drm/i915: split intel_cursor_plane_update() into check() and commit()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
31e4b89a
DL
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
a928d536
PZ
905}
906
9d0498a2
JB
907/**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 916{
9d0498a2 917 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 918 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 919
57e22f4a
VS
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
922 return;
923 }
924
300387c0
CW
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
9d0498a2 941 /* Wait for vblank interrupt bit to set */
481b6af3
CW
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
31e4b89a
DL
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
9d0498a2
JB
947}
948
fbf49ea2
VS
949static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966}
967
ab7ad7f6
KP
968/*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 970 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
971 *
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
975 *
ab7ad7f6
KP
976 * On Gen4 and above:
977 * wait for the pipe register state bit to turn off
978 *
979 * Otherwise:
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
58e10eb9 982 *
9d0498a2 983 */
575f7ab7 984static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 985{
575f7ab7 986 struct drm_device *dev = crtc->base.dev;
9d0498a2 987 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
990
991 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 992 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
993
994 /* Wait for the Pipe State to go off */
58e10eb9
CW
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
284637d9 997 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 998 } else {
ab7ad7f6 999 /* Wait for the display line to settle */
fbf49ea2 1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1001 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1002 }
79e53945
JB
1003}
1004
b0ea7d37
DL
1005/*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014{
1015 u32 bit;
1016
c36346e3 1017 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1018 switch (port->port) {
c36346e3
DL
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
eba905b2 1032 switch (port->port) {
c36346e3
DL
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
b0ea7d37
DL
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
55607e8a
DV
1056void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
b24e7179
JB
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
b24e7179 1070
23538ef1
JN
1071/* XXX: the dsi pll is shared between MIPI DSI ports */
1072static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073{
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085}
1086#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
55607e8a 1089struct intel_shared_dpll *
e2b78267
DV
1090intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091{
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
a43f6e0f 1094 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1095 return NULL;
1096
a43f6e0f 1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1098}
1099
040484af 1100/* For ILK+ */
55607e8a
DV
1101void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
040484af 1104{
040484af 1105 bool cur_state;
5358901f 1106 struct intel_dpll_hw_state hw_state;
040484af 1107
92b27b08 1108 if (WARN (!pll,
46edb027 1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1110 return;
ee7b9f93 1111
5358901f 1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1113 WARN(cur_state != state,
5358901f
DV
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
040484af 1116}
040484af
JB
1117
1118static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
ad80a810
PZ
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
040484af 1126
affa9354
PZ
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
ad80a810 1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1130 val = I915_READ(reg);
ad80a810 1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
040484af
JB
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140}
1141#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
d63fa0dc
PZ
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
3d13ef2e 1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1169 return;
1170
bf507ef7 1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1172 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1173 return;
1174
040484af
JB
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178}
1179
55607e8a
DV
1180void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
040484af
JB
1182{
1183 int reg;
1184 u32 val;
55607e8a 1185 bool cur_state;
040484af
JB
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
55607e8a
DV
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
040484af
JB
1193}
1194
ea0760cf
JB
1195static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197{
bedd4dba
JN
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
ea0760cf
JB
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
0de3b485 1202 bool locked = true;
ea0760cf 1203
bedd4dba
JN
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
ea0760cf 1210 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
ea0760cf
JB
1221 } else {
1222 pp_reg = PP_CONTROL;
bedd4dba
JN
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
ea0760cf
JB
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1230 locked = false;
1231
ea0760cf
JB
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1234 pipe_name(pipe));
ea0760cf
JB
1235}
1236
93ce0ba6
JN
1237static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239{
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
d9d82081 1243 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1245 else
5efb3e28 1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251}
1252#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
b840d907
JB
1255void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
b24e7179
JB
1257{
1258 int reg;
1259 u32 val;
63d7bbe9 1260 bool cur_state;
702e7a56
PZ
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
b24e7179 1263
b6b5d049
VS
1264 /* if we need the pipe quirk it must be always on */
1265 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1267 state = true;
1268
da7e29bd 1269 if (!intel_display_power_enabled(dev_priv,
b97186f0 1270 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1271 cur_state = false;
1272 } else {
1273 reg = PIPECONF(cpu_transcoder);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & PIPECONF_ENABLE);
1276 }
1277
63d7bbe9
JB
1278 WARN(cur_state != state,
1279 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1280 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1281}
1282
931872fc
CW
1283static void assert_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, bool state)
b24e7179
JB
1285{
1286 int reg;
1287 u32 val;
931872fc 1288 bool cur_state;
b24e7179
JB
1289
1290 reg = DSPCNTR(plane);
1291 val = I915_READ(reg);
931872fc
CW
1292 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293 WARN(cur_state != state,
1294 "plane %c assertion failure (expected %s, current %s)\n",
1295 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1296}
1297
931872fc
CW
1298#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
b24e7179
JB
1301static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe)
1303{
653e1026 1304 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1305 int reg, i;
1306 u32 val;
1307 int cur_pipe;
1308
653e1026
VS
1309 /* Primary planes are fixed to pipes on gen4+ */
1310 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1311 reg = DSPCNTR(pipe);
1312 val = I915_READ(reg);
83f26f16 1313 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1314 "plane %c assertion failure, should be disabled but not\n",
1315 plane_name(pipe));
19ec1358 1316 return;
28c05794 1317 }
19ec1358 1318
b24e7179 1319 /* Need to check both planes against the pipe */
055e393f 1320 for_each_pipe(dev_priv, i) {
b24e7179
JB
1321 reg = DSPCNTR(i);
1322 val = I915_READ(reg);
1323 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324 DISPPLANE_SEL_PIPE_SHIFT;
1325 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1326 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(i), pipe_name(pipe));
b24e7179
JB
1328 }
1329}
1330
19332d7a
JB
1331static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe)
1333{
20674eef 1334 struct drm_device *dev = dev_priv->dev;
1fe47785 1335 int reg, sprite;
19332d7a
JB
1336 u32 val;
1337
20674eef 1338 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1339 for_each_sprite(pipe, sprite) {
1340 reg = SPCNTR(pipe, sprite);
20674eef 1341 val = I915_READ(reg);
83f26f16 1342 WARN(val & SP_ENABLE,
20674eef 1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1344 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1345 }
1346 } else if (INTEL_INFO(dev)->gen >= 7) {
1347 reg = SPRCTL(pipe);
19332d7a 1348 val = I915_READ(reg);
83f26f16 1349 WARN(val & SPRITE_ENABLE,
06da8da2 1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1351 plane_name(pipe), pipe_name(pipe));
1352 } else if (INTEL_INFO(dev)->gen >= 5) {
1353 reg = DVSCNTR(pipe);
19332d7a 1354 val = I915_READ(reg);
83f26f16 1355 WARN(val & DVS_ENABLE,
06da8da2 1356 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1357 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1358 }
1359}
1360
08c71e5e
VS
1361static void assert_vblank_disabled(struct drm_crtc *crtc)
1362{
1363 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1364 drm_crtc_vblank_put(crtc);
1365}
1366
89eff4be 1367static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1368{
1369 u32 val;
1370 bool enabled;
1371
89eff4be 1372 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1373
92f2584a
JB
1374 val = I915_READ(PCH_DREF_CONTROL);
1375 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1376 DREF_SUPERSPREAD_SOURCE_MASK));
1377 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1378}
1379
ab9412ba
DV
1380static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1381 enum pipe pipe)
92f2584a
JB
1382{
1383 int reg;
1384 u32 val;
1385 bool enabled;
1386
ab9412ba 1387 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1388 val = I915_READ(reg);
1389 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1390 WARN(enabled,
1391 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1392 pipe_name(pipe));
92f2584a
JB
1393}
1394
4e634389
KP
1395static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1397{
1398 if ((val & DP_PORT_EN) == 0)
1399 return false;
1400
1401 if (HAS_PCH_CPT(dev_priv->dev)) {
1402 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1403 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1404 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1405 return false;
44f37d1f
CML
1406 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1407 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1408 return false;
f0575e92
KP
1409 } else {
1410 if ((val & DP_PIPE_MASK) != (pipe << 30))
1411 return false;
1412 }
1413 return true;
1414}
1415
1519b995
KP
1416static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1417 enum pipe pipe, u32 val)
1418{
dc0fa718 1419 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1420 return false;
1421
1422 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1423 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1424 return false;
44f37d1f
CML
1425 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1426 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1427 return false;
1519b995 1428 } else {
dc0fa718 1429 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1430 return false;
1431 }
1432 return true;
1433}
1434
1435static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1436 enum pipe pipe, u32 val)
1437{
1438 if ((val & LVDS_PORT_EN) == 0)
1439 return false;
1440
1441 if (HAS_PCH_CPT(dev_priv->dev)) {
1442 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1443 return false;
1444 } else {
1445 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1446 return false;
1447 }
1448 return true;
1449}
1450
1451static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453{
1454 if ((val & ADPA_DAC_ENABLE) == 0)
1455 return false;
1456 if (HAS_PCH_CPT(dev_priv->dev)) {
1457 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1458 return false;
1459 } else {
1460 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1461 return false;
1462 }
1463 return true;
1464}
1465
291906f1 1466static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1467 enum pipe pipe, int reg, u32 port_sel)
291906f1 1468{
47a05eca 1469 u32 val = I915_READ(reg);
4e634389 1470 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1471 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1472 reg, pipe_name(pipe));
de9a35ab 1473
75c5da27
DV
1474 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1475 && (val & DP_PIPEB_SELECT),
de9a35ab 1476 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1477}
1478
1479static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1480 enum pipe pipe, int reg)
1481{
47a05eca 1482 u32 val = I915_READ(reg);
b70ad586 1483 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1484 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1485 reg, pipe_name(pipe));
de9a35ab 1486
dc0fa718 1487 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1488 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1489 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1490}
1491
1492static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1493 enum pipe pipe)
1494{
1495 int reg;
1496 u32 val;
291906f1 1497
f0575e92
KP
1498 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1499 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1500 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1501
1502 reg = PCH_ADPA;
1503 val = I915_READ(reg);
b70ad586 1504 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1505 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1506 pipe_name(pipe));
291906f1
JB
1507
1508 reg = PCH_LVDS;
1509 val = I915_READ(reg);
b70ad586 1510 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1511 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1512 pipe_name(pipe));
291906f1 1513
e2debe91
PZ
1514 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1515 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1516 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1517}
1518
40e9cf64
JB
1519static void intel_init_dpio(struct drm_device *dev)
1520{
1521 struct drm_i915_private *dev_priv = dev->dev_private;
1522
1523 if (!IS_VALLEYVIEW(dev))
1524 return;
1525
a09caddd
CML
1526 /*
1527 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1528 * CHV x1 PHY (DP/HDMI D)
1529 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1530 */
1531 if (IS_CHERRYVIEW(dev)) {
1532 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1533 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1534 } else {
1535 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1536 }
5382f5f3
JB
1537}
1538
426115cf 1539static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1540{
426115cf
DV
1541 struct drm_device *dev = crtc->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 int reg = DPLL(crtc->pipe);
1544 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1545
426115cf 1546 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1547
1548 /* No really, not for ILK+ */
1549 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1550
1551 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1552 if (IS_MOBILE(dev_priv->dev))
426115cf 1553 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1554
426115cf
DV
1555 I915_WRITE(reg, dpll);
1556 POSTING_READ(reg);
1557 udelay(150);
1558
1559 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1560 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1561
1562 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1563 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1564
1565 /* We do this three times for luck */
426115cf 1566 I915_WRITE(reg, dpll);
87442f73
DV
1567 POSTING_READ(reg);
1568 udelay(150); /* wait for warmup */
426115cf 1569 I915_WRITE(reg, dpll);
87442f73
DV
1570 POSTING_READ(reg);
1571 udelay(150); /* wait for warmup */
426115cf 1572 I915_WRITE(reg, dpll);
87442f73
DV
1573 POSTING_READ(reg);
1574 udelay(150); /* wait for warmup */
1575}
1576
9d556c99
CML
1577static void chv_enable_pll(struct intel_crtc *crtc)
1578{
1579 struct drm_device *dev = crtc->base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int pipe = crtc->pipe;
1582 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1583 u32 tmp;
1584
1585 assert_pipe_disabled(dev_priv, crtc->pipe);
1586
1587 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1588
1589 mutex_lock(&dev_priv->dpio_lock);
1590
1591 /* Enable back the 10bit clock to display controller */
1592 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1593 tmp |= DPIO_DCLKP_EN;
1594 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1595
1596 /*
1597 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1598 */
1599 udelay(1);
1600
1601 /* Enable PLL */
a11b0703 1602 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1603
1604 /* Check PLL is locked */
a11b0703 1605 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1606 DRM_ERROR("PLL %d failed to lock\n", pipe);
1607
a11b0703
VS
1608 /* not sure when this should be written */
1609 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1610 POSTING_READ(DPLL_MD(pipe));
1611
9d556c99
CML
1612 mutex_unlock(&dev_priv->dpio_lock);
1613}
1614
1c4e0274
VS
1615static int intel_num_dvo_pipes(struct drm_device *dev)
1616{
1617 struct intel_crtc *crtc;
1618 int count = 0;
1619
1620 for_each_intel_crtc(dev, crtc)
1621 count += crtc->active &&
1622 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO);
1623
1624 return count;
1625}
1626
66e3d5c0 1627static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1628{
66e3d5c0
DV
1629 struct drm_device *dev = crtc->base.dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 int reg = DPLL(crtc->pipe);
1632 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1633
66e3d5c0 1634 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1635
63d7bbe9 1636 /* No really, not for ILK+ */
3d13ef2e 1637 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1638
1639 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1640 if (IS_MOBILE(dev) && !IS_I830(dev))
1641 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1642
1c4e0274
VS
1643 /* Enable DVO 2x clock on both PLLs if necessary */
1644 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1645 /*
1646 * It appears to be important that we don't enable this
1647 * for the current pipe before otherwise configuring the
1648 * PLL. No idea how this should be handled if multiple
1649 * DVO outputs are enabled simultaneosly.
1650 */
1651 dpll |= DPLL_DVO_2X_MODE;
1652 I915_WRITE(DPLL(!crtc->pipe),
1653 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1654 }
66e3d5c0
DV
1655
1656 /* Wait for the clocks to stabilize. */
1657 POSTING_READ(reg);
1658 udelay(150);
1659
1660 if (INTEL_INFO(dev)->gen >= 4) {
1661 I915_WRITE(DPLL_MD(crtc->pipe),
1662 crtc->config.dpll_hw_state.dpll_md);
1663 } else {
1664 /* The pixel multiplier can only be updated once the
1665 * DPLL is enabled and the clocks are stable.
1666 *
1667 * So write it again.
1668 */
1669 I915_WRITE(reg, dpll);
1670 }
63d7bbe9
JB
1671
1672 /* We do this three times for luck */
66e3d5c0 1673 I915_WRITE(reg, dpll);
63d7bbe9
JB
1674 POSTING_READ(reg);
1675 udelay(150); /* wait for warmup */
66e3d5c0 1676 I915_WRITE(reg, dpll);
63d7bbe9
JB
1677 POSTING_READ(reg);
1678 udelay(150); /* wait for warmup */
66e3d5c0 1679 I915_WRITE(reg, dpll);
63d7bbe9
JB
1680 POSTING_READ(reg);
1681 udelay(150); /* wait for warmup */
1682}
1683
1684/**
50b44a44 1685 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1686 * @dev_priv: i915 private structure
1687 * @pipe: pipe PLL to disable
1688 *
1689 * Disable the PLL for @pipe, making sure the pipe is off first.
1690 *
1691 * Note! This is for pre-ILK only.
1692 */
1c4e0274 1693static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1694{
1c4e0274
VS
1695 struct drm_device *dev = crtc->base.dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 enum pipe pipe = crtc->pipe;
1698
1699 /* Disable DVO 2x clock on both PLLs if necessary */
1700 if (IS_I830(dev) &&
1701 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO) &&
1702 intel_num_dvo_pipes(dev) == 1) {
1703 I915_WRITE(DPLL(PIPE_B),
1704 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1705 I915_WRITE(DPLL(PIPE_A),
1706 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1707 }
1708
b6b5d049
VS
1709 /* Don't disable pipe or pipe PLLs if needed */
1710 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1711 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1712 return;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
50b44a44
DV
1717 I915_WRITE(DPLL(pipe), 0);
1718 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1719}
1720
f6071166
JB
1721static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1722{
1723 u32 val = 0;
1724
1725 /* Make sure the pipe isn't still relying on us */
1726 assert_pipe_disabled(dev_priv, pipe);
1727
e5cbfbfb
ID
1728 /*
1729 * Leave integrated clock source and reference clock enabled for pipe B.
1730 * The latter is needed for VGA hotplug / manual detection.
1731 */
f6071166 1732 if (pipe == PIPE_B)
e5cbfbfb 1733 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1734 I915_WRITE(DPLL(pipe), val);
1735 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1736
1737}
1738
1739static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740{
d752048d 1741 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1742 u32 val;
1743
a11b0703
VS
1744 /* Make sure the pipe isn't still relying on us */
1745 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1746
a11b0703 1747 /* Set PLL en = 0 */
d17ec4ce 1748 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1749 if (pipe != PIPE_A)
1750 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1751 I915_WRITE(DPLL(pipe), val);
1752 POSTING_READ(DPLL(pipe));
d752048d
VS
1753
1754 mutex_lock(&dev_priv->dpio_lock);
1755
1756 /* Disable 10bit clock to display controller */
1757 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1758 val &= ~DPIO_DCLKP_EN;
1759 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1760
61407f6d
VS
1761 /* disable left/right clock distribution */
1762 if (pipe != PIPE_B) {
1763 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1764 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1765 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1766 } else {
1767 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1768 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1769 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1770 }
1771
d752048d 1772 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1773}
1774
e4607fcf
CML
1775void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1776 struct intel_digital_port *dport)
89b667f8
JB
1777{
1778 u32 port_mask;
00fc31b7 1779 int dpll_reg;
89b667f8 1780
e4607fcf
CML
1781 switch (dport->port) {
1782 case PORT_B:
89b667f8 1783 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1784 dpll_reg = DPLL(0);
e4607fcf
CML
1785 break;
1786 case PORT_C:
89b667f8 1787 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1788 dpll_reg = DPLL(0);
1789 break;
1790 case PORT_D:
1791 port_mask = DPLL_PORTD_READY_MASK;
1792 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1793 break;
1794 default:
1795 BUG();
1796 }
89b667f8 1797
00fc31b7 1798 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1799 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1800 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1801}
1802
b14b1055
DV
1803static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1804{
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
be19f0ff
CW
1809 if (WARN_ON(pll == NULL))
1810 return;
1811
b14b1055
DV
1812 WARN_ON(!pll->refcount);
1813 if (pll->active == 0) {
1814 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1815 WARN_ON(pll->on);
1816 assert_shared_dpll_disabled(dev_priv, pll);
1817
1818 pll->mode_set(dev_priv, pll);
1819 }
1820}
1821
92f2584a 1822/**
85b3894f 1823 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1824 * @dev_priv: i915 private structure
1825 * @pipe: pipe PLL to enable
1826 *
1827 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1828 * drives the transcoder clock.
1829 */
85b3894f 1830static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1835
87a875bb 1836 if (WARN_ON(pll == NULL))
48da64a8
CW
1837 return;
1838
1839 if (WARN_ON(pll->refcount == 0))
1840 return;
ee7b9f93 1841
74dd6928 1842 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1843 pll->name, pll->active, pll->on,
e2b78267 1844 crtc->base.base.id);
92f2584a 1845
cdbd2316
DV
1846 if (pll->active++) {
1847 WARN_ON(!pll->on);
e9d6944e 1848 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1849 return;
1850 }
f4a091c7 1851 WARN_ON(pll->on);
ee7b9f93 1852
bd2bb1b9
PZ
1853 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1854
46edb027 1855 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1856 pll->enable(dev_priv, pll);
ee7b9f93 1857 pll->on = true;
92f2584a
JB
1858}
1859
f6daaec2 1860static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1861{
3d13ef2e
DL
1862 struct drm_device *dev = crtc->base.dev;
1863 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1864 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1865
92f2584a 1866 /* PCH only available on ILK+ */
3d13ef2e 1867 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1868 if (WARN_ON(pll == NULL))
ee7b9f93 1869 return;
92f2584a 1870
48da64a8
CW
1871 if (WARN_ON(pll->refcount == 0))
1872 return;
7a419866 1873
46edb027
DV
1874 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1875 pll->name, pll->active, pll->on,
e2b78267 1876 crtc->base.base.id);
7a419866 1877
48da64a8 1878 if (WARN_ON(pll->active == 0)) {
e9d6944e 1879 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1880 return;
1881 }
1882
e9d6944e 1883 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1884 WARN_ON(!pll->on);
cdbd2316 1885 if (--pll->active)
7a419866 1886 return;
ee7b9f93 1887
46edb027 1888 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1889 pll->disable(dev_priv, pll);
ee7b9f93 1890 pll->on = false;
bd2bb1b9
PZ
1891
1892 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1893}
1894
b8a4f404
PZ
1895static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1896 enum pipe pipe)
040484af 1897{
23670b32 1898 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1899 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1901 uint32_t reg, val, pipeconf_val;
040484af
JB
1902
1903 /* PCH only available on ILK+ */
55522f37 1904 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1905
1906 /* Make sure PCH DPLL is enabled */
e72f9fbf 1907 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1908 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1909
1910 /* FDI must be feeding us bits for PCH ports */
1911 assert_fdi_tx_enabled(dev_priv, pipe);
1912 assert_fdi_rx_enabled(dev_priv, pipe);
1913
23670b32
DV
1914 if (HAS_PCH_CPT(dev)) {
1915 /* Workaround: Set the timing override bit before enabling the
1916 * pch transcoder. */
1917 reg = TRANS_CHICKEN2(pipe);
1918 val = I915_READ(reg);
1919 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1920 I915_WRITE(reg, val);
59c859d6 1921 }
23670b32 1922
ab9412ba 1923 reg = PCH_TRANSCONF(pipe);
040484af 1924 val = I915_READ(reg);
5f7f726d 1925 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1926
1927 if (HAS_PCH_IBX(dev_priv->dev)) {
1928 /*
1929 * make the BPC in transcoder be consistent with
1930 * that in pipeconf reg.
1931 */
dfd07d72
DV
1932 val &= ~PIPECONF_BPC_MASK;
1933 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1934 }
5f7f726d
PZ
1935
1936 val &= ~TRANS_INTERLACE_MASK;
1937 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1938 if (HAS_PCH_IBX(dev_priv->dev) &&
1939 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1940 val |= TRANS_LEGACY_INTERLACED_ILK;
1941 else
1942 val |= TRANS_INTERLACED;
5f7f726d
PZ
1943 else
1944 val |= TRANS_PROGRESSIVE;
1945
040484af
JB
1946 I915_WRITE(reg, val | TRANS_ENABLE);
1947 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1948 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1949}
1950
8fb033d7 1951static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1952 enum transcoder cpu_transcoder)
040484af 1953{
8fb033d7 1954 u32 val, pipeconf_val;
8fb033d7
PZ
1955
1956 /* PCH only available on ILK+ */
55522f37 1957 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1958
8fb033d7 1959 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1960 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1961 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1962
223a6fdf
PZ
1963 /* Workaround: set timing override bit. */
1964 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1965 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1966 I915_WRITE(_TRANSA_CHICKEN2, val);
1967
25f3ef11 1968 val = TRANS_ENABLE;
937bb610 1969 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1970
9a76b1c6
PZ
1971 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1972 PIPECONF_INTERLACED_ILK)
a35f2679 1973 val |= TRANS_INTERLACED;
8fb033d7
PZ
1974 else
1975 val |= TRANS_PROGRESSIVE;
1976
ab9412ba
DV
1977 I915_WRITE(LPT_TRANSCONF, val);
1978 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1979 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1980}
1981
b8a4f404
PZ
1982static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1983 enum pipe pipe)
040484af 1984{
23670b32
DV
1985 struct drm_device *dev = dev_priv->dev;
1986 uint32_t reg, val;
040484af
JB
1987
1988 /* FDI relies on the transcoder */
1989 assert_fdi_tx_disabled(dev_priv, pipe);
1990 assert_fdi_rx_disabled(dev_priv, pipe);
1991
291906f1
JB
1992 /* Ports must be off as well */
1993 assert_pch_ports_disabled(dev_priv, pipe);
1994
ab9412ba 1995 reg = PCH_TRANSCONF(pipe);
040484af
JB
1996 val = I915_READ(reg);
1997 val &= ~TRANS_ENABLE;
1998 I915_WRITE(reg, val);
1999 /* wait for PCH transcoder off, transcoder state */
2000 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2001 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2002
2003 if (!HAS_PCH_IBX(dev)) {
2004 /* Workaround: Clear the timing override chicken bit again. */
2005 reg = TRANS_CHICKEN2(pipe);
2006 val = I915_READ(reg);
2007 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2008 I915_WRITE(reg, val);
2009 }
040484af
JB
2010}
2011
ab4d966c 2012static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2013{
8fb033d7
PZ
2014 u32 val;
2015
ab9412ba 2016 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2017 val &= ~TRANS_ENABLE;
ab9412ba 2018 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2019 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2020 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2021 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2022
2023 /* Workaround: clear timing override bit. */
2024 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2025 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2026 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2027}
2028
b24e7179 2029/**
309cfea8 2030 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2031 * @crtc: crtc responsible for the pipe
b24e7179 2032 *
0372264a 2033 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2034 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2035 */
e1fdc473 2036static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2037{
0372264a
PZ
2038 struct drm_device *dev = crtc->base.dev;
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2041 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2042 pipe);
1a240d4d 2043 enum pipe pch_transcoder;
b24e7179
JB
2044 int reg;
2045 u32 val;
2046
58c6eaa2 2047 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2048 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2049 assert_sprites_disabled(dev_priv, pipe);
2050
681e5811 2051 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2052 pch_transcoder = TRANSCODER_A;
2053 else
2054 pch_transcoder = pipe;
2055
b24e7179
JB
2056 /*
2057 * A pipe without a PLL won't actually be able to drive bits from
2058 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2059 * need the check.
2060 */
2061 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2062 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2063 assert_dsi_pll_enabled(dev_priv);
2064 else
2065 assert_pll_enabled(dev_priv, pipe);
040484af 2066 else {
30421c4f 2067 if (crtc->config.has_pch_encoder) {
040484af 2068 /* if driving the PCH, we need FDI enabled */
cc391bbb 2069 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2070 assert_fdi_tx_pll_enabled(dev_priv,
2071 (enum pipe) cpu_transcoder);
040484af
JB
2072 }
2073 /* FIXME: assert CPU port conditions for SNB+ */
2074 }
b24e7179 2075
702e7a56 2076 reg = PIPECONF(cpu_transcoder);
b24e7179 2077 val = I915_READ(reg);
7ad25d48 2078 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2079 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2080 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2081 return;
7ad25d48 2082 }
00d70b15
CW
2083
2084 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2085 POSTING_READ(reg);
b24e7179
JB
2086}
2087
2088/**
309cfea8 2089 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2090 * @crtc: crtc whose pipes is to be disabled
b24e7179 2091 *
575f7ab7
VS
2092 * Disable the pipe of @crtc, making sure that various hardware
2093 * specific requirements are met, if applicable, e.g. plane
2094 * disabled, panel fitter off, etc.
b24e7179
JB
2095 *
2096 * Will wait until the pipe has shut down before returning.
2097 */
575f7ab7 2098static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2099{
575f7ab7
VS
2100 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2101 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2102 enum pipe pipe = crtc->pipe;
b24e7179
JB
2103 int reg;
2104 u32 val;
2105
2106 /*
2107 * Make sure planes won't keep trying to pump pixels to us,
2108 * or we might hang the display.
2109 */
2110 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2111 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2112 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2113
702e7a56 2114 reg = PIPECONF(cpu_transcoder);
b24e7179 2115 val = I915_READ(reg);
00d70b15
CW
2116 if ((val & PIPECONF_ENABLE) == 0)
2117 return;
2118
67adc644
VS
2119 /*
2120 * Double wide has implications for planes
2121 * so best keep it disabled when not needed.
2122 */
2123 if (crtc->config.double_wide)
2124 val &= ~PIPECONF_DOUBLE_WIDE;
2125
2126 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2127 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2128 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2129 val &= ~PIPECONF_ENABLE;
2130
2131 I915_WRITE(reg, val);
2132 if ((val & PIPECONF_ENABLE) == 0)
2133 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2134}
2135
d74362c9
KP
2136/*
2137 * Plane regs are double buffered, going from enabled->disabled needs a
2138 * trigger in order to latch. The display address reg provides this.
2139 */
1dba99f4
VS
2140void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2141 enum plane plane)
d74362c9 2142{
3d13ef2e
DL
2143 struct drm_device *dev = dev_priv->dev;
2144 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2145
2146 I915_WRITE(reg, I915_READ(reg));
2147 POSTING_READ(reg);
d74362c9
KP
2148}
2149
b24e7179 2150/**
262ca2b0 2151 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2152 * @plane: plane to be enabled
2153 * @crtc: crtc for the plane
b24e7179 2154 *
fdd508a6 2155 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2156 */
fdd508a6
VS
2157static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2158 struct drm_crtc *crtc)
b24e7179 2159{
fdd508a6
VS
2160 struct drm_device *dev = plane->dev;
2161 struct drm_i915_private *dev_priv = dev->dev_private;
2162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2163
2164 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2165 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2166
98ec7739
VS
2167 if (intel_crtc->primary_enabled)
2168 return;
0037f71c 2169
4c445e0e 2170 intel_crtc->primary_enabled = true;
939c2fe8 2171
fdd508a6
VS
2172 dev_priv->display.update_primary_plane(crtc, plane->fb,
2173 crtc->x, crtc->y);
33c3b0d1
VS
2174
2175 /*
2176 * BDW signals flip done immediately if the plane
2177 * is disabled, even if the plane enable is already
2178 * armed to occur at the next vblank :(
2179 */
2180 if (IS_BROADWELL(dev))
2181 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2182}
2183
b24e7179 2184/**
262ca2b0 2185 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2186 * @plane: plane to be disabled
2187 * @crtc: crtc for the plane
b24e7179 2188 *
fdd508a6 2189 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2190 */
fdd508a6
VS
2191static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2192 struct drm_crtc *crtc)
b24e7179 2193{
fdd508a6
VS
2194 struct drm_device *dev = plane->dev;
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2197
2198 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2199
98ec7739
VS
2200 if (!intel_crtc->primary_enabled)
2201 return;
0037f71c 2202
4c445e0e 2203 intel_crtc->primary_enabled = false;
939c2fe8 2204
fdd508a6
VS
2205 dev_priv->display.update_primary_plane(crtc, plane->fb,
2206 crtc->x, crtc->y);
b24e7179
JB
2207}
2208
693db184
CW
2209static bool need_vtd_wa(struct drm_device *dev)
2210{
2211#ifdef CONFIG_INTEL_IOMMU
2212 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213 return true;
2214#endif
2215 return false;
2216}
2217
a57ce0b2
JB
2218static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2219{
2220 int tile_height;
2221
2222 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2223 return ALIGN(height, tile_height);
2224}
2225
127bd2ac 2226int
48b956c5 2227intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2228 struct drm_i915_gem_object *obj,
a4872ba6 2229 struct intel_engine_cs *pipelined)
6b95a207 2230{
ce453d81 2231 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2232 u32 alignment;
2233 int ret;
2234
ebcdd39e
MR
2235 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2236
05394f39 2237 switch (obj->tiling_mode) {
6b95a207 2238 case I915_TILING_NONE:
534843da
CW
2239 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2240 alignment = 128 * 1024;
a6c45cf0 2241 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2242 alignment = 4 * 1024;
2243 else
2244 alignment = 64 * 1024;
6b95a207
KH
2245 break;
2246 case I915_TILING_X:
2247 /* pin() will align the object as required by fence */
2248 alignment = 0;
2249 break;
2250 case I915_TILING_Y:
80075d49 2251 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2252 return -EINVAL;
2253 default:
2254 BUG();
2255 }
2256
693db184
CW
2257 /* Note that the w/a also requires 64 PTE of padding following the
2258 * bo. We currently fill all unused PTE with the shadow page and so
2259 * we should always have valid PTE following the scanout preventing
2260 * the VT-d warning.
2261 */
2262 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2263 alignment = 256 * 1024;
2264
d6dd6843
PZ
2265 /*
2266 * Global gtt pte registers are special registers which actually forward
2267 * writes to a chunk of system memory. Which means that there is no risk
2268 * that the register values disappear as soon as we call
2269 * intel_runtime_pm_put(), so it is correct to wrap only the
2270 * pin/unpin/fence and not more.
2271 */
2272 intel_runtime_pm_get(dev_priv);
2273
ce453d81 2274 dev_priv->mm.interruptible = false;
2da3b9b9 2275 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2276 if (ret)
ce453d81 2277 goto err_interruptible;
6b95a207
KH
2278
2279 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2280 * fence, whereas 965+ only requires a fence if using
2281 * framebuffer compression. For simplicity, we always install
2282 * a fence as the cost is not that onerous.
2283 */
06d98131 2284 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2285 if (ret)
2286 goto err_unpin;
1690e1eb 2287
9a5a53b3 2288 i915_gem_object_pin_fence(obj);
6b95a207 2289
ce453d81 2290 dev_priv->mm.interruptible = true;
d6dd6843 2291 intel_runtime_pm_put(dev_priv);
6b95a207 2292 return 0;
48b956c5
CW
2293
2294err_unpin:
cc98b413 2295 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2296err_interruptible:
2297 dev_priv->mm.interruptible = true;
d6dd6843 2298 intel_runtime_pm_put(dev_priv);
48b956c5 2299 return ret;
6b95a207
KH
2300}
2301
1690e1eb
CW
2302void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2303{
ebcdd39e
MR
2304 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2305
1690e1eb 2306 i915_gem_object_unpin_fence(obj);
cc98b413 2307 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2308}
2309
c2c75131
DV
2310/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2311 * is assumed to be a power-of-two. */
bc752862
CW
2312unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2313 unsigned int tiling_mode,
2314 unsigned int cpp,
2315 unsigned int pitch)
c2c75131 2316{
bc752862
CW
2317 if (tiling_mode != I915_TILING_NONE) {
2318 unsigned int tile_rows, tiles;
c2c75131 2319
bc752862
CW
2320 tile_rows = *y / 8;
2321 *y %= 8;
c2c75131 2322
bc752862
CW
2323 tiles = *x / (512/cpp);
2324 *x %= 512/cpp;
2325
2326 return tile_rows * pitch * 8 + tiles * 4096;
2327 } else {
2328 unsigned int offset;
2329
2330 offset = *y * pitch + *x * cpp;
2331 *y = 0;
2332 *x = (offset & 4095) / cpp;
2333 return offset & -4096;
2334 }
c2c75131
DV
2335}
2336
46f297fb
JB
2337int intel_format_to_fourcc(int format)
2338{
2339 switch (format) {
2340 case DISPPLANE_8BPP:
2341 return DRM_FORMAT_C8;
2342 case DISPPLANE_BGRX555:
2343 return DRM_FORMAT_XRGB1555;
2344 case DISPPLANE_BGRX565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case DISPPLANE_BGRX888:
2348 return DRM_FORMAT_XRGB8888;
2349 case DISPPLANE_RGBX888:
2350 return DRM_FORMAT_XBGR8888;
2351 case DISPPLANE_BGRX101010:
2352 return DRM_FORMAT_XRGB2101010;
2353 case DISPPLANE_RGBX101010:
2354 return DRM_FORMAT_XBGR2101010;
2355 }
2356}
2357
484b41dd 2358static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2359 struct intel_plane_config *plane_config)
2360{
2361 struct drm_device *dev = crtc->base.dev;
2362 struct drm_i915_gem_object *obj = NULL;
2363 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2364 u32 base = plane_config->base;
2365
ff2652ea
CW
2366 if (plane_config->size == 0)
2367 return false;
2368
46f297fb
JB
2369 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2370 plane_config->size);
2371 if (!obj)
484b41dd 2372 return false;
46f297fb
JB
2373
2374 if (plane_config->tiled) {
2375 obj->tiling_mode = I915_TILING_X;
66e514c1 2376 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2377 }
2378
66e514c1
DA
2379 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2380 mode_cmd.width = crtc->base.primary->fb->width;
2381 mode_cmd.height = crtc->base.primary->fb->height;
2382 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2383
2384 mutex_lock(&dev->struct_mutex);
2385
66e514c1 2386 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2387 &mode_cmd, obj)) {
46f297fb
JB
2388 DRM_DEBUG_KMS("intel fb init failed\n");
2389 goto out_unref_obj;
2390 }
2391
a071fa00 2392 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2393 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2394
2395 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2396 return true;
46f297fb
JB
2397
2398out_unref_obj:
2399 drm_gem_object_unreference(&obj->base);
2400 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2401 return false;
2402}
2403
2404static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2405 struct intel_plane_config *plane_config)
2406{
2407 struct drm_device *dev = intel_crtc->base.dev;
2408 struct drm_crtc *c;
2409 struct intel_crtc *i;
2ff8fde1 2410 struct drm_i915_gem_object *obj;
484b41dd 2411
66e514c1 2412 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2413 return;
2414
2415 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2416 return;
2417
66e514c1
DA
2418 kfree(intel_crtc->base.primary->fb);
2419 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2420
2421 /*
2422 * Failed to alloc the obj, check to see if we should share
2423 * an fb with another CRTC instead
2424 */
70e1e0ec 2425 for_each_crtc(dev, c) {
484b41dd
JB
2426 i = to_intel_crtc(c);
2427
2428 if (c == &intel_crtc->base)
2429 continue;
2430
2ff8fde1
MR
2431 if (!i->active)
2432 continue;
2433
2434 obj = intel_fb_obj(c->primary->fb);
2435 if (obj == NULL)
484b41dd
JB
2436 continue;
2437
2ff8fde1 2438 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2439 drm_framebuffer_reference(c->primary->fb);
2440 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2441 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2442 break;
2443 }
2444 }
46f297fb
JB
2445}
2446
29b9bde6
DV
2447static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2448 struct drm_framebuffer *fb,
2449 int x, int y)
81255565
JB
2450{
2451 struct drm_device *dev = crtc->dev;
2452 struct drm_i915_private *dev_priv = dev->dev_private;
2453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2454 struct drm_i915_gem_object *obj;
81255565 2455 int plane = intel_crtc->plane;
e506a0c6 2456 unsigned long linear_offset;
81255565 2457 u32 dspcntr;
f45651ba 2458 u32 reg = DSPCNTR(plane);
48404c1e 2459 int pixel_size;
f45651ba 2460
fdd508a6
VS
2461 if (!intel_crtc->primary_enabled) {
2462 I915_WRITE(reg, 0);
2463 if (INTEL_INFO(dev)->gen >= 4)
2464 I915_WRITE(DSPSURF(plane), 0);
2465 else
2466 I915_WRITE(DSPADDR(plane), 0);
2467 POSTING_READ(reg);
2468 return;
2469 }
2470
c9ba6fad
VS
2471 obj = intel_fb_obj(fb);
2472 if (WARN_ON(obj == NULL))
2473 return;
2474
2475 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2476
f45651ba
VS
2477 dspcntr = DISPPLANE_GAMMA_ENABLE;
2478
fdd508a6 2479 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2480
2481 if (INTEL_INFO(dev)->gen < 4) {
2482 if (intel_crtc->pipe == PIPE_B)
2483 dspcntr |= DISPPLANE_SEL_PIPE_B;
2484
2485 /* pipesrc and dspsize control the size that is scaled from,
2486 * which should always be the user's requested size.
2487 */
2488 I915_WRITE(DSPSIZE(plane),
2489 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2490 (intel_crtc->config.pipe_src_w - 1));
2491 I915_WRITE(DSPPOS(plane), 0);
2492 }
81255565 2493
57779d06
VS
2494 switch (fb->pixel_format) {
2495 case DRM_FORMAT_C8:
81255565
JB
2496 dspcntr |= DISPPLANE_8BPP;
2497 break;
57779d06
VS
2498 case DRM_FORMAT_XRGB1555:
2499 case DRM_FORMAT_ARGB1555:
2500 dspcntr |= DISPPLANE_BGRX555;
81255565 2501 break;
57779d06
VS
2502 case DRM_FORMAT_RGB565:
2503 dspcntr |= DISPPLANE_BGRX565;
2504 break;
2505 case DRM_FORMAT_XRGB8888:
2506 case DRM_FORMAT_ARGB8888:
2507 dspcntr |= DISPPLANE_BGRX888;
2508 break;
2509 case DRM_FORMAT_XBGR8888:
2510 case DRM_FORMAT_ABGR8888:
2511 dspcntr |= DISPPLANE_RGBX888;
2512 break;
2513 case DRM_FORMAT_XRGB2101010:
2514 case DRM_FORMAT_ARGB2101010:
2515 dspcntr |= DISPPLANE_BGRX101010;
2516 break;
2517 case DRM_FORMAT_XBGR2101010:
2518 case DRM_FORMAT_ABGR2101010:
2519 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2520 break;
2521 default:
baba133a 2522 BUG();
81255565 2523 }
57779d06 2524
f45651ba
VS
2525 if (INTEL_INFO(dev)->gen >= 4 &&
2526 obj->tiling_mode != I915_TILING_NONE)
2527 dspcntr |= DISPPLANE_TILED;
81255565 2528
de1aa629
VS
2529 if (IS_G4X(dev))
2530 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2531
b9897127 2532 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2533
c2c75131
DV
2534 if (INTEL_INFO(dev)->gen >= 4) {
2535 intel_crtc->dspaddr_offset =
bc752862 2536 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2537 pixel_size,
bc752862 2538 fb->pitches[0]);
c2c75131
DV
2539 linear_offset -= intel_crtc->dspaddr_offset;
2540 } else {
e506a0c6 2541 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2542 }
e506a0c6 2543
48404c1e
SJ
2544 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2545 dspcntr |= DISPPLANE_ROTATE_180;
2546
2547 x += (intel_crtc->config.pipe_src_w - 1);
2548 y += (intel_crtc->config.pipe_src_h - 1);
2549
2550 /* Finding the last pixel of the last line of the display
2551 data and adding to linear_offset*/
2552 linear_offset +=
2553 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2554 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2555 }
2556
2557 I915_WRITE(reg, dspcntr);
2558
f343c5f6
BW
2559 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2560 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2561 fb->pitches[0]);
01f2c773 2562 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2563 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2564 I915_WRITE(DSPSURF(plane),
2565 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2566 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2567 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2568 } else
f343c5f6 2569 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2570 POSTING_READ(reg);
17638cd6
JB
2571}
2572
29b9bde6
DV
2573static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2574 struct drm_framebuffer *fb,
2575 int x, int y)
17638cd6
JB
2576{
2577 struct drm_device *dev = crtc->dev;
2578 struct drm_i915_private *dev_priv = dev->dev_private;
2579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2580 struct drm_i915_gem_object *obj;
17638cd6 2581 int plane = intel_crtc->plane;
e506a0c6 2582 unsigned long linear_offset;
17638cd6 2583 u32 dspcntr;
f45651ba 2584 u32 reg = DSPCNTR(plane);
48404c1e 2585 int pixel_size;
f45651ba 2586
fdd508a6
VS
2587 if (!intel_crtc->primary_enabled) {
2588 I915_WRITE(reg, 0);
2589 I915_WRITE(DSPSURF(plane), 0);
2590 POSTING_READ(reg);
2591 return;
2592 }
2593
c9ba6fad
VS
2594 obj = intel_fb_obj(fb);
2595 if (WARN_ON(obj == NULL))
2596 return;
2597
2598 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2599
f45651ba
VS
2600 dspcntr = DISPPLANE_GAMMA_ENABLE;
2601
fdd508a6 2602 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2603
2604 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2605 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2606
57779d06
VS
2607 switch (fb->pixel_format) {
2608 case DRM_FORMAT_C8:
17638cd6
JB
2609 dspcntr |= DISPPLANE_8BPP;
2610 break;
57779d06
VS
2611 case DRM_FORMAT_RGB565:
2612 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2613 break;
57779d06
VS
2614 case DRM_FORMAT_XRGB8888:
2615 case DRM_FORMAT_ARGB8888:
2616 dspcntr |= DISPPLANE_BGRX888;
2617 break;
2618 case DRM_FORMAT_XBGR8888:
2619 case DRM_FORMAT_ABGR8888:
2620 dspcntr |= DISPPLANE_RGBX888;
2621 break;
2622 case DRM_FORMAT_XRGB2101010:
2623 case DRM_FORMAT_ARGB2101010:
2624 dspcntr |= DISPPLANE_BGRX101010;
2625 break;
2626 case DRM_FORMAT_XBGR2101010:
2627 case DRM_FORMAT_ABGR2101010:
2628 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2629 break;
2630 default:
baba133a 2631 BUG();
17638cd6
JB
2632 }
2633
2634 if (obj->tiling_mode != I915_TILING_NONE)
2635 dspcntr |= DISPPLANE_TILED;
17638cd6 2636
f45651ba 2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2638 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2639
b9897127 2640 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2641 intel_crtc->dspaddr_offset =
bc752862 2642 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2643 pixel_size,
bc752862 2644 fb->pitches[0]);
c2c75131 2645 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2646 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2647 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2650 x += (intel_crtc->config.pipe_src_w - 1);
2651 y += (intel_crtc->config.pipe_src_h - 1);
2652
2653 /* Finding the last pixel of the last line of the display
2654 data and adding to linear_offset*/
2655 linear_offset +=
2656 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2657 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2658 }
2659 }
2660
2661 I915_WRITE(reg, dspcntr);
17638cd6 2662
f343c5f6
BW
2663 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2664 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2665 fb->pitches[0]);
01f2c773 2666 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2667 I915_WRITE(DSPSURF(plane),
2668 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2669 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2670 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2671 } else {
2672 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2673 I915_WRITE(DSPLINOFF(plane), linear_offset);
2674 }
17638cd6 2675 POSTING_READ(reg);
17638cd6
JB
2676}
2677
2678/* Assume fb object is pinned & idle & fenced and just update base pointers */
2679static int
2680intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2681 int x, int y, enum mode_set_atomic state)
2682{
2683 struct drm_device *dev = crtc->dev;
2684 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2685
6b8e6ed0
CW
2686 if (dev_priv->display.disable_fbc)
2687 dev_priv->display.disable_fbc(dev);
cc36513c 2688 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2689
29b9bde6
DV
2690 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2691
2692 return 0;
81255565
JB
2693}
2694
96a02917
VS
2695void intel_display_handle_reset(struct drm_device *dev)
2696{
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 struct drm_crtc *crtc;
2699
2700 /*
2701 * Flips in the rings have been nuked by the reset,
2702 * so complete all pending flips so that user space
2703 * will get its events and not get stuck.
2704 *
2705 * Also update the base address of all primary
2706 * planes to the the last fb to make sure we're
2707 * showing the correct fb after a reset.
2708 *
2709 * Need to make two loops over the crtcs so that we
2710 * don't try to grab a crtc mutex before the
2711 * pending_flip_queue really got woken up.
2712 */
2713
70e1e0ec 2714 for_each_crtc(dev, crtc) {
96a02917
VS
2715 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2716 enum plane plane = intel_crtc->plane;
2717
2718 intel_prepare_page_flip(dev, plane);
2719 intel_finish_page_flip_plane(dev, plane);
2720 }
2721
70e1e0ec 2722 for_each_crtc(dev, crtc) {
96a02917
VS
2723 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2724
51fd371b 2725 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2726 /*
2727 * FIXME: Once we have proper support for primary planes (and
2728 * disabling them without disabling the entire crtc) allow again
66e514c1 2729 * a NULL crtc->primary->fb.
947fdaad 2730 */
f4510a27 2731 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2732 dev_priv->display.update_primary_plane(crtc,
66e514c1 2733 crtc->primary->fb,
262ca2b0
MR
2734 crtc->x,
2735 crtc->y);
51fd371b 2736 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2737 }
2738}
2739
14667a4b
CW
2740static int
2741intel_finish_fb(struct drm_framebuffer *old_fb)
2742{
2ff8fde1 2743 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2744 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2745 bool was_interruptible = dev_priv->mm.interruptible;
2746 int ret;
2747
14667a4b
CW
2748 /* Big Hammer, we also need to ensure that any pending
2749 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2750 * current scanout is retired before unpinning the old
2751 * framebuffer.
2752 *
2753 * This should only fail upon a hung GPU, in which case we
2754 * can safely continue.
2755 */
2756 dev_priv->mm.interruptible = false;
2757 ret = i915_gem_object_finish_gpu(obj);
2758 dev_priv->mm.interruptible = was_interruptible;
2759
2760 return ret;
2761}
2762
7d5e3799
CW
2763static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2764{
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768 unsigned long flags;
2769 bool pending;
2770
2771 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2772 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2773 return false;
2774
2775 spin_lock_irqsave(&dev->event_lock, flags);
2776 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2777 spin_unlock_irqrestore(&dev->event_lock, flags);
2778
2779 return pending;
2780}
2781
5c3b82e2 2782static int
3c4fdcfb 2783intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2784 struct drm_framebuffer *fb)
79e53945
JB
2785{
2786 struct drm_device *dev = crtc->dev;
6b8e6ed0 2787 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2789 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2790 struct drm_framebuffer *old_fb = crtc->primary->fb;
2791 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2792 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2793 int ret;
79e53945 2794
7d5e3799
CW
2795 if (intel_crtc_has_pending_flip(crtc)) {
2796 DRM_ERROR("pipe is still busy with an old pageflip\n");
2797 return -EBUSY;
2798 }
2799
79e53945 2800 /* no fb bound */
94352cf9 2801 if (!fb) {
a5071c2f 2802 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2803 return 0;
2804 }
2805
7eb552ae 2806 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2807 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2808 plane_name(intel_crtc->plane),
2809 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2810 return -EINVAL;
79e53945
JB
2811 }
2812
5c3b82e2 2813 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2814 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2815 if (ret == 0)
91565c85 2816 i915_gem_track_fb(old_obj, obj,
a071fa00 2817 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2818 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2819 if (ret != 0) {
a5071c2f 2820 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2821 return ret;
2822 }
79e53945 2823
bb2043de
DL
2824 /*
2825 * Update pipe size and adjust fitter if needed: the reason for this is
2826 * that in compute_mode_changes we check the native mode (not the pfit
2827 * mode) to see if we can flip rather than do a full mode set. In the
2828 * fastboot case, we'll flip, but if we don't update the pipesrc and
2829 * pfit state, we'll end up with a big fb scanned out into the wrong
2830 * sized surface.
2831 *
2832 * To fix this properly, we need to hoist the checks up into
2833 * compute_mode_changes (or above), check the actual pfit state and
2834 * whether the platform allows pfit disable with pipe active, and only
2835 * then update the pipesrc and pfit state, even on the flip path.
2836 */
d330a953 2837 if (i915.fastboot) {
d7bf63f2
DL
2838 const struct drm_display_mode *adjusted_mode =
2839 &intel_crtc->config.adjusted_mode;
2840
4d6a3e63 2841 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2842 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2843 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2844 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2845 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2846 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2847 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2848 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2849 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2850 }
0637d60d
JB
2851 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2852 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2853 }
2854
29b9bde6 2855 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2856
f99d7069
DV
2857 if (intel_crtc->active)
2858 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2859
f4510a27 2860 crtc->primary->fb = fb;
6c4c86f5
DV
2861 crtc->x = x;
2862 crtc->y = y;
94352cf9 2863
b7f1de28 2864 if (old_fb) {
d7697eea
DV
2865 if (intel_crtc->active && old_fb != fb)
2866 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2867 mutex_lock(&dev->struct_mutex);
2ff8fde1 2868 intel_unpin_fb_obj(old_obj);
8ac36ec1 2869 mutex_unlock(&dev->struct_mutex);
b7f1de28 2870 }
652c393a 2871
8ac36ec1 2872 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2873 intel_update_fbc(dev);
5c3b82e2 2874 mutex_unlock(&dev->struct_mutex);
79e53945 2875
5c3b82e2 2876 return 0;
79e53945
JB
2877}
2878
5e84e1a4
ZW
2879static void intel_fdi_normal_train(struct drm_crtc *crtc)
2880{
2881 struct drm_device *dev = crtc->dev;
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2884 int pipe = intel_crtc->pipe;
2885 u32 reg, temp;
2886
2887 /* enable normal train */
2888 reg = FDI_TX_CTL(pipe);
2889 temp = I915_READ(reg);
61e499bf 2890 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2891 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2892 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2893 } else {
2894 temp &= ~FDI_LINK_TRAIN_NONE;
2895 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2896 }
5e84e1a4
ZW
2897 I915_WRITE(reg, temp);
2898
2899 reg = FDI_RX_CTL(pipe);
2900 temp = I915_READ(reg);
2901 if (HAS_PCH_CPT(dev)) {
2902 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2903 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2904 } else {
2905 temp &= ~FDI_LINK_TRAIN_NONE;
2906 temp |= FDI_LINK_TRAIN_NONE;
2907 }
2908 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2909
2910 /* wait one idle pattern time */
2911 POSTING_READ(reg);
2912 udelay(1000);
357555c0
JB
2913
2914 /* IVB wants error correction enabled */
2915 if (IS_IVYBRIDGE(dev))
2916 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2917 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2918}
2919
1fbc0d78 2920static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2921{
1fbc0d78
DV
2922 return crtc->base.enabled && crtc->active &&
2923 crtc->config.has_pch_encoder;
1e833f40
DV
2924}
2925
01a415fd
DV
2926static void ivb_modeset_global_resources(struct drm_device *dev)
2927{
2928 struct drm_i915_private *dev_priv = dev->dev_private;
2929 struct intel_crtc *pipe_B_crtc =
2930 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2931 struct intel_crtc *pipe_C_crtc =
2932 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2933 uint32_t temp;
2934
1e833f40
DV
2935 /*
2936 * When everything is off disable fdi C so that we could enable fdi B
2937 * with all lanes. Note that we don't care about enabled pipes without
2938 * an enabled pch encoder.
2939 */
2940 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2941 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2942 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2943 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2944
2945 temp = I915_READ(SOUTH_CHICKEN1);
2946 temp &= ~FDI_BC_BIFURCATION_SELECT;
2947 DRM_DEBUG_KMS("disabling fdi C rx\n");
2948 I915_WRITE(SOUTH_CHICKEN1, temp);
2949 }
2950}
2951
8db9d77b
ZW
2952/* The FDI link training functions for ILK/Ibexpeak. */
2953static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2954{
2955 struct drm_device *dev = crtc->dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2958 int pipe = intel_crtc->pipe;
5eddb70b 2959 u32 reg, temp, tries;
8db9d77b 2960
1c8562f6 2961 /* FDI needs bits from pipe first */
0fc932b8 2962 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2963
e1a44743
AJ
2964 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2965 for train result */
5eddb70b
CW
2966 reg = FDI_RX_IMR(pipe);
2967 temp = I915_READ(reg);
e1a44743
AJ
2968 temp &= ~FDI_RX_SYMBOL_LOCK;
2969 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2970 I915_WRITE(reg, temp);
2971 I915_READ(reg);
e1a44743
AJ
2972 udelay(150);
2973
8db9d77b 2974 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2975 reg = FDI_TX_CTL(pipe);
2976 temp = I915_READ(reg);
627eb5a3
DV
2977 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2978 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2979 temp &= ~FDI_LINK_TRAIN_NONE;
2980 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2981 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2982
5eddb70b
CW
2983 reg = FDI_RX_CTL(pipe);
2984 temp = I915_READ(reg);
8db9d77b
ZW
2985 temp &= ~FDI_LINK_TRAIN_NONE;
2986 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2987 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2988
2989 POSTING_READ(reg);
8db9d77b
ZW
2990 udelay(150);
2991
5b2adf89 2992 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2993 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2994 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2995 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2996
5eddb70b 2997 reg = FDI_RX_IIR(pipe);
e1a44743 2998 for (tries = 0; tries < 5; tries++) {
5eddb70b 2999 temp = I915_READ(reg);
8db9d77b
ZW
3000 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3001
3002 if ((temp & FDI_RX_BIT_LOCK)) {
3003 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3004 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3005 break;
3006 }
8db9d77b 3007 }
e1a44743 3008 if (tries == 5)
5eddb70b 3009 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3010
3011 /* Train 2 */
5eddb70b
CW
3012 reg = FDI_TX_CTL(pipe);
3013 temp = I915_READ(reg);
8db9d77b
ZW
3014 temp &= ~FDI_LINK_TRAIN_NONE;
3015 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3016 I915_WRITE(reg, temp);
8db9d77b 3017
5eddb70b
CW
3018 reg = FDI_RX_CTL(pipe);
3019 temp = I915_READ(reg);
8db9d77b
ZW
3020 temp &= ~FDI_LINK_TRAIN_NONE;
3021 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3022 I915_WRITE(reg, temp);
8db9d77b 3023
5eddb70b
CW
3024 POSTING_READ(reg);
3025 udelay(150);
8db9d77b 3026
5eddb70b 3027 reg = FDI_RX_IIR(pipe);
e1a44743 3028 for (tries = 0; tries < 5; tries++) {
5eddb70b 3029 temp = I915_READ(reg);
8db9d77b
ZW
3030 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3031
3032 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3033 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3034 DRM_DEBUG_KMS("FDI train 2 done.\n");
3035 break;
3036 }
8db9d77b 3037 }
e1a44743 3038 if (tries == 5)
5eddb70b 3039 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3040
3041 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3042
8db9d77b
ZW
3043}
3044
0206e353 3045static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3046 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3047 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3048 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3049 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3050};
3051
3052/* The FDI link training functions for SNB/Cougarpoint. */
3053static void gen6_fdi_link_train(struct drm_crtc *crtc)
3054{
3055 struct drm_device *dev = crtc->dev;
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3058 int pipe = intel_crtc->pipe;
fa37d39e 3059 u32 reg, temp, i, retry;
8db9d77b 3060
e1a44743
AJ
3061 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3062 for train result */
5eddb70b
CW
3063 reg = FDI_RX_IMR(pipe);
3064 temp = I915_READ(reg);
e1a44743
AJ
3065 temp &= ~FDI_RX_SYMBOL_LOCK;
3066 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3067 I915_WRITE(reg, temp);
3068
3069 POSTING_READ(reg);
e1a44743
AJ
3070 udelay(150);
3071
8db9d77b 3072 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3073 reg = FDI_TX_CTL(pipe);
3074 temp = I915_READ(reg);
627eb5a3
DV
3075 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3076 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3077 temp &= ~FDI_LINK_TRAIN_NONE;
3078 temp |= FDI_LINK_TRAIN_PATTERN_1;
3079 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3080 /* SNB-B */
3081 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3082 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3083
d74cf324
DV
3084 I915_WRITE(FDI_RX_MISC(pipe),
3085 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3086
5eddb70b
CW
3087 reg = FDI_RX_CTL(pipe);
3088 temp = I915_READ(reg);
8db9d77b
ZW
3089 if (HAS_PCH_CPT(dev)) {
3090 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3091 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3092 } else {
3093 temp &= ~FDI_LINK_TRAIN_NONE;
3094 temp |= FDI_LINK_TRAIN_PATTERN_1;
3095 }
5eddb70b
CW
3096 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3097
3098 POSTING_READ(reg);
8db9d77b
ZW
3099 udelay(150);
3100
0206e353 3101 for (i = 0; i < 4; i++) {
5eddb70b
CW
3102 reg = FDI_TX_CTL(pipe);
3103 temp = I915_READ(reg);
8db9d77b
ZW
3104 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3105 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3106 I915_WRITE(reg, temp);
3107
3108 POSTING_READ(reg);
8db9d77b
ZW
3109 udelay(500);
3110
fa37d39e
SP
3111 for (retry = 0; retry < 5; retry++) {
3112 reg = FDI_RX_IIR(pipe);
3113 temp = I915_READ(reg);
3114 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3115 if (temp & FDI_RX_BIT_LOCK) {
3116 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3117 DRM_DEBUG_KMS("FDI train 1 done.\n");
3118 break;
3119 }
3120 udelay(50);
8db9d77b 3121 }
fa37d39e
SP
3122 if (retry < 5)
3123 break;
8db9d77b
ZW
3124 }
3125 if (i == 4)
5eddb70b 3126 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3127
3128 /* Train 2 */
5eddb70b
CW
3129 reg = FDI_TX_CTL(pipe);
3130 temp = I915_READ(reg);
8db9d77b
ZW
3131 temp &= ~FDI_LINK_TRAIN_NONE;
3132 temp |= FDI_LINK_TRAIN_PATTERN_2;
3133 if (IS_GEN6(dev)) {
3134 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3135 /* SNB-B */
3136 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3137 }
5eddb70b 3138 I915_WRITE(reg, temp);
8db9d77b 3139
5eddb70b
CW
3140 reg = FDI_RX_CTL(pipe);
3141 temp = I915_READ(reg);
8db9d77b
ZW
3142 if (HAS_PCH_CPT(dev)) {
3143 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3144 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3145 } else {
3146 temp &= ~FDI_LINK_TRAIN_NONE;
3147 temp |= FDI_LINK_TRAIN_PATTERN_2;
3148 }
5eddb70b
CW
3149 I915_WRITE(reg, temp);
3150
3151 POSTING_READ(reg);
8db9d77b
ZW
3152 udelay(150);
3153
0206e353 3154 for (i = 0; i < 4; i++) {
5eddb70b
CW
3155 reg = FDI_TX_CTL(pipe);
3156 temp = I915_READ(reg);
8db9d77b
ZW
3157 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3158 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3159 I915_WRITE(reg, temp);
3160
3161 POSTING_READ(reg);
8db9d77b
ZW
3162 udelay(500);
3163
fa37d39e
SP
3164 for (retry = 0; retry < 5; retry++) {
3165 reg = FDI_RX_IIR(pipe);
3166 temp = I915_READ(reg);
3167 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3168 if (temp & FDI_RX_SYMBOL_LOCK) {
3169 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3170 DRM_DEBUG_KMS("FDI train 2 done.\n");
3171 break;
3172 }
3173 udelay(50);
8db9d77b 3174 }
fa37d39e
SP
3175 if (retry < 5)
3176 break;
8db9d77b
ZW
3177 }
3178 if (i == 4)
5eddb70b 3179 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3180
3181 DRM_DEBUG_KMS("FDI train done.\n");
3182}
3183
357555c0
JB
3184/* Manual link training for Ivy Bridge A0 parts */
3185static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3186{
3187 struct drm_device *dev = crtc->dev;
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3190 int pipe = intel_crtc->pipe;
139ccd3f 3191 u32 reg, temp, i, j;
357555c0
JB
3192
3193 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3194 for train result */
3195 reg = FDI_RX_IMR(pipe);
3196 temp = I915_READ(reg);
3197 temp &= ~FDI_RX_SYMBOL_LOCK;
3198 temp &= ~FDI_RX_BIT_LOCK;
3199 I915_WRITE(reg, temp);
3200
3201 POSTING_READ(reg);
3202 udelay(150);
3203
01a415fd
DV
3204 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3205 I915_READ(FDI_RX_IIR(pipe)));
3206
139ccd3f
JB
3207 /* Try each vswing and preemphasis setting twice before moving on */
3208 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3209 /* disable first in case we need to retry */
3210 reg = FDI_TX_CTL(pipe);
3211 temp = I915_READ(reg);
3212 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3213 temp &= ~FDI_TX_ENABLE;
3214 I915_WRITE(reg, temp);
357555c0 3215
139ccd3f
JB
3216 reg = FDI_RX_CTL(pipe);
3217 temp = I915_READ(reg);
3218 temp &= ~FDI_LINK_TRAIN_AUTO;
3219 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3220 temp &= ~FDI_RX_ENABLE;
3221 I915_WRITE(reg, temp);
357555c0 3222
139ccd3f 3223 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3224 reg = FDI_TX_CTL(pipe);
3225 temp = I915_READ(reg);
139ccd3f
JB
3226 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3227 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3228 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3229 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3230 temp |= snb_b_fdi_train_param[j/2];
3231 temp |= FDI_COMPOSITE_SYNC;
3232 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3233
139ccd3f
JB
3234 I915_WRITE(FDI_RX_MISC(pipe),
3235 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3236
139ccd3f 3237 reg = FDI_RX_CTL(pipe);
357555c0 3238 temp = I915_READ(reg);
139ccd3f
JB
3239 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3240 temp |= FDI_COMPOSITE_SYNC;
3241 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3242
139ccd3f
JB
3243 POSTING_READ(reg);
3244 udelay(1); /* should be 0.5us */
357555c0 3245
139ccd3f
JB
3246 for (i = 0; i < 4; i++) {
3247 reg = FDI_RX_IIR(pipe);
3248 temp = I915_READ(reg);
3249 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3250
139ccd3f
JB
3251 if (temp & FDI_RX_BIT_LOCK ||
3252 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3253 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3254 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3255 i);
3256 break;
3257 }
3258 udelay(1); /* should be 0.5us */
3259 }
3260 if (i == 4) {
3261 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3262 continue;
3263 }
357555c0 3264
139ccd3f 3265 /* Train 2 */
357555c0
JB
3266 reg = FDI_TX_CTL(pipe);
3267 temp = I915_READ(reg);
139ccd3f
JB
3268 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3269 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3270 I915_WRITE(reg, temp);
3271
3272 reg = FDI_RX_CTL(pipe);
3273 temp = I915_READ(reg);
3274 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3275 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3276 I915_WRITE(reg, temp);
3277
3278 POSTING_READ(reg);
139ccd3f 3279 udelay(2); /* should be 1.5us */
357555c0 3280
139ccd3f
JB
3281 for (i = 0; i < 4; i++) {
3282 reg = FDI_RX_IIR(pipe);
3283 temp = I915_READ(reg);
3284 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3285
139ccd3f
JB
3286 if (temp & FDI_RX_SYMBOL_LOCK ||
3287 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3288 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3289 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3290 i);
3291 goto train_done;
3292 }
3293 udelay(2); /* should be 1.5us */
357555c0 3294 }
139ccd3f
JB
3295 if (i == 4)
3296 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3297 }
357555c0 3298
139ccd3f 3299train_done:
357555c0
JB
3300 DRM_DEBUG_KMS("FDI train done.\n");
3301}
3302
88cefb6c 3303static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3304{
88cefb6c 3305 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3306 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3307 int pipe = intel_crtc->pipe;
5eddb70b 3308 u32 reg, temp;
79e53945 3309
c64e311e 3310
c98e9dcf 3311 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3312 reg = FDI_RX_CTL(pipe);
3313 temp = I915_READ(reg);
627eb5a3
DV
3314 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3315 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3316 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3317 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3318
3319 POSTING_READ(reg);
c98e9dcf
JB
3320 udelay(200);
3321
3322 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3323 temp = I915_READ(reg);
3324 I915_WRITE(reg, temp | FDI_PCDCLK);
3325
3326 POSTING_READ(reg);
c98e9dcf
JB
3327 udelay(200);
3328
20749730
PZ
3329 /* Enable CPU FDI TX PLL, always on for Ironlake */
3330 reg = FDI_TX_CTL(pipe);
3331 temp = I915_READ(reg);
3332 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3333 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3334
20749730
PZ
3335 POSTING_READ(reg);
3336 udelay(100);
6be4a607 3337 }
0e23b99d
JB
3338}
3339
88cefb6c
DV
3340static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3341{
3342 struct drm_device *dev = intel_crtc->base.dev;
3343 struct drm_i915_private *dev_priv = dev->dev_private;
3344 int pipe = intel_crtc->pipe;
3345 u32 reg, temp;
3346
3347 /* Switch from PCDclk to Rawclk */
3348 reg = FDI_RX_CTL(pipe);
3349 temp = I915_READ(reg);
3350 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3351
3352 /* Disable CPU FDI TX PLL */
3353 reg = FDI_TX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3356
3357 POSTING_READ(reg);
3358 udelay(100);
3359
3360 reg = FDI_RX_CTL(pipe);
3361 temp = I915_READ(reg);
3362 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3363
3364 /* Wait for the clocks to turn off. */
3365 POSTING_READ(reg);
3366 udelay(100);
3367}
3368
0fc932b8
JB
3369static void ironlake_fdi_disable(struct drm_crtc *crtc)
3370{
3371 struct drm_device *dev = crtc->dev;
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3374 int pipe = intel_crtc->pipe;
3375 u32 reg, temp;
3376
3377 /* disable CPU FDI tx and PCH FDI rx */
3378 reg = FDI_TX_CTL(pipe);
3379 temp = I915_READ(reg);
3380 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3381 POSTING_READ(reg);
3382
3383 reg = FDI_RX_CTL(pipe);
3384 temp = I915_READ(reg);
3385 temp &= ~(0x7 << 16);
dfd07d72 3386 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3387 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3388
3389 POSTING_READ(reg);
3390 udelay(100);
3391
3392 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3393 if (HAS_PCH_IBX(dev))
6f06ce18 3394 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3395
3396 /* still set train pattern 1 */
3397 reg = FDI_TX_CTL(pipe);
3398 temp = I915_READ(reg);
3399 temp &= ~FDI_LINK_TRAIN_NONE;
3400 temp |= FDI_LINK_TRAIN_PATTERN_1;
3401 I915_WRITE(reg, temp);
3402
3403 reg = FDI_RX_CTL(pipe);
3404 temp = I915_READ(reg);
3405 if (HAS_PCH_CPT(dev)) {
3406 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3407 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3408 } else {
3409 temp &= ~FDI_LINK_TRAIN_NONE;
3410 temp |= FDI_LINK_TRAIN_PATTERN_1;
3411 }
3412 /* BPC in FDI rx is consistent with that in PIPECONF */
3413 temp &= ~(0x07 << 16);
dfd07d72 3414 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3415 I915_WRITE(reg, temp);
3416
3417 POSTING_READ(reg);
3418 udelay(100);
3419}
3420
5dce5b93
CW
3421bool intel_has_pending_fb_unpin(struct drm_device *dev)
3422{
3423 struct intel_crtc *crtc;
3424
3425 /* Note that we don't need to be called with mode_config.lock here
3426 * as our list of CRTC objects is static for the lifetime of the
3427 * device and so cannot disappear as we iterate. Similarly, we can
3428 * happily treat the predicates as racy, atomic checks as userspace
3429 * cannot claim and pin a new fb without at least acquring the
3430 * struct_mutex and so serialising with us.
3431 */
d3fcc808 3432 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3433 if (atomic_read(&crtc->unpin_work_count) == 0)
3434 continue;
3435
3436 if (crtc->unpin_work)
3437 intel_wait_for_vblank(dev, crtc->pipe);
3438
3439 return true;
3440 }
3441
3442 return false;
3443}
3444
d6bbafa1
CW
3445static void page_flip_completed(struct intel_crtc *intel_crtc)
3446{
3447 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3448 struct intel_unpin_work *work = intel_crtc->unpin_work;
3449
3450 /* ensure that the unpin work is consistent wrt ->pending. */
3451 smp_rmb();
3452 intel_crtc->unpin_work = NULL;
3453
3454 if (work->event)
3455 drm_send_vblank_event(intel_crtc->base.dev,
3456 intel_crtc->pipe,
3457 work->event);
3458
3459 drm_crtc_vblank_put(&intel_crtc->base);
3460
3461 wake_up_all(&dev_priv->pending_flip_queue);
3462 queue_work(dev_priv->wq, &work->work);
3463
3464 trace_i915_flip_complete(intel_crtc->plane,
3465 work->pending_flip_obj);
3466}
3467
46a55d30 3468void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3469{
0f91128d 3470 struct drm_device *dev = crtc->dev;
5bb61643 3471 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3472
2c10d571 3473 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3474 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3475 !intel_crtc_has_pending_flip(crtc),
3476 60*HZ) == 0)) {
3477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3478 unsigned long flags;
2c10d571 3479
9c787942
CW
3480 spin_lock_irqsave(&dev->event_lock, flags);
3481 if (intel_crtc->unpin_work) {
3482 WARN_ONCE(1, "Removing stuck page flip\n");
3483 page_flip_completed(intel_crtc);
3484 }
3485 spin_unlock_irqrestore(&dev->event_lock, flags);
3486 }
5bb61643 3487
975d568a
CW
3488 if (crtc->primary->fb) {
3489 mutex_lock(&dev->struct_mutex);
3490 intel_finish_fb(crtc->primary->fb);
3491 mutex_unlock(&dev->struct_mutex);
3492 }
e6c3a2a6
CW
3493}
3494
e615efe4
ED
3495/* Program iCLKIP clock to the desired frequency */
3496static void lpt_program_iclkip(struct drm_crtc *crtc)
3497{
3498 struct drm_device *dev = crtc->dev;
3499 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3500 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3501 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3502 u32 temp;
3503
09153000
DV
3504 mutex_lock(&dev_priv->dpio_lock);
3505
e615efe4
ED
3506 /* It is necessary to ungate the pixclk gate prior to programming
3507 * the divisors, and gate it back when it is done.
3508 */
3509 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3510
3511 /* Disable SSCCTL */
3512 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3513 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3514 SBI_SSCCTL_DISABLE,
3515 SBI_ICLK);
e615efe4
ED
3516
3517 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3518 if (clock == 20000) {
e615efe4
ED
3519 auxdiv = 1;
3520 divsel = 0x41;
3521 phaseinc = 0x20;
3522 } else {
3523 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3524 * but the adjusted_mode->crtc_clock in in KHz. To get the
3525 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3526 * convert the virtual clock precision to KHz here for higher
3527 * precision.
3528 */
3529 u32 iclk_virtual_root_freq = 172800 * 1000;
3530 u32 iclk_pi_range = 64;
3531 u32 desired_divisor, msb_divisor_value, pi_value;
3532
12d7ceed 3533 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3534 msb_divisor_value = desired_divisor / iclk_pi_range;
3535 pi_value = desired_divisor % iclk_pi_range;
3536
3537 auxdiv = 0;
3538 divsel = msb_divisor_value - 2;
3539 phaseinc = pi_value;
3540 }
3541
3542 /* This should not happen with any sane values */
3543 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3544 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3545 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3546 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3547
3548 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3549 clock,
e615efe4
ED
3550 auxdiv,
3551 divsel,
3552 phasedir,
3553 phaseinc);
3554
3555 /* Program SSCDIVINTPHASE6 */
988d6ee8 3556 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3557 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3558 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3559 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3560 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3561 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3562 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3563 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3564
3565 /* Program SSCAUXDIV */
988d6ee8 3566 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3567 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3568 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3569 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3570
3571 /* Enable modulator and associated divider */
988d6ee8 3572 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3573 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3574 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3575
3576 /* Wait for initialization time */
3577 udelay(24);
3578
3579 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3580
3581 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3582}
3583
275f01b2
DV
3584static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3585 enum pipe pch_transcoder)
3586{
3587 struct drm_device *dev = crtc->base.dev;
3588 struct drm_i915_private *dev_priv = dev->dev_private;
3589 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3590
3591 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3592 I915_READ(HTOTAL(cpu_transcoder)));
3593 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3594 I915_READ(HBLANK(cpu_transcoder)));
3595 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3596 I915_READ(HSYNC(cpu_transcoder)));
3597
3598 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3599 I915_READ(VTOTAL(cpu_transcoder)));
3600 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3601 I915_READ(VBLANK(cpu_transcoder)));
3602 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3603 I915_READ(VSYNC(cpu_transcoder)));
3604 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3605 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3606}
3607
1fbc0d78
DV
3608static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3609{
3610 struct drm_i915_private *dev_priv = dev->dev_private;
3611 uint32_t temp;
3612
3613 temp = I915_READ(SOUTH_CHICKEN1);
3614 if (temp & FDI_BC_BIFURCATION_SELECT)
3615 return;
3616
3617 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3618 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3619
3620 temp |= FDI_BC_BIFURCATION_SELECT;
3621 DRM_DEBUG_KMS("enabling fdi C rx\n");
3622 I915_WRITE(SOUTH_CHICKEN1, temp);
3623 POSTING_READ(SOUTH_CHICKEN1);
3624}
3625
3626static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3627{
3628 struct drm_device *dev = intel_crtc->base.dev;
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631 switch (intel_crtc->pipe) {
3632 case PIPE_A:
3633 break;
3634 case PIPE_B:
3635 if (intel_crtc->config.fdi_lanes > 2)
3636 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3637 else
3638 cpt_enable_fdi_bc_bifurcation(dev);
3639
3640 break;
3641 case PIPE_C:
3642 cpt_enable_fdi_bc_bifurcation(dev);
3643
3644 break;
3645 default:
3646 BUG();
3647 }
3648}
3649
f67a559d
JB
3650/*
3651 * Enable PCH resources required for PCH ports:
3652 * - PCH PLLs
3653 * - FDI training & RX/TX
3654 * - update transcoder timings
3655 * - DP transcoding bits
3656 * - transcoder
3657 */
3658static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3659{
3660 struct drm_device *dev = crtc->dev;
3661 struct drm_i915_private *dev_priv = dev->dev_private;
3662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663 int pipe = intel_crtc->pipe;
ee7b9f93 3664 u32 reg, temp;
2c07245f 3665
ab9412ba 3666 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3667
1fbc0d78
DV
3668 if (IS_IVYBRIDGE(dev))
3669 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3670
cd986abb
DV
3671 /* Write the TU size bits before fdi link training, so that error
3672 * detection works. */
3673 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3674 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3675
c98e9dcf 3676 /* For PCH output, training FDI link */
674cf967 3677 dev_priv->display.fdi_link_train(crtc);
2c07245f 3678
3ad8a208
DV
3679 /* We need to program the right clock selection before writing the pixel
3680 * mutliplier into the DPLL. */
303b81e0 3681 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3682 u32 sel;
4b645f14 3683
c98e9dcf 3684 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3685 temp |= TRANS_DPLL_ENABLE(pipe);
3686 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3687 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3688 temp |= sel;
3689 else
3690 temp &= ~sel;
c98e9dcf 3691 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3692 }
5eddb70b 3693
3ad8a208
DV
3694 /* XXX: pch pll's can be enabled any time before we enable the PCH
3695 * transcoder, and we actually should do this to not upset any PCH
3696 * transcoder that already use the clock when we share it.
3697 *
3698 * Note that enable_shared_dpll tries to do the right thing, but
3699 * get_shared_dpll unconditionally resets the pll - we need that to have
3700 * the right LVDS enable sequence. */
85b3894f 3701 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3702
d9b6cb56
JB
3703 /* set transcoder timing, panel must allow it */
3704 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3705 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3706
303b81e0 3707 intel_fdi_normal_train(crtc);
5e84e1a4 3708
c98e9dcf
JB
3709 /* For PCH DP, enable TRANS_DP_CTL */
3710 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3711 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3712 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3713 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3714 reg = TRANS_DP_CTL(pipe);
3715 temp = I915_READ(reg);
3716 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3717 TRANS_DP_SYNC_MASK |
3718 TRANS_DP_BPC_MASK);
5eddb70b
CW
3719 temp |= (TRANS_DP_OUTPUT_ENABLE |
3720 TRANS_DP_ENH_FRAMING);
9325c9f0 3721 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3722
3723 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3724 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3725 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3726 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3727
3728 switch (intel_trans_dp_port_sel(crtc)) {
3729 case PCH_DP_B:
5eddb70b 3730 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3731 break;
3732 case PCH_DP_C:
5eddb70b 3733 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3734 break;
3735 case PCH_DP_D:
5eddb70b 3736 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3737 break;
3738 default:
e95d41e1 3739 BUG();
32f9d658 3740 }
2c07245f 3741
5eddb70b 3742 I915_WRITE(reg, temp);
6be4a607 3743 }
b52eb4dc 3744
b8a4f404 3745 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3746}
3747
1507e5bd
PZ
3748static void lpt_pch_enable(struct drm_crtc *crtc)
3749{
3750 struct drm_device *dev = crtc->dev;
3751 struct drm_i915_private *dev_priv = dev->dev_private;
3752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3753 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3754
ab9412ba 3755 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3756
8c52b5e8 3757 lpt_program_iclkip(crtc);
1507e5bd 3758
0540e488 3759 /* Set transcoder timing. */
275f01b2 3760 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3761
937bb610 3762 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3763}
3764
716c2e55 3765void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3766{
e2b78267 3767 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3768
3769 if (pll == NULL)
3770 return;
3771
3772 if (pll->refcount == 0) {
46edb027 3773 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3774 return;
3775 }
3776
f4a091c7
DV
3777 if (--pll->refcount == 0) {
3778 WARN_ON(pll->on);
3779 WARN_ON(pll->active);
3780 }
3781
a43f6e0f 3782 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3783}
3784
716c2e55 3785struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3786{
e2b78267
DV
3787 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3788 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3789 enum intel_dpll_id i;
ee7b9f93 3790
ee7b9f93 3791 if (pll) {
46edb027
DV
3792 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3793 crtc->base.base.id, pll->name);
e2b78267 3794 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3795 }
3796
98b6bd99
DV
3797 if (HAS_PCH_IBX(dev_priv->dev)) {
3798 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3799 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3800 pll = &dev_priv->shared_dplls[i];
98b6bd99 3801
46edb027
DV
3802 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3803 crtc->base.base.id, pll->name);
98b6bd99 3804
f2a69f44
DV
3805 WARN_ON(pll->refcount);
3806
98b6bd99
DV
3807 goto found;
3808 }
3809
e72f9fbf
DV
3810 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3811 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3812
3813 /* Only want to check enabled timings first */
3814 if (pll->refcount == 0)
3815 continue;
3816
b89a1d39
DV
3817 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3818 sizeof(pll->hw_state)) == 0) {
46edb027 3819 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3820 crtc->base.base.id,
46edb027 3821 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3822
3823 goto found;
3824 }
3825 }
3826
3827 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3828 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3829 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3830 if (pll->refcount == 0) {
46edb027
DV
3831 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3832 crtc->base.base.id, pll->name);
ee7b9f93
JB
3833 goto found;
3834 }
3835 }
3836
3837 return NULL;
3838
3839found:
f2a69f44
DV
3840 if (pll->refcount == 0)
3841 pll->hw_state = crtc->config.dpll_hw_state;
3842
a43f6e0f 3843 crtc->config.shared_dpll = i;
46edb027
DV
3844 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3845 pipe_name(crtc->pipe));
ee7b9f93 3846
cdbd2316 3847 pll->refcount++;
e04c7350 3848
ee7b9f93
JB
3849 return pll;
3850}
3851
a1520318 3852static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3853{
3854 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3855 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3856 u32 temp;
3857
3858 temp = I915_READ(dslreg);
3859 udelay(500);
3860 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3861 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3862 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3863 }
3864}
3865
b074cec8
JB
3866static void ironlake_pfit_enable(struct intel_crtc *crtc)
3867{
3868 struct drm_device *dev = crtc->base.dev;
3869 struct drm_i915_private *dev_priv = dev->dev_private;
3870 int pipe = crtc->pipe;
3871
fd4daa9c 3872 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3873 /* Force use of hard-coded filter coefficients
3874 * as some pre-programmed values are broken,
3875 * e.g. x201.
3876 */
3877 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3878 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3879 PF_PIPE_SEL_IVB(pipe));
3880 else
3881 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3882 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3883 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3884 }
3885}
3886
bb53d4ae
VS
3887static void intel_enable_planes(struct drm_crtc *crtc)
3888{
3889 struct drm_device *dev = crtc->dev;
3890 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3891 struct drm_plane *plane;
bb53d4ae
VS
3892 struct intel_plane *intel_plane;
3893
af2b653b
MR
3894 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3895 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3896 if (intel_plane->pipe == pipe)
3897 intel_plane_restore(&intel_plane->base);
af2b653b 3898 }
bb53d4ae
VS
3899}
3900
3901static void intel_disable_planes(struct drm_crtc *crtc)
3902{
3903 struct drm_device *dev = crtc->dev;
3904 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3905 struct drm_plane *plane;
bb53d4ae
VS
3906 struct intel_plane *intel_plane;
3907
af2b653b
MR
3908 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3909 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3910 if (intel_plane->pipe == pipe)
3911 intel_plane_disable(&intel_plane->base);
af2b653b 3912 }
bb53d4ae
VS
3913}
3914
20bc8673 3915void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3916{
cea165c3
VS
3917 struct drm_device *dev = crtc->base.dev;
3918 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3919
3920 if (!crtc->config.ips_enabled)
3921 return;
3922
cea165c3
VS
3923 /* We can only enable IPS after we enable a plane and wait for a vblank */
3924 intel_wait_for_vblank(dev, crtc->pipe);
3925
d77e4531 3926 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3927 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3928 mutex_lock(&dev_priv->rps.hw_lock);
3929 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3930 mutex_unlock(&dev_priv->rps.hw_lock);
3931 /* Quoting Art Runyan: "its not safe to expect any particular
3932 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3933 * mailbox." Moreover, the mailbox may return a bogus state,
3934 * so we need to just enable it and continue on.
2a114cc1
BW
3935 */
3936 } else {
3937 I915_WRITE(IPS_CTL, IPS_ENABLE);
3938 /* The bit only becomes 1 in the next vblank, so this wait here
3939 * is essentially intel_wait_for_vblank. If we don't have this
3940 * and don't wait for vblanks until the end of crtc_enable, then
3941 * the HW state readout code will complain that the expected
3942 * IPS_CTL value is not the one we read. */
3943 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3944 DRM_ERROR("Timed out waiting for IPS enable\n");
3945 }
d77e4531
PZ
3946}
3947
20bc8673 3948void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3949{
3950 struct drm_device *dev = crtc->base.dev;
3951 struct drm_i915_private *dev_priv = dev->dev_private;
3952
3953 if (!crtc->config.ips_enabled)
3954 return;
3955
3956 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3957 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3958 mutex_lock(&dev_priv->rps.hw_lock);
3959 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3960 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3961 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3962 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3963 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3964 } else {
2a114cc1 3965 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3966 POSTING_READ(IPS_CTL);
3967 }
d77e4531
PZ
3968
3969 /* We need to wait for a vblank before we can disable the plane. */
3970 intel_wait_for_vblank(dev, crtc->pipe);
3971}
3972
3973/** Loads the palette/gamma unit for the CRTC with the prepared values */
3974static void intel_crtc_load_lut(struct drm_crtc *crtc)
3975{
3976 struct drm_device *dev = crtc->dev;
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979 enum pipe pipe = intel_crtc->pipe;
3980 int palreg = PALETTE(pipe);
3981 int i;
3982 bool reenable_ips = false;
3983
3984 /* The clocks have to be on to load the palette. */
3985 if (!crtc->enabled || !intel_crtc->active)
3986 return;
3987
3988 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3989 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3990 assert_dsi_pll_enabled(dev_priv);
3991 else
3992 assert_pll_enabled(dev_priv, pipe);
3993 }
3994
3995 /* use legacy palette for Ironlake */
7a1db49a 3996 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3997 palreg = LGC_PALETTE(pipe);
3998
3999 /* Workaround : Do not read or write the pipe palette/gamma data while
4000 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4001 */
41e6fc4c 4002 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4003 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4004 GAMMA_MODE_MODE_SPLIT)) {
4005 hsw_disable_ips(intel_crtc);
4006 reenable_ips = true;
4007 }
4008
4009 for (i = 0; i < 256; i++) {
4010 I915_WRITE(palreg + 4 * i,
4011 (intel_crtc->lut_r[i] << 16) |
4012 (intel_crtc->lut_g[i] << 8) |
4013 intel_crtc->lut_b[i]);
4014 }
4015
4016 if (reenable_ips)
4017 hsw_enable_ips(intel_crtc);
4018}
4019
d3eedb1a
VS
4020static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4021{
4022 if (!enable && intel_crtc->overlay) {
4023 struct drm_device *dev = intel_crtc->base.dev;
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025
4026 mutex_lock(&dev->struct_mutex);
4027 dev_priv->mm.interruptible = false;
4028 (void) intel_overlay_switch_off(intel_crtc->overlay);
4029 dev_priv->mm.interruptible = true;
4030 mutex_unlock(&dev->struct_mutex);
4031 }
4032
4033 /* Let userspace switch the overlay on again. In most cases userspace
4034 * has to recompute where to put it anyway.
4035 */
4036}
4037
d3eedb1a 4038static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4039{
4040 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4042 int pipe = intel_crtc->pipe;
a5c4d7bc 4043
08c71e5e
VS
4044 assert_vblank_disabled(crtc);
4045
f98551ae
VS
4046 drm_vblank_on(dev, pipe);
4047
fdd508a6 4048 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4049 intel_enable_planes(crtc);
4050 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4051 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4052
4053 hsw_enable_ips(intel_crtc);
4054
4055 mutex_lock(&dev->struct_mutex);
4056 intel_update_fbc(dev);
4057 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4058
4059 /*
4060 * FIXME: Once we grow proper nuclear flip support out of this we need
4061 * to compute the mask of flip planes precisely. For the time being
4062 * consider this a flip from a NULL plane.
4063 */
4064 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4065}
4066
d3eedb1a 4067static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4068{
4069 struct drm_device *dev = crtc->dev;
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4072 int pipe = intel_crtc->pipe;
4073 int plane = intel_crtc->plane;
4074
4075 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4076
4077 if (dev_priv->fbc.plane == plane)
4078 intel_disable_fbc(dev);
4079
4080 hsw_disable_ips(intel_crtc);
4081
d3eedb1a 4082 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4083 intel_crtc_update_cursor(crtc, false);
4084 intel_disable_planes(crtc);
fdd508a6 4085 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4086
f99d7069
DV
4087 /*
4088 * FIXME: Once we grow proper nuclear flip support out of this we need
4089 * to compute the mask of flip planes precisely. For the time being
4090 * consider this a flip to a NULL plane.
4091 */
4092 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4093
f98551ae 4094 drm_vblank_off(dev, pipe);
08c71e5e
VS
4095
4096 assert_vblank_disabled(crtc);
a5c4d7bc
VS
4097}
4098
f67a559d
JB
4099static void ironlake_crtc_enable(struct drm_crtc *crtc)
4100{
4101 struct drm_device *dev = crtc->dev;
4102 struct drm_i915_private *dev_priv = dev->dev_private;
4103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4104 struct intel_encoder *encoder;
f67a559d 4105 int pipe = intel_crtc->pipe;
f67a559d 4106
08a48469
DV
4107 WARN_ON(!crtc->enabled);
4108
f67a559d
JB
4109 if (intel_crtc->active)
4110 return;
4111
b14b1055
DV
4112 if (intel_crtc->config.has_pch_encoder)
4113 intel_prepare_shared_dpll(intel_crtc);
4114
29407aab
DV
4115 if (intel_crtc->config.has_dp_encoder)
4116 intel_dp_set_m_n(intel_crtc);
4117
4118 intel_set_pipe_timings(intel_crtc);
4119
4120 if (intel_crtc->config.has_pch_encoder) {
4121 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4122 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4123 }
4124
4125 ironlake_set_pipeconf(crtc);
4126
f67a559d 4127 intel_crtc->active = true;
8664281b
PZ
4128
4129 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4130 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4131
f6736a1a 4132 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4133 if (encoder->pre_enable)
4134 encoder->pre_enable(encoder);
f67a559d 4135
5bfe2ac0 4136 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4137 /* Note: FDI PLL enabling _must_ be done before we enable the
4138 * cpu pipes, hence this is separate from all the other fdi/pch
4139 * enabling. */
88cefb6c 4140 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4141 } else {
4142 assert_fdi_tx_disabled(dev_priv, pipe);
4143 assert_fdi_rx_disabled(dev_priv, pipe);
4144 }
f67a559d 4145
b074cec8 4146 ironlake_pfit_enable(intel_crtc);
f67a559d 4147
9c54c0dd
JB
4148 /*
4149 * On ILK+ LUT must be loaded before the pipe is running but with
4150 * clocks enabled
4151 */
4152 intel_crtc_load_lut(crtc);
4153
f37fcc2a 4154 intel_update_watermarks(crtc);
e1fdc473 4155 intel_enable_pipe(intel_crtc);
f67a559d 4156
5bfe2ac0 4157 if (intel_crtc->config.has_pch_encoder)
f67a559d 4158 ironlake_pch_enable(crtc);
c98e9dcf 4159
fa5c73b1
DV
4160 for_each_encoder_on_crtc(dev, crtc, encoder)
4161 encoder->enable(encoder);
61b77ddd
DV
4162
4163 if (HAS_PCH_CPT(dev))
a1520318 4164 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4165
d3eedb1a 4166 intel_crtc_enable_planes(crtc);
6be4a607
JB
4167}
4168
42db64ef
PZ
4169/* IPS only exists on ULT machines and is tied to pipe A. */
4170static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4171{
f5adf94e 4172 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4173}
4174
e4916946
PZ
4175/*
4176 * This implements the workaround described in the "notes" section of the mode
4177 * set sequence documentation. When going from no pipes or single pipe to
4178 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4179 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4180 */
4181static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4182{
4183 struct drm_device *dev = crtc->base.dev;
4184 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4185
4186 /* We want to get the other_active_crtc only if there's only 1 other
4187 * active crtc. */
d3fcc808 4188 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4189 if (!crtc_it->active || crtc_it == crtc)
4190 continue;
4191
4192 if (other_active_crtc)
4193 return;
4194
4195 other_active_crtc = crtc_it;
4196 }
4197 if (!other_active_crtc)
4198 return;
4199
4200 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4201 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4202}
4203
4f771f10
PZ
4204static void haswell_crtc_enable(struct drm_crtc *crtc)
4205{
4206 struct drm_device *dev = crtc->dev;
4207 struct drm_i915_private *dev_priv = dev->dev_private;
4208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4209 struct intel_encoder *encoder;
4210 int pipe = intel_crtc->pipe;
4f771f10
PZ
4211
4212 WARN_ON(!crtc->enabled);
4213
4214 if (intel_crtc->active)
4215 return;
4216
df8ad70c
DV
4217 if (intel_crtc_to_shared_dpll(intel_crtc))
4218 intel_enable_shared_dpll(intel_crtc);
4219
229fca97
DV
4220 if (intel_crtc->config.has_dp_encoder)
4221 intel_dp_set_m_n(intel_crtc);
4222
4223 intel_set_pipe_timings(intel_crtc);
4224
4225 if (intel_crtc->config.has_pch_encoder) {
4226 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4227 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4228 }
4229
4230 haswell_set_pipeconf(crtc);
4231
4232 intel_set_pipe_csc(crtc);
4233
4f771f10 4234 intel_crtc->active = true;
8664281b
PZ
4235
4236 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4237 for_each_encoder_on_crtc(dev, crtc, encoder)
4238 if (encoder->pre_enable)
4239 encoder->pre_enable(encoder);
4240
4fe9467d
ID
4241 if (intel_crtc->config.has_pch_encoder) {
4242 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4243 dev_priv->display.fdi_link_train(crtc);
4244 }
4245
1f544388 4246 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4247
b074cec8 4248 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4249
4250 /*
4251 * On ILK+ LUT must be loaded before the pipe is running but with
4252 * clocks enabled
4253 */
4254 intel_crtc_load_lut(crtc);
4255
1f544388 4256 intel_ddi_set_pipe_settings(crtc);
8228c251 4257 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4258
f37fcc2a 4259 intel_update_watermarks(crtc);
e1fdc473 4260 intel_enable_pipe(intel_crtc);
42db64ef 4261
5bfe2ac0 4262 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4263 lpt_pch_enable(crtc);
4f771f10 4264
0e32b39c
DA
4265 if (intel_crtc->config.dp_encoder_is_mst)
4266 intel_ddi_set_vc_payload_alloc(crtc, true);
4267
8807e55b 4268 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4269 encoder->enable(encoder);
8807e55b
JN
4270 intel_opregion_notify_encoder(encoder, true);
4271 }
4f771f10 4272
e4916946
PZ
4273 /* If we change the relative order between pipe/planes enabling, we need
4274 * to change the workaround. */
4275 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4276 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4277}
4278
3f8dce3a
DV
4279static void ironlake_pfit_disable(struct intel_crtc *crtc)
4280{
4281 struct drm_device *dev = crtc->base.dev;
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 int pipe = crtc->pipe;
4284
4285 /* To avoid upsetting the power well on haswell only disable the pfit if
4286 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4287 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4288 I915_WRITE(PF_CTL(pipe), 0);
4289 I915_WRITE(PF_WIN_POS(pipe), 0);
4290 I915_WRITE(PF_WIN_SZ(pipe), 0);
4291 }
4292}
4293
6be4a607
JB
4294static void ironlake_crtc_disable(struct drm_crtc *crtc)
4295{
4296 struct drm_device *dev = crtc->dev;
4297 struct drm_i915_private *dev_priv = dev->dev_private;
4298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4299 struct intel_encoder *encoder;
6be4a607 4300 int pipe = intel_crtc->pipe;
5eddb70b 4301 u32 reg, temp;
b52eb4dc 4302
f7abfe8b
CW
4303 if (!intel_crtc->active)
4304 return;
4305
d3eedb1a 4306 intel_crtc_disable_planes(crtc);
a5c4d7bc 4307
ea9d758d
DV
4308 for_each_encoder_on_crtc(dev, crtc, encoder)
4309 encoder->disable(encoder);
4310
d925c59a
DV
4311 if (intel_crtc->config.has_pch_encoder)
4312 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4313
575f7ab7 4314 intel_disable_pipe(intel_crtc);
32f9d658 4315
3f8dce3a 4316 ironlake_pfit_disable(intel_crtc);
2c07245f 4317
bf49ec8c
DV
4318 for_each_encoder_on_crtc(dev, crtc, encoder)
4319 if (encoder->post_disable)
4320 encoder->post_disable(encoder);
2c07245f 4321
d925c59a
DV
4322 if (intel_crtc->config.has_pch_encoder) {
4323 ironlake_fdi_disable(crtc);
913d8d11 4324
d925c59a
DV
4325 ironlake_disable_pch_transcoder(dev_priv, pipe);
4326 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4327
d925c59a
DV
4328 if (HAS_PCH_CPT(dev)) {
4329 /* disable TRANS_DP_CTL */
4330 reg = TRANS_DP_CTL(pipe);
4331 temp = I915_READ(reg);
4332 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4333 TRANS_DP_PORT_SEL_MASK);
4334 temp |= TRANS_DP_PORT_SEL_NONE;
4335 I915_WRITE(reg, temp);
4336
4337 /* disable DPLL_SEL */
4338 temp = I915_READ(PCH_DPLL_SEL);
11887397 4339 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4340 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4341 }
e3421a18 4342
d925c59a 4343 /* disable PCH DPLL */
e72f9fbf 4344 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4345
d925c59a
DV
4346 ironlake_fdi_pll_disable(intel_crtc);
4347 }
6b383a7f 4348
f7abfe8b 4349 intel_crtc->active = false;
46ba614c 4350 intel_update_watermarks(crtc);
d1ebd816
BW
4351
4352 mutex_lock(&dev->struct_mutex);
6b383a7f 4353 intel_update_fbc(dev);
d1ebd816 4354 mutex_unlock(&dev->struct_mutex);
6be4a607 4355}
1b3c7a47 4356
4f771f10 4357static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4358{
4f771f10
PZ
4359 struct drm_device *dev = crtc->dev;
4360 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4361 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4362 struct intel_encoder *encoder;
3b117c8f 4363 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4364
4f771f10
PZ
4365 if (!intel_crtc->active)
4366 return;
4367
d3eedb1a 4368 intel_crtc_disable_planes(crtc);
dda9a66a 4369
8807e55b
JN
4370 for_each_encoder_on_crtc(dev, crtc, encoder) {
4371 intel_opregion_notify_encoder(encoder, false);
4f771f10 4372 encoder->disable(encoder);
8807e55b 4373 }
4f771f10 4374
8664281b
PZ
4375 if (intel_crtc->config.has_pch_encoder)
4376 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
575f7ab7 4377 intel_disable_pipe(intel_crtc);
4f771f10 4378
a4bf214f
VS
4379 if (intel_crtc->config.dp_encoder_is_mst)
4380 intel_ddi_set_vc_payload_alloc(crtc, false);
4381
ad80a810 4382 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4383
3f8dce3a 4384 ironlake_pfit_disable(intel_crtc);
4f771f10 4385
1f544388 4386 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4387
88adfff1 4388 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4389 lpt_disable_pch_transcoder(dev_priv);
8664281b 4390 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4391 intel_ddi_fdi_disable(crtc);
83616634 4392 }
4f771f10 4393
97b040aa
ID
4394 for_each_encoder_on_crtc(dev, crtc, encoder)
4395 if (encoder->post_disable)
4396 encoder->post_disable(encoder);
4397
4f771f10 4398 intel_crtc->active = false;
46ba614c 4399 intel_update_watermarks(crtc);
4f771f10
PZ
4400
4401 mutex_lock(&dev->struct_mutex);
4402 intel_update_fbc(dev);
4403 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4404
4405 if (intel_crtc_to_shared_dpll(intel_crtc))
4406 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4407}
4408
ee7b9f93
JB
4409static void ironlake_crtc_off(struct drm_crtc *crtc)
4410{
4411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4412 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4413}
4414
6441ab5f 4415
2dd24552
JB
4416static void i9xx_pfit_enable(struct intel_crtc *crtc)
4417{
4418 struct drm_device *dev = crtc->base.dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 struct intel_crtc_config *pipe_config = &crtc->config;
4421
328d8e82 4422 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4423 return;
4424
2dd24552 4425 /*
c0b03411
DV
4426 * The panel fitter should only be adjusted whilst the pipe is disabled,
4427 * according to register description and PRM.
2dd24552 4428 */
c0b03411
DV
4429 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4430 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4431
b074cec8
JB
4432 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4433 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4434
4435 /* Border color in case we don't scale up to the full screen. Black by
4436 * default, change to something else for debugging. */
4437 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4438}
4439
d05410f9
DA
4440static enum intel_display_power_domain port_to_power_domain(enum port port)
4441{
4442 switch (port) {
4443 case PORT_A:
4444 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4445 case PORT_B:
4446 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4447 case PORT_C:
4448 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4449 case PORT_D:
4450 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4451 default:
4452 WARN_ON_ONCE(1);
4453 return POWER_DOMAIN_PORT_OTHER;
4454 }
4455}
4456
77d22dca
ID
4457#define for_each_power_domain(domain, mask) \
4458 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4459 if ((1 << (domain)) & (mask))
4460
319be8ae
ID
4461enum intel_display_power_domain
4462intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4463{
4464 struct drm_device *dev = intel_encoder->base.dev;
4465 struct intel_digital_port *intel_dig_port;
4466
4467 switch (intel_encoder->type) {
4468 case INTEL_OUTPUT_UNKNOWN:
4469 /* Only DDI platforms should ever use this output type */
4470 WARN_ON_ONCE(!HAS_DDI(dev));
4471 case INTEL_OUTPUT_DISPLAYPORT:
4472 case INTEL_OUTPUT_HDMI:
4473 case INTEL_OUTPUT_EDP:
4474 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4475 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4476 case INTEL_OUTPUT_DP_MST:
4477 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4478 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4479 case INTEL_OUTPUT_ANALOG:
4480 return POWER_DOMAIN_PORT_CRT;
4481 case INTEL_OUTPUT_DSI:
4482 return POWER_DOMAIN_PORT_DSI;
4483 default:
4484 return POWER_DOMAIN_PORT_OTHER;
4485 }
4486}
4487
4488static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4489{
319be8ae
ID
4490 struct drm_device *dev = crtc->dev;
4491 struct intel_encoder *intel_encoder;
4492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4493 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4494 unsigned long mask;
4495 enum transcoder transcoder;
4496
4497 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4498
4499 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4500 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4501 if (intel_crtc->config.pch_pfit.enabled ||
4502 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4503 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4504
319be8ae
ID
4505 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4506 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4507
77d22dca
ID
4508 return mask;
4509}
4510
4511void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4512 bool enable)
4513{
4514 if (dev_priv->power_domains.init_power_on == enable)
4515 return;
4516
4517 if (enable)
4518 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4519 else
4520 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4521
4522 dev_priv->power_domains.init_power_on = enable;
4523}
4524
4525static void modeset_update_crtc_power_domains(struct drm_device *dev)
4526{
4527 struct drm_i915_private *dev_priv = dev->dev_private;
4528 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4529 struct intel_crtc *crtc;
4530
4531 /*
4532 * First get all needed power domains, then put all unneeded, to avoid
4533 * any unnecessary toggling of the power wells.
4534 */
d3fcc808 4535 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4536 enum intel_display_power_domain domain;
4537
4538 if (!crtc->base.enabled)
4539 continue;
4540
319be8ae 4541 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4542
4543 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4544 intel_display_power_get(dev_priv, domain);
4545 }
4546
d3fcc808 4547 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4548 enum intel_display_power_domain domain;
4549
4550 for_each_power_domain(domain, crtc->enabled_power_domains)
4551 intel_display_power_put(dev_priv, domain);
4552
4553 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4554 }
4555
4556 intel_display_set_init_power(dev_priv, false);
4557}
4558
dfcab17e 4559/* returns HPLL frequency in kHz */
f8bf63fd 4560static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4561{
586f49dc 4562 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4563
586f49dc
JB
4564 /* Obtain SKU information */
4565 mutex_lock(&dev_priv->dpio_lock);
4566 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4567 CCK_FUSE_HPLL_FREQ_MASK;
4568 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4569
dfcab17e 4570 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4571}
4572
f8bf63fd
VS
4573static void vlv_update_cdclk(struct drm_device *dev)
4574{
4575 struct drm_i915_private *dev_priv = dev->dev_private;
4576
4577 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4578 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4579 dev_priv->vlv_cdclk_freq);
4580
4581 /*
4582 * Program the gmbus_freq based on the cdclk frequency.
4583 * BSpec erroneously claims we should aim for 4MHz, but
4584 * in fact 1MHz is the correct frequency.
4585 */
4586 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4587}
4588
30a970c6
JB
4589/* Adjust CDclk dividers to allow high res or save power if possible */
4590static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4591{
4592 struct drm_i915_private *dev_priv = dev->dev_private;
4593 u32 val, cmd;
4594
d197b7d3 4595 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4596
dfcab17e 4597 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4598 cmd = 2;
dfcab17e 4599 else if (cdclk == 266667)
30a970c6
JB
4600 cmd = 1;
4601 else
4602 cmd = 0;
4603
4604 mutex_lock(&dev_priv->rps.hw_lock);
4605 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4606 val &= ~DSPFREQGUAR_MASK;
4607 val |= (cmd << DSPFREQGUAR_SHIFT);
4608 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4609 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4610 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4611 50)) {
4612 DRM_ERROR("timed out waiting for CDclk change\n");
4613 }
4614 mutex_unlock(&dev_priv->rps.hw_lock);
4615
dfcab17e 4616 if (cdclk == 400000) {
30a970c6
JB
4617 u32 divider, vco;
4618
4619 vco = valleyview_get_vco(dev_priv);
dfcab17e 4620 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4621
4622 mutex_lock(&dev_priv->dpio_lock);
4623 /* adjust cdclk divider */
4624 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4625 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4626 val |= divider;
4627 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4628
4629 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4630 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4631 50))
4632 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4633 mutex_unlock(&dev_priv->dpio_lock);
4634 }
4635
4636 mutex_lock(&dev_priv->dpio_lock);
4637 /* adjust self-refresh exit latency value */
4638 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4639 val &= ~0x7f;
4640
4641 /*
4642 * For high bandwidth configs, we set a higher latency in the bunit
4643 * so that the core display fetch happens in time to avoid underruns.
4644 */
dfcab17e 4645 if (cdclk == 400000)
30a970c6
JB
4646 val |= 4500 / 250; /* 4.5 usec */
4647 else
4648 val |= 3000 / 250; /* 3.0 usec */
4649 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4650 mutex_unlock(&dev_priv->dpio_lock);
4651
f8bf63fd 4652 vlv_update_cdclk(dev);
30a970c6
JB
4653}
4654
383c5a6a
VS
4655static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4656{
4657 struct drm_i915_private *dev_priv = dev->dev_private;
4658 u32 val, cmd;
4659
4660 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4661
4662 switch (cdclk) {
4663 case 400000:
4664 cmd = 3;
4665 break;
4666 case 333333:
4667 case 320000:
4668 cmd = 2;
4669 break;
4670 case 266667:
4671 cmd = 1;
4672 break;
4673 case 200000:
4674 cmd = 0;
4675 break;
4676 default:
4677 WARN_ON(1);
4678 return;
4679 }
4680
4681 mutex_lock(&dev_priv->rps.hw_lock);
4682 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4683 val &= ~DSPFREQGUAR_MASK_CHV;
4684 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4685 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4686 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4687 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4688 50)) {
4689 DRM_ERROR("timed out waiting for CDclk change\n");
4690 }
4691 mutex_unlock(&dev_priv->rps.hw_lock);
4692
4693 vlv_update_cdclk(dev);
4694}
4695
30a970c6
JB
4696static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4697 int max_pixclk)
4698{
29dc7ef3
VS
4699 int vco = valleyview_get_vco(dev_priv);
4700 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4701
d49a340d
VS
4702 /* FIXME: Punit isn't quite ready yet */
4703 if (IS_CHERRYVIEW(dev_priv->dev))
4704 return 400000;
4705
30a970c6
JB
4706 /*
4707 * Really only a few cases to deal with, as only 4 CDclks are supported:
4708 * 200MHz
4709 * 267MHz
29dc7ef3 4710 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4711 * 400MHz
4712 * So we check to see whether we're above 90% of the lower bin and
4713 * adjust if needed.
e37c67a1
VS
4714 *
4715 * We seem to get an unstable or solid color picture at 200MHz.
4716 * Not sure what's wrong. For now use 200MHz only when all pipes
4717 * are off.
30a970c6 4718 */
29dc7ef3 4719 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4720 return 400000;
4721 else if (max_pixclk > 266667*9/10)
29dc7ef3 4722 return freq_320;
e37c67a1 4723 else if (max_pixclk > 0)
dfcab17e 4724 return 266667;
e37c67a1
VS
4725 else
4726 return 200000;
30a970c6
JB
4727}
4728
2f2d7aa1
VS
4729/* compute the max pixel clock for new configuration */
4730static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4731{
4732 struct drm_device *dev = dev_priv->dev;
4733 struct intel_crtc *intel_crtc;
4734 int max_pixclk = 0;
4735
d3fcc808 4736 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4737 if (intel_crtc->new_enabled)
30a970c6 4738 max_pixclk = max(max_pixclk,
2f2d7aa1 4739 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4740 }
4741
4742 return max_pixclk;
4743}
4744
4745static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4746 unsigned *prepare_pipes)
30a970c6
JB
4747{
4748 struct drm_i915_private *dev_priv = dev->dev_private;
4749 struct intel_crtc *intel_crtc;
2f2d7aa1 4750 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4751
d60c4473
ID
4752 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4753 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4754 return;
4755
2f2d7aa1 4756 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4757 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4758 if (intel_crtc->base.enabled)
4759 *prepare_pipes |= (1 << intel_crtc->pipe);
4760}
4761
4762static void valleyview_modeset_global_resources(struct drm_device *dev)
4763{
4764 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4765 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4766 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4767
383c5a6a
VS
4768 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4769 if (IS_CHERRYVIEW(dev))
4770 cherryview_set_cdclk(dev, req_cdclk);
4771 else
4772 valleyview_set_cdclk(dev, req_cdclk);
4773 }
4774
77961eb9 4775 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4776}
4777
89b667f8
JB
4778static void valleyview_crtc_enable(struct drm_crtc *crtc)
4779{
4780 struct drm_device *dev = crtc->dev;
89b667f8
JB
4781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4782 struct intel_encoder *encoder;
4783 int pipe = intel_crtc->pipe;
23538ef1 4784 bool is_dsi;
89b667f8
JB
4785
4786 WARN_ON(!crtc->enabled);
4787
4788 if (intel_crtc->active)
4789 return;
4790
8525a235
SK
4791 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4792
1ae0d137
VS
4793 if (!is_dsi) {
4794 if (IS_CHERRYVIEW(dev))
4795 chv_prepare_pll(intel_crtc);
4796 else
4797 vlv_prepare_pll(intel_crtc);
4798 }
5b18e57c
DV
4799
4800 if (intel_crtc->config.has_dp_encoder)
4801 intel_dp_set_m_n(intel_crtc);
4802
4803 intel_set_pipe_timings(intel_crtc);
4804
5b18e57c
DV
4805 i9xx_set_pipeconf(intel_crtc);
4806
89b667f8 4807 intel_crtc->active = true;
89b667f8 4808
4a3436e8
VS
4809 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4810
89b667f8
JB
4811 for_each_encoder_on_crtc(dev, crtc, encoder)
4812 if (encoder->pre_pll_enable)
4813 encoder->pre_pll_enable(encoder);
4814
9d556c99
CML
4815 if (!is_dsi) {
4816 if (IS_CHERRYVIEW(dev))
4817 chv_enable_pll(intel_crtc);
4818 else
4819 vlv_enable_pll(intel_crtc);
4820 }
89b667f8
JB
4821
4822 for_each_encoder_on_crtc(dev, crtc, encoder)
4823 if (encoder->pre_enable)
4824 encoder->pre_enable(encoder);
4825
2dd24552
JB
4826 i9xx_pfit_enable(intel_crtc);
4827
63cbb074
VS
4828 intel_crtc_load_lut(crtc);
4829
f37fcc2a 4830 intel_update_watermarks(crtc);
e1fdc473 4831 intel_enable_pipe(intel_crtc);
be6a6f8e 4832
5004945f
JN
4833 for_each_encoder_on_crtc(dev, crtc, encoder)
4834 encoder->enable(encoder);
9ab0460b
VS
4835
4836 intel_crtc_enable_planes(crtc);
d40d9187 4837
56b80e1f
VS
4838 /* Underruns don't raise interrupts, so check manually. */
4839 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4840}
4841
f13c2ef3
DV
4842static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4843{
4844 struct drm_device *dev = crtc->base.dev;
4845 struct drm_i915_private *dev_priv = dev->dev_private;
4846
4847 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4848 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4849}
4850
0b8765c6 4851static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4852{
4853 struct drm_device *dev = crtc->dev;
79e53945 4854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4855 struct intel_encoder *encoder;
79e53945 4856 int pipe = intel_crtc->pipe;
79e53945 4857
08a48469
DV
4858 WARN_ON(!crtc->enabled);
4859
f7abfe8b
CW
4860 if (intel_crtc->active)
4861 return;
4862
f13c2ef3
DV
4863 i9xx_set_pll_dividers(intel_crtc);
4864
5b18e57c
DV
4865 if (intel_crtc->config.has_dp_encoder)
4866 intel_dp_set_m_n(intel_crtc);
4867
4868 intel_set_pipe_timings(intel_crtc);
4869
5b18e57c
DV
4870 i9xx_set_pipeconf(intel_crtc);
4871
f7abfe8b 4872 intel_crtc->active = true;
6b383a7f 4873
4a3436e8
VS
4874 if (!IS_GEN2(dev))
4875 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4876
9d6d9f19
MK
4877 for_each_encoder_on_crtc(dev, crtc, encoder)
4878 if (encoder->pre_enable)
4879 encoder->pre_enable(encoder);
4880
f6736a1a
DV
4881 i9xx_enable_pll(intel_crtc);
4882
2dd24552
JB
4883 i9xx_pfit_enable(intel_crtc);
4884
63cbb074
VS
4885 intel_crtc_load_lut(crtc);
4886
f37fcc2a 4887 intel_update_watermarks(crtc);
e1fdc473 4888 intel_enable_pipe(intel_crtc);
be6a6f8e 4889
fa5c73b1
DV
4890 for_each_encoder_on_crtc(dev, crtc, encoder)
4891 encoder->enable(encoder);
9ab0460b
VS
4892
4893 intel_crtc_enable_planes(crtc);
d40d9187 4894
4a3436e8
VS
4895 /*
4896 * Gen2 reports pipe underruns whenever all planes are disabled.
4897 * So don't enable underrun reporting before at least some planes
4898 * are enabled.
4899 * FIXME: Need to fix the logic to work when we turn off all planes
4900 * but leave the pipe running.
4901 */
4902 if (IS_GEN2(dev))
4903 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4904
56b80e1f
VS
4905 /* Underruns don't raise interrupts, so check manually. */
4906 i9xx_check_fifo_underruns(dev);
0b8765c6 4907}
79e53945 4908
87476d63
DV
4909static void i9xx_pfit_disable(struct intel_crtc *crtc)
4910{
4911 struct drm_device *dev = crtc->base.dev;
4912 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4913
328d8e82
DV
4914 if (!crtc->config.gmch_pfit.control)
4915 return;
87476d63 4916
328d8e82 4917 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4918
328d8e82
DV
4919 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4920 I915_READ(PFIT_CONTROL));
4921 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4922}
4923
0b8765c6
JB
4924static void i9xx_crtc_disable(struct drm_crtc *crtc)
4925{
4926 struct drm_device *dev = crtc->dev;
4927 struct drm_i915_private *dev_priv = dev->dev_private;
4928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4929 struct intel_encoder *encoder;
0b8765c6 4930 int pipe = intel_crtc->pipe;
ef9c3aee 4931
f7abfe8b
CW
4932 if (!intel_crtc->active)
4933 return;
4934
4a3436e8
VS
4935 /*
4936 * Gen2 reports pipe underruns whenever all planes are disabled.
4937 * So diasble underrun reporting before all the planes get disabled.
4938 * FIXME: Need to fix the logic to work when we turn off all planes
4939 * but leave the pipe running.
4940 */
4941 if (IS_GEN2(dev))
4942 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4943
564ed191
ID
4944 /*
4945 * Vblank time updates from the shadow to live plane control register
4946 * are blocked if the memory self-refresh mode is active at that
4947 * moment. So to make sure the plane gets truly disabled, disable
4948 * first the self-refresh mode. The self-refresh enable bit in turn
4949 * will be checked/applied by the HW only at the next frame start
4950 * event which is after the vblank start event, so we need to have a
4951 * wait-for-vblank between disabling the plane and the pipe.
4952 */
4953 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4954 intel_crtc_disable_planes(crtc);
4955
ea9d758d
DV
4956 for_each_encoder_on_crtc(dev, crtc, encoder)
4957 encoder->disable(encoder);
4958
6304cd91
VS
4959 /*
4960 * On gen2 planes are double buffered but the pipe isn't, so we must
4961 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4962 * We also need to wait on all gmch platforms because of the
4963 * self-refresh mode constraint explained above.
6304cd91 4964 */
564ed191 4965 intel_wait_for_vblank(dev, pipe);
6304cd91 4966
575f7ab7 4967 intel_disable_pipe(intel_crtc);
24a1f16d 4968
87476d63 4969 i9xx_pfit_disable(intel_crtc);
24a1f16d 4970
89b667f8
JB
4971 for_each_encoder_on_crtc(dev, crtc, encoder)
4972 if (encoder->post_disable)
4973 encoder->post_disable(encoder);
4974
076ed3b2
CML
4975 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4976 if (IS_CHERRYVIEW(dev))
4977 chv_disable_pll(dev_priv, pipe);
4978 else if (IS_VALLEYVIEW(dev))
4979 vlv_disable_pll(dev_priv, pipe);
4980 else
1c4e0274 4981 i9xx_disable_pll(intel_crtc);
076ed3b2 4982 }
0b8765c6 4983
4a3436e8
VS
4984 if (!IS_GEN2(dev))
4985 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4986
f7abfe8b 4987 intel_crtc->active = false;
46ba614c 4988 intel_update_watermarks(crtc);
f37fcc2a 4989
efa9624e 4990 mutex_lock(&dev->struct_mutex);
6b383a7f 4991 intel_update_fbc(dev);
efa9624e 4992 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4993}
4994
ee7b9f93
JB
4995static void i9xx_crtc_off(struct drm_crtc *crtc)
4996{
4997}
4998
976f8a20
DV
4999static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5000 bool enabled)
2c07245f
ZW
5001{
5002 struct drm_device *dev = crtc->dev;
5003 struct drm_i915_master_private *master_priv;
5004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005 int pipe = intel_crtc->pipe;
79e53945
JB
5006
5007 if (!dev->primary->master)
5008 return;
5009
5010 master_priv = dev->primary->master->driver_priv;
5011 if (!master_priv->sarea_priv)
5012 return;
5013
79e53945
JB
5014 switch (pipe) {
5015 case 0:
5016 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5017 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5018 break;
5019 case 1:
5020 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5021 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5022 break;
5023 default:
9db4a9c7 5024 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5025 break;
5026 }
79e53945
JB
5027}
5028
b04c5bd6
BF
5029/* Master function to enable/disable CRTC and corresponding power wells */
5030void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5031{
5032 struct drm_device *dev = crtc->dev;
5033 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5034 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5035 enum intel_display_power_domain domain;
5036 unsigned long domains;
976f8a20 5037
0e572fe7
DV
5038 if (enable) {
5039 if (!intel_crtc->active) {
e1e9fb84
DV
5040 domains = get_crtc_power_domains(crtc);
5041 for_each_power_domain(domain, domains)
5042 intel_display_power_get(dev_priv, domain);
5043 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5044
5045 dev_priv->display.crtc_enable(crtc);
5046 }
5047 } else {
5048 if (intel_crtc->active) {
5049 dev_priv->display.crtc_disable(crtc);
5050
e1e9fb84
DV
5051 domains = intel_crtc->enabled_power_domains;
5052 for_each_power_domain(domain, domains)
5053 intel_display_power_put(dev_priv, domain);
5054 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5055 }
5056 }
b04c5bd6
BF
5057}
5058
5059/**
5060 * Sets the power management mode of the pipe and plane.
5061 */
5062void intel_crtc_update_dpms(struct drm_crtc *crtc)
5063{
5064 struct drm_device *dev = crtc->dev;
5065 struct intel_encoder *intel_encoder;
5066 bool enable = false;
5067
5068 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5069 enable |= intel_encoder->connectors_active;
5070
5071 intel_crtc_control(crtc, enable);
976f8a20
DV
5072
5073 intel_crtc_update_sarea(crtc, enable);
5074}
5075
cdd59983
CW
5076static void intel_crtc_disable(struct drm_crtc *crtc)
5077{
cdd59983 5078 struct drm_device *dev = crtc->dev;
976f8a20 5079 struct drm_connector *connector;
ee7b9f93 5080 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5081 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5082 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5083
976f8a20
DV
5084 /* crtc should still be enabled when we disable it. */
5085 WARN_ON(!crtc->enabled);
5086
5087 dev_priv->display.crtc_disable(crtc);
5088 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5089 dev_priv->display.off(crtc);
5090
f4510a27 5091 if (crtc->primary->fb) {
cdd59983 5092 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5093 intel_unpin_fb_obj(old_obj);
5094 i915_gem_track_fb(old_obj, NULL,
5095 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5096 mutex_unlock(&dev->struct_mutex);
f4510a27 5097 crtc->primary->fb = NULL;
976f8a20
DV
5098 }
5099
5100 /* Update computed state. */
5101 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5102 if (!connector->encoder || !connector->encoder->crtc)
5103 continue;
5104
5105 if (connector->encoder->crtc != crtc)
5106 continue;
5107
5108 connector->dpms = DRM_MODE_DPMS_OFF;
5109 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5110 }
5111}
5112
ea5b213a 5113void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5114{
4ef69c7a 5115 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5116
ea5b213a
CW
5117 drm_encoder_cleanup(encoder);
5118 kfree(intel_encoder);
7e7d76c3
JB
5119}
5120
9237329d 5121/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5122 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5123 * state of the entire output pipe. */
9237329d 5124static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5125{
5ab432ef
DV
5126 if (mode == DRM_MODE_DPMS_ON) {
5127 encoder->connectors_active = true;
5128
b2cabb0e 5129 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5130 } else {
5131 encoder->connectors_active = false;
5132
b2cabb0e 5133 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5134 }
79e53945
JB
5135}
5136
0a91ca29
DV
5137/* Cross check the actual hw state with our own modeset state tracking (and it's
5138 * internal consistency). */
b980514c 5139static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5140{
0a91ca29
DV
5141 if (connector->get_hw_state(connector)) {
5142 struct intel_encoder *encoder = connector->encoder;
5143 struct drm_crtc *crtc;
5144 bool encoder_enabled;
5145 enum pipe pipe;
5146
5147 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5148 connector->base.base.id,
c23cc417 5149 connector->base.name);
0a91ca29 5150
0e32b39c
DA
5151 /* there is no real hw state for MST connectors */
5152 if (connector->mst_port)
5153 return;
5154
0a91ca29
DV
5155 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5156 "wrong connector dpms state\n");
5157 WARN(connector->base.encoder != &encoder->base,
5158 "active connector not linked to encoder\n");
0a91ca29 5159
36cd7444
DA
5160 if (encoder) {
5161 WARN(!encoder->connectors_active,
5162 "encoder->connectors_active not set\n");
5163
5164 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5165 WARN(!encoder_enabled, "encoder not enabled\n");
5166 if (WARN_ON(!encoder->base.crtc))
5167 return;
0a91ca29 5168
36cd7444 5169 crtc = encoder->base.crtc;
0a91ca29 5170
36cd7444
DA
5171 WARN(!crtc->enabled, "crtc not enabled\n");
5172 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5173 WARN(pipe != to_intel_crtc(crtc)->pipe,
5174 "encoder active on the wrong pipe\n");
5175 }
0a91ca29 5176 }
79e53945
JB
5177}
5178
5ab432ef
DV
5179/* Even simpler default implementation, if there's really no special case to
5180 * consider. */
5181void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5182{
5ab432ef
DV
5183 /* All the simple cases only support two dpms states. */
5184 if (mode != DRM_MODE_DPMS_ON)
5185 mode = DRM_MODE_DPMS_OFF;
d4270e57 5186
5ab432ef
DV
5187 if (mode == connector->dpms)
5188 return;
5189
5190 connector->dpms = mode;
5191
5192 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5193 if (connector->encoder)
5194 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5195
b980514c 5196 intel_modeset_check_state(connector->dev);
79e53945
JB
5197}
5198
f0947c37
DV
5199/* Simple connector->get_hw_state implementation for encoders that support only
5200 * one connector and no cloning and hence the encoder state determines the state
5201 * of the connector. */
5202bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5203{
24929352 5204 enum pipe pipe = 0;
f0947c37 5205 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5206
f0947c37 5207 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5208}
5209
1857e1da
DV
5210static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5211 struct intel_crtc_config *pipe_config)
5212{
5213 struct drm_i915_private *dev_priv = dev->dev_private;
5214 struct intel_crtc *pipe_B_crtc =
5215 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5216
5217 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5218 pipe_name(pipe), pipe_config->fdi_lanes);
5219 if (pipe_config->fdi_lanes > 4) {
5220 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5221 pipe_name(pipe), pipe_config->fdi_lanes);
5222 return false;
5223 }
5224
bafb6553 5225 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5226 if (pipe_config->fdi_lanes > 2) {
5227 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5228 pipe_config->fdi_lanes);
5229 return false;
5230 } else {
5231 return true;
5232 }
5233 }
5234
5235 if (INTEL_INFO(dev)->num_pipes == 2)
5236 return true;
5237
5238 /* Ivybridge 3 pipe is really complicated */
5239 switch (pipe) {
5240 case PIPE_A:
5241 return true;
5242 case PIPE_B:
5243 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5244 pipe_config->fdi_lanes > 2) {
5245 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5246 pipe_name(pipe), pipe_config->fdi_lanes);
5247 return false;
5248 }
5249 return true;
5250 case PIPE_C:
1e833f40 5251 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5252 pipe_B_crtc->config.fdi_lanes <= 2) {
5253 if (pipe_config->fdi_lanes > 2) {
5254 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5255 pipe_name(pipe), pipe_config->fdi_lanes);
5256 return false;
5257 }
5258 } else {
5259 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5260 return false;
5261 }
5262 return true;
5263 default:
5264 BUG();
5265 }
5266}
5267
e29c22c0
DV
5268#define RETRY 1
5269static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5270 struct intel_crtc_config *pipe_config)
877d48d5 5271{
1857e1da 5272 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5273 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5274 int lane, link_bw, fdi_dotclock;
e29c22c0 5275 bool setup_ok, needs_recompute = false;
877d48d5 5276
e29c22c0 5277retry:
877d48d5
DV
5278 /* FDI is a binary signal running at ~2.7GHz, encoding
5279 * each output octet as 10 bits. The actual frequency
5280 * is stored as a divider into a 100MHz clock, and the
5281 * mode pixel clock is stored in units of 1KHz.
5282 * Hence the bw of each lane in terms of the mode signal
5283 * is:
5284 */
5285 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5286
241bfc38 5287 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5288
2bd89a07 5289 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5290 pipe_config->pipe_bpp);
5291
5292 pipe_config->fdi_lanes = lane;
5293
2bd89a07 5294 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5295 link_bw, &pipe_config->fdi_m_n);
1857e1da 5296
e29c22c0
DV
5297 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5298 intel_crtc->pipe, pipe_config);
5299 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5300 pipe_config->pipe_bpp -= 2*3;
5301 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5302 pipe_config->pipe_bpp);
5303 needs_recompute = true;
5304 pipe_config->bw_constrained = true;
5305
5306 goto retry;
5307 }
5308
5309 if (needs_recompute)
5310 return RETRY;
5311
5312 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5313}
5314
42db64ef
PZ
5315static void hsw_compute_ips_config(struct intel_crtc *crtc,
5316 struct intel_crtc_config *pipe_config)
5317{
d330a953 5318 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5319 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5320 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5321}
5322
a43f6e0f 5323static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5324 struct intel_crtc_config *pipe_config)
79e53945 5325{
a43f6e0f 5326 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5327 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5328
ad3a4479 5329 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5330 if (INTEL_INFO(dev)->gen < 4) {
5331 struct drm_i915_private *dev_priv = dev->dev_private;
5332 int clock_limit =
5333 dev_priv->display.get_display_clock_speed(dev);
5334
5335 /*
5336 * Enable pixel doubling when the dot clock
5337 * is > 90% of the (display) core speed.
5338 *
b397c96b
VS
5339 * GDG double wide on either pipe,
5340 * otherwise pipe A only.
cf532bb2 5341 */
b397c96b 5342 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5343 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5344 clock_limit *= 2;
cf532bb2 5345 pipe_config->double_wide = true;
ad3a4479
VS
5346 }
5347
241bfc38 5348 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5349 return -EINVAL;
2c07245f 5350 }
89749350 5351
1d1d0e27
VS
5352 /*
5353 * Pipe horizontal size must be even in:
5354 * - DVO ganged mode
5355 * - LVDS dual channel mode
5356 * - Double wide pipe
5357 */
5358 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5359 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5360 pipe_config->pipe_src_w &= ~1;
5361
8693a824
DL
5362 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5363 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5364 */
5365 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5366 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5367 return -EINVAL;
44f46b42 5368
bd080ee5 5369 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5370 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5371 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5372 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5373 * for lvds. */
5374 pipe_config->pipe_bpp = 8*3;
5375 }
5376
f5adf94e 5377 if (HAS_IPS(dev))
a43f6e0f
DV
5378 hsw_compute_ips_config(crtc, pipe_config);
5379
12030431
DV
5380 /*
5381 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5382 * old clock survives for now.
5383 */
5384 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5385 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5386
877d48d5 5387 if (pipe_config->has_pch_encoder)
a43f6e0f 5388 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5389
e29c22c0 5390 return 0;
79e53945
JB
5391}
5392
25eb05fc
JB
5393static int valleyview_get_display_clock_speed(struct drm_device *dev)
5394{
d197b7d3
VS
5395 struct drm_i915_private *dev_priv = dev->dev_private;
5396 int vco = valleyview_get_vco(dev_priv);
5397 u32 val;
5398 int divider;
5399
d49a340d
VS
5400 /* FIXME: Punit isn't quite ready yet */
5401 if (IS_CHERRYVIEW(dev))
5402 return 400000;
5403
d197b7d3
VS
5404 mutex_lock(&dev_priv->dpio_lock);
5405 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5406 mutex_unlock(&dev_priv->dpio_lock);
5407
5408 divider = val & DISPLAY_FREQUENCY_VALUES;
5409
7d007f40
VS
5410 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5411 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5412 "cdclk change in progress\n");
5413
d197b7d3 5414 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5415}
5416
e70236a8
JB
5417static int i945_get_display_clock_speed(struct drm_device *dev)
5418{
5419 return 400000;
5420}
79e53945 5421
e70236a8 5422static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5423{
e70236a8
JB
5424 return 333000;
5425}
79e53945 5426
e70236a8
JB
5427static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5428{
5429 return 200000;
5430}
79e53945 5431
257a7ffc
DV
5432static int pnv_get_display_clock_speed(struct drm_device *dev)
5433{
5434 u16 gcfgc = 0;
5435
5436 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5437
5438 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5439 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5440 return 267000;
5441 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5442 return 333000;
5443 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5444 return 444000;
5445 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5446 return 200000;
5447 default:
5448 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5449 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5450 return 133000;
5451 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5452 return 167000;
5453 }
5454}
5455
e70236a8
JB
5456static int i915gm_get_display_clock_speed(struct drm_device *dev)
5457{
5458 u16 gcfgc = 0;
79e53945 5459
e70236a8
JB
5460 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5461
5462 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5463 return 133000;
5464 else {
5465 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5466 case GC_DISPLAY_CLOCK_333_MHZ:
5467 return 333000;
5468 default:
5469 case GC_DISPLAY_CLOCK_190_200_MHZ:
5470 return 190000;
79e53945 5471 }
e70236a8
JB
5472 }
5473}
5474
5475static int i865_get_display_clock_speed(struct drm_device *dev)
5476{
5477 return 266000;
5478}
5479
5480static int i855_get_display_clock_speed(struct drm_device *dev)
5481{
5482 u16 hpllcc = 0;
5483 /* Assume that the hardware is in the high speed state. This
5484 * should be the default.
5485 */
5486 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5487 case GC_CLOCK_133_200:
5488 case GC_CLOCK_100_200:
5489 return 200000;
5490 case GC_CLOCK_166_250:
5491 return 250000;
5492 case GC_CLOCK_100_133:
79e53945 5493 return 133000;
e70236a8 5494 }
79e53945 5495
e70236a8
JB
5496 /* Shouldn't happen */
5497 return 0;
5498}
79e53945 5499
e70236a8
JB
5500static int i830_get_display_clock_speed(struct drm_device *dev)
5501{
5502 return 133000;
79e53945
JB
5503}
5504
2c07245f 5505static void
a65851af 5506intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5507{
a65851af
VS
5508 while (*num > DATA_LINK_M_N_MASK ||
5509 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5510 *num >>= 1;
5511 *den >>= 1;
5512 }
5513}
5514
a65851af
VS
5515static void compute_m_n(unsigned int m, unsigned int n,
5516 uint32_t *ret_m, uint32_t *ret_n)
5517{
5518 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5519 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5520 intel_reduce_m_n_ratio(ret_m, ret_n);
5521}
5522
e69d0bc1
DV
5523void
5524intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5525 int pixel_clock, int link_clock,
5526 struct intel_link_m_n *m_n)
2c07245f 5527{
e69d0bc1 5528 m_n->tu = 64;
a65851af
VS
5529
5530 compute_m_n(bits_per_pixel * pixel_clock,
5531 link_clock * nlanes * 8,
5532 &m_n->gmch_m, &m_n->gmch_n);
5533
5534 compute_m_n(pixel_clock, link_clock,
5535 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5536}
5537
a7615030
CW
5538static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5539{
d330a953
JN
5540 if (i915.panel_use_ssc >= 0)
5541 return i915.panel_use_ssc != 0;
41aa3448 5542 return dev_priv->vbt.lvds_use_ssc
435793df 5543 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5544}
5545
c65d77d8
JB
5546static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5547{
5548 struct drm_device *dev = crtc->dev;
5549 struct drm_i915_private *dev_priv = dev->dev_private;
5550 int refclk;
5551
a0c4da24 5552 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5553 refclk = 100000;
a0c4da24 5554 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5555 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5556 refclk = dev_priv->vbt.lvds_ssc_freq;
5557 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5558 } else if (!IS_GEN2(dev)) {
5559 refclk = 96000;
5560 } else {
5561 refclk = 48000;
5562 }
5563
5564 return refclk;
5565}
5566
7429e9d4 5567static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5568{
7df00d7a 5569 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5570}
f47709a9 5571
7429e9d4
DV
5572static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5573{
5574 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5575}
5576
f47709a9 5577static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5578 intel_clock_t *reduced_clock)
5579{
f47709a9 5580 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5581 u32 fp, fp2 = 0;
5582
5583 if (IS_PINEVIEW(dev)) {
7429e9d4 5584 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5585 if (reduced_clock)
7429e9d4 5586 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5587 } else {
7429e9d4 5588 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5589 if (reduced_clock)
7429e9d4 5590 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5591 }
5592
8bcc2795 5593 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5594
f47709a9
DV
5595 crtc->lowfreq_avail = false;
5596 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5597 reduced_clock && i915.powersave) {
8bcc2795 5598 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5599 crtc->lowfreq_avail = true;
a7516a05 5600 } else {
8bcc2795 5601 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5602 }
5603}
5604
5e69f97f
CML
5605static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5606 pipe)
89b667f8
JB
5607{
5608 u32 reg_val;
5609
5610 /*
5611 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5612 * and set it to a reasonable value instead.
5613 */
ab3c759a 5614 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5615 reg_val &= 0xffffff00;
5616 reg_val |= 0x00000030;
ab3c759a 5617 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5618
ab3c759a 5619 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5620 reg_val &= 0x8cffffff;
5621 reg_val = 0x8c000000;
ab3c759a 5622 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5623
ab3c759a 5624 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5625 reg_val &= 0xffffff00;
ab3c759a 5626 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5627
ab3c759a 5628 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5629 reg_val &= 0x00ffffff;
5630 reg_val |= 0xb0000000;
ab3c759a 5631 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5632}
5633
b551842d
DV
5634static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5635 struct intel_link_m_n *m_n)
5636{
5637 struct drm_device *dev = crtc->base.dev;
5638 struct drm_i915_private *dev_priv = dev->dev_private;
5639 int pipe = crtc->pipe;
5640
e3b95f1e
DV
5641 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5642 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5643 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5644 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5645}
5646
5647static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5648 struct intel_link_m_n *m_n,
5649 struct intel_link_m_n *m2_n2)
b551842d
DV
5650{
5651 struct drm_device *dev = crtc->base.dev;
5652 struct drm_i915_private *dev_priv = dev->dev_private;
5653 int pipe = crtc->pipe;
5654 enum transcoder transcoder = crtc->config.cpu_transcoder;
5655
5656 if (INTEL_INFO(dev)->gen >= 5) {
5657 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5658 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5659 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5660 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5661 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5662 * for gen < 8) and if DRRS is supported (to make sure the
5663 * registers are not unnecessarily accessed).
5664 */
5665 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5666 crtc->config.has_drrs) {
5667 I915_WRITE(PIPE_DATA_M2(transcoder),
5668 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5669 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5670 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5671 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5672 }
b551842d 5673 } else {
e3b95f1e
DV
5674 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5675 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5676 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5677 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5678 }
5679}
5680
f769cd24 5681void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5682{
5683 if (crtc->config.has_pch_encoder)
5684 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5685 else
f769cd24
VK
5686 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5687 &crtc->config.dp_m2_n2);
03afc4a2
DV
5688}
5689
f47709a9 5690static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5691{
5692 u32 dpll, dpll_md;
5693
5694 /*
5695 * Enable DPIO clock input. We should never disable the reference
5696 * clock for pipe B, since VGA hotplug / manual detection depends
5697 * on it.
5698 */
5699 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5700 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5701 /* We should never disable this, set it here for state tracking */
5702 if (crtc->pipe == PIPE_B)
5703 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5704 dpll |= DPLL_VCO_ENABLE;
5705 crtc->config.dpll_hw_state.dpll = dpll;
5706
5707 dpll_md = (crtc->config.pixel_multiplier - 1)
5708 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5709 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5710}
5711
5712static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5713{
f47709a9 5714 struct drm_device *dev = crtc->base.dev;
a0c4da24 5715 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5716 int pipe = crtc->pipe;
bdd4b6a6 5717 u32 mdiv;
a0c4da24 5718 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5719 u32 coreclk, reg_val;
a0c4da24 5720
09153000
DV
5721 mutex_lock(&dev_priv->dpio_lock);
5722
f47709a9
DV
5723 bestn = crtc->config.dpll.n;
5724 bestm1 = crtc->config.dpll.m1;
5725 bestm2 = crtc->config.dpll.m2;
5726 bestp1 = crtc->config.dpll.p1;
5727 bestp2 = crtc->config.dpll.p2;
a0c4da24 5728
89b667f8
JB
5729 /* See eDP HDMI DPIO driver vbios notes doc */
5730
5731 /* PLL B needs special handling */
bdd4b6a6 5732 if (pipe == PIPE_B)
5e69f97f 5733 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5734
5735 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5736 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5737
5738 /* Disable target IRef on PLL */
ab3c759a 5739 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5740 reg_val &= 0x00ffffff;
ab3c759a 5741 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5742
5743 /* Disable fast lock */
ab3c759a 5744 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5745
5746 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5747 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5748 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5749 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5750 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5751
5752 /*
5753 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5754 * but we don't support that).
5755 * Note: don't use the DAC post divider as it seems unstable.
5756 */
5757 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5758 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5759
a0c4da24 5760 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5761 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5762
89b667f8 5763 /* Set HBR and RBR LPF coefficients */
ff9a6750 5764 if (crtc->config.port_clock == 162000 ||
99750bd4 5765 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5766 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5767 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5768 0x009f0003);
89b667f8 5769 else
ab3c759a 5770 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5771 0x00d0000f);
5772
5773 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5774 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5775 /* Use SSC source */
bdd4b6a6 5776 if (pipe == PIPE_A)
ab3c759a 5777 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5778 0x0df40000);
5779 else
ab3c759a 5780 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5781 0x0df70000);
5782 } else { /* HDMI or VGA */
5783 /* Use bend source */
bdd4b6a6 5784 if (pipe == PIPE_A)
ab3c759a 5785 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5786 0x0df70000);
5787 else
ab3c759a 5788 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5789 0x0df40000);
5790 }
a0c4da24 5791
ab3c759a 5792 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5793 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5794 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5795 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5796 coreclk |= 0x01000000;
ab3c759a 5797 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5798
ab3c759a 5799 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5800 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5801}
5802
9d556c99 5803static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5804{
5805 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5806 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5807 DPLL_VCO_ENABLE;
5808 if (crtc->pipe != PIPE_A)
5809 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5810
5811 crtc->config.dpll_hw_state.dpll_md =
5812 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5813}
5814
5815static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5816{
5817 struct drm_device *dev = crtc->base.dev;
5818 struct drm_i915_private *dev_priv = dev->dev_private;
5819 int pipe = crtc->pipe;
5820 int dpll_reg = DPLL(crtc->pipe);
5821 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5822 u32 loopfilter, intcoeff;
9d556c99
CML
5823 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5824 int refclk;
5825
9d556c99
CML
5826 bestn = crtc->config.dpll.n;
5827 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5828 bestm1 = crtc->config.dpll.m1;
5829 bestm2 = crtc->config.dpll.m2 >> 22;
5830 bestp1 = crtc->config.dpll.p1;
5831 bestp2 = crtc->config.dpll.p2;
5832
5833 /*
5834 * Enable Refclk and SSC
5835 */
a11b0703
VS
5836 I915_WRITE(dpll_reg,
5837 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5838
5839 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5840
9d556c99
CML
5841 /* p1 and p2 divider */
5842 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5843 5 << DPIO_CHV_S1_DIV_SHIFT |
5844 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5845 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5846 1 << DPIO_CHV_K_DIV_SHIFT);
5847
5848 /* Feedback post-divider - m2 */
5849 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5850
5851 /* Feedback refclk divider - n and m1 */
5852 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5853 DPIO_CHV_M1_DIV_BY_2 |
5854 1 << DPIO_CHV_N_DIV_SHIFT);
5855
5856 /* M2 fraction division */
5857 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5858
5859 /* M2 fraction division enable */
5860 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5861 DPIO_CHV_FRAC_DIV_EN |
5862 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5863
5864 /* Loop filter */
5865 refclk = i9xx_get_refclk(&crtc->base, 0);
5866 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5867 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5868 if (refclk == 100000)
5869 intcoeff = 11;
5870 else if (refclk == 38400)
5871 intcoeff = 10;
5872 else
5873 intcoeff = 9;
5874 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5875 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5876
5877 /* AFC Recal */
5878 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5879 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5880 DPIO_AFC_RECAL);
5881
5882 mutex_unlock(&dev_priv->dpio_lock);
5883}
5884
f47709a9
DV
5885static void i9xx_update_pll(struct intel_crtc *crtc,
5886 intel_clock_t *reduced_clock,
eb1cbe48
DV
5887 int num_connectors)
5888{
f47709a9 5889 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5890 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5891 u32 dpll;
5892 bool is_sdvo;
f47709a9 5893 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5894
f47709a9 5895 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5896
f47709a9
DV
5897 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5898 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5899
5900 dpll = DPLL_VGA_MODE_DIS;
5901
f47709a9 5902 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5903 dpll |= DPLLB_MODE_LVDS;
5904 else
5905 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5906
ef1b460d 5907 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5908 dpll |= (crtc->config.pixel_multiplier - 1)
5909 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5910 }
198a037f
DV
5911
5912 if (is_sdvo)
4a33e48d 5913 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5914
f47709a9 5915 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5916 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5917
5918 /* compute bitmask from p1 value */
5919 if (IS_PINEVIEW(dev))
5920 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5921 else {
5922 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5923 if (IS_G4X(dev) && reduced_clock)
5924 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5925 }
5926 switch (clock->p2) {
5927 case 5:
5928 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5929 break;
5930 case 7:
5931 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5932 break;
5933 case 10:
5934 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5935 break;
5936 case 14:
5937 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5938 break;
5939 }
5940 if (INTEL_INFO(dev)->gen >= 4)
5941 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5942
09ede541 5943 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5944 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5945 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5946 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5947 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5948 else
5949 dpll |= PLL_REF_INPUT_DREFCLK;
5950
5951 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5952 crtc->config.dpll_hw_state.dpll = dpll;
5953
eb1cbe48 5954 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5955 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5956 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5957 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5958 }
5959}
5960
f47709a9 5961static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5962 intel_clock_t *reduced_clock,
eb1cbe48
DV
5963 int num_connectors)
5964{
f47709a9 5965 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5966 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5967 u32 dpll;
f47709a9 5968 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5969
f47709a9 5970 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5971
eb1cbe48
DV
5972 dpll = DPLL_VGA_MODE_DIS;
5973
f47709a9 5974 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5975 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5976 } else {
5977 if (clock->p1 == 2)
5978 dpll |= PLL_P1_DIVIDE_BY_TWO;
5979 else
5980 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5981 if (clock->p2 == 4)
5982 dpll |= PLL_P2_DIVIDE_BY_4;
5983 }
5984
1c4e0274 5985 if (!IS_I830(dev) && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4a33e48d
DV
5986 dpll |= DPLL_DVO_2X_MODE;
5987
f47709a9 5988 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5989 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5990 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5991 else
5992 dpll |= PLL_REF_INPUT_DREFCLK;
5993
5994 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5995 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5996}
5997
8a654f3b 5998static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5999{
6000 struct drm_device *dev = intel_crtc->base.dev;
6001 struct drm_i915_private *dev_priv = dev->dev_private;
6002 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6003 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6004 struct drm_display_mode *adjusted_mode =
6005 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6006 uint32_t crtc_vtotal, crtc_vblank_end;
6007 int vsyncshift = 0;
4d8a62ea
DV
6008
6009 /* We need to be careful not to changed the adjusted mode, for otherwise
6010 * the hw state checker will get angry at the mismatch. */
6011 crtc_vtotal = adjusted_mode->crtc_vtotal;
6012 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6013
609aeaca 6014 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6015 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6016 crtc_vtotal -= 1;
6017 crtc_vblank_end -= 1;
609aeaca
VS
6018
6019 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6020 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6021 else
6022 vsyncshift = adjusted_mode->crtc_hsync_start -
6023 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6024 if (vsyncshift < 0)
6025 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6026 }
6027
6028 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6029 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6030
fe2b8f9d 6031 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6032 (adjusted_mode->crtc_hdisplay - 1) |
6033 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6034 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6035 (adjusted_mode->crtc_hblank_start - 1) |
6036 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6037 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6038 (adjusted_mode->crtc_hsync_start - 1) |
6039 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6040
fe2b8f9d 6041 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6042 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6043 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6044 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6045 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6046 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6047 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6048 (adjusted_mode->crtc_vsync_start - 1) |
6049 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6050
b5e508d4
PZ
6051 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6052 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6053 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6054 * bits. */
6055 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6056 (pipe == PIPE_B || pipe == PIPE_C))
6057 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6058
b0e77b9c
PZ
6059 /* pipesrc controls the size that is scaled from, which should
6060 * always be the user's requested size.
6061 */
6062 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6063 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6064 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6065}
6066
1bd1bd80
DV
6067static void intel_get_pipe_timings(struct intel_crtc *crtc,
6068 struct intel_crtc_config *pipe_config)
6069{
6070 struct drm_device *dev = crtc->base.dev;
6071 struct drm_i915_private *dev_priv = dev->dev_private;
6072 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6073 uint32_t tmp;
6074
6075 tmp = I915_READ(HTOTAL(cpu_transcoder));
6076 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6077 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6078 tmp = I915_READ(HBLANK(cpu_transcoder));
6079 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6080 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6081 tmp = I915_READ(HSYNC(cpu_transcoder));
6082 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6083 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6084
6085 tmp = I915_READ(VTOTAL(cpu_transcoder));
6086 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6087 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6088 tmp = I915_READ(VBLANK(cpu_transcoder));
6089 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6090 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6091 tmp = I915_READ(VSYNC(cpu_transcoder));
6092 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6093 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6094
6095 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6096 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6097 pipe_config->adjusted_mode.crtc_vtotal += 1;
6098 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6099 }
6100
6101 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6102 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6103 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6104
6105 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6106 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6107}
6108
f6a83288
DV
6109void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6110 struct intel_crtc_config *pipe_config)
babea61d 6111{
f6a83288
DV
6112 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6113 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6114 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6115 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6116
f6a83288
DV
6117 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6118 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6119 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6120 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6121
f6a83288 6122 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6123
f6a83288
DV
6124 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6125 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6126}
6127
84b046f3
DV
6128static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6129{
6130 struct drm_device *dev = intel_crtc->base.dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 uint32_t pipeconf;
6133
9f11a9e4 6134 pipeconf = 0;
84b046f3 6135
b6b5d049
VS
6136 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6137 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6138 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6139
cf532bb2
VS
6140 if (intel_crtc->config.double_wide)
6141 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6142
ff9ce46e
DV
6143 /* only g4x and later have fancy bpc/dither controls */
6144 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6145 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6146 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6147 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6148 PIPECONF_DITHER_TYPE_SP;
84b046f3 6149
ff9ce46e
DV
6150 switch (intel_crtc->config.pipe_bpp) {
6151 case 18:
6152 pipeconf |= PIPECONF_6BPC;
6153 break;
6154 case 24:
6155 pipeconf |= PIPECONF_8BPC;
6156 break;
6157 case 30:
6158 pipeconf |= PIPECONF_10BPC;
6159 break;
6160 default:
6161 /* Case prevented by intel_choose_pipe_bpp_dither. */
6162 BUG();
84b046f3
DV
6163 }
6164 }
6165
6166 if (HAS_PIPE_CXSR(dev)) {
6167 if (intel_crtc->lowfreq_avail) {
6168 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6169 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6170 } else {
6171 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6172 }
6173 }
6174
efc2cfff
VS
6175 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6176 if (INTEL_INFO(dev)->gen < 4 ||
6177 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6178 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6179 else
6180 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6181 } else
84b046f3
DV
6182 pipeconf |= PIPECONF_PROGRESSIVE;
6183
9f11a9e4
DV
6184 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6185 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6186
84b046f3
DV
6187 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6188 POSTING_READ(PIPECONF(intel_crtc->pipe));
6189}
6190
f564048e 6191static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6192 int x, int y,
94352cf9 6193 struct drm_framebuffer *fb)
79e53945
JB
6194{
6195 struct drm_device *dev = crtc->dev;
6196 struct drm_i915_private *dev_priv = dev->dev_private;
6197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6198 int refclk, num_connectors = 0;
652c393a 6199 intel_clock_t clock, reduced_clock;
a16af721 6200 bool ok, has_reduced_clock = false;
e9fd1c02 6201 bool is_lvds = false, is_dsi = false;
5eddb70b 6202 struct intel_encoder *encoder;
d4906093 6203 const intel_limit_t *limit;
79e53945 6204
6c2b7c12 6205 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6206 switch (encoder->type) {
79e53945
JB
6207 case INTEL_OUTPUT_LVDS:
6208 is_lvds = true;
6209 break;
e9fd1c02
JN
6210 case INTEL_OUTPUT_DSI:
6211 is_dsi = true;
6212 break;
79e53945 6213 }
43565a06 6214
c751ce4f 6215 num_connectors++;
79e53945
JB
6216 }
6217
f2335330 6218 if (is_dsi)
5b18e57c 6219 return 0;
f2335330
JN
6220
6221 if (!intel_crtc->config.clock_set) {
6222 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6223
e9fd1c02
JN
6224 /*
6225 * Returns a set of divisors for the desired target clock with
6226 * the given refclk, or FALSE. The returned values represent
6227 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6228 * 2) / p1 / p2.
6229 */
6230 limit = intel_limit(crtc, refclk);
6231 ok = dev_priv->display.find_dpll(limit, crtc,
6232 intel_crtc->config.port_clock,
6233 refclk, NULL, &clock);
f2335330 6234 if (!ok) {
e9fd1c02
JN
6235 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6236 return -EINVAL;
6237 }
79e53945 6238
f2335330
JN
6239 if (is_lvds && dev_priv->lvds_downclock_avail) {
6240 /*
6241 * Ensure we match the reduced clock's P to the target
6242 * clock. If the clocks don't match, we can't switch
6243 * the display clock by using the FP0/FP1. In such case
6244 * we will disable the LVDS downclock feature.
6245 */
6246 has_reduced_clock =
6247 dev_priv->display.find_dpll(limit, crtc,
6248 dev_priv->lvds_downclock,
6249 refclk, &clock,
6250 &reduced_clock);
6251 }
6252 /* Compat-code for transition, will disappear. */
f47709a9
DV
6253 intel_crtc->config.dpll.n = clock.n;
6254 intel_crtc->config.dpll.m1 = clock.m1;
6255 intel_crtc->config.dpll.m2 = clock.m2;
6256 intel_crtc->config.dpll.p1 = clock.p1;
6257 intel_crtc->config.dpll.p2 = clock.p2;
6258 }
7026d4ac 6259
e9fd1c02 6260 if (IS_GEN2(dev)) {
8a654f3b 6261 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6262 has_reduced_clock ? &reduced_clock : NULL,
6263 num_connectors);
9d556c99
CML
6264 } else if (IS_CHERRYVIEW(dev)) {
6265 chv_update_pll(intel_crtc);
e9fd1c02 6266 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6267 vlv_update_pll(intel_crtc);
e9fd1c02 6268 } else {
f47709a9 6269 i9xx_update_pll(intel_crtc,
eb1cbe48 6270 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6271 num_connectors);
e9fd1c02 6272 }
79e53945 6273
c8f7a0db 6274 return 0;
f564048e
EA
6275}
6276
2fa2fe9a
DV
6277static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6278 struct intel_crtc_config *pipe_config)
6279{
6280 struct drm_device *dev = crtc->base.dev;
6281 struct drm_i915_private *dev_priv = dev->dev_private;
6282 uint32_t tmp;
6283
dc9e7dec
VS
6284 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6285 return;
6286
2fa2fe9a 6287 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6288 if (!(tmp & PFIT_ENABLE))
6289 return;
2fa2fe9a 6290
06922821 6291 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6292 if (INTEL_INFO(dev)->gen < 4) {
6293 if (crtc->pipe != PIPE_B)
6294 return;
2fa2fe9a
DV
6295 } else {
6296 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6297 return;
6298 }
6299
06922821 6300 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6301 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6302 if (INTEL_INFO(dev)->gen < 5)
6303 pipe_config->gmch_pfit.lvds_border_bits =
6304 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6305}
6306
acbec814
JB
6307static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6308 struct intel_crtc_config *pipe_config)
6309{
6310 struct drm_device *dev = crtc->base.dev;
6311 struct drm_i915_private *dev_priv = dev->dev_private;
6312 int pipe = pipe_config->cpu_transcoder;
6313 intel_clock_t clock;
6314 u32 mdiv;
662c6ecb 6315 int refclk = 100000;
acbec814 6316
f573de5a
SK
6317 /* In case of MIPI DPLL will not even be used */
6318 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6319 return;
6320
acbec814 6321 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6322 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6323 mutex_unlock(&dev_priv->dpio_lock);
6324
6325 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6326 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6327 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6328 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6329 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6330
f646628b 6331 vlv_clock(refclk, &clock);
acbec814 6332
f646628b
VS
6333 /* clock.dot is the fast clock */
6334 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6335}
6336
1ad292b5
JB
6337static void i9xx_get_plane_config(struct intel_crtc *crtc,
6338 struct intel_plane_config *plane_config)
6339{
6340 struct drm_device *dev = crtc->base.dev;
6341 struct drm_i915_private *dev_priv = dev->dev_private;
6342 u32 val, base, offset;
6343 int pipe = crtc->pipe, plane = crtc->plane;
6344 int fourcc, pixel_format;
6345 int aligned_height;
6346
66e514c1
DA
6347 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6348 if (!crtc->base.primary->fb) {
1ad292b5
JB
6349 DRM_DEBUG_KMS("failed to alloc fb\n");
6350 return;
6351 }
6352
6353 val = I915_READ(DSPCNTR(plane));
6354
6355 if (INTEL_INFO(dev)->gen >= 4)
6356 if (val & DISPPLANE_TILED)
6357 plane_config->tiled = true;
6358
6359 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6360 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6361 crtc->base.primary->fb->pixel_format = fourcc;
6362 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6363 drm_format_plane_cpp(fourcc, 0) * 8;
6364
6365 if (INTEL_INFO(dev)->gen >= 4) {
6366 if (plane_config->tiled)
6367 offset = I915_READ(DSPTILEOFF(plane));
6368 else
6369 offset = I915_READ(DSPLINOFF(plane));
6370 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6371 } else {
6372 base = I915_READ(DSPADDR(plane));
6373 }
6374 plane_config->base = base;
6375
6376 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6377 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6378 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6379
6380 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6381 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6382
66e514c1 6383 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6384 plane_config->tiled);
6385
1267a26b
FF
6386 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6387 aligned_height);
1ad292b5
JB
6388
6389 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6390 pipe, plane, crtc->base.primary->fb->width,
6391 crtc->base.primary->fb->height,
6392 crtc->base.primary->fb->bits_per_pixel, base,
6393 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6394 plane_config->size);
6395
6396}
6397
70b23a98
VS
6398static void chv_crtc_clock_get(struct intel_crtc *crtc,
6399 struct intel_crtc_config *pipe_config)
6400{
6401 struct drm_device *dev = crtc->base.dev;
6402 struct drm_i915_private *dev_priv = dev->dev_private;
6403 int pipe = pipe_config->cpu_transcoder;
6404 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6405 intel_clock_t clock;
6406 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6407 int refclk = 100000;
6408
6409 mutex_lock(&dev_priv->dpio_lock);
6410 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6411 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6412 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6413 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6414 mutex_unlock(&dev_priv->dpio_lock);
6415
6416 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6417 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6418 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6419 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6420 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6421
6422 chv_clock(refclk, &clock);
6423
6424 /* clock.dot is the fast clock */
6425 pipe_config->port_clock = clock.dot / 5;
6426}
6427
0e8ffe1b
DV
6428static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6429 struct intel_crtc_config *pipe_config)
6430{
6431 struct drm_device *dev = crtc->base.dev;
6432 struct drm_i915_private *dev_priv = dev->dev_private;
6433 uint32_t tmp;
6434
b5482bd0
ID
6435 if (!intel_display_power_enabled(dev_priv,
6436 POWER_DOMAIN_PIPE(crtc->pipe)))
6437 return false;
6438
e143a21c 6439 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6440 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6441
0e8ffe1b
DV
6442 tmp = I915_READ(PIPECONF(crtc->pipe));
6443 if (!(tmp & PIPECONF_ENABLE))
6444 return false;
6445
42571aef
VS
6446 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6447 switch (tmp & PIPECONF_BPC_MASK) {
6448 case PIPECONF_6BPC:
6449 pipe_config->pipe_bpp = 18;
6450 break;
6451 case PIPECONF_8BPC:
6452 pipe_config->pipe_bpp = 24;
6453 break;
6454 case PIPECONF_10BPC:
6455 pipe_config->pipe_bpp = 30;
6456 break;
6457 default:
6458 break;
6459 }
6460 }
6461
b5a9fa09
DV
6462 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6463 pipe_config->limited_color_range = true;
6464
282740f7
VS
6465 if (INTEL_INFO(dev)->gen < 4)
6466 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6467
1bd1bd80
DV
6468 intel_get_pipe_timings(crtc, pipe_config);
6469
2fa2fe9a
DV
6470 i9xx_get_pfit_config(crtc, pipe_config);
6471
6c49f241
DV
6472 if (INTEL_INFO(dev)->gen >= 4) {
6473 tmp = I915_READ(DPLL_MD(crtc->pipe));
6474 pipe_config->pixel_multiplier =
6475 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6476 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6477 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6478 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6479 tmp = I915_READ(DPLL(crtc->pipe));
6480 pipe_config->pixel_multiplier =
6481 ((tmp & SDVO_MULTIPLIER_MASK)
6482 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6483 } else {
6484 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6485 * port and will be fixed up in the encoder->get_config
6486 * function. */
6487 pipe_config->pixel_multiplier = 1;
6488 }
8bcc2795
DV
6489 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6490 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6491 /*
6492 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6493 * on 830. Filter it out here so that we don't
6494 * report errors due to that.
6495 */
6496 if (IS_I830(dev))
6497 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6498
8bcc2795
DV
6499 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6500 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6501 } else {
6502 /* Mask out read-only status bits. */
6503 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6504 DPLL_PORTC_READY_MASK |
6505 DPLL_PORTB_READY_MASK);
8bcc2795 6506 }
6c49f241 6507
70b23a98
VS
6508 if (IS_CHERRYVIEW(dev))
6509 chv_crtc_clock_get(crtc, pipe_config);
6510 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6511 vlv_crtc_clock_get(crtc, pipe_config);
6512 else
6513 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6514
0e8ffe1b
DV
6515 return true;
6516}
6517
dde86e2d 6518static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6519{
6520 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6521 struct intel_encoder *encoder;
74cfd7ac 6522 u32 val, final;
13d83a67 6523 bool has_lvds = false;
199e5d79 6524 bool has_cpu_edp = false;
199e5d79 6525 bool has_panel = false;
99eb6a01
KP
6526 bool has_ck505 = false;
6527 bool can_ssc = false;
13d83a67
JB
6528
6529 /* We need to take the global config into account */
b2784e15 6530 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6531 switch (encoder->type) {
6532 case INTEL_OUTPUT_LVDS:
6533 has_panel = true;
6534 has_lvds = true;
6535 break;
6536 case INTEL_OUTPUT_EDP:
6537 has_panel = true;
2de6905f 6538 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6539 has_cpu_edp = true;
6540 break;
13d83a67
JB
6541 }
6542 }
6543
99eb6a01 6544 if (HAS_PCH_IBX(dev)) {
41aa3448 6545 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6546 can_ssc = has_ck505;
6547 } else {
6548 has_ck505 = false;
6549 can_ssc = true;
6550 }
6551
2de6905f
ID
6552 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6553 has_panel, has_lvds, has_ck505);
13d83a67
JB
6554
6555 /* Ironlake: try to setup display ref clock before DPLL
6556 * enabling. This is only under driver's control after
6557 * PCH B stepping, previous chipset stepping should be
6558 * ignoring this setting.
6559 */
74cfd7ac
CW
6560 val = I915_READ(PCH_DREF_CONTROL);
6561
6562 /* As we must carefully and slowly disable/enable each source in turn,
6563 * compute the final state we want first and check if we need to
6564 * make any changes at all.
6565 */
6566 final = val;
6567 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6568 if (has_ck505)
6569 final |= DREF_NONSPREAD_CK505_ENABLE;
6570 else
6571 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6572
6573 final &= ~DREF_SSC_SOURCE_MASK;
6574 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6575 final &= ~DREF_SSC1_ENABLE;
6576
6577 if (has_panel) {
6578 final |= DREF_SSC_SOURCE_ENABLE;
6579
6580 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6581 final |= DREF_SSC1_ENABLE;
6582
6583 if (has_cpu_edp) {
6584 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6585 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6586 else
6587 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6588 } else
6589 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6590 } else {
6591 final |= DREF_SSC_SOURCE_DISABLE;
6592 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6593 }
6594
6595 if (final == val)
6596 return;
6597
13d83a67 6598 /* Always enable nonspread source */
74cfd7ac 6599 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6600
99eb6a01 6601 if (has_ck505)
74cfd7ac 6602 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6603 else
74cfd7ac 6604 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6605
199e5d79 6606 if (has_panel) {
74cfd7ac
CW
6607 val &= ~DREF_SSC_SOURCE_MASK;
6608 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6609
199e5d79 6610 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6611 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6612 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6613 val |= DREF_SSC1_ENABLE;
e77166b5 6614 } else
74cfd7ac 6615 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6616
6617 /* Get SSC going before enabling the outputs */
74cfd7ac 6618 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6619 POSTING_READ(PCH_DREF_CONTROL);
6620 udelay(200);
6621
74cfd7ac 6622 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6623
6624 /* Enable CPU source on CPU attached eDP */
199e5d79 6625 if (has_cpu_edp) {
99eb6a01 6626 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6627 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6628 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6629 } else
74cfd7ac 6630 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6631 } else
74cfd7ac 6632 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6633
74cfd7ac 6634 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6635 POSTING_READ(PCH_DREF_CONTROL);
6636 udelay(200);
6637 } else {
6638 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6639
74cfd7ac 6640 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6641
6642 /* Turn off CPU output */
74cfd7ac 6643 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6644
74cfd7ac 6645 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6646 POSTING_READ(PCH_DREF_CONTROL);
6647 udelay(200);
6648
6649 /* Turn off the SSC source */
74cfd7ac
CW
6650 val &= ~DREF_SSC_SOURCE_MASK;
6651 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6652
6653 /* Turn off SSC1 */
74cfd7ac 6654 val &= ~DREF_SSC1_ENABLE;
199e5d79 6655
74cfd7ac 6656 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6657 POSTING_READ(PCH_DREF_CONTROL);
6658 udelay(200);
6659 }
74cfd7ac
CW
6660
6661 BUG_ON(val != final);
13d83a67
JB
6662}
6663
f31f2d55 6664static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6665{
f31f2d55 6666 uint32_t tmp;
dde86e2d 6667
0ff066a9
PZ
6668 tmp = I915_READ(SOUTH_CHICKEN2);
6669 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6670 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6671
0ff066a9
PZ
6672 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6673 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6674 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6675
0ff066a9
PZ
6676 tmp = I915_READ(SOUTH_CHICKEN2);
6677 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6678 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6679
0ff066a9
PZ
6680 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6681 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6682 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6683}
6684
6685/* WaMPhyProgramming:hsw */
6686static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6687{
6688 uint32_t tmp;
dde86e2d
PZ
6689
6690 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6691 tmp &= ~(0xFF << 24);
6692 tmp |= (0x12 << 24);
6693 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6694
dde86e2d
PZ
6695 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6696 tmp |= (1 << 11);
6697 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6698
6699 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6700 tmp |= (1 << 11);
6701 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6702
dde86e2d
PZ
6703 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6704 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6705 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6706
6707 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6708 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6709 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6710
0ff066a9
PZ
6711 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6712 tmp &= ~(7 << 13);
6713 tmp |= (5 << 13);
6714 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6715
0ff066a9
PZ
6716 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6717 tmp &= ~(7 << 13);
6718 tmp |= (5 << 13);
6719 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6720
6721 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6722 tmp &= ~0xFF;
6723 tmp |= 0x1C;
6724 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6725
6726 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6727 tmp &= ~0xFF;
6728 tmp |= 0x1C;
6729 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6730
6731 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6732 tmp &= ~(0xFF << 16);
6733 tmp |= (0x1C << 16);
6734 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6735
6736 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6737 tmp &= ~(0xFF << 16);
6738 tmp |= (0x1C << 16);
6739 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6740
0ff066a9
PZ
6741 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6742 tmp |= (1 << 27);
6743 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6744
0ff066a9
PZ
6745 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6746 tmp |= (1 << 27);
6747 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6748
0ff066a9
PZ
6749 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6750 tmp &= ~(0xF << 28);
6751 tmp |= (4 << 28);
6752 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6753
0ff066a9
PZ
6754 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6755 tmp &= ~(0xF << 28);
6756 tmp |= (4 << 28);
6757 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6758}
6759
2fa86a1f
PZ
6760/* Implements 3 different sequences from BSpec chapter "Display iCLK
6761 * Programming" based on the parameters passed:
6762 * - Sequence to enable CLKOUT_DP
6763 * - Sequence to enable CLKOUT_DP without spread
6764 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6765 */
6766static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6767 bool with_fdi)
f31f2d55
PZ
6768{
6769 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6770 uint32_t reg, tmp;
6771
6772 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6773 with_spread = true;
6774 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6775 with_fdi, "LP PCH doesn't have FDI\n"))
6776 with_fdi = false;
f31f2d55
PZ
6777
6778 mutex_lock(&dev_priv->dpio_lock);
6779
6780 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6781 tmp &= ~SBI_SSCCTL_DISABLE;
6782 tmp |= SBI_SSCCTL_PATHALT;
6783 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6784
6785 udelay(24);
6786
2fa86a1f
PZ
6787 if (with_spread) {
6788 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6789 tmp &= ~SBI_SSCCTL_PATHALT;
6790 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6791
2fa86a1f
PZ
6792 if (with_fdi) {
6793 lpt_reset_fdi_mphy(dev_priv);
6794 lpt_program_fdi_mphy(dev_priv);
6795 }
6796 }
dde86e2d 6797
2fa86a1f
PZ
6798 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6799 SBI_GEN0 : SBI_DBUFF0;
6800 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6801 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6802 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6803
6804 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6805}
6806
47701c3b
PZ
6807/* Sequence to disable CLKOUT_DP */
6808static void lpt_disable_clkout_dp(struct drm_device *dev)
6809{
6810 struct drm_i915_private *dev_priv = dev->dev_private;
6811 uint32_t reg, tmp;
6812
6813 mutex_lock(&dev_priv->dpio_lock);
6814
6815 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6816 SBI_GEN0 : SBI_DBUFF0;
6817 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6818 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6819 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6820
6821 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6822 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6823 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6824 tmp |= SBI_SSCCTL_PATHALT;
6825 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6826 udelay(32);
6827 }
6828 tmp |= SBI_SSCCTL_DISABLE;
6829 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6830 }
6831
6832 mutex_unlock(&dev_priv->dpio_lock);
6833}
6834
bf8fa3d3
PZ
6835static void lpt_init_pch_refclk(struct drm_device *dev)
6836{
bf8fa3d3
PZ
6837 struct intel_encoder *encoder;
6838 bool has_vga = false;
6839
b2784e15 6840 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6841 switch (encoder->type) {
6842 case INTEL_OUTPUT_ANALOG:
6843 has_vga = true;
6844 break;
6845 }
6846 }
6847
47701c3b
PZ
6848 if (has_vga)
6849 lpt_enable_clkout_dp(dev, true, true);
6850 else
6851 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6852}
6853
dde86e2d
PZ
6854/*
6855 * Initialize reference clocks when the driver loads
6856 */
6857void intel_init_pch_refclk(struct drm_device *dev)
6858{
6859 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6860 ironlake_init_pch_refclk(dev);
6861 else if (HAS_PCH_LPT(dev))
6862 lpt_init_pch_refclk(dev);
6863}
6864
d9d444cb
JB
6865static int ironlake_get_refclk(struct drm_crtc *crtc)
6866{
6867 struct drm_device *dev = crtc->dev;
6868 struct drm_i915_private *dev_priv = dev->dev_private;
6869 struct intel_encoder *encoder;
d9d444cb
JB
6870 int num_connectors = 0;
6871 bool is_lvds = false;
6872
6c2b7c12 6873 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6874 switch (encoder->type) {
6875 case INTEL_OUTPUT_LVDS:
6876 is_lvds = true;
6877 break;
d9d444cb
JB
6878 }
6879 num_connectors++;
6880 }
6881
6882 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6883 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6884 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6885 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6886 }
6887
6888 return 120000;
6889}
6890
6ff93609 6891static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6892{
c8203565 6893 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6895 int pipe = intel_crtc->pipe;
c8203565
PZ
6896 uint32_t val;
6897
78114071 6898 val = 0;
c8203565 6899
965e0c48 6900 switch (intel_crtc->config.pipe_bpp) {
c8203565 6901 case 18:
dfd07d72 6902 val |= PIPECONF_6BPC;
c8203565
PZ
6903 break;
6904 case 24:
dfd07d72 6905 val |= PIPECONF_8BPC;
c8203565
PZ
6906 break;
6907 case 30:
dfd07d72 6908 val |= PIPECONF_10BPC;
c8203565
PZ
6909 break;
6910 case 36:
dfd07d72 6911 val |= PIPECONF_12BPC;
c8203565
PZ
6912 break;
6913 default:
cc769b62
PZ
6914 /* Case prevented by intel_choose_pipe_bpp_dither. */
6915 BUG();
c8203565
PZ
6916 }
6917
d8b32247 6918 if (intel_crtc->config.dither)
c8203565
PZ
6919 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6920
6ff93609 6921 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6922 val |= PIPECONF_INTERLACED_ILK;
6923 else
6924 val |= PIPECONF_PROGRESSIVE;
6925
50f3b016 6926 if (intel_crtc->config.limited_color_range)
3685a8f3 6927 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6928
c8203565
PZ
6929 I915_WRITE(PIPECONF(pipe), val);
6930 POSTING_READ(PIPECONF(pipe));
6931}
6932
86d3efce
VS
6933/*
6934 * Set up the pipe CSC unit.
6935 *
6936 * Currently only full range RGB to limited range RGB conversion
6937 * is supported, but eventually this should handle various
6938 * RGB<->YCbCr scenarios as well.
6939 */
50f3b016 6940static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6941{
6942 struct drm_device *dev = crtc->dev;
6943 struct drm_i915_private *dev_priv = dev->dev_private;
6944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6945 int pipe = intel_crtc->pipe;
6946 uint16_t coeff = 0x7800; /* 1.0 */
6947
6948 /*
6949 * TODO: Check what kind of values actually come out of the pipe
6950 * with these coeff/postoff values and adjust to get the best
6951 * accuracy. Perhaps we even need to take the bpc value into
6952 * consideration.
6953 */
6954
50f3b016 6955 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6956 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6957
6958 /*
6959 * GY/GU and RY/RU should be the other way around according
6960 * to BSpec, but reality doesn't agree. Just set them up in
6961 * a way that results in the correct picture.
6962 */
6963 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6964 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6965
6966 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6967 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6968
6969 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6970 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6971
6972 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6973 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6974 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6975
6976 if (INTEL_INFO(dev)->gen > 6) {
6977 uint16_t postoff = 0;
6978
50f3b016 6979 if (intel_crtc->config.limited_color_range)
32cf0cb0 6980 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6981
6982 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6983 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6984 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6985
6986 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6987 } else {
6988 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6989
50f3b016 6990 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6991 mode |= CSC_BLACK_SCREEN_OFFSET;
6992
6993 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6994 }
6995}
6996
6ff93609 6997static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6998{
756f85cf
PZ
6999 struct drm_device *dev = crtc->dev;
7000 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7002 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7003 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7004 uint32_t val;
7005
3eff4faa 7006 val = 0;
ee2b0b38 7007
756f85cf 7008 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7009 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7010
6ff93609 7011 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7012 val |= PIPECONF_INTERLACED_ILK;
7013 else
7014 val |= PIPECONF_PROGRESSIVE;
7015
702e7a56
PZ
7016 I915_WRITE(PIPECONF(cpu_transcoder), val);
7017 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7018
7019 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7020 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
7021
7022 if (IS_BROADWELL(dev)) {
7023 val = 0;
7024
7025 switch (intel_crtc->config.pipe_bpp) {
7026 case 18:
7027 val |= PIPEMISC_DITHER_6_BPC;
7028 break;
7029 case 24:
7030 val |= PIPEMISC_DITHER_8_BPC;
7031 break;
7032 case 30:
7033 val |= PIPEMISC_DITHER_10_BPC;
7034 break;
7035 case 36:
7036 val |= PIPEMISC_DITHER_12_BPC;
7037 break;
7038 default:
7039 /* Case prevented by pipe_config_set_bpp. */
7040 BUG();
7041 }
7042
7043 if (intel_crtc->config.dither)
7044 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7045
7046 I915_WRITE(PIPEMISC(pipe), val);
7047 }
ee2b0b38
PZ
7048}
7049
6591c6e4 7050static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7051 intel_clock_t *clock,
7052 bool *has_reduced_clock,
7053 intel_clock_t *reduced_clock)
7054{
7055 struct drm_device *dev = crtc->dev;
7056 struct drm_i915_private *dev_priv = dev->dev_private;
7057 struct intel_encoder *intel_encoder;
7058 int refclk;
d4906093 7059 const intel_limit_t *limit;
a16af721 7060 bool ret, is_lvds = false;
79e53945 7061
6591c6e4
PZ
7062 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7063 switch (intel_encoder->type) {
79e53945
JB
7064 case INTEL_OUTPUT_LVDS:
7065 is_lvds = true;
7066 break;
79e53945
JB
7067 }
7068 }
7069
d9d444cb 7070 refclk = ironlake_get_refclk(crtc);
79e53945 7071
d4906093
ML
7072 /*
7073 * Returns a set of divisors for the desired target clock with the given
7074 * refclk, or FALSE. The returned values represent the clock equation:
7075 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7076 */
1b894b59 7077 limit = intel_limit(crtc, refclk);
ff9a6750
DV
7078 ret = dev_priv->display.find_dpll(limit, crtc,
7079 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 7080 refclk, NULL, clock);
6591c6e4
PZ
7081 if (!ret)
7082 return false;
cda4b7d3 7083
ddc9003c 7084 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7085 /*
7086 * Ensure we match the reduced clock's P to the target clock.
7087 * If the clocks don't match, we can't switch the display clock
7088 * by using the FP0/FP1. In such case we will disable the LVDS
7089 * downclock feature.
7090 */
ee9300bb
DV
7091 *has_reduced_clock =
7092 dev_priv->display.find_dpll(limit, crtc,
7093 dev_priv->lvds_downclock,
7094 refclk, clock,
7095 reduced_clock);
652c393a 7096 }
61e9653f 7097
6591c6e4
PZ
7098 return true;
7099}
7100
d4b1931c
PZ
7101int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7102{
7103 /*
7104 * Account for spread spectrum to avoid
7105 * oversubscribing the link. Max center spread
7106 * is 2.5%; use 5% for safety's sake.
7107 */
7108 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7109 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7110}
7111
7429e9d4 7112static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7113{
7429e9d4 7114 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7115}
7116
de13a2e3 7117static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7118 u32 *fp,
9a7c7890 7119 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7120{
de13a2e3 7121 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7122 struct drm_device *dev = crtc->dev;
7123 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7124 struct intel_encoder *intel_encoder;
7125 uint32_t dpll;
6cc5f341 7126 int factor, num_connectors = 0;
09ede541 7127 bool is_lvds = false, is_sdvo = false;
79e53945 7128
de13a2e3
PZ
7129 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7130 switch (intel_encoder->type) {
79e53945
JB
7131 case INTEL_OUTPUT_LVDS:
7132 is_lvds = true;
7133 break;
7134 case INTEL_OUTPUT_SDVO:
7d57382e 7135 case INTEL_OUTPUT_HDMI:
79e53945 7136 is_sdvo = true;
79e53945 7137 break;
79e53945 7138 }
43565a06 7139
c751ce4f 7140 num_connectors++;
79e53945 7141 }
79e53945 7142
c1858123 7143 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7144 factor = 21;
7145 if (is_lvds) {
7146 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7147 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7148 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7149 factor = 25;
09ede541 7150 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7151 factor = 20;
c1858123 7152
7429e9d4 7153 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7154 *fp |= FP_CB_TUNE;
2c07245f 7155
9a7c7890
DV
7156 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7157 *fp2 |= FP_CB_TUNE;
7158
5eddb70b 7159 dpll = 0;
2c07245f 7160
a07d6787
EA
7161 if (is_lvds)
7162 dpll |= DPLLB_MODE_LVDS;
7163 else
7164 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7165
ef1b460d
DV
7166 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7167 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7168
7169 if (is_sdvo)
4a33e48d 7170 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7171 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7172 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7173
a07d6787 7174 /* compute bitmask from p1 value */
7429e9d4 7175 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7176 /* also FPA1 */
7429e9d4 7177 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7178
7429e9d4 7179 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7180 case 5:
7181 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7182 break;
7183 case 7:
7184 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7185 break;
7186 case 10:
7187 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7188 break;
7189 case 14:
7190 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7191 break;
79e53945
JB
7192 }
7193
b4c09f3b 7194 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7195 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7196 else
7197 dpll |= PLL_REF_INPUT_DREFCLK;
7198
959e16d6 7199 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7200}
7201
7202static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7203 int x, int y,
7204 struct drm_framebuffer *fb)
7205{
7206 struct drm_device *dev = crtc->dev;
de13a2e3 7207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7208 int num_connectors = 0;
7209 intel_clock_t clock, reduced_clock;
cbbab5bd 7210 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7211 bool ok, has_reduced_clock = false;
8b47047b 7212 bool is_lvds = false;
de13a2e3 7213 struct intel_encoder *encoder;
e2b78267 7214 struct intel_shared_dpll *pll;
de13a2e3
PZ
7215
7216 for_each_encoder_on_crtc(dev, crtc, encoder) {
7217 switch (encoder->type) {
7218 case INTEL_OUTPUT_LVDS:
7219 is_lvds = true;
7220 break;
de13a2e3
PZ
7221 }
7222
7223 num_connectors++;
a07d6787 7224 }
79e53945 7225
5dc5298b
PZ
7226 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7227 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7228
ff9a6750 7229 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7230 &has_reduced_clock, &reduced_clock);
ee9300bb 7231 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7232 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7233 return -EINVAL;
79e53945 7234 }
f47709a9
DV
7235 /* Compat-code for transition, will disappear. */
7236 if (!intel_crtc->config.clock_set) {
7237 intel_crtc->config.dpll.n = clock.n;
7238 intel_crtc->config.dpll.m1 = clock.m1;
7239 intel_crtc->config.dpll.m2 = clock.m2;
7240 intel_crtc->config.dpll.p1 = clock.p1;
7241 intel_crtc->config.dpll.p2 = clock.p2;
7242 }
79e53945 7243
5dc5298b 7244 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7245 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7246 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7247 if (has_reduced_clock)
7429e9d4 7248 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7249
7429e9d4 7250 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7251 &fp, &reduced_clock,
7252 has_reduced_clock ? &fp2 : NULL);
7253
959e16d6 7254 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7255 intel_crtc->config.dpll_hw_state.fp0 = fp;
7256 if (has_reduced_clock)
7257 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7258 else
7259 intel_crtc->config.dpll_hw_state.fp1 = fp;
7260
b89a1d39 7261 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7262 if (pll == NULL) {
84f44ce7 7263 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7264 pipe_name(intel_crtc->pipe));
4b645f14
JB
7265 return -EINVAL;
7266 }
ee7b9f93 7267 } else
e72f9fbf 7268 intel_put_shared_dpll(intel_crtc);
79e53945 7269
d330a953 7270 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7271 intel_crtc->lowfreq_avail = true;
7272 else
7273 intel_crtc->lowfreq_avail = false;
e2b78267 7274
c8f7a0db 7275 return 0;
79e53945
JB
7276}
7277
eb14cb74
VS
7278static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7279 struct intel_link_m_n *m_n)
7280{
7281 struct drm_device *dev = crtc->base.dev;
7282 struct drm_i915_private *dev_priv = dev->dev_private;
7283 enum pipe pipe = crtc->pipe;
7284
7285 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7286 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7287 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7288 & ~TU_SIZE_MASK;
7289 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7290 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7291 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7292}
7293
7294static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7295 enum transcoder transcoder,
b95af8be
VK
7296 struct intel_link_m_n *m_n,
7297 struct intel_link_m_n *m2_n2)
72419203
DV
7298{
7299 struct drm_device *dev = crtc->base.dev;
7300 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7301 enum pipe pipe = crtc->pipe;
72419203 7302
eb14cb74
VS
7303 if (INTEL_INFO(dev)->gen >= 5) {
7304 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7305 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7306 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7307 & ~TU_SIZE_MASK;
7308 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7309 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7310 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7311 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7312 * gen < 8) and if DRRS is supported (to make sure the
7313 * registers are not unnecessarily read).
7314 */
7315 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7316 crtc->config.has_drrs) {
7317 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7318 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7319 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7320 & ~TU_SIZE_MASK;
7321 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7322 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7323 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7324 }
eb14cb74
VS
7325 } else {
7326 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7327 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7328 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7329 & ~TU_SIZE_MASK;
7330 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7331 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7332 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7333 }
7334}
7335
7336void intel_dp_get_m_n(struct intel_crtc *crtc,
7337 struct intel_crtc_config *pipe_config)
7338{
7339 if (crtc->config.has_pch_encoder)
7340 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7341 else
7342 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7343 &pipe_config->dp_m_n,
7344 &pipe_config->dp_m2_n2);
eb14cb74 7345}
72419203 7346
eb14cb74
VS
7347static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7348 struct intel_crtc_config *pipe_config)
7349{
7350 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7351 &pipe_config->fdi_m_n, NULL);
72419203
DV
7352}
7353
2fa2fe9a
DV
7354static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7355 struct intel_crtc_config *pipe_config)
7356{
7357 struct drm_device *dev = crtc->base.dev;
7358 struct drm_i915_private *dev_priv = dev->dev_private;
7359 uint32_t tmp;
7360
7361 tmp = I915_READ(PF_CTL(crtc->pipe));
7362
7363 if (tmp & PF_ENABLE) {
fd4daa9c 7364 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7365 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7366 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7367
7368 /* We currently do not free assignements of panel fitters on
7369 * ivb/hsw (since we don't use the higher upscaling modes which
7370 * differentiates them) so just WARN about this case for now. */
7371 if (IS_GEN7(dev)) {
7372 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7373 PF_PIPE_SEL_IVB(crtc->pipe));
7374 }
2fa2fe9a 7375 }
79e53945
JB
7376}
7377
4c6baa59
JB
7378static void ironlake_get_plane_config(struct intel_crtc *crtc,
7379 struct intel_plane_config *plane_config)
7380{
7381 struct drm_device *dev = crtc->base.dev;
7382 struct drm_i915_private *dev_priv = dev->dev_private;
7383 u32 val, base, offset;
7384 int pipe = crtc->pipe, plane = crtc->plane;
7385 int fourcc, pixel_format;
7386 int aligned_height;
7387
66e514c1
DA
7388 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7389 if (!crtc->base.primary->fb) {
4c6baa59
JB
7390 DRM_DEBUG_KMS("failed to alloc fb\n");
7391 return;
7392 }
7393
7394 val = I915_READ(DSPCNTR(plane));
7395
7396 if (INTEL_INFO(dev)->gen >= 4)
7397 if (val & DISPPLANE_TILED)
7398 plane_config->tiled = true;
7399
7400 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7401 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7402 crtc->base.primary->fb->pixel_format = fourcc;
7403 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7404 drm_format_plane_cpp(fourcc, 0) * 8;
7405
7406 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7407 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7408 offset = I915_READ(DSPOFFSET(plane));
7409 } else {
7410 if (plane_config->tiled)
7411 offset = I915_READ(DSPTILEOFF(plane));
7412 else
7413 offset = I915_READ(DSPLINOFF(plane));
7414 }
7415 plane_config->base = base;
7416
7417 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7418 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7419 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7420
7421 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7422 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7423
66e514c1 7424 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7425 plane_config->tiled);
7426
1267a26b
FF
7427 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7428 aligned_height);
4c6baa59
JB
7429
7430 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7431 pipe, plane, crtc->base.primary->fb->width,
7432 crtc->base.primary->fb->height,
7433 crtc->base.primary->fb->bits_per_pixel, base,
7434 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7435 plane_config->size);
7436}
7437
0e8ffe1b
DV
7438static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7439 struct intel_crtc_config *pipe_config)
7440{
7441 struct drm_device *dev = crtc->base.dev;
7442 struct drm_i915_private *dev_priv = dev->dev_private;
7443 uint32_t tmp;
7444
930e8c9e
PZ
7445 if (!intel_display_power_enabled(dev_priv,
7446 POWER_DOMAIN_PIPE(crtc->pipe)))
7447 return false;
7448
e143a21c 7449 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7450 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7451
0e8ffe1b
DV
7452 tmp = I915_READ(PIPECONF(crtc->pipe));
7453 if (!(tmp & PIPECONF_ENABLE))
7454 return false;
7455
42571aef
VS
7456 switch (tmp & PIPECONF_BPC_MASK) {
7457 case PIPECONF_6BPC:
7458 pipe_config->pipe_bpp = 18;
7459 break;
7460 case PIPECONF_8BPC:
7461 pipe_config->pipe_bpp = 24;
7462 break;
7463 case PIPECONF_10BPC:
7464 pipe_config->pipe_bpp = 30;
7465 break;
7466 case PIPECONF_12BPC:
7467 pipe_config->pipe_bpp = 36;
7468 break;
7469 default:
7470 break;
7471 }
7472
b5a9fa09
DV
7473 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7474 pipe_config->limited_color_range = true;
7475
ab9412ba 7476 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7477 struct intel_shared_dpll *pll;
7478
88adfff1
DV
7479 pipe_config->has_pch_encoder = true;
7480
627eb5a3
DV
7481 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7482 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7483 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7484
7485 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7486
c0d43d62 7487 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7488 pipe_config->shared_dpll =
7489 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7490 } else {
7491 tmp = I915_READ(PCH_DPLL_SEL);
7492 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7493 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7494 else
7495 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7496 }
66e985c0
DV
7497
7498 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7499
7500 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7501 &pipe_config->dpll_hw_state));
c93f54cf
DV
7502
7503 tmp = pipe_config->dpll_hw_state.dpll;
7504 pipe_config->pixel_multiplier =
7505 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7506 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7507
7508 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7509 } else {
7510 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7511 }
7512
1bd1bd80
DV
7513 intel_get_pipe_timings(crtc, pipe_config);
7514
2fa2fe9a
DV
7515 ironlake_get_pfit_config(crtc, pipe_config);
7516
0e8ffe1b
DV
7517 return true;
7518}
7519
be256dc7
PZ
7520static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7521{
7522 struct drm_device *dev = dev_priv->dev;
be256dc7 7523 struct intel_crtc *crtc;
be256dc7 7524
d3fcc808 7525 for_each_intel_crtc(dev, crtc)
798183c5 7526 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7527 pipe_name(crtc->pipe));
7528
7529 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7530 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7531 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7532 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7533 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7534 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7535 "CPU PWM1 enabled\n");
c5107b87
PZ
7536 if (IS_HASWELL(dev))
7537 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7538 "CPU PWM2 enabled\n");
be256dc7
PZ
7539 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7540 "PCH PWM1 enabled\n");
7541 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7542 "Utility pin enabled\n");
7543 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7544
9926ada1
PZ
7545 /*
7546 * In theory we can still leave IRQs enabled, as long as only the HPD
7547 * interrupts remain enabled. We used to check for that, but since it's
7548 * gen-specific and since we only disable LCPLL after we fully disable
7549 * the interrupts, the check below should be enough.
7550 */
9df7575f 7551 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7552}
7553
9ccd5aeb
PZ
7554static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7555{
7556 struct drm_device *dev = dev_priv->dev;
7557
7558 if (IS_HASWELL(dev))
7559 return I915_READ(D_COMP_HSW);
7560 else
7561 return I915_READ(D_COMP_BDW);
7562}
7563
3c4c9b81
PZ
7564static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7565{
7566 struct drm_device *dev = dev_priv->dev;
7567
7568 if (IS_HASWELL(dev)) {
7569 mutex_lock(&dev_priv->rps.hw_lock);
7570 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7571 val))
f475dadf 7572 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7573 mutex_unlock(&dev_priv->rps.hw_lock);
7574 } else {
9ccd5aeb
PZ
7575 I915_WRITE(D_COMP_BDW, val);
7576 POSTING_READ(D_COMP_BDW);
3c4c9b81 7577 }
be256dc7
PZ
7578}
7579
7580/*
7581 * This function implements pieces of two sequences from BSpec:
7582 * - Sequence for display software to disable LCPLL
7583 * - Sequence for display software to allow package C8+
7584 * The steps implemented here are just the steps that actually touch the LCPLL
7585 * register. Callers should take care of disabling all the display engine
7586 * functions, doing the mode unset, fixing interrupts, etc.
7587 */
6ff58d53
PZ
7588static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7589 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7590{
7591 uint32_t val;
7592
7593 assert_can_disable_lcpll(dev_priv);
7594
7595 val = I915_READ(LCPLL_CTL);
7596
7597 if (switch_to_fclk) {
7598 val |= LCPLL_CD_SOURCE_FCLK;
7599 I915_WRITE(LCPLL_CTL, val);
7600
7601 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7602 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7603 DRM_ERROR("Switching to FCLK failed\n");
7604
7605 val = I915_READ(LCPLL_CTL);
7606 }
7607
7608 val |= LCPLL_PLL_DISABLE;
7609 I915_WRITE(LCPLL_CTL, val);
7610 POSTING_READ(LCPLL_CTL);
7611
7612 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7613 DRM_ERROR("LCPLL still locked\n");
7614
9ccd5aeb 7615 val = hsw_read_dcomp(dev_priv);
be256dc7 7616 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7617 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7618 ndelay(100);
7619
9ccd5aeb
PZ
7620 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7621 1))
be256dc7
PZ
7622 DRM_ERROR("D_COMP RCOMP still in progress\n");
7623
7624 if (allow_power_down) {
7625 val = I915_READ(LCPLL_CTL);
7626 val |= LCPLL_POWER_DOWN_ALLOW;
7627 I915_WRITE(LCPLL_CTL, val);
7628 POSTING_READ(LCPLL_CTL);
7629 }
7630}
7631
7632/*
7633 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7634 * source.
7635 */
6ff58d53 7636static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7637{
7638 uint32_t val;
a8a8bd54 7639 unsigned long irqflags;
be256dc7
PZ
7640
7641 val = I915_READ(LCPLL_CTL);
7642
7643 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7644 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7645 return;
7646
a8a8bd54
PZ
7647 /*
7648 * Make sure we're not on PC8 state before disabling PC8, otherwise
7649 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7650 *
7651 * The other problem is that hsw_restore_lcpll() is called as part of
7652 * the runtime PM resume sequence, so we can't just call
7653 * gen6_gt_force_wake_get() because that function calls
7654 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7655 * while we are on the resume sequence. So to solve this problem we have
7656 * to call special forcewake code that doesn't touch runtime PM and
7657 * doesn't enable the forcewake delayed work.
7658 */
7659 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7660 if (dev_priv->uncore.forcewake_count++ == 0)
7661 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7662 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7663
be256dc7
PZ
7664 if (val & LCPLL_POWER_DOWN_ALLOW) {
7665 val &= ~LCPLL_POWER_DOWN_ALLOW;
7666 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7667 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7668 }
7669
9ccd5aeb 7670 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7671 val |= D_COMP_COMP_FORCE;
7672 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7673 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7674
7675 val = I915_READ(LCPLL_CTL);
7676 val &= ~LCPLL_PLL_DISABLE;
7677 I915_WRITE(LCPLL_CTL, val);
7678
7679 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7680 DRM_ERROR("LCPLL not locked yet\n");
7681
7682 if (val & LCPLL_CD_SOURCE_FCLK) {
7683 val = I915_READ(LCPLL_CTL);
7684 val &= ~LCPLL_CD_SOURCE_FCLK;
7685 I915_WRITE(LCPLL_CTL, val);
7686
7687 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7688 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7689 DRM_ERROR("Switching back to LCPLL failed\n");
7690 }
215733fa 7691
a8a8bd54
PZ
7692 /* See the big comment above. */
7693 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7694 if (--dev_priv->uncore.forcewake_count == 0)
7695 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7696 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7697}
7698
765dab67
PZ
7699/*
7700 * Package states C8 and deeper are really deep PC states that can only be
7701 * reached when all the devices on the system allow it, so even if the graphics
7702 * device allows PC8+, it doesn't mean the system will actually get to these
7703 * states. Our driver only allows PC8+ when going into runtime PM.
7704 *
7705 * The requirements for PC8+ are that all the outputs are disabled, the power
7706 * well is disabled and most interrupts are disabled, and these are also
7707 * requirements for runtime PM. When these conditions are met, we manually do
7708 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7709 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7710 * hang the machine.
7711 *
7712 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7713 * the state of some registers, so when we come back from PC8+ we need to
7714 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7715 * need to take care of the registers kept by RC6. Notice that this happens even
7716 * if we don't put the device in PCI D3 state (which is what currently happens
7717 * because of the runtime PM support).
7718 *
7719 * For more, read "Display Sequences for Package C8" on the hardware
7720 * documentation.
7721 */
a14cb6fc 7722void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7723{
c67a470b
PZ
7724 struct drm_device *dev = dev_priv->dev;
7725 uint32_t val;
7726
c67a470b
PZ
7727 DRM_DEBUG_KMS("Enabling package C8+\n");
7728
c67a470b
PZ
7729 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7730 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7731 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7732 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7733 }
7734
7735 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7736 hsw_disable_lcpll(dev_priv, true, true);
7737}
7738
a14cb6fc 7739void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7740{
7741 struct drm_device *dev = dev_priv->dev;
7742 uint32_t val;
7743
c67a470b
PZ
7744 DRM_DEBUG_KMS("Disabling package C8+\n");
7745
7746 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7747 lpt_init_pch_refclk(dev);
7748
7749 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7750 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7751 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7752 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7753 }
7754
7755 intel_prepare_ddi(dev);
c67a470b
PZ
7756}
7757
9a952a0d
PZ
7758static void snb_modeset_global_resources(struct drm_device *dev)
7759{
7760 modeset_update_crtc_power_domains(dev);
7761}
7762
4f074129
ID
7763static void haswell_modeset_global_resources(struct drm_device *dev)
7764{
da723569 7765 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7766}
7767
09b4ddf9 7768static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7769 int x, int y,
7770 struct drm_framebuffer *fb)
7771{
09b4ddf9 7772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7773
566b734a 7774 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7775 return -EINVAL;
716c2e55 7776
644cef34
DV
7777 intel_crtc->lowfreq_avail = false;
7778
c8f7a0db 7779 return 0;
79e53945
JB
7780}
7781
7d2c8175
DL
7782static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7783 enum port port,
7784 struct intel_crtc_config *pipe_config)
7785{
7786 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7787
7788 switch (pipe_config->ddi_pll_sel) {
7789 case PORT_CLK_SEL_WRPLL1:
7790 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7791 break;
7792 case PORT_CLK_SEL_WRPLL2:
7793 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7794 break;
7795 }
7796}
7797
26804afd
DV
7798static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7799 struct intel_crtc_config *pipe_config)
7800{
7801 struct drm_device *dev = crtc->base.dev;
7802 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7803 struct intel_shared_dpll *pll;
26804afd
DV
7804 enum port port;
7805 uint32_t tmp;
7806
7807 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7808
7809 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7810
7d2c8175 7811 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7812
d452c5b6
DV
7813 if (pipe_config->shared_dpll >= 0) {
7814 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7815
7816 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7817 &pipe_config->dpll_hw_state));
7818 }
7819
26804afd
DV
7820 /*
7821 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7822 * DDI E. So just check whether this pipe is wired to DDI E and whether
7823 * the PCH transcoder is on.
7824 */
7825 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7826 pipe_config->has_pch_encoder = true;
7827
7828 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7829 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7830 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7831
7832 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7833 }
7834}
7835
0e8ffe1b
DV
7836static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7837 struct intel_crtc_config *pipe_config)
7838{
7839 struct drm_device *dev = crtc->base.dev;
7840 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7841 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7842 uint32_t tmp;
7843
b5482bd0
ID
7844 if (!intel_display_power_enabled(dev_priv,
7845 POWER_DOMAIN_PIPE(crtc->pipe)))
7846 return false;
7847
e143a21c 7848 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7849 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7850
eccb140b
DV
7851 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7852 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7853 enum pipe trans_edp_pipe;
7854 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7855 default:
7856 WARN(1, "unknown pipe linked to edp transcoder\n");
7857 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7858 case TRANS_DDI_EDP_INPUT_A_ON:
7859 trans_edp_pipe = PIPE_A;
7860 break;
7861 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7862 trans_edp_pipe = PIPE_B;
7863 break;
7864 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7865 trans_edp_pipe = PIPE_C;
7866 break;
7867 }
7868
7869 if (trans_edp_pipe == crtc->pipe)
7870 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7871 }
7872
da7e29bd 7873 if (!intel_display_power_enabled(dev_priv,
eccb140b 7874 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7875 return false;
7876
eccb140b 7877 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7878 if (!(tmp & PIPECONF_ENABLE))
7879 return false;
7880
26804afd 7881 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7882
1bd1bd80
DV
7883 intel_get_pipe_timings(crtc, pipe_config);
7884
2fa2fe9a 7885 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7886 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7887 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7888
e59150dc
JB
7889 if (IS_HASWELL(dev))
7890 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7891 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7892
6c49f241
DV
7893 pipe_config->pixel_multiplier = 1;
7894
0e8ffe1b
DV
7895 return true;
7896}
7897
1a91510d
JN
7898static struct {
7899 int clock;
7900 u32 config;
7901} hdmi_audio_clock[] = {
7902 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7903 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7904 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7905 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7906 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7907 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7908 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7909 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7910 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7911 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7912};
7913
7914/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7915static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7916{
7917 int i;
7918
7919 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7920 if (mode->clock == hdmi_audio_clock[i].clock)
7921 break;
7922 }
7923
7924 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7925 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7926 i = 1;
7927 }
7928
7929 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7930 hdmi_audio_clock[i].clock,
7931 hdmi_audio_clock[i].config);
7932
7933 return hdmi_audio_clock[i].config;
7934}
7935
3a9627f4
WF
7936static bool intel_eld_uptodate(struct drm_connector *connector,
7937 int reg_eldv, uint32_t bits_eldv,
7938 int reg_elda, uint32_t bits_elda,
7939 int reg_edid)
7940{
7941 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7942 uint8_t *eld = connector->eld;
7943 uint32_t i;
7944
7945 i = I915_READ(reg_eldv);
7946 i &= bits_eldv;
7947
7948 if (!eld[0])
7949 return !i;
7950
7951 if (!i)
7952 return false;
7953
7954 i = I915_READ(reg_elda);
7955 i &= ~bits_elda;
7956 I915_WRITE(reg_elda, i);
7957
7958 for (i = 0; i < eld[2]; i++)
7959 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7960 return false;
7961
7962 return true;
7963}
7964
e0dac65e 7965static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7966 struct drm_crtc *crtc,
7967 struct drm_display_mode *mode)
e0dac65e
WF
7968{
7969 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7970 uint8_t *eld = connector->eld;
7971 uint32_t eldv;
7972 uint32_t len;
7973 uint32_t i;
7974
7975 i = I915_READ(G4X_AUD_VID_DID);
7976
7977 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7978 eldv = G4X_ELDV_DEVCL_DEVBLC;
7979 else
7980 eldv = G4X_ELDV_DEVCTG;
7981
3a9627f4
WF
7982 if (intel_eld_uptodate(connector,
7983 G4X_AUD_CNTL_ST, eldv,
7984 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7985 G4X_HDMIW_HDMIEDID))
7986 return;
7987
e0dac65e
WF
7988 i = I915_READ(G4X_AUD_CNTL_ST);
7989 i &= ~(eldv | G4X_ELD_ADDR);
7990 len = (i >> 9) & 0x1f; /* ELD buffer size */
7991 I915_WRITE(G4X_AUD_CNTL_ST, i);
7992
7993 if (!eld[0])
7994 return;
7995
7996 len = min_t(uint8_t, eld[2], len);
7997 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7998 for (i = 0; i < len; i++)
7999 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8000
8001 i = I915_READ(G4X_AUD_CNTL_ST);
8002 i |= eldv;
8003 I915_WRITE(G4X_AUD_CNTL_ST, i);
8004}
8005
83358c85 8006static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
8007 struct drm_crtc *crtc,
8008 struct drm_display_mode *mode)
83358c85
WX
8009{
8010 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8011 uint8_t *eld = connector->eld;
83358c85
WX
8012 uint32_t eldv;
8013 uint32_t i;
8014 int len;
8015 int pipe = to_intel_crtc(crtc)->pipe;
8016 int tmp;
8017
8018 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8019 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8020 int aud_config = HSW_AUD_CFG(pipe);
8021 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8022
83358c85
WX
8023 /* Audio output enable */
8024 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8025 tmp = I915_READ(aud_cntrl_st2);
8026 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8027 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 8028 POSTING_READ(aud_cntrl_st2);
83358c85 8029
c7905792 8030 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
8031
8032 /* Set ELD valid state */
8033 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8034 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
8035 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8036 I915_WRITE(aud_cntrl_st2, tmp);
8037 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8038 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
8039
8040 /* Enable HDMI mode */
8041 tmp = I915_READ(aud_config);
7e7cb34f 8042 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
8043 /* clear N_programing_enable and N_value_index */
8044 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8045 I915_WRITE(aud_config, tmp);
8046
8047 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8048
8049 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8050
8051 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8052 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8053 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8054 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8055 } else {
8056 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8057 }
83358c85
WX
8058
8059 if (intel_eld_uptodate(connector,
8060 aud_cntrl_st2, eldv,
8061 aud_cntl_st, IBX_ELD_ADDRESS,
8062 hdmiw_hdmiedid))
8063 return;
8064
8065 i = I915_READ(aud_cntrl_st2);
8066 i &= ~eldv;
8067 I915_WRITE(aud_cntrl_st2, i);
8068
8069 if (!eld[0])
8070 return;
8071
8072 i = I915_READ(aud_cntl_st);
8073 i &= ~IBX_ELD_ADDRESS;
8074 I915_WRITE(aud_cntl_st, i);
8075 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8076 DRM_DEBUG_DRIVER("port num:%d\n", i);
8077
8078 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8079 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8080 for (i = 0; i < len; i++)
8081 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8082
8083 i = I915_READ(aud_cntrl_st2);
8084 i |= eldv;
8085 I915_WRITE(aud_cntrl_st2, i);
8086
8087}
8088
e0dac65e 8089static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
8090 struct drm_crtc *crtc,
8091 struct drm_display_mode *mode)
e0dac65e
WF
8092{
8093 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8094 uint8_t *eld = connector->eld;
8095 uint32_t eldv;
8096 uint32_t i;
8097 int len;
8098 int hdmiw_hdmiedid;
b6daa025 8099 int aud_config;
e0dac65e
WF
8100 int aud_cntl_st;
8101 int aud_cntrl_st2;
9b138a83 8102 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 8103
b3f33cbf 8104 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
8105 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8106 aud_config = IBX_AUD_CFG(pipe);
8107 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 8108 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
8109 } else if (IS_VALLEYVIEW(connector->dev)) {
8110 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8111 aud_config = VLV_AUD_CFG(pipe);
8112 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8113 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8114 } else {
9b138a83
WX
8115 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8116 aud_config = CPT_AUD_CFG(pipe);
8117 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8118 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8119 }
8120
9b138a83 8121 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8122
9ca2fe73
ML
8123 if (IS_VALLEYVIEW(connector->dev)) {
8124 struct intel_encoder *intel_encoder;
8125 struct intel_digital_port *intel_dig_port;
8126
8127 intel_encoder = intel_attached_encoder(connector);
8128 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8129 i = intel_dig_port->port;
8130 } else {
8131 i = I915_READ(aud_cntl_st);
8132 i = (i >> 29) & DIP_PORT_SEL_MASK;
8133 /* DIP_Port_Select, 0x1 = PortB */
8134 }
8135
e0dac65e
WF
8136 if (!i) {
8137 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8138 /* operate blindly on all ports */
1202b4c6
WF
8139 eldv = IBX_ELD_VALIDB;
8140 eldv |= IBX_ELD_VALIDB << 4;
8141 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8142 } else {
2582a850 8143 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8144 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8145 }
8146
3a9627f4
WF
8147 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8148 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8149 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8150 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8151 } else {
8152 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8153 }
e0dac65e 8154
3a9627f4
WF
8155 if (intel_eld_uptodate(connector,
8156 aud_cntrl_st2, eldv,
8157 aud_cntl_st, IBX_ELD_ADDRESS,
8158 hdmiw_hdmiedid))
8159 return;
8160
e0dac65e
WF
8161 i = I915_READ(aud_cntrl_st2);
8162 i &= ~eldv;
8163 I915_WRITE(aud_cntrl_st2, i);
8164
8165 if (!eld[0])
8166 return;
8167
e0dac65e 8168 i = I915_READ(aud_cntl_st);
1202b4c6 8169 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8170 I915_WRITE(aud_cntl_st, i);
8171
8172 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8173 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8174 for (i = 0; i < len; i++)
8175 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8176
8177 i = I915_READ(aud_cntrl_st2);
8178 i |= eldv;
8179 I915_WRITE(aud_cntrl_st2, i);
8180}
8181
8182void intel_write_eld(struct drm_encoder *encoder,
8183 struct drm_display_mode *mode)
8184{
8185 struct drm_crtc *crtc = encoder->crtc;
8186 struct drm_connector *connector;
8187 struct drm_device *dev = encoder->dev;
8188 struct drm_i915_private *dev_priv = dev->dev_private;
8189
8190 connector = drm_select_eld(encoder, mode);
8191 if (!connector)
8192 return;
8193
8194 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8195 connector->base.id,
c23cc417 8196 connector->name,
e0dac65e 8197 connector->encoder->base.id,
8e329a03 8198 connector->encoder->name);
e0dac65e
WF
8199
8200 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8201
8202 if (dev_priv->display.write_eld)
34427052 8203 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8204}
8205
560b85bb
CW
8206static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8207{
8208 struct drm_device *dev = crtc->dev;
8209 struct drm_i915_private *dev_priv = dev->dev_private;
8210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8211 uint32_t cntl = 0, size = 0;
560b85bb 8212
dc41c154
VS
8213 if (base) {
8214 unsigned int width = intel_crtc->cursor_width;
8215 unsigned int height = intel_crtc->cursor_height;
8216 unsigned int stride = roundup_pow_of_two(width) * 4;
8217
8218 switch (stride) {
8219 default:
8220 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8221 width, stride);
8222 stride = 256;
8223 /* fallthrough */
8224 case 256:
8225 case 512:
8226 case 1024:
8227 case 2048:
8228 break;
4b0e333e
CW
8229 }
8230
dc41c154
VS
8231 cntl |= CURSOR_ENABLE |
8232 CURSOR_GAMMA_ENABLE |
8233 CURSOR_FORMAT_ARGB |
8234 CURSOR_STRIDE(stride);
8235
8236 size = (height << 12) | width;
4b0e333e 8237 }
560b85bb 8238
dc41c154
VS
8239 if (intel_crtc->cursor_cntl != 0 &&
8240 (intel_crtc->cursor_base != base ||
8241 intel_crtc->cursor_size != size ||
8242 intel_crtc->cursor_cntl != cntl)) {
8243 /* On these chipsets we can only modify the base/size/stride
8244 * whilst the cursor is disabled.
8245 */
8246 I915_WRITE(_CURACNTR, 0);
4b0e333e 8247 POSTING_READ(_CURACNTR);
dc41c154 8248 intel_crtc->cursor_cntl = 0;
4b0e333e 8249 }
560b85bb 8250
dc41c154 8251 if (intel_crtc->cursor_base != base)
9db4a9c7 8252 I915_WRITE(_CURABASE, base);
4726e0b0 8253
dc41c154
VS
8254 if (intel_crtc->cursor_size != size) {
8255 I915_WRITE(CURSIZE, size);
8256 intel_crtc->cursor_size = size;
4b0e333e 8257 }
560b85bb 8258
4b0e333e 8259 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8260 I915_WRITE(_CURACNTR, cntl);
8261 POSTING_READ(_CURACNTR);
4b0e333e 8262 intel_crtc->cursor_cntl = cntl;
560b85bb 8263 }
560b85bb
CW
8264}
8265
560b85bb 8266static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8267{
8268 struct drm_device *dev = crtc->dev;
8269 struct drm_i915_private *dev_priv = dev->dev_private;
8270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8271 int pipe = intel_crtc->pipe;
4b0e333e
CW
8272 uint32_t cntl;
8273
8274 cntl = 0;
8275 if (base) {
8276 cntl = MCURSOR_GAMMA_ENABLE;
8277 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8278 case 64:
8279 cntl |= CURSOR_MODE_64_ARGB_AX;
8280 break;
8281 case 128:
8282 cntl |= CURSOR_MODE_128_ARGB_AX;
8283 break;
8284 case 256:
8285 cntl |= CURSOR_MODE_256_ARGB_AX;
8286 break;
8287 default:
8288 WARN_ON(1);
8289 return;
65a21cd6 8290 }
4b0e333e 8291 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8292 }
8293 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8294 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8295
4b0e333e
CW
8296 if (intel_crtc->cursor_cntl != cntl) {
8297 I915_WRITE(CURCNTR(pipe), cntl);
8298 POSTING_READ(CURCNTR(pipe));
8299 intel_crtc->cursor_cntl = cntl;
65a21cd6 8300 }
4b0e333e 8301
65a21cd6 8302 /* and commit changes on next vblank */
5efb3e28
VS
8303 I915_WRITE(CURBASE(pipe), base);
8304 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8305}
8306
cda4b7d3 8307/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8308static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8309 bool on)
cda4b7d3
CW
8310{
8311 struct drm_device *dev = crtc->dev;
8312 struct drm_i915_private *dev_priv = dev->dev_private;
8313 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8314 int pipe = intel_crtc->pipe;
3d7d6510
MR
8315 int x = crtc->cursor_x;
8316 int y = crtc->cursor_y;
d6e4db15 8317 u32 base = 0, pos = 0;
cda4b7d3 8318
d6e4db15 8319 if (on)
cda4b7d3 8320 base = intel_crtc->cursor_addr;
cda4b7d3 8321
d6e4db15
VS
8322 if (x >= intel_crtc->config.pipe_src_w)
8323 base = 0;
8324
8325 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8326 base = 0;
8327
8328 if (x < 0) {
efc9064e 8329 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8330 base = 0;
8331
8332 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8333 x = -x;
8334 }
8335 pos |= x << CURSOR_X_SHIFT;
8336
8337 if (y < 0) {
efc9064e 8338 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8339 base = 0;
8340
8341 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8342 y = -y;
8343 }
8344 pos |= y << CURSOR_Y_SHIFT;
8345
4b0e333e 8346 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8347 return;
8348
5efb3e28
VS
8349 I915_WRITE(CURPOS(pipe), pos);
8350
8ac54669 8351 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8352 i845_update_cursor(crtc, base);
8353 else
8354 i9xx_update_cursor(crtc, base);
4b0e333e 8355 intel_crtc->cursor_base = base;
cda4b7d3
CW
8356}
8357
dc41c154
VS
8358static bool cursor_size_ok(struct drm_device *dev,
8359 uint32_t width, uint32_t height)
8360{
8361 if (width == 0 || height == 0)
8362 return false;
8363
8364 /*
8365 * 845g/865g are special in that they are only limited by
8366 * the width of their cursors, the height is arbitrary up to
8367 * the precision of the register. Everything else requires
8368 * square cursors, limited to a few power-of-two sizes.
8369 */
8370 if (IS_845G(dev) || IS_I865G(dev)) {
8371 if ((width & 63) != 0)
8372 return false;
8373
8374 if (width > (IS_845G(dev) ? 64 : 512))
8375 return false;
8376
8377 if (height > 1023)
8378 return false;
8379 } else {
8380 switch (width | height) {
8381 case 256:
8382 case 128:
8383 if (IS_GEN2(dev))
8384 return false;
8385 case 64:
8386 break;
8387 default:
8388 return false;
8389 }
8390 }
8391
8392 return true;
8393}
8394
e3287951
MR
8395/*
8396 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8397 *
8398 * Note that the object's reference will be consumed if the update fails. If
8399 * the update succeeds, the reference of the old object (if any) will be
8400 * consumed.
8401 */
8402static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8403 struct drm_i915_gem_object *obj,
8404 uint32_t width, uint32_t height)
79e53945
JB
8405{
8406 struct drm_device *dev = crtc->dev;
8407 struct drm_i915_private *dev_priv = dev->dev_private;
8408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8409 enum pipe pipe = intel_crtc->pipe;
dc41c154 8410 unsigned old_width, stride;
cda4b7d3 8411 uint32_t addr;
3f8bc370 8412 int ret;
79e53945 8413
79e53945 8414 /* if we want to turn off the cursor ignore width and height */
e3287951 8415 if (!obj) {
28c97730 8416 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8417 addr = 0;
5004417d 8418 mutex_lock(&dev->struct_mutex);
3f8bc370 8419 goto finish;
79e53945
JB
8420 }
8421
4726e0b0 8422 /* Check for which cursor types we support */
dc41c154 8423 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8424 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8425 return -EINVAL;
8426 }
8427
dc41c154
VS
8428 stride = roundup_pow_of_two(width) * 4;
8429 if (obj->base.size < stride * height) {
e3287951 8430 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8431 ret = -ENOMEM;
8432 goto fail;
79e53945
JB
8433 }
8434
71acb5eb 8435 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8436 mutex_lock(&dev->struct_mutex);
3d13ef2e 8437 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8438 unsigned alignment;
8439
d9e86c0e 8440 if (obj->tiling_mode) {
3b25b31f 8441 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8442 ret = -EINVAL;
8443 goto fail_locked;
8444 }
8445
d6dd6843
PZ
8446 /*
8447 * Global gtt pte registers are special registers which actually
8448 * forward writes to a chunk of system memory. Which means that
8449 * there is no risk that the register values disappear as soon
8450 * as we call intel_runtime_pm_put(), so it is correct to wrap
8451 * only the pin/unpin/fence and not more.
8452 */
8453 intel_runtime_pm_get(dev_priv);
8454
693db184
CW
8455 /* Note that the w/a also requires 2 PTE of padding following
8456 * the bo. We currently fill all unused PTE with the shadow
8457 * page and so we should always have valid PTE following the
8458 * cursor preventing the VT-d warning.
8459 */
8460 alignment = 0;
8461 if (need_vtd_wa(dev))
8462 alignment = 64*1024;
8463
8464 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8465 if (ret) {
3b25b31f 8466 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8467 intel_runtime_pm_put(dev_priv);
2da3b9b9 8468 goto fail_locked;
e7b526bb
CW
8469 }
8470
d9e86c0e
CW
8471 ret = i915_gem_object_put_fence(obj);
8472 if (ret) {
3b25b31f 8473 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8474 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8475 goto fail_unpin;
8476 }
8477
f343c5f6 8478 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8479
8480 intel_runtime_pm_put(dev_priv);
71acb5eb 8481 } else {
6eeefaf3 8482 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8483 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8484 if (ret) {
3b25b31f 8485 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8486 goto fail_locked;
71acb5eb 8487 }
00731155 8488 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8489 }
8490
3f8bc370 8491 finish:
3f8bc370 8492 if (intel_crtc->cursor_bo) {
00731155 8493 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8494 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8495 }
80824003 8496
a071fa00
DV
8497 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8498 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8499 mutex_unlock(&dev->struct_mutex);
3f8bc370 8500
64f962e3
CW
8501 old_width = intel_crtc->cursor_width;
8502
3f8bc370 8503 intel_crtc->cursor_addr = addr;
05394f39 8504 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8505 intel_crtc->cursor_width = width;
8506 intel_crtc->cursor_height = height;
8507
64f962e3
CW
8508 if (intel_crtc->active) {
8509 if (old_width != width)
8510 intel_update_watermarks(crtc);
f2f5f771 8511 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8512 }
3f8bc370 8513
f99d7069
DV
8514 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8515
79e53945 8516 return 0;
e7b526bb 8517fail_unpin:
cc98b413 8518 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8519fail_locked:
34b8686e 8520 mutex_unlock(&dev->struct_mutex);
bc9025bd 8521fail:
05394f39 8522 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8523 return ret;
79e53945
JB
8524}
8525
79e53945 8526static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8527 u16 *blue, uint32_t start, uint32_t size)
79e53945 8528{
7203425a 8529 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8531
7203425a 8532 for (i = start; i < end; i++) {
79e53945
JB
8533 intel_crtc->lut_r[i] = red[i] >> 8;
8534 intel_crtc->lut_g[i] = green[i] >> 8;
8535 intel_crtc->lut_b[i] = blue[i] >> 8;
8536 }
8537
8538 intel_crtc_load_lut(crtc);
8539}
8540
79e53945
JB
8541/* VESA 640x480x72Hz mode to set on the pipe */
8542static struct drm_display_mode load_detect_mode = {
8543 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8544 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8545};
8546
a8bb6818
DV
8547struct drm_framebuffer *
8548__intel_framebuffer_create(struct drm_device *dev,
8549 struct drm_mode_fb_cmd2 *mode_cmd,
8550 struct drm_i915_gem_object *obj)
d2dff872
CW
8551{
8552 struct intel_framebuffer *intel_fb;
8553 int ret;
8554
8555 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8556 if (!intel_fb) {
8557 drm_gem_object_unreference_unlocked(&obj->base);
8558 return ERR_PTR(-ENOMEM);
8559 }
8560
8561 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8562 if (ret)
8563 goto err;
d2dff872
CW
8564
8565 return &intel_fb->base;
dd4916c5
DV
8566err:
8567 drm_gem_object_unreference_unlocked(&obj->base);
8568 kfree(intel_fb);
8569
8570 return ERR_PTR(ret);
d2dff872
CW
8571}
8572
b5ea642a 8573static struct drm_framebuffer *
a8bb6818
DV
8574intel_framebuffer_create(struct drm_device *dev,
8575 struct drm_mode_fb_cmd2 *mode_cmd,
8576 struct drm_i915_gem_object *obj)
8577{
8578 struct drm_framebuffer *fb;
8579 int ret;
8580
8581 ret = i915_mutex_lock_interruptible(dev);
8582 if (ret)
8583 return ERR_PTR(ret);
8584 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8585 mutex_unlock(&dev->struct_mutex);
8586
8587 return fb;
8588}
8589
d2dff872
CW
8590static u32
8591intel_framebuffer_pitch_for_width(int width, int bpp)
8592{
8593 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8594 return ALIGN(pitch, 64);
8595}
8596
8597static u32
8598intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8599{
8600 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8601 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8602}
8603
8604static struct drm_framebuffer *
8605intel_framebuffer_create_for_mode(struct drm_device *dev,
8606 struct drm_display_mode *mode,
8607 int depth, int bpp)
8608{
8609 struct drm_i915_gem_object *obj;
0fed39bd 8610 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8611
8612 obj = i915_gem_alloc_object(dev,
8613 intel_framebuffer_size_for_mode(mode, bpp));
8614 if (obj == NULL)
8615 return ERR_PTR(-ENOMEM);
8616
8617 mode_cmd.width = mode->hdisplay;
8618 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8619 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8620 bpp);
5ca0c34a 8621 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8622
8623 return intel_framebuffer_create(dev, &mode_cmd, obj);
8624}
8625
8626static struct drm_framebuffer *
8627mode_fits_in_fbdev(struct drm_device *dev,
8628 struct drm_display_mode *mode)
8629{
4520f53a 8630#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8631 struct drm_i915_private *dev_priv = dev->dev_private;
8632 struct drm_i915_gem_object *obj;
8633 struct drm_framebuffer *fb;
8634
4c0e5528 8635 if (!dev_priv->fbdev)
d2dff872
CW
8636 return NULL;
8637
4c0e5528 8638 if (!dev_priv->fbdev->fb)
d2dff872
CW
8639 return NULL;
8640
4c0e5528
DV
8641 obj = dev_priv->fbdev->fb->obj;
8642 BUG_ON(!obj);
8643
8bcd4553 8644 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8645 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8646 fb->bits_per_pixel))
d2dff872
CW
8647 return NULL;
8648
01f2c773 8649 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8650 return NULL;
8651
8652 return fb;
4520f53a
DV
8653#else
8654 return NULL;
8655#endif
d2dff872
CW
8656}
8657
d2434ab7 8658bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8659 struct drm_display_mode *mode,
51fd371b
RC
8660 struct intel_load_detect_pipe *old,
8661 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8662{
8663 struct intel_crtc *intel_crtc;
d2434ab7
DV
8664 struct intel_encoder *intel_encoder =
8665 intel_attached_encoder(connector);
79e53945 8666 struct drm_crtc *possible_crtc;
4ef69c7a 8667 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8668 struct drm_crtc *crtc = NULL;
8669 struct drm_device *dev = encoder->dev;
94352cf9 8670 struct drm_framebuffer *fb;
51fd371b
RC
8671 struct drm_mode_config *config = &dev->mode_config;
8672 int ret, i = -1;
79e53945 8673
d2dff872 8674 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8675 connector->base.id, connector->name,
8e329a03 8676 encoder->base.id, encoder->name);
d2dff872 8677
51fd371b
RC
8678retry:
8679 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8680 if (ret)
8681 goto fail_unlock;
6e9f798d 8682
79e53945
JB
8683 /*
8684 * Algorithm gets a little messy:
7a5e4805 8685 *
79e53945
JB
8686 * - if the connector already has an assigned crtc, use it (but make
8687 * sure it's on first)
7a5e4805 8688 *
79e53945
JB
8689 * - try to find the first unused crtc that can drive this connector,
8690 * and use that if we find one
79e53945
JB
8691 */
8692
8693 /* See if we already have a CRTC for this connector */
8694 if (encoder->crtc) {
8695 crtc = encoder->crtc;
8261b191 8696
51fd371b
RC
8697 ret = drm_modeset_lock(&crtc->mutex, ctx);
8698 if (ret)
8699 goto fail_unlock;
7b24056b 8700
24218aac 8701 old->dpms_mode = connector->dpms;
8261b191
CW
8702 old->load_detect_temp = false;
8703
8704 /* Make sure the crtc and connector are running */
24218aac
DV
8705 if (connector->dpms != DRM_MODE_DPMS_ON)
8706 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8707
7173188d 8708 return true;
79e53945
JB
8709 }
8710
8711 /* Find an unused one (if possible) */
70e1e0ec 8712 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8713 i++;
8714 if (!(encoder->possible_crtcs & (1 << i)))
8715 continue;
a459249c
VS
8716 if (possible_crtc->enabled)
8717 continue;
8718 /* This can occur when applying the pipe A quirk on resume. */
8719 if (to_intel_crtc(possible_crtc)->new_enabled)
8720 continue;
8721
8722 crtc = possible_crtc;
8723 break;
79e53945
JB
8724 }
8725
8726 /*
8727 * If we didn't find an unused CRTC, don't use any.
8728 */
8729 if (!crtc) {
7173188d 8730 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8731 goto fail_unlock;
79e53945
JB
8732 }
8733
51fd371b
RC
8734 ret = drm_modeset_lock(&crtc->mutex, ctx);
8735 if (ret)
8736 goto fail_unlock;
fc303101
DV
8737 intel_encoder->new_crtc = to_intel_crtc(crtc);
8738 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8739
8740 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8741 intel_crtc->new_enabled = true;
8742 intel_crtc->new_config = &intel_crtc->config;
24218aac 8743 old->dpms_mode = connector->dpms;
8261b191 8744 old->load_detect_temp = true;
d2dff872 8745 old->release_fb = NULL;
79e53945 8746
6492711d
CW
8747 if (!mode)
8748 mode = &load_detect_mode;
79e53945 8749
d2dff872
CW
8750 /* We need a framebuffer large enough to accommodate all accesses
8751 * that the plane may generate whilst we perform load detection.
8752 * We can not rely on the fbcon either being present (we get called
8753 * during its initialisation to detect all boot displays, or it may
8754 * not even exist) or that it is large enough to satisfy the
8755 * requested mode.
8756 */
94352cf9
DV
8757 fb = mode_fits_in_fbdev(dev, mode);
8758 if (fb == NULL) {
d2dff872 8759 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8760 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8761 old->release_fb = fb;
d2dff872
CW
8762 } else
8763 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8764 if (IS_ERR(fb)) {
d2dff872 8765 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8766 goto fail;
79e53945 8767 }
79e53945 8768
c0c36b94 8769 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8770 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8771 if (old->release_fb)
8772 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8773 goto fail;
79e53945 8774 }
7173188d 8775
79e53945 8776 /* let the connector get through one full cycle before testing */
9d0498a2 8777 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8778 return true;
412b61d8
VS
8779
8780 fail:
8781 intel_crtc->new_enabled = crtc->enabled;
8782 if (intel_crtc->new_enabled)
8783 intel_crtc->new_config = &intel_crtc->config;
8784 else
8785 intel_crtc->new_config = NULL;
51fd371b
RC
8786fail_unlock:
8787 if (ret == -EDEADLK) {
8788 drm_modeset_backoff(ctx);
8789 goto retry;
8790 }
8791
412b61d8 8792 return false;
79e53945
JB
8793}
8794
d2434ab7 8795void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8796 struct intel_load_detect_pipe *old)
79e53945 8797{
d2434ab7
DV
8798 struct intel_encoder *intel_encoder =
8799 intel_attached_encoder(connector);
4ef69c7a 8800 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8801 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8803
d2dff872 8804 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8805 connector->base.id, connector->name,
8e329a03 8806 encoder->base.id, encoder->name);
d2dff872 8807
8261b191 8808 if (old->load_detect_temp) {
fc303101
DV
8809 to_intel_connector(connector)->new_encoder = NULL;
8810 intel_encoder->new_crtc = NULL;
412b61d8
VS
8811 intel_crtc->new_enabled = false;
8812 intel_crtc->new_config = NULL;
fc303101 8813 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8814
36206361
DV
8815 if (old->release_fb) {
8816 drm_framebuffer_unregister_private(old->release_fb);
8817 drm_framebuffer_unreference(old->release_fb);
8818 }
d2dff872 8819
0622a53c 8820 return;
79e53945
JB
8821 }
8822
c751ce4f 8823 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8824 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8825 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8826}
8827
da4a1efa
VS
8828static int i9xx_pll_refclk(struct drm_device *dev,
8829 const struct intel_crtc_config *pipe_config)
8830{
8831 struct drm_i915_private *dev_priv = dev->dev_private;
8832 u32 dpll = pipe_config->dpll_hw_state.dpll;
8833
8834 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8835 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8836 else if (HAS_PCH_SPLIT(dev))
8837 return 120000;
8838 else if (!IS_GEN2(dev))
8839 return 96000;
8840 else
8841 return 48000;
8842}
8843
79e53945 8844/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8845static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8846 struct intel_crtc_config *pipe_config)
79e53945 8847{
f1f644dc 8848 struct drm_device *dev = crtc->base.dev;
79e53945 8849 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8850 int pipe = pipe_config->cpu_transcoder;
293623f7 8851 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8852 u32 fp;
8853 intel_clock_t clock;
da4a1efa 8854 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8855
8856 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8857 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8858 else
293623f7 8859 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8860
8861 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8862 if (IS_PINEVIEW(dev)) {
8863 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8864 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8865 } else {
8866 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8867 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8868 }
8869
a6c45cf0 8870 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8871 if (IS_PINEVIEW(dev))
8872 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8873 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8874 else
8875 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8876 DPLL_FPA01_P1_POST_DIV_SHIFT);
8877
8878 switch (dpll & DPLL_MODE_MASK) {
8879 case DPLLB_MODE_DAC_SERIAL:
8880 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8881 5 : 10;
8882 break;
8883 case DPLLB_MODE_LVDS:
8884 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8885 7 : 14;
8886 break;
8887 default:
28c97730 8888 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8889 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8890 return;
79e53945
JB
8891 }
8892
ac58c3f0 8893 if (IS_PINEVIEW(dev))
da4a1efa 8894 pineview_clock(refclk, &clock);
ac58c3f0 8895 else
da4a1efa 8896 i9xx_clock(refclk, &clock);
79e53945 8897 } else {
0fb58223 8898 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8899 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8900
8901 if (is_lvds) {
8902 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8903 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8904
8905 if (lvds & LVDS_CLKB_POWER_UP)
8906 clock.p2 = 7;
8907 else
8908 clock.p2 = 14;
79e53945
JB
8909 } else {
8910 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8911 clock.p1 = 2;
8912 else {
8913 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8914 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8915 }
8916 if (dpll & PLL_P2_DIVIDE_BY_4)
8917 clock.p2 = 4;
8918 else
8919 clock.p2 = 2;
79e53945 8920 }
da4a1efa
VS
8921
8922 i9xx_clock(refclk, &clock);
79e53945
JB
8923 }
8924
18442d08
VS
8925 /*
8926 * This value includes pixel_multiplier. We will use
241bfc38 8927 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8928 * encoder's get_config() function.
8929 */
8930 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8931}
8932
6878da05
VS
8933int intel_dotclock_calculate(int link_freq,
8934 const struct intel_link_m_n *m_n)
f1f644dc 8935{
f1f644dc
JB
8936 /*
8937 * The calculation for the data clock is:
1041a02f 8938 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8939 * But we want to avoid losing precison if possible, so:
1041a02f 8940 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8941 *
8942 * and the link clock is simpler:
1041a02f 8943 * link_clock = (m * link_clock) / n
f1f644dc
JB
8944 */
8945
6878da05
VS
8946 if (!m_n->link_n)
8947 return 0;
f1f644dc 8948
6878da05
VS
8949 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8950}
f1f644dc 8951
18442d08
VS
8952static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8953 struct intel_crtc_config *pipe_config)
6878da05
VS
8954{
8955 struct drm_device *dev = crtc->base.dev;
79e53945 8956
18442d08
VS
8957 /* read out port_clock from the DPLL */
8958 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8959
f1f644dc 8960 /*
18442d08 8961 * This value does not include pixel_multiplier.
241bfc38 8962 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8963 * agree once we know their relationship in the encoder's
8964 * get_config() function.
79e53945 8965 */
241bfc38 8966 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8967 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8968 &pipe_config->fdi_m_n);
79e53945
JB
8969}
8970
8971/** Returns the currently programmed mode of the given pipe. */
8972struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8973 struct drm_crtc *crtc)
8974{
548f245b 8975 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8977 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8978 struct drm_display_mode *mode;
f1f644dc 8979 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8980 int htot = I915_READ(HTOTAL(cpu_transcoder));
8981 int hsync = I915_READ(HSYNC(cpu_transcoder));
8982 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8983 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8984 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8985
8986 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8987 if (!mode)
8988 return NULL;
8989
f1f644dc
JB
8990 /*
8991 * Construct a pipe_config sufficient for getting the clock info
8992 * back out of crtc_clock_get.
8993 *
8994 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8995 * to use a real value here instead.
8996 */
293623f7 8997 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8998 pipe_config.pixel_multiplier = 1;
293623f7
VS
8999 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9000 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9001 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9002 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9003
773ae034 9004 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9005 mode->hdisplay = (htot & 0xffff) + 1;
9006 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9007 mode->hsync_start = (hsync & 0xffff) + 1;
9008 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9009 mode->vdisplay = (vtot & 0xffff) + 1;
9010 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9011 mode->vsync_start = (vsync & 0xffff) + 1;
9012 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9013
9014 drm_mode_set_name(mode);
79e53945
JB
9015
9016 return mode;
9017}
9018
cc36513c
DV
9019static void intel_increase_pllclock(struct drm_device *dev,
9020 enum pipe pipe)
652c393a 9021{
fbee40df 9022 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
9023 int dpll_reg = DPLL(pipe);
9024 int dpll;
652c393a 9025
baff296c 9026 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9027 return;
9028
9029 if (!dev_priv->lvds_downclock_avail)
9030 return;
9031
dbdc6479 9032 dpll = I915_READ(dpll_reg);
652c393a 9033 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 9034 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 9035
8ac5a6d5 9036 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
9037
9038 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9039 I915_WRITE(dpll_reg, dpll);
9d0498a2 9040 intel_wait_for_vblank(dev, pipe);
dbdc6479 9041
652c393a
JB
9042 dpll = I915_READ(dpll_reg);
9043 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 9044 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 9045 }
652c393a
JB
9046}
9047
9048static void intel_decrease_pllclock(struct drm_crtc *crtc)
9049{
9050 struct drm_device *dev = crtc->dev;
fbee40df 9051 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9053
baff296c 9054 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9055 return;
9056
9057 if (!dev_priv->lvds_downclock_avail)
9058 return;
9059
9060 /*
9061 * Since this is called by a timer, we should never get here in
9062 * the manual case.
9063 */
9064 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9065 int pipe = intel_crtc->pipe;
9066 int dpll_reg = DPLL(pipe);
9067 int dpll;
f6e5b160 9068
44d98a61 9069 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9070
8ac5a6d5 9071 assert_panel_unlocked(dev_priv, pipe);
652c393a 9072
dc257cf1 9073 dpll = I915_READ(dpll_reg);
652c393a
JB
9074 dpll |= DISPLAY_RATE_SELECT_FPA1;
9075 I915_WRITE(dpll_reg, dpll);
9d0498a2 9076 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9077 dpll = I915_READ(dpll_reg);
9078 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9079 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9080 }
9081
9082}
9083
f047e395
CW
9084void intel_mark_busy(struct drm_device *dev)
9085{
c67a470b
PZ
9086 struct drm_i915_private *dev_priv = dev->dev_private;
9087
f62a0076
CW
9088 if (dev_priv->mm.busy)
9089 return;
9090
43694d69 9091 intel_runtime_pm_get(dev_priv);
c67a470b 9092 i915_update_gfx_val(dev_priv);
f62a0076 9093 dev_priv->mm.busy = true;
f047e395
CW
9094}
9095
9096void intel_mark_idle(struct drm_device *dev)
652c393a 9097{
c67a470b 9098 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9099 struct drm_crtc *crtc;
652c393a 9100
f62a0076
CW
9101 if (!dev_priv->mm.busy)
9102 return;
9103
9104 dev_priv->mm.busy = false;
9105
d330a953 9106 if (!i915.powersave)
bb4cdd53 9107 goto out;
652c393a 9108
70e1e0ec 9109 for_each_crtc(dev, crtc) {
f4510a27 9110 if (!crtc->primary->fb)
652c393a
JB
9111 continue;
9112
725a5b54 9113 intel_decrease_pllclock(crtc);
652c393a 9114 }
b29c19b6 9115
3d13ef2e 9116 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9117 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9118
9119out:
43694d69 9120 intel_runtime_pm_put(dev_priv);
652c393a
JB
9121}
9122
7c8f8a70 9123
f99d7069
DV
9124/**
9125 * intel_mark_fb_busy - mark given planes as busy
9126 * @dev: DRM device
9127 * @frontbuffer_bits: bits for the affected planes
9128 * @ring: optional ring for asynchronous commands
9129 *
9130 * This function gets called every time the screen contents change. It can be
9131 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9132 */
9133static void intel_mark_fb_busy(struct drm_device *dev,
9134 unsigned frontbuffer_bits,
9135 struct intel_engine_cs *ring)
652c393a 9136{
055e393f 9137 struct drm_i915_private *dev_priv = dev->dev_private;
cc36513c 9138 enum pipe pipe;
652c393a 9139
d330a953 9140 if (!i915.powersave)
acb87dfb
CW
9141 return;
9142
055e393f 9143 for_each_pipe(dev_priv, pipe) {
f99d7069 9144 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9145 continue;
9146
cc36513c 9147 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9148 if (ring && intel_fbc_enabled(dev))
9149 ring->fbc_dirty = true;
652c393a
JB
9150 }
9151}
9152
f99d7069
DV
9153/**
9154 * intel_fb_obj_invalidate - invalidate frontbuffer object
9155 * @obj: GEM object to invalidate
9156 * @ring: set for asynchronous rendering
9157 *
9158 * This function gets called every time rendering on the given object starts and
9159 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9160 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9161 * until the rendering completes or a flip on this frontbuffer plane is
9162 * scheduled.
9163 */
9164void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9165 struct intel_engine_cs *ring)
9166{
9167 struct drm_device *dev = obj->base.dev;
9168 struct drm_i915_private *dev_priv = dev->dev_private;
9169
9170 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9171
9172 if (!obj->frontbuffer_bits)
9173 return;
9174
9175 if (ring) {
9176 mutex_lock(&dev_priv->fb_tracking.lock);
9177 dev_priv->fb_tracking.busy_bits
9178 |= obj->frontbuffer_bits;
9179 dev_priv->fb_tracking.flip_bits
9180 &= ~obj->frontbuffer_bits;
9181 mutex_unlock(&dev_priv->fb_tracking.lock);
9182 }
9183
9184 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9185
9ca15301 9186 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9187}
9188
9189/**
9190 * intel_frontbuffer_flush - flush frontbuffer
9191 * @dev: DRM device
9192 * @frontbuffer_bits: frontbuffer plane tracking bits
9193 *
9194 * This function gets called every time rendering on the given planes has
9195 * completed and frontbuffer caching can be started again. Flushes will get
9196 * delayed if they're blocked by some oustanding asynchronous rendering.
9197 *
9198 * Can be called without any locks held.
9199 */
9200void intel_frontbuffer_flush(struct drm_device *dev,
9201 unsigned frontbuffer_bits)
9202{
9203 struct drm_i915_private *dev_priv = dev->dev_private;
9204
9205 /* Delay flushing when rings are still busy.*/
9206 mutex_lock(&dev_priv->fb_tracking.lock);
9207 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9208 mutex_unlock(&dev_priv->fb_tracking.lock);
9209
9210 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9211
9ca15301 9212 intel_edp_psr_flush(dev, frontbuffer_bits);
c5ad011d 9213
c317adcd
VS
9214 /*
9215 * FIXME: Unconditional fbc flushing here is a rather gross hack and
9216 * needs to be reworked into a proper frontbuffer tracking scheme like
9217 * psr employs.
9218 */
9219 if (IS_BROADWELL(dev))
c5ad011d 9220 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
f99d7069
DV
9221}
9222
9223/**
9224 * intel_fb_obj_flush - flush frontbuffer object
9225 * @obj: GEM object to flush
9226 * @retire: set when retiring asynchronous rendering
9227 *
9228 * This function gets called every time rendering on the given object has
9229 * completed and frontbuffer caching can be started again. If @retire is true
9230 * then any delayed flushes will be unblocked.
9231 */
9232void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9233 bool retire)
9234{
9235 struct drm_device *dev = obj->base.dev;
9236 struct drm_i915_private *dev_priv = dev->dev_private;
9237 unsigned frontbuffer_bits;
9238
9239 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9240
9241 if (!obj->frontbuffer_bits)
9242 return;
9243
9244 frontbuffer_bits = obj->frontbuffer_bits;
9245
9246 if (retire) {
9247 mutex_lock(&dev_priv->fb_tracking.lock);
9248 /* Filter out new bits since rendering started. */
9249 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9250
9251 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9252 mutex_unlock(&dev_priv->fb_tracking.lock);
9253 }
9254
9255 intel_frontbuffer_flush(dev, frontbuffer_bits);
9256}
9257
9258/**
9259 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9260 * @dev: DRM device
9261 * @frontbuffer_bits: frontbuffer plane tracking bits
9262 *
9263 * This function gets called after scheduling a flip on @obj. The actual
9264 * frontbuffer flushing will be delayed until completion is signalled with
9265 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9266 * flush will be cancelled.
9267 *
9268 * Can be called without any locks held.
9269 */
9270void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9271 unsigned frontbuffer_bits)
9272{
9273 struct drm_i915_private *dev_priv = dev->dev_private;
9274
9275 mutex_lock(&dev_priv->fb_tracking.lock);
9276 dev_priv->fb_tracking.flip_bits
9277 |= frontbuffer_bits;
9278 mutex_unlock(&dev_priv->fb_tracking.lock);
9279}
9280
9281/**
9282 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9283 * @dev: DRM device
9284 * @frontbuffer_bits: frontbuffer plane tracking bits
9285 *
9286 * This function gets called after the flip has been latched and will complete
9287 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9288 *
9289 * Can be called without any locks held.
9290 */
9291void intel_frontbuffer_flip_complete(struct drm_device *dev,
9292 unsigned frontbuffer_bits)
9293{
9294 struct drm_i915_private *dev_priv = dev->dev_private;
9295
9296 mutex_lock(&dev_priv->fb_tracking.lock);
9297 /* Mask any cancelled flips. */
9298 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9299 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9300 mutex_unlock(&dev_priv->fb_tracking.lock);
9301
9302 intel_frontbuffer_flush(dev, frontbuffer_bits);
9303}
9304
79e53945
JB
9305static void intel_crtc_destroy(struct drm_crtc *crtc)
9306{
9307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9308 struct drm_device *dev = crtc->dev;
9309 struct intel_unpin_work *work;
9310 unsigned long flags;
9311
9312 spin_lock_irqsave(&dev->event_lock, flags);
9313 work = intel_crtc->unpin_work;
9314 intel_crtc->unpin_work = NULL;
9315 spin_unlock_irqrestore(&dev->event_lock, flags);
9316
9317 if (work) {
9318 cancel_work_sync(&work->work);
9319 kfree(work);
9320 }
79e53945
JB
9321
9322 drm_crtc_cleanup(crtc);
67e77c5a 9323
79e53945
JB
9324 kfree(intel_crtc);
9325}
9326
6b95a207
KH
9327static void intel_unpin_work_fn(struct work_struct *__work)
9328{
9329 struct intel_unpin_work *work =
9330 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9331 struct drm_device *dev = work->crtc->dev;
f99d7069 9332 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9333
b4a98e57 9334 mutex_lock(&dev->struct_mutex);
1690e1eb 9335 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9336 drm_gem_object_unreference(&work->pending_flip_obj->base);
9337 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9338
b4a98e57
CW
9339 intel_update_fbc(dev);
9340 mutex_unlock(&dev->struct_mutex);
9341
f99d7069
DV
9342 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9343
b4a98e57
CW
9344 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9345 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9346
6b95a207
KH
9347 kfree(work);
9348}
9349
1afe3e9d 9350static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9351 struct drm_crtc *crtc)
6b95a207 9352{
6b95a207
KH
9353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9354 struct intel_unpin_work *work;
6b95a207
KH
9355 unsigned long flags;
9356
9357 /* Ignore early vblank irqs */
9358 if (intel_crtc == NULL)
9359 return;
9360
9361 spin_lock_irqsave(&dev->event_lock, flags);
9362 work = intel_crtc->unpin_work;
e7d841ca
CW
9363
9364 /* Ensure we don't miss a work->pending update ... */
9365 smp_rmb();
9366
9367 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9368 spin_unlock_irqrestore(&dev->event_lock, flags);
9369 return;
9370 }
9371
d6bbafa1 9372 page_flip_completed(intel_crtc);
0af7e4df 9373
6b95a207 9374 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9375}
9376
1afe3e9d
JB
9377void intel_finish_page_flip(struct drm_device *dev, int pipe)
9378{
fbee40df 9379 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9380 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9381
49b14a5c 9382 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9383}
9384
9385void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9386{
fbee40df 9387 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9388 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9389
49b14a5c 9390 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9391}
9392
75f7f3ec
VS
9393/* Is 'a' after or equal to 'b'? */
9394static bool g4x_flip_count_after_eq(u32 a, u32 b)
9395{
9396 return !((a - b) & 0x80000000);
9397}
9398
9399static bool page_flip_finished(struct intel_crtc *crtc)
9400{
9401 struct drm_device *dev = crtc->base.dev;
9402 struct drm_i915_private *dev_priv = dev->dev_private;
9403
9404 /*
9405 * The relevant registers doen't exist on pre-ctg.
9406 * As the flip done interrupt doesn't trigger for mmio
9407 * flips on gmch platforms, a flip count check isn't
9408 * really needed there. But since ctg has the registers,
9409 * include it in the check anyway.
9410 */
9411 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9412 return true;
9413
9414 /*
9415 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9416 * used the same base address. In that case the mmio flip might
9417 * have completed, but the CS hasn't even executed the flip yet.
9418 *
9419 * A flip count check isn't enough as the CS might have updated
9420 * the base address just after start of vblank, but before we
9421 * managed to process the interrupt. This means we'd complete the
9422 * CS flip too soon.
9423 *
9424 * Combining both checks should get us a good enough result. It may
9425 * still happen that the CS flip has been executed, but has not
9426 * yet actually completed. But in case the base address is the same
9427 * anyway, we don't really care.
9428 */
9429 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9430 crtc->unpin_work->gtt_offset &&
9431 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9432 crtc->unpin_work->flip_count);
9433}
9434
6b95a207
KH
9435void intel_prepare_page_flip(struct drm_device *dev, int plane)
9436{
fbee40df 9437 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9438 struct intel_crtc *intel_crtc =
9439 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9440 unsigned long flags;
9441
e7d841ca
CW
9442 /* NB: An MMIO update of the plane base pointer will also
9443 * generate a page-flip completion irq, i.e. every modeset
9444 * is also accompanied by a spurious intel_prepare_page_flip().
9445 */
6b95a207 9446 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9447 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9448 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9449 spin_unlock_irqrestore(&dev->event_lock, flags);
9450}
9451
eba905b2 9452static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9453{
9454 /* Ensure that the work item is consistent when activating it ... */
9455 smp_wmb();
9456 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9457 /* and that it is marked active as soon as the irq could fire. */
9458 smp_wmb();
9459}
9460
8c9f3aaf
JB
9461static int intel_gen2_queue_flip(struct drm_device *dev,
9462 struct drm_crtc *crtc,
9463 struct drm_framebuffer *fb,
ed8d1975 9464 struct drm_i915_gem_object *obj,
a4872ba6 9465 struct intel_engine_cs *ring,
ed8d1975 9466 uint32_t flags)
8c9f3aaf 9467{
8c9f3aaf 9468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9469 u32 flip_mask;
9470 int ret;
9471
6d90c952 9472 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9473 if (ret)
4fa62c89 9474 return ret;
8c9f3aaf
JB
9475
9476 /* Can't queue multiple flips, so wait for the previous
9477 * one to finish before executing the next.
9478 */
9479 if (intel_crtc->plane)
9480 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9481 else
9482 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9483 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9484 intel_ring_emit(ring, MI_NOOP);
9485 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9486 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9487 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9488 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9489 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9490
9491 intel_mark_page_flip_active(intel_crtc);
09246732 9492 __intel_ring_advance(ring);
83d4092b 9493 return 0;
8c9f3aaf
JB
9494}
9495
9496static int intel_gen3_queue_flip(struct drm_device *dev,
9497 struct drm_crtc *crtc,
9498 struct drm_framebuffer *fb,
ed8d1975 9499 struct drm_i915_gem_object *obj,
a4872ba6 9500 struct intel_engine_cs *ring,
ed8d1975 9501 uint32_t flags)
8c9f3aaf 9502{
8c9f3aaf 9503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9504 u32 flip_mask;
9505 int ret;
9506
6d90c952 9507 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9508 if (ret)
4fa62c89 9509 return ret;
8c9f3aaf
JB
9510
9511 if (intel_crtc->plane)
9512 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9513 else
9514 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9515 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9516 intel_ring_emit(ring, MI_NOOP);
9517 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9518 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9519 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9520 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9521 intel_ring_emit(ring, MI_NOOP);
9522
e7d841ca 9523 intel_mark_page_flip_active(intel_crtc);
09246732 9524 __intel_ring_advance(ring);
83d4092b 9525 return 0;
8c9f3aaf
JB
9526}
9527
9528static int intel_gen4_queue_flip(struct drm_device *dev,
9529 struct drm_crtc *crtc,
9530 struct drm_framebuffer *fb,
ed8d1975 9531 struct drm_i915_gem_object *obj,
a4872ba6 9532 struct intel_engine_cs *ring,
ed8d1975 9533 uint32_t flags)
8c9f3aaf
JB
9534{
9535 struct drm_i915_private *dev_priv = dev->dev_private;
9536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9537 uint32_t pf, pipesrc;
9538 int ret;
9539
6d90c952 9540 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9541 if (ret)
4fa62c89 9542 return ret;
8c9f3aaf
JB
9543
9544 /* i965+ uses the linear or tiled offsets from the
9545 * Display Registers (which do not change across a page-flip)
9546 * so we need only reprogram the base address.
9547 */
6d90c952
DV
9548 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9549 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9550 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9551 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9552 obj->tiling_mode);
8c9f3aaf
JB
9553
9554 /* XXX Enabling the panel-fitter across page-flip is so far
9555 * untested on non-native modes, so ignore it for now.
9556 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9557 */
9558 pf = 0;
9559 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9560 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9561
9562 intel_mark_page_flip_active(intel_crtc);
09246732 9563 __intel_ring_advance(ring);
83d4092b 9564 return 0;
8c9f3aaf
JB
9565}
9566
9567static int intel_gen6_queue_flip(struct drm_device *dev,
9568 struct drm_crtc *crtc,
9569 struct drm_framebuffer *fb,
ed8d1975 9570 struct drm_i915_gem_object *obj,
a4872ba6 9571 struct intel_engine_cs *ring,
ed8d1975 9572 uint32_t flags)
8c9f3aaf
JB
9573{
9574 struct drm_i915_private *dev_priv = dev->dev_private;
9575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9576 uint32_t pf, pipesrc;
9577 int ret;
9578
6d90c952 9579 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9580 if (ret)
4fa62c89 9581 return ret;
8c9f3aaf 9582
6d90c952
DV
9583 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9584 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9585 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9586 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9587
dc257cf1
DV
9588 /* Contrary to the suggestions in the documentation,
9589 * "Enable Panel Fitter" does not seem to be required when page
9590 * flipping with a non-native mode, and worse causes a normal
9591 * modeset to fail.
9592 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9593 */
9594 pf = 0;
8c9f3aaf 9595 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9596 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9597
9598 intel_mark_page_flip_active(intel_crtc);
09246732 9599 __intel_ring_advance(ring);
83d4092b 9600 return 0;
8c9f3aaf
JB
9601}
9602
7c9017e5
JB
9603static int intel_gen7_queue_flip(struct drm_device *dev,
9604 struct drm_crtc *crtc,
9605 struct drm_framebuffer *fb,
ed8d1975 9606 struct drm_i915_gem_object *obj,
a4872ba6 9607 struct intel_engine_cs *ring,
ed8d1975 9608 uint32_t flags)
7c9017e5 9609{
7c9017e5 9610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9611 uint32_t plane_bit = 0;
ffe74d75
CW
9612 int len, ret;
9613
eba905b2 9614 switch (intel_crtc->plane) {
cb05d8de
DV
9615 case PLANE_A:
9616 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9617 break;
9618 case PLANE_B:
9619 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9620 break;
9621 case PLANE_C:
9622 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9623 break;
9624 default:
9625 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9626 return -ENODEV;
cb05d8de
DV
9627 }
9628
ffe74d75 9629 len = 4;
f476828a 9630 if (ring->id == RCS) {
ffe74d75 9631 len += 6;
f476828a
DL
9632 /*
9633 * On Gen 8, SRM is now taking an extra dword to accommodate
9634 * 48bits addresses, and we need a NOOP for the batch size to
9635 * stay even.
9636 */
9637 if (IS_GEN8(dev))
9638 len += 2;
9639 }
ffe74d75 9640
f66fab8e
VS
9641 /*
9642 * BSpec MI_DISPLAY_FLIP for IVB:
9643 * "The full packet must be contained within the same cache line."
9644 *
9645 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9646 * cacheline, if we ever start emitting more commands before
9647 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9648 * then do the cacheline alignment, and finally emit the
9649 * MI_DISPLAY_FLIP.
9650 */
9651 ret = intel_ring_cacheline_align(ring);
9652 if (ret)
4fa62c89 9653 return ret;
f66fab8e 9654
ffe74d75 9655 ret = intel_ring_begin(ring, len);
7c9017e5 9656 if (ret)
4fa62c89 9657 return ret;
7c9017e5 9658
ffe74d75
CW
9659 /* Unmask the flip-done completion message. Note that the bspec says that
9660 * we should do this for both the BCS and RCS, and that we must not unmask
9661 * more than one flip event at any time (or ensure that one flip message
9662 * can be sent by waiting for flip-done prior to queueing new flips).
9663 * Experimentation says that BCS works despite DERRMR masking all
9664 * flip-done completion events and that unmasking all planes at once
9665 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9666 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9667 */
9668 if (ring->id == RCS) {
9669 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9670 intel_ring_emit(ring, DERRMR);
9671 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9672 DERRMR_PIPEB_PRI_FLIP_DONE |
9673 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9674 if (IS_GEN8(dev))
9675 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9676 MI_SRM_LRM_GLOBAL_GTT);
9677 else
9678 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9679 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9680 intel_ring_emit(ring, DERRMR);
9681 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9682 if (IS_GEN8(dev)) {
9683 intel_ring_emit(ring, 0);
9684 intel_ring_emit(ring, MI_NOOP);
9685 }
ffe74d75
CW
9686 }
9687
cb05d8de 9688 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9689 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9690 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9691 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9692
9693 intel_mark_page_flip_active(intel_crtc);
09246732 9694 __intel_ring_advance(ring);
83d4092b 9695 return 0;
7c9017e5
JB
9696}
9697
84c33a64
SG
9698static bool use_mmio_flip(struct intel_engine_cs *ring,
9699 struct drm_i915_gem_object *obj)
9700{
9701 /*
9702 * This is not being used for older platforms, because
9703 * non-availability of flip done interrupt forces us to use
9704 * CS flips. Older platforms derive flip done using some clever
9705 * tricks involving the flip_pending status bits and vblank irqs.
9706 * So using MMIO flips there would disrupt this mechanism.
9707 */
9708
8e09bf83
CW
9709 if (ring == NULL)
9710 return true;
9711
84c33a64
SG
9712 if (INTEL_INFO(ring->dev)->gen < 5)
9713 return false;
9714
9715 if (i915.use_mmio_flip < 0)
9716 return false;
9717 else if (i915.use_mmio_flip > 0)
9718 return true;
14bf993e
OM
9719 else if (i915.enable_execlists)
9720 return true;
84c33a64
SG
9721 else
9722 return ring != obj->ring;
9723}
9724
9725static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9726{
9727 struct drm_device *dev = intel_crtc->base.dev;
9728 struct drm_i915_private *dev_priv = dev->dev_private;
9729 struct intel_framebuffer *intel_fb =
9730 to_intel_framebuffer(intel_crtc->base.primary->fb);
9731 struct drm_i915_gem_object *obj = intel_fb->obj;
9732 u32 dspcntr;
9733 u32 reg;
9734
9735 intel_mark_page_flip_active(intel_crtc);
9736
9737 reg = DSPCNTR(intel_crtc->plane);
9738 dspcntr = I915_READ(reg);
9739
9740 if (INTEL_INFO(dev)->gen >= 4) {
9741 if (obj->tiling_mode != I915_TILING_NONE)
9742 dspcntr |= DISPPLANE_TILED;
9743 else
9744 dspcntr &= ~DISPPLANE_TILED;
9745 }
9746 I915_WRITE(reg, dspcntr);
9747
9748 I915_WRITE(DSPSURF(intel_crtc->plane),
9749 intel_crtc->unpin_work->gtt_offset);
9750 POSTING_READ(DSPSURF(intel_crtc->plane));
9751}
9752
9753static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9754{
9755 struct intel_engine_cs *ring;
9756 int ret;
9757
9758 lockdep_assert_held(&obj->base.dev->struct_mutex);
9759
9760 if (!obj->last_write_seqno)
9761 return 0;
9762
9763 ring = obj->ring;
9764
9765 if (i915_seqno_passed(ring->get_seqno(ring, true),
9766 obj->last_write_seqno))
9767 return 0;
9768
9769 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9770 if (ret)
9771 return ret;
9772
9773 if (WARN_ON(!ring->irq_get(ring)))
9774 return 0;
9775
9776 return 1;
9777}
9778
9779void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9780{
9781 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9782 struct intel_crtc *intel_crtc;
9783 unsigned long irq_flags;
9784 u32 seqno;
9785
9786 seqno = ring->get_seqno(ring, false);
9787
9788 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9789 for_each_intel_crtc(ring->dev, intel_crtc) {
9790 struct intel_mmio_flip *mmio_flip;
9791
9792 mmio_flip = &intel_crtc->mmio_flip;
9793 if (mmio_flip->seqno == 0)
9794 continue;
9795
9796 if (ring->id != mmio_flip->ring_id)
9797 continue;
9798
9799 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9800 intel_do_mmio_flip(intel_crtc);
9801 mmio_flip->seqno = 0;
9802 ring->irq_put(ring);
9803 }
9804 }
9805 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9806}
9807
9808static int intel_queue_mmio_flip(struct drm_device *dev,
9809 struct drm_crtc *crtc,
9810 struct drm_framebuffer *fb,
9811 struct drm_i915_gem_object *obj,
9812 struct intel_engine_cs *ring,
9813 uint32_t flags)
9814{
9815 struct drm_i915_private *dev_priv = dev->dev_private;
9816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9817 unsigned long irq_flags;
9818 int ret;
9819
9820 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9821 return -EBUSY;
9822
9823 ret = intel_postpone_flip(obj);
9824 if (ret < 0)
9825 return ret;
9826 if (ret == 0) {
9827 intel_do_mmio_flip(intel_crtc);
9828 return 0;
9829 }
9830
9831 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9832 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9833 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9834 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9835
9836 /*
9837 * Double check to catch cases where irq fired before
9838 * mmio flip data was ready
9839 */
9840 intel_notify_mmio_flip(obj->ring);
9841 return 0;
9842}
9843
8c9f3aaf
JB
9844static int intel_default_queue_flip(struct drm_device *dev,
9845 struct drm_crtc *crtc,
9846 struct drm_framebuffer *fb,
ed8d1975 9847 struct drm_i915_gem_object *obj,
a4872ba6 9848 struct intel_engine_cs *ring,
ed8d1975 9849 uint32_t flags)
8c9f3aaf
JB
9850{
9851 return -ENODEV;
9852}
9853
d6bbafa1
CW
9854static bool __intel_pageflip_stall_check(struct drm_device *dev,
9855 struct drm_crtc *crtc)
9856{
9857 struct drm_i915_private *dev_priv = dev->dev_private;
9858 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9859 struct intel_unpin_work *work = intel_crtc->unpin_work;
9860 u32 addr;
9861
9862 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9863 return true;
9864
9865 if (!work->enable_stall_check)
9866 return false;
9867
9868 if (work->flip_ready_vblank == 0) {
9869 if (work->flip_queued_ring &&
9870 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9871 work->flip_queued_seqno))
9872 return false;
9873
9874 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9875 }
9876
9877 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9878 return false;
9879
9880 /* Potential stall - if we see that the flip has happened,
9881 * assume a missed interrupt. */
9882 if (INTEL_INFO(dev)->gen >= 4)
9883 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9884 else
9885 addr = I915_READ(DSPADDR(intel_crtc->plane));
9886
9887 /* There is a potential issue here with a false positive after a flip
9888 * to the same address. We could address this by checking for a
9889 * non-incrementing frame counter.
9890 */
9891 return addr == work->gtt_offset;
9892}
9893
9894void intel_check_page_flip(struct drm_device *dev, int pipe)
9895{
9896 struct drm_i915_private *dev_priv = dev->dev_private;
9897 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9899 unsigned long flags;
9900
9901 if (crtc == NULL)
9902 return;
9903
9904 spin_lock_irqsave(&dev->event_lock, flags);
9905 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9906 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9907 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9908 page_flip_completed(intel_crtc);
9909 }
9910 spin_unlock_irqrestore(&dev->event_lock, flags);
9911}
9912
6b95a207
KH
9913static int intel_crtc_page_flip(struct drm_crtc *crtc,
9914 struct drm_framebuffer *fb,
ed8d1975
KP
9915 struct drm_pending_vblank_event *event,
9916 uint32_t page_flip_flags)
6b95a207
KH
9917{
9918 struct drm_device *dev = crtc->dev;
9919 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9920 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9921 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9923 enum pipe pipe = intel_crtc->pipe;
6b95a207 9924 struct intel_unpin_work *work;
a4872ba6 9925 struct intel_engine_cs *ring;
8c9f3aaf 9926 unsigned long flags;
52e68630 9927 int ret;
6b95a207 9928
c76bb61a
DS
9929 //trigger software GT busyness calculation
9930 gen8_flip_interrupt(dev);
9931
2ff8fde1
MR
9932 /*
9933 * drm_mode_page_flip_ioctl() should already catch this, but double
9934 * check to be safe. In the future we may enable pageflipping from
9935 * a disabled primary plane.
9936 */
9937 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9938 return -EBUSY;
9939
e6a595d2 9940 /* Can't change pixel format via MI display flips. */
f4510a27 9941 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9942 return -EINVAL;
9943
9944 /*
9945 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9946 * Note that pitch changes could also affect these register.
9947 */
9948 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9949 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9950 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9951 return -EINVAL;
9952
f900db47
CW
9953 if (i915_terminally_wedged(&dev_priv->gpu_error))
9954 goto out_hang;
9955
b14c5679 9956 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9957 if (work == NULL)
9958 return -ENOMEM;
9959
6b95a207 9960 work->event = event;
b4a98e57 9961 work->crtc = crtc;
2ff8fde1 9962 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9963 INIT_WORK(&work->work, intel_unpin_work_fn);
9964
87b6b101 9965 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9966 if (ret)
9967 goto free_work;
9968
6b95a207
KH
9969 /* We borrow the event spin lock for protecting unpin_work */
9970 spin_lock_irqsave(&dev->event_lock, flags);
9971 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9972 /* Before declaring the flip queue wedged, check if
9973 * the hardware completed the operation behind our backs.
9974 */
9975 if (__intel_pageflip_stall_check(dev, crtc)) {
9976 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9977 page_flip_completed(intel_crtc);
9978 } else {
9979 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9980 spin_unlock_irqrestore(&dev->event_lock, flags);
468f0b44 9981
d6bbafa1
CW
9982 drm_crtc_vblank_put(crtc);
9983 kfree(work);
9984 return -EBUSY;
9985 }
6b95a207
KH
9986 }
9987 intel_crtc->unpin_work = work;
9988 spin_unlock_irqrestore(&dev->event_lock, flags);
9989
b4a98e57
CW
9990 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9991 flush_workqueue(dev_priv->wq);
9992
79158103
CW
9993 ret = i915_mutex_lock_interruptible(dev);
9994 if (ret)
9995 goto cleanup;
6b95a207 9996
75dfca80 9997 /* Reference the objects for the scheduled work. */
05394f39
CW
9998 drm_gem_object_reference(&work->old_fb_obj->base);
9999 drm_gem_object_reference(&obj->base);
6b95a207 10000
f4510a27 10001 crtc->primary->fb = fb;
96b099fd 10002
e1f99ce6 10003 work->pending_flip_obj = obj;
e1f99ce6 10004
b4a98e57 10005 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10006 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10007
75f7f3ec 10008 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10009 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10010
4fa62c89
VS
10011 if (IS_VALLEYVIEW(dev)) {
10012 ring = &dev_priv->ring[BCS];
8e09bf83
CW
10013 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10014 /* vlv: DISPLAY_FLIP fails to change tiling */
10015 ring = NULL;
2a92d5bc
CW
10016 } else if (IS_IVYBRIDGE(dev)) {
10017 ring = &dev_priv->ring[BCS];
4fa62c89
VS
10018 } else if (INTEL_INFO(dev)->gen >= 7) {
10019 ring = obj->ring;
10020 if (ring == NULL || ring->id != RCS)
10021 ring = &dev_priv->ring[BCS];
10022 } else {
10023 ring = &dev_priv->ring[RCS];
10024 }
10025
10026 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
10027 if (ret)
10028 goto cleanup_pending;
6b95a207 10029
4fa62c89
VS
10030 work->gtt_offset =
10031 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10032
d6bbafa1 10033 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10034 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10035 page_flip_flags);
d6bbafa1
CW
10036 if (ret)
10037 goto cleanup_unpin;
10038
10039 work->flip_queued_seqno = obj->last_write_seqno;
10040 work->flip_queued_ring = obj->ring;
10041 } else {
84c33a64 10042 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10043 page_flip_flags);
10044 if (ret)
10045 goto cleanup_unpin;
10046
10047 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10048 work->flip_queued_ring = ring;
10049 }
10050
10051 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10052 work->enable_stall_check = true;
4fa62c89 10053
a071fa00
DV
10054 i915_gem_track_fb(work->old_fb_obj, obj,
10055 INTEL_FRONTBUFFER_PRIMARY(pipe));
10056
7782de3b 10057 intel_disable_fbc(dev);
f99d7069 10058 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10059 mutex_unlock(&dev->struct_mutex);
10060
e5510fac
JB
10061 trace_i915_flip_request(intel_crtc->plane, obj);
10062
6b95a207 10063 return 0;
96b099fd 10064
4fa62c89
VS
10065cleanup_unpin:
10066 intel_unpin_fb_obj(obj);
8c9f3aaf 10067cleanup_pending:
b4a98e57 10068 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 10069 crtc->primary->fb = old_fb;
05394f39
CW
10070 drm_gem_object_unreference(&work->old_fb_obj->base);
10071 drm_gem_object_unreference(&obj->base);
96b099fd
CW
10072 mutex_unlock(&dev->struct_mutex);
10073
79158103 10074cleanup:
96b099fd
CW
10075 spin_lock_irqsave(&dev->event_lock, flags);
10076 intel_crtc->unpin_work = NULL;
10077 spin_unlock_irqrestore(&dev->event_lock, flags);
10078
87b6b101 10079 drm_crtc_vblank_put(crtc);
7317c75e 10080free_work:
96b099fd
CW
10081 kfree(work);
10082
f900db47
CW
10083 if (ret == -EIO) {
10084out_hang:
10085 intel_crtc_wait_for_pending_flips(crtc);
10086 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
f0d3dad3
CW
10087 if (ret == 0 && event) {
10088 spin_lock_irqsave(&dev->event_lock, flags);
a071fa00 10089 drm_send_vblank_event(dev, pipe, event);
f0d3dad3
CW
10090 spin_unlock_irqrestore(&dev->event_lock, flags);
10091 }
f900db47 10092 }
96b099fd 10093 return ret;
6b95a207
KH
10094}
10095
f6e5b160 10096static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10097 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10098 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
10099};
10100
9a935856
DV
10101/**
10102 * intel_modeset_update_staged_output_state
10103 *
10104 * Updates the staged output configuration state, e.g. after we've read out the
10105 * current hw state.
10106 */
10107static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10108{
7668851f 10109 struct intel_crtc *crtc;
9a935856
DV
10110 struct intel_encoder *encoder;
10111 struct intel_connector *connector;
f6e5b160 10112
9a935856
DV
10113 list_for_each_entry(connector, &dev->mode_config.connector_list,
10114 base.head) {
10115 connector->new_encoder =
10116 to_intel_encoder(connector->base.encoder);
10117 }
f6e5b160 10118
b2784e15 10119 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10120 encoder->new_crtc =
10121 to_intel_crtc(encoder->base.crtc);
10122 }
7668851f 10123
d3fcc808 10124 for_each_intel_crtc(dev, crtc) {
7668851f 10125 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
10126
10127 if (crtc->new_enabled)
10128 crtc->new_config = &crtc->config;
10129 else
10130 crtc->new_config = NULL;
7668851f 10131 }
f6e5b160
CW
10132}
10133
9a935856
DV
10134/**
10135 * intel_modeset_commit_output_state
10136 *
10137 * This function copies the stage display pipe configuration to the real one.
10138 */
10139static void intel_modeset_commit_output_state(struct drm_device *dev)
10140{
7668851f 10141 struct intel_crtc *crtc;
9a935856
DV
10142 struct intel_encoder *encoder;
10143 struct intel_connector *connector;
f6e5b160 10144
9a935856
DV
10145 list_for_each_entry(connector, &dev->mode_config.connector_list,
10146 base.head) {
10147 connector->base.encoder = &connector->new_encoder->base;
10148 }
f6e5b160 10149
b2784e15 10150 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10151 encoder->base.crtc = &encoder->new_crtc->base;
10152 }
7668851f 10153
d3fcc808 10154 for_each_intel_crtc(dev, crtc) {
7668851f
VS
10155 crtc->base.enabled = crtc->new_enabled;
10156 }
9a935856
DV
10157}
10158
050f7aeb 10159static void
eba905b2 10160connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
10161 struct intel_crtc_config *pipe_config)
10162{
10163 int bpp = pipe_config->pipe_bpp;
10164
10165 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10166 connector->base.base.id,
c23cc417 10167 connector->base.name);
050f7aeb
DV
10168
10169 /* Don't use an invalid EDID bpc value */
10170 if (connector->base.display_info.bpc &&
10171 connector->base.display_info.bpc * 3 < bpp) {
10172 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10173 bpp, connector->base.display_info.bpc*3);
10174 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10175 }
10176
10177 /* Clamp bpp to 8 on screens without EDID 1.4 */
10178 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10179 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10180 bpp);
10181 pipe_config->pipe_bpp = 24;
10182 }
10183}
10184
4e53c2e0 10185static int
050f7aeb
DV
10186compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10187 struct drm_framebuffer *fb,
10188 struct intel_crtc_config *pipe_config)
4e53c2e0 10189{
050f7aeb
DV
10190 struct drm_device *dev = crtc->base.dev;
10191 struct intel_connector *connector;
4e53c2e0
DV
10192 int bpp;
10193
d42264b1
DV
10194 switch (fb->pixel_format) {
10195 case DRM_FORMAT_C8:
4e53c2e0
DV
10196 bpp = 8*3; /* since we go through a colormap */
10197 break;
d42264b1
DV
10198 case DRM_FORMAT_XRGB1555:
10199 case DRM_FORMAT_ARGB1555:
10200 /* checked in intel_framebuffer_init already */
10201 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10202 return -EINVAL;
10203 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10204 bpp = 6*3; /* min is 18bpp */
10205 break;
d42264b1
DV
10206 case DRM_FORMAT_XBGR8888:
10207 case DRM_FORMAT_ABGR8888:
10208 /* checked in intel_framebuffer_init already */
10209 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10210 return -EINVAL;
10211 case DRM_FORMAT_XRGB8888:
10212 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10213 bpp = 8*3;
10214 break;
d42264b1
DV
10215 case DRM_FORMAT_XRGB2101010:
10216 case DRM_FORMAT_ARGB2101010:
10217 case DRM_FORMAT_XBGR2101010:
10218 case DRM_FORMAT_ABGR2101010:
10219 /* checked in intel_framebuffer_init already */
10220 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10221 return -EINVAL;
4e53c2e0
DV
10222 bpp = 10*3;
10223 break;
baba133a 10224 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10225 default:
10226 DRM_DEBUG_KMS("unsupported depth\n");
10227 return -EINVAL;
10228 }
10229
4e53c2e0
DV
10230 pipe_config->pipe_bpp = bpp;
10231
10232 /* Clamp display bpp to EDID value */
10233 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10234 base.head) {
1b829e05
DV
10235 if (!connector->new_encoder ||
10236 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10237 continue;
10238
050f7aeb 10239 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10240 }
10241
10242 return bpp;
10243}
10244
644db711
DV
10245static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10246{
10247 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10248 "type: 0x%x flags: 0x%x\n",
1342830c 10249 mode->crtc_clock,
644db711
DV
10250 mode->crtc_hdisplay, mode->crtc_hsync_start,
10251 mode->crtc_hsync_end, mode->crtc_htotal,
10252 mode->crtc_vdisplay, mode->crtc_vsync_start,
10253 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10254}
10255
c0b03411
DV
10256static void intel_dump_pipe_config(struct intel_crtc *crtc,
10257 struct intel_crtc_config *pipe_config,
10258 const char *context)
10259{
10260 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10261 context, pipe_name(crtc->pipe));
10262
10263 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10264 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10265 pipe_config->pipe_bpp, pipe_config->dither);
10266 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10267 pipe_config->has_pch_encoder,
10268 pipe_config->fdi_lanes,
10269 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10270 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10271 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10272 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10273 pipe_config->has_dp_encoder,
10274 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10275 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10276 pipe_config->dp_m_n.tu);
b95af8be
VK
10277
10278 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10279 pipe_config->has_dp_encoder,
10280 pipe_config->dp_m2_n2.gmch_m,
10281 pipe_config->dp_m2_n2.gmch_n,
10282 pipe_config->dp_m2_n2.link_m,
10283 pipe_config->dp_m2_n2.link_n,
10284 pipe_config->dp_m2_n2.tu);
10285
c0b03411
DV
10286 DRM_DEBUG_KMS("requested mode:\n");
10287 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10288 DRM_DEBUG_KMS("adjusted mode:\n");
10289 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10290 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10291 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10292 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10293 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10294 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10295 pipe_config->gmch_pfit.control,
10296 pipe_config->gmch_pfit.pgm_ratios,
10297 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10298 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10299 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10300 pipe_config->pch_pfit.size,
10301 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10302 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10303 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10304}
10305
bc079e8b
VS
10306static bool encoders_cloneable(const struct intel_encoder *a,
10307 const struct intel_encoder *b)
accfc0c5 10308{
bc079e8b
VS
10309 /* masks could be asymmetric, so check both ways */
10310 return a == b || (a->cloneable & (1 << b->type) &&
10311 b->cloneable & (1 << a->type));
10312}
10313
10314static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10315 struct intel_encoder *encoder)
10316{
10317 struct drm_device *dev = crtc->base.dev;
10318 struct intel_encoder *source_encoder;
10319
b2784e15 10320 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10321 if (source_encoder->new_crtc != crtc)
10322 continue;
10323
10324 if (!encoders_cloneable(encoder, source_encoder))
10325 return false;
10326 }
10327
10328 return true;
10329}
10330
10331static bool check_encoder_cloning(struct intel_crtc *crtc)
10332{
10333 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10334 struct intel_encoder *encoder;
10335
b2784e15 10336 for_each_intel_encoder(dev, encoder) {
bc079e8b 10337 if (encoder->new_crtc != crtc)
accfc0c5
DV
10338 continue;
10339
bc079e8b
VS
10340 if (!check_single_encoder_cloning(crtc, encoder))
10341 return false;
accfc0c5
DV
10342 }
10343
bc079e8b 10344 return true;
accfc0c5
DV
10345}
10346
b8cecdf5
DV
10347static struct intel_crtc_config *
10348intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10349 struct drm_framebuffer *fb,
b8cecdf5 10350 struct drm_display_mode *mode)
ee7b9f93 10351{
7758a113 10352 struct drm_device *dev = crtc->dev;
7758a113 10353 struct intel_encoder *encoder;
b8cecdf5 10354 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10355 int plane_bpp, ret = -EINVAL;
10356 bool retry = true;
ee7b9f93 10357
bc079e8b 10358 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10359 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10360 return ERR_PTR(-EINVAL);
10361 }
10362
b8cecdf5
DV
10363 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10364 if (!pipe_config)
7758a113
DV
10365 return ERR_PTR(-ENOMEM);
10366
b8cecdf5
DV
10367 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10368 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10369
e143a21c
DV
10370 pipe_config->cpu_transcoder =
10371 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10372 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10373
2960bc9c
ID
10374 /*
10375 * Sanitize sync polarity flags based on requested ones. If neither
10376 * positive or negative polarity is requested, treat this as meaning
10377 * negative polarity.
10378 */
10379 if (!(pipe_config->adjusted_mode.flags &
10380 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10381 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10382
10383 if (!(pipe_config->adjusted_mode.flags &
10384 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10385 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10386
050f7aeb
DV
10387 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10388 * plane pixel format and any sink constraints into account. Returns the
10389 * source plane bpp so that dithering can be selected on mismatches
10390 * after encoders and crtc also have had their say. */
10391 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10392 fb, pipe_config);
4e53c2e0
DV
10393 if (plane_bpp < 0)
10394 goto fail;
10395
e41a56be
VS
10396 /*
10397 * Determine the real pipe dimensions. Note that stereo modes can
10398 * increase the actual pipe size due to the frame doubling and
10399 * insertion of additional space for blanks between the frame. This
10400 * is stored in the crtc timings. We use the requested mode to do this
10401 * computation to clearly distinguish it from the adjusted mode, which
10402 * can be changed by the connectors in the below retry loop.
10403 */
10404 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10405 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10406 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10407
e29c22c0 10408encoder_retry:
ef1b460d 10409 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10410 pipe_config->port_clock = 0;
ef1b460d 10411 pipe_config->pixel_multiplier = 1;
ff9a6750 10412
135c81b8 10413 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10414 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10415
7758a113
DV
10416 /* Pass our mode to the connectors and the CRTC to give them a chance to
10417 * adjust it according to limitations or connector properties, and also
10418 * a chance to reject the mode entirely.
47f1c6c9 10419 */
b2784e15 10420 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10421
7758a113
DV
10422 if (&encoder->new_crtc->base != crtc)
10423 continue;
7ae89233 10424
efea6e8e
DV
10425 if (!(encoder->compute_config(encoder, pipe_config))) {
10426 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10427 goto fail;
10428 }
ee7b9f93 10429 }
47f1c6c9 10430
ff9a6750
DV
10431 /* Set default port clock if not overwritten by the encoder. Needs to be
10432 * done afterwards in case the encoder adjusts the mode. */
10433 if (!pipe_config->port_clock)
241bfc38
DL
10434 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10435 * pipe_config->pixel_multiplier;
ff9a6750 10436
a43f6e0f 10437 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10438 if (ret < 0) {
7758a113
DV
10439 DRM_DEBUG_KMS("CRTC fixup failed\n");
10440 goto fail;
ee7b9f93 10441 }
e29c22c0
DV
10442
10443 if (ret == RETRY) {
10444 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10445 ret = -EINVAL;
10446 goto fail;
10447 }
10448
10449 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10450 retry = false;
10451 goto encoder_retry;
10452 }
10453
4e53c2e0
DV
10454 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10455 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10456 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10457
b8cecdf5 10458 return pipe_config;
7758a113 10459fail:
b8cecdf5 10460 kfree(pipe_config);
e29c22c0 10461 return ERR_PTR(ret);
ee7b9f93 10462}
47f1c6c9 10463
e2e1ed41
DV
10464/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10465 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10466static void
10467intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10468 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10469{
10470 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10471 struct drm_device *dev = crtc->dev;
10472 struct intel_encoder *encoder;
10473 struct intel_connector *connector;
10474 struct drm_crtc *tmp_crtc;
79e53945 10475
e2e1ed41 10476 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10477
e2e1ed41
DV
10478 /* Check which crtcs have changed outputs connected to them, these need
10479 * to be part of the prepare_pipes mask. We don't (yet) support global
10480 * modeset across multiple crtcs, so modeset_pipes will only have one
10481 * bit set at most. */
10482 list_for_each_entry(connector, &dev->mode_config.connector_list,
10483 base.head) {
10484 if (connector->base.encoder == &connector->new_encoder->base)
10485 continue;
79e53945 10486
e2e1ed41
DV
10487 if (connector->base.encoder) {
10488 tmp_crtc = connector->base.encoder->crtc;
10489
10490 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10491 }
10492
10493 if (connector->new_encoder)
10494 *prepare_pipes |=
10495 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10496 }
10497
b2784e15 10498 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10499 if (encoder->base.crtc == &encoder->new_crtc->base)
10500 continue;
10501
10502 if (encoder->base.crtc) {
10503 tmp_crtc = encoder->base.crtc;
10504
10505 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10506 }
10507
10508 if (encoder->new_crtc)
10509 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10510 }
10511
7668851f 10512 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10513 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10514 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10515 continue;
7e7d76c3 10516
7668851f 10517 if (!intel_crtc->new_enabled)
e2e1ed41 10518 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10519 else
10520 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10521 }
10522
e2e1ed41
DV
10523
10524 /* set_mode is also used to update properties on life display pipes. */
10525 intel_crtc = to_intel_crtc(crtc);
7668851f 10526 if (intel_crtc->new_enabled)
e2e1ed41
DV
10527 *prepare_pipes |= 1 << intel_crtc->pipe;
10528
b6c5164d
DV
10529 /*
10530 * For simplicity do a full modeset on any pipe where the output routing
10531 * changed. We could be more clever, but that would require us to be
10532 * more careful with calling the relevant encoder->mode_set functions.
10533 */
e2e1ed41
DV
10534 if (*prepare_pipes)
10535 *modeset_pipes = *prepare_pipes;
10536
10537 /* ... and mask these out. */
10538 *modeset_pipes &= ~(*disable_pipes);
10539 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10540
10541 /*
10542 * HACK: We don't (yet) fully support global modesets. intel_set_config
10543 * obies this rule, but the modeset restore mode of
10544 * intel_modeset_setup_hw_state does not.
10545 */
10546 *modeset_pipes &= 1 << intel_crtc->pipe;
10547 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10548
10549 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10550 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10551}
79e53945 10552
ea9d758d 10553static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10554{
ea9d758d 10555 struct drm_encoder *encoder;
f6e5b160 10556 struct drm_device *dev = crtc->dev;
f6e5b160 10557
ea9d758d
DV
10558 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10559 if (encoder->crtc == crtc)
10560 return true;
10561
10562 return false;
10563}
10564
10565static void
10566intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10567{
10568 struct intel_encoder *intel_encoder;
10569 struct intel_crtc *intel_crtc;
10570 struct drm_connector *connector;
10571
b2784e15 10572 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10573 if (!intel_encoder->base.crtc)
10574 continue;
10575
10576 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10577
10578 if (prepare_pipes & (1 << intel_crtc->pipe))
10579 intel_encoder->connectors_active = false;
10580 }
10581
10582 intel_modeset_commit_output_state(dev);
10583
7668851f 10584 /* Double check state. */
d3fcc808 10585 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10586 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10587 WARN_ON(intel_crtc->new_config &&
10588 intel_crtc->new_config != &intel_crtc->config);
10589 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10590 }
10591
10592 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10593 if (!connector->encoder || !connector->encoder->crtc)
10594 continue;
10595
10596 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10597
10598 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10599 struct drm_property *dpms_property =
10600 dev->mode_config.dpms_property;
10601
ea9d758d 10602 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10603 drm_object_property_set_value(&connector->base,
68d34720
DV
10604 dpms_property,
10605 DRM_MODE_DPMS_ON);
ea9d758d
DV
10606
10607 intel_encoder = to_intel_encoder(connector->encoder);
10608 intel_encoder->connectors_active = true;
10609 }
10610 }
10611
10612}
10613
3bd26263 10614static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10615{
3bd26263 10616 int diff;
f1f644dc
JB
10617
10618 if (clock1 == clock2)
10619 return true;
10620
10621 if (!clock1 || !clock2)
10622 return false;
10623
10624 diff = abs(clock1 - clock2);
10625
10626 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10627 return true;
10628
10629 return false;
10630}
10631
25c5b266
DV
10632#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10633 list_for_each_entry((intel_crtc), \
10634 &(dev)->mode_config.crtc_list, \
10635 base.head) \
0973f18f 10636 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10637
0e8ffe1b 10638static bool
2fa2fe9a
DV
10639intel_pipe_config_compare(struct drm_device *dev,
10640 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10641 struct intel_crtc_config *pipe_config)
10642{
66e985c0
DV
10643#define PIPE_CONF_CHECK_X(name) \
10644 if (current_config->name != pipe_config->name) { \
10645 DRM_ERROR("mismatch in " #name " " \
10646 "(expected 0x%08x, found 0x%08x)\n", \
10647 current_config->name, \
10648 pipe_config->name); \
10649 return false; \
10650 }
10651
08a24034
DV
10652#define PIPE_CONF_CHECK_I(name) \
10653 if (current_config->name != pipe_config->name) { \
10654 DRM_ERROR("mismatch in " #name " " \
10655 "(expected %i, found %i)\n", \
10656 current_config->name, \
10657 pipe_config->name); \
10658 return false; \
88adfff1
DV
10659 }
10660
b95af8be
VK
10661/* This is required for BDW+ where there is only one set of registers for
10662 * switching between high and low RR.
10663 * This macro can be used whenever a comparison has to be made between one
10664 * hw state and multiple sw state variables.
10665 */
10666#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10667 if ((current_config->name != pipe_config->name) && \
10668 (current_config->alt_name != pipe_config->name)) { \
10669 DRM_ERROR("mismatch in " #name " " \
10670 "(expected %i or %i, found %i)\n", \
10671 current_config->name, \
10672 current_config->alt_name, \
10673 pipe_config->name); \
10674 return false; \
10675 }
10676
1bd1bd80
DV
10677#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10678 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10679 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10680 "(expected %i, found %i)\n", \
10681 current_config->name & (mask), \
10682 pipe_config->name & (mask)); \
10683 return false; \
10684 }
10685
5e550656
VS
10686#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10687 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10688 DRM_ERROR("mismatch in " #name " " \
10689 "(expected %i, found %i)\n", \
10690 current_config->name, \
10691 pipe_config->name); \
10692 return false; \
10693 }
10694
bb760063
DV
10695#define PIPE_CONF_QUIRK(quirk) \
10696 ((current_config->quirks | pipe_config->quirks) & (quirk))
10697
eccb140b
DV
10698 PIPE_CONF_CHECK_I(cpu_transcoder);
10699
08a24034
DV
10700 PIPE_CONF_CHECK_I(has_pch_encoder);
10701 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10702 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10703 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10704 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10705 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10706 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10707
eb14cb74 10708 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10709
10710 if (INTEL_INFO(dev)->gen < 8) {
10711 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10712 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10713 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10714 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10715 PIPE_CONF_CHECK_I(dp_m_n.tu);
10716
10717 if (current_config->has_drrs) {
10718 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10719 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10720 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10721 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10722 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10723 }
10724 } else {
10725 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10726 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10727 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10728 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10729 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10730 }
eb14cb74 10731
1bd1bd80
DV
10732 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10733 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10734 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10735 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10736 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10737 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10738
10739 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10740 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10741 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10742 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10743 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10744 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10745
c93f54cf 10746 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10747 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10748 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10749 IS_VALLEYVIEW(dev))
10750 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10751
9ed109a7
DV
10752 PIPE_CONF_CHECK_I(has_audio);
10753
1bd1bd80
DV
10754 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10755 DRM_MODE_FLAG_INTERLACE);
10756
bb760063
DV
10757 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10758 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10759 DRM_MODE_FLAG_PHSYNC);
10760 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10761 DRM_MODE_FLAG_NHSYNC);
10762 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10763 DRM_MODE_FLAG_PVSYNC);
10764 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10765 DRM_MODE_FLAG_NVSYNC);
10766 }
045ac3b5 10767
37327abd
VS
10768 PIPE_CONF_CHECK_I(pipe_src_w);
10769 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10770
9953599b
DV
10771 /*
10772 * FIXME: BIOS likes to set up a cloned config with lvds+external
10773 * screen. Since we don't yet re-compute the pipe config when moving
10774 * just the lvds port away to another pipe the sw tracking won't match.
10775 *
10776 * Proper atomic modesets with recomputed global state will fix this.
10777 * Until then just don't check gmch state for inherited modes.
10778 */
10779 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10780 PIPE_CONF_CHECK_I(gmch_pfit.control);
10781 /* pfit ratios are autocomputed by the hw on gen4+ */
10782 if (INTEL_INFO(dev)->gen < 4)
10783 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10784 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10785 }
10786
fd4daa9c
CW
10787 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10788 if (current_config->pch_pfit.enabled) {
10789 PIPE_CONF_CHECK_I(pch_pfit.pos);
10790 PIPE_CONF_CHECK_I(pch_pfit.size);
10791 }
2fa2fe9a 10792
e59150dc
JB
10793 /* BDW+ don't expose a synchronous way to read the state */
10794 if (IS_HASWELL(dev))
10795 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10796
282740f7
VS
10797 PIPE_CONF_CHECK_I(double_wide);
10798
26804afd
DV
10799 PIPE_CONF_CHECK_X(ddi_pll_sel);
10800
c0d43d62 10801 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10802 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10803 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10804 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10805 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10806 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10807
42571aef
VS
10808 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10809 PIPE_CONF_CHECK_I(pipe_bpp);
10810
a9a7e98a
JB
10811 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10812 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10813
66e985c0 10814#undef PIPE_CONF_CHECK_X
08a24034 10815#undef PIPE_CONF_CHECK_I
b95af8be 10816#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10817#undef PIPE_CONF_CHECK_FLAGS
5e550656 10818#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10819#undef PIPE_CONF_QUIRK
88adfff1 10820
0e8ffe1b
DV
10821 return true;
10822}
10823
91d1b4bd
DV
10824static void
10825check_connector_state(struct drm_device *dev)
8af6cf88 10826{
8af6cf88
DV
10827 struct intel_connector *connector;
10828
10829 list_for_each_entry(connector, &dev->mode_config.connector_list,
10830 base.head) {
10831 /* This also checks the encoder/connector hw state with the
10832 * ->get_hw_state callbacks. */
10833 intel_connector_check_state(connector);
10834
10835 WARN(&connector->new_encoder->base != connector->base.encoder,
10836 "connector's staged encoder doesn't match current encoder\n");
10837 }
91d1b4bd
DV
10838}
10839
10840static void
10841check_encoder_state(struct drm_device *dev)
10842{
10843 struct intel_encoder *encoder;
10844 struct intel_connector *connector;
8af6cf88 10845
b2784e15 10846 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10847 bool enabled = false;
10848 bool active = false;
10849 enum pipe pipe, tracked_pipe;
10850
10851 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10852 encoder->base.base.id,
8e329a03 10853 encoder->base.name);
8af6cf88
DV
10854
10855 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10856 "encoder's stage crtc doesn't match current crtc\n");
10857 WARN(encoder->connectors_active && !encoder->base.crtc,
10858 "encoder's active_connectors set, but no crtc\n");
10859
10860 list_for_each_entry(connector, &dev->mode_config.connector_list,
10861 base.head) {
10862 if (connector->base.encoder != &encoder->base)
10863 continue;
10864 enabled = true;
10865 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10866 active = true;
10867 }
0e32b39c
DA
10868 /*
10869 * for MST connectors if we unplug the connector is gone
10870 * away but the encoder is still connected to a crtc
10871 * until a modeset happens in response to the hotplug.
10872 */
10873 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10874 continue;
10875
8af6cf88
DV
10876 WARN(!!encoder->base.crtc != enabled,
10877 "encoder's enabled state mismatch "
10878 "(expected %i, found %i)\n",
10879 !!encoder->base.crtc, enabled);
10880 WARN(active && !encoder->base.crtc,
10881 "active encoder with no crtc\n");
10882
10883 WARN(encoder->connectors_active != active,
10884 "encoder's computed active state doesn't match tracked active state "
10885 "(expected %i, found %i)\n", active, encoder->connectors_active);
10886
10887 active = encoder->get_hw_state(encoder, &pipe);
10888 WARN(active != encoder->connectors_active,
10889 "encoder's hw state doesn't match sw tracking "
10890 "(expected %i, found %i)\n",
10891 encoder->connectors_active, active);
10892
10893 if (!encoder->base.crtc)
10894 continue;
10895
10896 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10897 WARN(active && pipe != tracked_pipe,
10898 "active encoder's pipe doesn't match"
10899 "(expected %i, found %i)\n",
10900 tracked_pipe, pipe);
10901
10902 }
91d1b4bd
DV
10903}
10904
10905static void
10906check_crtc_state(struct drm_device *dev)
10907{
fbee40df 10908 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10909 struct intel_crtc *crtc;
10910 struct intel_encoder *encoder;
10911 struct intel_crtc_config pipe_config;
8af6cf88 10912
d3fcc808 10913 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10914 bool enabled = false;
10915 bool active = false;
10916
045ac3b5
JB
10917 memset(&pipe_config, 0, sizeof(pipe_config));
10918
8af6cf88
DV
10919 DRM_DEBUG_KMS("[CRTC:%d]\n",
10920 crtc->base.base.id);
10921
10922 WARN(crtc->active && !crtc->base.enabled,
10923 "active crtc, but not enabled in sw tracking\n");
10924
b2784e15 10925 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10926 if (encoder->base.crtc != &crtc->base)
10927 continue;
10928 enabled = true;
10929 if (encoder->connectors_active)
10930 active = true;
10931 }
6c49f241 10932
8af6cf88
DV
10933 WARN(active != crtc->active,
10934 "crtc's computed active state doesn't match tracked active state "
10935 "(expected %i, found %i)\n", active, crtc->active);
10936 WARN(enabled != crtc->base.enabled,
10937 "crtc's computed enabled state doesn't match tracked enabled state "
10938 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10939
0e8ffe1b
DV
10940 active = dev_priv->display.get_pipe_config(crtc,
10941 &pipe_config);
d62cf62a 10942
b6b5d049
VS
10943 /* hw state is inconsistent with the pipe quirk */
10944 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10945 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10946 active = crtc->active;
10947
b2784e15 10948 for_each_intel_encoder(dev, encoder) {
3eaba51c 10949 enum pipe pipe;
6c49f241
DV
10950 if (encoder->base.crtc != &crtc->base)
10951 continue;
1d37b689 10952 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10953 encoder->get_config(encoder, &pipe_config);
10954 }
10955
0e8ffe1b
DV
10956 WARN(crtc->active != active,
10957 "crtc active state doesn't match with hw state "
10958 "(expected %i, found %i)\n", crtc->active, active);
10959
c0b03411
DV
10960 if (active &&
10961 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10962 WARN(1, "pipe state doesn't match!\n");
10963 intel_dump_pipe_config(crtc, &pipe_config,
10964 "[hw state]");
10965 intel_dump_pipe_config(crtc, &crtc->config,
10966 "[sw state]");
10967 }
8af6cf88
DV
10968 }
10969}
10970
91d1b4bd
DV
10971static void
10972check_shared_dpll_state(struct drm_device *dev)
10973{
fbee40df 10974 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10975 struct intel_crtc *crtc;
10976 struct intel_dpll_hw_state dpll_hw_state;
10977 int i;
5358901f
DV
10978
10979 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10980 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10981 int enabled_crtcs = 0, active_crtcs = 0;
10982 bool active;
10983
10984 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10985
10986 DRM_DEBUG_KMS("%s\n", pll->name);
10987
10988 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10989
10990 WARN(pll->active > pll->refcount,
10991 "more active pll users than references: %i vs %i\n",
10992 pll->active, pll->refcount);
10993 WARN(pll->active && !pll->on,
10994 "pll in active use but not on in sw tracking\n");
35c95375
DV
10995 WARN(pll->on && !pll->active,
10996 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10997 WARN(pll->on != active,
10998 "pll on state mismatch (expected %i, found %i)\n",
10999 pll->on, active);
11000
d3fcc808 11001 for_each_intel_crtc(dev, crtc) {
5358901f
DV
11002 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11003 enabled_crtcs++;
11004 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11005 active_crtcs++;
11006 }
11007 WARN(pll->active != active_crtcs,
11008 "pll active crtcs mismatch (expected %i, found %i)\n",
11009 pll->active, active_crtcs);
11010 WARN(pll->refcount != enabled_crtcs,
11011 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11012 pll->refcount, enabled_crtcs);
66e985c0
DV
11013
11014 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11015 sizeof(dpll_hw_state)),
11016 "pll hw state mismatch\n");
5358901f 11017 }
8af6cf88
DV
11018}
11019
91d1b4bd
DV
11020void
11021intel_modeset_check_state(struct drm_device *dev)
11022{
11023 check_connector_state(dev);
11024 check_encoder_state(dev);
11025 check_crtc_state(dev);
11026 check_shared_dpll_state(dev);
11027}
11028
18442d08
VS
11029void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11030 int dotclock)
11031{
11032 /*
11033 * FDI already provided one idea for the dotclock.
11034 * Yell if the encoder disagrees.
11035 */
241bfc38 11036 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 11037 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 11038 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11039}
11040
80715b2f
VS
11041static void update_scanline_offset(struct intel_crtc *crtc)
11042{
11043 struct drm_device *dev = crtc->base.dev;
11044
11045 /*
11046 * The scanline counter increments at the leading edge of hsync.
11047 *
11048 * On most platforms it starts counting from vtotal-1 on the
11049 * first active line. That means the scanline counter value is
11050 * always one less than what we would expect. Ie. just after
11051 * start of vblank, which also occurs at start of hsync (on the
11052 * last active line), the scanline counter will read vblank_start-1.
11053 *
11054 * On gen2 the scanline counter starts counting from 1 instead
11055 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11056 * to keep the value positive), instead of adding one.
11057 *
11058 * On HSW+ the behaviour of the scanline counter depends on the output
11059 * type. For DP ports it behaves like most other platforms, but on HDMI
11060 * there's an extra 1 line difference. So we need to add two instead of
11061 * one to the value.
11062 */
11063 if (IS_GEN2(dev)) {
11064 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11065 int vtotal;
11066
11067 vtotal = mode->crtc_vtotal;
11068 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11069 vtotal /= 2;
11070
11071 crtc->scanline_offset = vtotal - 1;
11072 } else if (HAS_DDI(dev) &&
11073 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11074 crtc->scanline_offset = 2;
11075 } else
11076 crtc->scanline_offset = 1;
11077}
11078
f30da187
DV
11079static int __intel_set_mode(struct drm_crtc *crtc,
11080 struct drm_display_mode *mode,
11081 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
11082{
11083 struct drm_device *dev = crtc->dev;
fbee40df 11084 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11085 struct drm_display_mode *saved_mode;
b8cecdf5 11086 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
11087 struct intel_crtc *intel_crtc;
11088 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 11089 int ret = 0;
a6778b3c 11090
4b4b9238 11091 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11092 if (!saved_mode)
11093 return -ENOMEM;
a6778b3c 11094
e2e1ed41 11095 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
11096 &prepare_pipes, &disable_pipes);
11097
3ac18232 11098 *saved_mode = crtc->mode;
a6778b3c 11099
25c5b266
DV
11100 /* Hack: Because we don't (yet) support global modeset on multiple
11101 * crtcs, we don't keep track of the new mode for more than one crtc.
11102 * Hence simply check whether any bit is set in modeset_pipes in all the
11103 * pieces of code that are not yet converted to deal with mutliple crtcs
11104 * changing their mode at the same time. */
25c5b266 11105 if (modeset_pipes) {
4e53c2e0 11106 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
11107 if (IS_ERR(pipe_config)) {
11108 ret = PTR_ERR(pipe_config);
11109 pipe_config = NULL;
11110
3ac18232 11111 goto out;
25c5b266 11112 }
c0b03411
DV
11113 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11114 "[modeset]");
50741abc 11115 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 11116 }
a6778b3c 11117
30a970c6
JB
11118 /*
11119 * See if the config requires any additional preparation, e.g.
11120 * to adjust global state with pipes off. We need to do this
11121 * here so we can get the modeset_pipe updated config for the new
11122 * mode set on this crtc. For other crtcs we need to use the
11123 * adjusted_mode bits in the crtc directly.
11124 */
c164f833 11125 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11126 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11127
c164f833
VS
11128 /* may have added more to prepare_pipes than we should */
11129 prepare_pipes &= ~disable_pipes;
11130 }
11131
460da916
DV
11132 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11133 intel_crtc_disable(&intel_crtc->base);
11134
ea9d758d
DV
11135 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11136 if (intel_crtc->base.enabled)
11137 dev_priv->display.crtc_disable(&intel_crtc->base);
11138 }
a6778b3c 11139
6c4c86f5
DV
11140 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11141 * to set it here already despite that we pass it down the callchain.
f6e5b160 11142 */
b8cecdf5 11143 if (modeset_pipes) {
25c5b266 11144 crtc->mode = *mode;
b8cecdf5
DV
11145 /* mode_set/enable/disable functions rely on a correct pipe
11146 * config. */
11147 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 11148 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
11149
11150 /*
11151 * Calculate and store various constants which
11152 * are later needed by vblank and swap-completion
11153 * timestamping. They are derived from true hwmode.
11154 */
11155 drm_calc_timestamping_constants(crtc,
11156 &pipe_config->adjusted_mode);
b8cecdf5 11157 }
7758a113 11158
ea9d758d
DV
11159 /* Only after disabling all output pipelines that will be changed can we
11160 * update the the output configuration. */
11161 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11162
47fab737
DV
11163 if (dev_priv->display.modeset_global_resources)
11164 dev_priv->display.modeset_global_resources(dev);
11165
a6778b3c
DV
11166 /* Set up the DPLL and any encoders state that needs to adjust or depend
11167 * on the DPLL.
f6e5b160 11168 */
25c5b266 11169 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
11170 struct drm_framebuffer *old_fb = crtc->primary->fb;
11171 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11172 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
11173
11174 mutex_lock(&dev->struct_mutex);
11175 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 11176 obj,
4c10794f
DV
11177 NULL);
11178 if (ret != 0) {
11179 DRM_ERROR("pin & fence failed\n");
11180 mutex_unlock(&dev->struct_mutex);
11181 goto done;
11182 }
2ff8fde1 11183 if (old_fb)
a071fa00 11184 intel_unpin_fb_obj(old_obj);
a071fa00
DV
11185 i915_gem_track_fb(old_obj, obj,
11186 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11187 mutex_unlock(&dev->struct_mutex);
11188
11189 crtc->primary->fb = fb;
11190 crtc->x = x;
11191 crtc->y = y;
11192
4271b753
DV
11193 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11194 x, y, fb);
c0c36b94
CW
11195 if (ret)
11196 goto done;
a6778b3c
DV
11197 }
11198
11199 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11200 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11201 update_scanline_offset(intel_crtc);
11202
25c5b266 11203 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11204 }
a6778b3c 11205
a6778b3c
DV
11206 /* FIXME: add subpixel order */
11207done:
4b4b9238 11208 if (ret && crtc->enabled)
3ac18232 11209 crtc->mode = *saved_mode;
a6778b3c 11210
3ac18232 11211out:
b8cecdf5 11212 kfree(pipe_config);
3ac18232 11213 kfree(saved_mode);
a6778b3c 11214 return ret;
f6e5b160
CW
11215}
11216
e7457a9a
DL
11217static int intel_set_mode(struct drm_crtc *crtc,
11218 struct drm_display_mode *mode,
11219 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11220{
11221 int ret;
11222
11223 ret = __intel_set_mode(crtc, mode, x, y, fb);
11224
11225 if (ret == 0)
11226 intel_modeset_check_state(crtc->dev);
11227
11228 return ret;
11229}
11230
c0c36b94
CW
11231void intel_crtc_restore_mode(struct drm_crtc *crtc)
11232{
f4510a27 11233 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11234}
11235
25c5b266
DV
11236#undef for_each_intel_crtc_masked
11237
d9e55608
DV
11238static void intel_set_config_free(struct intel_set_config *config)
11239{
11240 if (!config)
11241 return;
11242
1aa4b628
DV
11243 kfree(config->save_connector_encoders);
11244 kfree(config->save_encoder_crtcs);
7668851f 11245 kfree(config->save_crtc_enabled);
d9e55608
DV
11246 kfree(config);
11247}
11248
85f9eb71
DV
11249static int intel_set_config_save_state(struct drm_device *dev,
11250 struct intel_set_config *config)
11251{
7668851f 11252 struct drm_crtc *crtc;
85f9eb71
DV
11253 struct drm_encoder *encoder;
11254 struct drm_connector *connector;
11255 int count;
11256
7668851f
VS
11257 config->save_crtc_enabled =
11258 kcalloc(dev->mode_config.num_crtc,
11259 sizeof(bool), GFP_KERNEL);
11260 if (!config->save_crtc_enabled)
11261 return -ENOMEM;
11262
1aa4b628
DV
11263 config->save_encoder_crtcs =
11264 kcalloc(dev->mode_config.num_encoder,
11265 sizeof(struct drm_crtc *), GFP_KERNEL);
11266 if (!config->save_encoder_crtcs)
85f9eb71
DV
11267 return -ENOMEM;
11268
1aa4b628
DV
11269 config->save_connector_encoders =
11270 kcalloc(dev->mode_config.num_connector,
11271 sizeof(struct drm_encoder *), GFP_KERNEL);
11272 if (!config->save_connector_encoders)
85f9eb71
DV
11273 return -ENOMEM;
11274
11275 /* Copy data. Note that driver private data is not affected.
11276 * Should anything bad happen only the expected state is
11277 * restored, not the drivers personal bookkeeping.
11278 */
7668851f 11279 count = 0;
70e1e0ec 11280 for_each_crtc(dev, crtc) {
7668851f
VS
11281 config->save_crtc_enabled[count++] = crtc->enabled;
11282 }
11283
85f9eb71
DV
11284 count = 0;
11285 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11286 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11287 }
11288
11289 count = 0;
11290 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11291 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11292 }
11293
11294 return 0;
11295}
11296
11297static void intel_set_config_restore_state(struct drm_device *dev,
11298 struct intel_set_config *config)
11299{
7668851f 11300 struct intel_crtc *crtc;
9a935856
DV
11301 struct intel_encoder *encoder;
11302 struct intel_connector *connector;
85f9eb71
DV
11303 int count;
11304
7668851f 11305 count = 0;
d3fcc808 11306 for_each_intel_crtc(dev, crtc) {
7668851f 11307 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11308
11309 if (crtc->new_enabled)
11310 crtc->new_config = &crtc->config;
11311 else
11312 crtc->new_config = NULL;
7668851f
VS
11313 }
11314
85f9eb71 11315 count = 0;
b2784e15 11316 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11317 encoder->new_crtc =
11318 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11319 }
11320
11321 count = 0;
9a935856
DV
11322 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11323 connector->new_encoder =
11324 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11325 }
11326}
11327
e3de42b6 11328static bool
2e57f47d 11329is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11330{
11331 int i;
11332
2e57f47d
CW
11333 if (set->num_connectors == 0)
11334 return false;
11335
11336 if (WARN_ON(set->connectors == NULL))
11337 return false;
11338
11339 for (i = 0; i < set->num_connectors; i++)
11340 if (set->connectors[i]->encoder &&
11341 set->connectors[i]->encoder->crtc == set->crtc &&
11342 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11343 return true;
11344
11345 return false;
11346}
11347
5e2b584e
DV
11348static void
11349intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11350 struct intel_set_config *config)
11351{
11352
11353 /* We should be able to check here if the fb has the same properties
11354 * and then just flip_or_move it */
2e57f47d
CW
11355 if (is_crtc_connector_off(set)) {
11356 config->mode_changed = true;
f4510a27 11357 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11358 /*
11359 * If we have no fb, we can only flip as long as the crtc is
11360 * active, otherwise we need a full mode set. The crtc may
11361 * be active if we've only disabled the primary plane, or
11362 * in fastboot situations.
11363 */
f4510a27 11364 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11365 struct intel_crtc *intel_crtc =
11366 to_intel_crtc(set->crtc);
11367
3b150f08 11368 if (intel_crtc->active) {
319d9827
JB
11369 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11370 config->fb_changed = true;
11371 } else {
11372 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11373 config->mode_changed = true;
11374 }
5e2b584e
DV
11375 } else if (set->fb == NULL) {
11376 config->mode_changed = true;
72f4901e 11377 } else if (set->fb->pixel_format !=
f4510a27 11378 set->crtc->primary->fb->pixel_format) {
5e2b584e 11379 config->mode_changed = true;
e3de42b6 11380 } else {
5e2b584e 11381 config->fb_changed = true;
e3de42b6 11382 }
5e2b584e
DV
11383 }
11384
835c5873 11385 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11386 config->fb_changed = true;
11387
11388 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11389 DRM_DEBUG_KMS("modes are different, full mode set\n");
11390 drm_mode_debug_printmodeline(&set->crtc->mode);
11391 drm_mode_debug_printmodeline(set->mode);
11392 config->mode_changed = true;
11393 }
a1d95703
CW
11394
11395 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11396 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11397}
11398
2e431051 11399static int
9a935856
DV
11400intel_modeset_stage_output_state(struct drm_device *dev,
11401 struct drm_mode_set *set,
11402 struct intel_set_config *config)
50f56119 11403{
9a935856
DV
11404 struct intel_connector *connector;
11405 struct intel_encoder *encoder;
7668851f 11406 struct intel_crtc *crtc;
f3f08572 11407 int ro;
50f56119 11408
9abdda74 11409 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11410 * of connectors. For paranoia, double-check this. */
11411 WARN_ON(!set->fb && (set->num_connectors != 0));
11412 WARN_ON(set->fb && (set->num_connectors == 0));
11413
9a935856
DV
11414 list_for_each_entry(connector, &dev->mode_config.connector_list,
11415 base.head) {
11416 /* Otherwise traverse passed in connector list and get encoders
11417 * for them. */
50f56119 11418 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11419 if (set->connectors[ro] == &connector->base) {
0e32b39c 11420 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11421 break;
11422 }
11423 }
11424
9a935856
DV
11425 /* If we disable the crtc, disable all its connectors. Also, if
11426 * the connector is on the changing crtc but not on the new
11427 * connector list, disable it. */
11428 if ((!set->fb || ro == set->num_connectors) &&
11429 connector->base.encoder &&
11430 connector->base.encoder->crtc == set->crtc) {
11431 connector->new_encoder = NULL;
11432
11433 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11434 connector->base.base.id,
c23cc417 11435 connector->base.name);
9a935856
DV
11436 }
11437
11438
11439 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11440 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11441 config->mode_changed = true;
50f56119
DV
11442 }
11443 }
9a935856 11444 /* connector->new_encoder is now updated for all connectors. */
50f56119 11445
9a935856 11446 /* Update crtc of enabled connectors. */
9a935856
DV
11447 list_for_each_entry(connector, &dev->mode_config.connector_list,
11448 base.head) {
7668851f
VS
11449 struct drm_crtc *new_crtc;
11450
9a935856 11451 if (!connector->new_encoder)
50f56119
DV
11452 continue;
11453
9a935856 11454 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11455
11456 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11457 if (set->connectors[ro] == &connector->base)
50f56119
DV
11458 new_crtc = set->crtc;
11459 }
11460
11461 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11462 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11463 new_crtc)) {
5e2b584e 11464 return -EINVAL;
50f56119 11465 }
0e32b39c 11466 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11467
11468 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11469 connector->base.base.id,
c23cc417 11470 connector->base.name,
9a935856
DV
11471 new_crtc->base.id);
11472 }
11473
11474 /* Check for any encoders that needs to be disabled. */
b2784e15 11475 for_each_intel_encoder(dev, encoder) {
5a65f358 11476 int num_connectors = 0;
9a935856
DV
11477 list_for_each_entry(connector,
11478 &dev->mode_config.connector_list,
11479 base.head) {
11480 if (connector->new_encoder == encoder) {
11481 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11482 num_connectors++;
9a935856
DV
11483 }
11484 }
5a65f358
PZ
11485
11486 if (num_connectors == 0)
11487 encoder->new_crtc = NULL;
11488 else if (num_connectors > 1)
11489 return -EINVAL;
11490
9a935856
DV
11491 /* Only now check for crtc changes so we don't miss encoders
11492 * that will be disabled. */
11493 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11494 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11495 config->mode_changed = true;
50f56119
DV
11496 }
11497 }
9a935856 11498 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11499 list_for_each_entry(connector, &dev->mode_config.connector_list,
11500 base.head) {
11501 if (connector->new_encoder)
11502 if (connector->new_encoder != connector->encoder)
11503 connector->encoder = connector->new_encoder;
11504 }
d3fcc808 11505 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11506 crtc->new_enabled = false;
11507
b2784e15 11508 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11509 if (encoder->new_crtc == crtc) {
11510 crtc->new_enabled = true;
11511 break;
11512 }
11513 }
11514
11515 if (crtc->new_enabled != crtc->base.enabled) {
11516 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11517 crtc->new_enabled ? "en" : "dis");
11518 config->mode_changed = true;
11519 }
7bd0a8e7
VS
11520
11521 if (crtc->new_enabled)
11522 crtc->new_config = &crtc->config;
11523 else
11524 crtc->new_config = NULL;
7668851f
VS
11525 }
11526
2e431051
DV
11527 return 0;
11528}
11529
7d00a1f5
VS
11530static void disable_crtc_nofb(struct intel_crtc *crtc)
11531{
11532 struct drm_device *dev = crtc->base.dev;
11533 struct intel_encoder *encoder;
11534 struct intel_connector *connector;
11535
11536 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11537 pipe_name(crtc->pipe));
11538
11539 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11540 if (connector->new_encoder &&
11541 connector->new_encoder->new_crtc == crtc)
11542 connector->new_encoder = NULL;
11543 }
11544
b2784e15 11545 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11546 if (encoder->new_crtc == crtc)
11547 encoder->new_crtc = NULL;
11548 }
11549
11550 crtc->new_enabled = false;
7bd0a8e7 11551 crtc->new_config = NULL;
7d00a1f5
VS
11552}
11553
2e431051
DV
11554static int intel_crtc_set_config(struct drm_mode_set *set)
11555{
11556 struct drm_device *dev;
2e431051
DV
11557 struct drm_mode_set save_set;
11558 struct intel_set_config *config;
11559 int ret;
2e431051 11560
8d3e375e
DV
11561 BUG_ON(!set);
11562 BUG_ON(!set->crtc);
11563 BUG_ON(!set->crtc->helper_private);
2e431051 11564
7e53f3a4
DV
11565 /* Enforce sane interface api - has been abused by the fb helper. */
11566 BUG_ON(!set->mode && set->fb);
11567 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11568
2e431051
DV
11569 if (set->fb) {
11570 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11571 set->crtc->base.id, set->fb->base.id,
11572 (int)set->num_connectors, set->x, set->y);
11573 } else {
11574 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11575 }
11576
11577 dev = set->crtc->dev;
11578
11579 ret = -ENOMEM;
11580 config = kzalloc(sizeof(*config), GFP_KERNEL);
11581 if (!config)
11582 goto out_config;
11583
11584 ret = intel_set_config_save_state(dev, config);
11585 if (ret)
11586 goto out_config;
11587
11588 save_set.crtc = set->crtc;
11589 save_set.mode = &set->crtc->mode;
11590 save_set.x = set->crtc->x;
11591 save_set.y = set->crtc->y;
f4510a27 11592 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11593
11594 /* Compute whether we need a full modeset, only an fb base update or no
11595 * change at all. In the future we might also check whether only the
11596 * mode changed, e.g. for LVDS where we only change the panel fitter in
11597 * such cases. */
11598 intel_set_config_compute_mode_changes(set, config);
11599
9a935856 11600 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11601 if (ret)
11602 goto fail;
11603
5e2b584e 11604 if (config->mode_changed) {
c0c36b94
CW
11605 ret = intel_set_mode(set->crtc, set->mode,
11606 set->x, set->y, set->fb);
5e2b584e 11607 } else if (config->fb_changed) {
3b150f08
MR
11608 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11609
4878cae2
VS
11610 intel_crtc_wait_for_pending_flips(set->crtc);
11611
4f660f49 11612 ret = intel_pipe_set_base(set->crtc,
94352cf9 11613 set->x, set->y, set->fb);
3b150f08
MR
11614
11615 /*
11616 * We need to make sure the primary plane is re-enabled if it
11617 * has previously been turned off.
11618 */
11619 if (!intel_crtc->primary_enabled && ret == 0) {
11620 WARN_ON(!intel_crtc->active);
fdd508a6 11621 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11622 }
11623
7ca51a3a
JB
11624 /*
11625 * In the fastboot case this may be our only check of the
11626 * state after boot. It would be better to only do it on
11627 * the first update, but we don't have a nice way of doing that
11628 * (and really, set_config isn't used much for high freq page
11629 * flipping, so increasing its cost here shouldn't be a big
11630 * deal).
11631 */
d330a953 11632 if (i915.fastboot && ret == 0)
7ca51a3a 11633 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11634 }
11635
2d05eae1 11636 if (ret) {
bf67dfeb
DV
11637 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11638 set->crtc->base.id, ret);
50f56119 11639fail:
2d05eae1 11640 intel_set_config_restore_state(dev, config);
50f56119 11641
7d00a1f5
VS
11642 /*
11643 * HACK: if the pipe was on, but we didn't have a framebuffer,
11644 * force the pipe off to avoid oopsing in the modeset code
11645 * due to fb==NULL. This should only happen during boot since
11646 * we don't yet reconstruct the FB from the hardware state.
11647 */
11648 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11649 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11650
2d05eae1
CW
11651 /* Try to restore the config */
11652 if (config->mode_changed &&
11653 intel_set_mode(save_set.crtc, save_set.mode,
11654 save_set.x, save_set.y, save_set.fb))
11655 DRM_ERROR("failed to restore config after modeset failure\n");
11656 }
50f56119 11657
d9e55608
DV
11658out_config:
11659 intel_set_config_free(config);
50f56119
DV
11660 return ret;
11661}
f6e5b160
CW
11662
11663static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11664 .gamma_set = intel_crtc_gamma_set,
50f56119 11665 .set_config = intel_crtc_set_config,
f6e5b160
CW
11666 .destroy = intel_crtc_destroy,
11667 .page_flip = intel_crtc_page_flip,
11668};
11669
5358901f
DV
11670static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11671 struct intel_shared_dpll *pll,
11672 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11673{
5358901f 11674 uint32_t val;
ee7b9f93 11675
bd2bb1b9
PZ
11676 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11677 return false;
11678
5358901f 11679 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11680 hw_state->dpll = val;
11681 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11682 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11683
11684 return val & DPLL_VCO_ENABLE;
11685}
11686
15bdd4cf
DV
11687static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11688 struct intel_shared_dpll *pll)
11689{
11690 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11691 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11692}
11693
e7b903d2
DV
11694static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11695 struct intel_shared_dpll *pll)
11696{
e7b903d2 11697 /* PCH refclock must be enabled first */
89eff4be 11698 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11699
15bdd4cf
DV
11700 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11701
11702 /* Wait for the clocks to stabilize. */
11703 POSTING_READ(PCH_DPLL(pll->id));
11704 udelay(150);
11705
11706 /* The pixel multiplier can only be updated once the
11707 * DPLL is enabled and the clocks are stable.
11708 *
11709 * So write it again.
11710 */
11711 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11712 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11713 udelay(200);
11714}
11715
11716static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11717 struct intel_shared_dpll *pll)
11718{
11719 struct drm_device *dev = dev_priv->dev;
11720 struct intel_crtc *crtc;
e7b903d2
DV
11721
11722 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11723 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11724 if (intel_crtc_to_shared_dpll(crtc) == pll)
11725 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11726 }
11727
15bdd4cf
DV
11728 I915_WRITE(PCH_DPLL(pll->id), 0);
11729 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11730 udelay(200);
11731}
11732
46edb027
DV
11733static char *ibx_pch_dpll_names[] = {
11734 "PCH DPLL A",
11735 "PCH DPLL B",
11736};
11737
7c74ade1 11738static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11739{
e7b903d2 11740 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11741 int i;
11742
7c74ade1 11743 dev_priv->num_shared_dpll = 2;
ee7b9f93 11744
e72f9fbf 11745 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11746 dev_priv->shared_dplls[i].id = i;
11747 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11748 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11749 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11750 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11751 dev_priv->shared_dplls[i].get_hw_state =
11752 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11753 }
11754}
11755
7c74ade1
DV
11756static void intel_shared_dpll_init(struct drm_device *dev)
11757{
e7b903d2 11758 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11759
9cd86933
DV
11760 if (HAS_DDI(dev))
11761 intel_ddi_pll_init(dev);
11762 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11763 ibx_pch_dpll_init(dev);
11764 else
11765 dev_priv->num_shared_dpll = 0;
11766
11767 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11768}
11769
465c120c
MR
11770static int
11771intel_primary_plane_disable(struct drm_plane *plane)
11772{
11773 struct drm_device *dev = plane->dev;
465c120c
MR
11774 struct intel_crtc *intel_crtc;
11775
11776 if (!plane->fb)
11777 return 0;
11778
11779 BUG_ON(!plane->crtc);
11780
11781 intel_crtc = to_intel_crtc(plane->crtc);
11782
11783 /*
11784 * Even though we checked plane->fb above, it's still possible that
11785 * the primary plane has been implicitly disabled because the crtc
11786 * coordinates given weren't visible, or because we detected
11787 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11788 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11789 * In either case, we need to unpin the FB and let the fb pointer get
11790 * updated, but otherwise we don't need to touch the hardware.
11791 */
11792 if (!intel_crtc->primary_enabled)
11793 goto disable_unpin;
11794
11795 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11796 intel_disable_primary_hw_plane(plane, plane->crtc);
11797
465c120c 11798disable_unpin:
4c34574f 11799 mutex_lock(&dev->struct_mutex);
2ff8fde1 11800 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11801 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11802 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11803 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11804 plane->fb = NULL;
11805
11806 return 0;
11807}
11808
11809static int
11810intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11811 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11812 unsigned int crtc_w, unsigned int crtc_h,
11813 uint32_t src_x, uint32_t src_y,
11814 uint32_t src_w, uint32_t src_h)
11815{
11816 struct drm_device *dev = crtc->dev;
48404c1e 11817 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11819 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11820 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11821 struct drm_rect dest = {
11822 /* integer pixels */
11823 .x1 = crtc_x,
11824 .y1 = crtc_y,
11825 .x2 = crtc_x + crtc_w,
11826 .y2 = crtc_y + crtc_h,
11827 };
11828 struct drm_rect src = {
11829 /* 16.16 fixed point */
11830 .x1 = src_x,
11831 .y1 = src_y,
11832 .x2 = src_x + src_w,
11833 .y2 = src_y + src_h,
11834 };
11835 const struct drm_rect clip = {
11836 /* integer pixels */
11837 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11838 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11839 };
ce54d85a
SJ
11840 const struct {
11841 int crtc_x, crtc_y;
11842 unsigned int crtc_w, crtc_h;
11843 uint32_t src_x, src_y, src_w, src_h;
11844 } orig = {
11845 .crtc_x = crtc_x,
11846 .crtc_y = crtc_y,
11847 .crtc_w = crtc_w,
11848 .crtc_h = crtc_h,
11849 .src_x = src_x,
11850 .src_y = src_y,
11851 .src_w = src_w,
11852 .src_h = src_h,
11853 };
11854 struct intel_plane *intel_plane = to_intel_plane(plane);
465c120c
MR
11855 bool visible;
11856 int ret;
11857
11858 ret = drm_plane_helper_check_update(plane, crtc, fb,
11859 &src, &dest, &clip,
11860 DRM_PLANE_HELPER_NO_SCALING,
11861 DRM_PLANE_HELPER_NO_SCALING,
11862 false, true, &visible);
11863
11864 if (ret)
11865 return ret;
11866
11867 /*
11868 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11869 * updating the fb pointer, and returning without touching the
11870 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11871 * turn on the display with all planes setup as desired.
11872 */
11873 if (!crtc->enabled) {
4c34574f
MR
11874 mutex_lock(&dev->struct_mutex);
11875
465c120c
MR
11876 /*
11877 * If we already called setplane while the crtc was disabled,
11878 * we may have an fb pinned; unpin it.
11879 */
11880 if (plane->fb)
a071fa00
DV
11881 intel_unpin_fb_obj(old_obj);
11882
11883 i915_gem_track_fb(old_obj, obj,
11884 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11885
11886 /* Pin and return without programming hardware */
4c34574f
MR
11887 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11888 mutex_unlock(&dev->struct_mutex);
11889
11890 return ret;
465c120c
MR
11891 }
11892
11893 intel_crtc_wait_for_pending_flips(crtc);
11894
11895 /*
11896 * If clipping results in a non-visible primary plane, we'll disable
11897 * the primary plane. Note that this is a bit different than what
11898 * happens if userspace explicitly disables the plane by passing fb=0
11899 * because plane->fb still gets set and pinned.
11900 */
11901 if (!visible) {
4c34574f
MR
11902 mutex_lock(&dev->struct_mutex);
11903
465c120c
MR
11904 /*
11905 * Try to pin the new fb first so that we can bail out if we
11906 * fail.
11907 */
11908 if (plane->fb != fb) {
a071fa00 11909 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11910 if (ret) {
11911 mutex_unlock(&dev->struct_mutex);
465c120c 11912 return ret;
4c34574f 11913 }
465c120c
MR
11914 }
11915
a071fa00
DV
11916 i915_gem_track_fb(old_obj, obj,
11917 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11918
465c120c 11919 if (intel_crtc->primary_enabled)
fdd508a6 11920 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11921
11922
11923 if (plane->fb != fb)
11924 if (plane->fb)
a071fa00 11925 intel_unpin_fb_obj(old_obj);
465c120c 11926
4c34574f
MR
11927 mutex_unlock(&dev->struct_mutex);
11928
ce54d85a 11929 } else {
48404c1e
SJ
11930 if (intel_crtc && intel_crtc->active &&
11931 intel_crtc->primary_enabled) {
11932 /*
11933 * FBC does not work on some platforms for rotated
11934 * planes, so disable it when rotation is not 0 and
11935 * update it when rotation is set back to 0.
11936 *
11937 * FIXME: This is redundant with the fbc update done in
11938 * the primary plane enable function except that that
11939 * one is done too late. We eventually need to unify
11940 * this.
11941 */
11942 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11943 dev_priv->fbc.plane == intel_crtc->plane &&
11944 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11945 intel_disable_fbc(dev);
11946 }
11947 }
ce54d85a
SJ
11948 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11949 if (ret)
11950 return ret;
465c120c 11951
ce54d85a
SJ
11952 if (!intel_crtc->primary_enabled)
11953 intel_enable_primary_hw_plane(plane, crtc);
11954 }
465c120c 11955
ce54d85a
SJ
11956 intel_plane->crtc_x = orig.crtc_x;
11957 intel_plane->crtc_y = orig.crtc_y;
11958 intel_plane->crtc_w = orig.crtc_w;
11959 intel_plane->crtc_h = orig.crtc_h;
11960 intel_plane->src_x = orig.src_x;
11961 intel_plane->src_y = orig.src_y;
11962 intel_plane->src_w = orig.src_w;
11963 intel_plane->src_h = orig.src_h;
11964 intel_plane->obj = obj;
465c120c
MR
11965
11966 return 0;
11967}
11968
3d7d6510
MR
11969/* Common destruction function for both primary and cursor planes */
11970static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11971{
11972 struct intel_plane *intel_plane = to_intel_plane(plane);
11973 drm_plane_cleanup(plane);
11974 kfree(intel_plane);
11975}
11976
11977static const struct drm_plane_funcs intel_primary_plane_funcs = {
11978 .update_plane = intel_primary_plane_setplane,
11979 .disable_plane = intel_primary_plane_disable,
3d7d6510 11980 .destroy = intel_plane_destroy,
48404c1e 11981 .set_property = intel_plane_set_property
465c120c
MR
11982};
11983
11984static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11985 int pipe)
11986{
11987 struct intel_plane *primary;
11988 const uint32_t *intel_primary_formats;
11989 int num_formats;
11990
11991 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11992 if (primary == NULL)
11993 return NULL;
11994
11995 primary->can_scale = false;
11996 primary->max_downscale = 1;
11997 primary->pipe = pipe;
11998 primary->plane = pipe;
48404c1e 11999 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
12000 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12001 primary->plane = !pipe;
12002
12003 if (INTEL_INFO(dev)->gen <= 3) {
12004 intel_primary_formats = intel_primary_formats_gen2;
12005 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12006 } else {
12007 intel_primary_formats = intel_primary_formats_gen4;
12008 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12009 }
12010
12011 drm_universal_plane_init(dev, &primary->base, 0,
12012 &intel_primary_plane_funcs,
12013 intel_primary_formats, num_formats,
12014 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12015
12016 if (INTEL_INFO(dev)->gen >= 4) {
12017 if (!dev->mode_config.rotation_property)
12018 dev->mode_config.rotation_property =
12019 drm_mode_create_rotation_property(dev,
12020 BIT(DRM_ROTATE_0) |
12021 BIT(DRM_ROTATE_180));
12022 if (dev->mode_config.rotation_property)
12023 drm_object_attach_property(&primary->base.base,
12024 dev->mode_config.rotation_property,
12025 primary->rotation);
12026 }
12027
465c120c
MR
12028 return &primary->base;
12029}
12030
3d7d6510
MR
12031static int
12032intel_cursor_plane_disable(struct drm_plane *plane)
12033{
12034 if (!plane->fb)
12035 return 0;
12036
12037 BUG_ON(!plane->crtc);
12038
12039 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12040}
12041
12042static int
852e787c
GP
12043intel_check_cursor_plane(struct drm_plane *plane,
12044 struct intel_plane_state *state)
3d7d6510 12045{
852e787c
GP
12046 struct drm_crtc *crtc = state->crtc;
12047 struct drm_framebuffer *fb = state->fb;
12048 struct drm_rect *dest = &state->dst;
12049 struct drm_rect *src = &state->src;
12050 const struct drm_rect *clip = &state->clip;
3d7d6510 12051
852e787c
GP
12052 return drm_plane_helper_check_update(plane, crtc, fb,
12053 src, dest, clip,
3d7d6510
MR
12054 DRM_PLANE_HELPER_NO_SCALING,
12055 DRM_PLANE_HELPER_NO_SCALING,
852e787c
GP
12056 true, true, &state->visible);
12057}
3d7d6510 12058
852e787c
GP
12059static int
12060intel_commit_cursor_plane(struct drm_plane *plane,
12061 struct intel_plane_state *state)
12062{
12063 struct drm_crtc *crtc = state->crtc;
12064 struct drm_framebuffer *fb = state->fb;
12065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12066 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12067 struct drm_i915_gem_object *obj = intel_fb->obj;
12068 int crtc_w, crtc_h;
12069
12070 crtc->cursor_x = state->orig_dst.x1;
12071 crtc->cursor_y = state->orig_dst.y1;
3d7d6510 12072 if (fb != crtc->cursor->fb) {
852e787c
GP
12073 crtc_w = drm_rect_width(&state->orig_dst);
12074 crtc_h = drm_rect_height(&state->orig_dst);
3d7d6510
MR
12075 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12076 } else {
852e787c 12077 intel_crtc_update_cursor(crtc, state->visible);
4ed91096
DV
12078
12079 intel_frontbuffer_flip(crtc->dev,
12080 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12081
3d7d6510
MR
12082 return 0;
12083 }
12084}
852e787c
GP
12085
12086static int
12087intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12088 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12089 unsigned int crtc_w, unsigned int crtc_h,
12090 uint32_t src_x, uint32_t src_y,
12091 uint32_t src_w, uint32_t src_h)
12092{
12093 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12094 struct intel_plane_state state;
12095 int ret;
12096
12097 state.crtc = crtc;
12098 state.fb = fb;
12099
12100 /* sample coordinates in 16.16 fixed point */
12101 state.src.x1 = src_x;
12102 state.src.x2 = src_x + src_w;
12103 state.src.y1 = src_y;
12104 state.src.y2 = src_y + src_h;
12105
12106 /* integer pixels */
12107 state.dst.x1 = crtc_x;
12108 state.dst.x2 = crtc_x + crtc_w;
12109 state.dst.y1 = crtc_y;
12110 state.dst.y2 = crtc_y + crtc_h;
12111
12112 state.clip.x1 = 0;
12113 state.clip.y1 = 0;
12114 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12115 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12116
12117 state.orig_src = state.src;
12118 state.orig_dst = state.dst;
12119
12120 ret = intel_check_cursor_plane(plane, &state);
12121 if (ret)
12122 return ret;
12123
12124 return intel_commit_cursor_plane(plane, &state);
12125}
12126
3d7d6510
MR
12127static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12128 .update_plane = intel_cursor_plane_update,
12129 .disable_plane = intel_cursor_plane_disable,
12130 .destroy = intel_plane_destroy,
12131};
12132
12133static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12134 int pipe)
12135{
12136 struct intel_plane *cursor;
12137
12138 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12139 if (cursor == NULL)
12140 return NULL;
12141
12142 cursor->can_scale = false;
12143 cursor->max_downscale = 1;
12144 cursor->pipe = pipe;
12145 cursor->plane = pipe;
12146
12147 drm_universal_plane_init(dev, &cursor->base, 0,
12148 &intel_cursor_plane_funcs,
12149 intel_cursor_formats,
12150 ARRAY_SIZE(intel_cursor_formats),
12151 DRM_PLANE_TYPE_CURSOR);
12152 return &cursor->base;
12153}
12154
b358d0a6 12155static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12156{
fbee40df 12157 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12158 struct intel_crtc *intel_crtc;
3d7d6510
MR
12159 struct drm_plane *primary = NULL;
12160 struct drm_plane *cursor = NULL;
465c120c 12161 int i, ret;
79e53945 12162
955382f3 12163 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12164 if (intel_crtc == NULL)
12165 return;
12166
465c120c 12167 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12168 if (!primary)
12169 goto fail;
12170
12171 cursor = intel_cursor_plane_create(dev, pipe);
12172 if (!cursor)
12173 goto fail;
12174
465c120c 12175 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12176 cursor, &intel_crtc_funcs);
12177 if (ret)
12178 goto fail;
79e53945
JB
12179
12180 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12181 for (i = 0; i < 256; i++) {
12182 intel_crtc->lut_r[i] = i;
12183 intel_crtc->lut_g[i] = i;
12184 intel_crtc->lut_b[i] = i;
12185 }
12186
1f1c2e24
VS
12187 /*
12188 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12189 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12190 */
80824003
JB
12191 intel_crtc->pipe = pipe;
12192 intel_crtc->plane = pipe;
3a77c4c4 12193 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12194 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12195 intel_crtc->plane = !pipe;
80824003
JB
12196 }
12197
4b0e333e
CW
12198 intel_crtc->cursor_base = ~0;
12199 intel_crtc->cursor_cntl = ~0;
dc41c154 12200 intel_crtc->cursor_size = ~0;
8d7849db 12201
22fd0fab
JB
12202 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12203 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12204 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12205 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12206
79e53945 12207 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12208
12209 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12210 return;
12211
12212fail:
12213 if (primary)
12214 drm_plane_cleanup(primary);
12215 if (cursor)
12216 drm_plane_cleanup(cursor);
12217 kfree(intel_crtc);
79e53945
JB
12218}
12219
752aa88a
JB
12220enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12221{
12222 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12223 struct drm_device *dev = connector->base.dev;
752aa88a 12224
51fd371b 12225 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12226
12227 if (!encoder)
12228 return INVALID_PIPE;
12229
12230 return to_intel_crtc(encoder->crtc)->pipe;
12231}
12232
08d7b3d1 12233int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12234 struct drm_file *file)
08d7b3d1 12235{
08d7b3d1 12236 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12237 struct drm_crtc *drmmode_crtc;
c05422d5 12238 struct intel_crtc *crtc;
08d7b3d1 12239
1cff8f6b
DV
12240 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12241 return -ENODEV;
08d7b3d1 12242
7707e653 12243 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12244
7707e653 12245 if (!drmmode_crtc) {
08d7b3d1 12246 DRM_ERROR("no such CRTC id\n");
3f2c2057 12247 return -ENOENT;
08d7b3d1
CW
12248 }
12249
7707e653 12250 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12251 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12252
c05422d5 12253 return 0;
08d7b3d1
CW
12254}
12255
66a9278e 12256static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12257{
66a9278e
DV
12258 struct drm_device *dev = encoder->base.dev;
12259 struct intel_encoder *source_encoder;
79e53945 12260 int index_mask = 0;
79e53945
JB
12261 int entry = 0;
12262
b2784e15 12263 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12264 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12265 index_mask |= (1 << entry);
12266
79e53945
JB
12267 entry++;
12268 }
4ef69c7a 12269
79e53945
JB
12270 return index_mask;
12271}
12272
4d302442
CW
12273static bool has_edp_a(struct drm_device *dev)
12274{
12275 struct drm_i915_private *dev_priv = dev->dev_private;
12276
12277 if (!IS_MOBILE(dev))
12278 return false;
12279
12280 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12281 return false;
12282
e3589908 12283 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12284 return false;
12285
12286 return true;
12287}
12288
ba0fbca4
DL
12289const char *intel_output_name(int output)
12290{
12291 static const char *names[] = {
12292 [INTEL_OUTPUT_UNUSED] = "Unused",
12293 [INTEL_OUTPUT_ANALOG] = "Analog",
12294 [INTEL_OUTPUT_DVO] = "DVO",
12295 [INTEL_OUTPUT_SDVO] = "SDVO",
12296 [INTEL_OUTPUT_LVDS] = "LVDS",
12297 [INTEL_OUTPUT_TVOUT] = "TV",
12298 [INTEL_OUTPUT_HDMI] = "HDMI",
12299 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12300 [INTEL_OUTPUT_EDP] = "eDP",
12301 [INTEL_OUTPUT_DSI] = "DSI",
12302 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12303 };
12304
12305 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12306 return "Invalid";
12307
12308 return names[output];
12309}
12310
84b4e042
JB
12311static bool intel_crt_present(struct drm_device *dev)
12312{
12313 struct drm_i915_private *dev_priv = dev->dev_private;
12314
12315 if (IS_ULT(dev))
12316 return false;
12317
12318 if (IS_CHERRYVIEW(dev))
12319 return false;
12320
12321 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12322 return false;
12323
12324 return true;
12325}
12326
79e53945
JB
12327static void intel_setup_outputs(struct drm_device *dev)
12328{
725e30ad 12329 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12330 struct intel_encoder *encoder;
cb0953d7 12331 bool dpd_is_edp = false;
79e53945 12332
c9093354 12333 intel_lvds_init(dev);
79e53945 12334
84b4e042 12335 if (intel_crt_present(dev))
79935fca 12336 intel_crt_init(dev);
cb0953d7 12337
affa9354 12338 if (HAS_DDI(dev)) {
0e72a5b5
ED
12339 int found;
12340
12341 /* Haswell uses DDI functions to detect digital outputs */
12342 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12343 /* DDI A only supports eDP */
12344 if (found)
12345 intel_ddi_init(dev, PORT_A);
12346
12347 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12348 * register */
12349 found = I915_READ(SFUSE_STRAP);
12350
12351 if (found & SFUSE_STRAP_DDIB_DETECTED)
12352 intel_ddi_init(dev, PORT_B);
12353 if (found & SFUSE_STRAP_DDIC_DETECTED)
12354 intel_ddi_init(dev, PORT_C);
12355 if (found & SFUSE_STRAP_DDID_DETECTED)
12356 intel_ddi_init(dev, PORT_D);
12357 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12358 int found;
5d8a7752 12359 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12360
12361 if (has_edp_a(dev))
12362 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12363
dc0fa718 12364 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12365 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12366 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12367 if (!found)
e2debe91 12368 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12369 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12370 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12371 }
12372
dc0fa718 12373 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12374 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12375
dc0fa718 12376 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12377 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12378
5eb08b69 12379 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12380 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12381
270b3042 12382 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12383 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12384 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12385 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12386 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12387 PORT_B);
12388 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12389 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12390 }
12391
6f6005a5
JB
12392 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12393 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12394 PORT_C);
12395 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12396 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12397 }
19c03924 12398
9418c1f1
VS
12399 if (IS_CHERRYVIEW(dev)) {
12400 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12401 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12402 PORT_D);
12403 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12404 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12405 }
12406 }
12407
3cfca973 12408 intel_dsi_init(dev);
103a196f 12409 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12410 bool found = false;
7d57382e 12411
e2debe91 12412 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12413 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12414 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12415 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12416 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12417 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12418 }
27185ae1 12419
e7281eab 12420 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12421 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12422 }
13520b05
KH
12423
12424 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12425
e2debe91 12426 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12427 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12428 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12429 }
27185ae1 12430
e2debe91 12431 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12432
b01f2c3a
JB
12433 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12434 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12435 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12436 }
e7281eab 12437 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12438 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12439 }
27185ae1 12440
b01f2c3a 12441 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12442 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12443 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12444 } else if (IS_GEN2(dev))
79e53945
JB
12445 intel_dvo_init(dev);
12446
103a196f 12447 if (SUPPORTS_TV(dev))
79e53945
JB
12448 intel_tv_init(dev);
12449
7c8f8a70
RV
12450 intel_edp_psr_init(dev);
12451
b2784e15 12452 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12453 encoder->base.possible_crtcs = encoder->crtc_mask;
12454 encoder->base.possible_clones =
66a9278e 12455 intel_encoder_clones(encoder);
79e53945 12456 }
47356eb6 12457
dde86e2d 12458 intel_init_pch_refclk(dev);
270b3042
DV
12459
12460 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12461}
12462
12463static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12464{
60a5ca01 12465 struct drm_device *dev = fb->dev;
79e53945 12466 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12467
ef2d633e 12468 drm_framebuffer_cleanup(fb);
60a5ca01 12469 mutex_lock(&dev->struct_mutex);
ef2d633e 12470 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12471 drm_gem_object_unreference(&intel_fb->obj->base);
12472 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12473 kfree(intel_fb);
12474}
12475
12476static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12477 struct drm_file *file,
79e53945
JB
12478 unsigned int *handle)
12479{
12480 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12481 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12482
05394f39 12483 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12484}
12485
12486static const struct drm_framebuffer_funcs intel_fb_funcs = {
12487 .destroy = intel_user_framebuffer_destroy,
12488 .create_handle = intel_user_framebuffer_create_handle,
12489};
12490
b5ea642a
DV
12491static int intel_framebuffer_init(struct drm_device *dev,
12492 struct intel_framebuffer *intel_fb,
12493 struct drm_mode_fb_cmd2 *mode_cmd,
12494 struct drm_i915_gem_object *obj)
79e53945 12495{
a57ce0b2 12496 int aligned_height;
a35cdaa0 12497 int pitch_limit;
79e53945
JB
12498 int ret;
12499
dd4916c5
DV
12500 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12501
c16ed4be
CW
12502 if (obj->tiling_mode == I915_TILING_Y) {
12503 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12504 return -EINVAL;
c16ed4be 12505 }
57cd6508 12506
c16ed4be
CW
12507 if (mode_cmd->pitches[0] & 63) {
12508 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12509 mode_cmd->pitches[0]);
57cd6508 12510 return -EINVAL;
c16ed4be 12511 }
57cd6508 12512
a35cdaa0
CW
12513 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12514 pitch_limit = 32*1024;
12515 } else if (INTEL_INFO(dev)->gen >= 4) {
12516 if (obj->tiling_mode)
12517 pitch_limit = 16*1024;
12518 else
12519 pitch_limit = 32*1024;
12520 } else if (INTEL_INFO(dev)->gen >= 3) {
12521 if (obj->tiling_mode)
12522 pitch_limit = 8*1024;
12523 else
12524 pitch_limit = 16*1024;
12525 } else
12526 /* XXX DSPC is limited to 4k tiled */
12527 pitch_limit = 8*1024;
12528
12529 if (mode_cmd->pitches[0] > pitch_limit) {
12530 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12531 obj->tiling_mode ? "tiled" : "linear",
12532 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12533 return -EINVAL;
c16ed4be 12534 }
5d7bd705
VS
12535
12536 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12537 mode_cmd->pitches[0] != obj->stride) {
12538 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12539 mode_cmd->pitches[0], obj->stride);
5d7bd705 12540 return -EINVAL;
c16ed4be 12541 }
5d7bd705 12542
57779d06 12543 /* Reject formats not supported by any plane early. */
308e5bcb 12544 switch (mode_cmd->pixel_format) {
57779d06 12545 case DRM_FORMAT_C8:
04b3924d
VS
12546 case DRM_FORMAT_RGB565:
12547 case DRM_FORMAT_XRGB8888:
12548 case DRM_FORMAT_ARGB8888:
57779d06
VS
12549 break;
12550 case DRM_FORMAT_XRGB1555:
12551 case DRM_FORMAT_ARGB1555:
c16ed4be 12552 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12553 DRM_DEBUG("unsupported pixel format: %s\n",
12554 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12555 return -EINVAL;
c16ed4be 12556 }
57779d06
VS
12557 break;
12558 case DRM_FORMAT_XBGR8888:
12559 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12560 case DRM_FORMAT_XRGB2101010:
12561 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12562 case DRM_FORMAT_XBGR2101010:
12563 case DRM_FORMAT_ABGR2101010:
c16ed4be 12564 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12565 DRM_DEBUG("unsupported pixel format: %s\n",
12566 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12567 return -EINVAL;
c16ed4be 12568 }
b5626747 12569 break;
04b3924d
VS
12570 case DRM_FORMAT_YUYV:
12571 case DRM_FORMAT_UYVY:
12572 case DRM_FORMAT_YVYU:
12573 case DRM_FORMAT_VYUY:
c16ed4be 12574 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12575 DRM_DEBUG("unsupported pixel format: %s\n",
12576 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12577 return -EINVAL;
c16ed4be 12578 }
57cd6508
CW
12579 break;
12580 default:
4ee62c76
VS
12581 DRM_DEBUG("unsupported pixel format: %s\n",
12582 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12583 return -EINVAL;
12584 }
12585
90f9a336
VS
12586 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12587 if (mode_cmd->offsets[0] != 0)
12588 return -EINVAL;
12589
a57ce0b2
JB
12590 aligned_height = intel_align_height(dev, mode_cmd->height,
12591 obj->tiling_mode);
53155c0a
DV
12592 /* FIXME drm helper for size checks (especially planar formats)? */
12593 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12594 return -EINVAL;
12595
c7d73f6a
DV
12596 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12597 intel_fb->obj = obj;
80075d49 12598 intel_fb->obj->framebuffer_references++;
c7d73f6a 12599
79e53945
JB
12600 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12601 if (ret) {
12602 DRM_ERROR("framebuffer init failed %d\n", ret);
12603 return ret;
12604 }
12605
79e53945
JB
12606 return 0;
12607}
12608
79e53945
JB
12609static struct drm_framebuffer *
12610intel_user_framebuffer_create(struct drm_device *dev,
12611 struct drm_file *filp,
308e5bcb 12612 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12613{
05394f39 12614 struct drm_i915_gem_object *obj;
79e53945 12615
308e5bcb
JB
12616 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12617 mode_cmd->handles[0]));
c8725226 12618 if (&obj->base == NULL)
cce13ff7 12619 return ERR_PTR(-ENOENT);
79e53945 12620
d2dff872 12621 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12622}
12623
4520f53a 12624#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12625static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12626{
12627}
12628#endif
12629
79e53945 12630static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12631 .fb_create = intel_user_framebuffer_create,
0632fef6 12632 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12633};
12634
e70236a8
JB
12635/* Set up chip specific display functions */
12636static void intel_init_display(struct drm_device *dev)
12637{
12638 struct drm_i915_private *dev_priv = dev->dev_private;
12639
ee9300bb
DV
12640 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12641 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12642 else if (IS_CHERRYVIEW(dev))
12643 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12644 else if (IS_VALLEYVIEW(dev))
12645 dev_priv->display.find_dpll = vlv_find_best_dpll;
12646 else if (IS_PINEVIEW(dev))
12647 dev_priv->display.find_dpll = pnv_find_best_dpll;
12648 else
12649 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12650
affa9354 12651 if (HAS_DDI(dev)) {
0e8ffe1b 12652 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12653 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12654 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12655 dev_priv->display.crtc_enable = haswell_crtc_enable;
12656 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12657 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12658 dev_priv->display.update_primary_plane =
12659 ironlake_update_primary_plane;
09b4ddf9 12660 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12661 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12662 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12663 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12664 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12665 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12666 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12667 dev_priv->display.update_primary_plane =
12668 ironlake_update_primary_plane;
89b667f8
JB
12669 } else if (IS_VALLEYVIEW(dev)) {
12670 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12671 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12672 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12673 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12674 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12675 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12676 dev_priv->display.update_primary_plane =
12677 i9xx_update_primary_plane;
f564048e 12678 } else {
0e8ffe1b 12679 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12680 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12681 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12682 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12683 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12684 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12685 dev_priv->display.update_primary_plane =
12686 i9xx_update_primary_plane;
f564048e 12687 }
e70236a8 12688
e70236a8 12689 /* Returns the core display clock speed */
25eb05fc
JB
12690 if (IS_VALLEYVIEW(dev))
12691 dev_priv->display.get_display_clock_speed =
12692 valleyview_get_display_clock_speed;
12693 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12694 dev_priv->display.get_display_clock_speed =
12695 i945_get_display_clock_speed;
12696 else if (IS_I915G(dev))
12697 dev_priv->display.get_display_clock_speed =
12698 i915_get_display_clock_speed;
257a7ffc 12699 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12700 dev_priv->display.get_display_clock_speed =
12701 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12702 else if (IS_PINEVIEW(dev))
12703 dev_priv->display.get_display_clock_speed =
12704 pnv_get_display_clock_speed;
e70236a8
JB
12705 else if (IS_I915GM(dev))
12706 dev_priv->display.get_display_clock_speed =
12707 i915gm_get_display_clock_speed;
12708 else if (IS_I865G(dev))
12709 dev_priv->display.get_display_clock_speed =
12710 i865_get_display_clock_speed;
f0f8a9ce 12711 else if (IS_I85X(dev))
e70236a8
JB
12712 dev_priv->display.get_display_clock_speed =
12713 i855_get_display_clock_speed;
12714 else /* 852, 830 */
12715 dev_priv->display.get_display_clock_speed =
12716 i830_get_display_clock_speed;
12717
3bb11b53 12718 if (IS_G4X(dev)) {
e0dac65e 12719 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12720 } else if (IS_GEN5(dev)) {
12721 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12722 dev_priv->display.write_eld = ironlake_write_eld;
12723 } else if (IS_GEN6(dev)) {
12724 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12725 dev_priv->display.write_eld = ironlake_write_eld;
12726 dev_priv->display.modeset_global_resources =
12727 snb_modeset_global_resources;
12728 } else if (IS_IVYBRIDGE(dev)) {
12729 /* FIXME: detect B0+ stepping and use auto training */
12730 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12731 dev_priv->display.write_eld = ironlake_write_eld;
12732 dev_priv->display.modeset_global_resources =
12733 ivb_modeset_global_resources;
059b2fe9 12734 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53
SJ
12735 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12736 dev_priv->display.write_eld = haswell_write_eld;
12737 dev_priv->display.modeset_global_resources =
12738 haswell_modeset_global_resources;
30a970c6
JB
12739 } else if (IS_VALLEYVIEW(dev)) {
12740 dev_priv->display.modeset_global_resources =
12741 valleyview_modeset_global_resources;
9ca2fe73 12742 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12743 }
8c9f3aaf
JB
12744
12745 /* Default just returns -ENODEV to indicate unsupported */
12746 dev_priv->display.queue_flip = intel_default_queue_flip;
12747
12748 switch (INTEL_INFO(dev)->gen) {
12749 case 2:
12750 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12751 break;
12752
12753 case 3:
12754 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12755 break;
12756
12757 case 4:
12758 case 5:
12759 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12760 break;
12761
12762 case 6:
12763 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12764 break;
7c9017e5 12765 case 7:
4e0bbc31 12766 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12767 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12768 break;
8c9f3aaf 12769 }
7bd688cd
JN
12770
12771 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12772
12773 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12774}
12775
b690e96c
JB
12776/*
12777 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12778 * resume, or other times. This quirk makes sure that's the case for
12779 * affected systems.
12780 */
0206e353 12781static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12782{
12783 struct drm_i915_private *dev_priv = dev->dev_private;
12784
12785 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12786 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12787}
12788
b6b5d049
VS
12789static void quirk_pipeb_force(struct drm_device *dev)
12790{
12791 struct drm_i915_private *dev_priv = dev->dev_private;
12792
12793 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12794 DRM_INFO("applying pipe b force quirk\n");
12795}
12796
435793df
KP
12797/*
12798 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12799 */
12800static void quirk_ssc_force_disable(struct drm_device *dev)
12801{
12802 struct drm_i915_private *dev_priv = dev->dev_private;
12803 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12804 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12805}
12806
4dca20ef 12807/*
5a15ab5b
CE
12808 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12809 * brightness value
4dca20ef
CE
12810 */
12811static void quirk_invert_brightness(struct drm_device *dev)
12812{
12813 struct drm_i915_private *dev_priv = dev->dev_private;
12814 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12815 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12816}
12817
9c72cc6f
SD
12818/* Some VBT's incorrectly indicate no backlight is present */
12819static void quirk_backlight_present(struct drm_device *dev)
12820{
12821 struct drm_i915_private *dev_priv = dev->dev_private;
12822 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12823 DRM_INFO("applying backlight present quirk\n");
12824}
12825
b690e96c
JB
12826struct intel_quirk {
12827 int device;
12828 int subsystem_vendor;
12829 int subsystem_device;
12830 void (*hook)(struct drm_device *dev);
12831};
12832
5f85f176
EE
12833/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12834struct intel_dmi_quirk {
12835 void (*hook)(struct drm_device *dev);
12836 const struct dmi_system_id (*dmi_id_list)[];
12837};
12838
12839static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12840{
12841 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12842 return 1;
12843}
12844
12845static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12846 {
12847 .dmi_id_list = &(const struct dmi_system_id[]) {
12848 {
12849 .callback = intel_dmi_reverse_brightness,
12850 .ident = "NCR Corporation",
12851 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12852 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12853 },
12854 },
12855 { } /* terminating entry */
12856 },
12857 .hook = quirk_invert_brightness,
12858 },
12859};
12860
c43b5634 12861static struct intel_quirk intel_quirks[] = {
b690e96c 12862 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12863 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12864
b690e96c
JB
12865 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12866 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12867
b690e96c
JB
12868 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12869 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12870
5f080c0f
VS
12871 /* 830 needs to leave pipe A & dpll A up */
12872 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12873
b6b5d049
VS
12874 /* 830 needs to leave pipe B & dpll B up */
12875 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12876
435793df
KP
12877 /* Lenovo U160 cannot use SSC on LVDS */
12878 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12879
12880 /* Sony Vaio Y cannot use SSC on LVDS */
12881 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12882
be505f64
AH
12883 /* Acer Aspire 5734Z must invert backlight brightness */
12884 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12885
12886 /* Acer/eMachines G725 */
12887 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12888
12889 /* Acer/eMachines e725 */
12890 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12891
12892 /* Acer/Packard Bell NCL20 */
12893 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12894
12895 /* Acer Aspire 4736Z */
12896 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12897
12898 /* Acer Aspire 5336 */
12899 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12900
12901 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12902 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12903
dfb3d47b
SD
12904 /* Acer C720 Chromebook (Core i3 4005U) */
12905 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12906
d4967d8c
SD
12907 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12908 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12909
12910 /* HP Chromebook 14 (Celeron 2955U) */
12911 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12912};
12913
12914static void intel_init_quirks(struct drm_device *dev)
12915{
12916 struct pci_dev *d = dev->pdev;
12917 int i;
12918
12919 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12920 struct intel_quirk *q = &intel_quirks[i];
12921
12922 if (d->device == q->device &&
12923 (d->subsystem_vendor == q->subsystem_vendor ||
12924 q->subsystem_vendor == PCI_ANY_ID) &&
12925 (d->subsystem_device == q->subsystem_device ||
12926 q->subsystem_device == PCI_ANY_ID))
12927 q->hook(dev);
12928 }
5f85f176
EE
12929 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12930 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12931 intel_dmi_quirks[i].hook(dev);
12932 }
b690e96c
JB
12933}
12934
9cce37f4
JB
12935/* Disable the VGA plane that we never use */
12936static void i915_disable_vga(struct drm_device *dev)
12937{
12938 struct drm_i915_private *dev_priv = dev->dev_private;
12939 u8 sr1;
766aa1c4 12940 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12941
2b37c616 12942 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12943 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12944 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12945 sr1 = inb(VGA_SR_DATA);
12946 outb(sr1 | 1<<5, VGA_SR_DATA);
12947 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12948 udelay(300);
12949
69769f9a
VS
12950 /*
12951 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12952 * from S3 without preserving (some of?) the other bits.
12953 */
12954 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12955 POSTING_READ(vga_reg);
12956}
12957
f817586c
DV
12958void intel_modeset_init_hw(struct drm_device *dev)
12959{
a8f78b58
ED
12960 intel_prepare_ddi(dev);
12961
f8bf63fd
VS
12962 if (IS_VALLEYVIEW(dev))
12963 vlv_update_cdclk(dev);
12964
f817586c
DV
12965 intel_init_clock_gating(dev);
12966
8090c6b9 12967 intel_enable_gt_powersave(dev);
f817586c
DV
12968}
12969
7d708ee4
ID
12970void intel_modeset_suspend_hw(struct drm_device *dev)
12971{
12972 intel_suspend_hw(dev);
12973}
12974
79e53945
JB
12975void intel_modeset_init(struct drm_device *dev)
12976{
652c393a 12977 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12978 int sprite, ret;
8cc87b75 12979 enum pipe pipe;
46f297fb 12980 struct intel_crtc *crtc;
79e53945
JB
12981
12982 drm_mode_config_init(dev);
12983
12984 dev->mode_config.min_width = 0;
12985 dev->mode_config.min_height = 0;
12986
019d96cb
DA
12987 dev->mode_config.preferred_depth = 24;
12988 dev->mode_config.prefer_shadow = 1;
12989
e6ecefaa 12990 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12991
b690e96c
JB
12992 intel_init_quirks(dev);
12993
1fa61106
ED
12994 intel_init_pm(dev);
12995
e3c74757
BW
12996 if (INTEL_INFO(dev)->num_pipes == 0)
12997 return;
12998
e70236a8
JB
12999 intel_init_display(dev);
13000
a6c45cf0
CW
13001 if (IS_GEN2(dev)) {
13002 dev->mode_config.max_width = 2048;
13003 dev->mode_config.max_height = 2048;
13004 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13005 dev->mode_config.max_width = 4096;
13006 dev->mode_config.max_height = 4096;
79e53945 13007 } else {
a6c45cf0
CW
13008 dev->mode_config.max_width = 8192;
13009 dev->mode_config.max_height = 8192;
79e53945 13010 }
068be561 13011
dc41c154
VS
13012 if (IS_845G(dev) || IS_I865G(dev)) {
13013 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13014 dev->mode_config.cursor_height = 1023;
13015 } else if (IS_GEN2(dev)) {
068be561
DL
13016 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13017 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13018 } else {
13019 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13020 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13021 }
13022
5d4545ae 13023 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13024
28c97730 13025 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13026 INTEL_INFO(dev)->num_pipes,
13027 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13028
055e393f 13029 for_each_pipe(dev_priv, pipe) {
8cc87b75 13030 intel_crtc_init(dev, pipe);
1fe47785
DL
13031 for_each_sprite(pipe, sprite) {
13032 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13033 if (ret)
06da8da2 13034 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13035 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13036 }
79e53945
JB
13037 }
13038
f42bb70d
JB
13039 intel_init_dpio(dev);
13040
e72f9fbf 13041 intel_shared_dpll_init(dev);
ee7b9f93 13042
69769f9a
VS
13043 /* save the BIOS value before clobbering it */
13044 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
13045 /* Just disable it once at startup */
13046 i915_disable_vga(dev);
79e53945 13047 intel_setup_outputs(dev);
11be49eb
CW
13048
13049 /* Just in case the BIOS is doing something questionable. */
13050 intel_disable_fbc(dev);
fa9fa083 13051
6e9f798d 13052 drm_modeset_lock_all(dev);
fa9fa083 13053 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13054 drm_modeset_unlock_all(dev);
46f297fb 13055
d3fcc808 13056 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13057 if (!crtc->active)
13058 continue;
13059
46f297fb 13060 /*
46f297fb
JB
13061 * Note that reserving the BIOS fb up front prevents us
13062 * from stuffing other stolen allocations like the ring
13063 * on top. This prevents some ugliness at boot time, and
13064 * can even allow for smooth boot transitions if the BIOS
13065 * fb is large enough for the active pipe configuration.
13066 */
13067 if (dev_priv->display.get_plane_config) {
13068 dev_priv->display.get_plane_config(crtc,
13069 &crtc->plane_config);
13070 /*
13071 * If the fb is shared between multiple heads, we'll
13072 * just get the first one.
13073 */
484b41dd 13074 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13075 }
46f297fb 13076 }
2c7111db
CW
13077}
13078
7fad798e
DV
13079static void intel_enable_pipe_a(struct drm_device *dev)
13080{
13081 struct intel_connector *connector;
13082 struct drm_connector *crt = NULL;
13083 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13084 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13085
13086 /* We can't just switch on the pipe A, we need to set things up with a
13087 * proper mode and output configuration. As a gross hack, enable pipe A
13088 * by enabling the load detect pipe once. */
13089 list_for_each_entry(connector,
13090 &dev->mode_config.connector_list,
13091 base.head) {
13092 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13093 crt = &connector->base;
13094 break;
13095 }
13096 }
13097
13098 if (!crt)
13099 return;
13100
208bf9fd
VS
13101 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13102 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13103}
13104
fa555837
DV
13105static bool
13106intel_check_plane_mapping(struct intel_crtc *crtc)
13107{
7eb552ae
BW
13108 struct drm_device *dev = crtc->base.dev;
13109 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13110 u32 reg, val;
13111
7eb552ae 13112 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13113 return true;
13114
13115 reg = DSPCNTR(!crtc->plane);
13116 val = I915_READ(reg);
13117
13118 if ((val & DISPLAY_PLANE_ENABLE) &&
13119 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13120 return false;
13121
13122 return true;
13123}
13124
24929352
DV
13125static void intel_sanitize_crtc(struct intel_crtc *crtc)
13126{
13127 struct drm_device *dev = crtc->base.dev;
13128 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13129 u32 reg;
24929352 13130
24929352 13131 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13132 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13133 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13134
d3eaf884 13135 /* restore vblank interrupts to correct state */
d297e103
VS
13136 if (crtc->active) {
13137 update_scanline_offset(crtc);
d3eaf884 13138 drm_vblank_on(dev, crtc->pipe);
d297e103 13139 } else
d3eaf884
VS
13140 drm_vblank_off(dev, crtc->pipe);
13141
24929352 13142 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13143 * disable the crtc (and hence change the state) if it is wrong. Note
13144 * that gen4+ has a fixed plane -> pipe mapping. */
13145 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13146 struct intel_connector *connector;
13147 bool plane;
13148
24929352
DV
13149 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13150 crtc->base.base.id);
13151
13152 /* Pipe has the wrong plane attached and the plane is active.
13153 * Temporarily change the plane mapping and disable everything
13154 * ... */
13155 plane = crtc->plane;
13156 crtc->plane = !plane;
9c8958bc 13157 crtc->primary_enabled = true;
24929352
DV
13158 dev_priv->display.crtc_disable(&crtc->base);
13159 crtc->plane = plane;
13160
13161 /* ... and break all links. */
13162 list_for_each_entry(connector, &dev->mode_config.connector_list,
13163 base.head) {
13164 if (connector->encoder->base.crtc != &crtc->base)
13165 continue;
13166
7f1950fb
EE
13167 connector->base.dpms = DRM_MODE_DPMS_OFF;
13168 connector->base.encoder = NULL;
24929352 13169 }
7f1950fb
EE
13170 /* multiple connectors may have the same encoder:
13171 * handle them and break crtc link separately */
13172 list_for_each_entry(connector, &dev->mode_config.connector_list,
13173 base.head)
13174 if (connector->encoder->base.crtc == &crtc->base) {
13175 connector->encoder->base.crtc = NULL;
13176 connector->encoder->connectors_active = false;
13177 }
24929352
DV
13178
13179 WARN_ON(crtc->active);
13180 crtc->base.enabled = false;
13181 }
24929352 13182
7fad798e
DV
13183 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13184 crtc->pipe == PIPE_A && !crtc->active) {
13185 /* BIOS forgot to enable pipe A, this mostly happens after
13186 * resume. Force-enable the pipe to fix this, the update_dpms
13187 * call below we restore the pipe to the right state, but leave
13188 * the required bits on. */
13189 intel_enable_pipe_a(dev);
13190 }
13191
24929352
DV
13192 /* Adjust the state of the output pipe according to whether we
13193 * have active connectors/encoders. */
13194 intel_crtc_update_dpms(&crtc->base);
13195
13196 if (crtc->active != crtc->base.enabled) {
13197 struct intel_encoder *encoder;
13198
13199 /* This can happen either due to bugs in the get_hw_state
13200 * functions or because the pipe is force-enabled due to the
13201 * pipe A quirk. */
13202 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13203 crtc->base.base.id,
13204 crtc->base.enabled ? "enabled" : "disabled",
13205 crtc->active ? "enabled" : "disabled");
13206
13207 crtc->base.enabled = crtc->active;
13208
13209 /* Because we only establish the connector -> encoder ->
13210 * crtc links if something is active, this means the
13211 * crtc is now deactivated. Break the links. connector
13212 * -> encoder links are only establish when things are
13213 * actually up, hence no need to break them. */
13214 WARN_ON(crtc->active);
13215
13216 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13217 WARN_ON(encoder->connectors_active);
13218 encoder->base.crtc = NULL;
13219 }
13220 }
c5ab3bc0 13221
a3ed6aad 13222 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13223 /*
13224 * We start out with underrun reporting disabled to avoid races.
13225 * For correct bookkeeping mark this on active crtcs.
13226 *
c5ab3bc0
DV
13227 * Also on gmch platforms we dont have any hardware bits to
13228 * disable the underrun reporting. Which means we need to start
13229 * out with underrun reporting disabled also on inactive pipes,
13230 * since otherwise we'll complain about the garbage we read when
13231 * e.g. coming up after runtime pm.
13232 *
4cc31489
DV
13233 * No protection against concurrent access is required - at
13234 * worst a fifo underrun happens which also sets this to false.
13235 */
13236 crtc->cpu_fifo_underrun_disabled = true;
13237 crtc->pch_fifo_underrun_disabled = true;
13238 }
24929352
DV
13239}
13240
13241static void intel_sanitize_encoder(struct intel_encoder *encoder)
13242{
13243 struct intel_connector *connector;
13244 struct drm_device *dev = encoder->base.dev;
13245
13246 /* We need to check both for a crtc link (meaning that the
13247 * encoder is active and trying to read from a pipe) and the
13248 * pipe itself being active. */
13249 bool has_active_crtc = encoder->base.crtc &&
13250 to_intel_crtc(encoder->base.crtc)->active;
13251
13252 if (encoder->connectors_active && !has_active_crtc) {
13253 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13254 encoder->base.base.id,
8e329a03 13255 encoder->base.name);
24929352
DV
13256
13257 /* Connector is active, but has no active pipe. This is
13258 * fallout from our resume register restoring. Disable
13259 * the encoder manually again. */
13260 if (encoder->base.crtc) {
13261 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13262 encoder->base.base.id,
8e329a03 13263 encoder->base.name);
24929352 13264 encoder->disable(encoder);
a62d1497
VS
13265 if (encoder->post_disable)
13266 encoder->post_disable(encoder);
24929352 13267 }
7f1950fb
EE
13268 encoder->base.crtc = NULL;
13269 encoder->connectors_active = false;
24929352
DV
13270
13271 /* Inconsistent output/port/pipe state happens presumably due to
13272 * a bug in one of the get_hw_state functions. Or someplace else
13273 * in our code, like the register restore mess on resume. Clamp
13274 * things to off as a safer default. */
13275 list_for_each_entry(connector,
13276 &dev->mode_config.connector_list,
13277 base.head) {
13278 if (connector->encoder != encoder)
13279 continue;
7f1950fb
EE
13280 connector->base.dpms = DRM_MODE_DPMS_OFF;
13281 connector->base.encoder = NULL;
24929352
DV
13282 }
13283 }
13284 /* Enabled encoders without active connectors will be fixed in
13285 * the crtc fixup. */
13286}
13287
04098753 13288void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13289{
13290 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13291 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13292
04098753
ID
13293 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13294 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13295 i915_disable_vga(dev);
13296 }
13297}
13298
13299void i915_redisable_vga(struct drm_device *dev)
13300{
13301 struct drm_i915_private *dev_priv = dev->dev_private;
13302
8dc8a27c
PZ
13303 /* This function can be called both from intel_modeset_setup_hw_state or
13304 * at a very early point in our resume sequence, where the power well
13305 * structures are not yet restored. Since this function is at a very
13306 * paranoid "someone might have enabled VGA while we were not looking"
13307 * level, just check if the power well is enabled instead of trying to
13308 * follow the "don't touch the power well if we don't need it" policy
13309 * the rest of the driver uses. */
04098753 13310 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13311 return;
13312
04098753 13313 i915_redisable_vga_power_on(dev);
0fde901f
KM
13314}
13315
98ec7739
VS
13316static bool primary_get_hw_state(struct intel_crtc *crtc)
13317{
13318 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13319
13320 if (!crtc->active)
13321 return false;
13322
13323 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13324}
13325
30e984df 13326static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13327{
13328 struct drm_i915_private *dev_priv = dev->dev_private;
13329 enum pipe pipe;
24929352
DV
13330 struct intel_crtc *crtc;
13331 struct intel_encoder *encoder;
13332 struct intel_connector *connector;
5358901f 13333 int i;
24929352 13334
d3fcc808 13335 for_each_intel_crtc(dev, crtc) {
88adfff1 13336 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13337
9953599b
DV
13338 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13339
0e8ffe1b
DV
13340 crtc->active = dev_priv->display.get_pipe_config(crtc,
13341 &crtc->config);
24929352
DV
13342
13343 crtc->base.enabled = crtc->active;
98ec7739 13344 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13345
13346 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13347 crtc->base.base.id,
13348 crtc->active ? "enabled" : "disabled");
13349 }
13350
5358901f
DV
13351 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13352 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13353
13354 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13355 pll->active = 0;
d3fcc808 13356 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13357 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13358 pll->active++;
13359 }
13360 pll->refcount = pll->active;
13361
35c95375
DV
13362 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13363 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13364
13365 if (pll->refcount)
13366 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13367 }
13368
b2784e15 13369 for_each_intel_encoder(dev, encoder) {
24929352
DV
13370 pipe = 0;
13371
13372 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13373 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13374 encoder->base.crtc = &crtc->base;
1d37b689 13375 encoder->get_config(encoder, &crtc->config);
24929352
DV
13376 } else {
13377 encoder->base.crtc = NULL;
13378 }
13379
13380 encoder->connectors_active = false;
6f2bcceb 13381 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13382 encoder->base.base.id,
8e329a03 13383 encoder->base.name,
24929352 13384 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13385 pipe_name(pipe));
24929352
DV
13386 }
13387
13388 list_for_each_entry(connector, &dev->mode_config.connector_list,
13389 base.head) {
13390 if (connector->get_hw_state(connector)) {
13391 connector->base.dpms = DRM_MODE_DPMS_ON;
13392 connector->encoder->connectors_active = true;
13393 connector->base.encoder = &connector->encoder->base;
13394 } else {
13395 connector->base.dpms = DRM_MODE_DPMS_OFF;
13396 connector->base.encoder = NULL;
13397 }
13398 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13399 connector->base.base.id,
c23cc417 13400 connector->base.name,
24929352
DV
13401 connector->base.encoder ? "enabled" : "disabled");
13402 }
30e984df
DV
13403}
13404
13405/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13406 * and i915 state tracking structures. */
13407void intel_modeset_setup_hw_state(struct drm_device *dev,
13408 bool force_restore)
13409{
13410 struct drm_i915_private *dev_priv = dev->dev_private;
13411 enum pipe pipe;
30e984df
DV
13412 struct intel_crtc *crtc;
13413 struct intel_encoder *encoder;
35c95375 13414 int i;
30e984df
DV
13415
13416 intel_modeset_readout_hw_state(dev);
24929352 13417
babea61d
JB
13418 /*
13419 * Now that we have the config, copy it to each CRTC struct
13420 * Note that this could go away if we move to using crtc_config
13421 * checking everywhere.
13422 */
d3fcc808 13423 for_each_intel_crtc(dev, crtc) {
d330a953 13424 if (crtc->active && i915.fastboot) {
f6a83288 13425 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13426 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13427 crtc->base.base.id);
13428 drm_mode_debug_printmodeline(&crtc->base.mode);
13429 }
13430 }
13431
24929352 13432 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13433 for_each_intel_encoder(dev, encoder) {
24929352
DV
13434 intel_sanitize_encoder(encoder);
13435 }
13436
055e393f 13437 for_each_pipe(dev_priv, pipe) {
24929352
DV
13438 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13439 intel_sanitize_crtc(crtc);
c0b03411 13440 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13441 }
9a935856 13442
35c95375
DV
13443 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13444 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13445
13446 if (!pll->on || pll->active)
13447 continue;
13448
13449 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13450
13451 pll->disable(dev_priv, pll);
13452 pll->on = false;
13453 }
13454
96f90c54 13455 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13456 ilk_wm_get_hw_state(dev);
13457
45e2b5f6 13458 if (force_restore) {
7d0bc1ea
VS
13459 i915_redisable_vga(dev);
13460
f30da187
DV
13461 /*
13462 * We need to use raw interfaces for restoring state to avoid
13463 * checking (bogus) intermediate states.
13464 */
055e393f 13465 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13466 struct drm_crtc *crtc =
13467 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13468
13469 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13470 crtc->primary->fb);
45e2b5f6
DV
13471 }
13472 } else {
13473 intel_modeset_update_staged_output_state(dev);
13474 }
8af6cf88
DV
13475
13476 intel_modeset_check_state(dev);
2c7111db
CW
13477}
13478
13479void intel_modeset_gem_init(struct drm_device *dev)
13480{
484b41dd 13481 struct drm_crtc *c;
2ff8fde1 13482 struct drm_i915_gem_object *obj;
484b41dd 13483
ae48434c
ID
13484 mutex_lock(&dev->struct_mutex);
13485 intel_init_gt_powersave(dev);
13486 mutex_unlock(&dev->struct_mutex);
13487
1833b134 13488 intel_modeset_init_hw(dev);
02e792fb
DV
13489
13490 intel_setup_overlay(dev);
484b41dd
JB
13491
13492 /*
13493 * Make sure any fbs we allocated at startup are properly
13494 * pinned & fenced. When we do the allocation it's too early
13495 * for this.
13496 */
13497 mutex_lock(&dev->struct_mutex);
70e1e0ec 13498 for_each_crtc(dev, c) {
2ff8fde1
MR
13499 obj = intel_fb_obj(c->primary->fb);
13500 if (obj == NULL)
484b41dd
JB
13501 continue;
13502
2ff8fde1 13503 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13504 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13505 to_intel_crtc(c)->pipe);
66e514c1
DA
13506 drm_framebuffer_unreference(c->primary->fb);
13507 c->primary->fb = NULL;
484b41dd
JB
13508 }
13509 }
13510 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13511}
13512
4932e2c3
ID
13513void intel_connector_unregister(struct intel_connector *intel_connector)
13514{
13515 struct drm_connector *connector = &intel_connector->base;
13516
13517 intel_panel_destroy_backlight(connector);
34ea3d38 13518 drm_connector_unregister(connector);
4932e2c3
ID
13519}
13520
79e53945
JB
13521void intel_modeset_cleanup(struct drm_device *dev)
13522{
652c393a 13523 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13524 struct drm_connector *connector;
652c393a 13525
fd0c0642
DV
13526 /*
13527 * Interrupts and polling as the first thing to avoid creating havoc.
13528 * Too much stuff here (turning of rps, connectors, ...) would
13529 * experience fancy races otherwise.
13530 */
13531 drm_irq_uninstall(dev);
1d0d343a 13532 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13533 dev_priv->pm._irqs_disabled = true;
13534
fd0c0642
DV
13535 /*
13536 * Due to the hpd irq storm handling the hotplug work can re-arm the
13537 * poll handlers. Hence disable polling after hpd handling is shut down.
13538 */
f87ea761 13539 drm_kms_helper_poll_fini(dev);
fd0c0642 13540
652c393a
JB
13541 mutex_lock(&dev->struct_mutex);
13542
723bfd70
JB
13543 intel_unregister_dsm_handler();
13544
973d04f9 13545 intel_disable_fbc(dev);
e70236a8 13546
8090c6b9 13547 intel_disable_gt_powersave(dev);
0cdab21f 13548
930ebb46
DV
13549 ironlake_teardown_rc6(dev);
13550
69341a5e
KH
13551 mutex_unlock(&dev->struct_mutex);
13552
1630fe75
CW
13553 /* flush any delayed tasks or pending work */
13554 flush_scheduled_work();
13555
db31af1d
JN
13556 /* destroy the backlight and sysfs files before encoders/connectors */
13557 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13558 struct intel_connector *intel_connector;
13559
13560 intel_connector = to_intel_connector(connector);
13561 intel_connector->unregister(intel_connector);
db31af1d 13562 }
d9255d57 13563
79e53945 13564 drm_mode_config_cleanup(dev);
4d7bb011
DV
13565
13566 intel_cleanup_overlay(dev);
ae48434c
ID
13567
13568 mutex_lock(&dev->struct_mutex);
13569 intel_cleanup_gt_powersave(dev);
13570 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13571}
13572
f1c79df3
ZW
13573/*
13574 * Return which encoder is currently attached for connector.
13575 */
df0e9248 13576struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13577{
df0e9248
CW
13578 return &intel_attached_encoder(connector)->base;
13579}
f1c79df3 13580
df0e9248
CW
13581void intel_connector_attach_encoder(struct intel_connector *connector,
13582 struct intel_encoder *encoder)
13583{
13584 connector->encoder = encoder;
13585 drm_mode_connector_attach_encoder(&connector->base,
13586 &encoder->base);
79e53945 13587}
28d52043
DA
13588
13589/*
13590 * set vga decode state - true == enable VGA decode
13591 */
13592int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13593{
13594 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13595 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13596 u16 gmch_ctrl;
13597
75fa041d
CW
13598 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13599 DRM_ERROR("failed to read control word\n");
13600 return -EIO;
13601 }
13602
c0cc8a55
CW
13603 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13604 return 0;
13605
28d52043
DA
13606 if (state)
13607 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13608 else
13609 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13610
13611 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13612 DRM_ERROR("failed to write control word\n");
13613 return -EIO;
13614 }
13615
28d52043
DA
13616 return 0;
13617}
c4a1d9e4 13618
c4a1d9e4 13619struct intel_display_error_state {
ff57f1b0
PZ
13620
13621 u32 power_well_driver;
13622
63b66e5b
CW
13623 int num_transcoders;
13624
c4a1d9e4
CW
13625 struct intel_cursor_error_state {
13626 u32 control;
13627 u32 position;
13628 u32 base;
13629 u32 size;
52331309 13630 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13631
13632 struct intel_pipe_error_state {
ddf9c536 13633 bool power_domain_on;
c4a1d9e4 13634 u32 source;
f301b1e1 13635 u32 stat;
52331309 13636 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13637
13638 struct intel_plane_error_state {
13639 u32 control;
13640 u32 stride;
13641 u32 size;
13642 u32 pos;
13643 u32 addr;
13644 u32 surface;
13645 u32 tile_offset;
52331309 13646 } plane[I915_MAX_PIPES];
63b66e5b
CW
13647
13648 struct intel_transcoder_error_state {
ddf9c536 13649 bool power_domain_on;
63b66e5b
CW
13650 enum transcoder cpu_transcoder;
13651
13652 u32 conf;
13653
13654 u32 htotal;
13655 u32 hblank;
13656 u32 hsync;
13657 u32 vtotal;
13658 u32 vblank;
13659 u32 vsync;
13660 } transcoder[4];
c4a1d9e4
CW
13661};
13662
13663struct intel_display_error_state *
13664intel_display_capture_error_state(struct drm_device *dev)
13665{
fbee40df 13666 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13667 struct intel_display_error_state *error;
63b66e5b
CW
13668 int transcoders[] = {
13669 TRANSCODER_A,
13670 TRANSCODER_B,
13671 TRANSCODER_C,
13672 TRANSCODER_EDP,
13673 };
c4a1d9e4
CW
13674 int i;
13675
63b66e5b
CW
13676 if (INTEL_INFO(dev)->num_pipes == 0)
13677 return NULL;
13678
9d1cb914 13679 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13680 if (error == NULL)
13681 return NULL;
13682
190be112 13683 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13684 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13685
055e393f 13686 for_each_pipe(dev_priv, i) {
ddf9c536 13687 error->pipe[i].power_domain_on =
bfafe93a
ID
13688 intel_display_power_enabled_unlocked(dev_priv,
13689 POWER_DOMAIN_PIPE(i));
ddf9c536 13690 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13691 continue;
13692
5efb3e28
VS
13693 error->cursor[i].control = I915_READ(CURCNTR(i));
13694 error->cursor[i].position = I915_READ(CURPOS(i));
13695 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13696
13697 error->plane[i].control = I915_READ(DSPCNTR(i));
13698 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13699 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13700 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13701 error->plane[i].pos = I915_READ(DSPPOS(i));
13702 }
ca291363
PZ
13703 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13704 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13705 if (INTEL_INFO(dev)->gen >= 4) {
13706 error->plane[i].surface = I915_READ(DSPSURF(i));
13707 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13708 }
13709
c4a1d9e4 13710 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13711
3abfce77 13712 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13713 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13714 }
13715
13716 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13717 if (HAS_DDI(dev_priv->dev))
13718 error->num_transcoders++; /* Account for eDP. */
13719
13720 for (i = 0; i < error->num_transcoders; i++) {
13721 enum transcoder cpu_transcoder = transcoders[i];
13722
ddf9c536 13723 error->transcoder[i].power_domain_on =
bfafe93a 13724 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13725 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13726 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13727 continue;
13728
63b66e5b
CW
13729 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13730
13731 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13732 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13733 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13734 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13735 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13736 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13737 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13738 }
13739
13740 return error;
13741}
13742
edc3d884
MK
13743#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13744
c4a1d9e4 13745void
edc3d884 13746intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13747 struct drm_device *dev,
13748 struct intel_display_error_state *error)
13749{
055e393f 13750 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13751 int i;
13752
63b66e5b
CW
13753 if (!error)
13754 return;
13755
edc3d884 13756 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13757 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13758 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13759 error->power_well_driver);
055e393f 13760 for_each_pipe(dev_priv, i) {
edc3d884 13761 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13762 err_printf(m, " Power: %s\n",
13763 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13764 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13765 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13766
13767 err_printf(m, "Plane [%d]:\n", i);
13768 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13769 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13770 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13771 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13772 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13773 }
4b71a570 13774 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13775 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13776 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13777 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13778 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13779 }
13780
edc3d884
MK
13781 err_printf(m, "Cursor [%d]:\n", i);
13782 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13783 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13784 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13785 }
63b66e5b
CW
13786
13787 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13788 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13789 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13790 err_printf(m, " Power: %s\n",
13791 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13792 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13793 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13794 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13795 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13796 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13797 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13798 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13799 }
c4a1d9e4 13800}
e2fcdaa9
VS
13801
13802void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13803{
13804 struct intel_crtc *crtc;
13805
13806 for_each_intel_crtc(dev, crtc) {
13807 struct intel_unpin_work *work;
13808 unsigned long irqflags;
13809
13810 spin_lock_irqsave(&dev->event_lock, irqflags);
13811
13812 work = crtc->unpin_work;
13813
13814 if (work && work->event &&
13815 work->event->base.file_priv == file) {
13816 kfree(work->event);
13817 work->event = NULL;
13818 }
13819
13820 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13821 }
13822}
This page took 2.928099 seconds and 5 git commands to generate.