sched, arch: Create asm/preempt.h
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee
PZ
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
969c7921 1016struct migration_arg {
36c8b586 1017 struct task_struct *task;
1da177e4 1018 int dest_cpu;
70b97a7f 1019};
1da177e4 1020
969c7921
TH
1021static int migration_cpu_stop(void *data);
1022
1da177e4
LT
1023/*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
85ba2d86
RM
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change. If it changes, i.e. @p might have woken up,
1028 * then return zero. When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count). If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1da177e4
LT
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
85ba2d86 1039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1040{
1041 unsigned long flags;
dd41f596 1042 int running, on_rq;
85ba2d86 1043 unsigned long ncsw;
70b97a7f 1044 struct rq *rq;
1da177e4 1045
3a5c359a
AK
1046 for (;;) {
1047 /*
1048 * We do the initial early heuristics without holding
1049 * any task-queue locks at all. We'll only try to get
1050 * the runqueue lock when things look like they will
1051 * work out!
1052 */
1053 rq = task_rq(p);
fa490cfd 1054
3a5c359a
AK
1055 /*
1056 * If the task is actively running on another CPU
1057 * still, just relax and busy-wait without holding
1058 * any locks.
1059 *
1060 * NOTE! Since we don't hold any locks, it's not
1061 * even sure that "rq" stays as the right runqueue!
1062 * But we don't care, since "task_running()" will
1063 * return false if the runqueue has changed and p
1064 * is actually now running somewhere else!
1065 */
85ba2d86
RM
1066 while (task_running(rq, p)) {
1067 if (match_state && unlikely(p->state != match_state))
1068 return 0;
3a5c359a 1069 cpu_relax();
85ba2d86 1070 }
fa490cfd 1071
3a5c359a
AK
1072 /*
1073 * Ok, time to look more closely! We need the rq
1074 * lock now, to be *sure*. If we're wrong, we'll
1075 * just go back and repeat.
1076 */
1077 rq = task_rq_lock(p, &flags);
27a9da65 1078 trace_sched_wait_task(p);
3a5c359a 1079 running = task_running(rq, p);
fd2f4419 1080 on_rq = p->on_rq;
85ba2d86 1081 ncsw = 0;
f31e11d8 1082 if (!match_state || p->state == match_state)
93dcf55f 1083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1084 task_rq_unlock(rq, p, &flags);
fa490cfd 1085
85ba2d86
RM
1086 /*
1087 * If it changed from the expected state, bail out now.
1088 */
1089 if (unlikely(!ncsw))
1090 break;
1091
3a5c359a
AK
1092 /*
1093 * Was it really running after all now that we
1094 * checked with the proper locks actually held?
1095 *
1096 * Oops. Go back and try again..
1097 */
1098 if (unlikely(running)) {
1099 cpu_relax();
1100 continue;
1101 }
fa490cfd 1102
3a5c359a
AK
1103 /*
1104 * It's not enough that it's not actively running,
1105 * it must be off the runqueue _entirely_, and not
1106 * preempted!
1107 *
80dd99b3 1108 * So if it was still runnable (but just not actively
3a5c359a
AK
1109 * running right now), it's preempted, and we should
1110 * yield - it could be a while.
1111 */
1112 if (unlikely(on_rq)) {
8eb90c30
TG
1113 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1117 continue;
1118 }
fa490cfd 1119
3a5c359a
AK
1120 /*
1121 * Ahh, all good. It wasn't running, and it wasn't
1122 * runnable, which means that it will never become
1123 * running in the future either. We're all done!
1124 */
1125 break;
1126 }
85ba2d86
RM
1127
1128 return ncsw;
1da177e4
LT
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
25985edc 1138 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
36c8b586 1144void kick_process(struct task_struct *p)
1da177e4
LT
1145{
1146 int cpu;
1147
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1153}
b43e3521 1154EXPORT_SYMBOL_GPL(kick_process);
476d139c 1155#endif /* CONFIG_SMP */
1da177e4 1156
970b13ba 1157#ifdef CONFIG_SMP
30da688e 1158/*
013fdb80 1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1160 */
5da9a0fb
PZ
1161static int select_fallback_rq(int cpu, struct task_struct *p)
1162{
aa00d89c
TC
1163 int nid = cpu_to_node(cpu);
1164 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1165 enum { cpuset, possible, fail } state = cpuset;
1166 int dest_cpu;
5da9a0fb 1167
aa00d89c
TC
1168 /*
1169 * If the node that the cpu is on has been offlined, cpu_to_node()
1170 * will return -1. There is no cpu on the node, and we should
1171 * select the cpu on the other node.
1172 */
1173 if (nid != -1) {
1174 nodemask = cpumask_of_node(nid);
1175
1176 /* Look for allowed, online CPU in same node. */
1177 for_each_cpu(dest_cpu, nodemask) {
1178 if (!cpu_online(dest_cpu))
1179 continue;
1180 if (!cpu_active(dest_cpu))
1181 continue;
1182 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183 return dest_cpu;
1184 }
2baab4e9 1185 }
5da9a0fb 1186
2baab4e9
PZ
1187 for (;;) {
1188 /* Any allowed, online CPU? */
e3831edd 1189 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1190 if (!cpu_online(dest_cpu))
1191 continue;
1192 if (!cpu_active(dest_cpu))
1193 continue;
1194 goto out;
1195 }
5da9a0fb 1196
2baab4e9
PZ
1197 switch (state) {
1198 case cpuset:
1199 /* No more Mr. Nice Guy. */
1200 cpuset_cpus_allowed_fallback(p);
1201 state = possible;
1202 break;
1203
1204 case possible:
1205 do_set_cpus_allowed(p, cpu_possible_mask);
1206 state = fail;
1207 break;
1208
1209 case fail:
1210 BUG();
1211 break;
1212 }
1213 }
1214
1215out:
1216 if (state != cpuset) {
1217 /*
1218 * Don't tell them about moving exiting tasks or
1219 * kernel threads (both mm NULL), since they never
1220 * leave kernel.
1221 */
1222 if (p->mm && printk_ratelimit()) {
1223 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224 task_pid_nr(p), p->comm, cpu);
1225 }
5da9a0fb
PZ
1226 }
1227
1228 return dest_cpu;
1229}
1230
e2912009 1231/*
013fdb80 1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1233 */
970b13ba 1234static inline
7608dec2 1235int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1236{
7608dec2 1237 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1238
1239 /*
1240 * In order not to call set_task_cpu() on a blocking task we need
1241 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242 * cpu.
1243 *
1244 * Since this is common to all placement strategies, this lives here.
1245 *
1246 * [ this allows ->select_task() to simply return task_cpu(p) and
1247 * not worry about this generic constraint ]
1248 */
fa17b507 1249 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1250 !cpu_online(cpu)))
5da9a0fb 1251 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1252
1253 return cpu;
970b13ba 1254}
09a40af5
MG
1255
1256static void update_avg(u64 *avg, u64 sample)
1257{
1258 s64 diff = sample - *avg;
1259 *avg += diff >> 3;
1260}
970b13ba
PZ
1261#endif
1262
d7c01d27 1263static void
b84cb5df 1264ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1265{
d7c01d27 1266#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1267 struct rq *rq = this_rq();
1268
d7c01d27
PZ
1269#ifdef CONFIG_SMP
1270 int this_cpu = smp_processor_id();
1271
1272 if (cpu == this_cpu) {
1273 schedstat_inc(rq, ttwu_local);
1274 schedstat_inc(p, se.statistics.nr_wakeups_local);
1275 } else {
1276 struct sched_domain *sd;
1277
1278 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1279 rcu_read_lock();
d7c01d27
PZ
1280 for_each_domain(this_cpu, sd) {
1281 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282 schedstat_inc(sd, ttwu_wake_remote);
1283 break;
1284 }
1285 }
057f3fad 1286 rcu_read_unlock();
d7c01d27 1287 }
f339b9dc
PZ
1288
1289 if (wake_flags & WF_MIGRATED)
1290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
d7c01d27
PZ
1292#endif /* CONFIG_SMP */
1293
1294 schedstat_inc(rq, ttwu_count);
9ed3811a 1295 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1296
1297 if (wake_flags & WF_SYNC)
9ed3811a 1298 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1299
d7c01d27
PZ
1300#endif /* CONFIG_SCHEDSTATS */
1301}
1302
1303static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304{
9ed3811a 1305 activate_task(rq, p, en_flags);
fd2f4419 1306 p->on_rq = 1;
c2f7115e
PZ
1307
1308 /* if a worker is waking up, notify workqueue */
1309 if (p->flags & PF_WQ_WORKER)
1310 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1311}
1312
23f41eeb
PZ
1313/*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
89363381 1316static void
23f41eeb 1317ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1318{
9ed3811a 1319 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1320 trace_sched_wakeup(p, true);
9ed3811a
TH
1321
1322 p->state = TASK_RUNNING;
1323#ifdef CONFIG_SMP
1324 if (p->sched_class->task_woken)
1325 p->sched_class->task_woken(rq, p);
1326
e69c6341 1327 if (rq->idle_stamp) {
78becc27 1328 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1329 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1330
abfafa54
JL
1331 update_avg(&rq->avg_idle, delta);
1332
1333 if (rq->avg_idle > max)
9ed3811a 1334 rq->avg_idle = max;
abfafa54 1335
9ed3811a
TH
1336 rq->idle_stamp = 0;
1337 }
1338#endif
1339}
1340
c05fbafb
PZ
1341static void
1342ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343{
1344#ifdef CONFIG_SMP
1345 if (p->sched_contributes_to_load)
1346 rq->nr_uninterruptible--;
1347#endif
1348
1349 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350 ttwu_do_wakeup(rq, p, wake_flags);
1351}
1352
1353/*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359static int ttwu_remote(struct task_struct *p, int wake_flags)
1360{
1361 struct rq *rq;
1362 int ret = 0;
1363
1364 rq = __task_rq_lock(p);
1365 if (p->on_rq) {
1ad4ec0d
FW
1366 /* check_preempt_curr() may use rq clock */
1367 update_rq_clock(rq);
c05fbafb
PZ
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 ret = 1;
1370 }
1371 __task_rq_unlock(rq);
1372
1373 return ret;
1374}
1375
317f3941 1376#ifdef CONFIG_SMP
fa14ff4a 1377static void sched_ttwu_pending(void)
317f3941
PZ
1378{
1379 struct rq *rq = this_rq();
fa14ff4a
PZ
1380 struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 struct task_struct *p;
317f3941
PZ
1382
1383 raw_spin_lock(&rq->lock);
1384
fa14ff4a
PZ
1385 while (llist) {
1386 p = llist_entry(llist, struct task_struct, wake_entry);
1387 llist = llist_next(llist);
317f3941
PZ
1388 ttwu_do_activate(rq, p, 0);
1389 }
1390
1391 raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
f27dde8d
PZ
1396 /*
1397 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399 * this IPI.
1400 */
1401 if (tif_need_resched())
1402 set_preempt_need_resched();
1403
873b4c65
VG
1404 if (llist_empty(&this_rq()->wake_list)
1405 && !tick_nohz_full_cpu(smp_processor_id())
1406 && !got_nohz_idle_kick())
c5d753a5
PZ
1407 return;
1408
1409 /*
1410 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411 * traditionally all their work was done from the interrupt return
1412 * path. Now that we actually do some work, we need to make sure
1413 * we do call them.
1414 *
1415 * Some archs already do call them, luckily irq_enter/exit nest
1416 * properly.
1417 *
1418 * Arguably we should visit all archs and update all handlers,
1419 * however a fair share of IPIs are still resched only so this would
1420 * somewhat pessimize the simple resched case.
1421 */
1422 irq_enter();
ff442c51 1423 tick_nohz_full_check();
fa14ff4a 1424 sched_ttwu_pending();
ca38062e
SS
1425
1426 /*
1427 * Check if someone kicked us for doing the nohz idle load balance.
1428 */
873b4c65 1429 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1430 this_rq()->idle_balance = 1;
ca38062e 1431 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1432 }
c5d753a5 1433 irq_exit();
317f3941
PZ
1434}
1435
1436static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437{
fa14ff4a 1438 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1439 smp_send_reschedule(cpu);
1440}
d6aa8f85 1441
39be3501 1442bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1443{
1444 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445}
d6aa8f85 1446#endif /* CONFIG_SMP */
317f3941 1447
c05fbafb
PZ
1448static void ttwu_queue(struct task_struct *p, int cpu)
1449{
1450 struct rq *rq = cpu_rq(cpu);
1451
17d9f311 1452#if defined(CONFIG_SMP)
39be3501 1453 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1454 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1455 ttwu_queue_remote(p, cpu);
1456 return;
1457 }
1458#endif
1459
c05fbafb
PZ
1460 raw_spin_lock(&rq->lock);
1461 ttwu_do_activate(rq, p, 0);
1462 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1463}
1464
1465/**
1da177e4 1466 * try_to_wake_up - wake up a thread
9ed3811a 1467 * @p: the thread to be awakened
1da177e4 1468 * @state: the mask of task states that can be woken
9ed3811a 1469 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
e69f6186 1477 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1478 * or @state didn't match @p's state.
1da177e4 1479 */
e4a52bcb
PZ
1480static int
1481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1482{
1da177e4 1483 unsigned long flags;
c05fbafb 1484 int cpu, success = 0;
2398f2c6 1485
e0acd0a6
ON
1486 /*
1487 * If we are going to wake up a thread waiting for CONDITION we
1488 * need to ensure that CONDITION=1 done by the caller can not be
1489 * reordered with p->state check below. This pairs with mb() in
1490 * set_current_state() the waiting thread does.
1491 */
1492 smp_mb__before_spinlock();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
7ad5b3a5 1585int wake_up_process(struct task_struct *p)
1da177e4 1586{
9067ac85
ON
1587 WARN_ON(task_is_stopped_or_traced(p));
1588 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1589}
1da177e4
LT
1590EXPORT_SYMBOL(wake_up_process);
1591
7ad5b3a5 1592int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1593{
1594 return try_to_wake_up(p, state, 0);
1595}
1596
1da177e4
LT
1597/*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
dd41f596
IM
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603static void __sched_fork(struct task_struct *p)
1604{
fd2f4419
PZ
1605 p->on_rq = 0;
1606
1607 p->se.on_rq = 0;
dd41f596
IM
1608 p->se.exec_start = 0;
1609 p->se.sum_exec_runtime = 0;
f6cf891c 1610 p->se.prev_sum_exec_runtime = 0;
6c594c21 1611 p->se.nr_migrations = 0;
da7a735e 1612 p->se.vruntime = 0;
fd2f4419 1613 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1614
1615#ifdef CONFIG_SCHEDSTATS
41acab88 1616 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1617#endif
476d139c 1618
fa717060 1619 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1620
e107be36
AK
1621#ifdef CONFIG_PREEMPT_NOTIFIERS
1622 INIT_HLIST_HEAD(&p->preempt_notifiers);
1623#endif
cbee9f88
PZ
1624
1625#ifdef CONFIG_NUMA_BALANCING
1626 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1627 p->mm->numa_next_scan = jiffies;
b8593bfd 1628 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1629 p->mm->numa_scan_seq = 0;
1630 }
1631
1632 p->node_stamp = 0ULL;
1633 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1634 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1635 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1636 p->numa_work.next = &p->numa_work;
1637#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1638}
1639
1a687c2e 1640#ifdef CONFIG_NUMA_BALANCING
3105b86a 1641#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1642void set_numabalancing_state(bool enabled)
1643{
1644 if (enabled)
1645 sched_feat_set("NUMA");
1646 else
1647 sched_feat_set("NO_NUMA");
1648}
3105b86a
MG
1649#else
1650__read_mostly bool numabalancing_enabled;
1651
1652void set_numabalancing_state(bool enabled)
1653{
1654 numabalancing_enabled = enabled;
dd41f596 1655}
3105b86a 1656#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1657#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1658
1659/*
1660 * fork()/clone()-time setup:
1661 */
3e51e3ed 1662void sched_fork(struct task_struct *p)
dd41f596 1663{
0122ec5b 1664 unsigned long flags;
dd41f596
IM
1665 int cpu = get_cpu();
1666
1667 __sched_fork(p);
06b83b5f 1668 /*
0017d735 1669 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1670 * nobody will actually run it, and a signal or other external
1671 * event cannot wake it up and insert it on the runqueue either.
1672 */
0017d735 1673 p->state = TASK_RUNNING;
dd41f596 1674
c350a04e
MG
1675 /*
1676 * Make sure we do not leak PI boosting priority to the child.
1677 */
1678 p->prio = current->normal_prio;
1679
b9dc29e7
MG
1680 /*
1681 * Revert to default priority/policy on fork if requested.
1682 */
1683 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1684 if (task_has_rt_policy(p)) {
b9dc29e7 1685 p->policy = SCHED_NORMAL;
6c697bdf 1686 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1687 p->rt_priority = 0;
1688 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1689 p->static_prio = NICE_TO_PRIO(0);
1690
1691 p->prio = p->normal_prio = __normal_prio(p);
1692 set_load_weight(p);
6c697bdf 1693
b9dc29e7
MG
1694 /*
1695 * We don't need the reset flag anymore after the fork. It has
1696 * fulfilled its duty:
1697 */
1698 p->sched_reset_on_fork = 0;
1699 }
ca94c442 1700
2ddbf952
HS
1701 if (!rt_prio(p->prio))
1702 p->sched_class = &fair_sched_class;
b29739f9 1703
cd29fe6f
PZ
1704 if (p->sched_class->task_fork)
1705 p->sched_class->task_fork(p);
1706
86951599
PZ
1707 /*
1708 * The child is not yet in the pid-hash so no cgroup attach races,
1709 * and the cgroup is pinned to this child due to cgroup_fork()
1710 * is ran before sched_fork().
1711 *
1712 * Silence PROVE_RCU.
1713 */
0122ec5b 1714 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1715 set_task_cpu(p, cpu);
0122ec5b 1716 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1717
52f17b6c 1718#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1719 if (likely(sched_info_on()))
52f17b6c 1720 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1721#endif
3ca7a440
PZ
1722#if defined(CONFIG_SMP)
1723 p->on_cpu = 0;
4866cde0 1724#endif
bdd4e85d 1725#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1726 /* Want to start with kernel preemption disabled. */
f27dde8d 1727 task_thread_info(p)->preempt_count = PREEMPT_DISABLED;
1da177e4 1728#endif
806c09a7 1729#ifdef CONFIG_SMP
917b627d 1730 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1731#endif
917b627d 1732
476d139c 1733 put_cpu();
1da177e4
LT
1734}
1735
1736/*
1737 * wake_up_new_task - wake up a newly created task for the first time.
1738 *
1739 * This function will do some initial scheduler statistics housekeeping
1740 * that must be done for every newly created context, then puts the task
1741 * on the runqueue and wakes it.
1742 */
3e51e3ed 1743void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1744{
1745 unsigned long flags;
dd41f596 1746 struct rq *rq;
fabf318e 1747
ab2515c4 1748 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1749#ifdef CONFIG_SMP
1750 /*
1751 * Fork balancing, do it here and not earlier because:
1752 * - cpus_allowed can change in the fork path
1753 * - any previously selected cpu might disappear through hotplug
fabf318e 1754 */
ab2515c4 1755 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1756#endif
1757
a75cdaa9
AS
1758 /* Initialize new task's runnable average */
1759 init_task_runnable_average(p);
ab2515c4 1760 rq = __task_rq_lock(p);
cd29fe6f 1761 activate_task(rq, p, 0);
fd2f4419 1762 p->on_rq = 1;
89363381 1763 trace_sched_wakeup_new(p, true);
a7558e01 1764 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1765#ifdef CONFIG_SMP
efbbd05a
PZ
1766 if (p->sched_class->task_woken)
1767 p->sched_class->task_woken(rq, p);
9a897c5a 1768#endif
0122ec5b 1769 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1770}
1771
e107be36
AK
1772#ifdef CONFIG_PREEMPT_NOTIFIERS
1773
1774/**
80dd99b3 1775 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1776 * @notifier: notifier struct to register
e107be36
AK
1777 */
1778void preempt_notifier_register(struct preempt_notifier *notifier)
1779{
1780 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1781}
1782EXPORT_SYMBOL_GPL(preempt_notifier_register);
1783
1784/**
1785 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1786 * @notifier: notifier struct to unregister
e107be36
AK
1787 *
1788 * This is safe to call from within a preemption notifier.
1789 */
1790void preempt_notifier_unregister(struct preempt_notifier *notifier)
1791{
1792 hlist_del(&notifier->link);
1793}
1794EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1795
1796static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1797{
1798 struct preempt_notifier *notifier;
e107be36 1799
b67bfe0d 1800 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1801 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1802}
1803
1804static void
1805fire_sched_out_preempt_notifiers(struct task_struct *curr,
1806 struct task_struct *next)
1807{
1808 struct preempt_notifier *notifier;
e107be36 1809
b67bfe0d 1810 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1811 notifier->ops->sched_out(notifier, next);
1812}
1813
6d6bc0ad 1814#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1815
1816static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1817{
1818}
1819
1820static void
1821fire_sched_out_preempt_notifiers(struct task_struct *curr,
1822 struct task_struct *next)
1823{
1824}
1825
6d6bc0ad 1826#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1827
4866cde0
NP
1828/**
1829 * prepare_task_switch - prepare to switch tasks
1830 * @rq: the runqueue preparing to switch
421cee29 1831 * @prev: the current task that is being switched out
4866cde0
NP
1832 * @next: the task we are going to switch to.
1833 *
1834 * This is called with the rq lock held and interrupts off. It must
1835 * be paired with a subsequent finish_task_switch after the context
1836 * switch.
1837 *
1838 * prepare_task_switch sets up locking and calls architecture specific
1839 * hooks.
1840 */
e107be36
AK
1841static inline void
1842prepare_task_switch(struct rq *rq, struct task_struct *prev,
1843 struct task_struct *next)
4866cde0 1844{
895dd92c 1845 trace_sched_switch(prev, next);
43148951 1846 sched_info_switch(rq, prev, next);
fe4b04fa 1847 perf_event_task_sched_out(prev, next);
e107be36 1848 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1849 prepare_lock_switch(rq, next);
1850 prepare_arch_switch(next);
1851}
1852
1da177e4
LT
1853/**
1854 * finish_task_switch - clean up after a task-switch
344babaa 1855 * @rq: runqueue associated with task-switch
1da177e4
LT
1856 * @prev: the thread we just switched away from.
1857 *
4866cde0
NP
1858 * finish_task_switch must be called after the context switch, paired
1859 * with a prepare_task_switch call before the context switch.
1860 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1861 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1862 *
1863 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1864 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1865 * with the lock held can cause deadlocks; see schedule() for
1866 * details.)
1867 */
a9957449 1868static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1869 __releases(rq->lock)
1870{
1da177e4 1871 struct mm_struct *mm = rq->prev_mm;
55a101f8 1872 long prev_state;
1da177e4
LT
1873
1874 rq->prev_mm = NULL;
1875
1876 /*
1877 * A task struct has one reference for the use as "current".
c394cc9f 1878 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1879 * schedule one last time. The schedule call will never return, and
1880 * the scheduled task must drop that reference.
c394cc9f 1881 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1882 * still held, otherwise prev could be scheduled on another cpu, die
1883 * there before we look at prev->state, and then the reference would
1884 * be dropped twice.
1885 * Manfred Spraul <manfred@colorfullife.com>
1886 */
55a101f8 1887 prev_state = prev->state;
bf9fae9f 1888 vtime_task_switch(prev);
4866cde0 1889 finish_arch_switch(prev);
a8d757ef 1890 perf_event_task_sched_in(prev, current);
4866cde0 1891 finish_lock_switch(rq, prev);
01f23e16 1892 finish_arch_post_lock_switch();
e8fa1362 1893
e107be36 1894 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1895 if (mm)
1896 mmdrop(mm);
c394cc9f 1897 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1898 /*
1899 * Remove function-return probe instances associated with this
1900 * task and put them back on the free list.
9761eea8 1901 */
c6fd91f0 1902 kprobe_flush_task(prev);
1da177e4 1903 put_task_struct(prev);
c6fd91f0 1904 }
99e5ada9
FW
1905
1906 tick_nohz_task_switch(current);
1da177e4
LT
1907}
1908
3f029d3c
GH
1909#ifdef CONFIG_SMP
1910
1911/* assumes rq->lock is held */
1912static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1913{
1914 if (prev->sched_class->pre_schedule)
1915 prev->sched_class->pre_schedule(rq, prev);
1916}
1917
1918/* rq->lock is NOT held, but preemption is disabled */
1919static inline void post_schedule(struct rq *rq)
1920{
1921 if (rq->post_schedule) {
1922 unsigned long flags;
1923
05fa785c 1924 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1925 if (rq->curr->sched_class->post_schedule)
1926 rq->curr->sched_class->post_schedule(rq);
05fa785c 1927 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1928
1929 rq->post_schedule = 0;
1930 }
1931}
1932
1933#else
da19ab51 1934
3f029d3c
GH
1935static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1936{
1937}
1938
1939static inline void post_schedule(struct rq *rq)
1940{
1da177e4
LT
1941}
1942
3f029d3c
GH
1943#endif
1944
1da177e4
LT
1945/**
1946 * schedule_tail - first thing a freshly forked thread must call.
1947 * @prev: the thread we just switched away from.
1948 */
36c8b586 1949asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1950 __releases(rq->lock)
1951{
70b97a7f
IM
1952 struct rq *rq = this_rq();
1953
4866cde0 1954 finish_task_switch(rq, prev);
da19ab51 1955
3f029d3c
GH
1956 /*
1957 * FIXME: do we need to worry about rq being invalidated by the
1958 * task_switch?
1959 */
1960 post_schedule(rq);
70b97a7f 1961
4866cde0
NP
1962#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1963 /* In this case, finish_task_switch does not reenable preemption */
1964 preempt_enable();
1965#endif
1da177e4 1966 if (current->set_child_tid)
b488893a 1967 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1968}
1969
1970/*
1971 * context_switch - switch to the new MM and the new
1972 * thread's register state.
1973 */
dd41f596 1974static inline void
70b97a7f 1975context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1976 struct task_struct *next)
1da177e4 1977{
dd41f596 1978 struct mm_struct *mm, *oldmm;
1da177e4 1979
e107be36 1980 prepare_task_switch(rq, prev, next);
fe4b04fa 1981
dd41f596
IM
1982 mm = next->mm;
1983 oldmm = prev->active_mm;
9226d125
ZA
1984 /*
1985 * For paravirt, this is coupled with an exit in switch_to to
1986 * combine the page table reload and the switch backend into
1987 * one hypercall.
1988 */
224101ed 1989 arch_start_context_switch(prev);
9226d125 1990
31915ab4 1991 if (!mm) {
1da177e4
LT
1992 next->active_mm = oldmm;
1993 atomic_inc(&oldmm->mm_count);
1994 enter_lazy_tlb(oldmm, next);
1995 } else
1996 switch_mm(oldmm, mm, next);
1997
31915ab4 1998 if (!prev->mm) {
1da177e4 1999 prev->active_mm = NULL;
1da177e4
LT
2000 rq->prev_mm = oldmm;
2001 }
3a5f5e48
IM
2002 /*
2003 * Since the runqueue lock will be released by the next
2004 * task (which is an invalid locking op but in the case
2005 * of the scheduler it's an obvious special-case), so we
2006 * do an early lockdep release here:
2007 */
2008#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2009 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2010#endif
1da177e4 2011
91d1aa43 2012 context_tracking_task_switch(prev, next);
1da177e4
LT
2013 /* Here we just switch the register state and the stack. */
2014 switch_to(prev, next, prev);
2015
dd41f596
IM
2016 barrier();
2017 /*
2018 * this_rq must be evaluated again because prev may have moved
2019 * CPUs since it called schedule(), thus the 'rq' on its stack
2020 * frame will be invalid.
2021 */
2022 finish_task_switch(this_rq(), prev);
1da177e4
LT
2023}
2024
2025/*
1c3e8264 2026 * nr_running and nr_context_switches:
1da177e4
LT
2027 *
2028 * externally visible scheduler statistics: current number of runnable
1c3e8264 2029 * threads, total number of context switches performed since bootup.
1da177e4
LT
2030 */
2031unsigned long nr_running(void)
2032{
2033 unsigned long i, sum = 0;
2034
2035 for_each_online_cpu(i)
2036 sum += cpu_rq(i)->nr_running;
2037
2038 return sum;
f711f609 2039}
1da177e4 2040
1da177e4 2041unsigned long long nr_context_switches(void)
46cb4b7c 2042{
cc94abfc
SR
2043 int i;
2044 unsigned long long sum = 0;
46cb4b7c 2045
0a945022 2046 for_each_possible_cpu(i)
1da177e4 2047 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2048
1da177e4
LT
2049 return sum;
2050}
483b4ee6 2051
1da177e4
LT
2052unsigned long nr_iowait(void)
2053{
2054 unsigned long i, sum = 0;
483b4ee6 2055
0a945022 2056 for_each_possible_cpu(i)
1da177e4 2057 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2058
1da177e4
LT
2059 return sum;
2060}
483b4ee6 2061
8c215bd3 2062unsigned long nr_iowait_cpu(int cpu)
69d25870 2063{
8c215bd3 2064 struct rq *this = cpu_rq(cpu);
69d25870
AV
2065 return atomic_read(&this->nr_iowait);
2066}
46cb4b7c 2067
dd41f596 2068#ifdef CONFIG_SMP
8a0be9ef 2069
46cb4b7c 2070/*
38022906
PZ
2071 * sched_exec - execve() is a valuable balancing opportunity, because at
2072 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2073 */
38022906 2074void sched_exec(void)
46cb4b7c 2075{
38022906 2076 struct task_struct *p = current;
1da177e4 2077 unsigned long flags;
0017d735 2078 int dest_cpu;
46cb4b7c 2079
8f42ced9 2080 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2081 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2082 if (dest_cpu == smp_processor_id())
2083 goto unlock;
38022906 2084
8f42ced9 2085 if (likely(cpu_active(dest_cpu))) {
969c7921 2086 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2087
8f42ced9
PZ
2088 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2089 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2090 return;
2091 }
0017d735 2092unlock:
8f42ced9 2093 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2094}
dd41f596 2095
1da177e4
LT
2096#endif
2097
1da177e4 2098DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2099DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2100
2101EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2102EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2103
2104/*
c5f8d995 2105 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2106 * @p in case that task is currently running.
c5f8d995
HS
2107 *
2108 * Called with task_rq_lock() held on @rq.
1da177e4 2109 */
c5f8d995
HS
2110static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2111{
2112 u64 ns = 0;
2113
2114 if (task_current(rq, p)) {
2115 update_rq_clock(rq);
78becc27 2116 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2117 if ((s64)ns < 0)
2118 ns = 0;
2119 }
2120
2121 return ns;
2122}
2123
bb34d92f 2124unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2125{
1da177e4 2126 unsigned long flags;
41b86e9c 2127 struct rq *rq;
bb34d92f 2128 u64 ns = 0;
48f24c4d 2129
41b86e9c 2130 rq = task_rq_lock(p, &flags);
c5f8d995 2131 ns = do_task_delta_exec(p, rq);
0122ec5b 2132 task_rq_unlock(rq, p, &flags);
1508487e 2133
c5f8d995
HS
2134 return ns;
2135}
f06febc9 2136
c5f8d995
HS
2137/*
2138 * Return accounted runtime for the task.
2139 * In case the task is currently running, return the runtime plus current's
2140 * pending runtime that have not been accounted yet.
2141 */
2142unsigned long long task_sched_runtime(struct task_struct *p)
2143{
2144 unsigned long flags;
2145 struct rq *rq;
2146 u64 ns = 0;
2147
2148 rq = task_rq_lock(p, &flags);
2149 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2150 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2151
2152 return ns;
2153}
48f24c4d 2154
7835b98b
CL
2155/*
2156 * This function gets called by the timer code, with HZ frequency.
2157 * We call it with interrupts disabled.
7835b98b
CL
2158 */
2159void scheduler_tick(void)
2160{
7835b98b
CL
2161 int cpu = smp_processor_id();
2162 struct rq *rq = cpu_rq(cpu);
dd41f596 2163 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2164
2165 sched_clock_tick();
dd41f596 2166
05fa785c 2167 raw_spin_lock(&rq->lock);
3e51f33f 2168 update_rq_clock(rq);
fa85ae24 2169 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2170 update_cpu_load_active(rq);
05fa785c 2171 raw_spin_unlock(&rq->lock);
7835b98b 2172
e9d2b064 2173 perf_event_task_tick();
e220d2dc 2174
e418e1c2 2175#ifdef CONFIG_SMP
6eb57e0d 2176 rq->idle_balance = idle_cpu(cpu);
dd41f596 2177 trigger_load_balance(rq, cpu);
e418e1c2 2178#endif
265f22a9 2179 rq_last_tick_reset(rq);
1da177e4
LT
2180}
2181
265f22a9
FW
2182#ifdef CONFIG_NO_HZ_FULL
2183/**
2184 * scheduler_tick_max_deferment
2185 *
2186 * Keep at least one tick per second when a single
2187 * active task is running because the scheduler doesn't
2188 * yet completely support full dynticks environment.
2189 *
2190 * This makes sure that uptime, CFS vruntime, load
2191 * balancing, etc... continue to move forward, even
2192 * with a very low granularity.
e69f6186
YB
2193 *
2194 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2195 */
2196u64 scheduler_tick_max_deferment(void)
2197{
2198 struct rq *rq = this_rq();
2199 unsigned long next, now = ACCESS_ONCE(jiffies);
2200
2201 next = rq->last_sched_tick + HZ;
2202
2203 if (time_before_eq(next, now))
2204 return 0;
2205
2206 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2207}
265f22a9 2208#endif
1da177e4 2209
132380a0 2210notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2211{
2212 if (in_lock_functions(addr)) {
2213 addr = CALLER_ADDR2;
2214 if (in_lock_functions(addr))
2215 addr = CALLER_ADDR3;
2216 }
2217 return addr;
2218}
1da177e4 2219
7e49fcce
SR
2220#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2221 defined(CONFIG_PREEMPT_TRACER))
2222
43627582 2223void __kprobes add_preempt_count(int val)
1da177e4 2224{
6cd8a4bb 2225#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2226 /*
2227 * Underflow?
2228 */
9a11b49a
IM
2229 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2230 return;
6cd8a4bb 2231#endif
4a2b4b22 2232 add_preempt_count_notrace(val);
6cd8a4bb 2233#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2234 /*
2235 * Spinlock count overflowing soon?
2236 */
33859f7f
MOS
2237 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2238 PREEMPT_MASK - 10);
6cd8a4bb
SR
2239#endif
2240 if (preempt_count() == val)
2241 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2242}
2243EXPORT_SYMBOL(add_preempt_count);
2244
43627582 2245void __kprobes sub_preempt_count(int val)
1da177e4 2246{
6cd8a4bb 2247#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2248 /*
2249 * Underflow?
2250 */
01e3eb82 2251 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2252 return;
1da177e4
LT
2253 /*
2254 * Is the spinlock portion underflowing?
2255 */
9a11b49a
IM
2256 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2257 !(preempt_count() & PREEMPT_MASK)))
2258 return;
6cd8a4bb 2259#endif
9a11b49a 2260
6cd8a4bb
SR
2261 if (preempt_count() == val)
2262 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4a2b4b22 2263 sub_preempt_count_notrace(val);
1da177e4
LT
2264}
2265EXPORT_SYMBOL(sub_preempt_count);
2266
2267#endif
2268
2269/*
dd41f596 2270 * Print scheduling while atomic bug:
1da177e4 2271 */
dd41f596 2272static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2273{
664dfa65
DJ
2274 if (oops_in_progress)
2275 return;
2276
3df0fc5b
PZ
2277 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2278 prev->comm, prev->pid, preempt_count());
838225b4 2279
dd41f596 2280 debug_show_held_locks(prev);
e21f5b15 2281 print_modules();
dd41f596
IM
2282 if (irqs_disabled())
2283 print_irqtrace_events(prev);
6135fc1e 2284 dump_stack();
373d4d09 2285 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2286}
1da177e4 2287
dd41f596
IM
2288/*
2289 * Various schedule()-time debugging checks and statistics:
2290 */
2291static inline void schedule_debug(struct task_struct *prev)
2292{
1da177e4 2293 /*
41a2d6cf 2294 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2295 * schedule() atomically, we ignore that path for now.
2296 * Otherwise, whine if we are scheduling when we should not be.
2297 */
3f33a7ce 2298 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2299 __schedule_bug(prev);
b3fbab05 2300 rcu_sleep_check();
dd41f596 2301
1da177e4
LT
2302 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2303
2d72376b 2304 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2305}
2306
6cecd084 2307static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2308{
61eadef6 2309 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2310 update_rq_clock(rq);
6cecd084 2311 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2312}
2313
dd41f596
IM
2314/*
2315 * Pick up the highest-prio task:
2316 */
2317static inline struct task_struct *
b67802ea 2318pick_next_task(struct rq *rq)
dd41f596 2319{
5522d5d5 2320 const struct sched_class *class;
dd41f596 2321 struct task_struct *p;
1da177e4
LT
2322
2323 /*
dd41f596
IM
2324 * Optimization: we know that if all tasks are in
2325 * the fair class we can call that function directly:
1da177e4 2326 */
953bfcd1 2327 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2328 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2329 if (likely(p))
2330 return p;
1da177e4
LT
2331 }
2332
34f971f6 2333 for_each_class(class) {
fb8d4724 2334 p = class->pick_next_task(rq);
dd41f596
IM
2335 if (p)
2336 return p;
dd41f596 2337 }
34f971f6
PZ
2338
2339 BUG(); /* the idle class will always have a runnable task */
dd41f596 2340}
1da177e4 2341
dd41f596 2342/*
c259e01a 2343 * __schedule() is the main scheduler function.
edde96ea
PE
2344 *
2345 * The main means of driving the scheduler and thus entering this function are:
2346 *
2347 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2348 *
2349 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2350 * paths. For example, see arch/x86/entry_64.S.
2351 *
2352 * To drive preemption between tasks, the scheduler sets the flag in timer
2353 * interrupt handler scheduler_tick().
2354 *
2355 * 3. Wakeups don't really cause entry into schedule(). They add a
2356 * task to the run-queue and that's it.
2357 *
2358 * Now, if the new task added to the run-queue preempts the current
2359 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2360 * called on the nearest possible occasion:
2361 *
2362 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2363 *
2364 * - in syscall or exception context, at the next outmost
2365 * preempt_enable(). (this might be as soon as the wake_up()'s
2366 * spin_unlock()!)
2367 *
2368 * - in IRQ context, return from interrupt-handler to
2369 * preemptible context
2370 *
2371 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2372 * then at the next:
2373 *
2374 * - cond_resched() call
2375 * - explicit schedule() call
2376 * - return from syscall or exception to user-space
2377 * - return from interrupt-handler to user-space
dd41f596 2378 */
c259e01a 2379static void __sched __schedule(void)
dd41f596
IM
2380{
2381 struct task_struct *prev, *next;
67ca7bde 2382 unsigned long *switch_count;
dd41f596 2383 struct rq *rq;
31656519 2384 int cpu;
dd41f596 2385
ff743345
PZ
2386need_resched:
2387 preempt_disable();
dd41f596
IM
2388 cpu = smp_processor_id();
2389 rq = cpu_rq(cpu);
25502a6c 2390 rcu_note_context_switch(cpu);
dd41f596 2391 prev = rq->curr;
dd41f596 2392
dd41f596 2393 schedule_debug(prev);
1da177e4 2394
31656519 2395 if (sched_feat(HRTICK))
f333fdc9 2396 hrtick_clear(rq);
8f4d37ec 2397
e0acd0a6
ON
2398 /*
2399 * Make sure that signal_pending_state()->signal_pending() below
2400 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2401 * done by the caller to avoid the race with signal_wake_up().
2402 */
2403 smp_mb__before_spinlock();
05fa785c 2404 raw_spin_lock_irq(&rq->lock);
1da177e4 2405
246d86b5 2406 switch_count = &prev->nivcsw;
1da177e4 2407 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2408 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2409 prev->state = TASK_RUNNING;
21aa9af0 2410 } else {
2acca55e
PZ
2411 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2412 prev->on_rq = 0;
2413
21aa9af0 2414 /*
2acca55e
PZ
2415 * If a worker went to sleep, notify and ask workqueue
2416 * whether it wants to wake up a task to maintain
2417 * concurrency.
21aa9af0
TH
2418 */
2419 if (prev->flags & PF_WQ_WORKER) {
2420 struct task_struct *to_wakeup;
2421
2422 to_wakeup = wq_worker_sleeping(prev, cpu);
2423 if (to_wakeup)
2424 try_to_wake_up_local(to_wakeup);
2425 }
21aa9af0 2426 }
dd41f596 2427 switch_count = &prev->nvcsw;
1da177e4
LT
2428 }
2429
3f029d3c 2430 pre_schedule(rq, prev);
f65eda4f 2431
dd41f596 2432 if (unlikely(!rq->nr_running))
1da177e4 2433 idle_balance(cpu, rq);
1da177e4 2434
df1c99d4 2435 put_prev_task(rq, prev);
b67802ea 2436 next = pick_next_task(rq);
f26f9aff 2437 clear_tsk_need_resched(prev);
f27dde8d 2438 clear_preempt_need_resched();
f26f9aff 2439 rq->skip_clock_update = 0;
1da177e4 2440
1da177e4 2441 if (likely(prev != next)) {
1da177e4
LT
2442 rq->nr_switches++;
2443 rq->curr = next;
2444 ++*switch_count;
2445
dd41f596 2446 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2447 /*
246d86b5
ON
2448 * The context switch have flipped the stack from under us
2449 * and restored the local variables which were saved when
2450 * this task called schedule() in the past. prev == current
2451 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2452 */
2453 cpu = smp_processor_id();
2454 rq = cpu_rq(cpu);
1da177e4 2455 } else
05fa785c 2456 raw_spin_unlock_irq(&rq->lock);
1da177e4 2457
3f029d3c 2458 post_schedule(rq);
1da177e4 2459
ba74c144 2460 sched_preempt_enable_no_resched();
ff743345 2461 if (need_resched())
1da177e4
LT
2462 goto need_resched;
2463}
c259e01a 2464
9c40cef2
TG
2465static inline void sched_submit_work(struct task_struct *tsk)
2466{
3c7d5184 2467 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2468 return;
2469 /*
2470 * If we are going to sleep and we have plugged IO queued,
2471 * make sure to submit it to avoid deadlocks.
2472 */
2473 if (blk_needs_flush_plug(tsk))
2474 blk_schedule_flush_plug(tsk);
2475}
2476
6ebbe7a0 2477asmlinkage void __sched schedule(void)
c259e01a 2478{
9c40cef2
TG
2479 struct task_struct *tsk = current;
2480
2481 sched_submit_work(tsk);
c259e01a
TG
2482 __schedule();
2483}
1da177e4
LT
2484EXPORT_SYMBOL(schedule);
2485
91d1aa43 2486#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2487asmlinkage void __sched schedule_user(void)
2488{
2489 /*
2490 * If we come here after a random call to set_need_resched(),
2491 * or we have been woken up remotely but the IPI has not yet arrived,
2492 * we haven't yet exited the RCU idle mode. Do it here manually until
2493 * we find a better solution.
2494 */
91d1aa43 2495 user_exit();
20ab65e3 2496 schedule();
91d1aa43 2497 user_enter();
20ab65e3
FW
2498}
2499#endif
2500
c5491ea7
TG
2501/**
2502 * schedule_preempt_disabled - called with preemption disabled
2503 *
2504 * Returns with preemption disabled. Note: preempt_count must be 1
2505 */
2506void __sched schedule_preempt_disabled(void)
2507{
ba74c144 2508 sched_preempt_enable_no_resched();
c5491ea7
TG
2509 schedule();
2510 preempt_disable();
2511}
2512
1da177e4
LT
2513#ifdef CONFIG_PREEMPT
2514/*
2ed6e34f 2515 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2516 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2517 * occur there and call schedule directly.
2518 */
d1f74e20 2519asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2520{
1da177e4
LT
2521 /*
2522 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2523 * we do not want to preempt the current task. Just return..
1da177e4 2524 */
fbb00b56 2525 if (likely(!preemptible()))
1da177e4
LT
2526 return;
2527
3a5c359a 2528 do {
d1f74e20 2529 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2530 __schedule();
d1f74e20 2531 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2532
3a5c359a
AK
2533 /*
2534 * Check again in case we missed a preemption opportunity
2535 * between schedule and now.
2536 */
2537 barrier();
5ed0cec0 2538 } while (need_resched());
1da177e4 2539}
1da177e4
LT
2540EXPORT_SYMBOL(preempt_schedule);
2541
2542/*
2ed6e34f 2543 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2544 * off of irq context.
2545 * Note, that this is called and return with irqs disabled. This will
2546 * protect us against recursive calling from irq.
2547 */
2548asmlinkage void __sched preempt_schedule_irq(void)
2549{
b22366cd 2550 enum ctx_state prev_state;
6478d880 2551
2ed6e34f 2552 /* Catch callers which need to be fixed */
f27dde8d 2553 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2554
b22366cd
FW
2555 prev_state = exception_enter();
2556
3a5c359a
AK
2557 do {
2558 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2559 local_irq_enable();
c259e01a 2560 __schedule();
3a5c359a 2561 local_irq_disable();
3a5c359a 2562 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2563
3a5c359a
AK
2564 /*
2565 * Check again in case we missed a preemption opportunity
2566 * between schedule and now.
2567 */
2568 barrier();
5ed0cec0 2569 } while (need_resched());
b22366cd
FW
2570
2571 exception_exit(prev_state);
1da177e4
LT
2572}
2573
2574#endif /* CONFIG_PREEMPT */
2575
63859d4f 2576int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2577 void *key)
1da177e4 2578{
63859d4f 2579 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2580}
1da177e4
LT
2581EXPORT_SYMBOL(default_wake_function);
2582
2583/*
41a2d6cf
IM
2584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2586 * number) then we wake all the non-exclusive tasks and one exclusive task.
2587 *
2588 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2591 */
78ddb08f 2592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2593 int nr_exclusive, int wake_flags, void *key)
1da177e4 2594{
2e45874c 2595 wait_queue_t *curr, *next;
1da177e4 2596
2e45874c 2597 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2598 unsigned flags = curr->flags;
2599
63859d4f 2600 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2601 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2602 break;
2603 }
2604}
2605
2606/**
2607 * __wake_up - wake up threads blocked on a waitqueue.
2608 * @q: the waitqueue
2609 * @mode: which threads
2610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2611 * @key: is directly passed to the wakeup function
50fa610a
DH
2612 *
2613 * It may be assumed that this function implies a write memory barrier before
2614 * changing the task state if and only if any tasks are woken up.
1da177e4 2615 */
7ad5b3a5 2616void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2617 int nr_exclusive, void *key)
1da177e4
LT
2618{
2619 unsigned long flags;
2620
2621 spin_lock_irqsave(&q->lock, flags);
2622 __wake_up_common(q, mode, nr_exclusive, 0, key);
2623 spin_unlock_irqrestore(&q->lock, flags);
2624}
1da177e4
LT
2625EXPORT_SYMBOL(__wake_up);
2626
2627/*
2628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2629 */
63b20011 2630void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2631{
63b20011 2632 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2633}
22c43c81 2634EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2635
4ede816a
DL
2636void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2637{
2638 __wake_up_common(q, mode, 1, 0, key);
2639}
bf294b41 2640EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2641
1da177e4 2642/**
4ede816a 2643 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2644 * @q: the waitqueue
2645 * @mode: which threads
2646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2647 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2648 *
2649 * The sync wakeup differs that the waker knows that it will schedule
2650 * away soon, so while the target thread will be woken up, it will not
2651 * be migrated to another CPU - ie. the two threads are 'synchronized'
2652 * with each other. This can prevent needless bouncing between CPUs.
2653 *
2654 * On UP it can prevent extra preemption.
50fa610a
DH
2655 *
2656 * It may be assumed that this function implies a write memory barrier before
2657 * changing the task state if and only if any tasks are woken up.
1da177e4 2658 */
4ede816a
DL
2659void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2660 int nr_exclusive, void *key)
1da177e4
LT
2661{
2662 unsigned long flags;
7d478721 2663 int wake_flags = WF_SYNC;
1da177e4
LT
2664
2665 if (unlikely(!q))
2666 return;
2667
cedce3e7 2668 if (unlikely(nr_exclusive != 1))
7d478721 2669 wake_flags = 0;
1da177e4
LT
2670
2671 spin_lock_irqsave(&q->lock, flags);
7d478721 2672 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2673 spin_unlock_irqrestore(&q->lock, flags);
2674}
4ede816a
DL
2675EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2676
2677/*
2678 * __wake_up_sync - see __wake_up_sync_key()
2679 */
2680void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2681{
2682 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2683}
1da177e4
LT
2684EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2685
65eb3dc6
KD
2686/**
2687 * complete: - signals a single thread waiting on this completion
2688 * @x: holds the state of this particular completion
2689 *
2690 * This will wake up a single thread waiting on this completion. Threads will be
2691 * awakened in the same order in which they were queued.
2692 *
2693 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2694 *
2695 * It may be assumed that this function implies a write memory barrier before
2696 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2697 */
b15136e9 2698void complete(struct completion *x)
1da177e4
LT
2699{
2700 unsigned long flags;
2701
2702 spin_lock_irqsave(&x->wait.lock, flags);
2703 x->done++;
d9514f6c 2704 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2705 spin_unlock_irqrestore(&x->wait.lock, flags);
2706}
2707EXPORT_SYMBOL(complete);
2708
65eb3dc6
KD
2709/**
2710 * complete_all: - signals all threads waiting on this completion
2711 * @x: holds the state of this particular completion
2712 *
2713 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2714 *
2715 * It may be assumed that this function implies a write memory barrier before
2716 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2717 */
b15136e9 2718void complete_all(struct completion *x)
1da177e4
LT
2719{
2720 unsigned long flags;
2721
2722 spin_lock_irqsave(&x->wait.lock, flags);
2723 x->done += UINT_MAX/2;
d9514f6c 2724 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2725 spin_unlock_irqrestore(&x->wait.lock, flags);
2726}
2727EXPORT_SYMBOL(complete_all);
2728
8cbbe86d 2729static inline long __sched
686855f5
VD
2730do_wait_for_common(struct completion *x,
2731 long (*action)(long), long timeout, int state)
1da177e4 2732{
1da177e4
LT
2733 if (!x->done) {
2734 DECLARE_WAITQUEUE(wait, current);
2735
a93d2f17 2736 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2737 do {
94d3d824 2738 if (signal_pending_state(state, current)) {
ea71a546
ON
2739 timeout = -ERESTARTSYS;
2740 break;
8cbbe86d
AK
2741 }
2742 __set_current_state(state);
1da177e4 2743 spin_unlock_irq(&x->wait.lock);
686855f5 2744 timeout = action(timeout);
1da177e4 2745 spin_lock_irq(&x->wait.lock);
ea71a546 2746 } while (!x->done && timeout);
1da177e4 2747 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2748 if (!x->done)
2749 return timeout;
1da177e4
LT
2750 }
2751 x->done--;
ea71a546 2752 return timeout ?: 1;
1da177e4 2753}
1da177e4 2754
686855f5
VD
2755static inline long __sched
2756__wait_for_common(struct completion *x,
2757 long (*action)(long), long timeout, int state)
1da177e4 2758{
1da177e4
LT
2759 might_sleep();
2760
2761 spin_lock_irq(&x->wait.lock);
686855f5 2762 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2763 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2764 return timeout;
2765}
1da177e4 2766
686855f5
VD
2767static long __sched
2768wait_for_common(struct completion *x, long timeout, int state)
2769{
2770 return __wait_for_common(x, schedule_timeout, timeout, state);
2771}
2772
2773static long __sched
2774wait_for_common_io(struct completion *x, long timeout, int state)
2775{
2776 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2777}
2778
65eb3dc6
KD
2779/**
2780 * wait_for_completion: - waits for completion of a task
2781 * @x: holds the state of this particular completion
2782 *
2783 * This waits to be signaled for completion of a specific task. It is NOT
2784 * interruptible and there is no timeout.
2785 *
2786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2787 * and interrupt capability. Also see complete().
2788 */
b15136e9 2789void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2790{
2791 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2792}
8cbbe86d 2793EXPORT_SYMBOL(wait_for_completion);
1da177e4 2794
65eb3dc6
KD
2795/**
2796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2797 * @x: holds the state of this particular completion
2798 * @timeout: timeout value in jiffies
2799 *
2800 * This waits for either a completion of a specific task to be signaled or for a
2801 * specified timeout to expire. The timeout is in jiffies. It is not
2802 * interruptible.
c6dc7f05 2803 *
e69f6186
YB
2804 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2805 * till timeout) if completed.
65eb3dc6 2806 */
b15136e9 2807unsigned long __sched
8cbbe86d 2808wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2809{
8cbbe86d 2810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2811}
8cbbe86d 2812EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2813
686855f5
VD
2814/**
2815 * wait_for_completion_io: - waits for completion of a task
2816 * @x: holds the state of this particular completion
2817 *
2818 * This waits to be signaled for completion of a specific task. It is NOT
2819 * interruptible and there is no timeout. The caller is accounted as waiting
2820 * for IO.
2821 */
2822void __sched wait_for_completion_io(struct completion *x)
2823{
2824 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2825}
2826EXPORT_SYMBOL(wait_for_completion_io);
2827
2828/**
2829 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2830 * @x: holds the state of this particular completion
2831 * @timeout: timeout value in jiffies
2832 *
2833 * This waits for either a completion of a specific task to be signaled or for a
2834 * specified timeout to expire. The timeout is in jiffies. It is not
2835 * interruptible. The caller is accounted as waiting for IO.
2836 *
e69f6186
YB
2837 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2838 * till timeout) if completed.
686855f5
VD
2839 */
2840unsigned long __sched
2841wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2842{
2843 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2844}
2845EXPORT_SYMBOL(wait_for_completion_io_timeout);
2846
65eb3dc6
KD
2847/**
2848 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2849 * @x: holds the state of this particular completion
2850 *
2851 * This waits for completion of a specific task to be signaled. It is
2852 * interruptible.
c6dc7f05 2853 *
e69f6186 2854 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2855 */
8cbbe86d 2856int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2857{
51e97990
AK
2858 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2859 if (t == -ERESTARTSYS)
2860 return t;
2861 return 0;
0fec171c 2862}
8cbbe86d 2863EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2864
65eb3dc6
KD
2865/**
2866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2867 * @x: holds the state of this particular completion
2868 * @timeout: timeout value in jiffies
2869 *
2870 * This waits for either a completion of a specific task to be signaled or for a
2871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2872 *
e69f6186
YB
2873 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2874 * or number of jiffies left till timeout) if completed.
65eb3dc6 2875 */
6bf41237 2876long __sched
8cbbe86d
AK
2877wait_for_completion_interruptible_timeout(struct completion *x,
2878 unsigned long timeout)
0fec171c 2879{
8cbbe86d 2880 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2881}
8cbbe86d 2882EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2883
65eb3dc6
KD
2884/**
2885 * wait_for_completion_killable: - waits for completion of a task (killable)
2886 * @x: holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It can be
2889 * interrupted by a kill signal.
c6dc7f05 2890 *
e69f6186 2891 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2892 */
009e577e
MW
2893int __sched wait_for_completion_killable(struct completion *x)
2894{
2895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2896 if (t == -ERESTARTSYS)
2897 return t;
2898 return 0;
2899}
2900EXPORT_SYMBOL(wait_for_completion_killable);
2901
0aa12fb4
SW
2902/**
2903 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2904 * @x: holds the state of this particular completion
2905 * @timeout: timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be
2908 * signaled or for a specified timeout to expire. It can be
2909 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 2910 *
e69f6186
YB
2911 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2912 * or number of jiffies left till timeout) if completed.
0aa12fb4 2913 */
6bf41237 2914long __sched
0aa12fb4
SW
2915wait_for_completion_killable_timeout(struct completion *x,
2916 unsigned long timeout)
2917{
2918 return wait_for_common(x, timeout, TASK_KILLABLE);
2919}
2920EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2921
be4de352
DC
2922/**
2923 * try_wait_for_completion - try to decrement a completion without blocking
2924 * @x: completion structure
2925 *
e69f6186 2926 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
2927 * 1 if a decrement succeeded.
2928 *
2929 * If a completion is being used as a counting completion,
2930 * attempt to decrement the counter without blocking. This
2931 * enables us to avoid waiting if the resource the completion
2932 * is protecting is not available.
2933 */
2934bool try_wait_for_completion(struct completion *x)
2935{
7539a3b3 2936 unsigned long flags;
be4de352
DC
2937 int ret = 1;
2938
7539a3b3 2939 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2940 if (!x->done)
2941 ret = 0;
2942 else
2943 x->done--;
7539a3b3 2944 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2945 return ret;
2946}
2947EXPORT_SYMBOL(try_wait_for_completion);
2948
2949/**
2950 * completion_done - Test to see if a completion has any waiters
2951 * @x: completion structure
2952 *
e69f6186 2953 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
2954 * 1 if there are no waiters.
2955 *
2956 */
2957bool completion_done(struct completion *x)
2958{
7539a3b3 2959 unsigned long flags;
be4de352
DC
2960 int ret = 1;
2961
7539a3b3 2962 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2963 if (!x->done)
2964 ret = 0;
7539a3b3 2965 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2966 return ret;
2967}
2968EXPORT_SYMBOL(completion_done);
2969
8cbbe86d
AK
2970static long __sched
2971sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2972{
0fec171c
IM
2973 unsigned long flags;
2974 wait_queue_t wait;
2975
2976 init_waitqueue_entry(&wait, current);
1da177e4 2977
8cbbe86d 2978 __set_current_state(state);
1da177e4 2979
8cbbe86d
AK
2980 spin_lock_irqsave(&q->lock, flags);
2981 __add_wait_queue(q, &wait);
2982 spin_unlock(&q->lock);
2983 timeout = schedule_timeout(timeout);
2984 spin_lock_irq(&q->lock);
2985 __remove_wait_queue(q, &wait);
2986 spin_unlock_irqrestore(&q->lock, flags);
2987
2988 return timeout;
2989}
2990
2991void __sched interruptible_sleep_on(wait_queue_head_t *q)
2992{
2993 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2994}
1da177e4
LT
2995EXPORT_SYMBOL(interruptible_sleep_on);
2996
0fec171c 2997long __sched
95cdf3b7 2998interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2999{
8cbbe86d 3000 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3001}
1da177e4
LT
3002EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3003
0fec171c 3004void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3005{
8cbbe86d 3006 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3007}
1da177e4
LT
3008EXPORT_SYMBOL(sleep_on);
3009
0fec171c 3010long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3011{
8cbbe86d 3012 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3013}
1da177e4
LT
3014EXPORT_SYMBOL(sleep_on_timeout);
3015
b29739f9
IM
3016#ifdef CONFIG_RT_MUTEXES
3017
3018/*
3019 * rt_mutex_setprio - set the current priority of a task
3020 * @p: task
3021 * @prio: prio value (kernel-internal form)
3022 *
3023 * This function changes the 'effective' priority of a task. It does
3024 * not touch ->normal_prio like __setscheduler().
3025 *
3026 * Used by the rt_mutex code to implement priority inheritance logic.
3027 */
36c8b586 3028void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3029{
83b699ed 3030 int oldprio, on_rq, running;
70b97a7f 3031 struct rq *rq;
83ab0aa0 3032 const struct sched_class *prev_class;
b29739f9
IM
3033
3034 BUG_ON(prio < 0 || prio > MAX_PRIO);
3035
0122ec5b 3036 rq = __task_rq_lock(p);
b29739f9 3037
1c4dd99b
TG
3038 /*
3039 * Idle task boosting is a nono in general. There is one
3040 * exception, when PREEMPT_RT and NOHZ is active:
3041 *
3042 * The idle task calls get_next_timer_interrupt() and holds
3043 * the timer wheel base->lock on the CPU and another CPU wants
3044 * to access the timer (probably to cancel it). We can safely
3045 * ignore the boosting request, as the idle CPU runs this code
3046 * with interrupts disabled and will complete the lock
3047 * protected section without being interrupted. So there is no
3048 * real need to boost.
3049 */
3050 if (unlikely(p == rq->idle)) {
3051 WARN_ON(p != rq->curr);
3052 WARN_ON(p->pi_blocked_on);
3053 goto out_unlock;
3054 }
3055
a8027073 3056 trace_sched_pi_setprio(p, prio);
d5f9f942 3057 oldprio = p->prio;
83ab0aa0 3058 prev_class = p->sched_class;
fd2f4419 3059 on_rq = p->on_rq;
051a1d1a 3060 running = task_current(rq, p);
0e1f3483 3061 if (on_rq)
69be72c1 3062 dequeue_task(rq, p, 0);
0e1f3483
HS
3063 if (running)
3064 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3065
3066 if (rt_prio(prio))
3067 p->sched_class = &rt_sched_class;
3068 else
3069 p->sched_class = &fair_sched_class;
3070
b29739f9
IM
3071 p->prio = prio;
3072
0e1f3483
HS
3073 if (running)
3074 p->sched_class->set_curr_task(rq);
da7a735e 3075 if (on_rq)
371fd7e7 3076 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3077
da7a735e 3078 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3079out_unlock:
0122ec5b 3080 __task_rq_unlock(rq);
b29739f9 3081}
b29739f9 3082#endif
36c8b586 3083void set_user_nice(struct task_struct *p, long nice)
1da177e4 3084{
dd41f596 3085 int old_prio, delta, on_rq;
1da177e4 3086 unsigned long flags;
70b97a7f 3087 struct rq *rq;
1da177e4
LT
3088
3089 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3090 return;
3091 /*
3092 * We have to be careful, if called from sys_setpriority(),
3093 * the task might be in the middle of scheduling on another CPU.
3094 */
3095 rq = task_rq_lock(p, &flags);
3096 /*
3097 * The RT priorities are set via sched_setscheduler(), but we still
3098 * allow the 'normal' nice value to be set - but as expected
3099 * it wont have any effect on scheduling until the task is
dd41f596 3100 * SCHED_FIFO/SCHED_RR:
1da177e4 3101 */
e05606d3 3102 if (task_has_rt_policy(p)) {
1da177e4
LT
3103 p->static_prio = NICE_TO_PRIO(nice);
3104 goto out_unlock;
3105 }
fd2f4419 3106 on_rq = p->on_rq;
c09595f6 3107 if (on_rq)
69be72c1 3108 dequeue_task(rq, p, 0);
1da177e4 3109
1da177e4 3110 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3111 set_load_weight(p);
b29739f9
IM
3112 old_prio = p->prio;
3113 p->prio = effective_prio(p);
3114 delta = p->prio - old_prio;
1da177e4 3115
dd41f596 3116 if (on_rq) {
371fd7e7 3117 enqueue_task(rq, p, 0);
1da177e4 3118 /*
d5f9f942
AM
3119 * If the task increased its priority or is running and
3120 * lowered its priority, then reschedule its CPU:
1da177e4 3121 */
d5f9f942 3122 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3123 resched_task(rq->curr);
3124 }
3125out_unlock:
0122ec5b 3126 task_rq_unlock(rq, p, &flags);
1da177e4 3127}
1da177e4
LT
3128EXPORT_SYMBOL(set_user_nice);
3129
e43379f1
MM
3130/*
3131 * can_nice - check if a task can reduce its nice value
3132 * @p: task
3133 * @nice: nice value
3134 */
36c8b586 3135int can_nice(const struct task_struct *p, const int nice)
e43379f1 3136{
024f4747
MM
3137 /* convert nice value [19,-20] to rlimit style value [1,40] */
3138 int nice_rlim = 20 - nice;
48f24c4d 3139
78d7d407 3140 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3141 capable(CAP_SYS_NICE));
3142}
3143
1da177e4
LT
3144#ifdef __ARCH_WANT_SYS_NICE
3145
3146/*
3147 * sys_nice - change the priority of the current process.
3148 * @increment: priority increment
3149 *
3150 * sys_setpriority is a more generic, but much slower function that
3151 * does similar things.
3152 */
5add95d4 3153SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3154{
48f24c4d 3155 long nice, retval;
1da177e4
LT
3156
3157 /*
3158 * Setpriority might change our priority at the same moment.
3159 * We don't have to worry. Conceptually one call occurs first
3160 * and we have a single winner.
3161 */
e43379f1
MM
3162 if (increment < -40)
3163 increment = -40;
1da177e4
LT
3164 if (increment > 40)
3165 increment = 40;
3166
2b8f836f 3167 nice = TASK_NICE(current) + increment;
1da177e4
LT
3168 if (nice < -20)
3169 nice = -20;
3170 if (nice > 19)
3171 nice = 19;
3172
e43379f1
MM
3173 if (increment < 0 && !can_nice(current, nice))
3174 return -EPERM;
3175
1da177e4
LT
3176 retval = security_task_setnice(current, nice);
3177 if (retval)
3178 return retval;
3179
3180 set_user_nice(current, nice);
3181 return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
e69f6186 3190 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
36c8b586 3194int task_prio(const struct task_struct *p)
1da177e4
LT
3195{
3196 return p->prio - MAX_RT_PRIO;
3197}
3198
3199/**
3200 * task_nice - return the nice value of a given task.
3201 * @p: the task in question.
e69f6186
YB
3202 *
3203 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3204 */
36c8b586 3205int task_nice(const struct task_struct *p)
1da177e4
LT
3206{
3207 return TASK_NICE(p);
3208}
150d8bed 3209EXPORT_SYMBOL(task_nice);
1da177e4
LT
3210
3211/**
3212 * idle_cpu - is a given cpu idle currently?
3213 * @cpu: the processor in question.
e69f6186
YB
3214 *
3215 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3216 */
3217int idle_cpu(int cpu)
3218{
908a3283
TG
3219 struct rq *rq = cpu_rq(cpu);
3220
3221 if (rq->curr != rq->idle)
3222 return 0;
3223
3224 if (rq->nr_running)
3225 return 0;
3226
3227#ifdef CONFIG_SMP
3228 if (!llist_empty(&rq->wake_list))
3229 return 0;
3230#endif
3231
3232 return 1;
1da177e4
LT
3233}
3234
1da177e4
LT
3235/**
3236 * idle_task - return the idle task for a given cpu.
3237 * @cpu: the processor in question.
e69f6186
YB
3238 *
3239 * Return: The idle task for the cpu @cpu.
1da177e4 3240 */
36c8b586 3241struct task_struct *idle_task(int cpu)
1da177e4
LT
3242{
3243 return cpu_rq(cpu)->idle;
3244}
3245
3246/**
3247 * find_process_by_pid - find a process with a matching PID value.
3248 * @pid: the pid in question.
e69f6186
YB
3249 *
3250 * The task of @pid, if found. %NULL otherwise.
1da177e4 3251 */
a9957449 3252static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3253{
228ebcbe 3254 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3255}
3256
3257/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3258static void
3259__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3260{
1da177e4
LT
3261 p->policy = policy;
3262 p->rt_priority = prio;
b29739f9
IM
3263 p->normal_prio = normal_prio(p);
3264 /* we are holding p->pi_lock already */
3265 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3266 if (rt_prio(p->prio))
3267 p->sched_class = &rt_sched_class;
3268 else
3269 p->sched_class = &fair_sched_class;
2dd73a4f 3270 set_load_weight(p);
1da177e4
LT
3271}
3272
c69e8d9c
DH
3273/*
3274 * check the target process has a UID that matches the current process's
3275 */
3276static bool check_same_owner(struct task_struct *p)
3277{
3278 const struct cred *cred = current_cred(), *pcred;
3279 bool match;
3280
3281 rcu_read_lock();
3282 pcred = __task_cred(p);
9c806aa0
EB
3283 match = (uid_eq(cred->euid, pcred->euid) ||
3284 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3285 rcu_read_unlock();
3286 return match;
3287}
3288
961ccddd 3289static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3290 const struct sched_param *param, bool user)
1da177e4 3291{
83b699ed 3292 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3293 unsigned long flags;
83ab0aa0 3294 const struct sched_class *prev_class;
70b97a7f 3295 struct rq *rq;
ca94c442 3296 int reset_on_fork;
1da177e4 3297
66e5393a
SR
3298 /* may grab non-irq protected spin_locks */
3299 BUG_ON(in_interrupt());
1da177e4
LT
3300recheck:
3301 /* double check policy once rq lock held */
ca94c442
LP
3302 if (policy < 0) {
3303 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3304 policy = oldpolicy = p->policy;
ca94c442
LP
3305 } else {
3306 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3307 policy &= ~SCHED_RESET_ON_FORK;
3308
3309 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3310 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3311 policy != SCHED_IDLE)
3312 return -EINVAL;
3313 }
3314
1da177e4
LT
3315 /*
3316 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3317 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3318 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3319 */
3320 if (param->sched_priority < 0 ||
95cdf3b7 3321 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3322 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3323 return -EINVAL;
e05606d3 3324 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3325 return -EINVAL;
3326
37e4ab3f
OC
3327 /*
3328 * Allow unprivileged RT tasks to decrease priority:
3329 */
961ccddd 3330 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3331 if (rt_policy(policy)) {
a44702e8
ON
3332 unsigned long rlim_rtprio =
3333 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3334
3335 /* can't set/change the rt policy */
3336 if (policy != p->policy && !rlim_rtprio)
3337 return -EPERM;
3338
3339 /* can't increase priority */
3340 if (param->sched_priority > p->rt_priority &&
3341 param->sched_priority > rlim_rtprio)
3342 return -EPERM;
3343 }
c02aa73b 3344
dd41f596 3345 /*
c02aa73b
DH
3346 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3347 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3348 */
c02aa73b
DH
3349 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3350 if (!can_nice(p, TASK_NICE(p)))
3351 return -EPERM;
3352 }
5fe1d75f 3353
37e4ab3f 3354 /* can't change other user's priorities */
c69e8d9c 3355 if (!check_same_owner(p))
37e4ab3f 3356 return -EPERM;
ca94c442
LP
3357
3358 /* Normal users shall not reset the sched_reset_on_fork flag */
3359 if (p->sched_reset_on_fork && !reset_on_fork)
3360 return -EPERM;
37e4ab3f 3361 }
1da177e4 3362
725aad24 3363 if (user) {
b0ae1981 3364 retval = security_task_setscheduler(p);
725aad24
JF
3365 if (retval)
3366 return retval;
3367 }
3368
b29739f9
IM
3369 /*
3370 * make sure no PI-waiters arrive (or leave) while we are
3371 * changing the priority of the task:
0122ec5b 3372 *
25985edc 3373 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3374 * runqueue lock must be held.
3375 */
0122ec5b 3376 rq = task_rq_lock(p, &flags);
dc61b1d6 3377
34f971f6
PZ
3378 /*
3379 * Changing the policy of the stop threads its a very bad idea
3380 */
3381 if (p == rq->stop) {
0122ec5b 3382 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3383 return -EINVAL;
3384 }
3385
a51e9198
DF
3386 /*
3387 * If not changing anything there's no need to proceed further:
3388 */
3389 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3390 param->sched_priority == p->rt_priority))) {
45afb173 3391 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3392 return 0;
3393 }
3394
dc61b1d6
PZ
3395#ifdef CONFIG_RT_GROUP_SCHED
3396 if (user) {
3397 /*
3398 * Do not allow realtime tasks into groups that have no runtime
3399 * assigned.
3400 */
3401 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3402 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3403 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3404 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3405 return -EPERM;
3406 }
3407 }
3408#endif
3409
1da177e4
LT
3410 /* recheck policy now with rq lock held */
3411 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3412 policy = oldpolicy = -1;
0122ec5b 3413 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3414 goto recheck;
3415 }
fd2f4419 3416 on_rq = p->on_rq;
051a1d1a 3417 running = task_current(rq, p);
0e1f3483 3418 if (on_rq)
4ca9b72b 3419 dequeue_task(rq, p, 0);
0e1f3483
HS
3420 if (running)
3421 p->sched_class->put_prev_task(rq, p);
f6b53205 3422
ca94c442
LP
3423 p->sched_reset_on_fork = reset_on_fork;
3424
1da177e4 3425 oldprio = p->prio;
83ab0aa0 3426 prev_class = p->sched_class;
dd41f596 3427 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3428
0e1f3483
HS
3429 if (running)
3430 p->sched_class->set_curr_task(rq);
da7a735e 3431 if (on_rq)
4ca9b72b 3432 enqueue_task(rq, p, 0);
cb469845 3433
da7a735e 3434 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3435 task_rq_unlock(rq, p, &flags);
b29739f9 3436
95e02ca9
TG
3437 rt_mutex_adjust_pi(p);
3438
1da177e4
LT
3439 return 0;
3440}
961ccddd
RR
3441
3442/**
3443 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3444 * @p: the task in question.
3445 * @policy: new policy.
3446 * @param: structure containing the new RT priority.
3447 *
e69f6186
YB
3448 * Return: 0 on success. An error code otherwise.
3449 *
961ccddd
RR
3450 * NOTE that the task may be already dead.
3451 */
3452int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3453 const struct sched_param *param)
961ccddd
RR
3454{
3455 return __sched_setscheduler(p, policy, param, true);
3456}
1da177e4
LT
3457EXPORT_SYMBOL_GPL(sched_setscheduler);
3458
961ccddd
RR
3459/**
3460 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3461 * @p: the task in question.
3462 * @policy: new policy.
3463 * @param: structure containing the new RT priority.
3464 *
3465 * Just like sched_setscheduler, only don't bother checking if the
3466 * current context has permission. For example, this is needed in
3467 * stop_machine(): we create temporary high priority worker threads,
3468 * but our caller might not have that capability.
e69f6186
YB
3469 *
3470 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3471 */
3472int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3473 const struct sched_param *param)
961ccddd
RR
3474{
3475 return __sched_setscheduler(p, policy, param, false);
3476}
3477
95cdf3b7
IM
3478static int
3479do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3480{
1da177e4
LT
3481 struct sched_param lparam;
3482 struct task_struct *p;
36c8b586 3483 int retval;
1da177e4
LT
3484
3485 if (!param || pid < 0)
3486 return -EINVAL;
3487 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3488 return -EFAULT;
5fe1d75f
ON
3489
3490 rcu_read_lock();
3491 retval = -ESRCH;
1da177e4 3492 p = find_process_by_pid(pid);
5fe1d75f
ON
3493 if (p != NULL)
3494 retval = sched_setscheduler(p, policy, &lparam);
3495 rcu_read_unlock();
36c8b586 3496
1da177e4
LT
3497 return retval;
3498}
3499
3500/**
3501 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3502 * @pid: the pid in question.
3503 * @policy: new policy.
3504 * @param: structure containing the new RT priority.
e69f6186
YB
3505 *
3506 * Return: 0 on success. An error code otherwise.
1da177e4 3507 */
5add95d4
HC
3508SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3509 struct sched_param __user *, param)
1da177e4 3510{
c21761f1
JB
3511 /* negative values for policy are not valid */
3512 if (policy < 0)
3513 return -EINVAL;
3514
1da177e4
LT
3515 return do_sched_setscheduler(pid, policy, param);
3516}
3517
3518/**
3519 * sys_sched_setparam - set/change the RT priority of a thread
3520 * @pid: the pid in question.
3521 * @param: structure containing the new RT priority.
e69f6186
YB
3522 *
3523 * Return: 0 on success. An error code otherwise.
1da177e4 3524 */
5add95d4 3525SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3526{
3527 return do_sched_setscheduler(pid, -1, param);
3528}
3529
3530/**
3531 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3532 * @pid: the pid in question.
e69f6186
YB
3533 *
3534 * Return: On success, the policy of the thread. Otherwise, a negative error
3535 * code.
1da177e4 3536 */
5add95d4 3537SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3538{
36c8b586 3539 struct task_struct *p;
3a5c359a 3540 int retval;
1da177e4
LT
3541
3542 if (pid < 0)
3a5c359a 3543 return -EINVAL;
1da177e4
LT
3544
3545 retval = -ESRCH;
5fe85be0 3546 rcu_read_lock();
1da177e4
LT
3547 p = find_process_by_pid(pid);
3548 if (p) {
3549 retval = security_task_getscheduler(p);
3550 if (!retval)
ca94c442
LP
3551 retval = p->policy
3552 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3553 }
5fe85be0 3554 rcu_read_unlock();
1da177e4
LT
3555 return retval;
3556}
3557
3558/**
ca94c442 3559 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3560 * @pid: the pid in question.
3561 * @param: structure containing the RT priority.
e69f6186
YB
3562 *
3563 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3564 * code.
1da177e4 3565 */
5add95d4 3566SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3567{
3568 struct sched_param lp;
36c8b586 3569 struct task_struct *p;
3a5c359a 3570 int retval;
1da177e4
LT
3571
3572 if (!param || pid < 0)
3a5c359a 3573 return -EINVAL;
1da177e4 3574
5fe85be0 3575 rcu_read_lock();
1da177e4
LT
3576 p = find_process_by_pid(pid);
3577 retval = -ESRCH;
3578 if (!p)
3579 goto out_unlock;
3580
3581 retval = security_task_getscheduler(p);
3582 if (retval)
3583 goto out_unlock;
3584
3585 lp.sched_priority = p->rt_priority;
5fe85be0 3586 rcu_read_unlock();
1da177e4
LT
3587
3588 /*
3589 * This one might sleep, we cannot do it with a spinlock held ...
3590 */
3591 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3592
1da177e4
LT
3593 return retval;
3594
3595out_unlock:
5fe85be0 3596 rcu_read_unlock();
1da177e4
LT
3597 return retval;
3598}
3599
96f874e2 3600long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3601{
5a16f3d3 3602 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3603 struct task_struct *p;
3604 int retval;
1da177e4 3605
95402b38 3606 get_online_cpus();
23f5d142 3607 rcu_read_lock();
1da177e4
LT
3608
3609 p = find_process_by_pid(pid);
3610 if (!p) {
23f5d142 3611 rcu_read_unlock();
95402b38 3612 put_online_cpus();
1da177e4
LT
3613 return -ESRCH;
3614 }
3615
23f5d142 3616 /* Prevent p going away */
1da177e4 3617 get_task_struct(p);
23f5d142 3618 rcu_read_unlock();
1da177e4 3619
14a40ffc
TH
3620 if (p->flags & PF_NO_SETAFFINITY) {
3621 retval = -EINVAL;
3622 goto out_put_task;
3623 }
5a16f3d3
RR
3624 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3625 retval = -ENOMEM;
3626 goto out_put_task;
3627 }
3628 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3629 retval = -ENOMEM;
3630 goto out_free_cpus_allowed;
3631 }
1da177e4 3632 retval = -EPERM;
4c44aaaf
EB
3633 if (!check_same_owner(p)) {
3634 rcu_read_lock();
3635 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3636 rcu_read_unlock();
3637 goto out_unlock;
3638 }
3639 rcu_read_unlock();
3640 }
1da177e4 3641
b0ae1981 3642 retval = security_task_setscheduler(p);
e7834f8f
DQ
3643 if (retval)
3644 goto out_unlock;
3645
5a16f3d3
RR
3646 cpuset_cpus_allowed(p, cpus_allowed);
3647 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3648again:
5a16f3d3 3649 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3650
8707d8b8 3651 if (!retval) {
5a16f3d3
RR
3652 cpuset_cpus_allowed(p, cpus_allowed);
3653 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3654 /*
3655 * We must have raced with a concurrent cpuset
3656 * update. Just reset the cpus_allowed to the
3657 * cpuset's cpus_allowed
3658 */
5a16f3d3 3659 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3660 goto again;
3661 }
3662 }
1da177e4 3663out_unlock:
5a16f3d3
RR
3664 free_cpumask_var(new_mask);
3665out_free_cpus_allowed:
3666 free_cpumask_var(cpus_allowed);
3667out_put_task:
1da177e4 3668 put_task_struct(p);
95402b38 3669 put_online_cpus();
1da177e4
LT
3670 return retval;
3671}
3672
3673static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3674 struct cpumask *new_mask)
1da177e4 3675{
96f874e2
RR
3676 if (len < cpumask_size())
3677 cpumask_clear(new_mask);
3678 else if (len > cpumask_size())
3679 len = cpumask_size();
3680
1da177e4
LT
3681 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3682}
3683
3684/**
3685 * sys_sched_setaffinity - set the cpu affinity of a process
3686 * @pid: pid of the process
3687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3688 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3689 *
3690 * Return: 0 on success. An error code otherwise.
1da177e4 3691 */
5add95d4
HC
3692SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3693 unsigned long __user *, user_mask_ptr)
1da177e4 3694{
5a16f3d3 3695 cpumask_var_t new_mask;
1da177e4
LT
3696 int retval;
3697
5a16f3d3
RR
3698 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3699 return -ENOMEM;
1da177e4 3700
5a16f3d3
RR
3701 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3702 if (retval == 0)
3703 retval = sched_setaffinity(pid, new_mask);
3704 free_cpumask_var(new_mask);
3705 return retval;
1da177e4
LT
3706}
3707
96f874e2 3708long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3709{
36c8b586 3710 struct task_struct *p;
31605683 3711 unsigned long flags;
1da177e4 3712 int retval;
1da177e4 3713
95402b38 3714 get_online_cpus();
23f5d142 3715 rcu_read_lock();
1da177e4
LT
3716
3717 retval = -ESRCH;
3718 p = find_process_by_pid(pid);
3719 if (!p)
3720 goto out_unlock;
3721
e7834f8f
DQ
3722 retval = security_task_getscheduler(p);
3723 if (retval)
3724 goto out_unlock;
3725
013fdb80 3726 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3727 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3728 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3729
3730out_unlock:
23f5d142 3731 rcu_read_unlock();
95402b38 3732 put_online_cpus();
1da177e4 3733
9531b62f 3734 return retval;
1da177e4
LT
3735}
3736
3737/**
3738 * sys_sched_getaffinity - get the cpu affinity of a process
3739 * @pid: pid of the process
3740 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3741 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3742 *
3743 * Return: 0 on success. An error code otherwise.
1da177e4 3744 */
5add95d4
HC
3745SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3746 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3747{
3748 int ret;
f17c8607 3749 cpumask_var_t mask;
1da177e4 3750
84fba5ec 3751 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3752 return -EINVAL;
3753 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3754 return -EINVAL;
3755
f17c8607
RR
3756 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3757 return -ENOMEM;
1da177e4 3758
f17c8607
RR
3759 ret = sched_getaffinity(pid, mask);
3760 if (ret == 0) {
8bc037fb 3761 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3762
3763 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3764 ret = -EFAULT;
3765 else
cd3d8031 3766 ret = retlen;
f17c8607
RR
3767 }
3768 free_cpumask_var(mask);
1da177e4 3769
f17c8607 3770 return ret;
1da177e4
LT
3771}
3772
3773/**
3774 * sys_sched_yield - yield the current processor to other threads.
3775 *
dd41f596
IM
3776 * This function yields the current CPU to other tasks. If there are no
3777 * other threads running on this CPU then this function will return.
e69f6186
YB
3778 *
3779 * Return: 0.
1da177e4 3780 */
5add95d4 3781SYSCALL_DEFINE0(sched_yield)
1da177e4 3782{
70b97a7f 3783 struct rq *rq = this_rq_lock();
1da177e4 3784
2d72376b 3785 schedstat_inc(rq, yld_count);
4530d7ab 3786 current->sched_class->yield_task(rq);
1da177e4
LT
3787
3788 /*
3789 * Since we are going to call schedule() anyway, there's
3790 * no need to preempt or enable interrupts:
3791 */
3792 __release(rq->lock);
8a25d5de 3793 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3794 do_raw_spin_unlock(&rq->lock);
ba74c144 3795 sched_preempt_enable_no_resched();
1da177e4
LT
3796
3797 schedule();
3798
3799 return 0;
3800}
3801
d86ee480
PZ
3802static inline int should_resched(void)
3803{
3804 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3805}
3806
e7b38404 3807static void __cond_resched(void)
1da177e4 3808{
e7aaaa69 3809 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3810 __schedule();
e7aaaa69 3811 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3812}
3813
02b67cc3 3814int __sched _cond_resched(void)
1da177e4 3815{
d86ee480 3816 if (should_resched()) {
1da177e4
LT
3817 __cond_resched();
3818 return 1;
3819 }
3820 return 0;
3821}
02b67cc3 3822EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3823
3824/*
613afbf8 3825 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3826 * call schedule, and on return reacquire the lock.
3827 *
41a2d6cf 3828 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3829 * operations here to prevent schedule() from being called twice (once via
3830 * spin_unlock(), once by hand).
3831 */
613afbf8 3832int __cond_resched_lock(spinlock_t *lock)
1da177e4 3833{
d86ee480 3834 int resched = should_resched();
6df3cecb
JK
3835 int ret = 0;
3836
f607c668
PZ
3837 lockdep_assert_held(lock);
3838
95c354fe 3839 if (spin_needbreak(lock) || resched) {
1da177e4 3840 spin_unlock(lock);
d86ee480 3841 if (resched)
95c354fe
NP
3842 __cond_resched();
3843 else
3844 cpu_relax();
6df3cecb 3845 ret = 1;
1da177e4 3846 spin_lock(lock);
1da177e4 3847 }
6df3cecb 3848 return ret;
1da177e4 3849}
613afbf8 3850EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3851
613afbf8 3852int __sched __cond_resched_softirq(void)
1da177e4
LT
3853{
3854 BUG_ON(!in_softirq());
3855
d86ee480 3856 if (should_resched()) {
98d82567 3857 local_bh_enable();
1da177e4
LT
3858 __cond_resched();
3859 local_bh_disable();
3860 return 1;
3861 }
3862 return 0;
3863}
613afbf8 3864EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3865
1da177e4
LT
3866/**
3867 * yield - yield the current processor to other threads.
3868 *
8e3fabfd
PZ
3869 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3870 *
3871 * The scheduler is at all times free to pick the calling task as the most
3872 * eligible task to run, if removing the yield() call from your code breaks
3873 * it, its already broken.
3874 *
3875 * Typical broken usage is:
3876 *
3877 * while (!event)
3878 * yield();
3879 *
3880 * where one assumes that yield() will let 'the other' process run that will
3881 * make event true. If the current task is a SCHED_FIFO task that will never
3882 * happen. Never use yield() as a progress guarantee!!
3883 *
3884 * If you want to use yield() to wait for something, use wait_event().
3885 * If you want to use yield() to be 'nice' for others, use cond_resched().
3886 * If you still want to use yield(), do not!
1da177e4
LT
3887 */
3888void __sched yield(void)
3889{
3890 set_current_state(TASK_RUNNING);
3891 sys_sched_yield();
3892}
1da177e4
LT
3893EXPORT_SYMBOL(yield);
3894
d95f4122
MG
3895/**
3896 * yield_to - yield the current processor to another thread in
3897 * your thread group, or accelerate that thread toward the
3898 * processor it's on.
16addf95
RD
3899 * @p: target task
3900 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3901 *
3902 * It's the caller's job to ensure that the target task struct
3903 * can't go away on us before we can do any checks.
3904 *
e69f6186 3905 * Return:
7b270f60
PZ
3906 * true (>0) if we indeed boosted the target task.
3907 * false (0) if we failed to boost the target.
3908 * -ESRCH if there's no task to yield to.
d95f4122
MG
3909 */
3910bool __sched yield_to(struct task_struct *p, bool preempt)
3911{
3912 struct task_struct *curr = current;
3913 struct rq *rq, *p_rq;
3914 unsigned long flags;
c3c18640 3915 int yielded = 0;
d95f4122
MG
3916
3917 local_irq_save(flags);
3918 rq = this_rq();
3919
3920again:
3921 p_rq = task_rq(p);
7b270f60
PZ
3922 /*
3923 * If we're the only runnable task on the rq and target rq also
3924 * has only one task, there's absolutely no point in yielding.
3925 */
3926 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3927 yielded = -ESRCH;
3928 goto out_irq;
3929 }
3930
d95f4122
MG
3931 double_rq_lock(rq, p_rq);
3932 while (task_rq(p) != p_rq) {
3933 double_rq_unlock(rq, p_rq);
3934 goto again;
3935 }
3936
3937 if (!curr->sched_class->yield_to_task)
7b270f60 3938 goto out_unlock;
d95f4122
MG
3939
3940 if (curr->sched_class != p->sched_class)
7b270f60 3941 goto out_unlock;
d95f4122
MG
3942
3943 if (task_running(p_rq, p) || p->state)
7b270f60 3944 goto out_unlock;
d95f4122
MG
3945
3946 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3947 if (yielded) {
d95f4122 3948 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3949 /*
3950 * Make p's CPU reschedule; pick_next_entity takes care of
3951 * fairness.
3952 */
3953 if (preempt && rq != p_rq)
3954 resched_task(p_rq->curr);
3955 }
d95f4122 3956
7b270f60 3957out_unlock:
d95f4122 3958 double_rq_unlock(rq, p_rq);
7b270f60 3959out_irq:
d95f4122
MG
3960 local_irq_restore(flags);
3961
7b270f60 3962 if (yielded > 0)
d95f4122
MG
3963 schedule();
3964
3965 return yielded;
3966}
3967EXPORT_SYMBOL_GPL(yield_to);
3968
1da177e4 3969/*
41a2d6cf 3970 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3971 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3972 */
3973void __sched io_schedule(void)
3974{
54d35f29 3975 struct rq *rq = raw_rq();
1da177e4 3976
0ff92245 3977 delayacct_blkio_start();
1da177e4 3978 atomic_inc(&rq->nr_iowait);
73c10101 3979 blk_flush_plug(current);
8f0dfc34 3980 current->in_iowait = 1;
1da177e4 3981 schedule();
8f0dfc34 3982 current->in_iowait = 0;
1da177e4 3983 atomic_dec(&rq->nr_iowait);
0ff92245 3984 delayacct_blkio_end();
1da177e4 3985}
1da177e4
LT
3986EXPORT_SYMBOL(io_schedule);
3987
3988long __sched io_schedule_timeout(long timeout)
3989{
54d35f29 3990 struct rq *rq = raw_rq();
1da177e4
LT
3991 long ret;
3992
0ff92245 3993 delayacct_blkio_start();
1da177e4 3994 atomic_inc(&rq->nr_iowait);
73c10101 3995 blk_flush_plug(current);
8f0dfc34 3996 current->in_iowait = 1;
1da177e4 3997 ret = schedule_timeout(timeout);
8f0dfc34 3998 current->in_iowait = 0;
1da177e4 3999 atomic_dec(&rq->nr_iowait);
0ff92245 4000 delayacct_blkio_end();
1da177e4
LT
4001 return ret;
4002}
4003
4004/**
4005 * sys_sched_get_priority_max - return maximum RT priority.
4006 * @policy: scheduling class.
4007 *
e69f6186
YB
4008 * Return: On success, this syscall returns the maximum
4009 * rt_priority that can be used by a given scheduling class.
4010 * On failure, a negative error code is returned.
1da177e4 4011 */
5add95d4 4012SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4013{
4014 int ret = -EINVAL;
4015
4016 switch (policy) {
4017 case SCHED_FIFO:
4018 case SCHED_RR:
4019 ret = MAX_USER_RT_PRIO-1;
4020 break;
4021 case SCHED_NORMAL:
b0a9499c 4022 case SCHED_BATCH:
dd41f596 4023 case SCHED_IDLE:
1da177e4
LT
4024 ret = 0;
4025 break;
4026 }
4027 return ret;
4028}
4029
4030/**
4031 * sys_sched_get_priority_min - return minimum RT priority.
4032 * @policy: scheduling class.
4033 *
e69f6186
YB
4034 * Return: On success, this syscall returns the minimum
4035 * rt_priority that can be used by a given scheduling class.
4036 * On failure, a negative error code is returned.
1da177e4 4037 */
5add95d4 4038SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4039{
4040 int ret = -EINVAL;
4041
4042 switch (policy) {
4043 case SCHED_FIFO:
4044 case SCHED_RR:
4045 ret = 1;
4046 break;
4047 case SCHED_NORMAL:
b0a9499c 4048 case SCHED_BATCH:
dd41f596 4049 case SCHED_IDLE:
1da177e4
LT
4050 ret = 0;
4051 }
4052 return ret;
4053}
4054
4055/**
4056 * sys_sched_rr_get_interval - return the default timeslice of a process.
4057 * @pid: pid of the process.
4058 * @interval: userspace pointer to the timeslice value.
4059 *
4060 * this syscall writes the default timeslice value of a given process
4061 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4062 *
4063 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4064 * an error code.
1da177e4 4065 */
17da2bd9 4066SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4067 struct timespec __user *, interval)
1da177e4 4068{
36c8b586 4069 struct task_struct *p;
a4ec24b4 4070 unsigned int time_slice;
dba091b9
TG
4071 unsigned long flags;
4072 struct rq *rq;
3a5c359a 4073 int retval;
1da177e4 4074 struct timespec t;
1da177e4
LT
4075
4076 if (pid < 0)
3a5c359a 4077 return -EINVAL;
1da177e4
LT
4078
4079 retval = -ESRCH;
1a551ae7 4080 rcu_read_lock();
1da177e4
LT
4081 p = find_process_by_pid(pid);
4082 if (!p)
4083 goto out_unlock;
4084
4085 retval = security_task_getscheduler(p);
4086 if (retval)
4087 goto out_unlock;
4088
dba091b9
TG
4089 rq = task_rq_lock(p, &flags);
4090 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4091 task_rq_unlock(rq, p, &flags);
a4ec24b4 4092
1a551ae7 4093 rcu_read_unlock();
a4ec24b4 4094 jiffies_to_timespec(time_slice, &t);
1da177e4 4095 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4096 return retval;
3a5c359a 4097
1da177e4 4098out_unlock:
1a551ae7 4099 rcu_read_unlock();
1da177e4
LT
4100 return retval;
4101}
4102
7c731e0a 4103static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4104
82a1fcb9 4105void sched_show_task(struct task_struct *p)
1da177e4 4106{
1da177e4 4107 unsigned long free = 0;
4e79752c 4108 int ppid;
36c8b586 4109 unsigned state;
1da177e4 4110
1da177e4 4111 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4112 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4113 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4114#if BITS_PER_LONG == 32
1da177e4 4115 if (state == TASK_RUNNING)
3df0fc5b 4116 printk(KERN_CONT " running ");
1da177e4 4117 else
3df0fc5b 4118 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4119#else
4120 if (state == TASK_RUNNING)
3df0fc5b 4121 printk(KERN_CONT " running task ");
1da177e4 4122 else
3df0fc5b 4123 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4124#endif
4125#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4126 free = stack_not_used(p);
1da177e4 4127#endif
4e79752c
PM
4128 rcu_read_lock();
4129 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4130 rcu_read_unlock();
3df0fc5b 4131 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4132 task_pid_nr(p), ppid,
aa47b7e0 4133 (unsigned long)task_thread_info(p)->flags);
1da177e4 4134
3d1cb205 4135 print_worker_info(KERN_INFO, p);
5fb5e6de 4136 show_stack(p, NULL);
1da177e4
LT
4137}
4138
e59e2ae2 4139void show_state_filter(unsigned long state_filter)
1da177e4 4140{
36c8b586 4141 struct task_struct *g, *p;
1da177e4 4142
4bd77321 4143#if BITS_PER_LONG == 32
3df0fc5b
PZ
4144 printk(KERN_INFO
4145 " task PC stack pid father\n");
1da177e4 4146#else
3df0fc5b
PZ
4147 printk(KERN_INFO
4148 " task PC stack pid father\n");
1da177e4 4149#endif
510f5acc 4150 rcu_read_lock();
1da177e4
LT
4151 do_each_thread(g, p) {
4152 /*
4153 * reset the NMI-timeout, listing all files on a slow
25985edc 4154 * console might take a lot of time:
1da177e4
LT
4155 */
4156 touch_nmi_watchdog();
39bc89fd 4157 if (!state_filter || (p->state & state_filter))
82a1fcb9 4158 sched_show_task(p);
1da177e4
LT
4159 } while_each_thread(g, p);
4160
04c9167f
JF
4161 touch_all_softlockup_watchdogs();
4162
dd41f596
IM
4163#ifdef CONFIG_SCHED_DEBUG
4164 sysrq_sched_debug_show();
4165#endif
510f5acc 4166 rcu_read_unlock();
e59e2ae2
IM
4167 /*
4168 * Only show locks if all tasks are dumped:
4169 */
93335a21 4170 if (!state_filter)
e59e2ae2 4171 debug_show_all_locks();
1da177e4
LT
4172}
4173
0db0628d 4174void init_idle_bootup_task(struct task_struct *idle)
1df21055 4175{
dd41f596 4176 idle->sched_class = &idle_sched_class;
1df21055
IM
4177}
4178
f340c0d1
IM
4179/**
4180 * init_idle - set up an idle thread for a given CPU
4181 * @idle: task in question
4182 * @cpu: cpu the idle task belongs to
4183 *
4184 * NOTE: this function does not set the idle thread's NEED_RESCHED
4185 * flag, to make booting more robust.
4186 */
0db0628d 4187void init_idle(struct task_struct *idle, int cpu)
1da177e4 4188{
70b97a7f 4189 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4190 unsigned long flags;
4191
05fa785c 4192 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4193
dd41f596 4194 __sched_fork(idle);
06b83b5f 4195 idle->state = TASK_RUNNING;
dd41f596
IM
4196 idle->se.exec_start = sched_clock();
4197
1e1b6c51 4198 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4199 /*
4200 * We're having a chicken and egg problem, even though we are
4201 * holding rq->lock, the cpu isn't yet set to this cpu so the
4202 * lockdep check in task_group() will fail.
4203 *
4204 * Similar case to sched_fork(). / Alternatively we could
4205 * use task_rq_lock() here and obtain the other rq->lock.
4206 *
4207 * Silence PROVE_RCU
4208 */
4209 rcu_read_lock();
dd41f596 4210 __set_task_cpu(idle, cpu);
6506cf6c 4211 rcu_read_unlock();
1da177e4 4212
1da177e4 4213 rq->curr = rq->idle = idle;
3ca7a440
PZ
4214#if defined(CONFIG_SMP)
4215 idle->on_cpu = 1;
4866cde0 4216#endif
05fa785c 4217 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4218
4219 /* Set the preempt count _outside_ the spinlocks! */
f27dde8d 4220 task_thread_info(idle)->preempt_count = PREEMPT_ENABLED;
55cd5340 4221
dd41f596
IM
4222 /*
4223 * The idle tasks have their own, simple scheduling class:
4224 */
4225 idle->sched_class = &idle_sched_class;
868baf07 4226 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4227 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4228#if defined(CONFIG_SMP)
4229 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4230#endif
19978ca6
IM
4231}
4232
1da177e4 4233#ifdef CONFIG_SMP
1e1b6c51
KM
4234void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4235{
4236 if (p->sched_class && p->sched_class->set_cpus_allowed)
4237 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4238
4239 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4240 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4241}
4242
1da177e4
LT
4243/*
4244 * This is how migration works:
4245 *
969c7921
TH
4246 * 1) we invoke migration_cpu_stop() on the target CPU using
4247 * stop_one_cpu().
4248 * 2) stopper starts to run (implicitly forcing the migrated thread
4249 * off the CPU)
4250 * 3) it checks whether the migrated task is still in the wrong runqueue.
4251 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4252 * it and puts it into the right queue.
969c7921
TH
4253 * 5) stopper completes and stop_one_cpu() returns and the migration
4254 * is done.
1da177e4
LT
4255 */
4256
4257/*
4258 * Change a given task's CPU affinity. Migrate the thread to a
4259 * proper CPU and schedule it away if the CPU it's executing on
4260 * is removed from the allowed bitmask.
4261 *
4262 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4263 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4264 * call is not atomic; no spinlocks may be held.
4265 */
96f874e2 4266int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4267{
4268 unsigned long flags;
70b97a7f 4269 struct rq *rq;
969c7921 4270 unsigned int dest_cpu;
48f24c4d 4271 int ret = 0;
1da177e4
LT
4272
4273 rq = task_rq_lock(p, &flags);
e2912009 4274
db44fc01
YZ
4275 if (cpumask_equal(&p->cpus_allowed, new_mask))
4276 goto out;
4277
6ad4c188 4278 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282
1e1b6c51 4283 do_set_cpus_allowed(p, new_mask);
73fe6aae 4284
1da177e4 4285 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4286 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4287 goto out;
4288
969c7921 4289 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4290 if (p->on_rq) {
969c7921 4291 struct migration_arg arg = { p, dest_cpu };
1da177e4 4292 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4293 task_rq_unlock(rq, p, &flags);
969c7921 4294 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4295 tlb_migrate_finish(p->mm);
4296 return 0;
4297 }
4298out:
0122ec5b 4299 task_rq_unlock(rq, p, &flags);
48f24c4d 4300
1da177e4
LT
4301 return ret;
4302}
cd8ba7cd 4303EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4304
4305/*
41a2d6cf 4306 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4307 * this because either it can't run here any more (set_cpus_allowed()
4308 * away from this CPU, or CPU going down), or because we're
4309 * attempting to rebalance this task on exec (sched_exec).
4310 *
4311 * So we race with normal scheduler movements, but that's OK, as long
4312 * as the task is no longer on this CPU.
efc30814
KK
4313 *
4314 * Returns non-zero if task was successfully migrated.
1da177e4 4315 */
efc30814 4316static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4317{
70b97a7f 4318 struct rq *rq_dest, *rq_src;
e2912009 4319 int ret = 0;
1da177e4 4320
e761b772 4321 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4322 return ret;
1da177e4
LT
4323
4324 rq_src = cpu_rq(src_cpu);
4325 rq_dest = cpu_rq(dest_cpu);
4326
0122ec5b 4327 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4328 double_rq_lock(rq_src, rq_dest);
4329 /* Already moved. */
4330 if (task_cpu(p) != src_cpu)
b1e38734 4331 goto done;
1da177e4 4332 /* Affinity changed (again). */
fa17b507 4333 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4334 goto fail;
1da177e4 4335
e2912009
PZ
4336 /*
4337 * If we're not on a rq, the next wake-up will ensure we're
4338 * placed properly.
4339 */
fd2f4419 4340 if (p->on_rq) {
4ca9b72b 4341 dequeue_task(rq_src, p, 0);
e2912009 4342 set_task_cpu(p, dest_cpu);
4ca9b72b 4343 enqueue_task(rq_dest, p, 0);
15afe09b 4344 check_preempt_curr(rq_dest, p, 0);
1da177e4 4345 }
b1e38734 4346done:
efc30814 4347 ret = 1;
b1e38734 4348fail:
1da177e4 4349 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4350 raw_spin_unlock(&p->pi_lock);
efc30814 4351 return ret;
1da177e4
LT
4352}
4353
4354/*
969c7921
TH
4355 * migration_cpu_stop - this will be executed by a highprio stopper thread
4356 * and performs thread migration by bumping thread off CPU then
4357 * 'pushing' onto another runqueue.
1da177e4 4358 */
969c7921 4359static int migration_cpu_stop(void *data)
1da177e4 4360{
969c7921 4361 struct migration_arg *arg = data;
f7b4cddc 4362
969c7921
TH
4363 /*
4364 * The original target cpu might have gone down and we might
4365 * be on another cpu but it doesn't matter.
4366 */
f7b4cddc 4367 local_irq_disable();
969c7921 4368 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4369 local_irq_enable();
1da177e4 4370 return 0;
f7b4cddc
ON
4371}
4372
1da177e4 4373#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4374
054b9108 4375/*
48c5ccae
PZ
4376 * Ensures that the idle task is using init_mm right before its cpu goes
4377 * offline.
054b9108 4378 */
48c5ccae 4379void idle_task_exit(void)
1da177e4 4380{
48c5ccae 4381 struct mm_struct *mm = current->active_mm;
e76bd8d9 4382
48c5ccae 4383 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4384
48c5ccae
PZ
4385 if (mm != &init_mm)
4386 switch_mm(mm, &init_mm, current);
4387 mmdrop(mm);
1da177e4
LT
4388}
4389
4390/*
5d180232
PZ
4391 * Since this CPU is going 'away' for a while, fold any nr_active delta
4392 * we might have. Assumes we're called after migrate_tasks() so that the
4393 * nr_active count is stable.
4394 *
4395 * Also see the comment "Global load-average calculations".
1da177e4 4396 */
5d180232 4397static void calc_load_migrate(struct rq *rq)
1da177e4 4398{
5d180232
PZ
4399 long delta = calc_load_fold_active(rq);
4400 if (delta)
4401 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4402}
4403
48f24c4d 4404/*
48c5ccae
PZ
4405 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4406 * try_to_wake_up()->select_task_rq().
4407 *
4408 * Called with rq->lock held even though we'er in stop_machine() and
4409 * there's no concurrency possible, we hold the required locks anyway
4410 * because of lock validation efforts.
1da177e4 4411 */
48c5ccae 4412static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4413{
70b97a7f 4414 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4415 struct task_struct *next, *stop = rq->stop;
4416 int dest_cpu;
1da177e4
LT
4417
4418 /*
48c5ccae
PZ
4419 * Fudge the rq selection such that the below task selection loop
4420 * doesn't get stuck on the currently eligible stop task.
4421 *
4422 * We're currently inside stop_machine() and the rq is either stuck
4423 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4424 * either way we should never end up calling schedule() until we're
4425 * done here.
1da177e4 4426 */
48c5ccae 4427 rq->stop = NULL;
48f24c4d 4428
77bd3970
FW
4429 /*
4430 * put_prev_task() and pick_next_task() sched
4431 * class method both need to have an up-to-date
4432 * value of rq->clock[_task]
4433 */
4434 update_rq_clock(rq);
4435
dd41f596 4436 for ( ; ; ) {
48c5ccae
PZ
4437 /*
4438 * There's this thread running, bail when that's the only
4439 * remaining thread.
4440 */
4441 if (rq->nr_running == 1)
dd41f596 4442 break;
48c5ccae 4443
b67802ea 4444 next = pick_next_task(rq);
48c5ccae 4445 BUG_ON(!next);
79c53799 4446 next->sched_class->put_prev_task(rq, next);
e692ab53 4447
48c5ccae
PZ
4448 /* Find suitable destination for @next, with force if needed. */
4449 dest_cpu = select_fallback_rq(dead_cpu, next);
4450 raw_spin_unlock(&rq->lock);
4451
4452 __migrate_task(next, dead_cpu, dest_cpu);
4453
4454 raw_spin_lock(&rq->lock);
1da177e4 4455 }
dce48a84 4456
48c5ccae 4457 rq->stop = stop;
dce48a84 4458}
48c5ccae 4459
1da177e4
LT
4460#endif /* CONFIG_HOTPLUG_CPU */
4461
e692ab53
NP
4462#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4463
4464static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4465 {
4466 .procname = "sched_domain",
c57baf1e 4467 .mode = 0555,
e0361851 4468 },
56992309 4469 {}
e692ab53
NP
4470};
4471
4472static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4473 {
4474 .procname = "kernel",
c57baf1e 4475 .mode = 0555,
e0361851
AD
4476 .child = sd_ctl_dir,
4477 },
56992309 4478 {}
e692ab53
NP
4479};
4480
4481static struct ctl_table *sd_alloc_ctl_entry(int n)
4482{
4483 struct ctl_table *entry =
5cf9f062 4484 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4485
e692ab53
NP
4486 return entry;
4487}
4488
6382bc90
MM
4489static void sd_free_ctl_entry(struct ctl_table **tablep)
4490{
cd790076 4491 struct ctl_table *entry;
6382bc90 4492
cd790076
MM
4493 /*
4494 * In the intermediate directories, both the child directory and
4495 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4496 * will always be set. In the lowest directory the names are
cd790076
MM
4497 * static strings and all have proc handlers.
4498 */
4499 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4500 if (entry->child)
4501 sd_free_ctl_entry(&entry->child);
cd790076
MM
4502 if (entry->proc_handler == NULL)
4503 kfree(entry->procname);
4504 }
6382bc90
MM
4505
4506 kfree(*tablep);
4507 *tablep = NULL;
4508}
4509
201c373e 4510static int min_load_idx = 0;
fd9b86d3 4511static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4512
e692ab53 4513static void
e0361851 4514set_table_entry(struct ctl_table *entry,
e692ab53 4515 const char *procname, void *data, int maxlen,
201c373e
NK
4516 umode_t mode, proc_handler *proc_handler,
4517 bool load_idx)
e692ab53 4518{
e692ab53
NP
4519 entry->procname = procname;
4520 entry->data = data;
4521 entry->maxlen = maxlen;
4522 entry->mode = mode;
4523 entry->proc_handler = proc_handler;
201c373e
NK
4524
4525 if (load_idx) {
4526 entry->extra1 = &min_load_idx;
4527 entry->extra2 = &max_load_idx;
4528 }
e692ab53
NP
4529}
4530
4531static struct ctl_table *
4532sd_alloc_ctl_domain_table(struct sched_domain *sd)
4533{
a5d8c348 4534 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4535
ad1cdc1d
MM
4536 if (table == NULL)
4537 return NULL;
4538
e0361851 4539 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4540 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4541 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4542 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4543 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4544 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4545 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4546 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4547 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4548 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4549 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4550 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4551 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4552 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4553 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4554 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4555 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4556 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4557 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4558 &sd->cache_nice_tries,
201c373e 4559 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4560 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4561 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4562 set_table_entry(&table[11], "name", sd->name,
201c373e 4563 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4564 /* &table[12] is terminator */
e692ab53
NP
4565
4566 return table;
4567}
4568
be7002e6 4569static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4570{
4571 struct ctl_table *entry, *table;
4572 struct sched_domain *sd;
4573 int domain_num = 0, i;
4574 char buf[32];
4575
4576 for_each_domain(cpu, sd)
4577 domain_num++;
4578 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4579 if (table == NULL)
4580 return NULL;
e692ab53
NP
4581
4582 i = 0;
4583 for_each_domain(cpu, sd) {
4584 snprintf(buf, 32, "domain%d", i);
e692ab53 4585 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4586 entry->mode = 0555;
e692ab53
NP
4587 entry->child = sd_alloc_ctl_domain_table(sd);
4588 entry++;
4589 i++;
4590 }
4591 return table;
4592}
4593
4594static struct ctl_table_header *sd_sysctl_header;
6382bc90 4595static void register_sched_domain_sysctl(void)
e692ab53 4596{
6ad4c188 4597 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4598 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4599 char buf[32];
4600
7378547f
MM
4601 WARN_ON(sd_ctl_dir[0].child);
4602 sd_ctl_dir[0].child = entry;
4603
ad1cdc1d
MM
4604 if (entry == NULL)
4605 return;
4606
6ad4c188 4607 for_each_possible_cpu(i) {
e692ab53 4608 snprintf(buf, 32, "cpu%d", i);
e692ab53 4609 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4610 entry->mode = 0555;
e692ab53 4611 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4612 entry++;
e692ab53 4613 }
7378547f
MM
4614
4615 WARN_ON(sd_sysctl_header);
e692ab53
NP
4616 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4617}
6382bc90 4618
7378547f 4619/* may be called multiple times per register */
6382bc90
MM
4620static void unregister_sched_domain_sysctl(void)
4621{
7378547f
MM
4622 if (sd_sysctl_header)
4623 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4624 sd_sysctl_header = NULL;
7378547f
MM
4625 if (sd_ctl_dir[0].child)
4626 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4627}
e692ab53 4628#else
6382bc90
MM
4629static void register_sched_domain_sysctl(void)
4630{
4631}
4632static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4633{
4634}
4635#endif
4636
1f11eb6a
GH
4637static void set_rq_online(struct rq *rq)
4638{
4639 if (!rq->online) {
4640 const struct sched_class *class;
4641
c6c4927b 4642 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4643 rq->online = 1;
4644
4645 for_each_class(class) {
4646 if (class->rq_online)
4647 class->rq_online(rq);
4648 }
4649 }
4650}
4651
4652static void set_rq_offline(struct rq *rq)
4653{
4654 if (rq->online) {
4655 const struct sched_class *class;
4656
4657 for_each_class(class) {
4658 if (class->rq_offline)
4659 class->rq_offline(rq);
4660 }
4661
c6c4927b 4662 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4663 rq->online = 0;
4664 }
4665}
4666
1da177e4
LT
4667/*
4668 * migration_call - callback that gets triggered when a CPU is added.
4669 * Here we can start up the necessary migration thread for the new CPU.
4670 */
0db0628d 4671static int
48f24c4d 4672migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4673{
48f24c4d 4674 int cpu = (long)hcpu;
1da177e4 4675 unsigned long flags;
969c7921 4676 struct rq *rq = cpu_rq(cpu);
1da177e4 4677
48c5ccae 4678 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4679
1da177e4 4680 case CPU_UP_PREPARE:
a468d389 4681 rq->calc_load_update = calc_load_update;
1da177e4 4682 break;
48f24c4d 4683
1da177e4 4684 case CPU_ONLINE:
1f94ef59 4685 /* Update our root-domain */
05fa785c 4686 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4687 if (rq->rd) {
c6c4927b 4688 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4689
4690 set_rq_online(rq);
1f94ef59 4691 }
05fa785c 4692 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4693 break;
48f24c4d 4694
1da177e4 4695#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4696 case CPU_DYING:
317f3941 4697 sched_ttwu_pending();
57d885fe 4698 /* Update our root-domain */
05fa785c 4699 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4700 if (rq->rd) {
c6c4927b 4701 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4702 set_rq_offline(rq);
57d885fe 4703 }
48c5ccae
PZ
4704 migrate_tasks(cpu);
4705 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4706 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4707 break;
48c5ccae 4708
5d180232 4709 case CPU_DEAD:
f319da0c 4710 calc_load_migrate(rq);
57d885fe 4711 break;
1da177e4
LT
4712#endif
4713 }
49c022e6
PZ
4714
4715 update_max_interval();
4716
1da177e4
LT
4717 return NOTIFY_OK;
4718}
4719
f38b0820
PM
4720/*
4721 * Register at high priority so that task migration (migrate_all_tasks)
4722 * happens before everything else. This has to be lower priority than
cdd6c482 4723 * the notifier in the perf_event subsystem, though.
1da177e4 4724 */
0db0628d 4725static struct notifier_block migration_notifier = {
1da177e4 4726 .notifier_call = migration_call,
50a323b7 4727 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4728};
4729
0db0628d 4730static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4731 unsigned long action, void *hcpu)
4732{
4733 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4734 case CPU_STARTING:
3a101d05
TH
4735 case CPU_DOWN_FAILED:
4736 set_cpu_active((long)hcpu, true);
4737 return NOTIFY_OK;
4738 default:
4739 return NOTIFY_DONE;
4740 }
4741}
4742
0db0628d 4743static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4744 unsigned long action, void *hcpu)
4745{
4746 switch (action & ~CPU_TASKS_FROZEN) {
4747 case CPU_DOWN_PREPARE:
4748 set_cpu_active((long)hcpu, false);
4749 return NOTIFY_OK;
4750 default:
4751 return NOTIFY_DONE;
4752 }
4753}
4754
7babe8db 4755static int __init migration_init(void)
1da177e4
LT
4756{
4757 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4758 int err;
48f24c4d 4759
3a101d05 4760 /* Initialize migration for the boot CPU */
07dccf33
AM
4761 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4762 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4763 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4764 register_cpu_notifier(&migration_notifier);
7babe8db 4765
3a101d05
TH
4766 /* Register cpu active notifiers */
4767 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4768 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4769
a004cd42 4770 return 0;
1da177e4 4771}
7babe8db 4772early_initcall(migration_init);
1da177e4
LT
4773#endif
4774
4775#ifdef CONFIG_SMP
476f3534 4776
4cb98839
PZ
4777static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4778
3e9830dc 4779#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4780
d039ac60 4781static __read_mostly int sched_debug_enabled;
f6630114 4782
d039ac60 4783static int __init sched_debug_setup(char *str)
f6630114 4784{
d039ac60 4785 sched_debug_enabled = 1;
f6630114
MT
4786
4787 return 0;
4788}
d039ac60
PZ
4789early_param("sched_debug", sched_debug_setup);
4790
4791static inline bool sched_debug(void)
4792{
4793 return sched_debug_enabled;
4794}
f6630114 4795
7c16ec58 4796static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4797 struct cpumask *groupmask)
1da177e4 4798{
4dcf6aff 4799 struct sched_group *group = sd->groups;
434d53b0 4800 char str[256];
1da177e4 4801
968ea6d8 4802 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4803 cpumask_clear(groupmask);
4dcf6aff
IM
4804
4805 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4806
4807 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4808 printk("does not load-balance\n");
4dcf6aff 4809 if (sd->parent)
3df0fc5b
PZ
4810 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4811 " has parent");
4dcf6aff 4812 return -1;
41c7ce9a
NP
4813 }
4814
3df0fc5b 4815 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4816
758b2cdc 4817 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4818 printk(KERN_ERR "ERROR: domain->span does not contain "
4819 "CPU%d\n", cpu);
4dcf6aff 4820 }
758b2cdc 4821 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4822 printk(KERN_ERR "ERROR: domain->groups does not contain"
4823 " CPU%d\n", cpu);
4dcf6aff 4824 }
1da177e4 4825
4dcf6aff 4826 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4827 do {
4dcf6aff 4828 if (!group) {
3df0fc5b
PZ
4829 printk("\n");
4830 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4831 break;
4832 }
4833
c3decf0d
PZ
4834 /*
4835 * Even though we initialize ->power to something semi-sane,
4836 * we leave power_orig unset. This allows us to detect if
4837 * domain iteration is still funny without causing /0 traps.
4838 */
4839 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4840 printk(KERN_CONT "\n");
4841 printk(KERN_ERR "ERROR: domain->cpu_power not "
4842 "set\n");
4dcf6aff
IM
4843 break;
4844 }
1da177e4 4845
758b2cdc 4846 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4847 printk(KERN_CONT "\n");
4848 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4849 break;
4850 }
1da177e4 4851
cb83b629
PZ
4852 if (!(sd->flags & SD_OVERLAP) &&
4853 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4854 printk(KERN_CONT "\n");
4855 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4856 break;
4857 }
1da177e4 4858
758b2cdc 4859 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4860
968ea6d8 4861 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4862
3df0fc5b 4863 printk(KERN_CONT " %s", str);
9c3f75cb 4864 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4865 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4866 group->sgp->power);
381512cf 4867 }
1da177e4 4868
4dcf6aff
IM
4869 group = group->next;
4870 } while (group != sd->groups);
3df0fc5b 4871 printk(KERN_CONT "\n");
1da177e4 4872
758b2cdc 4873 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4874 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4875
758b2cdc
RR
4876 if (sd->parent &&
4877 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4878 printk(KERN_ERR "ERROR: parent span is not a superset "
4879 "of domain->span\n");
4dcf6aff
IM
4880 return 0;
4881}
1da177e4 4882
4dcf6aff
IM
4883static void sched_domain_debug(struct sched_domain *sd, int cpu)
4884{
4885 int level = 0;
1da177e4 4886
d039ac60 4887 if (!sched_debug_enabled)
f6630114
MT
4888 return;
4889
4dcf6aff
IM
4890 if (!sd) {
4891 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4892 return;
4893 }
1da177e4 4894
4dcf6aff
IM
4895 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4896
4897 for (;;) {
4cb98839 4898 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4899 break;
1da177e4
LT
4900 level++;
4901 sd = sd->parent;
33859f7f 4902 if (!sd)
4dcf6aff
IM
4903 break;
4904 }
1da177e4 4905}
6d6bc0ad 4906#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4907# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4908static inline bool sched_debug(void)
4909{
4910 return false;
4911}
6d6bc0ad 4912#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4913
1a20ff27 4914static int sd_degenerate(struct sched_domain *sd)
245af2c7 4915{
758b2cdc 4916 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4917 return 1;
4918
4919 /* Following flags need at least 2 groups */
4920 if (sd->flags & (SD_LOAD_BALANCE |
4921 SD_BALANCE_NEWIDLE |
4922 SD_BALANCE_FORK |
89c4710e
SS
4923 SD_BALANCE_EXEC |
4924 SD_SHARE_CPUPOWER |
4925 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4926 if (sd->groups != sd->groups->next)
4927 return 0;
4928 }
4929
4930 /* Following flags don't use groups */
c88d5910 4931 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4932 return 0;
4933
4934 return 1;
4935}
4936
48f24c4d
IM
4937static int
4938sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4939{
4940 unsigned long cflags = sd->flags, pflags = parent->flags;
4941
4942 if (sd_degenerate(parent))
4943 return 1;
4944
758b2cdc 4945 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4946 return 0;
4947
245af2c7
SS
4948 /* Flags needing groups don't count if only 1 group in parent */
4949 if (parent->groups == parent->groups->next) {
4950 pflags &= ~(SD_LOAD_BALANCE |
4951 SD_BALANCE_NEWIDLE |
4952 SD_BALANCE_FORK |
89c4710e
SS
4953 SD_BALANCE_EXEC |
4954 SD_SHARE_CPUPOWER |
10866e62
PZ
4955 SD_SHARE_PKG_RESOURCES |
4956 SD_PREFER_SIBLING);
5436499e
KC
4957 if (nr_node_ids == 1)
4958 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4959 }
4960 if (~cflags & pflags)
4961 return 0;
4962
4963 return 1;
4964}
4965
dce840a0 4966static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4967{
dce840a0 4968 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4969
68e74568 4970 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4971 free_cpumask_var(rd->rto_mask);
4972 free_cpumask_var(rd->online);
4973 free_cpumask_var(rd->span);
4974 kfree(rd);
4975}
4976
57d885fe
GH
4977static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4978{
a0490fa3 4979 struct root_domain *old_rd = NULL;
57d885fe 4980 unsigned long flags;
57d885fe 4981
05fa785c 4982 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4983
4984 if (rq->rd) {
a0490fa3 4985 old_rd = rq->rd;
57d885fe 4986
c6c4927b 4987 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4988 set_rq_offline(rq);
57d885fe 4989
c6c4927b 4990 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4991
a0490fa3
IM
4992 /*
4993 * If we dont want to free the old_rt yet then
4994 * set old_rd to NULL to skip the freeing later
4995 * in this function:
4996 */
4997 if (!atomic_dec_and_test(&old_rd->refcount))
4998 old_rd = NULL;
57d885fe
GH
4999 }
5000
5001 atomic_inc(&rd->refcount);
5002 rq->rd = rd;
5003
c6c4927b 5004 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5005 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5006 set_rq_online(rq);
57d885fe 5007
05fa785c 5008 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5009
5010 if (old_rd)
dce840a0 5011 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5012}
5013
68c38fc3 5014static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5015{
5016 memset(rd, 0, sizeof(*rd));
5017
68c38fc3 5018 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5019 goto out;
68c38fc3 5020 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5021 goto free_span;
68c38fc3 5022 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5023 goto free_online;
6e0534f2 5024
68c38fc3 5025 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5026 goto free_rto_mask;
c6c4927b 5027 return 0;
6e0534f2 5028
68e74568
RR
5029free_rto_mask:
5030 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5031free_online:
5032 free_cpumask_var(rd->online);
5033free_span:
5034 free_cpumask_var(rd->span);
0c910d28 5035out:
c6c4927b 5036 return -ENOMEM;
57d885fe
GH
5037}
5038
029632fb
PZ
5039/*
5040 * By default the system creates a single root-domain with all cpus as
5041 * members (mimicking the global state we have today).
5042 */
5043struct root_domain def_root_domain;
5044
57d885fe
GH
5045static void init_defrootdomain(void)
5046{
68c38fc3 5047 init_rootdomain(&def_root_domain);
c6c4927b 5048
57d885fe
GH
5049 atomic_set(&def_root_domain.refcount, 1);
5050}
5051
dc938520 5052static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5053{
5054 struct root_domain *rd;
5055
5056 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5057 if (!rd)
5058 return NULL;
5059
68c38fc3 5060 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5061 kfree(rd);
5062 return NULL;
5063 }
57d885fe
GH
5064
5065 return rd;
5066}
5067
e3589f6c
PZ
5068static void free_sched_groups(struct sched_group *sg, int free_sgp)
5069{
5070 struct sched_group *tmp, *first;
5071
5072 if (!sg)
5073 return;
5074
5075 first = sg;
5076 do {
5077 tmp = sg->next;
5078
5079 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5080 kfree(sg->sgp);
5081
5082 kfree(sg);
5083 sg = tmp;
5084 } while (sg != first);
5085}
5086
dce840a0
PZ
5087static void free_sched_domain(struct rcu_head *rcu)
5088{
5089 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5090
5091 /*
5092 * If its an overlapping domain it has private groups, iterate and
5093 * nuke them all.
5094 */
5095 if (sd->flags & SD_OVERLAP) {
5096 free_sched_groups(sd->groups, 1);
5097 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5098 kfree(sd->groups->sgp);
dce840a0 5099 kfree(sd->groups);
9c3f75cb 5100 }
dce840a0
PZ
5101 kfree(sd);
5102}
5103
5104static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5105{
5106 call_rcu(&sd->rcu, free_sched_domain);
5107}
5108
5109static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5110{
5111 for (; sd; sd = sd->parent)
5112 destroy_sched_domain(sd, cpu);
5113}
5114
518cd623
PZ
5115/*
5116 * Keep a special pointer to the highest sched_domain that has
5117 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5118 * allows us to avoid some pointer chasing select_idle_sibling().
5119 *
5120 * Also keep a unique ID per domain (we use the first cpu number in
5121 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5122 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5123 */
5124DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5125DEFINE_PER_CPU(int, sd_llc_size);
518cd623
PZ
5126DEFINE_PER_CPU(int, sd_llc_id);
5127
5128static void update_top_cache_domain(int cpu)
5129{
5130 struct sched_domain *sd;
5131 int id = cpu;
7d9ffa89 5132 int size = 1;
518cd623
PZ
5133
5134 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5135 if (sd) {
518cd623 5136 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5137 size = cpumask_weight(sched_domain_span(sd));
5138 }
518cd623
PZ
5139
5140 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5141 per_cpu(sd_llc_size, cpu) = size;
518cd623
PZ
5142 per_cpu(sd_llc_id, cpu) = id;
5143}
5144
1da177e4 5145/*
0eab9146 5146 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5147 * hold the hotplug lock.
5148 */
0eab9146
IM
5149static void
5150cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5151{
70b97a7f 5152 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5153 struct sched_domain *tmp;
5154
5155 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5156 for (tmp = sd; tmp; ) {
245af2c7
SS
5157 struct sched_domain *parent = tmp->parent;
5158 if (!parent)
5159 break;
f29c9b1c 5160
1a848870 5161 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5162 tmp->parent = parent->parent;
1a848870
SS
5163 if (parent->parent)
5164 parent->parent->child = tmp;
10866e62
PZ
5165 /*
5166 * Transfer SD_PREFER_SIBLING down in case of a
5167 * degenerate parent; the spans match for this
5168 * so the property transfers.
5169 */
5170 if (parent->flags & SD_PREFER_SIBLING)
5171 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5172 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5173 } else
5174 tmp = tmp->parent;
245af2c7
SS
5175 }
5176
1a848870 5177 if (sd && sd_degenerate(sd)) {
dce840a0 5178 tmp = sd;
245af2c7 5179 sd = sd->parent;
dce840a0 5180 destroy_sched_domain(tmp, cpu);
1a848870
SS
5181 if (sd)
5182 sd->child = NULL;
5183 }
1da177e4 5184
4cb98839 5185 sched_domain_debug(sd, cpu);
1da177e4 5186
57d885fe 5187 rq_attach_root(rq, rd);
dce840a0 5188 tmp = rq->sd;
674311d5 5189 rcu_assign_pointer(rq->sd, sd);
dce840a0 5190 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5191
5192 update_top_cache_domain(cpu);
1da177e4
LT
5193}
5194
5195/* cpus with isolated domains */
dcc30a35 5196static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5197
5198/* Setup the mask of cpus configured for isolated domains */
5199static int __init isolated_cpu_setup(char *str)
5200{
bdddd296 5201 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5202 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5203 return 1;
5204}
5205
8927f494 5206__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5207
d3081f52
PZ
5208static const struct cpumask *cpu_cpu_mask(int cpu)
5209{
5210 return cpumask_of_node(cpu_to_node(cpu));
5211}
5212
dce840a0
PZ
5213struct sd_data {
5214 struct sched_domain **__percpu sd;
5215 struct sched_group **__percpu sg;
9c3f75cb 5216 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5217};
5218
49a02c51 5219struct s_data {
21d42ccf 5220 struct sched_domain ** __percpu sd;
49a02c51
AH
5221 struct root_domain *rd;
5222};
5223
2109b99e 5224enum s_alloc {
2109b99e 5225 sa_rootdomain,
21d42ccf 5226 sa_sd,
dce840a0 5227 sa_sd_storage,
2109b99e
AH
5228 sa_none,
5229};
5230
54ab4ff4
PZ
5231struct sched_domain_topology_level;
5232
5233typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5234typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5235
e3589f6c
PZ
5236#define SDTL_OVERLAP 0x01
5237
eb7a74e6 5238struct sched_domain_topology_level {
2c402dc3
PZ
5239 sched_domain_init_f init;
5240 sched_domain_mask_f mask;
e3589f6c 5241 int flags;
cb83b629 5242 int numa_level;
54ab4ff4 5243 struct sd_data data;
eb7a74e6
PZ
5244};
5245
c1174876
PZ
5246/*
5247 * Build an iteration mask that can exclude certain CPUs from the upwards
5248 * domain traversal.
5249 *
5250 * Asymmetric node setups can result in situations where the domain tree is of
5251 * unequal depth, make sure to skip domains that already cover the entire
5252 * range.
5253 *
5254 * In that case build_sched_domains() will have terminated the iteration early
5255 * and our sibling sd spans will be empty. Domains should always include the
5256 * cpu they're built on, so check that.
5257 *
5258 */
5259static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5260{
5261 const struct cpumask *span = sched_domain_span(sd);
5262 struct sd_data *sdd = sd->private;
5263 struct sched_domain *sibling;
5264 int i;
5265
5266 for_each_cpu(i, span) {
5267 sibling = *per_cpu_ptr(sdd->sd, i);
5268 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5269 continue;
5270
5271 cpumask_set_cpu(i, sched_group_mask(sg));
5272 }
5273}
5274
5275/*
5276 * Return the canonical balance cpu for this group, this is the first cpu
5277 * of this group that's also in the iteration mask.
5278 */
5279int group_balance_cpu(struct sched_group *sg)
5280{
5281 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5282}
5283
e3589f6c
PZ
5284static int
5285build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5286{
5287 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5288 const struct cpumask *span = sched_domain_span(sd);
5289 struct cpumask *covered = sched_domains_tmpmask;
5290 struct sd_data *sdd = sd->private;
5291 struct sched_domain *child;
5292 int i;
5293
5294 cpumask_clear(covered);
5295
5296 for_each_cpu(i, span) {
5297 struct cpumask *sg_span;
5298
5299 if (cpumask_test_cpu(i, covered))
5300 continue;
5301
c1174876
PZ
5302 child = *per_cpu_ptr(sdd->sd, i);
5303
5304 /* See the comment near build_group_mask(). */
5305 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5306 continue;
5307
e3589f6c 5308 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5309 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5310
5311 if (!sg)
5312 goto fail;
5313
5314 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5315 if (child->child) {
5316 child = child->child;
5317 cpumask_copy(sg_span, sched_domain_span(child));
5318 } else
5319 cpumask_set_cpu(i, sg_span);
5320
5321 cpumask_or(covered, covered, sg_span);
5322
74a5ce20 5323 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5324 if (atomic_inc_return(&sg->sgp->ref) == 1)
5325 build_group_mask(sd, sg);
5326
c3decf0d
PZ
5327 /*
5328 * Initialize sgp->power such that even if we mess up the
5329 * domains and no possible iteration will get us here, we won't
5330 * die on a /0 trap.
5331 */
5332 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5333
c1174876
PZ
5334 /*
5335 * Make sure the first group of this domain contains the
5336 * canonical balance cpu. Otherwise the sched_domain iteration
5337 * breaks. See update_sg_lb_stats().
5338 */
74a5ce20 5339 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5340 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5341 groups = sg;
5342
5343 if (!first)
5344 first = sg;
5345 if (last)
5346 last->next = sg;
5347 last = sg;
5348 last->next = first;
5349 }
5350 sd->groups = groups;
5351
5352 return 0;
5353
5354fail:
5355 free_sched_groups(first, 0);
5356
5357 return -ENOMEM;
5358}
5359
dce840a0 5360static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5361{
dce840a0
PZ
5362 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5363 struct sched_domain *child = sd->child;
1da177e4 5364
dce840a0
PZ
5365 if (child)
5366 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5367
9c3f75cb 5368 if (sg) {
dce840a0 5369 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5370 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5371 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5372 }
dce840a0
PZ
5373
5374 return cpu;
1e9f28fa 5375}
1e9f28fa 5376
01a08546 5377/*
dce840a0
PZ
5378 * build_sched_groups will build a circular linked list of the groups
5379 * covered by the given span, and will set each group's ->cpumask correctly,
5380 * and ->cpu_power to 0.
e3589f6c
PZ
5381 *
5382 * Assumes the sched_domain tree is fully constructed
01a08546 5383 */
e3589f6c
PZ
5384static int
5385build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5386{
dce840a0
PZ
5387 struct sched_group *first = NULL, *last = NULL;
5388 struct sd_data *sdd = sd->private;
5389 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5390 struct cpumask *covered;
dce840a0 5391 int i;
9c1cfda2 5392
e3589f6c
PZ
5393 get_group(cpu, sdd, &sd->groups);
5394 atomic_inc(&sd->groups->ref);
5395
0936629f 5396 if (cpu != cpumask_first(span))
e3589f6c
PZ
5397 return 0;
5398
f96225fd
PZ
5399 lockdep_assert_held(&sched_domains_mutex);
5400 covered = sched_domains_tmpmask;
5401
dce840a0 5402 cpumask_clear(covered);
6711cab4 5403
dce840a0
PZ
5404 for_each_cpu(i, span) {
5405 struct sched_group *sg;
cd08e923 5406 int group, j;
6711cab4 5407
dce840a0
PZ
5408 if (cpumask_test_cpu(i, covered))
5409 continue;
6711cab4 5410
cd08e923 5411 group = get_group(i, sdd, &sg);
dce840a0 5412 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5413 sg->sgp->power = 0;
c1174876 5414 cpumask_setall(sched_group_mask(sg));
0601a88d 5415
dce840a0
PZ
5416 for_each_cpu(j, span) {
5417 if (get_group(j, sdd, NULL) != group)
5418 continue;
0601a88d 5419
dce840a0
PZ
5420 cpumask_set_cpu(j, covered);
5421 cpumask_set_cpu(j, sched_group_cpus(sg));
5422 }
0601a88d 5423
dce840a0
PZ
5424 if (!first)
5425 first = sg;
5426 if (last)
5427 last->next = sg;
5428 last = sg;
5429 }
5430 last->next = first;
e3589f6c
PZ
5431
5432 return 0;
0601a88d 5433}
51888ca2 5434
89c4710e
SS
5435/*
5436 * Initialize sched groups cpu_power.
5437 *
5438 * cpu_power indicates the capacity of sched group, which is used while
5439 * distributing the load between different sched groups in a sched domain.
5440 * Typically cpu_power for all the groups in a sched domain will be same unless
5441 * there are asymmetries in the topology. If there are asymmetries, group
5442 * having more cpu_power will pickup more load compared to the group having
5443 * less cpu_power.
89c4710e
SS
5444 */
5445static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5446{
e3589f6c 5447 struct sched_group *sg = sd->groups;
89c4710e 5448
94c95ba6 5449 WARN_ON(!sg);
e3589f6c
PZ
5450
5451 do {
5452 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5453 sg = sg->next;
5454 } while (sg != sd->groups);
89c4710e 5455
c1174876 5456 if (cpu != group_balance_cpu(sg))
e3589f6c 5457 return;
aae6d3dd 5458
d274cb30 5459 update_group_power(sd, cpu);
69e1e811 5460 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5461}
5462
029632fb
PZ
5463int __weak arch_sd_sibling_asym_packing(void)
5464{
5465 return 0*SD_ASYM_PACKING;
89c4710e
SS
5466}
5467
7c16ec58
MT
5468/*
5469 * Initializers for schedule domains
5470 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5471 */
5472
a5d8c348
IM
5473#ifdef CONFIG_SCHED_DEBUG
5474# define SD_INIT_NAME(sd, type) sd->name = #type
5475#else
5476# define SD_INIT_NAME(sd, type) do { } while (0)
5477#endif
5478
54ab4ff4
PZ
5479#define SD_INIT_FUNC(type) \
5480static noinline struct sched_domain * \
5481sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5482{ \
5483 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5484 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5485 SD_INIT_NAME(sd, type); \
5486 sd->private = &tl->data; \
5487 return sd; \
7c16ec58
MT
5488}
5489
5490SD_INIT_FUNC(CPU)
7c16ec58
MT
5491#ifdef CONFIG_SCHED_SMT
5492 SD_INIT_FUNC(SIBLING)
5493#endif
5494#ifdef CONFIG_SCHED_MC
5495 SD_INIT_FUNC(MC)
5496#endif
01a08546
HC
5497#ifdef CONFIG_SCHED_BOOK
5498 SD_INIT_FUNC(BOOK)
5499#endif
7c16ec58 5500
1d3504fc 5501static int default_relax_domain_level = -1;
60495e77 5502int sched_domain_level_max;
1d3504fc
HS
5503
5504static int __init setup_relax_domain_level(char *str)
5505{
a841f8ce
DS
5506 if (kstrtoint(str, 0, &default_relax_domain_level))
5507 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5508
1d3504fc
HS
5509 return 1;
5510}
5511__setup("relax_domain_level=", setup_relax_domain_level);
5512
5513static void set_domain_attribute(struct sched_domain *sd,
5514 struct sched_domain_attr *attr)
5515{
5516 int request;
5517
5518 if (!attr || attr->relax_domain_level < 0) {
5519 if (default_relax_domain_level < 0)
5520 return;
5521 else
5522 request = default_relax_domain_level;
5523 } else
5524 request = attr->relax_domain_level;
5525 if (request < sd->level) {
5526 /* turn off idle balance on this domain */
c88d5910 5527 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5528 } else {
5529 /* turn on idle balance on this domain */
c88d5910 5530 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5531 }
5532}
5533
54ab4ff4
PZ
5534static void __sdt_free(const struct cpumask *cpu_map);
5535static int __sdt_alloc(const struct cpumask *cpu_map);
5536
2109b99e
AH
5537static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5538 const struct cpumask *cpu_map)
5539{
5540 switch (what) {
2109b99e 5541 case sa_rootdomain:
822ff793
PZ
5542 if (!atomic_read(&d->rd->refcount))
5543 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5544 case sa_sd:
5545 free_percpu(d->sd); /* fall through */
dce840a0 5546 case sa_sd_storage:
54ab4ff4 5547 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5548 case sa_none:
5549 break;
5550 }
5551}
3404c8d9 5552
2109b99e
AH
5553static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5554 const struct cpumask *cpu_map)
5555{
dce840a0
PZ
5556 memset(d, 0, sizeof(*d));
5557
54ab4ff4
PZ
5558 if (__sdt_alloc(cpu_map))
5559 return sa_sd_storage;
dce840a0
PZ
5560 d->sd = alloc_percpu(struct sched_domain *);
5561 if (!d->sd)
5562 return sa_sd_storage;
2109b99e 5563 d->rd = alloc_rootdomain();
dce840a0 5564 if (!d->rd)
21d42ccf 5565 return sa_sd;
2109b99e
AH
5566 return sa_rootdomain;
5567}
57d885fe 5568
dce840a0
PZ
5569/*
5570 * NULL the sd_data elements we've used to build the sched_domain and
5571 * sched_group structure so that the subsequent __free_domain_allocs()
5572 * will not free the data we're using.
5573 */
5574static void claim_allocations(int cpu, struct sched_domain *sd)
5575{
5576 struct sd_data *sdd = sd->private;
dce840a0
PZ
5577
5578 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5579 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5580
e3589f6c 5581 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5582 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5583
5584 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5585 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5586}
5587
2c402dc3
PZ
5588#ifdef CONFIG_SCHED_SMT
5589static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5590{
2c402dc3 5591 return topology_thread_cpumask(cpu);
3bd65a80 5592}
2c402dc3 5593#endif
7f4588f3 5594
d069b916
PZ
5595/*
5596 * Topology list, bottom-up.
5597 */
2c402dc3 5598static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5599#ifdef CONFIG_SCHED_SMT
5600 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5601#endif
1e9f28fa 5602#ifdef CONFIG_SCHED_MC
2c402dc3 5603 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5604#endif
d069b916
PZ
5605#ifdef CONFIG_SCHED_BOOK
5606 { sd_init_BOOK, cpu_book_mask, },
5607#endif
5608 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5609 { NULL, },
5610};
5611
5612static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5613
27723a68
VK
5614#define for_each_sd_topology(tl) \
5615 for (tl = sched_domain_topology; tl->init; tl++)
5616
cb83b629
PZ
5617#ifdef CONFIG_NUMA
5618
5619static int sched_domains_numa_levels;
cb83b629
PZ
5620static int *sched_domains_numa_distance;
5621static struct cpumask ***sched_domains_numa_masks;
5622static int sched_domains_curr_level;
5623
cb83b629
PZ
5624static inline int sd_local_flags(int level)
5625{
10717dcd 5626 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5627 return 0;
5628
5629 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5630}
5631
5632static struct sched_domain *
5633sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5634{
5635 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5636 int level = tl->numa_level;
5637 int sd_weight = cpumask_weight(
5638 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5639
5640 *sd = (struct sched_domain){
5641 .min_interval = sd_weight,
5642 .max_interval = 2*sd_weight,
5643 .busy_factor = 32,
870a0bb5 5644 .imbalance_pct = 125,
cb83b629
PZ
5645 .cache_nice_tries = 2,
5646 .busy_idx = 3,
5647 .idle_idx = 2,
5648 .newidle_idx = 0,
5649 .wake_idx = 0,
5650 .forkexec_idx = 0,
5651
5652 .flags = 1*SD_LOAD_BALANCE
5653 | 1*SD_BALANCE_NEWIDLE
5654 | 0*SD_BALANCE_EXEC
5655 | 0*SD_BALANCE_FORK
5656 | 0*SD_BALANCE_WAKE
5657 | 0*SD_WAKE_AFFINE
cb83b629 5658 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5659 | 0*SD_SHARE_PKG_RESOURCES
5660 | 1*SD_SERIALIZE
5661 | 0*SD_PREFER_SIBLING
5662 | sd_local_flags(level)
5663 ,
5664 .last_balance = jiffies,
5665 .balance_interval = sd_weight,
5666 };
5667 SD_INIT_NAME(sd, NUMA);
5668 sd->private = &tl->data;
5669
5670 /*
5671 * Ugly hack to pass state to sd_numa_mask()...
5672 */
5673 sched_domains_curr_level = tl->numa_level;
5674
5675 return sd;
5676}
5677
5678static const struct cpumask *sd_numa_mask(int cpu)
5679{
5680 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5681}
5682
d039ac60
PZ
5683static void sched_numa_warn(const char *str)
5684{
5685 static int done = false;
5686 int i,j;
5687
5688 if (done)
5689 return;
5690
5691 done = true;
5692
5693 printk(KERN_WARNING "ERROR: %s\n\n", str);
5694
5695 for (i = 0; i < nr_node_ids; i++) {
5696 printk(KERN_WARNING " ");
5697 for (j = 0; j < nr_node_ids; j++)
5698 printk(KERN_CONT "%02d ", node_distance(i,j));
5699 printk(KERN_CONT "\n");
5700 }
5701 printk(KERN_WARNING "\n");
5702}
5703
5704static bool find_numa_distance(int distance)
5705{
5706 int i;
5707
5708 if (distance == node_distance(0, 0))
5709 return true;
5710
5711 for (i = 0; i < sched_domains_numa_levels; i++) {
5712 if (sched_domains_numa_distance[i] == distance)
5713 return true;
5714 }
5715
5716 return false;
5717}
5718
cb83b629
PZ
5719static void sched_init_numa(void)
5720{
5721 int next_distance, curr_distance = node_distance(0, 0);
5722 struct sched_domain_topology_level *tl;
5723 int level = 0;
5724 int i, j, k;
5725
cb83b629
PZ
5726 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5727 if (!sched_domains_numa_distance)
5728 return;
5729
5730 /*
5731 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5732 * unique distances in the node_distance() table.
5733 *
5734 * Assumes node_distance(0,j) includes all distances in
5735 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5736 */
5737 next_distance = curr_distance;
5738 for (i = 0; i < nr_node_ids; i++) {
5739 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5740 for (k = 0; k < nr_node_ids; k++) {
5741 int distance = node_distance(i, k);
5742
5743 if (distance > curr_distance &&
5744 (distance < next_distance ||
5745 next_distance == curr_distance))
5746 next_distance = distance;
5747
5748 /*
5749 * While not a strong assumption it would be nice to know
5750 * about cases where if node A is connected to B, B is not
5751 * equally connected to A.
5752 */
5753 if (sched_debug() && node_distance(k, i) != distance)
5754 sched_numa_warn("Node-distance not symmetric");
5755
5756 if (sched_debug() && i && !find_numa_distance(distance))
5757 sched_numa_warn("Node-0 not representative");
5758 }
5759 if (next_distance != curr_distance) {
5760 sched_domains_numa_distance[level++] = next_distance;
5761 sched_domains_numa_levels = level;
5762 curr_distance = next_distance;
5763 } else break;
cb83b629 5764 }
d039ac60
PZ
5765
5766 /*
5767 * In case of sched_debug() we verify the above assumption.
5768 */
5769 if (!sched_debug())
5770 break;
cb83b629
PZ
5771 }
5772 /*
5773 * 'level' contains the number of unique distances, excluding the
5774 * identity distance node_distance(i,i).
5775 *
28b4a521 5776 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5777 * numbers.
5778 */
5779
5f7865f3
TC
5780 /*
5781 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5782 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5783 * the array will contain less then 'level' members. This could be
5784 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5785 * in other functions.
5786 *
5787 * We reset it to 'level' at the end of this function.
5788 */
5789 sched_domains_numa_levels = 0;
5790
cb83b629
PZ
5791 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5792 if (!sched_domains_numa_masks)
5793 return;
5794
5795 /*
5796 * Now for each level, construct a mask per node which contains all
5797 * cpus of nodes that are that many hops away from us.
5798 */
5799 for (i = 0; i < level; i++) {
5800 sched_domains_numa_masks[i] =
5801 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5802 if (!sched_domains_numa_masks[i])
5803 return;
5804
5805 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5806 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5807 if (!mask)
5808 return;
5809
5810 sched_domains_numa_masks[i][j] = mask;
5811
5812 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5813 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5814 continue;
5815
5816 cpumask_or(mask, mask, cpumask_of_node(k));
5817 }
5818 }
5819 }
5820
5821 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5822 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5823 if (!tl)
5824 return;
5825
5826 /*
5827 * Copy the default topology bits..
5828 */
5829 for (i = 0; default_topology[i].init; i++)
5830 tl[i] = default_topology[i];
5831
5832 /*
5833 * .. and append 'j' levels of NUMA goodness.
5834 */
5835 for (j = 0; j < level; i++, j++) {
5836 tl[i] = (struct sched_domain_topology_level){
5837 .init = sd_numa_init,
5838 .mask = sd_numa_mask,
5839 .flags = SDTL_OVERLAP,
5840 .numa_level = j,
5841 };
5842 }
5843
5844 sched_domain_topology = tl;
5f7865f3
TC
5845
5846 sched_domains_numa_levels = level;
cb83b629 5847}
301a5cba
TC
5848
5849static void sched_domains_numa_masks_set(int cpu)
5850{
5851 int i, j;
5852 int node = cpu_to_node(cpu);
5853
5854 for (i = 0; i < sched_domains_numa_levels; i++) {
5855 for (j = 0; j < nr_node_ids; j++) {
5856 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5857 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5858 }
5859 }
5860}
5861
5862static void sched_domains_numa_masks_clear(int cpu)
5863{
5864 int i, j;
5865 for (i = 0; i < sched_domains_numa_levels; i++) {
5866 for (j = 0; j < nr_node_ids; j++)
5867 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5868 }
5869}
5870
5871/*
5872 * Update sched_domains_numa_masks[level][node] array when new cpus
5873 * are onlined.
5874 */
5875static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5876 unsigned long action,
5877 void *hcpu)
5878{
5879 int cpu = (long)hcpu;
5880
5881 switch (action & ~CPU_TASKS_FROZEN) {
5882 case CPU_ONLINE:
5883 sched_domains_numa_masks_set(cpu);
5884 break;
5885
5886 case CPU_DEAD:
5887 sched_domains_numa_masks_clear(cpu);
5888 break;
5889
5890 default:
5891 return NOTIFY_DONE;
5892 }
5893
5894 return NOTIFY_OK;
cb83b629
PZ
5895}
5896#else
5897static inline void sched_init_numa(void)
5898{
5899}
301a5cba
TC
5900
5901static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5902 unsigned long action,
5903 void *hcpu)
5904{
5905 return 0;
5906}
cb83b629
PZ
5907#endif /* CONFIG_NUMA */
5908
54ab4ff4
PZ
5909static int __sdt_alloc(const struct cpumask *cpu_map)
5910{
5911 struct sched_domain_topology_level *tl;
5912 int j;
5913
27723a68 5914 for_each_sd_topology(tl) {
54ab4ff4
PZ
5915 struct sd_data *sdd = &tl->data;
5916
5917 sdd->sd = alloc_percpu(struct sched_domain *);
5918 if (!sdd->sd)
5919 return -ENOMEM;
5920
5921 sdd->sg = alloc_percpu(struct sched_group *);
5922 if (!sdd->sg)
5923 return -ENOMEM;
5924
9c3f75cb
PZ
5925 sdd->sgp = alloc_percpu(struct sched_group_power *);
5926 if (!sdd->sgp)
5927 return -ENOMEM;
5928
54ab4ff4
PZ
5929 for_each_cpu(j, cpu_map) {
5930 struct sched_domain *sd;
5931 struct sched_group *sg;
9c3f75cb 5932 struct sched_group_power *sgp;
54ab4ff4
PZ
5933
5934 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5935 GFP_KERNEL, cpu_to_node(j));
5936 if (!sd)
5937 return -ENOMEM;
5938
5939 *per_cpu_ptr(sdd->sd, j) = sd;
5940
5941 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5942 GFP_KERNEL, cpu_to_node(j));
5943 if (!sg)
5944 return -ENOMEM;
5945
30b4e9eb
IM
5946 sg->next = sg;
5947
54ab4ff4 5948 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5949
c1174876 5950 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5951 GFP_KERNEL, cpu_to_node(j));
5952 if (!sgp)
5953 return -ENOMEM;
5954
5955 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5956 }
5957 }
5958
5959 return 0;
5960}
5961
5962static void __sdt_free(const struct cpumask *cpu_map)
5963{
5964 struct sched_domain_topology_level *tl;
5965 int j;
5966
27723a68 5967 for_each_sd_topology(tl) {
54ab4ff4
PZ
5968 struct sd_data *sdd = &tl->data;
5969
5970 for_each_cpu(j, cpu_map) {
fb2cf2c6 5971 struct sched_domain *sd;
5972
5973 if (sdd->sd) {
5974 sd = *per_cpu_ptr(sdd->sd, j);
5975 if (sd && (sd->flags & SD_OVERLAP))
5976 free_sched_groups(sd->groups, 0);
5977 kfree(*per_cpu_ptr(sdd->sd, j));
5978 }
5979
5980 if (sdd->sg)
5981 kfree(*per_cpu_ptr(sdd->sg, j));
5982 if (sdd->sgp)
5983 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5984 }
5985 free_percpu(sdd->sd);
fb2cf2c6 5986 sdd->sd = NULL;
54ab4ff4 5987 free_percpu(sdd->sg);
fb2cf2c6 5988 sdd->sg = NULL;
9c3f75cb 5989 free_percpu(sdd->sgp);
fb2cf2c6 5990 sdd->sgp = NULL;
54ab4ff4
PZ
5991 }
5992}
5993
2c402dc3 5994struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5995 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5996 struct sched_domain *child, int cpu)
2c402dc3 5997{
54ab4ff4 5998 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5999 if (!sd)
d069b916 6000 return child;
2c402dc3 6001
2c402dc3 6002 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6003 if (child) {
6004 sd->level = child->level + 1;
6005 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6006 child->parent = sd;
c75e0128 6007 sd->child = child;
60495e77 6008 }
a841f8ce 6009 set_domain_attribute(sd, attr);
2c402dc3
PZ
6010
6011 return sd;
6012}
6013
2109b99e
AH
6014/*
6015 * Build sched domains for a given set of cpus and attach the sched domains
6016 * to the individual cpus
6017 */
dce840a0
PZ
6018static int build_sched_domains(const struct cpumask *cpu_map,
6019 struct sched_domain_attr *attr)
2109b99e 6020{
1c632169 6021 enum s_alloc alloc_state;
dce840a0 6022 struct sched_domain *sd;
2109b99e 6023 struct s_data d;
822ff793 6024 int i, ret = -ENOMEM;
9c1cfda2 6025
2109b99e
AH
6026 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6027 if (alloc_state != sa_rootdomain)
6028 goto error;
9c1cfda2 6029
dce840a0 6030 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6031 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6032 struct sched_domain_topology_level *tl;
6033
3bd65a80 6034 sd = NULL;
27723a68 6035 for_each_sd_topology(tl) {
4a850cbe 6036 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6037 if (tl == sched_domain_topology)
6038 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6039 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6040 sd->flags |= SD_OVERLAP;
d110235d
PZ
6041 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6042 break;
e3589f6c 6043 }
dce840a0
PZ
6044 }
6045
6046 /* Build the groups for the domains */
6047 for_each_cpu(i, cpu_map) {
6048 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6049 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6050 if (sd->flags & SD_OVERLAP) {
6051 if (build_overlap_sched_groups(sd, i))
6052 goto error;
6053 } else {
6054 if (build_sched_groups(sd, i))
6055 goto error;
6056 }
1cf51902 6057 }
a06dadbe 6058 }
9c1cfda2 6059
1da177e4 6060 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6061 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6062 if (!cpumask_test_cpu(i, cpu_map))
6063 continue;
9c1cfda2 6064
dce840a0
PZ
6065 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6066 claim_allocations(i, sd);
cd4ea6ae 6067 init_sched_groups_power(i, sd);
dce840a0 6068 }
f712c0c7 6069 }
9c1cfda2 6070
1da177e4 6071 /* Attach the domains */
dce840a0 6072 rcu_read_lock();
abcd083a 6073 for_each_cpu(i, cpu_map) {
21d42ccf 6074 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6075 cpu_attach_domain(sd, d.rd, i);
1da177e4 6076 }
dce840a0 6077 rcu_read_unlock();
51888ca2 6078
822ff793 6079 ret = 0;
51888ca2 6080error:
2109b99e 6081 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6082 return ret;
1da177e4 6083}
029190c5 6084
acc3f5d7 6085static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6086static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6087static struct sched_domain_attr *dattr_cur;
6088 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6089
6090/*
6091 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6092 * cpumask) fails, then fallback to a single sched domain,
6093 * as determined by the single cpumask fallback_doms.
029190c5 6094 */
4212823f 6095static cpumask_var_t fallback_doms;
029190c5 6096
ee79d1bd
HC
6097/*
6098 * arch_update_cpu_topology lets virtualized architectures update the
6099 * cpu core maps. It is supposed to return 1 if the topology changed
6100 * or 0 if it stayed the same.
6101 */
6102int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6103{
ee79d1bd 6104 return 0;
22e52b07
HC
6105}
6106
acc3f5d7
RR
6107cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6108{
6109 int i;
6110 cpumask_var_t *doms;
6111
6112 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6113 if (!doms)
6114 return NULL;
6115 for (i = 0; i < ndoms; i++) {
6116 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6117 free_sched_domains(doms, i);
6118 return NULL;
6119 }
6120 }
6121 return doms;
6122}
6123
6124void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6125{
6126 unsigned int i;
6127 for (i = 0; i < ndoms; i++)
6128 free_cpumask_var(doms[i]);
6129 kfree(doms);
6130}
6131
1a20ff27 6132/*
41a2d6cf 6133 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6134 * For now this just excludes isolated cpus, but could be used to
6135 * exclude other special cases in the future.
1a20ff27 6136 */
c4a8849a 6137static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6138{
7378547f
MM
6139 int err;
6140
22e52b07 6141 arch_update_cpu_topology();
029190c5 6142 ndoms_cur = 1;
acc3f5d7 6143 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6144 if (!doms_cur)
acc3f5d7
RR
6145 doms_cur = &fallback_doms;
6146 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6147 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6148 register_sched_domain_sysctl();
7378547f
MM
6149
6150 return err;
1a20ff27
DG
6151}
6152
1a20ff27
DG
6153/*
6154 * Detach sched domains from a group of cpus specified in cpu_map
6155 * These cpus will now be attached to the NULL domain
6156 */
96f874e2 6157static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6158{
6159 int i;
6160
dce840a0 6161 rcu_read_lock();
abcd083a 6162 for_each_cpu(i, cpu_map)
57d885fe 6163 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6164 rcu_read_unlock();
1a20ff27
DG
6165}
6166
1d3504fc
HS
6167/* handle null as "default" */
6168static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6169 struct sched_domain_attr *new, int idx_new)
6170{
6171 struct sched_domain_attr tmp;
6172
6173 /* fast path */
6174 if (!new && !cur)
6175 return 1;
6176
6177 tmp = SD_ATTR_INIT;
6178 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6179 new ? (new + idx_new) : &tmp,
6180 sizeof(struct sched_domain_attr));
6181}
6182
029190c5
PJ
6183/*
6184 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6185 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6186 * doms_new[] to the current sched domain partitioning, doms_cur[].
6187 * It destroys each deleted domain and builds each new domain.
6188 *
acc3f5d7 6189 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6190 * The masks don't intersect (don't overlap.) We should setup one
6191 * sched domain for each mask. CPUs not in any of the cpumasks will
6192 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6193 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6194 * it as it is.
6195 *
acc3f5d7
RR
6196 * The passed in 'doms_new' should be allocated using
6197 * alloc_sched_domains. This routine takes ownership of it and will
6198 * free_sched_domains it when done with it. If the caller failed the
6199 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6200 * and partition_sched_domains() will fallback to the single partition
6201 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6202 *
96f874e2 6203 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6204 * ndoms_new == 0 is a special case for destroying existing domains,
6205 * and it will not create the default domain.
dfb512ec 6206 *
029190c5
PJ
6207 * Call with hotplug lock held
6208 */
acc3f5d7 6209void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6210 struct sched_domain_attr *dattr_new)
029190c5 6211{
dfb512ec 6212 int i, j, n;
d65bd5ec 6213 int new_topology;
029190c5 6214
712555ee 6215 mutex_lock(&sched_domains_mutex);
a1835615 6216
7378547f
MM
6217 /* always unregister in case we don't destroy any domains */
6218 unregister_sched_domain_sysctl();
6219
d65bd5ec
HC
6220 /* Let architecture update cpu core mappings. */
6221 new_topology = arch_update_cpu_topology();
6222
dfb512ec 6223 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6224
6225 /* Destroy deleted domains */
6226 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6227 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6228 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6229 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6230 goto match1;
6231 }
6232 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6233 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6234match1:
6235 ;
6236 }
6237
c8d2d47a 6238 n = ndoms_cur;
e761b772 6239 if (doms_new == NULL) {
c8d2d47a 6240 n = 0;
acc3f5d7 6241 doms_new = &fallback_doms;
6ad4c188 6242 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6243 WARN_ON_ONCE(dattr_new);
e761b772
MK
6244 }
6245
029190c5
PJ
6246 /* Build new domains */
6247 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6248 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6249 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6250 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6251 goto match2;
6252 }
6253 /* no match - add a new doms_new */
dce840a0 6254 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6255match2:
6256 ;
6257 }
6258
6259 /* Remember the new sched domains */
acc3f5d7
RR
6260 if (doms_cur != &fallback_doms)
6261 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6262 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6263 doms_cur = doms_new;
1d3504fc 6264 dattr_cur = dattr_new;
029190c5 6265 ndoms_cur = ndoms_new;
7378547f
MM
6266
6267 register_sched_domain_sysctl();
a1835615 6268
712555ee 6269 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6270}
6271
d35be8ba
SB
6272static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6273
1da177e4 6274/*
3a101d05
TH
6275 * Update cpusets according to cpu_active mask. If cpusets are
6276 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6277 * around partition_sched_domains().
d35be8ba
SB
6278 *
6279 * If we come here as part of a suspend/resume, don't touch cpusets because we
6280 * want to restore it back to its original state upon resume anyway.
1da177e4 6281 */
0b2e918a
TH
6282static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6283 void *hcpu)
e761b772 6284{
d35be8ba
SB
6285 switch (action) {
6286 case CPU_ONLINE_FROZEN:
6287 case CPU_DOWN_FAILED_FROZEN:
6288
6289 /*
6290 * num_cpus_frozen tracks how many CPUs are involved in suspend
6291 * resume sequence. As long as this is not the last online
6292 * operation in the resume sequence, just build a single sched
6293 * domain, ignoring cpusets.
6294 */
6295 num_cpus_frozen--;
6296 if (likely(num_cpus_frozen)) {
6297 partition_sched_domains(1, NULL, NULL);
6298 break;
6299 }
6300
6301 /*
6302 * This is the last CPU online operation. So fall through and
6303 * restore the original sched domains by considering the
6304 * cpuset configurations.
6305 */
6306
e761b772 6307 case CPU_ONLINE:
6ad4c188 6308 case CPU_DOWN_FAILED:
7ddf96b0 6309 cpuset_update_active_cpus(true);
d35be8ba 6310 break;
3a101d05
TH
6311 default:
6312 return NOTIFY_DONE;
6313 }
d35be8ba 6314 return NOTIFY_OK;
3a101d05 6315}
e761b772 6316
0b2e918a
TH
6317static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6318 void *hcpu)
3a101d05 6319{
d35be8ba 6320 switch (action) {
3a101d05 6321 case CPU_DOWN_PREPARE:
7ddf96b0 6322 cpuset_update_active_cpus(false);
d35be8ba
SB
6323 break;
6324 case CPU_DOWN_PREPARE_FROZEN:
6325 num_cpus_frozen++;
6326 partition_sched_domains(1, NULL, NULL);
6327 break;
e761b772
MK
6328 default:
6329 return NOTIFY_DONE;
6330 }
d35be8ba 6331 return NOTIFY_OK;
e761b772 6332}
e761b772 6333
1da177e4
LT
6334void __init sched_init_smp(void)
6335{
dcc30a35
RR
6336 cpumask_var_t non_isolated_cpus;
6337
6338 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6339 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6340
cb83b629
PZ
6341 sched_init_numa();
6342
95402b38 6343 get_online_cpus();
712555ee 6344 mutex_lock(&sched_domains_mutex);
c4a8849a 6345 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6346 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6347 if (cpumask_empty(non_isolated_cpus))
6348 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6349 mutex_unlock(&sched_domains_mutex);
95402b38 6350 put_online_cpus();
e761b772 6351
301a5cba 6352 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6353 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6354 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6355
b328ca18 6356 init_hrtick();
5c1e1767
NP
6357
6358 /* Move init over to a non-isolated CPU */
dcc30a35 6359 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6360 BUG();
19978ca6 6361 sched_init_granularity();
dcc30a35 6362 free_cpumask_var(non_isolated_cpus);
4212823f 6363
0e3900e6 6364 init_sched_rt_class();
1da177e4
LT
6365}
6366#else
6367void __init sched_init_smp(void)
6368{
19978ca6 6369 sched_init_granularity();
1da177e4
LT
6370}
6371#endif /* CONFIG_SMP */
6372
cd1bb94b
AB
6373const_debug unsigned int sysctl_timer_migration = 1;
6374
1da177e4
LT
6375int in_sched_functions(unsigned long addr)
6376{
1da177e4
LT
6377 return in_lock_functions(addr) ||
6378 (addr >= (unsigned long)__sched_text_start
6379 && addr < (unsigned long)__sched_text_end);
6380}
6381
029632fb 6382#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6383/*
6384 * Default task group.
6385 * Every task in system belongs to this group at bootup.
6386 */
029632fb 6387struct task_group root_task_group;
35cf4e50 6388LIST_HEAD(task_groups);
052f1dc7 6389#endif
6f505b16 6390
e6252c3e 6391DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6392
1da177e4
LT
6393void __init sched_init(void)
6394{
dd41f596 6395 int i, j;
434d53b0
MT
6396 unsigned long alloc_size = 0, ptr;
6397
6398#ifdef CONFIG_FAIR_GROUP_SCHED
6399 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6400#endif
6401#ifdef CONFIG_RT_GROUP_SCHED
6402 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6403#endif
df7c8e84 6404#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6405 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6406#endif
434d53b0 6407 if (alloc_size) {
36b7b6d4 6408 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6409
6410#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6411 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6412 ptr += nr_cpu_ids * sizeof(void **);
6413
07e06b01 6414 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6415 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6416
6d6bc0ad 6417#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6418#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6419 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6420 ptr += nr_cpu_ids * sizeof(void **);
6421
07e06b01 6422 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6423 ptr += nr_cpu_ids * sizeof(void **);
6424
6d6bc0ad 6425#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6426#ifdef CONFIG_CPUMASK_OFFSTACK
6427 for_each_possible_cpu(i) {
e6252c3e 6428 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6429 ptr += cpumask_size();
6430 }
6431#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6432 }
dd41f596 6433
57d885fe
GH
6434#ifdef CONFIG_SMP
6435 init_defrootdomain();
6436#endif
6437
d0b27fa7
PZ
6438 init_rt_bandwidth(&def_rt_bandwidth,
6439 global_rt_period(), global_rt_runtime());
6440
6441#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6442 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6443 global_rt_period(), global_rt_runtime());
6d6bc0ad 6444#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6445
7c941438 6446#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6447 list_add(&root_task_group.list, &task_groups);
6448 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6449 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6450 autogroup_init(&init_task);
54c707e9 6451
7c941438 6452#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6453
0a945022 6454 for_each_possible_cpu(i) {
70b97a7f 6455 struct rq *rq;
1da177e4
LT
6456
6457 rq = cpu_rq(i);
05fa785c 6458 raw_spin_lock_init(&rq->lock);
7897986b 6459 rq->nr_running = 0;
dce48a84
TG
6460 rq->calc_load_active = 0;
6461 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6462 init_cfs_rq(&rq->cfs);
6f505b16 6463 init_rt_rq(&rq->rt, rq);
dd41f596 6464#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6465 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6466 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6467 /*
07e06b01 6468 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6469 *
6470 * In case of task-groups formed thr' the cgroup filesystem, it
6471 * gets 100% of the cpu resources in the system. This overall
6472 * system cpu resource is divided among the tasks of
07e06b01 6473 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6474 * based on each entity's (task or task-group's) weight
6475 * (se->load.weight).
6476 *
07e06b01 6477 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6478 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6479 * then A0's share of the cpu resource is:
6480 *
0d905bca 6481 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6482 *
07e06b01
YZ
6483 * We achieve this by letting root_task_group's tasks sit
6484 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6485 */
ab84d31e 6486 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6487 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6488#endif /* CONFIG_FAIR_GROUP_SCHED */
6489
6490 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6491#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6492 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6493 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6494#endif
1da177e4 6495
dd41f596
IM
6496 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6497 rq->cpu_load[j] = 0;
fdf3e95d
VP
6498
6499 rq->last_load_update_tick = jiffies;
6500
1da177e4 6501#ifdef CONFIG_SMP
41c7ce9a 6502 rq->sd = NULL;
57d885fe 6503 rq->rd = NULL;
1399fa78 6504 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6505 rq->post_schedule = 0;
1da177e4 6506 rq->active_balance = 0;
dd41f596 6507 rq->next_balance = jiffies;
1da177e4 6508 rq->push_cpu = 0;
0a2966b4 6509 rq->cpu = i;
1f11eb6a 6510 rq->online = 0;
eae0c9df
MG
6511 rq->idle_stamp = 0;
6512 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6513 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6514
6515 INIT_LIST_HEAD(&rq->cfs_tasks);
6516
dc938520 6517 rq_attach_root(rq, &def_root_domain);
3451d024 6518#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6519 rq->nohz_flags = 0;
83cd4fe2 6520#endif
265f22a9
FW
6521#ifdef CONFIG_NO_HZ_FULL
6522 rq->last_sched_tick = 0;
6523#endif
1da177e4 6524#endif
8f4d37ec 6525 init_rq_hrtick(rq);
1da177e4 6526 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6527 }
6528
2dd73a4f 6529 set_load_weight(&init_task);
b50f60ce 6530
e107be36
AK
6531#ifdef CONFIG_PREEMPT_NOTIFIERS
6532 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6533#endif
6534
b50f60ce 6535#ifdef CONFIG_RT_MUTEXES
732375c6 6536 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6537#endif
6538
1da177e4
LT
6539 /*
6540 * The boot idle thread does lazy MMU switching as well:
6541 */
6542 atomic_inc(&init_mm.mm_count);
6543 enter_lazy_tlb(&init_mm, current);
6544
6545 /*
6546 * Make us the idle thread. Technically, schedule() should not be
6547 * called from this thread, however somewhere below it might be,
6548 * but because we are the idle thread, we just pick up running again
6549 * when this runqueue becomes "idle".
6550 */
6551 init_idle(current, smp_processor_id());
dce48a84
TG
6552
6553 calc_load_update = jiffies + LOAD_FREQ;
6554
dd41f596
IM
6555 /*
6556 * During early bootup we pretend to be a normal task:
6557 */
6558 current->sched_class = &fair_sched_class;
6892b75e 6559
bf4d83f6 6560#ifdef CONFIG_SMP
4cb98839 6561 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6562 /* May be allocated at isolcpus cmdline parse time */
6563 if (cpu_isolated_map == NULL)
6564 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6565 idle_thread_set_boot_cpu();
029632fb
PZ
6566#endif
6567 init_sched_fair_class();
6a7b3dc3 6568
6892b75e 6569 scheduler_running = 1;
1da177e4
LT
6570}
6571
d902db1e 6572#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6573static inline int preempt_count_equals(int preempt_offset)
6574{
234da7bc 6575 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6576
4ba8216c 6577 return (nested == preempt_offset);
e4aafea2
FW
6578}
6579
d894837f 6580void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6581{
1da177e4
LT
6582 static unsigned long prev_jiffy; /* ratelimiting */
6583
b3fbab05 6584 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6585 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6586 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6587 return;
6588 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6589 return;
6590 prev_jiffy = jiffies;
6591
3df0fc5b
PZ
6592 printk(KERN_ERR
6593 "BUG: sleeping function called from invalid context at %s:%d\n",
6594 file, line);
6595 printk(KERN_ERR
6596 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6597 in_atomic(), irqs_disabled(),
6598 current->pid, current->comm);
aef745fc
IM
6599
6600 debug_show_held_locks(current);
6601 if (irqs_disabled())
6602 print_irqtrace_events(current);
6603 dump_stack();
1da177e4
LT
6604}
6605EXPORT_SYMBOL(__might_sleep);
6606#endif
6607
6608#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6609static void normalize_task(struct rq *rq, struct task_struct *p)
6610{
da7a735e
PZ
6611 const struct sched_class *prev_class = p->sched_class;
6612 int old_prio = p->prio;
3a5e4dc1 6613 int on_rq;
3e51f33f 6614
fd2f4419 6615 on_rq = p->on_rq;
3a5e4dc1 6616 if (on_rq)
4ca9b72b 6617 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6618 __setscheduler(rq, p, SCHED_NORMAL, 0);
6619 if (on_rq) {
4ca9b72b 6620 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6621 resched_task(rq->curr);
6622 }
da7a735e
PZ
6623
6624 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6625}
6626
1da177e4
LT
6627void normalize_rt_tasks(void)
6628{
a0f98a1c 6629 struct task_struct *g, *p;
1da177e4 6630 unsigned long flags;
70b97a7f 6631 struct rq *rq;
1da177e4 6632
4cf5d77a 6633 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6634 do_each_thread(g, p) {
178be793
IM
6635 /*
6636 * Only normalize user tasks:
6637 */
6638 if (!p->mm)
6639 continue;
6640
6cfb0d5d 6641 p->se.exec_start = 0;
6cfb0d5d 6642#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6643 p->se.statistics.wait_start = 0;
6644 p->se.statistics.sleep_start = 0;
6645 p->se.statistics.block_start = 0;
6cfb0d5d 6646#endif
dd41f596
IM
6647
6648 if (!rt_task(p)) {
6649 /*
6650 * Renice negative nice level userspace
6651 * tasks back to 0:
6652 */
6653 if (TASK_NICE(p) < 0 && p->mm)
6654 set_user_nice(p, 0);
1da177e4 6655 continue;
dd41f596 6656 }
1da177e4 6657
1d615482 6658 raw_spin_lock(&p->pi_lock);
b29739f9 6659 rq = __task_rq_lock(p);
1da177e4 6660
178be793 6661 normalize_task(rq, p);
3a5e4dc1 6662
b29739f9 6663 __task_rq_unlock(rq);
1d615482 6664 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6665 } while_each_thread(g, p);
6666
4cf5d77a 6667 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6668}
6669
6670#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6671
67fc4e0c 6672#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6673/*
67fc4e0c 6674 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6675 *
6676 * They can only be called when the whole system has been
6677 * stopped - every CPU needs to be quiescent, and no scheduling
6678 * activity can take place. Using them for anything else would
6679 * be a serious bug, and as a result, they aren't even visible
6680 * under any other configuration.
6681 */
6682
6683/**
6684 * curr_task - return the current task for a given cpu.
6685 * @cpu: the processor in question.
6686 *
6687 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6688 *
6689 * Return: The current task for @cpu.
1df5c10a 6690 */
36c8b586 6691struct task_struct *curr_task(int cpu)
1df5c10a
LT
6692{
6693 return cpu_curr(cpu);
6694}
6695
67fc4e0c
JW
6696#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6697
6698#ifdef CONFIG_IA64
1df5c10a
LT
6699/**
6700 * set_curr_task - set the current task for a given cpu.
6701 * @cpu: the processor in question.
6702 * @p: the task pointer to set.
6703 *
6704 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6705 * are serviced on a separate stack. It allows the architecture to switch the
6706 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6707 * must be called with all CPU's synchronized, and interrupts disabled, the
6708 * and caller must save the original value of the current task (see
6709 * curr_task() above) and restore that value before reenabling interrupts and
6710 * re-starting the system.
6711 *
6712 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6713 */
36c8b586 6714void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6715{
6716 cpu_curr(cpu) = p;
6717}
6718
6719#endif
29f59db3 6720
7c941438 6721#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6722/* task_group_lock serializes the addition/removal of task groups */
6723static DEFINE_SPINLOCK(task_group_lock);
6724
bccbe08a
PZ
6725static void free_sched_group(struct task_group *tg)
6726{
6727 free_fair_sched_group(tg);
6728 free_rt_sched_group(tg);
e9aa1dd1 6729 autogroup_free(tg);
bccbe08a
PZ
6730 kfree(tg);
6731}
6732
6733/* allocate runqueue etc for a new task group */
ec7dc8ac 6734struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6735{
6736 struct task_group *tg;
bccbe08a
PZ
6737
6738 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6739 if (!tg)
6740 return ERR_PTR(-ENOMEM);
6741
ec7dc8ac 6742 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6743 goto err;
6744
ec7dc8ac 6745 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6746 goto err;
6747
ace783b9
LZ
6748 return tg;
6749
6750err:
6751 free_sched_group(tg);
6752 return ERR_PTR(-ENOMEM);
6753}
6754
6755void sched_online_group(struct task_group *tg, struct task_group *parent)
6756{
6757 unsigned long flags;
6758
8ed36996 6759 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6760 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6761
6762 WARN_ON(!parent); /* root should already exist */
6763
6764 tg->parent = parent;
f473aa5e 6765 INIT_LIST_HEAD(&tg->children);
09f2724a 6766 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6767 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6768}
6769
9b5b7751 6770/* rcu callback to free various structures associated with a task group */
6f505b16 6771static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6772{
29f59db3 6773 /* now it should be safe to free those cfs_rqs */
6f505b16 6774 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6775}
6776
9b5b7751 6777/* Destroy runqueue etc associated with a task group */
4cf86d77 6778void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6779{
6780 /* wait for possible concurrent references to cfs_rqs complete */
6781 call_rcu(&tg->rcu, free_sched_group_rcu);
6782}
6783
6784void sched_offline_group(struct task_group *tg)
29f59db3 6785{
8ed36996 6786 unsigned long flags;
9b5b7751 6787 int i;
29f59db3 6788
3d4b47b4
PZ
6789 /* end participation in shares distribution */
6790 for_each_possible_cpu(i)
bccbe08a 6791 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6792
6793 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6794 list_del_rcu(&tg->list);
f473aa5e 6795 list_del_rcu(&tg->siblings);
8ed36996 6796 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6797}
6798
9b5b7751 6799/* change task's runqueue when it moves between groups.
3a252015
IM
6800 * The caller of this function should have put the task in its new group
6801 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6802 * reflect its new group.
9b5b7751
SV
6803 */
6804void sched_move_task(struct task_struct *tsk)
29f59db3 6805{
8323f26c 6806 struct task_group *tg;
29f59db3
SV
6807 int on_rq, running;
6808 unsigned long flags;
6809 struct rq *rq;
6810
6811 rq = task_rq_lock(tsk, &flags);
6812
051a1d1a 6813 running = task_current(rq, tsk);
fd2f4419 6814 on_rq = tsk->on_rq;
29f59db3 6815
0e1f3483 6816 if (on_rq)
29f59db3 6817 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6818 if (unlikely(running))
6819 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6820
8af01f56 6821 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6822 lockdep_is_held(&tsk->sighand->siglock)),
6823 struct task_group, css);
6824 tg = autogroup_task_group(tsk, tg);
6825 tsk->sched_task_group = tg;
6826
810b3817 6827#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6828 if (tsk->sched_class->task_move_group)
6829 tsk->sched_class->task_move_group(tsk, on_rq);
6830 else
810b3817 6831#endif
b2b5ce02 6832 set_task_rq(tsk, task_cpu(tsk));
810b3817 6833
0e1f3483
HS
6834 if (unlikely(running))
6835 tsk->sched_class->set_curr_task(rq);
6836 if (on_rq)
371fd7e7 6837 enqueue_task(rq, tsk, 0);
29f59db3 6838
0122ec5b 6839 task_rq_unlock(rq, tsk, &flags);
29f59db3 6840}
7c941438 6841#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6842
a790de99 6843#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6844static unsigned long to_ratio(u64 period, u64 runtime)
6845{
6846 if (runtime == RUNTIME_INF)
9a7e0b18 6847 return 1ULL << 20;
9f0c1e56 6848
9a7e0b18 6849 return div64_u64(runtime << 20, period);
9f0c1e56 6850}
a790de99
PT
6851#endif
6852
6853#ifdef CONFIG_RT_GROUP_SCHED
6854/*
6855 * Ensure that the real time constraints are schedulable.
6856 */
6857static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6858
9a7e0b18
PZ
6859/* Must be called with tasklist_lock held */
6860static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6861{
9a7e0b18 6862 struct task_struct *g, *p;
b40b2e8e 6863
9a7e0b18 6864 do_each_thread(g, p) {
029632fb 6865 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6866 return 1;
6867 } while_each_thread(g, p);
b40b2e8e 6868
9a7e0b18
PZ
6869 return 0;
6870}
b40b2e8e 6871
9a7e0b18
PZ
6872struct rt_schedulable_data {
6873 struct task_group *tg;
6874 u64 rt_period;
6875 u64 rt_runtime;
6876};
b40b2e8e 6877
a790de99 6878static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6879{
6880 struct rt_schedulable_data *d = data;
6881 struct task_group *child;
6882 unsigned long total, sum = 0;
6883 u64 period, runtime;
b40b2e8e 6884
9a7e0b18
PZ
6885 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6886 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6887
9a7e0b18
PZ
6888 if (tg == d->tg) {
6889 period = d->rt_period;
6890 runtime = d->rt_runtime;
b40b2e8e 6891 }
b40b2e8e 6892
4653f803
PZ
6893 /*
6894 * Cannot have more runtime than the period.
6895 */
6896 if (runtime > period && runtime != RUNTIME_INF)
6897 return -EINVAL;
6f505b16 6898
4653f803
PZ
6899 /*
6900 * Ensure we don't starve existing RT tasks.
6901 */
9a7e0b18
PZ
6902 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6903 return -EBUSY;
6f505b16 6904
9a7e0b18 6905 total = to_ratio(period, runtime);
6f505b16 6906
4653f803
PZ
6907 /*
6908 * Nobody can have more than the global setting allows.
6909 */
6910 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6911 return -EINVAL;
6f505b16 6912
4653f803
PZ
6913 /*
6914 * The sum of our children's runtime should not exceed our own.
6915 */
9a7e0b18
PZ
6916 list_for_each_entry_rcu(child, &tg->children, siblings) {
6917 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6918 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6919
9a7e0b18
PZ
6920 if (child == d->tg) {
6921 period = d->rt_period;
6922 runtime = d->rt_runtime;
6923 }
6f505b16 6924
9a7e0b18 6925 sum += to_ratio(period, runtime);
9f0c1e56 6926 }
6f505b16 6927
9a7e0b18
PZ
6928 if (sum > total)
6929 return -EINVAL;
6930
6931 return 0;
6f505b16
PZ
6932}
6933
9a7e0b18 6934static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6935{
8277434e
PT
6936 int ret;
6937
9a7e0b18
PZ
6938 struct rt_schedulable_data data = {
6939 .tg = tg,
6940 .rt_period = period,
6941 .rt_runtime = runtime,
6942 };
6943
8277434e
PT
6944 rcu_read_lock();
6945 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6946 rcu_read_unlock();
6947
6948 return ret;
521f1a24
DG
6949}
6950
ab84d31e 6951static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6952 u64 rt_period, u64 rt_runtime)
6f505b16 6953{
ac086bc2 6954 int i, err = 0;
9f0c1e56 6955
9f0c1e56 6956 mutex_lock(&rt_constraints_mutex);
521f1a24 6957 read_lock(&tasklist_lock);
9a7e0b18
PZ
6958 err = __rt_schedulable(tg, rt_period, rt_runtime);
6959 if (err)
9f0c1e56 6960 goto unlock;
ac086bc2 6961
0986b11b 6962 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6963 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6964 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6965
6966 for_each_possible_cpu(i) {
6967 struct rt_rq *rt_rq = tg->rt_rq[i];
6968
0986b11b 6969 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6970 rt_rq->rt_runtime = rt_runtime;
0986b11b 6971 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6972 }
0986b11b 6973 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6974unlock:
521f1a24 6975 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6976 mutex_unlock(&rt_constraints_mutex);
6977
6978 return err;
6f505b16
PZ
6979}
6980
25cc7da7 6981static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6982{
6983 u64 rt_runtime, rt_period;
6984
6985 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6986 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6987 if (rt_runtime_us < 0)
6988 rt_runtime = RUNTIME_INF;
6989
ab84d31e 6990 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6991}
6992
25cc7da7 6993static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6994{
6995 u64 rt_runtime_us;
6996
d0b27fa7 6997 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6998 return -1;
6999
d0b27fa7 7000 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7001 do_div(rt_runtime_us, NSEC_PER_USEC);
7002 return rt_runtime_us;
7003}
d0b27fa7 7004
25cc7da7 7005static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7006{
7007 u64 rt_runtime, rt_period;
7008
7009 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7010 rt_runtime = tg->rt_bandwidth.rt_runtime;
7011
619b0488
R
7012 if (rt_period == 0)
7013 return -EINVAL;
7014
ab84d31e 7015 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7016}
7017
25cc7da7 7018static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7019{
7020 u64 rt_period_us;
7021
7022 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7023 do_div(rt_period_us, NSEC_PER_USEC);
7024 return rt_period_us;
7025}
7026
7027static int sched_rt_global_constraints(void)
7028{
4653f803 7029 u64 runtime, period;
d0b27fa7
PZ
7030 int ret = 0;
7031
ec5d4989
HS
7032 if (sysctl_sched_rt_period <= 0)
7033 return -EINVAL;
7034
4653f803
PZ
7035 runtime = global_rt_runtime();
7036 period = global_rt_period();
7037
7038 /*
7039 * Sanity check on the sysctl variables.
7040 */
7041 if (runtime > period && runtime != RUNTIME_INF)
7042 return -EINVAL;
10b612f4 7043
d0b27fa7 7044 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7045 read_lock(&tasklist_lock);
4653f803 7046 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7047 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7048 mutex_unlock(&rt_constraints_mutex);
7049
7050 return ret;
7051}
54e99124 7052
25cc7da7 7053static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7054{
7055 /* Don't accept realtime tasks when there is no way for them to run */
7056 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7057 return 0;
7058
7059 return 1;
7060}
7061
6d6bc0ad 7062#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7063static int sched_rt_global_constraints(void)
7064{
ac086bc2
PZ
7065 unsigned long flags;
7066 int i;
7067
ec5d4989
HS
7068 if (sysctl_sched_rt_period <= 0)
7069 return -EINVAL;
7070
60aa605d
PZ
7071 /*
7072 * There's always some RT tasks in the root group
7073 * -- migration, kstopmachine etc..
7074 */
7075 if (sysctl_sched_rt_runtime == 0)
7076 return -EBUSY;
7077
0986b11b 7078 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7079 for_each_possible_cpu(i) {
7080 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7081
0986b11b 7082 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7083 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7084 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7085 }
0986b11b 7086 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7087
d0b27fa7
PZ
7088 return 0;
7089}
6d6bc0ad 7090#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7091
ce0dbbbb
CW
7092int sched_rr_handler(struct ctl_table *table, int write,
7093 void __user *buffer, size_t *lenp,
7094 loff_t *ppos)
7095{
7096 int ret;
7097 static DEFINE_MUTEX(mutex);
7098
7099 mutex_lock(&mutex);
7100 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7101 /* make sure that internally we keep jiffies */
7102 /* also, writing zero resets timeslice to default */
7103 if (!ret && write) {
7104 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7105 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7106 }
7107 mutex_unlock(&mutex);
7108 return ret;
7109}
7110
d0b27fa7 7111int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7112 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7113 loff_t *ppos)
7114{
7115 int ret;
7116 int old_period, old_runtime;
7117 static DEFINE_MUTEX(mutex);
7118
7119 mutex_lock(&mutex);
7120 old_period = sysctl_sched_rt_period;
7121 old_runtime = sysctl_sched_rt_runtime;
7122
8d65af78 7123 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7124
7125 if (!ret && write) {
7126 ret = sched_rt_global_constraints();
7127 if (ret) {
7128 sysctl_sched_rt_period = old_period;
7129 sysctl_sched_rt_runtime = old_runtime;
7130 } else {
7131 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7132 def_rt_bandwidth.rt_period =
7133 ns_to_ktime(global_rt_period());
7134 }
7135 }
7136 mutex_unlock(&mutex);
7137
7138 return ret;
7139}
68318b8e 7140
052f1dc7 7141#ifdef CONFIG_CGROUP_SCHED
68318b8e 7142
a7c6d554 7143static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7144{
a7c6d554 7145 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7146}
7147
eb95419b
TH
7148static struct cgroup_subsys_state *
7149cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7150{
eb95419b
TH
7151 struct task_group *parent = css_tg(parent_css);
7152 struct task_group *tg;
68318b8e 7153
eb95419b 7154 if (!parent) {
68318b8e 7155 /* This is early initialization for the top cgroup */
07e06b01 7156 return &root_task_group.css;
68318b8e
SV
7157 }
7158
ec7dc8ac 7159 tg = sched_create_group(parent);
68318b8e
SV
7160 if (IS_ERR(tg))
7161 return ERR_PTR(-ENOMEM);
7162
68318b8e
SV
7163 return &tg->css;
7164}
7165
eb95419b 7166static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7167{
eb95419b
TH
7168 struct task_group *tg = css_tg(css);
7169 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7170
63876986
TH
7171 if (parent)
7172 sched_online_group(tg, parent);
ace783b9
LZ
7173 return 0;
7174}
7175
eb95419b 7176static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7177{
eb95419b 7178 struct task_group *tg = css_tg(css);
68318b8e
SV
7179
7180 sched_destroy_group(tg);
7181}
7182
eb95419b 7183static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7184{
eb95419b 7185 struct task_group *tg = css_tg(css);
ace783b9
LZ
7186
7187 sched_offline_group(tg);
7188}
7189
eb95419b 7190static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7191 struct cgroup_taskset *tset)
68318b8e 7192{
bb9d97b6
TH
7193 struct task_struct *task;
7194
d99c8727 7195 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7196#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7197 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7198 return -EINVAL;
b68aa230 7199#else
bb9d97b6
TH
7200 /* We don't support RT-tasks being in separate groups */
7201 if (task->sched_class != &fair_sched_class)
7202 return -EINVAL;
b68aa230 7203#endif
bb9d97b6 7204 }
be367d09
BB
7205 return 0;
7206}
68318b8e 7207
eb95419b 7208static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7209 struct cgroup_taskset *tset)
68318b8e 7210{
bb9d97b6
TH
7211 struct task_struct *task;
7212
d99c8727 7213 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7214 sched_move_task(task);
68318b8e
SV
7215}
7216
eb95419b
TH
7217static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7218 struct cgroup_subsys_state *old_css,
7219 struct task_struct *task)
068c5cc5
PZ
7220{
7221 /*
7222 * cgroup_exit() is called in the copy_process() failure path.
7223 * Ignore this case since the task hasn't ran yet, this avoids
7224 * trying to poke a half freed task state from generic code.
7225 */
7226 if (!(task->flags & PF_EXITING))
7227 return;
7228
7229 sched_move_task(task);
7230}
7231
052f1dc7 7232#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7233static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7234 struct cftype *cftype, u64 shareval)
68318b8e 7235{
182446d0 7236 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7237}
7238
182446d0
TH
7239static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7240 struct cftype *cft)
68318b8e 7241{
182446d0 7242 struct task_group *tg = css_tg(css);
68318b8e 7243
c8b28116 7244 return (u64) scale_load_down(tg->shares);
68318b8e 7245}
ab84d31e
PT
7246
7247#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7248static DEFINE_MUTEX(cfs_constraints_mutex);
7249
ab84d31e
PT
7250const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7251const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7252
a790de99
PT
7253static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7254
ab84d31e
PT
7255static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7256{
56f570e5 7257 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7258 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7259
7260 if (tg == &root_task_group)
7261 return -EINVAL;
7262
7263 /*
7264 * Ensure we have at some amount of bandwidth every period. This is
7265 * to prevent reaching a state of large arrears when throttled via
7266 * entity_tick() resulting in prolonged exit starvation.
7267 */
7268 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7269 return -EINVAL;
7270
7271 /*
7272 * Likewise, bound things on the otherside by preventing insane quota
7273 * periods. This also allows us to normalize in computing quota
7274 * feasibility.
7275 */
7276 if (period > max_cfs_quota_period)
7277 return -EINVAL;
7278
a790de99
PT
7279 mutex_lock(&cfs_constraints_mutex);
7280 ret = __cfs_schedulable(tg, period, quota);
7281 if (ret)
7282 goto out_unlock;
7283
58088ad0 7284 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7285 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7286 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7287 raw_spin_lock_irq(&cfs_b->lock);
7288 cfs_b->period = ns_to_ktime(period);
7289 cfs_b->quota = quota;
58088ad0 7290
a9cf55b2 7291 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7292 /* restart the period timer (if active) to handle new period expiry */
7293 if (runtime_enabled && cfs_b->timer_active) {
7294 /* force a reprogram */
7295 cfs_b->timer_active = 0;
7296 __start_cfs_bandwidth(cfs_b);
7297 }
ab84d31e
PT
7298 raw_spin_unlock_irq(&cfs_b->lock);
7299
7300 for_each_possible_cpu(i) {
7301 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7302 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7303
7304 raw_spin_lock_irq(&rq->lock);
58088ad0 7305 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7306 cfs_rq->runtime_remaining = 0;
671fd9da 7307
029632fb 7308 if (cfs_rq->throttled)
671fd9da 7309 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7310 raw_spin_unlock_irq(&rq->lock);
7311 }
a790de99
PT
7312out_unlock:
7313 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7314
a790de99 7315 return ret;
ab84d31e
PT
7316}
7317
7318int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7319{
7320 u64 quota, period;
7321
029632fb 7322 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7323 if (cfs_quota_us < 0)
7324 quota = RUNTIME_INF;
7325 else
7326 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7327
7328 return tg_set_cfs_bandwidth(tg, period, quota);
7329}
7330
7331long tg_get_cfs_quota(struct task_group *tg)
7332{
7333 u64 quota_us;
7334
029632fb 7335 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7336 return -1;
7337
029632fb 7338 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7339 do_div(quota_us, NSEC_PER_USEC);
7340
7341 return quota_us;
7342}
7343
7344int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7345{
7346 u64 quota, period;
7347
7348 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7349 quota = tg->cfs_bandwidth.quota;
ab84d31e 7350
ab84d31e
PT
7351 return tg_set_cfs_bandwidth(tg, period, quota);
7352}
7353
7354long tg_get_cfs_period(struct task_group *tg)
7355{
7356 u64 cfs_period_us;
7357
029632fb 7358 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7359 do_div(cfs_period_us, NSEC_PER_USEC);
7360
7361 return cfs_period_us;
7362}
7363
182446d0
TH
7364static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7365 struct cftype *cft)
ab84d31e 7366{
182446d0 7367 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7368}
7369
182446d0
TH
7370static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7371 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7372{
182446d0 7373 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7374}
7375
182446d0
TH
7376static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7377 struct cftype *cft)
ab84d31e 7378{
182446d0 7379 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7380}
7381
182446d0
TH
7382static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7383 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7384{
182446d0 7385 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7386}
7387
a790de99
PT
7388struct cfs_schedulable_data {
7389 struct task_group *tg;
7390 u64 period, quota;
7391};
7392
7393/*
7394 * normalize group quota/period to be quota/max_period
7395 * note: units are usecs
7396 */
7397static u64 normalize_cfs_quota(struct task_group *tg,
7398 struct cfs_schedulable_data *d)
7399{
7400 u64 quota, period;
7401
7402 if (tg == d->tg) {
7403 period = d->period;
7404 quota = d->quota;
7405 } else {
7406 period = tg_get_cfs_period(tg);
7407 quota = tg_get_cfs_quota(tg);
7408 }
7409
7410 /* note: these should typically be equivalent */
7411 if (quota == RUNTIME_INF || quota == -1)
7412 return RUNTIME_INF;
7413
7414 return to_ratio(period, quota);
7415}
7416
7417static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7418{
7419 struct cfs_schedulable_data *d = data;
029632fb 7420 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7421 s64 quota = 0, parent_quota = -1;
7422
7423 if (!tg->parent) {
7424 quota = RUNTIME_INF;
7425 } else {
029632fb 7426 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7427
7428 quota = normalize_cfs_quota(tg, d);
7429 parent_quota = parent_b->hierarchal_quota;
7430
7431 /*
7432 * ensure max(child_quota) <= parent_quota, inherit when no
7433 * limit is set
7434 */
7435 if (quota == RUNTIME_INF)
7436 quota = parent_quota;
7437 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7438 return -EINVAL;
7439 }
7440 cfs_b->hierarchal_quota = quota;
7441
7442 return 0;
7443}
7444
7445static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7446{
8277434e 7447 int ret;
a790de99
PT
7448 struct cfs_schedulable_data data = {
7449 .tg = tg,
7450 .period = period,
7451 .quota = quota,
7452 };
7453
7454 if (quota != RUNTIME_INF) {
7455 do_div(data.period, NSEC_PER_USEC);
7456 do_div(data.quota, NSEC_PER_USEC);
7457 }
7458
8277434e
PT
7459 rcu_read_lock();
7460 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7461 rcu_read_unlock();
7462
7463 return ret;
a790de99 7464}
e8da1b18 7465
182446d0 7466static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7467 struct cgroup_map_cb *cb)
7468{
182446d0 7469 struct task_group *tg = css_tg(css);
029632fb 7470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7471
7472 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7473 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7474 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7475
7476 return 0;
7477}
ab84d31e 7478#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7479#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7480
052f1dc7 7481#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7482static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7483 struct cftype *cft, s64 val)
6f505b16 7484{
182446d0 7485 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7486}
7487
182446d0
TH
7488static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7489 struct cftype *cft)
6f505b16 7490{
182446d0 7491 return sched_group_rt_runtime(css_tg(css));
6f505b16 7492}
d0b27fa7 7493
182446d0
TH
7494static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7495 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7496{
182446d0 7497 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7498}
7499
182446d0
TH
7500static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7501 struct cftype *cft)
d0b27fa7 7502{
182446d0 7503 return sched_group_rt_period(css_tg(css));
d0b27fa7 7504}
6d6bc0ad 7505#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7506
fe5c7cc2 7507static struct cftype cpu_files[] = {
052f1dc7 7508#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7509 {
7510 .name = "shares",
f4c753b7
PM
7511 .read_u64 = cpu_shares_read_u64,
7512 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7513 },
052f1dc7 7514#endif
ab84d31e
PT
7515#ifdef CONFIG_CFS_BANDWIDTH
7516 {
7517 .name = "cfs_quota_us",
7518 .read_s64 = cpu_cfs_quota_read_s64,
7519 .write_s64 = cpu_cfs_quota_write_s64,
7520 },
7521 {
7522 .name = "cfs_period_us",
7523 .read_u64 = cpu_cfs_period_read_u64,
7524 .write_u64 = cpu_cfs_period_write_u64,
7525 },
e8da1b18
NR
7526 {
7527 .name = "stat",
7528 .read_map = cpu_stats_show,
7529 },
ab84d31e 7530#endif
052f1dc7 7531#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7532 {
9f0c1e56 7533 .name = "rt_runtime_us",
06ecb27c
PM
7534 .read_s64 = cpu_rt_runtime_read,
7535 .write_s64 = cpu_rt_runtime_write,
6f505b16 7536 },
d0b27fa7
PZ
7537 {
7538 .name = "rt_period_us",
f4c753b7
PM
7539 .read_u64 = cpu_rt_period_read_uint,
7540 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7541 },
052f1dc7 7542#endif
4baf6e33 7543 { } /* terminate */
68318b8e
SV
7544};
7545
68318b8e 7546struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7547 .name = "cpu",
92fb9748
TH
7548 .css_alloc = cpu_cgroup_css_alloc,
7549 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7550 .css_online = cpu_cgroup_css_online,
7551 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7552 .can_attach = cpu_cgroup_can_attach,
7553 .attach = cpu_cgroup_attach,
068c5cc5 7554 .exit = cpu_cgroup_exit,
38605cae 7555 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7556 .base_cftypes = cpu_files,
68318b8e
SV
7557 .early_init = 1,
7558};
7559
052f1dc7 7560#endif /* CONFIG_CGROUP_SCHED */
d842de87 7561
b637a328
PM
7562void dump_cpu_task(int cpu)
7563{
7564 pr_info("Task dump for CPU %d:\n", cpu);
7565 sched_show_task(cpu_curr(cpu));
7566}
This page took 2.479929 seconds and 5 git commands to generate.