sched/numa: Fix task or group comparison
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072
1073 return ret;
1074}
1075
1076/*
1077 * Cross migrate two tasks
1078 */
1079int migrate_swap(struct task_struct *cur, struct task_struct *p)
1080{
1081 struct migration_swap_arg arg;
1082 int ret = -EINVAL;
1083
1084 get_online_cpus();
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1097 goto out;
1098
1099 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1100 goto out;
1101
1102 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1103 goto out;
1104
1105 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1106
1107out:
1108 put_online_cpus();
1109 return ret;
1110}
1111
969c7921 1112struct migration_arg {
36c8b586 1113 struct task_struct *task;
1da177e4 1114 int dest_cpu;
70b97a7f 1115};
1da177e4 1116
969c7921
TH
1117static int migration_cpu_stop(void *data);
1118
1da177e4
LT
1119/*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
85ba2d86
RM
1122 * If @match_state is nonzero, it's the @p->state value just checked and
1123 * not expected to change. If it changes, i.e. @p might have woken up,
1124 * then return zero. When we succeed in waiting for @p to be off its CPU,
1125 * we return a positive number (its total switch count). If a second call
1126 * a short while later returns the same number, the caller can be sure that
1127 * @p has remained unscheduled the whole time.
1128 *
1da177e4
LT
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
85ba2d86 1135unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1136{
1137 unsigned long flags;
dd41f596 1138 int running, on_rq;
85ba2d86 1139 unsigned long ncsw;
70b97a7f 1140 struct rq *rq;
1da177e4 1141
3a5c359a
AK
1142 for (;;) {
1143 /*
1144 * We do the initial early heuristics without holding
1145 * any task-queue locks at all. We'll only try to get
1146 * the runqueue lock when things look like they will
1147 * work out!
1148 */
1149 rq = task_rq(p);
fa490cfd 1150
3a5c359a
AK
1151 /*
1152 * If the task is actively running on another CPU
1153 * still, just relax and busy-wait without holding
1154 * any locks.
1155 *
1156 * NOTE! Since we don't hold any locks, it's not
1157 * even sure that "rq" stays as the right runqueue!
1158 * But we don't care, since "task_running()" will
1159 * return false if the runqueue has changed and p
1160 * is actually now running somewhere else!
1161 */
85ba2d86
RM
1162 while (task_running(rq, p)) {
1163 if (match_state && unlikely(p->state != match_state))
1164 return 0;
3a5c359a 1165 cpu_relax();
85ba2d86 1166 }
fa490cfd 1167
3a5c359a
AK
1168 /*
1169 * Ok, time to look more closely! We need the rq
1170 * lock now, to be *sure*. If we're wrong, we'll
1171 * just go back and repeat.
1172 */
1173 rq = task_rq_lock(p, &flags);
27a9da65 1174 trace_sched_wait_task(p);
3a5c359a 1175 running = task_running(rq, p);
fd2f4419 1176 on_rq = p->on_rq;
85ba2d86 1177 ncsw = 0;
f31e11d8 1178 if (!match_state || p->state == match_state)
93dcf55f 1179 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1180 task_rq_unlock(rq, p, &flags);
fa490cfd 1181
85ba2d86
RM
1182 /*
1183 * If it changed from the expected state, bail out now.
1184 */
1185 if (unlikely(!ncsw))
1186 break;
1187
3a5c359a
AK
1188 /*
1189 * Was it really running after all now that we
1190 * checked with the proper locks actually held?
1191 *
1192 * Oops. Go back and try again..
1193 */
1194 if (unlikely(running)) {
1195 cpu_relax();
1196 continue;
1197 }
fa490cfd 1198
3a5c359a
AK
1199 /*
1200 * It's not enough that it's not actively running,
1201 * it must be off the runqueue _entirely_, and not
1202 * preempted!
1203 *
80dd99b3 1204 * So if it was still runnable (but just not actively
3a5c359a
AK
1205 * running right now), it's preempted, and we should
1206 * yield - it could be a while.
1207 */
1208 if (unlikely(on_rq)) {
8eb90c30
TG
1209 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1210
1211 set_current_state(TASK_UNINTERRUPTIBLE);
1212 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1213 continue;
1214 }
fa490cfd 1215
3a5c359a
AK
1216 /*
1217 * Ahh, all good. It wasn't running, and it wasn't
1218 * runnable, which means that it will never become
1219 * running in the future either. We're all done!
1220 */
1221 break;
1222 }
85ba2d86
RM
1223
1224 return ncsw;
1da177e4
LT
1225}
1226
1227/***
1228 * kick_process - kick a running thread to enter/exit the kernel
1229 * @p: the to-be-kicked thread
1230 *
1231 * Cause a process which is running on another CPU to enter
1232 * kernel-mode, without any delay. (to get signals handled.)
1233 *
25985edc 1234 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1235 * because all it wants to ensure is that the remote task enters
1236 * the kernel. If the IPI races and the task has been migrated
1237 * to another CPU then no harm is done and the purpose has been
1238 * achieved as well.
1239 */
36c8b586 1240void kick_process(struct task_struct *p)
1da177e4
LT
1241{
1242 int cpu;
1243
1244 preempt_disable();
1245 cpu = task_cpu(p);
1246 if ((cpu != smp_processor_id()) && task_curr(p))
1247 smp_send_reschedule(cpu);
1248 preempt_enable();
1249}
b43e3521 1250EXPORT_SYMBOL_GPL(kick_process);
476d139c 1251#endif /* CONFIG_SMP */
1da177e4 1252
970b13ba 1253#ifdef CONFIG_SMP
30da688e 1254/*
013fdb80 1255 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1256 */
5da9a0fb
PZ
1257static int select_fallback_rq(int cpu, struct task_struct *p)
1258{
aa00d89c
TC
1259 int nid = cpu_to_node(cpu);
1260 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1261 enum { cpuset, possible, fail } state = cpuset;
1262 int dest_cpu;
5da9a0fb 1263
aa00d89c
TC
1264 /*
1265 * If the node that the cpu is on has been offlined, cpu_to_node()
1266 * will return -1. There is no cpu on the node, and we should
1267 * select the cpu on the other node.
1268 */
1269 if (nid != -1) {
1270 nodemask = cpumask_of_node(nid);
1271
1272 /* Look for allowed, online CPU in same node. */
1273 for_each_cpu(dest_cpu, nodemask) {
1274 if (!cpu_online(dest_cpu))
1275 continue;
1276 if (!cpu_active(dest_cpu))
1277 continue;
1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 return dest_cpu;
1280 }
2baab4e9 1281 }
5da9a0fb 1282
2baab4e9
PZ
1283 for (;;) {
1284 /* Any allowed, online CPU? */
e3831edd 1285 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1286 if (!cpu_online(dest_cpu))
1287 continue;
1288 if (!cpu_active(dest_cpu))
1289 continue;
1290 goto out;
1291 }
5da9a0fb 1292
2baab4e9
PZ
1293 switch (state) {
1294 case cpuset:
1295 /* No more Mr. Nice Guy. */
1296 cpuset_cpus_allowed_fallback(p);
1297 state = possible;
1298 break;
1299
1300 case possible:
1301 do_set_cpus_allowed(p, cpu_possible_mask);
1302 state = fail;
1303 break;
1304
1305 case fail:
1306 BUG();
1307 break;
1308 }
1309 }
1310
1311out:
1312 if (state != cpuset) {
1313 /*
1314 * Don't tell them about moving exiting tasks or
1315 * kernel threads (both mm NULL), since they never
1316 * leave kernel.
1317 */
1318 if (p->mm && printk_ratelimit()) {
1319 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1320 task_pid_nr(p), p->comm, cpu);
1321 }
5da9a0fb
PZ
1322 }
1323
1324 return dest_cpu;
1325}
1326
e2912009 1327/*
013fdb80 1328 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1329 */
970b13ba 1330static inline
ac66f547 1331int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1332{
ac66f547 1333 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1334
1335 /*
1336 * In order not to call set_task_cpu() on a blocking task we need
1337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1338 * cpu.
1339 *
1340 * Since this is common to all placement strategies, this lives here.
1341 *
1342 * [ this allows ->select_task() to simply return task_cpu(p) and
1343 * not worry about this generic constraint ]
1344 */
fa17b507 1345 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1346 !cpu_online(cpu)))
5da9a0fb 1347 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1348
1349 return cpu;
970b13ba 1350}
09a40af5
MG
1351
1352static void update_avg(u64 *avg, u64 sample)
1353{
1354 s64 diff = sample - *avg;
1355 *avg += diff >> 3;
1356}
970b13ba
PZ
1357#endif
1358
d7c01d27 1359static void
b84cb5df 1360ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1361{
d7c01d27 1362#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1363 struct rq *rq = this_rq();
1364
d7c01d27
PZ
1365#ifdef CONFIG_SMP
1366 int this_cpu = smp_processor_id();
1367
1368 if (cpu == this_cpu) {
1369 schedstat_inc(rq, ttwu_local);
1370 schedstat_inc(p, se.statistics.nr_wakeups_local);
1371 } else {
1372 struct sched_domain *sd;
1373
1374 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1375 rcu_read_lock();
d7c01d27
PZ
1376 for_each_domain(this_cpu, sd) {
1377 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1378 schedstat_inc(sd, ttwu_wake_remote);
1379 break;
1380 }
1381 }
057f3fad 1382 rcu_read_unlock();
d7c01d27 1383 }
f339b9dc
PZ
1384
1385 if (wake_flags & WF_MIGRATED)
1386 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1387
d7c01d27
PZ
1388#endif /* CONFIG_SMP */
1389
1390 schedstat_inc(rq, ttwu_count);
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1392
1393 if (wake_flags & WF_SYNC)
9ed3811a 1394 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1395
d7c01d27
PZ
1396#endif /* CONFIG_SCHEDSTATS */
1397}
1398
1399static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1400{
9ed3811a 1401 activate_task(rq, p, en_flags);
fd2f4419 1402 p->on_rq = 1;
c2f7115e
PZ
1403
1404 /* if a worker is waking up, notify workqueue */
1405 if (p->flags & PF_WQ_WORKER)
1406 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1407}
1408
23f41eeb
PZ
1409/*
1410 * Mark the task runnable and perform wakeup-preemption.
1411 */
89363381 1412static void
23f41eeb 1413ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1414{
9ed3811a 1415 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1416 trace_sched_wakeup(p, true);
9ed3811a
TH
1417
1418 p->state = TASK_RUNNING;
1419#ifdef CONFIG_SMP
1420 if (p->sched_class->task_woken)
1421 p->sched_class->task_woken(rq, p);
1422
e69c6341 1423 if (rq->idle_stamp) {
78becc27 1424 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1425 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1426
abfafa54
JL
1427 update_avg(&rq->avg_idle, delta);
1428
1429 if (rq->avg_idle > max)
9ed3811a 1430 rq->avg_idle = max;
abfafa54 1431
9ed3811a
TH
1432 rq->idle_stamp = 0;
1433 }
1434#endif
1435}
1436
c05fbafb
PZ
1437static void
1438ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1439{
1440#ifdef CONFIG_SMP
1441 if (p->sched_contributes_to_load)
1442 rq->nr_uninterruptible--;
1443#endif
1444
1445 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1446 ttwu_do_wakeup(rq, p, wake_flags);
1447}
1448
1449/*
1450 * Called in case the task @p isn't fully descheduled from its runqueue,
1451 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1452 * since all we need to do is flip p->state to TASK_RUNNING, since
1453 * the task is still ->on_rq.
1454 */
1455static int ttwu_remote(struct task_struct *p, int wake_flags)
1456{
1457 struct rq *rq;
1458 int ret = 0;
1459
1460 rq = __task_rq_lock(p);
1461 if (p->on_rq) {
1ad4ec0d
FW
1462 /* check_preempt_curr() may use rq clock */
1463 update_rq_clock(rq);
c05fbafb
PZ
1464 ttwu_do_wakeup(rq, p, wake_flags);
1465 ret = 1;
1466 }
1467 __task_rq_unlock(rq);
1468
1469 return ret;
1470}
1471
317f3941 1472#ifdef CONFIG_SMP
fa14ff4a 1473static void sched_ttwu_pending(void)
317f3941
PZ
1474{
1475 struct rq *rq = this_rq();
fa14ff4a
PZ
1476 struct llist_node *llist = llist_del_all(&rq->wake_list);
1477 struct task_struct *p;
317f3941
PZ
1478
1479 raw_spin_lock(&rq->lock);
1480
fa14ff4a
PZ
1481 while (llist) {
1482 p = llist_entry(llist, struct task_struct, wake_entry);
1483 llist = llist_next(llist);
317f3941
PZ
1484 ttwu_do_activate(rq, p, 0);
1485 }
1486
1487 raw_spin_unlock(&rq->lock);
1488}
1489
1490void scheduler_ipi(void)
1491{
f27dde8d
PZ
1492 /*
1493 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1494 * TIF_NEED_RESCHED remotely (for the first time) will also send
1495 * this IPI.
1496 */
1497 if (tif_need_resched())
1498 set_preempt_need_resched();
1499
873b4c65
VG
1500 if (llist_empty(&this_rq()->wake_list)
1501 && !tick_nohz_full_cpu(smp_processor_id())
1502 && !got_nohz_idle_kick())
c5d753a5
PZ
1503 return;
1504
1505 /*
1506 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1507 * traditionally all their work was done from the interrupt return
1508 * path. Now that we actually do some work, we need to make sure
1509 * we do call them.
1510 *
1511 * Some archs already do call them, luckily irq_enter/exit nest
1512 * properly.
1513 *
1514 * Arguably we should visit all archs and update all handlers,
1515 * however a fair share of IPIs are still resched only so this would
1516 * somewhat pessimize the simple resched case.
1517 */
1518 irq_enter();
ff442c51 1519 tick_nohz_full_check();
fa14ff4a 1520 sched_ttwu_pending();
ca38062e
SS
1521
1522 /*
1523 * Check if someone kicked us for doing the nohz idle load balance.
1524 */
873b4c65 1525 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1526 this_rq()->idle_balance = 1;
ca38062e 1527 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1528 }
c5d753a5 1529 irq_exit();
317f3941
PZ
1530}
1531
1532static void ttwu_queue_remote(struct task_struct *p, int cpu)
1533{
fa14ff4a 1534 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1535 smp_send_reschedule(cpu);
1536}
d6aa8f85 1537
39be3501 1538bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1539{
1540 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1541}
d6aa8f85 1542#endif /* CONFIG_SMP */
317f3941 1543
c05fbafb
PZ
1544static void ttwu_queue(struct task_struct *p, int cpu)
1545{
1546 struct rq *rq = cpu_rq(cpu);
1547
17d9f311 1548#if defined(CONFIG_SMP)
39be3501 1549 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1550 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1551 ttwu_queue_remote(p, cpu);
1552 return;
1553 }
1554#endif
1555
c05fbafb
PZ
1556 raw_spin_lock(&rq->lock);
1557 ttwu_do_activate(rq, p, 0);
1558 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1559}
1560
1561/**
1da177e4 1562 * try_to_wake_up - wake up a thread
9ed3811a 1563 * @p: the thread to be awakened
1da177e4 1564 * @state: the mask of task states that can be woken
9ed3811a 1565 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1566 *
1567 * Put it on the run-queue if it's not already there. The "current"
1568 * thread is always on the run-queue (except when the actual
1569 * re-schedule is in progress), and as such you're allowed to do
1570 * the simpler "current->state = TASK_RUNNING" to mark yourself
1571 * runnable without the overhead of this.
1572 *
e69f6186 1573 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1574 * or @state didn't match @p's state.
1da177e4 1575 */
e4a52bcb
PZ
1576static int
1577try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1578{
1da177e4 1579 unsigned long flags;
c05fbafb 1580 int cpu, success = 0;
2398f2c6 1581
e0acd0a6
ON
1582 /*
1583 * If we are going to wake up a thread waiting for CONDITION we
1584 * need to ensure that CONDITION=1 done by the caller can not be
1585 * reordered with p->state check below. This pairs with mb() in
1586 * set_current_state() the waiting thread does.
1587 */
1588 smp_mb__before_spinlock();
013fdb80 1589 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1590 if (!(p->state & state))
1da177e4
LT
1591 goto out;
1592
c05fbafb 1593 success = 1; /* we're going to change ->state */
1da177e4 1594 cpu = task_cpu(p);
1da177e4 1595
c05fbafb
PZ
1596 if (p->on_rq && ttwu_remote(p, wake_flags))
1597 goto stat;
1da177e4 1598
1da177e4 1599#ifdef CONFIG_SMP
e9c84311 1600 /*
c05fbafb
PZ
1601 * If the owning (remote) cpu is still in the middle of schedule() with
1602 * this task as prev, wait until its done referencing the task.
e9c84311 1603 */
f3e94786 1604 while (p->on_cpu)
e4a52bcb 1605 cpu_relax();
0970d299 1606 /*
e4a52bcb 1607 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1608 */
e4a52bcb 1609 smp_rmb();
1da177e4 1610
a8e4f2ea 1611 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1612 p->state = TASK_WAKING;
e7693a36 1613
e4a52bcb 1614 if (p->sched_class->task_waking)
74f8e4b2 1615 p->sched_class->task_waking(p);
efbbd05a 1616
ac66f547 1617 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1618 if (task_cpu(p) != cpu) {
1619 wake_flags |= WF_MIGRATED;
e4a52bcb 1620 set_task_cpu(p, cpu);
f339b9dc 1621 }
1da177e4 1622#endif /* CONFIG_SMP */
1da177e4 1623
c05fbafb
PZ
1624 ttwu_queue(p, cpu);
1625stat:
b84cb5df 1626 ttwu_stat(p, cpu, wake_flags);
1da177e4 1627out:
013fdb80 1628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1629
1630 return success;
1631}
1632
21aa9af0
TH
1633/**
1634 * try_to_wake_up_local - try to wake up a local task with rq lock held
1635 * @p: the thread to be awakened
1636 *
2acca55e 1637 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1638 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1639 * the current task.
21aa9af0
TH
1640 */
1641static void try_to_wake_up_local(struct task_struct *p)
1642{
1643 struct rq *rq = task_rq(p);
21aa9af0 1644
383efcd0
TH
1645 if (WARN_ON_ONCE(rq != this_rq()) ||
1646 WARN_ON_ONCE(p == current))
1647 return;
1648
21aa9af0
TH
1649 lockdep_assert_held(&rq->lock);
1650
2acca55e
PZ
1651 if (!raw_spin_trylock(&p->pi_lock)) {
1652 raw_spin_unlock(&rq->lock);
1653 raw_spin_lock(&p->pi_lock);
1654 raw_spin_lock(&rq->lock);
1655 }
1656
21aa9af0 1657 if (!(p->state & TASK_NORMAL))
2acca55e 1658 goto out;
21aa9af0 1659
fd2f4419 1660 if (!p->on_rq)
d7c01d27
PZ
1661 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1662
23f41eeb 1663 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1664 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1665out:
1666 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1667}
1668
50fa610a
DH
1669/**
1670 * wake_up_process - Wake up a specific process
1671 * @p: The process to be woken up.
1672 *
1673 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1674 * processes.
1675 *
1676 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1677 *
1678 * It may be assumed that this function implies a write memory barrier before
1679 * changing the task state if and only if any tasks are woken up.
1680 */
7ad5b3a5 1681int wake_up_process(struct task_struct *p)
1da177e4 1682{
9067ac85
ON
1683 WARN_ON(task_is_stopped_or_traced(p));
1684 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1685}
1da177e4
LT
1686EXPORT_SYMBOL(wake_up_process);
1687
7ad5b3a5 1688int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1689{
1690 return try_to_wake_up(p, state, 0);
1691}
1692
1da177e4
LT
1693/*
1694 * Perform scheduler related setup for a newly forked process p.
1695 * p is forked by current.
dd41f596
IM
1696 *
1697 * __sched_fork() is basic setup used by init_idle() too:
1698 */
5e1576ed 1699static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1700{
fd2f4419
PZ
1701 p->on_rq = 0;
1702
1703 p->se.on_rq = 0;
dd41f596
IM
1704 p->se.exec_start = 0;
1705 p->se.sum_exec_runtime = 0;
f6cf891c 1706 p->se.prev_sum_exec_runtime = 0;
6c594c21 1707 p->se.nr_migrations = 0;
da7a735e 1708 p->se.vruntime = 0;
fd2f4419 1709 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1710
1711#ifdef CONFIG_SCHEDSTATS
41acab88 1712 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1713#endif
476d139c 1714
fa717060 1715 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1716
e107be36
AK
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718 INIT_HLIST_HEAD(&p->preempt_notifiers);
1719#endif
cbee9f88
PZ
1720
1721#ifdef CONFIG_NUMA_BALANCING
1722 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6
MG
1723 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1724 p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
cbee9f88
PZ
1725 p->mm->numa_scan_seq = 0;
1726 }
1727
5e1576ed
RR
1728 if (clone_flags & CLONE_VM)
1729 p->numa_preferred_nid = current->numa_preferred_nid;
1730 else
1731 p->numa_preferred_nid = -1;
1732
cbee9f88
PZ
1733 p->node_stamp = 0ULL;
1734 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
6fe6b2d6 1735 p->numa_migrate_seq = 1;
4b96a29b 1736 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1737 p->numa_work.next = &p->numa_work;
f809ca9a 1738 p->numa_faults = NULL;
745d6147 1739 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1740
1741 INIT_LIST_HEAD(&p->numa_entry);
1742 p->numa_group = NULL;
cbee9f88 1743#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1744}
1745
1a687c2e 1746#ifdef CONFIG_NUMA_BALANCING
3105b86a 1747#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1748void set_numabalancing_state(bool enabled)
1749{
1750 if (enabled)
1751 sched_feat_set("NUMA");
1752 else
1753 sched_feat_set("NO_NUMA");
1754}
3105b86a
MG
1755#else
1756__read_mostly bool numabalancing_enabled;
1757
1758void set_numabalancing_state(bool enabled)
1759{
1760 numabalancing_enabled = enabled;
dd41f596 1761}
3105b86a 1762#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1763#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1764
1765/*
1766 * fork()/clone()-time setup:
1767 */
5e1576ed 1768void sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1769{
0122ec5b 1770 unsigned long flags;
dd41f596
IM
1771 int cpu = get_cpu();
1772
5e1576ed 1773 __sched_fork(clone_flags, p);
06b83b5f 1774 /*
0017d735 1775 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1776 * nobody will actually run it, and a signal or other external
1777 * event cannot wake it up and insert it on the runqueue either.
1778 */
0017d735 1779 p->state = TASK_RUNNING;
dd41f596 1780
c350a04e
MG
1781 /*
1782 * Make sure we do not leak PI boosting priority to the child.
1783 */
1784 p->prio = current->normal_prio;
1785
b9dc29e7
MG
1786 /*
1787 * Revert to default priority/policy on fork if requested.
1788 */
1789 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1790 if (task_has_rt_policy(p)) {
b9dc29e7 1791 p->policy = SCHED_NORMAL;
6c697bdf 1792 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1793 p->rt_priority = 0;
1794 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1795 p->static_prio = NICE_TO_PRIO(0);
1796
1797 p->prio = p->normal_prio = __normal_prio(p);
1798 set_load_weight(p);
6c697bdf 1799
b9dc29e7
MG
1800 /*
1801 * We don't need the reset flag anymore after the fork. It has
1802 * fulfilled its duty:
1803 */
1804 p->sched_reset_on_fork = 0;
1805 }
ca94c442 1806
2ddbf952
HS
1807 if (!rt_prio(p->prio))
1808 p->sched_class = &fair_sched_class;
b29739f9 1809
cd29fe6f
PZ
1810 if (p->sched_class->task_fork)
1811 p->sched_class->task_fork(p);
1812
86951599
PZ
1813 /*
1814 * The child is not yet in the pid-hash so no cgroup attach races,
1815 * and the cgroup is pinned to this child due to cgroup_fork()
1816 * is ran before sched_fork().
1817 *
1818 * Silence PROVE_RCU.
1819 */
0122ec5b 1820 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1821 set_task_cpu(p, cpu);
0122ec5b 1822 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1823
52f17b6c 1824#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1825 if (likely(sched_info_on()))
52f17b6c 1826 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1827#endif
3ca7a440
PZ
1828#if defined(CONFIG_SMP)
1829 p->on_cpu = 0;
4866cde0 1830#endif
01028747 1831 init_task_preempt_count(p);
806c09a7 1832#ifdef CONFIG_SMP
917b627d 1833 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1834#endif
917b627d 1835
476d139c 1836 put_cpu();
1da177e4
LT
1837}
1838
1839/*
1840 * wake_up_new_task - wake up a newly created task for the first time.
1841 *
1842 * This function will do some initial scheduler statistics housekeeping
1843 * that must be done for every newly created context, then puts the task
1844 * on the runqueue and wakes it.
1845 */
3e51e3ed 1846void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1847{
1848 unsigned long flags;
dd41f596 1849 struct rq *rq;
fabf318e 1850
ab2515c4 1851 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1852#ifdef CONFIG_SMP
1853 /*
1854 * Fork balancing, do it here and not earlier because:
1855 * - cpus_allowed can change in the fork path
1856 * - any previously selected cpu might disappear through hotplug
fabf318e 1857 */
ac66f547 1858 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1859#endif
1860
a75cdaa9
AS
1861 /* Initialize new task's runnable average */
1862 init_task_runnable_average(p);
ab2515c4 1863 rq = __task_rq_lock(p);
cd29fe6f 1864 activate_task(rq, p, 0);
fd2f4419 1865 p->on_rq = 1;
89363381 1866 trace_sched_wakeup_new(p, true);
a7558e01 1867 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1868#ifdef CONFIG_SMP
efbbd05a
PZ
1869 if (p->sched_class->task_woken)
1870 p->sched_class->task_woken(rq, p);
9a897c5a 1871#endif
0122ec5b 1872 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1873}
1874
e107be36
AK
1875#ifdef CONFIG_PREEMPT_NOTIFIERS
1876
1877/**
80dd99b3 1878 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1879 * @notifier: notifier struct to register
e107be36
AK
1880 */
1881void preempt_notifier_register(struct preempt_notifier *notifier)
1882{
1883 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1884}
1885EXPORT_SYMBOL_GPL(preempt_notifier_register);
1886
1887/**
1888 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1889 * @notifier: notifier struct to unregister
e107be36
AK
1890 *
1891 * This is safe to call from within a preemption notifier.
1892 */
1893void preempt_notifier_unregister(struct preempt_notifier *notifier)
1894{
1895 hlist_del(&notifier->link);
1896}
1897EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1898
1899static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1900{
1901 struct preempt_notifier *notifier;
e107be36 1902
b67bfe0d 1903 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1904 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1905}
1906
1907static void
1908fire_sched_out_preempt_notifiers(struct task_struct *curr,
1909 struct task_struct *next)
1910{
1911 struct preempt_notifier *notifier;
e107be36 1912
b67bfe0d 1913 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1914 notifier->ops->sched_out(notifier, next);
1915}
1916
6d6bc0ad 1917#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1918
1919static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1920{
1921}
1922
1923static void
1924fire_sched_out_preempt_notifiers(struct task_struct *curr,
1925 struct task_struct *next)
1926{
1927}
1928
6d6bc0ad 1929#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1930
4866cde0
NP
1931/**
1932 * prepare_task_switch - prepare to switch tasks
1933 * @rq: the runqueue preparing to switch
421cee29 1934 * @prev: the current task that is being switched out
4866cde0
NP
1935 * @next: the task we are going to switch to.
1936 *
1937 * This is called with the rq lock held and interrupts off. It must
1938 * be paired with a subsequent finish_task_switch after the context
1939 * switch.
1940 *
1941 * prepare_task_switch sets up locking and calls architecture specific
1942 * hooks.
1943 */
e107be36
AK
1944static inline void
1945prepare_task_switch(struct rq *rq, struct task_struct *prev,
1946 struct task_struct *next)
4866cde0 1947{
895dd92c 1948 trace_sched_switch(prev, next);
43148951 1949 sched_info_switch(rq, prev, next);
fe4b04fa 1950 perf_event_task_sched_out(prev, next);
e107be36 1951 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1952 prepare_lock_switch(rq, next);
1953 prepare_arch_switch(next);
1954}
1955
1da177e4
LT
1956/**
1957 * finish_task_switch - clean up after a task-switch
344babaa 1958 * @rq: runqueue associated with task-switch
1da177e4
LT
1959 * @prev: the thread we just switched away from.
1960 *
4866cde0
NP
1961 * finish_task_switch must be called after the context switch, paired
1962 * with a prepare_task_switch call before the context switch.
1963 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1964 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1965 *
1966 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1967 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1968 * with the lock held can cause deadlocks; see schedule() for
1969 * details.)
1970 */
a9957449 1971static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1972 __releases(rq->lock)
1973{
1da177e4 1974 struct mm_struct *mm = rq->prev_mm;
55a101f8 1975 long prev_state;
1da177e4
LT
1976
1977 rq->prev_mm = NULL;
1978
1979 /*
1980 * A task struct has one reference for the use as "current".
c394cc9f 1981 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1982 * schedule one last time. The schedule call will never return, and
1983 * the scheduled task must drop that reference.
c394cc9f 1984 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1985 * still held, otherwise prev could be scheduled on another cpu, die
1986 * there before we look at prev->state, and then the reference would
1987 * be dropped twice.
1988 * Manfred Spraul <manfred@colorfullife.com>
1989 */
55a101f8 1990 prev_state = prev->state;
bf9fae9f 1991 vtime_task_switch(prev);
4866cde0 1992 finish_arch_switch(prev);
a8d757ef 1993 perf_event_task_sched_in(prev, current);
4866cde0 1994 finish_lock_switch(rq, prev);
01f23e16 1995 finish_arch_post_lock_switch();
e8fa1362 1996
e107be36 1997 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1998 if (mm)
1999 mmdrop(mm);
c394cc9f 2000 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2001 task_numa_free(prev);
2002
c6fd91f0 2003 /*
2004 * Remove function-return probe instances associated with this
2005 * task and put them back on the free list.
9761eea8 2006 */
c6fd91f0 2007 kprobe_flush_task(prev);
1da177e4 2008 put_task_struct(prev);
c6fd91f0 2009 }
99e5ada9
FW
2010
2011 tick_nohz_task_switch(current);
1da177e4
LT
2012}
2013
3f029d3c
GH
2014#ifdef CONFIG_SMP
2015
2016/* assumes rq->lock is held */
2017static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2018{
2019 if (prev->sched_class->pre_schedule)
2020 prev->sched_class->pre_schedule(rq, prev);
2021}
2022
2023/* rq->lock is NOT held, but preemption is disabled */
2024static inline void post_schedule(struct rq *rq)
2025{
2026 if (rq->post_schedule) {
2027 unsigned long flags;
2028
05fa785c 2029 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2030 if (rq->curr->sched_class->post_schedule)
2031 rq->curr->sched_class->post_schedule(rq);
05fa785c 2032 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2033
2034 rq->post_schedule = 0;
2035 }
2036}
2037
2038#else
da19ab51 2039
3f029d3c
GH
2040static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2041{
2042}
2043
2044static inline void post_schedule(struct rq *rq)
2045{
1da177e4
LT
2046}
2047
3f029d3c
GH
2048#endif
2049
1da177e4
LT
2050/**
2051 * schedule_tail - first thing a freshly forked thread must call.
2052 * @prev: the thread we just switched away from.
2053 */
36c8b586 2054asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2055 __releases(rq->lock)
2056{
70b97a7f
IM
2057 struct rq *rq = this_rq();
2058
4866cde0 2059 finish_task_switch(rq, prev);
da19ab51 2060
3f029d3c
GH
2061 /*
2062 * FIXME: do we need to worry about rq being invalidated by the
2063 * task_switch?
2064 */
2065 post_schedule(rq);
70b97a7f 2066
4866cde0
NP
2067#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2068 /* In this case, finish_task_switch does not reenable preemption */
2069 preempt_enable();
2070#endif
1da177e4 2071 if (current->set_child_tid)
b488893a 2072 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2073}
2074
2075/*
2076 * context_switch - switch to the new MM and the new
2077 * thread's register state.
2078 */
dd41f596 2079static inline void
70b97a7f 2080context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2081 struct task_struct *next)
1da177e4 2082{
dd41f596 2083 struct mm_struct *mm, *oldmm;
1da177e4 2084
e107be36 2085 prepare_task_switch(rq, prev, next);
fe4b04fa 2086
dd41f596
IM
2087 mm = next->mm;
2088 oldmm = prev->active_mm;
9226d125
ZA
2089 /*
2090 * For paravirt, this is coupled with an exit in switch_to to
2091 * combine the page table reload and the switch backend into
2092 * one hypercall.
2093 */
224101ed 2094 arch_start_context_switch(prev);
9226d125 2095
31915ab4 2096 if (!mm) {
1da177e4
LT
2097 next->active_mm = oldmm;
2098 atomic_inc(&oldmm->mm_count);
2099 enter_lazy_tlb(oldmm, next);
2100 } else
2101 switch_mm(oldmm, mm, next);
2102
31915ab4 2103 if (!prev->mm) {
1da177e4 2104 prev->active_mm = NULL;
1da177e4
LT
2105 rq->prev_mm = oldmm;
2106 }
3a5f5e48
IM
2107 /*
2108 * Since the runqueue lock will be released by the next
2109 * task (which is an invalid locking op but in the case
2110 * of the scheduler it's an obvious special-case), so we
2111 * do an early lockdep release here:
2112 */
2113#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2114 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2115#endif
1da177e4 2116
91d1aa43 2117 context_tracking_task_switch(prev, next);
1da177e4
LT
2118 /* Here we just switch the register state and the stack. */
2119 switch_to(prev, next, prev);
2120
dd41f596
IM
2121 barrier();
2122 /*
2123 * this_rq must be evaluated again because prev may have moved
2124 * CPUs since it called schedule(), thus the 'rq' on its stack
2125 * frame will be invalid.
2126 */
2127 finish_task_switch(this_rq(), prev);
1da177e4
LT
2128}
2129
2130/*
1c3e8264 2131 * nr_running and nr_context_switches:
1da177e4
LT
2132 *
2133 * externally visible scheduler statistics: current number of runnable
1c3e8264 2134 * threads, total number of context switches performed since bootup.
1da177e4
LT
2135 */
2136unsigned long nr_running(void)
2137{
2138 unsigned long i, sum = 0;
2139
2140 for_each_online_cpu(i)
2141 sum += cpu_rq(i)->nr_running;
2142
2143 return sum;
f711f609 2144}
1da177e4 2145
1da177e4 2146unsigned long long nr_context_switches(void)
46cb4b7c 2147{
cc94abfc
SR
2148 int i;
2149 unsigned long long sum = 0;
46cb4b7c 2150
0a945022 2151 for_each_possible_cpu(i)
1da177e4 2152 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2153
1da177e4
LT
2154 return sum;
2155}
483b4ee6 2156
1da177e4
LT
2157unsigned long nr_iowait(void)
2158{
2159 unsigned long i, sum = 0;
483b4ee6 2160
0a945022 2161 for_each_possible_cpu(i)
1da177e4 2162 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2163
1da177e4
LT
2164 return sum;
2165}
483b4ee6 2166
8c215bd3 2167unsigned long nr_iowait_cpu(int cpu)
69d25870 2168{
8c215bd3 2169 struct rq *this = cpu_rq(cpu);
69d25870
AV
2170 return atomic_read(&this->nr_iowait);
2171}
46cb4b7c 2172
dd41f596 2173#ifdef CONFIG_SMP
8a0be9ef 2174
46cb4b7c 2175/*
38022906
PZ
2176 * sched_exec - execve() is a valuable balancing opportunity, because at
2177 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2178 */
38022906 2179void sched_exec(void)
46cb4b7c 2180{
38022906 2181 struct task_struct *p = current;
1da177e4 2182 unsigned long flags;
0017d735 2183 int dest_cpu;
46cb4b7c 2184
8f42ced9 2185 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2186 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2187 if (dest_cpu == smp_processor_id())
2188 goto unlock;
38022906 2189
8f42ced9 2190 if (likely(cpu_active(dest_cpu))) {
969c7921 2191 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2192
8f42ced9
PZ
2193 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2194 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2195 return;
2196 }
0017d735 2197unlock:
8f42ced9 2198 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2199}
dd41f596 2200
1da177e4
LT
2201#endif
2202
1da177e4 2203DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2204DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2205
2206EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2207EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2208
2209/*
c5f8d995 2210 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2211 * @p in case that task is currently running.
c5f8d995
HS
2212 *
2213 * Called with task_rq_lock() held on @rq.
1da177e4 2214 */
c5f8d995
HS
2215static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2216{
2217 u64 ns = 0;
2218
2219 if (task_current(rq, p)) {
2220 update_rq_clock(rq);
78becc27 2221 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2222 if ((s64)ns < 0)
2223 ns = 0;
2224 }
2225
2226 return ns;
2227}
2228
bb34d92f 2229unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2230{
1da177e4 2231 unsigned long flags;
41b86e9c 2232 struct rq *rq;
bb34d92f 2233 u64 ns = 0;
48f24c4d 2234
41b86e9c 2235 rq = task_rq_lock(p, &flags);
c5f8d995 2236 ns = do_task_delta_exec(p, rq);
0122ec5b 2237 task_rq_unlock(rq, p, &flags);
1508487e 2238
c5f8d995
HS
2239 return ns;
2240}
f06febc9 2241
c5f8d995
HS
2242/*
2243 * Return accounted runtime for the task.
2244 * In case the task is currently running, return the runtime plus current's
2245 * pending runtime that have not been accounted yet.
2246 */
2247unsigned long long task_sched_runtime(struct task_struct *p)
2248{
2249 unsigned long flags;
2250 struct rq *rq;
2251 u64 ns = 0;
2252
2253 rq = task_rq_lock(p, &flags);
2254 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2255 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2256
2257 return ns;
2258}
48f24c4d 2259
7835b98b
CL
2260/*
2261 * This function gets called by the timer code, with HZ frequency.
2262 * We call it with interrupts disabled.
7835b98b
CL
2263 */
2264void scheduler_tick(void)
2265{
7835b98b
CL
2266 int cpu = smp_processor_id();
2267 struct rq *rq = cpu_rq(cpu);
dd41f596 2268 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2269
2270 sched_clock_tick();
dd41f596 2271
05fa785c 2272 raw_spin_lock(&rq->lock);
3e51f33f 2273 update_rq_clock(rq);
fa85ae24 2274 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2275 update_cpu_load_active(rq);
05fa785c 2276 raw_spin_unlock(&rq->lock);
7835b98b 2277
e9d2b064 2278 perf_event_task_tick();
e220d2dc 2279
e418e1c2 2280#ifdef CONFIG_SMP
6eb57e0d 2281 rq->idle_balance = idle_cpu(cpu);
dd41f596 2282 trigger_load_balance(rq, cpu);
e418e1c2 2283#endif
265f22a9 2284 rq_last_tick_reset(rq);
1da177e4
LT
2285}
2286
265f22a9
FW
2287#ifdef CONFIG_NO_HZ_FULL
2288/**
2289 * scheduler_tick_max_deferment
2290 *
2291 * Keep at least one tick per second when a single
2292 * active task is running because the scheduler doesn't
2293 * yet completely support full dynticks environment.
2294 *
2295 * This makes sure that uptime, CFS vruntime, load
2296 * balancing, etc... continue to move forward, even
2297 * with a very low granularity.
e69f6186
YB
2298 *
2299 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2300 */
2301u64 scheduler_tick_max_deferment(void)
2302{
2303 struct rq *rq = this_rq();
2304 unsigned long next, now = ACCESS_ONCE(jiffies);
2305
2306 next = rq->last_sched_tick + HZ;
2307
2308 if (time_before_eq(next, now))
2309 return 0;
2310
2311 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2312}
265f22a9 2313#endif
1da177e4 2314
132380a0 2315notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2316{
2317 if (in_lock_functions(addr)) {
2318 addr = CALLER_ADDR2;
2319 if (in_lock_functions(addr))
2320 addr = CALLER_ADDR3;
2321 }
2322 return addr;
2323}
1da177e4 2324
7e49fcce
SR
2325#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2326 defined(CONFIG_PREEMPT_TRACER))
2327
bdb43806 2328void __kprobes preempt_count_add(int val)
1da177e4 2329{
6cd8a4bb 2330#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2331 /*
2332 * Underflow?
2333 */
9a11b49a
IM
2334 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2335 return;
6cd8a4bb 2336#endif
bdb43806 2337 __preempt_count_add(val);
6cd8a4bb 2338#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2339 /*
2340 * Spinlock count overflowing soon?
2341 */
33859f7f
MOS
2342 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2343 PREEMPT_MASK - 10);
6cd8a4bb
SR
2344#endif
2345 if (preempt_count() == val)
2346 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2347}
bdb43806 2348EXPORT_SYMBOL(preempt_count_add);
1da177e4 2349
bdb43806 2350void __kprobes preempt_count_sub(int val)
1da177e4 2351{
6cd8a4bb 2352#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2353 /*
2354 * Underflow?
2355 */
01e3eb82 2356 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2357 return;
1da177e4
LT
2358 /*
2359 * Is the spinlock portion underflowing?
2360 */
9a11b49a
IM
2361 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2362 !(preempt_count() & PREEMPT_MASK)))
2363 return;
6cd8a4bb 2364#endif
9a11b49a 2365
6cd8a4bb
SR
2366 if (preempt_count() == val)
2367 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2368 __preempt_count_sub(val);
1da177e4 2369}
bdb43806 2370EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2371
2372#endif
2373
2374/*
dd41f596 2375 * Print scheduling while atomic bug:
1da177e4 2376 */
dd41f596 2377static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2378{
664dfa65
DJ
2379 if (oops_in_progress)
2380 return;
2381
3df0fc5b
PZ
2382 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2383 prev->comm, prev->pid, preempt_count());
838225b4 2384
dd41f596 2385 debug_show_held_locks(prev);
e21f5b15 2386 print_modules();
dd41f596
IM
2387 if (irqs_disabled())
2388 print_irqtrace_events(prev);
6135fc1e 2389 dump_stack();
373d4d09 2390 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2391}
1da177e4 2392
dd41f596
IM
2393/*
2394 * Various schedule()-time debugging checks and statistics:
2395 */
2396static inline void schedule_debug(struct task_struct *prev)
2397{
1da177e4 2398 /*
41a2d6cf 2399 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2400 * schedule() atomically, we ignore that path for now.
2401 * Otherwise, whine if we are scheduling when we should not be.
2402 */
3f33a7ce 2403 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2404 __schedule_bug(prev);
b3fbab05 2405 rcu_sleep_check();
dd41f596 2406
1da177e4
LT
2407 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2408
2d72376b 2409 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2410}
2411
6cecd084 2412static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2413{
61eadef6 2414 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2415 update_rq_clock(rq);
6cecd084 2416 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2417}
2418
dd41f596
IM
2419/*
2420 * Pick up the highest-prio task:
2421 */
2422static inline struct task_struct *
b67802ea 2423pick_next_task(struct rq *rq)
dd41f596 2424{
5522d5d5 2425 const struct sched_class *class;
dd41f596 2426 struct task_struct *p;
1da177e4
LT
2427
2428 /*
dd41f596
IM
2429 * Optimization: we know that if all tasks are in
2430 * the fair class we can call that function directly:
1da177e4 2431 */
953bfcd1 2432 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2433 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2434 if (likely(p))
2435 return p;
1da177e4
LT
2436 }
2437
34f971f6 2438 for_each_class(class) {
fb8d4724 2439 p = class->pick_next_task(rq);
dd41f596
IM
2440 if (p)
2441 return p;
dd41f596 2442 }
34f971f6
PZ
2443
2444 BUG(); /* the idle class will always have a runnable task */
dd41f596 2445}
1da177e4 2446
dd41f596 2447/*
c259e01a 2448 * __schedule() is the main scheduler function.
edde96ea
PE
2449 *
2450 * The main means of driving the scheduler and thus entering this function are:
2451 *
2452 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2453 *
2454 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2455 * paths. For example, see arch/x86/entry_64.S.
2456 *
2457 * To drive preemption between tasks, the scheduler sets the flag in timer
2458 * interrupt handler scheduler_tick().
2459 *
2460 * 3. Wakeups don't really cause entry into schedule(). They add a
2461 * task to the run-queue and that's it.
2462 *
2463 * Now, if the new task added to the run-queue preempts the current
2464 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2465 * called on the nearest possible occasion:
2466 *
2467 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2468 *
2469 * - in syscall or exception context, at the next outmost
2470 * preempt_enable(). (this might be as soon as the wake_up()'s
2471 * spin_unlock()!)
2472 *
2473 * - in IRQ context, return from interrupt-handler to
2474 * preemptible context
2475 *
2476 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2477 * then at the next:
2478 *
2479 * - cond_resched() call
2480 * - explicit schedule() call
2481 * - return from syscall or exception to user-space
2482 * - return from interrupt-handler to user-space
dd41f596 2483 */
c259e01a 2484static void __sched __schedule(void)
dd41f596
IM
2485{
2486 struct task_struct *prev, *next;
67ca7bde 2487 unsigned long *switch_count;
dd41f596 2488 struct rq *rq;
31656519 2489 int cpu;
dd41f596 2490
ff743345
PZ
2491need_resched:
2492 preempt_disable();
dd41f596
IM
2493 cpu = smp_processor_id();
2494 rq = cpu_rq(cpu);
25502a6c 2495 rcu_note_context_switch(cpu);
dd41f596 2496 prev = rq->curr;
dd41f596 2497
dd41f596 2498 schedule_debug(prev);
1da177e4 2499
31656519 2500 if (sched_feat(HRTICK))
f333fdc9 2501 hrtick_clear(rq);
8f4d37ec 2502
e0acd0a6
ON
2503 /*
2504 * Make sure that signal_pending_state()->signal_pending() below
2505 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2506 * done by the caller to avoid the race with signal_wake_up().
2507 */
2508 smp_mb__before_spinlock();
05fa785c 2509 raw_spin_lock_irq(&rq->lock);
1da177e4 2510
246d86b5 2511 switch_count = &prev->nivcsw;
1da177e4 2512 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2513 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2514 prev->state = TASK_RUNNING;
21aa9af0 2515 } else {
2acca55e
PZ
2516 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2517 prev->on_rq = 0;
2518
21aa9af0 2519 /*
2acca55e
PZ
2520 * If a worker went to sleep, notify and ask workqueue
2521 * whether it wants to wake up a task to maintain
2522 * concurrency.
21aa9af0
TH
2523 */
2524 if (prev->flags & PF_WQ_WORKER) {
2525 struct task_struct *to_wakeup;
2526
2527 to_wakeup = wq_worker_sleeping(prev, cpu);
2528 if (to_wakeup)
2529 try_to_wake_up_local(to_wakeup);
2530 }
21aa9af0 2531 }
dd41f596 2532 switch_count = &prev->nvcsw;
1da177e4
LT
2533 }
2534
3f029d3c 2535 pre_schedule(rq, prev);
f65eda4f 2536
dd41f596 2537 if (unlikely(!rq->nr_running))
1da177e4 2538 idle_balance(cpu, rq);
1da177e4 2539
df1c99d4 2540 put_prev_task(rq, prev);
b67802ea 2541 next = pick_next_task(rq);
f26f9aff 2542 clear_tsk_need_resched(prev);
f27dde8d 2543 clear_preempt_need_resched();
f26f9aff 2544 rq->skip_clock_update = 0;
1da177e4 2545
1da177e4 2546 if (likely(prev != next)) {
1da177e4
LT
2547 rq->nr_switches++;
2548 rq->curr = next;
2549 ++*switch_count;
2550
dd41f596 2551 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2552 /*
246d86b5
ON
2553 * The context switch have flipped the stack from under us
2554 * and restored the local variables which were saved when
2555 * this task called schedule() in the past. prev == current
2556 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2557 */
2558 cpu = smp_processor_id();
2559 rq = cpu_rq(cpu);
1da177e4 2560 } else
05fa785c 2561 raw_spin_unlock_irq(&rq->lock);
1da177e4 2562
3f029d3c 2563 post_schedule(rq);
1da177e4 2564
ba74c144 2565 sched_preempt_enable_no_resched();
ff743345 2566 if (need_resched())
1da177e4
LT
2567 goto need_resched;
2568}
c259e01a 2569
9c40cef2
TG
2570static inline void sched_submit_work(struct task_struct *tsk)
2571{
3c7d5184 2572 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2573 return;
2574 /*
2575 * If we are going to sleep and we have plugged IO queued,
2576 * make sure to submit it to avoid deadlocks.
2577 */
2578 if (blk_needs_flush_plug(tsk))
2579 blk_schedule_flush_plug(tsk);
2580}
2581
6ebbe7a0 2582asmlinkage void __sched schedule(void)
c259e01a 2583{
9c40cef2
TG
2584 struct task_struct *tsk = current;
2585
2586 sched_submit_work(tsk);
c259e01a
TG
2587 __schedule();
2588}
1da177e4
LT
2589EXPORT_SYMBOL(schedule);
2590
91d1aa43 2591#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2592asmlinkage void __sched schedule_user(void)
2593{
2594 /*
2595 * If we come here after a random call to set_need_resched(),
2596 * or we have been woken up remotely but the IPI has not yet arrived,
2597 * we haven't yet exited the RCU idle mode. Do it here manually until
2598 * we find a better solution.
2599 */
91d1aa43 2600 user_exit();
20ab65e3 2601 schedule();
91d1aa43 2602 user_enter();
20ab65e3
FW
2603}
2604#endif
2605
c5491ea7
TG
2606/**
2607 * schedule_preempt_disabled - called with preemption disabled
2608 *
2609 * Returns with preemption disabled. Note: preempt_count must be 1
2610 */
2611void __sched schedule_preempt_disabled(void)
2612{
ba74c144 2613 sched_preempt_enable_no_resched();
c5491ea7
TG
2614 schedule();
2615 preempt_disable();
2616}
2617
1da177e4
LT
2618#ifdef CONFIG_PREEMPT
2619/*
2ed6e34f 2620 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2621 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2622 * occur there and call schedule directly.
2623 */
d1f74e20 2624asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2625{
1da177e4
LT
2626 /*
2627 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2628 * we do not want to preempt the current task. Just return..
1da177e4 2629 */
fbb00b56 2630 if (likely(!preemptible()))
1da177e4
LT
2631 return;
2632
3a5c359a 2633 do {
bdb43806 2634 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2635 __schedule();
bdb43806 2636 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2637
3a5c359a
AK
2638 /*
2639 * Check again in case we missed a preemption opportunity
2640 * between schedule and now.
2641 */
2642 barrier();
5ed0cec0 2643 } while (need_resched());
1da177e4 2644}
1da177e4
LT
2645EXPORT_SYMBOL(preempt_schedule);
2646
2647/*
2ed6e34f 2648 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2649 * off of irq context.
2650 * Note, that this is called and return with irqs disabled. This will
2651 * protect us against recursive calling from irq.
2652 */
2653asmlinkage void __sched preempt_schedule_irq(void)
2654{
b22366cd 2655 enum ctx_state prev_state;
6478d880 2656
2ed6e34f 2657 /* Catch callers which need to be fixed */
f27dde8d 2658 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2659
b22366cd
FW
2660 prev_state = exception_enter();
2661
3a5c359a 2662 do {
bdb43806 2663 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2664 local_irq_enable();
c259e01a 2665 __schedule();
3a5c359a 2666 local_irq_disable();
bdb43806 2667 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2668
3a5c359a
AK
2669 /*
2670 * Check again in case we missed a preemption opportunity
2671 * between schedule and now.
2672 */
2673 barrier();
5ed0cec0 2674 } while (need_resched());
b22366cd
FW
2675
2676 exception_exit(prev_state);
1da177e4
LT
2677}
2678
2679#endif /* CONFIG_PREEMPT */
2680
63859d4f 2681int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2682 void *key)
1da177e4 2683{
63859d4f 2684 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2685}
1da177e4
LT
2686EXPORT_SYMBOL(default_wake_function);
2687
2688/*
41a2d6cf
IM
2689 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2690 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2691 * number) then we wake all the non-exclusive tasks and one exclusive task.
2692 *
2693 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2694 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2695 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2696 */
78ddb08f 2697static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2698 int nr_exclusive, int wake_flags, void *key)
1da177e4 2699{
2e45874c 2700 wait_queue_t *curr, *next;
1da177e4 2701
2e45874c 2702 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2703 unsigned flags = curr->flags;
2704
63859d4f 2705 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2706 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2707 break;
2708 }
2709}
2710
2711/**
2712 * __wake_up - wake up threads blocked on a waitqueue.
2713 * @q: the waitqueue
2714 * @mode: which threads
2715 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2716 * @key: is directly passed to the wakeup function
50fa610a
DH
2717 *
2718 * It may be assumed that this function implies a write memory barrier before
2719 * changing the task state if and only if any tasks are woken up.
1da177e4 2720 */
7ad5b3a5 2721void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2722 int nr_exclusive, void *key)
1da177e4
LT
2723{
2724 unsigned long flags;
2725
2726 spin_lock_irqsave(&q->lock, flags);
2727 __wake_up_common(q, mode, nr_exclusive, 0, key);
2728 spin_unlock_irqrestore(&q->lock, flags);
2729}
1da177e4
LT
2730EXPORT_SYMBOL(__wake_up);
2731
2732/*
2733 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2734 */
63b20011 2735void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2736{
63b20011 2737 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2738}
22c43c81 2739EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2740
4ede816a
DL
2741void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2742{
2743 __wake_up_common(q, mode, 1, 0, key);
2744}
bf294b41 2745EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2746
1da177e4 2747/**
4ede816a 2748 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2749 * @q: the waitqueue
2750 * @mode: which threads
2751 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2752 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2753 *
2754 * The sync wakeup differs that the waker knows that it will schedule
2755 * away soon, so while the target thread will be woken up, it will not
2756 * be migrated to another CPU - ie. the two threads are 'synchronized'
2757 * with each other. This can prevent needless bouncing between CPUs.
2758 *
2759 * On UP it can prevent extra preemption.
50fa610a
DH
2760 *
2761 * It may be assumed that this function implies a write memory barrier before
2762 * changing the task state if and only if any tasks are woken up.
1da177e4 2763 */
4ede816a
DL
2764void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2765 int nr_exclusive, void *key)
1da177e4
LT
2766{
2767 unsigned long flags;
7d478721 2768 int wake_flags = WF_SYNC;
1da177e4
LT
2769
2770 if (unlikely(!q))
2771 return;
2772
cedce3e7 2773 if (unlikely(nr_exclusive != 1))
7d478721 2774 wake_flags = 0;
1da177e4
LT
2775
2776 spin_lock_irqsave(&q->lock, flags);
7d478721 2777 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2778 spin_unlock_irqrestore(&q->lock, flags);
2779}
4ede816a
DL
2780EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2781
2782/*
2783 * __wake_up_sync - see __wake_up_sync_key()
2784 */
2785void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2786{
2787 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2788}
1da177e4
LT
2789EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2790
65eb3dc6
KD
2791/**
2792 * complete: - signals a single thread waiting on this completion
2793 * @x: holds the state of this particular completion
2794 *
2795 * This will wake up a single thread waiting on this completion. Threads will be
2796 * awakened in the same order in which they were queued.
2797 *
2798 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2799 *
2800 * It may be assumed that this function implies a write memory barrier before
2801 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2802 */
b15136e9 2803void complete(struct completion *x)
1da177e4
LT
2804{
2805 unsigned long flags;
2806
2807 spin_lock_irqsave(&x->wait.lock, flags);
2808 x->done++;
d9514f6c 2809 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2810 spin_unlock_irqrestore(&x->wait.lock, flags);
2811}
2812EXPORT_SYMBOL(complete);
2813
65eb3dc6
KD
2814/**
2815 * complete_all: - signals all threads waiting on this completion
2816 * @x: holds the state of this particular completion
2817 *
2818 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2819 *
2820 * It may be assumed that this function implies a write memory barrier before
2821 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2822 */
b15136e9 2823void complete_all(struct completion *x)
1da177e4
LT
2824{
2825 unsigned long flags;
2826
2827 spin_lock_irqsave(&x->wait.lock, flags);
2828 x->done += UINT_MAX/2;
d9514f6c 2829 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2830 spin_unlock_irqrestore(&x->wait.lock, flags);
2831}
2832EXPORT_SYMBOL(complete_all);
2833
8cbbe86d 2834static inline long __sched
686855f5
VD
2835do_wait_for_common(struct completion *x,
2836 long (*action)(long), long timeout, int state)
1da177e4 2837{
1da177e4
LT
2838 if (!x->done) {
2839 DECLARE_WAITQUEUE(wait, current);
2840
a93d2f17 2841 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2842 do {
94d3d824 2843 if (signal_pending_state(state, current)) {
ea71a546
ON
2844 timeout = -ERESTARTSYS;
2845 break;
8cbbe86d
AK
2846 }
2847 __set_current_state(state);
1da177e4 2848 spin_unlock_irq(&x->wait.lock);
686855f5 2849 timeout = action(timeout);
1da177e4 2850 spin_lock_irq(&x->wait.lock);
ea71a546 2851 } while (!x->done && timeout);
1da177e4 2852 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2853 if (!x->done)
2854 return timeout;
1da177e4
LT
2855 }
2856 x->done--;
ea71a546 2857 return timeout ?: 1;
1da177e4 2858}
1da177e4 2859
686855f5
VD
2860static inline long __sched
2861__wait_for_common(struct completion *x,
2862 long (*action)(long), long timeout, int state)
1da177e4 2863{
1da177e4
LT
2864 might_sleep();
2865
2866 spin_lock_irq(&x->wait.lock);
686855f5 2867 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2868 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2869 return timeout;
2870}
1da177e4 2871
686855f5
VD
2872static long __sched
2873wait_for_common(struct completion *x, long timeout, int state)
2874{
2875 return __wait_for_common(x, schedule_timeout, timeout, state);
2876}
2877
2878static long __sched
2879wait_for_common_io(struct completion *x, long timeout, int state)
2880{
2881 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2882}
2883
65eb3dc6
KD
2884/**
2885 * wait_for_completion: - waits for completion of a task
2886 * @x: holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It is NOT
2889 * interruptible and there is no timeout.
2890 *
2891 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2892 * and interrupt capability. Also see complete().
2893 */
b15136e9 2894void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2895{
2896 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2897}
8cbbe86d 2898EXPORT_SYMBOL(wait_for_completion);
1da177e4 2899
65eb3dc6
KD
2900/**
2901 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2902 * @x: holds the state of this particular completion
2903 * @timeout: timeout value in jiffies
2904 *
2905 * This waits for either a completion of a specific task to be signaled or for a
2906 * specified timeout to expire. The timeout is in jiffies. It is not
2907 * interruptible.
c6dc7f05 2908 *
e69f6186
YB
2909 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2910 * till timeout) if completed.
65eb3dc6 2911 */
b15136e9 2912unsigned long __sched
8cbbe86d 2913wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2914{
8cbbe86d 2915 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2916}
8cbbe86d 2917EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2918
686855f5
VD
2919/**
2920 * wait_for_completion_io: - waits for completion of a task
2921 * @x: holds the state of this particular completion
2922 *
2923 * This waits to be signaled for completion of a specific task. It is NOT
2924 * interruptible and there is no timeout. The caller is accounted as waiting
2925 * for IO.
2926 */
2927void __sched wait_for_completion_io(struct completion *x)
2928{
2929 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2930}
2931EXPORT_SYMBOL(wait_for_completion_io);
2932
2933/**
2934 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2935 * @x: holds the state of this particular completion
2936 * @timeout: timeout value in jiffies
2937 *
2938 * This waits for either a completion of a specific task to be signaled or for a
2939 * specified timeout to expire. The timeout is in jiffies. It is not
2940 * interruptible. The caller is accounted as waiting for IO.
2941 *
e69f6186
YB
2942 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2943 * till timeout) if completed.
686855f5
VD
2944 */
2945unsigned long __sched
2946wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2947{
2948 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2949}
2950EXPORT_SYMBOL(wait_for_completion_io_timeout);
2951
65eb3dc6
KD
2952/**
2953 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2954 * @x: holds the state of this particular completion
2955 *
2956 * This waits for completion of a specific task to be signaled. It is
2957 * interruptible.
c6dc7f05 2958 *
e69f6186 2959 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2960 */
8cbbe86d 2961int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2962{
51e97990
AK
2963 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2964 if (t == -ERESTARTSYS)
2965 return t;
2966 return 0;
0fec171c 2967}
8cbbe86d 2968EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2969
65eb3dc6
KD
2970/**
2971 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2972 * @x: holds the state of this particular completion
2973 * @timeout: timeout value in jiffies
2974 *
2975 * This waits for either a completion of a specific task to be signaled or for a
2976 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2977 *
e69f6186
YB
2978 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2979 * or number of jiffies left till timeout) if completed.
65eb3dc6 2980 */
6bf41237 2981long __sched
8cbbe86d
AK
2982wait_for_completion_interruptible_timeout(struct completion *x,
2983 unsigned long timeout)
0fec171c 2984{
8cbbe86d 2985 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2986}
8cbbe86d 2987EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2988
65eb3dc6
KD
2989/**
2990 * wait_for_completion_killable: - waits for completion of a task (killable)
2991 * @x: holds the state of this particular completion
2992 *
2993 * This waits to be signaled for completion of a specific task. It can be
2994 * interrupted by a kill signal.
c6dc7f05 2995 *
e69f6186 2996 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2997 */
009e577e
MW
2998int __sched wait_for_completion_killable(struct completion *x)
2999{
3000 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3001 if (t == -ERESTARTSYS)
3002 return t;
3003 return 0;
3004}
3005EXPORT_SYMBOL(wait_for_completion_killable);
3006
0aa12fb4
SW
3007/**
3008 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3009 * @x: holds the state of this particular completion
3010 * @timeout: timeout value in jiffies
3011 *
3012 * This waits for either a completion of a specific task to be
3013 * signaled or for a specified timeout to expire. It can be
3014 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 3015 *
e69f6186
YB
3016 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3017 * or number of jiffies left till timeout) if completed.
0aa12fb4 3018 */
6bf41237 3019long __sched
0aa12fb4
SW
3020wait_for_completion_killable_timeout(struct completion *x,
3021 unsigned long timeout)
3022{
3023 return wait_for_common(x, timeout, TASK_KILLABLE);
3024}
3025EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3026
be4de352
DC
3027/**
3028 * try_wait_for_completion - try to decrement a completion without blocking
3029 * @x: completion structure
3030 *
e69f6186 3031 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
3032 * 1 if a decrement succeeded.
3033 *
3034 * If a completion is being used as a counting completion,
3035 * attempt to decrement the counter without blocking. This
3036 * enables us to avoid waiting if the resource the completion
3037 * is protecting is not available.
3038 */
3039bool try_wait_for_completion(struct completion *x)
3040{
7539a3b3 3041 unsigned long flags;
be4de352
DC
3042 int ret = 1;
3043
7539a3b3 3044 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3045 if (!x->done)
3046 ret = 0;
3047 else
3048 x->done--;
7539a3b3 3049 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3050 return ret;
3051}
3052EXPORT_SYMBOL(try_wait_for_completion);
3053
3054/**
3055 * completion_done - Test to see if a completion has any waiters
3056 * @x: completion structure
3057 *
e69f6186 3058 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
3059 * 1 if there are no waiters.
3060 *
3061 */
3062bool completion_done(struct completion *x)
3063{
7539a3b3 3064 unsigned long flags;
be4de352
DC
3065 int ret = 1;
3066
7539a3b3 3067 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3068 if (!x->done)
3069 ret = 0;
7539a3b3 3070 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3071 return ret;
3072}
3073EXPORT_SYMBOL(completion_done);
3074
8cbbe86d
AK
3075static long __sched
3076sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3077{
0fec171c
IM
3078 unsigned long flags;
3079 wait_queue_t wait;
3080
3081 init_waitqueue_entry(&wait, current);
1da177e4 3082
8cbbe86d 3083 __set_current_state(state);
1da177e4 3084
8cbbe86d
AK
3085 spin_lock_irqsave(&q->lock, flags);
3086 __add_wait_queue(q, &wait);
3087 spin_unlock(&q->lock);
3088 timeout = schedule_timeout(timeout);
3089 spin_lock_irq(&q->lock);
3090 __remove_wait_queue(q, &wait);
3091 spin_unlock_irqrestore(&q->lock, flags);
3092
3093 return timeout;
3094}
3095
3096void __sched interruptible_sleep_on(wait_queue_head_t *q)
3097{
3098 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3099}
1da177e4
LT
3100EXPORT_SYMBOL(interruptible_sleep_on);
3101
0fec171c 3102long __sched
95cdf3b7 3103interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3104{
8cbbe86d 3105 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3106}
1da177e4
LT
3107EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3108
0fec171c 3109void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3110{
8cbbe86d 3111 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3112}
1da177e4
LT
3113EXPORT_SYMBOL(sleep_on);
3114
0fec171c 3115long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3116{
8cbbe86d 3117 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3118}
1da177e4
LT
3119EXPORT_SYMBOL(sleep_on_timeout);
3120
b29739f9
IM
3121#ifdef CONFIG_RT_MUTEXES
3122
3123/*
3124 * rt_mutex_setprio - set the current priority of a task
3125 * @p: task
3126 * @prio: prio value (kernel-internal form)
3127 *
3128 * This function changes the 'effective' priority of a task. It does
3129 * not touch ->normal_prio like __setscheduler().
3130 *
3131 * Used by the rt_mutex code to implement priority inheritance logic.
3132 */
36c8b586 3133void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3134{
83b699ed 3135 int oldprio, on_rq, running;
70b97a7f 3136 struct rq *rq;
83ab0aa0 3137 const struct sched_class *prev_class;
b29739f9
IM
3138
3139 BUG_ON(prio < 0 || prio > MAX_PRIO);
3140
0122ec5b 3141 rq = __task_rq_lock(p);
b29739f9 3142
1c4dd99b
TG
3143 /*
3144 * Idle task boosting is a nono in general. There is one
3145 * exception, when PREEMPT_RT and NOHZ is active:
3146 *
3147 * The idle task calls get_next_timer_interrupt() and holds
3148 * the timer wheel base->lock on the CPU and another CPU wants
3149 * to access the timer (probably to cancel it). We can safely
3150 * ignore the boosting request, as the idle CPU runs this code
3151 * with interrupts disabled and will complete the lock
3152 * protected section without being interrupted. So there is no
3153 * real need to boost.
3154 */
3155 if (unlikely(p == rq->idle)) {
3156 WARN_ON(p != rq->curr);
3157 WARN_ON(p->pi_blocked_on);
3158 goto out_unlock;
3159 }
3160
a8027073 3161 trace_sched_pi_setprio(p, prio);
d5f9f942 3162 oldprio = p->prio;
83ab0aa0 3163 prev_class = p->sched_class;
fd2f4419 3164 on_rq = p->on_rq;
051a1d1a 3165 running = task_current(rq, p);
0e1f3483 3166 if (on_rq)
69be72c1 3167 dequeue_task(rq, p, 0);
0e1f3483
HS
3168 if (running)
3169 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3170
3171 if (rt_prio(prio))
3172 p->sched_class = &rt_sched_class;
3173 else
3174 p->sched_class = &fair_sched_class;
3175
b29739f9
IM
3176 p->prio = prio;
3177
0e1f3483
HS
3178 if (running)
3179 p->sched_class->set_curr_task(rq);
da7a735e 3180 if (on_rq)
371fd7e7 3181 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3182
da7a735e 3183 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3184out_unlock:
0122ec5b 3185 __task_rq_unlock(rq);
b29739f9 3186}
b29739f9 3187#endif
36c8b586 3188void set_user_nice(struct task_struct *p, long nice)
1da177e4 3189{
dd41f596 3190 int old_prio, delta, on_rq;
1da177e4 3191 unsigned long flags;
70b97a7f 3192 struct rq *rq;
1da177e4
LT
3193
3194 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3195 return;
3196 /*
3197 * We have to be careful, if called from sys_setpriority(),
3198 * the task might be in the middle of scheduling on another CPU.
3199 */
3200 rq = task_rq_lock(p, &flags);
3201 /*
3202 * The RT priorities are set via sched_setscheduler(), but we still
3203 * allow the 'normal' nice value to be set - but as expected
3204 * it wont have any effect on scheduling until the task is
dd41f596 3205 * SCHED_FIFO/SCHED_RR:
1da177e4 3206 */
e05606d3 3207 if (task_has_rt_policy(p)) {
1da177e4
LT
3208 p->static_prio = NICE_TO_PRIO(nice);
3209 goto out_unlock;
3210 }
fd2f4419 3211 on_rq = p->on_rq;
c09595f6 3212 if (on_rq)
69be72c1 3213 dequeue_task(rq, p, 0);
1da177e4 3214
1da177e4 3215 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3216 set_load_weight(p);
b29739f9
IM
3217 old_prio = p->prio;
3218 p->prio = effective_prio(p);
3219 delta = p->prio - old_prio;
1da177e4 3220
dd41f596 3221 if (on_rq) {
371fd7e7 3222 enqueue_task(rq, p, 0);
1da177e4 3223 /*
d5f9f942
AM
3224 * If the task increased its priority or is running and
3225 * lowered its priority, then reschedule its CPU:
1da177e4 3226 */
d5f9f942 3227 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3228 resched_task(rq->curr);
3229 }
3230out_unlock:
0122ec5b 3231 task_rq_unlock(rq, p, &flags);
1da177e4 3232}
1da177e4
LT
3233EXPORT_SYMBOL(set_user_nice);
3234
e43379f1
MM
3235/*
3236 * can_nice - check if a task can reduce its nice value
3237 * @p: task
3238 * @nice: nice value
3239 */
36c8b586 3240int can_nice(const struct task_struct *p, const int nice)
e43379f1 3241{
024f4747
MM
3242 /* convert nice value [19,-20] to rlimit style value [1,40] */
3243 int nice_rlim = 20 - nice;
48f24c4d 3244
78d7d407 3245 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3246 capable(CAP_SYS_NICE));
3247}
3248
1da177e4
LT
3249#ifdef __ARCH_WANT_SYS_NICE
3250
3251/*
3252 * sys_nice - change the priority of the current process.
3253 * @increment: priority increment
3254 *
3255 * sys_setpriority is a more generic, but much slower function that
3256 * does similar things.
3257 */
5add95d4 3258SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3259{
48f24c4d 3260 long nice, retval;
1da177e4
LT
3261
3262 /*
3263 * Setpriority might change our priority at the same moment.
3264 * We don't have to worry. Conceptually one call occurs first
3265 * and we have a single winner.
3266 */
e43379f1
MM
3267 if (increment < -40)
3268 increment = -40;
1da177e4
LT
3269 if (increment > 40)
3270 increment = 40;
3271
2b8f836f 3272 nice = TASK_NICE(current) + increment;
1da177e4
LT
3273 if (nice < -20)
3274 nice = -20;
3275 if (nice > 19)
3276 nice = 19;
3277
e43379f1
MM
3278 if (increment < 0 && !can_nice(current, nice))
3279 return -EPERM;
3280
1da177e4
LT
3281 retval = security_task_setnice(current, nice);
3282 if (retval)
3283 return retval;
3284
3285 set_user_nice(current, nice);
3286 return 0;
3287}
3288
3289#endif
3290
3291/**
3292 * task_prio - return the priority value of a given task.
3293 * @p: the task in question.
3294 *
e69f6186 3295 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3296 * RT tasks are offset by -200. Normal tasks are centered
3297 * around 0, value goes from -16 to +15.
3298 */
36c8b586 3299int task_prio(const struct task_struct *p)
1da177e4
LT
3300{
3301 return p->prio - MAX_RT_PRIO;
3302}
3303
3304/**
3305 * task_nice - return the nice value of a given task.
3306 * @p: the task in question.
e69f6186
YB
3307 *
3308 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3309 */
36c8b586 3310int task_nice(const struct task_struct *p)
1da177e4
LT
3311{
3312 return TASK_NICE(p);
3313}
150d8bed 3314EXPORT_SYMBOL(task_nice);
1da177e4
LT
3315
3316/**
3317 * idle_cpu - is a given cpu idle currently?
3318 * @cpu: the processor in question.
e69f6186
YB
3319 *
3320 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3321 */
3322int idle_cpu(int cpu)
3323{
908a3283
TG
3324 struct rq *rq = cpu_rq(cpu);
3325
3326 if (rq->curr != rq->idle)
3327 return 0;
3328
3329 if (rq->nr_running)
3330 return 0;
3331
3332#ifdef CONFIG_SMP
3333 if (!llist_empty(&rq->wake_list))
3334 return 0;
3335#endif
3336
3337 return 1;
1da177e4
LT
3338}
3339
1da177e4
LT
3340/**
3341 * idle_task - return the idle task for a given cpu.
3342 * @cpu: the processor in question.
e69f6186
YB
3343 *
3344 * Return: The idle task for the cpu @cpu.
1da177e4 3345 */
36c8b586 3346struct task_struct *idle_task(int cpu)
1da177e4
LT
3347{
3348 return cpu_rq(cpu)->idle;
3349}
3350
3351/**
3352 * find_process_by_pid - find a process with a matching PID value.
3353 * @pid: the pid in question.
e69f6186
YB
3354 *
3355 * The task of @pid, if found. %NULL otherwise.
1da177e4 3356 */
a9957449 3357static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3358{
228ebcbe 3359 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3360}
3361
3362/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3363static void
3364__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3365{
1da177e4
LT
3366 p->policy = policy;
3367 p->rt_priority = prio;
b29739f9
IM
3368 p->normal_prio = normal_prio(p);
3369 /* we are holding p->pi_lock already */
3370 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3371 if (rt_prio(p->prio))
3372 p->sched_class = &rt_sched_class;
3373 else
3374 p->sched_class = &fair_sched_class;
2dd73a4f 3375 set_load_weight(p);
1da177e4
LT
3376}
3377
c69e8d9c
DH
3378/*
3379 * check the target process has a UID that matches the current process's
3380 */
3381static bool check_same_owner(struct task_struct *p)
3382{
3383 const struct cred *cred = current_cred(), *pcred;
3384 bool match;
3385
3386 rcu_read_lock();
3387 pcred = __task_cred(p);
9c806aa0
EB
3388 match = (uid_eq(cred->euid, pcred->euid) ||
3389 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3390 rcu_read_unlock();
3391 return match;
3392}
3393
961ccddd 3394static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3395 const struct sched_param *param, bool user)
1da177e4 3396{
83b699ed 3397 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3398 unsigned long flags;
83ab0aa0 3399 const struct sched_class *prev_class;
70b97a7f 3400 struct rq *rq;
ca94c442 3401 int reset_on_fork;
1da177e4 3402
66e5393a
SR
3403 /* may grab non-irq protected spin_locks */
3404 BUG_ON(in_interrupt());
1da177e4
LT
3405recheck:
3406 /* double check policy once rq lock held */
ca94c442
LP
3407 if (policy < 0) {
3408 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3409 policy = oldpolicy = p->policy;
ca94c442
LP
3410 } else {
3411 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3412 policy &= ~SCHED_RESET_ON_FORK;
3413
3414 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3415 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3416 policy != SCHED_IDLE)
3417 return -EINVAL;
3418 }
3419
1da177e4
LT
3420 /*
3421 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3422 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3423 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3424 */
3425 if (param->sched_priority < 0 ||
95cdf3b7 3426 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3427 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3428 return -EINVAL;
e05606d3 3429 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3430 return -EINVAL;
3431
37e4ab3f
OC
3432 /*
3433 * Allow unprivileged RT tasks to decrease priority:
3434 */
961ccddd 3435 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3436 if (rt_policy(policy)) {
a44702e8
ON
3437 unsigned long rlim_rtprio =
3438 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3439
3440 /* can't set/change the rt policy */
3441 if (policy != p->policy && !rlim_rtprio)
3442 return -EPERM;
3443
3444 /* can't increase priority */
3445 if (param->sched_priority > p->rt_priority &&
3446 param->sched_priority > rlim_rtprio)
3447 return -EPERM;
3448 }
c02aa73b 3449
dd41f596 3450 /*
c02aa73b
DH
3451 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3452 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3453 */
c02aa73b
DH
3454 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3455 if (!can_nice(p, TASK_NICE(p)))
3456 return -EPERM;
3457 }
5fe1d75f 3458
37e4ab3f 3459 /* can't change other user's priorities */
c69e8d9c 3460 if (!check_same_owner(p))
37e4ab3f 3461 return -EPERM;
ca94c442
LP
3462
3463 /* Normal users shall not reset the sched_reset_on_fork flag */
3464 if (p->sched_reset_on_fork && !reset_on_fork)
3465 return -EPERM;
37e4ab3f 3466 }
1da177e4 3467
725aad24 3468 if (user) {
b0ae1981 3469 retval = security_task_setscheduler(p);
725aad24
JF
3470 if (retval)
3471 return retval;
3472 }
3473
b29739f9
IM
3474 /*
3475 * make sure no PI-waiters arrive (or leave) while we are
3476 * changing the priority of the task:
0122ec5b 3477 *
25985edc 3478 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3479 * runqueue lock must be held.
3480 */
0122ec5b 3481 rq = task_rq_lock(p, &flags);
dc61b1d6 3482
34f971f6
PZ
3483 /*
3484 * Changing the policy of the stop threads its a very bad idea
3485 */
3486 if (p == rq->stop) {
0122ec5b 3487 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3488 return -EINVAL;
3489 }
3490
a51e9198
DF
3491 /*
3492 * If not changing anything there's no need to proceed further:
3493 */
3494 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3495 param->sched_priority == p->rt_priority))) {
45afb173 3496 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3497 return 0;
3498 }
3499
dc61b1d6
PZ
3500#ifdef CONFIG_RT_GROUP_SCHED
3501 if (user) {
3502 /*
3503 * Do not allow realtime tasks into groups that have no runtime
3504 * assigned.
3505 */
3506 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3507 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3508 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3509 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3510 return -EPERM;
3511 }
3512 }
3513#endif
3514
1da177e4
LT
3515 /* recheck policy now with rq lock held */
3516 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3517 policy = oldpolicy = -1;
0122ec5b 3518 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3519 goto recheck;
3520 }
fd2f4419 3521 on_rq = p->on_rq;
051a1d1a 3522 running = task_current(rq, p);
0e1f3483 3523 if (on_rq)
4ca9b72b 3524 dequeue_task(rq, p, 0);
0e1f3483
HS
3525 if (running)
3526 p->sched_class->put_prev_task(rq, p);
f6b53205 3527
ca94c442
LP
3528 p->sched_reset_on_fork = reset_on_fork;
3529
1da177e4 3530 oldprio = p->prio;
83ab0aa0 3531 prev_class = p->sched_class;
dd41f596 3532 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3533
0e1f3483
HS
3534 if (running)
3535 p->sched_class->set_curr_task(rq);
da7a735e 3536 if (on_rq)
4ca9b72b 3537 enqueue_task(rq, p, 0);
cb469845 3538
da7a735e 3539 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3540 task_rq_unlock(rq, p, &flags);
b29739f9 3541
95e02ca9
TG
3542 rt_mutex_adjust_pi(p);
3543
1da177e4
LT
3544 return 0;
3545}
961ccddd
RR
3546
3547/**
3548 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3549 * @p: the task in question.
3550 * @policy: new policy.
3551 * @param: structure containing the new RT priority.
3552 *
e69f6186
YB
3553 * Return: 0 on success. An error code otherwise.
3554 *
961ccddd
RR
3555 * NOTE that the task may be already dead.
3556 */
3557int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3558 const struct sched_param *param)
961ccddd
RR
3559{
3560 return __sched_setscheduler(p, policy, param, true);
3561}
1da177e4
LT
3562EXPORT_SYMBOL_GPL(sched_setscheduler);
3563
961ccddd
RR
3564/**
3565 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3566 * @p: the task in question.
3567 * @policy: new policy.
3568 * @param: structure containing the new RT priority.
3569 *
3570 * Just like sched_setscheduler, only don't bother checking if the
3571 * current context has permission. For example, this is needed in
3572 * stop_machine(): we create temporary high priority worker threads,
3573 * but our caller might not have that capability.
e69f6186
YB
3574 *
3575 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3576 */
3577int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3578 const struct sched_param *param)
961ccddd
RR
3579{
3580 return __sched_setscheduler(p, policy, param, false);
3581}
3582
95cdf3b7
IM
3583static int
3584do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3585{
1da177e4
LT
3586 struct sched_param lparam;
3587 struct task_struct *p;
36c8b586 3588 int retval;
1da177e4
LT
3589
3590 if (!param || pid < 0)
3591 return -EINVAL;
3592 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3593 return -EFAULT;
5fe1d75f
ON
3594
3595 rcu_read_lock();
3596 retval = -ESRCH;
1da177e4 3597 p = find_process_by_pid(pid);
5fe1d75f
ON
3598 if (p != NULL)
3599 retval = sched_setscheduler(p, policy, &lparam);
3600 rcu_read_unlock();
36c8b586 3601
1da177e4
LT
3602 return retval;
3603}
3604
3605/**
3606 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3607 * @pid: the pid in question.
3608 * @policy: new policy.
3609 * @param: structure containing the new RT priority.
e69f6186
YB
3610 *
3611 * Return: 0 on success. An error code otherwise.
1da177e4 3612 */
5add95d4
HC
3613SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3614 struct sched_param __user *, param)
1da177e4 3615{
c21761f1
JB
3616 /* negative values for policy are not valid */
3617 if (policy < 0)
3618 return -EINVAL;
3619
1da177e4
LT
3620 return do_sched_setscheduler(pid, policy, param);
3621}
3622
3623/**
3624 * sys_sched_setparam - set/change the RT priority of a thread
3625 * @pid: the pid in question.
3626 * @param: structure containing the new RT priority.
e69f6186
YB
3627 *
3628 * Return: 0 on success. An error code otherwise.
1da177e4 3629 */
5add95d4 3630SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3631{
3632 return do_sched_setscheduler(pid, -1, param);
3633}
3634
3635/**
3636 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3637 * @pid: the pid in question.
e69f6186
YB
3638 *
3639 * Return: On success, the policy of the thread. Otherwise, a negative error
3640 * code.
1da177e4 3641 */
5add95d4 3642SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3643{
36c8b586 3644 struct task_struct *p;
3a5c359a 3645 int retval;
1da177e4
LT
3646
3647 if (pid < 0)
3a5c359a 3648 return -EINVAL;
1da177e4
LT
3649
3650 retval = -ESRCH;
5fe85be0 3651 rcu_read_lock();
1da177e4
LT
3652 p = find_process_by_pid(pid);
3653 if (p) {
3654 retval = security_task_getscheduler(p);
3655 if (!retval)
ca94c442
LP
3656 retval = p->policy
3657 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3658 }
5fe85be0 3659 rcu_read_unlock();
1da177e4
LT
3660 return retval;
3661}
3662
3663/**
ca94c442 3664 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3665 * @pid: the pid in question.
3666 * @param: structure containing the RT priority.
e69f6186
YB
3667 *
3668 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3669 * code.
1da177e4 3670 */
5add95d4 3671SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3672{
3673 struct sched_param lp;
36c8b586 3674 struct task_struct *p;
3a5c359a 3675 int retval;
1da177e4
LT
3676
3677 if (!param || pid < 0)
3a5c359a 3678 return -EINVAL;
1da177e4 3679
5fe85be0 3680 rcu_read_lock();
1da177e4
LT
3681 p = find_process_by_pid(pid);
3682 retval = -ESRCH;
3683 if (!p)
3684 goto out_unlock;
3685
3686 retval = security_task_getscheduler(p);
3687 if (retval)
3688 goto out_unlock;
3689
3690 lp.sched_priority = p->rt_priority;
5fe85be0 3691 rcu_read_unlock();
1da177e4
LT
3692
3693 /*
3694 * This one might sleep, we cannot do it with a spinlock held ...
3695 */
3696 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3697
1da177e4
LT
3698 return retval;
3699
3700out_unlock:
5fe85be0 3701 rcu_read_unlock();
1da177e4
LT
3702 return retval;
3703}
3704
96f874e2 3705long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3706{
5a16f3d3 3707 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3708 struct task_struct *p;
3709 int retval;
1da177e4 3710
95402b38 3711 get_online_cpus();
23f5d142 3712 rcu_read_lock();
1da177e4
LT
3713
3714 p = find_process_by_pid(pid);
3715 if (!p) {
23f5d142 3716 rcu_read_unlock();
95402b38 3717 put_online_cpus();
1da177e4
LT
3718 return -ESRCH;
3719 }
3720
23f5d142 3721 /* Prevent p going away */
1da177e4 3722 get_task_struct(p);
23f5d142 3723 rcu_read_unlock();
1da177e4 3724
14a40ffc
TH
3725 if (p->flags & PF_NO_SETAFFINITY) {
3726 retval = -EINVAL;
3727 goto out_put_task;
3728 }
5a16f3d3
RR
3729 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3730 retval = -ENOMEM;
3731 goto out_put_task;
3732 }
3733 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3734 retval = -ENOMEM;
3735 goto out_free_cpus_allowed;
3736 }
1da177e4 3737 retval = -EPERM;
4c44aaaf
EB
3738 if (!check_same_owner(p)) {
3739 rcu_read_lock();
3740 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3741 rcu_read_unlock();
3742 goto out_unlock;
3743 }
3744 rcu_read_unlock();
3745 }
1da177e4 3746
b0ae1981 3747 retval = security_task_setscheduler(p);
e7834f8f
DQ
3748 if (retval)
3749 goto out_unlock;
3750
5a16f3d3
RR
3751 cpuset_cpus_allowed(p, cpus_allowed);
3752 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3753again:
5a16f3d3 3754 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3755
8707d8b8 3756 if (!retval) {
5a16f3d3
RR
3757 cpuset_cpus_allowed(p, cpus_allowed);
3758 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3759 /*
3760 * We must have raced with a concurrent cpuset
3761 * update. Just reset the cpus_allowed to the
3762 * cpuset's cpus_allowed
3763 */
5a16f3d3 3764 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3765 goto again;
3766 }
3767 }
1da177e4 3768out_unlock:
5a16f3d3
RR
3769 free_cpumask_var(new_mask);
3770out_free_cpus_allowed:
3771 free_cpumask_var(cpus_allowed);
3772out_put_task:
1da177e4 3773 put_task_struct(p);
95402b38 3774 put_online_cpus();
1da177e4
LT
3775 return retval;
3776}
3777
3778static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3779 struct cpumask *new_mask)
1da177e4 3780{
96f874e2
RR
3781 if (len < cpumask_size())
3782 cpumask_clear(new_mask);
3783 else if (len > cpumask_size())
3784 len = cpumask_size();
3785
1da177e4
LT
3786 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3787}
3788
3789/**
3790 * sys_sched_setaffinity - set the cpu affinity of a process
3791 * @pid: pid of the process
3792 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3793 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3794 *
3795 * Return: 0 on success. An error code otherwise.
1da177e4 3796 */
5add95d4
HC
3797SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3798 unsigned long __user *, user_mask_ptr)
1da177e4 3799{
5a16f3d3 3800 cpumask_var_t new_mask;
1da177e4
LT
3801 int retval;
3802
5a16f3d3
RR
3803 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3804 return -ENOMEM;
1da177e4 3805
5a16f3d3
RR
3806 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3807 if (retval == 0)
3808 retval = sched_setaffinity(pid, new_mask);
3809 free_cpumask_var(new_mask);
3810 return retval;
1da177e4
LT
3811}
3812
96f874e2 3813long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3814{
36c8b586 3815 struct task_struct *p;
31605683 3816 unsigned long flags;
1da177e4 3817 int retval;
1da177e4 3818
95402b38 3819 get_online_cpus();
23f5d142 3820 rcu_read_lock();
1da177e4
LT
3821
3822 retval = -ESRCH;
3823 p = find_process_by_pid(pid);
3824 if (!p)
3825 goto out_unlock;
3826
e7834f8f
DQ
3827 retval = security_task_getscheduler(p);
3828 if (retval)
3829 goto out_unlock;
3830
013fdb80 3831 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3832 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3833 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3834
3835out_unlock:
23f5d142 3836 rcu_read_unlock();
95402b38 3837 put_online_cpus();
1da177e4 3838
9531b62f 3839 return retval;
1da177e4
LT
3840}
3841
3842/**
3843 * sys_sched_getaffinity - get the cpu affinity of a process
3844 * @pid: pid of the process
3845 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3846 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3847 *
3848 * Return: 0 on success. An error code otherwise.
1da177e4 3849 */
5add95d4
HC
3850SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3851 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3852{
3853 int ret;
f17c8607 3854 cpumask_var_t mask;
1da177e4 3855
84fba5ec 3856 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3857 return -EINVAL;
3858 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3859 return -EINVAL;
3860
f17c8607
RR
3861 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3862 return -ENOMEM;
1da177e4 3863
f17c8607
RR
3864 ret = sched_getaffinity(pid, mask);
3865 if (ret == 0) {
8bc037fb 3866 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3867
3868 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3869 ret = -EFAULT;
3870 else
cd3d8031 3871 ret = retlen;
f17c8607
RR
3872 }
3873 free_cpumask_var(mask);
1da177e4 3874
f17c8607 3875 return ret;
1da177e4
LT
3876}
3877
3878/**
3879 * sys_sched_yield - yield the current processor to other threads.
3880 *
dd41f596
IM
3881 * This function yields the current CPU to other tasks. If there are no
3882 * other threads running on this CPU then this function will return.
e69f6186
YB
3883 *
3884 * Return: 0.
1da177e4 3885 */
5add95d4 3886SYSCALL_DEFINE0(sched_yield)
1da177e4 3887{
70b97a7f 3888 struct rq *rq = this_rq_lock();
1da177e4 3889
2d72376b 3890 schedstat_inc(rq, yld_count);
4530d7ab 3891 current->sched_class->yield_task(rq);
1da177e4
LT
3892
3893 /*
3894 * Since we are going to call schedule() anyway, there's
3895 * no need to preempt or enable interrupts:
3896 */
3897 __release(rq->lock);
8a25d5de 3898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3899 do_raw_spin_unlock(&rq->lock);
ba74c144 3900 sched_preempt_enable_no_resched();
1da177e4
LT
3901
3902 schedule();
3903
3904 return 0;
3905}
3906
e7b38404 3907static void __cond_resched(void)
1da177e4 3908{
bdb43806 3909 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3910 __schedule();
bdb43806 3911 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3912}
3913
02b67cc3 3914int __sched _cond_resched(void)
1da177e4 3915{
d86ee480 3916 if (should_resched()) {
1da177e4
LT
3917 __cond_resched();
3918 return 1;
3919 }
3920 return 0;
3921}
02b67cc3 3922EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3923
3924/*
613afbf8 3925 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3926 * call schedule, and on return reacquire the lock.
3927 *
41a2d6cf 3928 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3929 * operations here to prevent schedule() from being called twice (once via
3930 * spin_unlock(), once by hand).
3931 */
613afbf8 3932int __cond_resched_lock(spinlock_t *lock)
1da177e4 3933{
d86ee480 3934 int resched = should_resched();
6df3cecb
JK
3935 int ret = 0;
3936
f607c668
PZ
3937 lockdep_assert_held(lock);
3938
95c354fe 3939 if (spin_needbreak(lock) || resched) {
1da177e4 3940 spin_unlock(lock);
d86ee480 3941 if (resched)
95c354fe
NP
3942 __cond_resched();
3943 else
3944 cpu_relax();
6df3cecb 3945 ret = 1;
1da177e4 3946 spin_lock(lock);
1da177e4 3947 }
6df3cecb 3948 return ret;
1da177e4 3949}
613afbf8 3950EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3951
613afbf8 3952int __sched __cond_resched_softirq(void)
1da177e4
LT
3953{
3954 BUG_ON(!in_softirq());
3955
d86ee480 3956 if (should_resched()) {
98d82567 3957 local_bh_enable();
1da177e4
LT
3958 __cond_resched();
3959 local_bh_disable();
3960 return 1;
3961 }
3962 return 0;
3963}
613afbf8 3964EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3965
1da177e4
LT
3966/**
3967 * yield - yield the current processor to other threads.
3968 *
8e3fabfd
PZ
3969 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3970 *
3971 * The scheduler is at all times free to pick the calling task as the most
3972 * eligible task to run, if removing the yield() call from your code breaks
3973 * it, its already broken.
3974 *
3975 * Typical broken usage is:
3976 *
3977 * while (!event)
3978 * yield();
3979 *
3980 * where one assumes that yield() will let 'the other' process run that will
3981 * make event true. If the current task is a SCHED_FIFO task that will never
3982 * happen. Never use yield() as a progress guarantee!!
3983 *
3984 * If you want to use yield() to wait for something, use wait_event().
3985 * If you want to use yield() to be 'nice' for others, use cond_resched().
3986 * If you still want to use yield(), do not!
1da177e4
LT
3987 */
3988void __sched yield(void)
3989{
3990 set_current_state(TASK_RUNNING);
3991 sys_sched_yield();
3992}
1da177e4
LT
3993EXPORT_SYMBOL(yield);
3994
d95f4122
MG
3995/**
3996 * yield_to - yield the current processor to another thread in
3997 * your thread group, or accelerate that thread toward the
3998 * processor it's on.
16addf95
RD
3999 * @p: target task
4000 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4001 *
4002 * It's the caller's job to ensure that the target task struct
4003 * can't go away on us before we can do any checks.
4004 *
e69f6186 4005 * Return:
7b270f60
PZ
4006 * true (>0) if we indeed boosted the target task.
4007 * false (0) if we failed to boost the target.
4008 * -ESRCH if there's no task to yield to.
d95f4122
MG
4009 */
4010bool __sched yield_to(struct task_struct *p, bool preempt)
4011{
4012 struct task_struct *curr = current;
4013 struct rq *rq, *p_rq;
4014 unsigned long flags;
c3c18640 4015 int yielded = 0;
d95f4122
MG
4016
4017 local_irq_save(flags);
4018 rq = this_rq();
4019
4020again:
4021 p_rq = task_rq(p);
7b270f60
PZ
4022 /*
4023 * If we're the only runnable task on the rq and target rq also
4024 * has only one task, there's absolutely no point in yielding.
4025 */
4026 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4027 yielded = -ESRCH;
4028 goto out_irq;
4029 }
4030
d95f4122
MG
4031 double_rq_lock(rq, p_rq);
4032 while (task_rq(p) != p_rq) {
4033 double_rq_unlock(rq, p_rq);
4034 goto again;
4035 }
4036
4037 if (!curr->sched_class->yield_to_task)
7b270f60 4038 goto out_unlock;
d95f4122
MG
4039
4040 if (curr->sched_class != p->sched_class)
7b270f60 4041 goto out_unlock;
d95f4122
MG
4042
4043 if (task_running(p_rq, p) || p->state)
7b270f60 4044 goto out_unlock;
d95f4122
MG
4045
4046 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4047 if (yielded) {
d95f4122 4048 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4049 /*
4050 * Make p's CPU reschedule; pick_next_entity takes care of
4051 * fairness.
4052 */
4053 if (preempt && rq != p_rq)
4054 resched_task(p_rq->curr);
4055 }
d95f4122 4056
7b270f60 4057out_unlock:
d95f4122 4058 double_rq_unlock(rq, p_rq);
7b270f60 4059out_irq:
d95f4122
MG
4060 local_irq_restore(flags);
4061
7b270f60 4062 if (yielded > 0)
d95f4122
MG
4063 schedule();
4064
4065 return yielded;
4066}
4067EXPORT_SYMBOL_GPL(yield_to);
4068
1da177e4 4069/*
41a2d6cf 4070 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4071 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4072 */
4073void __sched io_schedule(void)
4074{
54d35f29 4075 struct rq *rq = raw_rq();
1da177e4 4076
0ff92245 4077 delayacct_blkio_start();
1da177e4 4078 atomic_inc(&rq->nr_iowait);
73c10101 4079 blk_flush_plug(current);
8f0dfc34 4080 current->in_iowait = 1;
1da177e4 4081 schedule();
8f0dfc34 4082 current->in_iowait = 0;
1da177e4 4083 atomic_dec(&rq->nr_iowait);
0ff92245 4084 delayacct_blkio_end();
1da177e4 4085}
1da177e4
LT
4086EXPORT_SYMBOL(io_schedule);
4087
4088long __sched io_schedule_timeout(long timeout)
4089{
54d35f29 4090 struct rq *rq = raw_rq();
1da177e4
LT
4091 long ret;
4092
0ff92245 4093 delayacct_blkio_start();
1da177e4 4094 atomic_inc(&rq->nr_iowait);
73c10101 4095 blk_flush_plug(current);
8f0dfc34 4096 current->in_iowait = 1;
1da177e4 4097 ret = schedule_timeout(timeout);
8f0dfc34 4098 current->in_iowait = 0;
1da177e4 4099 atomic_dec(&rq->nr_iowait);
0ff92245 4100 delayacct_blkio_end();
1da177e4
LT
4101 return ret;
4102}
4103
4104/**
4105 * sys_sched_get_priority_max - return maximum RT priority.
4106 * @policy: scheduling class.
4107 *
e69f6186
YB
4108 * Return: On success, this syscall returns the maximum
4109 * rt_priority that can be used by a given scheduling class.
4110 * On failure, a negative error code is returned.
1da177e4 4111 */
5add95d4 4112SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4113{
4114 int ret = -EINVAL;
4115
4116 switch (policy) {
4117 case SCHED_FIFO:
4118 case SCHED_RR:
4119 ret = MAX_USER_RT_PRIO-1;
4120 break;
4121 case SCHED_NORMAL:
b0a9499c 4122 case SCHED_BATCH:
dd41f596 4123 case SCHED_IDLE:
1da177e4
LT
4124 ret = 0;
4125 break;
4126 }
4127 return ret;
4128}
4129
4130/**
4131 * sys_sched_get_priority_min - return minimum RT priority.
4132 * @policy: scheduling class.
4133 *
e69f6186
YB
4134 * Return: On success, this syscall returns the minimum
4135 * rt_priority that can be used by a given scheduling class.
4136 * On failure, a negative error code is returned.
1da177e4 4137 */
5add95d4 4138SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4139{
4140 int ret = -EINVAL;
4141
4142 switch (policy) {
4143 case SCHED_FIFO:
4144 case SCHED_RR:
4145 ret = 1;
4146 break;
4147 case SCHED_NORMAL:
b0a9499c 4148 case SCHED_BATCH:
dd41f596 4149 case SCHED_IDLE:
1da177e4
LT
4150 ret = 0;
4151 }
4152 return ret;
4153}
4154
4155/**
4156 * sys_sched_rr_get_interval - return the default timeslice of a process.
4157 * @pid: pid of the process.
4158 * @interval: userspace pointer to the timeslice value.
4159 *
4160 * this syscall writes the default timeslice value of a given process
4161 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4162 *
4163 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4164 * an error code.
1da177e4 4165 */
17da2bd9 4166SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4167 struct timespec __user *, interval)
1da177e4 4168{
36c8b586 4169 struct task_struct *p;
a4ec24b4 4170 unsigned int time_slice;
dba091b9
TG
4171 unsigned long flags;
4172 struct rq *rq;
3a5c359a 4173 int retval;
1da177e4 4174 struct timespec t;
1da177e4
LT
4175
4176 if (pid < 0)
3a5c359a 4177 return -EINVAL;
1da177e4
LT
4178
4179 retval = -ESRCH;
1a551ae7 4180 rcu_read_lock();
1da177e4
LT
4181 p = find_process_by_pid(pid);
4182 if (!p)
4183 goto out_unlock;
4184
4185 retval = security_task_getscheduler(p);
4186 if (retval)
4187 goto out_unlock;
4188
dba091b9
TG
4189 rq = task_rq_lock(p, &flags);
4190 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4191 task_rq_unlock(rq, p, &flags);
a4ec24b4 4192
1a551ae7 4193 rcu_read_unlock();
a4ec24b4 4194 jiffies_to_timespec(time_slice, &t);
1da177e4 4195 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4196 return retval;
3a5c359a 4197
1da177e4 4198out_unlock:
1a551ae7 4199 rcu_read_unlock();
1da177e4
LT
4200 return retval;
4201}
4202
7c731e0a 4203static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4204
82a1fcb9 4205void sched_show_task(struct task_struct *p)
1da177e4 4206{
1da177e4 4207 unsigned long free = 0;
4e79752c 4208 int ppid;
36c8b586 4209 unsigned state;
1da177e4 4210
1da177e4 4211 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4212 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4213 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4214#if BITS_PER_LONG == 32
1da177e4 4215 if (state == TASK_RUNNING)
3df0fc5b 4216 printk(KERN_CONT " running ");
1da177e4 4217 else
3df0fc5b 4218 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4219#else
4220 if (state == TASK_RUNNING)
3df0fc5b 4221 printk(KERN_CONT " running task ");
1da177e4 4222 else
3df0fc5b 4223 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4224#endif
4225#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4226 free = stack_not_used(p);
1da177e4 4227#endif
4e79752c
PM
4228 rcu_read_lock();
4229 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4230 rcu_read_unlock();
3df0fc5b 4231 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4232 task_pid_nr(p), ppid,
aa47b7e0 4233 (unsigned long)task_thread_info(p)->flags);
1da177e4 4234
3d1cb205 4235 print_worker_info(KERN_INFO, p);
5fb5e6de 4236 show_stack(p, NULL);
1da177e4
LT
4237}
4238
e59e2ae2 4239void show_state_filter(unsigned long state_filter)
1da177e4 4240{
36c8b586 4241 struct task_struct *g, *p;
1da177e4 4242
4bd77321 4243#if BITS_PER_LONG == 32
3df0fc5b
PZ
4244 printk(KERN_INFO
4245 " task PC stack pid father\n");
1da177e4 4246#else
3df0fc5b
PZ
4247 printk(KERN_INFO
4248 " task PC stack pid father\n");
1da177e4 4249#endif
510f5acc 4250 rcu_read_lock();
1da177e4
LT
4251 do_each_thread(g, p) {
4252 /*
4253 * reset the NMI-timeout, listing all files on a slow
25985edc 4254 * console might take a lot of time:
1da177e4
LT
4255 */
4256 touch_nmi_watchdog();
39bc89fd 4257 if (!state_filter || (p->state & state_filter))
82a1fcb9 4258 sched_show_task(p);
1da177e4
LT
4259 } while_each_thread(g, p);
4260
04c9167f
JF
4261 touch_all_softlockup_watchdogs();
4262
dd41f596
IM
4263#ifdef CONFIG_SCHED_DEBUG
4264 sysrq_sched_debug_show();
4265#endif
510f5acc 4266 rcu_read_unlock();
e59e2ae2
IM
4267 /*
4268 * Only show locks if all tasks are dumped:
4269 */
93335a21 4270 if (!state_filter)
e59e2ae2 4271 debug_show_all_locks();
1da177e4
LT
4272}
4273
0db0628d 4274void init_idle_bootup_task(struct task_struct *idle)
1df21055 4275{
dd41f596 4276 idle->sched_class = &idle_sched_class;
1df21055
IM
4277}
4278
f340c0d1
IM
4279/**
4280 * init_idle - set up an idle thread for a given CPU
4281 * @idle: task in question
4282 * @cpu: cpu the idle task belongs to
4283 *
4284 * NOTE: this function does not set the idle thread's NEED_RESCHED
4285 * flag, to make booting more robust.
4286 */
0db0628d 4287void init_idle(struct task_struct *idle, int cpu)
1da177e4 4288{
70b97a7f 4289 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4290 unsigned long flags;
4291
05fa785c 4292 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4293
5e1576ed 4294 __sched_fork(0, idle);
06b83b5f 4295 idle->state = TASK_RUNNING;
dd41f596
IM
4296 idle->se.exec_start = sched_clock();
4297
1e1b6c51 4298 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4299 /*
4300 * We're having a chicken and egg problem, even though we are
4301 * holding rq->lock, the cpu isn't yet set to this cpu so the
4302 * lockdep check in task_group() will fail.
4303 *
4304 * Similar case to sched_fork(). / Alternatively we could
4305 * use task_rq_lock() here and obtain the other rq->lock.
4306 *
4307 * Silence PROVE_RCU
4308 */
4309 rcu_read_lock();
dd41f596 4310 __set_task_cpu(idle, cpu);
6506cf6c 4311 rcu_read_unlock();
1da177e4 4312
1da177e4 4313 rq->curr = rq->idle = idle;
3ca7a440
PZ
4314#if defined(CONFIG_SMP)
4315 idle->on_cpu = 1;
4866cde0 4316#endif
05fa785c 4317 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4318
4319 /* Set the preempt count _outside_ the spinlocks! */
01028747 4320 init_idle_preempt_count(idle, cpu);
55cd5340 4321
dd41f596
IM
4322 /*
4323 * The idle tasks have their own, simple scheduling class:
4324 */
4325 idle->sched_class = &idle_sched_class;
868baf07 4326 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4327 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4328#if defined(CONFIG_SMP)
4329 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4330#endif
19978ca6
IM
4331}
4332
1da177e4 4333#ifdef CONFIG_SMP
1e1b6c51
KM
4334void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4335{
4336 if (p->sched_class && p->sched_class->set_cpus_allowed)
4337 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4338
4339 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4340 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4341}
4342
1da177e4
LT
4343/*
4344 * This is how migration works:
4345 *
969c7921
TH
4346 * 1) we invoke migration_cpu_stop() on the target CPU using
4347 * stop_one_cpu().
4348 * 2) stopper starts to run (implicitly forcing the migrated thread
4349 * off the CPU)
4350 * 3) it checks whether the migrated task is still in the wrong runqueue.
4351 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4352 * it and puts it into the right queue.
969c7921
TH
4353 * 5) stopper completes and stop_one_cpu() returns and the migration
4354 * is done.
1da177e4
LT
4355 */
4356
4357/*
4358 * Change a given task's CPU affinity. Migrate the thread to a
4359 * proper CPU and schedule it away if the CPU it's executing on
4360 * is removed from the allowed bitmask.
4361 *
4362 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4363 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4364 * call is not atomic; no spinlocks may be held.
4365 */
96f874e2 4366int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4367{
4368 unsigned long flags;
70b97a7f 4369 struct rq *rq;
969c7921 4370 unsigned int dest_cpu;
48f24c4d 4371 int ret = 0;
1da177e4
LT
4372
4373 rq = task_rq_lock(p, &flags);
e2912009 4374
db44fc01
YZ
4375 if (cpumask_equal(&p->cpus_allowed, new_mask))
4376 goto out;
4377
6ad4c188 4378 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4379 ret = -EINVAL;
4380 goto out;
4381 }
4382
1e1b6c51 4383 do_set_cpus_allowed(p, new_mask);
73fe6aae 4384
1da177e4 4385 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4386 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4387 goto out;
4388
969c7921 4389 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4390 if (p->on_rq) {
969c7921 4391 struct migration_arg arg = { p, dest_cpu };
1da177e4 4392 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4393 task_rq_unlock(rq, p, &flags);
969c7921 4394 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4395 tlb_migrate_finish(p->mm);
4396 return 0;
4397 }
4398out:
0122ec5b 4399 task_rq_unlock(rq, p, &flags);
48f24c4d 4400
1da177e4
LT
4401 return ret;
4402}
cd8ba7cd 4403EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4404
4405/*
41a2d6cf 4406 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4407 * this because either it can't run here any more (set_cpus_allowed()
4408 * away from this CPU, or CPU going down), or because we're
4409 * attempting to rebalance this task on exec (sched_exec).
4410 *
4411 * So we race with normal scheduler movements, but that's OK, as long
4412 * as the task is no longer on this CPU.
efc30814
KK
4413 *
4414 * Returns non-zero if task was successfully migrated.
1da177e4 4415 */
efc30814 4416static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4417{
70b97a7f 4418 struct rq *rq_dest, *rq_src;
e2912009 4419 int ret = 0;
1da177e4 4420
e761b772 4421 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4422 return ret;
1da177e4
LT
4423
4424 rq_src = cpu_rq(src_cpu);
4425 rq_dest = cpu_rq(dest_cpu);
4426
0122ec5b 4427 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4428 double_rq_lock(rq_src, rq_dest);
4429 /* Already moved. */
4430 if (task_cpu(p) != src_cpu)
b1e38734 4431 goto done;
1da177e4 4432 /* Affinity changed (again). */
fa17b507 4433 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4434 goto fail;
1da177e4 4435
e2912009
PZ
4436 /*
4437 * If we're not on a rq, the next wake-up will ensure we're
4438 * placed properly.
4439 */
fd2f4419 4440 if (p->on_rq) {
4ca9b72b 4441 dequeue_task(rq_src, p, 0);
e2912009 4442 set_task_cpu(p, dest_cpu);
4ca9b72b 4443 enqueue_task(rq_dest, p, 0);
15afe09b 4444 check_preempt_curr(rq_dest, p, 0);
1da177e4 4445 }
b1e38734 4446done:
efc30814 4447 ret = 1;
b1e38734 4448fail:
1da177e4 4449 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4450 raw_spin_unlock(&p->pi_lock);
efc30814 4451 return ret;
1da177e4
LT
4452}
4453
e6628d5b
MG
4454#ifdef CONFIG_NUMA_BALANCING
4455/* Migrate current task p to target_cpu */
4456int migrate_task_to(struct task_struct *p, int target_cpu)
4457{
4458 struct migration_arg arg = { p, target_cpu };
4459 int curr_cpu = task_cpu(p);
4460
4461 if (curr_cpu == target_cpu)
4462 return 0;
4463
4464 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4465 return -EINVAL;
4466
4467 /* TODO: This is not properly updating schedstats */
4468
4469 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4470}
4471#endif
4472
1da177e4 4473/*
969c7921
TH
4474 * migration_cpu_stop - this will be executed by a highprio stopper thread
4475 * and performs thread migration by bumping thread off CPU then
4476 * 'pushing' onto another runqueue.
1da177e4 4477 */
969c7921 4478static int migration_cpu_stop(void *data)
1da177e4 4479{
969c7921 4480 struct migration_arg *arg = data;
f7b4cddc 4481
969c7921
TH
4482 /*
4483 * The original target cpu might have gone down and we might
4484 * be on another cpu but it doesn't matter.
4485 */
f7b4cddc 4486 local_irq_disable();
969c7921 4487 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4488 local_irq_enable();
1da177e4 4489 return 0;
f7b4cddc
ON
4490}
4491
1da177e4 4492#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4493
054b9108 4494/*
48c5ccae
PZ
4495 * Ensures that the idle task is using init_mm right before its cpu goes
4496 * offline.
054b9108 4497 */
48c5ccae 4498void idle_task_exit(void)
1da177e4 4499{
48c5ccae 4500 struct mm_struct *mm = current->active_mm;
e76bd8d9 4501
48c5ccae 4502 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4503
48c5ccae
PZ
4504 if (mm != &init_mm)
4505 switch_mm(mm, &init_mm, current);
4506 mmdrop(mm);
1da177e4
LT
4507}
4508
4509/*
5d180232
PZ
4510 * Since this CPU is going 'away' for a while, fold any nr_active delta
4511 * we might have. Assumes we're called after migrate_tasks() so that the
4512 * nr_active count is stable.
4513 *
4514 * Also see the comment "Global load-average calculations".
1da177e4 4515 */
5d180232 4516static void calc_load_migrate(struct rq *rq)
1da177e4 4517{
5d180232
PZ
4518 long delta = calc_load_fold_active(rq);
4519 if (delta)
4520 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4521}
4522
48f24c4d 4523/*
48c5ccae
PZ
4524 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4525 * try_to_wake_up()->select_task_rq().
4526 *
4527 * Called with rq->lock held even though we'er in stop_machine() and
4528 * there's no concurrency possible, we hold the required locks anyway
4529 * because of lock validation efforts.
1da177e4 4530 */
48c5ccae 4531static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4532{
70b97a7f 4533 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4534 struct task_struct *next, *stop = rq->stop;
4535 int dest_cpu;
1da177e4
LT
4536
4537 /*
48c5ccae
PZ
4538 * Fudge the rq selection such that the below task selection loop
4539 * doesn't get stuck on the currently eligible stop task.
4540 *
4541 * We're currently inside stop_machine() and the rq is either stuck
4542 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4543 * either way we should never end up calling schedule() until we're
4544 * done here.
1da177e4 4545 */
48c5ccae 4546 rq->stop = NULL;
48f24c4d 4547
77bd3970
FW
4548 /*
4549 * put_prev_task() and pick_next_task() sched
4550 * class method both need to have an up-to-date
4551 * value of rq->clock[_task]
4552 */
4553 update_rq_clock(rq);
4554
dd41f596 4555 for ( ; ; ) {
48c5ccae
PZ
4556 /*
4557 * There's this thread running, bail when that's the only
4558 * remaining thread.
4559 */
4560 if (rq->nr_running == 1)
dd41f596 4561 break;
48c5ccae 4562
b67802ea 4563 next = pick_next_task(rq);
48c5ccae 4564 BUG_ON(!next);
79c53799 4565 next->sched_class->put_prev_task(rq, next);
e692ab53 4566
48c5ccae
PZ
4567 /* Find suitable destination for @next, with force if needed. */
4568 dest_cpu = select_fallback_rq(dead_cpu, next);
4569 raw_spin_unlock(&rq->lock);
4570
4571 __migrate_task(next, dead_cpu, dest_cpu);
4572
4573 raw_spin_lock(&rq->lock);
1da177e4 4574 }
dce48a84 4575
48c5ccae 4576 rq->stop = stop;
dce48a84 4577}
48c5ccae 4578
1da177e4
LT
4579#endif /* CONFIG_HOTPLUG_CPU */
4580
e692ab53
NP
4581#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4582
4583static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4584 {
4585 .procname = "sched_domain",
c57baf1e 4586 .mode = 0555,
e0361851 4587 },
56992309 4588 {}
e692ab53
NP
4589};
4590
4591static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4592 {
4593 .procname = "kernel",
c57baf1e 4594 .mode = 0555,
e0361851
AD
4595 .child = sd_ctl_dir,
4596 },
56992309 4597 {}
e692ab53
NP
4598};
4599
4600static struct ctl_table *sd_alloc_ctl_entry(int n)
4601{
4602 struct ctl_table *entry =
5cf9f062 4603 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4604
e692ab53
NP
4605 return entry;
4606}
4607
6382bc90
MM
4608static void sd_free_ctl_entry(struct ctl_table **tablep)
4609{
cd790076 4610 struct ctl_table *entry;
6382bc90 4611
cd790076
MM
4612 /*
4613 * In the intermediate directories, both the child directory and
4614 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4615 * will always be set. In the lowest directory the names are
cd790076
MM
4616 * static strings and all have proc handlers.
4617 */
4618 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4619 if (entry->child)
4620 sd_free_ctl_entry(&entry->child);
cd790076
MM
4621 if (entry->proc_handler == NULL)
4622 kfree(entry->procname);
4623 }
6382bc90
MM
4624
4625 kfree(*tablep);
4626 *tablep = NULL;
4627}
4628
201c373e 4629static int min_load_idx = 0;
fd9b86d3 4630static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4631
e692ab53 4632static void
e0361851 4633set_table_entry(struct ctl_table *entry,
e692ab53 4634 const char *procname, void *data, int maxlen,
201c373e
NK
4635 umode_t mode, proc_handler *proc_handler,
4636 bool load_idx)
e692ab53 4637{
e692ab53
NP
4638 entry->procname = procname;
4639 entry->data = data;
4640 entry->maxlen = maxlen;
4641 entry->mode = mode;
4642 entry->proc_handler = proc_handler;
201c373e
NK
4643
4644 if (load_idx) {
4645 entry->extra1 = &min_load_idx;
4646 entry->extra2 = &max_load_idx;
4647 }
e692ab53
NP
4648}
4649
4650static struct ctl_table *
4651sd_alloc_ctl_domain_table(struct sched_domain *sd)
4652{
a5d8c348 4653 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4654
ad1cdc1d
MM
4655 if (table == NULL)
4656 return NULL;
4657
e0361851 4658 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4659 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4660 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4661 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4662 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4663 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4664 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4665 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4666 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4667 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4668 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4669 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4670 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4671 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4672 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4673 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4674 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4675 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4676 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4677 &sd->cache_nice_tries,
201c373e 4678 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4679 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4680 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4681 set_table_entry(&table[11], "name", sd->name,
201c373e 4682 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4683 /* &table[12] is terminator */
e692ab53
NP
4684
4685 return table;
4686}
4687
be7002e6 4688static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4689{
4690 struct ctl_table *entry, *table;
4691 struct sched_domain *sd;
4692 int domain_num = 0, i;
4693 char buf[32];
4694
4695 for_each_domain(cpu, sd)
4696 domain_num++;
4697 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4698 if (table == NULL)
4699 return NULL;
e692ab53
NP
4700
4701 i = 0;
4702 for_each_domain(cpu, sd) {
4703 snprintf(buf, 32, "domain%d", i);
e692ab53 4704 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4705 entry->mode = 0555;
e692ab53
NP
4706 entry->child = sd_alloc_ctl_domain_table(sd);
4707 entry++;
4708 i++;
4709 }
4710 return table;
4711}
4712
4713static struct ctl_table_header *sd_sysctl_header;
6382bc90 4714static void register_sched_domain_sysctl(void)
e692ab53 4715{
6ad4c188 4716 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4717 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4718 char buf[32];
4719
7378547f
MM
4720 WARN_ON(sd_ctl_dir[0].child);
4721 sd_ctl_dir[0].child = entry;
4722
ad1cdc1d
MM
4723 if (entry == NULL)
4724 return;
4725
6ad4c188 4726 for_each_possible_cpu(i) {
e692ab53 4727 snprintf(buf, 32, "cpu%d", i);
e692ab53 4728 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4729 entry->mode = 0555;
e692ab53 4730 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4731 entry++;
e692ab53 4732 }
7378547f
MM
4733
4734 WARN_ON(sd_sysctl_header);
e692ab53
NP
4735 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4736}
6382bc90 4737
7378547f 4738/* may be called multiple times per register */
6382bc90
MM
4739static void unregister_sched_domain_sysctl(void)
4740{
7378547f
MM
4741 if (sd_sysctl_header)
4742 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4743 sd_sysctl_header = NULL;
7378547f
MM
4744 if (sd_ctl_dir[0].child)
4745 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4746}
e692ab53 4747#else
6382bc90
MM
4748static void register_sched_domain_sysctl(void)
4749{
4750}
4751static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4752{
4753}
4754#endif
4755
1f11eb6a
GH
4756static void set_rq_online(struct rq *rq)
4757{
4758 if (!rq->online) {
4759 const struct sched_class *class;
4760
c6c4927b 4761 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4762 rq->online = 1;
4763
4764 for_each_class(class) {
4765 if (class->rq_online)
4766 class->rq_online(rq);
4767 }
4768 }
4769}
4770
4771static void set_rq_offline(struct rq *rq)
4772{
4773 if (rq->online) {
4774 const struct sched_class *class;
4775
4776 for_each_class(class) {
4777 if (class->rq_offline)
4778 class->rq_offline(rq);
4779 }
4780
c6c4927b 4781 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4782 rq->online = 0;
4783 }
4784}
4785
1da177e4
LT
4786/*
4787 * migration_call - callback that gets triggered when a CPU is added.
4788 * Here we can start up the necessary migration thread for the new CPU.
4789 */
0db0628d 4790static int
48f24c4d 4791migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4792{
48f24c4d 4793 int cpu = (long)hcpu;
1da177e4 4794 unsigned long flags;
969c7921 4795 struct rq *rq = cpu_rq(cpu);
1da177e4 4796
48c5ccae 4797 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4798
1da177e4 4799 case CPU_UP_PREPARE:
a468d389 4800 rq->calc_load_update = calc_load_update;
1da177e4 4801 break;
48f24c4d 4802
1da177e4 4803 case CPU_ONLINE:
1f94ef59 4804 /* Update our root-domain */
05fa785c 4805 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4806 if (rq->rd) {
c6c4927b 4807 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4808
4809 set_rq_online(rq);
1f94ef59 4810 }
05fa785c 4811 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4812 break;
48f24c4d 4813
1da177e4 4814#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4815 case CPU_DYING:
317f3941 4816 sched_ttwu_pending();
57d885fe 4817 /* Update our root-domain */
05fa785c 4818 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4819 if (rq->rd) {
c6c4927b 4820 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4821 set_rq_offline(rq);
57d885fe 4822 }
48c5ccae
PZ
4823 migrate_tasks(cpu);
4824 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4825 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4826 break;
48c5ccae 4827
5d180232 4828 case CPU_DEAD:
f319da0c 4829 calc_load_migrate(rq);
57d885fe 4830 break;
1da177e4
LT
4831#endif
4832 }
49c022e6
PZ
4833
4834 update_max_interval();
4835
1da177e4
LT
4836 return NOTIFY_OK;
4837}
4838
f38b0820
PM
4839/*
4840 * Register at high priority so that task migration (migrate_all_tasks)
4841 * happens before everything else. This has to be lower priority than
cdd6c482 4842 * the notifier in the perf_event subsystem, though.
1da177e4 4843 */
0db0628d 4844static struct notifier_block migration_notifier = {
1da177e4 4845 .notifier_call = migration_call,
50a323b7 4846 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4847};
4848
0db0628d 4849static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4850 unsigned long action, void *hcpu)
4851{
4852 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4853 case CPU_STARTING:
3a101d05
TH
4854 case CPU_DOWN_FAILED:
4855 set_cpu_active((long)hcpu, true);
4856 return NOTIFY_OK;
4857 default:
4858 return NOTIFY_DONE;
4859 }
4860}
4861
0db0628d 4862static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4863 unsigned long action, void *hcpu)
4864{
4865 switch (action & ~CPU_TASKS_FROZEN) {
4866 case CPU_DOWN_PREPARE:
4867 set_cpu_active((long)hcpu, false);
4868 return NOTIFY_OK;
4869 default:
4870 return NOTIFY_DONE;
4871 }
4872}
4873
7babe8db 4874static int __init migration_init(void)
1da177e4
LT
4875{
4876 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4877 int err;
48f24c4d 4878
3a101d05 4879 /* Initialize migration for the boot CPU */
07dccf33
AM
4880 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4881 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4882 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4883 register_cpu_notifier(&migration_notifier);
7babe8db 4884
3a101d05
TH
4885 /* Register cpu active notifiers */
4886 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4887 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4888
a004cd42 4889 return 0;
1da177e4 4890}
7babe8db 4891early_initcall(migration_init);
1da177e4
LT
4892#endif
4893
4894#ifdef CONFIG_SMP
476f3534 4895
4cb98839
PZ
4896static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4897
3e9830dc 4898#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4899
d039ac60 4900static __read_mostly int sched_debug_enabled;
f6630114 4901
d039ac60 4902static int __init sched_debug_setup(char *str)
f6630114 4903{
d039ac60 4904 sched_debug_enabled = 1;
f6630114
MT
4905
4906 return 0;
4907}
d039ac60
PZ
4908early_param("sched_debug", sched_debug_setup);
4909
4910static inline bool sched_debug(void)
4911{
4912 return sched_debug_enabled;
4913}
f6630114 4914
7c16ec58 4915static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4916 struct cpumask *groupmask)
1da177e4 4917{
4dcf6aff 4918 struct sched_group *group = sd->groups;
434d53b0 4919 char str[256];
1da177e4 4920
968ea6d8 4921 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4922 cpumask_clear(groupmask);
4dcf6aff
IM
4923
4924 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4925
4926 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4927 printk("does not load-balance\n");
4dcf6aff 4928 if (sd->parent)
3df0fc5b
PZ
4929 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4930 " has parent");
4dcf6aff 4931 return -1;
41c7ce9a
NP
4932 }
4933
3df0fc5b 4934 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4935
758b2cdc 4936 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4937 printk(KERN_ERR "ERROR: domain->span does not contain "
4938 "CPU%d\n", cpu);
4dcf6aff 4939 }
758b2cdc 4940 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4941 printk(KERN_ERR "ERROR: domain->groups does not contain"
4942 " CPU%d\n", cpu);
4dcf6aff 4943 }
1da177e4 4944
4dcf6aff 4945 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4946 do {
4dcf6aff 4947 if (!group) {
3df0fc5b
PZ
4948 printk("\n");
4949 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4950 break;
4951 }
4952
c3decf0d
PZ
4953 /*
4954 * Even though we initialize ->power to something semi-sane,
4955 * we leave power_orig unset. This allows us to detect if
4956 * domain iteration is still funny without causing /0 traps.
4957 */
4958 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4959 printk(KERN_CONT "\n");
4960 printk(KERN_ERR "ERROR: domain->cpu_power not "
4961 "set\n");
4dcf6aff
IM
4962 break;
4963 }
1da177e4 4964
758b2cdc 4965 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4966 printk(KERN_CONT "\n");
4967 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4968 break;
4969 }
1da177e4 4970
cb83b629
PZ
4971 if (!(sd->flags & SD_OVERLAP) &&
4972 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4973 printk(KERN_CONT "\n");
4974 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4975 break;
4976 }
1da177e4 4977
758b2cdc 4978 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4979
968ea6d8 4980 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4981
3df0fc5b 4982 printk(KERN_CONT " %s", str);
9c3f75cb 4983 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4984 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4985 group->sgp->power);
381512cf 4986 }
1da177e4 4987
4dcf6aff
IM
4988 group = group->next;
4989 } while (group != sd->groups);
3df0fc5b 4990 printk(KERN_CONT "\n");
1da177e4 4991
758b2cdc 4992 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4993 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4994
758b2cdc
RR
4995 if (sd->parent &&
4996 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4997 printk(KERN_ERR "ERROR: parent span is not a superset "
4998 "of domain->span\n");
4dcf6aff
IM
4999 return 0;
5000}
1da177e4 5001
4dcf6aff
IM
5002static void sched_domain_debug(struct sched_domain *sd, int cpu)
5003{
5004 int level = 0;
1da177e4 5005
d039ac60 5006 if (!sched_debug_enabled)
f6630114
MT
5007 return;
5008
4dcf6aff
IM
5009 if (!sd) {
5010 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5011 return;
5012 }
1da177e4 5013
4dcf6aff
IM
5014 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5015
5016 for (;;) {
4cb98839 5017 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5018 break;
1da177e4
LT
5019 level++;
5020 sd = sd->parent;
33859f7f 5021 if (!sd)
4dcf6aff
IM
5022 break;
5023 }
1da177e4 5024}
6d6bc0ad 5025#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5026# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5027static inline bool sched_debug(void)
5028{
5029 return false;
5030}
6d6bc0ad 5031#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5032
1a20ff27 5033static int sd_degenerate(struct sched_domain *sd)
245af2c7 5034{
758b2cdc 5035 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5036 return 1;
5037
5038 /* Following flags need at least 2 groups */
5039 if (sd->flags & (SD_LOAD_BALANCE |
5040 SD_BALANCE_NEWIDLE |
5041 SD_BALANCE_FORK |
89c4710e
SS
5042 SD_BALANCE_EXEC |
5043 SD_SHARE_CPUPOWER |
5044 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5045 if (sd->groups != sd->groups->next)
5046 return 0;
5047 }
5048
5049 /* Following flags don't use groups */
c88d5910 5050 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5051 return 0;
5052
5053 return 1;
5054}
5055
48f24c4d
IM
5056static int
5057sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5058{
5059 unsigned long cflags = sd->flags, pflags = parent->flags;
5060
5061 if (sd_degenerate(parent))
5062 return 1;
5063
758b2cdc 5064 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5065 return 0;
5066
245af2c7
SS
5067 /* Flags needing groups don't count if only 1 group in parent */
5068 if (parent->groups == parent->groups->next) {
5069 pflags &= ~(SD_LOAD_BALANCE |
5070 SD_BALANCE_NEWIDLE |
5071 SD_BALANCE_FORK |
89c4710e
SS
5072 SD_BALANCE_EXEC |
5073 SD_SHARE_CPUPOWER |
10866e62
PZ
5074 SD_SHARE_PKG_RESOURCES |
5075 SD_PREFER_SIBLING);
5436499e
KC
5076 if (nr_node_ids == 1)
5077 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5078 }
5079 if (~cflags & pflags)
5080 return 0;
5081
5082 return 1;
5083}
5084
dce840a0 5085static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5086{
dce840a0 5087 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5088
68e74568 5089 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5090 free_cpumask_var(rd->rto_mask);
5091 free_cpumask_var(rd->online);
5092 free_cpumask_var(rd->span);
5093 kfree(rd);
5094}
5095
57d885fe
GH
5096static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5097{
a0490fa3 5098 struct root_domain *old_rd = NULL;
57d885fe 5099 unsigned long flags;
57d885fe 5100
05fa785c 5101 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5102
5103 if (rq->rd) {
a0490fa3 5104 old_rd = rq->rd;
57d885fe 5105
c6c4927b 5106 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5107 set_rq_offline(rq);
57d885fe 5108
c6c4927b 5109 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5110
a0490fa3
IM
5111 /*
5112 * If we dont want to free the old_rt yet then
5113 * set old_rd to NULL to skip the freeing later
5114 * in this function:
5115 */
5116 if (!atomic_dec_and_test(&old_rd->refcount))
5117 old_rd = NULL;
57d885fe
GH
5118 }
5119
5120 atomic_inc(&rd->refcount);
5121 rq->rd = rd;
5122
c6c4927b 5123 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5124 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5125 set_rq_online(rq);
57d885fe 5126
05fa785c 5127 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5128
5129 if (old_rd)
dce840a0 5130 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5131}
5132
68c38fc3 5133static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5134{
5135 memset(rd, 0, sizeof(*rd));
5136
68c38fc3 5137 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5138 goto out;
68c38fc3 5139 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5140 goto free_span;
68c38fc3 5141 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5142 goto free_online;
6e0534f2 5143
68c38fc3 5144 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5145 goto free_rto_mask;
c6c4927b 5146 return 0;
6e0534f2 5147
68e74568
RR
5148free_rto_mask:
5149 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5150free_online:
5151 free_cpumask_var(rd->online);
5152free_span:
5153 free_cpumask_var(rd->span);
0c910d28 5154out:
c6c4927b 5155 return -ENOMEM;
57d885fe
GH
5156}
5157
029632fb
PZ
5158/*
5159 * By default the system creates a single root-domain with all cpus as
5160 * members (mimicking the global state we have today).
5161 */
5162struct root_domain def_root_domain;
5163
57d885fe
GH
5164static void init_defrootdomain(void)
5165{
68c38fc3 5166 init_rootdomain(&def_root_domain);
c6c4927b 5167
57d885fe
GH
5168 atomic_set(&def_root_domain.refcount, 1);
5169}
5170
dc938520 5171static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5172{
5173 struct root_domain *rd;
5174
5175 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5176 if (!rd)
5177 return NULL;
5178
68c38fc3 5179 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5180 kfree(rd);
5181 return NULL;
5182 }
57d885fe
GH
5183
5184 return rd;
5185}
5186
e3589f6c
PZ
5187static void free_sched_groups(struct sched_group *sg, int free_sgp)
5188{
5189 struct sched_group *tmp, *first;
5190
5191 if (!sg)
5192 return;
5193
5194 first = sg;
5195 do {
5196 tmp = sg->next;
5197
5198 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5199 kfree(sg->sgp);
5200
5201 kfree(sg);
5202 sg = tmp;
5203 } while (sg != first);
5204}
5205
dce840a0
PZ
5206static void free_sched_domain(struct rcu_head *rcu)
5207{
5208 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5209
5210 /*
5211 * If its an overlapping domain it has private groups, iterate and
5212 * nuke them all.
5213 */
5214 if (sd->flags & SD_OVERLAP) {
5215 free_sched_groups(sd->groups, 1);
5216 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5217 kfree(sd->groups->sgp);
dce840a0 5218 kfree(sd->groups);
9c3f75cb 5219 }
dce840a0
PZ
5220 kfree(sd);
5221}
5222
5223static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5224{
5225 call_rcu(&sd->rcu, free_sched_domain);
5226}
5227
5228static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5229{
5230 for (; sd; sd = sd->parent)
5231 destroy_sched_domain(sd, cpu);
5232}
5233
518cd623
PZ
5234/*
5235 * Keep a special pointer to the highest sched_domain that has
5236 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5237 * allows us to avoid some pointer chasing select_idle_sibling().
5238 *
5239 * Also keep a unique ID per domain (we use the first cpu number in
5240 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5241 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5242 */
5243DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5244DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5245DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5246DEFINE_PER_CPU(struct sched_domain *, sd_numa);
518cd623
PZ
5247
5248static void update_top_cache_domain(int cpu)
5249{
5250 struct sched_domain *sd;
5251 int id = cpu;
7d9ffa89 5252 int size = 1;
518cd623
PZ
5253
5254 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5255 if (sd) {
518cd623 5256 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5257 size = cpumask_weight(sched_domain_span(sd));
5258 }
518cd623
PZ
5259
5260 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5261 per_cpu(sd_llc_size, cpu) = size;
518cd623 5262 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5263
5264 sd = lowest_flag_domain(cpu, SD_NUMA);
5265 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
518cd623
PZ
5266}
5267
1da177e4 5268/*
0eab9146 5269 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5270 * hold the hotplug lock.
5271 */
0eab9146
IM
5272static void
5273cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5274{
70b97a7f 5275 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5276 struct sched_domain *tmp;
5277
5278 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5279 for (tmp = sd; tmp; ) {
245af2c7
SS
5280 struct sched_domain *parent = tmp->parent;
5281 if (!parent)
5282 break;
f29c9b1c 5283
1a848870 5284 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5285 tmp->parent = parent->parent;
1a848870
SS
5286 if (parent->parent)
5287 parent->parent->child = tmp;
10866e62
PZ
5288 /*
5289 * Transfer SD_PREFER_SIBLING down in case of a
5290 * degenerate parent; the spans match for this
5291 * so the property transfers.
5292 */
5293 if (parent->flags & SD_PREFER_SIBLING)
5294 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5295 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5296 } else
5297 tmp = tmp->parent;
245af2c7
SS
5298 }
5299
1a848870 5300 if (sd && sd_degenerate(sd)) {
dce840a0 5301 tmp = sd;
245af2c7 5302 sd = sd->parent;
dce840a0 5303 destroy_sched_domain(tmp, cpu);
1a848870
SS
5304 if (sd)
5305 sd->child = NULL;
5306 }
1da177e4 5307
4cb98839 5308 sched_domain_debug(sd, cpu);
1da177e4 5309
57d885fe 5310 rq_attach_root(rq, rd);
dce840a0 5311 tmp = rq->sd;
674311d5 5312 rcu_assign_pointer(rq->sd, sd);
dce840a0 5313 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5314
5315 update_top_cache_domain(cpu);
1da177e4
LT
5316}
5317
5318/* cpus with isolated domains */
dcc30a35 5319static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5320
5321/* Setup the mask of cpus configured for isolated domains */
5322static int __init isolated_cpu_setup(char *str)
5323{
bdddd296 5324 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5325 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5326 return 1;
5327}
5328
8927f494 5329__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5330
d3081f52
PZ
5331static const struct cpumask *cpu_cpu_mask(int cpu)
5332{
5333 return cpumask_of_node(cpu_to_node(cpu));
5334}
5335
dce840a0
PZ
5336struct sd_data {
5337 struct sched_domain **__percpu sd;
5338 struct sched_group **__percpu sg;
9c3f75cb 5339 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5340};
5341
49a02c51 5342struct s_data {
21d42ccf 5343 struct sched_domain ** __percpu sd;
49a02c51
AH
5344 struct root_domain *rd;
5345};
5346
2109b99e 5347enum s_alloc {
2109b99e 5348 sa_rootdomain,
21d42ccf 5349 sa_sd,
dce840a0 5350 sa_sd_storage,
2109b99e
AH
5351 sa_none,
5352};
5353
54ab4ff4
PZ
5354struct sched_domain_topology_level;
5355
5356typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5357typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5358
e3589f6c
PZ
5359#define SDTL_OVERLAP 0x01
5360
eb7a74e6 5361struct sched_domain_topology_level {
2c402dc3
PZ
5362 sched_domain_init_f init;
5363 sched_domain_mask_f mask;
e3589f6c 5364 int flags;
cb83b629 5365 int numa_level;
54ab4ff4 5366 struct sd_data data;
eb7a74e6
PZ
5367};
5368
c1174876
PZ
5369/*
5370 * Build an iteration mask that can exclude certain CPUs from the upwards
5371 * domain traversal.
5372 *
5373 * Asymmetric node setups can result in situations where the domain tree is of
5374 * unequal depth, make sure to skip domains that already cover the entire
5375 * range.
5376 *
5377 * In that case build_sched_domains() will have terminated the iteration early
5378 * and our sibling sd spans will be empty. Domains should always include the
5379 * cpu they're built on, so check that.
5380 *
5381 */
5382static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5383{
5384 const struct cpumask *span = sched_domain_span(sd);
5385 struct sd_data *sdd = sd->private;
5386 struct sched_domain *sibling;
5387 int i;
5388
5389 for_each_cpu(i, span) {
5390 sibling = *per_cpu_ptr(sdd->sd, i);
5391 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5392 continue;
5393
5394 cpumask_set_cpu(i, sched_group_mask(sg));
5395 }
5396}
5397
5398/*
5399 * Return the canonical balance cpu for this group, this is the first cpu
5400 * of this group that's also in the iteration mask.
5401 */
5402int group_balance_cpu(struct sched_group *sg)
5403{
5404 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5405}
5406
e3589f6c
PZ
5407static int
5408build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5409{
5410 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5411 const struct cpumask *span = sched_domain_span(sd);
5412 struct cpumask *covered = sched_domains_tmpmask;
5413 struct sd_data *sdd = sd->private;
5414 struct sched_domain *child;
5415 int i;
5416
5417 cpumask_clear(covered);
5418
5419 for_each_cpu(i, span) {
5420 struct cpumask *sg_span;
5421
5422 if (cpumask_test_cpu(i, covered))
5423 continue;
5424
c1174876
PZ
5425 child = *per_cpu_ptr(sdd->sd, i);
5426
5427 /* See the comment near build_group_mask(). */
5428 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5429 continue;
5430
e3589f6c 5431 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5432 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5433
5434 if (!sg)
5435 goto fail;
5436
5437 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5438 if (child->child) {
5439 child = child->child;
5440 cpumask_copy(sg_span, sched_domain_span(child));
5441 } else
5442 cpumask_set_cpu(i, sg_span);
5443
5444 cpumask_or(covered, covered, sg_span);
5445
74a5ce20 5446 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5447 if (atomic_inc_return(&sg->sgp->ref) == 1)
5448 build_group_mask(sd, sg);
5449
c3decf0d
PZ
5450 /*
5451 * Initialize sgp->power such that even if we mess up the
5452 * domains and no possible iteration will get us here, we won't
5453 * die on a /0 trap.
5454 */
5455 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5456
c1174876
PZ
5457 /*
5458 * Make sure the first group of this domain contains the
5459 * canonical balance cpu. Otherwise the sched_domain iteration
5460 * breaks. See update_sg_lb_stats().
5461 */
74a5ce20 5462 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5463 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5464 groups = sg;
5465
5466 if (!first)
5467 first = sg;
5468 if (last)
5469 last->next = sg;
5470 last = sg;
5471 last->next = first;
5472 }
5473 sd->groups = groups;
5474
5475 return 0;
5476
5477fail:
5478 free_sched_groups(first, 0);
5479
5480 return -ENOMEM;
5481}
5482
dce840a0 5483static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5484{
dce840a0
PZ
5485 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5486 struct sched_domain *child = sd->child;
1da177e4 5487
dce840a0
PZ
5488 if (child)
5489 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5490
9c3f75cb 5491 if (sg) {
dce840a0 5492 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5493 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5494 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5495 }
dce840a0
PZ
5496
5497 return cpu;
1e9f28fa 5498}
1e9f28fa 5499
01a08546 5500/*
dce840a0
PZ
5501 * build_sched_groups will build a circular linked list of the groups
5502 * covered by the given span, and will set each group's ->cpumask correctly,
5503 * and ->cpu_power to 0.
e3589f6c
PZ
5504 *
5505 * Assumes the sched_domain tree is fully constructed
01a08546 5506 */
e3589f6c
PZ
5507static int
5508build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5509{
dce840a0
PZ
5510 struct sched_group *first = NULL, *last = NULL;
5511 struct sd_data *sdd = sd->private;
5512 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5513 struct cpumask *covered;
dce840a0 5514 int i;
9c1cfda2 5515
e3589f6c
PZ
5516 get_group(cpu, sdd, &sd->groups);
5517 atomic_inc(&sd->groups->ref);
5518
0936629f 5519 if (cpu != cpumask_first(span))
e3589f6c
PZ
5520 return 0;
5521
f96225fd
PZ
5522 lockdep_assert_held(&sched_domains_mutex);
5523 covered = sched_domains_tmpmask;
5524
dce840a0 5525 cpumask_clear(covered);
6711cab4 5526
dce840a0
PZ
5527 for_each_cpu(i, span) {
5528 struct sched_group *sg;
cd08e923 5529 int group, j;
6711cab4 5530
dce840a0
PZ
5531 if (cpumask_test_cpu(i, covered))
5532 continue;
6711cab4 5533
cd08e923 5534 group = get_group(i, sdd, &sg);
dce840a0 5535 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5536 sg->sgp->power = 0;
c1174876 5537 cpumask_setall(sched_group_mask(sg));
0601a88d 5538
dce840a0
PZ
5539 for_each_cpu(j, span) {
5540 if (get_group(j, sdd, NULL) != group)
5541 continue;
0601a88d 5542
dce840a0
PZ
5543 cpumask_set_cpu(j, covered);
5544 cpumask_set_cpu(j, sched_group_cpus(sg));
5545 }
0601a88d 5546
dce840a0
PZ
5547 if (!first)
5548 first = sg;
5549 if (last)
5550 last->next = sg;
5551 last = sg;
5552 }
5553 last->next = first;
e3589f6c
PZ
5554
5555 return 0;
0601a88d 5556}
51888ca2 5557
89c4710e
SS
5558/*
5559 * Initialize sched groups cpu_power.
5560 *
5561 * cpu_power indicates the capacity of sched group, which is used while
5562 * distributing the load between different sched groups in a sched domain.
5563 * Typically cpu_power for all the groups in a sched domain will be same unless
5564 * there are asymmetries in the topology. If there are asymmetries, group
5565 * having more cpu_power will pickup more load compared to the group having
5566 * less cpu_power.
89c4710e
SS
5567 */
5568static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5569{
e3589f6c 5570 struct sched_group *sg = sd->groups;
89c4710e 5571
94c95ba6 5572 WARN_ON(!sg);
e3589f6c
PZ
5573
5574 do {
5575 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5576 sg = sg->next;
5577 } while (sg != sd->groups);
89c4710e 5578
c1174876 5579 if (cpu != group_balance_cpu(sg))
e3589f6c 5580 return;
aae6d3dd 5581
d274cb30 5582 update_group_power(sd, cpu);
69e1e811 5583 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5584}
5585
029632fb
PZ
5586int __weak arch_sd_sibling_asym_packing(void)
5587{
5588 return 0*SD_ASYM_PACKING;
89c4710e
SS
5589}
5590
7c16ec58
MT
5591/*
5592 * Initializers for schedule domains
5593 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5594 */
5595
a5d8c348
IM
5596#ifdef CONFIG_SCHED_DEBUG
5597# define SD_INIT_NAME(sd, type) sd->name = #type
5598#else
5599# define SD_INIT_NAME(sd, type) do { } while (0)
5600#endif
5601
54ab4ff4
PZ
5602#define SD_INIT_FUNC(type) \
5603static noinline struct sched_domain * \
5604sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5605{ \
5606 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5607 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5608 SD_INIT_NAME(sd, type); \
5609 sd->private = &tl->data; \
5610 return sd; \
7c16ec58
MT
5611}
5612
5613SD_INIT_FUNC(CPU)
7c16ec58
MT
5614#ifdef CONFIG_SCHED_SMT
5615 SD_INIT_FUNC(SIBLING)
5616#endif
5617#ifdef CONFIG_SCHED_MC
5618 SD_INIT_FUNC(MC)
5619#endif
01a08546
HC
5620#ifdef CONFIG_SCHED_BOOK
5621 SD_INIT_FUNC(BOOK)
5622#endif
7c16ec58 5623
1d3504fc 5624static int default_relax_domain_level = -1;
60495e77 5625int sched_domain_level_max;
1d3504fc
HS
5626
5627static int __init setup_relax_domain_level(char *str)
5628{
a841f8ce
DS
5629 if (kstrtoint(str, 0, &default_relax_domain_level))
5630 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5631
1d3504fc
HS
5632 return 1;
5633}
5634__setup("relax_domain_level=", setup_relax_domain_level);
5635
5636static void set_domain_attribute(struct sched_domain *sd,
5637 struct sched_domain_attr *attr)
5638{
5639 int request;
5640
5641 if (!attr || attr->relax_domain_level < 0) {
5642 if (default_relax_domain_level < 0)
5643 return;
5644 else
5645 request = default_relax_domain_level;
5646 } else
5647 request = attr->relax_domain_level;
5648 if (request < sd->level) {
5649 /* turn off idle balance on this domain */
c88d5910 5650 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5651 } else {
5652 /* turn on idle balance on this domain */
c88d5910 5653 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5654 }
5655}
5656
54ab4ff4
PZ
5657static void __sdt_free(const struct cpumask *cpu_map);
5658static int __sdt_alloc(const struct cpumask *cpu_map);
5659
2109b99e
AH
5660static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5661 const struct cpumask *cpu_map)
5662{
5663 switch (what) {
2109b99e 5664 case sa_rootdomain:
822ff793
PZ
5665 if (!atomic_read(&d->rd->refcount))
5666 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5667 case sa_sd:
5668 free_percpu(d->sd); /* fall through */
dce840a0 5669 case sa_sd_storage:
54ab4ff4 5670 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5671 case sa_none:
5672 break;
5673 }
5674}
3404c8d9 5675
2109b99e
AH
5676static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5677 const struct cpumask *cpu_map)
5678{
dce840a0
PZ
5679 memset(d, 0, sizeof(*d));
5680
54ab4ff4
PZ
5681 if (__sdt_alloc(cpu_map))
5682 return sa_sd_storage;
dce840a0
PZ
5683 d->sd = alloc_percpu(struct sched_domain *);
5684 if (!d->sd)
5685 return sa_sd_storage;
2109b99e 5686 d->rd = alloc_rootdomain();
dce840a0 5687 if (!d->rd)
21d42ccf 5688 return sa_sd;
2109b99e
AH
5689 return sa_rootdomain;
5690}
57d885fe 5691
dce840a0
PZ
5692/*
5693 * NULL the sd_data elements we've used to build the sched_domain and
5694 * sched_group structure so that the subsequent __free_domain_allocs()
5695 * will not free the data we're using.
5696 */
5697static void claim_allocations(int cpu, struct sched_domain *sd)
5698{
5699 struct sd_data *sdd = sd->private;
dce840a0
PZ
5700
5701 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5702 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5703
e3589f6c 5704 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5705 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5706
5707 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5708 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5709}
5710
2c402dc3
PZ
5711#ifdef CONFIG_SCHED_SMT
5712static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5713{
2c402dc3 5714 return topology_thread_cpumask(cpu);
3bd65a80 5715}
2c402dc3 5716#endif
7f4588f3 5717
d069b916
PZ
5718/*
5719 * Topology list, bottom-up.
5720 */
2c402dc3 5721static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5722#ifdef CONFIG_SCHED_SMT
5723 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5724#endif
1e9f28fa 5725#ifdef CONFIG_SCHED_MC
2c402dc3 5726 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5727#endif
d069b916
PZ
5728#ifdef CONFIG_SCHED_BOOK
5729 { sd_init_BOOK, cpu_book_mask, },
5730#endif
5731 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5732 { NULL, },
5733};
5734
5735static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5736
27723a68
VK
5737#define for_each_sd_topology(tl) \
5738 for (tl = sched_domain_topology; tl->init; tl++)
5739
cb83b629
PZ
5740#ifdef CONFIG_NUMA
5741
5742static int sched_domains_numa_levels;
cb83b629
PZ
5743static int *sched_domains_numa_distance;
5744static struct cpumask ***sched_domains_numa_masks;
5745static int sched_domains_curr_level;
5746
cb83b629
PZ
5747static inline int sd_local_flags(int level)
5748{
10717dcd 5749 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5750 return 0;
5751
5752 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5753}
5754
5755static struct sched_domain *
5756sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5757{
5758 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5759 int level = tl->numa_level;
5760 int sd_weight = cpumask_weight(
5761 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5762
5763 *sd = (struct sched_domain){
5764 .min_interval = sd_weight,
5765 .max_interval = 2*sd_weight,
5766 .busy_factor = 32,
870a0bb5 5767 .imbalance_pct = 125,
cb83b629
PZ
5768 .cache_nice_tries = 2,
5769 .busy_idx = 3,
5770 .idle_idx = 2,
5771 .newidle_idx = 0,
5772 .wake_idx = 0,
5773 .forkexec_idx = 0,
5774
5775 .flags = 1*SD_LOAD_BALANCE
5776 | 1*SD_BALANCE_NEWIDLE
5777 | 0*SD_BALANCE_EXEC
5778 | 0*SD_BALANCE_FORK
5779 | 0*SD_BALANCE_WAKE
5780 | 0*SD_WAKE_AFFINE
cb83b629 5781 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5782 | 0*SD_SHARE_PKG_RESOURCES
5783 | 1*SD_SERIALIZE
5784 | 0*SD_PREFER_SIBLING
3a7053b3 5785 | 1*SD_NUMA
cb83b629
PZ
5786 | sd_local_flags(level)
5787 ,
5788 .last_balance = jiffies,
5789 .balance_interval = sd_weight,
5790 };
5791 SD_INIT_NAME(sd, NUMA);
5792 sd->private = &tl->data;
5793
5794 /*
5795 * Ugly hack to pass state to sd_numa_mask()...
5796 */
5797 sched_domains_curr_level = tl->numa_level;
5798
5799 return sd;
5800}
5801
5802static const struct cpumask *sd_numa_mask(int cpu)
5803{
5804 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5805}
5806
d039ac60
PZ
5807static void sched_numa_warn(const char *str)
5808{
5809 static int done = false;
5810 int i,j;
5811
5812 if (done)
5813 return;
5814
5815 done = true;
5816
5817 printk(KERN_WARNING "ERROR: %s\n\n", str);
5818
5819 for (i = 0; i < nr_node_ids; i++) {
5820 printk(KERN_WARNING " ");
5821 for (j = 0; j < nr_node_ids; j++)
5822 printk(KERN_CONT "%02d ", node_distance(i,j));
5823 printk(KERN_CONT "\n");
5824 }
5825 printk(KERN_WARNING "\n");
5826}
5827
5828static bool find_numa_distance(int distance)
5829{
5830 int i;
5831
5832 if (distance == node_distance(0, 0))
5833 return true;
5834
5835 for (i = 0; i < sched_domains_numa_levels; i++) {
5836 if (sched_domains_numa_distance[i] == distance)
5837 return true;
5838 }
5839
5840 return false;
5841}
5842
cb83b629
PZ
5843static void sched_init_numa(void)
5844{
5845 int next_distance, curr_distance = node_distance(0, 0);
5846 struct sched_domain_topology_level *tl;
5847 int level = 0;
5848 int i, j, k;
5849
cb83b629
PZ
5850 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5851 if (!sched_domains_numa_distance)
5852 return;
5853
5854 /*
5855 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5856 * unique distances in the node_distance() table.
5857 *
5858 * Assumes node_distance(0,j) includes all distances in
5859 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5860 */
5861 next_distance = curr_distance;
5862 for (i = 0; i < nr_node_ids; i++) {
5863 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5864 for (k = 0; k < nr_node_ids; k++) {
5865 int distance = node_distance(i, k);
5866
5867 if (distance > curr_distance &&
5868 (distance < next_distance ||
5869 next_distance == curr_distance))
5870 next_distance = distance;
5871
5872 /*
5873 * While not a strong assumption it would be nice to know
5874 * about cases where if node A is connected to B, B is not
5875 * equally connected to A.
5876 */
5877 if (sched_debug() && node_distance(k, i) != distance)
5878 sched_numa_warn("Node-distance not symmetric");
5879
5880 if (sched_debug() && i && !find_numa_distance(distance))
5881 sched_numa_warn("Node-0 not representative");
5882 }
5883 if (next_distance != curr_distance) {
5884 sched_domains_numa_distance[level++] = next_distance;
5885 sched_domains_numa_levels = level;
5886 curr_distance = next_distance;
5887 } else break;
cb83b629 5888 }
d039ac60
PZ
5889
5890 /*
5891 * In case of sched_debug() we verify the above assumption.
5892 */
5893 if (!sched_debug())
5894 break;
cb83b629
PZ
5895 }
5896 /*
5897 * 'level' contains the number of unique distances, excluding the
5898 * identity distance node_distance(i,i).
5899 *
28b4a521 5900 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5901 * numbers.
5902 */
5903
5f7865f3
TC
5904 /*
5905 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5906 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5907 * the array will contain less then 'level' members. This could be
5908 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5909 * in other functions.
5910 *
5911 * We reset it to 'level' at the end of this function.
5912 */
5913 sched_domains_numa_levels = 0;
5914
cb83b629
PZ
5915 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5916 if (!sched_domains_numa_masks)
5917 return;
5918
5919 /*
5920 * Now for each level, construct a mask per node which contains all
5921 * cpus of nodes that are that many hops away from us.
5922 */
5923 for (i = 0; i < level; i++) {
5924 sched_domains_numa_masks[i] =
5925 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5926 if (!sched_domains_numa_masks[i])
5927 return;
5928
5929 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5930 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5931 if (!mask)
5932 return;
5933
5934 sched_domains_numa_masks[i][j] = mask;
5935
5936 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5937 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5938 continue;
5939
5940 cpumask_or(mask, mask, cpumask_of_node(k));
5941 }
5942 }
5943 }
5944
5945 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5946 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5947 if (!tl)
5948 return;
5949
5950 /*
5951 * Copy the default topology bits..
5952 */
5953 for (i = 0; default_topology[i].init; i++)
5954 tl[i] = default_topology[i];
5955
5956 /*
5957 * .. and append 'j' levels of NUMA goodness.
5958 */
5959 for (j = 0; j < level; i++, j++) {
5960 tl[i] = (struct sched_domain_topology_level){
5961 .init = sd_numa_init,
5962 .mask = sd_numa_mask,
5963 .flags = SDTL_OVERLAP,
5964 .numa_level = j,
5965 };
5966 }
5967
5968 sched_domain_topology = tl;
5f7865f3
TC
5969
5970 sched_domains_numa_levels = level;
cb83b629 5971}
301a5cba
TC
5972
5973static void sched_domains_numa_masks_set(int cpu)
5974{
5975 int i, j;
5976 int node = cpu_to_node(cpu);
5977
5978 for (i = 0; i < sched_domains_numa_levels; i++) {
5979 for (j = 0; j < nr_node_ids; j++) {
5980 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5981 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5982 }
5983 }
5984}
5985
5986static void sched_domains_numa_masks_clear(int cpu)
5987{
5988 int i, j;
5989 for (i = 0; i < sched_domains_numa_levels; i++) {
5990 for (j = 0; j < nr_node_ids; j++)
5991 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5992 }
5993}
5994
5995/*
5996 * Update sched_domains_numa_masks[level][node] array when new cpus
5997 * are onlined.
5998 */
5999static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6000 unsigned long action,
6001 void *hcpu)
6002{
6003 int cpu = (long)hcpu;
6004
6005 switch (action & ~CPU_TASKS_FROZEN) {
6006 case CPU_ONLINE:
6007 sched_domains_numa_masks_set(cpu);
6008 break;
6009
6010 case CPU_DEAD:
6011 sched_domains_numa_masks_clear(cpu);
6012 break;
6013
6014 default:
6015 return NOTIFY_DONE;
6016 }
6017
6018 return NOTIFY_OK;
cb83b629
PZ
6019}
6020#else
6021static inline void sched_init_numa(void)
6022{
6023}
301a5cba
TC
6024
6025static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6026 unsigned long action,
6027 void *hcpu)
6028{
6029 return 0;
6030}
cb83b629
PZ
6031#endif /* CONFIG_NUMA */
6032
54ab4ff4
PZ
6033static int __sdt_alloc(const struct cpumask *cpu_map)
6034{
6035 struct sched_domain_topology_level *tl;
6036 int j;
6037
27723a68 6038 for_each_sd_topology(tl) {
54ab4ff4
PZ
6039 struct sd_data *sdd = &tl->data;
6040
6041 sdd->sd = alloc_percpu(struct sched_domain *);
6042 if (!sdd->sd)
6043 return -ENOMEM;
6044
6045 sdd->sg = alloc_percpu(struct sched_group *);
6046 if (!sdd->sg)
6047 return -ENOMEM;
6048
9c3f75cb
PZ
6049 sdd->sgp = alloc_percpu(struct sched_group_power *);
6050 if (!sdd->sgp)
6051 return -ENOMEM;
6052
54ab4ff4
PZ
6053 for_each_cpu(j, cpu_map) {
6054 struct sched_domain *sd;
6055 struct sched_group *sg;
9c3f75cb 6056 struct sched_group_power *sgp;
54ab4ff4
PZ
6057
6058 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6059 GFP_KERNEL, cpu_to_node(j));
6060 if (!sd)
6061 return -ENOMEM;
6062
6063 *per_cpu_ptr(sdd->sd, j) = sd;
6064
6065 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6066 GFP_KERNEL, cpu_to_node(j));
6067 if (!sg)
6068 return -ENOMEM;
6069
30b4e9eb
IM
6070 sg->next = sg;
6071
54ab4ff4 6072 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6073
c1174876 6074 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6075 GFP_KERNEL, cpu_to_node(j));
6076 if (!sgp)
6077 return -ENOMEM;
6078
6079 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6080 }
6081 }
6082
6083 return 0;
6084}
6085
6086static void __sdt_free(const struct cpumask *cpu_map)
6087{
6088 struct sched_domain_topology_level *tl;
6089 int j;
6090
27723a68 6091 for_each_sd_topology(tl) {
54ab4ff4
PZ
6092 struct sd_data *sdd = &tl->data;
6093
6094 for_each_cpu(j, cpu_map) {
fb2cf2c6 6095 struct sched_domain *sd;
6096
6097 if (sdd->sd) {
6098 sd = *per_cpu_ptr(sdd->sd, j);
6099 if (sd && (sd->flags & SD_OVERLAP))
6100 free_sched_groups(sd->groups, 0);
6101 kfree(*per_cpu_ptr(sdd->sd, j));
6102 }
6103
6104 if (sdd->sg)
6105 kfree(*per_cpu_ptr(sdd->sg, j));
6106 if (sdd->sgp)
6107 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6108 }
6109 free_percpu(sdd->sd);
fb2cf2c6 6110 sdd->sd = NULL;
54ab4ff4 6111 free_percpu(sdd->sg);
fb2cf2c6 6112 sdd->sg = NULL;
9c3f75cb 6113 free_percpu(sdd->sgp);
fb2cf2c6 6114 sdd->sgp = NULL;
54ab4ff4
PZ
6115 }
6116}
6117
2c402dc3 6118struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6119 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6120 struct sched_domain *child, int cpu)
2c402dc3 6121{
54ab4ff4 6122 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6123 if (!sd)
d069b916 6124 return child;
2c402dc3 6125
2c402dc3 6126 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6127 if (child) {
6128 sd->level = child->level + 1;
6129 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6130 child->parent = sd;
c75e0128 6131 sd->child = child;
60495e77 6132 }
a841f8ce 6133 set_domain_attribute(sd, attr);
2c402dc3
PZ
6134
6135 return sd;
6136}
6137
2109b99e
AH
6138/*
6139 * Build sched domains for a given set of cpus and attach the sched domains
6140 * to the individual cpus
6141 */
dce840a0
PZ
6142static int build_sched_domains(const struct cpumask *cpu_map,
6143 struct sched_domain_attr *attr)
2109b99e 6144{
1c632169 6145 enum s_alloc alloc_state;
dce840a0 6146 struct sched_domain *sd;
2109b99e 6147 struct s_data d;
822ff793 6148 int i, ret = -ENOMEM;
9c1cfda2 6149
2109b99e
AH
6150 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6151 if (alloc_state != sa_rootdomain)
6152 goto error;
9c1cfda2 6153
dce840a0 6154 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6155 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6156 struct sched_domain_topology_level *tl;
6157
3bd65a80 6158 sd = NULL;
27723a68 6159 for_each_sd_topology(tl) {
4a850cbe 6160 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6161 if (tl == sched_domain_topology)
6162 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6163 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6164 sd->flags |= SD_OVERLAP;
d110235d
PZ
6165 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6166 break;
e3589f6c 6167 }
dce840a0
PZ
6168 }
6169
6170 /* Build the groups for the domains */
6171 for_each_cpu(i, cpu_map) {
6172 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6173 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6174 if (sd->flags & SD_OVERLAP) {
6175 if (build_overlap_sched_groups(sd, i))
6176 goto error;
6177 } else {
6178 if (build_sched_groups(sd, i))
6179 goto error;
6180 }
1cf51902 6181 }
a06dadbe 6182 }
9c1cfda2 6183
1da177e4 6184 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6185 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6186 if (!cpumask_test_cpu(i, cpu_map))
6187 continue;
9c1cfda2 6188
dce840a0
PZ
6189 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6190 claim_allocations(i, sd);
cd4ea6ae 6191 init_sched_groups_power(i, sd);
dce840a0 6192 }
f712c0c7 6193 }
9c1cfda2 6194
1da177e4 6195 /* Attach the domains */
dce840a0 6196 rcu_read_lock();
abcd083a 6197 for_each_cpu(i, cpu_map) {
21d42ccf 6198 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6199 cpu_attach_domain(sd, d.rd, i);
1da177e4 6200 }
dce840a0 6201 rcu_read_unlock();
51888ca2 6202
822ff793 6203 ret = 0;
51888ca2 6204error:
2109b99e 6205 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6206 return ret;
1da177e4 6207}
029190c5 6208
acc3f5d7 6209static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6210static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6211static struct sched_domain_attr *dattr_cur;
6212 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6213
6214/*
6215 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6216 * cpumask) fails, then fallback to a single sched domain,
6217 * as determined by the single cpumask fallback_doms.
029190c5 6218 */
4212823f 6219static cpumask_var_t fallback_doms;
029190c5 6220
ee79d1bd
HC
6221/*
6222 * arch_update_cpu_topology lets virtualized architectures update the
6223 * cpu core maps. It is supposed to return 1 if the topology changed
6224 * or 0 if it stayed the same.
6225 */
6226int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6227{
ee79d1bd 6228 return 0;
22e52b07
HC
6229}
6230
acc3f5d7
RR
6231cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6232{
6233 int i;
6234 cpumask_var_t *doms;
6235
6236 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6237 if (!doms)
6238 return NULL;
6239 for (i = 0; i < ndoms; i++) {
6240 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6241 free_sched_domains(doms, i);
6242 return NULL;
6243 }
6244 }
6245 return doms;
6246}
6247
6248void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6249{
6250 unsigned int i;
6251 for (i = 0; i < ndoms; i++)
6252 free_cpumask_var(doms[i]);
6253 kfree(doms);
6254}
6255
1a20ff27 6256/*
41a2d6cf 6257 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6258 * For now this just excludes isolated cpus, but could be used to
6259 * exclude other special cases in the future.
1a20ff27 6260 */
c4a8849a 6261static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6262{
7378547f
MM
6263 int err;
6264
22e52b07 6265 arch_update_cpu_topology();
029190c5 6266 ndoms_cur = 1;
acc3f5d7 6267 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6268 if (!doms_cur)
acc3f5d7
RR
6269 doms_cur = &fallback_doms;
6270 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6271 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6272 register_sched_domain_sysctl();
7378547f
MM
6273
6274 return err;
1a20ff27
DG
6275}
6276
1a20ff27
DG
6277/*
6278 * Detach sched domains from a group of cpus specified in cpu_map
6279 * These cpus will now be attached to the NULL domain
6280 */
96f874e2 6281static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6282{
6283 int i;
6284
dce840a0 6285 rcu_read_lock();
abcd083a 6286 for_each_cpu(i, cpu_map)
57d885fe 6287 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6288 rcu_read_unlock();
1a20ff27
DG
6289}
6290
1d3504fc
HS
6291/* handle null as "default" */
6292static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6293 struct sched_domain_attr *new, int idx_new)
6294{
6295 struct sched_domain_attr tmp;
6296
6297 /* fast path */
6298 if (!new && !cur)
6299 return 1;
6300
6301 tmp = SD_ATTR_INIT;
6302 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6303 new ? (new + idx_new) : &tmp,
6304 sizeof(struct sched_domain_attr));
6305}
6306
029190c5
PJ
6307/*
6308 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6309 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6310 * doms_new[] to the current sched domain partitioning, doms_cur[].
6311 * It destroys each deleted domain and builds each new domain.
6312 *
acc3f5d7 6313 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6314 * The masks don't intersect (don't overlap.) We should setup one
6315 * sched domain for each mask. CPUs not in any of the cpumasks will
6316 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6317 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6318 * it as it is.
6319 *
acc3f5d7
RR
6320 * The passed in 'doms_new' should be allocated using
6321 * alloc_sched_domains. This routine takes ownership of it and will
6322 * free_sched_domains it when done with it. If the caller failed the
6323 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6324 * and partition_sched_domains() will fallback to the single partition
6325 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6326 *
96f874e2 6327 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6328 * ndoms_new == 0 is a special case for destroying existing domains,
6329 * and it will not create the default domain.
dfb512ec 6330 *
029190c5
PJ
6331 * Call with hotplug lock held
6332 */
acc3f5d7 6333void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6334 struct sched_domain_attr *dattr_new)
029190c5 6335{
dfb512ec 6336 int i, j, n;
d65bd5ec 6337 int new_topology;
029190c5 6338
712555ee 6339 mutex_lock(&sched_domains_mutex);
a1835615 6340
7378547f
MM
6341 /* always unregister in case we don't destroy any domains */
6342 unregister_sched_domain_sysctl();
6343
d65bd5ec
HC
6344 /* Let architecture update cpu core mappings. */
6345 new_topology = arch_update_cpu_topology();
6346
dfb512ec 6347 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6348
6349 /* Destroy deleted domains */
6350 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6351 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6352 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6353 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6354 goto match1;
6355 }
6356 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6357 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6358match1:
6359 ;
6360 }
6361
c8d2d47a 6362 n = ndoms_cur;
e761b772 6363 if (doms_new == NULL) {
c8d2d47a 6364 n = 0;
acc3f5d7 6365 doms_new = &fallback_doms;
6ad4c188 6366 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6367 WARN_ON_ONCE(dattr_new);
e761b772
MK
6368 }
6369
029190c5
PJ
6370 /* Build new domains */
6371 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6372 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6373 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6374 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6375 goto match2;
6376 }
6377 /* no match - add a new doms_new */
dce840a0 6378 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6379match2:
6380 ;
6381 }
6382
6383 /* Remember the new sched domains */
acc3f5d7
RR
6384 if (doms_cur != &fallback_doms)
6385 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6386 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6387 doms_cur = doms_new;
1d3504fc 6388 dattr_cur = dattr_new;
029190c5 6389 ndoms_cur = ndoms_new;
7378547f
MM
6390
6391 register_sched_domain_sysctl();
a1835615 6392
712555ee 6393 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6394}
6395
d35be8ba
SB
6396static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6397
1da177e4 6398/*
3a101d05
TH
6399 * Update cpusets according to cpu_active mask. If cpusets are
6400 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6401 * around partition_sched_domains().
d35be8ba
SB
6402 *
6403 * If we come here as part of a suspend/resume, don't touch cpusets because we
6404 * want to restore it back to its original state upon resume anyway.
1da177e4 6405 */
0b2e918a
TH
6406static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6407 void *hcpu)
e761b772 6408{
d35be8ba
SB
6409 switch (action) {
6410 case CPU_ONLINE_FROZEN:
6411 case CPU_DOWN_FAILED_FROZEN:
6412
6413 /*
6414 * num_cpus_frozen tracks how many CPUs are involved in suspend
6415 * resume sequence. As long as this is not the last online
6416 * operation in the resume sequence, just build a single sched
6417 * domain, ignoring cpusets.
6418 */
6419 num_cpus_frozen--;
6420 if (likely(num_cpus_frozen)) {
6421 partition_sched_domains(1, NULL, NULL);
6422 break;
6423 }
6424
6425 /*
6426 * This is the last CPU online operation. So fall through and
6427 * restore the original sched domains by considering the
6428 * cpuset configurations.
6429 */
6430
e761b772 6431 case CPU_ONLINE:
6ad4c188 6432 case CPU_DOWN_FAILED:
7ddf96b0 6433 cpuset_update_active_cpus(true);
d35be8ba 6434 break;
3a101d05
TH
6435 default:
6436 return NOTIFY_DONE;
6437 }
d35be8ba 6438 return NOTIFY_OK;
3a101d05 6439}
e761b772 6440
0b2e918a
TH
6441static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6442 void *hcpu)
3a101d05 6443{
d35be8ba 6444 switch (action) {
3a101d05 6445 case CPU_DOWN_PREPARE:
7ddf96b0 6446 cpuset_update_active_cpus(false);
d35be8ba
SB
6447 break;
6448 case CPU_DOWN_PREPARE_FROZEN:
6449 num_cpus_frozen++;
6450 partition_sched_domains(1, NULL, NULL);
6451 break;
e761b772
MK
6452 default:
6453 return NOTIFY_DONE;
6454 }
d35be8ba 6455 return NOTIFY_OK;
e761b772 6456}
e761b772 6457
1da177e4
LT
6458void __init sched_init_smp(void)
6459{
dcc30a35
RR
6460 cpumask_var_t non_isolated_cpus;
6461
6462 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6463 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6464
cb83b629
PZ
6465 sched_init_numa();
6466
95402b38 6467 get_online_cpus();
712555ee 6468 mutex_lock(&sched_domains_mutex);
c4a8849a 6469 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6470 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6471 if (cpumask_empty(non_isolated_cpus))
6472 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6473 mutex_unlock(&sched_domains_mutex);
95402b38 6474 put_online_cpus();
e761b772 6475
301a5cba 6476 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6477 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6478 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6479
b328ca18 6480 init_hrtick();
5c1e1767
NP
6481
6482 /* Move init over to a non-isolated CPU */
dcc30a35 6483 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6484 BUG();
19978ca6 6485 sched_init_granularity();
dcc30a35 6486 free_cpumask_var(non_isolated_cpus);
4212823f 6487
0e3900e6 6488 init_sched_rt_class();
1da177e4
LT
6489}
6490#else
6491void __init sched_init_smp(void)
6492{
19978ca6 6493 sched_init_granularity();
1da177e4
LT
6494}
6495#endif /* CONFIG_SMP */
6496
cd1bb94b
AB
6497const_debug unsigned int sysctl_timer_migration = 1;
6498
1da177e4
LT
6499int in_sched_functions(unsigned long addr)
6500{
1da177e4
LT
6501 return in_lock_functions(addr) ||
6502 (addr >= (unsigned long)__sched_text_start
6503 && addr < (unsigned long)__sched_text_end);
6504}
6505
029632fb 6506#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6507/*
6508 * Default task group.
6509 * Every task in system belongs to this group at bootup.
6510 */
029632fb 6511struct task_group root_task_group;
35cf4e50 6512LIST_HEAD(task_groups);
052f1dc7 6513#endif
6f505b16 6514
e6252c3e 6515DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6516
1da177e4
LT
6517void __init sched_init(void)
6518{
dd41f596 6519 int i, j;
434d53b0
MT
6520 unsigned long alloc_size = 0, ptr;
6521
6522#ifdef CONFIG_FAIR_GROUP_SCHED
6523 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6524#endif
6525#ifdef CONFIG_RT_GROUP_SCHED
6526 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6527#endif
df7c8e84 6528#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6529 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6530#endif
434d53b0 6531 if (alloc_size) {
36b7b6d4 6532 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6533
6534#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6535 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6536 ptr += nr_cpu_ids * sizeof(void **);
6537
07e06b01 6538 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6539 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6540
6d6bc0ad 6541#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6542#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6543 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6544 ptr += nr_cpu_ids * sizeof(void **);
6545
07e06b01 6546 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6547 ptr += nr_cpu_ids * sizeof(void **);
6548
6d6bc0ad 6549#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6550#ifdef CONFIG_CPUMASK_OFFSTACK
6551 for_each_possible_cpu(i) {
e6252c3e 6552 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6553 ptr += cpumask_size();
6554 }
6555#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6556 }
dd41f596 6557
57d885fe
GH
6558#ifdef CONFIG_SMP
6559 init_defrootdomain();
6560#endif
6561
d0b27fa7
PZ
6562 init_rt_bandwidth(&def_rt_bandwidth,
6563 global_rt_period(), global_rt_runtime());
6564
6565#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6566 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6567 global_rt_period(), global_rt_runtime());
6d6bc0ad 6568#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6569
7c941438 6570#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6571 list_add(&root_task_group.list, &task_groups);
6572 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6573 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6574 autogroup_init(&init_task);
54c707e9 6575
7c941438 6576#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6577
0a945022 6578 for_each_possible_cpu(i) {
70b97a7f 6579 struct rq *rq;
1da177e4
LT
6580
6581 rq = cpu_rq(i);
05fa785c 6582 raw_spin_lock_init(&rq->lock);
7897986b 6583 rq->nr_running = 0;
dce48a84
TG
6584 rq->calc_load_active = 0;
6585 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6586 init_cfs_rq(&rq->cfs);
6f505b16 6587 init_rt_rq(&rq->rt, rq);
dd41f596 6588#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6589 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6590 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6591 /*
07e06b01 6592 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6593 *
6594 * In case of task-groups formed thr' the cgroup filesystem, it
6595 * gets 100% of the cpu resources in the system. This overall
6596 * system cpu resource is divided among the tasks of
07e06b01 6597 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6598 * based on each entity's (task or task-group's) weight
6599 * (se->load.weight).
6600 *
07e06b01 6601 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6602 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6603 * then A0's share of the cpu resource is:
6604 *
0d905bca 6605 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6606 *
07e06b01
YZ
6607 * We achieve this by letting root_task_group's tasks sit
6608 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6609 */
ab84d31e 6610 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6611 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6612#endif /* CONFIG_FAIR_GROUP_SCHED */
6613
6614 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6615#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6616 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6617 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6618#endif
1da177e4 6619
dd41f596
IM
6620 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6621 rq->cpu_load[j] = 0;
fdf3e95d
VP
6622
6623 rq->last_load_update_tick = jiffies;
6624
1da177e4 6625#ifdef CONFIG_SMP
41c7ce9a 6626 rq->sd = NULL;
57d885fe 6627 rq->rd = NULL;
1399fa78 6628 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6629 rq->post_schedule = 0;
1da177e4 6630 rq->active_balance = 0;
dd41f596 6631 rq->next_balance = jiffies;
1da177e4 6632 rq->push_cpu = 0;
0a2966b4 6633 rq->cpu = i;
1f11eb6a 6634 rq->online = 0;
eae0c9df
MG
6635 rq->idle_stamp = 0;
6636 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6637 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6638
6639 INIT_LIST_HEAD(&rq->cfs_tasks);
6640
dc938520 6641 rq_attach_root(rq, &def_root_domain);
3451d024 6642#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6643 rq->nohz_flags = 0;
83cd4fe2 6644#endif
265f22a9
FW
6645#ifdef CONFIG_NO_HZ_FULL
6646 rq->last_sched_tick = 0;
6647#endif
1da177e4 6648#endif
8f4d37ec 6649 init_rq_hrtick(rq);
1da177e4 6650 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6651 }
6652
2dd73a4f 6653 set_load_weight(&init_task);
b50f60ce 6654
e107be36
AK
6655#ifdef CONFIG_PREEMPT_NOTIFIERS
6656 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6657#endif
6658
b50f60ce 6659#ifdef CONFIG_RT_MUTEXES
732375c6 6660 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6661#endif
6662
1da177e4
LT
6663 /*
6664 * The boot idle thread does lazy MMU switching as well:
6665 */
6666 atomic_inc(&init_mm.mm_count);
6667 enter_lazy_tlb(&init_mm, current);
6668
6669 /*
6670 * Make us the idle thread. Technically, schedule() should not be
6671 * called from this thread, however somewhere below it might be,
6672 * but because we are the idle thread, we just pick up running again
6673 * when this runqueue becomes "idle".
6674 */
6675 init_idle(current, smp_processor_id());
dce48a84
TG
6676
6677 calc_load_update = jiffies + LOAD_FREQ;
6678
dd41f596
IM
6679 /*
6680 * During early bootup we pretend to be a normal task:
6681 */
6682 current->sched_class = &fair_sched_class;
6892b75e 6683
bf4d83f6 6684#ifdef CONFIG_SMP
4cb98839 6685 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6686 /* May be allocated at isolcpus cmdline parse time */
6687 if (cpu_isolated_map == NULL)
6688 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6689 idle_thread_set_boot_cpu();
029632fb
PZ
6690#endif
6691 init_sched_fair_class();
6a7b3dc3 6692
6892b75e 6693 scheduler_running = 1;
1da177e4
LT
6694}
6695
d902db1e 6696#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6697static inline int preempt_count_equals(int preempt_offset)
6698{
234da7bc 6699 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6700
4ba8216c 6701 return (nested == preempt_offset);
e4aafea2
FW
6702}
6703
d894837f 6704void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6705{
1da177e4
LT
6706 static unsigned long prev_jiffy; /* ratelimiting */
6707
b3fbab05 6708 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6709 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6710 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6711 return;
6712 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6713 return;
6714 prev_jiffy = jiffies;
6715
3df0fc5b
PZ
6716 printk(KERN_ERR
6717 "BUG: sleeping function called from invalid context at %s:%d\n",
6718 file, line);
6719 printk(KERN_ERR
6720 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6721 in_atomic(), irqs_disabled(),
6722 current->pid, current->comm);
aef745fc
IM
6723
6724 debug_show_held_locks(current);
6725 if (irqs_disabled())
6726 print_irqtrace_events(current);
6727 dump_stack();
1da177e4
LT
6728}
6729EXPORT_SYMBOL(__might_sleep);
6730#endif
6731
6732#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6733static void normalize_task(struct rq *rq, struct task_struct *p)
6734{
da7a735e
PZ
6735 const struct sched_class *prev_class = p->sched_class;
6736 int old_prio = p->prio;
3a5e4dc1 6737 int on_rq;
3e51f33f 6738
fd2f4419 6739 on_rq = p->on_rq;
3a5e4dc1 6740 if (on_rq)
4ca9b72b 6741 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6742 __setscheduler(rq, p, SCHED_NORMAL, 0);
6743 if (on_rq) {
4ca9b72b 6744 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6745 resched_task(rq->curr);
6746 }
da7a735e
PZ
6747
6748 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6749}
6750
1da177e4
LT
6751void normalize_rt_tasks(void)
6752{
a0f98a1c 6753 struct task_struct *g, *p;
1da177e4 6754 unsigned long flags;
70b97a7f 6755 struct rq *rq;
1da177e4 6756
4cf5d77a 6757 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6758 do_each_thread(g, p) {
178be793
IM
6759 /*
6760 * Only normalize user tasks:
6761 */
6762 if (!p->mm)
6763 continue;
6764
6cfb0d5d 6765 p->se.exec_start = 0;
6cfb0d5d 6766#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6767 p->se.statistics.wait_start = 0;
6768 p->se.statistics.sleep_start = 0;
6769 p->se.statistics.block_start = 0;
6cfb0d5d 6770#endif
dd41f596
IM
6771
6772 if (!rt_task(p)) {
6773 /*
6774 * Renice negative nice level userspace
6775 * tasks back to 0:
6776 */
6777 if (TASK_NICE(p) < 0 && p->mm)
6778 set_user_nice(p, 0);
1da177e4 6779 continue;
dd41f596 6780 }
1da177e4 6781
1d615482 6782 raw_spin_lock(&p->pi_lock);
b29739f9 6783 rq = __task_rq_lock(p);
1da177e4 6784
178be793 6785 normalize_task(rq, p);
3a5e4dc1 6786
b29739f9 6787 __task_rq_unlock(rq);
1d615482 6788 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6789 } while_each_thread(g, p);
6790
4cf5d77a 6791 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6792}
6793
6794#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6795
67fc4e0c 6796#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6797/*
67fc4e0c 6798 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6799 *
6800 * They can only be called when the whole system has been
6801 * stopped - every CPU needs to be quiescent, and no scheduling
6802 * activity can take place. Using them for anything else would
6803 * be a serious bug, and as a result, they aren't even visible
6804 * under any other configuration.
6805 */
6806
6807/**
6808 * curr_task - return the current task for a given cpu.
6809 * @cpu: the processor in question.
6810 *
6811 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6812 *
6813 * Return: The current task for @cpu.
1df5c10a 6814 */
36c8b586 6815struct task_struct *curr_task(int cpu)
1df5c10a
LT
6816{
6817 return cpu_curr(cpu);
6818}
6819
67fc4e0c
JW
6820#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6821
6822#ifdef CONFIG_IA64
1df5c10a
LT
6823/**
6824 * set_curr_task - set the current task for a given cpu.
6825 * @cpu: the processor in question.
6826 * @p: the task pointer to set.
6827 *
6828 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6829 * are serviced on a separate stack. It allows the architecture to switch the
6830 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6831 * must be called with all CPU's synchronized, and interrupts disabled, the
6832 * and caller must save the original value of the current task (see
6833 * curr_task() above) and restore that value before reenabling interrupts and
6834 * re-starting the system.
6835 *
6836 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6837 */
36c8b586 6838void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6839{
6840 cpu_curr(cpu) = p;
6841}
6842
6843#endif
29f59db3 6844
7c941438 6845#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6846/* task_group_lock serializes the addition/removal of task groups */
6847static DEFINE_SPINLOCK(task_group_lock);
6848
bccbe08a
PZ
6849static void free_sched_group(struct task_group *tg)
6850{
6851 free_fair_sched_group(tg);
6852 free_rt_sched_group(tg);
e9aa1dd1 6853 autogroup_free(tg);
bccbe08a
PZ
6854 kfree(tg);
6855}
6856
6857/* allocate runqueue etc for a new task group */
ec7dc8ac 6858struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6859{
6860 struct task_group *tg;
bccbe08a
PZ
6861
6862 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6863 if (!tg)
6864 return ERR_PTR(-ENOMEM);
6865
ec7dc8ac 6866 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6867 goto err;
6868
ec7dc8ac 6869 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6870 goto err;
6871
ace783b9
LZ
6872 return tg;
6873
6874err:
6875 free_sched_group(tg);
6876 return ERR_PTR(-ENOMEM);
6877}
6878
6879void sched_online_group(struct task_group *tg, struct task_group *parent)
6880{
6881 unsigned long flags;
6882
8ed36996 6883 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6884 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6885
6886 WARN_ON(!parent); /* root should already exist */
6887
6888 tg->parent = parent;
f473aa5e 6889 INIT_LIST_HEAD(&tg->children);
09f2724a 6890 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6891 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6892}
6893
9b5b7751 6894/* rcu callback to free various structures associated with a task group */
6f505b16 6895static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6896{
29f59db3 6897 /* now it should be safe to free those cfs_rqs */
6f505b16 6898 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6899}
6900
9b5b7751 6901/* Destroy runqueue etc associated with a task group */
4cf86d77 6902void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6903{
6904 /* wait for possible concurrent references to cfs_rqs complete */
6905 call_rcu(&tg->rcu, free_sched_group_rcu);
6906}
6907
6908void sched_offline_group(struct task_group *tg)
29f59db3 6909{
8ed36996 6910 unsigned long flags;
9b5b7751 6911 int i;
29f59db3 6912
3d4b47b4
PZ
6913 /* end participation in shares distribution */
6914 for_each_possible_cpu(i)
bccbe08a 6915 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6916
6917 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6918 list_del_rcu(&tg->list);
f473aa5e 6919 list_del_rcu(&tg->siblings);
8ed36996 6920 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6921}
6922
9b5b7751 6923/* change task's runqueue when it moves between groups.
3a252015
IM
6924 * The caller of this function should have put the task in its new group
6925 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6926 * reflect its new group.
9b5b7751
SV
6927 */
6928void sched_move_task(struct task_struct *tsk)
29f59db3 6929{
8323f26c 6930 struct task_group *tg;
29f59db3
SV
6931 int on_rq, running;
6932 unsigned long flags;
6933 struct rq *rq;
6934
6935 rq = task_rq_lock(tsk, &flags);
6936
051a1d1a 6937 running = task_current(rq, tsk);
fd2f4419 6938 on_rq = tsk->on_rq;
29f59db3 6939
0e1f3483 6940 if (on_rq)
29f59db3 6941 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6942 if (unlikely(running))
6943 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6944
8af01f56 6945 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6946 lockdep_is_held(&tsk->sighand->siglock)),
6947 struct task_group, css);
6948 tg = autogroup_task_group(tsk, tg);
6949 tsk->sched_task_group = tg;
6950
810b3817 6951#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6952 if (tsk->sched_class->task_move_group)
6953 tsk->sched_class->task_move_group(tsk, on_rq);
6954 else
810b3817 6955#endif
b2b5ce02 6956 set_task_rq(tsk, task_cpu(tsk));
810b3817 6957
0e1f3483
HS
6958 if (unlikely(running))
6959 tsk->sched_class->set_curr_task(rq);
6960 if (on_rq)
371fd7e7 6961 enqueue_task(rq, tsk, 0);
29f59db3 6962
0122ec5b 6963 task_rq_unlock(rq, tsk, &flags);
29f59db3 6964}
7c941438 6965#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6966
a790de99 6967#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6968static unsigned long to_ratio(u64 period, u64 runtime)
6969{
6970 if (runtime == RUNTIME_INF)
9a7e0b18 6971 return 1ULL << 20;
9f0c1e56 6972
9a7e0b18 6973 return div64_u64(runtime << 20, period);
9f0c1e56 6974}
a790de99
PT
6975#endif
6976
6977#ifdef CONFIG_RT_GROUP_SCHED
6978/*
6979 * Ensure that the real time constraints are schedulable.
6980 */
6981static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6982
9a7e0b18
PZ
6983/* Must be called with tasklist_lock held */
6984static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6985{
9a7e0b18 6986 struct task_struct *g, *p;
b40b2e8e 6987
9a7e0b18 6988 do_each_thread(g, p) {
029632fb 6989 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6990 return 1;
6991 } while_each_thread(g, p);
b40b2e8e 6992
9a7e0b18
PZ
6993 return 0;
6994}
b40b2e8e 6995
9a7e0b18
PZ
6996struct rt_schedulable_data {
6997 struct task_group *tg;
6998 u64 rt_period;
6999 u64 rt_runtime;
7000};
b40b2e8e 7001
a790de99 7002static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7003{
7004 struct rt_schedulable_data *d = data;
7005 struct task_group *child;
7006 unsigned long total, sum = 0;
7007 u64 period, runtime;
b40b2e8e 7008
9a7e0b18
PZ
7009 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7010 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7011
9a7e0b18
PZ
7012 if (tg == d->tg) {
7013 period = d->rt_period;
7014 runtime = d->rt_runtime;
b40b2e8e 7015 }
b40b2e8e 7016
4653f803
PZ
7017 /*
7018 * Cannot have more runtime than the period.
7019 */
7020 if (runtime > period && runtime != RUNTIME_INF)
7021 return -EINVAL;
6f505b16 7022
4653f803
PZ
7023 /*
7024 * Ensure we don't starve existing RT tasks.
7025 */
9a7e0b18
PZ
7026 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7027 return -EBUSY;
6f505b16 7028
9a7e0b18 7029 total = to_ratio(period, runtime);
6f505b16 7030
4653f803
PZ
7031 /*
7032 * Nobody can have more than the global setting allows.
7033 */
7034 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7035 return -EINVAL;
6f505b16 7036
4653f803
PZ
7037 /*
7038 * The sum of our children's runtime should not exceed our own.
7039 */
9a7e0b18
PZ
7040 list_for_each_entry_rcu(child, &tg->children, siblings) {
7041 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7042 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7043
9a7e0b18
PZ
7044 if (child == d->tg) {
7045 period = d->rt_period;
7046 runtime = d->rt_runtime;
7047 }
6f505b16 7048
9a7e0b18 7049 sum += to_ratio(period, runtime);
9f0c1e56 7050 }
6f505b16 7051
9a7e0b18
PZ
7052 if (sum > total)
7053 return -EINVAL;
7054
7055 return 0;
6f505b16
PZ
7056}
7057
9a7e0b18 7058static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7059{
8277434e
PT
7060 int ret;
7061
9a7e0b18
PZ
7062 struct rt_schedulable_data data = {
7063 .tg = tg,
7064 .rt_period = period,
7065 .rt_runtime = runtime,
7066 };
7067
8277434e
PT
7068 rcu_read_lock();
7069 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7070 rcu_read_unlock();
7071
7072 return ret;
521f1a24
DG
7073}
7074
ab84d31e 7075static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7076 u64 rt_period, u64 rt_runtime)
6f505b16 7077{
ac086bc2 7078 int i, err = 0;
9f0c1e56 7079
9f0c1e56 7080 mutex_lock(&rt_constraints_mutex);
521f1a24 7081 read_lock(&tasklist_lock);
9a7e0b18
PZ
7082 err = __rt_schedulable(tg, rt_period, rt_runtime);
7083 if (err)
9f0c1e56 7084 goto unlock;
ac086bc2 7085
0986b11b 7086 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7087 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7088 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7089
7090 for_each_possible_cpu(i) {
7091 struct rt_rq *rt_rq = tg->rt_rq[i];
7092
0986b11b 7093 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7094 rt_rq->rt_runtime = rt_runtime;
0986b11b 7095 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7096 }
0986b11b 7097 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7098unlock:
521f1a24 7099 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7100 mutex_unlock(&rt_constraints_mutex);
7101
7102 return err;
6f505b16
PZ
7103}
7104
25cc7da7 7105static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7106{
7107 u64 rt_runtime, rt_period;
7108
7109 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7110 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7111 if (rt_runtime_us < 0)
7112 rt_runtime = RUNTIME_INF;
7113
ab84d31e 7114 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7115}
7116
25cc7da7 7117static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7118{
7119 u64 rt_runtime_us;
7120
d0b27fa7 7121 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7122 return -1;
7123
d0b27fa7 7124 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7125 do_div(rt_runtime_us, NSEC_PER_USEC);
7126 return rt_runtime_us;
7127}
d0b27fa7 7128
25cc7da7 7129static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7130{
7131 u64 rt_runtime, rt_period;
7132
7133 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7134 rt_runtime = tg->rt_bandwidth.rt_runtime;
7135
619b0488
R
7136 if (rt_period == 0)
7137 return -EINVAL;
7138
ab84d31e 7139 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7140}
7141
25cc7da7 7142static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7143{
7144 u64 rt_period_us;
7145
7146 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7147 do_div(rt_period_us, NSEC_PER_USEC);
7148 return rt_period_us;
7149}
7150
7151static int sched_rt_global_constraints(void)
7152{
4653f803 7153 u64 runtime, period;
d0b27fa7
PZ
7154 int ret = 0;
7155
ec5d4989
HS
7156 if (sysctl_sched_rt_period <= 0)
7157 return -EINVAL;
7158
4653f803
PZ
7159 runtime = global_rt_runtime();
7160 period = global_rt_period();
7161
7162 /*
7163 * Sanity check on the sysctl variables.
7164 */
7165 if (runtime > period && runtime != RUNTIME_INF)
7166 return -EINVAL;
10b612f4 7167
d0b27fa7 7168 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7169 read_lock(&tasklist_lock);
4653f803 7170 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7171 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7172 mutex_unlock(&rt_constraints_mutex);
7173
7174 return ret;
7175}
54e99124 7176
25cc7da7 7177static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7178{
7179 /* Don't accept realtime tasks when there is no way for them to run */
7180 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7181 return 0;
7182
7183 return 1;
7184}
7185
6d6bc0ad 7186#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7187static int sched_rt_global_constraints(void)
7188{
ac086bc2
PZ
7189 unsigned long flags;
7190 int i;
7191
ec5d4989
HS
7192 if (sysctl_sched_rt_period <= 0)
7193 return -EINVAL;
7194
60aa605d
PZ
7195 /*
7196 * There's always some RT tasks in the root group
7197 * -- migration, kstopmachine etc..
7198 */
7199 if (sysctl_sched_rt_runtime == 0)
7200 return -EBUSY;
7201
0986b11b 7202 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7203 for_each_possible_cpu(i) {
7204 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7205
0986b11b 7206 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7207 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7208 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7209 }
0986b11b 7210 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7211
d0b27fa7
PZ
7212 return 0;
7213}
6d6bc0ad 7214#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7215
ce0dbbbb
CW
7216int sched_rr_handler(struct ctl_table *table, int write,
7217 void __user *buffer, size_t *lenp,
7218 loff_t *ppos)
7219{
7220 int ret;
7221 static DEFINE_MUTEX(mutex);
7222
7223 mutex_lock(&mutex);
7224 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7225 /* make sure that internally we keep jiffies */
7226 /* also, writing zero resets timeslice to default */
7227 if (!ret && write) {
7228 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7229 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7230 }
7231 mutex_unlock(&mutex);
7232 return ret;
7233}
7234
d0b27fa7 7235int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7236 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7237 loff_t *ppos)
7238{
7239 int ret;
7240 int old_period, old_runtime;
7241 static DEFINE_MUTEX(mutex);
7242
7243 mutex_lock(&mutex);
7244 old_period = sysctl_sched_rt_period;
7245 old_runtime = sysctl_sched_rt_runtime;
7246
8d65af78 7247 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7248
7249 if (!ret && write) {
7250 ret = sched_rt_global_constraints();
7251 if (ret) {
7252 sysctl_sched_rt_period = old_period;
7253 sysctl_sched_rt_runtime = old_runtime;
7254 } else {
7255 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7256 def_rt_bandwidth.rt_period =
7257 ns_to_ktime(global_rt_period());
7258 }
7259 }
7260 mutex_unlock(&mutex);
7261
7262 return ret;
7263}
68318b8e 7264
052f1dc7 7265#ifdef CONFIG_CGROUP_SCHED
68318b8e 7266
a7c6d554 7267static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7268{
a7c6d554 7269 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7270}
7271
eb95419b
TH
7272static struct cgroup_subsys_state *
7273cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7274{
eb95419b
TH
7275 struct task_group *parent = css_tg(parent_css);
7276 struct task_group *tg;
68318b8e 7277
eb95419b 7278 if (!parent) {
68318b8e 7279 /* This is early initialization for the top cgroup */
07e06b01 7280 return &root_task_group.css;
68318b8e
SV
7281 }
7282
ec7dc8ac 7283 tg = sched_create_group(parent);
68318b8e
SV
7284 if (IS_ERR(tg))
7285 return ERR_PTR(-ENOMEM);
7286
68318b8e
SV
7287 return &tg->css;
7288}
7289
eb95419b 7290static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7291{
eb95419b
TH
7292 struct task_group *tg = css_tg(css);
7293 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7294
63876986
TH
7295 if (parent)
7296 sched_online_group(tg, parent);
ace783b9
LZ
7297 return 0;
7298}
7299
eb95419b 7300static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7301{
eb95419b 7302 struct task_group *tg = css_tg(css);
68318b8e
SV
7303
7304 sched_destroy_group(tg);
7305}
7306
eb95419b 7307static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7308{
eb95419b 7309 struct task_group *tg = css_tg(css);
ace783b9
LZ
7310
7311 sched_offline_group(tg);
7312}
7313
eb95419b 7314static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7315 struct cgroup_taskset *tset)
68318b8e 7316{
bb9d97b6
TH
7317 struct task_struct *task;
7318
d99c8727 7319 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7320#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7321 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7322 return -EINVAL;
b68aa230 7323#else
bb9d97b6
TH
7324 /* We don't support RT-tasks being in separate groups */
7325 if (task->sched_class != &fair_sched_class)
7326 return -EINVAL;
b68aa230 7327#endif
bb9d97b6 7328 }
be367d09
BB
7329 return 0;
7330}
68318b8e 7331
eb95419b 7332static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7333 struct cgroup_taskset *tset)
68318b8e 7334{
bb9d97b6
TH
7335 struct task_struct *task;
7336
d99c8727 7337 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7338 sched_move_task(task);
68318b8e
SV
7339}
7340
eb95419b
TH
7341static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7342 struct cgroup_subsys_state *old_css,
7343 struct task_struct *task)
068c5cc5
PZ
7344{
7345 /*
7346 * cgroup_exit() is called in the copy_process() failure path.
7347 * Ignore this case since the task hasn't ran yet, this avoids
7348 * trying to poke a half freed task state from generic code.
7349 */
7350 if (!(task->flags & PF_EXITING))
7351 return;
7352
7353 sched_move_task(task);
7354}
7355
052f1dc7 7356#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7357static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7358 struct cftype *cftype, u64 shareval)
68318b8e 7359{
182446d0 7360 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7361}
7362
182446d0
TH
7363static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7364 struct cftype *cft)
68318b8e 7365{
182446d0 7366 struct task_group *tg = css_tg(css);
68318b8e 7367
c8b28116 7368 return (u64) scale_load_down(tg->shares);
68318b8e 7369}
ab84d31e
PT
7370
7371#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7372static DEFINE_MUTEX(cfs_constraints_mutex);
7373
ab84d31e
PT
7374const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7375const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7376
a790de99
PT
7377static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7378
ab84d31e
PT
7379static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7380{
56f570e5 7381 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7382 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7383
7384 if (tg == &root_task_group)
7385 return -EINVAL;
7386
7387 /*
7388 * Ensure we have at some amount of bandwidth every period. This is
7389 * to prevent reaching a state of large arrears when throttled via
7390 * entity_tick() resulting in prolonged exit starvation.
7391 */
7392 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7393 return -EINVAL;
7394
7395 /*
7396 * Likewise, bound things on the otherside by preventing insane quota
7397 * periods. This also allows us to normalize in computing quota
7398 * feasibility.
7399 */
7400 if (period > max_cfs_quota_period)
7401 return -EINVAL;
7402
a790de99
PT
7403 mutex_lock(&cfs_constraints_mutex);
7404 ret = __cfs_schedulable(tg, period, quota);
7405 if (ret)
7406 goto out_unlock;
7407
58088ad0 7408 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7409 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7410 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7411 raw_spin_lock_irq(&cfs_b->lock);
7412 cfs_b->period = ns_to_ktime(period);
7413 cfs_b->quota = quota;
58088ad0 7414
a9cf55b2 7415 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7416 /* restart the period timer (if active) to handle new period expiry */
7417 if (runtime_enabled && cfs_b->timer_active) {
7418 /* force a reprogram */
7419 cfs_b->timer_active = 0;
7420 __start_cfs_bandwidth(cfs_b);
7421 }
ab84d31e
PT
7422 raw_spin_unlock_irq(&cfs_b->lock);
7423
7424 for_each_possible_cpu(i) {
7425 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7426 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7427
7428 raw_spin_lock_irq(&rq->lock);
58088ad0 7429 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7430 cfs_rq->runtime_remaining = 0;
671fd9da 7431
029632fb 7432 if (cfs_rq->throttled)
671fd9da 7433 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7434 raw_spin_unlock_irq(&rq->lock);
7435 }
a790de99
PT
7436out_unlock:
7437 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7438
a790de99 7439 return ret;
ab84d31e
PT
7440}
7441
7442int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7443{
7444 u64 quota, period;
7445
029632fb 7446 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7447 if (cfs_quota_us < 0)
7448 quota = RUNTIME_INF;
7449 else
7450 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7451
7452 return tg_set_cfs_bandwidth(tg, period, quota);
7453}
7454
7455long tg_get_cfs_quota(struct task_group *tg)
7456{
7457 u64 quota_us;
7458
029632fb 7459 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7460 return -1;
7461
029632fb 7462 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7463 do_div(quota_us, NSEC_PER_USEC);
7464
7465 return quota_us;
7466}
7467
7468int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7469{
7470 u64 quota, period;
7471
7472 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7473 quota = tg->cfs_bandwidth.quota;
ab84d31e 7474
ab84d31e
PT
7475 return tg_set_cfs_bandwidth(tg, period, quota);
7476}
7477
7478long tg_get_cfs_period(struct task_group *tg)
7479{
7480 u64 cfs_period_us;
7481
029632fb 7482 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7483 do_div(cfs_period_us, NSEC_PER_USEC);
7484
7485 return cfs_period_us;
7486}
7487
182446d0
TH
7488static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7489 struct cftype *cft)
ab84d31e 7490{
182446d0 7491 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7492}
7493
182446d0
TH
7494static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7495 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7496{
182446d0 7497 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7498}
7499
182446d0
TH
7500static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7501 struct cftype *cft)
ab84d31e 7502{
182446d0 7503 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7504}
7505
182446d0
TH
7506static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7507 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7508{
182446d0 7509 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7510}
7511
a790de99
PT
7512struct cfs_schedulable_data {
7513 struct task_group *tg;
7514 u64 period, quota;
7515};
7516
7517/*
7518 * normalize group quota/period to be quota/max_period
7519 * note: units are usecs
7520 */
7521static u64 normalize_cfs_quota(struct task_group *tg,
7522 struct cfs_schedulable_data *d)
7523{
7524 u64 quota, period;
7525
7526 if (tg == d->tg) {
7527 period = d->period;
7528 quota = d->quota;
7529 } else {
7530 period = tg_get_cfs_period(tg);
7531 quota = tg_get_cfs_quota(tg);
7532 }
7533
7534 /* note: these should typically be equivalent */
7535 if (quota == RUNTIME_INF || quota == -1)
7536 return RUNTIME_INF;
7537
7538 return to_ratio(period, quota);
7539}
7540
7541static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7542{
7543 struct cfs_schedulable_data *d = data;
029632fb 7544 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7545 s64 quota = 0, parent_quota = -1;
7546
7547 if (!tg->parent) {
7548 quota = RUNTIME_INF;
7549 } else {
029632fb 7550 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7551
7552 quota = normalize_cfs_quota(tg, d);
7553 parent_quota = parent_b->hierarchal_quota;
7554
7555 /*
7556 * ensure max(child_quota) <= parent_quota, inherit when no
7557 * limit is set
7558 */
7559 if (quota == RUNTIME_INF)
7560 quota = parent_quota;
7561 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7562 return -EINVAL;
7563 }
7564 cfs_b->hierarchal_quota = quota;
7565
7566 return 0;
7567}
7568
7569static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7570{
8277434e 7571 int ret;
a790de99
PT
7572 struct cfs_schedulable_data data = {
7573 .tg = tg,
7574 .period = period,
7575 .quota = quota,
7576 };
7577
7578 if (quota != RUNTIME_INF) {
7579 do_div(data.period, NSEC_PER_USEC);
7580 do_div(data.quota, NSEC_PER_USEC);
7581 }
7582
8277434e
PT
7583 rcu_read_lock();
7584 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7585 rcu_read_unlock();
7586
7587 return ret;
a790de99 7588}
e8da1b18 7589
182446d0 7590static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7591 struct cgroup_map_cb *cb)
7592{
182446d0 7593 struct task_group *tg = css_tg(css);
029632fb 7594 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7595
7596 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7597 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7598 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7599
7600 return 0;
7601}
ab84d31e 7602#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7603#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7604
052f1dc7 7605#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7606static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7607 struct cftype *cft, s64 val)
6f505b16 7608{
182446d0 7609 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7610}
7611
182446d0
TH
7612static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7613 struct cftype *cft)
6f505b16 7614{
182446d0 7615 return sched_group_rt_runtime(css_tg(css));
6f505b16 7616}
d0b27fa7 7617
182446d0
TH
7618static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7619 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7620{
182446d0 7621 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7622}
7623
182446d0
TH
7624static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7625 struct cftype *cft)
d0b27fa7 7626{
182446d0 7627 return sched_group_rt_period(css_tg(css));
d0b27fa7 7628}
6d6bc0ad 7629#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7630
fe5c7cc2 7631static struct cftype cpu_files[] = {
052f1dc7 7632#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7633 {
7634 .name = "shares",
f4c753b7
PM
7635 .read_u64 = cpu_shares_read_u64,
7636 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7637 },
052f1dc7 7638#endif
ab84d31e
PT
7639#ifdef CONFIG_CFS_BANDWIDTH
7640 {
7641 .name = "cfs_quota_us",
7642 .read_s64 = cpu_cfs_quota_read_s64,
7643 .write_s64 = cpu_cfs_quota_write_s64,
7644 },
7645 {
7646 .name = "cfs_period_us",
7647 .read_u64 = cpu_cfs_period_read_u64,
7648 .write_u64 = cpu_cfs_period_write_u64,
7649 },
e8da1b18
NR
7650 {
7651 .name = "stat",
7652 .read_map = cpu_stats_show,
7653 },
ab84d31e 7654#endif
052f1dc7 7655#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7656 {
9f0c1e56 7657 .name = "rt_runtime_us",
06ecb27c
PM
7658 .read_s64 = cpu_rt_runtime_read,
7659 .write_s64 = cpu_rt_runtime_write,
6f505b16 7660 },
d0b27fa7
PZ
7661 {
7662 .name = "rt_period_us",
f4c753b7
PM
7663 .read_u64 = cpu_rt_period_read_uint,
7664 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7665 },
052f1dc7 7666#endif
4baf6e33 7667 { } /* terminate */
68318b8e
SV
7668};
7669
68318b8e 7670struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7671 .name = "cpu",
92fb9748
TH
7672 .css_alloc = cpu_cgroup_css_alloc,
7673 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7674 .css_online = cpu_cgroup_css_online,
7675 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7676 .can_attach = cpu_cgroup_can_attach,
7677 .attach = cpu_cgroup_attach,
068c5cc5 7678 .exit = cpu_cgroup_exit,
38605cae 7679 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7680 .base_cftypes = cpu_files,
68318b8e
SV
7681 .early_init = 1,
7682};
7683
052f1dc7 7684#endif /* CONFIG_CGROUP_SCHED */
d842de87 7685
b637a328
PM
7686void dump_cpu_task(int cpu)
7687{
7688 pr_info("Task dump for CPU %d:\n", cpu);
7689 sched_show_task(cpu_curr(cpu));
7690}
This page took 2.475433 seconds and 5 git commands to generate.