sched: Make default_scale_freq_power() static
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
aa00d89c
TC
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
5da9a0fb 1139
aa00d89c
TC
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
2baab4e9 1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 for (;;) {
1160 /* Any allowed, online CPU? */
e3831edd 1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
5da9a0fb 1168
2baab4e9
PZ
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
5da9a0fb
PZ
1198 }
1199
1200 return dest_cpu;
1201}
1202
e2912009 1203/*
013fdb80 1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1205 */
970b13ba 1206static inline
7608dec2 1207int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1208{
7608dec2 1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
fa17b507 1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1222 !cpu_online(cpu)))
5da9a0fb 1223 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1224
1225 return cpu;
970b13ba 1226}
09a40af5
MG
1227
1228static void update_avg(u64 *avg, u64 sample)
1229{
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232}
970b13ba
PZ
1233#endif
1234
d7c01d27 1235static void
b84cb5df 1236ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1237{
d7c01d27 1238#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1239 struct rq *rq = this_rq();
1240
d7c01d27
PZ
1241#ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1251 rcu_read_lock();
d7c01d27
PZ
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
057f3fad 1258 rcu_read_unlock();
d7c01d27 1259 }
f339b9dc
PZ
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
d7c01d27
PZ
1264#endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
9ed3811a 1267 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1268
1269 if (wake_flags & WF_SYNC)
9ed3811a 1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1271
d7c01d27
PZ
1272#endif /* CONFIG_SCHEDSTATS */
1273}
1274
1275static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276{
9ed3811a 1277 activate_task(rq, p, en_flags);
fd2f4419 1278 p->on_rq = 1;
c2f7115e
PZ
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1283}
1284
23f41eeb
PZ
1285/*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
89363381 1288static void
23f41eeb 1289ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1290{
89363381 1291 trace_sched_wakeup(p, true);
9ed3811a
TH
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295#ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
e69c6341 1299 if (rq->idle_stamp) {
9ed3811a
TH
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309#endif
1310}
1311
c05fbafb
PZ
1312static void
1313ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314{
1315#ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318#endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322}
1323
1324/*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330static int ttwu_remote(struct task_struct *p, int wake_flags)
1331{
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343}
1344
317f3941 1345#ifdef CONFIG_SMP
fa14ff4a 1346static void sched_ttwu_pending(void)
317f3941
PZ
1347{
1348 struct rq *rq = this_rq();
fa14ff4a
PZ
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
317f3941
PZ
1351
1352 raw_spin_lock(&rq->lock);
1353
fa14ff4a
PZ
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
317f3941
PZ
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361}
1362
1363void scheduler_ipi(void)
1364{
ca38062e 1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
fa14ff4a 1382 sched_ttwu_pending();
ca38062e
SS
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
6eb57e0d
SS
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
ca38062e 1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1390 }
c5d753a5 1391 irq_exit();
317f3941
PZ
1392}
1393
1394static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395{
fa14ff4a 1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1397 smp_send_reschedule(cpu);
1398}
d6aa8f85 1399
39be3501 1400bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1401{
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403}
d6aa8f85 1404#endif /* CONFIG_SMP */
317f3941 1405
c05fbafb
PZ
1406static void ttwu_queue(struct task_struct *p, int cpu)
1407{
1408 struct rq *rq = cpu_rq(cpu);
1409
17d9f311 1410#if defined(CONFIG_SMP)
39be3501 1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416#endif
1417
c05fbafb
PZ
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1421}
1422
1423/**
1da177e4 1424 * try_to_wake_up - wake up a thread
9ed3811a 1425 * @p: the thread to be awakened
1da177e4 1426 * @state: the mask of task states that can be woken
9ed3811a 1427 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
9ed3811a
TH
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1da177e4 1437 */
e4a52bcb
PZ
1438static int
1439try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1440{
1da177e4 1441 unsigned long flags;
c05fbafb 1442 int cpu, success = 0;
2398f2c6 1443
04e2f174 1444 smp_wmb();
013fdb80 1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1446 if (!(p->state & state))
1da177e4
LT
1447 goto out;
1448
c05fbafb 1449 success = 1; /* we're going to change ->state */
1da177e4 1450 cpu = task_cpu(p);
1da177e4 1451
c05fbafb
PZ
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1da177e4 1454
1da177e4 1455#ifdef CONFIG_SMP
e9c84311 1456 /*
c05fbafb
PZ
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
e9c84311 1459 */
f3e94786 1460 while (p->on_cpu)
e4a52bcb 1461 cpu_relax();
0970d299 1462 /*
e4a52bcb 1463 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1464 */
e4a52bcb 1465 smp_rmb();
1da177e4 1466
a8e4f2ea 1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1468 p->state = TASK_WAKING;
e7693a36 1469
e4a52bcb 1470 if (p->sched_class->task_waking)
74f8e4b2 1471 p->sched_class->task_waking(p);
efbbd05a 1472
7608dec2 1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
e4a52bcb 1476 set_task_cpu(p, cpu);
f339b9dc 1477 }
1da177e4 1478#endif /* CONFIG_SMP */
1da177e4 1479
c05fbafb
PZ
1480 ttwu_queue(p, cpu);
1481stat:
b84cb5df 1482 ttwu_stat(p, cpu, wake_flags);
1da177e4 1483out:
013fdb80 1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1485
1486 return success;
1487}
1488
21aa9af0
TH
1489/**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
2acca55e 1493 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1495 * the current task.
21aa9af0
TH
1496 */
1497static void try_to_wake_up_local(struct task_struct *p)
1498{
1499 struct rq *rq = task_rq(p);
21aa9af0
TH
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
2acca55e
PZ
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
21aa9af0 1511 if (!(p->state & TASK_NORMAL))
2acca55e 1512 goto out;
21aa9af0 1513
fd2f4419 1514 if (!p->on_rq)
d7c01d27
PZ
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
23f41eeb 1517 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1518 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1519out:
1520 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1521}
1522
50fa610a
DH
1523/**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
7ad5b3a5 1534int wake_up_process(struct task_struct *p)
1da177e4 1535{
9067ac85
ON
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1538}
1da177e4
LT
1539EXPORT_SYMBOL(wake_up_process);
1540
7ad5b3a5 1541int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1542{
1543 return try_to_wake_up(p, state, 0);
1544}
1545
1da177e4
LT
1546/*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
dd41f596
IM
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552static void __sched_fork(struct task_struct *p)
1553{
fd2f4419
PZ
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
dd41f596
IM
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
f6cf891c 1559 p->se.prev_sum_exec_runtime = 0;
6c594c21 1560 p->se.nr_migrations = 0;
da7a735e 1561 p->se.vruntime = 0;
fd2f4419 1562 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1563
f4e26b12
PT
1564/*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572#endif
6cfb0d5d 1573#ifdef CONFIG_SCHEDSTATS
41acab88 1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1575#endif
476d139c 1576
fa717060 1577 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1578
e107be36
AK
1579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
cbee9f88
PZ
1582
1583#ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
b8593bfd 1586 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1594 p->numa_work.next = &p->numa_work;
1595#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1596}
1597
1a687c2e 1598#ifdef CONFIG_NUMA_BALANCING
3105b86a 1599#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1600void set_numabalancing_state(bool enabled)
1601{
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606}
3105b86a
MG
1607#else
1608__read_mostly bool numabalancing_enabled;
1609
1610void set_numabalancing_state(bool enabled)
1611{
1612 numabalancing_enabled = enabled;
dd41f596 1613}
3105b86a 1614#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1615#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
3e51e3ed 1620void sched_fork(struct task_struct *p)
dd41f596 1621{
0122ec5b 1622 unsigned long flags;
dd41f596
IM
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
06b83b5f 1626 /*
0017d735 1627 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
0017d735 1631 p->state = TASK_RUNNING;
dd41f596 1632
c350a04e
MG
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
b9dc29e7
MG
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1642 if (task_has_rt_policy(p)) {
b9dc29e7 1643 p->policy = SCHED_NORMAL;
6c697bdf 1644 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
6c697bdf 1651
b9dc29e7
MG
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
ca94c442 1658
2ddbf952
HS
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
b29739f9 1661
cd29fe6f
PZ
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
86951599
PZ
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
0122ec5b 1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1673 set_task_cpu(p, cpu);
0122ec5b 1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1675
52f17b6c 1676#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1677 if (likely(sched_info_on()))
52f17b6c 1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1679#endif
3ca7a440
PZ
1680#if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
4866cde0 1682#endif
bdd4e85d 1683#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1684 /* Want to start with kernel preemption disabled. */
a1261f54 1685 task_thread_info(p)->preempt_count = 1;
1da177e4 1686#endif
806c09a7 1687#ifdef CONFIG_SMP
917b627d 1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1689#endif
917b627d 1690
476d139c 1691 put_cpu();
1da177e4
LT
1692}
1693
1694/*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
3e51e3ed 1701void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1702{
1703 unsigned long flags;
dd41f596 1704 struct rq *rq;
fabf318e 1705
ab2515c4 1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1707#ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
fabf318e 1712 */
ab2515c4 1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1714#endif
1715
ab2515c4 1716 rq = __task_rq_lock(p);
cd29fe6f 1717 activate_task(rq, p, 0);
fd2f4419 1718 p->on_rq = 1;
89363381 1719 trace_sched_wakeup_new(p, true);
a7558e01 1720 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1721#ifdef CONFIG_SMP
efbbd05a
PZ
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
9a897c5a 1724#endif
0122ec5b 1725 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1726}
1727
e107be36
AK
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730/**
80dd99b3 1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1732 * @notifier: notifier struct to register
e107be36
AK
1733 */
1734void preempt_notifier_register(struct preempt_notifier *notifier)
1735{
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737}
1738EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740/**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1742 * @notifier: notifier struct to unregister
e107be36
AK
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747{
1748 hlist_del(&notifier->link);
1749}
1750EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753{
1754 struct preempt_notifier *notifier;
e107be36 1755
b67bfe0d 1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758}
1759
1760static void
1761fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763{
1764 struct preempt_notifier *notifier;
e107be36 1765
b67bfe0d 1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1767 notifier->ops->sched_out(notifier, next);
1768}
1769
6d6bc0ad 1770#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1771
1772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773{
1774}
1775
1776static void
1777fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779{
1780}
1781
6d6bc0ad 1782#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1783
4866cde0
NP
1784/**
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
421cee29 1787 * @prev: the current task that is being switched out
4866cde0
NP
1788 * @next: the task we are going to switch to.
1789 *
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1792 * switch.
1793 *
1794 * prepare_task_switch sets up locking and calls architecture specific
1795 * hooks.
1796 */
e107be36
AK
1797static inline void
1798prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 struct task_struct *next)
4866cde0 1800{
895dd92c 1801 trace_sched_switch(prev, next);
fe4b04fa
PZ
1802 sched_info_switch(prev, next);
1803 perf_event_task_sched_out(prev, next);
e107be36 1804 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807}
1808
1da177e4
LT
1809/**
1810 * finish_task_switch - clean up after a task-switch
344babaa 1811 * @rq: runqueue associated with task-switch
1da177e4
LT
1812 * @prev: the thread we just switched away from.
1813 *
4866cde0
NP
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1820 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
a9957449 1824static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1825 __releases(rq->lock)
1826{
1da177e4 1827 struct mm_struct *mm = rq->prev_mm;
55a101f8 1828 long prev_state;
1da177e4
LT
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
c394cc9f 1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
c394cc9f 1837 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
55a101f8 1843 prev_state = prev->state;
bf9fae9f 1844 vtime_task_switch(prev);
4866cde0 1845 finish_arch_switch(prev);
a8d757ef 1846 perf_event_task_sched_in(prev, current);
4866cde0 1847 finish_lock_switch(rq, prev);
01f23e16 1848 finish_arch_post_lock_switch();
e8fa1362 1849
e107be36 1850 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1851 if (mm)
1852 mmdrop(mm);
c394cc9f 1853 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1854 /*
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
9761eea8 1857 */
c6fd91f0 1858 kprobe_flush_task(prev);
1da177e4 1859 put_task_struct(prev);
c6fd91f0 1860 }
1da177e4
LT
1861}
1862
3f029d3c
GH
1863#ifdef CONFIG_SMP
1864
1865/* assumes rq->lock is held */
1866static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867{
1868 if (prev->sched_class->pre_schedule)
1869 prev->sched_class->pre_schedule(rq, prev);
1870}
1871
1872/* rq->lock is NOT held, but preemption is disabled */
1873static inline void post_schedule(struct rq *rq)
1874{
1875 if (rq->post_schedule) {
1876 unsigned long flags;
1877
05fa785c 1878 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1879 if (rq->curr->sched_class->post_schedule)
1880 rq->curr->sched_class->post_schedule(rq);
05fa785c 1881 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1882
1883 rq->post_schedule = 0;
1884 }
1885}
1886
1887#else
da19ab51 1888
3f029d3c
GH
1889static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890{
1891}
1892
1893static inline void post_schedule(struct rq *rq)
1894{
1da177e4
LT
1895}
1896
3f029d3c
GH
1897#endif
1898
1da177e4
LT
1899/**
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1902 */
36c8b586 1903asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1904 __releases(rq->lock)
1905{
70b97a7f
IM
1906 struct rq *rq = this_rq();
1907
4866cde0 1908 finish_task_switch(rq, prev);
da19ab51 1909
3f029d3c
GH
1910 /*
1911 * FIXME: do we need to worry about rq being invalidated by the
1912 * task_switch?
1913 */
1914 post_schedule(rq);
70b97a7f 1915
4866cde0
NP
1916#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 /* In this case, finish_task_switch does not reenable preemption */
1918 preempt_enable();
1919#endif
1da177e4 1920 if (current->set_child_tid)
b488893a 1921 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1922}
1923
1924/*
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1927 */
dd41f596 1928static inline void
70b97a7f 1929context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1930 struct task_struct *next)
1da177e4 1931{
dd41f596 1932 struct mm_struct *mm, *oldmm;
1da177e4 1933
e107be36 1934 prepare_task_switch(rq, prev, next);
fe4b04fa 1935
dd41f596
IM
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
9226d125
ZA
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
224101ed 1943 arch_start_context_switch(prev);
9226d125 1944
31915ab4 1945 if (!mm) {
1da177e4
LT
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
31915ab4 1952 if (!prev->mm) {
1da177e4 1953 prev->active_mm = NULL;
1da177e4
LT
1954 rq->prev_mm = oldmm;
1955 }
3a5f5e48
IM
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1964#endif
1da177e4 1965
91d1aa43 1966 context_tracking_task_switch(prev, next);
1da177e4
LT
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1969
dd41f596
IM
1970 barrier();
1971 /*
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1975 */
1976 finish_task_switch(this_rq(), prev);
1da177e4
LT
1977}
1978
1979/*
1c3e8264 1980 * nr_running and nr_context_switches:
1da177e4
LT
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1c3e8264 1983 * threads, total number of context switches performed since bootup.
1da177e4
LT
1984 */
1985unsigned long nr_running(void)
1986{
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
f711f609 1993}
1da177e4 1994
1da177e4 1995unsigned long long nr_context_switches(void)
46cb4b7c 1996{
cc94abfc
SR
1997 int i;
1998 unsigned long long sum = 0;
46cb4b7c 1999
0a945022 2000 for_each_possible_cpu(i)
1da177e4 2001 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2002
1da177e4
LT
2003 return sum;
2004}
483b4ee6 2005
1da177e4
LT
2006unsigned long nr_iowait(void)
2007{
2008 unsigned long i, sum = 0;
483b4ee6 2009
0a945022 2010 for_each_possible_cpu(i)
1da177e4 2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2012
1da177e4
LT
2013 return sum;
2014}
483b4ee6 2015
8c215bd3 2016unsigned long nr_iowait_cpu(int cpu)
69d25870 2017{
8c215bd3 2018 struct rq *this = cpu_rq(cpu);
69d25870
AV
2019 return atomic_read(&this->nr_iowait);
2020}
46cb4b7c 2021
69d25870
AV
2022unsigned long this_cpu_load(void)
2023{
2024 struct rq *this = this_rq();
2025 return this->cpu_load[0];
2026}
e790fb0b 2027
46cb4b7c 2028
5167e8d5
PZ
2029/*
2030 * Global load-average calculations
2031 *
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2034 *
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2037 *
2038 * Once every LOAD_FREQ:
2039 *
2040 * nr_active = 0;
2041 * for_each_possible_cpu(cpu)
2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043 *
2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045 *
2046 * Due to a number of reasons the above turns in the mess below:
2047 *
2048 * - for_each_possible_cpu() is prohibitively expensive on machines with
2049 * serious number of cpus, therefore we need to take a distributed approach
2050 * to calculating nr_active.
2051 *
2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054 *
2055 * So assuming nr_active := 0 when we start out -- true per definition, we
2056 * can simply take per-cpu deltas and fold those into a global accumulate
2057 * to obtain the same result. See calc_load_fold_active().
2058 *
2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 * across the machine, we assume 10 ticks is sufficient time for every
2061 * cpu to have completed this task.
2062 *
2063 * This places an upper-bound on the IRQ-off latency of the machine. Then
2064 * again, being late doesn't loose the delta, just wrecks the sample.
2065 *
2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 * this would add another cross-cpu cacheline miss and atomic operation
2068 * to the wakeup path. Instead we increment on whatever cpu the task ran
2069 * when it went into uninterruptible state and decrement on whatever cpu
2070 * did the wakeup. This means that only the sum of nr_uninterruptible over
2071 * all cpus yields the correct result.
2072 *
2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074 */
2075
dce48a84
TG
2076/* Variables and functions for calc_load */
2077static atomic_long_t calc_load_tasks;
2078static unsigned long calc_load_update;
2079unsigned long avenrun[3];
5167e8d5
PZ
2080EXPORT_SYMBOL(avenrun); /* should be removed */
2081
2082/**
2083 * get_avenrun - get the load average array
2084 * @loads: pointer to dest load array
2085 * @offset: offset to add
2086 * @shift: shift count to shift the result left
2087 *
2088 * These values are estimates at best, so no need for locking.
2089 */
2090void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091{
2092 loads[0] = (avenrun[0] + offset) << shift;
2093 loads[1] = (avenrun[1] + offset) << shift;
2094 loads[2] = (avenrun[2] + offset) << shift;
2095}
46cb4b7c 2096
74f5187a
PZ
2097static long calc_load_fold_active(struct rq *this_rq)
2098{
2099 long nr_active, delta = 0;
2100
2101 nr_active = this_rq->nr_running;
2102 nr_active += (long) this_rq->nr_uninterruptible;
2103
2104 if (nr_active != this_rq->calc_load_active) {
2105 delta = nr_active - this_rq->calc_load_active;
2106 this_rq->calc_load_active = nr_active;
2107 }
2108
2109 return delta;
2110}
2111
5167e8d5
PZ
2112/*
2113 * a1 = a0 * e + a * (1 - e)
2114 */
0f004f5a
PZ
2115static unsigned long
2116calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117{
2118 load *= exp;
2119 load += active * (FIXED_1 - exp);
2120 load += 1UL << (FSHIFT - 1);
2121 return load >> FSHIFT;
2122}
2123
74f5187a
PZ
2124#ifdef CONFIG_NO_HZ
2125/*
5167e8d5
PZ
2126 * Handle NO_HZ for the global load-average.
2127 *
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2130 * NO_HZ.
2131 *
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2135 *
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2137 *
2138 * - When we go NO_HZ idle during the window, we can negate our sample
2139 * contribution, causing under-accounting.
2140 *
2141 * We avoid this by keeping two idle-delta counters and flipping them
2142 * when the window starts, thus separating old and new NO_HZ load.
2143 *
2144 * The only trick is the slight shift in index flip for read vs write.
2145 *
2146 * 0s 5s 10s 15s
2147 * +10 +10 +10 +10
2148 * |-|-----------|-|-----------|-|-----------|-|
2149 * r:0 0 1 1 0 0 1 1 0
2150 * w:0 1 1 0 0 1 1 0 0
2151 *
2152 * This ensures we'll fold the old idle contribution in this window while
2153 * accumlating the new one.
2154 *
2155 * - When we wake up from NO_HZ idle during the window, we push up our
2156 * contribution, since we effectively move our sample point to a known
2157 * busy state.
2158 *
2159 * This is solved by pushing the window forward, and thus skipping the
2160 * sample, for this cpu (effectively using the idle-delta for this cpu which
2161 * was in effect at the time the window opened). This also solves the issue
2162 * of having to deal with a cpu having been in NOHZ idle for multiple
2163 * LOAD_FREQ intervals.
74f5187a
PZ
2164 *
2165 * When making the ILB scale, we should try to pull this in as well.
2166 */
5167e8d5
PZ
2167static atomic_long_t calc_load_idle[2];
2168static int calc_load_idx;
74f5187a 2169
5167e8d5 2170static inline int calc_load_write_idx(void)
74f5187a 2171{
5167e8d5
PZ
2172 int idx = calc_load_idx;
2173
2174 /*
2175 * See calc_global_nohz(), if we observe the new index, we also
2176 * need to observe the new update time.
2177 */
2178 smp_rmb();
2179
2180 /*
2181 * If the folding window started, make sure we start writing in the
2182 * next idle-delta.
2183 */
2184 if (!time_before(jiffies, calc_load_update))
2185 idx++;
2186
2187 return idx & 1;
2188}
2189
2190static inline int calc_load_read_idx(void)
2191{
2192 return calc_load_idx & 1;
2193}
2194
2195void calc_load_enter_idle(void)
2196{
2197 struct rq *this_rq = this_rq();
74f5187a
PZ
2198 long delta;
2199
5167e8d5
PZ
2200 /*
2201 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 * into the pending idle delta.
2203 */
74f5187a 2204 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2205 if (delta) {
2206 int idx = calc_load_write_idx();
2207 atomic_long_add(delta, &calc_load_idle[idx]);
2208 }
74f5187a
PZ
2209}
2210
5167e8d5 2211void calc_load_exit_idle(void)
74f5187a 2212{
5167e8d5
PZ
2213 struct rq *this_rq = this_rq();
2214
2215 /*
2216 * If we're still before the sample window, we're done.
2217 */
2218 if (time_before(jiffies, this_rq->calc_load_update))
2219 return;
74f5187a
PZ
2220
2221 /*
5167e8d5
PZ
2222 * We woke inside or after the sample window, this means we're already
2223 * accounted through the nohz accounting, so skip the entire deal and
2224 * sync up for the next window.
74f5187a 2225 */
5167e8d5
PZ
2226 this_rq->calc_load_update = calc_load_update;
2227 if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 this_rq->calc_load_update += LOAD_FREQ;
2229}
2230
2231static long calc_load_fold_idle(void)
2232{
2233 int idx = calc_load_read_idx();
2234 long delta = 0;
2235
2236 if (atomic_long_read(&calc_load_idle[idx]))
2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2238
2239 return delta;
2240}
0f004f5a
PZ
2241
2242/**
2243 * fixed_power_int - compute: x^n, in O(log n) time
2244 *
2245 * @x: base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n: power to raise @x to.
2248 *
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2255 * vector.
2256 */
2257static unsigned long
2258fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259{
2260 unsigned long result = 1UL << frac_bits;
2261
2262 if (n) for (;;) {
2263 if (n & 1) {
2264 result *= x;
2265 result += 1UL << (frac_bits - 1);
2266 result >>= frac_bits;
2267 }
2268 n >>= 1;
2269 if (!n)
2270 break;
2271 x *= x;
2272 x += 1UL << (frac_bits - 1);
2273 x >>= frac_bits;
2274 }
2275
2276 return result;
2277}
2278
2279/*
2280 * a1 = a0 * e + a * (1 - e)
2281 *
2282 * a2 = a1 * e + a * (1 - e)
2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 * = a0 * e^2 + a * (1 - e) * (1 + e)
2285 *
2286 * a3 = a2 * e + a * (1 - e)
2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289 *
2290 * ...
2291 *
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 * = a0 * e^n + a * (1 - e^n)
2295 *
2296 * [1] application of the geometric series:
2297 *
2298 * n 1 - x^(n+1)
2299 * S_n := \Sum x^i = -------------
2300 * i=0 1 - x
2301 */
2302static unsigned long
2303calc_load_n(unsigned long load, unsigned long exp,
2304 unsigned long active, unsigned int n)
2305{
2306
2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308}
2309
2310/*
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2315 *
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2318 */
c308b56b 2319static void calc_global_nohz(void)
0f004f5a
PZ
2320{
2321 long delta, active, n;
2322
5167e8d5
PZ
2323 if (!time_before(jiffies, calc_load_update + 10)) {
2324 /*
2325 * Catch-up, fold however many we are behind still
2326 */
2327 delta = jiffies - calc_load_update - 10;
2328 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2329
5167e8d5
PZ
2330 active = atomic_long_read(&calc_load_tasks);
2331 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2332
5167e8d5
PZ
2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2336
5167e8d5
PZ
2337 calc_load_update += n * LOAD_FREQ;
2338 }
74f5187a 2339
5167e8d5
PZ
2340 /*
2341 * Flip the idle index...
2342 *
2343 * Make sure we first write the new time then flip the index, so that
2344 * calc_load_write_idx() will see the new time when it reads the new
2345 * index, this avoids a double flip messing things up.
2346 */
2347 smp_wmb();
2348 calc_load_idx++;
74f5187a 2349}
5167e8d5 2350#else /* !CONFIG_NO_HZ */
0f004f5a 2351
5167e8d5
PZ
2352static inline long calc_load_fold_idle(void) { return 0; }
2353static inline void calc_global_nohz(void) { }
74f5187a 2354
5167e8d5 2355#endif /* CONFIG_NO_HZ */
46cb4b7c 2356
46cb4b7c 2357/*
dce48a84
TG
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
7835b98b 2360 */
0f004f5a 2361void calc_global_load(unsigned long ticks)
7835b98b 2362{
5167e8d5 2363 long active, delta;
1da177e4 2364
0f004f5a 2365 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2366 return;
1da177e4 2367
5167e8d5
PZ
2368 /*
2369 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370 */
2371 delta = calc_load_fold_idle();
2372 if (delta)
2373 atomic_long_add(delta, &calc_load_tasks);
2374
dce48a84
TG
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2377
dce48a84
TG
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2381
dce48a84 2382 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2383
2384 /*
5167e8d5 2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2386 */
2387 calc_global_nohz();
dce48a84 2388}
1da177e4 2389
dce48a84 2390/*
74f5187a
PZ
2391 * Called from update_cpu_load() to periodically update this CPU's
2392 * active count.
dce48a84
TG
2393 */
2394static void calc_load_account_active(struct rq *this_rq)
2395{
74f5187a 2396 long delta;
08c183f3 2397
74f5187a
PZ
2398 if (time_before(jiffies, this_rq->calc_load_update))
2399 return;
783609c6 2400
74f5187a 2401 delta = calc_load_fold_active(this_rq);
74f5187a 2402 if (delta)
dce48a84 2403 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2404
2405 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2406}
2407
5167e8d5
PZ
2408/*
2409 * End of global load-average stuff
2410 */
2411
fdf3e95d
VP
2412/*
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415 *
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420 *
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424 *
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2431 * Example:
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434 *
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2438 */
2439#define DEGRADE_SHIFT 7
2440static const unsigned char
2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442static const unsigned char
2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 {0, 0, 0, 0, 0, 0, 0, 0},
2445 {64, 32, 8, 0, 0, 0, 0, 0},
2446 {96, 72, 40, 12, 1, 0, 0},
2447 {112, 98, 75, 43, 15, 1, 0},
2448 {120, 112, 98, 76, 45, 16, 2} };
2449
2450/*
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2454 */
2455static unsigned long
2456decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457{
2458 int j = 0;
2459
2460 if (!missed_updates)
2461 return load;
2462
2463 if (missed_updates >= degrade_zero_ticks[idx])
2464 return 0;
2465
2466 if (idx == 1)
2467 return load >> missed_updates;
2468
2469 while (missed_updates) {
2470 if (missed_updates % 2)
2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472
2473 missed_updates >>= 1;
2474 j++;
2475 }
2476 return load;
2477}
2478
46cb4b7c 2479/*
dd41f596 2480 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
46cb4b7c 2483 */
556061b0
PZ
2484static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 unsigned long pending_updates)
46cb4b7c 2486{
dd41f596 2487 int i, scale;
46cb4b7c 2488
dd41f596 2489 this_rq->nr_load_updates++;
46cb4b7c 2490
dd41f596 2491 /* Update our load: */
fdf3e95d
VP
2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2494 unsigned long old_load, new_load;
7d1e6a9b 2495
dd41f596 2496 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2497
dd41f596 2498 old_load = this_rq->cpu_load[i];
fdf3e95d 2499 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2500 new_load = this_load;
a25707f3
IM
2501 /*
2502 * Round up the averaging division if load is increasing. This
2503 * prevents us from getting stuck on 9 if the load is 10, for
2504 * example.
2505 */
2506 if (new_load > old_load)
fdf3e95d
VP
2507 new_load += scale - 1;
2508
2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2510 }
da2b71ed
SS
2511
2512 sched_avg_update(this_rq);
fdf3e95d
VP
2513}
2514
5aaa0b7a
PZ
2515#ifdef CONFIG_NO_HZ
2516/*
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520 *
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2525 *
2526 * This means we might still be one tick off for nohz periods.
2527 */
2528
556061b0
PZ
2529/*
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2531 * idle balance.
2532 */
2533void update_idle_cpu_load(struct rq *this_rq)
2534{
5aaa0b7a 2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2536 unsigned long load = this_rq->load.weight;
2537 unsigned long pending_updates;
2538
2539 /*
5aaa0b7a 2540 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2541 */
2542 if (load || curr_jiffies == this_rq->last_load_update_tick)
2543 return;
2544
2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 this_rq->last_load_update_tick = curr_jiffies;
2547
2548 __update_cpu_load(this_rq, load, pending_updates);
2549}
2550
5aaa0b7a
PZ
2551/*
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553 */
2554void update_cpu_load_nohz(void)
2555{
2556 struct rq *this_rq = this_rq();
2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 unsigned long pending_updates;
2559
2560 if (curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 raw_spin_lock(&this_rq->lock);
2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 if (pending_updates) {
2566 this_rq->last_load_update_tick = curr_jiffies;
2567 /*
2568 * We were idle, this means load 0, the current load might be
2569 * !0 due to remote wakeups and the sort.
2570 */
2571 __update_cpu_load(this_rq, 0, pending_updates);
2572 }
2573 raw_spin_unlock(&this_rq->lock);
2574}
2575#endif /* CONFIG_NO_HZ */
2576
556061b0
PZ
2577/*
2578 * Called from scheduler_tick()
2579 */
fdf3e95d
VP
2580static void update_cpu_load_active(struct rq *this_rq)
2581{
556061b0 2582 /*
5aaa0b7a 2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2584 */
2585 this_rq->last_load_update_tick = jiffies;
2586 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2587
74f5187a 2588 calc_load_account_active(this_rq);
46cb4b7c
SS
2589}
2590
dd41f596 2591#ifdef CONFIG_SMP
8a0be9ef 2592
46cb4b7c 2593/*
38022906
PZ
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2596 */
38022906 2597void sched_exec(void)
46cb4b7c 2598{
38022906 2599 struct task_struct *p = current;
1da177e4 2600 unsigned long flags;
0017d735 2601 int dest_cpu;
46cb4b7c 2602
8f42ced9 2603 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2605 if (dest_cpu == smp_processor_id())
2606 goto unlock;
38022906 2607
8f42ced9 2608 if (likely(cpu_active(dest_cpu))) {
969c7921 2609 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2610
8f42ced9
PZ
2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2613 return;
2614 }
0017d735 2615unlock:
8f42ced9 2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2617}
dd41f596 2618
1da177e4
LT
2619#endif
2620
1da177e4 2621DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2622DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2623
2624EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2625EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2626
2627/*
c5f8d995 2628 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2629 * @p in case that task is currently running.
c5f8d995
HS
2630 *
2631 * Called with task_rq_lock() held on @rq.
1da177e4 2632 */
c5f8d995
HS
2633static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634{
2635 u64 ns = 0;
2636
2637 if (task_current(rq, p)) {
2638 update_rq_clock(rq);
305e6835 2639 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2640 if ((s64)ns < 0)
2641 ns = 0;
2642 }
2643
2644 return ns;
2645}
2646
bb34d92f 2647unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2648{
1da177e4 2649 unsigned long flags;
41b86e9c 2650 struct rq *rq;
bb34d92f 2651 u64 ns = 0;
48f24c4d 2652
41b86e9c 2653 rq = task_rq_lock(p, &flags);
c5f8d995 2654 ns = do_task_delta_exec(p, rq);
0122ec5b 2655 task_rq_unlock(rq, p, &flags);
1508487e 2656
c5f8d995
HS
2657 return ns;
2658}
f06febc9 2659
c5f8d995
HS
2660/*
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2664 */
2665unsigned long long task_sched_runtime(struct task_struct *p)
2666{
2667 unsigned long flags;
2668 struct rq *rq;
2669 u64 ns = 0;
2670
2671 rq = task_rq_lock(p, &flags);
2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2673 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2674
2675 return ns;
2676}
48f24c4d 2677
7835b98b
CL
2678/*
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
7835b98b
CL
2681 */
2682void scheduler_tick(void)
2683{
7835b98b
CL
2684 int cpu = smp_processor_id();
2685 struct rq *rq = cpu_rq(cpu);
dd41f596 2686 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2687
2688 sched_clock_tick();
dd41f596 2689
05fa785c 2690 raw_spin_lock(&rq->lock);
3e51f33f 2691 update_rq_clock(rq);
fdf3e95d 2692 update_cpu_load_active(rq);
fa85ae24 2693 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2694 raw_spin_unlock(&rq->lock);
7835b98b 2695
e9d2b064 2696 perf_event_task_tick();
e220d2dc 2697
e418e1c2 2698#ifdef CONFIG_SMP
6eb57e0d 2699 rq->idle_balance = idle_cpu(cpu);
dd41f596 2700 trigger_load_balance(rq, cpu);
e418e1c2 2701#endif
1da177e4
LT
2702}
2703
132380a0 2704notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2705{
2706 if (in_lock_functions(addr)) {
2707 addr = CALLER_ADDR2;
2708 if (in_lock_functions(addr))
2709 addr = CALLER_ADDR3;
2710 }
2711 return addr;
2712}
1da177e4 2713
7e49fcce
SR
2714#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 defined(CONFIG_PREEMPT_TRACER))
2716
43627582 2717void __kprobes add_preempt_count(int val)
1da177e4 2718{
6cd8a4bb 2719#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2720 /*
2721 * Underflow?
2722 */
9a11b49a
IM
2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724 return;
6cd8a4bb 2725#endif
1da177e4 2726 preempt_count() += val;
6cd8a4bb 2727#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2728 /*
2729 * Spinlock count overflowing soon?
2730 */
33859f7f
MOS
2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732 PREEMPT_MASK - 10);
6cd8a4bb
SR
2733#endif
2734 if (preempt_count() == val)
2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2736}
2737EXPORT_SYMBOL(add_preempt_count);
2738
43627582 2739void __kprobes sub_preempt_count(int val)
1da177e4 2740{
6cd8a4bb 2741#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2742 /*
2743 * Underflow?
2744 */
01e3eb82 2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2746 return;
1da177e4
LT
2747 /*
2748 * Is the spinlock portion underflowing?
2749 */
9a11b49a
IM
2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 !(preempt_count() & PREEMPT_MASK)))
2752 return;
6cd8a4bb 2753#endif
9a11b49a 2754
6cd8a4bb
SR
2755 if (preempt_count() == val)
2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2757 preempt_count() -= val;
2758}
2759EXPORT_SYMBOL(sub_preempt_count);
2760
2761#endif
2762
2763/*
dd41f596 2764 * Print scheduling while atomic bug:
1da177e4 2765 */
dd41f596 2766static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2767{
664dfa65
DJ
2768 if (oops_in_progress)
2769 return;
2770
3df0fc5b
PZ
2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 prev->comm, prev->pid, preempt_count());
838225b4 2773
dd41f596 2774 debug_show_held_locks(prev);
e21f5b15 2775 print_modules();
dd41f596
IM
2776 if (irqs_disabled())
2777 print_irqtrace_events(prev);
6135fc1e 2778 dump_stack();
373d4d09 2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2780}
1da177e4 2781
dd41f596
IM
2782/*
2783 * Various schedule()-time debugging checks and statistics:
2784 */
2785static inline void schedule_debug(struct task_struct *prev)
2786{
1da177e4 2787 /*
41a2d6cf 2788 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2789 * schedule() atomically, we ignore that path for now.
2790 * Otherwise, whine if we are scheduling when we should not be.
2791 */
3f33a7ce 2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2793 __schedule_bug(prev);
b3fbab05 2794 rcu_sleep_check();
dd41f596 2795
1da177e4
LT
2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797
2d72376b 2798 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2799}
2800
6cecd084 2801static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2802{
61eadef6 2803 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2804 update_rq_clock(rq);
6cecd084 2805 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2806}
2807
dd41f596
IM
2808/*
2809 * Pick up the highest-prio task:
2810 */
2811static inline struct task_struct *
b67802ea 2812pick_next_task(struct rq *rq)
dd41f596 2813{
5522d5d5 2814 const struct sched_class *class;
dd41f596 2815 struct task_struct *p;
1da177e4
LT
2816
2817 /*
dd41f596
IM
2818 * Optimization: we know that if all tasks are in
2819 * the fair class we can call that function directly:
1da177e4 2820 */
953bfcd1 2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2822 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2823 if (likely(p))
2824 return p;
1da177e4
LT
2825 }
2826
34f971f6 2827 for_each_class(class) {
fb8d4724 2828 p = class->pick_next_task(rq);
dd41f596
IM
2829 if (p)
2830 return p;
dd41f596 2831 }
34f971f6
PZ
2832
2833 BUG(); /* the idle class will always have a runnable task */
dd41f596 2834}
1da177e4 2835
dd41f596 2836/*
c259e01a 2837 * __schedule() is the main scheduler function.
edde96ea
PE
2838 *
2839 * The main means of driving the scheduler and thus entering this function are:
2840 *
2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842 *
2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 * paths. For example, see arch/x86/entry_64.S.
2845 *
2846 * To drive preemption between tasks, the scheduler sets the flag in timer
2847 * interrupt handler scheduler_tick().
2848 *
2849 * 3. Wakeups don't really cause entry into schedule(). They add a
2850 * task to the run-queue and that's it.
2851 *
2852 * Now, if the new task added to the run-queue preempts the current
2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 * called on the nearest possible occasion:
2855 *
2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857 *
2858 * - in syscall or exception context, at the next outmost
2859 * preempt_enable(). (this might be as soon as the wake_up()'s
2860 * spin_unlock()!)
2861 *
2862 * - in IRQ context, return from interrupt-handler to
2863 * preemptible context
2864 *
2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866 * then at the next:
2867 *
2868 * - cond_resched() call
2869 * - explicit schedule() call
2870 * - return from syscall or exception to user-space
2871 * - return from interrupt-handler to user-space
dd41f596 2872 */
c259e01a 2873static void __sched __schedule(void)
dd41f596
IM
2874{
2875 struct task_struct *prev, *next;
67ca7bde 2876 unsigned long *switch_count;
dd41f596 2877 struct rq *rq;
31656519 2878 int cpu;
dd41f596 2879
ff743345
PZ
2880need_resched:
2881 preempt_disable();
dd41f596
IM
2882 cpu = smp_processor_id();
2883 rq = cpu_rq(cpu);
25502a6c 2884 rcu_note_context_switch(cpu);
dd41f596 2885 prev = rq->curr;
dd41f596 2886
dd41f596 2887 schedule_debug(prev);
1da177e4 2888
31656519 2889 if (sched_feat(HRTICK))
f333fdc9 2890 hrtick_clear(rq);
8f4d37ec 2891
05fa785c 2892 raw_spin_lock_irq(&rq->lock);
1da177e4 2893
246d86b5 2894 switch_count = &prev->nivcsw;
1da177e4 2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2896 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2897 prev->state = TASK_RUNNING;
21aa9af0 2898 } else {
2acca55e
PZ
2899 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900 prev->on_rq = 0;
2901
21aa9af0 2902 /*
2acca55e
PZ
2903 * If a worker went to sleep, notify and ask workqueue
2904 * whether it wants to wake up a task to maintain
2905 * concurrency.
21aa9af0
TH
2906 */
2907 if (prev->flags & PF_WQ_WORKER) {
2908 struct task_struct *to_wakeup;
2909
2910 to_wakeup = wq_worker_sleeping(prev, cpu);
2911 if (to_wakeup)
2912 try_to_wake_up_local(to_wakeup);
2913 }
21aa9af0 2914 }
dd41f596 2915 switch_count = &prev->nvcsw;
1da177e4
LT
2916 }
2917
3f029d3c 2918 pre_schedule(rq, prev);
f65eda4f 2919
dd41f596 2920 if (unlikely(!rq->nr_running))
1da177e4 2921 idle_balance(cpu, rq);
1da177e4 2922
df1c99d4 2923 put_prev_task(rq, prev);
b67802ea 2924 next = pick_next_task(rq);
f26f9aff
MG
2925 clear_tsk_need_resched(prev);
2926 rq->skip_clock_update = 0;
1da177e4 2927
1da177e4 2928 if (likely(prev != next)) {
1da177e4
LT
2929 rq->nr_switches++;
2930 rq->curr = next;
2931 ++*switch_count;
2932
dd41f596 2933 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2934 /*
246d86b5
ON
2935 * The context switch have flipped the stack from under us
2936 * and restored the local variables which were saved when
2937 * this task called schedule() in the past. prev == current
2938 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2939 */
2940 cpu = smp_processor_id();
2941 rq = cpu_rq(cpu);
1da177e4 2942 } else
05fa785c 2943 raw_spin_unlock_irq(&rq->lock);
1da177e4 2944
3f029d3c 2945 post_schedule(rq);
1da177e4 2946
ba74c144 2947 sched_preempt_enable_no_resched();
ff743345 2948 if (need_resched())
1da177e4
LT
2949 goto need_resched;
2950}
c259e01a 2951
9c40cef2
TG
2952static inline void sched_submit_work(struct task_struct *tsk)
2953{
3c7d5184 2954 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2955 return;
2956 /*
2957 * If we are going to sleep and we have plugged IO queued,
2958 * make sure to submit it to avoid deadlocks.
2959 */
2960 if (blk_needs_flush_plug(tsk))
2961 blk_schedule_flush_plug(tsk);
2962}
2963
6ebbe7a0 2964asmlinkage void __sched schedule(void)
c259e01a 2965{
9c40cef2
TG
2966 struct task_struct *tsk = current;
2967
2968 sched_submit_work(tsk);
c259e01a
TG
2969 __schedule();
2970}
1da177e4
LT
2971EXPORT_SYMBOL(schedule);
2972
91d1aa43 2973#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2974asmlinkage void __sched schedule_user(void)
2975{
2976 /*
2977 * If we come here after a random call to set_need_resched(),
2978 * or we have been woken up remotely but the IPI has not yet arrived,
2979 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 * we find a better solution.
2981 */
91d1aa43 2982 user_exit();
20ab65e3 2983 schedule();
91d1aa43 2984 user_enter();
20ab65e3
FW
2985}
2986#endif
2987
c5491ea7
TG
2988/**
2989 * schedule_preempt_disabled - called with preemption disabled
2990 *
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2992 */
2993void __sched schedule_preempt_disabled(void)
2994{
ba74c144 2995 sched_preempt_enable_no_resched();
c5491ea7
TG
2996 schedule();
2997 preempt_disable();
2998}
2999
c08f7829 3000#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3001
c6eb3dda
PZ
3002static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003{
c6eb3dda 3004 if (lock->owner != owner)
307bf980 3005 return false;
0d66bf6d
PZ
3006
3007 /*
c6eb3dda
PZ
3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 * lock->owner still matches owner, if that fails, owner might
3010 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 * ensures the memory stays valid.
0d66bf6d 3012 */
c6eb3dda 3013 barrier();
0d66bf6d 3014
307bf980 3015 return owner->on_cpu;
c6eb3dda 3016}
0d66bf6d 3017
c6eb3dda
PZ
3018/*
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3021 */
3022int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023{
3024 if (!sched_feat(OWNER_SPIN))
3025 return 0;
0d66bf6d 3026
307bf980 3027 rcu_read_lock();
c6eb3dda
PZ
3028 while (owner_running(lock, owner)) {
3029 if (need_resched())
307bf980 3030 break;
0d66bf6d 3031
335d7afb 3032 arch_mutex_cpu_relax();
0d66bf6d 3033 }
307bf980 3034 rcu_read_unlock();
4b402210 3035
c6eb3dda 3036 /*
307bf980
TG
3037 * We break out the loop above on need_resched() and when the
3038 * owner changed, which is a sign for heavy contention. Return
3039 * success only when lock->owner is NULL.
c6eb3dda 3040 */
307bf980 3041 return lock->owner == NULL;
0d66bf6d
PZ
3042}
3043#endif
3044
1da177e4
LT
3045#ifdef CONFIG_PREEMPT
3046/*
2ed6e34f 3047 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3048 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3049 * occur there and call schedule directly.
3050 */
d1f74e20 3051asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3052{
3053 struct thread_info *ti = current_thread_info();
6478d880 3054
1da177e4
LT
3055 /*
3056 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3057 * we do not want to preempt the current task. Just return..
1da177e4 3058 */
beed33a8 3059 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3060 return;
3061
3a5c359a 3062 do {
d1f74e20 3063 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3064 __schedule();
d1f74e20 3065 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3066
3a5c359a
AK
3067 /*
3068 * Check again in case we missed a preemption opportunity
3069 * between schedule and now.
3070 */
3071 barrier();
5ed0cec0 3072 } while (need_resched());
1da177e4 3073}
1da177e4
LT
3074EXPORT_SYMBOL(preempt_schedule);
3075
3076/*
2ed6e34f 3077 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3081 */
3082asmlinkage void __sched preempt_schedule_irq(void)
3083{
3084 struct thread_info *ti = current_thread_info();
6478d880 3085
2ed6e34f 3086 /* Catch callers which need to be fixed */
1da177e4
LT
3087 BUG_ON(ti->preempt_count || !irqs_disabled());
3088
91d1aa43 3089 user_exit();
3a5c359a
AK
3090 do {
3091 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3092 local_irq_enable();
c259e01a 3093 __schedule();
3a5c359a 3094 local_irq_disable();
3a5c359a 3095 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3096
3a5c359a
AK
3097 /*
3098 * Check again in case we missed a preemption opportunity
3099 * between schedule and now.
3100 */
3101 barrier();
5ed0cec0 3102 } while (need_resched());
1da177e4
LT
3103}
3104
3105#endif /* CONFIG_PREEMPT */
3106
63859d4f 3107int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3108 void *key)
1da177e4 3109{
63859d4f 3110 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3111}
1da177e4
LT
3112EXPORT_SYMBOL(default_wake_function);
3113
3114/*
41a2d6cf
IM
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3118 *
3119 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3122 */
78ddb08f 3123static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3124 int nr_exclusive, int wake_flags, void *key)
1da177e4 3125{
2e45874c 3126 wait_queue_t *curr, *next;
1da177e4 3127
2e45874c 3128 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3129 unsigned flags = curr->flags;
3130
63859d4f 3131 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3132 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3133 break;
3134 }
3135}
3136
3137/**
3138 * __wake_up - wake up threads blocked on a waitqueue.
3139 * @q: the waitqueue
3140 * @mode: which threads
3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3142 * @key: is directly passed to the wakeup function
50fa610a
DH
3143 *
3144 * It may be assumed that this function implies a write memory barrier before
3145 * changing the task state if and only if any tasks are woken up.
1da177e4 3146 */
7ad5b3a5 3147void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3148 int nr_exclusive, void *key)
1da177e4
LT
3149{
3150 unsigned long flags;
3151
3152 spin_lock_irqsave(&q->lock, flags);
3153 __wake_up_common(q, mode, nr_exclusive, 0, key);
3154 spin_unlock_irqrestore(&q->lock, flags);
3155}
1da177e4
LT
3156EXPORT_SYMBOL(__wake_up);
3157
3158/*
3159 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3160 */
63b20011 3161void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3162{
63b20011 3163 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3164}
22c43c81 3165EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3166
4ede816a
DL
3167void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3168{
3169 __wake_up_common(q, mode, 1, 0, key);
3170}
bf294b41 3171EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3172
1da177e4 3173/**
4ede816a 3174 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3175 * @q: the waitqueue
3176 * @mode: which threads
3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3178 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3179 *
3180 * The sync wakeup differs that the waker knows that it will schedule
3181 * away soon, so while the target thread will be woken up, it will not
3182 * be migrated to another CPU - ie. the two threads are 'synchronized'
3183 * with each other. This can prevent needless bouncing between CPUs.
3184 *
3185 * On UP it can prevent extra preemption.
50fa610a
DH
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
1da177e4 3189 */
4ede816a
DL
3190void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3191 int nr_exclusive, void *key)
1da177e4
LT
3192{
3193 unsigned long flags;
7d478721 3194 int wake_flags = WF_SYNC;
1da177e4
LT
3195
3196 if (unlikely(!q))
3197 return;
3198
3199 if (unlikely(!nr_exclusive))
7d478721 3200 wake_flags = 0;
1da177e4
LT
3201
3202 spin_lock_irqsave(&q->lock, flags);
7d478721 3203 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3204 spin_unlock_irqrestore(&q->lock, flags);
3205}
4ede816a
DL
3206EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3207
3208/*
3209 * __wake_up_sync - see __wake_up_sync_key()
3210 */
3211void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3212{
3213 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3214}
1da177e4
LT
3215EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3216
65eb3dc6
KD
3217/**
3218 * complete: - signals a single thread waiting on this completion
3219 * @x: holds the state of this particular completion
3220 *
3221 * This will wake up a single thread waiting on this completion. Threads will be
3222 * awakened in the same order in which they were queued.
3223 *
3224 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3225 *
3226 * It may be assumed that this function implies a write memory barrier before
3227 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3228 */
b15136e9 3229void complete(struct completion *x)
1da177e4
LT
3230{
3231 unsigned long flags;
3232
3233 spin_lock_irqsave(&x->wait.lock, flags);
3234 x->done++;
d9514f6c 3235 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3236 spin_unlock_irqrestore(&x->wait.lock, flags);
3237}
3238EXPORT_SYMBOL(complete);
3239
65eb3dc6
KD
3240/**
3241 * complete_all: - signals all threads waiting on this completion
3242 * @x: holds the state of this particular completion
3243 *
3244 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3245 *
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3248 */
b15136e9 3249void complete_all(struct completion *x)
1da177e4
LT
3250{
3251 unsigned long flags;
3252
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done += UINT_MAX/2;
d9514f6c 3255 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3257}
3258EXPORT_SYMBOL(complete_all);
3259
8cbbe86d 3260static inline long __sched
686855f5
VD
3261do_wait_for_common(struct completion *x,
3262 long (*action)(long), long timeout, int state)
1da177e4 3263{
1da177e4
LT
3264 if (!x->done) {
3265 DECLARE_WAITQUEUE(wait, current);
3266
a93d2f17 3267 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3268 do {
94d3d824 3269 if (signal_pending_state(state, current)) {
ea71a546
ON
3270 timeout = -ERESTARTSYS;
3271 break;
8cbbe86d
AK
3272 }
3273 __set_current_state(state);
1da177e4 3274 spin_unlock_irq(&x->wait.lock);
686855f5 3275 timeout = action(timeout);
1da177e4 3276 spin_lock_irq(&x->wait.lock);
ea71a546 3277 } while (!x->done && timeout);
1da177e4 3278 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3279 if (!x->done)
3280 return timeout;
1da177e4
LT
3281 }
3282 x->done--;
ea71a546 3283 return timeout ?: 1;
1da177e4 3284}
1da177e4 3285
686855f5
VD
3286static inline long __sched
3287__wait_for_common(struct completion *x,
3288 long (*action)(long), long timeout, int state)
1da177e4 3289{
1da177e4
LT
3290 might_sleep();
3291
3292 spin_lock_irq(&x->wait.lock);
686855f5 3293 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 3294 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3295 return timeout;
3296}
1da177e4 3297
686855f5
VD
3298static long __sched
3299wait_for_common(struct completion *x, long timeout, int state)
3300{
3301 return __wait_for_common(x, schedule_timeout, timeout, state);
3302}
3303
3304static long __sched
3305wait_for_common_io(struct completion *x, long timeout, int state)
3306{
3307 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3308}
3309
65eb3dc6
KD
3310/**
3311 * wait_for_completion: - waits for completion of a task
3312 * @x: holds the state of this particular completion
3313 *
3314 * This waits to be signaled for completion of a specific task. It is NOT
3315 * interruptible and there is no timeout.
3316 *
3317 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3318 * and interrupt capability. Also see complete().
3319 */
b15136e9 3320void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3321{
3322 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3323}
8cbbe86d 3324EXPORT_SYMBOL(wait_for_completion);
1da177e4 3325
65eb3dc6
KD
3326/**
3327 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3328 * @x: holds the state of this particular completion
3329 * @timeout: timeout value in jiffies
3330 *
3331 * This waits for either a completion of a specific task to be signaled or for a
3332 * specified timeout to expire. The timeout is in jiffies. It is not
3333 * interruptible.
c6dc7f05
BF
3334 *
3335 * The return value is 0 if timed out, and positive (at least 1, or number of
3336 * jiffies left till timeout) if completed.
65eb3dc6 3337 */
b15136e9 3338unsigned long __sched
8cbbe86d 3339wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3340{
8cbbe86d 3341 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3342}
8cbbe86d 3343EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3344
686855f5
VD
3345/**
3346 * wait_for_completion_io: - waits for completion of a task
3347 * @x: holds the state of this particular completion
3348 *
3349 * This waits to be signaled for completion of a specific task. It is NOT
3350 * interruptible and there is no timeout. The caller is accounted as waiting
3351 * for IO.
3352 */
3353void __sched wait_for_completion_io(struct completion *x)
3354{
3355 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3356}
3357EXPORT_SYMBOL(wait_for_completion_io);
3358
3359/**
3360 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be signaled or for a
3365 * specified timeout to expire. The timeout is in jiffies. It is not
3366 * interruptible. The caller is accounted as waiting for IO.
3367 *
3368 * The return value is 0 if timed out, and positive (at least 1, or number of
3369 * jiffies left till timeout) if completed.
3370 */
3371unsigned long __sched
3372wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3373{
3374 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3375}
3376EXPORT_SYMBOL(wait_for_completion_io_timeout);
3377
65eb3dc6
KD
3378/**
3379 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3380 * @x: holds the state of this particular completion
3381 *
3382 * This waits for completion of a specific task to be signaled. It is
3383 * interruptible.
c6dc7f05
BF
3384 *
3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3386 */
8cbbe86d 3387int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3388{
51e97990
AK
3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3390 if (t == -ERESTARTSYS)
3391 return t;
3392 return 0;
0fec171c 3393}
8cbbe86d 3394EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3395
65eb3dc6
KD
3396/**
3397 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3398 * @x: holds the state of this particular completion
3399 * @timeout: timeout value in jiffies
3400 *
3401 * This waits for either a completion of a specific task to be signaled or for a
3402 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3403 *
3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3406 */
6bf41237 3407long __sched
8cbbe86d
AK
3408wait_for_completion_interruptible_timeout(struct completion *x,
3409 unsigned long timeout)
0fec171c 3410{
8cbbe86d 3411 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3412}
8cbbe86d 3413EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3414
65eb3dc6
KD
3415/**
3416 * wait_for_completion_killable: - waits for completion of a task (killable)
3417 * @x: holds the state of this particular completion
3418 *
3419 * This waits to be signaled for completion of a specific task. It can be
3420 * interrupted by a kill signal.
c6dc7f05
BF
3421 *
3422 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3423 */
009e577e
MW
3424int __sched wait_for_completion_killable(struct completion *x)
3425{
3426 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3427 if (t == -ERESTARTSYS)
3428 return t;
3429 return 0;
3430}
3431EXPORT_SYMBOL(wait_for_completion_killable);
3432
0aa12fb4
SW
3433/**
3434 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3435 * @x: holds the state of this particular completion
3436 * @timeout: timeout value in jiffies
3437 *
3438 * This waits for either a completion of a specific task to be
3439 * signaled or for a specified timeout to expire. It can be
3440 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3441 *
3442 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3443 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3444 */
6bf41237 3445long __sched
0aa12fb4
SW
3446wait_for_completion_killable_timeout(struct completion *x,
3447 unsigned long timeout)
3448{
3449 return wait_for_common(x, timeout, TASK_KILLABLE);
3450}
3451EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3452
be4de352
DC
3453/**
3454 * try_wait_for_completion - try to decrement a completion without blocking
3455 * @x: completion structure
3456 *
3457 * Returns: 0 if a decrement cannot be done without blocking
3458 * 1 if a decrement succeeded.
3459 *
3460 * If a completion is being used as a counting completion,
3461 * attempt to decrement the counter without blocking. This
3462 * enables us to avoid waiting if the resource the completion
3463 * is protecting is not available.
3464 */
3465bool try_wait_for_completion(struct completion *x)
3466{
7539a3b3 3467 unsigned long flags;
be4de352
DC
3468 int ret = 1;
3469
7539a3b3 3470 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3471 if (!x->done)
3472 ret = 0;
3473 else
3474 x->done--;
7539a3b3 3475 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3476 return ret;
3477}
3478EXPORT_SYMBOL(try_wait_for_completion);
3479
3480/**
3481 * completion_done - Test to see if a completion has any waiters
3482 * @x: completion structure
3483 *
3484 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3485 * 1 if there are no waiters.
3486 *
3487 */
3488bool completion_done(struct completion *x)
3489{
7539a3b3 3490 unsigned long flags;
be4de352
DC
3491 int ret = 1;
3492
7539a3b3 3493 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3494 if (!x->done)
3495 ret = 0;
7539a3b3 3496 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3497 return ret;
3498}
3499EXPORT_SYMBOL(completion_done);
3500
8cbbe86d
AK
3501static long __sched
3502sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3503{
0fec171c
IM
3504 unsigned long flags;
3505 wait_queue_t wait;
3506
3507 init_waitqueue_entry(&wait, current);
1da177e4 3508
8cbbe86d 3509 __set_current_state(state);
1da177e4 3510
8cbbe86d
AK
3511 spin_lock_irqsave(&q->lock, flags);
3512 __add_wait_queue(q, &wait);
3513 spin_unlock(&q->lock);
3514 timeout = schedule_timeout(timeout);
3515 spin_lock_irq(&q->lock);
3516 __remove_wait_queue(q, &wait);
3517 spin_unlock_irqrestore(&q->lock, flags);
3518
3519 return timeout;
3520}
3521
3522void __sched interruptible_sleep_on(wait_queue_head_t *q)
3523{
3524 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3525}
1da177e4
LT
3526EXPORT_SYMBOL(interruptible_sleep_on);
3527
0fec171c 3528long __sched
95cdf3b7 3529interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3530{
8cbbe86d 3531 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3532}
1da177e4
LT
3533EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3534
0fec171c 3535void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3536{
8cbbe86d 3537 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3538}
1da177e4
LT
3539EXPORT_SYMBOL(sleep_on);
3540
0fec171c 3541long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3542{
8cbbe86d 3543 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3544}
1da177e4
LT
3545EXPORT_SYMBOL(sleep_on_timeout);
3546
b29739f9
IM
3547#ifdef CONFIG_RT_MUTEXES
3548
3549/*
3550 * rt_mutex_setprio - set the current priority of a task
3551 * @p: task
3552 * @prio: prio value (kernel-internal form)
3553 *
3554 * This function changes the 'effective' priority of a task. It does
3555 * not touch ->normal_prio like __setscheduler().
3556 *
3557 * Used by the rt_mutex code to implement priority inheritance logic.
3558 */
36c8b586 3559void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3560{
83b699ed 3561 int oldprio, on_rq, running;
70b97a7f 3562 struct rq *rq;
83ab0aa0 3563 const struct sched_class *prev_class;
b29739f9
IM
3564
3565 BUG_ON(prio < 0 || prio > MAX_PRIO);
3566
0122ec5b 3567 rq = __task_rq_lock(p);
b29739f9 3568
1c4dd99b
TG
3569 /*
3570 * Idle task boosting is a nono in general. There is one
3571 * exception, when PREEMPT_RT and NOHZ is active:
3572 *
3573 * The idle task calls get_next_timer_interrupt() and holds
3574 * the timer wheel base->lock on the CPU and another CPU wants
3575 * to access the timer (probably to cancel it). We can safely
3576 * ignore the boosting request, as the idle CPU runs this code
3577 * with interrupts disabled and will complete the lock
3578 * protected section without being interrupted. So there is no
3579 * real need to boost.
3580 */
3581 if (unlikely(p == rq->idle)) {
3582 WARN_ON(p != rq->curr);
3583 WARN_ON(p->pi_blocked_on);
3584 goto out_unlock;
3585 }
3586
a8027073 3587 trace_sched_pi_setprio(p, prio);
d5f9f942 3588 oldprio = p->prio;
83ab0aa0 3589 prev_class = p->sched_class;
fd2f4419 3590 on_rq = p->on_rq;
051a1d1a 3591 running = task_current(rq, p);
0e1f3483 3592 if (on_rq)
69be72c1 3593 dequeue_task(rq, p, 0);
0e1f3483
HS
3594 if (running)
3595 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3596
3597 if (rt_prio(prio))
3598 p->sched_class = &rt_sched_class;
3599 else
3600 p->sched_class = &fair_sched_class;
3601
b29739f9
IM
3602 p->prio = prio;
3603
0e1f3483
HS
3604 if (running)
3605 p->sched_class->set_curr_task(rq);
da7a735e 3606 if (on_rq)
371fd7e7 3607 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3608
da7a735e 3609 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3610out_unlock:
0122ec5b 3611 __task_rq_unlock(rq);
b29739f9 3612}
b29739f9 3613#endif
36c8b586 3614void set_user_nice(struct task_struct *p, long nice)
1da177e4 3615{
dd41f596 3616 int old_prio, delta, on_rq;
1da177e4 3617 unsigned long flags;
70b97a7f 3618 struct rq *rq;
1da177e4
LT
3619
3620 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3621 return;
3622 /*
3623 * We have to be careful, if called from sys_setpriority(),
3624 * the task might be in the middle of scheduling on another CPU.
3625 */
3626 rq = task_rq_lock(p, &flags);
3627 /*
3628 * The RT priorities are set via sched_setscheduler(), but we still
3629 * allow the 'normal' nice value to be set - but as expected
3630 * it wont have any effect on scheduling until the task is
dd41f596 3631 * SCHED_FIFO/SCHED_RR:
1da177e4 3632 */
e05606d3 3633 if (task_has_rt_policy(p)) {
1da177e4
LT
3634 p->static_prio = NICE_TO_PRIO(nice);
3635 goto out_unlock;
3636 }
fd2f4419 3637 on_rq = p->on_rq;
c09595f6 3638 if (on_rq)
69be72c1 3639 dequeue_task(rq, p, 0);
1da177e4 3640
1da177e4 3641 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3642 set_load_weight(p);
b29739f9
IM
3643 old_prio = p->prio;
3644 p->prio = effective_prio(p);
3645 delta = p->prio - old_prio;
1da177e4 3646
dd41f596 3647 if (on_rq) {
371fd7e7 3648 enqueue_task(rq, p, 0);
1da177e4 3649 /*
d5f9f942
AM
3650 * If the task increased its priority or is running and
3651 * lowered its priority, then reschedule its CPU:
1da177e4 3652 */
d5f9f942 3653 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3654 resched_task(rq->curr);
3655 }
3656out_unlock:
0122ec5b 3657 task_rq_unlock(rq, p, &flags);
1da177e4 3658}
1da177e4
LT
3659EXPORT_SYMBOL(set_user_nice);
3660
e43379f1
MM
3661/*
3662 * can_nice - check if a task can reduce its nice value
3663 * @p: task
3664 * @nice: nice value
3665 */
36c8b586 3666int can_nice(const struct task_struct *p, const int nice)
e43379f1 3667{
024f4747
MM
3668 /* convert nice value [19,-20] to rlimit style value [1,40] */
3669 int nice_rlim = 20 - nice;
48f24c4d 3670
78d7d407 3671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3672 capable(CAP_SYS_NICE));
3673}
3674
1da177e4
LT
3675#ifdef __ARCH_WANT_SYS_NICE
3676
3677/*
3678 * sys_nice - change the priority of the current process.
3679 * @increment: priority increment
3680 *
3681 * sys_setpriority is a more generic, but much slower function that
3682 * does similar things.
3683 */
5add95d4 3684SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3685{
48f24c4d 3686 long nice, retval;
1da177e4
LT
3687
3688 /*
3689 * Setpriority might change our priority at the same moment.
3690 * We don't have to worry. Conceptually one call occurs first
3691 * and we have a single winner.
3692 */
e43379f1
MM
3693 if (increment < -40)
3694 increment = -40;
1da177e4
LT
3695 if (increment > 40)
3696 increment = 40;
3697
2b8f836f 3698 nice = TASK_NICE(current) + increment;
1da177e4
LT
3699 if (nice < -20)
3700 nice = -20;
3701 if (nice > 19)
3702 nice = 19;
3703
e43379f1
MM
3704 if (increment < 0 && !can_nice(current, nice))
3705 return -EPERM;
3706
1da177e4
LT
3707 retval = security_task_setnice(current, nice);
3708 if (retval)
3709 return retval;
3710
3711 set_user_nice(current, nice);
3712 return 0;
3713}
3714
3715#endif
3716
3717/**
3718 * task_prio - return the priority value of a given task.
3719 * @p: the task in question.
3720 *
3721 * This is the priority value as seen by users in /proc.
3722 * RT tasks are offset by -200. Normal tasks are centered
3723 * around 0, value goes from -16 to +15.
3724 */
36c8b586 3725int task_prio(const struct task_struct *p)
1da177e4
LT
3726{
3727 return p->prio - MAX_RT_PRIO;
3728}
3729
3730/**
3731 * task_nice - return the nice value of a given task.
3732 * @p: the task in question.
3733 */
36c8b586 3734int task_nice(const struct task_struct *p)
1da177e4
LT
3735{
3736 return TASK_NICE(p);
3737}
150d8bed 3738EXPORT_SYMBOL(task_nice);
1da177e4
LT
3739
3740/**
3741 * idle_cpu - is a given cpu idle currently?
3742 * @cpu: the processor in question.
3743 */
3744int idle_cpu(int cpu)
3745{
908a3283
TG
3746 struct rq *rq = cpu_rq(cpu);
3747
3748 if (rq->curr != rq->idle)
3749 return 0;
3750
3751 if (rq->nr_running)
3752 return 0;
3753
3754#ifdef CONFIG_SMP
3755 if (!llist_empty(&rq->wake_list))
3756 return 0;
3757#endif
3758
3759 return 1;
1da177e4
LT
3760}
3761
1da177e4
LT
3762/**
3763 * idle_task - return the idle task for a given cpu.
3764 * @cpu: the processor in question.
3765 */
36c8b586 3766struct task_struct *idle_task(int cpu)
1da177e4
LT
3767{
3768 return cpu_rq(cpu)->idle;
3769}
3770
3771/**
3772 * find_process_by_pid - find a process with a matching PID value.
3773 * @pid: the pid in question.
3774 */
a9957449 3775static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3776{
228ebcbe 3777 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3778}
3779
3780/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3781static void
3782__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3783{
1da177e4
LT
3784 p->policy = policy;
3785 p->rt_priority = prio;
b29739f9
IM
3786 p->normal_prio = normal_prio(p);
3787 /* we are holding p->pi_lock already */
3788 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3789 if (rt_prio(p->prio))
3790 p->sched_class = &rt_sched_class;
3791 else
3792 p->sched_class = &fair_sched_class;
2dd73a4f 3793 set_load_weight(p);
1da177e4
LT
3794}
3795
c69e8d9c
DH
3796/*
3797 * check the target process has a UID that matches the current process's
3798 */
3799static bool check_same_owner(struct task_struct *p)
3800{
3801 const struct cred *cred = current_cred(), *pcred;
3802 bool match;
3803
3804 rcu_read_lock();
3805 pcred = __task_cred(p);
9c806aa0
EB
3806 match = (uid_eq(cred->euid, pcred->euid) ||
3807 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3808 rcu_read_unlock();
3809 return match;
3810}
3811
961ccddd 3812static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3813 const struct sched_param *param, bool user)
1da177e4 3814{
83b699ed 3815 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3816 unsigned long flags;
83ab0aa0 3817 const struct sched_class *prev_class;
70b97a7f 3818 struct rq *rq;
ca94c442 3819 int reset_on_fork;
1da177e4 3820
66e5393a
SR
3821 /* may grab non-irq protected spin_locks */
3822 BUG_ON(in_interrupt());
1da177e4
LT
3823recheck:
3824 /* double check policy once rq lock held */
ca94c442
LP
3825 if (policy < 0) {
3826 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3827 policy = oldpolicy = p->policy;
ca94c442
LP
3828 } else {
3829 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3830 policy &= ~SCHED_RESET_ON_FORK;
3831
3832 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3833 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3834 policy != SCHED_IDLE)
3835 return -EINVAL;
3836 }
3837
1da177e4
LT
3838 /*
3839 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3840 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3841 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3842 */
3843 if (param->sched_priority < 0 ||
95cdf3b7 3844 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3845 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3846 return -EINVAL;
e05606d3 3847 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3848 return -EINVAL;
3849
37e4ab3f
OC
3850 /*
3851 * Allow unprivileged RT tasks to decrease priority:
3852 */
961ccddd 3853 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3854 if (rt_policy(policy)) {
a44702e8
ON
3855 unsigned long rlim_rtprio =
3856 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3857
3858 /* can't set/change the rt policy */
3859 if (policy != p->policy && !rlim_rtprio)
3860 return -EPERM;
3861
3862 /* can't increase priority */
3863 if (param->sched_priority > p->rt_priority &&
3864 param->sched_priority > rlim_rtprio)
3865 return -EPERM;
3866 }
c02aa73b 3867
dd41f596 3868 /*
c02aa73b
DH
3869 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3870 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3871 */
c02aa73b
DH
3872 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3873 if (!can_nice(p, TASK_NICE(p)))
3874 return -EPERM;
3875 }
5fe1d75f 3876
37e4ab3f 3877 /* can't change other user's priorities */
c69e8d9c 3878 if (!check_same_owner(p))
37e4ab3f 3879 return -EPERM;
ca94c442
LP
3880
3881 /* Normal users shall not reset the sched_reset_on_fork flag */
3882 if (p->sched_reset_on_fork && !reset_on_fork)
3883 return -EPERM;
37e4ab3f 3884 }
1da177e4 3885
725aad24 3886 if (user) {
b0ae1981 3887 retval = security_task_setscheduler(p);
725aad24
JF
3888 if (retval)
3889 return retval;
3890 }
3891
b29739f9
IM
3892 /*
3893 * make sure no PI-waiters arrive (or leave) while we are
3894 * changing the priority of the task:
0122ec5b 3895 *
25985edc 3896 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3897 * runqueue lock must be held.
3898 */
0122ec5b 3899 rq = task_rq_lock(p, &flags);
dc61b1d6 3900
34f971f6
PZ
3901 /*
3902 * Changing the policy of the stop threads its a very bad idea
3903 */
3904 if (p == rq->stop) {
0122ec5b 3905 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3906 return -EINVAL;
3907 }
3908
a51e9198
DF
3909 /*
3910 * If not changing anything there's no need to proceed further:
3911 */
3912 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3913 param->sched_priority == p->rt_priority))) {
45afb173 3914 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3915 return 0;
3916 }
3917
dc61b1d6
PZ
3918#ifdef CONFIG_RT_GROUP_SCHED
3919 if (user) {
3920 /*
3921 * Do not allow realtime tasks into groups that have no runtime
3922 * assigned.
3923 */
3924 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3925 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3926 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3927 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3928 return -EPERM;
3929 }
3930 }
3931#endif
3932
1da177e4
LT
3933 /* recheck policy now with rq lock held */
3934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3935 policy = oldpolicy = -1;
0122ec5b 3936 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3937 goto recheck;
3938 }
fd2f4419 3939 on_rq = p->on_rq;
051a1d1a 3940 running = task_current(rq, p);
0e1f3483 3941 if (on_rq)
4ca9b72b 3942 dequeue_task(rq, p, 0);
0e1f3483
HS
3943 if (running)
3944 p->sched_class->put_prev_task(rq, p);
f6b53205 3945
ca94c442
LP
3946 p->sched_reset_on_fork = reset_on_fork;
3947
1da177e4 3948 oldprio = p->prio;
83ab0aa0 3949 prev_class = p->sched_class;
dd41f596 3950 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3951
0e1f3483
HS
3952 if (running)
3953 p->sched_class->set_curr_task(rq);
da7a735e 3954 if (on_rq)
4ca9b72b 3955 enqueue_task(rq, p, 0);
cb469845 3956
da7a735e 3957 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3958 task_rq_unlock(rq, p, &flags);
b29739f9 3959
95e02ca9
TG
3960 rt_mutex_adjust_pi(p);
3961
1da177e4
LT
3962 return 0;
3963}
961ccddd
RR
3964
3965/**
3966 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3967 * @p: the task in question.
3968 * @policy: new policy.
3969 * @param: structure containing the new RT priority.
3970 *
3971 * NOTE that the task may be already dead.
3972 */
3973int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3974 const struct sched_param *param)
961ccddd
RR
3975{
3976 return __sched_setscheduler(p, policy, param, true);
3977}
1da177e4
LT
3978EXPORT_SYMBOL_GPL(sched_setscheduler);
3979
961ccddd
RR
3980/**
3981 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3982 * @p: the task in question.
3983 * @policy: new policy.
3984 * @param: structure containing the new RT priority.
3985 *
3986 * Just like sched_setscheduler, only don't bother checking if the
3987 * current context has permission. For example, this is needed in
3988 * stop_machine(): we create temporary high priority worker threads,
3989 * but our caller might not have that capability.
3990 */
3991int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3992 const struct sched_param *param)
961ccddd
RR
3993{
3994 return __sched_setscheduler(p, policy, param, false);
3995}
3996
95cdf3b7
IM
3997static int
3998do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3999{
1da177e4
LT
4000 struct sched_param lparam;
4001 struct task_struct *p;
36c8b586 4002 int retval;
1da177e4
LT
4003
4004 if (!param || pid < 0)
4005 return -EINVAL;
4006 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4007 return -EFAULT;
5fe1d75f
ON
4008
4009 rcu_read_lock();
4010 retval = -ESRCH;
1da177e4 4011 p = find_process_by_pid(pid);
5fe1d75f
ON
4012 if (p != NULL)
4013 retval = sched_setscheduler(p, policy, &lparam);
4014 rcu_read_unlock();
36c8b586 4015
1da177e4
LT
4016 return retval;
4017}
4018
4019/**
4020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4021 * @pid: the pid in question.
4022 * @policy: new policy.
4023 * @param: structure containing the new RT priority.
4024 */
5add95d4
HC
4025SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4026 struct sched_param __user *, param)
1da177e4 4027{
c21761f1
JB
4028 /* negative values for policy are not valid */
4029 if (policy < 0)
4030 return -EINVAL;
4031
1da177e4
LT
4032 return do_sched_setscheduler(pid, policy, param);
4033}
4034
4035/**
4036 * sys_sched_setparam - set/change the RT priority of a thread
4037 * @pid: the pid in question.
4038 * @param: structure containing the new RT priority.
4039 */
5add95d4 4040SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4041{
4042 return do_sched_setscheduler(pid, -1, param);
4043}
4044
4045/**
4046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4047 * @pid: the pid in question.
4048 */
5add95d4 4049SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4050{
36c8b586 4051 struct task_struct *p;
3a5c359a 4052 int retval;
1da177e4
LT
4053
4054 if (pid < 0)
3a5c359a 4055 return -EINVAL;
1da177e4
LT
4056
4057 retval = -ESRCH;
5fe85be0 4058 rcu_read_lock();
1da177e4
LT
4059 p = find_process_by_pid(pid);
4060 if (p) {
4061 retval = security_task_getscheduler(p);
4062 if (!retval)
ca94c442
LP
4063 retval = p->policy
4064 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4065 }
5fe85be0 4066 rcu_read_unlock();
1da177e4
LT
4067 return retval;
4068}
4069
4070/**
ca94c442 4071 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4072 * @pid: the pid in question.
4073 * @param: structure containing the RT priority.
4074 */
5add95d4 4075SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4076{
4077 struct sched_param lp;
36c8b586 4078 struct task_struct *p;
3a5c359a 4079 int retval;
1da177e4
LT
4080
4081 if (!param || pid < 0)
3a5c359a 4082 return -EINVAL;
1da177e4 4083
5fe85be0 4084 rcu_read_lock();
1da177e4
LT
4085 p = find_process_by_pid(pid);
4086 retval = -ESRCH;
4087 if (!p)
4088 goto out_unlock;
4089
4090 retval = security_task_getscheduler(p);
4091 if (retval)
4092 goto out_unlock;
4093
4094 lp.sched_priority = p->rt_priority;
5fe85be0 4095 rcu_read_unlock();
1da177e4
LT
4096
4097 /*
4098 * This one might sleep, we cannot do it with a spinlock held ...
4099 */
4100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4101
1da177e4
LT
4102 return retval;
4103
4104out_unlock:
5fe85be0 4105 rcu_read_unlock();
1da177e4
LT
4106 return retval;
4107}
4108
96f874e2 4109long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4110{
5a16f3d3 4111 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4112 struct task_struct *p;
4113 int retval;
1da177e4 4114
95402b38 4115 get_online_cpus();
23f5d142 4116 rcu_read_lock();
1da177e4
LT
4117
4118 p = find_process_by_pid(pid);
4119 if (!p) {
23f5d142 4120 rcu_read_unlock();
95402b38 4121 put_online_cpus();
1da177e4
LT
4122 return -ESRCH;
4123 }
4124
23f5d142 4125 /* Prevent p going away */
1da177e4 4126 get_task_struct(p);
23f5d142 4127 rcu_read_unlock();
1da177e4 4128
5a16f3d3
RR
4129 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4130 retval = -ENOMEM;
4131 goto out_put_task;
4132 }
4133 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4134 retval = -ENOMEM;
4135 goto out_free_cpus_allowed;
4136 }
1da177e4 4137 retval = -EPERM;
4c44aaaf
EB
4138 if (!check_same_owner(p)) {
4139 rcu_read_lock();
4140 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4141 rcu_read_unlock();
4142 goto out_unlock;
4143 }
4144 rcu_read_unlock();
4145 }
1da177e4 4146
b0ae1981 4147 retval = security_task_setscheduler(p);
e7834f8f
DQ
4148 if (retval)
4149 goto out_unlock;
4150
5a16f3d3
RR
4151 cpuset_cpus_allowed(p, cpus_allowed);
4152 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4153again:
5a16f3d3 4154 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4155
8707d8b8 4156 if (!retval) {
5a16f3d3
RR
4157 cpuset_cpus_allowed(p, cpus_allowed);
4158 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4159 /*
4160 * We must have raced with a concurrent cpuset
4161 * update. Just reset the cpus_allowed to the
4162 * cpuset's cpus_allowed
4163 */
5a16f3d3 4164 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4165 goto again;
4166 }
4167 }
1da177e4 4168out_unlock:
5a16f3d3
RR
4169 free_cpumask_var(new_mask);
4170out_free_cpus_allowed:
4171 free_cpumask_var(cpus_allowed);
4172out_put_task:
1da177e4 4173 put_task_struct(p);
95402b38 4174 put_online_cpus();
1da177e4
LT
4175 return retval;
4176}
4177
4178static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4179 struct cpumask *new_mask)
1da177e4 4180{
96f874e2
RR
4181 if (len < cpumask_size())
4182 cpumask_clear(new_mask);
4183 else if (len > cpumask_size())
4184 len = cpumask_size();
4185
1da177e4
LT
4186 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4187}
4188
4189/**
4190 * sys_sched_setaffinity - set the cpu affinity of a process
4191 * @pid: pid of the process
4192 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4193 * @user_mask_ptr: user-space pointer to the new cpu mask
4194 */
5add95d4
HC
4195SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4196 unsigned long __user *, user_mask_ptr)
1da177e4 4197{
5a16f3d3 4198 cpumask_var_t new_mask;
1da177e4
LT
4199 int retval;
4200
5a16f3d3
RR
4201 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4202 return -ENOMEM;
1da177e4 4203
5a16f3d3
RR
4204 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4205 if (retval == 0)
4206 retval = sched_setaffinity(pid, new_mask);
4207 free_cpumask_var(new_mask);
4208 return retval;
1da177e4
LT
4209}
4210
96f874e2 4211long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4212{
36c8b586 4213 struct task_struct *p;
31605683 4214 unsigned long flags;
1da177e4 4215 int retval;
1da177e4 4216
95402b38 4217 get_online_cpus();
23f5d142 4218 rcu_read_lock();
1da177e4
LT
4219
4220 retval = -ESRCH;
4221 p = find_process_by_pid(pid);
4222 if (!p)
4223 goto out_unlock;
4224
e7834f8f
DQ
4225 retval = security_task_getscheduler(p);
4226 if (retval)
4227 goto out_unlock;
4228
013fdb80 4229 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4230 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4231 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4232
4233out_unlock:
23f5d142 4234 rcu_read_unlock();
95402b38 4235 put_online_cpus();
1da177e4 4236
9531b62f 4237 return retval;
1da177e4
LT
4238}
4239
4240/**
4241 * sys_sched_getaffinity - get the cpu affinity of a process
4242 * @pid: pid of the process
4243 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4244 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4245 */
5add95d4
HC
4246SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4247 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4248{
4249 int ret;
f17c8607 4250 cpumask_var_t mask;
1da177e4 4251
84fba5ec 4252 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4253 return -EINVAL;
4254 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4255 return -EINVAL;
4256
f17c8607
RR
4257 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4258 return -ENOMEM;
1da177e4 4259
f17c8607
RR
4260 ret = sched_getaffinity(pid, mask);
4261 if (ret == 0) {
8bc037fb 4262 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4263
4264 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4265 ret = -EFAULT;
4266 else
cd3d8031 4267 ret = retlen;
f17c8607
RR
4268 }
4269 free_cpumask_var(mask);
1da177e4 4270
f17c8607 4271 return ret;
1da177e4
LT
4272}
4273
4274/**
4275 * sys_sched_yield - yield the current processor to other threads.
4276 *
dd41f596
IM
4277 * This function yields the current CPU to other tasks. If there are no
4278 * other threads running on this CPU then this function will return.
1da177e4 4279 */
5add95d4 4280SYSCALL_DEFINE0(sched_yield)
1da177e4 4281{
70b97a7f 4282 struct rq *rq = this_rq_lock();
1da177e4 4283
2d72376b 4284 schedstat_inc(rq, yld_count);
4530d7ab 4285 current->sched_class->yield_task(rq);
1da177e4
LT
4286
4287 /*
4288 * Since we are going to call schedule() anyway, there's
4289 * no need to preempt or enable interrupts:
4290 */
4291 __release(rq->lock);
8a25d5de 4292 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4293 do_raw_spin_unlock(&rq->lock);
ba74c144 4294 sched_preempt_enable_no_resched();
1da177e4
LT
4295
4296 schedule();
4297
4298 return 0;
4299}
4300
d86ee480
PZ
4301static inline int should_resched(void)
4302{
4303 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4304}
4305
e7b38404 4306static void __cond_resched(void)
1da177e4 4307{
e7aaaa69 4308 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4309 __schedule();
e7aaaa69 4310 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4311}
4312
02b67cc3 4313int __sched _cond_resched(void)
1da177e4 4314{
d86ee480 4315 if (should_resched()) {
1da177e4
LT
4316 __cond_resched();
4317 return 1;
4318 }
4319 return 0;
4320}
02b67cc3 4321EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4322
4323/*
613afbf8 4324 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4325 * call schedule, and on return reacquire the lock.
4326 *
41a2d6cf 4327 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4328 * operations here to prevent schedule() from being called twice (once via
4329 * spin_unlock(), once by hand).
4330 */
613afbf8 4331int __cond_resched_lock(spinlock_t *lock)
1da177e4 4332{
d86ee480 4333 int resched = should_resched();
6df3cecb
JK
4334 int ret = 0;
4335
f607c668
PZ
4336 lockdep_assert_held(lock);
4337
95c354fe 4338 if (spin_needbreak(lock) || resched) {
1da177e4 4339 spin_unlock(lock);
d86ee480 4340 if (resched)
95c354fe
NP
4341 __cond_resched();
4342 else
4343 cpu_relax();
6df3cecb 4344 ret = 1;
1da177e4 4345 spin_lock(lock);
1da177e4 4346 }
6df3cecb 4347 return ret;
1da177e4 4348}
613afbf8 4349EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4350
613afbf8 4351int __sched __cond_resched_softirq(void)
1da177e4
LT
4352{
4353 BUG_ON(!in_softirq());
4354
d86ee480 4355 if (should_resched()) {
98d82567 4356 local_bh_enable();
1da177e4
LT
4357 __cond_resched();
4358 local_bh_disable();
4359 return 1;
4360 }
4361 return 0;
4362}
613afbf8 4363EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4364
1da177e4
LT
4365/**
4366 * yield - yield the current processor to other threads.
4367 *
8e3fabfd
PZ
4368 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4369 *
4370 * The scheduler is at all times free to pick the calling task as the most
4371 * eligible task to run, if removing the yield() call from your code breaks
4372 * it, its already broken.
4373 *
4374 * Typical broken usage is:
4375 *
4376 * while (!event)
4377 * yield();
4378 *
4379 * where one assumes that yield() will let 'the other' process run that will
4380 * make event true. If the current task is a SCHED_FIFO task that will never
4381 * happen. Never use yield() as a progress guarantee!!
4382 *
4383 * If you want to use yield() to wait for something, use wait_event().
4384 * If you want to use yield() to be 'nice' for others, use cond_resched().
4385 * If you still want to use yield(), do not!
1da177e4
LT
4386 */
4387void __sched yield(void)
4388{
4389 set_current_state(TASK_RUNNING);
4390 sys_sched_yield();
4391}
1da177e4
LT
4392EXPORT_SYMBOL(yield);
4393
d95f4122
MG
4394/**
4395 * yield_to - yield the current processor to another thread in
4396 * your thread group, or accelerate that thread toward the
4397 * processor it's on.
16addf95
RD
4398 * @p: target task
4399 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4400 *
4401 * It's the caller's job to ensure that the target task struct
4402 * can't go away on us before we can do any checks.
4403 *
7b270f60
PZ
4404 * Returns:
4405 * true (>0) if we indeed boosted the target task.
4406 * false (0) if we failed to boost the target.
4407 * -ESRCH if there's no task to yield to.
d95f4122
MG
4408 */
4409bool __sched yield_to(struct task_struct *p, bool preempt)
4410{
4411 struct task_struct *curr = current;
4412 struct rq *rq, *p_rq;
4413 unsigned long flags;
c3c18640 4414 int yielded = 0;
d95f4122
MG
4415
4416 local_irq_save(flags);
4417 rq = this_rq();
4418
4419again:
4420 p_rq = task_rq(p);
7b270f60
PZ
4421 /*
4422 * If we're the only runnable task on the rq and target rq also
4423 * has only one task, there's absolutely no point in yielding.
4424 */
4425 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4426 yielded = -ESRCH;
4427 goto out_irq;
4428 }
4429
d95f4122
MG
4430 double_rq_lock(rq, p_rq);
4431 while (task_rq(p) != p_rq) {
4432 double_rq_unlock(rq, p_rq);
4433 goto again;
4434 }
4435
4436 if (!curr->sched_class->yield_to_task)
7b270f60 4437 goto out_unlock;
d95f4122
MG
4438
4439 if (curr->sched_class != p->sched_class)
7b270f60 4440 goto out_unlock;
d95f4122
MG
4441
4442 if (task_running(p_rq, p) || p->state)
7b270f60 4443 goto out_unlock;
d95f4122
MG
4444
4445 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4446 if (yielded) {
d95f4122 4447 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4448 /*
4449 * Make p's CPU reschedule; pick_next_entity takes care of
4450 * fairness.
4451 */
4452 if (preempt && rq != p_rq)
4453 resched_task(p_rq->curr);
4454 }
d95f4122 4455
7b270f60 4456out_unlock:
d95f4122 4457 double_rq_unlock(rq, p_rq);
7b270f60 4458out_irq:
d95f4122
MG
4459 local_irq_restore(flags);
4460
7b270f60 4461 if (yielded > 0)
d95f4122
MG
4462 schedule();
4463
4464 return yielded;
4465}
4466EXPORT_SYMBOL_GPL(yield_to);
4467
1da177e4 4468/*
41a2d6cf 4469 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4470 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4471 */
4472void __sched io_schedule(void)
4473{
54d35f29 4474 struct rq *rq = raw_rq();
1da177e4 4475
0ff92245 4476 delayacct_blkio_start();
1da177e4 4477 atomic_inc(&rq->nr_iowait);
73c10101 4478 blk_flush_plug(current);
8f0dfc34 4479 current->in_iowait = 1;
1da177e4 4480 schedule();
8f0dfc34 4481 current->in_iowait = 0;
1da177e4 4482 atomic_dec(&rq->nr_iowait);
0ff92245 4483 delayacct_blkio_end();
1da177e4 4484}
1da177e4
LT
4485EXPORT_SYMBOL(io_schedule);
4486
4487long __sched io_schedule_timeout(long timeout)
4488{
54d35f29 4489 struct rq *rq = raw_rq();
1da177e4
LT
4490 long ret;
4491
0ff92245 4492 delayacct_blkio_start();
1da177e4 4493 atomic_inc(&rq->nr_iowait);
73c10101 4494 blk_flush_plug(current);
8f0dfc34 4495 current->in_iowait = 1;
1da177e4 4496 ret = schedule_timeout(timeout);
8f0dfc34 4497 current->in_iowait = 0;
1da177e4 4498 atomic_dec(&rq->nr_iowait);
0ff92245 4499 delayacct_blkio_end();
1da177e4
LT
4500 return ret;
4501}
4502
4503/**
4504 * sys_sched_get_priority_max - return maximum RT priority.
4505 * @policy: scheduling class.
4506 *
4507 * this syscall returns the maximum rt_priority that can be used
4508 * by a given scheduling class.
4509 */
5add95d4 4510SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4511{
4512 int ret = -EINVAL;
4513
4514 switch (policy) {
4515 case SCHED_FIFO:
4516 case SCHED_RR:
4517 ret = MAX_USER_RT_PRIO-1;
4518 break;
4519 case SCHED_NORMAL:
b0a9499c 4520 case SCHED_BATCH:
dd41f596 4521 case SCHED_IDLE:
1da177e4
LT
4522 ret = 0;
4523 break;
4524 }
4525 return ret;
4526}
4527
4528/**
4529 * sys_sched_get_priority_min - return minimum RT priority.
4530 * @policy: scheduling class.
4531 *
4532 * this syscall returns the minimum rt_priority that can be used
4533 * by a given scheduling class.
4534 */
5add95d4 4535SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4536{
4537 int ret = -EINVAL;
4538
4539 switch (policy) {
4540 case SCHED_FIFO:
4541 case SCHED_RR:
4542 ret = 1;
4543 break;
4544 case SCHED_NORMAL:
b0a9499c 4545 case SCHED_BATCH:
dd41f596 4546 case SCHED_IDLE:
1da177e4
LT
4547 ret = 0;
4548 }
4549 return ret;
4550}
4551
4552/**
4553 * sys_sched_rr_get_interval - return the default timeslice of a process.
4554 * @pid: pid of the process.
4555 * @interval: userspace pointer to the timeslice value.
4556 *
4557 * this syscall writes the default timeslice value of a given process
4558 * into the user-space timespec buffer. A value of '0' means infinity.
4559 */
17da2bd9 4560SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4561 struct timespec __user *, interval)
1da177e4 4562{
36c8b586 4563 struct task_struct *p;
a4ec24b4 4564 unsigned int time_slice;
dba091b9
TG
4565 unsigned long flags;
4566 struct rq *rq;
3a5c359a 4567 int retval;
1da177e4 4568 struct timespec t;
1da177e4
LT
4569
4570 if (pid < 0)
3a5c359a 4571 return -EINVAL;
1da177e4
LT
4572
4573 retval = -ESRCH;
1a551ae7 4574 rcu_read_lock();
1da177e4
LT
4575 p = find_process_by_pid(pid);
4576 if (!p)
4577 goto out_unlock;
4578
4579 retval = security_task_getscheduler(p);
4580 if (retval)
4581 goto out_unlock;
4582
dba091b9
TG
4583 rq = task_rq_lock(p, &flags);
4584 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4585 task_rq_unlock(rq, p, &flags);
a4ec24b4 4586
1a551ae7 4587 rcu_read_unlock();
a4ec24b4 4588 jiffies_to_timespec(time_slice, &t);
1da177e4 4589 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4590 return retval;
3a5c359a 4591
1da177e4 4592out_unlock:
1a551ae7 4593 rcu_read_unlock();
1da177e4
LT
4594 return retval;
4595}
4596
7c731e0a 4597static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4598
82a1fcb9 4599void sched_show_task(struct task_struct *p)
1da177e4 4600{
1da177e4 4601 unsigned long free = 0;
4e79752c 4602 int ppid;
36c8b586 4603 unsigned state;
1da177e4 4604
1da177e4 4605 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4606 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4607 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4608#if BITS_PER_LONG == 32
1da177e4 4609 if (state == TASK_RUNNING)
3df0fc5b 4610 printk(KERN_CONT " running ");
1da177e4 4611 else
3df0fc5b 4612 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4613#else
4614 if (state == TASK_RUNNING)
3df0fc5b 4615 printk(KERN_CONT " running task ");
1da177e4 4616 else
3df0fc5b 4617 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4618#endif
4619#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4620 free = stack_not_used(p);
1da177e4 4621#endif
4e79752c
PM
4622 rcu_read_lock();
4623 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4624 rcu_read_unlock();
3df0fc5b 4625 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4626 task_pid_nr(p), ppid,
aa47b7e0 4627 (unsigned long)task_thread_info(p)->flags);
1da177e4 4628
5fb5e6de 4629 show_stack(p, NULL);
1da177e4
LT
4630}
4631
e59e2ae2 4632void show_state_filter(unsigned long state_filter)
1da177e4 4633{
36c8b586 4634 struct task_struct *g, *p;
1da177e4 4635
4bd77321 4636#if BITS_PER_LONG == 32
3df0fc5b
PZ
4637 printk(KERN_INFO
4638 " task PC stack pid father\n");
1da177e4 4639#else
3df0fc5b
PZ
4640 printk(KERN_INFO
4641 " task PC stack pid father\n");
1da177e4 4642#endif
510f5acc 4643 rcu_read_lock();
1da177e4
LT
4644 do_each_thread(g, p) {
4645 /*
4646 * reset the NMI-timeout, listing all files on a slow
25985edc 4647 * console might take a lot of time:
1da177e4
LT
4648 */
4649 touch_nmi_watchdog();
39bc89fd 4650 if (!state_filter || (p->state & state_filter))
82a1fcb9 4651 sched_show_task(p);
1da177e4
LT
4652 } while_each_thread(g, p);
4653
04c9167f
JF
4654 touch_all_softlockup_watchdogs();
4655
dd41f596
IM
4656#ifdef CONFIG_SCHED_DEBUG
4657 sysrq_sched_debug_show();
4658#endif
510f5acc 4659 rcu_read_unlock();
e59e2ae2
IM
4660 /*
4661 * Only show locks if all tasks are dumped:
4662 */
93335a21 4663 if (!state_filter)
e59e2ae2 4664 debug_show_all_locks();
1da177e4
LT
4665}
4666
1df21055
IM
4667void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4668{
dd41f596 4669 idle->sched_class = &idle_sched_class;
1df21055
IM
4670}
4671
f340c0d1
IM
4672/**
4673 * init_idle - set up an idle thread for a given CPU
4674 * @idle: task in question
4675 * @cpu: cpu the idle task belongs to
4676 *
4677 * NOTE: this function does not set the idle thread's NEED_RESCHED
4678 * flag, to make booting more robust.
4679 */
5c1e1767 4680void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4681{
70b97a7f 4682 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4683 unsigned long flags;
4684
05fa785c 4685 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4686
dd41f596 4687 __sched_fork(idle);
06b83b5f 4688 idle->state = TASK_RUNNING;
dd41f596
IM
4689 idle->se.exec_start = sched_clock();
4690
1e1b6c51 4691 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4692 /*
4693 * We're having a chicken and egg problem, even though we are
4694 * holding rq->lock, the cpu isn't yet set to this cpu so the
4695 * lockdep check in task_group() will fail.
4696 *
4697 * Similar case to sched_fork(). / Alternatively we could
4698 * use task_rq_lock() here and obtain the other rq->lock.
4699 *
4700 * Silence PROVE_RCU
4701 */
4702 rcu_read_lock();
dd41f596 4703 __set_task_cpu(idle, cpu);
6506cf6c 4704 rcu_read_unlock();
1da177e4 4705
1da177e4 4706 rq->curr = rq->idle = idle;
3ca7a440
PZ
4707#if defined(CONFIG_SMP)
4708 idle->on_cpu = 1;
4866cde0 4709#endif
05fa785c 4710 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4711
4712 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4713 task_thread_info(idle)->preempt_count = 0;
55cd5340 4714
dd41f596
IM
4715 /*
4716 * The idle tasks have their own, simple scheduling class:
4717 */
4718 idle->sched_class = &idle_sched_class;
868baf07 4719 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4720 vtime_init_idle(idle);
f1c6f1a7
CE
4721#if defined(CONFIG_SMP)
4722 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4723#endif
19978ca6
IM
4724}
4725
1da177e4 4726#ifdef CONFIG_SMP
1e1b6c51
KM
4727void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4728{
4729 if (p->sched_class && p->sched_class->set_cpus_allowed)
4730 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4731
4732 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4733 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4734}
4735
1da177e4
LT
4736/*
4737 * This is how migration works:
4738 *
969c7921
TH
4739 * 1) we invoke migration_cpu_stop() on the target CPU using
4740 * stop_one_cpu().
4741 * 2) stopper starts to run (implicitly forcing the migrated thread
4742 * off the CPU)
4743 * 3) it checks whether the migrated task is still in the wrong runqueue.
4744 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4745 * it and puts it into the right queue.
969c7921
TH
4746 * 5) stopper completes and stop_one_cpu() returns and the migration
4747 * is done.
1da177e4
LT
4748 */
4749
4750/*
4751 * Change a given task's CPU affinity. Migrate the thread to a
4752 * proper CPU and schedule it away if the CPU it's executing on
4753 * is removed from the allowed bitmask.
4754 *
4755 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4756 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4757 * call is not atomic; no spinlocks may be held.
4758 */
96f874e2 4759int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4760{
4761 unsigned long flags;
70b97a7f 4762 struct rq *rq;
969c7921 4763 unsigned int dest_cpu;
48f24c4d 4764 int ret = 0;
1da177e4
LT
4765
4766 rq = task_rq_lock(p, &flags);
e2912009 4767
db44fc01
YZ
4768 if (cpumask_equal(&p->cpus_allowed, new_mask))
4769 goto out;
4770
6ad4c188 4771 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4772 ret = -EINVAL;
4773 goto out;
4774 }
4775
db44fc01 4776 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4777 ret = -EINVAL;
4778 goto out;
4779 }
4780
1e1b6c51 4781 do_set_cpus_allowed(p, new_mask);
73fe6aae 4782
1da177e4 4783 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4784 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4785 goto out;
4786
969c7921 4787 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4788 if (p->on_rq) {
969c7921 4789 struct migration_arg arg = { p, dest_cpu };
1da177e4 4790 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4791 task_rq_unlock(rq, p, &flags);
969c7921 4792 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4793 tlb_migrate_finish(p->mm);
4794 return 0;
4795 }
4796out:
0122ec5b 4797 task_rq_unlock(rq, p, &flags);
48f24c4d 4798
1da177e4
LT
4799 return ret;
4800}
cd8ba7cd 4801EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4802
4803/*
41a2d6cf 4804 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4805 * this because either it can't run here any more (set_cpus_allowed()
4806 * away from this CPU, or CPU going down), or because we're
4807 * attempting to rebalance this task on exec (sched_exec).
4808 *
4809 * So we race with normal scheduler movements, but that's OK, as long
4810 * as the task is no longer on this CPU.
efc30814
KK
4811 *
4812 * Returns non-zero if task was successfully migrated.
1da177e4 4813 */
efc30814 4814static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4815{
70b97a7f 4816 struct rq *rq_dest, *rq_src;
e2912009 4817 int ret = 0;
1da177e4 4818
e761b772 4819 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4820 return ret;
1da177e4
LT
4821
4822 rq_src = cpu_rq(src_cpu);
4823 rq_dest = cpu_rq(dest_cpu);
4824
0122ec5b 4825 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4826 double_rq_lock(rq_src, rq_dest);
4827 /* Already moved. */
4828 if (task_cpu(p) != src_cpu)
b1e38734 4829 goto done;
1da177e4 4830 /* Affinity changed (again). */
fa17b507 4831 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4832 goto fail;
1da177e4 4833
e2912009
PZ
4834 /*
4835 * If we're not on a rq, the next wake-up will ensure we're
4836 * placed properly.
4837 */
fd2f4419 4838 if (p->on_rq) {
4ca9b72b 4839 dequeue_task(rq_src, p, 0);
e2912009 4840 set_task_cpu(p, dest_cpu);
4ca9b72b 4841 enqueue_task(rq_dest, p, 0);
15afe09b 4842 check_preempt_curr(rq_dest, p, 0);
1da177e4 4843 }
b1e38734 4844done:
efc30814 4845 ret = 1;
b1e38734 4846fail:
1da177e4 4847 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4848 raw_spin_unlock(&p->pi_lock);
efc30814 4849 return ret;
1da177e4
LT
4850}
4851
4852/*
969c7921
TH
4853 * migration_cpu_stop - this will be executed by a highprio stopper thread
4854 * and performs thread migration by bumping thread off CPU then
4855 * 'pushing' onto another runqueue.
1da177e4 4856 */
969c7921 4857static int migration_cpu_stop(void *data)
1da177e4 4858{
969c7921 4859 struct migration_arg *arg = data;
f7b4cddc 4860
969c7921
TH
4861 /*
4862 * The original target cpu might have gone down and we might
4863 * be on another cpu but it doesn't matter.
4864 */
f7b4cddc 4865 local_irq_disable();
969c7921 4866 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4867 local_irq_enable();
1da177e4 4868 return 0;
f7b4cddc
ON
4869}
4870
1da177e4 4871#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4872
054b9108 4873/*
48c5ccae
PZ
4874 * Ensures that the idle task is using init_mm right before its cpu goes
4875 * offline.
054b9108 4876 */
48c5ccae 4877void idle_task_exit(void)
1da177e4 4878{
48c5ccae 4879 struct mm_struct *mm = current->active_mm;
e76bd8d9 4880
48c5ccae 4881 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4882
48c5ccae
PZ
4883 if (mm != &init_mm)
4884 switch_mm(mm, &init_mm, current);
4885 mmdrop(mm);
1da177e4
LT
4886}
4887
4888/*
5d180232
PZ
4889 * Since this CPU is going 'away' for a while, fold any nr_active delta
4890 * we might have. Assumes we're called after migrate_tasks() so that the
4891 * nr_active count is stable.
4892 *
4893 * Also see the comment "Global load-average calculations".
1da177e4 4894 */
5d180232 4895static void calc_load_migrate(struct rq *rq)
1da177e4 4896{
5d180232
PZ
4897 long delta = calc_load_fold_active(rq);
4898 if (delta)
4899 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4900}
4901
48f24c4d 4902/*
48c5ccae
PZ
4903 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4904 * try_to_wake_up()->select_task_rq().
4905 *
4906 * Called with rq->lock held even though we'er in stop_machine() and
4907 * there's no concurrency possible, we hold the required locks anyway
4908 * because of lock validation efforts.
1da177e4 4909 */
48c5ccae 4910static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4911{
70b97a7f 4912 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4913 struct task_struct *next, *stop = rq->stop;
4914 int dest_cpu;
1da177e4
LT
4915
4916 /*
48c5ccae
PZ
4917 * Fudge the rq selection such that the below task selection loop
4918 * doesn't get stuck on the currently eligible stop task.
4919 *
4920 * We're currently inside stop_machine() and the rq is either stuck
4921 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4922 * either way we should never end up calling schedule() until we're
4923 * done here.
1da177e4 4924 */
48c5ccae 4925 rq->stop = NULL;
48f24c4d 4926
dd41f596 4927 for ( ; ; ) {
48c5ccae
PZ
4928 /*
4929 * There's this thread running, bail when that's the only
4930 * remaining thread.
4931 */
4932 if (rq->nr_running == 1)
dd41f596 4933 break;
48c5ccae 4934
b67802ea 4935 next = pick_next_task(rq);
48c5ccae 4936 BUG_ON(!next);
79c53799 4937 next->sched_class->put_prev_task(rq, next);
e692ab53 4938
48c5ccae
PZ
4939 /* Find suitable destination for @next, with force if needed. */
4940 dest_cpu = select_fallback_rq(dead_cpu, next);
4941 raw_spin_unlock(&rq->lock);
4942
4943 __migrate_task(next, dead_cpu, dest_cpu);
4944
4945 raw_spin_lock(&rq->lock);
1da177e4 4946 }
dce48a84 4947
48c5ccae 4948 rq->stop = stop;
dce48a84 4949}
48c5ccae 4950
1da177e4
LT
4951#endif /* CONFIG_HOTPLUG_CPU */
4952
e692ab53
NP
4953#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4954
4955static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4956 {
4957 .procname = "sched_domain",
c57baf1e 4958 .mode = 0555,
e0361851 4959 },
56992309 4960 {}
e692ab53
NP
4961};
4962
4963static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4964 {
4965 .procname = "kernel",
c57baf1e 4966 .mode = 0555,
e0361851
AD
4967 .child = sd_ctl_dir,
4968 },
56992309 4969 {}
e692ab53
NP
4970};
4971
4972static struct ctl_table *sd_alloc_ctl_entry(int n)
4973{
4974 struct ctl_table *entry =
5cf9f062 4975 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4976
e692ab53
NP
4977 return entry;
4978}
4979
6382bc90
MM
4980static void sd_free_ctl_entry(struct ctl_table **tablep)
4981{
cd790076 4982 struct ctl_table *entry;
6382bc90 4983
cd790076
MM
4984 /*
4985 * In the intermediate directories, both the child directory and
4986 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4987 * will always be set. In the lowest directory the names are
cd790076
MM
4988 * static strings and all have proc handlers.
4989 */
4990 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4991 if (entry->child)
4992 sd_free_ctl_entry(&entry->child);
cd790076
MM
4993 if (entry->proc_handler == NULL)
4994 kfree(entry->procname);
4995 }
6382bc90
MM
4996
4997 kfree(*tablep);
4998 *tablep = NULL;
4999}
5000
201c373e
NK
5001static int min_load_idx = 0;
5002static int max_load_idx = CPU_LOAD_IDX_MAX;
5003
e692ab53 5004static void
e0361851 5005set_table_entry(struct ctl_table *entry,
e692ab53 5006 const char *procname, void *data, int maxlen,
201c373e
NK
5007 umode_t mode, proc_handler *proc_handler,
5008 bool load_idx)
e692ab53 5009{
e692ab53
NP
5010 entry->procname = procname;
5011 entry->data = data;
5012 entry->maxlen = maxlen;
5013 entry->mode = mode;
5014 entry->proc_handler = proc_handler;
201c373e
NK
5015
5016 if (load_idx) {
5017 entry->extra1 = &min_load_idx;
5018 entry->extra2 = &max_load_idx;
5019 }
e692ab53
NP
5020}
5021
5022static struct ctl_table *
5023sd_alloc_ctl_domain_table(struct sched_domain *sd)
5024{
a5d8c348 5025 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5026
ad1cdc1d
MM
5027 if (table == NULL)
5028 return NULL;
5029
e0361851 5030 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5031 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5032 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5033 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5034 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5035 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5036 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5037 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5038 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5039 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5040 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5041 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5042 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5043 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5044 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5045 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5046 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5047 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5048 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5049 &sd->cache_nice_tries,
201c373e 5050 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5051 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5052 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5053 set_table_entry(&table[11], "name", sd->name,
201c373e 5054 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5055 /* &table[12] is terminator */
e692ab53
NP
5056
5057 return table;
5058}
5059
9a4e7159 5060static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5061{
5062 struct ctl_table *entry, *table;
5063 struct sched_domain *sd;
5064 int domain_num = 0, i;
5065 char buf[32];
5066
5067 for_each_domain(cpu, sd)
5068 domain_num++;
5069 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5070 if (table == NULL)
5071 return NULL;
e692ab53
NP
5072
5073 i = 0;
5074 for_each_domain(cpu, sd) {
5075 snprintf(buf, 32, "domain%d", i);
e692ab53 5076 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5077 entry->mode = 0555;
e692ab53
NP
5078 entry->child = sd_alloc_ctl_domain_table(sd);
5079 entry++;
5080 i++;
5081 }
5082 return table;
5083}
5084
5085static struct ctl_table_header *sd_sysctl_header;
6382bc90 5086static void register_sched_domain_sysctl(void)
e692ab53 5087{
6ad4c188 5088 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5089 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5090 char buf[32];
5091
7378547f
MM
5092 WARN_ON(sd_ctl_dir[0].child);
5093 sd_ctl_dir[0].child = entry;
5094
ad1cdc1d
MM
5095 if (entry == NULL)
5096 return;
5097
6ad4c188 5098 for_each_possible_cpu(i) {
e692ab53 5099 snprintf(buf, 32, "cpu%d", i);
e692ab53 5100 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5101 entry->mode = 0555;
e692ab53 5102 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5103 entry++;
e692ab53 5104 }
7378547f
MM
5105
5106 WARN_ON(sd_sysctl_header);
e692ab53
NP
5107 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5108}
6382bc90 5109
7378547f 5110/* may be called multiple times per register */
6382bc90
MM
5111static void unregister_sched_domain_sysctl(void)
5112{
7378547f
MM
5113 if (sd_sysctl_header)
5114 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5115 sd_sysctl_header = NULL;
7378547f
MM
5116 if (sd_ctl_dir[0].child)
5117 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5118}
e692ab53 5119#else
6382bc90
MM
5120static void register_sched_domain_sysctl(void)
5121{
5122}
5123static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5124{
5125}
5126#endif
5127
1f11eb6a
GH
5128static void set_rq_online(struct rq *rq)
5129{
5130 if (!rq->online) {
5131 const struct sched_class *class;
5132
c6c4927b 5133 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5134 rq->online = 1;
5135
5136 for_each_class(class) {
5137 if (class->rq_online)
5138 class->rq_online(rq);
5139 }
5140 }
5141}
5142
5143static void set_rq_offline(struct rq *rq)
5144{
5145 if (rq->online) {
5146 const struct sched_class *class;
5147
5148 for_each_class(class) {
5149 if (class->rq_offline)
5150 class->rq_offline(rq);
5151 }
5152
c6c4927b 5153 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5154 rq->online = 0;
5155 }
5156}
5157
1da177e4
LT
5158/*
5159 * migration_call - callback that gets triggered when a CPU is added.
5160 * Here we can start up the necessary migration thread for the new CPU.
5161 */
48f24c4d
IM
5162static int __cpuinit
5163migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5164{
48f24c4d 5165 int cpu = (long)hcpu;
1da177e4 5166 unsigned long flags;
969c7921 5167 struct rq *rq = cpu_rq(cpu);
1da177e4 5168
48c5ccae 5169 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5170
1da177e4 5171 case CPU_UP_PREPARE:
a468d389 5172 rq->calc_load_update = calc_load_update;
1da177e4 5173 break;
48f24c4d 5174
1da177e4 5175 case CPU_ONLINE:
1f94ef59 5176 /* Update our root-domain */
05fa785c 5177 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5178 if (rq->rd) {
c6c4927b 5179 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5180
5181 set_rq_online(rq);
1f94ef59 5182 }
05fa785c 5183 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5184 break;
48f24c4d 5185
1da177e4 5186#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5187 case CPU_DYING:
317f3941 5188 sched_ttwu_pending();
57d885fe 5189 /* Update our root-domain */
05fa785c 5190 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5191 if (rq->rd) {
c6c4927b 5192 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5193 set_rq_offline(rq);
57d885fe 5194 }
48c5ccae
PZ
5195 migrate_tasks(cpu);
5196 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5197 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5198 break;
48c5ccae 5199
5d180232 5200 case CPU_DEAD:
f319da0c 5201 calc_load_migrate(rq);
57d885fe 5202 break;
1da177e4
LT
5203#endif
5204 }
49c022e6
PZ
5205
5206 update_max_interval();
5207
1da177e4
LT
5208 return NOTIFY_OK;
5209}
5210
f38b0820
PM
5211/*
5212 * Register at high priority so that task migration (migrate_all_tasks)
5213 * happens before everything else. This has to be lower priority than
cdd6c482 5214 * the notifier in the perf_event subsystem, though.
1da177e4 5215 */
26c2143b 5216static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5217 .notifier_call = migration_call,
50a323b7 5218 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5219};
5220
3a101d05
TH
5221static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5222 unsigned long action, void *hcpu)
5223{
5224 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5225 case CPU_STARTING:
3a101d05
TH
5226 case CPU_DOWN_FAILED:
5227 set_cpu_active((long)hcpu, true);
5228 return NOTIFY_OK;
5229 default:
5230 return NOTIFY_DONE;
5231 }
5232}
5233
5234static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5235 unsigned long action, void *hcpu)
5236{
5237 switch (action & ~CPU_TASKS_FROZEN) {
5238 case CPU_DOWN_PREPARE:
5239 set_cpu_active((long)hcpu, false);
5240 return NOTIFY_OK;
5241 default:
5242 return NOTIFY_DONE;
5243 }
5244}
5245
7babe8db 5246static int __init migration_init(void)
1da177e4
LT
5247{
5248 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5249 int err;
48f24c4d 5250
3a101d05 5251 /* Initialize migration for the boot CPU */
07dccf33
AM
5252 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5253 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5254 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5255 register_cpu_notifier(&migration_notifier);
7babe8db 5256
3a101d05
TH
5257 /* Register cpu active notifiers */
5258 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5259 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5260
a004cd42 5261 return 0;
1da177e4 5262}
7babe8db 5263early_initcall(migration_init);
1da177e4
LT
5264#endif
5265
5266#ifdef CONFIG_SMP
476f3534 5267
4cb98839
PZ
5268static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5269
3e9830dc 5270#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5271
d039ac60 5272static __read_mostly int sched_debug_enabled;
f6630114 5273
d039ac60 5274static int __init sched_debug_setup(char *str)
f6630114 5275{
d039ac60 5276 sched_debug_enabled = 1;
f6630114
MT
5277
5278 return 0;
5279}
d039ac60
PZ
5280early_param("sched_debug", sched_debug_setup);
5281
5282static inline bool sched_debug(void)
5283{
5284 return sched_debug_enabled;
5285}
f6630114 5286
7c16ec58 5287static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5288 struct cpumask *groupmask)
1da177e4 5289{
4dcf6aff 5290 struct sched_group *group = sd->groups;
434d53b0 5291 char str[256];
1da177e4 5292
968ea6d8 5293 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5294 cpumask_clear(groupmask);
4dcf6aff
IM
5295
5296 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5297
5298 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5299 printk("does not load-balance\n");
4dcf6aff 5300 if (sd->parent)
3df0fc5b
PZ
5301 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5302 " has parent");
4dcf6aff 5303 return -1;
41c7ce9a
NP
5304 }
5305
3df0fc5b 5306 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5307
758b2cdc 5308 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5309 printk(KERN_ERR "ERROR: domain->span does not contain "
5310 "CPU%d\n", cpu);
4dcf6aff 5311 }
758b2cdc 5312 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5313 printk(KERN_ERR "ERROR: domain->groups does not contain"
5314 " CPU%d\n", cpu);
4dcf6aff 5315 }
1da177e4 5316
4dcf6aff 5317 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5318 do {
4dcf6aff 5319 if (!group) {
3df0fc5b
PZ
5320 printk("\n");
5321 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5322 break;
5323 }
5324
c3decf0d
PZ
5325 /*
5326 * Even though we initialize ->power to something semi-sane,
5327 * we leave power_orig unset. This allows us to detect if
5328 * domain iteration is still funny without causing /0 traps.
5329 */
5330 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5331 printk(KERN_CONT "\n");
5332 printk(KERN_ERR "ERROR: domain->cpu_power not "
5333 "set\n");
4dcf6aff
IM
5334 break;
5335 }
1da177e4 5336
758b2cdc 5337 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5338 printk(KERN_CONT "\n");
5339 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5340 break;
5341 }
1da177e4 5342
cb83b629
PZ
5343 if (!(sd->flags & SD_OVERLAP) &&
5344 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5345 printk(KERN_CONT "\n");
5346 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5347 break;
5348 }
1da177e4 5349
758b2cdc 5350 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5351
968ea6d8 5352 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5353
3df0fc5b 5354 printk(KERN_CONT " %s", str);
9c3f75cb 5355 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5356 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5357 group->sgp->power);
381512cf 5358 }
1da177e4 5359
4dcf6aff
IM
5360 group = group->next;
5361 } while (group != sd->groups);
3df0fc5b 5362 printk(KERN_CONT "\n");
1da177e4 5363
758b2cdc 5364 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5365 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5366
758b2cdc
RR
5367 if (sd->parent &&
5368 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5369 printk(KERN_ERR "ERROR: parent span is not a superset "
5370 "of domain->span\n");
4dcf6aff
IM
5371 return 0;
5372}
1da177e4 5373
4dcf6aff
IM
5374static void sched_domain_debug(struct sched_domain *sd, int cpu)
5375{
5376 int level = 0;
1da177e4 5377
d039ac60 5378 if (!sched_debug_enabled)
f6630114
MT
5379 return;
5380
4dcf6aff
IM
5381 if (!sd) {
5382 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5383 return;
5384 }
1da177e4 5385
4dcf6aff
IM
5386 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5387
5388 for (;;) {
4cb98839 5389 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5390 break;
1da177e4
LT
5391 level++;
5392 sd = sd->parent;
33859f7f 5393 if (!sd)
4dcf6aff
IM
5394 break;
5395 }
1da177e4 5396}
6d6bc0ad 5397#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5398# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5399static inline bool sched_debug(void)
5400{
5401 return false;
5402}
6d6bc0ad 5403#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5404
1a20ff27 5405static int sd_degenerate(struct sched_domain *sd)
245af2c7 5406{
758b2cdc 5407 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5408 return 1;
5409
5410 /* Following flags need at least 2 groups */
5411 if (sd->flags & (SD_LOAD_BALANCE |
5412 SD_BALANCE_NEWIDLE |
5413 SD_BALANCE_FORK |
89c4710e
SS
5414 SD_BALANCE_EXEC |
5415 SD_SHARE_CPUPOWER |
5416 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5417 if (sd->groups != sd->groups->next)
5418 return 0;
5419 }
5420
5421 /* Following flags don't use groups */
c88d5910 5422 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5423 return 0;
5424
5425 return 1;
5426}
5427
48f24c4d
IM
5428static int
5429sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5430{
5431 unsigned long cflags = sd->flags, pflags = parent->flags;
5432
5433 if (sd_degenerate(parent))
5434 return 1;
5435
758b2cdc 5436 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5437 return 0;
5438
245af2c7
SS
5439 /* Flags needing groups don't count if only 1 group in parent */
5440 if (parent->groups == parent->groups->next) {
5441 pflags &= ~(SD_LOAD_BALANCE |
5442 SD_BALANCE_NEWIDLE |
5443 SD_BALANCE_FORK |
89c4710e
SS
5444 SD_BALANCE_EXEC |
5445 SD_SHARE_CPUPOWER |
5446 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5447 if (nr_node_ids == 1)
5448 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5449 }
5450 if (~cflags & pflags)
5451 return 0;
5452
5453 return 1;
5454}
5455
dce840a0 5456static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5457{
dce840a0 5458 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5459
68e74568 5460 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5461 free_cpumask_var(rd->rto_mask);
5462 free_cpumask_var(rd->online);
5463 free_cpumask_var(rd->span);
5464 kfree(rd);
5465}
5466
57d885fe
GH
5467static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5468{
a0490fa3 5469 struct root_domain *old_rd = NULL;
57d885fe 5470 unsigned long flags;
57d885fe 5471
05fa785c 5472 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5473
5474 if (rq->rd) {
a0490fa3 5475 old_rd = rq->rd;
57d885fe 5476
c6c4927b 5477 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5478 set_rq_offline(rq);
57d885fe 5479
c6c4927b 5480 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5481
a0490fa3
IM
5482 /*
5483 * If we dont want to free the old_rt yet then
5484 * set old_rd to NULL to skip the freeing later
5485 * in this function:
5486 */
5487 if (!atomic_dec_and_test(&old_rd->refcount))
5488 old_rd = NULL;
57d885fe
GH
5489 }
5490
5491 atomic_inc(&rd->refcount);
5492 rq->rd = rd;
5493
c6c4927b 5494 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5495 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5496 set_rq_online(rq);
57d885fe 5497
05fa785c 5498 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5499
5500 if (old_rd)
dce840a0 5501 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5502}
5503
68c38fc3 5504static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5505{
5506 memset(rd, 0, sizeof(*rd));
5507
68c38fc3 5508 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5509 goto out;
68c38fc3 5510 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5511 goto free_span;
68c38fc3 5512 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5513 goto free_online;
6e0534f2 5514
68c38fc3 5515 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5516 goto free_rto_mask;
c6c4927b 5517 return 0;
6e0534f2 5518
68e74568
RR
5519free_rto_mask:
5520 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5521free_online:
5522 free_cpumask_var(rd->online);
5523free_span:
5524 free_cpumask_var(rd->span);
0c910d28 5525out:
c6c4927b 5526 return -ENOMEM;
57d885fe
GH
5527}
5528
029632fb
PZ
5529/*
5530 * By default the system creates a single root-domain with all cpus as
5531 * members (mimicking the global state we have today).
5532 */
5533struct root_domain def_root_domain;
5534
57d885fe
GH
5535static void init_defrootdomain(void)
5536{
68c38fc3 5537 init_rootdomain(&def_root_domain);
c6c4927b 5538
57d885fe
GH
5539 atomic_set(&def_root_domain.refcount, 1);
5540}
5541
dc938520 5542static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5543{
5544 struct root_domain *rd;
5545
5546 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5547 if (!rd)
5548 return NULL;
5549
68c38fc3 5550 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5551 kfree(rd);
5552 return NULL;
5553 }
57d885fe
GH
5554
5555 return rd;
5556}
5557
e3589f6c
PZ
5558static void free_sched_groups(struct sched_group *sg, int free_sgp)
5559{
5560 struct sched_group *tmp, *first;
5561
5562 if (!sg)
5563 return;
5564
5565 first = sg;
5566 do {
5567 tmp = sg->next;
5568
5569 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5570 kfree(sg->sgp);
5571
5572 kfree(sg);
5573 sg = tmp;
5574 } while (sg != first);
5575}
5576
dce840a0
PZ
5577static void free_sched_domain(struct rcu_head *rcu)
5578{
5579 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5580
5581 /*
5582 * If its an overlapping domain it has private groups, iterate and
5583 * nuke them all.
5584 */
5585 if (sd->flags & SD_OVERLAP) {
5586 free_sched_groups(sd->groups, 1);
5587 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5588 kfree(sd->groups->sgp);
dce840a0 5589 kfree(sd->groups);
9c3f75cb 5590 }
dce840a0
PZ
5591 kfree(sd);
5592}
5593
5594static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5595{
5596 call_rcu(&sd->rcu, free_sched_domain);
5597}
5598
5599static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5600{
5601 for (; sd; sd = sd->parent)
5602 destroy_sched_domain(sd, cpu);
5603}
5604
518cd623
PZ
5605/*
5606 * Keep a special pointer to the highest sched_domain that has
5607 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5608 * allows us to avoid some pointer chasing select_idle_sibling().
5609 *
5610 * Also keep a unique ID per domain (we use the first cpu number in
5611 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5612 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5613 */
5614DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5615DEFINE_PER_CPU(int, sd_llc_id);
5616
5617static void update_top_cache_domain(int cpu)
5618{
5619 struct sched_domain *sd;
5620 int id = cpu;
5621
5622 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5623 if (sd)
518cd623
PZ
5624 id = cpumask_first(sched_domain_span(sd));
5625
5626 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5627 per_cpu(sd_llc_id, cpu) = id;
5628}
5629
1da177e4 5630/*
0eab9146 5631 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5632 * hold the hotplug lock.
5633 */
0eab9146
IM
5634static void
5635cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5636{
70b97a7f 5637 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5638 struct sched_domain *tmp;
5639
5640 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5641 for (tmp = sd; tmp; ) {
245af2c7
SS
5642 struct sched_domain *parent = tmp->parent;
5643 if (!parent)
5644 break;
f29c9b1c 5645
1a848870 5646 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5647 tmp->parent = parent->parent;
1a848870
SS
5648 if (parent->parent)
5649 parent->parent->child = tmp;
dce840a0 5650 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5651 } else
5652 tmp = tmp->parent;
245af2c7
SS
5653 }
5654
1a848870 5655 if (sd && sd_degenerate(sd)) {
dce840a0 5656 tmp = sd;
245af2c7 5657 sd = sd->parent;
dce840a0 5658 destroy_sched_domain(tmp, cpu);
1a848870
SS
5659 if (sd)
5660 sd->child = NULL;
5661 }
1da177e4 5662
4cb98839 5663 sched_domain_debug(sd, cpu);
1da177e4 5664
57d885fe 5665 rq_attach_root(rq, rd);
dce840a0 5666 tmp = rq->sd;
674311d5 5667 rcu_assign_pointer(rq->sd, sd);
dce840a0 5668 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5669
5670 update_top_cache_domain(cpu);
1da177e4
LT
5671}
5672
5673/* cpus with isolated domains */
dcc30a35 5674static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5675
5676/* Setup the mask of cpus configured for isolated domains */
5677static int __init isolated_cpu_setup(char *str)
5678{
bdddd296 5679 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5680 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5681 return 1;
5682}
5683
8927f494 5684__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5685
d3081f52
PZ
5686static const struct cpumask *cpu_cpu_mask(int cpu)
5687{
5688 return cpumask_of_node(cpu_to_node(cpu));
5689}
5690
dce840a0
PZ
5691struct sd_data {
5692 struct sched_domain **__percpu sd;
5693 struct sched_group **__percpu sg;
9c3f75cb 5694 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5695};
5696
49a02c51 5697struct s_data {
21d42ccf 5698 struct sched_domain ** __percpu sd;
49a02c51
AH
5699 struct root_domain *rd;
5700};
5701
2109b99e 5702enum s_alloc {
2109b99e 5703 sa_rootdomain,
21d42ccf 5704 sa_sd,
dce840a0 5705 sa_sd_storage,
2109b99e
AH
5706 sa_none,
5707};
5708
54ab4ff4
PZ
5709struct sched_domain_topology_level;
5710
5711typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5712typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5713
e3589f6c
PZ
5714#define SDTL_OVERLAP 0x01
5715
eb7a74e6 5716struct sched_domain_topology_level {
2c402dc3
PZ
5717 sched_domain_init_f init;
5718 sched_domain_mask_f mask;
e3589f6c 5719 int flags;
cb83b629 5720 int numa_level;
54ab4ff4 5721 struct sd_data data;
eb7a74e6
PZ
5722};
5723
c1174876
PZ
5724/*
5725 * Build an iteration mask that can exclude certain CPUs from the upwards
5726 * domain traversal.
5727 *
5728 * Asymmetric node setups can result in situations where the domain tree is of
5729 * unequal depth, make sure to skip domains that already cover the entire
5730 * range.
5731 *
5732 * In that case build_sched_domains() will have terminated the iteration early
5733 * and our sibling sd spans will be empty. Domains should always include the
5734 * cpu they're built on, so check that.
5735 *
5736 */
5737static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5738{
5739 const struct cpumask *span = sched_domain_span(sd);
5740 struct sd_data *sdd = sd->private;
5741 struct sched_domain *sibling;
5742 int i;
5743
5744 for_each_cpu(i, span) {
5745 sibling = *per_cpu_ptr(sdd->sd, i);
5746 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5747 continue;
5748
5749 cpumask_set_cpu(i, sched_group_mask(sg));
5750 }
5751}
5752
5753/*
5754 * Return the canonical balance cpu for this group, this is the first cpu
5755 * of this group that's also in the iteration mask.
5756 */
5757int group_balance_cpu(struct sched_group *sg)
5758{
5759 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5760}
5761
e3589f6c
PZ
5762static int
5763build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5764{
5765 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5766 const struct cpumask *span = sched_domain_span(sd);
5767 struct cpumask *covered = sched_domains_tmpmask;
5768 struct sd_data *sdd = sd->private;
5769 struct sched_domain *child;
5770 int i;
5771
5772 cpumask_clear(covered);
5773
5774 for_each_cpu(i, span) {
5775 struct cpumask *sg_span;
5776
5777 if (cpumask_test_cpu(i, covered))
5778 continue;
5779
c1174876
PZ
5780 child = *per_cpu_ptr(sdd->sd, i);
5781
5782 /* See the comment near build_group_mask(). */
5783 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5784 continue;
5785
e3589f6c 5786 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5787 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5788
5789 if (!sg)
5790 goto fail;
5791
5792 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5793 if (child->child) {
5794 child = child->child;
5795 cpumask_copy(sg_span, sched_domain_span(child));
5796 } else
5797 cpumask_set_cpu(i, sg_span);
5798
5799 cpumask_or(covered, covered, sg_span);
5800
74a5ce20 5801 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5802 if (atomic_inc_return(&sg->sgp->ref) == 1)
5803 build_group_mask(sd, sg);
5804
c3decf0d
PZ
5805 /*
5806 * Initialize sgp->power such that even if we mess up the
5807 * domains and no possible iteration will get us here, we won't
5808 * die on a /0 trap.
5809 */
5810 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5811
c1174876
PZ
5812 /*
5813 * Make sure the first group of this domain contains the
5814 * canonical balance cpu. Otherwise the sched_domain iteration
5815 * breaks. See update_sg_lb_stats().
5816 */
74a5ce20 5817 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5818 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5819 groups = sg;
5820
5821 if (!first)
5822 first = sg;
5823 if (last)
5824 last->next = sg;
5825 last = sg;
5826 last->next = first;
5827 }
5828 sd->groups = groups;
5829
5830 return 0;
5831
5832fail:
5833 free_sched_groups(first, 0);
5834
5835 return -ENOMEM;
5836}
5837
dce840a0 5838static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5839{
dce840a0
PZ
5840 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5841 struct sched_domain *child = sd->child;
1da177e4 5842
dce840a0
PZ
5843 if (child)
5844 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5845
9c3f75cb 5846 if (sg) {
dce840a0 5847 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5848 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5849 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5850 }
dce840a0
PZ
5851
5852 return cpu;
1e9f28fa 5853}
1e9f28fa 5854
01a08546 5855/*
dce840a0
PZ
5856 * build_sched_groups will build a circular linked list of the groups
5857 * covered by the given span, and will set each group's ->cpumask correctly,
5858 * and ->cpu_power to 0.
e3589f6c
PZ
5859 *
5860 * Assumes the sched_domain tree is fully constructed
01a08546 5861 */
e3589f6c
PZ
5862static int
5863build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5864{
dce840a0
PZ
5865 struct sched_group *first = NULL, *last = NULL;
5866 struct sd_data *sdd = sd->private;
5867 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5868 struct cpumask *covered;
dce840a0 5869 int i;
9c1cfda2 5870
e3589f6c
PZ
5871 get_group(cpu, sdd, &sd->groups);
5872 atomic_inc(&sd->groups->ref);
5873
5874 if (cpu != cpumask_first(sched_domain_span(sd)))
5875 return 0;
5876
f96225fd
PZ
5877 lockdep_assert_held(&sched_domains_mutex);
5878 covered = sched_domains_tmpmask;
5879
dce840a0 5880 cpumask_clear(covered);
6711cab4 5881
dce840a0
PZ
5882 for_each_cpu(i, span) {
5883 struct sched_group *sg;
5884 int group = get_group(i, sdd, &sg);
5885 int j;
6711cab4 5886
dce840a0
PZ
5887 if (cpumask_test_cpu(i, covered))
5888 continue;
6711cab4 5889
dce840a0 5890 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5891 sg->sgp->power = 0;
c1174876 5892 cpumask_setall(sched_group_mask(sg));
0601a88d 5893
dce840a0
PZ
5894 for_each_cpu(j, span) {
5895 if (get_group(j, sdd, NULL) != group)
5896 continue;
0601a88d 5897
dce840a0
PZ
5898 cpumask_set_cpu(j, covered);
5899 cpumask_set_cpu(j, sched_group_cpus(sg));
5900 }
0601a88d 5901
dce840a0
PZ
5902 if (!first)
5903 first = sg;
5904 if (last)
5905 last->next = sg;
5906 last = sg;
5907 }
5908 last->next = first;
e3589f6c
PZ
5909
5910 return 0;
0601a88d 5911}
51888ca2 5912
89c4710e
SS
5913/*
5914 * Initialize sched groups cpu_power.
5915 *
5916 * cpu_power indicates the capacity of sched group, which is used while
5917 * distributing the load between different sched groups in a sched domain.
5918 * Typically cpu_power for all the groups in a sched domain will be same unless
5919 * there are asymmetries in the topology. If there are asymmetries, group
5920 * having more cpu_power will pickup more load compared to the group having
5921 * less cpu_power.
89c4710e
SS
5922 */
5923static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5924{
e3589f6c 5925 struct sched_group *sg = sd->groups;
89c4710e 5926
e3589f6c
PZ
5927 WARN_ON(!sd || !sg);
5928
5929 do {
5930 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5931 sg = sg->next;
5932 } while (sg != sd->groups);
89c4710e 5933
c1174876 5934 if (cpu != group_balance_cpu(sg))
e3589f6c 5935 return;
aae6d3dd 5936
d274cb30 5937 update_group_power(sd, cpu);
69e1e811 5938 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5939}
5940
029632fb
PZ
5941int __weak arch_sd_sibling_asym_packing(void)
5942{
5943 return 0*SD_ASYM_PACKING;
89c4710e
SS
5944}
5945
7c16ec58
MT
5946/*
5947 * Initializers for schedule domains
5948 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5949 */
5950
a5d8c348
IM
5951#ifdef CONFIG_SCHED_DEBUG
5952# define SD_INIT_NAME(sd, type) sd->name = #type
5953#else
5954# define SD_INIT_NAME(sd, type) do { } while (0)
5955#endif
5956
54ab4ff4
PZ
5957#define SD_INIT_FUNC(type) \
5958static noinline struct sched_domain * \
5959sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5960{ \
5961 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5962 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5963 SD_INIT_NAME(sd, type); \
5964 sd->private = &tl->data; \
5965 return sd; \
7c16ec58
MT
5966}
5967
5968SD_INIT_FUNC(CPU)
7c16ec58
MT
5969#ifdef CONFIG_SCHED_SMT
5970 SD_INIT_FUNC(SIBLING)
5971#endif
5972#ifdef CONFIG_SCHED_MC
5973 SD_INIT_FUNC(MC)
5974#endif
01a08546
HC
5975#ifdef CONFIG_SCHED_BOOK
5976 SD_INIT_FUNC(BOOK)
5977#endif
7c16ec58 5978
1d3504fc 5979static int default_relax_domain_level = -1;
60495e77 5980int sched_domain_level_max;
1d3504fc
HS
5981
5982static int __init setup_relax_domain_level(char *str)
5983{
a841f8ce
DS
5984 if (kstrtoint(str, 0, &default_relax_domain_level))
5985 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5986
1d3504fc
HS
5987 return 1;
5988}
5989__setup("relax_domain_level=", setup_relax_domain_level);
5990
5991static void set_domain_attribute(struct sched_domain *sd,
5992 struct sched_domain_attr *attr)
5993{
5994 int request;
5995
5996 if (!attr || attr->relax_domain_level < 0) {
5997 if (default_relax_domain_level < 0)
5998 return;
5999 else
6000 request = default_relax_domain_level;
6001 } else
6002 request = attr->relax_domain_level;
6003 if (request < sd->level) {
6004 /* turn off idle balance on this domain */
c88d5910 6005 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6006 } else {
6007 /* turn on idle balance on this domain */
c88d5910 6008 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6009 }
6010}
6011
54ab4ff4
PZ
6012static void __sdt_free(const struct cpumask *cpu_map);
6013static int __sdt_alloc(const struct cpumask *cpu_map);
6014
2109b99e
AH
6015static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6016 const struct cpumask *cpu_map)
6017{
6018 switch (what) {
2109b99e 6019 case sa_rootdomain:
822ff793
PZ
6020 if (!atomic_read(&d->rd->refcount))
6021 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6022 case sa_sd:
6023 free_percpu(d->sd); /* fall through */
dce840a0 6024 case sa_sd_storage:
54ab4ff4 6025 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6026 case sa_none:
6027 break;
6028 }
6029}
3404c8d9 6030
2109b99e
AH
6031static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6032 const struct cpumask *cpu_map)
6033{
dce840a0
PZ
6034 memset(d, 0, sizeof(*d));
6035
54ab4ff4
PZ
6036 if (__sdt_alloc(cpu_map))
6037 return sa_sd_storage;
dce840a0
PZ
6038 d->sd = alloc_percpu(struct sched_domain *);
6039 if (!d->sd)
6040 return sa_sd_storage;
2109b99e 6041 d->rd = alloc_rootdomain();
dce840a0 6042 if (!d->rd)
21d42ccf 6043 return sa_sd;
2109b99e
AH
6044 return sa_rootdomain;
6045}
57d885fe 6046
dce840a0
PZ
6047/*
6048 * NULL the sd_data elements we've used to build the sched_domain and
6049 * sched_group structure so that the subsequent __free_domain_allocs()
6050 * will not free the data we're using.
6051 */
6052static void claim_allocations(int cpu, struct sched_domain *sd)
6053{
6054 struct sd_data *sdd = sd->private;
dce840a0
PZ
6055
6056 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6057 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6058
e3589f6c 6059 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6060 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6061
6062 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6063 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6064}
6065
2c402dc3
PZ
6066#ifdef CONFIG_SCHED_SMT
6067static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6068{
2c402dc3 6069 return topology_thread_cpumask(cpu);
3bd65a80 6070}
2c402dc3 6071#endif
7f4588f3 6072
d069b916
PZ
6073/*
6074 * Topology list, bottom-up.
6075 */
2c402dc3 6076static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6077#ifdef CONFIG_SCHED_SMT
6078 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6079#endif
1e9f28fa 6080#ifdef CONFIG_SCHED_MC
2c402dc3 6081 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6082#endif
d069b916
PZ
6083#ifdef CONFIG_SCHED_BOOK
6084 { sd_init_BOOK, cpu_book_mask, },
6085#endif
6086 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6087 { NULL, },
6088};
6089
6090static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6091
cb83b629
PZ
6092#ifdef CONFIG_NUMA
6093
6094static int sched_domains_numa_levels;
cb83b629
PZ
6095static int *sched_domains_numa_distance;
6096static struct cpumask ***sched_domains_numa_masks;
6097static int sched_domains_curr_level;
6098
cb83b629
PZ
6099static inline int sd_local_flags(int level)
6100{
10717dcd 6101 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6102 return 0;
6103
6104 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6105}
6106
6107static struct sched_domain *
6108sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6109{
6110 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6111 int level = tl->numa_level;
6112 int sd_weight = cpumask_weight(
6113 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6114
6115 *sd = (struct sched_domain){
6116 .min_interval = sd_weight,
6117 .max_interval = 2*sd_weight,
6118 .busy_factor = 32,
870a0bb5 6119 .imbalance_pct = 125,
cb83b629
PZ
6120 .cache_nice_tries = 2,
6121 .busy_idx = 3,
6122 .idle_idx = 2,
6123 .newidle_idx = 0,
6124 .wake_idx = 0,
6125 .forkexec_idx = 0,
6126
6127 .flags = 1*SD_LOAD_BALANCE
6128 | 1*SD_BALANCE_NEWIDLE
6129 | 0*SD_BALANCE_EXEC
6130 | 0*SD_BALANCE_FORK
6131 | 0*SD_BALANCE_WAKE
6132 | 0*SD_WAKE_AFFINE
cb83b629 6133 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6134 | 0*SD_SHARE_PKG_RESOURCES
6135 | 1*SD_SERIALIZE
6136 | 0*SD_PREFER_SIBLING
6137 | sd_local_flags(level)
6138 ,
6139 .last_balance = jiffies,
6140 .balance_interval = sd_weight,
6141 };
6142 SD_INIT_NAME(sd, NUMA);
6143 sd->private = &tl->data;
6144
6145 /*
6146 * Ugly hack to pass state to sd_numa_mask()...
6147 */
6148 sched_domains_curr_level = tl->numa_level;
6149
6150 return sd;
6151}
6152
6153static const struct cpumask *sd_numa_mask(int cpu)
6154{
6155 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6156}
6157
d039ac60
PZ
6158static void sched_numa_warn(const char *str)
6159{
6160 static int done = false;
6161 int i,j;
6162
6163 if (done)
6164 return;
6165
6166 done = true;
6167
6168 printk(KERN_WARNING "ERROR: %s\n\n", str);
6169
6170 for (i = 0; i < nr_node_ids; i++) {
6171 printk(KERN_WARNING " ");
6172 for (j = 0; j < nr_node_ids; j++)
6173 printk(KERN_CONT "%02d ", node_distance(i,j));
6174 printk(KERN_CONT "\n");
6175 }
6176 printk(KERN_WARNING "\n");
6177}
6178
6179static bool find_numa_distance(int distance)
6180{
6181 int i;
6182
6183 if (distance == node_distance(0, 0))
6184 return true;
6185
6186 for (i = 0; i < sched_domains_numa_levels; i++) {
6187 if (sched_domains_numa_distance[i] == distance)
6188 return true;
6189 }
6190
6191 return false;
6192}
6193
cb83b629
PZ
6194static void sched_init_numa(void)
6195{
6196 int next_distance, curr_distance = node_distance(0, 0);
6197 struct sched_domain_topology_level *tl;
6198 int level = 0;
6199 int i, j, k;
6200
cb83b629
PZ
6201 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6202 if (!sched_domains_numa_distance)
6203 return;
6204
6205 /*
6206 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6207 * unique distances in the node_distance() table.
6208 *
6209 * Assumes node_distance(0,j) includes all distances in
6210 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6211 */
6212 next_distance = curr_distance;
6213 for (i = 0; i < nr_node_ids; i++) {
6214 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6215 for (k = 0; k < nr_node_ids; k++) {
6216 int distance = node_distance(i, k);
6217
6218 if (distance > curr_distance &&
6219 (distance < next_distance ||
6220 next_distance == curr_distance))
6221 next_distance = distance;
6222
6223 /*
6224 * While not a strong assumption it would be nice to know
6225 * about cases where if node A is connected to B, B is not
6226 * equally connected to A.
6227 */
6228 if (sched_debug() && node_distance(k, i) != distance)
6229 sched_numa_warn("Node-distance not symmetric");
6230
6231 if (sched_debug() && i && !find_numa_distance(distance))
6232 sched_numa_warn("Node-0 not representative");
6233 }
6234 if (next_distance != curr_distance) {
6235 sched_domains_numa_distance[level++] = next_distance;
6236 sched_domains_numa_levels = level;
6237 curr_distance = next_distance;
6238 } else break;
cb83b629 6239 }
d039ac60
PZ
6240
6241 /*
6242 * In case of sched_debug() we verify the above assumption.
6243 */
6244 if (!sched_debug())
6245 break;
cb83b629
PZ
6246 }
6247 /*
6248 * 'level' contains the number of unique distances, excluding the
6249 * identity distance node_distance(i,i).
6250 *
6251 * The sched_domains_nume_distance[] array includes the actual distance
6252 * numbers.
6253 */
6254
5f7865f3
TC
6255 /*
6256 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6257 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6258 * the array will contain less then 'level' members. This could be
6259 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6260 * in other functions.
6261 *
6262 * We reset it to 'level' at the end of this function.
6263 */
6264 sched_domains_numa_levels = 0;
6265
cb83b629
PZ
6266 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6267 if (!sched_domains_numa_masks)
6268 return;
6269
6270 /*
6271 * Now for each level, construct a mask per node which contains all
6272 * cpus of nodes that are that many hops away from us.
6273 */
6274 for (i = 0; i < level; i++) {
6275 sched_domains_numa_masks[i] =
6276 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6277 if (!sched_domains_numa_masks[i])
6278 return;
6279
6280 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6281 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6282 if (!mask)
6283 return;
6284
6285 sched_domains_numa_masks[i][j] = mask;
6286
6287 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6288 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6289 continue;
6290
6291 cpumask_or(mask, mask, cpumask_of_node(k));
6292 }
6293 }
6294 }
6295
6296 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6297 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6298 if (!tl)
6299 return;
6300
6301 /*
6302 * Copy the default topology bits..
6303 */
6304 for (i = 0; default_topology[i].init; i++)
6305 tl[i] = default_topology[i];
6306
6307 /*
6308 * .. and append 'j' levels of NUMA goodness.
6309 */
6310 for (j = 0; j < level; i++, j++) {
6311 tl[i] = (struct sched_domain_topology_level){
6312 .init = sd_numa_init,
6313 .mask = sd_numa_mask,
6314 .flags = SDTL_OVERLAP,
6315 .numa_level = j,
6316 };
6317 }
6318
6319 sched_domain_topology = tl;
5f7865f3
TC
6320
6321 sched_domains_numa_levels = level;
cb83b629 6322}
301a5cba
TC
6323
6324static void sched_domains_numa_masks_set(int cpu)
6325{
6326 int i, j;
6327 int node = cpu_to_node(cpu);
6328
6329 for (i = 0; i < sched_domains_numa_levels; i++) {
6330 for (j = 0; j < nr_node_ids; j++) {
6331 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6332 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6333 }
6334 }
6335}
6336
6337static void sched_domains_numa_masks_clear(int cpu)
6338{
6339 int i, j;
6340 for (i = 0; i < sched_domains_numa_levels; i++) {
6341 for (j = 0; j < nr_node_ids; j++)
6342 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6343 }
6344}
6345
6346/*
6347 * Update sched_domains_numa_masks[level][node] array when new cpus
6348 * are onlined.
6349 */
6350static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6351 unsigned long action,
6352 void *hcpu)
6353{
6354 int cpu = (long)hcpu;
6355
6356 switch (action & ~CPU_TASKS_FROZEN) {
6357 case CPU_ONLINE:
6358 sched_domains_numa_masks_set(cpu);
6359 break;
6360
6361 case CPU_DEAD:
6362 sched_domains_numa_masks_clear(cpu);
6363 break;
6364
6365 default:
6366 return NOTIFY_DONE;
6367 }
6368
6369 return NOTIFY_OK;
cb83b629
PZ
6370}
6371#else
6372static inline void sched_init_numa(void)
6373{
6374}
301a5cba
TC
6375
6376static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6377 unsigned long action,
6378 void *hcpu)
6379{
6380 return 0;
6381}
cb83b629
PZ
6382#endif /* CONFIG_NUMA */
6383
54ab4ff4
PZ
6384static int __sdt_alloc(const struct cpumask *cpu_map)
6385{
6386 struct sched_domain_topology_level *tl;
6387 int j;
6388
6389 for (tl = sched_domain_topology; tl->init; tl++) {
6390 struct sd_data *sdd = &tl->data;
6391
6392 sdd->sd = alloc_percpu(struct sched_domain *);
6393 if (!sdd->sd)
6394 return -ENOMEM;
6395
6396 sdd->sg = alloc_percpu(struct sched_group *);
6397 if (!sdd->sg)
6398 return -ENOMEM;
6399
9c3f75cb
PZ
6400 sdd->sgp = alloc_percpu(struct sched_group_power *);
6401 if (!sdd->sgp)
6402 return -ENOMEM;
6403
54ab4ff4
PZ
6404 for_each_cpu(j, cpu_map) {
6405 struct sched_domain *sd;
6406 struct sched_group *sg;
9c3f75cb 6407 struct sched_group_power *sgp;
54ab4ff4
PZ
6408
6409 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6410 GFP_KERNEL, cpu_to_node(j));
6411 if (!sd)
6412 return -ENOMEM;
6413
6414 *per_cpu_ptr(sdd->sd, j) = sd;
6415
6416 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6417 GFP_KERNEL, cpu_to_node(j));
6418 if (!sg)
6419 return -ENOMEM;
6420
30b4e9eb
IM
6421 sg->next = sg;
6422
54ab4ff4 6423 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6424
c1174876 6425 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6426 GFP_KERNEL, cpu_to_node(j));
6427 if (!sgp)
6428 return -ENOMEM;
6429
6430 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6431 }
6432 }
6433
6434 return 0;
6435}
6436
6437static void __sdt_free(const struct cpumask *cpu_map)
6438{
6439 struct sched_domain_topology_level *tl;
6440 int j;
6441
6442 for (tl = sched_domain_topology; tl->init; tl++) {
6443 struct sd_data *sdd = &tl->data;
6444
6445 for_each_cpu(j, cpu_map) {
fb2cf2c6 6446 struct sched_domain *sd;
6447
6448 if (sdd->sd) {
6449 sd = *per_cpu_ptr(sdd->sd, j);
6450 if (sd && (sd->flags & SD_OVERLAP))
6451 free_sched_groups(sd->groups, 0);
6452 kfree(*per_cpu_ptr(sdd->sd, j));
6453 }
6454
6455 if (sdd->sg)
6456 kfree(*per_cpu_ptr(sdd->sg, j));
6457 if (sdd->sgp)
6458 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6459 }
6460 free_percpu(sdd->sd);
fb2cf2c6 6461 sdd->sd = NULL;
54ab4ff4 6462 free_percpu(sdd->sg);
fb2cf2c6 6463 sdd->sg = NULL;
9c3f75cb 6464 free_percpu(sdd->sgp);
fb2cf2c6 6465 sdd->sgp = NULL;
54ab4ff4
PZ
6466 }
6467}
6468
2c402dc3
PZ
6469struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6470 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6471 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6472 int cpu)
6473{
54ab4ff4 6474 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6475 if (!sd)
d069b916 6476 return child;
2c402dc3 6477
2c402dc3 6478 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6479 if (child) {
6480 sd->level = child->level + 1;
6481 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6482 child->parent = sd;
60495e77 6483 }
d069b916 6484 sd->child = child;
a841f8ce 6485 set_domain_attribute(sd, attr);
2c402dc3
PZ
6486
6487 return sd;
6488}
6489
2109b99e
AH
6490/*
6491 * Build sched domains for a given set of cpus and attach the sched domains
6492 * to the individual cpus
6493 */
dce840a0
PZ
6494static int build_sched_domains(const struct cpumask *cpu_map,
6495 struct sched_domain_attr *attr)
2109b99e
AH
6496{
6497 enum s_alloc alloc_state = sa_none;
dce840a0 6498 struct sched_domain *sd;
2109b99e 6499 struct s_data d;
822ff793 6500 int i, ret = -ENOMEM;
9c1cfda2 6501
2109b99e
AH
6502 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6503 if (alloc_state != sa_rootdomain)
6504 goto error;
9c1cfda2 6505
dce840a0 6506 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6507 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6508 struct sched_domain_topology_level *tl;
6509
3bd65a80 6510 sd = NULL;
e3589f6c 6511 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6512 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6513 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6514 sd->flags |= SD_OVERLAP;
d110235d
PZ
6515 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6516 break;
e3589f6c 6517 }
d274cb30 6518
d069b916
PZ
6519 while (sd->child)
6520 sd = sd->child;
6521
21d42ccf 6522 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6523 }
6524
6525 /* Build the groups for the domains */
6526 for_each_cpu(i, cpu_map) {
6527 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6528 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6529 if (sd->flags & SD_OVERLAP) {
6530 if (build_overlap_sched_groups(sd, i))
6531 goto error;
6532 } else {
6533 if (build_sched_groups(sd, i))
6534 goto error;
6535 }
1cf51902 6536 }
a06dadbe 6537 }
9c1cfda2 6538
1da177e4 6539 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6540 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6541 if (!cpumask_test_cpu(i, cpu_map))
6542 continue;
9c1cfda2 6543
dce840a0
PZ
6544 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6545 claim_allocations(i, sd);
cd4ea6ae 6546 init_sched_groups_power(i, sd);
dce840a0 6547 }
f712c0c7 6548 }
9c1cfda2 6549
1da177e4 6550 /* Attach the domains */
dce840a0 6551 rcu_read_lock();
abcd083a 6552 for_each_cpu(i, cpu_map) {
21d42ccf 6553 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6554 cpu_attach_domain(sd, d.rd, i);
1da177e4 6555 }
dce840a0 6556 rcu_read_unlock();
51888ca2 6557
822ff793 6558 ret = 0;
51888ca2 6559error:
2109b99e 6560 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6561 return ret;
1da177e4 6562}
029190c5 6563
acc3f5d7 6564static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6565static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6566static struct sched_domain_attr *dattr_cur;
6567 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6568
6569/*
6570 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6571 * cpumask) fails, then fallback to a single sched domain,
6572 * as determined by the single cpumask fallback_doms.
029190c5 6573 */
4212823f 6574static cpumask_var_t fallback_doms;
029190c5 6575
ee79d1bd
HC
6576/*
6577 * arch_update_cpu_topology lets virtualized architectures update the
6578 * cpu core maps. It is supposed to return 1 if the topology changed
6579 * or 0 if it stayed the same.
6580 */
6581int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6582{
ee79d1bd 6583 return 0;
22e52b07
HC
6584}
6585
acc3f5d7
RR
6586cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6587{
6588 int i;
6589 cpumask_var_t *doms;
6590
6591 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6592 if (!doms)
6593 return NULL;
6594 for (i = 0; i < ndoms; i++) {
6595 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6596 free_sched_domains(doms, i);
6597 return NULL;
6598 }
6599 }
6600 return doms;
6601}
6602
6603void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6604{
6605 unsigned int i;
6606 for (i = 0; i < ndoms; i++)
6607 free_cpumask_var(doms[i]);
6608 kfree(doms);
6609}
6610
1a20ff27 6611/*
41a2d6cf 6612 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6613 * For now this just excludes isolated cpus, but could be used to
6614 * exclude other special cases in the future.
1a20ff27 6615 */
c4a8849a 6616static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6617{
7378547f
MM
6618 int err;
6619
22e52b07 6620 arch_update_cpu_topology();
029190c5 6621 ndoms_cur = 1;
acc3f5d7 6622 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6623 if (!doms_cur)
acc3f5d7
RR
6624 doms_cur = &fallback_doms;
6625 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6626 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6627 register_sched_domain_sysctl();
7378547f
MM
6628
6629 return err;
1a20ff27
DG
6630}
6631
1a20ff27
DG
6632/*
6633 * Detach sched domains from a group of cpus specified in cpu_map
6634 * These cpus will now be attached to the NULL domain
6635 */
96f874e2 6636static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6637{
6638 int i;
6639
dce840a0 6640 rcu_read_lock();
abcd083a 6641 for_each_cpu(i, cpu_map)
57d885fe 6642 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6643 rcu_read_unlock();
1a20ff27
DG
6644}
6645
1d3504fc
HS
6646/* handle null as "default" */
6647static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6648 struct sched_domain_attr *new, int idx_new)
6649{
6650 struct sched_domain_attr tmp;
6651
6652 /* fast path */
6653 if (!new && !cur)
6654 return 1;
6655
6656 tmp = SD_ATTR_INIT;
6657 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6658 new ? (new + idx_new) : &tmp,
6659 sizeof(struct sched_domain_attr));
6660}
6661
029190c5
PJ
6662/*
6663 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6664 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6665 * doms_new[] to the current sched domain partitioning, doms_cur[].
6666 * It destroys each deleted domain and builds each new domain.
6667 *
acc3f5d7 6668 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6669 * The masks don't intersect (don't overlap.) We should setup one
6670 * sched domain for each mask. CPUs not in any of the cpumasks will
6671 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6672 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6673 * it as it is.
6674 *
acc3f5d7
RR
6675 * The passed in 'doms_new' should be allocated using
6676 * alloc_sched_domains. This routine takes ownership of it and will
6677 * free_sched_domains it when done with it. If the caller failed the
6678 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6679 * and partition_sched_domains() will fallback to the single partition
6680 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6681 *
96f874e2 6682 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6683 * ndoms_new == 0 is a special case for destroying existing domains,
6684 * and it will not create the default domain.
dfb512ec 6685 *
029190c5
PJ
6686 * Call with hotplug lock held
6687 */
acc3f5d7 6688void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6689 struct sched_domain_attr *dattr_new)
029190c5 6690{
dfb512ec 6691 int i, j, n;
d65bd5ec 6692 int new_topology;
029190c5 6693
712555ee 6694 mutex_lock(&sched_domains_mutex);
a1835615 6695
7378547f
MM
6696 /* always unregister in case we don't destroy any domains */
6697 unregister_sched_domain_sysctl();
6698
d65bd5ec
HC
6699 /* Let architecture update cpu core mappings. */
6700 new_topology = arch_update_cpu_topology();
6701
dfb512ec 6702 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6703
6704 /* Destroy deleted domains */
6705 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6706 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6707 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6708 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6709 goto match1;
6710 }
6711 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6712 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6713match1:
6714 ;
6715 }
6716
e761b772
MK
6717 if (doms_new == NULL) {
6718 ndoms_cur = 0;
acc3f5d7 6719 doms_new = &fallback_doms;
6ad4c188 6720 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6721 WARN_ON_ONCE(dattr_new);
e761b772
MK
6722 }
6723
029190c5
PJ
6724 /* Build new domains */
6725 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6726 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6727 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6728 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6729 goto match2;
6730 }
6731 /* no match - add a new doms_new */
dce840a0 6732 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6733match2:
6734 ;
6735 }
6736
6737 /* Remember the new sched domains */
acc3f5d7
RR
6738 if (doms_cur != &fallback_doms)
6739 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6740 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6741 doms_cur = doms_new;
1d3504fc 6742 dattr_cur = dattr_new;
029190c5 6743 ndoms_cur = ndoms_new;
7378547f
MM
6744
6745 register_sched_domain_sysctl();
a1835615 6746
712555ee 6747 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6748}
6749
d35be8ba
SB
6750static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6751
1da177e4 6752/*
3a101d05
TH
6753 * Update cpusets according to cpu_active mask. If cpusets are
6754 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6755 * around partition_sched_domains().
d35be8ba
SB
6756 *
6757 * If we come here as part of a suspend/resume, don't touch cpusets because we
6758 * want to restore it back to its original state upon resume anyway.
1da177e4 6759 */
0b2e918a
TH
6760static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6761 void *hcpu)
e761b772 6762{
d35be8ba
SB
6763 switch (action) {
6764 case CPU_ONLINE_FROZEN:
6765 case CPU_DOWN_FAILED_FROZEN:
6766
6767 /*
6768 * num_cpus_frozen tracks how many CPUs are involved in suspend
6769 * resume sequence. As long as this is not the last online
6770 * operation in the resume sequence, just build a single sched
6771 * domain, ignoring cpusets.
6772 */
6773 num_cpus_frozen--;
6774 if (likely(num_cpus_frozen)) {
6775 partition_sched_domains(1, NULL, NULL);
6776 break;
6777 }
6778
6779 /*
6780 * This is the last CPU online operation. So fall through and
6781 * restore the original sched domains by considering the
6782 * cpuset configurations.
6783 */
6784
e761b772 6785 case CPU_ONLINE:
6ad4c188 6786 case CPU_DOWN_FAILED:
7ddf96b0 6787 cpuset_update_active_cpus(true);
d35be8ba 6788 break;
3a101d05
TH
6789 default:
6790 return NOTIFY_DONE;
6791 }
d35be8ba 6792 return NOTIFY_OK;
3a101d05 6793}
e761b772 6794
0b2e918a
TH
6795static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6796 void *hcpu)
3a101d05 6797{
d35be8ba 6798 switch (action) {
3a101d05 6799 case CPU_DOWN_PREPARE:
7ddf96b0 6800 cpuset_update_active_cpus(false);
d35be8ba
SB
6801 break;
6802 case CPU_DOWN_PREPARE_FROZEN:
6803 num_cpus_frozen++;
6804 partition_sched_domains(1, NULL, NULL);
6805 break;
e761b772
MK
6806 default:
6807 return NOTIFY_DONE;
6808 }
d35be8ba 6809 return NOTIFY_OK;
e761b772 6810}
e761b772 6811
1da177e4
LT
6812void __init sched_init_smp(void)
6813{
dcc30a35
RR
6814 cpumask_var_t non_isolated_cpus;
6815
6816 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6817 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6818
cb83b629
PZ
6819 sched_init_numa();
6820
95402b38 6821 get_online_cpus();
712555ee 6822 mutex_lock(&sched_domains_mutex);
c4a8849a 6823 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6824 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6825 if (cpumask_empty(non_isolated_cpus))
6826 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6827 mutex_unlock(&sched_domains_mutex);
95402b38 6828 put_online_cpus();
e761b772 6829
301a5cba 6830 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6831 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6832 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6833
6834 /* RT runtime code needs to handle some hotplug events */
6835 hotcpu_notifier(update_runtime, 0);
6836
b328ca18 6837 init_hrtick();
5c1e1767
NP
6838
6839 /* Move init over to a non-isolated CPU */
dcc30a35 6840 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6841 BUG();
19978ca6 6842 sched_init_granularity();
dcc30a35 6843 free_cpumask_var(non_isolated_cpus);
4212823f 6844
0e3900e6 6845 init_sched_rt_class();
1da177e4
LT
6846}
6847#else
6848void __init sched_init_smp(void)
6849{
19978ca6 6850 sched_init_granularity();
1da177e4
LT
6851}
6852#endif /* CONFIG_SMP */
6853
cd1bb94b
AB
6854const_debug unsigned int sysctl_timer_migration = 1;
6855
1da177e4
LT
6856int in_sched_functions(unsigned long addr)
6857{
1da177e4
LT
6858 return in_lock_functions(addr) ||
6859 (addr >= (unsigned long)__sched_text_start
6860 && addr < (unsigned long)__sched_text_end);
6861}
6862
029632fb
PZ
6863#ifdef CONFIG_CGROUP_SCHED
6864struct task_group root_task_group;
35cf4e50 6865LIST_HEAD(task_groups);
052f1dc7 6866#endif
6f505b16 6867
029632fb 6868DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6869
1da177e4
LT
6870void __init sched_init(void)
6871{
dd41f596 6872 int i, j;
434d53b0
MT
6873 unsigned long alloc_size = 0, ptr;
6874
6875#ifdef CONFIG_FAIR_GROUP_SCHED
6876 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6877#endif
6878#ifdef CONFIG_RT_GROUP_SCHED
6879 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6880#endif
df7c8e84 6881#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6882 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6883#endif
434d53b0 6884 if (alloc_size) {
36b7b6d4 6885 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6886
6887#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6888 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6889 ptr += nr_cpu_ids * sizeof(void **);
6890
07e06b01 6891 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6892 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6893
6d6bc0ad 6894#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6895#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6896 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6897 ptr += nr_cpu_ids * sizeof(void **);
6898
07e06b01 6899 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6900 ptr += nr_cpu_ids * sizeof(void **);
6901
6d6bc0ad 6902#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6903#ifdef CONFIG_CPUMASK_OFFSTACK
6904 for_each_possible_cpu(i) {
6905 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6906 ptr += cpumask_size();
6907 }
6908#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6909 }
dd41f596 6910
57d885fe
GH
6911#ifdef CONFIG_SMP
6912 init_defrootdomain();
6913#endif
6914
d0b27fa7
PZ
6915 init_rt_bandwidth(&def_rt_bandwidth,
6916 global_rt_period(), global_rt_runtime());
6917
6918#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6919 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6920 global_rt_period(), global_rt_runtime());
6d6bc0ad 6921#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6922
7c941438 6923#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6924 list_add(&root_task_group.list, &task_groups);
6925 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6926 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6927 autogroup_init(&init_task);
54c707e9 6928
7c941438 6929#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6930
54c707e9
GC
6931#ifdef CONFIG_CGROUP_CPUACCT
6932 root_cpuacct.cpustat = &kernel_cpustat;
6933 root_cpuacct.cpuusage = alloc_percpu(u64);
6934 /* Too early, not expected to fail */
6935 BUG_ON(!root_cpuacct.cpuusage);
6936#endif
0a945022 6937 for_each_possible_cpu(i) {
70b97a7f 6938 struct rq *rq;
1da177e4
LT
6939
6940 rq = cpu_rq(i);
05fa785c 6941 raw_spin_lock_init(&rq->lock);
7897986b 6942 rq->nr_running = 0;
dce48a84
TG
6943 rq->calc_load_active = 0;
6944 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6945 init_cfs_rq(&rq->cfs);
6f505b16 6946 init_rt_rq(&rq->rt, rq);
dd41f596 6947#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6948 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6949 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6950 /*
07e06b01 6951 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6952 *
6953 * In case of task-groups formed thr' the cgroup filesystem, it
6954 * gets 100% of the cpu resources in the system. This overall
6955 * system cpu resource is divided among the tasks of
07e06b01 6956 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6957 * based on each entity's (task or task-group's) weight
6958 * (se->load.weight).
6959 *
07e06b01 6960 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6961 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6962 * then A0's share of the cpu resource is:
6963 *
0d905bca 6964 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6965 *
07e06b01
YZ
6966 * We achieve this by letting root_task_group's tasks sit
6967 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6968 */
ab84d31e 6969 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6970 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6971#endif /* CONFIG_FAIR_GROUP_SCHED */
6972
6973 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6974#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6975 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6976 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6977#endif
1da177e4 6978
dd41f596
IM
6979 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6980 rq->cpu_load[j] = 0;
fdf3e95d
VP
6981
6982 rq->last_load_update_tick = jiffies;
6983
1da177e4 6984#ifdef CONFIG_SMP
41c7ce9a 6985 rq->sd = NULL;
57d885fe 6986 rq->rd = NULL;
1399fa78 6987 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6988 rq->post_schedule = 0;
1da177e4 6989 rq->active_balance = 0;
dd41f596 6990 rq->next_balance = jiffies;
1da177e4 6991 rq->push_cpu = 0;
0a2966b4 6992 rq->cpu = i;
1f11eb6a 6993 rq->online = 0;
eae0c9df
MG
6994 rq->idle_stamp = 0;
6995 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6996
6997 INIT_LIST_HEAD(&rq->cfs_tasks);
6998
dc938520 6999 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7000#ifdef CONFIG_NO_HZ
1c792db7 7001 rq->nohz_flags = 0;
83cd4fe2 7002#endif
1da177e4 7003#endif
8f4d37ec 7004 init_rq_hrtick(rq);
1da177e4 7005 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7006 }
7007
2dd73a4f 7008 set_load_weight(&init_task);
b50f60ce 7009
e107be36
AK
7010#ifdef CONFIG_PREEMPT_NOTIFIERS
7011 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7012#endif
7013
b50f60ce 7014#ifdef CONFIG_RT_MUTEXES
732375c6 7015 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7016#endif
7017
1da177e4
LT
7018 /*
7019 * The boot idle thread does lazy MMU switching as well:
7020 */
7021 atomic_inc(&init_mm.mm_count);
7022 enter_lazy_tlb(&init_mm, current);
7023
7024 /*
7025 * Make us the idle thread. Technically, schedule() should not be
7026 * called from this thread, however somewhere below it might be,
7027 * but because we are the idle thread, we just pick up running again
7028 * when this runqueue becomes "idle".
7029 */
7030 init_idle(current, smp_processor_id());
dce48a84
TG
7031
7032 calc_load_update = jiffies + LOAD_FREQ;
7033
dd41f596
IM
7034 /*
7035 * During early bootup we pretend to be a normal task:
7036 */
7037 current->sched_class = &fair_sched_class;
6892b75e 7038
bf4d83f6 7039#ifdef CONFIG_SMP
4cb98839 7040 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7041 /* May be allocated at isolcpus cmdline parse time */
7042 if (cpu_isolated_map == NULL)
7043 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7044 idle_thread_set_boot_cpu();
029632fb
PZ
7045#endif
7046 init_sched_fair_class();
6a7b3dc3 7047
6892b75e 7048 scheduler_running = 1;
1da177e4
LT
7049}
7050
d902db1e 7051#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7052static inline int preempt_count_equals(int preempt_offset)
7053{
234da7bc 7054 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7055
4ba8216c 7056 return (nested == preempt_offset);
e4aafea2
FW
7057}
7058
d894837f 7059void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7060{
1da177e4
LT
7061 static unsigned long prev_jiffy; /* ratelimiting */
7062
b3fbab05 7063 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7064 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7065 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7066 return;
7067 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7068 return;
7069 prev_jiffy = jiffies;
7070
3df0fc5b
PZ
7071 printk(KERN_ERR
7072 "BUG: sleeping function called from invalid context at %s:%d\n",
7073 file, line);
7074 printk(KERN_ERR
7075 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7076 in_atomic(), irqs_disabled(),
7077 current->pid, current->comm);
aef745fc
IM
7078
7079 debug_show_held_locks(current);
7080 if (irqs_disabled())
7081 print_irqtrace_events(current);
7082 dump_stack();
1da177e4
LT
7083}
7084EXPORT_SYMBOL(__might_sleep);
7085#endif
7086
7087#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7088static void normalize_task(struct rq *rq, struct task_struct *p)
7089{
da7a735e
PZ
7090 const struct sched_class *prev_class = p->sched_class;
7091 int old_prio = p->prio;
3a5e4dc1 7092 int on_rq;
3e51f33f 7093
fd2f4419 7094 on_rq = p->on_rq;
3a5e4dc1 7095 if (on_rq)
4ca9b72b 7096 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7097 __setscheduler(rq, p, SCHED_NORMAL, 0);
7098 if (on_rq) {
4ca9b72b 7099 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7100 resched_task(rq->curr);
7101 }
da7a735e
PZ
7102
7103 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7104}
7105
1da177e4
LT
7106void normalize_rt_tasks(void)
7107{
a0f98a1c 7108 struct task_struct *g, *p;
1da177e4 7109 unsigned long flags;
70b97a7f 7110 struct rq *rq;
1da177e4 7111
4cf5d77a 7112 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7113 do_each_thread(g, p) {
178be793
IM
7114 /*
7115 * Only normalize user tasks:
7116 */
7117 if (!p->mm)
7118 continue;
7119
6cfb0d5d 7120 p->se.exec_start = 0;
6cfb0d5d 7121#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7122 p->se.statistics.wait_start = 0;
7123 p->se.statistics.sleep_start = 0;
7124 p->se.statistics.block_start = 0;
6cfb0d5d 7125#endif
dd41f596
IM
7126
7127 if (!rt_task(p)) {
7128 /*
7129 * Renice negative nice level userspace
7130 * tasks back to 0:
7131 */
7132 if (TASK_NICE(p) < 0 && p->mm)
7133 set_user_nice(p, 0);
1da177e4 7134 continue;
dd41f596 7135 }
1da177e4 7136
1d615482 7137 raw_spin_lock(&p->pi_lock);
b29739f9 7138 rq = __task_rq_lock(p);
1da177e4 7139
178be793 7140 normalize_task(rq, p);
3a5e4dc1 7141
b29739f9 7142 __task_rq_unlock(rq);
1d615482 7143 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7144 } while_each_thread(g, p);
7145
4cf5d77a 7146 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7147}
7148
7149#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7150
67fc4e0c 7151#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7152/*
67fc4e0c 7153 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7154 *
7155 * They can only be called when the whole system has been
7156 * stopped - every CPU needs to be quiescent, and no scheduling
7157 * activity can take place. Using them for anything else would
7158 * be a serious bug, and as a result, they aren't even visible
7159 * under any other configuration.
7160 */
7161
7162/**
7163 * curr_task - return the current task for a given cpu.
7164 * @cpu: the processor in question.
7165 *
7166 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7167 */
36c8b586 7168struct task_struct *curr_task(int cpu)
1df5c10a
LT
7169{
7170 return cpu_curr(cpu);
7171}
7172
67fc4e0c
JW
7173#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7174
7175#ifdef CONFIG_IA64
1df5c10a
LT
7176/**
7177 * set_curr_task - set the current task for a given cpu.
7178 * @cpu: the processor in question.
7179 * @p: the task pointer to set.
7180 *
7181 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7182 * are serviced on a separate stack. It allows the architecture to switch the
7183 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7184 * must be called with all CPU's synchronized, and interrupts disabled, the
7185 * and caller must save the original value of the current task (see
7186 * curr_task() above) and restore that value before reenabling interrupts and
7187 * re-starting the system.
7188 *
7189 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7190 */
36c8b586 7191void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7192{
7193 cpu_curr(cpu) = p;
7194}
7195
7196#endif
29f59db3 7197
7c941438 7198#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7199/* task_group_lock serializes the addition/removal of task groups */
7200static DEFINE_SPINLOCK(task_group_lock);
7201
bccbe08a
PZ
7202static void free_sched_group(struct task_group *tg)
7203{
7204 free_fair_sched_group(tg);
7205 free_rt_sched_group(tg);
e9aa1dd1 7206 autogroup_free(tg);
bccbe08a
PZ
7207 kfree(tg);
7208}
7209
7210/* allocate runqueue etc for a new task group */
ec7dc8ac 7211struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7212{
7213 struct task_group *tg;
bccbe08a
PZ
7214
7215 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7216 if (!tg)
7217 return ERR_PTR(-ENOMEM);
7218
ec7dc8ac 7219 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7220 goto err;
7221
ec7dc8ac 7222 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7223 goto err;
7224
ace783b9
LZ
7225 return tg;
7226
7227err:
7228 free_sched_group(tg);
7229 return ERR_PTR(-ENOMEM);
7230}
7231
7232void sched_online_group(struct task_group *tg, struct task_group *parent)
7233{
7234 unsigned long flags;
7235
8ed36996 7236 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7237 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7238
7239 WARN_ON(!parent); /* root should already exist */
7240
7241 tg->parent = parent;
f473aa5e 7242 INIT_LIST_HEAD(&tg->children);
09f2724a 7243 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7244 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7245}
7246
9b5b7751 7247/* rcu callback to free various structures associated with a task group */
6f505b16 7248static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7249{
29f59db3 7250 /* now it should be safe to free those cfs_rqs */
6f505b16 7251 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7252}
7253
9b5b7751 7254/* Destroy runqueue etc associated with a task group */
4cf86d77 7255void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7256{
7257 /* wait for possible concurrent references to cfs_rqs complete */
7258 call_rcu(&tg->rcu, free_sched_group_rcu);
7259}
7260
7261void sched_offline_group(struct task_group *tg)
29f59db3 7262{
8ed36996 7263 unsigned long flags;
9b5b7751 7264 int i;
29f59db3 7265
3d4b47b4
PZ
7266 /* end participation in shares distribution */
7267 for_each_possible_cpu(i)
bccbe08a 7268 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7269
7270 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7271 list_del_rcu(&tg->list);
f473aa5e 7272 list_del_rcu(&tg->siblings);
8ed36996 7273 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7274}
7275
9b5b7751 7276/* change task's runqueue when it moves between groups.
3a252015
IM
7277 * The caller of this function should have put the task in its new group
7278 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7279 * reflect its new group.
9b5b7751
SV
7280 */
7281void sched_move_task(struct task_struct *tsk)
29f59db3 7282{
8323f26c 7283 struct task_group *tg;
29f59db3
SV
7284 int on_rq, running;
7285 unsigned long flags;
7286 struct rq *rq;
7287
7288 rq = task_rq_lock(tsk, &flags);
7289
051a1d1a 7290 running = task_current(rq, tsk);
fd2f4419 7291 on_rq = tsk->on_rq;
29f59db3 7292
0e1f3483 7293 if (on_rq)
29f59db3 7294 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7295 if (unlikely(running))
7296 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7297
8323f26c
PZ
7298 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7299 lockdep_is_held(&tsk->sighand->siglock)),
7300 struct task_group, css);
7301 tg = autogroup_task_group(tsk, tg);
7302 tsk->sched_task_group = tg;
7303
810b3817 7304#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7305 if (tsk->sched_class->task_move_group)
7306 tsk->sched_class->task_move_group(tsk, on_rq);
7307 else
810b3817 7308#endif
b2b5ce02 7309 set_task_rq(tsk, task_cpu(tsk));
810b3817 7310
0e1f3483
HS
7311 if (unlikely(running))
7312 tsk->sched_class->set_curr_task(rq);
7313 if (on_rq)
371fd7e7 7314 enqueue_task(rq, tsk, 0);
29f59db3 7315
0122ec5b 7316 task_rq_unlock(rq, tsk, &flags);
29f59db3 7317}
7c941438 7318#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7319
a790de99 7320#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7321static unsigned long to_ratio(u64 period, u64 runtime)
7322{
7323 if (runtime == RUNTIME_INF)
9a7e0b18 7324 return 1ULL << 20;
9f0c1e56 7325
9a7e0b18 7326 return div64_u64(runtime << 20, period);
9f0c1e56 7327}
a790de99
PT
7328#endif
7329
7330#ifdef CONFIG_RT_GROUP_SCHED
7331/*
7332 * Ensure that the real time constraints are schedulable.
7333 */
7334static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7335
9a7e0b18
PZ
7336/* Must be called with tasklist_lock held */
7337static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7338{
9a7e0b18 7339 struct task_struct *g, *p;
b40b2e8e 7340
9a7e0b18 7341 do_each_thread(g, p) {
029632fb 7342 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7343 return 1;
7344 } while_each_thread(g, p);
b40b2e8e 7345
9a7e0b18
PZ
7346 return 0;
7347}
b40b2e8e 7348
9a7e0b18
PZ
7349struct rt_schedulable_data {
7350 struct task_group *tg;
7351 u64 rt_period;
7352 u64 rt_runtime;
7353};
b40b2e8e 7354
a790de99 7355static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7356{
7357 struct rt_schedulable_data *d = data;
7358 struct task_group *child;
7359 unsigned long total, sum = 0;
7360 u64 period, runtime;
b40b2e8e 7361
9a7e0b18
PZ
7362 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7363 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7364
9a7e0b18
PZ
7365 if (tg == d->tg) {
7366 period = d->rt_period;
7367 runtime = d->rt_runtime;
b40b2e8e 7368 }
b40b2e8e 7369
4653f803
PZ
7370 /*
7371 * Cannot have more runtime than the period.
7372 */
7373 if (runtime > period && runtime != RUNTIME_INF)
7374 return -EINVAL;
6f505b16 7375
4653f803
PZ
7376 /*
7377 * Ensure we don't starve existing RT tasks.
7378 */
9a7e0b18
PZ
7379 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7380 return -EBUSY;
6f505b16 7381
9a7e0b18 7382 total = to_ratio(period, runtime);
6f505b16 7383
4653f803
PZ
7384 /*
7385 * Nobody can have more than the global setting allows.
7386 */
7387 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7388 return -EINVAL;
6f505b16 7389
4653f803
PZ
7390 /*
7391 * The sum of our children's runtime should not exceed our own.
7392 */
9a7e0b18
PZ
7393 list_for_each_entry_rcu(child, &tg->children, siblings) {
7394 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7395 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7396
9a7e0b18
PZ
7397 if (child == d->tg) {
7398 period = d->rt_period;
7399 runtime = d->rt_runtime;
7400 }
6f505b16 7401
9a7e0b18 7402 sum += to_ratio(period, runtime);
9f0c1e56 7403 }
6f505b16 7404
9a7e0b18
PZ
7405 if (sum > total)
7406 return -EINVAL;
7407
7408 return 0;
6f505b16
PZ
7409}
7410
9a7e0b18 7411static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7412{
8277434e
PT
7413 int ret;
7414
9a7e0b18
PZ
7415 struct rt_schedulable_data data = {
7416 .tg = tg,
7417 .rt_period = period,
7418 .rt_runtime = runtime,
7419 };
7420
8277434e
PT
7421 rcu_read_lock();
7422 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7423 rcu_read_unlock();
7424
7425 return ret;
521f1a24
DG
7426}
7427
ab84d31e 7428static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7429 u64 rt_period, u64 rt_runtime)
6f505b16 7430{
ac086bc2 7431 int i, err = 0;
9f0c1e56 7432
9f0c1e56 7433 mutex_lock(&rt_constraints_mutex);
521f1a24 7434 read_lock(&tasklist_lock);
9a7e0b18
PZ
7435 err = __rt_schedulable(tg, rt_period, rt_runtime);
7436 if (err)
9f0c1e56 7437 goto unlock;
ac086bc2 7438
0986b11b 7439 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7440 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7441 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7442
7443 for_each_possible_cpu(i) {
7444 struct rt_rq *rt_rq = tg->rt_rq[i];
7445
0986b11b 7446 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7447 rt_rq->rt_runtime = rt_runtime;
0986b11b 7448 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7449 }
0986b11b 7450 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7451unlock:
521f1a24 7452 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7453 mutex_unlock(&rt_constraints_mutex);
7454
7455 return err;
6f505b16
PZ
7456}
7457
d0b27fa7
PZ
7458int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7459{
7460 u64 rt_runtime, rt_period;
7461
7462 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7463 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7464 if (rt_runtime_us < 0)
7465 rt_runtime = RUNTIME_INF;
7466
ab84d31e 7467 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7468}
7469
9f0c1e56
PZ
7470long sched_group_rt_runtime(struct task_group *tg)
7471{
7472 u64 rt_runtime_us;
7473
d0b27fa7 7474 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7475 return -1;
7476
d0b27fa7 7477 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7478 do_div(rt_runtime_us, NSEC_PER_USEC);
7479 return rt_runtime_us;
7480}
d0b27fa7
PZ
7481
7482int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7483{
7484 u64 rt_runtime, rt_period;
7485
7486 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7487 rt_runtime = tg->rt_bandwidth.rt_runtime;
7488
619b0488
R
7489 if (rt_period == 0)
7490 return -EINVAL;
7491
ab84d31e 7492 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7493}
7494
7495long sched_group_rt_period(struct task_group *tg)
7496{
7497 u64 rt_period_us;
7498
7499 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7500 do_div(rt_period_us, NSEC_PER_USEC);
7501 return rt_period_us;
7502}
7503
7504static int sched_rt_global_constraints(void)
7505{
4653f803 7506 u64 runtime, period;
d0b27fa7
PZ
7507 int ret = 0;
7508
ec5d4989
HS
7509 if (sysctl_sched_rt_period <= 0)
7510 return -EINVAL;
7511
4653f803
PZ
7512 runtime = global_rt_runtime();
7513 period = global_rt_period();
7514
7515 /*
7516 * Sanity check on the sysctl variables.
7517 */
7518 if (runtime > period && runtime != RUNTIME_INF)
7519 return -EINVAL;
10b612f4 7520
d0b27fa7 7521 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7522 read_lock(&tasklist_lock);
4653f803 7523 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7524 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7525 mutex_unlock(&rt_constraints_mutex);
7526
7527 return ret;
7528}
54e99124
DG
7529
7530int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7531{
7532 /* Don't accept realtime tasks when there is no way for them to run */
7533 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7534 return 0;
7535
7536 return 1;
7537}
7538
6d6bc0ad 7539#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7540static int sched_rt_global_constraints(void)
7541{
ac086bc2
PZ
7542 unsigned long flags;
7543 int i;
7544
ec5d4989
HS
7545 if (sysctl_sched_rt_period <= 0)
7546 return -EINVAL;
7547
60aa605d
PZ
7548 /*
7549 * There's always some RT tasks in the root group
7550 * -- migration, kstopmachine etc..
7551 */
7552 if (sysctl_sched_rt_runtime == 0)
7553 return -EBUSY;
7554
0986b11b 7555 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7556 for_each_possible_cpu(i) {
7557 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7558
0986b11b 7559 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7560 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7561 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7562 }
0986b11b 7563 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7564
d0b27fa7
PZ
7565 return 0;
7566}
6d6bc0ad 7567#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7568
ce0dbbbb
CW
7569int sched_rr_handler(struct ctl_table *table, int write,
7570 void __user *buffer, size_t *lenp,
7571 loff_t *ppos)
7572{
7573 int ret;
7574 static DEFINE_MUTEX(mutex);
7575
7576 mutex_lock(&mutex);
7577 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7578 /* make sure that internally we keep jiffies */
7579 /* also, writing zero resets timeslice to default */
7580 if (!ret && write) {
7581 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7582 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7583 }
7584 mutex_unlock(&mutex);
7585 return ret;
7586}
7587
d0b27fa7 7588int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7589 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7590 loff_t *ppos)
7591{
7592 int ret;
7593 int old_period, old_runtime;
7594 static DEFINE_MUTEX(mutex);
7595
7596 mutex_lock(&mutex);
7597 old_period = sysctl_sched_rt_period;
7598 old_runtime = sysctl_sched_rt_runtime;
7599
8d65af78 7600 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7601
7602 if (!ret && write) {
7603 ret = sched_rt_global_constraints();
7604 if (ret) {
7605 sysctl_sched_rt_period = old_period;
7606 sysctl_sched_rt_runtime = old_runtime;
7607 } else {
7608 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7609 def_rt_bandwidth.rt_period =
7610 ns_to_ktime(global_rt_period());
7611 }
7612 }
7613 mutex_unlock(&mutex);
7614
7615 return ret;
7616}
68318b8e 7617
052f1dc7 7618#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7619
7620/* return corresponding task_group object of a cgroup */
2b01dfe3 7621static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7622{
2b01dfe3
PM
7623 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7624 struct task_group, css);
68318b8e
SV
7625}
7626
92fb9748 7627static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7628{
ec7dc8ac 7629 struct task_group *tg, *parent;
68318b8e 7630
2b01dfe3 7631 if (!cgrp->parent) {
68318b8e 7632 /* This is early initialization for the top cgroup */
07e06b01 7633 return &root_task_group.css;
68318b8e
SV
7634 }
7635
ec7dc8ac
DG
7636 parent = cgroup_tg(cgrp->parent);
7637 tg = sched_create_group(parent);
68318b8e
SV
7638 if (IS_ERR(tg))
7639 return ERR_PTR(-ENOMEM);
7640
68318b8e
SV
7641 return &tg->css;
7642}
7643
ace783b9
LZ
7644static int cpu_cgroup_css_online(struct cgroup *cgrp)
7645{
7646 struct task_group *tg = cgroup_tg(cgrp);
7647 struct task_group *parent;
7648
7649 if (!cgrp->parent)
7650 return 0;
7651
7652 parent = cgroup_tg(cgrp->parent);
7653 sched_online_group(tg, parent);
7654 return 0;
7655}
7656
92fb9748 7657static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7658{
2b01dfe3 7659 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7660
7661 sched_destroy_group(tg);
7662}
7663
ace783b9
LZ
7664static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7665{
7666 struct task_group *tg = cgroup_tg(cgrp);
7667
7668 sched_offline_group(tg);
7669}
7670
761b3ef5 7671static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7672 struct cgroup_taskset *tset)
68318b8e 7673{
bb9d97b6
TH
7674 struct task_struct *task;
7675
7676 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7677#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7678 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7679 return -EINVAL;
b68aa230 7680#else
bb9d97b6
TH
7681 /* We don't support RT-tasks being in separate groups */
7682 if (task->sched_class != &fair_sched_class)
7683 return -EINVAL;
b68aa230 7684#endif
bb9d97b6 7685 }
be367d09
BB
7686 return 0;
7687}
68318b8e 7688
761b3ef5 7689static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7690 struct cgroup_taskset *tset)
68318b8e 7691{
bb9d97b6
TH
7692 struct task_struct *task;
7693
7694 cgroup_taskset_for_each(task, cgrp, tset)
7695 sched_move_task(task);
68318b8e
SV
7696}
7697
068c5cc5 7698static void
761b3ef5
LZ
7699cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7700 struct task_struct *task)
068c5cc5
PZ
7701{
7702 /*
7703 * cgroup_exit() is called in the copy_process() failure path.
7704 * Ignore this case since the task hasn't ran yet, this avoids
7705 * trying to poke a half freed task state from generic code.
7706 */
7707 if (!(task->flags & PF_EXITING))
7708 return;
7709
7710 sched_move_task(task);
7711}
7712
052f1dc7 7713#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7714static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7715 u64 shareval)
68318b8e 7716{
c8b28116 7717 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7718}
7719
f4c753b7 7720static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7721{
2b01dfe3 7722 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7723
c8b28116 7724 return (u64) scale_load_down(tg->shares);
68318b8e 7725}
ab84d31e
PT
7726
7727#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7728static DEFINE_MUTEX(cfs_constraints_mutex);
7729
ab84d31e
PT
7730const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7731const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7732
a790de99
PT
7733static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7734
ab84d31e
PT
7735static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7736{
56f570e5 7737 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7738 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7739
7740 if (tg == &root_task_group)
7741 return -EINVAL;
7742
7743 /*
7744 * Ensure we have at some amount of bandwidth every period. This is
7745 * to prevent reaching a state of large arrears when throttled via
7746 * entity_tick() resulting in prolonged exit starvation.
7747 */
7748 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7749 return -EINVAL;
7750
7751 /*
7752 * Likewise, bound things on the otherside by preventing insane quota
7753 * periods. This also allows us to normalize in computing quota
7754 * feasibility.
7755 */
7756 if (period > max_cfs_quota_period)
7757 return -EINVAL;
7758
a790de99
PT
7759 mutex_lock(&cfs_constraints_mutex);
7760 ret = __cfs_schedulable(tg, period, quota);
7761 if (ret)
7762 goto out_unlock;
7763
58088ad0 7764 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7765 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7766 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7767 raw_spin_lock_irq(&cfs_b->lock);
7768 cfs_b->period = ns_to_ktime(period);
7769 cfs_b->quota = quota;
58088ad0 7770
a9cf55b2 7771 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7772 /* restart the period timer (if active) to handle new period expiry */
7773 if (runtime_enabled && cfs_b->timer_active) {
7774 /* force a reprogram */
7775 cfs_b->timer_active = 0;
7776 __start_cfs_bandwidth(cfs_b);
7777 }
ab84d31e
PT
7778 raw_spin_unlock_irq(&cfs_b->lock);
7779
7780 for_each_possible_cpu(i) {
7781 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7782 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7783
7784 raw_spin_lock_irq(&rq->lock);
58088ad0 7785 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7786 cfs_rq->runtime_remaining = 0;
671fd9da 7787
029632fb 7788 if (cfs_rq->throttled)
671fd9da 7789 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7790 raw_spin_unlock_irq(&rq->lock);
7791 }
a790de99
PT
7792out_unlock:
7793 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7794
a790de99 7795 return ret;
ab84d31e
PT
7796}
7797
7798int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7799{
7800 u64 quota, period;
7801
029632fb 7802 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7803 if (cfs_quota_us < 0)
7804 quota = RUNTIME_INF;
7805 else
7806 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7807
7808 return tg_set_cfs_bandwidth(tg, period, quota);
7809}
7810
7811long tg_get_cfs_quota(struct task_group *tg)
7812{
7813 u64 quota_us;
7814
029632fb 7815 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7816 return -1;
7817
029632fb 7818 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7819 do_div(quota_us, NSEC_PER_USEC);
7820
7821 return quota_us;
7822}
7823
7824int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7825{
7826 u64 quota, period;
7827
7828 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7829 quota = tg->cfs_bandwidth.quota;
ab84d31e 7830
ab84d31e
PT
7831 return tg_set_cfs_bandwidth(tg, period, quota);
7832}
7833
7834long tg_get_cfs_period(struct task_group *tg)
7835{
7836 u64 cfs_period_us;
7837
029632fb 7838 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7839 do_div(cfs_period_us, NSEC_PER_USEC);
7840
7841 return cfs_period_us;
7842}
7843
7844static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7845{
7846 return tg_get_cfs_quota(cgroup_tg(cgrp));
7847}
7848
7849static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7850 s64 cfs_quota_us)
7851{
7852 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7853}
7854
7855static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7856{
7857 return tg_get_cfs_period(cgroup_tg(cgrp));
7858}
7859
7860static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7861 u64 cfs_period_us)
7862{
7863 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7864}
7865
a790de99
PT
7866struct cfs_schedulable_data {
7867 struct task_group *tg;
7868 u64 period, quota;
7869};
7870
7871/*
7872 * normalize group quota/period to be quota/max_period
7873 * note: units are usecs
7874 */
7875static u64 normalize_cfs_quota(struct task_group *tg,
7876 struct cfs_schedulable_data *d)
7877{
7878 u64 quota, period;
7879
7880 if (tg == d->tg) {
7881 period = d->period;
7882 quota = d->quota;
7883 } else {
7884 period = tg_get_cfs_period(tg);
7885 quota = tg_get_cfs_quota(tg);
7886 }
7887
7888 /* note: these should typically be equivalent */
7889 if (quota == RUNTIME_INF || quota == -1)
7890 return RUNTIME_INF;
7891
7892 return to_ratio(period, quota);
7893}
7894
7895static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7896{
7897 struct cfs_schedulable_data *d = data;
029632fb 7898 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7899 s64 quota = 0, parent_quota = -1;
7900
7901 if (!tg->parent) {
7902 quota = RUNTIME_INF;
7903 } else {
029632fb 7904 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7905
7906 quota = normalize_cfs_quota(tg, d);
7907 parent_quota = parent_b->hierarchal_quota;
7908
7909 /*
7910 * ensure max(child_quota) <= parent_quota, inherit when no
7911 * limit is set
7912 */
7913 if (quota == RUNTIME_INF)
7914 quota = parent_quota;
7915 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7916 return -EINVAL;
7917 }
7918 cfs_b->hierarchal_quota = quota;
7919
7920 return 0;
7921}
7922
7923static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7924{
8277434e 7925 int ret;
a790de99
PT
7926 struct cfs_schedulable_data data = {
7927 .tg = tg,
7928 .period = period,
7929 .quota = quota,
7930 };
7931
7932 if (quota != RUNTIME_INF) {
7933 do_div(data.period, NSEC_PER_USEC);
7934 do_div(data.quota, NSEC_PER_USEC);
7935 }
7936
8277434e
PT
7937 rcu_read_lock();
7938 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7939 rcu_read_unlock();
7940
7941 return ret;
a790de99 7942}
e8da1b18
NR
7943
7944static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7945 struct cgroup_map_cb *cb)
7946{
7947 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7949
7950 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7951 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7952 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7953
7954 return 0;
7955}
ab84d31e 7956#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7957#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7958
052f1dc7 7959#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7960static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7961 s64 val)
6f505b16 7962{
06ecb27c 7963 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7964}
7965
06ecb27c 7966static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7967{
06ecb27c 7968 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7969}
d0b27fa7
PZ
7970
7971static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7972 u64 rt_period_us)
7973{
7974 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7975}
7976
7977static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7978{
7979 return sched_group_rt_period(cgroup_tg(cgrp));
7980}
6d6bc0ad 7981#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7982
fe5c7cc2 7983static struct cftype cpu_files[] = {
052f1dc7 7984#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7985 {
7986 .name = "shares",
f4c753b7
PM
7987 .read_u64 = cpu_shares_read_u64,
7988 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7989 },
052f1dc7 7990#endif
ab84d31e
PT
7991#ifdef CONFIG_CFS_BANDWIDTH
7992 {
7993 .name = "cfs_quota_us",
7994 .read_s64 = cpu_cfs_quota_read_s64,
7995 .write_s64 = cpu_cfs_quota_write_s64,
7996 },
7997 {
7998 .name = "cfs_period_us",
7999 .read_u64 = cpu_cfs_period_read_u64,
8000 .write_u64 = cpu_cfs_period_write_u64,
8001 },
e8da1b18
NR
8002 {
8003 .name = "stat",
8004 .read_map = cpu_stats_show,
8005 },
ab84d31e 8006#endif
052f1dc7 8007#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8008 {
9f0c1e56 8009 .name = "rt_runtime_us",
06ecb27c
PM
8010 .read_s64 = cpu_rt_runtime_read,
8011 .write_s64 = cpu_rt_runtime_write,
6f505b16 8012 },
d0b27fa7
PZ
8013 {
8014 .name = "rt_period_us",
f4c753b7
PM
8015 .read_u64 = cpu_rt_period_read_uint,
8016 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8017 },
052f1dc7 8018#endif
4baf6e33 8019 { } /* terminate */
68318b8e
SV
8020};
8021
68318b8e 8022struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 8023 .name = "cpu",
92fb9748
TH
8024 .css_alloc = cpu_cgroup_css_alloc,
8025 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8026 .css_online = cpu_cgroup_css_online,
8027 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8028 .can_attach = cpu_cgroup_can_attach,
8029 .attach = cpu_cgroup_attach,
068c5cc5 8030 .exit = cpu_cgroup_exit,
38605cae 8031 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8032 .base_cftypes = cpu_files,
68318b8e
SV
8033 .early_init = 1,
8034};
8035
052f1dc7 8036#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8037
8038#ifdef CONFIG_CGROUP_CPUACCT
8039
8040/*
8041 * CPU accounting code for task groups.
8042 *
8043 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8044 * (balbir@in.ibm.com).
8045 */
8046
73fbec60
FW
8047struct cpuacct root_cpuacct;
8048
d842de87 8049/* create a new cpu accounting group */
92fb9748 8050static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 8051{
54c707e9 8052 struct cpuacct *ca;
d842de87 8053
54c707e9
GC
8054 if (!cgrp->parent)
8055 return &root_cpuacct.css;
8056
8057 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8058 if (!ca)
ef12fefa 8059 goto out;
d842de87
SV
8060
8061 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8062 if (!ca->cpuusage)
8063 goto out_free_ca;
8064
54c707e9
GC
8065 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8066 if (!ca->cpustat)
8067 goto out_free_cpuusage;
934352f2 8068
d842de87 8069 return &ca->css;
ef12fefa 8070
54c707e9 8071out_free_cpuusage:
ef12fefa
BR
8072 free_percpu(ca->cpuusage);
8073out_free_ca:
8074 kfree(ca);
8075out:
8076 return ERR_PTR(-ENOMEM);
d842de87
SV
8077}
8078
8079/* destroy an existing cpu accounting group */
92fb9748 8080static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 8081{
32cd756a 8082 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8083
54c707e9 8084 free_percpu(ca->cpustat);
d842de87
SV
8085 free_percpu(ca->cpuusage);
8086 kfree(ca);
8087}
8088
720f5498
KC
8089static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8090{
b36128c8 8091 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8092 u64 data;
8093
8094#ifndef CONFIG_64BIT
8095 /*
8096 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8097 */
05fa785c 8098 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8099 data = *cpuusage;
05fa785c 8100 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8101#else
8102 data = *cpuusage;
8103#endif
8104
8105 return data;
8106}
8107
8108static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8109{
b36128c8 8110 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8111
8112#ifndef CONFIG_64BIT
8113 /*
8114 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8115 */
05fa785c 8116 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8117 *cpuusage = val;
05fa785c 8118 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8119#else
8120 *cpuusage = val;
8121#endif
8122}
8123
d842de87 8124/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8125static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8126{
32cd756a 8127 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8128 u64 totalcpuusage = 0;
8129 int i;
8130
720f5498
KC
8131 for_each_present_cpu(i)
8132 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8133
8134 return totalcpuusage;
8135}
8136
0297b803
DG
8137static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8138 u64 reset)
8139{
8140 struct cpuacct *ca = cgroup_ca(cgrp);
8141 int err = 0;
8142 int i;
8143
8144 if (reset) {
8145 err = -EINVAL;
8146 goto out;
8147 }
8148
720f5498
KC
8149 for_each_present_cpu(i)
8150 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8151
0297b803
DG
8152out:
8153 return err;
8154}
8155
e9515c3c
KC
8156static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8157 struct seq_file *m)
8158{
8159 struct cpuacct *ca = cgroup_ca(cgroup);
8160 u64 percpu;
8161 int i;
8162
8163 for_each_present_cpu(i) {
8164 percpu = cpuacct_cpuusage_read(ca, i);
8165 seq_printf(m, "%llu ", (unsigned long long) percpu);
8166 }
8167 seq_printf(m, "\n");
8168 return 0;
8169}
8170
ef12fefa
BR
8171static const char *cpuacct_stat_desc[] = {
8172 [CPUACCT_STAT_USER] = "user",
8173 [CPUACCT_STAT_SYSTEM] = "system",
8174};
8175
8176static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8177 struct cgroup_map_cb *cb)
ef12fefa
BR
8178{
8179 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8180 int cpu;
8181 s64 val = 0;
ef12fefa 8182
54c707e9
GC
8183 for_each_online_cpu(cpu) {
8184 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8185 val += kcpustat->cpustat[CPUTIME_USER];
8186 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8187 }
54c707e9
GC
8188 val = cputime64_to_clock_t(val);
8189 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8190
54c707e9
GC
8191 val = 0;
8192 for_each_online_cpu(cpu) {
8193 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8194 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8195 val += kcpustat->cpustat[CPUTIME_IRQ];
8196 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8197 }
54c707e9
GC
8198
8199 val = cputime64_to_clock_t(val);
8200 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8201
ef12fefa
BR
8202 return 0;
8203}
8204
d842de87
SV
8205static struct cftype files[] = {
8206 {
8207 .name = "usage",
f4c753b7
PM
8208 .read_u64 = cpuusage_read,
8209 .write_u64 = cpuusage_write,
d842de87 8210 },
e9515c3c
KC
8211 {
8212 .name = "usage_percpu",
8213 .read_seq_string = cpuacct_percpu_seq_read,
8214 },
ef12fefa
BR
8215 {
8216 .name = "stat",
8217 .read_map = cpuacct_stats_show,
8218 },
4baf6e33 8219 { } /* terminate */
d842de87
SV
8220};
8221
d842de87
SV
8222/*
8223 * charge this task's execution time to its accounting group.
8224 *
8225 * called with rq->lock held.
8226 */
029632fb 8227void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8228{
8229 struct cpuacct *ca;
934352f2 8230 int cpu;
d842de87 8231
c40c6f85 8232 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8233 return;
8234
934352f2 8235 cpu = task_cpu(tsk);
a18b83b7
BR
8236
8237 rcu_read_lock();
8238
d842de87 8239 ca = task_ca(tsk);
d842de87 8240
44252e42 8241 for (; ca; ca = parent_ca(ca)) {
b36128c8 8242 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8243 *cpuusage += cputime;
8244 }
a18b83b7
BR
8245
8246 rcu_read_unlock();
d842de87
SV
8247}
8248
8249struct cgroup_subsys cpuacct_subsys = {
8250 .name = "cpuacct",
92fb9748
TH
8251 .css_alloc = cpuacct_css_alloc,
8252 .css_free = cpuacct_css_free,
d842de87 8253 .subsys_id = cpuacct_subsys_id,
4baf6e33 8254 .base_cftypes = files,
d842de87
SV
8255};
8256#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8257
8258void dump_cpu_task(int cpu)
8259{
8260 pr_info("Task dump for CPU %d:\n", cpu);
8261 sched_show_task(cpu_curr(cpu));
8262}
This page took 2.312624 seconds and 5 git commands to generate.