sched/deadline: Add SCHED_DEADLINE avg_update accounting
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
aab03e05
DF
902 if (task_has_dl_policy(p))
903 prio = MAX_DL_PRIO-1;
904 else if (task_has_rt_policy(p))
b29739f9
IM
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
36c8b586 918static int effective_prio(struct task_struct *p)
b29739f9
IM
919{
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929}
930
1da177e4
LT
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
e69f6186
YB
934 *
935 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 936 */
36c8b586 937inline int task_curr(const struct task_struct *p)
1da177e4
LT
938{
939 return cpu_curr(task_cpu(p)) == p;
940}
941
cb469845
SR
942static inline void check_class_changed(struct rq *rq, struct task_struct *p,
943 const struct sched_class *prev_class,
da7a735e 944 int oldprio)
cb469845
SR
945{
946 if (prev_class != p->sched_class) {
947 if (prev_class->switched_from)
da7a735e
PZ
948 prev_class->switched_from(rq, p);
949 p->sched_class->switched_to(rq, p);
950 } else if (oldprio != p->prio)
951 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
952}
953
029632fb 954void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
955{
956 const struct sched_class *class;
957
958 if (p->sched_class == rq->curr->sched_class) {
959 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
960 } else {
961 for_each_class(class) {
962 if (class == rq->curr->sched_class)
963 break;
964 if (class == p->sched_class) {
965 resched_task(rq->curr);
966 break;
967 }
968 }
969 }
970
971 /*
972 * A queue event has occurred, and we're going to schedule. In
973 * this case, we can save a useless back to back clock update.
974 */
fd2f4419 975 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
976 rq->skip_clock_update = 1;
977}
978
1da177e4 979#ifdef CONFIG_SMP
dd41f596 980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 981{
e2912009
PZ
982#ifdef CONFIG_SCHED_DEBUG
983 /*
984 * We should never call set_task_cpu() on a blocked task,
985 * ttwu() will sort out the placement.
986 */
077614ee 987 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 988 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
989
990#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
991 /*
992 * The caller should hold either p->pi_lock or rq->lock, when changing
993 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
994 *
995 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 996 * see task_group().
6c6c54e1
PZ
997 *
998 * Furthermore, all task_rq users should acquire both locks, see
999 * task_rq_lock().
1000 */
0122ec5b
PZ
1001 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1002 lockdep_is_held(&task_rq(p)->lock)));
1003#endif
e2912009
PZ
1004#endif
1005
de1d7286 1006 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1007
0c69774e 1008 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1009 if (p->sched_class->migrate_task_rq)
1010 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1011 p->se.nr_migrations++;
a8b0ca17 1012 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1013 }
dd41f596
IM
1014
1015 __set_task_cpu(p, new_cpu);
c65cc870
IM
1016}
1017
ac66f547
PZ
1018static void __migrate_swap_task(struct task_struct *p, int cpu)
1019{
1020 if (p->on_rq) {
1021 struct rq *src_rq, *dst_rq;
1022
1023 src_rq = task_rq(p);
1024 dst_rq = cpu_rq(cpu);
1025
1026 deactivate_task(src_rq, p, 0);
1027 set_task_cpu(p, cpu);
1028 activate_task(dst_rq, p, 0);
1029 check_preempt_curr(dst_rq, p, 0);
1030 } else {
1031 /*
1032 * Task isn't running anymore; make it appear like we migrated
1033 * it before it went to sleep. This means on wakeup we make the
1034 * previous cpu our targer instead of where it really is.
1035 */
1036 p->wake_cpu = cpu;
1037 }
1038}
1039
1040struct migration_swap_arg {
1041 struct task_struct *src_task, *dst_task;
1042 int src_cpu, dst_cpu;
1043};
1044
1045static int migrate_swap_stop(void *data)
1046{
1047 struct migration_swap_arg *arg = data;
1048 struct rq *src_rq, *dst_rq;
1049 int ret = -EAGAIN;
1050
1051 src_rq = cpu_rq(arg->src_cpu);
1052 dst_rq = cpu_rq(arg->dst_cpu);
1053
74602315
PZ
1054 double_raw_lock(&arg->src_task->pi_lock,
1055 &arg->dst_task->pi_lock);
ac66f547
PZ
1056 double_rq_lock(src_rq, dst_rq);
1057 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1058 goto unlock;
1059
1060 if (task_cpu(arg->src_task) != arg->src_cpu)
1061 goto unlock;
1062
1063 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1064 goto unlock;
1065
1066 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1067 goto unlock;
1068
1069 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1070 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1071
1072 ret = 0;
1073
1074unlock:
1075 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1076 raw_spin_unlock(&arg->dst_task->pi_lock);
1077 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1078
1079 return ret;
1080}
1081
1082/*
1083 * Cross migrate two tasks
1084 */
1085int migrate_swap(struct task_struct *cur, struct task_struct *p)
1086{
1087 struct migration_swap_arg arg;
1088 int ret = -EINVAL;
1089
ac66f547
PZ
1090 arg = (struct migration_swap_arg){
1091 .src_task = cur,
1092 .src_cpu = task_cpu(cur),
1093 .dst_task = p,
1094 .dst_cpu = task_cpu(p),
1095 };
1096
1097 if (arg.src_cpu == arg.dst_cpu)
1098 goto out;
1099
6acce3ef
PZ
1100 /*
1101 * These three tests are all lockless; this is OK since all of them
1102 * will be re-checked with proper locks held further down the line.
1103 */
ac66f547
PZ
1104 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1105 goto out;
1106
1107 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1108 goto out;
1109
1110 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1111 goto out;
1112
1113 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1114
1115out:
ac66f547
PZ
1116 return ret;
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
aa00d89c
TC
1266 int nid = cpu_to_node(cpu);
1267 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1268 enum { cpuset, possible, fail } state = cpuset;
1269 int dest_cpu;
5da9a0fb 1270
aa00d89c
TC
1271 /*
1272 * If the node that the cpu is on has been offlined, cpu_to_node()
1273 * will return -1. There is no cpu on the node, and we should
1274 * select the cpu on the other node.
1275 */
1276 if (nid != -1) {
1277 nodemask = cpumask_of_node(nid);
1278
1279 /* Look for allowed, online CPU in same node. */
1280 for_each_cpu(dest_cpu, nodemask) {
1281 if (!cpu_online(dest_cpu))
1282 continue;
1283 if (!cpu_active(dest_cpu))
1284 continue;
1285 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1286 return dest_cpu;
1287 }
2baab4e9 1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 for (;;) {
1291 /* Any allowed, online CPU? */
e3831edd 1292 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1293 if (!cpu_online(dest_cpu))
1294 continue;
1295 if (!cpu_active(dest_cpu))
1296 continue;
1297 goto out;
1298 }
5da9a0fb 1299
2baab4e9
PZ
1300 switch (state) {
1301 case cpuset:
1302 /* No more Mr. Nice Guy. */
1303 cpuset_cpus_allowed_fallback(p);
1304 state = possible;
1305 break;
1306
1307 case possible:
1308 do_set_cpus_allowed(p, cpu_possible_mask);
1309 state = fail;
1310 break;
1311
1312 case fail:
1313 BUG();
1314 break;
1315 }
1316 }
1317
1318out:
1319 if (state != cpuset) {
1320 /*
1321 * Don't tell them about moving exiting tasks or
1322 * kernel threads (both mm NULL), since they never
1323 * leave kernel.
1324 */
1325 if (p->mm && printk_ratelimit()) {
1326 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1327 task_pid_nr(p), p->comm, cpu);
1328 }
5da9a0fb
PZ
1329 }
1330
1331 return dest_cpu;
1332}
1333
e2912009 1334/*
013fdb80 1335 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1336 */
970b13ba 1337static inline
ac66f547 1338int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1339{
ac66f547 1340 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1341
1342 /*
1343 * In order not to call set_task_cpu() on a blocking task we need
1344 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1345 * cpu.
1346 *
1347 * Since this is common to all placement strategies, this lives here.
1348 *
1349 * [ this allows ->select_task() to simply return task_cpu(p) and
1350 * not worry about this generic constraint ]
1351 */
fa17b507 1352 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1353 !cpu_online(cpu)))
5da9a0fb 1354 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1355
1356 return cpu;
970b13ba 1357}
09a40af5
MG
1358
1359static void update_avg(u64 *avg, u64 sample)
1360{
1361 s64 diff = sample - *avg;
1362 *avg += diff >> 3;
1363}
970b13ba
PZ
1364#endif
1365
d7c01d27 1366static void
b84cb5df 1367ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1368{
d7c01d27 1369#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1370 struct rq *rq = this_rq();
1371
d7c01d27
PZ
1372#ifdef CONFIG_SMP
1373 int this_cpu = smp_processor_id();
1374
1375 if (cpu == this_cpu) {
1376 schedstat_inc(rq, ttwu_local);
1377 schedstat_inc(p, se.statistics.nr_wakeups_local);
1378 } else {
1379 struct sched_domain *sd;
1380
1381 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1382 rcu_read_lock();
d7c01d27
PZ
1383 for_each_domain(this_cpu, sd) {
1384 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1385 schedstat_inc(sd, ttwu_wake_remote);
1386 break;
1387 }
1388 }
057f3fad 1389 rcu_read_unlock();
d7c01d27 1390 }
f339b9dc
PZ
1391
1392 if (wake_flags & WF_MIGRATED)
1393 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1394
d7c01d27
PZ
1395#endif /* CONFIG_SMP */
1396
1397 schedstat_inc(rq, ttwu_count);
9ed3811a 1398 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1399
1400 if (wake_flags & WF_SYNC)
9ed3811a 1401 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1402
d7c01d27
PZ
1403#endif /* CONFIG_SCHEDSTATS */
1404}
1405
1406static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1407{
9ed3811a 1408 activate_task(rq, p, en_flags);
fd2f4419 1409 p->on_rq = 1;
c2f7115e
PZ
1410
1411 /* if a worker is waking up, notify workqueue */
1412 if (p->flags & PF_WQ_WORKER)
1413 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1414}
1415
23f41eeb
PZ
1416/*
1417 * Mark the task runnable and perform wakeup-preemption.
1418 */
89363381 1419static void
23f41eeb 1420ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1421{
9ed3811a 1422 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1423 trace_sched_wakeup(p, true);
9ed3811a
TH
1424
1425 p->state = TASK_RUNNING;
1426#ifdef CONFIG_SMP
1427 if (p->sched_class->task_woken)
1428 p->sched_class->task_woken(rq, p);
1429
e69c6341 1430 if (rq->idle_stamp) {
78becc27 1431 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1432 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1433
abfafa54
JL
1434 update_avg(&rq->avg_idle, delta);
1435
1436 if (rq->avg_idle > max)
9ed3811a 1437 rq->avg_idle = max;
abfafa54 1438
9ed3811a
TH
1439 rq->idle_stamp = 0;
1440 }
1441#endif
1442}
1443
c05fbafb
PZ
1444static void
1445ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1446{
1447#ifdef CONFIG_SMP
1448 if (p->sched_contributes_to_load)
1449 rq->nr_uninterruptible--;
1450#endif
1451
1452 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1453 ttwu_do_wakeup(rq, p, wake_flags);
1454}
1455
1456/*
1457 * Called in case the task @p isn't fully descheduled from its runqueue,
1458 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1459 * since all we need to do is flip p->state to TASK_RUNNING, since
1460 * the task is still ->on_rq.
1461 */
1462static int ttwu_remote(struct task_struct *p, int wake_flags)
1463{
1464 struct rq *rq;
1465 int ret = 0;
1466
1467 rq = __task_rq_lock(p);
1468 if (p->on_rq) {
1ad4ec0d
FW
1469 /* check_preempt_curr() may use rq clock */
1470 update_rq_clock(rq);
c05fbafb
PZ
1471 ttwu_do_wakeup(rq, p, wake_flags);
1472 ret = 1;
1473 }
1474 __task_rq_unlock(rq);
1475
1476 return ret;
1477}
1478
317f3941 1479#ifdef CONFIG_SMP
fa14ff4a 1480static void sched_ttwu_pending(void)
317f3941
PZ
1481{
1482 struct rq *rq = this_rq();
fa14ff4a
PZ
1483 struct llist_node *llist = llist_del_all(&rq->wake_list);
1484 struct task_struct *p;
317f3941
PZ
1485
1486 raw_spin_lock(&rq->lock);
1487
fa14ff4a
PZ
1488 while (llist) {
1489 p = llist_entry(llist, struct task_struct, wake_entry);
1490 llist = llist_next(llist);
317f3941
PZ
1491 ttwu_do_activate(rq, p, 0);
1492 }
1493
1494 raw_spin_unlock(&rq->lock);
1495}
1496
1497void scheduler_ipi(void)
1498{
f27dde8d
PZ
1499 /*
1500 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1501 * TIF_NEED_RESCHED remotely (for the first time) will also send
1502 * this IPI.
1503 */
1504 if (tif_need_resched())
1505 set_preempt_need_resched();
1506
873b4c65
VG
1507 if (llist_empty(&this_rq()->wake_list)
1508 && !tick_nohz_full_cpu(smp_processor_id())
1509 && !got_nohz_idle_kick())
c5d753a5
PZ
1510 return;
1511
1512 /*
1513 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1514 * traditionally all their work was done from the interrupt return
1515 * path. Now that we actually do some work, we need to make sure
1516 * we do call them.
1517 *
1518 * Some archs already do call them, luckily irq_enter/exit nest
1519 * properly.
1520 *
1521 * Arguably we should visit all archs and update all handlers,
1522 * however a fair share of IPIs are still resched only so this would
1523 * somewhat pessimize the simple resched case.
1524 */
1525 irq_enter();
ff442c51 1526 tick_nohz_full_check();
fa14ff4a 1527 sched_ttwu_pending();
ca38062e
SS
1528
1529 /*
1530 * Check if someone kicked us for doing the nohz idle load balance.
1531 */
873b4c65 1532 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1533 this_rq()->idle_balance = 1;
ca38062e 1534 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1535 }
c5d753a5 1536 irq_exit();
317f3941
PZ
1537}
1538
1539static void ttwu_queue_remote(struct task_struct *p, int cpu)
1540{
fa14ff4a 1541 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1542 smp_send_reschedule(cpu);
1543}
d6aa8f85 1544
39be3501 1545bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1546{
1547 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1548}
d6aa8f85 1549#endif /* CONFIG_SMP */
317f3941 1550
c05fbafb
PZ
1551static void ttwu_queue(struct task_struct *p, int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
1554
17d9f311 1555#if defined(CONFIG_SMP)
39be3501 1556 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1557 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1558 ttwu_queue_remote(p, cpu);
1559 return;
1560 }
1561#endif
1562
c05fbafb
PZ
1563 raw_spin_lock(&rq->lock);
1564 ttwu_do_activate(rq, p, 0);
1565 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1566}
1567
1568/**
1da177e4 1569 * try_to_wake_up - wake up a thread
9ed3811a 1570 * @p: the thread to be awakened
1da177e4 1571 * @state: the mask of task states that can be woken
9ed3811a 1572 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1573 *
1574 * Put it on the run-queue if it's not already there. The "current"
1575 * thread is always on the run-queue (except when the actual
1576 * re-schedule is in progress), and as such you're allowed to do
1577 * the simpler "current->state = TASK_RUNNING" to mark yourself
1578 * runnable without the overhead of this.
1579 *
e69f6186 1580 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1581 * or @state didn't match @p's state.
1da177e4 1582 */
e4a52bcb
PZ
1583static int
1584try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1585{
1da177e4 1586 unsigned long flags;
c05fbafb 1587 int cpu, success = 0;
2398f2c6 1588
e0acd0a6
ON
1589 /*
1590 * If we are going to wake up a thread waiting for CONDITION we
1591 * need to ensure that CONDITION=1 done by the caller can not be
1592 * reordered with p->state check below. This pairs with mb() in
1593 * set_current_state() the waiting thread does.
1594 */
1595 smp_mb__before_spinlock();
013fdb80 1596 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1597 if (!(p->state & state))
1da177e4
LT
1598 goto out;
1599
c05fbafb 1600 success = 1; /* we're going to change ->state */
1da177e4 1601 cpu = task_cpu(p);
1da177e4 1602
c05fbafb
PZ
1603 if (p->on_rq && ttwu_remote(p, wake_flags))
1604 goto stat;
1da177e4 1605
1da177e4 1606#ifdef CONFIG_SMP
e9c84311 1607 /*
c05fbafb
PZ
1608 * If the owning (remote) cpu is still in the middle of schedule() with
1609 * this task as prev, wait until its done referencing the task.
e9c84311 1610 */
f3e94786 1611 while (p->on_cpu)
e4a52bcb 1612 cpu_relax();
0970d299 1613 /*
e4a52bcb 1614 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1615 */
e4a52bcb 1616 smp_rmb();
1da177e4 1617
a8e4f2ea 1618 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1619 p->state = TASK_WAKING;
e7693a36 1620
e4a52bcb 1621 if (p->sched_class->task_waking)
74f8e4b2 1622 p->sched_class->task_waking(p);
efbbd05a 1623
ac66f547 1624 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1625 if (task_cpu(p) != cpu) {
1626 wake_flags |= WF_MIGRATED;
e4a52bcb 1627 set_task_cpu(p, cpu);
f339b9dc 1628 }
1da177e4 1629#endif /* CONFIG_SMP */
1da177e4 1630
c05fbafb
PZ
1631 ttwu_queue(p, cpu);
1632stat:
b84cb5df 1633 ttwu_stat(p, cpu, wake_flags);
1da177e4 1634out:
013fdb80 1635 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1636
1637 return success;
1638}
1639
21aa9af0
TH
1640/**
1641 * try_to_wake_up_local - try to wake up a local task with rq lock held
1642 * @p: the thread to be awakened
1643 *
2acca55e 1644 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1645 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1646 * the current task.
21aa9af0
TH
1647 */
1648static void try_to_wake_up_local(struct task_struct *p)
1649{
1650 struct rq *rq = task_rq(p);
21aa9af0 1651
383efcd0
TH
1652 if (WARN_ON_ONCE(rq != this_rq()) ||
1653 WARN_ON_ONCE(p == current))
1654 return;
1655
21aa9af0
TH
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1681 * processes.
1682 *
1683 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
7ad5b3a5 1688int wake_up_process(struct task_struct *p)
1da177e4 1689{
9067ac85
ON
1690 WARN_ON(task_is_stopped_or_traced(p));
1691 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1692}
1da177e4
LT
1693EXPORT_SYMBOL(wake_up_process);
1694
7ad5b3a5 1695int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1696{
1697 return try_to_wake_up(p, state, 0);
1698}
1699
1da177e4
LT
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
dd41f596
IM
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
5e1576ed 1706static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1707{
fd2f4419
PZ
1708 p->on_rq = 0;
1709
1710 p->se.on_rq = 0;
dd41f596
IM
1711 p->se.exec_start = 0;
1712 p->se.sum_exec_runtime = 0;
f6cf891c 1713 p->se.prev_sum_exec_runtime = 0;
6c594c21 1714 p->se.nr_migrations = 0;
da7a735e 1715 p->se.vruntime = 0;
fd2f4419 1716 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1717
1718#ifdef CONFIG_SCHEDSTATS
41acab88 1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1720#endif
476d139c 1721
aab03e05
DF
1722 RB_CLEAR_NODE(&p->dl.rb_node);
1723 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1724 p->dl.dl_runtime = p->dl.runtime = 0;
1725 p->dl.dl_deadline = p->dl.deadline = 0;
1726 p->dl.flags = 0;
1727
fa717060 1728 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1729
e107be36
AK
1730#ifdef CONFIG_PREEMPT_NOTIFIERS
1731 INIT_HLIST_HEAD(&p->preempt_notifiers);
1732#endif
cbee9f88
PZ
1733
1734#ifdef CONFIG_NUMA_BALANCING
1735 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1736 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1737 p->mm->numa_scan_seq = 0;
1738 }
1739
5e1576ed
RR
1740 if (clone_flags & CLONE_VM)
1741 p->numa_preferred_nid = current->numa_preferred_nid;
1742 else
1743 p->numa_preferred_nid = -1;
1744
cbee9f88
PZ
1745 p->node_stamp = 0ULL;
1746 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1747 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1748 p->numa_work.next = &p->numa_work;
f809ca9a 1749 p->numa_faults = NULL;
745d6147 1750 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1751
1752 INIT_LIST_HEAD(&p->numa_entry);
1753 p->numa_group = NULL;
cbee9f88 1754#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1755}
1756
1a687c2e 1757#ifdef CONFIG_NUMA_BALANCING
3105b86a 1758#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1759void set_numabalancing_state(bool enabled)
1760{
1761 if (enabled)
1762 sched_feat_set("NUMA");
1763 else
1764 sched_feat_set("NO_NUMA");
1765}
3105b86a
MG
1766#else
1767__read_mostly bool numabalancing_enabled;
1768
1769void set_numabalancing_state(bool enabled)
1770{
1771 numabalancing_enabled = enabled;
dd41f596 1772}
3105b86a 1773#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1774#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1775
1776/*
1777 * fork()/clone()-time setup:
1778 */
aab03e05 1779int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1780{
0122ec5b 1781 unsigned long flags;
dd41f596
IM
1782 int cpu = get_cpu();
1783
5e1576ed 1784 __sched_fork(clone_flags, p);
06b83b5f 1785 /*
0017d735 1786 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1787 * nobody will actually run it, and a signal or other external
1788 * event cannot wake it up and insert it on the runqueue either.
1789 */
0017d735 1790 p->state = TASK_RUNNING;
dd41f596 1791
c350a04e
MG
1792 /*
1793 * Make sure we do not leak PI boosting priority to the child.
1794 */
1795 p->prio = current->normal_prio;
1796
b9dc29e7
MG
1797 /*
1798 * Revert to default priority/policy on fork if requested.
1799 */
1800 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1801 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1802 p->policy = SCHED_NORMAL;
6c697bdf 1803 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1804 p->rt_priority = 0;
1805 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1806 p->static_prio = NICE_TO_PRIO(0);
1807
1808 p->prio = p->normal_prio = __normal_prio(p);
1809 set_load_weight(p);
6c697bdf 1810
b9dc29e7
MG
1811 /*
1812 * We don't need the reset flag anymore after the fork. It has
1813 * fulfilled its duty:
1814 */
1815 p->sched_reset_on_fork = 0;
1816 }
ca94c442 1817
aab03e05
DF
1818 if (dl_prio(p->prio)) {
1819 put_cpu();
1820 return -EAGAIN;
1821 } else if (rt_prio(p->prio)) {
1822 p->sched_class = &rt_sched_class;
1823 } else {
2ddbf952 1824 p->sched_class = &fair_sched_class;
aab03e05 1825 }
b29739f9 1826
cd29fe6f
PZ
1827 if (p->sched_class->task_fork)
1828 p->sched_class->task_fork(p);
1829
86951599
PZ
1830 /*
1831 * The child is not yet in the pid-hash so no cgroup attach races,
1832 * and the cgroup is pinned to this child due to cgroup_fork()
1833 * is ran before sched_fork().
1834 *
1835 * Silence PROVE_RCU.
1836 */
0122ec5b 1837 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1838 set_task_cpu(p, cpu);
0122ec5b 1839 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1840
52f17b6c 1841#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1842 if (likely(sched_info_on()))
52f17b6c 1843 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1844#endif
3ca7a440
PZ
1845#if defined(CONFIG_SMP)
1846 p->on_cpu = 0;
4866cde0 1847#endif
01028747 1848 init_task_preempt_count(p);
806c09a7 1849#ifdef CONFIG_SMP
917b627d 1850 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1851 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1852#endif
917b627d 1853
476d139c 1854 put_cpu();
aab03e05 1855 return 0;
1da177e4
LT
1856}
1857
1858/*
1859 * wake_up_new_task - wake up a newly created task for the first time.
1860 *
1861 * This function will do some initial scheduler statistics housekeeping
1862 * that must be done for every newly created context, then puts the task
1863 * on the runqueue and wakes it.
1864 */
3e51e3ed 1865void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1866{
1867 unsigned long flags;
dd41f596 1868 struct rq *rq;
fabf318e 1869
ab2515c4 1870 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1871#ifdef CONFIG_SMP
1872 /*
1873 * Fork balancing, do it here and not earlier because:
1874 * - cpus_allowed can change in the fork path
1875 * - any previously selected cpu might disappear through hotplug
fabf318e 1876 */
ac66f547 1877 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1878#endif
1879
a75cdaa9
AS
1880 /* Initialize new task's runnable average */
1881 init_task_runnable_average(p);
ab2515c4 1882 rq = __task_rq_lock(p);
cd29fe6f 1883 activate_task(rq, p, 0);
fd2f4419 1884 p->on_rq = 1;
89363381 1885 trace_sched_wakeup_new(p, true);
a7558e01 1886 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1887#ifdef CONFIG_SMP
efbbd05a
PZ
1888 if (p->sched_class->task_woken)
1889 p->sched_class->task_woken(rq, p);
9a897c5a 1890#endif
0122ec5b 1891 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1892}
1893
e107be36
AK
1894#ifdef CONFIG_PREEMPT_NOTIFIERS
1895
1896/**
80dd99b3 1897 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1898 * @notifier: notifier struct to register
e107be36
AK
1899 */
1900void preempt_notifier_register(struct preempt_notifier *notifier)
1901{
1902 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1903}
1904EXPORT_SYMBOL_GPL(preempt_notifier_register);
1905
1906/**
1907 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1908 * @notifier: notifier struct to unregister
e107be36
AK
1909 *
1910 * This is safe to call from within a preemption notifier.
1911 */
1912void preempt_notifier_unregister(struct preempt_notifier *notifier)
1913{
1914 hlist_del(&notifier->link);
1915}
1916EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1917
1918static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1919{
1920 struct preempt_notifier *notifier;
e107be36 1921
b67bfe0d 1922 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1923 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1924}
1925
1926static void
1927fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928 struct task_struct *next)
1929{
1930 struct preempt_notifier *notifier;
e107be36 1931
b67bfe0d 1932 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1933 notifier->ops->sched_out(notifier, next);
1934}
1935
6d6bc0ad 1936#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1937
1938static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1939{
1940}
1941
1942static void
1943fire_sched_out_preempt_notifiers(struct task_struct *curr,
1944 struct task_struct *next)
1945{
1946}
1947
6d6bc0ad 1948#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1949
4866cde0
NP
1950/**
1951 * prepare_task_switch - prepare to switch tasks
1952 * @rq: the runqueue preparing to switch
421cee29 1953 * @prev: the current task that is being switched out
4866cde0
NP
1954 * @next: the task we are going to switch to.
1955 *
1956 * This is called with the rq lock held and interrupts off. It must
1957 * be paired with a subsequent finish_task_switch after the context
1958 * switch.
1959 *
1960 * prepare_task_switch sets up locking and calls architecture specific
1961 * hooks.
1962 */
e107be36
AK
1963static inline void
1964prepare_task_switch(struct rq *rq, struct task_struct *prev,
1965 struct task_struct *next)
4866cde0 1966{
895dd92c 1967 trace_sched_switch(prev, next);
43148951 1968 sched_info_switch(rq, prev, next);
fe4b04fa 1969 perf_event_task_sched_out(prev, next);
e107be36 1970 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1971 prepare_lock_switch(rq, next);
1972 prepare_arch_switch(next);
1973}
1974
1da177e4
LT
1975/**
1976 * finish_task_switch - clean up after a task-switch
344babaa 1977 * @rq: runqueue associated with task-switch
1da177e4
LT
1978 * @prev: the thread we just switched away from.
1979 *
4866cde0
NP
1980 * finish_task_switch must be called after the context switch, paired
1981 * with a prepare_task_switch call before the context switch.
1982 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1983 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1984 *
1985 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1986 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1987 * with the lock held can cause deadlocks; see schedule() for
1988 * details.)
1989 */
a9957449 1990static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1991 __releases(rq->lock)
1992{
1da177e4 1993 struct mm_struct *mm = rq->prev_mm;
55a101f8 1994 long prev_state;
1da177e4
LT
1995
1996 rq->prev_mm = NULL;
1997
1998 /*
1999 * A task struct has one reference for the use as "current".
c394cc9f 2000 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2001 * schedule one last time. The schedule call will never return, and
2002 * the scheduled task must drop that reference.
c394cc9f 2003 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2004 * still held, otherwise prev could be scheduled on another cpu, die
2005 * there before we look at prev->state, and then the reference would
2006 * be dropped twice.
2007 * Manfred Spraul <manfred@colorfullife.com>
2008 */
55a101f8 2009 prev_state = prev->state;
bf9fae9f 2010 vtime_task_switch(prev);
4866cde0 2011 finish_arch_switch(prev);
a8d757ef 2012 perf_event_task_sched_in(prev, current);
4866cde0 2013 finish_lock_switch(rq, prev);
01f23e16 2014 finish_arch_post_lock_switch();
e8fa1362 2015
e107be36 2016 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2017 if (mm)
2018 mmdrop(mm);
c394cc9f 2019 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2020 task_numa_free(prev);
2021
e6c390f2
DF
2022 if (prev->sched_class->task_dead)
2023 prev->sched_class->task_dead(prev);
2024
c6fd91f0 2025 /*
2026 * Remove function-return probe instances associated with this
2027 * task and put them back on the free list.
9761eea8 2028 */
c6fd91f0 2029 kprobe_flush_task(prev);
1da177e4 2030 put_task_struct(prev);
c6fd91f0 2031 }
99e5ada9
FW
2032
2033 tick_nohz_task_switch(current);
1da177e4
LT
2034}
2035
3f029d3c
GH
2036#ifdef CONFIG_SMP
2037
2038/* assumes rq->lock is held */
2039static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2040{
2041 if (prev->sched_class->pre_schedule)
2042 prev->sched_class->pre_schedule(rq, prev);
2043}
2044
2045/* rq->lock is NOT held, but preemption is disabled */
2046static inline void post_schedule(struct rq *rq)
2047{
2048 if (rq->post_schedule) {
2049 unsigned long flags;
2050
05fa785c 2051 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2052 if (rq->curr->sched_class->post_schedule)
2053 rq->curr->sched_class->post_schedule(rq);
05fa785c 2054 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2055
2056 rq->post_schedule = 0;
2057 }
2058}
2059
2060#else
da19ab51 2061
3f029d3c
GH
2062static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2063{
2064}
2065
2066static inline void post_schedule(struct rq *rq)
2067{
1da177e4
LT
2068}
2069
3f029d3c
GH
2070#endif
2071
1da177e4
LT
2072/**
2073 * schedule_tail - first thing a freshly forked thread must call.
2074 * @prev: the thread we just switched away from.
2075 */
36c8b586 2076asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2077 __releases(rq->lock)
2078{
70b97a7f
IM
2079 struct rq *rq = this_rq();
2080
4866cde0 2081 finish_task_switch(rq, prev);
da19ab51 2082
3f029d3c
GH
2083 /*
2084 * FIXME: do we need to worry about rq being invalidated by the
2085 * task_switch?
2086 */
2087 post_schedule(rq);
70b97a7f 2088
4866cde0
NP
2089#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2090 /* In this case, finish_task_switch does not reenable preemption */
2091 preempt_enable();
2092#endif
1da177e4 2093 if (current->set_child_tid)
b488893a 2094 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2095}
2096
2097/*
2098 * context_switch - switch to the new MM and the new
2099 * thread's register state.
2100 */
dd41f596 2101static inline void
70b97a7f 2102context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2103 struct task_struct *next)
1da177e4 2104{
dd41f596 2105 struct mm_struct *mm, *oldmm;
1da177e4 2106
e107be36 2107 prepare_task_switch(rq, prev, next);
fe4b04fa 2108
dd41f596
IM
2109 mm = next->mm;
2110 oldmm = prev->active_mm;
9226d125
ZA
2111 /*
2112 * For paravirt, this is coupled with an exit in switch_to to
2113 * combine the page table reload and the switch backend into
2114 * one hypercall.
2115 */
224101ed 2116 arch_start_context_switch(prev);
9226d125 2117
31915ab4 2118 if (!mm) {
1da177e4
LT
2119 next->active_mm = oldmm;
2120 atomic_inc(&oldmm->mm_count);
2121 enter_lazy_tlb(oldmm, next);
2122 } else
2123 switch_mm(oldmm, mm, next);
2124
31915ab4 2125 if (!prev->mm) {
1da177e4 2126 prev->active_mm = NULL;
1da177e4
LT
2127 rq->prev_mm = oldmm;
2128 }
3a5f5e48
IM
2129 /*
2130 * Since the runqueue lock will be released by the next
2131 * task (which is an invalid locking op but in the case
2132 * of the scheduler it's an obvious special-case), so we
2133 * do an early lockdep release here:
2134 */
2135#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2136 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2137#endif
1da177e4 2138
91d1aa43 2139 context_tracking_task_switch(prev, next);
1da177e4
LT
2140 /* Here we just switch the register state and the stack. */
2141 switch_to(prev, next, prev);
2142
dd41f596
IM
2143 barrier();
2144 /*
2145 * this_rq must be evaluated again because prev may have moved
2146 * CPUs since it called schedule(), thus the 'rq' on its stack
2147 * frame will be invalid.
2148 */
2149 finish_task_switch(this_rq(), prev);
1da177e4
LT
2150}
2151
2152/*
1c3e8264 2153 * nr_running and nr_context_switches:
1da177e4
LT
2154 *
2155 * externally visible scheduler statistics: current number of runnable
1c3e8264 2156 * threads, total number of context switches performed since bootup.
1da177e4
LT
2157 */
2158unsigned long nr_running(void)
2159{
2160 unsigned long i, sum = 0;
2161
2162 for_each_online_cpu(i)
2163 sum += cpu_rq(i)->nr_running;
2164
2165 return sum;
f711f609 2166}
1da177e4 2167
1da177e4 2168unsigned long long nr_context_switches(void)
46cb4b7c 2169{
cc94abfc
SR
2170 int i;
2171 unsigned long long sum = 0;
46cb4b7c 2172
0a945022 2173 for_each_possible_cpu(i)
1da177e4 2174 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2175
1da177e4
LT
2176 return sum;
2177}
483b4ee6 2178
1da177e4
LT
2179unsigned long nr_iowait(void)
2180{
2181 unsigned long i, sum = 0;
483b4ee6 2182
0a945022 2183 for_each_possible_cpu(i)
1da177e4 2184 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2185
1da177e4
LT
2186 return sum;
2187}
483b4ee6 2188
8c215bd3 2189unsigned long nr_iowait_cpu(int cpu)
69d25870 2190{
8c215bd3 2191 struct rq *this = cpu_rq(cpu);
69d25870
AV
2192 return atomic_read(&this->nr_iowait);
2193}
46cb4b7c 2194
dd41f596 2195#ifdef CONFIG_SMP
8a0be9ef 2196
46cb4b7c 2197/*
38022906
PZ
2198 * sched_exec - execve() is a valuable balancing opportunity, because at
2199 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2200 */
38022906 2201void sched_exec(void)
46cb4b7c 2202{
38022906 2203 struct task_struct *p = current;
1da177e4 2204 unsigned long flags;
0017d735 2205 int dest_cpu;
46cb4b7c 2206
8f42ced9 2207 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2208 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2209 if (dest_cpu == smp_processor_id())
2210 goto unlock;
38022906 2211
8f42ced9 2212 if (likely(cpu_active(dest_cpu))) {
969c7921 2213 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2214
8f42ced9
PZ
2215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2216 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2217 return;
2218 }
0017d735 2219unlock:
8f42ced9 2220 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2221}
dd41f596 2222
1da177e4
LT
2223#endif
2224
1da177e4 2225DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2226DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2227
2228EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2229EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2230
2231/*
c5f8d995 2232 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2233 * @p in case that task is currently running.
c5f8d995
HS
2234 *
2235 * Called with task_rq_lock() held on @rq.
1da177e4 2236 */
c5f8d995
HS
2237static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2238{
2239 u64 ns = 0;
2240
2241 if (task_current(rq, p)) {
2242 update_rq_clock(rq);
78becc27 2243 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2244 if ((s64)ns < 0)
2245 ns = 0;
2246 }
2247
2248 return ns;
2249}
2250
bb34d92f 2251unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2252{
1da177e4 2253 unsigned long flags;
41b86e9c 2254 struct rq *rq;
bb34d92f 2255 u64 ns = 0;
48f24c4d 2256
41b86e9c 2257 rq = task_rq_lock(p, &flags);
c5f8d995 2258 ns = do_task_delta_exec(p, rq);
0122ec5b 2259 task_rq_unlock(rq, p, &flags);
1508487e 2260
c5f8d995
HS
2261 return ns;
2262}
f06febc9 2263
c5f8d995
HS
2264/*
2265 * Return accounted runtime for the task.
2266 * In case the task is currently running, return the runtime plus current's
2267 * pending runtime that have not been accounted yet.
2268 */
2269unsigned long long task_sched_runtime(struct task_struct *p)
2270{
2271 unsigned long flags;
2272 struct rq *rq;
2273 u64 ns = 0;
2274
911b2898
PZ
2275#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2276 /*
2277 * 64-bit doesn't need locks to atomically read a 64bit value.
2278 * So we have a optimization chance when the task's delta_exec is 0.
2279 * Reading ->on_cpu is racy, but this is ok.
2280 *
2281 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2282 * If we race with it entering cpu, unaccounted time is 0. This is
2283 * indistinguishable from the read occurring a few cycles earlier.
2284 */
2285 if (!p->on_cpu)
2286 return p->se.sum_exec_runtime;
2287#endif
2288
c5f8d995
HS
2289 rq = task_rq_lock(p, &flags);
2290 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2291 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2292
2293 return ns;
2294}
48f24c4d 2295
7835b98b
CL
2296/*
2297 * This function gets called by the timer code, with HZ frequency.
2298 * We call it with interrupts disabled.
7835b98b
CL
2299 */
2300void scheduler_tick(void)
2301{
7835b98b
CL
2302 int cpu = smp_processor_id();
2303 struct rq *rq = cpu_rq(cpu);
dd41f596 2304 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2305
2306 sched_clock_tick();
dd41f596 2307
05fa785c 2308 raw_spin_lock(&rq->lock);
3e51f33f 2309 update_rq_clock(rq);
fa85ae24 2310 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2311 update_cpu_load_active(rq);
05fa785c 2312 raw_spin_unlock(&rq->lock);
7835b98b 2313
e9d2b064 2314 perf_event_task_tick();
e220d2dc 2315
e418e1c2 2316#ifdef CONFIG_SMP
6eb57e0d 2317 rq->idle_balance = idle_cpu(cpu);
dd41f596 2318 trigger_load_balance(rq, cpu);
e418e1c2 2319#endif
265f22a9 2320 rq_last_tick_reset(rq);
1da177e4
LT
2321}
2322
265f22a9
FW
2323#ifdef CONFIG_NO_HZ_FULL
2324/**
2325 * scheduler_tick_max_deferment
2326 *
2327 * Keep at least one tick per second when a single
2328 * active task is running because the scheduler doesn't
2329 * yet completely support full dynticks environment.
2330 *
2331 * This makes sure that uptime, CFS vruntime, load
2332 * balancing, etc... continue to move forward, even
2333 * with a very low granularity.
e69f6186
YB
2334 *
2335 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2336 */
2337u64 scheduler_tick_max_deferment(void)
2338{
2339 struct rq *rq = this_rq();
2340 unsigned long next, now = ACCESS_ONCE(jiffies);
2341
2342 next = rq->last_sched_tick + HZ;
2343
2344 if (time_before_eq(next, now))
2345 return 0;
2346
2347 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2348}
265f22a9 2349#endif
1da177e4 2350
132380a0 2351notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2352{
2353 if (in_lock_functions(addr)) {
2354 addr = CALLER_ADDR2;
2355 if (in_lock_functions(addr))
2356 addr = CALLER_ADDR3;
2357 }
2358 return addr;
2359}
1da177e4 2360
7e49fcce
SR
2361#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2362 defined(CONFIG_PREEMPT_TRACER))
2363
bdb43806 2364void __kprobes preempt_count_add(int val)
1da177e4 2365{
6cd8a4bb 2366#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2367 /*
2368 * Underflow?
2369 */
9a11b49a
IM
2370 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2371 return;
6cd8a4bb 2372#endif
bdb43806 2373 __preempt_count_add(val);
6cd8a4bb 2374#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2375 /*
2376 * Spinlock count overflowing soon?
2377 */
33859f7f
MOS
2378 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2379 PREEMPT_MASK - 10);
6cd8a4bb
SR
2380#endif
2381 if (preempt_count() == val)
2382 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2383}
bdb43806 2384EXPORT_SYMBOL(preempt_count_add);
1da177e4 2385
bdb43806 2386void __kprobes preempt_count_sub(int val)
1da177e4 2387{
6cd8a4bb 2388#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2389 /*
2390 * Underflow?
2391 */
01e3eb82 2392 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2393 return;
1da177e4
LT
2394 /*
2395 * Is the spinlock portion underflowing?
2396 */
9a11b49a
IM
2397 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2398 !(preempt_count() & PREEMPT_MASK)))
2399 return;
6cd8a4bb 2400#endif
9a11b49a 2401
6cd8a4bb
SR
2402 if (preempt_count() == val)
2403 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2404 __preempt_count_sub(val);
1da177e4 2405}
bdb43806 2406EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2407
2408#endif
2409
2410/*
dd41f596 2411 * Print scheduling while atomic bug:
1da177e4 2412 */
dd41f596 2413static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2414{
664dfa65
DJ
2415 if (oops_in_progress)
2416 return;
2417
3df0fc5b
PZ
2418 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2419 prev->comm, prev->pid, preempt_count());
838225b4 2420
dd41f596 2421 debug_show_held_locks(prev);
e21f5b15 2422 print_modules();
dd41f596
IM
2423 if (irqs_disabled())
2424 print_irqtrace_events(prev);
6135fc1e 2425 dump_stack();
373d4d09 2426 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2427}
1da177e4 2428
dd41f596
IM
2429/*
2430 * Various schedule()-time debugging checks and statistics:
2431 */
2432static inline void schedule_debug(struct task_struct *prev)
2433{
1da177e4 2434 /*
41a2d6cf 2435 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2436 * schedule() atomically, we ignore that path. Otherwise whine
2437 * if we are scheduling when we should not.
1da177e4 2438 */
192301e7 2439 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2440 __schedule_bug(prev);
b3fbab05 2441 rcu_sleep_check();
dd41f596 2442
1da177e4
LT
2443 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2444
2d72376b 2445 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2446}
2447
6cecd084 2448static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2449{
61eadef6 2450 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2451 update_rq_clock(rq);
6cecd084 2452 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2453}
2454
dd41f596
IM
2455/*
2456 * Pick up the highest-prio task:
2457 */
2458static inline struct task_struct *
b67802ea 2459pick_next_task(struct rq *rq)
dd41f596 2460{
5522d5d5 2461 const struct sched_class *class;
dd41f596 2462 struct task_struct *p;
1da177e4
LT
2463
2464 /*
dd41f596
IM
2465 * Optimization: we know that if all tasks are in
2466 * the fair class we can call that function directly:
1da177e4 2467 */
953bfcd1 2468 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2469 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2470 if (likely(p))
2471 return p;
1da177e4
LT
2472 }
2473
34f971f6 2474 for_each_class(class) {
fb8d4724 2475 p = class->pick_next_task(rq);
dd41f596
IM
2476 if (p)
2477 return p;
dd41f596 2478 }
34f971f6
PZ
2479
2480 BUG(); /* the idle class will always have a runnable task */
dd41f596 2481}
1da177e4 2482
dd41f596 2483/*
c259e01a 2484 * __schedule() is the main scheduler function.
edde96ea
PE
2485 *
2486 * The main means of driving the scheduler and thus entering this function are:
2487 *
2488 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2489 *
2490 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2491 * paths. For example, see arch/x86/entry_64.S.
2492 *
2493 * To drive preemption between tasks, the scheduler sets the flag in timer
2494 * interrupt handler scheduler_tick().
2495 *
2496 * 3. Wakeups don't really cause entry into schedule(). They add a
2497 * task to the run-queue and that's it.
2498 *
2499 * Now, if the new task added to the run-queue preempts the current
2500 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2501 * called on the nearest possible occasion:
2502 *
2503 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2504 *
2505 * - in syscall or exception context, at the next outmost
2506 * preempt_enable(). (this might be as soon as the wake_up()'s
2507 * spin_unlock()!)
2508 *
2509 * - in IRQ context, return from interrupt-handler to
2510 * preemptible context
2511 *
2512 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2513 * then at the next:
2514 *
2515 * - cond_resched() call
2516 * - explicit schedule() call
2517 * - return from syscall or exception to user-space
2518 * - return from interrupt-handler to user-space
dd41f596 2519 */
c259e01a 2520static void __sched __schedule(void)
dd41f596
IM
2521{
2522 struct task_struct *prev, *next;
67ca7bde 2523 unsigned long *switch_count;
dd41f596 2524 struct rq *rq;
31656519 2525 int cpu;
dd41f596 2526
ff743345
PZ
2527need_resched:
2528 preempt_disable();
dd41f596
IM
2529 cpu = smp_processor_id();
2530 rq = cpu_rq(cpu);
25502a6c 2531 rcu_note_context_switch(cpu);
dd41f596 2532 prev = rq->curr;
dd41f596 2533
dd41f596 2534 schedule_debug(prev);
1da177e4 2535
31656519 2536 if (sched_feat(HRTICK))
f333fdc9 2537 hrtick_clear(rq);
8f4d37ec 2538
e0acd0a6
ON
2539 /*
2540 * Make sure that signal_pending_state()->signal_pending() below
2541 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2542 * done by the caller to avoid the race with signal_wake_up().
2543 */
2544 smp_mb__before_spinlock();
05fa785c 2545 raw_spin_lock_irq(&rq->lock);
1da177e4 2546
246d86b5 2547 switch_count = &prev->nivcsw;
1da177e4 2548 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2549 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2550 prev->state = TASK_RUNNING;
21aa9af0 2551 } else {
2acca55e
PZ
2552 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2553 prev->on_rq = 0;
2554
21aa9af0 2555 /*
2acca55e
PZ
2556 * If a worker went to sleep, notify and ask workqueue
2557 * whether it wants to wake up a task to maintain
2558 * concurrency.
21aa9af0
TH
2559 */
2560 if (prev->flags & PF_WQ_WORKER) {
2561 struct task_struct *to_wakeup;
2562
2563 to_wakeup = wq_worker_sleeping(prev, cpu);
2564 if (to_wakeup)
2565 try_to_wake_up_local(to_wakeup);
2566 }
21aa9af0 2567 }
dd41f596 2568 switch_count = &prev->nvcsw;
1da177e4
LT
2569 }
2570
3f029d3c 2571 pre_schedule(rq, prev);
f65eda4f 2572
dd41f596 2573 if (unlikely(!rq->nr_running))
1da177e4 2574 idle_balance(cpu, rq);
1da177e4 2575
df1c99d4 2576 put_prev_task(rq, prev);
b67802ea 2577 next = pick_next_task(rq);
f26f9aff 2578 clear_tsk_need_resched(prev);
f27dde8d 2579 clear_preempt_need_resched();
f26f9aff 2580 rq->skip_clock_update = 0;
1da177e4 2581
1da177e4 2582 if (likely(prev != next)) {
1da177e4
LT
2583 rq->nr_switches++;
2584 rq->curr = next;
2585 ++*switch_count;
2586
dd41f596 2587 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2588 /*
246d86b5
ON
2589 * The context switch have flipped the stack from under us
2590 * and restored the local variables which were saved when
2591 * this task called schedule() in the past. prev == current
2592 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2593 */
2594 cpu = smp_processor_id();
2595 rq = cpu_rq(cpu);
1da177e4 2596 } else
05fa785c 2597 raw_spin_unlock_irq(&rq->lock);
1da177e4 2598
3f029d3c 2599 post_schedule(rq);
1da177e4 2600
ba74c144 2601 sched_preempt_enable_no_resched();
ff743345 2602 if (need_resched())
1da177e4
LT
2603 goto need_resched;
2604}
c259e01a 2605
9c40cef2
TG
2606static inline void sched_submit_work(struct task_struct *tsk)
2607{
3c7d5184 2608 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2609 return;
2610 /*
2611 * If we are going to sleep and we have plugged IO queued,
2612 * make sure to submit it to avoid deadlocks.
2613 */
2614 if (blk_needs_flush_plug(tsk))
2615 blk_schedule_flush_plug(tsk);
2616}
2617
6ebbe7a0 2618asmlinkage void __sched schedule(void)
c259e01a 2619{
9c40cef2
TG
2620 struct task_struct *tsk = current;
2621
2622 sched_submit_work(tsk);
c259e01a
TG
2623 __schedule();
2624}
1da177e4
LT
2625EXPORT_SYMBOL(schedule);
2626
91d1aa43 2627#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2628asmlinkage void __sched schedule_user(void)
2629{
2630 /*
2631 * If we come here after a random call to set_need_resched(),
2632 * or we have been woken up remotely but the IPI has not yet arrived,
2633 * we haven't yet exited the RCU idle mode. Do it here manually until
2634 * we find a better solution.
2635 */
91d1aa43 2636 user_exit();
20ab65e3 2637 schedule();
91d1aa43 2638 user_enter();
20ab65e3
FW
2639}
2640#endif
2641
c5491ea7
TG
2642/**
2643 * schedule_preempt_disabled - called with preemption disabled
2644 *
2645 * Returns with preemption disabled. Note: preempt_count must be 1
2646 */
2647void __sched schedule_preempt_disabled(void)
2648{
ba74c144 2649 sched_preempt_enable_no_resched();
c5491ea7
TG
2650 schedule();
2651 preempt_disable();
2652}
2653
1da177e4
LT
2654#ifdef CONFIG_PREEMPT
2655/*
2ed6e34f 2656 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2657 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2658 * occur there and call schedule directly.
2659 */
d1f74e20 2660asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2661{
1da177e4
LT
2662 /*
2663 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2664 * we do not want to preempt the current task. Just return..
1da177e4 2665 */
fbb00b56 2666 if (likely(!preemptible()))
1da177e4
LT
2667 return;
2668
3a5c359a 2669 do {
bdb43806 2670 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2671 __schedule();
bdb43806 2672 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2673
3a5c359a
AK
2674 /*
2675 * Check again in case we missed a preemption opportunity
2676 * between schedule and now.
2677 */
2678 barrier();
5ed0cec0 2679 } while (need_resched());
1da177e4 2680}
1da177e4 2681EXPORT_SYMBOL(preempt_schedule);
32e475d7 2682#endif /* CONFIG_PREEMPT */
1da177e4
LT
2683
2684/*
2ed6e34f 2685 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2686 * off of irq context.
2687 * Note, that this is called and return with irqs disabled. This will
2688 * protect us against recursive calling from irq.
2689 */
2690asmlinkage void __sched preempt_schedule_irq(void)
2691{
b22366cd 2692 enum ctx_state prev_state;
6478d880 2693
2ed6e34f 2694 /* Catch callers which need to be fixed */
f27dde8d 2695 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2696
b22366cd
FW
2697 prev_state = exception_enter();
2698
3a5c359a 2699 do {
bdb43806 2700 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2701 local_irq_enable();
c259e01a 2702 __schedule();
3a5c359a 2703 local_irq_disable();
bdb43806 2704 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2705
3a5c359a
AK
2706 /*
2707 * Check again in case we missed a preemption opportunity
2708 * between schedule and now.
2709 */
2710 barrier();
5ed0cec0 2711 } while (need_resched());
b22366cd
FW
2712
2713 exception_exit(prev_state);
1da177e4
LT
2714}
2715
63859d4f 2716int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2717 void *key)
1da177e4 2718{
63859d4f 2719 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2720}
1da177e4
LT
2721EXPORT_SYMBOL(default_wake_function);
2722
8cbbe86d
AK
2723static long __sched
2724sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2725{
0fec171c
IM
2726 unsigned long flags;
2727 wait_queue_t wait;
2728
2729 init_waitqueue_entry(&wait, current);
1da177e4 2730
8cbbe86d 2731 __set_current_state(state);
1da177e4 2732
8cbbe86d
AK
2733 spin_lock_irqsave(&q->lock, flags);
2734 __add_wait_queue(q, &wait);
2735 spin_unlock(&q->lock);
2736 timeout = schedule_timeout(timeout);
2737 spin_lock_irq(&q->lock);
2738 __remove_wait_queue(q, &wait);
2739 spin_unlock_irqrestore(&q->lock, flags);
2740
2741 return timeout;
2742}
2743
2744void __sched interruptible_sleep_on(wait_queue_head_t *q)
2745{
2746 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2747}
1da177e4
LT
2748EXPORT_SYMBOL(interruptible_sleep_on);
2749
0fec171c 2750long __sched
95cdf3b7 2751interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2752{
8cbbe86d 2753 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2754}
1da177e4
LT
2755EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2756
0fec171c 2757void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2758{
8cbbe86d 2759 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2760}
1da177e4
LT
2761EXPORT_SYMBOL(sleep_on);
2762
0fec171c 2763long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2764{
8cbbe86d 2765 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2766}
1da177e4
LT
2767EXPORT_SYMBOL(sleep_on_timeout);
2768
b29739f9
IM
2769#ifdef CONFIG_RT_MUTEXES
2770
2771/*
2772 * rt_mutex_setprio - set the current priority of a task
2773 * @p: task
2774 * @prio: prio value (kernel-internal form)
2775 *
2776 * This function changes the 'effective' priority of a task. It does
2777 * not touch ->normal_prio like __setscheduler().
2778 *
2779 * Used by the rt_mutex code to implement priority inheritance logic.
2780 */
36c8b586 2781void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2782{
83b699ed 2783 int oldprio, on_rq, running;
70b97a7f 2784 struct rq *rq;
83ab0aa0 2785 const struct sched_class *prev_class;
b29739f9 2786
aab03e05 2787 BUG_ON(prio > MAX_PRIO);
b29739f9 2788
0122ec5b 2789 rq = __task_rq_lock(p);
b29739f9 2790
1c4dd99b
TG
2791 /*
2792 * Idle task boosting is a nono in general. There is one
2793 * exception, when PREEMPT_RT and NOHZ is active:
2794 *
2795 * The idle task calls get_next_timer_interrupt() and holds
2796 * the timer wheel base->lock on the CPU and another CPU wants
2797 * to access the timer (probably to cancel it). We can safely
2798 * ignore the boosting request, as the idle CPU runs this code
2799 * with interrupts disabled and will complete the lock
2800 * protected section without being interrupted. So there is no
2801 * real need to boost.
2802 */
2803 if (unlikely(p == rq->idle)) {
2804 WARN_ON(p != rq->curr);
2805 WARN_ON(p->pi_blocked_on);
2806 goto out_unlock;
2807 }
2808
a8027073 2809 trace_sched_pi_setprio(p, prio);
d5f9f942 2810 oldprio = p->prio;
83ab0aa0 2811 prev_class = p->sched_class;
fd2f4419 2812 on_rq = p->on_rq;
051a1d1a 2813 running = task_current(rq, p);
0e1f3483 2814 if (on_rq)
69be72c1 2815 dequeue_task(rq, p, 0);
0e1f3483
HS
2816 if (running)
2817 p->sched_class->put_prev_task(rq, p);
dd41f596 2818
aab03e05
DF
2819 if (dl_prio(prio))
2820 p->sched_class = &dl_sched_class;
2821 else if (rt_prio(prio))
dd41f596
IM
2822 p->sched_class = &rt_sched_class;
2823 else
2824 p->sched_class = &fair_sched_class;
2825
b29739f9
IM
2826 p->prio = prio;
2827
0e1f3483
HS
2828 if (running)
2829 p->sched_class->set_curr_task(rq);
da7a735e 2830 if (on_rq)
371fd7e7 2831 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 2832
da7a735e 2833 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2834out_unlock:
0122ec5b 2835 __task_rq_unlock(rq);
b29739f9 2836}
b29739f9 2837#endif
d50dde5a 2838
36c8b586 2839void set_user_nice(struct task_struct *p, long nice)
1da177e4 2840{
dd41f596 2841 int old_prio, delta, on_rq;
1da177e4 2842 unsigned long flags;
70b97a7f 2843 struct rq *rq;
1da177e4
LT
2844
2845 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2846 return;
2847 /*
2848 * We have to be careful, if called from sys_setpriority(),
2849 * the task might be in the middle of scheduling on another CPU.
2850 */
2851 rq = task_rq_lock(p, &flags);
2852 /*
2853 * The RT priorities are set via sched_setscheduler(), but we still
2854 * allow the 'normal' nice value to be set - but as expected
2855 * it wont have any effect on scheduling until the task is
aab03e05 2856 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2857 */
aab03e05 2858 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2859 p->static_prio = NICE_TO_PRIO(nice);
2860 goto out_unlock;
2861 }
fd2f4419 2862 on_rq = p->on_rq;
c09595f6 2863 if (on_rq)
69be72c1 2864 dequeue_task(rq, p, 0);
1da177e4 2865
1da177e4 2866 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2867 set_load_weight(p);
b29739f9
IM
2868 old_prio = p->prio;
2869 p->prio = effective_prio(p);
2870 delta = p->prio - old_prio;
1da177e4 2871
dd41f596 2872 if (on_rq) {
371fd7e7 2873 enqueue_task(rq, p, 0);
1da177e4 2874 /*
d5f9f942
AM
2875 * If the task increased its priority or is running and
2876 * lowered its priority, then reschedule its CPU:
1da177e4 2877 */
d5f9f942 2878 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2879 resched_task(rq->curr);
2880 }
2881out_unlock:
0122ec5b 2882 task_rq_unlock(rq, p, &flags);
1da177e4 2883}
1da177e4
LT
2884EXPORT_SYMBOL(set_user_nice);
2885
e43379f1
MM
2886/*
2887 * can_nice - check if a task can reduce its nice value
2888 * @p: task
2889 * @nice: nice value
2890 */
36c8b586 2891int can_nice(const struct task_struct *p, const int nice)
e43379f1 2892{
024f4747
MM
2893 /* convert nice value [19,-20] to rlimit style value [1,40] */
2894 int nice_rlim = 20 - nice;
48f24c4d 2895
78d7d407 2896 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
2897 capable(CAP_SYS_NICE));
2898}
2899
1da177e4
LT
2900#ifdef __ARCH_WANT_SYS_NICE
2901
2902/*
2903 * sys_nice - change the priority of the current process.
2904 * @increment: priority increment
2905 *
2906 * sys_setpriority is a more generic, but much slower function that
2907 * does similar things.
2908 */
5add95d4 2909SYSCALL_DEFINE1(nice, int, increment)
1da177e4 2910{
48f24c4d 2911 long nice, retval;
1da177e4
LT
2912
2913 /*
2914 * Setpriority might change our priority at the same moment.
2915 * We don't have to worry. Conceptually one call occurs first
2916 * and we have a single winner.
2917 */
e43379f1
MM
2918 if (increment < -40)
2919 increment = -40;
1da177e4
LT
2920 if (increment > 40)
2921 increment = 40;
2922
2b8f836f 2923 nice = TASK_NICE(current) + increment;
1da177e4
LT
2924 if (nice < -20)
2925 nice = -20;
2926 if (nice > 19)
2927 nice = 19;
2928
e43379f1
MM
2929 if (increment < 0 && !can_nice(current, nice))
2930 return -EPERM;
2931
1da177e4
LT
2932 retval = security_task_setnice(current, nice);
2933 if (retval)
2934 return retval;
2935
2936 set_user_nice(current, nice);
2937 return 0;
2938}
2939
2940#endif
2941
2942/**
2943 * task_prio - return the priority value of a given task.
2944 * @p: the task in question.
2945 *
e69f6186 2946 * Return: The priority value as seen by users in /proc.
1da177e4
LT
2947 * RT tasks are offset by -200. Normal tasks are centered
2948 * around 0, value goes from -16 to +15.
2949 */
36c8b586 2950int task_prio(const struct task_struct *p)
1da177e4
LT
2951{
2952 return p->prio - MAX_RT_PRIO;
2953}
2954
2955/**
2956 * task_nice - return the nice value of a given task.
2957 * @p: the task in question.
e69f6186
YB
2958 *
2959 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 2960 */
36c8b586 2961int task_nice(const struct task_struct *p)
1da177e4
LT
2962{
2963 return TASK_NICE(p);
2964}
150d8bed 2965EXPORT_SYMBOL(task_nice);
1da177e4
LT
2966
2967/**
2968 * idle_cpu - is a given cpu idle currently?
2969 * @cpu: the processor in question.
e69f6186
YB
2970 *
2971 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
2972 */
2973int idle_cpu(int cpu)
2974{
908a3283
TG
2975 struct rq *rq = cpu_rq(cpu);
2976
2977 if (rq->curr != rq->idle)
2978 return 0;
2979
2980 if (rq->nr_running)
2981 return 0;
2982
2983#ifdef CONFIG_SMP
2984 if (!llist_empty(&rq->wake_list))
2985 return 0;
2986#endif
2987
2988 return 1;
1da177e4
LT
2989}
2990
1da177e4
LT
2991/**
2992 * idle_task - return the idle task for a given cpu.
2993 * @cpu: the processor in question.
e69f6186
YB
2994 *
2995 * Return: The idle task for the cpu @cpu.
1da177e4 2996 */
36c8b586 2997struct task_struct *idle_task(int cpu)
1da177e4
LT
2998{
2999 return cpu_rq(cpu)->idle;
3000}
3001
3002/**
3003 * find_process_by_pid - find a process with a matching PID value.
3004 * @pid: the pid in question.
e69f6186
YB
3005 *
3006 * The task of @pid, if found. %NULL otherwise.
1da177e4 3007 */
a9957449 3008static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3009{
228ebcbe 3010 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3011}
3012
aab03e05
DF
3013/*
3014 * This function initializes the sched_dl_entity of a newly becoming
3015 * SCHED_DEADLINE task.
3016 *
3017 * Only the static values are considered here, the actual runtime and the
3018 * absolute deadline will be properly calculated when the task is enqueued
3019 * for the first time with its new policy.
3020 */
3021static void
3022__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3023{
3024 struct sched_dl_entity *dl_se = &p->dl;
3025
3026 init_dl_task_timer(dl_se);
3027 dl_se->dl_runtime = attr->sched_runtime;
3028 dl_se->dl_deadline = attr->sched_deadline;
3029 dl_se->flags = attr->sched_flags;
3030 dl_se->dl_throttled = 0;
3031 dl_se->dl_new = 1;
3032}
3033
d50dde5a
DF
3034/* Actually do priority change: must hold pi & rq lock. */
3035static void __setscheduler(struct rq *rq, struct task_struct *p,
3036 const struct sched_attr *attr)
1da177e4 3037{
d50dde5a
DF
3038 int policy = attr->sched_policy;
3039
1da177e4 3040 p->policy = policy;
d50dde5a 3041
aab03e05
DF
3042 if (dl_policy(policy))
3043 __setparam_dl(p, attr);
3044 else if (rt_policy(policy))
d50dde5a
DF
3045 p->rt_priority = attr->sched_priority;
3046 else
3047 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3048
b29739f9 3049 p->normal_prio = normal_prio(p);
b29739f9 3050 p->prio = rt_mutex_getprio(p);
d50dde5a 3051
aab03e05
DF
3052 if (dl_prio(p->prio))
3053 p->sched_class = &dl_sched_class;
3054 else if (rt_prio(p->prio))
ffd44db5
PZ
3055 p->sched_class = &rt_sched_class;
3056 else
3057 p->sched_class = &fair_sched_class;
d50dde5a 3058
2dd73a4f 3059 set_load_weight(p);
1da177e4 3060}
aab03e05
DF
3061
3062static void
3063__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3064{
3065 struct sched_dl_entity *dl_se = &p->dl;
3066
3067 attr->sched_priority = p->rt_priority;
3068 attr->sched_runtime = dl_se->dl_runtime;
3069 attr->sched_deadline = dl_se->dl_deadline;
3070 attr->sched_flags = dl_se->flags;
3071}
3072
3073/*
3074 * This function validates the new parameters of a -deadline task.
3075 * We ask for the deadline not being zero, and greater or equal
3076 * than the runtime.
3077 */
3078static bool
3079__checkparam_dl(const struct sched_attr *attr)
3080{
3081 return attr && attr->sched_deadline != 0 &&
3082 (s64)(attr->sched_deadline - attr->sched_runtime) >= 0;
3083}
3084
c69e8d9c
DH
3085/*
3086 * check the target process has a UID that matches the current process's
3087 */
3088static bool check_same_owner(struct task_struct *p)
3089{
3090 const struct cred *cred = current_cred(), *pcred;
3091 bool match;
3092
3093 rcu_read_lock();
3094 pcred = __task_cred(p);
9c806aa0
EB
3095 match = (uid_eq(cred->euid, pcred->euid) ||
3096 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3097 rcu_read_unlock();
3098 return match;
3099}
3100
d50dde5a
DF
3101static int __sched_setscheduler(struct task_struct *p,
3102 const struct sched_attr *attr,
3103 bool user)
1da177e4 3104{
83b699ed 3105 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3106 int policy = attr->sched_policy;
1da177e4 3107 unsigned long flags;
83ab0aa0 3108 const struct sched_class *prev_class;
70b97a7f 3109 struct rq *rq;
ca94c442 3110 int reset_on_fork;
1da177e4 3111
66e5393a
SR
3112 /* may grab non-irq protected spin_locks */
3113 BUG_ON(in_interrupt());
1da177e4
LT
3114recheck:
3115 /* double check policy once rq lock held */
ca94c442
LP
3116 if (policy < 0) {
3117 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3118 policy = oldpolicy = p->policy;
ca94c442
LP
3119 } else {
3120 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3121 policy &= ~SCHED_RESET_ON_FORK;
3122
aab03e05
DF
3123 if (policy != SCHED_DEADLINE &&
3124 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3125 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3126 policy != SCHED_IDLE)
3127 return -EINVAL;
3128 }
3129
1da177e4
LT
3130 /*
3131 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3132 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3133 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3134 */
d50dde5a
DF
3135 if (attr->sched_priority < 0 ||
3136 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3137 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3138 return -EINVAL;
aab03e05
DF
3139 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3140 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3141 return -EINVAL;
3142
37e4ab3f
OC
3143 /*
3144 * Allow unprivileged RT tasks to decrease priority:
3145 */
961ccddd 3146 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3147 if (fair_policy(policy)) {
3148 if (!can_nice(p, attr->sched_nice))
3149 return -EPERM;
3150 }
3151
e05606d3 3152 if (rt_policy(policy)) {
a44702e8
ON
3153 unsigned long rlim_rtprio =
3154 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3155
3156 /* can't set/change the rt policy */
3157 if (policy != p->policy && !rlim_rtprio)
3158 return -EPERM;
3159
3160 /* can't increase priority */
d50dde5a
DF
3161 if (attr->sched_priority > p->rt_priority &&
3162 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3163 return -EPERM;
3164 }
c02aa73b 3165
dd41f596 3166 /*
c02aa73b
DH
3167 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3168 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3169 */
c02aa73b
DH
3170 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3171 if (!can_nice(p, TASK_NICE(p)))
3172 return -EPERM;
3173 }
5fe1d75f 3174
37e4ab3f 3175 /* can't change other user's priorities */
c69e8d9c 3176 if (!check_same_owner(p))
37e4ab3f 3177 return -EPERM;
ca94c442
LP
3178
3179 /* Normal users shall not reset the sched_reset_on_fork flag */
3180 if (p->sched_reset_on_fork && !reset_on_fork)
3181 return -EPERM;
37e4ab3f 3182 }
1da177e4 3183
725aad24 3184 if (user) {
b0ae1981 3185 retval = security_task_setscheduler(p);
725aad24
JF
3186 if (retval)
3187 return retval;
3188 }
3189
b29739f9
IM
3190 /*
3191 * make sure no PI-waiters arrive (or leave) while we are
3192 * changing the priority of the task:
0122ec5b 3193 *
25985edc 3194 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3195 * runqueue lock must be held.
3196 */
0122ec5b 3197 rq = task_rq_lock(p, &flags);
dc61b1d6 3198
34f971f6
PZ
3199 /*
3200 * Changing the policy of the stop threads its a very bad idea
3201 */
3202 if (p == rq->stop) {
0122ec5b 3203 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3204 return -EINVAL;
3205 }
3206
a51e9198
DF
3207 /*
3208 * If not changing anything there's no need to proceed further:
3209 */
d50dde5a
DF
3210 if (unlikely(policy == p->policy)) {
3211 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3212 goto change;
3213 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3214 goto change;
aab03e05
DF
3215 if (dl_policy(policy))
3216 goto change;
d50dde5a 3217
45afb173 3218 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3219 return 0;
3220 }
d50dde5a 3221change:
a51e9198 3222
dc61b1d6
PZ
3223#ifdef CONFIG_RT_GROUP_SCHED
3224 if (user) {
3225 /*
3226 * Do not allow realtime tasks into groups that have no runtime
3227 * assigned.
3228 */
3229 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3230 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3231 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3232 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3233 return -EPERM;
3234 }
3235 }
3236#endif
3237
1da177e4
LT
3238 /* recheck policy now with rq lock held */
3239 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3240 policy = oldpolicy = -1;
0122ec5b 3241 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3242 goto recheck;
3243 }
fd2f4419 3244 on_rq = p->on_rq;
051a1d1a 3245 running = task_current(rq, p);
0e1f3483 3246 if (on_rq)
4ca9b72b 3247 dequeue_task(rq, p, 0);
0e1f3483
HS
3248 if (running)
3249 p->sched_class->put_prev_task(rq, p);
f6b53205 3250
ca94c442
LP
3251 p->sched_reset_on_fork = reset_on_fork;
3252
1da177e4 3253 oldprio = p->prio;
83ab0aa0 3254 prev_class = p->sched_class;
d50dde5a 3255 __setscheduler(rq, p, attr);
f6b53205 3256
0e1f3483
HS
3257 if (running)
3258 p->sched_class->set_curr_task(rq);
da7a735e 3259 if (on_rq)
4ca9b72b 3260 enqueue_task(rq, p, 0);
cb469845 3261
da7a735e 3262 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3263 task_rq_unlock(rq, p, &flags);
b29739f9 3264
95e02ca9
TG
3265 rt_mutex_adjust_pi(p);
3266
1da177e4
LT
3267 return 0;
3268}
961ccddd
RR
3269
3270/**
3271 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3272 * @p: the task in question.
3273 * @policy: new policy.
3274 * @param: structure containing the new RT priority.
3275 *
e69f6186
YB
3276 * Return: 0 on success. An error code otherwise.
3277 *
961ccddd
RR
3278 * NOTE that the task may be already dead.
3279 */
3280int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3281 const struct sched_param *param)
961ccddd 3282{
d50dde5a
DF
3283 struct sched_attr attr = {
3284 .sched_policy = policy,
3285 .sched_priority = param->sched_priority
3286 };
3287 return __sched_setscheduler(p, &attr, true);
961ccddd 3288}
1da177e4
LT
3289EXPORT_SYMBOL_GPL(sched_setscheduler);
3290
d50dde5a
DF
3291int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3292{
3293 return __sched_setscheduler(p, attr, true);
3294}
3295EXPORT_SYMBOL_GPL(sched_setattr);
3296
961ccddd
RR
3297/**
3298 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3299 * @p: the task in question.
3300 * @policy: new policy.
3301 * @param: structure containing the new RT priority.
3302 *
3303 * Just like sched_setscheduler, only don't bother checking if the
3304 * current context has permission. For example, this is needed in
3305 * stop_machine(): we create temporary high priority worker threads,
3306 * but our caller might not have that capability.
e69f6186
YB
3307 *
3308 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3309 */
3310int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3311 const struct sched_param *param)
961ccddd 3312{
d50dde5a
DF
3313 struct sched_attr attr = {
3314 .sched_policy = policy,
3315 .sched_priority = param->sched_priority
3316 };
3317 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3318}
3319
95cdf3b7
IM
3320static int
3321do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3322{
1da177e4
LT
3323 struct sched_param lparam;
3324 struct task_struct *p;
36c8b586 3325 int retval;
1da177e4
LT
3326
3327 if (!param || pid < 0)
3328 return -EINVAL;
3329 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3330 return -EFAULT;
5fe1d75f
ON
3331
3332 rcu_read_lock();
3333 retval = -ESRCH;
1da177e4 3334 p = find_process_by_pid(pid);
5fe1d75f
ON
3335 if (p != NULL)
3336 retval = sched_setscheduler(p, policy, &lparam);
3337 rcu_read_unlock();
36c8b586 3338
1da177e4
LT
3339 return retval;
3340}
3341
d50dde5a
DF
3342/*
3343 * Mimics kernel/events/core.c perf_copy_attr().
3344 */
3345static int sched_copy_attr(struct sched_attr __user *uattr,
3346 struct sched_attr *attr)
3347{
3348 u32 size;
3349 int ret;
3350
3351 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3352 return -EFAULT;
3353
3354 /*
3355 * zero the full structure, so that a short copy will be nice.
3356 */
3357 memset(attr, 0, sizeof(*attr));
3358
3359 ret = get_user(size, &uattr->size);
3360 if (ret)
3361 return ret;
3362
3363 if (size > PAGE_SIZE) /* silly large */
3364 goto err_size;
3365
3366 if (!size) /* abi compat */
3367 size = SCHED_ATTR_SIZE_VER0;
3368
3369 if (size < SCHED_ATTR_SIZE_VER0)
3370 goto err_size;
3371
3372 /*
3373 * If we're handed a bigger struct than we know of,
3374 * ensure all the unknown bits are 0 - i.e. new
3375 * user-space does not rely on any kernel feature
3376 * extensions we dont know about yet.
3377 */
3378 if (size > sizeof(*attr)) {
3379 unsigned char __user *addr;
3380 unsigned char __user *end;
3381 unsigned char val;
3382
3383 addr = (void __user *)uattr + sizeof(*attr);
3384 end = (void __user *)uattr + size;
3385
3386 for (; addr < end; addr++) {
3387 ret = get_user(val, addr);
3388 if (ret)
3389 return ret;
3390 if (val)
3391 goto err_size;
3392 }
3393 size = sizeof(*attr);
3394 }
3395
3396 ret = copy_from_user(attr, uattr, size);
3397 if (ret)
3398 return -EFAULT;
3399
3400 /*
3401 * XXX: do we want to be lenient like existing syscalls; or do we want
3402 * to be strict and return an error on out-of-bounds values?
3403 */
3404 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3405
3406out:
3407 return ret;
3408
3409err_size:
3410 put_user(sizeof(*attr), &uattr->size);
3411 ret = -E2BIG;
3412 goto out;
3413}
3414
1da177e4
LT
3415/**
3416 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3417 * @pid: the pid in question.
3418 * @policy: new policy.
3419 * @param: structure containing the new RT priority.
e69f6186
YB
3420 *
3421 * Return: 0 on success. An error code otherwise.
1da177e4 3422 */
5add95d4
HC
3423SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3424 struct sched_param __user *, param)
1da177e4 3425{
c21761f1
JB
3426 /* negative values for policy are not valid */
3427 if (policy < 0)
3428 return -EINVAL;
3429
1da177e4
LT
3430 return do_sched_setscheduler(pid, policy, param);
3431}
3432
3433/**
3434 * sys_sched_setparam - set/change the RT priority of a thread
3435 * @pid: the pid in question.
3436 * @param: structure containing the new RT priority.
e69f6186
YB
3437 *
3438 * Return: 0 on success. An error code otherwise.
1da177e4 3439 */
5add95d4 3440SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3441{
3442 return do_sched_setscheduler(pid, -1, param);
3443}
3444
d50dde5a
DF
3445/**
3446 * sys_sched_setattr - same as above, but with extended sched_attr
3447 * @pid: the pid in question.
3448 * @attr: structure containing the extended parameters.
3449 */
3450SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3451{
3452 struct sched_attr attr;
3453 struct task_struct *p;
3454 int retval;
3455
3456 if (!uattr || pid < 0)
3457 return -EINVAL;
3458
3459 if (sched_copy_attr(uattr, &attr))
3460 return -EFAULT;
3461
3462 rcu_read_lock();
3463 retval = -ESRCH;
3464 p = find_process_by_pid(pid);
3465 if (p != NULL)
3466 retval = sched_setattr(p, &attr);
3467 rcu_read_unlock();
3468
3469 return retval;
3470}
3471
1da177e4
LT
3472/**
3473 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3474 * @pid: the pid in question.
e69f6186
YB
3475 *
3476 * Return: On success, the policy of the thread. Otherwise, a negative error
3477 * code.
1da177e4 3478 */
5add95d4 3479SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3480{
36c8b586 3481 struct task_struct *p;
3a5c359a 3482 int retval;
1da177e4
LT
3483
3484 if (pid < 0)
3a5c359a 3485 return -EINVAL;
1da177e4
LT
3486
3487 retval = -ESRCH;
5fe85be0 3488 rcu_read_lock();
1da177e4
LT
3489 p = find_process_by_pid(pid);
3490 if (p) {
3491 retval = security_task_getscheduler(p);
3492 if (!retval)
ca94c442
LP
3493 retval = p->policy
3494 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3495 }
5fe85be0 3496 rcu_read_unlock();
1da177e4
LT
3497 return retval;
3498}
3499
3500/**
ca94c442 3501 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3502 * @pid: the pid in question.
3503 * @param: structure containing the RT priority.
e69f6186
YB
3504 *
3505 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3506 * code.
1da177e4 3507 */
5add95d4 3508SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3509{
3510 struct sched_param lp;
36c8b586 3511 struct task_struct *p;
3a5c359a 3512 int retval;
1da177e4
LT
3513
3514 if (!param || pid < 0)
3a5c359a 3515 return -EINVAL;
1da177e4 3516
5fe85be0 3517 rcu_read_lock();
1da177e4
LT
3518 p = find_process_by_pid(pid);
3519 retval = -ESRCH;
3520 if (!p)
3521 goto out_unlock;
3522
3523 retval = security_task_getscheduler(p);
3524 if (retval)
3525 goto out_unlock;
3526
aab03e05
DF
3527 if (task_has_dl_policy(p)) {
3528 retval = -EINVAL;
3529 goto out_unlock;
3530 }
1da177e4 3531 lp.sched_priority = p->rt_priority;
5fe85be0 3532 rcu_read_unlock();
1da177e4
LT
3533
3534 /*
3535 * This one might sleep, we cannot do it with a spinlock held ...
3536 */
3537 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3538
1da177e4
LT
3539 return retval;
3540
3541out_unlock:
5fe85be0 3542 rcu_read_unlock();
1da177e4
LT
3543 return retval;
3544}
3545
d50dde5a
DF
3546static int sched_read_attr(struct sched_attr __user *uattr,
3547 struct sched_attr *attr,
3548 unsigned int usize)
3549{
3550 int ret;
3551
3552 if (!access_ok(VERIFY_WRITE, uattr, usize))
3553 return -EFAULT;
3554
3555 /*
3556 * If we're handed a smaller struct than we know of,
3557 * ensure all the unknown bits are 0 - i.e. old
3558 * user-space does not get uncomplete information.
3559 */
3560 if (usize < sizeof(*attr)) {
3561 unsigned char *addr;
3562 unsigned char *end;
3563
3564 addr = (void *)attr + usize;
3565 end = (void *)attr + sizeof(*attr);
3566
3567 for (; addr < end; addr++) {
3568 if (*addr)
3569 goto err_size;
3570 }
3571
3572 attr->size = usize;
3573 }
3574
3575 ret = copy_to_user(uattr, attr, usize);
3576 if (ret)
3577 return -EFAULT;
3578
3579out:
3580 return ret;
3581
3582err_size:
3583 ret = -E2BIG;
3584 goto out;
3585}
3586
3587/**
aab03e05 3588 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a
DF
3589 * @pid: the pid in question.
3590 * @attr: structure containing the extended parameters.
3591 * @size: sizeof(attr) for fwd/bwd comp.
3592 */
3593SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3594 unsigned int, size)
3595{
3596 struct sched_attr attr = {
3597 .size = sizeof(struct sched_attr),
3598 };
3599 struct task_struct *p;
3600 int retval;
3601
3602 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3603 size < SCHED_ATTR_SIZE_VER0)
3604 return -EINVAL;
3605
3606 rcu_read_lock();
3607 p = find_process_by_pid(pid);
3608 retval = -ESRCH;
3609 if (!p)
3610 goto out_unlock;
3611
3612 retval = security_task_getscheduler(p);
3613 if (retval)
3614 goto out_unlock;
3615
3616 attr.sched_policy = p->policy;
aab03e05
DF
3617 if (task_has_dl_policy(p))
3618 __getparam_dl(p, &attr);
3619 else if (task_has_rt_policy(p))
d50dde5a
DF
3620 attr.sched_priority = p->rt_priority;
3621 else
3622 attr.sched_nice = TASK_NICE(p);
3623
3624 rcu_read_unlock();
3625
3626 retval = sched_read_attr(uattr, &attr, size);
3627 return retval;
3628
3629out_unlock:
3630 rcu_read_unlock();
3631 return retval;
3632}
3633
96f874e2 3634long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3635{
5a16f3d3 3636 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3637 struct task_struct *p;
3638 int retval;
1da177e4 3639
23f5d142 3640 rcu_read_lock();
1da177e4
LT
3641
3642 p = find_process_by_pid(pid);
3643 if (!p) {
23f5d142 3644 rcu_read_unlock();
1da177e4
LT
3645 return -ESRCH;
3646 }
3647
23f5d142 3648 /* Prevent p going away */
1da177e4 3649 get_task_struct(p);
23f5d142 3650 rcu_read_unlock();
1da177e4 3651
14a40ffc
TH
3652 if (p->flags & PF_NO_SETAFFINITY) {
3653 retval = -EINVAL;
3654 goto out_put_task;
3655 }
5a16f3d3
RR
3656 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3657 retval = -ENOMEM;
3658 goto out_put_task;
3659 }
3660 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3661 retval = -ENOMEM;
3662 goto out_free_cpus_allowed;
3663 }
1da177e4 3664 retval = -EPERM;
4c44aaaf
EB
3665 if (!check_same_owner(p)) {
3666 rcu_read_lock();
3667 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3668 rcu_read_unlock();
3669 goto out_unlock;
3670 }
3671 rcu_read_unlock();
3672 }
1da177e4 3673
b0ae1981 3674 retval = security_task_setscheduler(p);
e7834f8f
DQ
3675 if (retval)
3676 goto out_unlock;
3677
5a16f3d3
RR
3678 cpuset_cpus_allowed(p, cpus_allowed);
3679 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3680again:
5a16f3d3 3681 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3682
8707d8b8 3683 if (!retval) {
5a16f3d3
RR
3684 cpuset_cpus_allowed(p, cpus_allowed);
3685 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3686 /*
3687 * We must have raced with a concurrent cpuset
3688 * update. Just reset the cpus_allowed to the
3689 * cpuset's cpus_allowed
3690 */
5a16f3d3 3691 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3692 goto again;
3693 }
3694 }
1da177e4 3695out_unlock:
5a16f3d3
RR
3696 free_cpumask_var(new_mask);
3697out_free_cpus_allowed:
3698 free_cpumask_var(cpus_allowed);
3699out_put_task:
1da177e4 3700 put_task_struct(p);
1da177e4
LT
3701 return retval;
3702}
3703
3704static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3705 struct cpumask *new_mask)
1da177e4 3706{
96f874e2
RR
3707 if (len < cpumask_size())
3708 cpumask_clear(new_mask);
3709 else if (len > cpumask_size())
3710 len = cpumask_size();
3711
1da177e4
LT
3712 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3713}
3714
3715/**
3716 * sys_sched_setaffinity - set the cpu affinity of a process
3717 * @pid: pid of the process
3718 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3719 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3720 *
3721 * Return: 0 on success. An error code otherwise.
1da177e4 3722 */
5add95d4
HC
3723SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3724 unsigned long __user *, user_mask_ptr)
1da177e4 3725{
5a16f3d3 3726 cpumask_var_t new_mask;
1da177e4
LT
3727 int retval;
3728
5a16f3d3
RR
3729 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3730 return -ENOMEM;
1da177e4 3731
5a16f3d3
RR
3732 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3733 if (retval == 0)
3734 retval = sched_setaffinity(pid, new_mask);
3735 free_cpumask_var(new_mask);
3736 return retval;
1da177e4
LT
3737}
3738
96f874e2 3739long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3740{
36c8b586 3741 struct task_struct *p;
31605683 3742 unsigned long flags;
1da177e4 3743 int retval;
1da177e4 3744
23f5d142 3745 rcu_read_lock();
1da177e4
LT
3746
3747 retval = -ESRCH;
3748 p = find_process_by_pid(pid);
3749 if (!p)
3750 goto out_unlock;
3751
e7834f8f
DQ
3752 retval = security_task_getscheduler(p);
3753 if (retval)
3754 goto out_unlock;
3755
013fdb80 3756 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3757 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3758 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3759
3760out_unlock:
23f5d142 3761 rcu_read_unlock();
1da177e4 3762
9531b62f 3763 return retval;
1da177e4
LT
3764}
3765
3766/**
3767 * sys_sched_getaffinity - get the cpu affinity of a process
3768 * @pid: pid of the process
3769 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3770 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3771 *
3772 * Return: 0 on success. An error code otherwise.
1da177e4 3773 */
5add95d4
HC
3774SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3775 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3776{
3777 int ret;
f17c8607 3778 cpumask_var_t mask;
1da177e4 3779
84fba5ec 3780 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3781 return -EINVAL;
3782 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3783 return -EINVAL;
3784
f17c8607
RR
3785 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3786 return -ENOMEM;
1da177e4 3787
f17c8607
RR
3788 ret = sched_getaffinity(pid, mask);
3789 if (ret == 0) {
8bc037fb 3790 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3791
3792 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3793 ret = -EFAULT;
3794 else
cd3d8031 3795 ret = retlen;
f17c8607
RR
3796 }
3797 free_cpumask_var(mask);
1da177e4 3798
f17c8607 3799 return ret;
1da177e4
LT
3800}
3801
3802/**
3803 * sys_sched_yield - yield the current processor to other threads.
3804 *
dd41f596
IM
3805 * This function yields the current CPU to other tasks. If there are no
3806 * other threads running on this CPU then this function will return.
e69f6186
YB
3807 *
3808 * Return: 0.
1da177e4 3809 */
5add95d4 3810SYSCALL_DEFINE0(sched_yield)
1da177e4 3811{
70b97a7f 3812 struct rq *rq = this_rq_lock();
1da177e4 3813
2d72376b 3814 schedstat_inc(rq, yld_count);
4530d7ab 3815 current->sched_class->yield_task(rq);
1da177e4
LT
3816
3817 /*
3818 * Since we are going to call schedule() anyway, there's
3819 * no need to preempt or enable interrupts:
3820 */
3821 __release(rq->lock);
8a25d5de 3822 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3823 do_raw_spin_unlock(&rq->lock);
ba74c144 3824 sched_preempt_enable_no_resched();
1da177e4
LT
3825
3826 schedule();
3827
3828 return 0;
3829}
3830
e7b38404 3831static void __cond_resched(void)
1da177e4 3832{
bdb43806 3833 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3834 __schedule();
bdb43806 3835 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3836}
3837
02b67cc3 3838int __sched _cond_resched(void)
1da177e4 3839{
d86ee480 3840 if (should_resched()) {
1da177e4
LT
3841 __cond_resched();
3842 return 1;
3843 }
3844 return 0;
3845}
02b67cc3 3846EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3847
3848/*
613afbf8 3849 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3850 * call schedule, and on return reacquire the lock.
3851 *
41a2d6cf 3852 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3853 * operations here to prevent schedule() from being called twice (once via
3854 * spin_unlock(), once by hand).
3855 */
613afbf8 3856int __cond_resched_lock(spinlock_t *lock)
1da177e4 3857{
d86ee480 3858 int resched = should_resched();
6df3cecb
JK
3859 int ret = 0;
3860
f607c668
PZ
3861 lockdep_assert_held(lock);
3862
95c354fe 3863 if (spin_needbreak(lock) || resched) {
1da177e4 3864 spin_unlock(lock);
d86ee480 3865 if (resched)
95c354fe
NP
3866 __cond_resched();
3867 else
3868 cpu_relax();
6df3cecb 3869 ret = 1;
1da177e4 3870 spin_lock(lock);
1da177e4 3871 }
6df3cecb 3872 return ret;
1da177e4 3873}
613afbf8 3874EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3875
613afbf8 3876int __sched __cond_resched_softirq(void)
1da177e4
LT
3877{
3878 BUG_ON(!in_softirq());
3879
d86ee480 3880 if (should_resched()) {
98d82567 3881 local_bh_enable();
1da177e4
LT
3882 __cond_resched();
3883 local_bh_disable();
3884 return 1;
3885 }
3886 return 0;
3887}
613afbf8 3888EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3889
1da177e4
LT
3890/**
3891 * yield - yield the current processor to other threads.
3892 *
8e3fabfd
PZ
3893 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3894 *
3895 * The scheduler is at all times free to pick the calling task as the most
3896 * eligible task to run, if removing the yield() call from your code breaks
3897 * it, its already broken.
3898 *
3899 * Typical broken usage is:
3900 *
3901 * while (!event)
3902 * yield();
3903 *
3904 * where one assumes that yield() will let 'the other' process run that will
3905 * make event true. If the current task is a SCHED_FIFO task that will never
3906 * happen. Never use yield() as a progress guarantee!!
3907 *
3908 * If you want to use yield() to wait for something, use wait_event().
3909 * If you want to use yield() to be 'nice' for others, use cond_resched().
3910 * If you still want to use yield(), do not!
1da177e4
LT
3911 */
3912void __sched yield(void)
3913{
3914 set_current_state(TASK_RUNNING);
3915 sys_sched_yield();
3916}
1da177e4
LT
3917EXPORT_SYMBOL(yield);
3918
d95f4122
MG
3919/**
3920 * yield_to - yield the current processor to another thread in
3921 * your thread group, or accelerate that thread toward the
3922 * processor it's on.
16addf95
RD
3923 * @p: target task
3924 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3925 *
3926 * It's the caller's job to ensure that the target task struct
3927 * can't go away on us before we can do any checks.
3928 *
e69f6186 3929 * Return:
7b270f60
PZ
3930 * true (>0) if we indeed boosted the target task.
3931 * false (0) if we failed to boost the target.
3932 * -ESRCH if there's no task to yield to.
d95f4122
MG
3933 */
3934bool __sched yield_to(struct task_struct *p, bool preempt)
3935{
3936 struct task_struct *curr = current;
3937 struct rq *rq, *p_rq;
3938 unsigned long flags;
c3c18640 3939 int yielded = 0;
d95f4122
MG
3940
3941 local_irq_save(flags);
3942 rq = this_rq();
3943
3944again:
3945 p_rq = task_rq(p);
7b270f60
PZ
3946 /*
3947 * If we're the only runnable task on the rq and target rq also
3948 * has only one task, there's absolutely no point in yielding.
3949 */
3950 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3951 yielded = -ESRCH;
3952 goto out_irq;
3953 }
3954
d95f4122 3955 double_rq_lock(rq, p_rq);
39e24d8f 3956 if (task_rq(p) != p_rq) {
d95f4122
MG
3957 double_rq_unlock(rq, p_rq);
3958 goto again;
3959 }
3960
3961 if (!curr->sched_class->yield_to_task)
7b270f60 3962 goto out_unlock;
d95f4122
MG
3963
3964 if (curr->sched_class != p->sched_class)
7b270f60 3965 goto out_unlock;
d95f4122
MG
3966
3967 if (task_running(p_rq, p) || p->state)
7b270f60 3968 goto out_unlock;
d95f4122
MG
3969
3970 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3971 if (yielded) {
d95f4122 3972 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3973 /*
3974 * Make p's CPU reschedule; pick_next_entity takes care of
3975 * fairness.
3976 */
3977 if (preempt && rq != p_rq)
3978 resched_task(p_rq->curr);
3979 }
d95f4122 3980
7b270f60 3981out_unlock:
d95f4122 3982 double_rq_unlock(rq, p_rq);
7b270f60 3983out_irq:
d95f4122
MG
3984 local_irq_restore(flags);
3985
7b270f60 3986 if (yielded > 0)
d95f4122
MG
3987 schedule();
3988
3989 return yielded;
3990}
3991EXPORT_SYMBOL_GPL(yield_to);
3992
1da177e4 3993/*
41a2d6cf 3994 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3995 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3996 */
3997void __sched io_schedule(void)
3998{
54d35f29 3999 struct rq *rq = raw_rq();
1da177e4 4000
0ff92245 4001 delayacct_blkio_start();
1da177e4 4002 atomic_inc(&rq->nr_iowait);
73c10101 4003 blk_flush_plug(current);
8f0dfc34 4004 current->in_iowait = 1;
1da177e4 4005 schedule();
8f0dfc34 4006 current->in_iowait = 0;
1da177e4 4007 atomic_dec(&rq->nr_iowait);
0ff92245 4008 delayacct_blkio_end();
1da177e4 4009}
1da177e4
LT
4010EXPORT_SYMBOL(io_schedule);
4011
4012long __sched io_schedule_timeout(long timeout)
4013{
54d35f29 4014 struct rq *rq = raw_rq();
1da177e4
LT
4015 long ret;
4016
0ff92245 4017 delayacct_blkio_start();
1da177e4 4018 atomic_inc(&rq->nr_iowait);
73c10101 4019 blk_flush_plug(current);
8f0dfc34 4020 current->in_iowait = 1;
1da177e4 4021 ret = schedule_timeout(timeout);
8f0dfc34 4022 current->in_iowait = 0;
1da177e4 4023 atomic_dec(&rq->nr_iowait);
0ff92245 4024 delayacct_blkio_end();
1da177e4
LT
4025 return ret;
4026}
4027
4028/**
4029 * sys_sched_get_priority_max - return maximum RT priority.
4030 * @policy: scheduling class.
4031 *
e69f6186
YB
4032 * Return: On success, this syscall returns the maximum
4033 * rt_priority that can be used by a given scheduling class.
4034 * On failure, a negative error code is returned.
1da177e4 4035 */
5add95d4 4036SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4037{
4038 int ret = -EINVAL;
4039
4040 switch (policy) {
4041 case SCHED_FIFO:
4042 case SCHED_RR:
4043 ret = MAX_USER_RT_PRIO-1;
4044 break;
aab03e05 4045 case SCHED_DEADLINE:
1da177e4 4046 case SCHED_NORMAL:
b0a9499c 4047 case SCHED_BATCH:
dd41f596 4048 case SCHED_IDLE:
1da177e4
LT
4049 ret = 0;
4050 break;
4051 }
4052 return ret;
4053}
4054
4055/**
4056 * sys_sched_get_priority_min - return minimum RT priority.
4057 * @policy: scheduling class.
4058 *
e69f6186
YB
4059 * Return: On success, this syscall returns the minimum
4060 * rt_priority that can be used by a given scheduling class.
4061 * On failure, a negative error code is returned.
1da177e4 4062 */
5add95d4 4063SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4064{
4065 int ret = -EINVAL;
4066
4067 switch (policy) {
4068 case SCHED_FIFO:
4069 case SCHED_RR:
4070 ret = 1;
4071 break;
aab03e05 4072 case SCHED_DEADLINE:
1da177e4 4073 case SCHED_NORMAL:
b0a9499c 4074 case SCHED_BATCH:
dd41f596 4075 case SCHED_IDLE:
1da177e4
LT
4076 ret = 0;
4077 }
4078 return ret;
4079}
4080
4081/**
4082 * sys_sched_rr_get_interval - return the default timeslice of a process.
4083 * @pid: pid of the process.
4084 * @interval: userspace pointer to the timeslice value.
4085 *
4086 * this syscall writes the default timeslice value of a given process
4087 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4088 *
4089 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4090 * an error code.
1da177e4 4091 */
17da2bd9 4092SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4093 struct timespec __user *, interval)
1da177e4 4094{
36c8b586 4095 struct task_struct *p;
a4ec24b4 4096 unsigned int time_slice;
dba091b9
TG
4097 unsigned long flags;
4098 struct rq *rq;
3a5c359a 4099 int retval;
1da177e4 4100 struct timespec t;
1da177e4
LT
4101
4102 if (pid < 0)
3a5c359a 4103 return -EINVAL;
1da177e4
LT
4104
4105 retval = -ESRCH;
1a551ae7 4106 rcu_read_lock();
1da177e4
LT
4107 p = find_process_by_pid(pid);
4108 if (!p)
4109 goto out_unlock;
4110
4111 retval = security_task_getscheduler(p);
4112 if (retval)
4113 goto out_unlock;
4114
dba091b9
TG
4115 rq = task_rq_lock(p, &flags);
4116 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4117 task_rq_unlock(rq, p, &flags);
a4ec24b4 4118
1a551ae7 4119 rcu_read_unlock();
a4ec24b4 4120 jiffies_to_timespec(time_slice, &t);
1da177e4 4121 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4122 return retval;
3a5c359a 4123
1da177e4 4124out_unlock:
1a551ae7 4125 rcu_read_unlock();
1da177e4
LT
4126 return retval;
4127}
4128
7c731e0a 4129static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4130
82a1fcb9 4131void sched_show_task(struct task_struct *p)
1da177e4 4132{
1da177e4 4133 unsigned long free = 0;
4e79752c 4134 int ppid;
36c8b586 4135 unsigned state;
1da177e4 4136
1da177e4 4137 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4138 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4139 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4140#if BITS_PER_LONG == 32
1da177e4 4141 if (state == TASK_RUNNING)
3df0fc5b 4142 printk(KERN_CONT " running ");
1da177e4 4143 else
3df0fc5b 4144 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4145#else
4146 if (state == TASK_RUNNING)
3df0fc5b 4147 printk(KERN_CONT " running task ");
1da177e4 4148 else
3df0fc5b 4149 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4150#endif
4151#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4152 free = stack_not_used(p);
1da177e4 4153#endif
4e79752c
PM
4154 rcu_read_lock();
4155 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4156 rcu_read_unlock();
3df0fc5b 4157 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4158 task_pid_nr(p), ppid,
aa47b7e0 4159 (unsigned long)task_thread_info(p)->flags);
1da177e4 4160
3d1cb205 4161 print_worker_info(KERN_INFO, p);
5fb5e6de 4162 show_stack(p, NULL);
1da177e4
LT
4163}
4164
e59e2ae2 4165void show_state_filter(unsigned long state_filter)
1da177e4 4166{
36c8b586 4167 struct task_struct *g, *p;
1da177e4 4168
4bd77321 4169#if BITS_PER_LONG == 32
3df0fc5b
PZ
4170 printk(KERN_INFO
4171 " task PC stack pid father\n");
1da177e4 4172#else
3df0fc5b
PZ
4173 printk(KERN_INFO
4174 " task PC stack pid father\n");
1da177e4 4175#endif
510f5acc 4176 rcu_read_lock();
1da177e4
LT
4177 do_each_thread(g, p) {
4178 /*
4179 * reset the NMI-timeout, listing all files on a slow
25985edc 4180 * console might take a lot of time:
1da177e4
LT
4181 */
4182 touch_nmi_watchdog();
39bc89fd 4183 if (!state_filter || (p->state & state_filter))
82a1fcb9 4184 sched_show_task(p);
1da177e4
LT
4185 } while_each_thread(g, p);
4186
04c9167f
JF
4187 touch_all_softlockup_watchdogs();
4188
dd41f596
IM
4189#ifdef CONFIG_SCHED_DEBUG
4190 sysrq_sched_debug_show();
4191#endif
510f5acc 4192 rcu_read_unlock();
e59e2ae2
IM
4193 /*
4194 * Only show locks if all tasks are dumped:
4195 */
93335a21 4196 if (!state_filter)
e59e2ae2 4197 debug_show_all_locks();
1da177e4
LT
4198}
4199
0db0628d 4200void init_idle_bootup_task(struct task_struct *idle)
1df21055 4201{
dd41f596 4202 idle->sched_class = &idle_sched_class;
1df21055
IM
4203}
4204
f340c0d1
IM
4205/**
4206 * init_idle - set up an idle thread for a given CPU
4207 * @idle: task in question
4208 * @cpu: cpu the idle task belongs to
4209 *
4210 * NOTE: this function does not set the idle thread's NEED_RESCHED
4211 * flag, to make booting more robust.
4212 */
0db0628d 4213void init_idle(struct task_struct *idle, int cpu)
1da177e4 4214{
70b97a7f 4215 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4216 unsigned long flags;
4217
05fa785c 4218 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4219
5e1576ed 4220 __sched_fork(0, idle);
06b83b5f 4221 idle->state = TASK_RUNNING;
dd41f596
IM
4222 idle->se.exec_start = sched_clock();
4223
1e1b6c51 4224 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4225 /*
4226 * We're having a chicken and egg problem, even though we are
4227 * holding rq->lock, the cpu isn't yet set to this cpu so the
4228 * lockdep check in task_group() will fail.
4229 *
4230 * Similar case to sched_fork(). / Alternatively we could
4231 * use task_rq_lock() here and obtain the other rq->lock.
4232 *
4233 * Silence PROVE_RCU
4234 */
4235 rcu_read_lock();
dd41f596 4236 __set_task_cpu(idle, cpu);
6506cf6c 4237 rcu_read_unlock();
1da177e4 4238
1da177e4 4239 rq->curr = rq->idle = idle;
3ca7a440
PZ
4240#if defined(CONFIG_SMP)
4241 idle->on_cpu = 1;
4866cde0 4242#endif
05fa785c 4243 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4244
4245 /* Set the preempt count _outside_ the spinlocks! */
01028747 4246 init_idle_preempt_count(idle, cpu);
55cd5340 4247
dd41f596
IM
4248 /*
4249 * The idle tasks have their own, simple scheduling class:
4250 */
4251 idle->sched_class = &idle_sched_class;
868baf07 4252 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4253 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4254#if defined(CONFIG_SMP)
4255 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4256#endif
19978ca6
IM
4257}
4258
1da177e4 4259#ifdef CONFIG_SMP
1e1b6c51
KM
4260void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4261{
4262 if (p->sched_class && p->sched_class->set_cpus_allowed)
4263 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4264
4265 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4266 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4267}
4268
1da177e4
LT
4269/*
4270 * This is how migration works:
4271 *
969c7921
TH
4272 * 1) we invoke migration_cpu_stop() on the target CPU using
4273 * stop_one_cpu().
4274 * 2) stopper starts to run (implicitly forcing the migrated thread
4275 * off the CPU)
4276 * 3) it checks whether the migrated task is still in the wrong runqueue.
4277 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4278 * it and puts it into the right queue.
969c7921
TH
4279 * 5) stopper completes and stop_one_cpu() returns and the migration
4280 * is done.
1da177e4
LT
4281 */
4282
4283/*
4284 * Change a given task's CPU affinity. Migrate the thread to a
4285 * proper CPU and schedule it away if the CPU it's executing on
4286 * is removed from the allowed bitmask.
4287 *
4288 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4289 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4290 * call is not atomic; no spinlocks may be held.
4291 */
96f874e2 4292int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4293{
4294 unsigned long flags;
70b97a7f 4295 struct rq *rq;
969c7921 4296 unsigned int dest_cpu;
48f24c4d 4297 int ret = 0;
1da177e4
LT
4298
4299 rq = task_rq_lock(p, &flags);
e2912009 4300
db44fc01
YZ
4301 if (cpumask_equal(&p->cpus_allowed, new_mask))
4302 goto out;
4303
6ad4c188 4304 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4305 ret = -EINVAL;
4306 goto out;
4307 }
4308
1e1b6c51 4309 do_set_cpus_allowed(p, new_mask);
73fe6aae 4310
1da177e4 4311 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4312 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4313 goto out;
4314
969c7921 4315 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4316 if (p->on_rq) {
969c7921 4317 struct migration_arg arg = { p, dest_cpu };
1da177e4 4318 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4319 task_rq_unlock(rq, p, &flags);
969c7921 4320 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4321 tlb_migrate_finish(p->mm);
4322 return 0;
4323 }
4324out:
0122ec5b 4325 task_rq_unlock(rq, p, &flags);
48f24c4d 4326
1da177e4
LT
4327 return ret;
4328}
cd8ba7cd 4329EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4330
4331/*
41a2d6cf 4332 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4333 * this because either it can't run here any more (set_cpus_allowed()
4334 * away from this CPU, or CPU going down), or because we're
4335 * attempting to rebalance this task on exec (sched_exec).
4336 *
4337 * So we race with normal scheduler movements, but that's OK, as long
4338 * as the task is no longer on this CPU.
efc30814
KK
4339 *
4340 * Returns non-zero if task was successfully migrated.
1da177e4 4341 */
efc30814 4342static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4343{
70b97a7f 4344 struct rq *rq_dest, *rq_src;
e2912009 4345 int ret = 0;
1da177e4 4346
e761b772 4347 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4348 return ret;
1da177e4
LT
4349
4350 rq_src = cpu_rq(src_cpu);
4351 rq_dest = cpu_rq(dest_cpu);
4352
0122ec5b 4353 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4354 double_rq_lock(rq_src, rq_dest);
4355 /* Already moved. */
4356 if (task_cpu(p) != src_cpu)
b1e38734 4357 goto done;
1da177e4 4358 /* Affinity changed (again). */
fa17b507 4359 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4360 goto fail;
1da177e4 4361
e2912009
PZ
4362 /*
4363 * If we're not on a rq, the next wake-up will ensure we're
4364 * placed properly.
4365 */
fd2f4419 4366 if (p->on_rq) {
4ca9b72b 4367 dequeue_task(rq_src, p, 0);
e2912009 4368 set_task_cpu(p, dest_cpu);
4ca9b72b 4369 enqueue_task(rq_dest, p, 0);
15afe09b 4370 check_preempt_curr(rq_dest, p, 0);
1da177e4 4371 }
b1e38734 4372done:
efc30814 4373 ret = 1;
b1e38734 4374fail:
1da177e4 4375 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4376 raw_spin_unlock(&p->pi_lock);
efc30814 4377 return ret;
1da177e4
LT
4378}
4379
e6628d5b
MG
4380#ifdef CONFIG_NUMA_BALANCING
4381/* Migrate current task p to target_cpu */
4382int migrate_task_to(struct task_struct *p, int target_cpu)
4383{
4384 struct migration_arg arg = { p, target_cpu };
4385 int curr_cpu = task_cpu(p);
4386
4387 if (curr_cpu == target_cpu)
4388 return 0;
4389
4390 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4391 return -EINVAL;
4392
4393 /* TODO: This is not properly updating schedstats */
4394
4395 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4396}
0ec8aa00
PZ
4397
4398/*
4399 * Requeue a task on a given node and accurately track the number of NUMA
4400 * tasks on the runqueues
4401 */
4402void sched_setnuma(struct task_struct *p, int nid)
4403{
4404 struct rq *rq;
4405 unsigned long flags;
4406 bool on_rq, running;
4407
4408 rq = task_rq_lock(p, &flags);
4409 on_rq = p->on_rq;
4410 running = task_current(rq, p);
4411
4412 if (on_rq)
4413 dequeue_task(rq, p, 0);
4414 if (running)
4415 p->sched_class->put_prev_task(rq, p);
4416
4417 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4418
4419 if (running)
4420 p->sched_class->set_curr_task(rq);
4421 if (on_rq)
4422 enqueue_task(rq, p, 0);
4423 task_rq_unlock(rq, p, &flags);
4424}
e6628d5b
MG
4425#endif
4426
1da177e4 4427/*
969c7921
TH
4428 * migration_cpu_stop - this will be executed by a highprio stopper thread
4429 * and performs thread migration by bumping thread off CPU then
4430 * 'pushing' onto another runqueue.
1da177e4 4431 */
969c7921 4432static int migration_cpu_stop(void *data)
1da177e4 4433{
969c7921 4434 struct migration_arg *arg = data;
f7b4cddc 4435
969c7921
TH
4436 /*
4437 * The original target cpu might have gone down and we might
4438 * be on another cpu but it doesn't matter.
4439 */
f7b4cddc 4440 local_irq_disable();
969c7921 4441 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4442 local_irq_enable();
1da177e4 4443 return 0;
f7b4cddc
ON
4444}
4445
1da177e4 4446#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4447
054b9108 4448/*
48c5ccae
PZ
4449 * Ensures that the idle task is using init_mm right before its cpu goes
4450 * offline.
054b9108 4451 */
48c5ccae 4452void idle_task_exit(void)
1da177e4 4453{
48c5ccae 4454 struct mm_struct *mm = current->active_mm;
e76bd8d9 4455
48c5ccae 4456 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4457
48c5ccae
PZ
4458 if (mm != &init_mm)
4459 switch_mm(mm, &init_mm, current);
4460 mmdrop(mm);
1da177e4
LT
4461}
4462
4463/*
5d180232
PZ
4464 * Since this CPU is going 'away' for a while, fold any nr_active delta
4465 * we might have. Assumes we're called after migrate_tasks() so that the
4466 * nr_active count is stable.
4467 *
4468 * Also see the comment "Global load-average calculations".
1da177e4 4469 */
5d180232 4470static void calc_load_migrate(struct rq *rq)
1da177e4 4471{
5d180232
PZ
4472 long delta = calc_load_fold_active(rq);
4473 if (delta)
4474 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4475}
4476
48f24c4d 4477/*
48c5ccae
PZ
4478 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4479 * try_to_wake_up()->select_task_rq().
4480 *
4481 * Called with rq->lock held even though we'er in stop_machine() and
4482 * there's no concurrency possible, we hold the required locks anyway
4483 * because of lock validation efforts.
1da177e4 4484 */
48c5ccae 4485static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4486{
70b97a7f 4487 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4488 struct task_struct *next, *stop = rq->stop;
4489 int dest_cpu;
1da177e4
LT
4490
4491 /*
48c5ccae
PZ
4492 * Fudge the rq selection such that the below task selection loop
4493 * doesn't get stuck on the currently eligible stop task.
4494 *
4495 * We're currently inside stop_machine() and the rq is either stuck
4496 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4497 * either way we should never end up calling schedule() until we're
4498 * done here.
1da177e4 4499 */
48c5ccae 4500 rq->stop = NULL;
48f24c4d 4501
77bd3970
FW
4502 /*
4503 * put_prev_task() and pick_next_task() sched
4504 * class method both need to have an up-to-date
4505 * value of rq->clock[_task]
4506 */
4507 update_rq_clock(rq);
4508
dd41f596 4509 for ( ; ; ) {
48c5ccae
PZ
4510 /*
4511 * There's this thread running, bail when that's the only
4512 * remaining thread.
4513 */
4514 if (rq->nr_running == 1)
dd41f596 4515 break;
48c5ccae 4516
b67802ea 4517 next = pick_next_task(rq);
48c5ccae 4518 BUG_ON(!next);
79c53799 4519 next->sched_class->put_prev_task(rq, next);
e692ab53 4520
48c5ccae
PZ
4521 /* Find suitable destination for @next, with force if needed. */
4522 dest_cpu = select_fallback_rq(dead_cpu, next);
4523 raw_spin_unlock(&rq->lock);
4524
4525 __migrate_task(next, dead_cpu, dest_cpu);
4526
4527 raw_spin_lock(&rq->lock);
1da177e4 4528 }
dce48a84 4529
48c5ccae 4530 rq->stop = stop;
dce48a84 4531}
48c5ccae 4532
1da177e4
LT
4533#endif /* CONFIG_HOTPLUG_CPU */
4534
e692ab53
NP
4535#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4536
4537static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4538 {
4539 .procname = "sched_domain",
c57baf1e 4540 .mode = 0555,
e0361851 4541 },
56992309 4542 {}
e692ab53
NP
4543};
4544
4545static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4546 {
4547 .procname = "kernel",
c57baf1e 4548 .mode = 0555,
e0361851
AD
4549 .child = sd_ctl_dir,
4550 },
56992309 4551 {}
e692ab53
NP
4552};
4553
4554static struct ctl_table *sd_alloc_ctl_entry(int n)
4555{
4556 struct ctl_table *entry =
5cf9f062 4557 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4558
e692ab53
NP
4559 return entry;
4560}
4561
6382bc90
MM
4562static void sd_free_ctl_entry(struct ctl_table **tablep)
4563{
cd790076 4564 struct ctl_table *entry;
6382bc90 4565
cd790076
MM
4566 /*
4567 * In the intermediate directories, both the child directory and
4568 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4569 * will always be set. In the lowest directory the names are
cd790076
MM
4570 * static strings and all have proc handlers.
4571 */
4572 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4573 if (entry->child)
4574 sd_free_ctl_entry(&entry->child);
cd790076
MM
4575 if (entry->proc_handler == NULL)
4576 kfree(entry->procname);
4577 }
6382bc90
MM
4578
4579 kfree(*tablep);
4580 *tablep = NULL;
4581}
4582
201c373e 4583static int min_load_idx = 0;
fd9b86d3 4584static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4585
e692ab53 4586static void
e0361851 4587set_table_entry(struct ctl_table *entry,
e692ab53 4588 const char *procname, void *data, int maxlen,
201c373e
NK
4589 umode_t mode, proc_handler *proc_handler,
4590 bool load_idx)
e692ab53 4591{
e692ab53
NP
4592 entry->procname = procname;
4593 entry->data = data;
4594 entry->maxlen = maxlen;
4595 entry->mode = mode;
4596 entry->proc_handler = proc_handler;
201c373e
NK
4597
4598 if (load_idx) {
4599 entry->extra1 = &min_load_idx;
4600 entry->extra2 = &max_load_idx;
4601 }
e692ab53
NP
4602}
4603
4604static struct ctl_table *
4605sd_alloc_ctl_domain_table(struct sched_domain *sd)
4606{
a5d8c348 4607 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4608
ad1cdc1d
MM
4609 if (table == NULL)
4610 return NULL;
4611
e0361851 4612 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4613 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4614 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4615 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4616 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4617 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4618 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4619 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4620 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4621 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4622 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4623 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4624 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4625 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4626 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4627 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4628 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4629 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4630 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4631 &sd->cache_nice_tries,
201c373e 4632 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4633 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4634 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4635 set_table_entry(&table[11], "name", sd->name,
201c373e 4636 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4637 /* &table[12] is terminator */
e692ab53
NP
4638
4639 return table;
4640}
4641
be7002e6 4642static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4643{
4644 struct ctl_table *entry, *table;
4645 struct sched_domain *sd;
4646 int domain_num = 0, i;
4647 char buf[32];
4648
4649 for_each_domain(cpu, sd)
4650 domain_num++;
4651 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4652 if (table == NULL)
4653 return NULL;
e692ab53
NP
4654
4655 i = 0;
4656 for_each_domain(cpu, sd) {
4657 snprintf(buf, 32, "domain%d", i);
e692ab53 4658 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4659 entry->mode = 0555;
e692ab53
NP
4660 entry->child = sd_alloc_ctl_domain_table(sd);
4661 entry++;
4662 i++;
4663 }
4664 return table;
4665}
4666
4667static struct ctl_table_header *sd_sysctl_header;
6382bc90 4668static void register_sched_domain_sysctl(void)
e692ab53 4669{
6ad4c188 4670 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4671 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4672 char buf[32];
4673
7378547f
MM
4674 WARN_ON(sd_ctl_dir[0].child);
4675 sd_ctl_dir[0].child = entry;
4676
ad1cdc1d
MM
4677 if (entry == NULL)
4678 return;
4679
6ad4c188 4680 for_each_possible_cpu(i) {
e692ab53 4681 snprintf(buf, 32, "cpu%d", i);
e692ab53 4682 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4683 entry->mode = 0555;
e692ab53 4684 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4685 entry++;
e692ab53 4686 }
7378547f
MM
4687
4688 WARN_ON(sd_sysctl_header);
e692ab53
NP
4689 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4690}
6382bc90 4691
7378547f 4692/* may be called multiple times per register */
6382bc90
MM
4693static void unregister_sched_domain_sysctl(void)
4694{
7378547f
MM
4695 if (sd_sysctl_header)
4696 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4697 sd_sysctl_header = NULL;
7378547f
MM
4698 if (sd_ctl_dir[0].child)
4699 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4700}
e692ab53 4701#else
6382bc90
MM
4702static void register_sched_domain_sysctl(void)
4703{
4704}
4705static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4706{
4707}
4708#endif
4709
1f11eb6a
GH
4710static void set_rq_online(struct rq *rq)
4711{
4712 if (!rq->online) {
4713 const struct sched_class *class;
4714
c6c4927b 4715 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4716 rq->online = 1;
4717
4718 for_each_class(class) {
4719 if (class->rq_online)
4720 class->rq_online(rq);
4721 }
4722 }
4723}
4724
4725static void set_rq_offline(struct rq *rq)
4726{
4727 if (rq->online) {
4728 const struct sched_class *class;
4729
4730 for_each_class(class) {
4731 if (class->rq_offline)
4732 class->rq_offline(rq);
4733 }
4734
c6c4927b 4735 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4736 rq->online = 0;
4737 }
4738}
4739
1da177e4
LT
4740/*
4741 * migration_call - callback that gets triggered when a CPU is added.
4742 * Here we can start up the necessary migration thread for the new CPU.
4743 */
0db0628d 4744static int
48f24c4d 4745migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4746{
48f24c4d 4747 int cpu = (long)hcpu;
1da177e4 4748 unsigned long flags;
969c7921 4749 struct rq *rq = cpu_rq(cpu);
1da177e4 4750
48c5ccae 4751 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4752
1da177e4 4753 case CPU_UP_PREPARE:
a468d389 4754 rq->calc_load_update = calc_load_update;
1da177e4 4755 break;
48f24c4d 4756
1da177e4 4757 case CPU_ONLINE:
1f94ef59 4758 /* Update our root-domain */
05fa785c 4759 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4760 if (rq->rd) {
c6c4927b 4761 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4762
4763 set_rq_online(rq);
1f94ef59 4764 }
05fa785c 4765 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4766 break;
48f24c4d 4767
1da177e4 4768#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4769 case CPU_DYING:
317f3941 4770 sched_ttwu_pending();
57d885fe 4771 /* Update our root-domain */
05fa785c 4772 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4773 if (rq->rd) {
c6c4927b 4774 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4775 set_rq_offline(rq);
57d885fe 4776 }
48c5ccae
PZ
4777 migrate_tasks(cpu);
4778 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4779 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4780 break;
48c5ccae 4781
5d180232 4782 case CPU_DEAD:
f319da0c 4783 calc_load_migrate(rq);
57d885fe 4784 break;
1da177e4
LT
4785#endif
4786 }
49c022e6
PZ
4787
4788 update_max_interval();
4789
1da177e4
LT
4790 return NOTIFY_OK;
4791}
4792
f38b0820
PM
4793/*
4794 * Register at high priority so that task migration (migrate_all_tasks)
4795 * happens before everything else. This has to be lower priority than
cdd6c482 4796 * the notifier in the perf_event subsystem, though.
1da177e4 4797 */
0db0628d 4798static struct notifier_block migration_notifier = {
1da177e4 4799 .notifier_call = migration_call,
50a323b7 4800 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4801};
4802
0db0628d 4803static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4804 unsigned long action, void *hcpu)
4805{
4806 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4807 case CPU_STARTING:
3a101d05
TH
4808 case CPU_DOWN_FAILED:
4809 set_cpu_active((long)hcpu, true);
4810 return NOTIFY_OK;
4811 default:
4812 return NOTIFY_DONE;
4813 }
4814}
4815
0db0628d 4816static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4817 unsigned long action, void *hcpu)
4818{
4819 switch (action & ~CPU_TASKS_FROZEN) {
4820 case CPU_DOWN_PREPARE:
4821 set_cpu_active((long)hcpu, false);
4822 return NOTIFY_OK;
4823 default:
4824 return NOTIFY_DONE;
4825 }
4826}
4827
7babe8db 4828static int __init migration_init(void)
1da177e4
LT
4829{
4830 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4831 int err;
48f24c4d 4832
3a101d05 4833 /* Initialize migration for the boot CPU */
07dccf33
AM
4834 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4835 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4836 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4837 register_cpu_notifier(&migration_notifier);
7babe8db 4838
3a101d05
TH
4839 /* Register cpu active notifiers */
4840 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4841 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4842
a004cd42 4843 return 0;
1da177e4 4844}
7babe8db 4845early_initcall(migration_init);
1da177e4
LT
4846#endif
4847
4848#ifdef CONFIG_SMP
476f3534 4849
4cb98839
PZ
4850static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4851
3e9830dc 4852#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4853
d039ac60 4854static __read_mostly int sched_debug_enabled;
f6630114 4855
d039ac60 4856static int __init sched_debug_setup(char *str)
f6630114 4857{
d039ac60 4858 sched_debug_enabled = 1;
f6630114
MT
4859
4860 return 0;
4861}
d039ac60
PZ
4862early_param("sched_debug", sched_debug_setup);
4863
4864static inline bool sched_debug(void)
4865{
4866 return sched_debug_enabled;
4867}
f6630114 4868
7c16ec58 4869static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4870 struct cpumask *groupmask)
1da177e4 4871{
4dcf6aff 4872 struct sched_group *group = sd->groups;
434d53b0 4873 char str[256];
1da177e4 4874
968ea6d8 4875 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4876 cpumask_clear(groupmask);
4dcf6aff
IM
4877
4878 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4879
4880 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4881 printk("does not load-balance\n");
4dcf6aff 4882 if (sd->parent)
3df0fc5b
PZ
4883 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4884 " has parent");
4dcf6aff 4885 return -1;
41c7ce9a
NP
4886 }
4887
3df0fc5b 4888 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4889
758b2cdc 4890 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4891 printk(KERN_ERR "ERROR: domain->span does not contain "
4892 "CPU%d\n", cpu);
4dcf6aff 4893 }
758b2cdc 4894 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4895 printk(KERN_ERR "ERROR: domain->groups does not contain"
4896 " CPU%d\n", cpu);
4dcf6aff 4897 }
1da177e4 4898
4dcf6aff 4899 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4900 do {
4dcf6aff 4901 if (!group) {
3df0fc5b
PZ
4902 printk("\n");
4903 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4904 break;
4905 }
4906
c3decf0d
PZ
4907 /*
4908 * Even though we initialize ->power to something semi-sane,
4909 * we leave power_orig unset. This allows us to detect if
4910 * domain iteration is still funny without causing /0 traps.
4911 */
4912 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4913 printk(KERN_CONT "\n");
4914 printk(KERN_ERR "ERROR: domain->cpu_power not "
4915 "set\n");
4dcf6aff
IM
4916 break;
4917 }
1da177e4 4918
758b2cdc 4919 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4920 printk(KERN_CONT "\n");
4921 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4922 break;
4923 }
1da177e4 4924
cb83b629
PZ
4925 if (!(sd->flags & SD_OVERLAP) &&
4926 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4927 printk(KERN_CONT "\n");
4928 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4929 break;
4930 }
1da177e4 4931
758b2cdc 4932 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4933
968ea6d8 4934 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4935
3df0fc5b 4936 printk(KERN_CONT " %s", str);
9c3f75cb 4937 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4938 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4939 group->sgp->power);
381512cf 4940 }
1da177e4 4941
4dcf6aff
IM
4942 group = group->next;
4943 } while (group != sd->groups);
3df0fc5b 4944 printk(KERN_CONT "\n");
1da177e4 4945
758b2cdc 4946 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4947 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4948
758b2cdc
RR
4949 if (sd->parent &&
4950 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4951 printk(KERN_ERR "ERROR: parent span is not a superset "
4952 "of domain->span\n");
4dcf6aff
IM
4953 return 0;
4954}
1da177e4 4955
4dcf6aff
IM
4956static void sched_domain_debug(struct sched_domain *sd, int cpu)
4957{
4958 int level = 0;
1da177e4 4959
d039ac60 4960 if (!sched_debug_enabled)
f6630114
MT
4961 return;
4962
4dcf6aff
IM
4963 if (!sd) {
4964 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4965 return;
4966 }
1da177e4 4967
4dcf6aff
IM
4968 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4969
4970 for (;;) {
4cb98839 4971 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4972 break;
1da177e4
LT
4973 level++;
4974 sd = sd->parent;
33859f7f 4975 if (!sd)
4dcf6aff
IM
4976 break;
4977 }
1da177e4 4978}
6d6bc0ad 4979#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4980# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4981static inline bool sched_debug(void)
4982{
4983 return false;
4984}
6d6bc0ad 4985#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4986
1a20ff27 4987static int sd_degenerate(struct sched_domain *sd)
245af2c7 4988{
758b2cdc 4989 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4990 return 1;
4991
4992 /* Following flags need at least 2 groups */
4993 if (sd->flags & (SD_LOAD_BALANCE |
4994 SD_BALANCE_NEWIDLE |
4995 SD_BALANCE_FORK |
89c4710e
SS
4996 SD_BALANCE_EXEC |
4997 SD_SHARE_CPUPOWER |
4998 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4999 if (sd->groups != sd->groups->next)
5000 return 0;
5001 }
5002
5003 /* Following flags don't use groups */
c88d5910 5004 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5005 return 0;
5006
5007 return 1;
5008}
5009
48f24c4d
IM
5010static int
5011sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5012{
5013 unsigned long cflags = sd->flags, pflags = parent->flags;
5014
5015 if (sd_degenerate(parent))
5016 return 1;
5017
758b2cdc 5018 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5019 return 0;
5020
245af2c7
SS
5021 /* Flags needing groups don't count if only 1 group in parent */
5022 if (parent->groups == parent->groups->next) {
5023 pflags &= ~(SD_LOAD_BALANCE |
5024 SD_BALANCE_NEWIDLE |
5025 SD_BALANCE_FORK |
89c4710e
SS
5026 SD_BALANCE_EXEC |
5027 SD_SHARE_CPUPOWER |
10866e62
PZ
5028 SD_SHARE_PKG_RESOURCES |
5029 SD_PREFER_SIBLING);
5436499e
KC
5030 if (nr_node_ids == 1)
5031 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5032 }
5033 if (~cflags & pflags)
5034 return 0;
5035
5036 return 1;
5037}
5038
dce840a0 5039static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5040{
dce840a0 5041 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5042
68e74568 5043 cpupri_cleanup(&rd->cpupri);
1baca4ce 5044 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5045 free_cpumask_var(rd->rto_mask);
5046 free_cpumask_var(rd->online);
5047 free_cpumask_var(rd->span);
5048 kfree(rd);
5049}
5050
57d885fe
GH
5051static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5052{
a0490fa3 5053 struct root_domain *old_rd = NULL;
57d885fe 5054 unsigned long flags;
57d885fe 5055
05fa785c 5056 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5057
5058 if (rq->rd) {
a0490fa3 5059 old_rd = rq->rd;
57d885fe 5060
c6c4927b 5061 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5062 set_rq_offline(rq);
57d885fe 5063
c6c4927b 5064 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5065
a0490fa3 5066 /*
0515973f 5067 * If we dont want to free the old_rd yet then
a0490fa3
IM
5068 * set old_rd to NULL to skip the freeing later
5069 * in this function:
5070 */
5071 if (!atomic_dec_and_test(&old_rd->refcount))
5072 old_rd = NULL;
57d885fe
GH
5073 }
5074
5075 atomic_inc(&rd->refcount);
5076 rq->rd = rd;
5077
c6c4927b 5078 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5079 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5080 set_rq_online(rq);
57d885fe 5081
05fa785c 5082 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5083
5084 if (old_rd)
dce840a0 5085 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5086}
5087
68c38fc3 5088static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5089{
5090 memset(rd, 0, sizeof(*rd));
5091
68c38fc3 5092 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5093 goto out;
68c38fc3 5094 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5095 goto free_span;
1baca4ce 5096 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5097 goto free_online;
1baca4ce
JL
5098 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5099 goto free_dlo_mask;
6e0534f2 5100
68c38fc3 5101 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5102 goto free_rto_mask;
c6c4927b 5103 return 0;
6e0534f2 5104
68e74568
RR
5105free_rto_mask:
5106 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5107free_dlo_mask:
5108 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5109free_online:
5110 free_cpumask_var(rd->online);
5111free_span:
5112 free_cpumask_var(rd->span);
0c910d28 5113out:
c6c4927b 5114 return -ENOMEM;
57d885fe
GH
5115}
5116
029632fb
PZ
5117/*
5118 * By default the system creates a single root-domain with all cpus as
5119 * members (mimicking the global state we have today).
5120 */
5121struct root_domain def_root_domain;
5122
57d885fe
GH
5123static void init_defrootdomain(void)
5124{
68c38fc3 5125 init_rootdomain(&def_root_domain);
c6c4927b 5126
57d885fe
GH
5127 atomic_set(&def_root_domain.refcount, 1);
5128}
5129
dc938520 5130static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5131{
5132 struct root_domain *rd;
5133
5134 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5135 if (!rd)
5136 return NULL;
5137
68c38fc3 5138 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5139 kfree(rd);
5140 return NULL;
5141 }
57d885fe
GH
5142
5143 return rd;
5144}
5145
e3589f6c
PZ
5146static void free_sched_groups(struct sched_group *sg, int free_sgp)
5147{
5148 struct sched_group *tmp, *first;
5149
5150 if (!sg)
5151 return;
5152
5153 first = sg;
5154 do {
5155 tmp = sg->next;
5156
5157 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5158 kfree(sg->sgp);
5159
5160 kfree(sg);
5161 sg = tmp;
5162 } while (sg != first);
5163}
5164
dce840a0
PZ
5165static void free_sched_domain(struct rcu_head *rcu)
5166{
5167 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5168
5169 /*
5170 * If its an overlapping domain it has private groups, iterate and
5171 * nuke them all.
5172 */
5173 if (sd->flags & SD_OVERLAP) {
5174 free_sched_groups(sd->groups, 1);
5175 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5176 kfree(sd->groups->sgp);
dce840a0 5177 kfree(sd->groups);
9c3f75cb 5178 }
dce840a0
PZ
5179 kfree(sd);
5180}
5181
5182static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5183{
5184 call_rcu(&sd->rcu, free_sched_domain);
5185}
5186
5187static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5188{
5189 for (; sd; sd = sd->parent)
5190 destroy_sched_domain(sd, cpu);
5191}
5192
518cd623
PZ
5193/*
5194 * Keep a special pointer to the highest sched_domain that has
5195 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5196 * allows us to avoid some pointer chasing select_idle_sibling().
5197 *
5198 * Also keep a unique ID per domain (we use the first cpu number in
5199 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5200 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5201 */
5202DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5203DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5204DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5205DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5206DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5207DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5208
5209static void update_top_cache_domain(int cpu)
5210{
5211 struct sched_domain *sd;
5d4cf996 5212 struct sched_domain *busy_sd = NULL;
518cd623 5213 int id = cpu;
7d9ffa89 5214 int size = 1;
518cd623
PZ
5215
5216 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5217 if (sd) {
518cd623 5218 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5219 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5220 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5221 }
5d4cf996 5222 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5223
5224 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5225 per_cpu(sd_llc_size, cpu) = size;
518cd623 5226 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5227
5228 sd = lowest_flag_domain(cpu, SD_NUMA);
5229 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5230
5231 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5232 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5233}
5234
1da177e4 5235/*
0eab9146 5236 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5237 * hold the hotplug lock.
5238 */
0eab9146
IM
5239static void
5240cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5241{
70b97a7f 5242 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5243 struct sched_domain *tmp;
5244
5245 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5246 for (tmp = sd; tmp; ) {
245af2c7
SS
5247 struct sched_domain *parent = tmp->parent;
5248 if (!parent)
5249 break;
f29c9b1c 5250
1a848870 5251 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5252 tmp->parent = parent->parent;
1a848870
SS
5253 if (parent->parent)
5254 parent->parent->child = tmp;
10866e62
PZ
5255 /*
5256 * Transfer SD_PREFER_SIBLING down in case of a
5257 * degenerate parent; the spans match for this
5258 * so the property transfers.
5259 */
5260 if (parent->flags & SD_PREFER_SIBLING)
5261 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5262 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5263 } else
5264 tmp = tmp->parent;
245af2c7
SS
5265 }
5266
1a848870 5267 if (sd && sd_degenerate(sd)) {
dce840a0 5268 tmp = sd;
245af2c7 5269 sd = sd->parent;
dce840a0 5270 destroy_sched_domain(tmp, cpu);
1a848870
SS
5271 if (sd)
5272 sd->child = NULL;
5273 }
1da177e4 5274
4cb98839 5275 sched_domain_debug(sd, cpu);
1da177e4 5276
57d885fe 5277 rq_attach_root(rq, rd);
dce840a0 5278 tmp = rq->sd;
674311d5 5279 rcu_assign_pointer(rq->sd, sd);
dce840a0 5280 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5281
5282 update_top_cache_domain(cpu);
1da177e4
LT
5283}
5284
5285/* cpus with isolated domains */
dcc30a35 5286static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5287
5288/* Setup the mask of cpus configured for isolated domains */
5289static int __init isolated_cpu_setup(char *str)
5290{
bdddd296 5291 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5292 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5293 return 1;
5294}
5295
8927f494 5296__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5297
d3081f52
PZ
5298static const struct cpumask *cpu_cpu_mask(int cpu)
5299{
5300 return cpumask_of_node(cpu_to_node(cpu));
5301}
5302
dce840a0
PZ
5303struct sd_data {
5304 struct sched_domain **__percpu sd;
5305 struct sched_group **__percpu sg;
9c3f75cb 5306 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5307};
5308
49a02c51 5309struct s_data {
21d42ccf 5310 struct sched_domain ** __percpu sd;
49a02c51
AH
5311 struct root_domain *rd;
5312};
5313
2109b99e 5314enum s_alloc {
2109b99e 5315 sa_rootdomain,
21d42ccf 5316 sa_sd,
dce840a0 5317 sa_sd_storage,
2109b99e
AH
5318 sa_none,
5319};
5320
54ab4ff4
PZ
5321struct sched_domain_topology_level;
5322
5323typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5324typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5325
e3589f6c
PZ
5326#define SDTL_OVERLAP 0x01
5327
eb7a74e6 5328struct sched_domain_topology_level {
2c402dc3
PZ
5329 sched_domain_init_f init;
5330 sched_domain_mask_f mask;
e3589f6c 5331 int flags;
cb83b629 5332 int numa_level;
54ab4ff4 5333 struct sd_data data;
eb7a74e6
PZ
5334};
5335
c1174876
PZ
5336/*
5337 * Build an iteration mask that can exclude certain CPUs from the upwards
5338 * domain traversal.
5339 *
5340 * Asymmetric node setups can result in situations where the domain tree is of
5341 * unequal depth, make sure to skip domains that already cover the entire
5342 * range.
5343 *
5344 * In that case build_sched_domains() will have terminated the iteration early
5345 * and our sibling sd spans will be empty. Domains should always include the
5346 * cpu they're built on, so check that.
5347 *
5348 */
5349static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5350{
5351 const struct cpumask *span = sched_domain_span(sd);
5352 struct sd_data *sdd = sd->private;
5353 struct sched_domain *sibling;
5354 int i;
5355
5356 for_each_cpu(i, span) {
5357 sibling = *per_cpu_ptr(sdd->sd, i);
5358 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5359 continue;
5360
5361 cpumask_set_cpu(i, sched_group_mask(sg));
5362 }
5363}
5364
5365/*
5366 * Return the canonical balance cpu for this group, this is the first cpu
5367 * of this group that's also in the iteration mask.
5368 */
5369int group_balance_cpu(struct sched_group *sg)
5370{
5371 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5372}
5373
e3589f6c
PZ
5374static int
5375build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5376{
5377 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5378 const struct cpumask *span = sched_domain_span(sd);
5379 struct cpumask *covered = sched_domains_tmpmask;
5380 struct sd_data *sdd = sd->private;
5381 struct sched_domain *child;
5382 int i;
5383
5384 cpumask_clear(covered);
5385
5386 for_each_cpu(i, span) {
5387 struct cpumask *sg_span;
5388
5389 if (cpumask_test_cpu(i, covered))
5390 continue;
5391
c1174876
PZ
5392 child = *per_cpu_ptr(sdd->sd, i);
5393
5394 /* See the comment near build_group_mask(). */
5395 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5396 continue;
5397
e3589f6c 5398 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5399 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5400
5401 if (!sg)
5402 goto fail;
5403
5404 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5405 if (child->child) {
5406 child = child->child;
5407 cpumask_copy(sg_span, sched_domain_span(child));
5408 } else
5409 cpumask_set_cpu(i, sg_span);
5410
5411 cpumask_or(covered, covered, sg_span);
5412
74a5ce20 5413 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5414 if (atomic_inc_return(&sg->sgp->ref) == 1)
5415 build_group_mask(sd, sg);
5416
c3decf0d
PZ
5417 /*
5418 * Initialize sgp->power such that even if we mess up the
5419 * domains and no possible iteration will get us here, we won't
5420 * die on a /0 trap.
5421 */
5422 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5423 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5424
c1174876
PZ
5425 /*
5426 * Make sure the first group of this domain contains the
5427 * canonical balance cpu. Otherwise the sched_domain iteration
5428 * breaks. See update_sg_lb_stats().
5429 */
74a5ce20 5430 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5431 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5432 groups = sg;
5433
5434 if (!first)
5435 first = sg;
5436 if (last)
5437 last->next = sg;
5438 last = sg;
5439 last->next = first;
5440 }
5441 sd->groups = groups;
5442
5443 return 0;
5444
5445fail:
5446 free_sched_groups(first, 0);
5447
5448 return -ENOMEM;
5449}
5450
dce840a0 5451static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5452{
dce840a0
PZ
5453 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5454 struct sched_domain *child = sd->child;
1da177e4 5455
dce840a0
PZ
5456 if (child)
5457 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5458
9c3f75cb 5459 if (sg) {
dce840a0 5460 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5461 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5462 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5463 }
dce840a0
PZ
5464
5465 return cpu;
1e9f28fa 5466}
1e9f28fa 5467
01a08546 5468/*
dce840a0
PZ
5469 * build_sched_groups will build a circular linked list of the groups
5470 * covered by the given span, and will set each group's ->cpumask correctly,
5471 * and ->cpu_power to 0.
e3589f6c
PZ
5472 *
5473 * Assumes the sched_domain tree is fully constructed
01a08546 5474 */
e3589f6c
PZ
5475static int
5476build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5477{
dce840a0
PZ
5478 struct sched_group *first = NULL, *last = NULL;
5479 struct sd_data *sdd = sd->private;
5480 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5481 struct cpumask *covered;
dce840a0 5482 int i;
9c1cfda2 5483
e3589f6c
PZ
5484 get_group(cpu, sdd, &sd->groups);
5485 atomic_inc(&sd->groups->ref);
5486
0936629f 5487 if (cpu != cpumask_first(span))
e3589f6c
PZ
5488 return 0;
5489
f96225fd
PZ
5490 lockdep_assert_held(&sched_domains_mutex);
5491 covered = sched_domains_tmpmask;
5492
dce840a0 5493 cpumask_clear(covered);
6711cab4 5494
dce840a0
PZ
5495 for_each_cpu(i, span) {
5496 struct sched_group *sg;
cd08e923 5497 int group, j;
6711cab4 5498
dce840a0
PZ
5499 if (cpumask_test_cpu(i, covered))
5500 continue;
6711cab4 5501
cd08e923 5502 group = get_group(i, sdd, &sg);
dce840a0 5503 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5504 sg->sgp->power = 0;
c1174876 5505 cpumask_setall(sched_group_mask(sg));
0601a88d 5506
dce840a0
PZ
5507 for_each_cpu(j, span) {
5508 if (get_group(j, sdd, NULL) != group)
5509 continue;
0601a88d 5510
dce840a0
PZ
5511 cpumask_set_cpu(j, covered);
5512 cpumask_set_cpu(j, sched_group_cpus(sg));
5513 }
0601a88d 5514
dce840a0
PZ
5515 if (!first)
5516 first = sg;
5517 if (last)
5518 last->next = sg;
5519 last = sg;
5520 }
5521 last->next = first;
e3589f6c
PZ
5522
5523 return 0;
0601a88d 5524}
51888ca2 5525
89c4710e
SS
5526/*
5527 * Initialize sched groups cpu_power.
5528 *
5529 * cpu_power indicates the capacity of sched group, which is used while
5530 * distributing the load between different sched groups in a sched domain.
5531 * Typically cpu_power for all the groups in a sched domain will be same unless
5532 * there are asymmetries in the topology. If there are asymmetries, group
5533 * having more cpu_power will pickup more load compared to the group having
5534 * less cpu_power.
89c4710e
SS
5535 */
5536static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5537{
e3589f6c 5538 struct sched_group *sg = sd->groups;
89c4710e 5539
94c95ba6 5540 WARN_ON(!sg);
e3589f6c
PZ
5541
5542 do {
5543 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5544 sg = sg->next;
5545 } while (sg != sd->groups);
89c4710e 5546
c1174876 5547 if (cpu != group_balance_cpu(sg))
e3589f6c 5548 return;
aae6d3dd 5549
d274cb30 5550 update_group_power(sd, cpu);
69e1e811 5551 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5552}
5553
029632fb
PZ
5554int __weak arch_sd_sibling_asym_packing(void)
5555{
5556 return 0*SD_ASYM_PACKING;
89c4710e
SS
5557}
5558
7c16ec58
MT
5559/*
5560 * Initializers for schedule domains
5561 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5562 */
5563
a5d8c348
IM
5564#ifdef CONFIG_SCHED_DEBUG
5565# define SD_INIT_NAME(sd, type) sd->name = #type
5566#else
5567# define SD_INIT_NAME(sd, type) do { } while (0)
5568#endif
5569
54ab4ff4
PZ
5570#define SD_INIT_FUNC(type) \
5571static noinline struct sched_domain * \
5572sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5573{ \
5574 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5575 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5576 SD_INIT_NAME(sd, type); \
5577 sd->private = &tl->data; \
5578 return sd; \
7c16ec58
MT
5579}
5580
5581SD_INIT_FUNC(CPU)
7c16ec58
MT
5582#ifdef CONFIG_SCHED_SMT
5583 SD_INIT_FUNC(SIBLING)
5584#endif
5585#ifdef CONFIG_SCHED_MC
5586 SD_INIT_FUNC(MC)
5587#endif
01a08546
HC
5588#ifdef CONFIG_SCHED_BOOK
5589 SD_INIT_FUNC(BOOK)
5590#endif
7c16ec58 5591
1d3504fc 5592static int default_relax_domain_level = -1;
60495e77 5593int sched_domain_level_max;
1d3504fc
HS
5594
5595static int __init setup_relax_domain_level(char *str)
5596{
a841f8ce
DS
5597 if (kstrtoint(str, 0, &default_relax_domain_level))
5598 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5599
1d3504fc
HS
5600 return 1;
5601}
5602__setup("relax_domain_level=", setup_relax_domain_level);
5603
5604static void set_domain_attribute(struct sched_domain *sd,
5605 struct sched_domain_attr *attr)
5606{
5607 int request;
5608
5609 if (!attr || attr->relax_domain_level < 0) {
5610 if (default_relax_domain_level < 0)
5611 return;
5612 else
5613 request = default_relax_domain_level;
5614 } else
5615 request = attr->relax_domain_level;
5616 if (request < sd->level) {
5617 /* turn off idle balance on this domain */
c88d5910 5618 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5619 } else {
5620 /* turn on idle balance on this domain */
c88d5910 5621 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5622 }
5623}
5624
54ab4ff4
PZ
5625static void __sdt_free(const struct cpumask *cpu_map);
5626static int __sdt_alloc(const struct cpumask *cpu_map);
5627
2109b99e
AH
5628static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5629 const struct cpumask *cpu_map)
5630{
5631 switch (what) {
2109b99e 5632 case sa_rootdomain:
822ff793
PZ
5633 if (!atomic_read(&d->rd->refcount))
5634 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5635 case sa_sd:
5636 free_percpu(d->sd); /* fall through */
dce840a0 5637 case sa_sd_storage:
54ab4ff4 5638 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5639 case sa_none:
5640 break;
5641 }
5642}
3404c8d9 5643
2109b99e
AH
5644static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5645 const struct cpumask *cpu_map)
5646{
dce840a0
PZ
5647 memset(d, 0, sizeof(*d));
5648
54ab4ff4
PZ
5649 if (__sdt_alloc(cpu_map))
5650 return sa_sd_storage;
dce840a0
PZ
5651 d->sd = alloc_percpu(struct sched_domain *);
5652 if (!d->sd)
5653 return sa_sd_storage;
2109b99e 5654 d->rd = alloc_rootdomain();
dce840a0 5655 if (!d->rd)
21d42ccf 5656 return sa_sd;
2109b99e
AH
5657 return sa_rootdomain;
5658}
57d885fe 5659
dce840a0
PZ
5660/*
5661 * NULL the sd_data elements we've used to build the sched_domain and
5662 * sched_group structure so that the subsequent __free_domain_allocs()
5663 * will not free the data we're using.
5664 */
5665static void claim_allocations(int cpu, struct sched_domain *sd)
5666{
5667 struct sd_data *sdd = sd->private;
dce840a0
PZ
5668
5669 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5670 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5671
e3589f6c 5672 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5673 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5674
5675 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5676 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5677}
5678
2c402dc3
PZ
5679#ifdef CONFIG_SCHED_SMT
5680static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5681{
2c402dc3 5682 return topology_thread_cpumask(cpu);
3bd65a80 5683}
2c402dc3 5684#endif
7f4588f3 5685
d069b916
PZ
5686/*
5687 * Topology list, bottom-up.
5688 */
2c402dc3 5689static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5690#ifdef CONFIG_SCHED_SMT
5691 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5692#endif
1e9f28fa 5693#ifdef CONFIG_SCHED_MC
2c402dc3 5694 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5695#endif
d069b916
PZ
5696#ifdef CONFIG_SCHED_BOOK
5697 { sd_init_BOOK, cpu_book_mask, },
5698#endif
5699 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5700 { NULL, },
5701};
5702
5703static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5704
27723a68
VK
5705#define for_each_sd_topology(tl) \
5706 for (tl = sched_domain_topology; tl->init; tl++)
5707
cb83b629
PZ
5708#ifdef CONFIG_NUMA
5709
5710static int sched_domains_numa_levels;
cb83b629
PZ
5711static int *sched_domains_numa_distance;
5712static struct cpumask ***sched_domains_numa_masks;
5713static int sched_domains_curr_level;
5714
cb83b629
PZ
5715static inline int sd_local_flags(int level)
5716{
10717dcd 5717 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5718 return 0;
5719
5720 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5721}
5722
5723static struct sched_domain *
5724sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5725{
5726 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5727 int level = tl->numa_level;
5728 int sd_weight = cpumask_weight(
5729 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5730
5731 *sd = (struct sched_domain){
5732 .min_interval = sd_weight,
5733 .max_interval = 2*sd_weight,
5734 .busy_factor = 32,
870a0bb5 5735 .imbalance_pct = 125,
cb83b629
PZ
5736 .cache_nice_tries = 2,
5737 .busy_idx = 3,
5738 .idle_idx = 2,
5739 .newidle_idx = 0,
5740 .wake_idx = 0,
5741 .forkexec_idx = 0,
5742
5743 .flags = 1*SD_LOAD_BALANCE
5744 | 1*SD_BALANCE_NEWIDLE
5745 | 0*SD_BALANCE_EXEC
5746 | 0*SD_BALANCE_FORK
5747 | 0*SD_BALANCE_WAKE
5748 | 0*SD_WAKE_AFFINE
cb83b629 5749 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5750 | 0*SD_SHARE_PKG_RESOURCES
5751 | 1*SD_SERIALIZE
5752 | 0*SD_PREFER_SIBLING
3a7053b3 5753 | 1*SD_NUMA
cb83b629
PZ
5754 | sd_local_flags(level)
5755 ,
5756 .last_balance = jiffies,
5757 .balance_interval = sd_weight,
5758 };
5759 SD_INIT_NAME(sd, NUMA);
5760 sd->private = &tl->data;
5761
5762 /*
5763 * Ugly hack to pass state to sd_numa_mask()...
5764 */
5765 sched_domains_curr_level = tl->numa_level;
5766
5767 return sd;
5768}
5769
5770static const struct cpumask *sd_numa_mask(int cpu)
5771{
5772 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5773}
5774
d039ac60
PZ
5775static void sched_numa_warn(const char *str)
5776{
5777 static int done = false;
5778 int i,j;
5779
5780 if (done)
5781 return;
5782
5783 done = true;
5784
5785 printk(KERN_WARNING "ERROR: %s\n\n", str);
5786
5787 for (i = 0; i < nr_node_ids; i++) {
5788 printk(KERN_WARNING " ");
5789 for (j = 0; j < nr_node_ids; j++)
5790 printk(KERN_CONT "%02d ", node_distance(i,j));
5791 printk(KERN_CONT "\n");
5792 }
5793 printk(KERN_WARNING "\n");
5794}
5795
5796static bool find_numa_distance(int distance)
5797{
5798 int i;
5799
5800 if (distance == node_distance(0, 0))
5801 return true;
5802
5803 for (i = 0; i < sched_domains_numa_levels; i++) {
5804 if (sched_domains_numa_distance[i] == distance)
5805 return true;
5806 }
5807
5808 return false;
5809}
5810
cb83b629
PZ
5811static void sched_init_numa(void)
5812{
5813 int next_distance, curr_distance = node_distance(0, 0);
5814 struct sched_domain_topology_level *tl;
5815 int level = 0;
5816 int i, j, k;
5817
cb83b629
PZ
5818 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5819 if (!sched_domains_numa_distance)
5820 return;
5821
5822 /*
5823 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5824 * unique distances in the node_distance() table.
5825 *
5826 * Assumes node_distance(0,j) includes all distances in
5827 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5828 */
5829 next_distance = curr_distance;
5830 for (i = 0; i < nr_node_ids; i++) {
5831 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5832 for (k = 0; k < nr_node_ids; k++) {
5833 int distance = node_distance(i, k);
5834
5835 if (distance > curr_distance &&
5836 (distance < next_distance ||
5837 next_distance == curr_distance))
5838 next_distance = distance;
5839
5840 /*
5841 * While not a strong assumption it would be nice to know
5842 * about cases where if node A is connected to B, B is not
5843 * equally connected to A.
5844 */
5845 if (sched_debug() && node_distance(k, i) != distance)
5846 sched_numa_warn("Node-distance not symmetric");
5847
5848 if (sched_debug() && i && !find_numa_distance(distance))
5849 sched_numa_warn("Node-0 not representative");
5850 }
5851 if (next_distance != curr_distance) {
5852 sched_domains_numa_distance[level++] = next_distance;
5853 sched_domains_numa_levels = level;
5854 curr_distance = next_distance;
5855 } else break;
cb83b629 5856 }
d039ac60
PZ
5857
5858 /*
5859 * In case of sched_debug() we verify the above assumption.
5860 */
5861 if (!sched_debug())
5862 break;
cb83b629
PZ
5863 }
5864 /*
5865 * 'level' contains the number of unique distances, excluding the
5866 * identity distance node_distance(i,i).
5867 *
28b4a521 5868 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5869 * numbers.
5870 */
5871
5f7865f3
TC
5872 /*
5873 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5874 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5875 * the array will contain less then 'level' members. This could be
5876 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5877 * in other functions.
5878 *
5879 * We reset it to 'level' at the end of this function.
5880 */
5881 sched_domains_numa_levels = 0;
5882
cb83b629
PZ
5883 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5884 if (!sched_domains_numa_masks)
5885 return;
5886
5887 /*
5888 * Now for each level, construct a mask per node which contains all
5889 * cpus of nodes that are that many hops away from us.
5890 */
5891 for (i = 0; i < level; i++) {
5892 sched_domains_numa_masks[i] =
5893 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5894 if (!sched_domains_numa_masks[i])
5895 return;
5896
5897 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5898 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5899 if (!mask)
5900 return;
5901
5902 sched_domains_numa_masks[i][j] = mask;
5903
5904 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5905 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5906 continue;
5907
5908 cpumask_or(mask, mask, cpumask_of_node(k));
5909 }
5910 }
5911 }
5912
5913 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5914 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5915 if (!tl)
5916 return;
5917
5918 /*
5919 * Copy the default topology bits..
5920 */
5921 for (i = 0; default_topology[i].init; i++)
5922 tl[i] = default_topology[i];
5923
5924 /*
5925 * .. and append 'j' levels of NUMA goodness.
5926 */
5927 for (j = 0; j < level; i++, j++) {
5928 tl[i] = (struct sched_domain_topology_level){
5929 .init = sd_numa_init,
5930 .mask = sd_numa_mask,
5931 .flags = SDTL_OVERLAP,
5932 .numa_level = j,
5933 };
5934 }
5935
5936 sched_domain_topology = tl;
5f7865f3
TC
5937
5938 sched_domains_numa_levels = level;
cb83b629 5939}
301a5cba
TC
5940
5941static void sched_domains_numa_masks_set(int cpu)
5942{
5943 int i, j;
5944 int node = cpu_to_node(cpu);
5945
5946 for (i = 0; i < sched_domains_numa_levels; i++) {
5947 for (j = 0; j < nr_node_ids; j++) {
5948 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5949 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5950 }
5951 }
5952}
5953
5954static void sched_domains_numa_masks_clear(int cpu)
5955{
5956 int i, j;
5957 for (i = 0; i < sched_domains_numa_levels; i++) {
5958 for (j = 0; j < nr_node_ids; j++)
5959 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5960 }
5961}
5962
5963/*
5964 * Update sched_domains_numa_masks[level][node] array when new cpus
5965 * are onlined.
5966 */
5967static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5968 unsigned long action,
5969 void *hcpu)
5970{
5971 int cpu = (long)hcpu;
5972
5973 switch (action & ~CPU_TASKS_FROZEN) {
5974 case CPU_ONLINE:
5975 sched_domains_numa_masks_set(cpu);
5976 break;
5977
5978 case CPU_DEAD:
5979 sched_domains_numa_masks_clear(cpu);
5980 break;
5981
5982 default:
5983 return NOTIFY_DONE;
5984 }
5985
5986 return NOTIFY_OK;
cb83b629
PZ
5987}
5988#else
5989static inline void sched_init_numa(void)
5990{
5991}
301a5cba
TC
5992
5993static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5994 unsigned long action,
5995 void *hcpu)
5996{
5997 return 0;
5998}
cb83b629
PZ
5999#endif /* CONFIG_NUMA */
6000
54ab4ff4
PZ
6001static int __sdt_alloc(const struct cpumask *cpu_map)
6002{
6003 struct sched_domain_topology_level *tl;
6004 int j;
6005
27723a68 6006 for_each_sd_topology(tl) {
54ab4ff4
PZ
6007 struct sd_data *sdd = &tl->data;
6008
6009 sdd->sd = alloc_percpu(struct sched_domain *);
6010 if (!sdd->sd)
6011 return -ENOMEM;
6012
6013 sdd->sg = alloc_percpu(struct sched_group *);
6014 if (!sdd->sg)
6015 return -ENOMEM;
6016
9c3f75cb
PZ
6017 sdd->sgp = alloc_percpu(struct sched_group_power *);
6018 if (!sdd->sgp)
6019 return -ENOMEM;
6020
54ab4ff4
PZ
6021 for_each_cpu(j, cpu_map) {
6022 struct sched_domain *sd;
6023 struct sched_group *sg;
9c3f75cb 6024 struct sched_group_power *sgp;
54ab4ff4
PZ
6025
6026 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6027 GFP_KERNEL, cpu_to_node(j));
6028 if (!sd)
6029 return -ENOMEM;
6030
6031 *per_cpu_ptr(sdd->sd, j) = sd;
6032
6033 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6034 GFP_KERNEL, cpu_to_node(j));
6035 if (!sg)
6036 return -ENOMEM;
6037
30b4e9eb
IM
6038 sg->next = sg;
6039
54ab4ff4 6040 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6041
c1174876 6042 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6043 GFP_KERNEL, cpu_to_node(j));
6044 if (!sgp)
6045 return -ENOMEM;
6046
6047 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6048 }
6049 }
6050
6051 return 0;
6052}
6053
6054static void __sdt_free(const struct cpumask *cpu_map)
6055{
6056 struct sched_domain_topology_level *tl;
6057 int j;
6058
27723a68 6059 for_each_sd_topology(tl) {
54ab4ff4
PZ
6060 struct sd_data *sdd = &tl->data;
6061
6062 for_each_cpu(j, cpu_map) {
fb2cf2c6 6063 struct sched_domain *sd;
6064
6065 if (sdd->sd) {
6066 sd = *per_cpu_ptr(sdd->sd, j);
6067 if (sd && (sd->flags & SD_OVERLAP))
6068 free_sched_groups(sd->groups, 0);
6069 kfree(*per_cpu_ptr(sdd->sd, j));
6070 }
6071
6072 if (sdd->sg)
6073 kfree(*per_cpu_ptr(sdd->sg, j));
6074 if (sdd->sgp)
6075 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6076 }
6077 free_percpu(sdd->sd);
fb2cf2c6 6078 sdd->sd = NULL;
54ab4ff4 6079 free_percpu(sdd->sg);
fb2cf2c6 6080 sdd->sg = NULL;
9c3f75cb 6081 free_percpu(sdd->sgp);
fb2cf2c6 6082 sdd->sgp = NULL;
54ab4ff4
PZ
6083 }
6084}
6085
2c402dc3 6086struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6087 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6088 struct sched_domain *child, int cpu)
2c402dc3 6089{
54ab4ff4 6090 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6091 if (!sd)
d069b916 6092 return child;
2c402dc3 6093
2c402dc3 6094 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6095 if (child) {
6096 sd->level = child->level + 1;
6097 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6098 child->parent = sd;
c75e0128 6099 sd->child = child;
60495e77 6100 }
a841f8ce 6101 set_domain_attribute(sd, attr);
2c402dc3
PZ
6102
6103 return sd;
6104}
6105
2109b99e
AH
6106/*
6107 * Build sched domains for a given set of cpus and attach the sched domains
6108 * to the individual cpus
6109 */
dce840a0
PZ
6110static int build_sched_domains(const struct cpumask *cpu_map,
6111 struct sched_domain_attr *attr)
2109b99e 6112{
1c632169 6113 enum s_alloc alloc_state;
dce840a0 6114 struct sched_domain *sd;
2109b99e 6115 struct s_data d;
822ff793 6116 int i, ret = -ENOMEM;
9c1cfda2 6117
2109b99e
AH
6118 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6119 if (alloc_state != sa_rootdomain)
6120 goto error;
9c1cfda2 6121
dce840a0 6122 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6123 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6124 struct sched_domain_topology_level *tl;
6125
3bd65a80 6126 sd = NULL;
27723a68 6127 for_each_sd_topology(tl) {
4a850cbe 6128 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6129 if (tl == sched_domain_topology)
6130 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6131 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6132 sd->flags |= SD_OVERLAP;
d110235d
PZ
6133 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6134 break;
e3589f6c 6135 }
dce840a0
PZ
6136 }
6137
6138 /* Build the groups for the domains */
6139 for_each_cpu(i, cpu_map) {
6140 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6141 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6142 if (sd->flags & SD_OVERLAP) {
6143 if (build_overlap_sched_groups(sd, i))
6144 goto error;
6145 } else {
6146 if (build_sched_groups(sd, i))
6147 goto error;
6148 }
1cf51902 6149 }
a06dadbe 6150 }
9c1cfda2 6151
1da177e4 6152 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6153 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6154 if (!cpumask_test_cpu(i, cpu_map))
6155 continue;
9c1cfda2 6156
dce840a0
PZ
6157 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6158 claim_allocations(i, sd);
cd4ea6ae 6159 init_sched_groups_power(i, sd);
dce840a0 6160 }
f712c0c7 6161 }
9c1cfda2 6162
1da177e4 6163 /* Attach the domains */
dce840a0 6164 rcu_read_lock();
abcd083a 6165 for_each_cpu(i, cpu_map) {
21d42ccf 6166 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6167 cpu_attach_domain(sd, d.rd, i);
1da177e4 6168 }
dce840a0 6169 rcu_read_unlock();
51888ca2 6170
822ff793 6171 ret = 0;
51888ca2 6172error:
2109b99e 6173 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6174 return ret;
1da177e4 6175}
029190c5 6176
acc3f5d7 6177static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6178static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6179static struct sched_domain_attr *dattr_cur;
6180 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6181
6182/*
6183 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6184 * cpumask) fails, then fallback to a single sched domain,
6185 * as determined by the single cpumask fallback_doms.
029190c5 6186 */
4212823f 6187static cpumask_var_t fallback_doms;
029190c5 6188
ee79d1bd
HC
6189/*
6190 * arch_update_cpu_topology lets virtualized architectures update the
6191 * cpu core maps. It is supposed to return 1 if the topology changed
6192 * or 0 if it stayed the same.
6193 */
6194int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6195{
ee79d1bd 6196 return 0;
22e52b07
HC
6197}
6198
acc3f5d7
RR
6199cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6200{
6201 int i;
6202 cpumask_var_t *doms;
6203
6204 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6205 if (!doms)
6206 return NULL;
6207 for (i = 0; i < ndoms; i++) {
6208 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6209 free_sched_domains(doms, i);
6210 return NULL;
6211 }
6212 }
6213 return doms;
6214}
6215
6216void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6217{
6218 unsigned int i;
6219 for (i = 0; i < ndoms; i++)
6220 free_cpumask_var(doms[i]);
6221 kfree(doms);
6222}
6223
1a20ff27 6224/*
41a2d6cf 6225 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6226 * For now this just excludes isolated cpus, but could be used to
6227 * exclude other special cases in the future.
1a20ff27 6228 */
c4a8849a 6229static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6230{
7378547f
MM
6231 int err;
6232
22e52b07 6233 arch_update_cpu_topology();
029190c5 6234 ndoms_cur = 1;
acc3f5d7 6235 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6236 if (!doms_cur)
acc3f5d7
RR
6237 doms_cur = &fallback_doms;
6238 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6239 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6240 register_sched_domain_sysctl();
7378547f
MM
6241
6242 return err;
1a20ff27
DG
6243}
6244
1a20ff27
DG
6245/*
6246 * Detach sched domains from a group of cpus specified in cpu_map
6247 * These cpus will now be attached to the NULL domain
6248 */
96f874e2 6249static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6250{
6251 int i;
6252
dce840a0 6253 rcu_read_lock();
abcd083a 6254 for_each_cpu(i, cpu_map)
57d885fe 6255 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6256 rcu_read_unlock();
1a20ff27
DG
6257}
6258
1d3504fc
HS
6259/* handle null as "default" */
6260static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6261 struct sched_domain_attr *new, int idx_new)
6262{
6263 struct sched_domain_attr tmp;
6264
6265 /* fast path */
6266 if (!new && !cur)
6267 return 1;
6268
6269 tmp = SD_ATTR_INIT;
6270 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6271 new ? (new + idx_new) : &tmp,
6272 sizeof(struct sched_domain_attr));
6273}
6274
029190c5
PJ
6275/*
6276 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6277 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6278 * doms_new[] to the current sched domain partitioning, doms_cur[].
6279 * It destroys each deleted domain and builds each new domain.
6280 *
acc3f5d7 6281 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6282 * The masks don't intersect (don't overlap.) We should setup one
6283 * sched domain for each mask. CPUs not in any of the cpumasks will
6284 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6285 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6286 * it as it is.
6287 *
acc3f5d7
RR
6288 * The passed in 'doms_new' should be allocated using
6289 * alloc_sched_domains. This routine takes ownership of it and will
6290 * free_sched_domains it when done with it. If the caller failed the
6291 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6292 * and partition_sched_domains() will fallback to the single partition
6293 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6294 *
96f874e2 6295 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6296 * ndoms_new == 0 is a special case for destroying existing domains,
6297 * and it will not create the default domain.
dfb512ec 6298 *
029190c5
PJ
6299 * Call with hotplug lock held
6300 */
acc3f5d7 6301void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6302 struct sched_domain_attr *dattr_new)
029190c5 6303{
dfb512ec 6304 int i, j, n;
d65bd5ec 6305 int new_topology;
029190c5 6306
712555ee 6307 mutex_lock(&sched_domains_mutex);
a1835615 6308
7378547f
MM
6309 /* always unregister in case we don't destroy any domains */
6310 unregister_sched_domain_sysctl();
6311
d65bd5ec
HC
6312 /* Let architecture update cpu core mappings. */
6313 new_topology = arch_update_cpu_topology();
6314
dfb512ec 6315 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6316
6317 /* Destroy deleted domains */
6318 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6319 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6320 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6321 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6322 goto match1;
6323 }
6324 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6325 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6326match1:
6327 ;
6328 }
6329
c8d2d47a 6330 n = ndoms_cur;
e761b772 6331 if (doms_new == NULL) {
c8d2d47a 6332 n = 0;
acc3f5d7 6333 doms_new = &fallback_doms;
6ad4c188 6334 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6335 WARN_ON_ONCE(dattr_new);
e761b772
MK
6336 }
6337
029190c5
PJ
6338 /* Build new domains */
6339 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6340 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6341 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6342 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6343 goto match2;
6344 }
6345 /* no match - add a new doms_new */
dce840a0 6346 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6347match2:
6348 ;
6349 }
6350
6351 /* Remember the new sched domains */
acc3f5d7
RR
6352 if (doms_cur != &fallback_doms)
6353 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6354 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6355 doms_cur = doms_new;
1d3504fc 6356 dattr_cur = dattr_new;
029190c5 6357 ndoms_cur = ndoms_new;
7378547f
MM
6358
6359 register_sched_domain_sysctl();
a1835615 6360
712555ee 6361 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6362}
6363
d35be8ba
SB
6364static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6365
1da177e4 6366/*
3a101d05
TH
6367 * Update cpusets according to cpu_active mask. If cpusets are
6368 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6369 * around partition_sched_domains().
d35be8ba
SB
6370 *
6371 * If we come here as part of a suspend/resume, don't touch cpusets because we
6372 * want to restore it back to its original state upon resume anyway.
1da177e4 6373 */
0b2e918a
TH
6374static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6375 void *hcpu)
e761b772 6376{
d35be8ba
SB
6377 switch (action) {
6378 case CPU_ONLINE_FROZEN:
6379 case CPU_DOWN_FAILED_FROZEN:
6380
6381 /*
6382 * num_cpus_frozen tracks how many CPUs are involved in suspend
6383 * resume sequence. As long as this is not the last online
6384 * operation in the resume sequence, just build a single sched
6385 * domain, ignoring cpusets.
6386 */
6387 num_cpus_frozen--;
6388 if (likely(num_cpus_frozen)) {
6389 partition_sched_domains(1, NULL, NULL);
6390 break;
6391 }
6392
6393 /*
6394 * This is the last CPU online operation. So fall through and
6395 * restore the original sched domains by considering the
6396 * cpuset configurations.
6397 */
6398
e761b772 6399 case CPU_ONLINE:
6ad4c188 6400 case CPU_DOWN_FAILED:
7ddf96b0 6401 cpuset_update_active_cpus(true);
d35be8ba 6402 break;
3a101d05
TH
6403 default:
6404 return NOTIFY_DONE;
6405 }
d35be8ba 6406 return NOTIFY_OK;
3a101d05 6407}
e761b772 6408
0b2e918a
TH
6409static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6410 void *hcpu)
3a101d05 6411{
d35be8ba 6412 switch (action) {
3a101d05 6413 case CPU_DOWN_PREPARE:
7ddf96b0 6414 cpuset_update_active_cpus(false);
d35be8ba
SB
6415 break;
6416 case CPU_DOWN_PREPARE_FROZEN:
6417 num_cpus_frozen++;
6418 partition_sched_domains(1, NULL, NULL);
6419 break;
e761b772
MK
6420 default:
6421 return NOTIFY_DONE;
6422 }
d35be8ba 6423 return NOTIFY_OK;
e761b772 6424}
e761b772 6425
1da177e4
LT
6426void __init sched_init_smp(void)
6427{
dcc30a35
RR
6428 cpumask_var_t non_isolated_cpus;
6429
6430 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6431 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6432
cb83b629
PZ
6433 sched_init_numa();
6434
6acce3ef
PZ
6435 /*
6436 * There's no userspace yet to cause hotplug operations; hence all the
6437 * cpu masks are stable and all blatant races in the below code cannot
6438 * happen.
6439 */
712555ee 6440 mutex_lock(&sched_domains_mutex);
c4a8849a 6441 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6442 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6443 if (cpumask_empty(non_isolated_cpus))
6444 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6445 mutex_unlock(&sched_domains_mutex);
e761b772 6446
301a5cba 6447 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6448 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6449 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6450
b328ca18 6451 init_hrtick();
5c1e1767
NP
6452
6453 /* Move init over to a non-isolated CPU */
dcc30a35 6454 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6455 BUG();
19978ca6 6456 sched_init_granularity();
dcc30a35 6457 free_cpumask_var(non_isolated_cpus);
4212823f 6458
0e3900e6 6459 init_sched_rt_class();
1baca4ce 6460 init_sched_dl_class();
1da177e4
LT
6461}
6462#else
6463void __init sched_init_smp(void)
6464{
19978ca6 6465 sched_init_granularity();
1da177e4
LT
6466}
6467#endif /* CONFIG_SMP */
6468
cd1bb94b
AB
6469const_debug unsigned int sysctl_timer_migration = 1;
6470
1da177e4
LT
6471int in_sched_functions(unsigned long addr)
6472{
1da177e4
LT
6473 return in_lock_functions(addr) ||
6474 (addr >= (unsigned long)__sched_text_start
6475 && addr < (unsigned long)__sched_text_end);
6476}
6477
029632fb 6478#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6479/*
6480 * Default task group.
6481 * Every task in system belongs to this group at bootup.
6482 */
029632fb 6483struct task_group root_task_group;
35cf4e50 6484LIST_HEAD(task_groups);
052f1dc7 6485#endif
6f505b16 6486
e6252c3e 6487DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6488
1da177e4
LT
6489void __init sched_init(void)
6490{
dd41f596 6491 int i, j;
434d53b0
MT
6492 unsigned long alloc_size = 0, ptr;
6493
6494#ifdef CONFIG_FAIR_GROUP_SCHED
6495 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6496#endif
6497#ifdef CONFIG_RT_GROUP_SCHED
6498 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6499#endif
df7c8e84 6500#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6501 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6502#endif
434d53b0 6503 if (alloc_size) {
36b7b6d4 6504 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6505
6506#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6507 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6508 ptr += nr_cpu_ids * sizeof(void **);
6509
07e06b01 6510 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6511 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6512
6d6bc0ad 6513#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6514#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6515 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6516 ptr += nr_cpu_ids * sizeof(void **);
6517
07e06b01 6518 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6519 ptr += nr_cpu_ids * sizeof(void **);
6520
6d6bc0ad 6521#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6522#ifdef CONFIG_CPUMASK_OFFSTACK
6523 for_each_possible_cpu(i) {
e6252c3e 6524 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6525 ptr += cpumask_size();
6526 }
6527#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6528 }
dd41f596 6529
57d885fe
GH
6530#ifdef CONFIG_SMP
6531 init_defrootdomain();
6532#endif
6533
d0b27fa7
PZ
6534 init_rt_bandwidth(&def_rt_bandwidth,
6535 global_rt_period(), global_rt_runtime());
6536
6537#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6538 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6539 global_rt_period(), global_rt_runtime());
6d6bc0ad 6540#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6541
7c941438 6542#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6543 list_add(&root_task_group.list, &task_groups);
6544 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6545 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6546 autogroup_init(&init_task);
54c707e9 6547
7c941438 6548#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6549
0a945022 6550 for_each_possible_cpu(i) {
70b97a7f 6551 struct rq *rq;
1da177e4
LT
6552
6553 rq = cpu_rq(i);
05fa785c 6554 raw_spin_lock_init(&rq->lock);
7897986b 6555 rq->nr_running = 0;
dce48a84
TG
6556 rq->calc_load_active = 0;
6557 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6558 init_cfs_rq(&rq->cfs);
6f505b16 6559 init_rt_rq(&rq->rt, rq);
aab03e05 6560 init_dl_rq(&rq->dl, rq);
dd41f596 6561#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6562 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6563 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6564 /*
07e06b01 6565 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6566 *
6567 * In case of task-groups formed thr' the cgroup filesystem, it
6568 * gets 100% of the cpu resources in the system. This overall
6569 * system cpu resource is divided among the tasks of
07e06b01 6570 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6571 * based on each entity's (task or task-group's) weight
6572 * (se->load.weight).
6573 *
07e06b01 6574 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6575 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6576 * then A0's share of the cpu resource is:
6577 *
0d905bca 6578 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6579 *
07e06b01
YZ
6580 * We achieve this by letting root_task_group's tasks sit
6581 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6582 */
ab84d31e 6583 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6584 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6585#endif /* CONFIG_FAIR_GROUP_SCHED */
6586
6587 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6589 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6590 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6591#endif
1da177e4 6592
dd41f596
IM
6593 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6594 rq->cpu_load[j] = 0;
fdf3e95d
VP
6595
6596 rq->last_load_update_tick = jiffies;
6597
1da177e4 6598#ifdef CONFIG_SMP
41c7ce9a 6599 rq->sd = NULL;
57d885fe 6600 rq->rd = NULL;
1399fa78 6601 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6602 rq->post_schedule = 0;
1da177e4 6603 rq->active_balance = 0;
dd41f596 6604 rq->next_balance = jiffies;
1da177e4 6605 rq->push_cpu = 0;
0a2966b4 6606 rq->cpu = i;
1f11eb6a 6607 rq->online = 0;
eae0c9df
MG
6608 rq->idle_stamp = 0;
6609 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6610 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6611
6612 INIT_LIST_HEAD(&rq->cfs_tasks);
6613
dc938520 6614 rq_attach_root(rq, &def_root_domain);
3451d024 6615#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6616 rq->nohz_flags = 0;
83cd4fe2 6617#endif
265f22a9
FW
6618#ifdef CONFIG_NO_HZ_FULL
6619 rq->last_sched_tick = 0;
6620#endif
1da177e4 6621#endif
8f4d37ec 6622 init_rq_hrtick(rq);
1da177e4 6623 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6624 }
6625
2dd73a4f 6626 set_load_weight(&init_task);
b50f60ce 6627
e107be36
AK
6628#ifdef CONFIG_PREEMPT_NOTIFIERS
6629 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6630#endif
6631
b50f60ce 6632#ifdef CONFIG_RT_MUTEXES
732375c6 6633 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6634#endif
6635
1da177e4
LT
6636 /*
6637 * The boot idle thread does lazy MMU switching as well:
6638 */
6639 atomic_inc(&init_mm.mm_count);
6640 enter_lazy_tlb(&init_mm, current);
6641
6642 /*
6643 * Make us the idle thread. Technically, schedule() should not be
6644 * called from this thread, however somewhere below it might be,
6645 * but because we are the idle thread, we just pick up running again
6646 * when this runqueue becomes "idle".
6647 */
6648 init_idle(current, smp_processor_id());
dce48a84
TG
6649
6650 calc_load_update = jiffies + LOAD_FREQ;
6651
dd41f596
IM
6652 /*
6653 * During early bootup we pretend to be a normal task:
6654 */
6655 current->sched_class = &fair_sched_class;
6892b75e 6656
bf4d83f6 6657#ifdef CONFIG_SMP
4cb98839 6658 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6659 /* May be allocated at isolcpus cmdline parse time */
6660 if (cpu_isolated_map == NULL)
6661 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6662 idle_thread_set_boot_cpu();
029632fb
PZ
6663#endif
6664 init_sched_fair_class();
6a7b3dc3 6665
6892b75e 6666 scheduler_running = 1;
1da177e4
LT
6667}
6668
d902db1e 6669#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6670static inline int preempt_count_equals(int preempt_offset)
6671{
234da7bc 6672 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6673
4ba8216c 6674 return (nested == preempt_offset);
e4aafea2
FW
6675}
6676
d894837f 6677void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6678{
1da177e4
LT
6679 static unsigned long prev_jiffy; /* ratelimiting */
6680
b3fbab05 6681 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6682 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6683 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6684 return;
6685 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6686 return;
6687 prev_jiffy = jiffies;
6688
3df0fc5b
PZ
6689 printk(KERN_ERR
6690 "BUG: sleeping function called from invalid context at %s:%d\n",
6691 file, line);
6692 printk(KERN_ERR
6693 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6694 in_atomic(), irqs_disabled(),
6695 current->pid, current->comm);
aef745fc
IM
6696
6697 debug_show_held_locks(current);
6698 if (irqs_disabled())
6699 print_irqtrace_events(current);
6700 dump_stack();
1da177e4
LT
6701}
6702EXPORT_SYMBOL(__might_sleep);
6703#endif
6704
6705#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6706static void normalize_task(struct rq *rq, struct task_struct *p)
6707{
da7a735e 6708 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6709 struct sched_attr attr = {
6710 .sched_policy = SCHED_NORMAL,
6711 };
da7a735e 6712 int old_prio = p->prio;
3a5e4dc1 6713 int on_rq;
3e51f33f 6714
fd2f4419 6715 on_rq = p->on_rq;
3a5e4dc1 6716 if (on_rq)
4ca9b72b 6717 dequeue_task(rq, p, 0);
d50dde5a 6718 __setscheduler(rq, p, &attr);
3a5e4dc1 6719 if (on_rq) {
4ca9b72b 6720 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6721 resched_task(rq->curr);
6722 }
da7a735e
PZ
6723
6724 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6725}
6726
1da177e4
LT
6727void normalize_rt_tasks(void)
6728{
a0f98a1c 6729 struct task_struct *g, *p;
1da177e4 6730 unsigned long flags;
70b97a7f 6731 struct rq *rq;
1da177e4 6732
4cf5d77a 6733 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6734 do_each_thread(g, p) {
178be793
IM
6735 /*
6736 * Only normalize user tasks:
6737 */
6738 if (!p->mm)
6739 continue;
6740
6cfb0d5d 6741 p->se.exec_start = 0;
6cfb0d5d 6742#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6743 p->se.statistics.wait_start = 0;
6744 p->se.statistics.sleep_start = 0;
6745 p->se.statistics.block_start = 0;
6cfb0d5d 6746#endif
dd41f596 6747
aab03e05 6748 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6749 /*
6750 * Renice negative nice level userspace
6751 * tasks back to 0:
6752 */
6753 if (TASK_NICE(p) < 0 && p->mm)
6754 set_user_nice(p, 0);
1da177e4 6755 continue;
dd41f596 6756 }
1da177e4 6757
1d615482 6758 raw_spin_lock(&p->pi_lock);
b29739f9 6759 rq = __task_rq_lock(p);
1da177e4 6760
178be793 6761 normalize_task(rq, p);
3a5e4dc1 6762
b29739f9 6763 __task_rq_unlock(rq);
1d615482 6764 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6765 } while_each_thread(g, p);
6766
4cf5d77a 6767 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6768}
6769
6770#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6771
67fc4e0c 6772#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6773/*
67fc4e0c 6774 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6775 *
6776 * They can only be called when the whole system has been
6777 * stopped - every CPU needs to be quiescent, and no scheduling
6778 * activity can take place. Using them for anything else would
6779 * be a serious bug, and as a result, they aren't even visible
6780 * under any other configuration.
6781 */
6782
6783/**
6784 * curr_task - return the current task for a given cpu.
6785 * @cpu: the processor in question.
6786 *
6787 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6788 *
6789 * Return: The current task for @cpu.
1df5c10a 6790 */
36c8b586 6791struct task_struct *curr_task(int cpu)
1df5c10a
LT
6792{
6793 return cpu_curr(cpu);
6794}
6795
67fc4e0c
JW
6796#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6797
6798#ifdef CONFIG_IA64
1df5c10a
LT
6799/**
6800 * set_curr_task - set the current task for a given cpu.
6801 * @cpu: the processor in question.
6802 * @p: the task pointer to set.
6803 *
6804 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6805 * are serviced on a separate stack. It allows the architecture to switch the
6806 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6807 * must be called with all CPU's synchronized, and interrupts disabled, the
6808 * and caller must save the original value of the current task (see
6809 * curr_task() above) and restore that value before reenabling interrupts and
6810 * re-starting the system.
6811 *
6812 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6813 */
36c8b586 6814void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6815{
6816 cpu_curr(cpu) = p;
6817}
6818
6819#endif
29f59db3 6820
7c941438 6821#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6822/* task_group_lock serializes the addition/removal of task groups */
6823static DEFINE_SPINLOCK(task_group_lock);
6824
bccbe08a
PZ
6825static void free_sched_group(struct task_group *tg)
6826{
6827 free_fair_sched_group(tg);
6828 free_rt_sched_group(tg);
e9aa1dd1 6829 autogroup_free(tg);
bccbe08a
PZ
6830 kfree(tg);
6831}
6832
6833/* allocate runqueue etc for a new task group */
ec7dc8ac 6834struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6835{
6836 struct task_group *tg;
bccbe08a
PZ
6837
6838 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6839 if (!tg)
6840 return ERR_PTR(-ENOMEM);
6841
ec7dc8ac 6842 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6843 goto err;
6844
ec7dc8ac 6845 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6846 goto err;
6847
ace783b9
LZ
6848 return tg;
6849
6850err:
6851 free_sched_group(tg);
6852 return ERR_PTR(-ENOMEM);
6853}
6854
6855void sched_online_group(struct task_group *tg, struct task_group *parent)
6856{
6857 unsigned long flags;
6858
8ed36996 6859 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6860 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6861
6862 WARN_ON(!parent); /* root should already exist */
6863
6864 tg->parent = parent;
f473aa5e 6865 INIT_LIST_HEAD(&tg->children);
09f2724a 6866 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6867 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6868}
6869
9b5b7751 6870/* rcu callback to free various structures associated with a task group */
6f505b16 6871static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6872{
29f59db3 6873 /* now it should be safe to free those cfs_rqs */
6f505b16 6874 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6875}
6876
9b5b7751 6877/* Destroy runqueue etc associated with a task group */
4cf86d77 6878void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6879{
6880 /* wait for possible concurrent references to cfs_rqs complete */
6881 call_rcu(&tg->rcu, free_sched_group_rcu);
6882}
6883
6884void sched_offline_group(struct task_group *tg)
29f59db3 6885{
8ed36996 6886 unsigned long flags;
9b5b7751 6887 int i;
29f59db3 6888
3d4b47b4
PZ
6889 /* end participation in shares distribution */
6890 for_each_possible_cpu(i)
bccbe08a 6891 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6892
6893 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6894 list_del_rcu(&tg->list);
f473aa5e 6895 list_del_rcu(&tg->siblings);
8ed36996 6896 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6897}
6898
9b5b7751 6899/* change task's runqueue when it moves between groups.
3a252015
IM
6900 * The caller of this function should have put the task in its new group
6901 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6902 * reflect its new group.
9b5b7751
SV
6903 */
6904void sched_move_task(struct task_struct *tsk)
29f59db3 6905{
8323f26c 6906 struct task_group *tg;
29f59db3
SV
6907 int on_rq, running;
6908 unsigned long flags;
6909 struct rq *rq;
6910
6911 rq = task_rq_lock(tsk, &flags);
6912
051a1d1a 6913 running = task_current(rq, tsk);
fd2f4419 6914 on_rq = tsk->on_rq;
29f59db3 6915
0e1f3483 6916 if (on_rq)
29f59db3 6917 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6918 if (unlikely(running))
6919 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6920
8af01f56 6921 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6922 lockdep_is_held(&tsk->sighand->siglock)),
6923 struct task_group, css);
6924 tg = autogroup_task_group(tsk, tg);
6925 tsk->sched_task_group = tg;
6926
810b3817 6927#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6928 if (tsk->sched_class->task_move_group)
6929 tsk->sched_class->task_move_group(tsk, on_rq);
6930 else
810b3817 6931#endif
b2b5ce02 6932 set_task_rq(tsk, task_cpu(tsk));
810b3817 6933
0e1f3483
HS
6934 if (unlikely(running))
6935 tsk->sched_class->set_curr_task(rq);
6936 if (on_rq)
371fd7e7 6937 enqueue_task(rq, tsk, 0);
29f59db3 6938
0122ec5b 6939 task_rq_unlock(rq, tsk, &flags);
29f59db3 6940}
7c941438 6941#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6942
a790de99 6943#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6944static unsigned long to_ratio(u64 period, u64 runtime)
6945{
6946 if (runtime == RUNTIME_INF)
9a7e0b18 6947 return 1ULL << 20;
9f0c1e56 6948
9a7e0b18 6949 return div64_u64(runtime << 20, period);
9f0c1e56 6950}
a790de99
PT
6951#endif
6952
6953#ifdef CONFIG_RT_GROUP_SCHED
6954/*
6955 * Ensure that the real time constraints are schedulable.
6956 */
6957static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6958
9a7e0b18
PZ
6959/* Must be called with tasklist_lock held */
6960static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6961{
9a7e0b18 6962 struct task_struct *g, *p;
b40b2e8e 6963
9a7e0b18 6964 do_each_thread(g, p) {
029632fb 6965 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6966 return 1;
6967 } while_each_thread(g, p);
b40b2e8e 6968
9a7e0b18
PZ
6969 return 0;
6970}
b40b2e8e 6971
9a7e0b18
PZ
6972struct rt_schedulable_data {
6973 struct task_group *tg;
6974 u64 rt_period;
6975 u64 rt_runtime;
6976};
b40b2e8e 6977
a790de99 6978static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6979{
6980 struct rt_schedulable_data *d = data;
6981 struct task_group *child;
6982 unsigned long total, sum = 0;
6983 u64 period, runtime;
b40b2e8e 6984
9a7e0b18
PZ
6985 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6986 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6987
9a7e0b18
PZ
6988 if (tg == d->tg) {
6989 period = d->rt_period;
6990 runtime = d->rt_runtime;
b40b2e8e 6991 }
b40b2e8e 6992
4653f803
PZ
6993 /*
6994 * Cannot have more runtime than the period.
6995 */
6996 if (runtime > period && runtime != RUNTIME_INF)
6997 return -EINVAL;
6f505b16 6998
4653f803
PZ
6999 /*
7000 * Ensure we don't starve existing RT tasks.
7001 */
9a7e0b18
PZ
7002 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7003 return -EBUSY;
6f505b16 7004
9a7e0b18 7005 total = to_ratio(period, runtime);
6f505b16 7006
4653f803
PZ
7007 /*
7008 * Nobody can have more than the global setting allows.
7009 */
7010 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7011 return -EINVAL;
6f505b16 7012
4653f803
PZ
7013 /*
7014 * The sum of our children's runtime should not exceed our own.
7015 */
9a7e0b18
PZ
7016 list_for_each_entry_rcu(child, &tg->children, siblings) {
7017 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7018 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7019
9a7e0b18
PZ
7020 if (child == d->tg) {
7021 period = d->rt_period;
7022 runtime = d->rt_runtime;
7023 }
6f505b16 7024
9a7e0b18 7025 sum += to_ratio(period, runtime);
9f0c1e56 7026 }
6f505b16 7027
9a7e0b18
PZ
7028 if (sum > total)
7029 return -EINVAL;
7030
7031 return 0;
6f505b16
PZ
7032}
7033
9a7e0b18 7034static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7035{
8277434e
PT
7036 int ret;
7037
9a7e0b18
PZ
7038 struct rt_schedulable_data data = {
7039 .tg = tg,
7040 .rt_period = period,
7041 .rt_runtime = runtime,
7042 };
7043
8277434e
PT
7044 rcu_read_lock();
7045 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7046 rcu_read_unlock();
7047
7048 return ret;
521f1a24
DG
7049}
7050
ab84d31e 7051static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7052 u64 rt_period, u64 rt_runtime)
6f505b16 7053{
ac086bc2 7054 int i, err = 0;
9f0c1e56 7055
9f0c1e56 7056 mutex_lock(&rt_constraints_mutex);
521f1a24 7057 read_lock(&tasklist_lock);
9a7e0b18
PZ
7058 err = __rt_schedulable(tg, rt_period, rt_runtime);
7059 if (err)
9f0c1e56 7060 goto unlock;
ac086bc2 7061
0986b11b 7062 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7063 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7064 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7065
7066 for_each_possible_cpu(i) {
7067 struct rt_rq *rt_rq = tg->rt_rq[i];
7068
0986b11b 7069 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7070 rt_rq->rt_runtime = rt_runtime;
0986b11b 7071 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7072 }
0986b11b 7073 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7074unlock:
521f1a24 7075 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7076 mutex_unlock(&rt_constraints_mutex);
7077
7078 return err;
6f505b16
PZ
7079}
7080
25cc7da7 7081static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7082{
7083 u64 rt_runtime, rt_period;
7084
7085 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7086 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7087 if (rt_runtime_us < 0)
7088 rt_runtime = RUNTIME_INF;
7089
ab84d31e 7090 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7091}
7092
25cc7da7 7093static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7094{
7095 u64 rt_runtime_us;
7096
d0b27fa7 7097 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7098 return -1;
7099
d0b27fa7 7100 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7101 do_div(rt_runtime_us, NSEC_PER_USEC);
7102 return rt_runtime_us;
7103}
d0b27fa7 7104
25cc7da7 7105static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7106{
7107 u64 rt_runtime, rt_period;
7108
7109 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7110 rt_runtime = tg->rt_bandwidth.rt_runtime;
7111
619b0488
R
7112 if (rt_period == 0)
7113 return -EINVAL;
7114
ab84d31e 7115 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7116}
7117
25cc7da7 7118static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7119{
7120 u64 rt_period_us;
7121
7122 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7123 do_div(rt_period_us, NSEC_PER_USEC);
7124 return rt_period_us;
7125}
7126
7127static int sched_rt_global_constraints(void)
7128{
4653f803 7129 u64 runtime, period;
d0b27fa7
PZ
7130 int ret = 0;
7131
ec5d4989
HS
7132 if (sysctl_sched_rt_period <= 0)
7133 return -EINVAL;
7134
4653f803
PZ
7135 runtime = global_rt_runtime();
7136 period = global_rt_period();
7137
7138 /*
7139 * Sanity check on the sysctl variables.
7140 */
7141 if (runtime > period && runtime != RUNTIME_INF)
7142 return -EINVAL;
10b612f4 7143
d0b27fa7 7144 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7145 read_lock(&tasklist_lock);
4653f803 7146 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7147 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7148 mutex_unlock(&rt_constraints_mutex);
7149
7150 return ret;
7151}
54e99124 7152
25cc7da7 7153static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7154{
7155 /* Don't accept realtime tasks when there is no way for them to run */
7156 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7157 return 0;
7158
7159 return 1;
7160}
7161
6d6bc0ad 7162#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7163static int sched_rt_global_constraints(void)
7164{
ac086bc2
PZ
7165 unsigned long flags;
7166 int i;
7167
ec5d4989
HS
7168 if (sysctl_sched_rt_period <= 0)
7169 return -EINVAL;
7170
60aa605d
PZ
7171 /*
7172 * There's always some RT tasks in the root group
7173 * -- migration, kstopmachine etc..
7174 */
7175 if (sysctl_sched_rt_runtime == 0)
7176 return -EBUSY;
7177
0986b11b 7178 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7179 for_each_possible_cpu(i) {
7180 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7181
0986b11b 7182 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7183 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7184 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7185 }
0986b11b 7186 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7187
d0b27fa7
PZ
7188 return 0;
7189}
6d6bc0ad 7190#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7191
ce0dbbbb
CW
7192int sched_rr_handler(struct ctl_table *table, int write,
7193 void __user *buffer, size_t *lenp,
7194 loff_t *ppos)
7195{
7196 int ret;
7197 static DEFINE_MUTEX(mutex);
7198
7199 mutex_lock(&mutex);
7200 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7201 /* make sure that internally we keep jiffies */
7202 /* also, writing zero resets timeslice to default */
7203 if (!ret && write) {
7204 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7205 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7206 }
7207 mutex_unlock(&mutex);
7208 return ret;
7209}
7210
d0b27fa7 7211int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7212 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7213 loff_t *ppos)
7214{
7215 int ret;
7216 int old_period, old_runtime;
7217 static DEFINE_MUTEX(mutex);
7218
7219 mutex_lock(&mutex);
7220 old_period = sysctl_sched_rt_period;
7221 old_runtime = sysctl_sched_rt_runtime;
7222
8d65af78 7223 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7224
7225 if (!ret && write) {
7226 ret = sched_rt_global_constraints();
7227 if (ret) {
7228 sysctl_sched_rt_period = old_period;
7229 sysctl_sched_rt_runtime = old_runtime;
7230 } else {
7231 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7232 def_rt_bandwidth.rt_period =
7233 ns_to_ktime(global_rt_period());
7234 }
7235 }
7236 mutex_unlock(&mutex);
7237
7238 return ret;
7239}
68318b8e 7240
052f1dc7 7241#ifdef CONFIG_CGROUP_SCHED
68318b8e 7242
a7c6d554 7243static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7244{
a7c6d554 7245 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7246}
7247
eb95419b
TH
7248static struct cgroup_subsys_state *
7249cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7250{
eb95419b
TH
7251 struct task_group *parent = css_tg(parent_css);
7252 struct task_group *tg;
68318b8e 7253
eb95419b 7254 if (!parent) {
68318b8e 7255 /* This is early initialization for the top cgroup */
07e06b01 7256 return &root_task_group.css;
68318b8e
SV
7257 }
7258
ec7dc8ac 7259 tg = sched_create_group(parent);
68318b8e
SV
7260 if (IS_ERR(tg))
7261 return ERR_PTR(-ENOMEM);
7262
68318b8e
SV
7263 return &tg->css;
7264}
7265
eb95419b 7266static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7267{
eb95419b
TH
7268 struct task_group *tg = css_tg(css);
7269 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7270
63876986
TH
7271 if (parent)
7272 sched_online_group(tg, parent);
ace783b9
LZ
7273 return 0;
7274}
7275
eb95419b 7276static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7277{
eb95419b 7278 struct task_group *tg = css_tg(css);
68318b8e
SV
7279
7280 sched_destroy_group(tg);
7281}
7282
eb95419b 7283static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7284{
eb95419b 7285 struct task_group *tg = css_tg(css);
ace783b9
LZ
7286
7287 sched_offline_group(tg);
7288}
7289
eb95419b 7290static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7291 struct cgroup_taskset *tset)
68318b8e 7292{
bb9d97b6
TH
7293 struct task_struct *task;
7294
d99c8727 7295 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7296#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7297 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7298 return -EINVAL;
b68aa230 7299#else
bb9d97b6
TH
7300 /* We don't support RT-tasks being in separate groups */
7301 if (task->sched_class != &fair_sched_class)
7302 return -EINVAL;
b68aa230 7303#endif
bb9d97b6 7304 }
be367d09
BB
7305 return 0;
7306}
68318b8e 7307
eb95419b 7308static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7309 struct cgroup_taskset *tset)
68318b8e 7310{
bb9d97b6
TH
7311 struct task_struct *task;
7312
d99c8727 7313 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7314 sched_move_task(task);
68318b8e
SV
7315}
7316
eb95419b
TH
7317static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7318 struct cgroup_subsys_state *old_css,
7319 struct task_struct *task)
068c5cc5
PZ
7320{
7321 /*
7322 * cgroup_exit() is called in the copy_process() failure path.
7323 * Ignore this case since the task hasn't ran yet, this avoids
7324 * trying to poke a half freed task state from generic code.
7325 */
7326 if (!(task->flags & PF_EXITING))
7327 return;
7328
7329 sched_move_task(task);
7330}
7331
052f1dc7 7332#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7333static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7334 struct cftype *cftype, u64 shareval)
68318b8e 7335{
182446d0 7336 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7337}
7338
182446d0
TH
7339static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7340 struct cftype *cft)
68318b8e 7341{
182446d0 7342 struct task_group *tg = css_tg(css);
68318b8e 7343
c8b28116 7344 return (u64) scale_load_down(tg->shares);
68318b8e 7345}
ab84d31e
PT
7346
7347#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7348static DEFINE_MUTEX(cfs_constraints_mutex);
7349
ab84d31e
PT
7350const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7351const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7352
a790de99
PT
7353static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7354
ab84d31e
PT
7355static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7356{
56f570e5 7357 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7358 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7359
7360 if (tg == &root_task_group)
7361 return -EINVAL;
7362
7363 /*
7364 * Ensure we have at some amount of bandwidth every period. This is
7365 * to prevent reaching a state of large arrears when throttled via
7366 * entity_tick() resulting in prolonged exit starvation.
7367 */
7368 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7369 return -EINVAL;
7370
7371 /*
7372 * Likewise, bound things on the otherside by preventing insane quota
7373 * periods. This also allows us to normalize in computing quota
7374 * feasibility.
7375 */
7376 if (period > max_cfs_quota_period)
7377 return -EINVAL;
7378
a790de99
PT
7379 mutex_lock(&cfs_constraints_mutex);
7380 ret = __cfs_schedulable(tg, period, quota);
7381 if (ret)
7382 goto out_unlock;
7383
58088ad0 7384 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7385 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7386 /*
7387 * If we need to toggle cfs_bandwidth_used, off->on must occur
7388 * before making related changes, and on->off must occur afterwards
7389 */
7390 if (runtime_enabled && !runtime_was_enabled)
7391 cfs_bandwidth_usage_inc();
ab84d31e
PT
7392 raw_spin_lock_irq(&cfs_b->lock);
7393 cfs_b->period = ns_to_ktime(period);
7394 cfs_b->quota = quota;
58088ad0 7395
a9cf55b2 7396 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7397 /* restart the period timer (if active) to handle new period expiry */
7398 if (runtime_enabled && cfs_b->timer_active) {
7399 /* force a reprogram */
7400 cfs_b->timer_active = 0;
7401 __start_cfs_bandwidth(cfs_b);
7402 }
ab84d31e
PT
7403 raw_spin_unlock_irq(&cfs_b->lock);
7404
7405 for_each_possible_cpu(i) {
7406 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7407 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7408
7409 raw_spin_lock_irq(&rq->lock);
58088ad0 7410 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7411 cfs_rq->runtime_remaining = 0;
671fd9da 7412
029632fb 7413 if (cfs_rq->throttled)
671fd9da 7414 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7415 raw_spin_unlock_irq(&rq->lock);
7416 }
1ee14e6c
BS
7417 if (runtime_was_enabled && !runtime_enabled)
7418 cfs_bandwidth_usage_dec();
a790de99
PT
7419out_unlock:
7420 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7421
a790de99 7422 return ret;
ab84d31e
PT
7423}
7424
7425int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7426{
7427 u64 quota, period;
7428
029632fb 7429 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7430 if (cfs_quota_us < 0)
7431 quota = RUNTIME_INF;
7432 else
7433 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7434
7435 return tg_set_cfs_bandwidth(tg, period, quota);
7436}
7437
7438long tg_get_cfs_quota(struct task_group *tg)
7439{
7440 u64 quota_us;
7441
029632fb 7442 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7443 return -1;
7444
029632fb 7445 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7446 do_div(quota_us, NSEC_PER_USEC);
7447
7448 return quota_us;
7449}
7450
7451int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7452{
7453 u64 quota, period;
7454
7455 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7456 quota = tg->cfs_bandwidth.quota;
ab84d31e 7457
ab84d31e
PT
7458 return tg_set_cfs_bandwidth(tg, period, quota);
7459}
7460
7461long tg_get_cfs_period(struct task_group *tg)
7462{
7463 u64 cfs_period_us;
7464
029632fb 7465 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7466 do_div(cfs_period_us, NSEC_PER_USEC);
7467
7468 return cfs_period_us;
7469}
7470
182446d0
TH
7471static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7472 struct cftype *cft)
ab84d31e 7473{
182446d0 7474 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7475}
7476
182446d0
TH
7477static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7478 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7479{
182446d0 7480 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7481}
7482
182446d0
TH
7483static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7484 struct cftype *cft)
ab84d31e 7485{
182446d0 7486 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7487}
7488
182446d0
TH
7489static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7490 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7491{
182446d0 7492 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7493}
7494
a790de99
PT
7495struct cfs_schedulable_data {
7496 struct task_group *tg;
7497 u64 period, quota;
7498};
7499
7500/*
7501 * normalize group quota/period to be quota/max_period
7502 * note: units are usecs
7503 */
7504static u64 normalize_cfs_quota(struct task_group *tg,
7505 struct cfs_schedulable_data *d)
7506{
7507 u64 quota, period;
7508
7509 if (tg == d->tg) {
7510 period = d->period;
7511 quota = d->quota;
7512 } else {
7513 period = tg_get_cfs_period(tg);
7514 quota = tg_get_cfs_quota(tg);
7515 }
7516
7517 /* note: these should typically be equivalent */
7518 if (quota == RUNTIME_INF || quota == -1)
7519 return RUNTIME_INF;
7520
7521 return to_ratio(period, quota);
7522}
7523
7524static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7525{
7526 struct cfs_schedulable_data *d = data;
029632fb 7527 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7528 s64 quota = 0, parent_quota = -1;
7529
7530 if (!tg->parent) {
7531 quota = RUNTIME_INF;
7532 } else {
029632fb 7533 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7534
7535 quota = normalize_cfs_quota(tg, d);
7536 parent_quota = parent_b->hierarchal_quota;
7537
7538 /*
7539 * ensure max(child_quota) <= parent_quota, inherit when no
7540 * limit is set
7541 */
7542 if (quota == RUNTIME_INF)
7543 quota = parent_quota;
7544 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7545 return -EINVAL;
7546 }
7547 cfs_b->hierarchal_quota = quota;
7548
7549 return 0;
7550}
7551
7552static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7553{
8277434e 7554 int ret;
a790de99
PT
7555 struct cfs_schedulable_data data = {
7556 .tg = tg,
7557 .period = period,
7558 .quota = quota,
7559 };
7560
7561 if (quota != RUNTIME_INF) {
7562 do_div(data.period, NSEC_PER_USEC);
7563 do_div(data.quota, NSEC_PER_USEC);
7564 }
7565
8277434e
PT
7566 rcu_read_lock();
7567 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7568 rcu_read_unlock();
7569
7570 return ret;
a790de99 7571}
e8da1b18 7572
182446d0 7573static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7574 struct cgroup_map_cb *cb)
7575{
182446d0 7576 struct task_group *tg = css_tg(css);
029632fb 7577 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7578
7579 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7580 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7581 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7582
7583 return 0;
7584}
ab84d31e 7585#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7586#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7587
052f1dc7 7588#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7589static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7590 struct cftype *cft, s64 val)
6f505b16 7591{
182446d0 7592 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7593}
7594
182446d0
TH
7595static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7596 struct cftype *cft)
6f505b16 7597{
182446d0 7598 return sched_group_rt_runtime(css_tg(css));
6f505b16 7599}
d0b27fa7 7600
182446d0
TH
7601static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7602 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7603{
182446d0 7604 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7605}
7606
182446d0
TH
7607static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7608 struct cftype *cft)
d0b27fa7 7609{
182446d0 7610 return sched_group_rt_period(css_tg(css));
d0b27fa7 7611}
6d6bc0ad 7612#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7613
fe5c7cc2 7614static struct cftype cpu_files[] = {
052f1dc7 7615#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7616 {
7617 .name = "shares",
f4c753b7
PM
7618 .read_u64 = cpu_shares_read_u64,
7619 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7620 },
052f1dc7 7621#endif
ab84d31e
PT
7622#ifdef CONFIG_CFS_BANDWIDTH
7623 {
7624 .name = "cfs_quota_us",
7625 .read_s64 = cpu_cfs_quota_read_s64,
7626 .write_s64 = cpu_cfs_quota_write_s64,
7627 },
7628 {
7629 .name = "cfs_period_us",
7630 .read_u64 = cpu_cfs_period_read_u64,
7631 .write_u64 = cpu_cfs_period_write_u64,
7632 },
e8da1b18
NR
7633 {
7634 .name = "stat",
7635 .read_map = cpu_stats_show,
7636 },
ab84d31e 7637#endif
052f1dc7 7638#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7639 {
9f0c1e56 7640 .name = "rt_runtime_us",
06ecb27c
PM
7641 .read_s64 = cpu_rt_runtime_read,
7642 .write_s64 = cpu_rt_runtime_write,
6f505b16 7643 },
d0b27fa7
PZ
7644 {
7645 .name = "rt_period_us",
f4c753b7
PM
7646 .read_u64 = cpu_rt_period_read_uint,
7647 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7648 },
052f1dc7 7649#endif
4baf6e33 7650 { } /* terminate */
68318b8e
SV
7651};
7652
68318b8e 7653struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7654 .name = "cpu",
92fb9748
TH
7655 .css_alloc = cpu_cgroup_css_alloc,
7656 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7657 .css_online = cpu_cgroup_css_online,
7658 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7659 .can_attach = cpu_cgroup_can_attach,
7660 .attach = cpu_cgroup_attach,
068c5cc5 7661 .exit = cpu_cgroup_exit,
38605cae 7662 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7663 .base_cftypes = cpu_files,
68318b8e
SV
7664 .early_init = 1,
7665};
7666
052f1dc7 7667#endif /* CONFIG_CGROUP_SCHED */
d842de87 7668
b637a328
PM
7669void dump_cpu_task(int cpu)
7670{
7671 pr_info("Task dump for CPU %d:\n", cpu);
7672 sched_show_task(cpu_curr(cpu));
7673}
This page took 2.357088 seconds and 5 git commands to generate.