINVAL;
3811
37e4ab3f
OC
3812 /*
3813 * Allow unprivileged RT tasks to decrease priority:
3814 */
961ccddd 3815 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3816 if (rt_policy(policy)) {
a44702e8
ON
3817 unsigned long rlim_rtprio =
3818 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3819
3820 /* can't set/change the rt policy */
3821 if (policy != p->policy && !rlim_rtprio)
3822 return -EPERM;
3823
3824 /* can't increase priority */
3825 if (param->sched_priority > p->rt_priority &&
3826 param->sched_priority > rlim_rtprio)
3827 return -EPERM;
3828 }
c02aa73b 3829
dd41f596 3830 /*
c02aa73b
DH
3831 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3832 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3833 */
c02aa73b
DH
3834 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3835 if (!can_nice(p, TASK_NICE(p)))
3836 return -EPERM;
3837 }
5fe1d75f 3838
37e4ab3f 3839 /* can't change other user's priorities */
c69e8d9c 3840 if (!check_same_owner(p))
37e4ab3f 3841 return -EPERM;
ca94c442
LP
3842
3843 /* Normal users shall not reset the sched_reset_on_fork flag */
3844 if (p->sched_reset_on_fork && !reset_on_fork)
3845 return -EPERM;
37e4ab3f 3846 }
1da177e4 3847
725aad24 3848 if (user) {
b0ae1981 3849 retval = security_task_setscheduler(p);
725aad24
JF
3850 if (retval)
3851 return retval;
3852 }
3853
b29739f9
IM
3854 /*
3855 * make sure no PI-waiters arrive (or leave) while we are
3856 * changing the priority of the task:
0122ec5b 3857 *
25985edc 3858 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3859 * runqueue lock must be held.
3860 */
0122ec5b 3861 rq = task_rq_lock(p, &flags);
dc61b1d6 3862
34f971f6
PZ
3863 /*
3864 * Changing the policy of the stop threads its a very bad idea
3865 */
3866 if (p == rq->stop) {
0122ec5b 3867 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3868 return -EINVAL;
3869 }
3870
a51e9198
DF
3871 /*
3872 * If not changing anything there's no need to proceed further:
3873 */
3874 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3875 param->sched_priority == p->rt_priority))) {
45afb173 3876 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3877 return 0;
3878 }
3879
dc61b1d6
PZ
3880#ifdef CONFIG_RT_GROUP_SCHED
3881 if (user) {
3882 /*
3883 * Do not allow realtime tasks into groups that have no runtime
3884 * assigned.
3885 */
3886 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3887 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3888 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3889 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3890 return -EPERM;
3891 }
3892 }
3893#endif
3894
1da177e4
LT
3895 /* recheck policy now with rq lock held */
3896 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3897 policy = oldpolicy = -1;
0122ec5b 3898 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3899 goto recheck;
3900 }
fd2f4419 3901 on_rq = p->on_rq;
051a1d1a 3902 running = task_current(rq, p);
0e1f3483 3903 if (on_rq)
4ca9b72b 3904 dequeue_task(rq, p, 0);
0e1f3483
HS
3905 if (running)
3906 p->sched_class->put_prev_task(rq, p);
f6b53205 3907
ca94c442
LP
3908 p->sched_reset_on_fork = reset_on_fork;
3909
1da177e4 3910 oldprio = p->prio;
83ab0aa0 3911 prev_class = p->sched_class;
dd41f596 3912 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3913
0e1f3483
HS
3914 if (running)
3915 p->sched_class->set_curr_task(rq);
da7a735e 3916 if (on_rq)
4ca9b72b 3917 enqueue_task(rq, p, 0);
cb469845 3918
da7a735e 3919 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3920 task_rq_unlock(rq, p, &flags);
b29739f9 3921
95e02ca9
TG
3922 rt_mutex_adjust_pi(p);
3923
1da177e4
LT
3924 return 0;
3925}
961ccddd
RR
3926
3927/**
3928 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3929 * @p: the task in question.
3930 * @policy: new policy.
3931 * @param: structure containing the new RT priority.
3932 *
3933 * NOTE that the task may be already dead.
3934 */
3935int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3936 const struct sched_param *param)
961ccddd
RR
3937{
3938 return __sched_setscheduler(p, policy, param, true);
3939}
1da177e4
LT
3940EXPORT_SYMBOL_GPL(sched_setscheduler);
3941
961ccddd
RR
3942/**
3943 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3944 * @p: the task in question.
3945 * @policy: new policy.
3946 * @param: structure containing the new RT priority.
3947 *
3948 * Just like sched_setscheduler, only don't bother checking if the
3949 * current context has permission. For example, this is needed in
3950 * stop_machine(): we create temporary high priority worker threads,
3951 * but our caller might not have that capability.
3952 */
3953int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3954 const struct sched_param *param)
961ccddd
RR
3955{
3956 return __sched_setscheduler(p, policy, param, false);
3957}
3958
95cdf3b7
IM
3959static int
3960do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3961{
1da177e4
LT
3962 struct sched_param lparam;
3963 struct task_struct *p;
36c8b586 3964 int retval;
1da177e4
LT
3965
3966 if (!param || pid < 0)
3967 return -EINVAL;
3968 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3969 return -EFAULT;
5fe1d75f
ON
3970
3971 rcu_read_lock();
3972 retval = -ESRCH;
1da177e4 3973 p = find_process_by_pid(pid);
5fe1d75f
ON
3974 if (p != NULL)
3975 retval = sched_setscheduler(p, policy, &lparam);
3976 rcu_read_unlock();
36c8b586 3977
1da177e4
LT
3978 return retval;
3979}
3980
3981/**
3982 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3983 * @pid: the pid in question.
3984 * @policy: new policy.
3985 * @param: structure containing the new RT priority.
3986 */
5add95d4
HC
3987SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3988 struct sched_param __user *, param)
1da177e4 3989{
c21761f1
JB
3990 /* negative values for policy are not valid */
3991 if (policy < 0)
3992 return -EINVAL;
3993
1da177e4
LT
3994 return do_sched_setscheduler(pid, policy, param);
3995}
3996
3997/**
3998 * sys_sched_setparam - set/change the RT priority of a thread
3999 * @pid: the pid in question.
4000 * @param: structure containing the new RT priority.
4001 */
5add95d4 4002SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4003{
4004 return do_sched_setscheduler(pid, -1, param);
4005}
4006
4007/**
4008 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4009 * @pid: the pid in question.
4010 */
5add95d4 4011SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4012{
36c8b586 4013 struct task_struct *p;
3a5c359a 4014 int retval;
1da177e4
LT
4015
4016 if (pid < 0)
3a5c359a 4017 return -EINVAL;
1da177e4
LT
4018
4019 retval = -ESRCH;
5fe85be0 4020 rcu_read_lock();
1da177e4
LT
4021 p = find_process_by_pid(pid);
4022 if (p) {
4023 retval = security_task_getscheduler(p);
4024 if (!retval)
ca94c442
LP
4025 retval = p->policy
4026 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4027 }
5fe85be0 4028 rcu_read_unlock();
1da177e4
LT
4029 return retval;
4030}
4031
4032/**
ca94c442 4033 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4034 * @pid: the pid in question.
4035 * @param: structure containing the RT priority.
4036 */
5add95d4 4037SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4038{
4039 struct sched_param lp;
36c8b586 4040 struct task_struct *p;
3a5c359a 4041 int retval;
1da177e4
LT
4042
4043 if (!param || pid < 0)
3a5c359a 4044 return -EINVAL;
1da177e4 4045
5fe85be0 4046 rcu_read_lock();
1da177e4
LT
4047 p = find_process_by_pid(pid);
4048 retval = -ESRCH;
4049 if (!p)
4050 goto out_unlock;
4051
4052 retval = security_task_getscheduler(p);
4053 if (retval)
4054 goto out_unlock;
4055
4056 lp.sched_priority = p->rt_priority;
5fe85be0 4057 rcu_read_unlock();
1da177e4
LT
4058
4059 /*
4060 * This one might sleep, we cannot do it with a spinlock held ...
4061 */
4062 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4063
1da177e4
LT
4064 return retval;
4065
4066out_unlock:
5fe85be0 4067 rcu_read_unlock();
1da177e4
LT
4068 return retval;
4069}
4070
96f874e2 4071long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4072{
5a16f3d3 4073 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4074 struct task_struct *p;
4075 int retval;
1da177e4 4076
95402b38 4077 get_online_cpus();
23f5d142 4078 rcu_read_lock();
1da177e4
LT
4079
4080 p = find_process_by_pid(pid);
4081 if (!p) {
23f5d142 4082 rcu_read_unlock();
95402b38 4083 put_online_cpus();
1da177e4
LT
4084 return -ESRCH;
4085 }
4086
23f5d142 4087 /* Prevent p going away */
1da177e4 4088 get_task_struct(p);
23f5d142 4089 rcu_read_unlock();
1da177e4 4090
5a16f3d3
RR
4091 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4092 retval = -ENOMEM;
4093 goto out_put_task;
4094 }
4095 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4096 retval = -ENOMEM;
4097 goto out_free_cpus_allowed;
4098 }
1da177e4 4099 retval = -EPERM;
4c44aaaf
EB
4100 if (!check_same_owner(p)) {
4101 rcu_read_lock();
4102 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4103 rcu_read_unlock();
4104 goto out_unlock;
4105 }
4106 rcu_read_unlock();
4107 }
1da177e4 4108
b0ae1981 4109 retval = security_task_setscheduler(p);
e7834f8f
DQ
4110 if (retval)
4111 goto out_unlock;
4112
5a16f3d3
RR
4113 cpuset_cpus_allowed(p, cpus_allowed);
4114 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4115again:
5a16f3d3 4116 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4117
8707d8b8 4118 if (!retval) {
5a16f3d3
RR
4119 cpuset_cpus_allowed(p, cpus_allowed);
4120 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4121 /*
4122 * We must have raced with a concurrent cpuset
4123 * update. Just reset the cpus_allowed to the
4124 * cpuset's cpus_allowed
4125 */
5a16f3d3 4126 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4127 goto again;
4128 }
4129 }
1da177e4 4130out_unlock:
5a16f3d3
RR
4131 free_cpumask_var(new_mask);
4132out_free_cpus_allowed:
4133 free_cpumask_var(cpus_allowed);
4134out_put_task:
1da177e4 4135 put_task_struct(p);
95402b38 4136 put_online_cpus();
1da177e4
LT
4137 return retval;
4138}
4139
4140static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4141 struct cpumask *new_mask)
1da177e4 4142{
96f874e2
RR
4143 if (len < cpumask_size())
4144 cpumask_clear(new_mask);
4145 else if (len > cpumask_size())
4146 len = cpumask_size();
4147
1da177e4
LT
4148 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4149}
4150
4151/**
4152 * sys_sched_setaffinity - set the cpu affinity of a process
4153 * @pid: pid of the process
4154 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4155 * @user_mask_ptr: user-space pointer to the new cpu mask
4156 */
5add95d4
HC
4157SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4158 unsigned long __user *, user_mask_ptr)
1da177e4 4159{
5a16f3d3 4160 cpumask_var_t new_mask;
1da177e4
LT
4161 int retval;
4162
5a16f3d3
RR
4163 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4164 return -ENOMEM;
1da177e4 4165
5a16f3d3
RR
4166 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4167 if (retval == 0)
4168 retval = sched_setaffinity(pid, new_mask);
4169 free_cpumask_var(new_mask);
4170 return retval;
1da177e4
LT
4171}
4172
96f874e2 4173long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4174{
36c8b586 4175 struct task_struct *p;
31605683 4176 unsigned long flags;
1da177e4 4177 int retval;
1da177e4 4178
95402b38 4179 get_online_cpus();
23f5d142 4180 rcu_read_lock();
1da177e4
LT
4181
4182 retval = -ESRCH;
4183 p = find_process_by_pid(pid);
4184 if (!p)
4185 goto out_unlock;
4186
e7834f8f
DQ
4187 retval = security_task_getscheduler(p);
4188 if (retval)
4189 goto out_unlock;
4190
013fdb80 4191 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4192 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4193 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4194
4195out_unlock:
23f5d142 4196 rcu_read_unlock();
95402b38 4197 put_online_cpus();
1da177e4 4198
9531b62f 4199 return retval;
1da177e4
LT
4200}
4201
4202/**
4203 * sys_sched_getaffinity - get the cpu affinity of a process
4204 * @pid: pid of the process
4205 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4206 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4207 */
5add95d4
HC
4208SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4209 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4210{
4211 int ret;
f17c8607 4212 cpumask_var_t mask;
1da177e4 4213
84fba5ec 4214 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4215 return -EINVAL;
4216 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4217 return -EINVAL;
4218
f17c8607
RR
4219 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4220 return -ENOMEM;
1da177e4 4221
f17c8607
RR
4222 ret = sched_getaffinity(pid, mask);
4223 if (ret == 0) {
8bc037fb 4224 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4225
4226 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4227 ret = -EFAULT;
4228 else
cd3d8031 4229 ret = retlen;
f17c8607
RR
4230 }
4231 free_cpumask_var(mask);
1da177e4 4232
f17c8607 4233 return ret;
1da177e4
LT
4234}
4235
4236/**
4237 * sys_sched_yield - yield the current processor to other threads.
4238 *
dd41f596
IM
4239 * This function yields the current CPU to other tasks. If there are no
4240 * other threads running on this CPU then this function will return.
1da177e4 4241 */
5add95d4 4242SYSCALL_DEFINE0(sched_yield)
1da177e4 4243{
70b97a7f 4244 struct rq *rq = this_rq_lock();
1da177e4 4245
2d72376b 4246 schedstat_inc(rq, yld_count);
4530d7ab 4247 current->sched_class->yield_task(rq);
1da177e4
LT
4248
4249 /*
4250 * Since we are going to call schedule() anyway, there's
4251 * no need to preempt or enable interrupts:
4252 */
4253 __release(rq->lock);
8a25d5de 4254 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4255 do_raw_spin_unlock(&rq->lock);
ba74c144 4256 sched_preempt_enable_no_resched();
1da177e4
LT
4257
4258 schedule();
4259
4260 return 0;
4261}
4262
d86ee480
PZ
4263static inline int should_resched(void)
4264{
4265 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4266}
4267
e7b38404 4268static void __cond_resched(void)
1da177e4 4269{
e7aaaa69 4270 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4271 __schedule();
e7aaaa69 4272 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4273}
4274
02b67cc3 4275int __sched _cond_resched(void)
1da177e4 4276{
d86ee480 4277 if (should_resched()) {
1da177e4
LT
4278 __cond_resched();
4279 return 1;
4280 }
4281 return 0;
4282}
02b67cc3 4283EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4284
4285/*
613afbf8 4286 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4287 * call schedule, and on return reacquire the lock.
4288 *
41a2d6cf 4289 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4290 * operations here to prevent schedule() from being called twice (once via
4291 * spin_unlock(), once by hand).
4292 */
613afbf8 4293int __cond_resched_lock(spinlock_t *lock)
1da177e4 4294{
d86ee480 4295 int resched = should_resched();
6df3cecb
JK
4296 int ret = 0;
4297
f607c668
PZ
4298 lockdep_assert_held(lock);
4299
95c354fe 4300 if (spin_needbreak(lock) || resched) {
1da177e4 4301 spin_unlock(lock);
d86ee480 4302 if (resched)
95c354fe
NP
4303 __cond_resched();
4304 else
4305 cpu_relax();
6df3cecb 4306 ret = 1;
1da177e4 4307 spin_lock(lock);
1da177e4 4308 }
6df3cecb 4309 return ret;
1da177e4 4310}
613afbf8 4311EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4312
613afbf8 4313int __sched __cond_resched_softirq(void)
1da177e4
LT
4314{
4315 BUG_ON(!in_softirq());
4316
d86ee480 4317 if (should_resched()) {
98d82567 4318 local_bh_enable();
1da177e4
LT
4319 __cond_resched();
4320 local_bh_disable();
4321 return 1;
4322 }
4323 return 0;
4324}
613afbf8 4325EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4326
1da177e4
LT
4327/**
4328 * yield - yield the current processor to other threads.
4329 *
8e3fabfd
PZ
4330 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4331 *
4332 * The scheduler is at all times free to pick the calling task as the most
4333 * eligible task to run, if removing the yield() call from your code breaks
4334 * it, its already broken.
4335 *
4336 * Typical broken usage is:
4337 *
4338 * while (!event)
4339 * yield();
4340 *
4341 * where one assumes that yield() will let 'the other' process run that will
4342 * make event true. If the current task is a SCHED_FIFO task that will never
4343 * happen. Never use yield() as a progress guarantee!!
4344 *
4345 * If you want to use yield() to wait for something, use wait_event().
4346 * If you want to use yield() to be 'nice' for others, use cond_resched().
4347 * If you still want to use yield(), do not!
1da177e4
LT
4348 */
4349void __sched yield(void)
4350{
4351 set_current_state(TASK_RUNNING);
4352 sys_sched_yield();
4353}
1da177e4
LT
4354EXPORT_SYMBOL(yield);
4355
d95f4122
MG
4356/**
4357 * yield_to - yield the current processor to another thread in
4358 * your thread group, or accelerate that thread toward the
4359 * processor it's on.
16addf95
RD
4360 * @p: target task
4361 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4362 *
4363 * It's the caller's job to ensure that the target task struct
4364 * can't go away on us before we can do any checks.
4365 *
4366 * Returns true if we indeed boosted the target task.
4367 */
4368bool __sched yield_to(struct task_struct *p, bool preempt)
4369{
4370 struct task_struct *curr = current;
4371 struct rq *rq, *p_rq;
4372 unsigned long flags;
4373 bool yielded = 0;
4374
4375 local_irq_save(flags);
4376 rq = this_rq();
4377
4378again:
4379 p_rq = task_rq(p);
4380 double_rq_lock(rq, p_rq);
4381 while (task_rq(p) != p_rq) {
4382 double_rq_unlock(rq, p_rq);
4383 goto again;
4384 }
4385
4386 if (!curr->sched_class->yield_to_task)
4387 goto out;
4388
4389 if (curr->sched_class != p->sched_class)
4390 goto out;
4391
4392 if (task_running(p_rq, p) || p->state)
4393 goto out;
4394
4395 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4396 if (yielded) {
d95f4122 4397 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4398 /*
4399 * Make p's CPU reschedule; pick_next_entity takes care of
4400 * fairness.
4401 */
4402 if (preempt && rq != p_rq)
4403 resched_task(p_rq->curr);
4404 }
d95f4122
MG
4405
4406out:
4407 double_rq_unlock(rq, p_rq);
4408 local_irq_restore(flags);
4409
4410 if (yielded)
4411 schedule();
4412
4413 return yielded;
4414}
4415EXPORT_SYMBOL_GPL(yield_to);
4416
1da177e4 4417/*
41a2d6cf 4418 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4419 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4420 */
4421void __sched io_schedule(void)
4422{
54d35f29 4423 struct rq *rq = raw_rq();
1da177e4 4424
0ff92245 4425 delayacct_blkio_start();
1da177e4 4426 atomic_inc(&rq->nr_iowait);
73c10101 4427 blk_flush_plug(current);
8f0dfc34 4428 current->in_iowait = 1;
1da177e4 4429 schedule();
8f0dfc34 4430 current->in_iowait = 0;
1da177e4 4431 atomic_dec(&rq->nr_iowait);
0ff92245 4432 delayacct_blkio_end();
1da177e4 4433}
1da177e4
LT
4434EXPORT_SYMBOL(io_schedule);
4435
4436long __sched io_schedule_timeout(long timeout)
4437{
54d35f29 4438 struct rq *rq = raw_rq();
1da177e4
LT
4439 long ret;
4440
0ff92245 4441 delayacct_blkio_start();
1da177e4 4442 atomic_inc(&rq->nr_iowait);
73c10101 4443 blk_flush_plug(current);
8f0dfc34 4444 current->in_iowait = 1;
1da177e4 4445 ret = schedule_timeout(timeout);
8f0dfc34 4446 current->in_iowait = 0;
1da177e4 4447 atomic_dec(&rq->nr_iowait);
0ff92245 4448 delayacct_blkio_end();
1da177e4
LT
4449 return ret;
4450}
4451
4452/**
4453 * sys_sched_get_priority_max - return maximum RT priority.
4454 * @policy: scheduling class.
4455 *
4456 * this syscall returns the maximum rt_priority that can be used
4457 * by a given scheduling class.
4458 */
5add95d4 4459SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4460{
4461 int ret = -EINVAL;
4462
4463 switch (policy) {
4464 case SCHED_FIFO:
4465 case SCHED_RR:
4466 ret = MAX_USER_RT_PRIO-1;
4467 break;
4468 case SCHED_NORMAL:
b0a9499c 4469 case SCHED_BATCH:
dd41f596 4470 case SCHED_IDLE:
1da177e4
LT
4471 ret = 0;
4472 break;
4473 }
4474 return ret;
4475}
4476
4477/**
4478 * sys_sched_get_priority_min - return minimum RT priority.
4479 * @policy: scheduling class.
4480 *
4481 * this syscall returns the minimum rt_priority that can be used
4482 * by a given scheduling class.
4483 */
5add95d4 4484SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4485{
4486 int ret = -EINVAL;
4487
4488 switch (policy) {
4489 case SCHED_FIFO:
4490 case SCHED_RR:
4491 ret = 1;
4492 break;
4493 case SCHED_NORMAL:
b0a9499c 4494 case SCHED_BATCH:
dd41f596 4495 case SCHED_IDLE:
1da177e4
LT
4496 ret = 0;
4497 }
4498 return ret;
4499}
4500
4501/**
4502 * sys_sched_rr_get_interval - return the default timeslice of a process.
4503 * @pid: pid of the process.
4504 * @interval: userspace pointer to the timeslice value.
4505 *
4506 * this syscall writes the default timeslice value of a given process
4507 * into the user-space timespec buffer. A value of '0' means infinity.
4508 */
17da2bd9 4509SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4510 struct timespec __user *, interval)
1da177e4 4511{
36c8b586 4512 struct task_struct *p;
a4ec24b4 4513 unsigned int time_slice;
dba091b9
TG
4514 unsigned long flags;
4515 struct rq *rq;
3a5c359a 4516 int retval;
1da177e4 4517 struct timespec t;
1da177e4
LT
4518
4519 if (pid < 0)
3a5c359a 4520 return -EINVAL;
1da177e4
LT
4521
4522 retval = -ESRCH;
1a551ae7 4523 rcu_read_lock();
1da177e4
LT
4524 p = find_process_by_pid(pid);
4525 if (!p)
4526 goto out_unlock;
4527
4528 retval = security_task_getscheduler(p);
4529 if (retval)
4530 goto out_unlock;
4531
dba091b9
TG
4532 rq = task_rq_lock(p, &flags);
4533 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4534 task_rq_unlock(rq, p, &flags);
a4ec24b4 4535
1a551ae7 4536 rcu_read_unlock();
a4ec24b4 4537 jiffies_to_timespec(time_slice, &t);
1da177e4 4538 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4539 return retval;
3a5c359a 4540
1da177e4 4541out_unlock:
1a551ae7 4542 rcu_read_unlock();
1da177e4
LT
4543 return retval;
4544}
4545
7c731e0a 4546static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4547
82a1fcb9 4548void sched_show_task(struct task_struct *p)
1da177e4 4549{
1da177e4 4550 unsigned long free = 0;
4e79752c 4551 int ppid;
36c8b586 4552 unsigned state;
1da177e4 4553
1da177e4 4554 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4555 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4556 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4557#if BITS_PER_LONG == 32
1da177e4 4558 if (state == TASK_RUNNING)
3df0fc5b 4559 printk(KERN_CONT " running ");
1da177e4 4560 else
3df0fc5b 4561 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4562#else
4563 if (state == TASK_RUNNING)
3df0fc5b 4564 printk(KERN_CONT " running task ");
1da177e4 4565 else
3df0fc5b 4566 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4567#endif
4568#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4569 free = stack_not_used(p);
1da177e4 4570#endif
4e79752c
PM
4571 rcu_read_lock();
4572 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4573 rcu_read_unlock();
3df0fc5b 4574 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4575 task_pid_nr(p), ppid,
aa47b7e0 4576 (unsigned long)task_thread_info(p)->flags);
1da177e4 4577
5fb5e6de 4578 show_stack(p, NULL);
1da177e4
LT
4579}
4580
e59e2ae2 4581void show_state_filter(unsigned long state_filter)
1da177e4 4582{
36c8b586 4583 struct task_struct *g, *p;
1da177e4 4584
4bd77321 4585#if BITS_PER_LONG == 32
3df0fc5b
PZ
4586 printk(KERN_INFO
4587 " task PC stack pid father\n");
1da177e4 4588#else
3df0fc5b
PZ
4589 printk(KERN_INFO
4590 " task PC stack pid father\n");
1da177e4 4591#endif
510f5acc 4592 rcu_read_lock();
1da177e4
LT
4593 do_each_thread(g, p) {
4594 /*
4595 * reset the NMI-timeout, listing all files on a slow
25985edc 4596 * console might take a lot of time:
1da177e4
LT
4597 */
4598 touch_nmi_watchdog();
39bc89fd 4599 if (!state_filter || (p->state & state_filter))
82a1fcb9 4600 sched_show_task(p);
1da177e4
LT
4601 } while_each_thread(g, p);
4602
04c9167f
JF
4603 touch_all_softlockup_watchdogs();
4604
dd41f596
IM
4605#ifdef CONFIG_SCHED_DEBUG
4606 sysrq_sched_debug_show();
4607#endif
510f5acc 4608 rcu_read_unlock();
e59e2ae2
IM
4609 /*
4610 * Only show locks if all tasks are dumped:
4611 */
93335a21 4612 if (!state_filter)
e59e2ae2 4613 debug_show_all_locks();
1da177e4
LT
4614}
4615
1df21055
IM
4616void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4617{
dd41f596 4618 idle->sched_class = &idle_sched_class;
1df21055
IM
4619}
4620
f340c0d1
IM
4621/**
4622 * init_idle - set up an idle thread for a given CPU
4623 * @idle: task in question
4624 * @cpu: cpu the idle task belongs to
4625 *
4626 * NOTE: this function does not set the idle thread's NEED_RESCHED
4627 * flag, to make booting more robust.
4628 */
5c1e1767 4629void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4630{
70b97a7f 4631 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4632 unsigned long flags;
4633
05fa785c 4634 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4635
dd41f596 4636 __sched_fork(idle);
06b83b5f 4637 idle->state = TASK_RUNNING;
dd41f596
IM
4638 idle->se.exec_start = sched_clock();
4639
1e1b6c51 4640 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4641 /*
4642 * We're having a chicken and egg problem, even though we are
4643 * holding rq->lock, the cpu isn't yet set to this cpu so the
4644 * lockdep check in task_group() will fail.
4645 *
4646 * Similar case to sched_fork(). / Alternatively we could
4647 * use task_rq_lock() here and obtain the other rq->lock.
4648 *
4649 * Silence PROVE_RCU
4650 */
4651 rcu_read_lock();
dd41f596 4652 __set_task_cpu(idle, cpu);
6506cf6c 4653 rcu_read_unlock();
1da177e4 4654
1da177e4 4655 rq->curr = rq->idle = idle;
3ca7a440
PZ
4656#if defined(CONFIG_SMP)
4657 idle->on_cpu = 1;
4866cde0 4658#endif
05fa785c 4659 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4660
4661 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4662 task_thread_info(idle)->preempt_count = 0;
55cd5340 4663
dd41f596
IM
4664 /*
4665 * The idle tasks have their own, simple scheduling class:
4666 */
4667 idle->sched_class = &idle_sched_class;
868baf07 4668 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4669#if defined(CONFIG_SMP)
4670 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4671#endif
19978ca6
IM
4672}
4673
1da177e4 4674#ifdef CONFIG_SMP
1e1b6c51
KM
4675void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4676{
4677 if (p->sched_class && p->sched_class->set_cpus_allowed)
4678 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4679
4680 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4681 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4682}
4683
1da177e4
LT
4684/*
4685 * This is how migration works:
4686 *
969c7921
TH
4687 * 1) we invoke migration_cpu_stop() on the target CPU using
4688 * stop_one_cpu().
4689 * 2) stopper starts to run (implicitly forcing the migrated thread
4690 * off the CPU)
4691 * 3) it checks whether the migrated task is still in the wrong runqueue.
4692 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4693 * it and puts it into the right queue.
969c7921
TH
4694 * 5) stopper completes and stop_one_cpu() returns and the migration
4695 * is done.
1da177e4
LT
4696 */
4697
4698/*
4699 * Change a given task's CPU affinity. Migrate the thread to a
4700 * proper CPU and schedule it away if the CPU it's executing on
4701 * is removed from the allowed bitmask.
4702 *
4703 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4704 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4705 * call is not atomic; no spinlocks may be held.
4706 */
96f874e2 4707int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4708{
4709 unsigned long flags;
70b97a7f 4710 struct rq *rq;
969c7921 4711 unsigned int dest_cpu;
48f24c4d 4712 int ret = 0;
1da177e4
LT
4713
4714 rq = task_rq_lock(p, &flags);
e2912009 4715
db44fc01
YZ
4716 if (cpumask_equal(&p->cpus_allowed, new_mask))
4717 goto out;
4718
6ad4c188 4719 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4720 ret = -EINVAL;
4721 goto out;
4722 }
4723
db44fc01 4724 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4725 ret = -EINVAL;
4726 goto out;
4727 }
4728
1e1b6c51 4729 do_set_cpus_allowed(p, new_mask);
73fe6aae 4730
1da177e4 4731 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4732 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4733 goto out;
4734
969c7921 4735 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4736 if (p->on_rq) {
969c7921 4737 struct migration_arg arg = { p, dest_cpu };
1da177e4 4738 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4739 task_rq_unlock(rq, p, &flags);
969c7921 4740 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4741 tlb_migrate_finish(p->mm);
4742 return 0;
4743 }
4744out:
0122ec5b 4745 task_rq_unlock(rq, p, &flags);
48f24c4d 4746
1da177e4
LT
4747 return ret;
4748}
cd8ba7cd 4749EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4750
4751/*
41a2d6cf 4752 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4753 * this because either it can't run here any more (set_cpus_allowed()
4754 * away from this CPU, or CPU going down), or because we're
4755 * attempting to rebalance this task on exec (sched_exec).
4756 *
4757 * So we race with normal scheduler movements, but that's OK, as long
4758 * as the task is no longer on this CPU.
efc30814
KK
4759 *
4760 * Returns non-zero if task was successfully migrated.
1da177e4 4761 */
efc30814 4762static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4763{
70b97a7f 4764 struct rq *rq_dest, *rq_src;
e2912009 4765 int ret = 0;
1da177e4 4766
e761b772 4767 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4768 return ret;
1da177e4
LT
4769
4770 rq_src = cpu_rq(src_cpu);
4771 rq_dest = cpu_rq(dest_cpu);
4772
0122ec5b 4773 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4774 double_rq_lock(rq_src, rq_dest);
4775 /* Already moved. */
4776 if (task_cpu(p) != src_cpu)
b1e38734 4777 goto done;
1da177e4 4778 /* Affinity changed (again). */
fa17b507 4779 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4780 goto fail;
1da177e4 4781
e2912009
PZ
4782 /*
4783 * If we're not on a rq, the next wake-up will ensure we're
4784 * placed properly.
4785 */
fd2f4419 4786 if (p->on_rq) {
4ca9b72b 4787 dequeue_task(rq_src, p, 0);
e2912009 4788 set_task_cpu(p, dest_cpu);
4ca9b72b 4789 enqueue_task(rq_dest, p, 0);
15afe09b 4790 check_preempt_curr(rq_dest, p, 0);
1da177e4 4791 }
b1e38734 4792done:
efc30814 4793 ret = 1;
b1e38734 4794fail:
1da177e4 4795 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4796 raw_spin_unlock(&p->pi_lock);
efc30814 4797 return ret;
1da177e4
LT
4798}
4799
4800/*
969c7921
TH
4801 * migration_cpu_stop - this will be executed by a highprio stopper thread
4802 * and performs thread migration by bumping thread off CPU then
4803 * 'pushing' onto another runqueue.
1da177e4 4804 */
969c7921 4805static int migration_cpu_stop(void *data)
1da177e4 4806{
969c7921 4807 struct migration_arg *arg = data;
f7b4cddc 4808
969c7921
TH
4809 /*
4810 * The original target cpu might have gone down and we might
4811 * be on another cpu but it doesn't matter.
4812 */
f7b4cddc 4813 local_irq_disable();
969c7921 4814 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4815 local_irq_enable();
1da177e4 4816 return 0;
f7b4cddc
ON
4817}
4818
1da177e4 4819#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4820
054b9108 4821/*
48c5ccae
PZ
4822 * Ensures that the idle task is using init_mm right before its cpu goes
4823 * offline.
054b9108 4824 */
48c5ccae 4825void idle_task_exit(void)
1da177e4 4826{
48c5ccae 4827 struct mm_struct *mm = current->active_mm;
e76bd8d9 4828
48c5ccae 4829 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4830
48c5ccae
PZ
4831 if (mm != &init_mm)
4832 switch_mm(mm, &init_mm, current);
4833 mmdrop(mm);
1da177e4
LT
4834}
4835
4836/*
5d180232
PZ
4837 * Since this CPU is going 'away' for a while, fold any nr_active delta
4838 * we might have. Assumes we're called after migrate_tasks() so that the
4839 * nr_active count is stable.
4840 *
4841 * Also see the comment "Global load-average calculations".
1da177e4 4842 */
5d180232 4843static void calc_load_migrate(struct rq *rq)
1da177e4 4844{
5d180232
PZ
4845 long delta = calc_load_fold_active(rq);
4846 if (delta)
4847 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4848}
4849
48f24c4d 4850/*
48c5ccae
PZ
4851 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4852 * try_to_wake_up()->select_task_rq().
4853 *
4854 * Called with rq->lock held even though we'er in stop_machine() and
4855 * there's no concurrency possible, we hold the required locks anyway
4856 * because of lock validation efforts.
1da177e4 4857 */
48c5ccae 4858static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4859{
70b97a7f 4860 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4861 struct task_struct *next, *stop = rq->stop;
4862 int dest_cpu;
1da177e4
LT
4863
4864 /*
48c5ccae
PZ
4865 * Fudge the rq selection such that the below task selection loop
4866 * doesn't get stuck on the currently eligible stop task.
4867 *
4868 * We're currently inside stop_machine() and the rq is either stuck
4869 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4870 * either way we should never end up calling schedule() until we're
4871 * done here.
1da177e4 4872 */
48c5ccae 4873 rq->stop = NULL;
48f24c4d 4874
dd41f596 4875 for ( ; ; ) {
48c5ccae
PZ
4876 /*
4877 * There's this thread running, bail when that's the only
4878 * remaining thread.
4879 */
4880 if (rq->nr_running == 1)
dd41f596 4881 break;
48c5ccae 4882
b67802ea 4883 next = pick_next_task(rq);
48c5ccae 4884 BUG_ON(!next);
79c53799 4885 next->sched_class->put_prev_task(rq, next);
e692ab53 4886
48c5ccae
PZ
4887 /* Find suitable destination for @next, with force if needed. */
4888 dest_cpu = select_fallback_rq(dead_cpu, next);
4889 raw_spin_unlock(&rq->lock);
4890
4891 __migrate_task(next, dead_cpu, dest_cpu);
4892
4893 raw_spin_lock(&rq->lock);
1da177e4 4894 }
dce48a84 4895
48c5ccae 4896 rq->stop = stop;
dce48a84 4897}
48c5ccae 4898
1da177e4
LT
4899#endif /* CONFIG_HOTPLUG_CPU */
4900
e692ab53
NP
4901#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4902
4903static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4904 {
4905 .procname = "sched_domain",
c57baf1e 4906 .mode = 0555,
e0361851 4907 },
56992309 4908 {}
e692ab53
NP
4909};
4910
4911static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4912 {
4913 .procname = "kernel",
c57baf1e 4914 .mode = 0555,
e0361851
AD
4915 .child = sd_ctl_dir,
4916 },
56992309 4917 {}
e692ab53
NP
4918};
4919
4920static struct ctl_table *sd_alloc_ctl_entry(int n)
4921{
4922 struct ctl_table *entry =
5cf9f062 4923 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4924
e692ab53
NP
4925 return entry;
4926}
4927
6382bc90
MM
4928static void sd_free_ctl_entry(struct ctl_table **tablep)
4929{
cd790076 4930 struct ctl_table *entry;
6382bc90 4931
cd790076
MM
4932 /*
4933 * In the intermediate directories, both the child directory and
4934 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4935 * will always be set. In the lowest directory the names are
cd790076
MM
4936 * static strings and all have proc handlers.
4937 */
4938 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4939 if (entry->child)
4940 sd_free_ctl_entry(&entry->child);
cd790076
MM
4941 if (entry->proc_handler == NULL)
4942 kfree(entry->procname);
4943 }
6382bc90
MM
4944
4945 kfree(*tablep);
4946 *tablep = NULL;
4947}
4948
201c373e
NK
4949static int min_load_idx = 0;
4950static int max_load_idx = CPU_LOAD_IDX_MAX;
4951
e692ab53 4952static void
e0361851 4953set_table_entry(struct ctl_table *entry,
e692ab53 4954 const char *procname, void *data, int maxlen,
201c373e
NK
4955 umode_t mode, proc_handler *proc_handler,
4956 bool load_idx)
e692ab53 4957{
e692ab53
NP
4958 entry->procname = procname;
4959 entry->data = data;
4960 entry->maxlen = maxlen;
4961 entry->mode = mode;
4962 entry->proc_handler = proc_handler;
201c373e
NK
4963
4964 if (load_idx) {
4965 entry->extra1 = &min_load_idx;
4966 entry->extra2 = &max_load_idx;
4967 }
e692ab53
NP
4968}
4969
4970static struct ctl_table *
4971sd_alloc_ctl_domain_table(struct sched_domain *sd)
4972{
a5d8c348 4973 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4974
ad1cdc1d
MM
4975 if (table == NULL)
4976 return NULL;
4977
e0361851 4978 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4979 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4980 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4981 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4982 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4983 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4984 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4985 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4986 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4987 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4988 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4989 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4990 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4991 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4992 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4993 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4994 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4995 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4996 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4997 &sd->cache_nice_tries,
201c373e 4998 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4999 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5000 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5001 set_table_entry(&table[11], "name", sd->name,
201c373e 5002 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5003 /* &table[12] is terminator */
e692ab53
NP
5004
5005 return table;
5006}
5007
9a4e7159 5008static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5009{
5010 struct ctl_table *entry, *table;
5011 struct sched_domain *sd;
5012 int domain_num = 0, i;
5013 char buf[32];
5014
5015 for_each_domain(cpu, sd)
5016 domain_num++;
5017 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5018 if (table == NULL)
5019 return NULL;
e692ab53
NP
5020
5021 i = 0;
5022 for_each_domain(cpu, sd) {
5023 snprintf(buf, 32, "domain%d", i);
e692ab53 5024 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5025 entry->mode = 0555;
e692ab53
NP
5026 entry->child = sd_alloc_ctl_domain_table(sd);
5027 entry++;
5028 i++;
5029 }
5030 return table;
5031}
5032
5033static struct ctl_table_header *sd_sysctl_header;
6382bc90 5034static void register_sched_domain_sysctl(void)
e692ab53 5035{
6ad4c188 5036 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5037 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5038 char buf[32];
5039
7378547f
MM
5040 WARN_ON(sd_ctl_dir[0].child);
5041 sd_ctl_dir[0].child = entry;
5042
ad1cdc1d
MM
5043 if (entry == NULL)
5044 return;
5045
6ad4c188 5046 for_each_possible_cpu(i) {
e692ab53 5047 snprintf(buf, 32, "cpu%d", i);
e692ab53 5048 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5049 entry->mode = 0555;
e692ab53 5050 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5051 entry++;
e692ab53 5052 }
7378547f
MM
5053
5054 WARN_ON(sd_sysctl_header);
e692ab53
NP
5055 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5056}
6382bc90 5057
7378547f 5058/* may be called multiple times per register */
6382bc90
MM
5059static void unregister_sched_domain_sysctl(void)
5060{
7378547f
MM
5061 if (sd_sysctl_header)
5062 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5063 sd_sysctl_header = NULL;
7378547f
MM
5064 if (sd_ctl_dir[0].child)
5065 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5066}
e692ab53 5067#else
6382bc90
MM
5068static void register_sched_domain_sysctl(void)
5069{
5070}
5071static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5072{
5073}
5074#endif
5075
1f11eb6a
GH
5076static void set_rq_online(struct rq *rq)
5077{
5078 if (!rq->online) {
5079 const struct sched_class *class;
5080
c6c4927b 5081 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5082 rq->online = 1;
5083
5084 for_each_class(class) {
5085 if (class->rq_online)
5086 class->rq_online(rq);
5087 }
5088 }
5089}
5090
5091static void set_rq_offline(struct rq *rq)
5092{
5093 if (rq->online) {
5094 const struct sched_class *class;
5095
5096 for_each_class(class) {
5097 if (class->rq_offline)
5098 class->rq_offline(rq);
5099 }
5100
c6c4927b 5101 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5102 rq->online = 0;
5103 }
5104}
5105
1da177e4
LT
5106/*
5107 * migration_call - callback that gets triggered when a CPU is added.
5108 * Here we can start up the necessary migration thread for the new CPU.
5109 */
48f24c4d
IM
5110static int __cpuinit
5111migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5112{
48f24c4d 5113 int cpu = (long)hcpu;
1da177e4 5114 unsigned long flags;
969c7921 5115 struct rq *rq = cpu_rq(cpu);
1da177e4 5116
48c5ccae 5117 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5118
1da177e4 5119 case CPU_UP_PREPARE:
a468d389 5120 rq->calc_load_update = calc_load_update;
1da177e4 5121 break;
48f24c4d 5122
1da177e4 5123 case CPU_ONLINE:
1f94ef59 5124 /* Update our root-domain */
05fa785c 5125 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5126 if (rq->rd) {
c6c4927b 5127 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5128
5129 set_rq_online(rq);
1f94ef59 5130 }
05fa785c 5131 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5132 break;
48f24c4d 5133
1da177e4 5134#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5135 case CPU_DYING:
317f3941 5136 sched_ttwu_pending();
57d885fe 5137 /* Update our root-domain */
05fa785c 5138 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5139 if (rq->rd) {
c6c4927b 5140 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5141 set_rq_offline(rq);
57d885fe 5142 }
48c5ccae
PZ
5143 migrate_tasks(cpu);
5144 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5145 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5146 break;
48c5ccae 5147
5d180232 5148 case CPU_DEAD:
f319da0c 5149 calc_load_migrate(rq);
57d885fe 5150 break;
1da177e4
LT
5151#endif
5152 }
49c022e6
PZ
5153
5154 update_max_interval();
5155
1da177e4
LT
5156 return NOTIFY_OK;
5157}
5158
f38b0820
PM
5159/*
5160 * Register at high priority so that task migration (migrate_all_tasks)
5161 * happens before everything else. This has to be lower priority than
cdd6c482 5162 * the notifier in the perf_event subsystem, though.
1da177e4 5163 */
26c2143b 5164static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5165 .notifier_call = migration_call,
50a323b7 5166 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5167};
5168
3a101d05
TH
5169static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5170 unsigned long action, void *hcpu)
5171{
5172 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5173 case CPU_STARTING:
3a101d05
TH
5174 case CPU_DOWN_FAILED:
5175 set_cpu_active((long)hcpu, true);
5176 return NOTIFY_OK;
5177 default:
5178 return NOTIFY_DONE;
5179 }
5180}
5181
5182static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5183 unsigned long action, void *hcpu)
5184{
5185 switch (action & ~CPU_TASKS_FROZEN) {
5186 case CPU_DOWN_PREPARE:
5187 set_cpu_active((long)hcpu, false);
5188 return NOTIFY_OK;
5189 default:
5190 return NOTIFY_DONE;
5191 }
5192}
5193
7babe8db 5194static int __init migration_init(void)
1da177e4
LT
5195{
5196 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5197 int err;
48f24c4d 5198
3a101d05 5199 /* Initialize migration for the boot CPU */
07dccf33
AM
5200 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5201 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5202 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5203 register_cpu_notifier(&migration_notifier);
7babe8db 5204
3a101d05
TH
5205 /* Register cpu active notifiers */
5206 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5207 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5208
a004cd42 5209 return 0;
1da177e4 5210}
7babe8db 5211early_initcall(migration_init);
1da177e4
LT
5212#endif
5213
5214#ifdef CONFIG_SMP
476f3534 5215
4cb98839
PZ
5216static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5217
3e9830dc 5218#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5219
d039ac60 5220static __read_mostly int sched_debug_enabled;
f6630114 5221
d039ac60 5222static int __init sched_debug_setup(char *str)
f6630114 5223{
d039ac60 5224 sched_debug_enabled = 1;
f6630114
MT
5225
5226 return 0;
5227}
d039ac60
PZ
5228early_param("sched_debug", sched_debug_setup);
5229
5230static inline bool sched_debug(void)
5231{
5232 return sched_debug_enabled;
5233}
f6630114 5234
7c16ec58 5235static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5236 struct cpumask *groupmask)
1da177e4 5237{
4dcf6aff 5238 struct sched_group *group = sd->groups;
434d53b0 5239 char str[256];
1da177e4 5240
968ea6d8 5241 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5242 cpumask_clear(groupmask);
4dcf6aff
IM
5243
5244 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5245
5246 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5247 printk("does not load-balance\n");
4dcf6aff 5248 if (sd->parent)
3df0fc5b
PZ
5249 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5250 " has parent");
4dcf6aff 5251 return -1;
41c7ce9a
NP
5252 }
5253
3df0fc5b 5254 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5255
758b2cdc 5256 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5257 printk(KERN_ERR "ERROR: domain->span does not contain "
5258 "CPU%d\n", cpu);
4dcf6aff 5259 }
758b2cdc 5260 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5261 printk(KERN_ERR "ERROR: domain->groups does not contain"
5262 " CPU%d\n", cpu);
4dcf6aff 5263 }
1da177e4 5264
4dcf6aff 5265 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5266 do {
4dcf6aff 5267 if (!group) {
3df0fc5b
PZ
5268 printk("\n");
5269 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5270 break;
5271 }
5272
c3decf0d
PZ
5273 /*
5274 * Even though we initialize ->power to something semi-sane,
5275 * we leave power_orig unset. This allows us to detect if
5276 * domain iteration is still funny without causing /0 traps.
5277 */
5278 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5279 printk(KERN_CONT "\n");
5280 printk(KERN_ERR "ERROR: domain->cpu_power not "
5281 "set\n");
4dcf6aff
IM
5282 break;
5283 }
1da177e4 5284
758b2cdc 5285 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5286 printk(KERN_CONT "\n");
5287 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5288 break;
5289 }
1da177e4 5290
cb83b629
PZ
5291 if (!(sd->flags & SD_OVERLAP) &&
5292 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5293 printk(KERN_CONT "\n");
5294 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5295 break;
5296 }
1da177e4 5297
758b2cdc 5298 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5299
968ea6d8 5300 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5301
3df0fc5b 5302 printk(KERN_CONT " %s", str);
9c3f75cb 5303 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5304 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5305 group->sgp->power);
381512cf 5306 }
1da177e4 5307
4dcf6aff
IM
5308 group = group->next;
5309 } while (group != sd->groups);
3df0fc5b 5310 printk(KERN_CONT "\n");
1da177e4 5311
758b2cdc 5312 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5313 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5314
758b2cdc
RR
5315 if (sd->parent &&
5316 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5317 printk(KERN_ERR "ERROR: parent span is not a superset "
5318 "of domain->span\n");
4dcf6aff
IM
5319 return 0;
5320}
1da177e4 5321
4dcf6aff
IM
5322static void sched_domain_debug(struct sched_domain *sd, int cpu)
5323{
5324 int level = 0;
1da177e4 5325
d039ac60 5326 if (!sched_debug_enabled)
f6630114
MT
5327 return;
5328
4dcf6aff
IM
5329 if (!sd) {
5330 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5331 return;
5332 }
1da177e4 5333
4dcf6aff
IM
5334 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5335
5336 for (;;) {
4cb98839 5337 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5338 break;
1da177e4
LT
5339 level++;
5340 sd = sd->parent;
33859f7f 5341 if (!sd)
4dcf6aff
IM
5342 break;
5343 }
1da177e4 5344}
6d6bc0ad 5345#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5346# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5347static inline bool sched_debug(void)
5348{
5349 return false;
5350}
6d6bc0ad 5351#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5352
1a20ff27 5353static int sd_degenerate(struct sched_domain *sd)
245af2c7 5354{
758b2cdc 5355 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5356 return 1;
5357
5358 /* Following flags need at least 2 groups */
5359 if (sd->flags & (SD_LOAD_BALANCE |
5360 SD_BALANCE_NEWIDLE |
5361 SD_BALANCE_FORK |
89c4710e
SS
5362 SD_BALANCE_EXEC |
5363 SD_SHARE_CPUPOWER |
5364 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5365 if (sd->groups != sd->groups->next)
5366 return 0;
5367 }
5368
5369 /* Following flags don't use groups */
c88d5910 5370 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5371 return 0;
5372
5373 return 1;
5374}
5375
48f24c4d
IM
5376static int
5377sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5378{
5379 unsigned long cflags = sd->flags, pflags = parent->flags;
5380
5381 if (sd_degenerate(parent))
5382 return 1;
5383
758b2cdc 5384 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5385 return 0;
5386
245af2c7
SS
5387 /* Flags needing groups don't count if only 1 group in parent */
5388 if (parent->groups == parent->groups->next) {
5389 pflags &= ~(SD_LOAD_BALANCE |
5390 SD_BALANCE_NEWIDLE |
5391 SD_BALANCE_FORK |
89c4710e
SS
5392 SD_BALANCE_EXEC |
5393 SD_SHARE_CPUPOWER |
5394 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5395 if (nr_node_ids == 1)
5396 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5397 }
5398 if (~cflags & pflags)
5399 return 0;
5400
5401 return 1;
5402}
5403
dce840a0 5404static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5405{
dce840a0 5406 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5407
68e74568 5408 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5409 free_cpumask_var(rd->rto_mask);
5410 free_cpumask_var(rd->online);
5411 free_cpumask_var(rd->span);
5412 kfree(rd);
5413}
5414
57d885fe
GH
5415static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5416{
a0490fa3 5417 struct root_domain *old_rd = NULL;
57d885fe 5418 unsigned long flags;
57d885fe 5419
05fa785c 5420 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5421
5422 if (rq->rd) {
a0490fa3 5423 old_rd = rq->rd;
57d885fe 5424
c6c4927b 5425 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5426 set_rq_offline(rq);
57d885fe 5427
c6c4927b 5428 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5429
a0490fa3
IM
5430 /*
5431 * If we dont want to free the old_rt yet then
5432 * set old_rd to NULL to skip the freeing later
5433 * in this function:
5434 */
5435 if (!atomic_dec_and_test(&old_rd->refcount))
5436 old_rd = NULL;
57d885fe
GH
5437 }
5438
5439 atomic_inc(&rd->refcount);
5440 rq->rd = rd;
5441
c6c4927b 5442 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5443 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5444 set_rq_online(rq);
57d885fe 5445
05fa785c 5446 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5447
5448 if (old_rd)
dce840a0 5449 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5450}
5451
68c38fc3 5452static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5453{
5454 memset(rd, 0, sizeof(*rd));
5455
68c38fc3 5456 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5457 goto out;
68c38fc3 5458 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5459 goto free_span;
68c38fc3 5460 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5461 goto free_online;
6e0534f2 5462
68c38fc3 5463 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5464 goto free_rto_mask;
c6c4927b 5465 return 0;
6e0534f2 5466
68e74568
RR
5467free_rto_mask:
5468 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5469free_online:
5470 free_cpumask_var(rd->online);
5471free_span:
5472 free_cpumask_var(rd->span);
0c910d28 5473out:
c6c4927b 5474 return -ENOMEM;
57d885fe
GH
5475}
5476
029632fb
PZ
5477/*
5478 * By default the system creates a single root-domain with all cpus as
5479 * members (mimicking the global state we have today).
5480 */
5481struct root_domain def_root_domain;
5482
57d885fe
GH
5483static void init_defrootdomain(void)
5484{
68c38fc3 5485 init_rootdomain(&def_root_domain);
c6c4927b 5486
57d885fe
GH
5487 atomic_set(&def_root_domain.refcount, 1);
5488}
5489
dc938520 5490static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5491{
5492 struct root_domain *rd;
5493
5494 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5495 if (!rd)
5496 return NULL;
5497
68c38fc3 5498 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5499 kfree(rd);
5500 return NULL;
5501 }
57d885fe
GH
5502
5503 return rd;
5504}
5505
e3589f6c
PZ
5506static void free_sched_groups(struct sched_group *sg, int free_sgp)
5507{
5508 struct sched_group *tmp, *first;
5509
5510 if (!sg)
5511 return;
5512
5513 first = sg;
5514 do {
5515 tmp = sg->next;
5516
5517 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5518 kfree(sg->sgp);
5519
5520 kfree(sg);
5521 sg = tmp;
5522 } while (sg != first);
5523}
5524
dce840a0
PZ
5525static void free_sched_domain(struct rcu_head *rcu)
5526{
5527 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5528
5529 /*
5530 * If its an overlapping domain it has private groups, iterate and
5531 * nuke them all.
5532 */
5533 if (sd->flags & SD_OVERLAP) {
5534 free_sched_groups(sd->groups, 1);
5535 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5536 kfree(sd->groups->sgp);
dce840a0 5537 kfree(sd->groups);
9c3f75cb 5538 }
dce840a0
PZ
5539 kfree(sd);
5540}
5541
5542static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5543{
5544 call_rcu(&sd->rcu, free_sched_domain);
5545}
5546
5547static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5548{
5549 for (; sd; sd = sd->parent)
5550 destroy_sched_domain(sd, cpu);
5551}
5552
518cd623
PZ
5553/*
5554 * Keep a special pointer to the highest sched_domain that has
5555 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5556 * allows us to avoid some pointer chasing select_idle_sibling().
5557 *
5558 * Also keep a unique ID per domain (we use the first cpu number in
5559 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5560 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5561 */
5562DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5563DEFINE_PER_CPU(int, sd_llc_id);
5564
5565static void update_top_cache_domain(int cpu)
5566{
5567 struct sched_domain *sd;
5568 int id = cpu;
5569
5570 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5571 if (sd)
518cd623
PZ
5572 id = cpumask_first(sched_domain_span(sd));
5573
5574 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5575 per_cpu(sd_llc_id, cpu) = id;
5576}
5577
1da177e4 5578/*
0eab9146 5579 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5580 * hold the hotplug lock.
5581 */
0eab9146
IM
5582static void
5583cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5584{
70b97a7f 5585 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5586 struct sched_domain *tmp;
5587
5588 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5589 for (tmp = sd; tmp; ) {
245af2c7
SS
5590 struct sched_domain *parent = tmp->parent;
5591 if (!parent)
5592 break;
f29c9b1c 5593
1a848870 5594 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5595 tmp->parent = parent->parent;
1a848870
SS
5596 if (parent->parent)
5597 parent->parent->child = tmp;
dce840a0 5598 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5599 } else
5600 tmp = tmp->parent;
245af2c7
SS
5601 }
5602
1a848870 5603 if (sd && sd_degenerate(sd)) {
dce840a0 5604 tmp = sd;
245af2c7 5605 sd = sd->parent;
dce840a0 5606 destroy_sched_domain(tmp, cpu);
1a848870
SS
5607 if (sd)
5608 sd->child = NULL;
5609 }
1da177e4 5610
4cb98839 5611 sched_domain_debug(sd, cpu);
1da177e4 5612
57d885fe 5613 rq_attach_root(rq, rd);
dce840a0 5614 tmp = rq->sd;
674311d5 5615 rcu_assign_pointer(rq->sd, sd);
dce840a0 5616 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5617
5618 update_top_cache_domain(cpu);
1da177e4
LT
5619}
5620
5621/* cpus with isolated domains */
dcc30a35 5622static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5623
5624/* Setup the mask of cpus configured for isolated domains */
5625static int __init isolated_cpu_setup(char *str)
5626{
bdddd296 5627 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5628 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5629 return 1;
5630}
5631
8927f494 5632__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5633
d3081f52
PZ
5634static const struct cpumask *cpu_cpu_mask(int cpu)
5635{
5636 return cpumask_of_node(cpu_to_node(cpu));
5637}
5638
dce840a0
PZ
5639struct sd_data {
5640 struct sched_domain **__percpu sd;
5641 struct sched_group **__percpu sg;
9c3f75cb 5642 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5643};
5644
49a02c51 5645struct s_data {
21d42ccf 5646 struct sched_domain ** __percpu sd;
49a02c51
AH
5647 struct root_domain *rd;
5648};
5649
2109b99e 5650enum s_alloc {
2109b99e 5651 sa_rootdomain,
21d42ccf 5652 sa_sd,
dce840a0 5653 sa_sd_storage,
2109b99e
AH
5654 sa_none,
5655};
5656
54ab4ff4
PZ
5657struct sched_domain_topology_level;
5658
5659typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5660typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5661
e3589f6c
PZ
5662#define SDTL_OVERLAP 0x01
5663
eb7a74e6 5664struct sched_domain_topology_level {
2c402dc3
PZ
5665 sched_domain_init_f init;
5666 sched_domain_mask_f mask;
e3589f6c 5667 int flags;
cb83b629 5668 int numa_level;
54ab4ff4 5669 struct sd_data data;
eb7a74e6
PZ
5670};
5671
c1174876
PZ
5672/*
5673 * Build an iteration mask that can exclude certain CPUs from the upwards
5674 * domain traversal.
5675 *
5676 * Asymmetric node setups can result in situations where the domain tree is of
5677 * unequal depth, make sure to skip domains that already cover the entire
5678 * range.
5679 *
5680 * In that case build_sched_domains() will have terminated the iteration early
5681 * and our sibling sd spans will be empty. Domains should always include the
5682 * cpu they're built on, so check that.
5683 *
5684 */
5685static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5686{
5687 const struct cpumask *span = sched_domain_span(sd);
5688 struct sd_data *sdd = sd->private;
5689 struct sched_domain *sibling;
5690 int i;
5691
5692 for_each_cpu(i, span) {
5693 sibling = *per_cpu_ptr(sdd->sd, i);
5694 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5695 continue;
5696
5697 cpumask_set_cpu(i, sched_group_mask(sg));
5698 }
5699}
5700
5701/*
5702 * Return the canonical balance cpu for this group, this is the first cpu
5703 * of this group that's also in the iteration mask.
5704 */
5705int group_balance_cpu(struct sched_group *sg)
5706{
5707 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5708}
5709
e3589f6c
PZ
5710static int
5711build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5712{
5713 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5714 const struct cpumask *span = sched_domain_span(sd);
5715 struct cpumask *covered = sched_domains_tmpmask;
5716 struct sd_data *sdd = sd->private;
5717 struct sched_domain *child;
5718 int i;
5719
5720 cpumask_clear(covered);
5721
5722 for_each_cpu(i, span) {
5723 struct cpumask *sg_span;
5724
5725 if (cpumask_test_cpu(i, covered))
5726 continue;
5727
c1174876
PZ
5728 child = *per_cpu_ptr(sdd->sd, i);
5729
5730 /* See the comment near build_group_mask(). */
5731 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5732 continue;
5733
e3589f6c 5734 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5735 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5736
5737 if (!sg)
5738 goto fail;
5739
5740 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5741 if (child->child) {
5742 child = child->child;
5743 cpumask_copy(sg_span, sched_domain_span(child));
5744 } else
5745 cpumask_set_cpu(i, sg_span);
5746
5747 cpumask_or(covered, covered, sg_span);
5748
74a5ce20 5749 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5750 if (atomic_inc_return(&sg->sgp->ref) == 1)
5751 build_group_mask(sd, sg);
5752
c3decf0d
PZ
5753 /*
5754 * Initialize sgp->power such that even if we mess up the
5755 * domains and no possible iteration will get us here, we won't
5756 * die on a /0 trap.
5757 */
5758 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5759
c1174876
PZ
5760 /*
5761 * Make sure the first group of this domain contains the
5762 * canonical balance cpu. Otherwise the sched_domain iteration
5763 * breaks. See update_sg_lb_stats().
5764 */
74a5ce20 5765 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5766 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5767 groups = sg;
5768
5769 if (!first)
5770 first = sg;
5771 if (last)
5772 last->next = sg;
5773 last = sg;
5774 last->next = first;
5775 }
5776 sd->groups = groups;
5777
5778 return 0;
5779
5780fail:
5781 free_sched_groups(first, 0);
5782
5783 return -ENOMEM;
5784}
5785
dce840a0 5786static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5787{
dce840a0
PZ
5788 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5789 struct sched_domain *child = sd->child;
1da177e4 5790
dce840a0
PZ
5791 if (child)
5792 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5793
9c3f75cb 5794 if (sg) {
dce840a0 5795 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5796 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5797 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5798 }
dce840a0
PZ
5799
5800 return cpu;
1e9f28fa 5801}
1e9f28fa 5802
01a08546 5803/*
dce840a0
PZ
5804 * build_sched_groups will build a circular linked list of the groups
5805 * covered by the given span, and will set each group's ->cpumask correctly,
5806 * and ->cpu_power to 0.
e3589f6c
PZ
5807 *
5808 * Assumes the sched_domain tree is fully constructed
01a08546 5809 */
e3589f6c
PZ
5810static int
5811build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5812{
dce840a0
PZ
5813 struct sched_group *first = NULL, *last = NULL;
5814 struct sd_data *sdd = sd->private;
5815 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5816 struct cpumask *covered;
dce840a0 5817 int i;
9c1cfda2 5818
e3589f6c
PZ
5819 get_group(cpu, sdd, &sd->groups);
5820 atomic_inc(&sd->groups->ref);
5821
5822 if (cpu != cpumask_first(sched_domain_span(sd)))
5823 return 0;
5824
f96225fd
PZ
5825 lockdep_assert_held(&sched_domains_mutex);
5826 covered = sched_domains_tmpmask;
5827
dce840a0 5828 cpumask_clear(covered);
6711cab4 5829
dce840a0
PZ
5830 for_each_cpu(i, span) {
5831 struct sched_group *sg;
5832 int group = get_group(i, sdd, &sg);
5833 int j;
6711cab4 5834
dce840a0
PZ
5835 if (cpumask_test_cpu(i, covered))
5836 continue;
6711cab4 5837
dce840a0 5838 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5839 sg->sgp->power = 0;
c1174876 5840 cpumask_setall(sched_group_mask(sg));
0601a88d 5841
dce840a0
PZ
5842 for_each_cpu(j, span) {
5843 if (get_group(j, sdd, NULL) != group)
5844 continue;
0601a88d 5845
dce840a0
PZ
5846 cpumask_set_cpu(j, covered);
5847 cpumask_set_cpu(j, sched_group_cpus(sg));
5848 }
0601a88d 5849
dce840a0
PZ
5850 if (!first)
5851 first = sg;
5852 if (last)
5853 last->next = sg;
5854 last = sg;
5855 }
5856 last->next = first;
e3589f6c
PZ
5857
5858 return 0;
0601a88d 5859}
51888ca2 5860
89c4710e
SS
5861/*
5862 * Initialize sched groups cpu_power.
5863 *
5864 * cpu_power indicates the capacity of sched group, which is used while
5865 * distributing the load between different sched groups in a sched domain.
5866 * Typically cpu_power for all the groups in a sched domain will be same unless
5867 * there are asymmetries in the topology. If there are asymmetries, group
5868 * having more cpu_power will pickup more load compared to the group having
5869 * less cpu_power.
89c4710e
SS
5870 */
5871static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5872{
e3589f6c 5873 struct sched_group *sg = sd->groups;
89c4710e 5874
e3589f6c
PZ
5875 WARN_ON(!sd || !sg);
5876
5877 do {
5878 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5879 sg = sg->next;
5880 } while (sg != sd->groups);
89c4710e 5881
c1174876 5882 if (cpu != group_balance_cpu(sg))
e3589f6c 5883 return;
aae6d3dd 5884
d274cb30 5885 update_group_power(sd, cpu);
69e1e811 5886 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5887}
5888
029632fb
PZ
5889int __weak arch_sd_sibling_asym_packing(void)
5890{
5891 return 0*SD_ASYM_PACKING;
89c4710e
SS
5892}
5893
7c16ec58
MT
5894/*
5895 * Initializers for schedule domains
5896 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5897 */
5898
a5d8c348
IM
5899#ifdef CONFIG_SCHED_DEBUG
5900# define SD_INIT_NAME(sd, type) sd->name = #type
5901#else
5902# define SD_INIT_NAME(sd, type) do { } while (0)
5903#endif
5904
54ab4ff4
PZ
5905#define SD_INIT_FUNC(type) \
5906static noinline struct sched_domain * \
5907sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5908{ \
5909 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5910 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5911 SD_INIT_NAME(sd, type); \
5912 sd->private = &tl->data; \
5913 return sd; \
7c16ec58
MT
5914}
5915
5916SD_INIT_FUNC(CPU)
7c16ec58
MT
5917#ifdef CONFIG_SCHED_SMT
5918 SD_INIT_FUNC(SIBLING)
5919#endif
5920#ifdef CONFIG_SCHED_MC
5921 SD_INIT_FUNC(MC)
5922#endif
01a08546
HC
5923#ifdef CONFIG_SCHED_BOOK
5924 SD_INIT_FUNC(BOOK)
5925#endif
7c16ec58 5926
1d3504fc 5927static int default_relax_domain_level = -1;
60495e77 5928int sched_domain_level_max;
1d3504fc
HS
5929
5930static int __init setup_relax_domain_level(char *str)
5931{
a841f8ce
DS
5932 if (kstrtoint(str, 0, &default_relax_domain_level))
5933 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5934
1d3504fc
HS
5935 return 1;
5936}
5937__setup("relax_domain_level=", setup_relax_domain_level);
5938
5939static void set_domain_attribute(struct sched_domain *sd,
5940 struct sched_domain_attr *attr)
5941{
5942 int request;
5943
5944 if (!attr || attr->relax_domain_level < 0) {
5945 if (default_relax_domain_level < 0)
5946 return;
5947 else
5948 request = default_relax_domain_level;
5949 } else
5950 request = attr->relax_domain_level;
5951 if (request < sd->level) {
5952 /* turn off idle balance on this domain */
c88d5910 5953 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5954 } else {
5955 /* turn on idle balance on this domain */
c88d5910 5956 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5957 }
5958}
5959
54ab4ff4
PZ
5960static void __sdt_free(const struct cpumask *cpu_map);
5961static int __sdt_alloc(const struct cpumask *cpu_map);
5962
2109b99e
AH
5963static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5964 const struct cpumask *cpu_map)
5965{
5966 switch (what) {
2109b99e 5967 case sa_rootdomain:
822ff793
PZ
5968 if (!atomic_read(&d->rd->refcount))
5969 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5970 case sa_sd:
5971 free_percpu(d->sd); /* fall through */
dce840a0 5972 case sa_sd_storage:
54ab4ff4 5973 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5974 case sa_none:
5975 break;
5976 }
5977}
3404c8d9 5978
2109b99e
AH
5979static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5980 const struct cpumask *cpu_map)
5981{
dce840a0
PZ
5982 memset(d, 0, sizeof(*d));
5983
54ab4ff4
PZ
5984 if (__sdt_alloc(cpu_map))
5985 return sa_sd_storage;
dce840a0
PZ
5986 d->sd = alloc_percpu(struct sched_domain *);
5987 if (!d->sd)
5988 return sa_sd_storage;
2109b99e 5989 d->rd = alloc_rootdomain();
dce840a0 5990 if (!d->rd)
21d42ccf 5991 return sa_sd;
2109b99e
AH
5992 return sa_rootdomain;
5993}
57d885fe 5994
dce840a0
PZ
5995/*
5996 * NULL the sd_data elements we've used to build the sched_domain and
5997 * sched_group structure so that the subsequent __free_domain_allocs()
5998 * will not free the data we're using.
5999 */
6000static void claim_allocations(int cpu, struct sched_domain *sd)
6001{
6002 struct sd_data *sdd = sd->private;
dce840a0
PZ
6003
6004 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6005 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6006
e3589f6c 6007 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6008 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6009
6010 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6011 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6012}
6013
2c402dc3
PZ
6014#ifdef CONFIG_SCHED_SMT
6015static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6016{
2c402dc3 6017 return topology_thread_cpumask(cpu);
3bd65a80 6018}
2c402dc3 6019#endif
7f4588f3 6020
d069b916
PZ
6021/*
6022 * Topology list, bottom-up.
6023 */
2c402dc3 6024static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6025#ifdef CONFIG_SCHED_SMT
6026 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6027#endif
1e9f28fa 6028#ifdef CONFIG_SCHED_MC
2c402dc3 6029 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6030#endif
d069b916
PZ
6031#ifdef CONFIG_SCHED_BOOK
6032 { sd_init_BOOK, cpu_book_mask, },
6033#endif
6034 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6035 { NULL, },
6036};
6037
6038static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6039
cb83b629
PZ
6040#ifdef CONFIG_NUMA
6041
6042static int sched_domains_numa_levels;
cb83b629
PZ
6043static int *sched_domains_numa_distance;
6044static struct cpumask ***sched_domains_numa_masks;
6045static int sched_domains_curr_level;
6046
cb83b629
PZ
6047static inline int sd_local_flags(int level)
6048{
10717dcd 6049 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6050 return 0;
6051
6052 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6053}
6054
6055static struct sched_domain *
6056sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6057{
6058 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6059 int level = tl->numa_level;
6060 int sd_weight = cpumask_weight(
6061 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6062
6063 *sd = (struct sched_domain){
6064 .min_interval = sd_weight,
6065 .max_interval = 2*sd_weight,
6066 .busy_factor = 32,
870a0bb5 6067 .imbalance_pct = 125,
cb83b629
PZ
6068 .cache_nice_tries = 2,
6069 .busy_idx = 3,
6070 .idle_idx = 2,
6071 .newidle_idx = 0,
6072 .wake_idx = 0,
6073 .forkexec_idx = 0,
6074
6075 .flags = 1*SD_LOAD_BALANCE
6076 | 1*SD_BALANCE_NEWIDLE
6077 | 0*SD_BALANCE_EXEC
6078 | 0*SD_BALANCE_FORK
6079 | 0*SD_BALANCE_WAKE
6080 | 0*SD_WAKE_AFFINE
cb83b629 6081 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6082 | 0*SD_SHARE_PKG_RESOURCES
6083 | 1*SD_SERIALIZE
6084 | 0*SD_PREFER_SIBLING
6085 | sd_local_flags(level)
6086 ,
6087 .last_balance = jiffies,
6088 .balance_interval = sd_weight,
6089 };
6090 SD_INIT_NAME(sd, NUMA);
6091 sd->private = &tl->data;
6092
6093 /*
6094 * Ugly hack to pass state to sd_numa_mask()...
6095 */
6096 sched_domains_curr_level = tl->numa_level;
6097
6098 return sd;
6099}
6100
6101static const struct cpumask *sd_numa_mask(int cpu)
6102{
6103 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6104}
6105
d039ac60
PZ
6106static void sched_numa_warn(const char *str)
6107{
6108 static int done = false;
6109 int i,j;
6110
6111 if (done)
6112 return;
6113
6114 done = true;
6115
6116 printk(KERN_WARNING "ERROR: %s\n\n", str);
6117
6118 for (i = 0; i < nr_node_ids; i++) {
6119 printk(KERN_WARNING " ");
6120 for (j = 0; j < nr_node_ids; j++)
6121 printk(KERN_CONT "%02d ", node_distance(i,j));
6122 printk(KERN_CONT "\n");
6123 }
6124 printk(KERN_WARNING "\n");
6125}
6126
6127static bool find_numa_distance(int distance)
6128{
6129 int i;
6130
6131 if (distance == node_distance(0, 0))
6132 return true;
6133
6134 for (i = 0; i < sched_domains_numa_levels; i++) {
6135 if (sched_domains_numa_distance[i] == distance)
6136 return true;
6137 }
6138
6139 return false;
6140}
6141
cb83b629
PZ
6142static void sched_init_numa(void)
6143{
6144 int next_distance, curr_distance = node_distance(0, 0);
6145 struct sched_domain_topology_level *tl;
6146 int level = 0;
6147 int i, j, k;
6148
cb83b629
PZ
6149 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6150 if (!sched_domains_numa_distance)
6151 return;
6152
6153 /*
6154 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6155 * unique distances in the node_distance() table.
6156 *
6157 * Assumes node_distance(0,j) includes all distances in
6158 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6159 */
6160 next_distance = curr_distance;
6161 for (i = 0; i < nr_node_ids; i++) {
6162 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6163 for (k = 0; k < nr_node_ids; k++) {
6164 int distance = node_distance(i, k);
6165
6166 if (distance > curr_distance &&
6167 (distance < next_distance ||
6168 next_distance == curr_distance))
6169 next_distance = distance;
6170
6171 /*
6172 * While not a strong assumption it would be nice to know
6173 * about cases where if node A is connected to B, B is not
6174 * equally connected to A.
6175 */
6176 if (sched_debug() && node_distance(k, i) != distance)
6177 sched_numa_warn("Node-distance not symmetric");
6178
6179 if (sched_debug() && i && !find_numa_distance(distance))
6180 sched_numa_warn("Node-0 not representative");
6181 }
6182 if (next_distance != curr_distance) {
6183 sched_domains_numa_distance[level++] = next_distance;
6184 sched_domains_numa_levels = level;
6185 curr_distance = next_distance;
6186 } else break;
cb83b629 6187 }
d039ac60
PZ
6188
6189 /*
6190 * In case of sched_debug() we verify the above assumption.
6191 */
6192 if (!sched_debug())
6193 break;
cb83b629
PZ
6194 }
6195 /*
6196 * 'level' contains the number of unique distances, excluding the
6197 * identity distance node_distance(i,i).
6198 *
6199 * The sched_domains_nume_distance[] array includes the actual distance
6200 * numbers.
6201 */
6202
5f7865f3
TC
6203 /*
6204 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6205 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6206 * the array will contain less then 'level' members. This could be
6207 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6208 * in other functions.
6209 *
6210 * We reset it to 'level' at the end of this function.
6211 */
6212 sched_domains_numa_levels = 0;
6213
cb83b629
PZ
6214 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6215 if (!sched_domains_numa_masks)
6216 return;
6217
6218 /*
6219 * Now for each level, construct a mask per node which contains all
6220 * cpus of nodes that are that many hops away from us.
6221 */
6222 for (i = 0; i < level; i++) {
6223 sched_domains_numa_masks[i] =
6224 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6225 if (!sched_domains_numa_masks[i])
6226 return;
6227
6228 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6229 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6230 if (!mask)
6231 return;
6232
6233 sched_domains_numa_masks[i][j] = mask;
6234
6235 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6236 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6237 continue;
6238
6239 cpumask_or(mask, mask, cpumask_of_node(k));
6240 }
6241 }
6242 }
6243
6244 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6245 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6246 if (!tl)
6247 return;
6248
6249 /*
6250 * Copy the default topology bits..
6251 */
6252 for (i = 0; default_topology[i].init; i++)
6253 tl[i] = default_topology[i];
6254
6255 /*
6256 * .. and append 'j' levels of NUMA goodness.
6257 */
6258 for (j = 0; j < level; i++, j++) {
6259 tl[i] = (struct sched_domain_topology_level){
6260 .init = sd_numa_init,
6261 .mask = sd_numa_mask,
6262 .flags = SDTL_OVERLAP,
6263 .numa_level = j,
6264 };
6265 }
6266
6267 sched_domain_topology = tl;
5f7865f3
TC
6268
6269 sched_domains_numa_levels = level;
cb83b629 6270}
301a5cba
TC
6271
6272static void sched_domains_numa_masks_set(int cpu)
6273{
6274 int i, j;
6275 int node = cpu_to_node(cpu);
6276
6277 for (i = 0; i < sched_domains_numa_levels; i++) {
6278 for (j = 0; j < nr_node_ids; j++) {
6279 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6280 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6281 }
6282 }
6283}
6284
6285static void sched_domains_numa_masks_clear(int cpu)
6286{
6287 int i, j;
6288 for (i = 0; i < sched_domains_numa_levels; i++) {
6289 for (j = 0; j < nr_node_ids; j++)
6290 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6291 }
6292}
6293
6294/*
6295 * Update sched_domains_numa_masks[level][node] array when new cpus
6296 * are onlined.
6297 */
6298static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6299 unsigned long action,
6300 void *hcpu)
6301{
6302 int cpu = (long)hcpu;
6303
6304 switch (action & ~CPU_TASKS_FROZEN) {
6305 case CPU_ONLINE:
6306 sched_domains_numa_masks_set(cpu);
6307 break;
6308
6309 case CPU_DEAD:
6310 sched_domains_numa_masks_clear(cpu);
6311 break;
6312
6313 default:
6314 return NOTIFY_DONE;
6315 }
6316
6317 return NOTIFY_OK;
cb83b629
PZ
6318}
6319#else
6320static inline void sched_init_numa(void)
6321{
6322}
301a5cba
TC
6323
6324static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6325 unsigned long action,
6326 void *hcpu)
6327{
6328 return 0;
6329}
cb83b629
PZ
6330#endif /* CONFIG_NUMA */
6331
54ab4ff4
PZ
6332static int __sdt_alloc(const struct cpumask *cpu_map)
6333{
6334 struct sched_domain_topology_level *tl;
6335 int j;
6336
6337 for (tl = sched_domain_topology; tl->init; tl++) {
6338 struct sd_data *sdd = &tl->data;
6339
6340 sdd->sd = alloc_percpu(struct sched_domain *);
6341 if (!sdd->sd)
6342 return -ENOMEM;
6343
6344 sdd->sg = alloc_percpu(struct sched_group *);
6345 if (!sdd->sg)
6346 return -ENOMEM;
6347
9c3f75cb
PZ
6348 sdd->sgp = alloc_percpu(struct sched_group_power *);
6349 if (!sdd->sgp)
6350 return -ENOMEM;
6351
54ab4ff4
PZ
6352 for_each_cpu(j, cpu_map) {
6353 struct sched_domain *sd;
6354 struct sched_group *sg;
9c3f75cb 6355 struct sched_group_power *sgp;
54ab4ff4
PZ
6356
6357 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6358 GFP_KERNEL, cpu_to_node(j));
6359 if (!sd)
6360 return -ENOMEM;
6361
6362 *per_cpu_ptr(sdd->sd, j) = sd;
6363
6364 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6365 GFP_KERNEL, cpu_to_node(j));
6366 if (!sg)
6367 return -ENOMEM;
6368
30b4e9eb
IM
6369 sg->next = sg;
6370
54ab4ff4 6371 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6372
c1174876 6373 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6374 GFP_KERNEL, cpu_to_node(j));
6375 if (!sgp)
6376 return -ENOMEM;
6377
6378 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6379 }
6380 }
6381
6382 return 0;
6383}
6384
6385static void __sdt_free(const struct cpumask *cpu_map)
6386{
6387 struct sched_domain_topology_level *tl;
6388 int j;
6389
6390 for (tl = sched_domain_topology; tl->init; tl++) {
6391 struct sd_data *sdd = &tl->data;
6392
6393 for_each_cpu(j, cpu_map) {
fb2cf2c6 6394 struct sched_domain *sd;
6395
6396 if (sdd->sd) {
6397 sd = *per_cpu_ptr(sdd->sd, j);
6398 if (sd && (sd->flags & SD_OVERLAP))
6399 free_sched_groups(sd->groups, 0);
6400 kfree(*per_cpu_ptr(sdd->sd, j));
6401 }
6402
6403 if (sdd->sg)
6404 kfree(*per_cpu_ptr(sdd->sg, j));
6405 if (sdd->sgp)
6406 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6407 }
6408 free_percpu(sdd->sd);
fb2cf2c6 6409 sdd->sd = NULL;
54ab4ff4 6410 free_percpu(sdd->sg);
fb2cf2c6 6411 sdd->sg = NULL;
9c3f75cb 6412 free_percpu(sdd->sgp);
fb2cf2c6 6413 sdd->sgp = NULL;
54ab4ff4
PZ
6414 }
6415}
6416
2c402dc3
PZ
6417struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6418 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6419 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6420 int cpu)
6421{
54ab4ff4 6422 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6423 if (!sd)
d069b916 6424 return child;
2c402dc3 6425
2c402dc3 6426 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6427 if (child) {
6428 sd->level = child->level + 1;
6429 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6430 child->parent = sd;
60495e77 6431 }
d069b916 6432 sd->child = child;
a841f8ce 6433 set_domain_attribute(sd, attr);
2c402dc3
PZ
6434
6435 return sd;
6436}
6437
2109b99e
AH
6438/*
6439 * Build sched domains for a given set of cpus and attach the sched domains
6440 * to the individual cpus
6441 */
dce840a0
PZ
6442static int build_sched_domains(const struct cpumask *cpu_map,
6443 struct sched_domain_attr *attr)
2109b99e
AH
6444{
6445 enum s_alloc alloc_state = sa_none;
dce840a0 6446 struct sched_domain *sd;
2109b99e 6447 struct s_data d;
822ff793 6448 int i, ret = -ENOMEM;
9c1cfda2 6449
2109b99e
AH
6450 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6451 if (alloc_state != sa_rootdomain)
6452 goto error;
9c1cfda2 6453
dce840a0 6454 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6455 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6456 struct sched_domain_topology_level *tl;
6457
3bd65a80 6458 sd = NULL;
e3589f6c 6459 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6460 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6461 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6462 sd->flags |= SD_OVERLAP;
d110235d
PZ
6463 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6464 break;
e3589f6c 6465 }
d274cb30 6466
d069b916
PZ
6467 while (sd->child)
6468 sd = sd->child;
6469
21d42ccf 6470 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6471 }
6472
6473 /* Build the groups for the domains */
6474 for_each_cpu(i, cpu_map) {
6475 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6476 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6477 if (sd->flags & SD_OVERLAP) {
6478 if (build_overlap_sched_groups(sd, i))
6479 goto error;
6480 } else {
6481 if (build_sched_groups(sd, i))
6482 goto error;
6483 }
1cf51902 6484 }
a06dadbe 6485 }
9c1cfda2 6486
1da177e4 6487 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6488 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6489 if (!cpumask_test_cpu(i, cpu_map))
6490 continue;
9c1cfda2 6491
dce840a0
PZ
6492 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6493 claim_allocations(i, sd);
cd4ea6ae 6494 init_sched_groups_power(i, sd);
dce840a0 6495 }
f712c0c7 6496 }
9c1cfda2 6497
1da177e4 6498 /* Attach the domains */
dce840a0 6499 rcu_read_lock();
abcd083a 6500 for_each_cpu(i, cpu_map) {
21d42ccf 6501 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6502 cpu_attach_domain(sd, d.rd, i);
1da177e4 6503 }
dce840a0 6504 rcu_read_unlock();
51888ca2 6505
822ff793 6506 ret = 0;
51888ca2 6507error:
2109b99e 6508 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6509 return ret;
1da177e4 6510}
029190c5 6511
acc3f5d7 6512static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6513static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6514static struct sched_domain_attr *dattr_cur;
6515 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6516
6517/*
6518 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6519 * cpumask) fails, then fallback to a single sched domain,
6520 * as determined by the single cpumask fallback_doms.
029190c5 6521 */
4212823f 6522static cpumask_var_t fallback_doms;
029190c5 6523
ee79d1bd
HC
6524/*
6525 * arch_update_cpu_topology lets virtualized architectures update the
6526 * cpu core maps. It is supposed to return 1 if the topology changed
6527 * or 0 if it stayed the same.
6528 */
6529int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6530{
ee79d1bd 6531 return 0;
22e52b07
HC
6532}
6533
acc3f5d7
RR
6534cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6535{
6536 int i;
6537 cpumask_var_t *doms;
6538
6539 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6540 if (!doms)
6541 return NULL;
6542 for (i = 0; i < ndoms; i++) {
6543 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6544 free_sched_domains(doms, i);
6545 return NULL;
6546 }
6547 }
6548 return doms;
6549}
6550
6551void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6552{
6553 unsigned int i;
6554 for (i = 0; i < ndoms; i++)
6555 free_cpumask_var(doms[i]);
6556 kfree(doms);
6557}
6558
1a20ff27 6559/*
41a2d6cf 6560 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6561 * For now this just excludes isolated cpus, but could be used to
6562 * exclude other special cases in the future.
1a20ff27 6563 */
c4a8849a 6564static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6565{
7378547f
MM
6566 int err;
6567
22e52b07 6568 arch_update_cpu_topology();
029190c5 6569 ndoms_cur = 1;
acc3f5d7 6570 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6571 if (!doms_cur)
acc3f5d7
RR
6572 doms_cur = &fallback_doms;
6573 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6574 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6575 register_sched_domain_sysctl();
7378547f
MM
6576
6577 return err;
1a20ff27
DG
6578}
6579
1a20ff27
DG
6580/*
6581 * Detach sched domains from a group of cpus specified in cpu_map
6582 * These cpus will now be attached to the NULL domain
6583 */
96f874e2 6584static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6585{
6586 int i;
6587
dce840a0 6588 rcu_read_lock();
abcd083a 6589 for_each_cpu(i, cpu_map)
57d885fe 6590 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6591 rcu_read_unlock();
1a20ff27
DG
6592}
6593
1d3504fc
HS
6594/* handle null as "default" */
6595static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6596 struct sched_domain_attr *new, int idx_new)
6597{
6598 struct sched_domain_attr tmp;
6599
6600 /* fast path */
6601 if (!new && !cur)
6602 return 1;
6603
6604 tmp = SD_ATTR_INIT;
6605 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6606 new ? (new + idx_new) : &tmp,
6607 sizeof(struct sched_domain_attr));
6608}
6609
029190c5
PJ
6610/*
6611 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6612 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6613 * doms_new[] to the current sched domain partitioning, doms_cur[].
6614 * It destroys each deleted domain and builds each new domain.
6615 *
acc3f5d7 6616 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6617 * The masks don't intersect (don't overlap.) We should setup one
6618 * sched domain for each mask. CPUs not in any of the cpumasks will
6619 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6620 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6621 * it as it is.
6622 *
acc3f5d7
RR
6623 * The passed in 'doms_new' should be allocated using
6624 * alloc_sched_domains. This routine takes ownership of it and will
6625 * free_sched_domains it when done with it. If the caller failed the
6626 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6627 * and partition_sched_domains() will fallback to the single partition
6628 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6629 *
96f874e2 6630 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6631 * ndoms_new == 0 is a special case for destroying existing domains,
6632 * and it will not create the default domain.
dfb512ec 6633 *
029190c5
PJ
6634 * Call with hotplug lock held
6635 */
acc3f5d7 6636void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6637 struct sched_domain_attr *dattr_new)
029190c5 6638{
dfb512ec 6639 int i, j, n;
d65bd5ec 6640 int new_topology;
029190c5 6641
712555ee 6642 mutex_lock(&sched_domains_mutex);
a1835615 6643
7378547f
MM
6644 /* always unregister in case we don't destroy any domains */
6645 unregister_sched_domain_sysctl();
6646
d65bd5ec
HC
6647 /* Let architecture update cpu core mappings. */
6648 new_topology = arch_update_cpu_topology();
6649
dfb512ec 6650 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6651
6652 /* Destroy deleted domains */
6653 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6654 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6655 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6656 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6657 goto match1;
6658 }
6659 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6660 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6661match1:
6662 ;
6663 }
6664
e761b772
MK
6665 if (doms_new == NULL) {
6666 ndoms_cur = 0;
acc3f5d7 6667 doms_new = &fallback_doms;
6ad4c188 6668 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6669 WARN_ON_ONCE(dattr_new);
e761b772
MK
6670 }
6671
029190c5
PJ
6672 /* Build new domains */
6673 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6674 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6675 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6676 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6677 goto match2;
6678 }
6679 /* no match - add a new doms_new */
dce840a0 6680 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6681match2:
6682 ;
6683 }
6684
6685 /* Remember the new sched domains */
acc3f5d7
RR
6686 if (doms_cur != &fallback_doms)
6687 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6688 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6689 doms_cur = doms_new;
1d3504fc 6690 dattr_cur = dattr_new;
029190c5 6691 ndoms_cur = ndoms_new;
7378547f
MM
6692
6693 register_sched_domain_sysctl();
a1835615 6694
712555ee 6695 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6696}
6697
d35be8ba
SB
6698static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6699
1da177e4 6700/*
3a101d05
TH
6701 * Update cpusets according to cpu_active mask. If cpusets are
6702 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6703 * around partition_sched_domains().
d35be8ba
SB
6704 *
6705 * If we come here as part of a suspend/resume, don't touch cpusets because we
6706 * want to restore it back to its original state upon resume anyway.
1da177e4 6707 */
0b2e918a
TH
6708static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6709 void *hcpu)
e761b772 6710{
d35be8ba
SB
6711 switch (action) {
6712 case CPU_ONLINE_FROZEN:
6713 case CPU_DOWN_FAILED_FROZEN:
6714
6715 /*
6716 * num_cpus_frozen tracks how many CPUs are involved in suspend
6717 * resume sequence. As long as this is not the last online
6718 * operation in the resume sequence, just build a single sched
6719 * domain, ignoring cpusets.
6720 */
6721 num_cpus_frozen--;
6722 if (likely(num_cpus_frozen)) {
6723 partition_sched_domains(1, NULL, NULL);
6724 break;
6725 }
6726
6727 /*
6728 * This is the last CPU online operation. So fall through and
6729 * restore the original sched domains by considering the
6730 * cpuset configurations.
6731 */
6732
e761b772 6733 case CPU_ONLINE:
6ad4c188 6734 case CPU_DOWN_FAILED:
7ddf96b0 6735 cpuset_update_active_cpus(true);
d35be8ba 6736 break;
3a101d05
TH
6737 default:
6738 return NOTIFY_DONE;
6739 }
d35be8ba 6740 return NOTIFY_OK;
3a101d05 6741}
e761b772 6742
0b2e918a
TH
6743static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6744 void *hcpu)
3a101d05 6745{
d35be8ba 6746 switch (action) {
3a101d05 6747 case CPU_DOWN_PREPARE:
7ddf96b0 6748 cpuset_update_active_cpus(false);
d35be8ba
SB
6749 break;
6750 case CPU_DOWN_PREPARE_FROZEN:
6751 num_cpus_frozen++;
6752 partition_sched_domains(1, NULL, NULL);
6753 break;
e761b772
MK
6754 default:
6755 return NOTIFY_DONE;
6756 }
d35be8ba 6757 return NOTIFY_OK;
e761b772 6758}
e761b772 6759
1da177e4
LT
6760void __init sched_init_smp(void)
6761{
dcc30a35
RR
6762 cpumask_var_t non_isolated_cpus;
6763
6764 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6765 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6766
cb83b629
PZ
6767 sched_init_numa();
6768
95402b38 6769 get_online_cpus();
712555ee 6770 mutex_lock(&sched_domains_mutex);
c4a8849a 6771 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6772 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6773 if (cpumask_empty(non_isolated_cpus))
6774 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6775 mutex_unlock(&sched_domains_mutex);
95402b38 6776 put_online_cpus();
e761b772 6777
301a5cba 6778 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6779 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6780 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6781
6782 /* RT runtime code needs to handle some hotplug events */
6783 hotcpu_notifier(update_runtime, 0);
6784
b328ca18 6785 init_hrtick();
5c1e1767
NP
6786
6787 /* Move init over to a non-isolated CPU */
dcc30a35 6788 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6789 BUG();
19978ca6 6790 sched_init_granularity();
dcc30a35 6791 free_cpumask_var(non_isolated_cpus);
4212823f 6792
0e3900e6 6793 init_sched_rt_class();
1da177e4
LT
6794}
6795#else
6796void __init sched_init_smp(void)
6797{
19978ca6 6798 sched_init_granularity();
1da177e4
LT
6799}
6800#endif /* CONFIG_SMP */
6801
cd1bb94b
AB
6802const_debug unsigned int sysctl_timer_migration = 1;
6803
1da177e4
LT
6804int in_sched_functions(unsigned long addr)
6805{
1da177e4
LT
6806 return in_lock_functions(addr) ||
6807 (addr >= (unsigned long)__sched_text_start
6808 && addr < (unsigned long)__sched_text_end);
6809}
6810
029632fb
PZ
6811#ifdef CONFIG_CGROUP_SCHED
6812struct task_group root_task_group;
35cf4e50 6813LIST_HEAD(task_groups);
052f1dc7 6814#endif
6f505b16 6815
029632fb 6816DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6817
1da177e4
LT
6818void __init sched_init(void)
6819{
dd41f596 6820 int i, j;
434d53b0
MT
6821 unsigned long alloc_size = 0, ptr;
6822
6823#ifdef CONFIG_FAIR_GROUP_SCHED
6824 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6825#endif
6826#ifdef CONFIG_RT_GROUP_SCHED
6827 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6828#endif
df7c8e84 6829#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6830 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6831#endif
434d53b0 6832 if (alloc_size) {
36b7b6d4 6833 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6834
6835#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6836 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6837 ptr += nr_cpu_ids * sizeof(void **);
6838
07e06b01 6839 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6840 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6841
6d6bc0ad 6842#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6843#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6844 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6845 ptr += nr_cpu_ids * sizeof(void **);
6846
07e06b01 6847 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6848 ptr += nr_cpu_ids * sizeof(void **);
6849
6d6bc0ad 6850#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6851#ifdef CONFIG_CPUMASK_OFFSTACK
6852 for_each_possible_cpu(i) {
6853 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6854 ptr += cpumask_size();
6855 }
6856#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6857 }
dd41f596 6858
57d885fe
GH
6859#ifdef CONFIG_SMP
6860 init_defrootdomain();
6861#endif
6862
d0b27fa7
PZ
6863 init_rt_bandwidth(&def_rt_bandwidth,
6864 global_rt_period(), global_rt_runtime());
6865
6866#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6867 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6868 global_rt_period(), global_rt_runtime());
6d6bc0ad 6869#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6870
7c941438 6871#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6872 list_add(&root_task_group.list, &task_groups);
6873 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6874 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6875 autogroup_init(&init_task);
54c707e9 6876
7c941438 6877#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6878
54c707e9
GC
6879#ifdef CONFIG_CGROUP_CPUACCT
6880 root_cpuacct.cpustat = &kernel_cpustat;
6881 root_cpuacct.cpuusage = alloc_percpu(u64);
6882 /* Too early, not expected to fail */
6883 BUG_ON(!root_cpuacct.cpuusage);
6884#endif
0a945022 6885 for_each_possible_cpu(i) {
70b97a7f 6886 struct rq *rq;
1da177e4
LT
6887
6888 rq = cpu_rq(i);
05fa785c 6889 raw_spin_lock_init(&rq->lock);
7897986b 6890 rq->nr_running = 0;
dce48a84
TG
6891 rq->calc_load_active = 0;
6892 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6893 init_cfs_rq(&rq->cfs);
6f505b16 6894 init_rt_rq(&rq->rt, rq);
dd41f596 6895#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6896 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6897 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6898 /*
07e06b01 6899 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6900 *
6901 * In case of task-groups formed thr' the cgroup filesystem, it
6902 * gets 100% of the cpu resources in the system. This overall
6903 * system cpu resource is divided among the tasks of
07e06b01 6904 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6905 * based on each entity's (task or task-group's) weight
6906 * (se->load.weight).
6907 *
07e06b01 6908 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6909 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6910 * then A0's share of the cpu resource is:
6911 *
0d905bca 6912 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6913 *
07e06b01
YZ
6914 * We achieve this by letting root_task_group's tasks sit
6915 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6916 */
ab84d31e 6917 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6918 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6919#endif /* CONFIG_FAIR_GROUP_SCHED */
6920
6921 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6922#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6923 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6924 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6925#endif
1da177e4 6926
dd41f596
IM
6927 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6928 rq->cpu_load[j] = 0;
fdf3e95d
VP
6929
6930 rq->last_load_update_tick = jiffies;
6931
1da177e4 6932#ifdef CONFIG_SMP
41c7ce9a 6933 rq->sd = NULL;
57d885fe 6934 rq->rd = NULL;
1399fa78 6935 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6936 rq->post_schedule = 0;
1da177e4 6937 rq->active_balance = 0;
dd41f596 6938 rq->next_balance = jiffies;
1da177e4 6939 rq->push_cpu = 0;
0a2966b4 6940 rq->cpu = i;
1f11eb6a 6941 rq->online = 0;
eae0c9df
MG
6942 rq->idle_stamp = 0;
6943 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6944
6945 INIT_LIST_HEAD(&rq->cfs_tasks);
6946
dc938520 6947 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6948#ifdef CONFIG_NO_HZ
1c792db7 6949 rq->nohz_flags = 0;
83cd4fe2 6950#endif
1da177e4 6951#endif
8f4d37ec 6952 init_rq_hrtick(rq);
1da177e4 6953 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6954 }
6955
2dd73a4f 6956 set_load_weight(&init_task);
b50f60ce 6957
e107be36
AK
6958#ifdef CONFIG_PREEMPT_NOTIFIERS
6959 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6960#endif
6961
b50f60ce 6962#ifdef CONFIG_RT_MUTEXES
732375c6 6963 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6964#endif
6965
1da177e4
LT
6966 /*
6967 * The boot idle thread does lazy MMU switching as well:
6968 */
6969 atomic_inc(&init_mm.mm_count);
6970 enter_lazy_tlb(&init_mm, current);
6971
6972 /*
6973 * Make us the idle thread. Technically, schedule() should not be
6974 * called from this thread, however somewhere below it might be,
6975 * but because we are the idle thread, we just pick up running again
6976 * when this runqueue becomes "idle".
6977 */
6978 init_idle(current, smp_processor_id());
dce48a84
TG
6979
6980 calc_load_update = jiffies + LOAD_FREQ;
6981
dd41f596
IM
6982 /*
6983 * During early bootup we pretend to be a normal task:
6984 */
6985 current->sched_class = &fair_sched_class;
6892b75e 6986
bf4d83f6 6987#ifdef CONFIG_SMP
4cb98839 6988 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6989 /* May be allocated at isolcpus cmdline parse time */
6990 if (cpu_isolated_map == NULL)
6991 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6992 idle_thread_set_boot_cpu();
029632fb
PZ
6993#endif
6994 init_sched_fair_class();
6a7b3dc3 6995
6892b75e 6996 scheduler_running = 1;
1da177e4
LT
6997}
6998
d902db1e 6999#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7000static inline int preempt_count_equals(int preempt_offset)
7001{
234da7bc 7002 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7003
4ba8216c 7004 return (nested == preempt_offset);
e4aafea2
FW
7005}
7006
d894837f 7007void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7008{
1da177e4
LT
7009 static unsigned long prev_jiffy; /* ratelimiting */
7010
b3fbab05 7011 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7012 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7013 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7014 return;
7015 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7016 return;
7017 prev_jiffy = jiffies;
7018
3df0fc5b
PZ
7019 printk(KERN_ERR
7020 "BUG: sleeping function called from invalid context at %s:%d\n",
7021 file, line);
7022 printk(KERN_ERR
7023 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7024 in_atomic(), irqs_disabled(),
7025 current->pid, current->comm);
aef745fc
IM
7026
7027 debug_show_held_locks(current);
7028 if (irqs_disabled())
7029 print_irqtrace_events(current);
7030 dump_stack();
1da177e4
LT
7031}
7032EXPORT_SYMBOL(__might_sleep);
7033#endif
7034
7035#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7036static void normalize_task(struct rq *rq, struct task_struct *p)
7037{
da7a735e
PZ
7038 const struct sched_class *prev_class = p->sched_class;
7039 int old_prio = p->prio;
3a5e4dc1 7040 int on_rq;
3e51f33f 7041
fd2f4419 7042 on_rq = p->on_rq;
3a5e4dc1 7043 if (on_rq)
4ca9b72b 7044 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7045 __setscheduler(rq, p, SCHED_NORMAL, 0);
7046 if (on_rq) {
4ca9b72b 7047 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7048 resched_task(rq->curr);
7049 }
da7a735e
PZ
7050
7051 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7052}
7053
1da177e4
LT
7054void normalize_rt_tasks(void)
7055{
a0f98a1c 7056 struct task_struct *g, *p;
1da177e4 7057 unsigned long flags;
70b97a7f 7058 struct rq *rq;
1da177e4 7059
4cf5d77a 7060 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7061 do_each_thread(g, p) {
178be793
IM
7062 /*
7063 * Only normalize user tasks:
7064 */
7065 if (!p->mm)
7066 continue;
7067
6cfb0d5d 7068 p->se.exec_start = 0;
6cfb0d5d 7069#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7070 p->se.statistics.wait_start = 0;
7071 p->se.statistics.sleep_start = 0;
7072 p->se.statistics.block_start = 0;
6cfb0d5d 7073#endif
dd41f596
IM
7074
7075 if (!rt_task(p)) {
7076 /*
7077 * Renice negative nice level userspace
7078 * tasks back to 0:
7079 */
7080 if (TASK_NICE(p) < 0 && p->mm)
7081 set_user_nice(p, 0);
1da177e4 7082 continue;
dd41f596 7083 }
1da177e4 7084
1d615482 7085 raw_spin_lock(&p->pi_lock);
b29739f9 7086 rq = __task_rq_lock(p);
1da177e4 7087
178be793 7088 normalize_task(rq, p);
3a5e4dc1 7089
b29739f9 7090 __task_rq_unlock(rq);
1d615482 7091 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7092 } while_each_thread(g, p);
7093
4cf5d77a 7094 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7095}
7096
7097#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7098
67fc4e0c 7099#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7100/*
67fc4e0c 7101 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7102 *
7103 * They can only be called when the whole system has been
7104 * stopped - every CPU needs to be quiescent, and no scheduling
7105 * activity can take place. Using them for anything else would
7106 * be a serious bug, and as a result, they aren't even visible
7107 * under any other configuration.
7108 */
7109
7110/**
7111 * curr_task - return the current task for a given cpu.
7112 * @cpu: the processor in question.
7113 *
7114 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7115 */
36c8b586 7116struct task_struct *curr_task(int cpu)
1df5c10a
LT
7117{
7118 return cpu_curr(cpu);
7119}
7120
67fc4e0c
JW
7121#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7122
7123#ifdef CONFIG_IA64
1df5c10a
LT
7124/**
7125 * set_curr_task - set the current task for a given cpu.
7126 * @cpu: the processor in question.
7127 * @p: the task pointer to set.
7128 *
7129 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7130 * are serviced on a separate stack. It allows the architecture to switch the
7131 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7132 * must be called with all CPU's synchronized, and interrupts disabled, the
7133 * and caller must save the original value of the current task (see
7134 * curr_task() above) and restore that value before reenabling interrupts and
7135 * re-starting the system.
7136 *
7137 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7138 */
36c8b586 7139void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7140{
7141 cpu_curr(cpu) = p;
7142}
7143
7144#endif
29f59db3 7145
7c941438 7146#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7147/* task_group_lock serializes the addition/removal of task groups */
7148static DEFINE_SPINLOCK(task_group_lock);
7149
bccbe08a
PZ
7150static void free_sched_group(struct task_group *tg)
7151{
7152 free_fair_sched_group(tg);
7153 free_rt_sched_group(tg);
e9aa1dd1 7154 autogroup_free(tg);
bccbe08a
PZ
7155 kfree(tg);
7156}
7157
7158/* allocate runqueue etc for a new task group */
ec7dc8ac 7159struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7160{
7161 struct task_group *tg;
7162 unsigned long flags;
bccbe08a
PZ
7163
7164 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7165 if (!tg)
7166 return ERR_PTR(-ENOMEM);
7167
ec7dc8ac 7168 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7169 goto err;
7170
ec7dc8ac 7171 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7172 goto err;
7173
8ed36996 7174 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7175 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7176
7177 WARN_ON(!parent); /* root should already exist */
7178
7179 tg->parent = parent;
f473aa5e 7180 INIT_LIST_HEAD(&tg->children);
09f2724a 7181 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7182 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7183
9b5b7751 7184 return tg;
29f59db3
SV
7185
7186err:
6f505b16 7187 free_sched_group(tg);
29f59db3
SV
7188 return ERR_PTR(-ENOMEM);
7189}
7190
9b5b7751 7191/* rcu callback to free various structures associated with a task group */
6f505b16 7192static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7193{
29f59db3 7194 /* now it should be safe to free those cfs_rqs */
6f505b16 7195 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7196}
7197
9b5b7751 7198/* Destroy runqueue etc associated with a task group */
4cf86d77 7199void sched_destroy_group(struct task_group *tg)
29f59db3 7200{
8ed36996 7201 unsigned long flags;
9b5b7751 7202 int i;
29f59db3 7203
3d4b47b4
PZ
7204 /* end participation in shares distribution */
7205 for_each_possible_cpu(i)
bccbe08a 7206 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7207
7208 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7209 list_del_rcu(&tg->list);
f473aa5e 7210 list_del_rcu(&tg->siblings);
8ed36996 7211 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7212
9b5b7751 7213 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7214 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7215}
7216
9b5b7751 7217/* change task's runqueue when it moves between groups.
3a252015
IM
7218 * The caller of this function should have put the task in its new group
7219 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7220 * reflect its new group.
9b5b7751
SV
7221 */
7222void sched_move_task(struct task_struct *tsk)
29f59db3 7223{
8323f26c 7224 struct task_group *tg;
29f59db3
SV
7225 int on_rq, running;
7226 unsigned long flags;
7227 struct rq *rq;
7228
7229 rq = task_rq_lock(tsk, &flags);
7230
051a1d1a 7231 running = task_current(rq, tsk);
fd2f4419 7232 on_rq = tsk->on_rq;
29f59db3 7233
0e1f3483 7234 if (on_rq)
29f59db3 7235 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7236 if (unlikely(running))
7237 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7238
8323f26c
PZ
7239 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7240 lockdep_is_held(&tsk->sighand->siglock)),
7241 struct task_group, css);
7242 tg = autogroup_task_group(tsk, tg);
7243 tsk->sched_task_group = tg;
7244
810b3817 7245#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7246 if (tsk->sched_class->task_move_group)
7247 tsk->sched_class->task_move_group(tsk, on_rq);
7248 else
810b3817 7249#endif
b2b5ce02 7250 set_task_rq(tsk, task_cpu(tsk));
810b3817 7251
0e1f3483
HS
7252 if (unlikely(running))
7253 tsk->sched_class->set_curr_task(rq);
7254 if (on_rq)
371fd7e7 7255 enqueue_task(rq, tsk, 0);
29f59db3 7256
0122ec5b 7257 task_rq_unlock(rq, tsk, &flags);
29f59db3 7258}
7c941438 7259#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7260
a790de99 7261#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7262static unsigned long to_ratio(u64 period, u64 runtime)
7263{
7264 if (runtime == RUNTIME_INF)
9a7e0b18 7265 return 1ULL << 20;
9f0c1e56 7266
9a7e0b18 7267 return div64_u64(runtime << 20, period);
9f0c1e56 7268}
a790de99
PT
7269#endif
7270
7271#ifdef CONFIG_RT_GROUP_SCHED
7272/*
7273 * Ensure that the real time constraints are schedulable.
7274 */
7275static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7276
9a7e0b18
PZ
7277/* Must be called with tasklist_lock held */
7278static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7279{
9a7e0b18 7280 struct task_struct *g, *p;
b40b2e8e 7281
9a7e0b18 7282 do_each_thread(g, p) {
029632fb 7283 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7284 return 1;
7285 } while_each_thread(g, p);
b40b2e8e 7286
9a7e0b18
PZ
7287 return 0;
7288}
b40b2e8e 7289
9a7e0b18
PZ
7290struct rt_schedulable_data {
7291 struct task_group *tg;
7292 u64 rt_period;
7293 u64 rt_runtime;
7294};
b40b2e8e 7295
a790de99 7296static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7297{
7298 struct rt_schedulable_data *d = data;
7299 struct task_group *child;
7300 unsigned long total, sum = 0;
7301 u64 period, runtime;
b40b2e8e 7302
9a7e0b18
PZ
7303 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7304 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7305
9a7e0b18
PZ
7306 if (tg == d->tg) {
7307 period = d->rt_period;
7308 runtime = d->rt_runtime;
b40b2e8e 7309 }
b40b2e8e 7310
4653f803
PZ
7311 /*
7312 * Cannot have more runtime than the period.
7313 */
7314 if (runtime > period && runtime != RUNTIME_INF)
7315 return -EINVAL;
6f505b16 7316
4653f803
PZ
7317 /*
7318 * Ensure we don't starve existing RT tasks.
7319 */
9a7e0b18
PZ
7320 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7321 return -EBUSY;
6f505b16 7322
9a7e0b18 7323 total = to_ratio(period, runtime);
6f505b16 7324
4653f803
PZ
7325 /*
7326 * Nobody can have more than the global setting allows.
7327 */
7328 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7329 return -EINVAL;
6f505b16 7330
4653f803
PZ
7331 /*
7332 * The sum of our children's runtime should not exceed our own.
7333 */
9a7e0b18
PZ
7334 list_for_each_entry_rcu(child, &tg->children, siblings) {
7335 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7336 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7337
9a7e0b18
PZ
7338 if (child == d->tg) {
7339 period = d->rt_period;
7340 runtime = d->rt_runtime;
7341 }
6f505b16 7342
9a7e0b18 7343 sum += to_ratio(period, runtime);
9f0c1e56 7344 }
6f505b16 7345
9a7e0b18
PZ
7346 if (sum > total)
7347 return -EINVAL;
7348
7349 return 0;
6f505b16
PZ
7350}
7351
9a7e0b18 7352static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7353{
8277434e
PT
7354 int ret;
7355
9a7e0b18
PZ
7356 struct rt_schedulable_data data = {
7357 .tg = tg,
7358 .rt_period = period,
7359 .rt_runtime = runtime,
7360 };
7361
8277434e
PT
7362 rcu_read_lock();
7363 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7364 rcu_read_unlock();
7365
7366 return ret;
521f1a24
DG
7367}
7368
ab84d31e 7369static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7370 u64 rt_period, u64 rt_runtime)
6f505b16 7371{
ac086bc2 7372 int i, err = 0;
9f0c1e56 7373
9f0c1e56 7374 mutex_lock(&rt_constraints_mutex);
521f1a24 7375 read_lock(&tasklist_lock);
9a7e0b18
PZ
7376 err = __rt_schedulable(tg, rt_period, rt_runtime);
7377 if (err)
9f0c1e56 7378 goto unlock;
ac086bc2 7379
0986b11b 7380 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7381 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7382 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7383
7384 for_each_possible_cpu(i) {
7385 struct rt_rq *rt_rq = tg->rt_rq[i];
7386
0986b11b 7387 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7388 rt_rq->rt_runtime = rt_runtime;
0986b11b 7389 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7390 }
0986b11b 7391 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7392unlock:
521f1a24 7393 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7394 mutex_unlock(&rt_constraints_mutex);
7395
7396 return err;
6f505b16
PZ
7397}
7398
d0b27fa7
PZ
7399int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7400{
7401 u64 rt_runtime, rt_period;
7402
7403 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7404 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7405 if (rt_runtime_us < 0)
7406 rt_runtime = RUNTIME_INF;
7407
ab84d31e 7408 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7409}
7410
9f0c1e56
PZ
7411long sched_group_rt_runtime(struct task_group *tg)
7412{
7413 u64 rt_runtime_us;
7414
d0b27fa7 7415 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7416 return -1;
7417
d0b27fa7 7418 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7419 do_div(rt_runtime_us, NSEC_PER_USEC);
7420 return rt_runtime_us;
7421}
d0b27fa7
PZ
7422
7423int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7424{
7425 u64 rt_runtime, rt_period;
7426
7427 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7428 rt_runtime = tg->rt_bandwidth.rt_runtime;
7429
619b0488
R
7430 if (rt_period == 0)
7431 return -EINVAL;
7432
ab84d31e 7433 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7434}
7435
7436long sched_group_rt_period(struct task_group *tg)
7437{
7438 u64 rt_period_us;
7439
7440 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7441 do_div(rt_period_us, NSEC_PER_USEC);
7442 return rt_period_us;
7443}
7444
7445static int sched_rt_global_constraints(void)
7446{
4653f803 7447 u64 runtime, period;
d0b27fa7
PZ
7448 int ret = 0;
7449
ec5d4989
HS
7450 if (sysctl_sched_rt_period <= 0)
7451 return -EINVAL;
7452
4653f803
PZ
7453 runtime = global_rt_runtime();
7454 period = global_rt_period();
7455
7456 /*
7457 * Sanity check on the sysctl variables.
7458 */
7459 if (runtime > period && runtime != RUNTIME_INF)
7460 return -EINVAL;
10b612f4 7461
d0b27fa7 7462 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7463 read_lock(&tasklist_lock);
4653f803 7464 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7465 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7466 mutex_unlock(&rt_constraints_mutex);
7467
7468 return ret;
7469}
54e99124
DG
7470
7471int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7472{
7473 /* Don't accept realtime tasks when there is no way for them to run */
7474 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7475 return 0;
7476
7477 return 1;
7478}
7479
6d6bc0ad 7480#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7481static int sched_rt_global_constraints(void)
7482{
ac086bc2
PZ
7483 unsigned long flags;
7484 int i;
7485
ec5d4989
HS
7486 if (sysctl_sched_rt_period <= 0)
7487 return -EINVAL;
7488
60aa605d
PZ
7489 /*
7490 * There's always some RT tasks in the root group
7491 * -- migration, kstopmachine etc..
7492 */
7493 if (sysctl_sched_rt_runtime == 0)
7494 return -EBUSY;
7495
0986b11b 7496 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7497 for_each_possible_cpu(i) {
7498 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7499
0986b11b 7500 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7501 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7502 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7503 }
0986b11b 7504 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7505
d0b27fa7
PZ
7506 return 0;
7507}
6d6bc0ad 7508#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7509
7510int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7511 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7512 loff_t *ppos)
7513{
7514 int ret;
7515 int old_period, old_runtime;
7516 static DEFINE_MUTEX(mutex);
7517
7518 mutex_lock(&mutex);
7519 old_period = sysctl_sched_rt_period;
7520 old_runtime = sysctl_sched_rt_runtime;
7521
8d65af78 7522 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7523
7524 if (!ret && write) {
7525 ret = sched_rt_global_constraints();
7526 if (ret) {
7527 sysctl_sched_rt_period = old_period;
7528 sysctl_sched_rt_runtime = old_runtime;
7529 } else {
7530 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7531 def_rt_bandwidth.rt_period =
7532 ns_to_ktime(global_rt_period());
7533 }
7534 }
7535 mutex_unlock(&mutex);
7536
7537 return ret;
7538}
68318b8e 7539
052f1dc7 7540#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7541
7542/* return corresponding task_group object of a cgroup */
2b01dfe3 7543static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7544{
2b01dfe3
PM
7545 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7546 struct task_group, css);
68318b8e
SV
7547}
7548
92fb9748 7549static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7550{
ec7dc8ac 7551 struct task_group *tg, *parent;
68318b8e 7552
2b01dfe3 7553 if (!cgrp->parent) {
68318b8e 7554 /* This is early initialization for the top cgroup */
07e06b01 7555 return &root_task_group.css;
68318b8e
SV
7556 }
7557
ec7dc8ac
DG
7558 parent = cgroup_tg(cgrp->parent);
7559 tg = sched_create_group(parent);
68318b8e
SV
7560 if (IS_ERR(tg))
7561 return ERR_PTR(-ENOMEM);
7562
68318b8e
SV
7563 return &tg->css;
7564}
7565
92fb9748 7566static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7567{
2b01dfe3 7568 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7569
7570 sched_destroy_group(tg);
7571}
7572
761b3ef5 7573static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7574 struct cgroup_taskset *tset)
68318b8e 7575{
bb9d97b6
TH
7576 struct task_struct *task;
7577
7578 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7579#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7580 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7581 return -EINVAL;
b68aa230 7582#else
bb9d97b6
TH
7583 /* We don't support RT-tasks being in separate groups */
7584 if (task->sched_class != &fair_sched_class)
7585 return -EINVAL;
b68aa230 7586#endif
bb9d97b6 7587 }
be367d09
BB
7588 return 0;
7589}
68318b8e 7590
761b3ef5 7591static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7592 struct cgroup_taskset *tset)
68318b8e 7593{
bb9d97b6
TH
7594 struct task_struct *task;
7595
7596 cgroup_taskset_for_each(task, cgrp, tset)
7597 sched_move_task(task);
68318b8e
SV
7598}
7599
068c5cc5 7600static void
761b3ef5
LZ
7601cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7602 struct task_struct *task)
068c5cc5
PZ
7603{
7604 /*
7605 * cgroup_exit() is called in the copy_process() failure path.
7606 * Ignore this case since the task hasn't ran yet, this avoids
7607 * trying to poke a half freed task state from generic code.
7608 */
7609 if (!(task->flags & PF_EXITING))
7610 return;
7611
7612 sched_move_task(task);
7613}
7614
052f1dc7 7615#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7616static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7617 u64 shareval)
68318b8e 7618{
c8b28116 7619 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7620}
7621
f4c753b7 7622static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7623{
2b01dfe3 7624 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7625
c8b28116 7626 return (u64) scale_load_down(tg->shares);
68318b8e 7627}
ab84d31e
PT
7628
7629#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7630static DEFINE_MUTEX(cfs_constraints_mutex);
7631
ab84d31e
PT
7632const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7633const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7634
a790de99
PT
7635static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7636
ab84d31e
PT
7637static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7638{
56f570e5 7639 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7640 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7641
7642 if (tg == &root_task_group)
7643 return -EINVAL;
7644
7645 /*
7646 * Ensure we have at some amount of bandwidth every period. This is
7647 * to prevent reaching a state of large arrears when throttled via
7648 * entity_tick() resulting in prolonged exit starvation.
7649 */
7650 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7651 return -EINVAL;
7652
7653 /*
7654 * Likewise, bound things on the otherside by preventing insane quota
7655 * periods. This also allows us to normalize in computing quota
7656 * feasibility.
7657 */
7658 if (period > max_cfs_quota_period)
7659 return -EINVAL;
7660
a790de99
PT
7661 mutex_lock(&cfs_constraints_mutex);
7662 ret = __cfs_schedulable(tg, period, quota);
7663 if (ret)
7664 goto out_unlock;
7665
58088ad0 7666 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7667 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7668 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7669 raw_spin_lock_irq(&cfs_b->lock);
7670 cfs_b->period = ns_to_ktime(period);
7671 cfs_b->quota = quota;
58088ad0 7672
a9cf55b2 7673 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7674 /* restart the period timer (if active) to handle new period expiry */
7675 if (runtime_enabled && cfs_b->timer_active) {
7676 /* force a reprogram */
7677 cfs_b->timer_active = 0;
7678 __start_cfs_bandwidth(cfs_b);
7679 }
ab84d31e
PT
7680 raw_spin_unlock_irq(&cfs_b->lock);
7681
7682 for_each_possible_cpu(i) {
7683 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7684 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7685
7686 raw_spin_lock_irq(&rq->lock);
58088ad0 7687 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7688 cfs_rq->runtime_remaining = 0;
671fd9da 7689
029632fb 7690 if (cfs_rq->throttled)
671fd9da 7691 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7692 raw_spin_unlock_irq(&rq->lock);
7693 }
a790de99
PT
7694out_unlock:
7695 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7696
a790de99 7697 return ret;
ab84d31e
PT
7698}
7699
7700int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7701{
7702 u64 quota, period;
7703
029632fb 7704 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7705 if (cfs_quota_us < 0)
7706 quota = RUNTIME_INF;
7707 else
7708 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7709
7710 return tg_set_cfs_bandwidth(tg, period, quota);
7711}
7712
7713long tg_get_cfs_quota(struct task_group *tg)
7714{
7715 u64 quota_us;
7716
029632fb 7717 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7718 return -1;
7719
029632fb 7720 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7721 do_div(quota_us, NSEC_PER_USEC);
7722
7723 return quota_us;
7724}
7725
7726int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7727{
7728 u64 quota, period;
7729
7730 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7731 quota = tg->cfs_bandwidth.quota;
ab84d31e 7732
ab84d31e
PT
7733 return tg_set_cfs_bandwidth(tg, period, quota);
7734}
7735
7736long tg_get_cfs_period(struct task_group *tg)
7737{
7738 u64 cfs_period_us;
7739
029632fb 7740 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7741 do_div(cfs_period_us, NSEC_PER_USEC);
7742
7743 return cfs_period_us;
7744}
7745
7746static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7747{
7748 return tg_get_cfs_quota(cgroup_tg(cgrp));
7749}
7750
7751static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7752 s64 cfs_quota_us)
7753{
7754 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7755}
7756
7757static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7758{
7759 return tg_get_cfs_period(cgroup_tg(cgrp));
7760}
7761
7762static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7763 u64 cfs_period_us)
7764{
7765 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7766}
7767
a790de99
PT
7768struct cfs_schedulable_data {
7769 struct task_group *tg;
7770 u64 period, quota;
7771};
7772
7773/*
7774 * normalize group quota/period to be quota/max_period
7775 * note: units are usecs
7776 */
7777static u64 normalize_cfs_quota(struct task_group *tg,
7778 struct cfs_schedulable_data *d)
7779{
7780 u64 quota, period;
7781
7782 if (tg == d->tg) {
7783 period = d->period;
7784 quota = d->quota;
7785 } else {
7786 period = tg_get_cfs_period(tg);
7787 quota = tg_get_cfs_quota(tg);
7788 }
7789
7790 /* note: these should typically be equivalent */
7791 if (quota == RUNTIME_INF || quota == -1)
7792 return RUNTIME_INF;
7793
7794 return to_ratio(period, quota);
7795}
7796
7797static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7798{
7799 struct cfs_schedulable_data *d = data;
029632fb 7800 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7801 s64 quota = 0, parent_quota = -1;
7802
7803 if (!tg->parent) {
7804 quota = RUNTIME_INF;
7805 } else {
029632fb 7806 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7807
7808 quota = normalize_cfs_quota(tg, d);
7809 parent_quota = parent_b->hierarchal_quota;
7810
7811 /*
7812 * ensure max(child_quota) <= parent_quota, inherit when no
7813 * limit is set
7814 */
7815 if (quota == RUNTIME_INF)
7816 quota = parent_quota;
7817 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7818 return -EINVAL;
7819 }
7820 cfs_b->hierarchal_quota = quota;
7821
7822 return 0;
7823}
7824
7825static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7826{
8277434e 7827 int ret;
a790de99
PT
7828 struct cfs_schedulable_data data = {
7829 .tg = tg,
7830 .period = period,
7831 .quota = quota,
7832 };
7833
7834 if (quota != RUNTIME_INF) {
7835 do_div(data.period, NSEC_PER_USEC);
7836 do_div(data.quota, NSEC_PER_USEC);
7837 }
7838
8277434e
PT
7839 rcu_read_lock();
7840 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7841 rcu_read_unlock();
7842
7843 return ret;
a790de99 7844}
e8da1b18
NR
7845
7846static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7847 struct cgroup_map_cb *cb)
7848{
7849 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7850 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7851
7852 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7853 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7854 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7855
7856 return 0;
7857}
ab84d31e 7858#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7859#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7860
052f1dc7 7861#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7862static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7863 s64 val)
6f505b16 7864{
06ecb27c 7865 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7866}
7867
06ecb27c 7868static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7869{
06ecb27c 7870 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7871}
d0b27fa7
PZ
7872
7873static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7874 u64 rt_period_us)
7875{
7876 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7877}
7878
7879static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7880{
7881 return sched_group_rt_period(cgroup_tg(cgrp));
7882}
6d6bc0ad 7883#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7884
fe5c7cc2 7885static struct cftype cpu_files[] = {
052f1dc7 7886#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7887 {
7888 .name = "shares",
f4c753b7
PM
7889 .read_u64 = cpu_shares_read_u64,
7890 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7891 },
052f1dc7 7892#endif
ab84d31e
PT
7893#ifdef CONFIG_CFS_BANDWIDTH
7894 {
7895 .name = "cfs_quota_us",
7896 .read_s64 = cpu_cfs_quota_read_s64,
7897 .write_s64 = cpu_cfs_quota_write_s64,
7898 },
7899 {
7900 .name = "cfs_period_us",
7901 .read_u64 = cpu_cfs_period_read_u64,
7902 .write_u64 = cpu_cfs_period_write_u64,
7903 },
e8da1b18
NR
7904 {
7905 .name = "stat",
7906 .read_map = cpu_stats_show,
7907 },
ab84d31e 7908#endif
052f1dc7 7909#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7910 {
9f0c1e56 7911 .name = "rt_runtime_us",
06ecb27c
PM
7912 .read_s64 = cpu_rt_runtime_read,
7913 .write_s64 = cpu_rt_runtime_write,
6f505b16 7914 },
d0b27fa7
PZ
7915 {
7916 .name = "rt_period_us",
f4c753b7
PM
7917 .read_u64 = cpu_rt_period_read_uint,
7918 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7919 },
052f1dc7 7920#endif
4baf6e33 7921 { } /* terminate */
68318b8e
SV
7922};
7923
68318b8e 7924struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7925 .name = "cpu",
92fb9748
TH
7926 .css_alloc = cpu_cgroup_css_alloc,
7927 .css_free = cpu_cgroup_css_free,
bb9d97b6
TH
7928 .can_attach = cpu_cgroup_can_attach,
7929 .attach = cpu_cgroup_attach,
068c5cc5 7930 .exit = cpu_cgroup_exit,
38605cae 7931 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7932 .base_cftypes = cpu_files,
68318b8e
SV
7933 .early_init = 1,
7934};
7935
052f1dc7 7936#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7937
7938#ifdef CONFIG_CGROUP_CPUACCT
7939
7940/*
7941 * CPU accounting code for task groups.
7942 *
7943 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7944 * (balbir@in.ibm.com).
7945 */
7946
73fbec60
FW
7947struct cpuacct root_cpuacct;
7948
d842de87 7949/* create a new cpu accounting group */
92fb9748 7950static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 7951{
54c707e9 7952 struct cpuacct *ca;
d842de87 7953
54c707e9
GC
7954 if (!cgrp->parent)
7955 return &root_cpuacct.css;
7956
7957 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7958 if (!ca)
ef12fefa 7959 goto out;
d842de87
SV
7960
7961 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7962 if (!ca->cpuusage)
7963 goto out_free_ca;
7964
54c707e9
GC
7965 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7966 if (!ca->cpustat)
7967 goto out_free_cpuusage;
934352f2 7968
d842de87 7969 return &ca->css;
ef12fefa 7970
54c707e9 7971out_free_cpuusage:
ef12fefa
BR
7972 free_percpu(ca->cpuusage);
7973out_free_ca:
7974 kfree(ca);
7975out:
7976 return ERR_PTR(-ENOMEM);
d842de87
SV
7977}
7978
7979/* destroy an existing cpu accounting group */
92fb9748 7980static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 7981{
32cd756a 7982 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7983
54c707e9 7984 free_percpu(ca->cpustat);
d842de87
SV
7985 free_percpu(ca->cpuusage);
7986 kfree(ca);
7987}
7988
720f5498
KC
7989static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7990{
b36128c8 7991 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7992 u64 data;
7993
7994#ifndef CONFIG_64BIT
7995 /*
7996 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7997 */
05fa785c 7998 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7999 data = *cpuusage;
05fa785c 8000 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8001#else
8002 data = *cpuusage;
8003#endif
8004
8005 return data;
8006}
8007
8008static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8009{
b36128c8 8010 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8011
8012#ifndef CONFIG_64BIT
8013 /*
8014 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8015 */
05fa785c 8016 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8017 *cpuusage = val;
05fa785c 8018 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8019#else
8020 *cpuusage = val;
8021#endif
8022}
8023
d842de87 8024/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8025static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8026{
32cd756a 8027 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8028 u64 totalcpuusage = 0;
8029 int i;
8030
720f5498
KC
8031 for_each_present_cpu(i)
8032 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8033
8034 return totalcpuusage;
8035}
8036
0297b803
DG
8037static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8038 u64 reset)
8039{
8040 struct cpuacct *ca = cgroup_ca(cgrp);
8041 int err = 0;
8042 int i;
8043
8044 if (reset) {
8045 err = -EINVAL;
8046 goto out;
8047 }
8048
720f5498
KC
8049 for_each_present_cpu(i)
8050 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8051
0297b803
DG
8052out:
8053 return err;
8054}
8055
e9515c3c
KC
8056static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8057 struct seq_file *m)
8058{
8059 struct cpuacct *ca = cgroup_ca(cgroup);
8060 u64 percpu;
8061 int i;
8062
8063 for_each_present_cpu(i) {
8064 percpu = cpuacct_cpuusage_read(ca, i);
8065 seq_printf(m, "%llu ", (unsigned long long) percpu);
8066 }
8067 seq_printf(m, "\n");
8068 return 0;
8069}
8070
ef12fefa
BR
8071static const char *cpuacct_stat_desc[] = {
8072 [CPUACCT_STAT_USER] = "user",
8073 [CPUACCT_STAT_SYSTEM] = "system",
8074};
8075
8076static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8077 struct cgroup_map_cb *cb)
ef12fefa
BR
8078{
8079 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8080 int cpu;
8081 s64 val = 0;
ef12fefa 8082
54c707e9
GC
8083 for_each_online_cpu(cpu) {
8084 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8085 val += kcpustat->cpustat[CPUTIME_USER];
8086 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8087 }
54c707e9
GC
8088 val = cputime64_to_clock_t(val);
8089 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8090
54c707e9
GC
8091 val = 0;
8092 for_each_online_cpu(cpu) {
8093 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8094 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8095 val += kcpustat->cpustat[CPUTIME_IRQ];
8096 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8097 }
54c707e9
GC
8098
8099 val = cputime64_to_clock_t(val);
8100 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8101
ef12fefa
BR
8102 return 0;
8103}
8104
d842de87
SV
8105static struct cftype files[] = {
8106 {
8107 .name = "usage",
f4c753b7
PM
8108 .read_u64 = cpuusage_read,
8109 .write_u64 = cpuusage_write,
d842de87 8110 },
e9515c3c
KC
8111 {
8112 .name = "usage_percpu",
8113 .read_seq_string = cpuacct_percpu_seq_read,
8114 },
ef12fefa
BR
8115 {
8116 .name = "stat",
8117 .read_map = cpuacct_stats_show,
8118 },
4baf6e33 8119 { } /* terminate */
d842de87
SV
8120};
8121
d842de87
SV
8122/*
8123 * charge this task's execution time to its accounting group.
8124 *
8125 * called with rq->lock held.
8126 */
029632fb 8127void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8128{
8129 struct cpuacct *ca;
934352f2 8130 int cpu;
d842de87 8131
c40c6f85 8132 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8133 return;
8134
934352f2 8135 cpu = task_cpu(tsk);
a18b83b7
BR
8136
8137 rcu_read_lock();
8138
d842de87 8139 ca = task_ca(tsk);
d842de87 8140
44252e42 8141 for (; ca; ca = parent_ca(ca)) {
b36128c8 8142 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8143 *cpuusage += cputime;
8144 }
a18b83b7
BR
8145
8146 rcu_read_unlock();
d842de87
SV
8147}
8148
8149struct cgroup_subsys cpuacct_subsys = {
8150 .name = "cpuacct",
92fb9748
TH
8151 .css_alloc = cpuacct_css_alloc,
8152 .css_free = cpuacct_css_free,
d842de87 8153 .subsys_id = cpuacct_subsys_id,
4baf6e33 8154 .base_cftypes = files,
d842de87
SV
8155};
8156#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8157
8158void dump_cpu_task(int cpu)
8159{
8160 pr_info("Task dump for CPU %d:\n", cpu);
8161 sched_show_task(cpu_curr(cpu));
8162}
This page took 2.281577 seconds and 5 git commands to generate.