drm/i915: avoid processing spurious/shared interrupts in low-power states
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
c196e1d6 40#include <drm/drm_atomic_helper.h>
760285e7
DH
41#include <drm/drm_dp_helper.h>
42#include <drm/drm_crtc_helper.h>
465c120c
MR
43#include <drm/drm_plane_helper.h>
44#include <drm/drm_rect.h>
c0f372b3 45#include <linux/dma_remapping.h>
79e53945 46
465c120c
MR
47/* Primary plane formats supported by all gen */
48#define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54/* Primary plane formats for gen <= 3 */
55static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59};
60
61/* Primary plane formats for gen >= 4 */
62static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70};
71
3d7d6510
MR
72/* Cursor formats */
73static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75};
76
6b383a7f 77static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 78
f1f644dc 79static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 80 struct intel_crtc_state *pipe_config);
18442d08 81static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 82 struct intel_crtc_state *pipe_config);
f1f644dc 83
e7457a9a
DL
84static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
86static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
5b18e57c
DV
90static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 92static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
29407aab 95static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
96static void haswell_set_pipeconf(struct drm_crtc *crtc);
97static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 98static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 99 const struct intel_crtc_state *pipe_config);
d288f65f 100static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
102static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
4093561b 414bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 415{
409ee761 416 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
417 struct intel_encoder *encoder;
418
409ee761 419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
d0737e1d
ACO
426/**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433{
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442}
443
409ee761 444static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 445 int refclk)
2c07245f 446{
409ee761 447 struct drm_device *dev = crtc->base.dev;
2c07245f 448 const intel_limit_t *limit;
b91ad0ec 449
d0737e1d 450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 451 if (intel_is_dual_link_lvds(dev)) {
1b894b59 452 if (refclk == 100000)
b91ad0ec
ZW
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
1b894b59 457 if (refclk == 100000)
b91ad0ec
ZW
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
c6bb3538 462 } else
b91ad0ec 463 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
464
465 return limit;
466}
467
409ee761 468static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 469{
409ee761 470 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
471 const intel_limit_t *limit;
472
d0737e1d 473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 474 if (intel_is_dual_link_lvds(dev))
e4b36699 475 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 476 else
e4b36699 477 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 480 limit = &intel_limits_g4x_hdmi;
d0737e1d 481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 482 limit = &intel_limits_g4x_sdvo;
044c7c41 483 } else /* The option is for other outputs */
e4b36699 484 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
485
486 return limit;
487}
488
409ee761 489static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 490{
409ee761 491 struct drm_device *dev = crtc->base.dev;
79e53945
JB
492 const intel_limit_t *limit;
493
bad720ff 494 if (HAS_PCH_SPLIT(dev))
1b894b59 495 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 496 else if (IS_G4X(dev)) {
044c7c41 497 limit = intel_g4x_limit(crtc);
f2b115e6 498 } else if (IS_PINEVIEW(dev)) {
d0737e1d 499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 500 limit = &intel_limits_pineview_lvds;
2177832f 501 else
f2b115e6 502 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
a0c4da24 505 } else if (IS_VALLEYVIEW(dev)) {
dc730512 506 limit = &intel_limits_vlv;
a6c45cf0 507 } else if (!IS_GEN2(dev)) {
d0737e1d 508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
79e53945 512 } else {
d0737e1d 513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 514 limit = &intel_limits_i8xx_lvds;
d0737e1d 515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 516 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
517 else
518 limit = &intel_limits_i8xx_dac;
79e53945
JB
519 }
520 return limit;
521}
522
f2b115e6
AJ
523/* m1 is reserved as 0 in Pineview, n is a ring counter */
524static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 525{
2177832f
SL
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
fb03ac01
VS
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
532}
533
7429e9d4
DV
534static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535{
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537}
538
ac58c3f0 539static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 540{
7429e9d4 541 clock->m = i9xx_dpll_compute_m(clock);
79e53945 542 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
fb03ac01
VS
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
547}
548
ef9348c8
CML
549static void chv_clock(int refclk, intel_clock_t *clock)
550{
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558}
559
7c04d1d9 560#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
561/**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
1b894b59
CW
566static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
79e53945 569{
f01b7962
VS
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
79e53945 572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 573 INTELPllInvalid("p1 out of range\n");
79e53945 574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 575 INTELPllInvalid("m2 out of range\n");
79e53945 576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 577 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
79e53945 590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 591 INTELPllInvalid("vco out of range\n");
79e53945
JB
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 596 INTELPllInvalid("dot out of range\n");
79e53945
JB
597
598 return true;
599}
600
d4906093 601static bool
a919ff14 602i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
79e53945 605{
a919ff14 606 struct drm_device *dev = crtc->base.dev;
79e53945 607 intel_clock_t clock;
79e53945
JB
608 int err = target;
609
d0737e1d 610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 611 /*
a210b028
DV
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
79e53945 615 */
1974cad0 616 if (intel_is_dual_link_lvds(dev))
79e53945
JB
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
0206e353 627 memset(best_clock, 0, sizeof(*best_clock));
79e53945 628
42158660
ZY
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 633 if (clock.m2 >= clock.m1)
42158660
ZY
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
639 int this_err;
640
ac58c3f0
DV
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660}
661
662static bool
a919ff14 663pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
79e53945 666{
a919ff14 667 struct drm_device *dev = crtc->base.dev;
79e53945 668 intel_clock_t clock;
79e53945
JB
669 int err = target;
670
d0737e1d 671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 672 /*
a210b028
DV
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
79e53945 676 */
1974cad0 677 if (intel_is_dual_link_lvds(dev))
79e53945
JB
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
0206e353 688 memset(best_clock, 0, sizeof(*best_clock));
79e53945 689
42158660
ZY
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
698 int this_err;
699
ac58c3f0 700 pineview_clock(refclk, &clock);
1b894b59
CW
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
79e53945 703 continue;
cec2f356
SP
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
79e53945
JB
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
d4906093 721static bool
a919ff14 722g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
d4906093 725{
a919ff14 726 struct drm_device *dev = crtc->base.dev;
d4906093
ML
727 intel_clock_t clock;
728 int max_n;
729 bool found;
6ba770dc
AJ
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
732 found = false;
733
d0737e1d 734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 735 if (intel_is_dual_link_lvds(dev))
d4906093
ML
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
f77f13e2 748 /* based on hardware requirement, prefer smaller n to precision */
d4906093 749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 750 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
ac58c3f0 759 i9xx_clock(refclk, &clock);
1b894b59
CW
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
d4906093 762 continue;
1b894b59
CW
763
764 this_err = abs(clock.dot - target);
d4906093
ML
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
2c07245f
ZW
775 return found;
776}
777
a0c4da24 778static bool
a919ff14 779vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
a0c4da24 782{
a919ff14 783 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 784 intel_clock_t clock;
69e4f900 785 unsigned int bestppm = 1000000;
27e639bf
VS
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 788 bool found = false;
a0c4da24 789
6b4bf1c4
VS
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
793
794 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 799 clock.p = clock.p1 * clock.p2;
a0c4da24 800 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
802 unsigned int ppm, diff;
803
6b4bf1c4
VS
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
43b0ac53 808
f01b7962
VS
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
43b0ac53
VS
811 continue;
812
6b4bf1c4
VS
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 817 bestppm = 0;
6b4bf1c4 818 *best_clock = clock;
49e497ef 819 found = true;
43b0ac53 820 }
6b4bf1c4 821
c686122c 822 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 823 bestppm = ppm;
6b4bf1c4 824 *best_clock = clock;
49e497ef 825 found = true;
a0c4da24
JB
826 }
827 }
828 }
829 }
830 }
a0c4da24 831
49e497ef 832 return found;
a0c4da24 833}
a4fc5ed6 834
ef9348c8 835static bool
a919ff14 836chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839{
a919ff14 840 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885}
886
20ddf665
VS
887bool intel_crtc_active(struct drm_crtc *crtc)
888{
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
241bfc38 894 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
895 * as Haswell has gained clock readout/fastboot support.
896 *
66e514c1 897 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
898 * properly reconstruct framebuffers.
899 */
f4510a27 900 return intel_crtc->active && crtc->primary->fb &&
6e3c9717 901 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
902}
903
a5c961d1
PZ
904enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
906{
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
6e3c9717 910 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
911}
912
fbf49ea2
VS
913static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914{
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
919
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
924
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
928
929 return line1 == line2;
930}
931
ab7ad7f6
KP
932/*
933 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 934 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
935 *
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
939 *
ab7ad7f6
KP
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
942 *
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
58e10eb9 946 *
9d0498a2 947 */
575f7ab7 948static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 949{
575f7ab7 950 struct drm_device *dev = crtc->base.dev;
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 953 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
954
955 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 956 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
957
958 /* Wait for the Pipe State to go off */
58e10eb9
CW
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
284637d9 961 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 962 } else {
ab7ad7f6 963 /* Wait for the display line to settle */
fbf49ea2 964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 965 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 966 }
79e53945
JB
967}
968
b0ea7d37
DL
969/*
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
973 *
974 * Returns true if @port is connected, false otherwise.
975 */
976bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
978{
979 u32 bit;
980
c36346e3 981 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 982 switch (port->port) {
c36346e3
DL
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
994 }
995 } else {
eba905b2 996 switch (port->port) {
c36346e3
DL
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1008 }
b0ea7d37
DL
1009 }
1010
1011 return I915_READ(SDEISR) & bit;
1012}
1013
b24e7179
JB
1014static const char *state_string(bool enabled)
1015{
1016 return enabled ? "on" : "off";
1017}
1018
1019/* Only for pre-ILK configs */
55607e8a
DV
1020void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
b24e7179
JB
1022{
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1026
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1030 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1033}
b24e7179 1034
23538ef1
JN
1035/* XXX: the dsi pll is shared between MIPI DSI ports */
1036static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037{
1038 u32 val;
1039 bool cur_state;
1040
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1044
1045 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1046 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049}
1050#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
55607e8a 1053struct intel_shared_dpll *
e2b78267
DV
1054intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055{
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
6e3c9717 1058 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1059 return NULL;
1060
6e3c9717 1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1062}
1063
040484af 1064/* For ILK+ */
55607e8a
DV
1065void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
040484af 1068{
040484af 1069 bool cur_state;
5358901f 1070 struct intel_dpll_hw_state hw_state;
040484af 1071
92b27b08 1072 if (WARN (!pll,
46edb027 1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1074 return;
ee7b9f93 1075
5358901f 1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1077 I915_STATE_WARN(cur_state != state,
5358901f
DV
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
040484af 1080}
040484af
JB
1081
1082static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1084{
1085 int reg;
1086 u32 val;
1087 bool cur_state;
ad80a810
PZ
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
040484af 1090
affa9354
PZ
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
ad80a810 1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1094 val = I915_READ(reg);
ad80a810 1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1100 }
e2c719b7 1101 I915_STATE_WARN(cur_state != state,
040484af
JB
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1104}
1105#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110{
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114
d63fa0dc
PZ
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1118 I915_STATE_WARN(cur_state != state,
040484af
JB
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1121}
1122#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127{
1128 int reg;
1129 u32 val;
1130
1131 /* ILK FDI PLL is always enabled */
3d13ef2e 1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1133 return;
1134
bf507ef7 1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1136 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1137 return;
1138
040484af
JB
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
e2c719b7 1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1142}
1143
55607e8a
DV
1144void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
040484af
JB
1146{
1147 int reg;
1148 u32 val;
55607e8a 1149 bool cur_state;
040484af
JB
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
55607e8a 1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1154 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
040484af
JB
1157}
1158
b680c37a
DV
1159void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
ea0760cf 1161{
bedd4dba
JN
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
ea0760cf
JB
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
0de3b485 1166 bool locked = true;
ea0760cf 1167
bedd4dba
JN
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1170
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1173
ea0760cf 1174 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
ea0760cf
JB
1185 } else {
1186 pp_reg = PP_CONTROL;
bedd4dba
JN
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
ea0760cf
JB
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1194 locked = false;
1195
e2c719b7 1196 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1197 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1198 pipe_name(pipe));
ea0760cf
JB
1199}
1200
93ce0ba6
JN
1201static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1203{
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1206
d9d82081 1207 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1209 else
5efb3e28 1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1211
e2c719b7 1212 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1215}
1216#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
b840d907
JB
1219void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
b24e7179
JB
1221{
1222 int reg;
1223 u32 val;
63d7bbe9 1224 bool cur_state;
702e7a56
PZ
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
b24e7179 1227
b6b5d049
VS
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1231 state = true;
1232
f458ebbc 1233 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1240 }
1241
e2c719b7 1242 I915_STATE_WARN(cur_state != state,
63d7bbe9 1243 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1244 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1245}
1246
931872fc
CW
1247static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
b24e7179
JB
1249{
1250 int reg;
1251 u32 val;
931872fc 1252 bool cur_state;
b24e7179
JB
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
931872fc 1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
931872fc
CW
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1260}
1261
931872fc
CW
1262#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
b24e7179
JB
1265static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267{
653e1026 1268 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1272
653e1026
VS
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
e2c719b7 1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
19ec1358 1280 return;
28c05794 1281 }
19ec1358 1282
b24e7179 1283 /* Need to check both planes against the pipe */
055e393f 1284 for_each_pipe(dev_priv, i) {
b24e7179
JB
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
b24e7179
JB
1292 }
1293}
1294
19332d7a
JB
1295static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1297{
20674eef 1298 struct drm_device *dev = dev_priv->dev;
1fe47785 1299 int reg, sprite;
19332d7a
JB
1300 u32 val;
1301
7feb8b88
DL
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1308 }
1309 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
20674eef 1312 val = I915_READ(reg);
e2c719b7 1313 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1315 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1316 }
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
19332d7a 1319 val = I915_READ(reg);
e2c719b7 1320 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
19332d7a 1325 val = I915_READ(reg);
e2c719b7 1326 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1328 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1329 }
1330}
1331
08c71e5e
VS
1332static void assert_vblank_disabled(struct drm_crtc *crtc)
1333{
e2c719b7 1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1335 drm_crtc_vblank_put(crtc);
1336}
1337
89eff4be 1338static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1339{
1340 u32 val;
1341 bool enabled;
1342
e2c719b7 1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1344
92f2584a
JB
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1349}
1350
ab9412ba
DV
1351static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
92f2584a
JB
1353{
1354 int reg;
1355 u32 val;
1356 bool enabled;
1357
ab9412ba 1358 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1361 I915_STATE_WARN(enabled,
9db4a9c7
JB
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
92f2584a
JB
1364}
1365
4e634389
KP
1366static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1368{
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1371
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
44f37d1f
CML
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
f0575e92
KP
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385}
1386
1519b995
KP
1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389{
dc0fa718 1390 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1395 return false;
44f37d1f
CML
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1519b995 1399 } else {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1401 return false;
1402 }
1403 return true;
1404}
1405
1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408{
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420}
1421
1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424{
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435}
1436
291906f1 1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1438 enum pipe pipe, int reg, u32 port_sel)
291906f1 1439{
47a05eca 1440 u32 val = I915_READ(reg);
e2c719b7 1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1443 reg, pipe_name(pipe));
de9a35ab 1444
e2c719b7 1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1446 && (val & DP_PIPEB_SELECT),
de9a35ab 1447 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1448}
1449
1450static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1452{
47a05eca 1453 u32 val = I915_READ(reg);
e2c719b7 1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1456 reg, pipe_name(pipe));
de9a35ab 1457
e2c719b7 1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1459 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1460 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1461}
1462
1463static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465{
1466 int reg;
1467 u32 val;
291906f1 1468
f0575e92
KP
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1472
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
e2c719b7 1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1477 pipe_name(pipe));
291906f1
JB
1478
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
e2c719b7 1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1 1484
e2debe91
PZ
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1488}
1489
40e9cf64
JB
1490static void intel_init_dpio(struct drm_device *dev)
1491{
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1496
a09caddd
CML
1497 /*
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501 */
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507 }
5382f5f3
JB
1508}
1509
d288f65f 1510static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1511 const struct intel_crtc_state *pipe_config)
87442f73 1512{
426115cf
DV
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
d288f65f 1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1517
426115cf 1518 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1519
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1524 if (IS_MOBILE(dev_priv->dev))
426115cf 1525 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1526
426115cf
DV
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1530
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
d288f65f 1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1535 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1536
1537 /* We do this three times for luck */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
426115cf 1544 I915_WRITE(reg, dpll);
87442f73
DV
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1547}
1548
d288f65f 1549static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1550 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1551{
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1556 u32 tmp;
1557
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562 mutex_lock(&dev_priv->dpio_lock);
1563
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569 /*
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571 */
1572 udelay(1);
1573
1574 /* Enable PLL */
d288f65f 1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1576
1577 /* Check PLL is locked */
a11b0703 1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
a11b0703 1581 /* not sure when this should be written */
d288f65f 1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1583 POSTING_READ(DPLL_MD(pipe));
1584
9d556c99
CML
1585 mutex_unlock(&dev_priv->dpio_lock);
1586}
1587
1c4e0274
VS
1588static int intel_num_dvo_pipes(struct drm_device *dev)
1589{
1590 struct intel_crtc *crtc;
1591 int count = 0;
1592
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
409ee761 1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1596
1597 return count;
1598}
1599
66e3d5c0 1600static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1601{
66e3d5c0
DV
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
6e3c9717 1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1606
66e3d5c0 1607 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1608
63d7bbe9 1609 /* No really, not for ILK+ */
3d13ef2e 1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1611
1612 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1615
1c4e0274
VS
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618 /*
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1623 */
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627 }
66e3d5c0
DV
1628
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1635 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1639 *
1640 * So write it again.
1641 */
1642 I915_WRITE(reg, dpll);
1643 }
63d7bbe9
JB
1644
1645 /* We do this three times for luck */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655}
1656
1657/**
50b44a44 1658 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1661 *
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1663 *
1664 * Note! This is for pre-ILK only.
1665 */
1c4e0274 1666static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1667{
1c4e0274
VS
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1671
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
409ee761 1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680 }
1681
b6b5d049
VS
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
50b44a44
DV
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1692}
1693
f6071166
JB
1694static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
e5cbfbfb
ID
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
f6071166 1705 if (pipe == PIPE_B)
e5cbfbfb 1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1709
1710}
1711
1712static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
d752048d 1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1715 u32 val;
1716
a11b0703
VS
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1719
a11b0703 1720 /* Set PLL en = 0 */
d17ec4ce 1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
d752048d
VS
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
61407f6d
VS
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
d752048d 1745 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1746}
1747
e4607fcf
CML
1748void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
89b667f8
JB
1750{
1751 u32 port_mask;
00fc31b7 1752 int dpll_reg;
89b667f8 1753
e4607fcf
CML
1754 switch (dport->port) {
1755 case PORT_B:
89b667f8 1756 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1757 dpll_reg = DPLL(0);
e4607fcf
CML
1758 break;
1759 case PORT_C:
89b667f8 1760 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1766 break;
1767 default:
1768 BUG();
1769 }
89b667f8 1770
00fc31b7 1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1773 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1774}
1775
b14b1055
DV
1776static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777{
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
be19f0ff
CW
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
3e369b76 1785 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793}
1794
92f2584a 1795/**
85b3894f 1796 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
85b3894f 1803static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1804{
3d13ef2e
DL
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1808
87a875bb 1809 if (WARN_ON(pll == NULL))
48da64a8
CW
1810 return;
1811
3e369b76 1812 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1813 return;
ee7b9f93 1814
74dd6928 1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1816 pll->name, pll->active, pll->on,
e2b78267 1817 crtc->base.base.id);
92f2584a 1818
cdbd2316
DV
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
e9d6944e 1821 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1822 return;
1823 }
f4a091c7 1824 WARN_ON(pll->on);
ee7b9f93 1825
bd2bb1b9
PZ
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
46edb027 1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1829 pll->enable(dev_priv, pll);
ee7b9f93 1830 pll->on = true;
92f2584a
JB
1831}
1832
f6daaec2 1833static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1834{
3d13ef2e
DL
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1838
92f2584a 1839 /* PCH only available on ILK+ */
3d13ef2e 1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1841 if (WARN_ON(pll == NULL))
ee7b9f93 1842 return;
92f2584a 1843
3e369b76 1844 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1845 return;
7a419866 1846
46edb027
DV
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
e2b78267 1849 crtc->base.base.id);
7a419866 1850
48da64a8 1851 if (WARN_ON(pll->active == 0)) {
e9d6944e 1852 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1853 return;
1854 }
1855
e9d6944e 1856 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1857 WARN_ON(!pll->on);
cdbd2316 1858 if (--pll->active)
7a419866 1859 return;
ee7b9f93 1860
46edb027 1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1862 pll->disable(dev_priv, pll);
ee7b9f93 1863 pll->on = false;
bd2bb1b9
PZ
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1866}
1867
b8a4f404
PZ
1868static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
040484af 1870{
23670b32 1871 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1874 uint32_t reg, val, pipeconf_val;
040484af
JB
1875
1876 /* PCH only available on ILK+ */
55522f37 1877 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1878
1879 /* Make sure PCH DPLL is enabled */
e72f9fbf 1880 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1881 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
23670b32
DV
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
59c859d6 1894 }
23670b32 1895
ab9412ba 1896 reg = PCH_TRANSCONF(pipe);
040484af 1897 val = I915_READ(reg);
5f7f726d 1898 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
dfd07d72
DV
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1907 }
5f7f726d
PZ
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1911 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
5f7f726d
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
040484af
JB
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1922}
1923
8fb033d7 1924static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1925 enum transcoder cpu_transcoder)
040484af 1926{
8fb033d7 1927 u32 val, pipeconf_val;
8fb033d7
PZ
1928
1929 /* PCH only available on ILK+ */
55522f37 1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1931
8fb033d7 1932 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1935
223a6fdf
PZ
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
25f3ef11 1941 val = TRANS_ENABLE;
937bb610 1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1943
9a76b1c6
PZ
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
a35f2679 1946 val |= TRANS_INTERLACED;
8fb033d7
PZ
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
ab9412ba
DV
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1952 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1953}
1954
b8a4f404
PZ
1955static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
040484af 1957{
23670b32
DV
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
040484af
JB
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
291906f1
JB
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
ab9412ba 1968 reg = PCH_TRANSCONF(pipe);
040484af
JB
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
040484af
JB
1983}
1984
ab4d966c 1985static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1986{
8fb033d7
PZ
1987 u32 val;
1988
ab9412ba 1989 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1990 val &= ~TRANS_ENABLE;
ab9412ba 1991 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1992 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1994 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1999 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2000}
2001
b24e7179 2002/**
309cfea8 2003 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2004 * @crtc: crtc responsible for the pipe
b24e7179 2005 *
0372264a 2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2008 */
e1fdc473 2009static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2010{
0372264a
PZ
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
1a240d4d 2016 enum pipe pch_transcoder;
b24e7179
JB
2017 int reg;
2018 u32 val;
2019
58c6eaa2 2020 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2021 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2022 assert_sprites_disabled(dev_priv, pipe);
2023
681e5811 2024 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
b24e7179
JB
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
040484af 2039 else {
6e3c9717 2040 if (crtc->config->has_pch_encoder) {
040484af 2041 /* if driving the PCH, we need FDI enabled */
cc391bbb 2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
040484af
JB
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
b24e7179 2048
702e7a56 2049 reg = PIPECONF(cpu_transcoder);
b24e7179 2050 val = I915_READ(reg);
7ad25d48 2051 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2054 return;
7ad25d48 2055 }
00d70b15
CW
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2058 POSTING_READ(reg);
b24e7179
JB
2059}
2060
2061/**
309cfea8 2062 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2063 * @crtc: crtc whose pipes is to be disabled
b24e7179 2064 *
575f7ab7
VS
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
b24e7179
JB
2068 *
2069 * Will wait until the pipe has shut down before returning.
2070 */
575f7ab7 2071static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2072{
575f7ab7 2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2075 enum pipe pipe = crtc->pipe;
b24e7179
JB
2076 int reg;
2077 u32 val;
2078
2079 /*
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2082 */
2083 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2084 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2085 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2086
702e7a56 2087 reg = PIPECONF(cpu_transcoder);
b24e7179 2088 val = I915_READ(reg);
00d70b15
CW
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
67adc644
VS
2092 /*
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2095 */
6e3c9717 2096 if (crtc->config->double_wide)
67adc644
VS
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2102 val &= ~PIPECONF_ENABLE;
2103
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2107}
2108
d74362c9
KP
2109/*
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2112 */
1dba99f4
VS
2113void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
d74362c9 2115{
3d13ef2e
DL
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2118
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
d74362c9
KP
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
b24e7179 2127 *
fdd508a6 2128 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2129 */
fdd508a6
VS
2130static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
b24e7179 2132{
fdd508a6
VS
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2136
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2139
98ec7739
VS
2140 if (intel_crtc->primary_enabled)
2141 return;
0037f71c 2142
4c445e0e 2143 intel_crtc->primary_enabled = true;
939c2fe8 2144
fdd508a6
VS
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
33c3b0d1
VS
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2155}
2156
b24e7179 2157/**
262ca2b0 2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
b24e7179 2161 *
fdd508a6 2162 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2163 */
fdd508a6
VS
2164static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
b24e7179 2166{
fdd508a6
VS
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
32b7eeec
MR
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
b24e7179 2173
98ec7739
VS
2174 if (!intel_crtc->primary_enabled)
2175 return;
0037f71c 2176
4c445e0e 2177 intel_crtc->primary_enabled = false;
939c2fe8 2178
fdd508a6
VS
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
b24e7179
JB
2181}
2182
693db184
CW
2183static bool need_vtd_wa(struct drm_device *dev)
2184{
2185#ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188#endif
2189 return false;
2190}
2191
ec2c981e
DL
2192int
2193intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
a57ce0b2
JB
2194{
2195 int tile_height;
2196
ec2c981e 2197 tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
a57ce0b2
JB
2198 return ALIGN(height, tile_height);
2199}
2200
127bd2ac 2201int
850c4cdc
TU
2202intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2203 struct drm_framebuffer *fb,
a4872ba6 2204 struct intel_engine_cs *pipelined)
6b95a207 2205{
850c4cdc 2206 struct drm_device *dev = fb->dev;
ce453d81 2207 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2208 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2209 u32 alignment;
2210 int ret;
2211
ebcdd39e
MR
2212 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2213
05394f39 2214 switch (obj->tiling_mode) {
6b95a207 2215 case I915_TILING_NONE:
1fada4cc
DL
2216 if (INTEL_INFO(dev)->gen >= 9)
2217 alignment = 256 * 1024;
2218 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2219 alignment = 128 * 1024;
a6c45cf0 2220 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2221 alignment = 4 * 1024;
2222 else
2223 alignment = 64 * 1024;
6b95a207
KH
2224 break;
2225 case I915_TILING_X:
1fada4cc
DL
2226 if (INTEL_INFO(dev)->gen >= 9)
2227 alignment = 256 * 1024;
2228 else {
2229 /* pin() will align the object as required by fence */
2230 alignment = 0;
2231 }
6b95a207
KH
2232 break;
2233 case I915_TILING_Y:
80075d49 2234 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2235 return -EINVAL;
2236 default:
2237 BUG();
2238 }
2239
693db184
CW
2240 /* Note that the w/a also requires 64 PTE of padding following the
2241 * bo. We currently fill all unused PTE with the shadow page and so
2242 * we should always have valid PTE following the scanout preventing
2243 * the VT-d warning.
2244 */
2245 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2246 alignment = 256 * 1024;
2247
d6dd6843
PZ
2248 /*
2249 * Global gtt pte registers are special registers which actually forward
2250 * writes to a chunk of system memory. Which means that there is no risk
2251 * that the register values disappear as soon as we call
2252 * intel_runtime_pm_put(), so it is correct to wrap only the
2253 * pin/unpin/fence and not more.
2254 */
2255 intel_runtime_pm_get(dev_priv);
2256
ce453d81 2257 dev_priv->mm.interruptible = false;
2da3b9b9 2258 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2259 if (ret)
ce453d81 2260 goto err_interruptible;
6b95a207
KH
2261
2262 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2263 * fence, whereas 965+ only requires a fence if using
2264 * framebuffer compression. For simplicity, we always install
2265 * a fence as the cost is not that onerous.
2266 */
06d98131 2267 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2268 if (ret)
2269 goto err_unpin;
1690e1eb 2270
9a5a53b3 2271 i915_gem_object_pin_fence(obj);
6b95a207 2272
ce453d81 2273 dev_priv->mm.interruptible = true;
d6dd6843 2274 intel_runtime_pm_put(dev_priv);
6b95a207 2275 return 0;
48b956c5
CW
2276
2277err_unpin:
cc98b413 2278 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2279err_interruptible:
2280 dev_priv->mm.interruptible = true;
d6dd6843 2281 intel_runtime_pm_put(dev_priv);
48b956c5 2282 return ret;
6b95a207
KH
2283}
2284
1690e1eb
CW
2285void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2286{
ebcdd39e
MR
2287 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2288
1690e1eb 2289 i915_gem_object_unpin_fence(obj);
cc98b413 2290 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2291}
2292
c2c75131
DV
2293/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2294 * is assumed to be a power-of-two. */
bc752862
CW
2295unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2296 unsigned int tiling_mode,
2297 unsigned int cpp,
2298 unsigned int pitch)
c2c75131 2299{
bc752862
CW
2300 if (tiling_mode != I915_TILING_NONE) {
2301 unsigned int tile_rows, tiles;
c2c75131 2302
bc752862
CW
2303 tile_rows = *y / 8;
2304 *y %= 8;
c2c75131 2305
bc752862
CW
2306 tiles = *x / (512/cpp);
2307 *x %= 512/cpp;
2308
2309 return tile_rows * pitch * 8 + tiles * 4096;
2310 } else {
2311 unsigned int offset;
2312
2313 offset = *y * pitch + *x * cpp;
2314 *y = 0;
2315 *x = (offset & 4095) / cpp;
2316 return offset & -4096;
2317 }
c2c75131
DV
2318}
2319
b35d63fa 2320static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2321{
2322 switch (format) {
2323 case DISPPLANE_8BPP:
2324 return DRM_FORMAT_C8;
2325 case DISPPLANE_BGRX555:
2326 return DRM_FORMAT_XRGB1555;
2327 case DISPPLANE_BGRX565:
2328 return DRM_FORMAT_RGB565;
2329 default:
2330 case DISPPLANE_BGRX888:
2331 return DRM_FORMAT_XRGB8888;
2332 case DISPPLANE_RGBX888:
2333 return DRM_FORMAT_XBGR8888;
2334 case DISPPLANE_BGRX101010:
2335 return DRM_FORMAT_XRGB2101010;
2336 case DISPPLANE_RGBX101010:
2337 return DRM_FORMAT_XBGR2101010;
2338 }
2339}
2340
bc8d7dff
DL
2341static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2342{
2343 switch (format) {
2344 case PLANE_CTL_FORMAT_RGB_565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case PLANE_CTL_FORMAT_XRGB_8888:
2348 if (rgb_order) {
2349 if (alpha)
2350 return DRM_FORMAT_ABGR8888;
2351 else
2352 return DRM_FORMAT_XBGR8888;
2353 } else {
2354 if (alpha)
2355 return DRM_FORMAT_ARGB8888;
2356 else
2357 return DRM_FORMAT_XRGB8888;
2358 }
2359 case PLANE_CTL_FORMAT_XRGB_2101010:
2360 if (rgb_order)
2361 return DRM_FORMAT_XBGR2101010;
2362 else
2363 return DRM_FORMAT_XRGB2101010;
2364 }
2365}
2366
5724dbd1
DL
2367static bool
2368intel_alloc_plane_obj(struct intel_crtc *crtc,
2369 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2370{
2371 struct drm_device *dev = crtc->base.dev;
2372 struct drm_i915_gem_object *obj = NULL;
2373 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2374 u32 base = plane_config->base;
2375
ff2652ea
CW
2376 if (plane_config->size == 0)
2377 return false;
2378
46f297fb
JB
2379 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2380 plane_config->size);
2381 if (!obj)
484b41dd 2382 return false;
46f297fb 2383
49af449b
DL
2384 obj->tiling_mode = plane_config->tiling;
2385 if (obj->tiling_mode == I915_TILING_X)
66e514c1 2386 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb 2387
66e514c1
DA
2388 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2389 mode_cmd.width = crtc->base.primary->fb->width;
2390 mode_cmd.height = crtc->base.primary->fb->height;
2391 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2392
2393 mutex_lock(&dev->struct_mutex);
2394
66e514c1 2395 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2396 &mode_cmd, obj)) {
46f297fb
JB
2397 DRM_DEBUG_KMS("intel fb init failed\n");
2398 goto out_unref_obj;
2399 }
2400
a071fa00 2401 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2402 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2403
2404 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2405 return true;
46f297fb
JB
2406
2407out_unref_obj:
2408 drm_gem_object_unreference(&obj->base);
2409 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2410 return false;
2411}
2412
5724dbd1
DL
2413static void
2414intel_find_plane_obj(struct intel_crtc *intel_crtc,
2415 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2416{
2417 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2418 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2419 struct drm_crtc *c;
2420 struct intel_crtc *i;
2ff8fde1 2421 struct drm_i915_gem_object *obj;
484b41dd 2422
66e514c1 2423 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2424 return;
2425
2426 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2427 return;
2428
66e514c1
DA
2429 kfree(intel_crtc->base.primary->fb);
2430 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2431
2432 /*
2433 * Failed to alloc the obj, check to see if we should share
2434 * an fb with another CRTC instead
2435 */
70e1e0ec 2436 for_each_crtc(dev, c) {
484b41dd
JB
2437 i = to_intel_crtc(c);
2438
2439 if (c == &intel_crtc->base)
2440 continue;
2441
2ff8fde1
MR
2442 if (!i->active)
2443 continue;
2444
2445 obj = intel_fb_obj(c->primary->fb);
2446 if (obj == NULL)
484b41dd
JB
2447 continue;
2448
2ff8fde1 2449 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2450 if (obj->tiling_mode != I915_TILING_NONE)
2451 dev_priv->preserve_bios_swizzle = true;
2452
66e514c1
DA
2453 drm_framebuffer_reference(c->primary->fb);
2454 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2455 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2456 break;
2457 }
2458 }
46f297fb
JB
2459}
2460
29b9bde6
DV
2461static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2462 struct drm_framebuffer *fb,
2463 int x, int y)
81255565
JB
2464{
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2468 struct drm_i915_gem_object *obj;
81255565 2469 int plane = intel_crtc->plane;
e506a0c6 2470 unsigned long linear_offset;
81255565 2471 u32 dspcntr;
f45651ba 2472 u32 reg = DSPCNTR(plane);
48404c1e 2473 int pixel_size;
f45651ba 2474
fdd508a6
VS
2475 if (!intel_crtc->primary_enabled) {
2476 I915_WRITE(reg, 0);
2477 if (INTEL_INFO(dev)->gen >= 4)
2478 I915_WRITE(DSPSURF(plane), 0);
2479 else
2480 I915_WRITE(DSPADDR(plane), 0);
2481 POSTING_READ(reg);
2482 return;
2483 }
2484
c9ba6fad
VS
2485 obj = intel_fb_obj(fb);
2486 if (WARN_ON(obj == NULL))
2487 return;
2488
2489 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2490
f45651ba
VS
2491 dspcntr = DISPPLANE_GAMMA_ENABLE;
2492
fdd508a6 2493 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2494
2495 if (INTEL_INFO(dev)->gen < 4) {
2496 if (intel_crtc->pipe == PIPE_B)
2497 dspcntr |= DISPPLANE_SEL_PIPE_B;
2498
2499 /* pipesrc and dspsize control the size that is scaled from,
2500 * which should always be the user's requested size.
2501 */
2502 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2503 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2504 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2505 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2506 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2507 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2508 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2509 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2510 I915_WRITE(PRIMPOS(plane), 0);
2511 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2512 }
81255565 2513
57779d06
VS
2514 switch (fb->pixel_format) {
2515 case DRM_FORMAT_C8:
81255565
JB
2516 dspcntr |= DISPPLANE_8BPP;
2517 break;
57779d06
VS
2518 case DRM_FORMAT_XRGB1555:
2519 case DRM_FORMAT_ARGB1555:
2520 dspcntr |= DISPPLANE_BGRX555;
81255565 2521 break;
57779d06
VS
2522 case DRM_FORMAT_RGB565:
2523 dspcntr |= DISPPLANE_BGRX565;
2524 break;
2525 case DRM_FORMAT_XRGB8888:
2526 case DRM_FORMAT_ARGB8888:
2527 dspcntr |= DISPPLANE_BGRX888;
2528 break;
2529 case DRM_FORMAT_XBGR8888:
2530 case DRM_FORMAT_ABGR8888:
2531 dspcntr |= DISPPLANE_RGBX888;
2532 break;
2533 case DRM_FORMAT_XRGB2101010:
2534 case DRM_FORMAT_ARGB2101010:
2535 dspcntr |= DISPPLANE_BGRX101010;
2536 break;
2537 case DRM_FORMAT_XBGR2101010:
2538 case DRM_FORMAT_ABGR2101010:
2539 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2540 break;
2541 default:
baba133a 2542 BUG();
81255565 2543 }
57779d06 2544
f45651ba
VS
2545 if (INTEL_INFO(dev)->gen >= 4 &&
2546 obj->tiling_mode != I915_TILING_NONE)
2547 dspcntr |= DISPPLANE_TILED;
81255565 2548
de1aa629
VS
2549 if (IS_G4X(dev))
2550 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2551
b9897127 2552 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2553
c2c75131
DV
2554 if (INTEL_INFO(dev)->gen >= 4) {
2555 intel_crtc->dspaddr_offset =
bc752862 2556 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2557 pixel_size,
bc752862 2558 fb->pitches[0]);
c2c75131
DV
2559 linear_offset -= intel_crtc->dspaddr_offset;
2560 } else {
e506a0c6 2561 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2562 }
e506a0c6 2563
8e7d688b 2564 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2565 dspcntr |= DISPPLANE_ROTATE_180;
2566
6e3c9717
ACO
2567 x += (intel_crtc->config->pipe_src_w - 1);
2568 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2569
2570 /* Finding the last pixel of the last line of the display
2571 data and adding to linear_offset*/
2572 linear_offset +=
6e3c9717
ACO
2573 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2574 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2575 }
2576
2577 I915_WRITE(reg, dspcntr);
2578
f343c5f6
BW
2579 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2580 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2581 fb->pitches[0]);
01f2c773 2582 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2583 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2584 I915_WRITE(DSPSURF(plane),
2585 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2586 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2587 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2588 } else
f343c5f6 2589 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2590 POSTING_READ(reg);
17638cd6
JB
2591}
2592
29b9bde6
DV
2593static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2594 struct drm_framebuffer *fb,
2595 int x, int y)
17638cd6
JB
2596{
2597 struct drm_device *dev = crtc->dev;
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2600 struct drm_i915_gem_object *obj;
17638cd6 2601 int plane = intel_crtc->plane;
e506a0c6 2602 unsigned long linear_offset;
17638cd6 2603 u32 dspcntr;
f45651ba 2604 u32 reg = DSPCNTR(plane);
48404c1e 2605 int pixel_size;
f45651ba 2606
fdd508a6
VS
2607 if (!intel_crtc->primary_enabled) {
2608 I915_WRITE(reg, 0);
2609 I915_WRITE(DSPSURF(plane), 0);
2610 POSTING_READ(reg);
2611 return;
2612 }
2613
c9ba6fad
VS
2614 obj = intel_fb_obj(fb);
2615 if (WARN_ON(obj == NULL))
2616 return;
2617
2618 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2619
f45651ba
VS
2620 dspcntr = DISPPLANE_GAMMA_ENABLE;
2621
fdd508a6 2622 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2623
2624 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2625 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2626
57779d06
VS
2627 switch (fb->pixel_format) {
2628 case DRM_FORMAT_C8:
17638cd6
JB
2629 dspcntr |= DISPPLANE_8BPP;
2630 break;
57779d06
VS
2631 case DRM_FORMAT_RGB565:
2632 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2633 break;
57779d06
VS
2634 case DRM_FORMAT_XRGB8888:
2635 case DRM_FORMAT_ARGB8888:
2636 dspcntr |= DISPPLANE_BGRX888;
2637 break;
2638 case DRM_FORMAT_XBGR8888:
2639 case DRM_FORMAT_ABGR8888:
2640 dspcntr |= DISPPLANE_RGBX888;
2641 break;
2642 case DRM_FORMAT_XRGB2101010:
2643 case DRM_FORMAT_ARGB2101010:
2644 dspcntr |= DISPPLANE_BGRX101010;
2645 break;
2646 case DRM_FORMAT_XBGR2101010:
2647 case DRM_FORMAT_ABGR2101010:
2648 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2649 break;
2650 default:
baba133a 2651 BUG();
17638cd6
JB
2652 }
2653
2654 if (obj->tiling_mode != I915_TILING_NONE)
2655 dspcntr |= DISPPLANE_TILED;
17638cd6 2656
f45651ba 2657 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2658 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2659
b9897127 2660 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2661 intel_crtc->dspaddr_offset =
bc752862 2662 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2663 pixel_size,
bc752862 2664 fb->pitches[0]);
c2c75131 2665 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2666 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2667 dspcntr |= DISPPLANE_ROTATE_180;
2668
2669 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2670 x += (intel_crtc->config->pipe_src_w - 1);
2671 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2672
2673 /* Finding the last pixel of the last line of the display
2674 data and adding to linear_offset*/
2675 linear_offset +=
6e3c9717
ACO
2676 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2677 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2678 }
2679 }
2680
2681 I915_WRITE(reg, dspcntr);
17638cd6 2682
f343c5f6
BW
2683 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2684 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2685 fb->pitches[0]);
01f2c773 2686 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2687 I915_WRITE(DSPSURF(plane),
2688 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2689 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2690 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2691 } else {
2692 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2693 I915_WRITE(DSPLINOFF(plane), linear_offset);
2694 }
17638cd6 2695 POSTING_READ(reg);
17638cd6
JB
2696}
2697
70d21f0e
DL
2698static void skylake_update_primary_plane(struct drm_crtc *crtc,
2699 struct drm_framebuffer *fb,
2700 int x, int y)
2701{
2702 struct drm_device *dev = crtc->dev;
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2705 struct intel_framebuffer *intel_fb;
2706 struct drm_i915_gem_object *obj;
2707 int pipe = intel_crtc->pipe;
2708 u32 plane_ctl, stride;
2709
2710 if (!intel_crtc->primary_enabled) {
2711 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2712 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2713 POSTING_READ(PLANE_CTL(pipe, 0));
2714 return;
2715 }
2716
2717 plane_ctl = PLANE_CTL_ENABLE |
2718 PLANE_CTL_PIPE_GAMMA_ENABLE |
2719 PLANE_CTL_PIPE_CSC_ENABLE;
2720
2721 switch (fb->pixel_format) {
2722 case DRM_FORMAT_RGB565:
2723 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2724 break;
2725 case DRM_FORMAT_XRGB8888:
2726 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2727 break;
f75fb42a
JN
2728 case DRM_FORMAT_ARGB8888:
2729 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2730 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2731 break;
70d21f0e
DL
2732 case DRM_FORMAT_XBGR8888:
2733 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2734 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2735 break;
f75fb42a
JN
2736 case DRM_FORMAT_ABGR8888:
2737 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2738 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2739 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2740 break;
70d21f0e
DL
2741 case DRM_FORMAT_XRGB2101010:
2742 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2743 break;
2744 case DRM_FORMAT_XBGR2101010:
2745 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2746 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2747 break;
2748 default:
2749 BUG();
2750 }
2751
2752 intel_fb = to_intel_framebuffer(fb);
2753 obj = intel_fb->obj;
2754
2755 /*
2756 * The stride is either expressed as a multiple of 64 bytes chunks for
2757 * linear buffers or in number of tiles for tiled buffers.
2758 */
2759 switch (obj->tiling_mode) {
2760 case I915_TILING_NONE:
2761 stride = fb->pitches[0] >> 6;
2762 break;
2763 case I915_TILING_X:
2764 plane_ctl |= PLANE_CTL_TILED_X;
2765 stride = fb->pitches[0] >> 9;
2766 break;
2767 default:
2768 BUG();
2769 }
2770
2771 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2772 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2773 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2774
2775 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2776
2777 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2778 i915_gem_obj_ggtt_offset(obj),
2779 x, y, fb->width, fb->height,
2780 fb->pitches[0]);
2781
2782 I915_WRITE(PLANE_POS(pipe, 0), 0);
2783 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2784 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2785 (intel_crtc->config->pipe_src_h - 1) << 16 |
2786 (intel_crtc->config->pipe_src_w - 1));
70d21f0e
DL
2787 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2788 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2789
2790 POSTING_READ(PLANE_SURF(pipe, 0));
2791}
2792
17638cd6
JB
2793/* Assume fb object is pinned & idle & fenced and just update base pointers */
2794static int
2795intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2796 int x, int y, enum mode_set_atomic state)
2797{
2798 struct drm_device *dev = crtc->dev;
2799 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2800
6b8e6ed0
CW
2801 if (dev_priv->display.disable_fbc)
2802 dev_priv->display.disable_fbc(dev);
81255565 2803
29b9bde6
DV
2804 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2805
2806 return 0;
81255565
JB
2807}
2808
7514747d 2809static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2810{
96a02917
VS
2811 struct drm_crtc *crtc;
2812
70e1e0ec 2813 for_each_crtc(dev, crtc) {
96a02917
VS
2814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2815 enum plane plane = intel_crtc->plane;
2816
2817 intel_prepare_page_flip(dev, plane);
2818 intel_finish_page_flip_plane(dev, plane);
2819 }
7514747d
VS
2820}
2821
2822static void intel_update_primary_planes(struct drm_device *dev)
2823{
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct drm_crtc *crtc;
96a02917 2826
70e1e0ec 2827 for_each_crtc(dev, crtc) {
96a02917
VS
2828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2829
51fd371b 2830 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2831 /*
2832 * FIXME: Once we have proper support for primary planes (and
2833 * disabling them without disabling the entire crtc) allow again
66e514c1 2834 * a NULL crtc->primary->fb.
947fdaad 2835 */
f4510a27 2836 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2837 dev_priv->display.update_primary_plane(crtc,
66e514c1 2838 crtc->primary->fb,
262ca2b0
MR
2839 crtc->x,
2840 crtc->y);
51fd371b 2841 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2842 }
2843}
2844
7514747d
VS
2845void intel_prepare_reset(struct drm_device *dev)
2846{
f98ce92f
VS
2847 struct drm_i915_private *dev_priv = to_i915(dev);
2848 struct intel_crtc *crtc;
2849
7514747d
VS
2850 /* no reset support for gen2 */
2851 if (IS_GEN2(dev))
2852 return;
2853
2854 /* reset doesn't touch the display */
2855 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2856 return;
2857
2858 drm_modeset_lock_all(dev);
f98ce92f
VS
2859
2860 /*
2861 * Disabling the crtcs gracefully seems nicer. Also the
2862 * g33 docs say we should at least disable all the planes.
2863 */
2864 for_each_intel_crtc(dev, crtc) {
2865 if (crtc->active)
2866 dev_priv->display.crtc_disable(&crtc->base);
2867 }
7514747d
VS
2868}
2869
2870void intel_finish_reset(struct drm_device *dev)
2871{
2872 struct drm_i915_private *dev_priv = to_i915(dev);
2873
2874 /*
2875 * Flips in the rings will be nuked by the reset,
2876 * so complete all pending flips so that user space
2877 * will get its events and not get stuck.
2878 */
2879 intel_complete_page_flips(dev);
2880
2881 /* no reset support for gen2 */
2882 if (IS_GEN2(dev))
2883 return;
2884
2885 /* reset doesn't touch the display */
2886 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2887 /*
2888 * Flips in the rings have been nuked by the reset,
2889 * so update the base address of all primary
2890 * planes to the the last fb to make sure we're
2891 * showing the correct fb after a reset.
2892 */
2893 intel_update_primary_planes(dev);
2894 return;
2895 }
2896
2897 /*
2898 * The display has been reset as well,
2899 * so need a full re-initialization.
2900 */
2901 intel_runtime_pm_disable_interrupts(dev_priv);
2902 intel_runtime_pm_enable_interrupts(dev_priv);
2903
2904 intel_modeset_init_hw(dev);
2905
2906 spin_lock_irq(&dev_priv->irq_lock);
2907 if (dev_priv->display.hpd_irq_setup)
2908 dev_priv->display.hpd_irq_setup(dev);
2909 spin_unlock_irq(&dev_priv->irq_lock);
2910
2911 intel_modeset_setup_hw_state(dev, true);
2912
2913 intel_hpd_init(dev_priv);
2914
2915 drm_modeset_unlock_all(dev);
2916}
2917
14667a4b
CW
2918static int
2919intel_finish_fb(struct drm_framebuffer *old_fb)
2920{
2ff8fde1 2921 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2922 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2923 bool was_interruptible = dev_priv->mm.interruptible;
2924 int ret;
2925
14667a4b
CW
2926 /* Big Hammer, we also need to ensure that any pending
2927 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2928 * current scanout is retired before unpinning the old
2929 * framebuffer.
2930 *
2931 * This should only fail upon a hung GPU, in which case we
2932 * can safely continue.
2933 */
2934 dev_priv->mm.interruptible = false;
2935 ret = i915_gem_object_finish_gpu(obj);
2936 dev_priv->mm.interruptible = was_interruptible;
2937
2938 return ret;
2939}
2940
7d5e3799
CW
2941static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2942{
2943 struct drm_device *dev = crtc->dev;
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2946 bool pending;
2947
2948 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2949 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2950 return false;
2951
5e2d7afc 2952 spin_lock_irq(&dev->event_lock);
7d5e3799 2953 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2954 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2955
2956 return pending;
2957}
2958
e30e8f75
GP
2959static void intel_update_pipe_size(struct intel_crtc *crtc)
2960{
2961 struct drm_device *dev = crtc->base.dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 const struct drm_display_mode *adjusted_mode;
2964
2965 if (!i915.fastboot)
2966 return;
2967
2968 /*
2969 * Update pipe size and adjust fitter if needed: the reason for this is
2970 * that in compute_mode_changes we check the native mode (not the pfit
2971 * mode) to see if we can flip rather than do a full mode set. In the
2972 * fastboot case, we'll flip, but if we don't update the pipesrc and
2973 * pfit state, we'll end up with a big fb scanned out into the wrong
2974 * sized surface.
2975 *
2976 * To fix this properly, we need to hoist the checks up into
2977 * compute_mode_changes (or above), check the actual pfit state and
2978 * whether the platform allows pfit disable with pipe active, and only
2979 * then update the pipesrc and pfit state, even on the flip path.
2980 */
2981
6e3c9717 2982 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
2983
2984 I915_WRITE(PIPESRC(crtc->pipe),
2985 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2986 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 2987 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
2988 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2989 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2990 I915_WRITE(PF_CTL(crtc->pipe), 0);
2991 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2992 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2993 }
6e3c9717
ACO
2994 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2995 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
2996}
2997
5e84e1a4
ZW
2998static void intel_fdi_normal_train(struct drm_crtc *crtc)
2999{
3000 struct drm_device *dev = crtc->dev;
3001 struct drm_i915_private *dev_priv = dev->dev_private;
3002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3003 int pipe = intel_crtc->pipe;
3004 u32 reg, temp;
3005
3006 /* enable normal train */
3007 reg = FDI_TX_CTL(pipe);
3008 temp = I915_READ(reg);
61e499bf 3009 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3010 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3011 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3012 } else {
3013 temp &= ~FDI_LINK_TRAIN_NONE;
3014 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3015 }
5e84e1a4
ZW
3016 I915_WRITE(reg, temp);
3017
3018 reg = FDI_RX_CTL(pipe);
3019 temp = I915_READ(reg);
3020 if (HAS_PCH_CPT(dev)) {
3021 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3022 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3023 } else {
3024 temp &= ~FDI_LINK_TRAIN_NONE;
3025 temp |= FDI_LINK_TRAIN_NONE;
3026 }
3027 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3028
3029 /* wait one idle pattern time */
3030 POSTING_READ(reg);
3031 udelay(1000);
357555c0
JB
3032
3033 /* IVB wants error correction enabled */
3034 if (IS_IVYBRIDGE(dev))
3035 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3036 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3037}
3038
1fbc0d78 3039static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3040{
1fbc0d78 3041 return crtc->base.enabled && crtc->active &&
6e3c9717 3042 crtc->config->has_pch_encoder;
1e833f40
DV
3043}
3044
01a415fd
DV
3045static void ivb_modeset_global_resources(struct drm_device *dev)
3046{
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 struct intel_crtc *pipe_B_crtc =
3049 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3050 struct intel_crtc *pipe_C_crtc =
3051 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3052 uint32_t temp;
3053
1e833f40
DV
3054 /*
3055 * When everything is off disable fdi C so that we could enable fdi B
3056 * with all lanes. Note that we don't care about enabled pipes without
3057 * an enabled pch encoder.
3058 */
3059 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3060 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3061 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3062 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3063
3064 temp = I915_READ(SOUTH_CHICKEN1);
3065 temp &= ~FDI_BC_BIFURCATION_SELECT;
3066 DRM_DEBUG_KMS("disabling fdi C rx\n");
3067 I915_WRITE(SOUTH_CHICKEN1, temp);
3068 }
3069}
3070
8db9d77b
ZW
3071/* The FDI link training functions for ILK/Ibexpeak. */
3072static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3073{
3074 struct drm_device *dev = crtc->dev;
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3077 int pipe = intel_crtc->pipe;
5eddb70b 3078 u32 reg, temp, tries;
8db9d77b 3079
1c8562f6 3080 /* FDI needs bits from pipe first */
0fc932b8 3081 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3082
e1a44743
AJ
3083 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3084 for train result */
5eddb70b
CW
3085 reg = FDI_RX_IMR(pipe);
3086 temp = I915_READ(reg);
e1a44743
AJ
3087 temp &= ~FDI_RX_SYMBOL_LOCK;
3088 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3089 I915_WRITE(reg, temp);
3090 I915_READ(reg);
e1a44743
AJ
3091 udelay(150);
3092
8db9d77b 3093 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3094 reg = FDI_TX_CTL(pipe);
3095 temp = I915_READ(reg);
627eb5a3 3096 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3097 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3098 temp &= ~FDI_LINK_TRAIN_NONE;
3099 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3100 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3101
5eddb70b
CW
3102 reg = FDI_RX_CTL(pipe);
3103 temp = I915_READ(reg);
8db9d77b
ZW
3104 temp &= ~FDI_LINK_TRAIN_NONE;
3105 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3106 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3107
3108 POSTING_READ(reg);
8db9d77b
ZW
3109 udelay(150);
3110
5b2adf89 3111 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3112 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3113 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3114 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3115
5eddb70b 3116 reg = FDI_RX_IIR(pipe);
e1a44743 3117 for (tries = 0; tries < 5; tries++) {
5eddb70b 3118 temp = I915_READ(reg);
8db9d77b
ZW
3119 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3120
3121 if ((temp & FDI_RX_BIT_LOCK)) {
3122 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3123 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3124 break;
3125 }
8db9d77b 3126 }
e1a44743 3127 if (tries == 5)
5eddb70b 3128 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3129
3130 /* Train 2 */
5eddb70b
CW
3131 reg = FDI_TX_CTL(pipe);
3132 temp = I915_READ(reg);
8db9d77b
ZW
3133 temp &= ~FDI_LINK_TRAIN_NONE;
3134 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3135 I915_WRITE(reg, temp);
8db9d77b 3136
5eddb70b
CW
3137 reg = FDI_RX_CTL(pipe);
3138 temp = I915_READ(reg);
8db9d77b
ZW
3139 temp &= ~FDI_LINK_TRAIN_NONE;
3140 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3141 I915_WRITE(reg, temp);
8db9d77b 3142
5eddb70b
CW
3143 POSTING_READ(reg);
3144 udelay(150);
8db9d77b 3145
5eddb70b 3146 reg = FDI_RX_IIR(pipe);
e1a44743 3147 for (tries = 0; tries < 5; tries++) {
5eddb70b 3148 temp = I915_READ(reg);
8db9d77b
ZW
3149 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3150
3151 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3152 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3153 DRM_DEBUG_KMS("FDI train 2 done.\n");
3154 break;
3155 }
8db9d77b 3156 }
e1a44743 3157 if (tries == 5)
5eddb70b 3158 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3159
3160 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3161
8db9d77b
ZW
3162}
3163
0206e353 3164static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3165 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3166 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3167 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3168 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3169};
3170
3171/* The FDI link training functions for SNB/Cougarpoint. */
3172static void gen6_fdi_link_train(struct drm_crtc *crtc)
3173{
3174 struct drm_device *dev = crtc->dev;
3175 struct drm_i915_private *dev_priv = dev->dev_private;
3176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3177 int pipe = intel_crtc->pipe;
fa37d39e 3178 u32 reg, temp, i, retry;
8db9d77b 3179
e1a44743
AJ
3180 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3181 for train result */
5eddb70b
CW
3182 reg = FDI_RX_IMR(pipe);
3183 temp = I915_READ(reg);
e1a44743
AJ
3184 temp &= ~FDI_RX_SYMBOL_LOCK;
3185 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3186 I915_WRITE(reg, temp);
3187
3188 POSTING_READ(reg);
e1a44743
AJ
3189 udelay(150);
3190
8db9d77b 3191 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3192 reg = FDI_TX_CTL(pipe);
3193 temp = I915_READ(reg);
627eb5a3 3194 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3195 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3196 temp &= ~FDI_LINK_TRAIN_NONE;
3197 temp |= FDI_LINK_TRAIN_PATTERN_1;
3198 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3199 /* SNB-B */
3200 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3201 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3202
d74cf324
DV
3203 I915_WRITE(FDI_RX_MISC(pipe),
3204 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3205
5eddb70b
CW
3206 reg = FDI_RX_CTL(pipe);
3207 temp = I915_READ(reg);
8db9d77b
ZW
3208 if (HAS_PCH_CPT(dev)) {
3209 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3210 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3211 } else {
3212 temp &= ~FDI_LINK_TRAIN_NONE;
3213 temp |= FDI_LINK_TRAIN_PATTERN_1;
3214 }
5eddb70b
CW
3215 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3216
3217 POSTING_READ(reg);
8db9d77b
ZW
3218 udelay(150);
3219
0206e353 3220 for (i = 0; i < 4; i++) {
5eddb70b
CW
3221 reg = FDI_TX_CTL(pipe);
3222 temp = I915_READ(reg);
8db9d77b
ZW
3223 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3224 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3225 I915_WRITE(reg, temp);
3226
3227 POSTING_READ(reg);
8db9d77b
ZW
3228 udelay(500);
3229
fa37d39e
SP
3230 for (retry = 0; retry < 5; retry++) {
3231 reg = FDI_RX_IIR(pipe);
3232 temp = I915_READ(reg);
3233 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3234 if (temp & FDI_RX_BIT_LOCK) {
3235 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3236 DRM_DEBUG_KMS("FDI train 1 done.\n");
3237 break;
3238 }
3239 udelay(50);
8db9d77b 3240 }
fa37d39e
SP
3241 if (retry < 5)
3242 break;
8db9d77b
ZW
3243 }
3244 if (i == 4)
5eddb70b 3245 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3246
3247 /* Train 2 */
5eddb70b
CW
3248 reg = FDI_TX_CTL(pipe);
3249 temp = I915_READ(reg);
8db9d77b
ZW
3250 temp &= ~FDI_LINK_TRAIN_NONE;
3251 temp |= FDI_LINK_TRAIN_PATTERN_2;
3252 if (IS_GEN6(dev)) {
3253 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3254 /* SNB-B */
3255 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3256 }
5eddb70b 3257 I915_WRITE(reg, temp);
8db9d77b 3258
5eddb70b
CW
3259 reg = FDI_RX_CTL(pipe);
3260 temp = I915_READ(reg);
8db9d77b
ZW
3261 if (HAS_PCH_CPT(dev)) {
3262 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3263 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3264 } else {
3265 temp &= ~FDI_LINK_TRAIN_NONE;
3266 temp |= FDI_LINK_TRAIN_PATTERN_2;
3267 }
5eddb70b
CW
3268 I915_WRITE(reg, temp);
3269
3270 POSTING_READ(reg);
8db9d77b
ZW
3271 udelay(150);
3272
0206e353 3273 for (i = 0; i < 4; i++) {
5eddb70b
CW
3274 reg = FDI_TX_CTL(pipe);
3275 temp = I915_READ(reg);
8db9d77b
ZW
3276 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3277 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3278 I915_WRITE(reg, temp);
3279
3280 POSTING_READ(reg);
8db9d77b
ZW
3281 udelay(500);
3282
fa37d39e
SP
3283 for (retry = 0; retry < 5; retry++) {
3284 reg = FDI_RX_IIR(pipe);
3285 temp = I915_READ(reg);
3286 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3287 if (temp & FDI_RX_SYMBOL_LOCK) {
3288 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3289 DRM_DEBUG_KMS("FDI train 2 done.\n");
3290 break;
3291 }
3292 udelay(50);
8db9d77b 3293 }
fa37d39e
SP
3294 if (retry < 5)
3295 break;
8db9d77b
ZW
3296 }
3297 if (i == 4)
5eddb70b 3298 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3299
3300 DRM_DEBUG_KMS("FDI train done.\n");
3301}
3302
357555c0
JB
3303/* Manual link training for Ivy Bridge A0 parts */
3304static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3305{
3306 struct drm_device *dev = crtc->dev;
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309 int pipe = intel_crtc->pipe;
139ccd3f 3310 u32 reg, temp, i, j;
357555c0
JB
3311
3312 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3313 for train result */
3314 reg = FDI_RX_IMR(pipe);
3315 temp = I915_READ(reg);
3316 temp &= ~FDI_RX_SYMBOL_LOCK;
3317 temp &= ~FDI_RX_BIT_LOCK;
3318 I915_WRITE(reg, temp);
3319
3320 POSTING_READ(reg);
3321 udelay(150);
3322
01a415fd
DV
3323 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3324 I915_READ(FDI_RX_IIR(pipe)));
3325
139ccd3f
JB
3326 /* Try each vswing and preemphasis setting twice before moving on */
3327 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3328 /* disable first in case we need to retry */
3329 reg = FDI_TX_CTL(pipe);
3330 temp = I915_READ(reg);
3331 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3332 temp &= ~FDI_TX_ENABLE;
3333 I915_WRITE(reg, temp);
357555c0 3334
139ccd3f
JB
3335 reg = FDI_RX_CTL(pipe);
3336 temp = I915_READ(reg);
3337 temp &= ~FDI_LINK_TRAIN_AUTO;
3338 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3339 temp &= ~FDI_RX_ENABLE;
3340 I915_WRITE(reg, temp);
357555c0 3341
139ccd3f 3342 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3343 reg = FDI_TX_CTL(pipe);
3344 temp = I915_READ(reg);
139ccd3f 3345 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3346 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3347 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3348 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3349 temp |= snb_b_fdi_train_param[j/2];
3350 temp |= FDI_COMPOSITE_SYNC;
3351 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3352
139ccd3f
JB
3353 I915_WRITE(FDI_RX_MISC(pipe),
3354 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3355
139ccd3f 3356 reg = FDI_RX_CTL(pipe);
357555c0 3357 temp = I915_READ(reg);
139ccd3f
JB
3358 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3359 temp |= FDI_COMPOSITE_SYNC;
3360 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3361
139ccd3f
JB
3362 POSTING_READ(reg);
3363 udelay(1); /* should be 0.5us */
357555c0 3364
139ccd3f
JB
3365 for (i = 0; i < 4; i++) {
3366 reg = FDI_RX_IIR(pipe);
3367 temp = I915_READ(reg);
3368 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3369
139ccd3f
JB
3370 if (temp & FDI_RX_BIT_LOCK ||
3371 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3372 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3373 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3374 i);
3375 break;
3376 }
3377 udelay(1); /* should be 0.5us */
3378 }
3379 if (i == 4) {
3380 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3381 continue;
3382 }
357555c0 3383
139ccd3f 3384 /* Train 2 */
357555c0
JB
3385 reg = FDI_TX_CTL(pipe);
3386 temp = I915_READ(reg);
139ccd3f
JB
3387 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3388 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3389 I915_WRITE(reg, temp);
3390
3391 reg = FDI_RX_CTL(pipe);
3392 temp = I915_READ(reg);
3393 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3394 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3395 I915_WRITE(reg, temp);
3396
3397 POSTING_READ(reg);
139ccd3f 3398 udelay(2); /* should be 1.5us */
357555c0 3399
139ccd3f
JB
3400 for (i = 0; i < 4; i++) {
3401 reg = FDI_RX_IIR(pipe);
3402 temp = I915_READ(reg);
3403 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3404
139ccd3f
JB
3405 if (temp & FDI_RX_SYMBOL_LOCK ||
3406 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3407 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3408 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3409 i);
3410 goto train_done;
3411 }
3412 udelay(2); /* should be 1.5us */
357555c0 3413 }
139ccd3f
JB
3414 if (i == 4)
3415 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3416 }
357555c0 3417
139ccd3f 3418train_done:
357555c0
JB
3419 DRM_DEBUG_KMS("FDI train done.\n");
3420}
3421
88cefb6c 3422static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3423{
88cefb6c 3424 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3425 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3426 int pipe = intel_crtc->pipe;
5eddb70b 3427 u32 reg, temp;
79e53945 3428
c64e311e 3429
c98e9dcf 3430 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3431 reg = FDI_RX_CTL(pipe);
3432 temp = I915_READ(reg);
627eb5a3 3433 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3434 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3435 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3436 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3437
3438 POSTING_READ(reg);
c98e9dcf
JB
3439 udelay(200);
3440
3441 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3442 temp = I915_READ(reg);
3443 I915_WRITE(reg, temp | FDI_PCDCLK);
3444
3445 POSTING_READ(reg);
c98e9dcf
JB
3446 udelay(200);
3447
20749730
PZ
3448 /* Enable CPU FDI TX PLL, always on for Ironlake */
3449 reg = FDI_TX_CTL(pipe);
3450 temp = I915_READ(reg);
3451 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3452 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3453
20749730
PZ
3454 POSTING_READ(reg);
3455 udelay(100);
6be4a607 3456 }
0e23b99d
JB
3457}
3458
88cefb6c
DV
3459static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3460{
3461 struct drm_device *dev = intel_crtc->base.dev;
3462 struct drm_i915_private *dev_priv = dev->dev_private;
3463 int pipe = intel_crtc->pipe;
3464 u32 reg, temp;
3465
3466 /* Switch from PCDclk to Rawclk */
3467 reg = FDI_RX_CTL(pipe);
3468 temp = I915_READ(reg);
3469 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3470
3471 /* Disable CPU FDI TX PLL */
3472 reg = FDI_TX_CTL(pipe);
3473 temp = I915_READ(reg);
3474 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3475
3476 POSTING_READ(reg);
3477 udelay(100);
3478
3479 reg = FDI_RX_CTL(pipe);
3480 temp = I915_READ(reg);
3481 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3482
3483 /* Wait for the clocks to turn off. */
3484 POSTING_READ(reg);
3485 udelay(100);
3486}
3487
0fc932b8
JB
3488static void ironlake_fdi_disable(struct drm_crtc *crtc)
3489{
3490 struct drm_device *dev = crtc->dev;
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3493 int pipe = intel_crtc->pipe;
3494 u32 reg, temp;
3495
3496 /* disable CPU FDI tx and PCH FDI rx */
3497 reg = FDI_TX_CTL(pipe);
3498 temp = I915_READ(reg);
3499 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3500 POSTING_READ(reg);
3501
3502 reg = FDI_RX_CTL(pipe);
3503 temp = I915_READ(reg);
3504 temp &= ~(0x7 << 16);
dfd07d72 3505 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3506 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3507
3508 POSTING_READ(reg);
3509 udelay(100);
3510
3511 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3512 if (HAS_PCH_IBX(dev))
6f06ce18 3513 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3514
3515 /* still set train pattern 1 */
3516 reg = FDI_TX_CTL(pipe);
3517 temp = I915_READ(reg);
3518 temp &= ~FDI_LINK_TRAIN_NONE;
3519 temp |= FDI_LINK_TRAIN_PATTERN_1;
3520 I915_WRITE(reg, temp);
3521
3522 reg = FDI_RX_CTL(pipe);
3523 temp = I915_READ(reg);
3524 if (HAS_PCH_CPT(dev)) {
3525 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3526 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3527 } else {
3528 temp &= ~FDI_LINK_TRAIN_NONE;
3529 temp |= FDI_LINK_TRAIN_PATTERN_1;
3530 }
3531 /* BPC in FDI rx is consistent with that in PIPECONF */
3532 temp &= ~(0x07 << 16);
dfd07d72 3533 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3534 I915_WRITE(reg, temp);
3535
3536 POSTING_READ(reg);
3537 udelay(100);
3538}
3539
5dce5b93
CW
3540bool intel_has_pending_fb_unpin(struct drm_device *dev)
3541{
3542 struct intel_crtc *crtc;
3543
3544 /* Note that we don't need to be called with mode_config.lock here
3545 * as our list of CRTC objects is static for the lifetime of the
3546 * device and so cannot disappear as we iterate. Similarly, we can
3547 * happily treat the predicates as racy, atomic checks as userspace
3548 * cannot claim and pin a new fb without at least acquring the
3549 * struct_mutex and so serialising with us.
3550 */
d3fcc808 3551 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3552 if (atomic_read(&crtc->unpin_work_count) == 0)
3553 continue;
3554
3555 if (crtc->unpin_work)
3556 intel_wait_for_vblank(dev, crtc->pipe);
3557
3558 return true;
3559 }
3560
3561 return false;
3562}
3563
d6bbafa1
CW
3564static void page_flip_completed(struct intel_crtc *intel_crtc)
3565{
3566 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3567 struct intel_unpin_work *work = intel_crtc->unpin_work;
3568
3569 /* ensure that the unpin work is consistent wrt ->pending. */
3570 smp_rmb();
3571 intel_crtc->unpin_work = NULL;
3572
3573 if (work->event)
3574 drm_send_vblank_event(intel_crtc->base.dev,
3575 intel_crtc->pipe,
3576 work->event);
3577
3578 drm_crtc_vblank_put(&intel_crtc->base);
3579
3580 wake_up_all(&dev_priv->pending_flip_queue);
3581 queue_work(dev_priv->wq, &work->work);
3582
3583 trace_i915_flip_complete(intel_crtc->plane,
3584 work->pending_flip_obj);
3585}
3586
46a55d30 3587void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3588{
0f91128d 3589 struct drm_device *dev = crtc->dev;
5bb61643 3590 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3591
2c10d571 3592 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3593 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3594 !intel_crtc_has_pending_flip(crtc),
3595 60*HZ) == 0)) {
3596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3597
5e2d7afc 3598 spin_lock_irq(&dev->event_lock);
9c787942
CW
3599 if (intel_crtc->unpin_work) {
3600 WARN_ONCE(1, "Removing stuck page flip\n");
3601 page_flip_completed(intel_crtc);
3602 }
5e2d7afc 3603 spin_unlock_irq(&dev->event_lock);
9c787942 3604 }
5bb61643 3605
975d568a
CW
3606 if (crtc->primary->fb) {
3607 mutex_lock(&dev->struct_mutex);
3608 intel_finish_fb(crtc->primary->fb);
3609 mutex_unlock(&dev->struct_mutex);
3610 }
e6c3a2a6
CW
3611}
3612
e615efe4
ED
3613/* Program iCLKIP clock to the desired frequency */
3614static void lpt_program_iclkip(struct drm_crtc *crtc)
3615{
3616 struct drm_device *dev = crtc->dev;
3617 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3618 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3619 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3620 u32 temp;
3621
09153000
DV
3622 mutex_lock(&dev_priv->dpio_lock);
3623
e615efe4
ED
3624 /* It is necessary to ungate the pixclk gate prior to programming
3625 * the divisors, and gate it back when it is done.
3626 */
3627 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3628
3629 /* Disable SSCCTL */
3630 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3631 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3632 SBI_SSCCTL_DISABLE,
3633 SBI_ICLK);
e615efe4
ED
3634
3635 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3636 if (clock == 20000) {
e615efe4
ED
3637 auxdiv = 1;
3638 divsel = 0x41;
3639 phaseinc = 0x20;
3640 } else {
3641 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3642 * but the adjusted_mode->crtc_clock in in KHz. To get the
3643 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3644 * convert the virtual clock precision to KHz here for higher
3645 * precision.
3646 */
3647 u32 iclk_virtual_root_freq = 172800 * 1000;
3648 u32 iclk_pi_range = 64;
3649 u32 desired_divisor, msb_divisor_value, pi_value;
3650
12d7ceed 3651 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3652 msb_divisor_value = desired_divisor / iclk_pi_range;
3653 pi_value = desired_divisor % iclk_pi_range;
3654
3655 auxdiv = 0;
3656 divsel = msb_divisor_value - 2;
3657 phaseinc = pi_value;
3658 }
3659
3660 /* This should not happen with any sane values */
3661 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3662 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3663 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3664 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3665
3666 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3667 clock,
e615efe4
ED
3668 auxdiv,
3669 divsel,
3670 phasedir,
3671 phaseinc);
3672
3673 /* Program SSCDIVINTPHASE6 */
988d6ee8 3674 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3675 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3676 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3677 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3678 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3679 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3680 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3681 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3682
3683 /* Program SSCAUXDIV */
988d6ee8 3684 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3685 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3686 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3687 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3688
3689 /* Enable modulator and associated divider */
988d6ee8 3690 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3691 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3692 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3693
3694 /* Wait for initialization time */
3695 udelay(24);
3696
3697 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3698
3699 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3700}
3701
275f01b2
DV
3702static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3703 enum pipe pch_transcoder)
3704{
3705 struct drm_device *dev = crtc->base.dev;
3706 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3707 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3708
3709 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3710 I915_READ(HTOTAL(cpu_transcoder)));
3711 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3712 I915_READ(HBLANK(cpu_transcoder)));
3713 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3714 I915_READ(HSYNC(cpu_transcoder)));
3715
3716 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3717 I915_READ(VTOTAL(cpu_transcoder)));
3718 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3719 I915_READ(VBLANK(cpu_transcoder)));
3720 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3721 I915_READ(VSYNC(cpu_transcoder)));
3722 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3723 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3724}
3725
1fbc0d78
DV
3726static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3727{
3728 struct drm_i915_private *dev_priv = dev->dev_private;
3729 uint32_t temp;
3730
3731 temp = I915_READ(SOUTH_CHICKEN1);
3732 if (temp & FDI_BC_BIFURCATION_SELECT)
3733 return;
3734
3735 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3736 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3737
3738 temp |= FDI_BC_BIFURCATION_SELECT;
3739 DRM_DEBUG_KMS("enabling fdi C rx\n");
3740 I915_WRITE(SOUTH_CHICKEN1, temp);
3741 POSTING_READ(SOUTH_CHICKEN1);
3742}
3743
3744static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3745{
3746 struct drm_device *dev = intel_crtc->base.dev;
3747 struct drm_i915_private *dev_priv = dev->dev_private;
3748
3749 switch (intel_crtc->pipe) {
3750 case PIPE_A:
3751 break;
3752 case PIPE_B:
6e3c9717 3753 if (intel_crtc->config->fdi_lanes > 2)
1fbc0d78
DV
3754 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3755 else
3756 cpt_enable_fdi_bc_bifurcation(dev);
3757
3758 break;
3759 case PIPE_C:
3760 cpt_enable_fdi_bc_bifurcation(dev);
3761
3762 break;
3763 default:
3764 BUG();
3765 }
3766}
3767
f67a559d
JB
3768/*
3769 * Enable PCH resources required for PCH ports:
3770 * - PCH PLLs
3771 * - FDI training & RX/TX
3772 * - update transcoder timings
3773 * - DP transcoding bits
3774 * - transcoder
3775 */
3776static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3777{
3778 struct drm_device *dev = crtc->dev;
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781 int pipe = intel_crtc->pipe;
ee7b9f93 3782 u32 reg, temp;
2c07245f 3783
ab9412ba 3784 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3785
1fbc0d78
DV
3786 if (IS_IVYBRIDGE(dev))
3787 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3788
cd986abb
DV
3789 /* Write the TU size bits before fdi link training, so that error
3790 * detection works. */
3791 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3792 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3793
c98e9dcf 3794 /* For PCH output, training FDI link */
674cf967 3795 dev_priv->display.fdi_link_train(crtc);
2c07245f 3796
3ad8a208
DV
3797 /* We need to program the right clock selection before writing the pixel
3798 * mutliplier into the DPLL. */
303b81e0 3799 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3800 u32 sel;
4b645f14 3801
c98e9dcf 3802 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3803 temp |= TRANS_DPLL_ENABLE(pipe);
3804 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3805 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3806 temp |= sel;
3807 else
3808 temp &= ~sel;
c98e9dcf 3809 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3810 }
5eddb70b 3811
3ad8a208
DV
3812 /* XXX: pch pll's can be enabled any time before we enable the PCH
3813 * transcoder, and we actually should do this to not upset any PCH
3814 * transcoder that already use the clock when we share it.
3815 *
3816 * Note that enable_shared_dpll tries to do the right thing, but
3817 * get_shared_dpll unconditionally resets the pll - we need that to have
3818 * the right LVDS enable sequence. */
85b3894f 3819 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3820
d9b6cb56
JB
3821 /* set transcoder timing, panel must allow it */
3822 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3823 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3824
303b81e0 3825 intel_fdi_normal_train(crtc);
5e84e1a4 3826
c98e9dcf 3827 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 3828 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 3829 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3830 reg = TRANS_DP_CTL(pipe);
3831 temp = I915_READ(reg);
3832 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3833 TRANS_DP_SYNC_MASK |
3834 TRANS_DP_BPC_MASK);
5eddb70b
CW
3835 temp |= (TRANS_DP_OUTPUT_ENABLE |
3836 TRANS_DP_ENH_FRAMING);
9325c9f0 3837 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3838
3839 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3840 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3841 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3842 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3843
3844 switch (intel_trans_dp_port_sel(crtc)) {
3845 case PCH_DP_B:
5eddb70b 3846 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3847 break;
3848 case PCH_DP_C:
5eddb70b 3849 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3850 break;
3851 case PCH_DP_D:
5eddb70b 3852 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3853 break;
3854 default:
e95d41e1 3855 BUG();
32f9d658 3856 }
2c07245f 3857
5eddb70b 3858 I915_WRITE(reg, temp);
6be4a607 3859 }
b52eb4dc 3860
b8a4f404 3861 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3862}
3863
1507e5bd
PZ
3864static void lpt_pch_enable(struct drm_crtc *crtc)
3865{
3866 struct drm_device *dev = crtc->dev;
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 3869 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 3870
ab9412ba 3871 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3872
8c52b5e8 3873 lpt_program_iclkip(crtc);
1507e5bd 3874
0540e488 3875 /* Set transcoder timing. */
275f01b2 3876 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3877
937bb610 3878 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3879}
3880
716c2e55 3881void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3882{
e2b78267 3883 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3884
3885 if (pll == NULL)
3886 return;
3887
3e369b76 3888 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3889 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3890 return;
3891 }
3892
3e369b76
ACO
3893 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3894 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3895 WARN_ON(pll->on);
3896 WARN_ON(pll->active);
3897 }
3898
6e3c9717 3899 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3900}
3901
190f68c5
ACO
3902struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3903 struct intel_crtc_state *crtc_state)
ee7b9f93 3904{
e2b78267 3905 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3906 struct intel_shared_dpll *pll;
e2b78267 3907 enum intel_dpll_id i;
ee7b9f93 3908
98b6bd99
DV
3909 if (HAS_PCH_IBX(dev_priv->dev)) {
3910 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3911 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3912 pll = &dev_priv->shared_dplls[i];
98b6bd99 3913
46edb027
DV
3914 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3915 crtc->base.base.id, pll->name);
98b6bd99 3916
8bd31e67 3917 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3918
98b6bd99
DV
3919 goto found;
3920 }
3921
e72f9fbf
DV
3922 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3923 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3924
3925 /* Only want to check enabled timings first */
8bd31e67 3926 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3927 continue;
3928
190f68c5 3929 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
3930 &pll->new_config->hw_state,
3931 sizeof(pll->new_config->hw_state)) == 0) {
3932 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3933 crtc->base.base.id, pll->name,
8bd31e67
ACO
3934 pll->new_config->crtc_mask,
3935 pll->active);
ee7b9f93
JB
3936 goto found;
3937 }
3938 }
3939
3940 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3941 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3942 pll = &dev_priv->shared_dplls[i];
8bd31e67 3943 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3944 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3945 crtc->base.base.id, pll->name);
ee7b9f93
JB
3946 goto found;
3947 }
3948 }
3949
3950 return NULL;
3951
3952found:
8bd31e67 3953 if (pll->new_config->crtc_mask == 0)
190f68c5 3954 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 3955
190f68c5 3956 crtc_state->shared_dpll = i;
46edb027
DV
3957 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3958 pipe_name(crtc->pipe));
ee7b9f93 3959
8bd31e67 3960 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3961
ee7b9f93
JB
3962 return pll;
3963}
3964
8bd31e67
ACO
3965/**
3966 * intel_shared_dpll_start_config - start a new PLL staged config
3967 * @dev_priv: DRM device
3968 * @clear_pipes: mask of pipes that will have their PLLs freed
3969 *
3970 * Starts a new PLL staged config, copying the current config but
3971 * releasing the references of pipes specified in clear_pipes.
3972 */
3973static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3974 unsigned clear_pipes)
3975{
3976 struct intel_shared_dpll *pll;
3977 enum intel_dpll_id i;
3978
3979 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3980 pll = &dev_priv->shared_dplls[i];
3981
3982 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3983 GFP_KERNEL);
3984 if (!pll->new_config)
3985 goto cleanup;
3986
3987 pll->new_config->crtc_mask &= ~clear_pipes;
3988 }
3989
3990 return 0;
3991
3992cleanup:
3993 while (--i >= 0) {
3994 pll = &dev_priv->shared_dplls[i];
f354d733 3995 kfree(pll->new_config);
8bd31e67
ACO
3996 pll->new_config = NULL;
3997 }
3998
3999 return -ENOMEM;
4000}
4001
4002static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4003{
4004 struct intel_shared_dpll *pll;
4005 enum intel_dpll_id i;
4006
4007 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4008 pll = &dev_priv->shared_dplls[i];
4009
4010 WARN_ON(pll->new_config == &pll->config);
4011
4012 pll->config = *pll->new_config;
4013 kfree(pll->new_config);
4014 pll->new_config = NULL;
4015 }
4016}
4017
4018static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4019{
4020 struct intel_shared_dpll *pll;
4021 enum intel_dpll_id i;
4022
4023 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4024 pll = &dev_priv->shared_dplls[i];
4025
4026 WARN_ON(pll->new_config == &pll->config);
4027
4028 kfree(pll->new_config);
4029 pll->new_config = NULL;
4030 }
4031}
4032
a1520318 4033static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4034{
4035 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4036 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4037 u32 temp;
4038
4039 temp = I915_READ(dslreg);
4040 udelay(500);
4041 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4042 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4043 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4044 }
4045}
4046
bd2e244f
JB
4047static void skylake_pfit_enable(struct intel_crtc *crtc)
4048{
4049 struct drm_device *dev = crtc->base.dev;
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 int pipe = crtc->pipe;
4052
6e3c9717 4053 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4054 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4055 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4056 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4057 }
4058}
4059
b074cec8
JB
4060static void ironlake_pfit_enable(struct intel_crtc *crtc)
4061{
4062 struct drm_device *dev = crtc->base.dev;
4063 struct drm_i915_private *dev_priv = dev->dev_private;
4064 int pipe = crtc->pipe;
4065
6e3c9717 4066 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4067 /* Force use of hard-coded filter coefficients
4068 * as some pre-programmed values are broken,
4069 * e.g. x201.
4070 */
4071 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4072 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4073 PF_PIPE_SEL_IVB(pipe));
4074 else
4075 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4076 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4077 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4078 }
4079}
4080
4a3b8769 4081static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4082{
4083 struct drm_device *dev = crtc->dev;
4084 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4085 struct drm_plane *plane;
bb53d4ae
VS
4086 struct intel_plane *intel_plane;
4087
af2b653b
MR
4088 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4089 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4090 if (intel_plane->pipe == pipe)
4091 intel_plane_restore(&intel_plane->base);
af2b653b 4092 }
bb53d4ae
VS
4093}
4094
4a3b8769 4095static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4096{
4097 struct drm_device *dev = crtc->dev;
4098 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4099 struct drm_plane *plane;
bb53d4ae
VS
4100 struct intel_plane *intel_plane;
4101
af2b653b
MR
4102 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4103 intel_plane = to_intel_plane(plane);
bb53d4ae 4104 if (intel_plane->pipe == pipe)
cf4c7c12 4105 plane->funcs->disable_plane(plane);
af2b653b 4106 }
bb53d4ae
VS
4107}
4108
20bc8673 4109void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4110{
cea165c3
VS
4111 struct drm_device *dev = crtc->base.dev;
4112 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4113
6e3c9717 4114 if (!crtc->config->ips_enabled)
d77e4531
PZ
4115 return;
4116
cea165c3
VS
4117 /* We can only enable IPS after we enable a plane and wait for a vblank */
4118 intel_wait_for_vblank(dev, crtc->pipe);
4119
d77e4531 4120 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4121 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4122 mutex_lock(&dev_priv->rps.hw_lock);
4123 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4124 mutex_unlock(&dev_priv->rps.hw_lock);
4125 /* Quoting Art Runyan: "its not safe to expect any particular
4126 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4127 * mailbox." Moreover, the mailbox may return a bogus state,
4128 * so we need to just enable it and continue on.
2a114cc1
BW
4129 */
4130 } else {
4131 I915_WRITE(IPS_CTL, IPS_ENABLE);
4132 /* The bit only becomes 1 in the next vblank, so this wait here
4133 * is essentially intel_wait_for_vblank. If we don't have this
4134 * and don't wait for vblanks until the end of crtc_enable, then
4135 * the HW state readout code will complain that the expected
4136 * IPS_CTL value is not the one we read. */
4137 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4138 DRM_ERROR("Timed out waiting for IPS enable\n");
4139 }
d77e4531
PZ
4140}
4141
20bc8673 4142void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4143{
4144 struct drm_device *dev = crtc->base.dev;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146
6e3c9717 4147 if (!crtc->config->ips_enabled)
d77e4531
PZ
4148 return;
4149
4150 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4151 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4152 mutex_lock(&dev_priv->rps.hw_lock);
4153 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4154 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4155 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4156 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4157 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4158 } else {
2a114cc1 4159 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4160 POSTING_READ(IPS_CTL);
4161 }
d77e4531
PZ
4162
4163 /* We need to wait for a vblank before we can disable the plane. */
4164 intel_wait_for_vblank(dev, crtc->pipe);
4165}
4166
4167/** Loads the palette/gamma unit for the CRTC with the prepared values */
4168static void intel_crtc_load_lut(struct drm_crtc *crtc)
4169{
4170 struct drm_device *dev = crtc->dev;
4171 struct drm_i915_private *dev_priv = dev->dev_private;
4172 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4173 enum pipe pipe = intel_crtc->pipe;
4174 int palreg = PALETTE(pipe);
4175 int i;
4176 bool reenable_ips = false;
4177
4178 /* The clocks have to be on to load the palette. */
4179 if (!crtc->enabled || !intel_crtc->active)
4180 return;
4181
4182 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4183 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4184 assert_dsi_pll_enabled(dev_priv);
4185 else
4186 assert_pll_enabled(dev_priv, pipe);
4187 }
4188
4189 /* use legacy palette for Ironlake */
7a1db49a 4190 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4191 palreg = LGC_PALETTE(pipe);
4192
4193 /* Workaround : Do not read or write the pipe palette/gamma data while
4194 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4195 */
6e3c9717 4196 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4197 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4198 GAMMA_MODE_MODE_SPLIT)) {
4199 hsw_disable_ips(intel_crtc);
4200 reenable_ips = true;
4201 }
4202
4203 for (i = 0; i < 256; i++) {
4204 I915_WRITE(palreg + 4 * i,
4205 (intel_crtc->lut_r[i] << 16) |
4206 (intel_crtc->lut_g[i] << 8) |
4207 intel_crtc->lut_b[i]);
4208 }
4209
4210 if (reenable_ips)
4211 hsw_enable_ips(intel_crtc);
4212}
4213
d3eedb1a
VS
4214static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4215{
4216 if (!enable && intel_crtc->overlay) {
4217 struct drm_device *dev = intel_crtc->base.dev;
4218 struct drm_i915_private *dev_priv = dev->dev_private;
4219
4220 mutex_lock(&dev->struct_mutex);
4221 dev_priv->mm.interruptible = false;
4222 (void) intel_overlay_switch_off(intel_crtc->overlay);
4223 dev_priv->mm.interruptible = true;
4224 mutex_unlock(&dev->struct_mutex);
4225 }
4226
4227 /* Let userspace switch the overlay on again. In most cases userspace
4228 * has to recompute where to put it anyway.
4229 */
4230}
4231
d3eedb1a 4232static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4233{
4234 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4236 int pipe = intel_crtc->pipe;
a5c4d7bc 4237
fdd508a6 4238 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4239 intel_enable_sprite_planes(crtc);
a5c4d7bc 4240 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4241 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4242
4243 hsw_enable_ips(intel_crtc);
4244
4245 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4246 intel_fbc_update(dev);
a5c4d7bc 4247 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4248
4249 /*
4250 * FIXME: Once we grow proper nuclear flip support out of this we need
4251 * to compute the mask of flip planes precisely. For the time being
4252 * consider this a flip from a NULL plane.
4253 */
4254 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4255}
4256
d3eedb1a 4257static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4258{
4259 struct drm_device *dev = crtc->dev;
4260 struct drm_i915_private *dev_priv = dev->dev_private;
4261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4262 int pipe = intel_crtc->pipe;
4263 int plane = intel_crtc->plane;
4264
4265 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4266
4267 if (dev_priv->fbc.plane == plane)
7ff0ebcc 4268 intel_fbc_disable(dev);
a5c4d7bc
VS
4269
4270 hsw_disable_ips(intel_crtc);
4271
d3eedb1a 4272 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4273 intel_crtc_update_cursor(crtc, false);
4a3b8769 4274 intel_disable_sprite_planes(crtc);
fdd508a6 4275 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4276
f99d7069
DV
4277 /*
4278 * FIXME: Once we grow proper nuclear flip support out of this we need
4279 * to compute the mask of flip planes precisely. For the time being
4280 * consider this a flip to a NULL plane.
4281 */
4282 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4283}
4284
f67a559d
JB
4285static void ironlake_crtc_enable(struct drm_crtc *crtc)
4286{
4287 struct drm_device *dev = crtc->dev;
4288 struct drm_i915_private *dev_priv = dev->dev_private;
4289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4290 struct intel_encoder *encoder;
f67a559d 4291 int pipe = intel_crtc->pipe;
f67a559d 4292
08a48469
DV
4293 WARN_ON(!crtc->enabled);
4294
f67a559d
JB
4295 if (intel_crtc->active)
4296 return;
4297
6e3c9717 4298 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4299 intel_prepare_shared_dpll(intel_crtc);
4300
6e3c9717 4301 if (intel_crtc->config->has_dp_encoder)
29407aab
DV
4302 intel_dp_set_m_n(intel_crtc);
4303
4304 intel_set_pipe_timings(intel_crtc);
4305
6e3c9717 4306 if (intel_crtc->config->has_pch_encoder) {
29407aab 4307 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4308 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4309 }
4310
4311 ironlake_set_pipeconf(crtc);
4312
f67a559d 4313 intel_crtc->active = true;
8664281b 4314
a72e4c9f
DV
4315 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4316 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4317
f6736a1a 4318 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4319 if (encoder->pre_enable)
4320 encoder->pre_enable(encoder);
f67a559d 4321
6e3c9717 4322 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4323 /* Note: FDI PLL enabling _must_ be done before we enable the
4324 * cpu pipes, hence this is separate from all the other fdi/pch
4325 * enabling. */
88cefb6c 4326 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4327 } else {
4328 assert_fdi_tx_disabled(dev_priv, pipe);
4329 assert_fdi_rx_disabled(dev_priv, pipe);
4330 }
f67a559d 4331
b074cec8 4332 ironlake_pfit_enable(intel_crtc);
f67a559d 4333
9c54c0dd
JB
4334 /*
4335 * On ILK+ LUT must be loaded before the pipe is running but with
4336 * clocks enabled
4337 */
4338 intel_crtc_load_lut(crtc);
4339
f37fcc2a 4340 intel_update_watermarks(crtc);
e1fdc473 4341 intel_enable_pipe(intel_crtc);
f67a559d 4342
6e3c9717 4343 if (intel_crtc->config->has_pch_encoder)
f67a559d 4344 ironlake_pch_enable(crtc);
c98e9dcf 4345
f9b61ff6
DV
4346 assert_vblank_disabled(crtc);
4347 drm_crtc_vblank_on(crtc);
4348
fa5c73b1
DV
4349 for_each_encoder_on_crtc(dev, crtc, encoder)
4350 encoder->enable(encoder);
61b77ddd
DV
4351
4352 if (HAS_PCH_CPT(dev))
a1520318 4353 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4354
d3eedb1a 4355 intel_crtc_enable_planes(crtc);
6be4a607
JB
4356}
4357
42db64ef
PZ
4358/* IPS only exists on ULT machines and is tied to pipe A. */
4359static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4360{
f5adf94e 4361 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4362}
4363
e4916946
PZ
4364/*
4365 * This implements the workaround described in the "notes" section of the mode
4366 * set sequence documentation. When going from no pipes or single pipe to
4367 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4368 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4369 */
4370static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4371{
4372 struct drm_device *dev = crtc->base.dev;
4373 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4374
4375 /* We want to get the other_active_crtc only if there's only 1 other
4376 * active crtc. */
d3fcc808 4377 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4378 if (!crtc_it->active || crtc_it == crtc)
4379 continue;
4380
4381 if (other_active_crtc)
4382 return;
4383
4384 other_active_crtc = crtc_it;
4385 }
4386 if (!other_active_crtc)
4387 return;
4388
4389 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4390 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4391}
4392
4f771f10
PZ
4393static void haswell_crtc_enable(struct drm_crtc *crtc)
4394{
4395 struct drm_device *dev = crtc->dev;
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4398 struct intel_encoder *encoder;
4399 int pipe = intel_crtc->pipe;
4f771f10
PZ
4400
4401 WARN_ON(!crtc->enabled);
4402
4403 if (intel_crtc->active)
4404 return;
4405
df8ad70c
DV
4406 if (intel_crtc_to_shared_dpll(intel_crtc))
4407 intel_enable_shared_dpll(intel_crtc);
4408
6e3c9717 4409 if (intel_crtc->config->has_dp_encoder)
229fca97
DV
4410 intel_dp_set_m_n(intel_crtc);
4411
4412 intel_set_pipe_timings(intel_crtc);
4413
6e3c9717
ACO
4414 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4415 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4416 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4417 }
4418
6e3c9717 4419 if (intel_crtc->config->has_pch_encoder) {
229fca97 4420 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4421 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4422 }
4423
4424 haswell_set_pipeconf(crtc);
4425
4426 intel_set_pipe_csc(crtc);
4427
4f771f10 4428 intel_crtc->active = true;
8664281b 4429
a72e4c9f 4430 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4431 for_each_encoder_on_crtc(dev, crtc, encoder)
4432 if (encoder->pre_enable)
4433 encoder->pre_enable(encoder);
4434
6e3c9717 4435 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4436 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4437 true);
4fe9467d
ID
4438 dev_priv->display.fdi_link_train(crtc);
4439 }
4440
1f544388 4441 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4442
bd2e244f
JB
4443 if (IS_SKYLAKE(dev))
4444 skylake_pfit_enable(intel_crtc);
4445 else
4446 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4447
4448 /*
4449 * On ILK+ LUT must be loaded before the pipe is running but with
4450 * clocks enabled
4451 */
4452 intel_crtc_load_lut(crtc);
4453
1f544388 4454 intel_ddi_set_pipe_settings(crtc);
8228c251 4455 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4456
f37fcc2a 4457 intel_update_watermarks(crtc);
e1fdc473 4458 intel_enable_pipe(intel_crtc);
42db64ef 4459
6e3c9717 4460 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4461 lpt_pch_enable(crtc);
4f771f10 4462
6e3c9717 4463 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4464 intel_ddi_set_vc_payload_alloc(crtc, true);
4465
f9b61ff6
DV
4466 assert_vblank_disabled(crtc);
4467 drm_crtc_vblank_on(crtc);
4468
8807e55b 4469 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4470 encoder->enable(encoder);
8807e55b
JN
4471 intel_opregion_notify_encoder(encoder, true);
4472 }
4f771f10 4473
e4916946
PZ
4474 /* If we change the relative order between pipe/planes enabling, we need
4475 * to change the workaround. */
4476 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4477 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4478}
4479
bd2e244f
JB
4480static void skylake_pfit_disable(struct intel_crtc *crtc)
4481{
4482 struct drm_device *dev = crtc->base.dev;
4483 struct drm_i915_private *dev_priv = dev->dev_private;
4484 int pipe = crtc->pipe;
4485
4486 /* To avoid upsetting the power well on haswell only disable the pfit if
4487 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4488 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4489 I915_WRITE(PS_CTL(pipe), 0);
4490 I915_WRITE(PS_WIN_POS(pipe), 0);
4491 I915_WRITE(PS_WIN_SZ(pipe), 0);
4492 }
4493}
4494
3f8dce3a
DV
4495static void ironlake_pfit_disable(struct intel_crtc *crtc)
4496{
4497 struct drm_device *dev = crtc->base.dev;
4498 struct drm_i915_private *dev_priv = dev->dev_private;
4499 int pipe = crtc->pipe;
4500
4501 /* To avoid upsetting the power well on haswell only disable the pfit if
4502 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4503 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4504 I915_WRITE(PF_CTL(pipe), 0);
4505 I915_WRITE(PF_WIN_POS(pipe), 0);
4506 I915_WRITE(PF_WIN_SZ(pipe), 0);
4507 }
4508}
4509
6be4a607
JB
4510static void ironlake_crtc_disable(struct drm_crtc *crtc)
4511{
4512 struct drm_device *dev = crtc->dev;
4513 struct drm_i915_private *dev_priv = dev->dev_private;
4514 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4515 struct intel_encoder *encoder;
6be4a607 4516 int pipe = intel_crtc->pipe;
5eddb70b 4517 u32 reg, temp;
b52eb4dc 4518
f7abfe8b
CW
4519 if (!intel_crtc->active)
4520 return;
4521
d3eedb1a 4522 intel_crtc_disable_planes(crtc);
a5c4d7bc 4523
ea9d758d
DV
4524 for_each_encoder_on_crtc(dev, crtc, encoder)
4525 encoder->disable(encoder);
4526
f9b61ff6
DV
4527 drm_crtc_vblank_off(crtc);
4528 assert_vblank_disabled(crtc);
4529
6e3c9717 4530 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4531 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4532
575f7ab7 4533 intel_disable_pipe(intel_crtc);
32f9d658 4534
3f8dce3a 4535 ironlake_pfit_disable(intel_crtc);
2c07245f 4536
bf49ec8c
DV
4537 for_each_encoder_on_crtc(dev, crtc, encoder)
4538 if (encoder->post_disable)
4539 encoder->post_disable(encoder);
2c07245f 4540
6e3c9717 4541 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4542 ironlake_fdi_disable(crtc);
913d8d11 4543
d925c59a 4544 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4545
d925c59a
DV
4546 if (HAS_PCH_CPT(dev)) {
4547 /* disable TRANS_DP_CTL */
4548 reg = TRANS_DP_CTL(pipe);
4549 temp = I915_READ(reg);
4550 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4551 TRANS_DP_PORT_SEL_MASK);
4552 temp |= TRANS_DP_PORT_SEL_NONE;
4553 I915_WRITE(reg, temp);
4554
4555 /* disable DPLL_SEL */
4556 temp = I915_READ(PCH_DPLL_SEL);
11887397 4557 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4558 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4559 }
e3421a18 4560
d925c59a 4561 /* disable PCH DPLL */
e72f9fbf 4562 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4563
d925c59a
DV
4564 ironlake_fdi_pll_disable(intel_crtc);
4565 }
6b383a7f 4566
f7abfe8b 4567 intel_crtc->active = false;
46ba614c 4568 intel_update_watermarks(crtc);
d1ebd816
BW
4569
4570 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4571 intel_fbc_update(dev);
d1ebd816 4572 mutex_unlock(&dev->struct_mutex);
6be4a607 4573}
1b3c7a47 4574
4f771f10 4575static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4576{
4f771f10
PZ
4577 struct drm_device *dev = crtc->dev;
4578 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4580 struct intel_encoder *encoder;
6e3c9717 4581 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4582
4f771f10
PZ
4583 if (!intel_crtc->active)
4584 return;
4585
d3eedb1a 4586 intel_crtc_disable_planes(crtc);
dda9a66a 4587
8807e55b
JN
4588 for_each_encoder_on_crtc(dev, crtc, encoder) {
4589 intel_opregion_notify_encoder(encoder, false);
4f771f10 4590 encoder->disable(encoder);
8807e55b 4591 }
4f771f10 4592
f9b61ff6
DV
4593 drm_crtc_vblank_off(crtc);
4594 assert_vblank_disabled(crtc);
4595
6e3c9717 4596 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4597 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4598 false);
575f7ab7 4599 intel_disable_pipe(intel_crtc);
4f771f10 4600
6e3c9717 4601 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4602 intel_ddi_set_vc_payload_alloc(crtc, false);
4603
ad80a810 4604 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4605
bd2e244f
JB
4606 if (IS_SKYLAKE(dev))
4607 skylake_pfit_disable(intel_crtc);
4608 else
4609 ironlake_pfit_disable(intel_crtc);
4f771f10 4610
1f544388 4611 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4612
6e3c9717 4613 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4614 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4615 intel_ddi_fdi_disable(crtc);
83616634 4616 }
4f771f10 4617
97b040aa
ID
4618 for_each_encoder_on_crtc(dev, crtc, encoder)
4619 if (encoder->post_disable)
4620 encoder->post_disable(encoder);
4621
4f771f10 4622 intel_crtc->active = false;
46ba614c 4623 intel_update_watermarks(crtc);
4f771f10
PZ
4624
4625 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4626 intel_fbc_update(dev);
4f771f10 4627 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4628
4629 if (intel_crtc_to_shared_dpll(intel_crtc))
4630 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4631}
4632
ee7b9f93
JB
4633static void ironlake_crtc_off(struct drm_crtc *crtc)
4634{
4635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4636 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4637}
4638
6441ab5f 4639
2dd24552
JB
4640static void i9xx_pfit_enable(struct intel_crtc *crtc)
4641{
4642 struct drm_device *dev = crtc->base.dev;
4643 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4644 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4645
681a8504 4646 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4647 return;
4648
2dd24552 4649 /*
c0b03411
DV
4650 * The panel fitter should only be adjusted whilst the pipe is disabled,
4651 * according to register description and PRM.
2dd24552 4652 */
c0b03411
DV
4653 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4654 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4655
b074cec8
JB
4656 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4657 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4658
4659 /* Border color in case we don't scale up to the full screen. Black by
4660 * default, change to something else for debugging. */
4661 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4662}
4663
d05410f9
DA
4664static enum intel_display_power_domain port_to_power_domain(enum port port)
4665{
4666 switch (port) {
4667 case PORT_A:
4668 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4669 case PORT_B:
4670 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4671 case PORT_C:
4672 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4673 case PORT_D:
4674 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4675 default:
4676 WARN_ON_ONCE(1);
4677 return POWER_DOMAIN_PORT_OTHER;
4678 }
4679}
4680
77d22dca
ID
4681#define for_each_power_domain(domain, mask) \
4682 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4683 if ((1 << (domain)) & (mask))
4684
319be8ae
ID
4685enum intel_display_power_domain
4686intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4687{
4688 struct drm_device *dev = intel_encoder->base.dev;
4689 struct intel_digital_port *intel_dig_port;
4690
4691 switch (intel_encoder->type) {
4692 case INTEL_OUTPUT_UNKNOWN:
4693 /* Only DDI platforms should ever use this output type */
4694 WARN_ON_ONCE(!HAS_DDI(dev));
4695 case INTEL_OUTPUT_DISPLAYPORT:
4696 case INTEL_OUTPUT_HDMI:
4697 case INTEL_OUTPUT_EDP:
4698 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4699 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4700 case INTEL_OUTPUT_DP_MST:
4701 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4702 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4703 case INTEL_OUTPUT_ANALOG:
4704 return POWER_DOMAIN_PORT_CRT;
4705 case INTEL_OUTPUT_DSI:
4706 return POWER_DOMAIN_PORT_DSI;
4707 default:
4708 return POWER_DOMAIN_PORT_OTHER;
4709 }
4710}
4711
4712static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4713{
319be8ae
ID
4714 struct drm_device *dev = crtc->dev;
4715 struct intel_encoder *intel_encoder;
4716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4717 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4718 unsigned long mask;
4719 enum transcoder transcoder;
4720
4721 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4722
4723 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4724 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4725 if (intel_crtc->config->pch_pfit.enabled ||
4726 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4727 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4728
319be8ae
ID
4729 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4730 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4731
77d22dca
ID
4732 return mask;
4733}
4734
77d22dca
ID
4735static void modeset_update_crtc_power_domains(struct drm_device *dev)
4736{
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4739 struct intel_crtc *crtc;
4740
4741 /*
4742 * First get all needed power domains, then put all unneeded, to avoid
4743 * any unnecessary toggling of the power wells.
4744 */
d3fcc808 4745 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4746 enum intel_display_power_domain domain;
4747
4748 if (!crtc->base.enabled)
4749 continue;
4750
319be8ae 4751 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4752
4753 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4754 intel_display_power_get(dev_priv, domain);
4755 }
4756
50f6e502
VS
4757 if (dev_priv->display.modeset_global_resources)
4758 dev_priv->display.modeset_global_resources(dev);
4759
d3fcc808 4760 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4761 enum intel_display_power_domain domain;
4762
4763 for_each_power_domain(domain, crtc->enabled_power_domains)
4764 intel_display_power_put(dev_priv, domain);
4765
4766 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4767 }
4768
4769 intel_display_set_init_power(dev_priv, false);
4770}
4771
dfcab17e 4772/* returns HPLL frequency in kHz */
f8bf63fd 4773static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4774{
586f49dc 4775 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4776
586f49dc
JB
4777 /* Obtain SKU information */
4778 mutex_lock(&dev_priv->dpio_lock);
4779 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4780 CCK_FUSE_HPLL_FREQ_MASK;
4781 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4782
dfcab17e 4783 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4784}
4785
f8bf63fd
VS
4786static void vlv_update_cdclk(struct drm_device *dev)
4787{
4788 struct drm_i915_private *dev_priv = dev->dev_private;
4789
4790 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4791 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4792 dev_priv->vlv_cdclk_freq);
4793
4794 /*
4795 * Program the gmbus_freq based on the cdclk frequency.
4796 * BSpec erroneously claims we should aim for 4MHz, but
4797 * in fact 1MHz is the correct frequency.
4798 */
6be1e3d3 4799 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4800}
4801
30a970c6
JB
4802/* Adjust CDclk dividers to allow high res or save power if possible */
4803static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4804{
4805 struct drm_i915_private *dev_priv = dev->dev_private;
4806 u32 val, cmd;
4807
d197b7d3 4808 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4809
dfcab17e 4810 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4811 cmd = 2;
dfcab17e 4812 else if (cdclk == 266667)
30a970c6
JB
4813 cmd = 1;
4814 else
4815 cmd = 0;
4816
4817 mutex_lock(&dev_priv->rps.hw_lock);
4818 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4819 val &= ~DSPFREQGUAR_MASK;
4820 val |= (cmd << DSPFREQGUAR_SHIFT);
4821 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4822 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4823 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4824 50)) {
4825 DRM_ERROR("timed out waiting for CDclk change\n");
4826 }
4827 mutex_unlock(&dev_priv->rps.hw_lock);
4828
dfcab17e 4829 if (cdclk == 400000) {
6bcda4f0 4830 u32 divider;
30a970c6 4831
6bcda4f0 4832 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4833
4834 mutex_lock(&dev_priv->dpio_lock);
4835 /* adjust cdclk divider */
4836 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4837 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4838 val |= divider;
4839 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4840
4841 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4842 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4843 50))
4844 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4845 mutex_unlock(&dev_priv->dpio_lock);
4846 }
4847
4848 mutex_lock(&dev_priv->dpio_lock);
4849 /* adjust self-refresh exit latency value */
4850 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4851 val &= ~0x7f;
4852
4853 /*
4854 * For high bandwidth configs, we set a higher latency in the bunit
4855 * so that the core display fetch happens in time to avoid underruns.
4856 */
dfcab17e 4857 if (cdclk == 400000)
30a970c6
JB
4858 val |= 4500 / 250; /* 4.5 usec */
4859 else
4860 val |= 3000 / 250; /* 3.0 usec */
4861 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4862 mutex_unlock(&dev_priv->dpio_lock);
4863
f8bf63fd 4864 vlv_update_cdclk(dev);
30a970c6
JB
4865}
4866
383c5a6a
VS
4867static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4868{
4869 struct drm_i915_private *dev_priv = dev->dev_private;
4870 u32 val, cmd;
4871
4872 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4873
4874 switch (cdclk) {
4875 case 400000:
4876 cmd = 3;
4877 break;
4878 case 333333:
4879 case 320000:
4880 cmd = 2;
4881 break;
4882 case 266667:
4883 cmd = 1;
4884 break;
4885 case 200000:
4886 cmd = 0;
4887 break;
4888 default:
5f77eeb0 4889 MISSING_CASE(cdclk);
383c5a6a
VS
4890 return;
4891 }
4892
4893 mutex_lock(&dev_priv->rps.hw_lock);
4894 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4895 val &= ~DSPFREQGUAR_MASK_CHV;
4896 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4897 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4898 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4899 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4900 50)) {
4901 DRM_ERROR("timed out waiting for CDclk change\n");
4902 }
4903 mutex_unlock(&dev_priv->rps.hw_lock);
4904
4905 vlv_update_cdclk(dev);
4906}
4907
30a970c6
JB
4908static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4909 int max_pixclk)
4910{
6bcda4f0 4911 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4912
d49a340d
VS
4913 /* FIXME: Punit isn't quite ready yet */
4914 if (IS_CHERRYVIEW(dev_priv->dev))
4915 return 400000;
4916
30a970c6
JB
4917 /*
4918 * Really only a few cases to deal with, as only 4 CDclks are supported:
4919 * 200MHz
4920 * 267MHz
29dc7ef3 4921 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4922 * 400MHz
4923 * So we check to see whether we're above 90% of the lower bin and
4924 * adjust if needed.
e37c67a1
VS
4925 *
4926 * We seem to get an unstable or solid color picture at 200MHz.
4927 * Not sure what's wrong. For now use 200MHz only when all pipes
4928 * are off.
30a970c6 4929 */
29dc7ef3 4930 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4931 return 400000;
4932 else if (max_pixclk > 266667*9/10)
29dc7ef3 4933 return freq_320;
e37c67a1 4934 else if (max_pixclk > 0)
dfcab17e 4935 return 266667;
e37c67a1
VS
4936 else
4937 return 200000;
30a970c6
JB
4938}
4939
2f2d7aa1
VS
4940/* compute the max pixel clock for new configuration */
4941static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4942{
4943 struct drm_device *dev = dev_priv->dev;
4944 struct intel_crtc *intel_crtc;
4945 int max_pixclk = 0;
4946
d3fcc808 4947 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4948 if (intel_crtc->new_enabled)
30a970c6 4949 max_pixclk = max(max_pixclk,
2d112de7 4950 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
4951 }
4952
4953 return max_pixclk;
4954}
4955
4956static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4957 unsigned *prepare_pipes)
30a970c6
JB
4958{
4959 struct drm_i915_private *dev_priv = dev->dev_private;
4960 struct intel_crtc *intel_crtc;
2f2d7aa1 4961 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4962
d60c4473
ID
4963 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4964 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4965 return;
4966
2f2d7aa1 4967 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4968 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4969 if (intel_crtc->base.enabled)
4970 *prepare_pipes |= (1 << intel_crtc->pipe);
4971}
4972
4973static void valleyview_modeset_global_resources(struct drm_device *dev)
4974{
4975 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4976 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4977 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4978
383c5a6a 4979 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
4980 /*
4981 * FIXME: We can end up here with all power domains off, yet
4982 * with a CDCLK frequency other than the minimum. To account
4983 * for this take the PIPE-A power domain, which covers the HW
4984 * blocks needed for the following programming. This can be
4985 * removed once it's guaranteed that we get here either with
4986 * the minimum CDCLK set, or the required power domains
4987 * enabled.
4988 */
4989 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4990
383c5a6a
VS
4991 if (IS_CHERRYVIEW(dev))
4992 cherryview_set_cdclk(dev, req_cdclk);
4993 else
4994 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
4995
4996 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 4997 }
30a970c6
JB
4998}
4999
89b667f8
JB
5000static void valleyview_crtc_enable(struct drm_crtc *crtc)
5001{
5002 struct drm_device *dev = crtc->dev;
a72e4c9f 5003 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5005 struct intel_encoder *encoder;
5006 int pipe = intel_crtc->pipe;
23538ef1 5007 bool is_dsi;
89b667f8
JB
5008
5009 WARN_ON(!crtc->enabled);
5010
5011 if (intel_crtc->active)
5012 return;
5013
409ee761 5014 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5015
1ae0d137
VS
5016 if (!is_dsi) {
5017 if (IS_CHERRYVIEW(dev))
6e3c9717 5018 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5019 else
6e3c9717 5020 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5021 }
5b18e57c 5022
6e3c9717 5023 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5024 intel_dp_set_m_n(intel_crtc);
5025
5026 intel_set_pipe_timings(intel_crtc);
5027
c14b0485
VS
5028 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5029 struct drm_i915_private *dev_priv = dev->dev_private;
5030
5031 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5032 I915_WRITE(CHV_CANVAS(pipe), 0);
5033 }
5034
5b18e57c
DV
5035 i9xx_set_pipeconf(intel_crtc);
5036
89b667f8 5037 intel_crtc->active = true;
89b667f8 5038
a72e4c9f 5039 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5040
89b667f8
JB
5041 for_each_encoder_on_crtc(dev, crtc, encoder)
5042 if (encoder->pre_pll_enable)
5043 encoder->pre_pll_enable(encoder);
5044
9d556c99
CML
5045 if (!is_dsi) {
5046 if (IS_CHERRYVIEW(dev))
6e3c9717 5047 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5048 else
6e3c9717 5049 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5050 }
89b667f8
JB
5051
5052 for_each_encoder_on_crtc(dev, crtc, encoder)
5053 if (encoder->pre_enable)
5054 encoder->pre_enable(encoder);
5055
2dd24552
JB
5056 i9xx_pfit_enable(intel_crtc);
5057
63cbb074
VS
5058 intel_crtc_load_lut(crtc);
5059
f37fcc2a 5060 intel_update_watermarks(crtc);
e1fdc473 5061 intel_enable_pipe(intel_crtc);
be6a6f8e 5062
4b3a9526
VS
5063 assert_vblank_disabled(crtc);
5064 drm_crtc_vblank_on(crtc);
5065
f9b61ff6
DV
5066 for_each_encoder_on_crtc(dev, crtc, encoder)
5067 encoder->enable(encoder);
5068
9ab0460b 5069 intel_crtc_enable_planes(crtc);
d40d9187 5070
56b80e1f 5071 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5072 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5073}
5074
f13c2ef3
DV
5075static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5076{
5077 struct drm_device *dev = crtc->base.dev;
5078 struct drm_i915_private *dev_priv = dev->dev_private;
5079
6e3c9717
ACO
5080 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5081 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5082}
5083
0b8765c6 5084static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5085{
5086 struct drm_device *dev = crtc->dev;
a72e4c9f 5087 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5089 struct intel_encoder *encoder;
79e53945 5090 int pipe = intel_crtc->pipe;
79e53945 5091
08a48469
DV
5092 WARN_ON(!crtc->enabled);
5093
f7abfe8b
CW
5094 if (intel_crtc->active)
5095 return;
5096
f13c2ef3
DV
5097 i9xx_set_pll_dividers(intel_crtc);
5098
6e3c9717 5099 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5100 intel_dp_set_m_n(intel_crtc);
5101
5102 intel_set_pipe_timings(intel_crtc);
5103
5b18e57c
DV
5104 i9xx_set_pipeconf(intel_crtc);
5105
f7abfe8b 5106 intel_crtc->active = true;
6b383a7f 5107
4a3436e8 5108 if (!IS_GEN2(dev))
a72e4c9f 5109 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5110
9d6d9f19
MK
5111 for_each_encoder_on_crtc(dev, crtc, encoder)
5112 if (encoder->pre_enable)
5113 encoder->pre_enable(encoder);
5114
f6736a1a
DV
5115 i9xx_enable_pll(intel_crtc);
5116
2dd24552
JB
5117 i9xx_pfit_enable(intel_crtc);
5118
63cbb074
VS
5119 intel_crtc_load_lut(crtc);
5120
f37fcc2a 5121 intel_update_watermarks(crtc);
e1fdc473 5122 intel_enable_pipe(intel_crtc);
be6a6f8e 5123
4b3a9526
VS
5124 assert_vblank_disabled(crtc);
5125 drm_crtc_vblank_on(crtc);
5126
f9b61ff6
DV
5127 for_each_encoder_on_crtc(dev, crtc, encoder)
5128 encoder->enable(encoder);
5129
9ab0460b 5130 intel_crtc_enable_planes(crtc);
d40d9187 5131
4a3436e8
VS
5132 /*
5133 * Gen2 reports pipe underruns whenever all planes are disabled.
5134 * So don't enable underrun reporting before at least some planes
5135 * are enabled.
5136 * FIXME: Need to fix the logic to work when we turn off all planes
5137 * but leave the pipe running.
5138 */
5139 if (IS_GEN2(dev))
a72e4c9f 5140 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5141
56b80e1f 5142 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5143 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5144}
79e53945 5145
87476d63
DV
5146static void i9xx_pfit_disable(struct intel_crtc *crtc)
5147{
5148 struct drm_device *dev = crtc->base.dev;
5149 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5150
6e3c9717 5151 if (!crtc->config->gmch_pfit.control)
328d8e82 5152 return;
87476d63 5153
328d8e82 5154 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5155
328d8e82
DV
5156 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5157 I915_READ(PFIT_CONTROL));
5158 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5159}
5160
0b8765c6
JB
5161static void i9xx_crtc_disable(struct drm_crtc *crtc)
5162{
5163 struct drm_device *dev = crtc->dev;
5164 struct drm_i915_private *dev_priv = dev->dev_private;
5165 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5166 struct intel_encoder *encoder;
0b8765c6 5167 int pipe = intel_crtc->pipe;
ef9c3aee 5168
f7abfe8b
CW
5169 if (!intel_crtc->active)
5170 return;
5171
4a3436e8
VS
5172 /*
5173 * Gen2 reports pipe underruns whenever all planes are disabled.
5174 * So diasble underrun reporting before all the planes get disabled.
5175 * FIXME: Need to fix the logic to work when we turn off all planes
5176 * but leave the pipe running.
5177 */
5178 if (IS_GEN2(dev))
a72e4c9f 5179 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5180
564ed191
ID
5181 /*
5182 * Vblank time updates from the shadow to live plane control register
5183 * are blocked if the memory self-refresh mode is active at that
5184 * moment. So to make sure the plane gets truly disabled, disable
5185 * first the self-refresh mode. The self-refresh enable bit in turn
5186 * will be checked/applied by the HW only at the next frame start
5187 * event which is after the vblank start event, so we need to have a
5188 * wait-for-vblank between disabling the plane and the pipe.
5189 */
5190 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5191 intel_crtc_disable_planes(crtc);
5192
6304cd91
VS
5193 /*
5194 * On gen2 planes are double buffered but the pipe isn't, so we must
5195 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5196 * We also need to wait on all gmch platforms because of the
5197 * self-refresh mode constraint explained above.
6304cd91 5198 */
564ed191 5199 intel_wait_for_vblank(dev, pipe);
6304cd91 5200
4b3a9526
VS
5201 for_each_encoder_on_crtc(dev, crtc, encoder)
5202 encoder->disable(encoder);
5203
f9b61ff6
DV
5204 drm_crtc_vblank_off(crtc);
5205 assert_vblank_disabled(crtc);
5206
575f7ab7 5207 intel_disable_pipe(intel_crtc);
24a1f16d 5208
87476d63 5209 i9xx_pfit_disable(intel_crtc);
24a1f16d 5210
89b667f8
JB
5211 for_each_encoder_on_crtc(dev, crtc, encoder)
5212 if (encoder->post_disable)
5213 encoder->post_disable(encoder);
5214
409ee761 5215 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5216 if (IS_CHERRYVIEW(dev))
5217 chv_disable_pll(dev_priv, pipe);
5218 else if (IS_VALLEYVIEW(dev))
5219 vlv_disable_pll(dev_priv, pipe);
5220 else
1c4e0274 5221 i9xx_disable_pll(intel_crtc);
076ed3b2 5222 }
0b8765c6 5223
4a3436e8 5224 if (!IS_GEN2(dev))
a72e4c9f 5225 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5226
f7abfe8b 5227 intel_crtc->active = false;
46ba614c 5228 intel_update_watermarks(crtc);
f37fcc2a 5229
efa9624e 5230 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5231 intel_fbc_update(dev);
efa9624e 5232 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5233}
5234
ee7b9f93
JB
5235static void i9xx_crtc_off(struct drm_crtc *crtc)
5236{
5237}
5238
b04c5bd6
BF
5239/* Master function to enable/disable CRTC and corresponding power wells */
5240void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5241{
5242 struct drm_device *dev = crtc->dev;
5243 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5245 enum intel_display_power_domain domain;
5246 unsigned long domains;
976f8a20 5247
0e572fe7
DV
5248 if (enable) {
5249 if (!intel_crtc->active) {
e1e9fb84
DV
5250 domains = get_crtc_power_domains(crtc);
5251 for_each_power_domain(domain, domains)
5252 intel_display_power_get(dev_priv, domain);
5253 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5254
5255 dev_priv->display.crtc_enable(crtc);
5256 }
5257 } else {
5258 if (intel_crtc->active) {
5259 dev_priv->display.crtc_disable(crtc);
5260
e1e9fb84
DV
5261 domains = intel_crtc->enabled_power_domains;
5262 for_each_power_domain(domain, domains)
5263 intel_display_power_put(dev_priv, domain);
5264 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5265 }
5266 }
b04c5bd6
BF
5267}
5268
5269/**
5270 * Sets the power management mode of the pipe and plane.
5271 */
5272void intel_crtc_update_dpms(struct drm_crtc *crtc)
5273{
5274 struct drm_device *dev = crtc->dev;
5275 struct intel_encoder *intel_encoder;
5276 bool enable = false;
5277
5278 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5279 enable |= intel_encoder->connectors_active;
5280
5281 intel_crtc_control(crtc, enable);
976f8a20
DV
5282}
5283
cdd59983
CW
5284static void intel_crtc_disable(struct drm_crtc *crtc)
5285{
cdd59983 5286 struct drm_device *dev = crtc->dev;
976f8a20 5287 struct drm_connector *connector;
ee7b9f93 5288 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5289
976f8a20
DV
5290 /* crtc should still be enabled when we disable it. */
5291 WARN_ON(!crtc->enabled);
5292
5293 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5294 dev_priv->display.off(crtc);
5295
455a6808 5296 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5297
5298 /* Update computed state. */
5299 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5300 if (!connector->encoder || !connector->encoder->crtc)
5301 continue;
5302
5303 if (connector->encoder->crtc != crtc)
5304 continue;
5305
5306 connector->dpms = DRM_MODE_DPMS_OFF;
5307 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5308 }
5309}
5310
ea5b213a 5311void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5312{
4ef69c7a 5313 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5314
ea5b213a
CW
5315 drm_encoder_cleanup(encoder);
5316 kfree(intel_encoder);
7e7d76c3
JB
5317}
5318
9237329d 5319/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5320 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5321 * state of the entire output pipe. */
9237329d 5322static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5323{
5ab432ef
DV
5324 if (mode == DRM_MODE_DPMS_ON) {
5325 encoder->connectors_active = true;
5326
b2cabb0e 5327 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5328 } else {
5329 encoder->connectors_active = false;
5330
b2cabb0e 5331 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5332 }
79e53945
JB
5333}
5334
0a91ca29
DV
5335/* Cross check the actual hw state with our own modeset state tracking (and it's
5336 * internal consistency). */
b980514c 5337static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5338{
0a91ca29
DV
5339 if (connector->get_hw_state(connector)) {
5340 struct intel_encoder *encoder = connector->encoder;
5341 struct drm_crtc *crtc;
5342 bool encoder_enabled;
5343 enum pipe pipe;
5344
5345 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5346 connector->base.base.id,
c23cc417 5347 connector->base.name);
0a91ca29 5348
0e32b39c
DA
5349 /* there is no real hw state for MST connectors */
5350 if (connector->mst_port)
5351 return;
5352
e2c719b7 5353 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5354 "wrong connector dpms state\n");
e2c719b7 5355 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5356 "active connector not linked to encoder\n");
0a91ca29 5357
36cd7444 5358 if (encoder) {
e2c719b7 5359 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5360 "encoder->connectors_active not set\n");
5361
5362 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5363 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5364 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5365 return;
0a91ca29 5366
36cd7444 5367 crtc = encoder->base.crtc;
0a91ca29 5368
e2c719b7
RC
5369 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5370 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5371 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5372 "encoder active on the wrong pipe\n");
5373 }
0a91ca29 5374 }
79e53945
JB
5375}
5376
5ab432ef
DV
5377/* Even simpler default implementation, if there's really no special case to
5378 * consider. */
5379void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5380{
5ab432ef
DV
5381 /* All the simple cases only support two dpms states. */
5382 if (mode != DRM_MODE_DPMS_ON)
5383 mode = DRM_MODE_DPMS_OFF;
d4270e57 5384
5ab432ef
DV
5385 if (mode == connector->dpms)
5386 return;
5387
5388 connector->dpms = mode;
5389
5390 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5391 if (connector->encoder)
5392 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5393
b980514c 5394 intel_modeset_check_state(connector->dev);
79e53945
JB
5395}
5396
f0947c37
DV
5397/* Simple connector->get_hw_state implementation for encoders that support only
5398 * one connector and no cloning and hence the encoder state determines the state
5399 * of the connector. */
5400bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5401{
24929352 5402 enum pipe pipe = 0;
f0947c37 5403 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5404
f0947c37 5405 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5406}
5407
1857e1da 5408static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5409 struct intel_crtc_state *pipe_config)
1857e1da
DV
5410{
5411 struct drm_i915_private *dev_priv = dev->dev_private;
5412 struct intel_crtc *pipe_B_crtc =
5413 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5414
5415 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5416 pipe_name(pipe), pipe_config->fdi_lanes);
5417 if (pipe_config->fdi_lanes > 4) {
5418 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5419 pipe_name(pipe), pipe_config->fdi_lanes);
5420 return false;
5421 }
5422
bafb6553 5423 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5424 if (pipe_config->fdi_lanes > 2) {
5425 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5426 pipe_config->fdi_lanes);
5427 return false;
5428 } else {
5429 return true;
5430 }
5431 }
5432
5433 if (INTEL_INFO(dev)->num_pipes == 2)
5434 return true;
5435
5436 /* Ivybridge 3 pipe is really complicated */
5437 switch (pipe) {
5438 case PIPE_A:
5439 return true;
5440 case PIPE_B:
5441 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5442 pipe_config->fdi_lanes > 2) {
5443 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5444 pipe_name(pipe), pipe_config->fdi_lanes);
5445 return false;
5446 }
5447 return true;
5448 case PIPE_C:
1e833f40 5449 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
6e3c9717 5450 pipe_B_crtc->config->fdi_lanes <= 2) {
1857e1da
DV
5451 if (pipe_config->fdi_lanes > 2) {
5452 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5453 pipe_name(pipe), pipe_config->fdi_lanes);
5454 return false;
5455 }
5456 } else {
5457 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5458 return false;
5459 }
5460 return true;
5461 default:
5462 BUG();
5463 }
5464}
5465
e29c22c0
DV
5466#define RETRY 1
5467static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5468 struct intel_crtc_state *pipe_config)
877d48d5 5469{
1857e1da 5470 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5471 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5472 int lane, link_bw, fdi_dotclock;
e29c22c0 5473 bool setup_ok, needs_recompute = false;
877d48d5 5474
e29c22c0 5475retry:
877d48d5
DV
5476 /* FDI is a binary signal running at ~2.7GHz, encoding
5477 * each output octet as 10 bits. The actual frequency
5478 * is stored as a divider into a 100MHz clock, and the
5479 * mode pixel clock is stored in units of 1KHz.
5480 * Hence the bw of each lane in terms of the mode signal
5481 * is:
5482 */
5483 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5484
241bfc38 5485 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5486
2bd89a07 5487 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5488 pipe_config->pipe_bpp);
5489
5490 pipe_config->fdi_lanes = lane;
5491
2bd89a07 5492 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5493 link_bw, &pipe_config->fdi_m_n);
1857e1da 5494
e29c22c0
DV
5495 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5496 intel_crtc->pipe, pipe_config);
5497 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5498 pipe_config->pipe_bpp -= 2*3;
5499 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5500 pipe_config->pipe_bpp);
5501 needs_recompute = true;
5502 pipe_config->bw_constrained = true;
5503
5504 goto retry;
5505 }
5506
5507 if (needs_recompute)
5508 return RETRY;
5509
5510 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5511}
5512
42db64ef 5513static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5514 struct intel_crtc_state *pipe_config)
42db64ef 5515{
d330a953 5516 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5517 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5518 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5519}
5520
a43f6e0f 5521static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5522 struct intel_crtc_state *pipe_config)
79e53945 5523{
a43f6e0f 5524 struct drm_device *dev = crtc->base.dev;
8bd31e67 5525 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5526 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5527
ad3a4479 5528 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5529 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5530 int clock_limit =
5531 dev_priv->display.get_display_clock_speed(dev);
5532
5533 /*
5534 * Enable pixel doubling when the dot clock
5535 * is > 90% of the (display) core speed.
5536 *
b397c96b
VS
5537 * GDG double wide on either pipe,
5538 * otherwise pipe A only.
cf532bb2 5539 */
b397c96b 5540 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5541 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5542 clock_limit *= 2;
cf532bb2 5543 pipe_config->double_wide = true;
ad3a4479
VS
5544 }
5545
241bfc38 5546 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5547 return -EINVAL;
2c07245f 5548 }
89749350 5549
1d1d0e27
VS
5550 /*
5551 * Pipe horizontal size must be even in:
5552 * - DVO ganged mode
5553 * - LVDS dual channel mode
5554 * - Double wide pipe
5555 */
409ee761 5556 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5557 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5558 pipe_config->pipe_src_w &= ~1;
5559
8693a824
DL
5560 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5561 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5562 */
5563 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5564 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5565 return -EINVAL;
44f46b42 5566
bd080ee5 5567 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5568 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5569 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5570 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5571 * for lvds. */
5572 pipe_config->pipe_bpp = 8*3;
5573 }
5574
f5adf94e 5575 if (HAS_IPS(dev))
a43f6e0f
DV
5576 hsw_compute_ips_config(crtc, pipe_config);
5577
877d48d5 5578 if (pipe_config->has_pch_encoder)
a43f6e0f 5579 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5580
e29c22c0 5581 return 0;
79e53945
JB
5582}
5583
25eb05fc
JB
5584static int valleyview_get_display_clock_speed(struct drm_device *dev)
5585{
d197b7d3 5586 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5587 u32 val;
5588 int divider;
5589
d49a340d
VS
5590 /* FIXME: Punit isn't quite ready yet */
5591 if (IS_CHERRYVIEW(dev))
5592 return 400000;
5593
6bcda4f0
VS
5594 if (dev_priv->hpll_freq == 0)
5595 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5596
d197b7d3
VS
5597 mutex_lock(&dev_priv->dpio_lock);
5598 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5599 mutex_unlock(&dev_priv->dpio_lock);
5600
5601 divider = val & DISPLAY_FREQUENCY_VALUES;
5602
7d007f40
VS
5603 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5604 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5605 "cdclk change in progress\n");
5606
6bcda4f0 5607 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5608}
5609
e70236a8
JB
5610static int i945_get_display_clock_speed(struct drm_device *dev)
5611{
5612 return 400000;
5613}
79e53945 5614
e70236a8 5615static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5616{
e70236a8
JB
5617 return 333000;
5618}
79e53945 5619
e70236a8
JB
5620static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5621{
5622 return 200000;
5623}
79e53945 5624
257a7ffc
DV
5625static int pnv_get_display_clock_speed(struct drm_device *dev)
5626{
5627 u16 gcfgc = 0;
5628
5629 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5630
5631 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5632 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5633 return 267000;
5634 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5635 return 333000;
5636 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5637 return 444000;
5638 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5639 return 200000;
5640 default:
5641 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5642 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5643 return 133000;
5644 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5645 return 167000;
5646 }
5647}
5648
e70236a8
JB
5649static int i915gm_get_display_clock_speed(struct drm_device *dev)
5650{
5651 u16 gcfgc = 0;
79e53945 5652
e70236a8
JB
5653 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5654
5655 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5656 return 133000;
5657 else {
5658 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5659 case GC_DISPLAY_CLOCK_333_MHZ:
5660 return 333000;
5661 default:
5662 case GC_DISPLAY_CLOCK_190_200_MHZ:
5663 return 190000;
79e53945 5664 }
e70236a8
JB
5665 }
5666}
5667
5668static int i865_get_display_clock_speed(struct drm_device *dev)
5669{
5670 return 266000;
5671}
5672
5673static int i855_get_display_clock_speed(struct drm_device *dev)
5674{
5675 u16 hpllcc = 0;
5676 /* Assume that the hardware is in the high speed state. This
5677 * should be the default.
5678 */
5679 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5680 case GC_CLOCK_133_200:
5681 case GC_CLOCK_100_200:
5682 return 200000;
5683 case GC_CLOCK_166_250:
5684 return 250000;
5685 case GC_CLOCK_100_133:
79e53945 5686 return 133000;
e70236a8 5687 }
79e53945 5688
e70236a8
JB
5689 /* Shouldn't happen */
5690 return 0;
5691}
79e53945 5692
e70236a8
JB
5693static int i830_get_display_clock_speed(struct drm_device *dev)
5694{
5695 return 133000;
79e53945
JB
5696}
5697
2c07245f 5698static void
a65851af 5699intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5700{
a65851af
VS
5701 while (*num > DATA_LINK_M_N_MASK ||
5702 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5703 *num >>= 1;
5704 *den >>= 1;
5705 }
5706}
5707
a65851af
VS
5708static void compute_m_n(unsigned int m, unsigned int n,
5709 uint32_t *ret_m, uint32_t *ret_n)
5710{
5711 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5712 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5713 intel_reduce_m_n_ratio(ret_m, ret_n);
5714}
5715
e69d0bc1
DV
5716void
5717intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5718 int pixel_clock, int link_clock,
5719 struct intel_link_m_n *m_n)
2c07245f 5720{
e69d0bc1 5721 m_n->tu = 64;
a65851af
VS
5722
5723 compute_m_n(bits_per_pixel * pixel_clock,
5724 link_clock * nlanes * 8,
5725 &m_n->gmch_m, &m_n->gmch_n);
5726
5727 compute_m_n(pixel_clock, link_clock,
5728 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5729}
5730
a7615030
CW
5731static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5732{
d330a953
JN
5733 if (i915.panel_use_ssc >= 0)
5734 return i915.panel_use_ssc != 0;
41aa3448 5735 return dev_priv->vbt.lvds_use_ssc
435793df 5736 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5737}
5738
409ee761 5739static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5740{
409ee761 5741 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5742 struct drm_i915_private *dev_priv = dev->dev_private;
5743 int refclk;
5744
a0c4da24 5745 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5746 refclk = 100000;
d0737e1d 5747 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5748 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5749 refclk = dev_priv->vbt.lvds_ssc_freq;
5750 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5751 } else if (!IS_GEN2(dev)) {
5752 refclk = 96000;
5753 } else {
5754 refclk = 48000;
5755 }
5756
5757 return refclk;
5758}
5759
7429e9d4 5760static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5761{
7df00d7a 5762 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5763}
f47709a9 5764
7429e9d4
DV
5765static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5766{
5767 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5768}
5769
f47709a9 5770static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 5771 struct intel_crtc_state *crtc_state,
a7516a05
JB
5772 intel_clock_t *reduced_clock)
5773{
f47709a9 5774 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5775 u32 fp, fp2 = 0;
5776
5777 if (IS_PINEVIEW(dev)) {
190f68c5 5778 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5779 if (reduced_clock)
7429e9d4 5780 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5781 } else {
190f68c5 5782 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5783 if (reduced_clock)
7429e9d4 5784 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5785 }
5786
190f68c5 5787 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 5788
f47709a9 5789 crtc->lowfreq_avail = false;
e1f234bd 5790 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5791 reduced_clock && i915.powersave) {
190f68c5 5792 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 5793 crtc->lowfreq_avail = true;
a7516a05 5794 } else {
190f68c5 5795 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
5796 }
5797}
5798
5e69f97f
CML
5799static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5800 pipe)
89b667f8
JB
5801{
5802 u32 reg_val;
5803
5804 /*
5805 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5806 * and set it to a reasonable value instead.
5807 */
ab3c759a 5808 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5809 reg_val &= 0xffffff00;
5810 reg_val |= 0x00000030;
ab3c759a 5811 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5812
ab3c759a 5813 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5814 reg_val &= 0x8cffffff;
5815 reg_val = 0x8c000000;
ab3c759a 5816 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5817
ab3c759a 5818 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5819 reg_val &= 0xffffff00;
ab3c759a 5820 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5821
ab3c759a 5822 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5823 reg_val &= 0x00ffffff;
5824 reg_val |= 0xb0000000;
ab3c759a 5825 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5826}
5827
b551842d
DV
5828static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5829 struct intel_link_m_n *m_n)
5830{
5831 struct drm_device *dev = crtc->base.dev;
5832 struct drm_i915_private *dev_priv = dev->dev_private;
5833 int pipe = crtc->pipe;
5834
e3b95f1e
DV
5835 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5836 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5837 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5838 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5839}
5840
5841static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5842 struct intel_link_m_n *m_n,
5843 struct intel_link_m_n *m2_n2)
b551842d
DV
5844{
5845 struct drm_device *dev = crtc->base.dev;
5846 struct drm_i915_private *dev_priv = dev->dev_private;
5847 int pipe = crtc->pipe;
6e3c9717 5848 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
5849
5850 if (INTEL_INFO(dev)->gen >= 5) {
5851 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5852 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5853 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5854 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5855 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5856 * for gen < 8) and if DRRS is supported (to make sure the
5857 * registers are not unnecessarily accessed).
5858 */
5859 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 5860 crtc->config->has_drrs) {
f769cd24
VK
5861 I915_WRITE(PIPE_DATA_M2(transcoder),
5862 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5863 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5864 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5865 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5866 }
b551842d 5867 } else {
e3b95f1e
DV
5868 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5869 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5870 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5871 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5872 }
5873}
5874
f769cd24 5875void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2 5876{
6e3c9717
ACO
5877 if (crtc->config->has_pch_encoder)
5878 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 5879 else
6e3c9717
ACO
5880 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5881 &crtc->config->dp_m2_n2);
03afc4a2
DV
5882}
5883
d288f65f 5884static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 5885 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
5886{
5887 u32 dpll, dpll_md;
5888
5889 /*
5890 * Enable DPIO clock input. We should never disable the reference
5891 * clock for pipe B, since VGA hotplug / manual detection depends
5892 * on it.
5893 */
5894 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5895 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5896 /* We should never disable this, set it here for state tracking */
5897 if (crtc->pipe == PIPE_B)
5898 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5899 dpll |= DPLL_VCO_ENABLE;
d288f65f 5900 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5901
d288f65f 5902 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5903 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5904 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5905}
5906
d288f65f 5907static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5908 const struct intel_crtc_state *pipe_config)
a0c4da24 5909{
f47709a9 5910 struct drm_device *dev = crtc->base.dev;
a0c4da24 5911 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5912 int pipe = crtc->pipe;
bdd4b6a6 5913 u32 mdiv;
a0c4da24 5914 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5915 u32 coreclk, reg_val;
a0c4da24 5916
09153000
DV
5917 mutex_lock(&dev_priv->dpio_lock);
5918
d288f65f
VS
5919 bestn = pipe_config->dpll.n;
5920 bestm1 = pipe_config->dpll.m1;
5921 bestm2 = pipe_config->dpll.m2;
5922 bestp1 = pipe_config->dpll.p1;
5923 bestp2 = pipe_config->dpll.p2;
a0c4da24 5924
89b667f8
JB
5925 /* See eDP HDMI DPIO driver vbios notes doc */
5926
5927 /* PLL B needs special handling */
bdd4b6a6 5928 if (pipe == PIPE_B)
5e69f97f 5929 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5930
5931 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5932 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5933
5934 /* Disable target IRef on PLL */
ab3c759a 5935 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5936 reg_val &= 0x00ffffff;
ab3c759a 5937 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5938
5939 /* Disable fast lock */
ab3c759a 5940 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5941
5942 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5943 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5944 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5945 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5946 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5947
5948 /*
5949 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5950 * but we don't support that).
5951 * Note: don't use the DAC post divider as it seems unstable.
5952 */
5953 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5955
a0c4da24 5956 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5958
89b667f8 5959 /* Set HBR and RBR LPF coefficients */
d288f65f 5960 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5961 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5962 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5963 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5964 0x009f0003);
89b667f8 5965 else
ab3c759a 5966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5967 0x00d0000f);
5968
681a8504 5969 if (pipe_config->has_dp_encoder) {
89b667f8 5970 /* Use SSC source */
bdd4b6a6 5971 if (pipe == PIPE_A)
ab3c759a 5972 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5973 0x0df40000);
5974 else
ab3c759a 5975 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5976 0x0df70000);
5977 } else { /* HDMI or VGA */
5978 /* Use bend source */
bdd4b6a6 5979 if (pipe == PIPE_A)
ab3c759a 5980 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5981 0x0df70000);
5982 else
ab3c759a 5983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5984 0x0df40000);
5985 }
a0c4da24 5986
ab3c759a 5987 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5988 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5989 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5990 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5991 coreclk |= 0x01000000;
ab3c759a 5992 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5993
ab3c759a 5994 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5995 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5996}
5997
d288f65f 5998static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 5999 struct intel_crtc_state *pipe_config)
1ae0d137 6000{
d288f65f 6001 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6002 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6003 DPLL_VCO_ENABLE;
6004 if (crtc->pipe != PIPE_A)
d288f65f 6005 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6006
d288f65f
VS
6007 pipe_config->dpll_hw_state.dpll_md =
6008 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6009}
6010
d288f65f 6011static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6012 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6013{
6014 struct drm_device *dev = crtc->base.dev;
6015 struct drm_i915_private *dev_priv = dev->dev_private;
6016 int pipe = crtc->pipe;
6017 int dpll_reg = DPLL(crtc->pipe);
6018 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 6019 u32 loopfilter, intcoeff;
9d556c99
CML
6020 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6021 int refclk;
6022
d288f65f
VS
6023 bestn = pipe_config->dpll.n;
6024 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6025 bestm1 = pipe_config->dpll.m1;
6026 bestm2 = pipe_config->dpll.m2 >> 22;
6027 bestp1 = pipe_config->dpll.p1;
6028 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
6029
6030 /*
6031 * Enable Refclk and SSC
6032 */
a11b0703 6033 I915_WRITE(dpll_reg,
d288f65f 6034 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6035
6036 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6037
9d556c99
CML
6038 /* p1 and p2 divider */
6039 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6040 5 << DPIO_CHV_S1_DIV_SHIFT |
6041 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6042 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6043 1 << DPIO_CHV_K_DIV_SHIFT);
6044
6045 /* Feedback post-divider - m2 */
6046 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6047
6048 /* Feedback refclk divider - n and m1 */
6049 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6050 DPIO_CHV_M1_DIV_BY_2 |
6051 1 << DPIO_CHV_N_DIV_SHIFT);
6052
6053 /* M2 fraction division */
6054 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6055
6056 /* M2 fraction division enable */
6057 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6058 DPIO_CHV_FRAC_DIV_EN |
6059 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6060
6061 /* Loop filter */
409ee761 6062 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6063 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6064 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6065 if (refclk == 100000)
6066 intcoeff = 11;
6067 else if (refclk == 38400)
6068 intcoeff = 10;
6069 else
6070 intcoeff = 9;
6071 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6072 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6073
6074 /* AFC Recal */
6075 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6076 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6077 DPIO_AFC_RECAL);
6078
6079 mutex_unlock(&dev_priv->dpio_lock);
6080}
6081
d288f65f
VS
6082/**
6083 * vlv_force_pll_on - forcibly enable just the PLL
6084 * @dev_priv: i915 private structure
6085 * @pipe: pipe PLL to enable
6086 * @dpll: PLL configuration
6087 *
6088 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6089 * in cases where we need the PLL enabled even when @pipe is not going to
6090 * be enabled.
6091 */
6092void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6093 const struct dpll *dpll)
6094{
6095 struct intel_crtc *crtc =
6096 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6097 struct intel_crtc_state pipe_config = {
d288f65f
VS
6098 .pixel_multiplier = 1,
6099 .dpll = *dpll,
6100 };
6101
6102 if (IS_CHERRYVIEW(dev)) {
6103 chv_update_pll(crtc, &pipe_config);
6104 chv_prepare_pll(crtc, &pipe_config);
6105 chv_enable_pll(crtc, &pipe_config);
6106 } else {
6107 vlv_update_pll(crtc, &pipe_config);
6108 vlv_prepare_pll(crtc, &pipe_config);
6109 vlv_enable_pll(crtc, &pipe_config);
6110 }
6111}
6112
6113/**
6114 * vlv_force_pll_off - forcibly disable just the PLL
6115 * @dev_priv: i915 private structure
6116 * @pipe: pipe PLL to disable
6117 *
6118 * Disable the PLL for @pipe. To be used in cases where we need
6119 * the PLL enabled even when @pipe is not going to be enabled.
6120 */
6121void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6122{
6123 if (IS_CHERRYVIEW(dev))
6124 chv_disable_pll(to_i915(dev), pipe);
6125 else
6126 vlv_disable_pll(to_i915(dev), pipe);
6127}
6128
f47709a9 6129static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6130 struct intel_crtc_state *crtc_state,
f47709a9 6131 intel_clock_t *reduced_clock,
eb1cbe48
DV
6132 int num_connectors)
6133{
f47709a9 6134 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6135 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6136 u32 dpll;
6137 bool is_sdvo;
190f68c5 6138 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6139
190f68c5 6140 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6141
d0737e1d
ACO
6142 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6143 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6144
6145 dpll = DPLL_VGA_MODE_DIS;
6146
d0737e1d 6147 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6148 dpll |= DPLLB_MODE_LVDS;
6149 else
6150 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6151
ef1b460d 6152 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6153 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6154 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6155 }
198a037f
DV
6156
6157 if (is_sdvo)
4a33e48d 6158 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6159
190f68c5 6160 if (crtc_state->has_dp_encoder)
4a33e48d 6161 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6162
6163 /* compute bitmask from p1 value */
6164 if (IS_PINEVIEW(dev))
6165 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6166 else {
6167 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6168 if (IS_G4X(dev) && reduced_clock)
6169 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6170 }
6171 switch (clock->p2) {
6172 case 5:
6173 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6174 break;
6175 case 7:
6176 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6177 break;
6178 case 10:
6179 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6180 break;
6181 case 14:
6182 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6183 break;
6184 }
6185 if (INTEL_INFO(dev)->gen >= 4)
6186 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6187
190f68c5 6188 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6189 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6190 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6191 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6192 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6193 else
6194 dpll |= PLL_REF_INPUT_DREFCLK;
6195
6196 dpll |= DPLL_VCO_ENABLE;
190f68c5 6197 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6198
eb1cbe48 6199 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6200 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6201 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6202 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6203 }
6204}
6205
f47709a9 6206static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6207 struct intel_crtc_state *crtc_state,
f47709a9 6208 intel_clock_t *reduced_clock,
eb1cbe48
DV
6209 int num_connectors)
6210{
f47709a9 6211 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6212 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6213 u32 dpll;
190f68c5 6214 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6215
190f68c5 6216 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6217
eb1cbe48
DV
6218 dpll = DPLL_VGA_MODE_DIS;
6219
d0737e1d 6220 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6221 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6222 } else {
6223 if (clock->p1 == 2)
6224 dpll |= PLL_P1_DIVIDE_BY_TWO;
6225 else
6226 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6227 if (clock->p2 == 4)
6228 dpll |= PLL_P2_DIVIDE_BY_4;
6229 }
6230
d0737e1d 6231 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6232 dpll |= DPLL_DVO_2X_MODE;
6233
d0737e1d 6234 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6235 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6236 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6237 else
6238 dpll |= PLL_REF_INPUT_DREFCLK;
6239
6240 dpll |= DPLL_VCO_ENABLE;
190f68c5 6241 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6242}
6243
8a654f3b 6244static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6245{
6246 struct drm_device *dev = intel_crtc->base.dev;
6247 struct drm_i915_private *dev_priv = dev->dev_private;
6248 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6249 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6250 struct drm_display_mode *adjusted_mode =
6e3c9717 6251 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6252 uint32_t crtc_vtotal, crtc_vblank_end;
6253 int vsyncshift = 0;
4d8a62ea
DV
6254
6255 /* We need to be careful not to changed the adjusted mode, for otherwise
6256 * the hw state checker will get angry at the mismatch. */
6257 crtc_vtotal = adjusted_mode->crtc_vtotal;
6258 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6259
609aeaca 6260 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6261 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6262 crtc_vtotal -= 1;
6263 crtc_vblank_end -= 1;
609aeaca 6264
409ee761 6265 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6266 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6267 else
6268 vsyncshift = adjusted_mode->crtc_hsync_start -
6269 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6270 if (vsyncshift < 0)
6271 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6272 }
6273
6274 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6275 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6276
fe2b8f9d 6277 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6278 (adjusted_mode->crtc_hdisplay - 1) |
6279 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6280 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6281 (adjusted_mode->crtc_hblank_start - 1) |
6282 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6283 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6284 (adjusted_mode->crtc_hsync_start - 1) |
6285 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6286
fe2b8f9d 6287 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6288 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6289 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6290 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6291 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6292 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6293 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6294 (adjusted_mode->crtc_vsync_start - 1) |
6295 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6296
b5e508d4
PZ
6297 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6298 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6299 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6300 * bits. */
6301 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6302 (pipe == PIPE_B || pipe == PIPE_C))
6303 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6304
b0e77b9c
PZ
6305 /* pipesrc controls the size that is scaled from, which should
6306 * always be the user's requested size.
6307 */
6308 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6309 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6310 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6311}
6312
1bd1bd80 6313static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6314 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6315{
6316 struct drm_device *dev = crtc->base.dev;
6317 struct drm_i915_private *dev_priv = dev->dev_private;
6318 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6319 uint32_t tmp;
6320
6321 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6322 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6323 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6324 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6325 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6326 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6327 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6328 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6329 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6330
6331 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6332 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6333 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6334 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6335 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6336 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6337 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6338 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6339 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6340
6341 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6342 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6343 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6344 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6345 }
6346
6347 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6348 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6349 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6350
2d112de7
ACO
6351 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6352 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6353}
6354
f6a83288 6355void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6356 struct intel_crtc_state *pipe_config)
babea61d 6357{
2d112de7
ACO
6358 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6359 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6360 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6361 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6362
2d112de7
ACO
6363 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6364 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6365 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6366 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6367
2d112de7 6368 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6369
2d112de7
ACO
6370 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6371 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6372}
6373
84b046f3
DV
6374static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6375{
6376 struct drm_device *dev = intel_crtc->base.dev;
6377 struct drm_i915_private *dev_priv = dev->dev_private;
6378 uint32_t pipeconf;
6379
9f11a9e4 6380 pipeconf = 0;
84b046f3 6381
b6b5d049
VS
6382 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6383 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6384 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6385
6e3c9717 6386 if (intel_crtc->config->double_wide)
cf532bb2 6387 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6388
ff9ce46e
DV
6389 /* only g4x and later have fancy bpc/dither controls */
6390 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6391 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6392 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6393 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6394 PIPECONF_DITHER_TYPE_SP;
84b046f3 6395
6e3c9717 6396 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6397 case 18:
6398 pipeconf |= PIPECONF_6BPC;
6399 break;
6400 case 24:
6401 pipeconf |= PIPECONF_8BPC;
6402 break;
6403 case 30:
6404 pipeconf |= PIPECONF_10BPC;
6405 break;
6406 default:
6407 /* Case prevented by intel_choose_pipe_bpp_dither. */
6408 BUG();
84b046f3
DV
6409 }
6410 }
6411
6412 if (HAS_PIPE_CXSR(dev)) {
6413 if (intel_crtc->lowfreq_avail) {
6414 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6415 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6416 } else {
6417 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6418 }
6419 }
6420
6e3c9717 6421 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6422 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6423 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6424 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6425 else
6426 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6427 } else
84b046f3
DV
6428 pipeconf |= PIPECONF_PROGRESSIVE;
6429
6e3c9717 6430 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6431 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6432
84b046f3
DV
6433 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6434 POSTING_READ(PIPECONF(intel_crtc->pipe));
6435}
6436
190f68c5
ACO
6437static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6438 struct intel_crtc_state *crtc_state)
79e53945 6439{
c7653199 6440 struct drm_device *dev = crtc->base.dev;
79e53945 6441 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6442 int refclk, num_connectors = 0;
652c393a 6443 intel_clock_t clock, reduced_clock;
a16af721 6444 bool ok, has_reduced_clock = false;
e9fd1c02 6445 bool is_lvds = false, is_dsi = false;
5eddb70b 6446 struct intel_encoder *encoder;
d4906093 6447 const intel_limit_t *limit;
79e53945 6448
d0737e1d
ACO
6449 for_each_intel_encoder(dev, encoder) {
6450 if (encoder->new_crtc != crtc)
6451 continue;
6452
5eddb70b 6453 switch (encoder->type) {
79e53945
JB
6454 case INTEL_OUTPUT_LVDS:
6455 is_lvds = true;
6456 break;
e9fd1c02
JN
6457 case INTEL_OUTPUT_DSI:
6458 is_dsi = true;
6459 break;
6847d71b
PZ
6460 default:
6461 break;
79e53945 6462 }
43565a06 6463
c751ce4f 6464 num_connectors++;
79e53945
JB
6465 }
6466
f2335330 6467 if (is_dsi)
5b18e57c 6468 return 0;
f2335330 6469
190f68c5 6470 if (!crtc_state->clock_set) {
409ee761 6471 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6472
e9fd1c02
JN
6473 /*
6474 * Returns a set of divisors for the desired target clock with
6475 * the given refclk, or FALSE. The returned values represent
6476 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6477 * 2) / p1 / p2.
6478 */
409ee761 6479 limit = intel_limit(crtc, refclk);
c7653199 6480 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6481 crtc_state->port_clock,
e9fd1c02 6482 refclk, NULL, &clock);
f2335330 6483 if (!ok) {
e9fd1c02
JN
6484 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6485 return -EINVAL;
6486 }
79e53945 6487
f2335330
JN
6488 if (is_lvds && dev_priv->lvds_downclock_avail) {
6489 /*
6490 * Ensure we match the reduced clock's P to the target
6491 * clock. If the clocks don't match, we can't switch
6492 * the display clock by using the FP0/FP1. In such case
6493 * we will disable the LVDS downclock feature.
6494 */
6495 has_reduced_clock =
c7653199 6496 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6497 dev_priv->lvds_downclock,
6498 refclk, &clock,
6499 &reduced_clock);
6500 }
6501 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6502 crtc_state->dpll.n = clock.n;
6503 crtc_state->dpll.m1 = clock.m1;
6504 crtc_state->dpll.m2 = clock.m2;
6505 crtc_state->dpll.p1 = clock.p1;
6506 crtc_state->dpll.p2 = clock.p2;
f47709a9 6507 }
7026d4ac 6508
e9fd1c02 6509 if (IS_GEN2(dev)) {
190f68c5 6510 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6511 has_reduced_clock ? &reduced_clock : NULL,
6512 num_connectors);
9d556c99 6513 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6514 chv_update_pll(crtc, crtc_state);
e9fd1c02 6515 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6516 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6517 } else {
190f68c5 6518 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6519 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6520 num_connectors);
e9fd1c02 6521 }
79e53945 6522
c8f7a0db 6523 return 0;
f564048e
EA
6524}
6525
2fa2fe9a 6526static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6527 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6528{
6529 struct drm_device *dev = crtc->base.dev;
6530 struct drm_i915_private *dev_priv = dev->dev_private;
6531 uint32_t tmp;
6532
dc9e7dec
VS
6533 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6534 return;
6535
2fa2fe9a 6536 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6537 if (!(tmp & PFIT_ENABLE))
6538 return;
2fa2fe9a 6539
06922821 6540 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6541 if (INTEL_INFO(dev)->gen < 4) {
6542 if (crtc->pipe != PIPE_B)
6543 return;
2fa2fe9a
DV
6544 } else {
6545 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6546 return;
6547 }
6548
06922821 6549 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6550 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6551 if (INTEL_INFO(dev)->gen < 5)
6552 pipe_config->gmch_pfit.lvds_border_bits =
6553 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6554}
6555
acbec814 6556static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6557 struct intel_crtc_state *pipe_config)
acbec814
JB
6558{
6559 struct drm_device *dev = crtc->base.dev;
6560 struct drm_i915_private *dev_priv = dev->dev_private;
6561 int pipe = pipe_config->cpu_transcoder;
6562 intel_clock_t clock;
6563 u32 mdiv;
662c6ecb 6564 int refclk = 100000;
acbec814 6565
f573de5a
SK
6566 /* In case of MIPI DPLL will not even be used */
6567 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6568 return;
6569
acbec814 6570 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6571 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6572 mutex_unlock(&dev_priv->dpio_lock);
6573
6574 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6575 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6576 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6577 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6578 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6579
f646628b 6580 vlv_clock(refclk, &clock);
acbec814 6581
f646628b
VS
6582 /* clock.dot is the fast clock */
6583 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6584}
6585
5724dbd1
DL
6586static void
6587i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6588 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6589{
6590 struct drm_device *dev = crtc->base.dev;
6591 struct drm_i915_private *dev_priv = dev->dev_private;
6592 u32 val, base, offset;
6593 int pipe = crtc->pipe, plane = crtc->plane;
6594 int fourcc, pixel_format;
6595 int aligned_height;
b113d5ee 6596 struct drm_framebuffer *fb;
1b842c89 6597 struct intel_framebuffer *intel_fb;
1ad292b5 6598
d9806c9f 6599 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6600 if (!intel_fb) {
1ad292b5
JB
6601 DRM_DEBUG_KMS("failed to alloc fb\n");
6602 return;
6603 }
6604
1b842c89
DL
6605 fb = &intel_fb->base;
6606
1ad292b5
JB
6607 val = I915_READ(DSPCNTR(plane));
6608
6609 if (INTEL_INFO(dev)->gen >= 4)
6610 if (val & DISPPLANE_TILED)
49af449b 6611 plane_config->tiling = I915_TILING_X;
1ad292b5
JB
6612
6613 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6614 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6615 fb->pixel_format = fourcc;
6616 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6617
6618 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6619 if (plane_config->tiling)
1ad292b5
JB
6620 offset = I915_READ(DSPTILEOFF(plane));
6621 else
6622 offset = I915_READ(DSPLINOFF(plane));
6623 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6624 } else {
6625 base = I915_READ(DSPADDR(plane));
6626 }
6627 plane_config->base = base;
6628
6629 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6630 fb->width = ((val >> 16) & 0xfff) + 1;
6631 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6632
6633 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6634 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6635
b113d5ee 6636 aligned_height = intel_fb_align_height(dev, fb->height,
ec2c981e 6637 plane_config->tiling);
1ad292b5 6638
b113d5ee 6639 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
1ad292b5 6640
2844a921
DL
6641 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6642 pipe_name(pipe), plane, fb->width, fb->height,
6643 fb->bits_per_pixel, base, fb->pitches[0],
6644 plane_config->size);
1ad292b5 6645
b113d5ee 6646 crtc->base.primary->fb = fb;
1ad292b5
JB
6647}
6648
70b23a98 6649static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6650 struct intel_crtc_state *pipe_config)
70b23a98
VS
6651{
6652 struct drm_device *dev = crtc->base.dev;
6653 struct drm_i915_private *dev_priv = dev->dev_private;
6654 int pipe = pipe_config->cpu_transcoder;
6655 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6656 intel_clock_t clock;
6657 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6658 int refclk = 100000;
6659
6660 mutex_lock(&dev_priv->dpio_lock);
6661 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6662 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6663 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6664 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6665 mutex_unlock(&dev_priv->dpio_lock);
6666
6667 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6668 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6669 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6670 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6671 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6672
6673 chv_clock(refclk, &clock);
6674
6675 /* clock.dot is the fast clock */
6676 pipe_config->port_clock = clock.dot / 5;
6677}
6678
0e8ffe1b 6679static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6680 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6681{
6682 struct drm_device *dev = crtc->base.dev;
6683 struct drm_i915_private *dev_priv = dev->dev_private;
6684 uint32_t tmp;
6685
f458ebbc
DV
6686 if (!intel_display_power_is_enabled(dev_priv,
6687 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6688 return false;
6689
e143a21c 6690 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6691 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6692
0e8ffe1b
DV
6693 tmp = I915_READ(PIPECONF(crtc->pipe));
6694 if (!(tmp & PIPECONF_ENABLE))
6695 return false;
6696
42571aef
VS
6697 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6698 switch (tmp & PIPECONF_BPC_MASK) {
6699 case PIPECONF_6BPC:
6700 pipe_config->pipe_bpp = 18;
6701 break;
6702 case PIPECONF_8BPC:
6703 pipe_config->pipe_bpp = 24;
6704 break;
6705 case PIPECONF_10BPC:
6706 pipe_config->pipe_bpp = 30;
6707 break;
6708 default:
6709 break;
6710 }
6711 }
6712
b5a9fa09
DV
6713 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6714 pipe_config->limited_color_range = true;
6715
282740f7
VS
6716 if (INTEL_INFO(dev)->gen < 4)
6717 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6718
1bd1bd80
DV
6719 intel_get_pipe_timings(crtc, pipe_config);
6720
2fa2fe9a
DV
6721 i9xx_get_pfit_config(crtc, pipe_config);
6722
6c49f241
DV
6723 if (INTEL_INFO(dev)->gen >= 4) {
6724 tmp = I915_READ(DPLL_MD(crtc->pipe));
6725 pipe_config->pixel_multiplier =
6726 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6727 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6728 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6729 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6730 tmp = I915_READ(DPLL(crtc->pipe));
6731 pipe_config->pixel_multiplier =
6732 ((tmp & SDVO_MULTIPLIER_MASK)
6733 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6734 } else {
6735 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6736 * port and will be fixed up in the encoder->get_config
6737 * function. */
6738 pipe_config->pixel_multiplier = 1;
6739 }
8bcc2795
DV
6740 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6741 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6742 /*
6743 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6744 * on 830. Filter it out here so that we don't
6745 * report errors due to that.
6746 */
6747 if (IS_I830(dev))
6748 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6749
8bcc2795
DV
6750 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6751 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6752 } else {
6753 /* Mask out read-only status bits. */
6754 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6755 DPLL_PORTC_READY_MASK |
6756 DPLL_PORTB_READY_MASK);
8bcc2795 6757 }
6c49f241 6758
70b23a98
VS
6759 if (IS_CHERRYVIEW(dev))
6760 chv_crtc_clock_get(crtc, pipe_config);
6761 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6762 vlv_crtc_clock_get(crtc, pipe_config);
6763 else
6764 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6765
0e8ffe1b
DV
6766 return true;
6767}
6768
dde86e2d 6769static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6770{
6771 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6772 struct intel_encoder *encoder;
74cfd7ac 6773 u32 val, final;
13d83a67 6774 bool has_lvds = false;
199e5d79 6775 bool has_cpu_edp = false;
199e5d79 6776 bool has_panel = false;
99eb6a01
KP
6777 bool has_ck505 = false;
6778 bool can_ssc = false;
13d83a67
JB
6779
6780 /* We need to take the global config into account */
b2784e15 6781 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6782 switch (encoder->type) {
6783 case INTEL_OUTPUT_LVDS:
6784 has_panel = true;
6785 has_lvds = true;
6786 break;
6787 case INTEL_OUTPUT_EDP:
6788 has_panel = true;
2de6905f 6789 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6790 has_cpu_edp = true;
6791 break;
6847d71b
PZ
6792 default:
6793 break;
13d83a67
JB
6794 }
6795 }
6796
99eb6a01 6797 if (HAS_PCH_IBX(dev)) {
41aa3448 6798 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6799 can_ssc = has_ck505;
6800 } else {
6801 has_ck505 = false;
6802 can_ssc = true;
6803 }
6804
2de6905f
ID
6805 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6806 has_panel, has_lvds, has_ck505);
13d83a67
JB
6807
6808 /* Ironlake: try to setup display ref clock before DPLL
6809 * enabling. This is only under driver's control after
6810 * PCH B stepping, previous chipset stepping should be
6811 * ignoring this setting.
6812 */
74cfd7ac
CW
6813 val = I915_READ(PCH_DREF_CONTROL);
6814
6815 /* As we must carefully and slowly disable/enable each source in turn,
6816 * compute the final state we want first and check if we need to
6817 * make any changes at all.
6818 */
6819 final = val;
6820 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6821 if (has_ck505)
6822 final |= DREF_NONSPREAD_CK505_ENABLE;
6823 else
6824 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6825
6826 final &= ~DREF_SSC_SOURCE_MASK;
6827 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6828 final &= ~DREF_SSC1_ENABLE;
6829
6830 if (has_panel) {
6831 final |= DREF_SSC_SOURCE_ENABLE;
6832
6833 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6834 final |= DREF_SSC1_ENABLE;
6835
6836 if (has_cpu_edp) {
6837 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6838 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6839 else
6840 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6841 } else
6842 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6843 } else {
6844 final |= DREF_SSC_SOURCE_DISABLE;
6845 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6846 }
6847
6848 if (final == val)
6849 return;
6850
13d83a67 6851 /* Always enable nonspread source */
74cfd7ac 6852 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6853
99eb6a01 6854 if (has_ck505)
74cfd7ac 6855 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6856 else
74cfd7ac 6857 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6858
199e5d79 6859 if (has_panel) {
74cfd7ac
CW
6860 val &= ~DREF_SSC_SOURCE_MASK;
6861 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6862
199e5d79 6863 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6864 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6865 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6866 val |= DREF_SSC1_ENABLE;
e77166b5 6867 } else
74cfd7ac 6868 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6869
6870 /* Get SSC going before enabling the outputs */
74cfd7ac 6871 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6872 POSTING_READ(PCH_DREF_CONTROL);
6873 udelay(200);
6874
74cfd7ac 6875 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6876
6877 /* Enable CPU source on CPU attached eDP */
199e5d79 6878 if (has_cpu_edp) {
99eb6a01 6879 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6880 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6881 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6882 } else
74cfd7ac 6883 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6884 } else
74cfd7ac 6885 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6886
74cfd7ac 6887 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6888 POSTING_READ(PCH_DREF_CONTROL);
6889 udelay(200);
6890 } else {
6891 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6892
74cfd7ac 6893 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6894
6895 /* Turn off CPU output */
74cfd7ac 6896 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6897
74cfd7ac 6898 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6899 POSTING_READ(PCH_DREF_CONTROL);
6900 udelay(200);
6901
6902 /* Turn off the SSC source */
74cfd7ac
CW
6903 val &= ~DREF_SSC_SOURCE_MASK;
6904 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6905
6906 /* Turn off SSC1 */
74cfd7ac 6907 val &= ~DREF_SSC1_ENABLE;
199e5d79 6908
74cfd7ac 6909 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6910 POSTING_READ(PCH_DREF_CONTROL);
6911 udelay(200);
6912 }
74cfd7ac
CW
6913
6914 BUG_ON(val != final);
13d83a67
JB
6915}
6916
f31f2d55 6917static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6918{
f31f2d55 6919 uint32_t tmp;
dde86e2d 6920
0ff066a9
PZ
6921 tmp = I915_READ(SOUTH_CHICKEN2);
6922 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6923 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6924
0ff066a9
PZ
6925 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6926 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6927 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6928
0ff066a9
PZ
6929 tmp = I915_READ(SOUTH_CHICKEN2);
6930 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6931 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6932
0ff066a9
PZ
6933 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6934 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6935 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6936}
6937
6938/* WaMPhyProgramming:hsw */
6939static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6940{
6941 uint32_t tmp;
dde86e2d
PZ
6942
6943 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6944 tmp &= ~(0xFF << 24);
6945 tmp |= (0x12 << 24);
6946 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6947
dde86e2d
PZ
6948 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6949 tmp |= (1 << 11);
6950 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6951
6952 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6953 tmp |= (1 << 11);
6954 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6955
dde86e2d
PZ
6956 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6957 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6958 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6959
6960 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6961 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6962 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6963
0ff066a9
PZ
6964 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6965 tmp &= ~(7 << 13);
6966 tmp |= (5 << 13);
6967 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6968
0ff066a9
PZ
6969 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6970 tmp &= ~(7 << 13);
6971 tmp |= (5 << 13);
6972 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6973
6974 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6975 tmp &= ~0xFF;
6976 tmp |= 0x1C;
6977 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6978
6979 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6980 tmp &= ~0xFF;
6981 tmp |= 0x1C;
6982 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6983
6984 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6985 tmp &= ~(0xFF << 16);
6986 tmp |= (0x1C << 16);
6987 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6988
6989 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6990 tmp &= ~(0xFF << 16);
6991 tmp |= (0x1C << 16);
6992 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6993
0ff066a9
PZ
6994 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6995 tmp |= (1 << 27);
6996 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6997
0ff066a9
PZ
6998 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6999 tmp |= (1 << 27);
7000 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7001
0ff066a9
PZ
7002 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7003 tmp &= ~(0xF << 28);
7004 tmp |= (4 << 28);
7005 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7006
0ff066a9
PZ
7007 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7008 tmp &= ~(0xF << 28);
7009 tmp |= (4 << 28);
7010 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7011}
7012
2fa86a1f
PZ
7013/* Implements 3 different sequences from BSpec chapter "Display iCLK
7014 * Programming" based on the parameters passed:
7015 * - Sequence to enable CLKOUT_DP
7016 * - Sequence to enable CLKOUT_DP without spread
7017 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7018 */
7019static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7020 bool with_fdi)
f31f2d55
PZ
7021{
7022 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7023 uint32_t reg, tmp;
7024
7025 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7026 with_spread = true;
7027 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7028 with_fdi, "LP PCH doesn't have FDI\n"))
7029 with_fdi = false;
f31f2d55
PZ
7030
7031 mutex_lock(&dev_priv->dpio_lock);
7032
7033 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7034 tmp &= ~SBI_SSCCTL_DISABLE;
7035 tmp |= SBI_SSCCTL_PATHALT;
7036 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7037
7038 udelay(24);
7039
2fa86a1f
PZ
7040 if (with_spread) {
7041 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7042 tmp &= ~SBI_SSCCTL_PATHALT;
7043 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7044
2fa86a1f
PZ
7045 if (with_fdi) {
7046 lpt_reset_fdi_mphy(dev_priv);
7047 lpt_program_fdi_mphy(dev_priv);
7048 }
7049 }
dde86e2d 7050
2fa86a1f
PZ
7051 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7052 SBI_GEN0 : SBI_DBUFF0;
7053 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7054 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7055 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7056
7057 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7058}
7059
47701c3b
PZ
7060/* Sequence to disable CLKOUT_DP */
7061static void lpt_disable_clkout_dp(struct drm_device *dev)
7062{
7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064 uint32_t reg, tmp;
7065
7066 mutex_lock(&dev_priv->dpio_lock);
7067
7068 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7069 SBI_GEN0 : SBI_DBUFF0;
7070 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7071 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7072 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7073
7074 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7075 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7076 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7077 tmp |= SBI_SSCCTL_PATHALT;
7078 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7079 udelay(32);
7080 }
7081 tmp |= SBI_SSCCTL_DISABLE;
7082 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7083 }
7084
7085 mutex_unlock(&dev_priv->dpio_lock);
7086}
7087
bf8fa3d3
PZ
7088static void lpt_init_pch_refclk(struct drm_device *dev)
7089{
bf8fa3d3
PZ
7090 struct intel_encoder *encoder;
7091 bool has_vga = false;
7092
b2784e15 7093 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7094 switch (encoder->type) {
7095 case INTEL_OUTPUT_ANALOG:
7096 has_vga = true;
7097 break;
6847d71b
PZ
7098 default:
7099 break;
bf8fa3d3
PZ
7100 }
7101 }
7102
47701c3b
PZ
7103 if (has_vga)
7104 lpt_enable_clkout_dp(dev, true, true);
7105 else
7106 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7107}
7108
dde86e2d
PZ
7109/*
7110 * Initialize reference clocks when the driver loads
7111 */
7112void intel_init_pch_refclk(struct drm_device *dev)
7113{
7114 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7115 ironlake_init_pch_refclk(dev);
7116 else if (HAS_PCH_LPT(dev))
7117 lpt_init_pch_refclk(dev);
7118}
7119
d9d444cb
JB
7120static int ironlake_get_refclk(struct drm_crtc *crtc)
7121{
7122 struct drm_device *dev = crtc->dev;
7123 struct drm_i915_private *dev_priv = dev->dev_private;
7124 struct intel_encoder *encoder;
d9d444cb
JB
7125 int num_connectors = 0;
7126 bool is_lvds = false;
7127
d0737e1d
ACO
7128 for_each_intel_encoder(dev, encoder) {
7129 if (encoder->new_crtc != to_intel_crtc(crtc))
7130 continue;
7131
d9d444cb
JB
7132 switch (encoder->type) {
7133 case INTEL_OUTPUT_LVDS:
7134 is_lvds = true;
7135 break;
6847d71b
PZ
7136 default:
7137 break;
d9d444cb
JB
7138 }
7139 num_connectors++;
7140 }
7141
7142 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7143 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7144 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7145 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7146 }
7147
7148 return 120000;
7149}
7150
6ff93609 7151static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7152{
c8203565 7153 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7154 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7155 int pipe = intel_crtc->pipe;
c8203565
PZ
7156 uint32_t val;
7157
78114071 7158 val = 0;
c8203565 7159
6e3c9717 7160 switch (intel_crtc->config->pipe_bpp) {
c8203565 7161 case 18:
dfd07d72 7162 val |= PIPECONF_6BPC;
c8203565
PZ
7163 break;
7164 case 24:
dfd07d72 7165 val |= PIPECONF_8BPC;
c8203565
PZ
7166 break;
7167 case 30:
dfd07d72 7168 val |= PIPECONF_10BPC;
c8203565
PZ
7169 break;
7170 case 36:
dfd07d72 7171 val |= PIPECONF_12BPC;
c8203565
PZ
7172 break;
7173 default:
cc769b62
PZ
7174 /* Case prevented by intel_choose_pipe_bpp_dither. */
7175 BUG();
c8203565
PZ
7176 }
7177
6e3c9717 7178 if (intel_crtc->config->dither)
c8203565
PZ
7179 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7180
6e3c9717 7181 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7182 val |= PIPECONF_INTERLACED_ILK;
7183 else
7184 val |= PIPECONF_PROGRESSIVE;
7185
6e3c9717 7186 if (intel_crtc->config->limited_color_range)
3685a8f3 7187 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7188
c8203565
PZ
7189 I915_WRITE(PIPECONF(pipe), val);
7190 POSTING_READ(PIPECONF(pipe));
7191}
7192
86d3efce
VS
7193/*
7194 * Set up the pipe CSC unit.
7195 *
7196 * Currently only full range RGB to limited range RGB conversion
7197 * is supported, but eventually this should handle various
7198 * RGB<->YCbCr scenarios as well.
7199 */
50f3b016 7200static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7201{
7202 struct drm_device *dev = crtc->dev;
7203 struct drm_i915_private *dev_priv = dev->dev_private;
7204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7205 int pipe = intel_crtc->pipe;
7206 uint16_t coeff = 0x7800; /* 1.0 */
7207
7208 /*
7209 * TODO: Check what kind of values actually come out of the pipe
7210 * with these coeff/postoff values and adjust to get the best
7211 * accuracy. Perhaps we even need to take the bpc value into
7212 * consideration.
7213 */
7214
6e3c9717 7215 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7216 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7217
7218 /*
7219 * GY/GU and RY/RU should be the other way around according
7220 * to BSpec, but reality doesn't agree. Just set them up in
7221 * a way that results in the correct picture.
7222 */
7223 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7224 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7225
7226 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7227 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7228
7229 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7230 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7231
7232 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7233 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7234 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7235
7236 if (INTEL_INFO(dev)->gen > 6) {
7237 uint16_t postoff = 0;
7238
6e3c9717 7239 if (intel_crtc->config->limited_color_range)
32cf0cb0 7240 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7241
7242 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7243 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7244 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7245
7246 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7247 } else {
7248 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7249
6e3c9717 7250 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7251 mode |= CSC_BLACK_SCREEN_OFFSET;
7252
7253 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7254 }
7255}
7256
6ff93609 7257static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7258{
756f85cf
PZ
7259 struct drm_device *dev = crtc->dev;
7260 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7262 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7263 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7264 uint32_t val;
7265
3eff4faa 7266 val = 0;
ee2b0b38 7267
6e3c9717 7268 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7269 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7270
6e3c9717 7271 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7272 val |= PIPECONF_INTERLACED_ILK;
7273 else
7274 val |= PIPECONF_PROGRESSIVE;
7275
702e7a56
PZ
7276 I915_WRITE(PIPECONF(cpu_transcoder), val);
7277 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7278
7279 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7280 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7281
3cdf122c 7282 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7283 val = 0;
7284
6e3c9717 7285 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7286 case 18:
7287 val |= PIPEMISC_DITHER_6_BPC;
7288 break;
7289 case 24:
7290 val |= PIPEMISC_DITHER_8_BPC;
7291 break;
7292 case 30:
7293 val |= PIPEMISC_DITHER_10_BPC;
7294 break;
7295 case 36:
7296 val |= PIPEMISC_DITHER_12_BPC;
7297 break;
7298 default:
7299 /* Case prevented by pipe_config_set_bpp. */
7300 BUG();
7301 }
7302
6e3c9717 7303 if (intel_crtc->config->dither)
756f85cf
PZ
7304 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7305
7306 I915_WRITE(PIPEMISC(pipe), val);
7307 }
ee2b0b38
PZ
7308}
7309
6591c6e4 7310static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7311 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7312 intel_clock_t *clock,
7313 bool *has_reduced_clock,
7314 intel_clock_t *reduced_clock)
7315{
7316 struct drm_device *dev = crtc->dev;
7317 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7319 int refclk;
d4906093 7320 const intel_limit_t *limit;
a16af721 7321 bool ret, is_lvds = false;
79e53945 7322
d0737e1d 7323 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7324
d9d444cb 7325 refclk = ironlake_get_refclk(crtc);
79e53945 7326
d4906093
ML
7327 /*
7328 * Returns a set of divisors for the desired target clock with the given
7329 * refclk, or FALSE. The returned values represent the clock equation:
7330 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7331 */
409ee761 7332 limit = intel_limit(intel_crtc, refclk);
a919ff14 7333 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7334 crtc_state->port_clock,
ee9300bb 7335 refclk, NULL, clock);
6591c6e4
PZ
7336 if (!ret)
7337 return false;
cda4b7d3 7338
ddc9003c 7339 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7340 /*
7341 * Ensure we match the reduced clock's P to the target clock.
7342 * If the clocks don't match, we can't switch the display clock
7343 * by using the FP0/FP1. In such case we will disable the LVDS
7344 * downclock feature.
7345 */
ee9300bb 7346 *has_reduced_clock =
a919ff14 7347 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7348 dev_priv->lvds_downclock,
7349 refclk, clock,
7350 reduced_clock);
652c393a 7351 }
61e9653f 7352
6591c6e4
PZ
7353 return true;
7354}
7355
d4b1931c
PZ
7356int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7357{
7358 /*
7359 * Account for spread spectrum to avoid
7360 * oversubscribing the link. Max center spread
7361 * is 2.5%; use 5% for safety's sake.
7362 */
7363 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7364 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7365}
7366
7429e9d4 7367static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7368{
7429e9d4 7369 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7370}
7371
de13a2e3 7372static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7373 struct intel_crtc_state *crtc_state,
7429e9d4 7374 u32 *fp,
9a7c7890 7375 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7376{
de13a2e3 7377 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7378 struct drm_device *dev = crtc->dev;
7379 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7380 struct intel_encoder *intel_encoder;
7381 uint32_t dpll;
6cc5f341 7382 int factor, num_connectors = 0;
09ede541 7383 bool is_lvds = false, is_sdvo = false;
79e53945 7384
d0737e1d
ACO
7385 for_each_intel_encoder(dev, intel_encoder) {
7386 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7387 continue;
7388
de13a2e3 7389 switch (intel_encoder->type) {
79e53945
JB
7390 case INTEL_OUTPUT_LVDS:
7391 is_lvds = true;
7392 break;
7393 case INTEL_OUTPUT_SDVO:
7d57382e 7394 case INTEL_OUTPUT_HDMI:
79e53945 7395 is_sdvo = true;
79e53945 7396 break;
6847d71b
PZ
7397 default:
7398 break;
79e53945 7399 }
43565a06 7400
c751ce4f 7401 num_connectors++;
79e53945 7402 }
79e53945 7403
c1858123 7404 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7405 factor = 21;
7406 if (is_lvds) {
7407 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7408 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7409 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7410 factor = 25;
190f68c5 7411 } else if (crtc_state->sdvo_tv_clock)
8febb297 7412 factor = 20;
c1858123 7413
190f68c5 7414 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7415 *fp |= FP_CB_TUNE;
2c07245f 7416
9a7c7890
DV
7417 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7418 *fp2 |= FP_CB_TUNE;
7419
5eddb70b 7420 dpll = 0;
2c07245f 7421
a07d6787
EA
7422 if (is_lvds)
7423 dpll |= DPLLB_MODE_LVDS;
7424 else
7425 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7426
190f68c5 7427 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7428 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7429
7430 if (is_sdvo)
4a33e48d 7431 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7432 if (crtc_state->has_dp_encoder)
4a33e48d 7433 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7434
a07d6787 7435 /* compute bitmask from p1 value */
190f68c5 7436 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7437 /* also FPA1 */
190f68c5 7438 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7439
190f68c5 7440 switch (crtc_state->dpll.p2) {
a07d6787
EA
7441 case 5:
7442 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7443 break;
7444 case 7:
7445 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7446 break;
7447 case 10:
7448 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7449 break;
7450 case 14:
7451 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7452 break;
79e53945
JB
7453 }
7454
b4c09f3b 7455 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7456 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7457 else
7458 dpll |= PLL_REF_INPUT_DREFCLK;
7459
959e16d6 7460 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7461}
7462
190f68c5
ACO
7463static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7464 struct intel_crtc_state *crtc_state)
de13a2e3 7465{
c7653199 7466 struct drm_device *dev = crtc->base.dev;
de13a2e3 7467 intel_clock_t clock, reduced_clock;
cbbab5bd 7468 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7469 bool ok, has_reduced_clock = false;
8b47047b 7470 bool is_lvds = false;
e2b78267 7471 struct intel_shared_dpll *pll;
de13a2e3 7472
409ee761 7473 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7474
5dc5298b
PZ
7475 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7476 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7477
190f68c5 7478 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7479 &has_reduced_clock, &reduced_clock);
190f68c5 7480 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7481 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7482 return -EINVAL;
79e53945 7483 }
f47709a9 7484 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7485 if (!crtc_state->clock_set) {
7486 crtc_state->dpll.n = clock.n;
7487 crtc_state->dpll.m1 = clock.m1;
7488 crtc_state->dpll.m2 = clock.m2;
7489 crtc_state->dpll.p1 = clock.p1;
7490 crtc_state->dpll.p2 = clock.p2;
f47709a9 7491 }
79e53945 7492
5dc5298b 7493 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7494 if (crtc_state->has_pch_encoder) {
7495 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7496 if (has_reduced_clock)
7429e9d4 7497 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7498
190f68c5 7499 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7500 &fp, &reduced_clock,
7501 has_reduced_clock ? &fp2 : NULL);
7502
190f68c5
ACO
7503 crtc_state->dpll_hw_state.dpll = dpll;
7504 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7505 if (has_reduced_clock)
190f68c5 7506 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7507 else
190f68c5 7508 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7509
190f68c5 7510 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7511 if (pll == NULL) {
84f44ce7 7512 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7513 pipe_name(crtc->pipe));
4b645f14
JB
7514 return -EINVAL;
7515 }
3fb37703 7516 }
79e53945 7517
d330a953 7518 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7519 crtc->lowfreq_avail = true;
bcd644e0 7520 else
c7653199 7521 crtc->lowfreq_avail = false;
e2b78267 7522
c8f7a0db 7523 return 0;
79e53945
JB
7524}
7525
eb14cb74
VS
7526static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7527 struct intel_link_m_n *m_n)
7528{
7529 struct drm_device *dev = crtc->base.dev;
7530 struct drm_i915_private *dev_priv = dev->dev_private;
7531 enum pipe pipe = crtc->pipe;
7532
7533 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7534 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7535 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7536 & ~TU_SIZE_MASK;
7537 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7538 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7539 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7540}
7541
7542static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7543 enum transcoder transcoder,
b95af8be
VK
7544 struct intel_link_m_n *m_n,
7545 struct intel_link_m_n *m2_n2)
72419203
DV
7546{
7547 struct drm_device *dev = crtc->base.dev;
7548 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7549 enum pipe pipe = crtc->pipe;
72419203 7550
eb14cb74
VS
7551 if (INTEL_INFO(dev)->gen >= 5) {
7552 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7553 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7554 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7555 & ~TU_SIZE_MASK;
7556 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7557 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7558 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7559 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7560 * gen < 8) and if DRRS is supported (to make sure the
7561 * registers are not unnecessarily read).
7562 */
7563 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7564 crtc->config->has_drrs) {
b95af8be
VK
7565 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7566 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7567 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7568 & ~TU_SIZE_MASK;
7569 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7570 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7571 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7572 }
eb14cb74
VS
7573 } else {
7574 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7575 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7576 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7577 & ~TU_SIZE_MASK;
7578 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7579 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7580 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7581 }
7582}
7583
7584void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7585 struct intel_crtc_state *pipe_config)
eb14cb74 7586{
681a8504 7587 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7588 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7589 else
7590 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7591 &pipe_config->dp_m_n,
7592 &pipe_config->dp_m2_n2);
eb14cb74 7593}
72419203 7594
eb14cb74 7595static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7596 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7597{
7598 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7599 &pipe_config->fdi_m_n, NULL);
72419203
DV
7600}
7601
bd2e244f 7602static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7603 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7604{
7605 struct drm_device *dev = crtc->base.dev;
7606 struct drm_i915_private *dev_priv = dev->dev_private;
7607 uint32_t tmp;
7608
7609 tmp = I915_READ(PS_CTL(crtc->pipe));
7610
7611 if (tmp & PS_ENABLE) {
7612 pipe_config->pch_pfit.enabled = true;
7613 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7614 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7615 }
7616}
7617
5724dbd1
DL
7618static void
7619skylake_get_initial_plane_config(struct intel_crtc *crtc,
7620 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7621{
7622 struct drm_device *dev = crtc->base.dev;
7623 struct drm_i915_private *dev_priv = dev->dev_private;
7624 u32 val, base, offset, stride_mult;
7625 int pipe = crtc->pipe;
7626 int fourcc, pixel_format;
7627 int aligned_height;
7628 struct drm_framebuffer *fb;
1b842c89 7629 struct intel_framebuffer *intel_fb;
bc8d7dff 7630
d9806c9f 7631 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7632 if (!intel_fb) {
bc8d7dff
DL
7633 DRM_DEBUG_KMS("failed to alloc fb\n");
7634 return;
7635 }
7636
1b842c89
DL
7637 fb = &intel_fb->base;
7638
bc8d7dff
DL
7639 val = I915_READ(PLANE_CTL(pipe, 0));
7640 if (val & PLANE_CTL_TILED_MASK)
7641 plane_config->tiling = I915_TILING_X;
7642
7643 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7644 fourcc = skl_format_to_fourcc(pixel_format,
7645 val & PLANE_CTL_ORDER_RGBX,
7646 val & PLANE_CTL_ALPHA_MASK);
7647 fb->pixel_format = fourcc;
7648 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7649
7650 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7651 plane_config->base = base;
7652
7653 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7654
7655 val = I915_READ(PLANE_SIZE(pipe, 0));
7656 fb->height = ((val >> 16) & 0xfff) + 1;
7657 fb->width = ((val >> 0) & 0x1fff) + 1;
7658
7659 val = I915_READ(PLANE_STRIDE(pipe, 0));
7660 switch (plane_config->tiling) {
7661 case I915_TILING_NONE:
7662 stride_mult = 64;
7663 break;
7664 case I915_TILING_X:
7665 stride_mult = 512;
7666 break;
7667 default:
7668 MISSING_CASE(plane_config->tiling);
7669 goto error;
7670 }
7671 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7672
7673 aligned_height = intel_fb_align_height(dev, fb->height,
7674 plane_config->tiling);
7675
7676 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7677
7678 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7679 pipe_name(pipe), fb->width, fb->height,
7680 fb->bits_per_pixel, base, fb->pitches[0],
7681 plane_config->size);
7682
7683 crtc->base.primary->fb = fb;
7684 return;
7685
7686error:
7687 kfree(fb);
7688}
7689
2fa2fe9a 7690static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7691 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7692{
7693 struct drm_device *dev = crtc->base.dev;
7694 struct drm_i915_private *dev_priv = dev->dev_private;
7695 uint32_t tmp;
7696
7697 tmp = I915_READ(PF_CTL(crtc->pipe));
7698
7699 if (tmp & PF_ENABLE) {
fd4daa9c 7700 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7701 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7702 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7703
7704 /* We currently do not free assignements of panel fitters on
7705 * ivb/hsw (since we don't use the higher upscaling modes which
7706 * differentiates them) so just WARN about this case for now. */
7707 if (IS_GEN7(dev)) {
7708 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7709 PF_PIPE_SEL_IVB(crtc->pipe));
7710 }
2fa2fe9a 7711 }
79e53945
JB
7712}
7713
5724dbd1
DL
7714static void
7715ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7716 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
7717{
7718 struct drm_device *dev = crtc->base.dev;
7719 struct drm_i915_private *dev_priv = dev->dev_private;
7720 u32 val, base, offset;
aeee5a49 7721 int pipe = crtc->pipe;
4c6baa59
JB
7722 int fourcc, pixel_format;
7723 int aligned_height;
b113d5ee 7724 struct drm_framebuffer *fb;
1b842c89 7725 struct intel_framebuffer *intel_fb;
4c6baa59 7726
d9806c9f 7727 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7728 if (!intel_fb) {
4c6baa59
JB
7729 DRM_DEBUG_KMS("failed to alloc fb\n");
7730 return;
7731 }
7732
1b842c89
DL
7733 fb = &intel_fb->base;
7734
aeee5a49 7735 val = I915_READ(DSPCNTR(pipe));
4c6baa59
JB
7736
7737 if (INTEL_INFO(dev)->gen >= 4)
7738 if (val & DISPPLANE_TILED)
49af449b 7739 plane_config->tiling = I915_TILING_X;
4c6baa59
JB
7740
7741 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7742 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7743 fb->pixel_format = fourcc;
7744 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 7745
aeee5a49 7746 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 7747 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 7748 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 7749 } else {
49af449b 7750 if (plane_config->tiling)
aeee5a49 7751 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 7752 else
aeee5a49 7753 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
7754 }
7755 plane_config->base = base;
7756
7757 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7758 fb->width = ((val >> 16) & 0xfff) + 1;
7759 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7760
7761 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7762 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7763
b113d5ee 7764 aligned_height = intel_fb_align_height(dev, fb->height,
ec2c981e 7765 plane_config->tiling);
4c6baa59 7766
b113d5ee 7767 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
4c6baa59 7768
2844a921
DL
7769 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7770 pipe_name(pipe), fb->width, fb->height,
7771 fb->bits_per_pixel, base, fb->pitches[0],
7772 plane_config->size);
b113d5ee
DL
7773
7774 crtc->base.primary->fb = fb;
4c6baa59
JB
7775}
7776
0e8ffe1b 7777static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7778 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7779{
7780 struct drm_device *dev = crtc->base.dev;
7781 struct drm_i915_private *dev_priv = dev->dev_private;
7782 uint32_t tmp;
7783
f458ebbc
DV
7784 if (!intel_display_power_is_enabled(dev_priv,
7785 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7786 return false;
7787
e143a21c 7788 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7789 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7790
0e8ffe1b
DV
7791 tmp = I915_READ(PIPECONF(crtc->pipe));
7792 if (!(tmp & PIPECONF_ENABLE))
7793 return false;
7794
42571aef
VS
7795 switch (tmp & PIPECONF_BPC_MASK) {
7796 case PIPECONF_6BPC:
7797 pipe_config->pipe_bpp = 18;
7798 break;
7799 case PIPECONF_8BPC:
7800 pipe_config->pipe_bpp = 24;
7801 break;
7802 case PIPECONF_10BPC:
7803 pipe_config->pipe_bpp = 30;
7804 break;
7805 case PIPECONF_12BPC:
7806 pipe_config->pipe_bpp = 36;
7807 break;
7808 default:
7809 break;
7810 }
7811
b5a9fa09
DV
7812 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7813 pipe_config->limited_color_range = true;
7814
ab9412ba 7815 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7816 struct intel_shared_dpll *pll;
7817
88adfff1
DV
7818 pipe_config->has_pch_encoder = true;
7819
627eb5a3
DV
7820 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7821 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7822 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7823
7824 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7825
c0d43d62 7826 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7827 pipe_config->shared_dpll =
7828 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7829 } else {
7830 tmp = I915_READ(PCH_DPLL_SEL);
7831 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7832 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7833 else
7834 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7835 }
66e985c0
DV
7836
7837 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7838
7839 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7840 &pipe_config->dpll_hw_state));
c93f54cf
DV
7841
7842 tmp = pipe_config->dpll_hw_state.dpll;
7843 pipe_config->pixel_multiplier =
7844 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7845 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7846
7847 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7848 } else {
7849 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7850 }
7851
1bd1bd80
DV
7852 intel_get_pipe_timings(crtc, pipe_config);
7853
2fa2fe9a
DV
7854 ironlake_get_pfit_config(crtc, pipe_config);
7855
0e8ffe1b
DV
7856 return true;
7857}
7858
be256dc7
PZ
7859static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7860{
7861 struct drm_device *dev = dev_priv->dev;
be256dc7 7862 struct intel_crtc *crtc;
be256dc7 7863
d3fcc808 7864 for_each_intel_crtc(dev, crtc)
e2c719b7 7865 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7866 pipe_name(crtc->pipe));
7867
e2c719b7
RC
7868 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7869 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7870 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7871 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7872 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7873 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 7874 "CPU PWM1 enabled\n");
c5107b87 7875 if (IS_HASWELL(dev))
e2c719b7 7876 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 7877 "CPU PWM2 enabled\n");
e2c719b7 7878 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 7879 "PCH PWM1 enabled\n");
e2c719b7 7880 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 7881 "Utility pin enabled\n");
e2c719b7 7882 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 7883
9926ada1
PZ
7884 /*
7885 * In theory we can still leave IRQs enabled, as long as only the HPD
7886 * interrupts remain enabled. We used to check for that, but since it's
7887 * gen-specific and since we only disable LCPLL after we fully disable
7888 * the interrupts, the check below should be enough.
7889 */
e2c719b7 7890 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7891}
7892
9ccd5aeb
PZ
7893static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7894{
7895 struct drm_device *dev = dev_priv->dev;
7896
7897 if (IS_HASWELL(dev))
7898 return I915_READ(D_COMP_HSW);
7899 else
7900 return I915_READ(D_COMP_BDW);
7901}
7902
3c4c9b81
PZ
7903static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7904{
7905 struct drm_device *dev = dev_priv->dev;
7906
7907 if (IS_HASWELL(dev)) {
7908 mutex_lock(&dev_priv->rps.hw_lock);
7909 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7910 val))
f475dadf 7911 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7912 mutex_unlock(&dev_priv->rps.hw_lock);
7913 } else {
9ccd5aeb
PZ
7914 I915_WRITE(D_COMP_BDW, val);
7915 POSTING_READ(D_COMP_BDW);
3c4c9b81 7916 }
be256dc7
PZ
7917}
7918
7919/*
7920 * This function implements pieces of two sequences from BSpec:
7921 * - Sequence for display software to disable LCPLL
7922 * - Sequence for display software to allow package C8+
7923 * The steps implemented here are just the steps that actually touch the LCPLL
7924 * register. Callers should take care of disabling all the display engine
7925 * functions, doing the mode unset, fixing interrupts, etc.
7926 */
6ff58d53
PZ
7927static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7928 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7929{
7930 uint32_t val;
7931
7932 assert_can_disable_lcpll(dev_priv);
7933
7934 val = I915_READ(LCPLL_CTL);
7935
7936 if (switch_to_fclk) {
7937 val |= LCPLL_CD_SOURCE_FCLK;
7938 I915_WRITE(LCPLL_CTL, val);
7939
7940 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7941 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7942 DRM_ERROR("Switching to FCLK failed\n");
7943
7944 val = I915_READ(LCPLL_CTL);
7945 }
7946
7947 val |= LCPLL_PLL_DISABLE;
7948 I915_WRITE(LCPLL_CTL, val);
7949 POSTING_READ(LCPLL_CTL);
7950
7951 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7952 DRM_ERROR("LCPLL still locked\n");
7953
9ccd5aeb 7954 val = hsw_read_dcomp(dev_priv);
be256dc7 7955 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7956 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7957 ndelay(100);
7958
9ccd5aeb
PZ
7959 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7960 1))
be256dc7
PZ
7961 DRM_ERROR("D_COMP RCOMP still in progress\n");
7962
7963 if (allow_power_down) {
7964 val = I915_READ(LCPLL_CTL);
7965 val |= LCPLL_POWER_DOWN_ALLOW;
7966 I915_WRITE(LCPLL_CTL, val);
7967 POSTING_READ(LCPLL_CTL);
7968 }
7969}
7970
7971/*
7972 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7973 * source.
7974 */
6ff58d53 7975static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7976{
7977 uint32_t val;
7978
7979 val = I915_READ(LCPLL_CTL);
7980
7981 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7982 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7983 return;
7984
a8a8bd54
PZ
7985 /*
7986 * Make sure we're not on PC8 state before disabling PC8, otherwise
7987 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 7988 */
59bad947 7989 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 7990
be256dc7
PZ
7991 if (val & LCPLL_POWER_DOWN_ALLOW) {
7992 val &= ~LCPLL_POWER_DOWN_ALLOW;
7993 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7994 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7995 }
7996
9ccd5aeb 7997 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7998 val |= D_COMP_COMP_FORCE;
7999 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8000 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8001
8002 val = I915_READ(LCPLL_CTL);
8003 val &= ~LCPLL_PLL_DISABLE;
8004 I915_WRITE(LCPLL_CTL, val);
8005
8006 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8007 DRM_ERROR("LCPLL not locked yet\n");
8008
8009 if (val & LCPLL_CD_SOURCE_FCLK) {
8010 val = I915_READ(LCPLL_CTL);
8011 val &= ~LCPLL_CD_SOURCE_FCLK;
8012 I915_WRITE(LCPLL_CTL, val);
8013
8014 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8015 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8016 DRM_ERROR("Switching back to LCPLL failed\n");
8017 }
215733fa 8018
59bad947 8019 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8020}
8021
765dab67
PZ
8022/*
8023 * Package states C8 and deeper are really deep PC states that can only be
8024 * reached when all the devices on the system allow it, so even if the graphics
8025 * device allows PC8+, it doesn't mean the system will actually get to these
8026 * states. Our driver only allows PC8+ when going into runtime PM.
8027 *
8028 * The requirements for PC8+ are that all the outputs are disabled, the power
8029 * well is disabled and most interrupts are disabled, and these are also
8030 * requirements for runtime PM. When these conditions are met, we manually do
8031 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8032 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8033 * hang the machine.
8034 *
8035 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8036 * the state of some registers, so when we come back from PC8+ we need to
8037 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8038 * need to take care of the registers kept by RC6. Notice that this happens even
8039 * if we don't put the device in PCI D3 state (which is what currently happens
8040 * because of the runtime PM support).
8041 *
8042 * For more, read "Display Sequences for Package C8" on the hardware
8043 * documentation.
8044 */
a14cb6fc 8045void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8046{
c67a470b
PZ
8047 struct drm_device *dev = dev_priv->dev;
8048 uint32_t val;
8049
c67a470b
PZ
8050 DRM_DEBUG_KMS("Enabling package C8+\n");
8051
c67a470b
PZ
8052 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8053 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8054 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8055 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8056 }
8057
8058 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8059 hsw_disable_lcpll(dev_priv, true, true);
8060}
8061
a14cb6fc 8062void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8063{
8064 struct drm_device *dev = dev_priv->dev;
8065 uint32_t val;
8066
c67a470b
PZ
8067 DRM_DEBUG_KMS("Disabling package C8+\n");
8068
8069 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8070 lpt_init_pch_refclk(dev);
8071
8072 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8073 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8074 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8075 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8076 }
8077
8078 intel_prepare_ddi(dev);
c67a470b
PZ
8079}
8080
190f68c5
ACO
8081static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8082 struct intel_crtc_state *crtc_state)
09b4ddf9 8083{
190f68c5 8084 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8085 return -EINVAL;
716c2e55 8086
c7653199 8087 crtc->lowfreq_avail = false;
644cef34 8088
c8f7a0db 8089 return 0;
79e53945
JB
8090}
8091
96b7dfb7
S
8092static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8093 enum port port,
5cec258b 8094 struct intel_crtc_state *pipe_config)
96b7dfb7 8095{
3148ade7 8096 u32 temp, dpll_ctl1;
96b7dfb7
S
8097
8098 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8099 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8100
8101 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8102 case SKL_DPLL0:
8103 /*
8104 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8105 * of the shared DPLL framework and thus needs to be read out
8106 * separately
8107 */
8108 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8109 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8110 break;
96b7dfb7
S
8111 case SKL_DPLL1:
8112 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8113 break;
8114 case SKL_DPLL2:
8115 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8116 break;
8117 case SKL_DPLL3:
8118 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8119 break;
96b7dfb7
S
8120 }
8121}
8122
7d2c8175
DL
8123static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8124 enum port port,
5cec258b 8125 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8126{
8127 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8128
8129 switch (pipe_config->ddi_pll_sel) {
8130 case PORT_CLK_SEL_WRPLL1:
8131 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8132 break;
8133 case PORT_CLK_SEL_WRPLL2:
8134 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8135 break;
8136 }
8137}
8138
26804afd 8139static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8140 struct intel_crtc_state *pipe_config)
26804afd
DV
8141{
8142 struct drm_device *dev = crtc->base.dev;
8143 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8144 struct intel_shared_dpll *pll;
26804afd
DV
8145 enum port port;
8146 uint32_t tmp;
8147
8148 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8149
8150 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8151
96b7dfb7
S
8152 if (IS_SKYLAKE(dev))
8153 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8154 else
8155 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8156
d452c5b6
DV
8157 if (pipe_config->shared_dpll >= 0) {
8158 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8159
8160 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8161 &pipe_config->dpll_hw_state));
8162 }
8163
26804afd
DV
8164 /*
8165 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8166 * DDI E. So just check whether this pipe is wired to DDI E and whether
8167 * the PCH transcoder is on.
8168 */
ca370455
DL
8169 if (INTEL_INFO(dev)->gen < 9 &&
8170 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8171 pipe_config->has_pch_encoder = true;
8172
8173 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8174 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8175 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8176
8177 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8178 }
8179}
8180
0e8ffe1b 8181static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8182 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8183{
8184 struct drm_device *dev = crtc->base.dev;
8185 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8186 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8187 uint32_t tmp;
8188
f458ebbc 8189 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8190 POWER_DOMAIN_PIPE(crtc->pipe)))
8191 return false;
8192
e143a21c 8193 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8194 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8195
eccb140b
DV
8196 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8197 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8198 enum pipe trans_edp_pipe;
8199 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8200 default:
8201 WARN(1, "unknown pipe linked to edp transcoder\n");
8202 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8203 case TRANS_DDI_EDP_INPUT_A_ON:
8204 trans_edp_pipe = PIPE_A;
8205 break;
8206 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8207 trans_edp_pipe = PIPE_B;
8208 break;
8209 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8210 trans_edp_pipe = PIPE_C;
8211 break;
8212 }
8213
8214 if (trans_edp_pipe == crtc->pipe)
8215 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8216 }
8217
f458ebbc 8218 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8219 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8220 return false;
8221
eccb140b 8222 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8223 if (!(tmp & PIPECONF_ENABLE))
8224 return false;
8225
26804afd 8226 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8227
1bd1bd80
DV
8228 intel_get_pipe_timings(crtc, pipe_config);
8229
2fa2fe9a 8230 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8231 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8232 if (IS_SKYLAKE(dev))
8233 skylake_get_pfit_config(crtc, pipe_config);
8234 else
8235 ironlake_get_pfit_config(crtc, pipe_config);
8236 }
88adfff1 8237
e59150dc
JB
8238 if (IS_HASWELL(dev))
8239 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8240 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8241
ebb69c95
CT
8242 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8243 pipe_config->pixel_multiplier =
8244 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8245 } else {
8246 pipe_config->pixel_multiplier = 1;
8247 }
6c49f241 8248
0e8ffe1b
DV
8249 return true;
8250}
8251
560b85bb
CW
8252static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8253{
8254 struct drm_device *dev = crtc->dev;
8255 struct drm_i915_private *dev_priv = dev->dev_private;
8256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8257 uint32_t cntl = 0, size = 0;
560b85bb 8258
dc41c154
VS
8259 if (base) {
8260 unsigned int width = intel_crtc->cursor_width;
8261 unsigned int height = intel_crtc->cursor_height;
8262 unsigned int stride = roundup_pow_of_two(width) * 4;
8263
8264 switch (stride) {
8265 default:
8266 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8267 width, stride);
8268 stride = 256;
8269 /* fallthrough */
8270 case 256:
8271 case 512:
8272 case 1024:
8273 case 2048:
8274 break;
4b0e333e
CW
8275 }
8276
dc41c154
VS
8277 cntl |= CURSOR_ENABLE |
8278 CURSOR_GAMMA_ENABLE |
8279 CURSOR_FORMAT_ARGB |
8280 CURSOR_STRIDE(stride);
8281
8282 size = (height << 12) | width;
4b0e333e 8283 }
560b85bb 8284
dc41c154
VS
8285 if (intel_crtc->cursor_cntl != 0 &&
8286 (intel_crtc->cursor_base != base ||
8287 intel_crtc->cursor_size != size ||
8288 intel_crtc->cursor_cntl != cntl)) {
8289 /* On these chipsets we can only modify the base/size/stride
8290 * whilst the cursor is disabled.
8291 */
8292 I915_WRITE(_CURACNTR, 0);
4b0e333e 8293 POSTING_READ(_CURACNTR);
dc41c154 8294 intel_crtc->cursor_cntl = 0;
4b0e333e 8295 }
560b85bb 8296
99d1f387 8297 if (intel_crtc->cursor_base != base) {
9db4a9c7 8298 I915_WRITE(_CURABASE, base);
99d1f387
VS
8299 intel_crtc->cursor_base = base;
8300 }
4726e0b0 8301
dc41c154
VS
8302 if (intel_crtc->cursor_size != size) {
8303 I915_WRITE(CURSIZE, size);
8304 intel_crtc->cursor_size = size;
4b0e333e 8305 }
560b85bb 8306
4b0e333e 8307 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8308 I915_WRITE(_CURACNTR, cntl);
8309 POSTING_READ(_CURACNTR);
4b0e333e 8310 intel_crtc->cursor_cntl = cntl;
560b85bb 8311 }
560b85bb
CW
8312}
8313
560b85bb 8314static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8315{
8316 struct drm_device *dev = crtc->dev;
8317 struct drm_i915_private *dev_priv = dev->dev_private;
8318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8319 int pipe = intel_crtc->pipe;
4b0e333e
CW
8320 uint32_t cntl;
8321
8322 cntl = 0;
8323 if (base) {
8324 cntl = MCURSOR_GAMMA_ENABLE;
8325 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8326 case 64:
8327 cntl |= CURSOR_MODE_64_ARGB_AX;
8328 break;
8329 case 128:
8330 cntl |= CURSOR_MODE_128_ARGB_AX;
8331 break;
8332 case 256:
8333 cntl |= CURSOR_MODE_256_ARGB_AX;
8334 break;
8335 default:
5f77eeb0 8336 MISSING_CASE(intel_crtc->cursor_width);
4726e0b0 8337 return;
65a21cd6 8338 }
4b0e333e 8339 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8340
8341 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8342 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8343 }
65a21cd6 8344
8e7d688b 8345 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8346 cntl |= CURSOR_ROTATE_180;
8347
4b0e333e
CW
8348 if (intel_crtc->cursor_cntl != cntl) {
8349 I915_WRITE(CURCNTR(pipe), cntl);
8350 POSTING_READ(CURCNTR(pipe));
8351 intel_crtc->cursor_cntl = cntl;
65a21cd6 8352 }
4b0e333e 8353
65a21cd6 8354 /* and commit changes on next vblank */
5efb3e28
VS
8355 I915_WRITE(CURBASE(pipe), base);
8356 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8357
8358 intel_crtc->cursor_base = base;
65a21cd6
JB
8359}
8360
cda4b7d3 8361/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8362static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8363 bool on)
cda4b7d3
CW
8364{
8365 struct drm_device *dev = crtc->dev;
8366 struct drm_i915_private *dev_priv = dev->dev_private;
8367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8368 int pipe = intel_crtc->pipe;
3d7d6510
MR
8369 int x = crtc->cursor_x;
8370 int y = crtc->cursor_y;
d6e4db15 8371 u32 base = 0, pos = 0;
cda4b7d3 8372
d6e4db15 8373 if (on)
cda4b7d3 8374 base = intel_crtc->cursor_addr;
cda4b7d3 8375
6e3c9717 8376 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8377 base = 0;
8378
6e3c9717 8379 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8380 base = 0;
8381
8382 if (x < 0) {
efc9064e 8383 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8384 base = 0;
8385
8386 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8387 x = -x;
8388 }
8389 pos |= x << CURSOR_X_SHIFT;
8390
8391 if (y < 0) {
efc9064e 8392 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8393 base = 0;
8394
8395 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8396 y = -y;
8397 }
8398 pos |= y << CURSOR_Y_SHIFT;
8399
4b0e333e 8400 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8401 return;
8402
5efb3e28
VS
8403 I915_WRITE(CURPOS(pipe), pos);
8404
4398ad45
VS
8405 /* ILK+ do this automagically */
8406 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8407 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
4398ad45
VS
8408 base += (intel_crtc->cursor_height *
8409 intel_crtc->cursor_width - 1) * 4;
8410 }
8411
8ac54669 8412 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8413 i845_update_cursor(crtc, base);
8414 else
8415 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8416}
8417
dc41c154
VS
8418static bool cursor_size_ok(struct drm_device *dev,
8419 uint32_t width, uint32_t height)
8420{
8421 if (width == 0 || height == 0)
8422 return false;
8423
8424 /*
8425 * 845g/865g are special in that they are only limited by
8426 * the width of their cursors, the height is arbitrary up to
8427 * the precision of the register. Everything else requires
8428 * square cursors, limited to a few power-of-two sizes.
8429 */
8430 if (IS_845G(dev) || IS_I865G(dev)) {
8431 if ((width & 63) != 0)
8432 return false;
8433
8434 if (width > (IS_845G(dev) ? 64 : 512))
8435 return false;
8436
8437 if (height > 1023)
8438 return false;
8439 } else {
8440 switch (width | height) {
8441 case 256:
8442 case 128:
8443 if (IS_GEN2(dev))
8444 return false;
8445 case 64:
8446 break;
8447 default:
8448 return false;
8449 }
8450 }
8451
8452 return true;
8453}
8454
79e53945 8455static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8456 u16 *blue, uint32_t start, uint32_t size)
79e53945 8457{
7203425a 8458 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8460
7203425a 8461 for (i = start; i < end; i++) {
79e53945
JB
8462 intel_crtc->lut_r[i] = red[i] >> 8;
8463 intel_crtc->lut_g[i] = green[i] >> 8;
8464 intel_crtc->lut_b[i] = blue[i] >> 8;
8465 }
8466
8467 intel_crtc_load_lut(crtc);
8468}
8469
79e53945
JB
8470/* VESA 640x480x72Hz mode to set on the pipe */
8471static struct drm_display_mode load_detect_mode = {
8472 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8473 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8474};
8475
a8bb6818
DV
8476struct drm_framebuffer *
8477__intel_framebuffer_create(struct drm_device *dev,
8478 struct drm_mode_fb_cmd2 *mode_cmd,
8479 struct drm_i915_gem_object *obj)
d2dff872
CW
8480{
8481 struct intel_framebuffer *intel_fb;
8482 int ret;
8483
8484 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8485 if (!intel_fb) {
6ccb81f2 8486 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8487 return ERR_PTR(-ENOMEM);
8488 }
8489
8490 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8491 if (ret)
8492 goto err;
d2dff872
CW
8493
8494 return &intel_fb->base;
dd4916c5 8495err:
6ccb81f2 8496 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8497 kfree(intel_fb);
8498
8499 return ERR_PTR(ret);
d2dff872
CW
8500}
8501
b5ea642a 8502static struct drm_framebuffer *
a8bb6818
DV
8503intel_framebuffer_create(struct drm_device *dev,
8504 struct drm_mode_fb_cmd2 *mode_cmd,
8505 struct drm_i915_gem_object *obj)
8506{
8507 struct drm_framebuffer *fb;
8508 int ret;
8509
8510 ret = i915_mutex_lock_interruptible(dev);
8511 if (ret)
8512 return ERR_PTR(ret);
8513 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8514 mutex_unlock(&dev->struct_mutex);
8515
8516 return fb;
8517}
8518
d2dff872
CW
8519static u32
8520intel_framebuffer_pitch_for_width(int width, int bpp)
8521{
8522 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8523 return ALIGN(pitch, 64);
8524}
8525
8526static u32
8527intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8528{
8529 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8530 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8531}
8532
8533static struct drm_framebuffer *
8534intel_framebuffer_create_for_mode(struct drm_device *dev,
8535 struct drm_display_mode *mode,
8536 int depth, int bpp)
8537{
8538 struct drm_i915_gem_object *obj;
0fed39bd 8539 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8540
8541 obj = i915_gem_alloc_object(dev,
8542 intel_framebuffer_size_for_mode(mode, bpp));
8543 if (obj == NULL)
8544 return ERR_PTR(-ENOMEM);
8545
8546 mode_cmd.width = mode->hdisplay;
8547 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8548 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8549 bpp);
5ca0c34a 8550 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8551
8552 return intel_framebuffer_create(dev, &mode_cmd, obj);
8553}
8554
8555static struct drm_framebuffer *
8556mode_fits_in_fbdev(struct drm_device *dev,
8557 struct drm_display_mode *mode)
8558{
4520f53a 8559#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8560 struct drm_i915_private *dev_priv = dev->dev_private;
8561 struct drm_i915_gem_object *obj;
8562 struct drm_framebuffer *fb;
8563
4c0e5528 8564 if (!dev_priv->fbdev)
d2dff872
CW
8565 return NULL;
8566
4c0e5528 8567 if (!dev_priv->fbdev->fb)
d2dff872
CW
8568 return NULL;
8569
4c0e5528
DV
8570 obj = dev_priv->fbdev->fb->obj;
8571 BUG_ON(!obj);
8572
8bcd4553 8573 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8574 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8575 fb->bits_per_pixel))
d2dff872
CW
8576 return NULL;
8577
01f2c773 8578 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8579 return NULL;
8580
8581 return fb;
4520f53a
DV
8582#else
8583 return NULL;
8584#endif
d2dff872
CW
8585}
8586
d2434ab7 8587bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8588 struct drm_display_mode *mode,
51fd371b
RC
8589 struct intel_load_detect_pipe *old,
8590 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8591{
8592 struct intel_crtc *intel_crtc;
d2434ab7
DV
8593 struct intel_encoder *intel_encoder =
8594 intel_attached_encoder(connector);
79e53945 8595 struct drm_crtc *possible_crtc;
4ef69c7a 8596 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8597 struct drm_crtc *crtc = NULL;
8598 struct drm_device *dev = encoder->dev;
94352cf9 8599 struct drm_framebuffer *fb;
51fd371b
RC
8600 struct drm_mode_config *config = &dev->mode_config;
8601 int ret, i = -1;
79e53945 8602
d2dff872 8603 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8604 connector->base.id, connector->name,
8e329a03 8605 encoder->base.id, encoder->name);
d2dff872 8606
51fd371b
RC
8607retry:
8608 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8609 if (ret)
8610 goto fail_unlock;
6e9f798d 8611
79e53945
JB
8612 /*
8613 * Algorithm gets a little messy:
7a5e4805 8614 *
79e53945
JB
8615 * - if the connector already has an assigned crtc, use it (but make
8616 * sure it's on first)
7a5e4805 8617 *
79e53945
JB
8618 * - try to find the first unused crtc that can drive this connector,
8619 * and use that if we find one
79e53945
JB
8620 */
8621
8622 /* See if we already have a CRTC for this connector */
8623 if (encoder->crtc) {
8624 crtc = encoder->crtc;
8261b191 8625
51fd371b 8626 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8627 if (ret)
8628 goto fail_unlock;
8629 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8630 if (ret)
8631 goto fail_unlock;
7b24056b 8632
24218aac 8633 old->dpms_mode = connector->dpms;
8261b191
CW
8634 old->load_detect_temp = false;
8635
8636 /* Make sure the crtc and connector are running */
24218aac
DV
8637 if (connector->dpms != DRM_MODE_DPMS_ON)
8638 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8639
7173188d 8640 return true;
79e53945
JB
8641 }
8642
8643 /* Find an unused one (if possible) */
70e1e0ec 8644 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8645 i++;
8646 if (!(encoder->possible_crtcs & (1 << i)))
8647 continue;
a459249c
VS
8648 if (possible_crtc->enabled)
8649 continue;
8650 /* This can occur when applying the pipe A quirk on resume. */
8651 if (to_intel_crtc(possible_crtc)->new_enabled)
8652 continue;
8653
8654 crtc = possible_crtc;
8655 break;
79e53945
JB
8656 }
8657
8658 /*
8659 * If we didn't find an unused CRTC, don't use any.
8660 */
8661 if (!crtc) {
7173188d 8662 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8663 goto fail_unlock;
79e53945
JB
8664 }
8665
51fd371b
RC
8666 ret = drm_modeset_lock(&crtc->mutex, ctx);
8667 if (ret)
4d02e2de
DV
8668 goto fail_unlock;
8669 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8670 if (ret)
51fd371b 8671 goto fail_unlock;
fc303101
DV
8672 intel_encoder->new_crtc = to_intel_crtc(crtc);
8673 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8674
8675 intel_crtc = to_intel_crtc(crtc);
412b61d8 8676 intel_crtc->new_enabled = true;
6e3c9717 8677 intel_crtc->new_config = intel_crtc->config;
24218aac 8678 old->dpms_mode = connector->dpms;
8261b191 8679 old->load_detect_temp = true;
d2dff872 8680 old->release_fb = NULL;
79e53945 8681
6492711d
CW
8682 if (!mode)
8683 mode = &load_detect_mode;
79e53945 8684
d2dff872
CW
8685 /* We need a framebuffer large enough to accommodate all accesses
8686 * that the plane may generate whilst we perform load detection.
8687 * We can not rely on the fbcon either being present (we get called
8688 * during its initialisation to detect all boot displays, or it may
8689 * not even exist) or that it is large enough to satisfy the
8690 * requested mode.
8691 */
94352cf9
DV
8692 fb = mode_fits_in_fbdev(dev, mode);
8693 if (fb == NULL) {
d2dff872 8694 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8695 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8696 old->release_fb = fb;
d2dff872
CW
8697 } else
8698 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8699 if (IS_ERR(fb)) {
d2dff872 8700 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8701 goto fail;
79e53945 8702 }
79e53945 8703
c0c36b94 8704 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8705 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8706 if (old->release_fb)
8707 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8708 goto fail;
79e53945 8709 }
7173188d 8710
79e53945 8711 /* let the connector get through one full cycle before testing */
9d0498a2 8712 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8713 return true;
412b61d8
VS
8714
8715 fail:
8716 intel_crtc->new_enabled = crtc->enabled;
8717 if (intel_crtc->new_enabled)
6e3c9717 8718 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
8719 else
8720 intel_crtc->new_config = NULL;
51fd371b
RC
8721fail_unlock:
8722 if (ret == -EDEADLK) {
8723 drm_modeset_backoff(ctx);
8724 goto retry;
8725 }
8726
412b61d8 8727 return false;
79e53945
JB
8728}
8729
d2434ab7 8730void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8731 struct intel_load_detect_pipe *old)
79e53945 8732{
d2434ab7
DV
8733 struct intel_encoder *intel_encoder =
8734 intel_attached_encoder(connector);
4ef69c7a 8735 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8736 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8738
d2dff872 8739 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8740 connector->base.id, connector->name,
8e329a03 8741 encoder->base.id, encoder->name);
d2dff872 8742
8261b191 8743 if (old->load_detect_temp) {
fc303101
DV
8744 to_intel_connector(connector)->new_encoder = NULL;
8745 intel_encoder->new_crtc = NULL;
412b61d8
VS
8746 intel_crtc->new_enabled = false;
8747 intel_crtc->new_config = NULL;
fc303101 8748 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8749
36206361
DV
8750 if (old->release_fb) {
8751 drm_framebuffer_unregister_private(old->release_fb);
8752 drm_framebuffer_unreference(old->release_fb);
8753 }
d2dff872 8754
0622a53c 8755 return;
79e53945
JB
8756 }
8757
c751ce4f 8758 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8759 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8760 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8761}
8762
da4a1efa 8763static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 8764 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
8765{
8766 struct drm_i915_private *dev_priv = dev->dev_private;
8767 u32 dpll = pipe_config->dpll_hw_state.dpll;
8768
8769 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8770 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8771 else if (HAS_PCH_SPLIT(dev))
8772 return 120000;
8773 else if (!IS_GEN2(dev))
8774 return 96000;
8775 else
8776 return 48000;
8777}
8778
79e53945 8779/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 8780static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8781 struct intel_crtc_state *pipe_config)
79e53945 8782{
f1f644dc 8783 struct drm_device *dev = crtc->base.dev;
79e53945 8784 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8785 int pipe = pipe_config->cpu_transcoder;
293623f7 8786 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8787 u32 fp;
8788 intel_clock_t clock;
da4a1efa 8789 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8790
8791 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8792 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8793 else
293623f7 8794 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8795
8796 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8797 if (IS_PINEVIEW(dev)) {
8798 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8799 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8800 } else {
8801 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8802 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8803 }
8804
a6c45cf0 8805 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8806 if (IS_PINEVIEW(dev))
8807 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8808 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8809 else
8810 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8811 DPLL_FPA01_P1_POST_DIV_SHIFT);
8812
8813 switch (dpll & DPLL_MODE_MASK) {
8814 case DPLLB_MODE_DAC_SERIAL:
8815 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8816 5 : 10;
8817 break;
8818 case DPLLB_MODE_LVDS:
8819 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8820 7 : 14;
8821 break;
8822 default:
28c97730 8823 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8824 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8825 return;
79e53945
JB
8826 }
8827
ac58c3f0 8828 if (IS_PINEVIEW(dev))
da4a1efa 8829 pineview_clock(refclk, &clock);
ac58c3f0 8830 else
da4a1efa 8831 i9xx_clock(refclk, &clock);
79e53945 8832 } else {
0fb58223 8833 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8834 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8835
8836 if (is_lvds) {
8837 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8838 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8839
8840 if (lvds & LVDS_CLKB_POWER_UP)
8841 clock.p2 = 7;
8842 else
8843 clock.p2 = 14;
79e53945
JB
8844 } else {
8845 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8846 clock.p1 = 2;
8847 else {
8848 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8849 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8850 }
8851 if (dpll & PLL_P2_DIVIDE_BY_4)
8852 clock.p2 = 4;
8853 else
8854 clock.p2 = 2;
79e53945 8855 }
da4a1efa
VS
8856
8857 i9xx_clock(refclk, &clock);
79e53945
JB
8858 }
8859
18442d08
VS
8860 /*
8861 * This value includes pixel_multiplier. We will use
241bfc38 8862 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8863 * encoder's get_config() function.
8864 */
8865 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8866}
8867
6878da05
VS
8868int intel_dotclock_calculate(int link_freq,
8869 const struct intel_link_m_n *m_n)
f1f644dc 8870{
f1f644dc
JB
8871 /*
8872 * The calculation for the data clock is:
1041a02f 8873 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8874 * But we want to avoid losing precison if possible, so:
1041a02f 8875 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8876 *
8877 * and the link clock is simpler:
1041a02f 8878 * link_clock = (m * link_clock) / n
f1f644dc
JB
8879 */
8880
6878da05
VS
8881 if (!m_n->link_n)
8882 return 0;
f1f644dc 8883
6878da05
VS
8884 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8885}
f1f644dc 8886
18442d08 8887static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 8888 struct intel_crtc_state *pipe_config)
6878da05
VS
8889{
8890 struct drm_device *dev = crtc->base.dev;
79e53945 8891
18442d08
VS
8892 /* read out port_clock from the DPLL */
8893 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8894
f1f644dc 8895 /*
18442d08 8896 * This value does not include pixel_multiplier.
241bfc38 8897 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8898 * agree once we know their relationship in the encoder's
8899 * get_config() function.
79e53945 8900 */
2d112de7 8901 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
8902 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8903 &pipe_config->fdi_m_n);
79e53945
JB
8904}
8905
8906/** Returns the currently programmed mode of the given pipe. */
8907struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8908 struct drm_crtc *crtc)
8909{
548f245b 8910 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8911 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8912 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 8913 struct drm_display_mode *mode;
5cec258b 8914 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
8915 int htot = I915_READ(HTOTAL(cpu_transcoder));
8916 int hsync = I915_READ(HSYNC(cpu_transcoder));
8917 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8918 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8919 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8920
8921 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8922 if (!mode)
8923 return NULL;
8924
f1f644dc
JB
8925 /*
8926 * Construct a pipe_config sufficient for getting the clock info
8927 * back out of crtc_clock_get.
8928 *
8929 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8930 * to use a real value here instead.
8931 */
293623f7 8932 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8933 pipe_config.pixel_multiplier = 1;
293623f7
VS
8934 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8935 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8936 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8937 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8938
773ae034 8939 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8940 mode->hdisplay = (htot & 0xffff) + 1;
8941 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8942 mode->hsync_start = (hsync & 0xffff) + 1;
8943 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8944 mode->vdisplay = (vtot & 0xffff) + 1;
8945 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8946 mode->vsync_start = (vsync & 0xffff) + 1;
8947 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8948
8949 drm_mode_set_name(mode);
79e53945
JB
8950
8951 return mode;
8952}
8953
652c393a
JB
8954static void intel_decrease_pllclock(struct drm_crtc *crtc)
8955{
8956 struct drm_device *dev = crtc->dev;
fbee40df 8957 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8959
baff296c 8960 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8961 return;
8962
8963 if (!dev_priv->lvds_downclock_avail)
8964 return;
8965
8966 /*
8967 * Since this is called by a timer, we should never get here in
8968 * the manual case.
8969 */
8970 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8971 int pipe = intel_crtc->pipe;
8972 int dpll_reg = DPLL(pipe);
8973 int dpll;
f6e5b160 8974
44d98a61 8975 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8976
8ac5a6d5 8977 assert_panel_unlocked(dev_priv, pipe);
652c393a 8978
dc257cf1 8979 dpll = I915_READ(dpll_reg);
652c393a
JB
8980 dpll |= DISPLAY_RATE_SELECT_FPA1;
8981 I915_WRITE(dpll_reg, dpll);
9d0498a2 8982 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8983 dpll = I915_READ(dpll_reg);
8984 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8985 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8986 }
8987
8988}
8989
f047e395
CW
8990void intel_mark_busy(struct drm_device *dev)
8991{
c67a470b
PZ
8992 struct drm_i915_private *dev_priv = dev->dev_private;
8993
f62a0076
CW
8994 if (dev_priv->mm.busy)
8995 return;
8996
43694d69 8997 intel_runtime_pm_get(dev_priv);
c67a470b 8998 i915_update_gfx_val(dev_priv);
f62a0076 8999 dev_priv->mm.busy = true;
f047e395
CW
9000}
9001
9002void intel_mark_idle(struct drm_device *dev)
652c393a 9003{
c67a470b 9004 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9005 struct drm_crtc *crtc;
652c393a 9006
f62a0076
CW
9007 if (!dev_priv->mm.busy)
9008 return;
9009
9010 dev_priv->mm.busy = false;
9011
d330a953 9012 if (!i915.powersave)
bb4cdd53 9013 goto out;
652c393a 9014
70e1e0ec 9015 for_each_crtc(dev, crtc) {
f4510a27 9016 if (!crtc->primary->fb)
652c393a
JB
9017 continue;
9018
725a5b54 9019 intel_decrease_pllclock(crtc);
652c393a 9020 }
b29c19b6 9021
3d13ef2e 9022 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9023 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9024
9025out:
43694d69 9026 intel_runtime_pm_put(dev_priv);
652c393a
JB
9027}
9028
f5de6e07
ACO
9029static void intel_crtc_set_state(struct intel_crtc *crtc,
9030 struct intel_crtc_state *crtc_state)
9031{
9032 kfree(crtc->config);
9033 crtc->config = crtc_state;
16f3f658 9034 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9035}
9036
79e53945
JB
9037static void intel_crtc_destroy(struct drm_crtc *crtc)
9038{
9039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9040 struct drm_device *dev = crtc->dev;
9041 struct intel_unpin_work *work;
67e77c5a 9042
5e2d7afc 9043 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9044 work = intel_crtc->unpin_work;
9045 intel_crtc->unpin_work = NULL;
5e2d7afc 9046 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9047
9048 if (work) {
9049 cancel_work_sync(&work->work);
9050 kfree(work);
9051 }
79e53945 9052
f5de6e07 9053 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9054 drm_crtc_cleanup(crtc);
67e77c5a 9055
79e53945
JB
9056 kfree(intel_crtc);
9057}
9058
6b95a207
KH
9059static void intel_unpin_work_fn(struct work_struct *__work)
9060{
9061 struct intel_unpin_work *work =
9062 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9063 struct drm_device *dev = work->crtc->dev;
f99d7069 9064 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9065
b4a98e57 9066 mutex_lock(&dev->struct_mutex);
1690e1eb 9067 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9068 drm_gem_object_unreference(&work->pending_flip_obj->base);
9069 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9070
7ff0ebcc 9071 intel_fbc_update(dev);
f06cc1b9
JH
9072
9073 if (work->flip_queued_req)
146d84f0 9074 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9075 mutex_unlock(&dev->struct_mutex);
9076
f99d7069
DV
9077 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9078
b4a98e57
CW
9079 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9080 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9081
6b95a207
KH
9082 kfree(work);
9083}
9084
1afe3e9d 9085static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9086 struct drm_crtc *crtc)
6b95a207 9087{
6b95a207
KH
9088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9089 struct intel_unpin_work *work;
6b95a207
KH
9090 unsigned long flags;
9091
9092 /* Ignore early vblank irqs */
9093 if (intel_crtc == NULL)
9094 return;
9095
f326038a
DV
9096 /*
9097 * This is called both by irq handlers and the reset code (to complete
9098 * lost pageflips) so needs the full irqsave spinlocks.
9099 */
6b95a207
KH
9100 spin_lock_irqsave(&dev->event_lock, flags);
9101 work = intel_crtc->unpin_work;
e7d841ca
CW
9102
9103 /* Ensure we don't miss a work->pending update ... */
9104 smp_rmb();
9105
9106 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9107 spin_unlock_irqrestore(&dev->event_lock, flags);
9108 return;
9109 }
9110
d6bbafa1 9111 page_flip_completed(intel_crtc);
0af7e4df 9112
6b95a207 9113 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9114}
9115
1afe3e9d
JB
9116void intel_finish_page_flip(struct drm_device *dev, int pipe)
9117{
fbee40df 9118 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9119 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9120
49b14a5c 9121 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9122}
9123
9124void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9125{
fbee40df 9126 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9127 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9128
49b14a5c 9129 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9130}
9131
75f7f3ec
VS
9132/* Is 'a' after or equal to 'b'? */
9133static bool g4x_flip_count_after_eq(u32 a, u32 b)
9134{
9135 return !((a - b) & 0x80000000);
9136}
9137
9138static bool page_flip_finished(struct intel_crtc *crtc)
9139{
9140 struct drm_device *dev = crtc->base.dev;
9141 struct drm_i915_private *dev_priv = dev->dev_private;
9142
bdfa7542
VS
9143 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9144 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9145 return true;
9146
75f7f3ec
VS
9147 /*
9148 * The relevant registers doen't exist on pre-ctg.
9149 * As the flip done interrupt doesn't trigger for mmio
9150 * flips on gmch platforms, a flip count check isn't
9151 * really needed there. But since ctg has the registers,
9152 * include it in the check anyway.
9153 */
9154 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9155 return true;
9156
9157 /*
9158 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9159 * used the same base address. In that case the mmio flip might
9160 * have completed, but the CS hasn't even executed the flip yet.
9161 *
9162 * A flip count check isn't enough as the CS might have updated
9163 * the base address just after start of vblank, but before we
9164 * managed to process the interrupt. This means we'd complete the
9165 * CS flip too soon.
9166 *
9167 * Combining both checks should get us a good enough result. It may
9168 * still happen that the CS flip has been executed, but has not
9169 * yet actually completed. But in case the base address is the same
9170 * anyway, we don't really care.
9171 */
9172 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9173 crtc->unpin_work->gtt_offset &&
9174 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9175 crtc->unpin_work->flip_count);
9176}
9177
6b95a207
KH
9178void intel_prepare_page_flip(struct drm_device *dev, int plane)
9179{
fbee40df 9180 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9181 struct intel_crtc *intel_crtc =
9182 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9183 unsigned long flags;
9184
f326038a
DV
9185
9186 /*
9187 * This is called both by irq handlers and the reset code (to complete
9188 * lost pageflips) so needs the full irqsave spinlocks.
9189 *
9190 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9191 * generate a page-flip completion irq, i.e. every modeset
9192 * is also accompanied by a spurious intel_prepare_page_flip().
9193 */
6b95a207 9194 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9195 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9196 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9197 spin_unlock_irqrestore(&dev->event_lock, flags);
9198}
9199
eba905b2 9200static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9201{
9202 /* Ensure that the work item is consistent when activating it ... */
9203 smp_wmb();
9204 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9205 /* and that it is marked active as soon as the irq could fire. */
9206 smp_wmb();
9207}
9208
8c9f3aaf
JB
9209static int intel_gen2_queue_flip(struct drm_device *dev,
9210 struct drm_crtc *crtc,
9211 struct drm_framebuffer *fb,
ed8d1975 9212 struct drm_i915_gem_object *obj,
a4872ba6 9213 struct intel_engine_cs *ring,
ed8d1975 9214 uint32_t flags)
8c9f3aaf 9215{
8c9f3aaf 9216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9217 u32 flip_mask;
9218 int ret;
9219
6d90c952 9220 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9221 if (ret)
4fa62c89 9222 return ret;
8c9f3aaf
JB
9223
9224 /* Can't queue multiple flips, so wait for the previous
9225 * one to finish before executing the next.
9226 */
9227 if (intel_crtc->plane)
9228 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9229 else
9230 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9231 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9232 intel_ring_emit(ring, MI_NOOP);
9233 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9234 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9235 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9236 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9237 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9238
9239 intel_mark_page_flip_active(intel_crtc);
09246732 9240 __intel_ring_advance(ring);
83d4092b 9241 return 0;
8c9f3aaf
JB
9242}
9243
9244static int intel_gen3_queue_flip(struct drm_device *dev,
9245 struct drm_crtc *crtc,
9246 struct drm_framebuffer *fb,
ed8d1975 9247 struct drm_i915_gem_object *obj,
a4872ba6 9248 struct intel_engine_cs *ring,
ed8d1975 9249 uint32_t flags)
8c9f3aaf 9250{
8c9f3aaf 9251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9252 u32 flip_mask;
9253 int ret;
9254
6d90c952 9255 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9256 if (ret)
4fa62c89 9257 return ret;
8c9f3aaf
JB
9258
9259 if (intel_crtc->plane)
9260 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9261 else
9262 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9263 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9264 intel_ring_emit(ring, MI_NOOP);
9265 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9266 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9267 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9268 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9269 intel_ring_emit(ring, MI_NOOP);
9270
e7d841ca 9271 intel_mark_page_flip_active(intel_crtc);
09246732 9272 __intel_ring_advance(ring);
83d4092b 9273 return 0;
8c9f3aaf
JB
9274}
9275
9276static int intel_gen4_queue_flip(struct drm_device *dev,
9277 struct drm_crtc *crtc,
9278 struct drm_framebuffer *fb,
ed8d1975 9279 struct drm_i915_gem_object *obj,
a4872ba6 9280 struct intel_engine_cs *ring,
ed8d1975 9281 uint32_t flags)
8c9f3aaf
JB
9282{
9283 struct drm_i915_private *dev_priv = dev->dev_private;
9284 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9285 uint32_t pf, pipesrc;
9286 int ret;
9287
6d90c952 9288 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9289 if (ret)
4fa62c89 9290 return ret;
8c9f3aaf
JB
9291
9292 /* i965+ uses the linear or tiled offsets from the
9293 * Display Registers (which do not change across a page-flip)
9294 * so we need only reprogram the base address.
9295 */
6d90c952
DV
9296 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9297 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9298 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9299 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9300 obj->tiling_mode);
8c9f3aaf
JB
9301
9302 /* XXX Enabling the panel-fitter across page-flip is so far
9303 * untested on non-native modes, so ignore it for now.
9304 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9305 */
9306 pf = 0;
9307 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9308 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9309
9310 intel_mark_page_flip_active(intel_crtc);
09246732 9311 __intel_ring_advance(ring);
83d4092b 9312 return 0;
8c9f3aaf
JB
9313}
9314
9315static int intel_gen6_queue_flip(struct drm_device *dev,
9316 struct drm_crtc *crtc,
9317 struct drm_framebuffer *fb,
ed8d1975 9318 struct drm_i915_gem_object *obj,
a4872ba6 9319 struct intel_engine_cs *ring,
ed8d1975 9320 uint32_t flags)
8c9f3aaf
JB
9321{
9322 struct drm_i915_private *dev_priv = dev->dev_private;
9323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9324 uint32_t pf, pipesrc;
9325 int ret;
9326
6d90c952 9327 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9328 if (ret)
4fa62c89 9329 return ret;
8c9f3aaf 9330
6d90c952
DV
9331 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9332 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9333 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9334 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9335
dc257cf1
DV
9336 /* Contrary to the suggestions in the documentation,
9337 * "Enable Panel Fitter" does not seem to be required when page
9338 * flipping with a non-native mode, and worse causes a normal
9339 * modeset to fail.
9340 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9341 */
9342 pf = 0;
8c9f3aaf 9343 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9344 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9345
9346 intel_mark_page_flip_active(intel_crtc);
09246732 9347 __intel_ring_advance(ring);
83d4092b 9348 return 0;
8c9f3aaf
JB
9349}
9350
7c9017e5
JB
9351static int intel_gen7_queue_flip(struct drm_device *dev,
9352 struct drm_crtc *crtc,
9353 struct drm_framebuffer *fb,
ed8d1975 9354 struct drm_i915_gem_object *obj,
a4872ba6 9355 struct intel_engine_cs *ring,
ed8d1975 9356 uint32_t flags)
7c9017e5 9357{
7c9017e5 9358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9359 uint32_t plane_bit = 0;
ffe74d75
CW
9360 int len, ret;
9361
eba905b2 9362 switch (intel_crtc->plane) {
cb05d8de
DV
9363 case PLANE_A:
9364 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9365 break;
9366 case PLANE_B:
9367 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9368 break;
9369 case PLANE_C:
9370 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9371 break;
9372 default:
9373 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9374 return -ENODEV;
cb05d8de
DV
9375 }
9376
ffe74d75 9377 len = 4;
f476828a 9378 if (ring->id == RCS) {
ffe74d75 9379 len += 6;
f476828a
DL
9380 /*
9381 * On Gen 8, SRM is now taking an extra dword to accommodate
9382 * 48bits addresses, and we need a NOOP for the batch size to
9383 * stay even.
9384 */
9385 if (IS_GEN8(dev))
9386 len += 2;
9387 }
ffe74d75 9388
f66fab8e
VS
9389 /*
9390 * BSpec MI_DISPLAY_FLIP for IVB:
9391 * "The full packet must be contained within the same cache line."
9392 *
9393 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9394 * cacheline, if we ever start emitting more commands before
9395 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9396 * then do the cacheline alignment, and finally emit the
9397 * MI_DISPLAY_FLIP.
9398 */
9399 ret = intel_ring_cacheline_align(ring);
9400 if (ret)
4fa62c89 9401 return ret;
f66fab8e 9402
ffe74d75 9403 ret = intel_ring_begin(ring, len);
7c9017e5 9404 if (ret)
4fa62c89 9405 return ret;
7c9017e5 9406
ffe74d75
CW
9407 /* Unmask the flip-done completion message. Note that the bspec says that
9408 * we should do this for both the BCS and RCS, and that we must not unmask
9409 * more than one flip event at any time (or ensure that one flip message
9410 * can be sent by waiting for flip-done prior to queueing new flips).
9411 * Experimentation says that BCS works despite DERRMR masking all
9412 * flip-done completion events and that unmasking all planes at once
9413 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9414 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9415 */
9416 if (ring->id == RCS) {
9417 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9418 intel_ring_emit(ring, DERRMR);
9419 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9420 DERRMR_PIPEB_PRI_FLIP_DONE |
9421 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9422 if (IS_GEN8(dev))
9423 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9424 MI_SRM_LRM_GLOBAL_GTT);
9425 else
9426 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9427 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9428 intel_ring_emit(ring, DERRMR);
9429 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9430 if (IS_GEN8(dev)) {
9431 intel_ring_emit(ring, 0);
9432 intel_ring_emit(ring, MI_NOOP);
9433 }
ffe74d75
CW
9434 }
9435
cb05d8de 9436 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9437 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9438 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9439 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9440
9441 intel_mark_page_flip_active(intel_crtc);
09246732 9442 __intel_ring_advance(ring);
83d4092b 9443 return 0;
7c9017e5
JB
9444}
9445
84c33a64
SG
9446static bool use_mmio_flip(struct intel_engine_cs *ring,
9447 struct drm_i915_gem_object *obj)
9448{
9449 /*
9450 * This is not being used for older platforms, because
9451 * non-availability of flip done interrupt forces us to use
9452 * CS flips. Older platforms derive flip done using some clever
9453 * tricks involving the flip_pending status bits and vblank irqs.
9454 * So using MMIO flips there would disrupt this mechanism.
9455 */
9456
8e09bf83
CW
9457 if (ring == NULL)
9458 return true;
9459
84c33a64
SG
9460 if (INTEL_INFO(ring->dev)->gen < 5)
9461 return false;
9462
9463 if (i915.use_mmio_flip < 0)
9464 return false;
9465 else if (i915.use_mmio_flip > 0)
9466 return true;
14bf993e
OM
9467 else if (i915.enable_execlists)
9468 return true;
84c33a64 9469 else
41c52415 9470 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9471}
9472
ff944564
DL
9473static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9474{
9475 struct drm_device *dev = intel_crtc->base.dev;
9476 struct drm_i915_private *dev_priv = dev->dev_private;
9477 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9478 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9479 struct drm_i915_gem_object *obj = intel_fb->obj;
9480 const enum pipe pipe = intel_crtc->pipe;
9481 u32 ctl, stride;
9482
9483 ctl = I915_READ(PLANE_CTL(pipe, 0));
9484 ctl &= ~PLANE_CTL_TILED_MASK;
9485 if (obj->tiling_mode == I915_TILING_X)
9486 ctl |= PLANE_CTL_TILED_X;
9487
9488 /*
9489 * The stride is either expressed as a multiple of 64 bytes chunks for
9490 * linear buffers or in number of tiles for tiled buffers.
9491 */
9492 stride = fb->pitches[0] >> 6;
9493 if (obj->tiling_mode == I915_TILING_X)
9494 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9495
9496 /*
9497 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9498 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9499 */
9500 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9501 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9502
9503 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9504 POSTING_READ(PLANE_SURF(pipe, 0));
9505}
9506
9507static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9508{
9509 struct drm_device *dev = intel_crtc->base.dev;
9510 struct drm_i915_private *dev_priv = dev->dev_private;
9511 struct intel_framebuffer *intel_fb =
9512 to_intel_framebuffer(intel_crtc->base.primary->fb);
9513 struct drm_i915_gem_object *obj = intel_fb->obj;
9514 u32 dspcntr;
9515 u32 reg;
9516
84c33a64
SG
9517 reg = DSPCNTR(intel_crtc->plane);
9518 dspcntr = I915_READ(reg);
9519
c5d97472
DL
9520 if (obj->tiling_mode != I915_TILING_NONE)
9521 dspcntr |= DISPPLANE_TILED;
9522 else
9523 dspcntr &= ~DISPPLANE_TILED;
9524
84c33a64
SG
9525 I915_WRITE(reg, dspcntr);
9526
9527 I915_WRITE(DSPSURF(intel_crtc->plane),
9528 intel_crtc->unpin_work->gtt_offset);
9529 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9530
ff944564
DL
9531}
9532
9533/*
9534 * XXX: This is the temporary way to update the plane registers until we get
9535 * around to using the usual plane update functions for MMIO flips
9536 */
9537static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9538{
9539 struct drm_device *dev = intel_crtc->base.dev;
9540 bool atomic_update;
9541 u32 start_vbl_count;
9542
9543 intel_mark_page_flip_active(intel_crtc);
9544
9545 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9546
9547 if (INTEL_INFO(dev)->gen >= 9)
9548 skl_do_mmio_flip(intel_crtc);
9549 else
9550 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9551 ilk_do_mmio_flip(intel_crtc);
9552
9362c7c5
ACO
9553 if (atomic_update)
9554 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9555}
9556
9362c7c5 9557static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9558{
cc8c4cc2 9559 struct intel_crtc *crtc =
9362c7c5 9560 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9561 struct intel_mmio_flip *mmio_flip;
84c33a64 9562
cc8c4cc2
JH
9563 mmio_flip = &crtc->mmio_flip;
9564 if (mmio_flip->req)
9c654818
JH
9565 WARN_ON(__i915_wait_request(mmio_flip->req,
9566 crtc->reset_counter,
9567 false, NULL, NULL) != 0);
84c33a64 9568
cc8c4cc2
JH
9569 intel_do_mmio_flip(crtc);
9570 if (mmio_flip->req) {
9571 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9572 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9573 mutex_unlock(&crtc->base.dev->struct_mutex);
9574 }
84c33a64
SG
9575}
9576
9577static int intel_queue_mmio_flip(struct drm_device *dev,
9578 struct drm_crtc *crtc,
9579 struct drm_framebuffer *fb,
9580 struct drm_i915_gem_object *obj,
9581 struct intel_engine_cs *ring,
9582 uint32_t flags)
9583{
84c33a64 9584 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9585
cc8c4cc2
JH
9586 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9587 obj->last_write_req);
536f5b5e
ACO
9588
9589 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9590
84c33a64
SG
9591 return 0;
9592}
9593
830c81db
DL
9594static int intel_gen9_queue_flip(struct drm_device *dev,
9595 struct drm_crtc *crtc,
9596 struct drm_framebuffer *fb,
9597 struct drm_i915_gem_object *obj,
9598 struct intel_engine_cs *ring,
9599 uint32_t flags)
9600{
9601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9602 uint32_t plane = 0, stride;
9603 int ret;
9604
9605 switch(intel_crtc->pipe) {
9606 case PIPE_A:
9607 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9608 break;
9609 case PIPE_B:
9610 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9611 break;
9612 case PIPE_C:
9613 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9614 break;
9615 default:
9616 WARN_ONCE(1, "unknown plane in flip command\n");
9617 return -ENODEV;
9618 }
9619
9620 switch (obj->tiling_mode) {
9621 case I915_TILING_NONE:
9622 stride = fb->pitches[0] >> 6;
9623 break;
9624 case I915_TILING_X:
9625 stride = fb->pitches[0] >> 9;
9626 break;
9627 default:
9628 WARN_ONCE(1, "unknown tiling in flip command\n");
9629 return -ENODEV;
9630 }
9631
9632 ret = intel_ring_begin(ring, 10);
9633 if (ret)
9634 return ret;
9635
9636 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9637 intel_ring_emit(ring, DERRMR);
9638 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9639 DERRMR_PIPEB_PRI_FLIP_DONE |
9640 DERRMR_PIPEC_PRI_FLIP_DONE));
9641 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9642 MI_SRM_LRM_GLOBAL_GTT);
9643 intel_ring_emit(ring, DERRMR);
9644 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9645 intel_ring_emit(ring, 0);
9646
9647 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9648 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9649 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9650
9651 intel_mark_page_flip_active(intel_crtc);
9652 __intel_ring_advance(ring);
9653
9654 return 0;
9655}
9656
8c9f3aaf
JB
9657static int intel_default_queue_flip(struct drm_device *dev,
9658 struct drm_crtc *crtc,
9659 struct drm_framebuffer *fb,
ed8d1975 9660 struct drm_i915_gem_object *obj,
a4872ba6 9661 struct intel_engine_cs *ring,
ed8d1975 9662 uint32_t flags)
8c9f3aaf
JB
9663{
9664 return -ENODEV;
9665}
9666
d6bbafa1
CW
9667static bool __intel_pageflip_stall_check(struct drm_device *dev,
9668 struct drm_crtc *crtc)
9669{
9670 struct drm_i915_private *dev_priv = dev->dev_private;
9671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9672 struct intel_unpin_work *work = intel_crtc->unpin_work;
9673 u32 addr;
9674
9675 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9676 return true;
9677
9678 if (!work->enable_stall_check)
9679 return false;
9680
9681 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9682 if (work->flip_queued_req &&
9683 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9684 return false;
9685
9686 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9687 }
9688
9689 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9690 return false;
9691
9692 /* Potential stall - if we see that the flip has happened,
9693 * assume a missed interrupt. */
9694 if (INTEL_INFO(dev)->gen >= 4)
9695 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9696 else
9697 addr = I915_READ(DSPADDR(intel_crtc->plane));
9698
9699 /* There is a potential issue here with a false positive after a flip
9700 * to the same address. We could address this by checking for a
9701 * non-incrementing frame counter.
9702 */
9703 return addr == work->gtt_offset;
9704}
9705
9706void intel_check_page_flip(struct drm_device *dev, int pipe)
9707{
9708 struct drm_i915_private *dev_priv = dev->dev_private;
9709 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9711
9712 WARN_ON(!in_irq());
d6bbafa1
CW
9713
9714 if (crtc == NULL)
9715 return;
9716
f326038a 9717 spin_lock(&dev->event_lock);
d6bbafa1
CW
9718 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9719 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9720 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9721 page_flip_completed(intel_crtc);
9722 }
f326038a 9723 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9724}
9725
6b95a207
KH
9726static int intel_crtc_page_flip(struct drm_crtc *crtc,
9727 struct drm_framebuffer *fb,
ed8d1975
KP
9728 struct drm_pending_vblank_event *event,
9729 uint32_t page_flip_flags)
6b95a207
KH
9730{
9731 struct drm_device *dev = crtc->dev;
9732 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9733 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9734 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9735 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9736 struct drm_plane *primary = crtc->primary;
a071fa00 9737 enum pipe pipe = intel_crtc->pipe;
6b95a207 9738 struct intel_unpin_work *work;
a4872ba6 9739 struct intel_engine_cs *ring;
52e68630 9740 int ret;
6b95a207 9741
2ff8fde1
MR
9742 /*
9743 * drm_mode_page_flip_ioctl() should already catch this, but double
9744 * check to be safe. In the future we may enable pageflipping from
9745 * a disabled primary plane.
9746 */
9747 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9748 return -EBUSY;
9749
e6a595d2 9750 /* Can't change pixel format via MI display flips. */
f4510a27 9751 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9752 return -EINVAL;
9753
9754 /*
9755 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9756 * Note that pitch changes could also affect these register.
9757 */
9758 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9759 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9760 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9761 return -EINVAL;
9762
f900db47
CW
9763 if (i915_terminally_wedged(&dev_priv->gpu_error))
9764 goto out_hang;
9765
b14c5679 9766 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9767 if (work == NULL)
9768 return -ENOMEM;
9769
6b95a207 9770 work->event = event;
b4a98e57 9771 work->crtc = crtc;
2ff8fde1 9772 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9773 INIT_WORK(&work->work, intel_unpin_work_fn);
9774
87b6b101 9775 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9776 if (ret)
9777 goto free_work;
9778
6b95a207 9779 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9780 spin_lock_irq(&dev->event_lock);
6b95a207 9781 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9782 /* Before declaring the flip queue wedged, check if
9783 * the hardware completed the operation behind our backs.
9784 */
9785 if (__intel_pageflip_stall_check(dev, crtc)) {
9786 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9787 page_flip_completed(intel_crtc);
9788 } else {
9789 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9790 spin_unlock_irq(&dev->event_lock);
468f0b44 9791
d6bbafa1
CW
9792 drm_crtc_vblank_put(crtc);
9793 kfree(work);
9794 return -EBUSY;
9795 }
6b95a207
KH
9796 }
9797 intel_crtc->unpin_work = work;
5e2d7afc 9798 spin_unlock_irq(&dev->event_lock);
6b95a207 9799
b4a98e57
CW
9800 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9801 flush_workqueue(dev_priv->wq);
9802
79158103
CW
9803 ret = i915_mutex_lock_interruptible(dev);
9804 if (ret)
9805 goto cleanup;
6b95a207 9806
75dfca80 9807 /* Reference the objects for the scheduled work. */
05394f39
CW
9808 drm_gem_object_reference(&work->old_fb_obj->base);
9809 drm_gem_object_reference(&obj->base);
6b95a207 9810
f4510a27 9811 crtc->primary->fb = fb;
96b099fd 9812
e1f99ce6 9813 work->pending_flip_obj = obj;
e1f99ce6 9814
b4a98e57 9815 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9816 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9817
75f7f3ec 9818 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9819 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9820
4fa62c89
VS
9821 if (IS_VALLEYVIEW(dev)) {
9822 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9823 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9824 /* vlv: DISPLAY_FLIP fails to change tiling */
9825 ring = NULL;
48bf5b2d 9826 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 9827 ring = &dev_priv->ring[BCS];
4fa62c89 9828 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9829 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9830 if (ring == NULL || ring->id != RCS)
9831 ring = &dev_priv->ring[BCS];
9832 } else {
9833 ring = &dev_priv->ring[RCS];
9834 }
9835
850c4cdc 9836 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9837 if (ret)
9838 goto cleanup_pending;
6b95a207 9839
4fa62c89
VS
9840 work->gtt_offset =
9841 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9842
d6bbafa1 9843 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9844 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9845 page_flip_flags);
d6bbafa1
CW
9846 if (ret)
9847 goto cleanup_unpin;
9848
f06cc1b9
JH
9849 i915_gem_request_assign(&work->flip_queued_req,
9850 obj->last_write_req);
d6bbafa1 9851 } else {
84c33a64 9852 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9853 page_flip_flags);
9854 if (ret)
9855 goto cleanup_unpin;
9856
f06cc1b9
JH
9857 i915_gem_request_assign(&work->flip_queued_req,
9858 intel_ring_get_request(ring));
d6bbafa1
CW
9859 }
9860
9861 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9862 work->enable_stall_check = true;
4fa62c89 9863
a071fa00
DV
9864 i915_gem_track_fb(work->old_fb_obj, obj,
9865 INTEL_FRONTBUFFER_PRIMARY(pipe));
9866
7ff0ebcc 9867 intel_fbc_disable(dev);
f99d7069 9868 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9869 mutex_unlock(&dev->struct_mutex);
9870
e5510fac
JB
9871 trace_i915_flip_request(intel_crtc->plane, obj);
9872
6b95a207 9873 return 0;
96b099fd 9874
4fa62c89
VS
9875cleanup_unpin:
9876 intel_unpin_fb_obj(obj);
8c9f3aaf 9877cleanup_pending:
b4a98e57 9878 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9879 crtc->primary->fb = old_fb;
05394f39
CW
9880 drm_gem_object_unreference(&work->old_fb_obj->base);
9881 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9882 mutex_unlock(&dev->struct_mutex);
9883
79158103 9884cleanup:
5e2d7afc 9885 spin_lock_irq(&dev->event_lock);
96b099fd 9886 intel_crtc->unpin_work = NULL;
5e2d7afc 9887 spin_unlock_irq(&dev->event_lock);
96b099fd 9888
87b6b101 9889 drm_crtc_vblank_put(crtc);
7317c75e 9890free_work:
96b099fd
CW
9891 kfree(work);
9892
f900db47
CW
9893 if (ret == -EIO) {
9894out_hang:
53a366b9 9895 ret = intel_plane_restore(primary);
f0d3dad3 9896 if (ret == 0 && event) {
5e2d7afc 9897 spin_lock_irq(&dev->event_lock);
a071fa00 9898 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9899 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9900 }
f900db47 9901 }
96b099fd 9902 return ret;
6b95a207
KH
9903}
9904
f6e5b160 9905static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9906 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9907 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
9908 .atomic_begin = intel_begin_crtc_commit,
9909 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
9910};
9911
9a935856
DV
9912/**
9913 * intel_modeset_update_staged_output_state
9914 *
9915 * Updates the staged output configuration state, e.g. after we've read out the
9916 * current hw state.
9917 */
9918static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9919{
7668851f 9920 struct intel_crtc *crtc;
9a935856
DV
9921 struct intel_encoder *encoder;
9922 struct intel_connector *connector;
f6e5b160 9923
9a935856
DV
9924 list_for_each_entry(connector, &dev->mode_config.connector_list,
9925 base.head) {
9926 connector->new_encoder =
9927 to_intel_encoder(connector->base.encoder);
9928 }
f6e5b160 9929
b2784e15 9930 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9931 encoder->new_crtc =
9932 to_intel_crtc(encoder->base.crtc);
9933 }
7668851f 9934
d3fcc808 9935 for_each_intel_crtc(dev, crtc) {
7668851f 9936 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9937
9938 if (crtc->new_enabled)
6e3c9717 9939 crtc->new_config = crtc->config;
7bd0a8e7
VS
9940 else
9941 crtc->new_config = NULL;
7668851f 9942 }
f6e5b160
CW
9943}
9944
9a935856
DV
9945/**
9946 * intel_modeset_commit_output_state
9947 *
9948 * This function copies the stage display pipe configuration to the real one.
9949 */
9950static void intel_modeset_commit_output_state(struct drm_device *dev)
9951{
7668851f 9952 struct intel_crtc *crtc;
9a935856
DV
9953 struct intel_encoder *encoder;
9954 struct intel_connector *connector;
f6e5b160 9955
9a935856
DV
9956 list_for_each_entry(connector, &dev->mode_config.connector_list,
9957 base.head) {
9958 connector->base.encoder = &connector->new_encoder->base;
9959 }
f6e5b160 9960
b2784e15 9961 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9962 encoder->base.crtc = &encoder->new_crtc->base;
9963 }
7668851f 9964
d3fcc808 9965 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9966 crtc->base.enabled = crtc->new_enabled;
9967 }
9a935856
DV
9968}
9969
050f7aeb 9970static void
eba905b2 9971connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 9972 struct intel_crtc_state *pipe_config)
050f7aeb
DV
9973{
9974 int bpp = pipe_config->pipe_bpp;
9975
9976 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9977 connector->base.base.id,
c23cc417 9978 connector->base.name);
050f7aeb
DV
9979
9980 /* Don't use an invalid EDID bpc value */
9981 if (connector->base.display_info.bpc &&
9982 connector->base.display_info.bpc * 3 < bpp) {
9983 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9984 bpp, connector->base.display_info.bpc*3);
9985 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9986 }
9987
9988 /* Clamp bpp to 8 on screens without EDID 1.4 */
9989 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9990 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9991 bpp);
9992 pipe_config->pipe_bpp = 24;
9993 }
9994}
9995
4e53c2e0 9996static int
050f7aeb
DV
9997compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9998 struct drm_framebuffer *fb,
5cec258b 9999 struct intel_crtc_state *pipe_config)
4e53c2e0 10000{
050f7aeb
DV
10001 struct drm_device *dev = crtc->base.dev;
10002 struct intel_connector *connector;
4e53c2e0
DV
10003 int bpp;
10004
d42264b1
DV
10005 switch (fb->pixel_format) {
10006 case DRM_FORMAT_C8:
4e53c2e0
DV
10007 bpp = 8*3; /* since we go through a colormap */
10008 break;
d42264b1
DV
10009 case DRM_FORMAT_XRGB1555:
10010 case DRM_FORMAT_ARGB1555:
10011 /* checked in intel_framebuffer_init already */
10012 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10013 return -EINVAL;
10014 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10015 bpp = 6*3; /* min is 18bpp */
10016 break;
d42264b1
DV
10017 case DRM_FORMAT_XBGR8888:
10018 case DRM_FORMAT_ABGR8888:
10019 /* checked in intel_framebuffer_init already */
10020 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10021 return -EINVAL;
10022 case DRM_FORMAT_XRGB8888:
10023 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10024 bpp = 8*3;
10025 break;
d42264b1
DV
10026 case DRM_FORMAT_XRGB2101010:
10027 case DRM_FORMAT_ARGB2101010:
10028 case DRM_FORMAT_XBGR2101010:
10029 case DRM_FORMAT_ABGR2101010:
10030 /* checked in intel_framebuffer_init already */
10031 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10032 return -EINVAL;
4e53c2e0
DV
10033 bpp = 10*3;
10034 break;
baba133a 10035 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10036 default:
10037 DRM_DEBUG_KMS("unsupported depth\n");
10038 return -EINVAL;
10039 }
10040
4e53c2e0
DV
10041 pipe_config->pipe_bpp = bpp;
10042
10043 /* Clamp display bpp to EDID value */
10044 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10045 base.head) {
1b829e05
DV
10046 if (!connector->new_encoder ||
10047 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10048 continue;
10049
050f7aeb 10050 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10051 }
10052
10053 return bpp;
10054}
10055
644db711
DV
10056static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10057{
10058 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10059 "type: 0x%x flags: 0x%x\n",
1342830c 10060 mode->crtc_clock,
644db711
DV
10061 mode->crtc_hdisplay, mode->crtc_hsync_start,
10062 mode->crtc_hsync_end, mode->crtc_htotal,
10063 mode->crtc_vdisplay, mode->crtc_vsync_start,
10064 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10065}
10066
c0b03411 10067static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10068 struct intel_crtc_state *pipe_config,
c0b03411
DV
10069 const char *context)
10070{
10071 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10072 context, pipe_name(crtc->pipe));
10073
10074 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10075 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10076 pipe_config->pipe_bpp, pipe_config->dither);
10077 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10078 pipe_config->has_pch_encoder,
10079 pipe_config->fdi_lanes,
10080 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10081 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10082 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10083 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10084 pipe_config->has_dp_encoder,
10085 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10086 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10087 pipe_config->dp_m_n.tu);
b95af8be
VK
10088
10089 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10090 pipe_config->has_dp_encoder,
10091 pipe_config->dp_m2_n2.gmch_m,
10092 pipe_config->dp_m2_n2.gmch_n,
10093 pipe_config->dp_m2_n2.link_m,
10094 pipe_config->dp_m2_n2.link_n,
10095 pipe_config->dp_m2_n2.tu);
10096
55072d19
DV
10097 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10098 pipe_config->has_audio,
10099 pipe_config->has_infoframe);
10100
c0b03411 10101 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10102 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10103 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10104 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10105 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10106 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10107 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10108 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10109 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10110 pipe_config->gmch_pfit.control,
10111 pipe_config->gmch_pfit.pgm_ratios,
10112 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10113 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10114 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10115 pipe_config->pch_pfit.size,
10116 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10117 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10118 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10119}
10120
bc079e8b
VS
10121static bool encoders_cloneable(const struct intel_encoder *a,
10122 const struct intel_encoder *b)
accfc0c5 10123{
bc079e8b
VS
10124 /* masks could be asymmetric, so check both ways */
10125 return a == b || (a->cloneable & (1 << b->type) &&
10126 b->cloneable & (1 << a->type));
10127}
10128
10129static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10130 struct intel_encoder *encoder)
10131{
10132 struct drm_device *dev = crtc->base.dev;
10133 struct intel_encoder *source_encoder;
10134
b2784e15 10135 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10136 if (source_encoder->new_crtc != crtc)
10137 continue;
10138
10139 if (!encoders_cloneable(encoder, source_encoder))
10140 return false;
10141 }
10142
10143 return true;
10144}
10145
10146static bool check_encoder_cloning(struct intel_crtc *crtc)
10147{
10148 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10149 struct intel_encoder *encoder;
10150
b2784e15 10151 for_each_intel_encoder(dev, encoder) {
bc079e8b 10152 if (encoder->new_crtc != crtc)
accfc0c5
DV
10153 continue;
10154
bc079e8b
VS
10155 if (!check_single_encoder_cloning(crtc, encoder))
10156 return false;
accfc0c5
DV
10157 }
10158
bc079e8b 10159 return true;
accfc0c5
DV
10160}
10161
00f0b378
VS
10162static bool check_digital_port_conflicts(struct drm_device *dev)
10163{
10164 struct intel_connector *connector;
10165 unsigned int used_ports = 0;
10166
10167 /*
10168 * Walk the connector list instead of the encoder
10169 * list to detect the problem on ddi platforms
10170 * where there's just one encoder per digital port.
10171 */
10172 list_for_each_entry(connector,
10173 &dev->mode_config.connector_list, base.head) {
10174 struct intel_encoder *encoder = connector->new_encoder;
10175
10176 if (!encoder)
10177 continue;
10178
10179 WARN_ON(!encoder->new_crtc);
10180
10181 switch (encoder->type) {
10182 unsigned int port_mask;
10183 case INTEL_OUTPUT_UNKNOWN:
10184 if (WARN_ON(!HAS_DDI(dev)))
10185 break;
10186 case INTEL_OUTPUT_DISPLAYPORT:
10187 case INTEL_OUTPUT_HDMI:
10188 case INTEL_OUTPUT_EDP:
10189 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10190
10191 /* the same port mustn't appear more than once */
10192 if (used_ports & port_mask)
10193 return false;
10194
10195 used_ports |= port_mask;
10196 default:
10197 break;
10198 }
10199 }
10200
10201 return true;
10202}
10203
5cec258b 10204static struct intel_crtc_state *
b8cecdf5 10205intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10206 struct drm_framebuffer *fb,
b8cecdf5 10207 struct drm_display_mode *mode)
ee7b9f93 10208{
7758a113 10209 struct drm_device *dev = crtc->dev;
7758a113 10210 struct intel_encoder *encoder;
5cec258b 10211 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10212 int plane_bpp, ret = -EINVAL;
10213 bool retry = true;
ee7b9f93 10214
bc079e8b 10215 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10216 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10217 return ERR_PTR(-EINVAL);
10218 }
10219
00f0b378
VS
10220 if (!check_digital_port_conflicts(dev)) {
10221 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10222 return ERR_PTR(-EINVAL);
10223 }
10224
b8cecdf5
DV
10225 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10226 if (!pipe_config)
7758a113
DV
10227 return ERR_PTR(-ENOMEM);
10228
2d112de7
ACO
10229 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10230 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10231
e143a21c
DV
10232 pipe_config->cpu_transcoder =
10233 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10234 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10235
2960bc9c
ID
10236 /*
10237 * Sanitize sync polarity flags based on requested ones. If neither
10238 * positive or negative polarity is requested, treat this as meaning
10239 * negative polarity.
10240 */
2d112de7 10241 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10242 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10243 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10244
2d112de7 10245 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10246 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10247 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10248
050f7aeb
DV
10249 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10250 * plane pixel format and any sink constraints into account. Returns the
10251 * source plane bpp so that dithering can be selected on mismatches
10252 * after encoders and crtc also have had their say. */
10253 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10254 fb, pipe_config);
4e53c2e0
DV
10255 if (plane_bpp < 0)
10256 goto fail;
10257
e41a56be
VS
10258 /*
10259 * Determine the real pipe dimensions. Note that stereo modes can
10260 * increase the actual pipe size due to the frame doubling and
10261 * insertion of additional space for blanks between the frame. This
10262 * is stored in the crtc timings. We use the requested mode to do this
10263 * computation to clearly distinguish it from the adjusted mode, which
10264 * can be changed by the connectors in the below retry loop.
10265 */
2d112de7 10266 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10267 &pipe_config->pipe_src_w,
10268 &pipe_config->pipe_src_h);
e41a56be 10269
e29c22c0 10270encoder_retry:
ef1b460d 10271 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10272 pipe_config->port_clock = 0;
ef1b460d 10273 pipe_config->pixel_multiplier = 1;
ff9a6750 10274
135c81b8 10275 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10276 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10277 CRTC_STEREO_DOUBLE);
135c81b8 10278
7758a113
DV
10279 /* Pass our mode to the connectors and the CRTC to give them a chance to
10280 * adjust it according to limitations or connector properties, and also
10281 * a chance to reject the mode entirely.
47f1c6c9 10282 */
b2784e15 10283 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10284
7758a113
DV
10285 if (&encoder->new_crtc->base != crtc)
10286 continue;
7ae89233 10287
efea6e8e
DV
10288 if (!(encoder->compute_config(encoder, pipe_config))) {
10289 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10290 goto fail;
10291 }
ee7b9f93 10292 }
47f1c6c9 10293
ff9a6750
DV
10294 /* Set default port clock if not overwritten by the encoder. Needs to be
10295 * done afterwards in case the encoder adjusts the mode. */
10296 if (!pipe_config->port_clock)
2d112de7 10297 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10298 * pipe_config->pixel_multiplier;
ff9a6750 10299
a43f6e0f 10300 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10301 if (ret < 0) {
7758a113
DV
10302 DRM_DEBUG_KMS("CRTC fixup failed\n");
10303 goto fail;
ee7b9f93 10304 }
e29c22c0
DV
10305
10306 if (ret == RETRY) {
10307 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10308 ret = -EINVAL;
10309 goto fail;
10310 }
10311
10312 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10313 retry = false;
10314 goto encoder_retry;
10315 }
10316
4e53c2e0
DV
10317 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10318 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10319 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10320
b8cecdf5 10321 return pipe_config;
7758a113 10322fail:
b8cecdf5 10323 kfree(pipe_config);
e29c22c0 10324 return ERR_PTR(ret);
ee7b9f93 10325}
47f1c6c9 10326
e2e1ed41
DV
10327/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10328 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10329static void
10330intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10331 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10332{
10333 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10334 struct drm_device *dev = crtc->dev;
10335 struct intel_encoder *encoder;
10336 struct intel_connector *connector;
10337 struct drm_crtc *tmp_crtc;
79e53945 10338
e2e1ed41 10339 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10340
e2e1ed41
DV
10341 /* Check which crtcs have changed outputs connected to them, these need
10342 * to be part of the prepare_pipes mask. We don't (yet) support global
10343 * modeset across multiple crtcs, so modeset_pipes will only have one
10344 * bit set at most. */
10345 list_for_each_entry(connector, &dev->mode_config.connector_list,
10346 base.head) {
10347 if (connector->base.encoder == &connector->new_encoder->base)
10348 continue;
79e53945 10349
e2e1ed41
DV
10350 if (connector->base.encoder) {
10351 tmp_crtc = connector->base.encoder->crtc;
10352
10353 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10354 }
10355
10356 if (connector->new_encoder)
10357 *prepare_pipes |=
10358 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10359 }
10360
b2784e15 10361 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10362 if (encoder->base.crtc == &encoder->new_crtc->base)
10363 continue;
10364
10365 if (encoder->base.crtc) {
10366 tmp_crtc = encoder->base.crtc;
10367
10368 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10369 }
10370
10371 if (encoder->new_crtc)
10372 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10373 }
10374
7668851f 10375 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10376 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10377 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10378 continue;
7e7d76c3 10379
7668851f 10380 if (!intel_crtc->new_enabled)
e2e1ed41 10381 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10382 else
10383 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10384 }
10385
e2e1ed41
DV
10386
10387 /* set_mode is also used to update properties on life display pipes. */
10388 intel_crtc = to_intel_crtc(crtc);
7668851f 10389 if (intel_crtc->new_enabled)
e2e1ed41
DV
10390 *prepare_pipes |= 1 << intel_crtc->pipe;
10391
b6c5164d
DV
10392 /*
10393 * For simplicity do a full modeset on any pipe where the output routing
10394 * changed. We could be more clever, but that would require us to be
10395 * more careful with calling the relevant encoder->mode_set functions.
10396 */
e2e1ed41
DV
10397 if (*prepare_pipes)
10398 *modeset_pipes = *prepare_pipes;
10399
10400 /* ... and mask these out. */
10401 *modeset_pipes &= ~(*disable_pipes);
10402 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10403
10404 /*
10405 * HACK: We don't (yet) fully support global modesets. intel_set_config
10406 * obies this rule, but the modeset restore mode of
10407 * intel_modeset_setup_hw_state does not.
10408 */
10409 *modeset_pipes &= 1 << intel_crtc->pipe;
10410 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10411
10412 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10413 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10414}
79e53945 10415
ea9d758d 10416static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10417{
ea9d758d 10418 struct drm_encoder *encoder;
f6e5b160 10419 struct drm_device *dev = crtc->dev;
f6e5b160 10420
ea9d758d
DV
10421 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10422 if (encoder->crtc == crtc)
10423 return true;
10424
10425 return false;
10426}
10427
10428static void
10429intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10430{
ba41c0de 10431 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10432 struct intel_encoder *intel_encoder;
10433 struct intel_crtc *intel_crtc;
10434 struct drm_connector *connector;
10435
ba41c0de
DV
10436 intel_shared_dpll_commit(dev_priv);
10437
b2784e15 10438 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10439 if (!intel_encoder->base.crtc)
10440 continue;
10441
10442 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10443
10444 if (prepare_pipes & (1 << intel_crtc->pipe))
10445 intel_encoder->connectors_active = false;
10446 }
10447
10448 intel_modeset_commit_output_state(dev);
10449
7668851f 10450 /* Double check state. */
d3fcc808 10451 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10452 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10453 WARN_ON(intel_crtc->new_config &&
6e3c9717 10454 intel_crtc->new_config != intel_crtc->config);
7bd0a8e7 10455 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10456 }
10457
10458 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10459 if (!connector->encoder || !connector->encoder->crtc)
10460 continue;
10461
10462 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10463
10464 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10465 struct drm_property *dpms_property =
10466 dev->mode_config.dpms_property;
10467
ea9d758d 10468 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10469 drm_object_property_set_value(&connector->base,
68d34720
DV
10470 dpms_property,
10471 DRM_MODE_DPMS_ON);
ea9d758d
DV
10472
10473 intel_encoder = to_intel_encoder(connector->encoder);
10474 intel_encoder->connectors_active = true;
10475 }
10476 }
10477
10478}
10479
3bd26263 10480static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10481{
3bd26263 10482 int diff;
f1f644dc
JB
10483
10484 if (clock1 == clock2)
10485 return true;
10486
10487 if (!clock1 || !clock2)
10488 return false;
10489
10490 diff = abs(clock1 - clock2);
10491
10492 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10493 return true;
10494
10495 return false;
10496}
10497
25c5b266
DV
10498#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10499 list_for_each_entry((intel_crtc), \
10500 &(dev)->mode_config.crtc_list, \
10501 base.head) \
0973f18f 10502 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10503
0e8ffe1b 10504static bool
2fa2fe9a 10505intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10506 struct intel_crtc_state *current_config,
10507 struct intel_crtc_state *pipe_config)
0e8ffe1b 10508{
66e985c0
DV
10509#define PIPE_CONF_CHECK_X(name) \
10510 if (current_config->name != pipe_config->name) { \
10511 DRM_ERROR("mismatch in " #name " " \
10512 "(expected 0x%08x, found 0x%08x)\n", \
10513 current_config->name, \
10514 pipe_config->name); \
10515 return false; \
10516 }
10517
08a24034
DV
10518#define PIPE_CONF_CHECK_I(name) \
10519 if (current_config->name != pipe_config->name) { \
10520 DRM_ERROR("mismatch in " #name " " \
10521 "(expected %i, found %i)\n", \
10522 current_config->name, \
10523 pipe_config->name); \
10524 return false; \
88adfff1
DV
10525 }
10526
b95af8be
VK
10527/* This is required for BDW+ where there is only one set of registers for
10528 * switching between high and low RR.
10529 * This macro can be used whenever a comparison has to be made between one
10530 * hw state and multiple sw state variables.
10531 */
10532#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10533 if ((current_config->name != pipe_config->name) && \
10534 (current_config->alt_name != pipe_config->name)) { \
10535 DRM_ERROR("mismatch in " #name " " \
10536 "(expected %i or %i, found %i)\n", \
10537 current_config->name, \
10538 current_config->alt_name, \
10539 pipe_config->name); \
10540 return false; \
10541 }
10542
1bd1bd80
DV
10543#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10544 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10545 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10546 "(expected %i, found %i)\n", \
10547 current_config->name & (mask), \
10548 pipe_config->name & (mask)); \
10549 return false; \
10550 }
10551
5e550656
VS
10552#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10553 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10554 DRM_ERROR("mismatch in " #name " " \
10555 "(expected %i, found %i)\n", \
10556 current_config->name, \
10557 pipe_config->name); \
10558 return false; \
10559 }
10560
bb760063
DV
10561#define PIPE_CONF_QUIRK(quirk) \
10562 ((current_config->quirks | pipe_config->quirks) & (quirk))
10563
eccb140b
DV
10564 PIPE_CONF_CHECK_I(cpu_transcoder);
10565
08a24034
DV
10566 PIPE_CONF_CHECK_I(has_pch_encoder);
10567 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10568 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10569 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10570 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10571 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10572 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10573
eb14cb74 10574 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10575
10576 if (INTEL_INFO(dev)->gen < 8) {
10577 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10578 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10579 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10580 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10581 PIPE_CONF_CHECK_I(dp_m_n.tu);
10582
10583 if (current_config->has_drrs) {
10584 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10585 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10586 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10587 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10588 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10589 }
10590 } else {
10591 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10592 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10593 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10594 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10595 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10596 }
eb14cb74 10597
2d112de7
ACO
10598 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10599 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10600 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10601 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10602 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10603 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10604
2d112de7
ACO
10605 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10606 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10607 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10608 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10609 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10610 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10611
c93f54cf 10612 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10613 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10614 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10615 IS_VALLEYVIEW(dev))
10616 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10617 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10618
9ed109a7
DV
10619 PIPE_CONF_CHECK_I(has_audio);
10620
2d112de7 10621 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10622 DRM_MODE_FLAG_INTERLACE);
10623
bb760063 10624 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10625 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10626 DRM_MODE_FLAG_PHSYNC);
2d112de7 10627 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10628 DRM_MODE_FLAG_NHSYNC);
2d112de7 10629 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10630 DRM_MODE_FLAG_PVSYNC);
2d112de7 10631 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10632 DRM_MODE_FLAG_NVSYNC);
10633 }
045ac3b5 10634
37327abd
VS
10635 PIPE_CONF_CHECK_I(pipe_src_w);
10636 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10637
9953599b
DV
10638 /*
10639 * FIXME: BIOS likes to set up a cloned config with lvds+external
10640 * screen. Since we don't yet re-compute the pipe config when moving
10641 * just the lvds port away to another pipe the sw tracking won't match.
10642 *
10643 * Proper atomic modesets with recomputed global state will fix this.
10644 * Until then just don't check gmch state for inherited modes.
10645 */
10646 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10647 PIPE_CONF_CHECK_I(gmch_pfit.control);
10648 /* pfit ratios are autocomputed by the hw on gen4+ */
10649 if (INTEL_INFO(dev)->gen < 4)
10650 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10651 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10652 }
10653
fd4daa9c
CW
10654 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10655 if (current_config->pch_pfit.enabled) {
10656 PIPE_CONF_CHECK_I(pch_pfit.pos);
10657 PIPE_CONF_CHECK_I(pch_pfit.size);
10658 }
2fa2fe9a 10659
e59150dc
JB
10660 /* BDW+ don't expose a synchronous way to read the state */
10661 if (IS_HASWELL(dev))
10662 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10663
282740f7
VS
10664 PIPE_CONF_CHECK_I(double_wide);
10665
26804afd
DV
10666 PIPE_CONF_CHECK_X(ddi_pll_sel);
10667
c0d43d62 10668 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10669 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10670 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10671 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10672 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10673 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10674 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10675 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10676 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10677
42571aef
VS
10678 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10679 PIPE_CONF_CHECK_I(pipe_bpp);
10680
2d112de7 10681 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10682 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10683
66e985c0 10684#undef PIPE_CONF_CHECK_X
08a24034 10685#undef PIPE_CONF_CHECK_I
b95af8be 10686#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10687#undef PIPE_CONF_CHECK_FLAGS
5e550656 10688#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10689#undef PIPE_CONF_QUIRK
88adfff1 10690
0e8ffe1b
DV
10691 return true;
10692}
10693
08db6652
DL
10694static void check_wm_state(struct drm_device *dev)
10695{
10696 struct drm_i915_private *dev_priv = dev->dev_private;
10697 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10698 struct intel_crtc *intel_crtc;
10699 int plane;
10700
10701 if (INTEL_INFO(dev)->gen < 9)
10702 return;
10703
10704 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10705 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10706
10707 for_each_intel_crtc(dev, intel_crtc) {
10708 struct skl_ddb_entry *hw_entry, *sw_entry;
10709 const enum pipe pipe = intel_crtc->pipe;
10710
10711 if (!intel_crtc->active)
10712 continue;
10713
10714 /* planes */
10715 for_each_plane(pipe, plane) {
10716 hw_entry = &hw_ddb.plane[pipe][plane];
10717 sw_entry = &sw_ddb->plane[pipe][plane];
10718
10719 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10720 continue;
10721
10722 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10723 "(expected (%u,%u), found (%u,%u))\n",
10724 pipe_name(pipe), plane + 1,
10725 sw_entry->start, sw_entry->end,
10726 hw_entry->start, hw_entry->end);
10727 }
10728
10729 /* cursor */
10730 hw_entry = &hw_ddb.cursor[pipe];
10731 sw_entry = &sw_ddb->cursor[pipe];
10732
10733 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10734 continue;
10735
10736 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10737 "(expected (%u,%u), found (%u,%u))\n",
10738 pipe_name(pipe),
10739 sw_entry->start, sw_entry->end,
10740 hw_entry->start, hw_entry->end);
10741 }
10742}
10743
91d1b4bd
DV
10744static void
10745check_connector_state(struct drm_device *dev)
8af6cf88 10746{
8af6cf88
DV
10747 struct intel_connector *connector;
10748
10749 list_for_each_entry(connector, &dev->mode_config.connector_list,
10750 base.head) {
10751 /* This also checks the encoder/connector hw state with the
10752 * ->get_hw_state callbacks. */
10753 intel_connector_check_state(connector);
10754
e2c719b7 10755 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
10756 "connector's staged encoder doesn't match current encoder\n");
10757 }
91d1b4bd
DV
10758}
10759
10760static void
10761check_encoder_state(struct drm_device *dev)
10762{
10763 struct intel_encoder *encoder;
10764 struct intel_connector *connector;
8af6cf88 10765
b2784e15 10766 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10767 bool enabled = false;
10768 bool active = false;
10769 enum pipe pipe, tracked_pipe;
10770
10771 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10772 encoder->base.base.id,
8e329a03 10773 encoder->base.name);
8af6cf88 10774
e2c719b7 10775 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 10776 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 10777 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
10778 "encoder's active_connectors set, but no crtc\n");
10779
10780 list_for_each_entry(connector, &dev->mode_config.connector_list,
10781 base.head) {
10782 if (connector->base.encoder != &encoder->base)
10783 continue;
10784 enabled = true;
10785 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10786 active = true;
10787 }
0e32b39c
DA
10788 /*
10789 * for MST connectors if we unplug the connector is gone
10790 * away but the encoder is still connected to a crtc
10791 * until a modeset happens in response to the hotplug.
10792 */
10793 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10794 continue;
10795
e2c719b7 10796 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
10797 "encoder's enabled state mismatch "
10798 "(expected %i, found %i)\n",
10799 !!encoder->base.crtc, enabled);
e2c719b7 10800 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
10801 "active encoder with no crtc\n");
10802
e2c719b7 10803 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
10804 "encoder's computed active state doesn't match tracked active state "
10805 "(expected %i, found %i)\n", active, encoder->connectors_active);
10806
10807 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 10808 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
10809 "encoder's hw state doesn't match sw tracking "
10810 "(expected %i, found %i)\n",
10811 encoder->connectors_active, active);
10812
10813 if (!encoder->base.crtc)
10814 continue;
10815
10816 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 10817 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
10818 "active encoder's pipe doesn't match"
10819 "(expected %i, found %i)\n",
10820 tracked_pipe, pipe);
10821
10822 }
91d1b4bd
DV
10823}
10824
10825static void
10826check_crtc_state(struct drm_device *dev)
10827{
fbee40df 10828 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10829 struct intel_crtc *crtc;
10830 struct intel_encoder *encoder;
5cec258b 10831 struct intel_crtc_state pipe_config;
8af6cf88 10832
d3fcc808 10833 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10834 bool enabled = false;
10835 bool active = false;
10836
045ac3b5
JB
10837 memset(&pipe_config, 0, sizeof(pipe_config));
10838
8af6cf88
DV
10839 DRM_DEBUG_KMS("[CRTC:%d]\n",
10840 crtc->base.base.id);
10841
e2c719b7 10842 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
8af6cf88
DV
10843 "active crtc, but not enabled in sw tracking\n");
10844
b2784e15 10845 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10846 if (encoder->base.crtc != &crtc->base)
10847 continue;
10848 enabled = true;
10849 if (encoder->connectors_active)
10850 active = true;
10851 }
6c49f241 10852
e2c719b7 10853 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
10854 "crtc's computed active state doesn't match tracked active state "
10855 "(expected %i, found %i)\n", active, crtc->active);
e2c719b7 10856 I915_STATE_WARN(enabled != crtc->base.enabled,
8af6cf88
DV
10857 "crtc's computed enabled state doesn't match tracked enabled state "
10858 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10859
0e8ffe1b
DV
10860 active = dev_priv->display.get_pipe_config(crtc,
10861 &pipe_config);
d62cf62a 10862
b6b5d049
VS
10863 /* hw state is inconsistent with the pipe quirk */
10864 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10865 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10866 active = crtc->active;
10867
b2784e15 10868 for_each_intel_encoder(dev, encoder) {
3eaba51c 10869 enum pipe pipe;
6c49f241
DV
10870 if (encoder->base.crtc != &crtc->base)
10871 continue;
1d37b689 10872 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10873 encoder->get_config(encoder, &pipe_config);
10874 }
10875
e2c719b7 10876 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
10877 "crtc active state doesn't match with hw state "
10878 "(expected %i, found %i)\n", crtc->active, active);
10879
c0b03411 10880 if (active &&
6e3c9717 10881 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 10882 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
10883 intel_dump_pipe_config(crtc, &pipe_config,
10884 "[hw state]");
6e3c9717 10885 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
10886 "[sw state]");
10887 }
8af6cf88
DV
10888 }
10889}
10890
91d1b4bd
DV
10891static void
10892check_shared_dpll_state(struct drm_device *dev)
10893{
fbee40df 10894 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10895 struct intel_crtc *crtc;
10896 struct intel_dpll_hw_state dpll_hw_state;
10897 int i;
5358901f
DV
10898
10899 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10900 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10901 int enabled_crtcs = 0, active_crtcs = 0;
10902 bool active;
10903
10904 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10905
10906 DRM_DEBUG_KMS("%s\n", pll->name);
10907
10908 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10909
e2c719b7 10910 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10911 "more active pll users than references: %i vs %i\n",
3e369b76 10912 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 10913 I915_STATE_WARN(pll->active && !pll->on,
5358901f 10914 "pll in active use but not on in sw tracking\n");
e2c719b7 10915 I915_STATE_WARN(pll->on && !pll->active,
35c95375 10916 "pll in on but not on in use in sw tracking\n");
e2c719b7 10917 I915_STATE_WARN(pll->on != active,
5358901f
DV
10918 "pll on state mismatch (expected %i, found %i)\n",
10919 pll->on, active);
10920
d3fcc808 10921 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10922 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10923 enabled_crtcs++;
10924 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10925 active_crtcs++;
10926 }
e2c719b7 10927 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
10928 "pll active crtcs mismatch (expected %i, found %i)\n",
10929 pll->active, active_crtcs);
e2c719b7 10930 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10931 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10932 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10933
e2c719b7 10934 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10935 sizeof(dpll_hw_state)),
10936 "pll hw state mismatch\n");
5358901f 10937 }
8af6cf88
DV
10938}
10939
91d1b4bd
DV
10940void
10941intel_modeset_check_state(struct drm_device *dev)
10942{
08db6652 10943 check_wm_state(dev);
91d1b4bd
DV
10944 check_connector_state(dev);
10945 check_encoder_state(dev);
10946 check_crtc_state(dev);
10947 check_shared_dpll_state(dev);
10948}
10949
5cec258b 10950void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
10951 int dotclock)
10952{
10953 /*
10954 * FDI already provided one idea for the dotclock.
10955 * Yell if the encoder disagrees.
10956 */
2d112de7 10957 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 10958 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 10959 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10960}
10961
80715b2f
VS
10962static void update_scanline_offset(struct intel_crtc *crtc)
10963{
10964 struct drm_device *dev = crtc->base.dev;
10965
10966 /*
10967 * The scanline counter increments at the leading edge of hsync.
10968 *
10969 * On most platforms it starts counting from vtotal-1 on the
10970 * first active line. That means the scanline counter value is
10971 * always one less than what we would expect. Ie. just after
10972 * start of vblank, which also occurs at start of hsync (on the
10973 * last active line), the scanline counter will read vblank_start-1.
10974 *
10975 * On gen2 the scanline counter starts counting from 1 instead
10976 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10977 * to keep the value positive), instead of adding one.
10978 *
10979 * On HSW+ the behaviour of the scanline counter depends on the output
10980 * type. For DP ports it behaves like most other platforms, but on HDMI
10981 * there's an extra 1 line difference. So we need to add two instead of
10982 * one to the value.
10983 */
10984 if (IS_GEN2(dev)) {
6e3c9717 10985 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
10986 int vtotal;
10987
10988 vtotal = mode->crtc_vtotal;
10989 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10990 vtotal /= 2;
10991
10992 crtc->scanline_offset = vtotal - 1;
10993 } else if (HAS_DDI(dev) &&
409ee761 10994 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10995 crtc->scanline_offset = 2;
10996 } else
10997 crtc->scanline_offset = 1;
10998}
10999
5cec258b 11000static struct intel_crtc_state *
7f27126e
JB
11001intel_modeset_compute_config(struct drm_crtc *crtc,
11002 struct drm_display_mode *mode,
11003 struct drm_framebuffer *fb,
11004 unsigned *modeset_pipes,
11005 unsigned *prepare_pipes,
11006 unsigned *disable_pipes)
11007{
5cec258b 11008 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
11009
11010 intel_modeset_affected_pipes(crtc, modeset_pipes,
11011 prepare_pipes, disable_pipes);
11012
11013 if ((*modeset_pipes) == 0)
11014 goto out;
11015
11016 /*
11017 * Note this needs changes when we start tracking multiple modes
11018 * and crtcs. At that point we'll need to compute the whole config
11019 * (i.e. one pipe_config for each crtc) rather than just the one
11020 * for this crtc.
11021 */
11022 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11023 if (IS_ERR(pipe_config)) {
11024 goto out;
11025 }
11026 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11027 "[modeset]");
7f27126e
JB
11028
11029out:
11030 return pipe_config;
11031}
11032
ed6739ef
ACO
11033static int __intel_set_mode_setup_plls(struct drm_device *dev,
11034 unsigned modeset_pipes,
11035 unsigned disable_pipes)
11036{
11037 struct drm_i915_private *dev_priv = to_i915(dev);
11038 unsigned clear_pipes = modeset_pipes | disable_pipes;
11039 struct intel_crtc *intel_crtc;
11040 int ret = 0;
11041
11042 if (!dev_priv->display.crtc_compute_clock)
11043 return 0;
11044
11045 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11046 if (ret)
11047 goto done;
11048
11049 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11050 struct intel_crtc_state *state = intel_crtc->new_config;
11051 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11052 state);
11053 if (ret) {
11054 intel_shared_dpll_abort_config(dev_priv);
11055 goto done;
11056 }
11057 }
11058
11059done:
11060 return ret;
11061}
11062
f30da187
DV
11063static int __intel_set_mode(struct drm_crtc *crtc,
11064 struct drm_display_mode *mode,
7f27126e 11065 int x, int y, struct drm_framebuffer *fb,
5cec258b 11066 struct intel_crtc_state *pipe_config,
7f27126e
JB
11067 unsigned modeset_pipes,
11068 unsigned prepare_pipes,
11069 unsigned disable_pipes)
a6778b3c
DV
11070{
11071 struct drm_device *dev = crtc->dev;
fbee40df 11072 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11073 struct drm_display_mode *saved_mode;
25c5b266 11074 struct intel_crtc *intel_crtc;
c0c36b94 11075 int ret = 0;
a6778b3c 11076
4b4b9238 11077 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11078 if (!saved_mode)
11079 return -ENOMEM;
a6778b3c 11080
3ac18232 11081 *saved_mode = crtc->mode;
a6778b3c 11082
b9950a13
VS
11083 if (modeset_pipes)
11084 to_intel_crtc(crtc)->new_config = pipe_config;
11085
30a970c6
JB
11086 /*
11087 * See if the config requires any additional preparation, e.g.
11088 * to adjust global state with pipes off. We need to do this
11089 * here so we can get the modeset_pipe updated config for the new
11090 * mode set on this crtc. For other crtcs we need to use the
11091 * adjusted_mode bits in the crtc directly.
11092 */
c164f833 11093 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11094 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11095
c164f833
VS
11096 /* may have added more to prepare_pipes than we should */
11097 prepare_pipes &= ~disable_pipes;
11098 }
11099
ed6739ef
ACO
11100 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11101 if (ret)
11102 goto done;
8bd31e67 11103
460da916
DV
11104 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11105 intel_crtc_disable(&intel_crtc->base);
11106
ea9d758d
DV
11107 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11108 if (intel_crtc->base.enabled)
11109 dev_priv->display.crtc_disable(&intel_crtc->base);
11110 }
a6778b3c 11111
6c4c86f5
DV
11112 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11113 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11114 *
11115 * Note we'll need to fix this up when we start tracking multiple
11116 * pipes; here we assume a single modeset_pipe and only track the
11117 * single crtc and mode.
f6e5b160 11118 */
b8cecdf5 11119 if (modeset_pipes) {
25c5b266 11120 crtc->mode = *mode;
b8cecdf5
DV
11121 /* mode_set/enable/disable functions rely on a correct pipe
11122 * config. */
f5de6e07 11123 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11124
11125 /*
11126 * Calculate and store various constants which
11127 * are later needed by vblank and swap-completion
11128 * timestamping. They are derived from true hwmode.
11129 */
11130 drm_calc_timestamping_constants(crtc,
2d112de7 11131 &pipe_config->base.adjusted_mode);
b8cecdf5 11132 }
7758a113 11133
ea9d758d
DV
11134 /* Only after disabling all output pipelines that will be changed can we
11135 * update the the output configuration. */
11136 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11137
50f6e502 11138 modeset_update_crtc_power_domains(dev);
47fab737 11139
a6778b3c
DV
11140 /* Set up the DPLL and any encoders state that needs to adjust or depend
11141 * on the DPLL.
f6e5b160 11142 */
25c5b266 11143 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11144 struct drm_plane *primary = intel_crtc->base.primary;
11145 int vdisplay, hdisplay;
4c10794f 11146
455a6808
GP
11147 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11148 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11149 fb, 0, 0,
11150 hdisplay, vdisplay,
11151 x << 16, y << 16,
11152 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11153 }
11154
11155 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11156 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11157 update_scanline_offset(intel_crtc);
11158
25c5b266 11159 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11160 }
a6778b3c 11161
a6778b3c
DV
11162 /* FIXME: add subpixel order */
11163done:
4b4b9238 11164 if (ret && crtc->enabled)
3ac18232 11165 crtc->mode = *saved_mode;
a6778b3c 11166
3ac18232 11167 kfree(saved_mode);
a6778b3c 11168 return ret;
f6e5b160
CW
11169}
11170
7f27126e
JB
11171static int intel_set_mode_pipes(struct drm_crtc *crtc,
11172 struct drm_display_mode *mode,
11173 int x, int y, struct drm_framebuffer *fb,
5cec258b 11174 struct intel_crtc_state *pipe_config,
7f27126e
JB
11175 unsigned modeset_pipes,
11176 unsigned prepare_pipes,
11177 unsigned disable_pipes)
f30da187
DV
11178{
11179 int ret;
11180
7f27126e
JB
11181 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11182 prepare_pipes, disable_pipes);
f30da187
DV
11183
11184 if (ret == 0)
11185 intel_modeset_check_state(crtc->dev);
11186
11187 return ret;
11188}
11189
7f27126e
JB
11190static int intel_set_mode(struct drm_crtc *crtc,
11191 struct drm_display_mode *mode,
11192 int x, int y, struct drm_framebuffer *fb)
11193{
5cec258b 11194 struct intel_crtc_state *pipe_config;
7f27126e
JB
11195 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11196
11197 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11198 &modeset_pipes,
11199 &prepare_pipes,
11200 &disable_pipes);
11201
11202 if (IS_ERR(pipe_config))
11203 return PTR_ERR(pipe_config);
11204
11205 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11206 modeset_pipes, prepare_pipes,
11207 disable_pipes);
11208}
11209
c0c36b94
CW
11210void intel_crtc_restore_mode(struct drm_crtc *crtc)
11211{
f4510a27 11212 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11213}
11214
25c5b266
DV
11215#undef for_each_intel_crtc_masked
11216
d9e55608
DV
11217static void intel_set_config_free(struct intel_set_config *config)
11218{
11219 if (!config)
11220 return;
11221
1aa4b628
DV
11222 kfree(config->save_connector_encoders);
11223 kfree(config->save_encoder_crtcs);
7668851f 11224 kfree(config->save_crtc_enabled);
d9e55608
DV
11225 kfree(config);
11226}
11227
85f9eb71
DV
11228static int intel_set_config_save_state(struct drm_device *dev,
11229 struct intel_set_config *config)
11230{
7668851f 11231 struct drm_crtc *crtc;
85f9eb71
DV
11232 struct drm_encoder *encoder;
11233 struct drm_connector *connector;
11234 int count;
11235
7668851f
VS
11236 config->save_crtc_enabled =
11237 kcalloc(dev->mode_config.num_crtc,
11238 sizeof(bool), GFP_KERNEL);
11239 if (!config->save_crtc_enabled)
11240 return -ENOMEM;
11241
1aa4b628
DV
11242 config->save_encoder_crtcs =
11243 kcalloc(dev->mode_config.num_encoder,
11244 sizeof(struct drm_crtc *), GFP_KERNEL);
11245 if (!config->save_encoder_crtcs)
85f9eb71
DV
11246 return -ENOMEM;
11247
1aa4b628
DV
11248 config->save_connector_encoders =
11249 kcalloc(dev->mode_config.num_connector,
11250 sizeof(struct drm_encoder *), GFP_KERNEL);
11251 if (!config->save_connector_encoders)
85f9eb71
DV
11252 return -ENOMEM;
11253
11254 /* Copy data. Note that driver private data is not affected.
11255 * Should anything bad happen only the expected state is
11256 * restored, not the drivers personal bookkeeping.
11257 */
7668851f 11258 count = 0;
70e1e0ec 11259 for_each_crtc(dev, crtc) {
7668851f
VS
11260 config->save_crtc_enabled[count++] = crtc->enabled;
11261 }
11262
85f9eb71
DV
11263 count = 0;
11264 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11265 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11266 }
11267
11268 count = 0;
11269 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11270 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11271 }
11272
11273 return 0;
11274}
11275
11276static void intel_set_config_restore_state(struct drm_device *dev,
11277 struct intel_set_config *config)
11278{
7668851f 11279 struct intel_crtc *crtc;
9a935856
DV
11280 struct intel_encoder *encoder;
11281 struct intel_connector *connector;
85f9eb71
DV
11282 int count;
11283
7668851f 11284 count = 0;
d3fcc808 11285 for_each_intel_crtc(dev, crtc) {
7668851f 11286 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11287
11288 if (crtc->new_enabled)
6e3c9717 11289 crtc->new_config = crtc->config;
7bd0a8e7
VS
11290 else
11291 crtc->new_config = NULL;
7668851f
VS
11292 }
11293
85f9eb71 11294 count = 0;
b2784e15 11295 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11296 encoder->new_crtc =
11297 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11298 }
11299
11300 count = 0;
9a935856
DV
11301 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11302 connector->new_encoder =
11303 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11304 }
11305}
11306
e3de42b6 11307static bool
2e57f47d 11308is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11309{
11310 int i;
11311
2e57f47d
CW
11312 if (set->num_connectors == 0)
11313 return false;
11314
11315 if (WARN_ON(set->connectors == NULL))
11316 return false;
11317
11318 for (i = 0; i < set->num_connectors; i++)
11319 if (set->connectors[i]->encoder &&
11320 set->connectors[i]->encoder->crtc == set->crtc &&
11321 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11322 return true;
11323
11324 return false;
11325}
11326
5e2b584e
DV
11327static void
11328intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11329 struct intel_set_config *config)
11330{
11331
11332 /* We should be able to check here if the fb has the same properties
11333 * and then just flip_or_move it */
2e57f47d
CW
11334 if (is_crtc_connector_off(set)) {
11335 config->mode_changed = true;
f4510a27 11336 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11337 /*
11338 * If we have no fb, we can only flip as long as the crtc is
11339 * active, otherwise we need a full mode set. The crtc may
11340 * be active if we've only disabled the primary plane, or
11341 * in fastboot situations.
11342 */
f4510a27 11343 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11344 struct intel_crtc *intel_crtc =
11345 to_intel_crtc(set->crtc);
11346
3b150f08 11347 if (intel_crtc->active) {
319d9827
JB
11348 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11349 config->fb_changed = true;
11350 } else {
11351 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11352 config->mode_changed = true;
11353 }
5e2b584e
DV
11354 } else if (set->fb == NULL) {
11355 config->mode_changed = true;
72f4901e 11356 } else if (set->fb->pixel_format !=
f4510a27 11357 set->crtc->primary->fb->pixel_format) {
5e2b584e 11358 config->mode_changed = true;
e3de42b6 11359 } else {
5e2b584e 11360 config->fb_changed = true;
e3de42b6 11361 }
5e2b584e
DV
11362 }
11363
835c5873 11364 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11365 config->fb_changed = true;
11366
11367 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11368 DRM_DEBUG_KMS("modes are different, full mode set\n");
11369 drm_mode_debug_printmodeline(&set->crtc->mode);
11370 drm_mode_debug_printmodeline(set->mode);
11371 config->mode_changed = true;
11372 }
a1d95703
CW
11373
11374 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11375 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11376}
11377
2e431051 11378static int
9a935856
DV
11379intel_modeset_stage_output_state(struct drm_device *dev,
11380 struct drm_mode_set *set,
11381 struct intel_set_config *config)
50f56119 11382{
9a935856
DV
11383 struct intel_connector *connector;
11384 struct intel_encoder *encoder;
7668851f 11385 struct intel_crtc *crtc;
f3f08572 11386 int ro;
50f56119 11387
9abdda74 11388 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11389 * of connectors. For paranoia, double-check this. */
11390 WARN_ON(!set->fb && (set->num_connectors != 0));
11391 WARN_ON(set->fb && (set->num_connectors == 0));
11392
9a935856
DV
11393 list_for_each_entry(connector, &dev->mode_config.connector_list,
11394 base.head) {
11395 /* Otherwise traverse passed in connector list and get encoders
11396 * for them. */
50f56119 11397 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11398 if (set->connectors[ro] == &connector->base) {
0e32b39c 11399 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11400 break;
11401 }
11402 }
11403
9a935856
DV
11404 /* If we disable the crtc, disable all its connectors. Also, if
11405 * the connector is on the changing crtc but not on the new
11406 * connector list, disable it. */
11407 if ((!set->fb || ro == set->num_connectors) &&
11408 connector->base.encoder &&
11409 connector->base.encoder->crtc == set->crtc) {
11410 connector->new_encoder = NULL;
11411
11412 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11413 connector->base.base.id,
c23cc417 11414 connector->base.name);
9a935856
DV
11415 }
11416
11417
11418 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11419 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11420 config->mode_changed = true;
50f56119
DV
11421 }
11422 }
9a935856 11423 /* connector->new_encoder is now updated for all connectors. */
50f56119 11424
9a935856 11425 /* Update crtc of enabled connectors. */
9a935856
DV
11426 list_for_each_entry(connector, &dev->mode_config.connector_list,
11427 base.head) {
7668851f
VS
11428 struct drm_crtc *new_crtc;
11429
9a935856 11430 if (!connector->new_encoder)
50f56119
DV
11431 continue;
11432
9a935856 11433 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11434
11435 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11436 if (set->connectors[ro] == &connector->base)
50f56119
DV
11437 new_crtc = set->crtc;
11438 }
11439
11440 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11441 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11442 new_crtc)) {
5e2b584e 11443 return -EINVAL;
50f56119 11444 }
0e32b39c 11445 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11446
11447 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11448 connector->base.base.id,
c23cc417 11449 connector->base.name,
9a935856
DV
11450 new_crtc->base.id);
11451 }
11452
11453 /* Check for any encoders that needs to be disabled. */
b2784e15 11454 for_each_intel_encoder(dev, encoder) {
5a65f358 11455 int num_connectors = 0;
9a935856
DV
11456 list_for_each_entry(connector,
11457 &dev->mode_config.connector_list,
11458 base.head) {
11459 if (connector->new_encoder == encoder) {
11460 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11461 num_connectors++;
9a935856
DV
11462 }
11463 }
5a65f358
PZ
11464
11465 if (num_connectors == 0)
11466 encoder->new_crtc = NULL;
11467 else if (num_connectors > 1)
11468 return -EINVAL;
11469
9a935856
DV
11470 /* Only now check for crtc changes so we don't miss encoders
11471 * that will be disabled. */
11472 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11473 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11474 config->mode_changed = true;
50f56119
DV
11475 }
11476 }
9a935856 11477 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11478 list_for_each_entry(connector, &dev->mode_config.connector_list,
11479 base.head) {
11480 if (connector->new_encoder)
11481 if (connector->new_encoder != connector->encoder)
11482 connector->encoder = connector->new_encoder;
11483 }
d3fcc808 11484 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11485 crtc->new_enabled = false;
11486
b2784e15 11487 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11488 if (encoder->new_crtc == crtc) {
11489 crtc->new_enabled = true;
11490 break;
11491 }
11492 }
11493
11494 if (crtc->new_enabled != crtc->base.enabled) {
11495 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11496 crtc->new_enabled ? "en" : "dis");
11497 config->mode_changed = true;
11498 }
7bd0a8e7
VS
11499
11500 if (crtc->new_enabled)
6e3c9717 11501 crtc->new_config = crtc->config;
7bd0a8e7
VS
11502 else
11503 crtc->new_config = NULL;
7668851f
VS
11504 }
11505
2e431051
DV
11506 return 0;
11507}
11508
7d00a1f5
VS
11509static void disable_crtc_nofb(struct intel_crtc *crtc)
11510{
11511 struct drm_device *dev = crtc->base.dev;
11512 struct intel_encoder *encoder;
11513 struct intel_connector *connector;
11514
11515 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11516 pipe_name(crtc->pipe));
11517
11518 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11519 if (connector->new_encoder &&
11520 connector->new_encoder->new_crtc == crtc)
11521 connector->new_encoder = NULL;
11522 }
11523
b2784e15 11524 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11525 if (encoder->new_crtc == crtc)
11526 encoder->new_crtc = NULL;
11527 }
11528
11529 crtc->new_enabled = false;
7bd0a8e7 11530 crtc->new_config = NULL;
7d00a1f5
VS
11531}
11532
2e431051
DV
11533static int intel_crtc_set_config(struct drm_mode_set *set)
11534{
11535 struct drm_device *dev;
2e431051
DV
11536 struct drm_mode_set save_set;
11537 struct intel_set_config *config;
5cec258b 11538 struct intel_crtc_state *pipe_config;
50f52756 11539 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11540 int ret;
2e431051 11541
8d3e375e
DV
11542 BUG_ON(!set);
11543 BUG_ON(!set->crtc);
11544 BUG_ON(!set->crtc->helper_private);
2e431051 11545
7e53f3a4
DV
11546 /* Enforce sane interface api - has been abused by the fb helper. */
11547 BUG_ON(!set->mode && set->fb);
11548 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11549
2e431051
DV
11550 if (set->fb) {
11551 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11552 set->crtc->base.id, set->fb->base.id,
11553 (int)set->num_connectors, set->x, set->y);
11554 } else {
11555 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11556 }
11557
11558 dev = set->crtc->dev;
11559
11560 ret = -ENOMEM;
11561 config = kzalloc(sizeof(*config), GFP_KERNEL);
11562 if (!config)
11563 goto out_config;
11564
11565 ret = intel_set_config_save_state(dev, config);
11566 if (ret)
11567 goto out_config;
11568
11569 save_set.crtc = set->crtc;
11570 save_set.mode = &set->crtc->mode;
11571 save_set.x = set->crtc->x;
11572 save_set.y = set->crtc->y;
f4510a27 11573 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11574
11575 /* Compute whether we need a full modeset, only an fb base update or no
11576 * change at all. In the future we might also check whether only the
11577 * mode changed, e.g. for LVDS where we only change the panel fitter in
11578 * such cases. */
11579 intel_set_config_compute_mode_changes(set, config);
11580
9a935856 11581 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11582 if (ret)
11583 goto fail;
11584
50f52756
JB
11585 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11586 set->fb,
11587 &modeset_pipes,
11588 &prepare_pipes,
11589 &disable_pipes);
20664591 11590 if (IS_ERR(pipe_config)) {
6ac0483b 11591 ret = PTR_ERR(pipe_config);
50f52756 11592 goto fail;
20664591 11593 } else if (pipe_config) {
b9950a13 11594 if (pipe_config->has_audio !=
6e3c9717 11595 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11596 config->mode_changed = true;
11597
af15d2ce
JB
11598 /*
11599 * Note we have an issue here with infoframes: current code
11600 * only updates them on the full mode set path per hw
11601 * requirements. So here we should be checking for any
11602 * required changes and forcing a mode set.
11603 */
20664591 11604 }
50f52756
JB
11605
11606 /* set_mode will free it in the mode_changed case */
11607 if (!config->mode_changed)
11608 kfree(pipe_config);
11609
1f9954d0
JB
11610 intel_update_pipe_size(to_intel_crtc(set->crtc));
11611
5e2b584e 11612 if (config->mode_changed) {
50f52756
JB
11613 ret = intel_set_mode_pipes(set->crtc, set->mode,
11614 set->x, set->y, set->fb, pipe_config,
11615 modeset_pipes, prepare_pipes,
11616 disable_pipes);
5e2b584e 11617 } else if (config->fb_changed) {
3b150f08 11618 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11619 struct drm_plane *primary = set->crtc->primary;
11620 int vdisplay, hdisplay;
3b150f08 11621
455a6808
GP
11622 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11623 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11624 0, 0, hdisplay, vdisplay,
11625 set->x << 16, set->y << 16,
11626 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11627
11628 /*
11629 * We need to make sure the primary plane is re-enabled if it
11630 * has previously been turned off.
11631 */
11632 if (!intel_crtc->primary_enabled && ret == 0) {
11633 WARN_ON(!intel_crtc->active);
fdd508a6 11634 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11635 }
11636
7ca51a3a
JB
11637 /*
11638 * In the fastboot case this may be our only check of the
11639 * state after boot. It would be better to only do it on
11640 * the first update, but we don't have a nice way of doing that
11641 * (and really, set_config isn't used much for high freq page
11642 * flipping, so increasing its cost here shouldn't be a big
11643 * deal).
11644 */
d330a953 11645 if (i915.fastboot && ret == 0)
7ca51a3a 11646 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11647 }
11648
2d05eae1 11649 if (ret) {
bf67dfeb
DV
11650 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11651 set->crtc->base.id, ret);
50f56119 11652fail:
2d05eae1 11653 intel_set_config_restore_state(dev, config);
50f56119 11654
7d00a1f5
VS
11655 /*
11656 * HACK: if the pipe was on, but we didn't have a framebuffer,
11657 * force the pipe off to avoid oopsing in the modeset code
11658 * due to fb==NULL. This should only happen during boot since
11659 * we don't yet reconstruct the FB from the hardware state.
11660 */
11661 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11662 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11663
2d05eae1
CW
11664 /* Try to restore the config */
11665 if (config->mode_changed &&
11666 intel_set_mode(save_set.crtc, save_set.mode,
11667 save_set.x, save_set.y, save_set.fb))
11668 DRM_ERROR("failed to restore config after modeset failure\n");
11669 }
50f56119 11670
d9e55608
DV
11671out_config:
11672 intel_set_config_free(config);
50f56119
DV
11673 return ret;
11674}
f6e5b160
CW
11675
11676static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11677 .gamma_set = intel_crtc_gamma_set,
50f56119 11678 .set_config = intel_crtc_set_config,
f6e5b160
CW
11679 .destroy = intel_crtc_destroy,
11680 .page_flip = intel_crtc_page_flip,
1356837e
MR
11681 .atomic_duplicate_state = intel_crtc_duplicate_state,
11682 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
11683};
11684
5358901f
DV
11685static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11686 struct intel_shared_dpll *pll,
11687 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11688{
5358901f 11689 uint32_t val;
ee7b9f93 11690
f458ebbc 11691 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11692 return false;
11693
5358901f 11694 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11695 hw_state->dpll = val;
11696 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11697 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11698
11699 return val & DPLL_VCO_ENABLE;
11700}
11701
15bdd4cf
DV
11702static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11703 struct intel_shared_dpll *pll)
11704{
3e369b76
ACO
11705 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11706 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11707}
11708
e7b903d2
DV
11709static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11710 struct intel_shared_dpll *pll)
11711{
e7b903d2 11712 /* PCH refclock must be enabled first */
89eff4be 11713 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11714
3e369b76 11715 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11716
11717 /* Wait for the clocks to stabilize. */
11718 POSTING_READ(PCH_DPLL(pll->id));
11719 udelay(150);
11720
11721 /* The pixel multiplier can only be updated once the
11722 * DPLL is enabled and the clocks are stable.
11723 *
11724 * So write it again.
11725 */
3e369b76 11726 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11727 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11728 udelay(200);
11729}
11730
11731static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11732 struct intel_shared_dpll *pll)
11733{
11734 struct drm_device *dev = dev_priv->dev;
11735 struct intel_crtc *crtc;
e7b903d2
DV
11736
11737 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11738 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11739 if (intel_crtc_to_shared_dpll(crtc) == pll)
11740 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11741 }
11742
15bdd4cf
DV
11743 I915_WRITE(PCH_DPLL(pll->id), 0);
11744 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11745 udelay(200);
11746}
11747
46edb027
DV
11748static char *ibx_pch_dpll_names[] = {
11749 "PCH DPLL A",
11750 "PCH DPLL B",
11751};
11752
7c74ade1 11753static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11754{
e7b903d2 11755 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11756 int i;
11757
7c74ade1 11758 dev_priv->num_shared_dpll = 2;
ee7b9f93 11759
e72f9fbf 11760 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11761 dev_priv->shared_dplls[i].id = i;
11762 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11763 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11764 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11765 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11766 dev_priv->shared_dplls[i].get_hw_state =
11767 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11768 }
11769}
11770
7c74ade1
DV
11771static void intel_shared_dpll_init(struct drm_device *dev)
11772{
e7b903d2 11773 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11774
9cd86933
DV
11775 if (HAS_DDI(dev))
11776 intel_ddi_pll_init(dev);
11777 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11778 ibx_pch_dpll_init(dev);
11779 else
11780 dev_priv->num_shared_dpll = 0;
11781
11782 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11783}
11784
6beb8c23
MR
11785/**
11786 * intel_prepare_plane_fb - Prepare fb for usage on plane
11787 * @plane: drm plane to prepare for
11788 * @fb: framebuffer to prepare for presentation
11789 *
11790 * Prepares a framebuffer for usage on a display plane. Generally this
11791 * involves pinning the underlying object and updating the frontbuffer tracking
11792 * bits. Some older platforms need special physical address handling for
11793 * cursor planes.
11794 *
11795 * Returns 0 on success, negative error code on failure.
11796 */
11797int
11798intel_prepare_plane_fb(struct drm_plane *plane,
11799 struct drm_framebuffer *fb)
465c120c
MR
11800{
11801 struct drm_device *dev = plane->dev;
6beb8c23
MR
11802 struct intel_plane *intel_plane = to_intel_plane(plane);
11803 enum pipe pipe = intel_plane->pipe;
11804 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11805 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11806 unsigned frontbuffer_bits = 0;
11807 int ret = 0;
465c120c 11808
ea2c67bb 11809 if (!obj)
465c120c
MR
11810 return 0;
11811
6beb8c23
MR
11812 switch (plane->type) {
11813 case DRM_PLANE_TYPE_PRIMARY:
11814 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11815 break;
11816 case DRM_PLANE_TYPE_CURSOR:
11817 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11818 break;
11819 case DRM_PLANE_TYPE_OVERLAY:
11820 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11821 break;
11822 }
465c120c 11823
6beb8c23 11824 mutex_lock(&dev->struct_mutex);
465c120c 11825
6beb8c23
MR
11826 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11827 INTEL_INFO(dev)->cursor_needs_physical) {
11828 int align = IS_I830(dev) ? 16 * 1024 : 256;
11829 ret = i915_gem_object_attach_phys(obj, align);
11830 if (ret)
11831 DRM_DEBUG_KMS("failed to attach phys object\n");
11832 } else {
11833 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11834 }
465c120c 11835
6beb8c23
MR
11836 if (ret == 0)
11837 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 11838
4c34574f 11839 mutex_unlock(&dev->struct_mutex);
465c120c 11840
6beb8c23
MR
11841 return ret;
11842}
11843
38f3ce3a
MR
11844/**
11845 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11846 * @plane: drm plane to clean up for
11847 * @fb: old framebuffer that was on plane
11848 *
11849 * Cleans up a framebuffer that has just been removed from a plane.
11850 */
11851void
11852intel_cleanup_plane_fb(struct drm_plane *plane,
11853 struct drm_framebuffer *fb)
11854{
11855 struct drm_device *dev = plane->dev;
11856 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11857
11858 if (WARN_ON(!obj))
11859 return;
11860
11861 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11862 !INTEL_INFO(dev)->cursor_needs_physical) {
11863 mutex_lock(&dev->struct_mutex);
11864 intel_unpin_fb_obj(obj);
11865 mutex_unlock(&dev->struct_mutex);
11866 }
465c120c
MR
11867}
11868
11869static int
3c692a41
GP
11870intel_check_primary_plane(struct drm_plane *plane,
11871 struct intel_plane_state *state)
11872{
32b7eeec
MR
11873 struct drm_device *dev = plane->dev;
11874 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 11875 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 11876 struct intel_crtc *intel_crtc;
2b875c22 11877 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
11878 struct drm_rect *dest = &state->dst;
11879 struct drm_rect *src = &state->src;
11880 const struct drm_rect *clip = &state->clip;
465c120c
MR
11881 int ret;
11882
ea2c67bb
MR
11883 crtc = crtc ? crtc : plane->crtc;
11884 intel_crtc = to_intel_crtc(crtc);
11885
c59cb179
MR
11886 ret = drm_plane_helper_check_update(plane, crtc, fb,
11887 src, dest, clip,
11888 DRM_PLANE_HELPER_NO_SCALING,
11889 DRM_PLANE_HELPER_NO_SCALING,
11890 false, true, &state->visible);
11891 if (ret)
11892 return ret;
465c120c 11893
32b7eeec
MR
11894 if (intel_crtc->active) {
11895 intel_crtc->atomic.wait_for_flips = true;
11896
11897 /*
11898 * FBC does not work on some platforms for rotated
11899 * planes, so disable it when rotation is not 0 and
11900 * update it when rotation is set back to 0.
11901 *
11902 * FIXME: This is redundant with the fbc update done in
11903 * the primary plane enable function except that that
11904 * one is done too late. We eventually need to unify
11905 * this.
11906 */
11907 if (intel_crtc->primary_enabled &&
11908 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11909 dev_priv->fbc.plane == intel_crtc->plane &&
8e7d688b 11910 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
11911 intel_crtc->atomic.disable_fbc = true;
11912 }
11913
11914 if (state->visible) {
11915 /*
11916 * BDW signals flip done immediately if the plane
11917 * is disabled, even if the plane enable is already
11918 * armed to occur at the next vblank :(
11919 */
11920 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11921 intel_crtc->atomic.wait_vblank = true;
11922 }
11923
11924 intel_crtc->atomic.fb_bits |=
11925 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11926
11927 intel_crtc->atomic.update_fbc = true;
ccc759dc
GP
11928 }
11929
14af293f
GP
11930 return 0;
11931}
11932
11933static void
11934intel_commit_primary_plane(struct drm_plane *plane,
11935 struct intel_plane_state *state)
11936{
2b875c22
MR
11937 struct drm_crtc *crtc = state->base.crtc;
11938 struct drm_framebuffer *fb = state->base.fb;
11939 struct drm_device *dev = plane->dev;
14af293f 11940 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 11941 struct intel_crtc *intel_crtc;
14af293f 11942 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14af293f
GP
11943 struct intel_plane *intel_plane = to_intel_plane(plane);
11944 struct drm_rect *src = &state->src;
11945
ea2c67bb
MR
11946 crtc = crtc ? crtc : plane->crtc;
11947 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
11948
11949 plane->fb = fb;
9dc806fc
MR
11950 crtc->x = src->x1 >> 16;
11951 crtc->y = src->y1 >> 16;
ccc759dc 11952
ccc759dc 11953 intel_plane->obj = obj;
4c34574f 11954
ccc759dc 11955 if (intel_crtc->active) {
ccc759dc 11956 if (state->visible) {
ccc759dc
GP
11957 /* FIXME: kill this fastboot hack */
11958 intel_update_pipe_size(intel_crtc);
465c120c 11959
ccc759dc 11960 intel_crtc->primary_enabled = true;
465c120c 11961
ccc759dc
GP
11962 dev_priv->display.update_primary_plane(crtc, plane->fb,
11963 crtc->x, crtc->y);
ccc759dc
GP
11964 } else {
11965 /*
11966 * If clipping results in a non-visible primary plane,
11967 * we'll disable the primary plane. Note that this is
11968 * a bit different than what happens if userspace
11969 * explicitly disables the plane by passing fb=0
11970 * because plane->fb still gets set and pinned.
11971 */
11972 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11973 }
ccc759dc 11974 }
465c120c
MR
11975}
11976
32b7eeec 11977static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 11978{
32b7eeec 11979 struct drm_device *dev = crtc->dev;
140fd38d 11980 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 11981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
11982 struct intel_plane *intel_plane;
11983 struct drm_plane *p;
11984 unsigned fb_bits = 0;
11985
11986 /* Track fb's for any planes being disabled */
11987 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11988 intel_plane = to_intel_plane(p);
11989
11990 if (intel_crtc->atomic.disabled_planes &
11991 (1 << drm_plane_index(p))) {
11992 switch (p->type) {
11993 case DRM_PLANE_TYPE_PRIMARY:
11994 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11995 break;
11996 case DRM_PLANE_TYPE_CURSOR:
11997 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11998 break;
11999 case DRM_PLANE_TYPE_OVERLAY:
12000 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12001 break;
12002 }
3c692a41 12003
ea2c67bb
MR
12004 mutex_lock(&dev->struct_mutex);
12005 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12006 mutex_unlock(&dev->struct_mutex);
12007 }
12008 }
3c692a41 12009
32b7eeec
MR
12010 if (intel_crtc->atomic.wait_for_flips)
12011 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12012
32b7eeec
MR
12013 if (intel_crtc->atomic.disable_fbc)
12014 intel_fbc_disable(dev);
3c692a41 12015
32b7eeec
MR
12016 if (intel_crtc->atomic.pre_disable_primary)
12017 intel_pre_disable_primary(crtc);
3c692a41 12018
32b7eeec
MR
12019 if (intel_crtc->atomic.update_wm)
12020 intel_update_watermarks(crtc);
3c692a41 12021
32b7eeec 12022 intel_runtime_pm_get(dev_priv);
3c692a41 12023
c34c9ee4
MR
12024 /* Perform vblank evasion around commit operation */
12025 if (intel_crtc->active)
12026 intel_crtc->atomic.evade =
12027 intel_pipe_update_start(intel_crtc,
12028 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12029}
12030
12031static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12032{
12033 struct drm_device *dev = crtc->dev;
12034 struct drm_i915_private *dev_priv = dev->dev_private;
12035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12036 struct drm_plane *p;
12037
c34c9ee4
MR
12038 if (intel_crtc->atomic.evade)
12039 intel_pipe_update_end(intel_crtc,
12040 intel_crtc->atomic.start_vbl_count);
3c692a41 12041
140fd38d 12042 intel_runtime_pm_put(dev_priv);
3c692a41 12043
32b7eeec
MR
12044 if (intel_crtc->atomic.wait_vblank)
12045 intel_wait_for_vblank(dev, intel_crtc->pipe);
12046
12047 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12048
12049 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12050 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12051 intel_fbc_update(dev);
ccc759dc 12052 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12053 }
3c692a41 12054
32b7eeec
MR
12055 if (intel_crtc->atomic.post_enable_primary)
12056 intel_post_enable_primary(crtc);
3c692a41 12057
32b7eeec
MR
12058 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12059 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12060 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12061 false, false);
12062
12063 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12064}
12065
cf4c7c12 12066/**
4a3b8769
MR
12067 * intel_plane_destroy - destroy a plane
12068 * @plane: plane to destroy
cf4c7c12 12069 *
4a3b8769
MR
12070 * Common destruction function for all types of planes (primary, cursor,
12071 * sprite).
cf4c7c12 12072 */
4a3b8769 12073void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12074{
12075 struct intel_plane *intel_plane = to_intel_plane(plane);
12076 drm_plane_cleanup(plane);
12077 kfree(intel_plane);
12078}
12079
65a3fea0 12080const struct drm_plane_funcs intel_plane_funcs = {
ea2c67bb
MR
12081 .update_plane = drm_plane_helper_update,
12082 .disable_plane = drm_plane_helper_disable,
3d7d6510 12083 .destroy = intel_plane_destroy,
c196e1d6 12084 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12085 .atomic_get_property = intel_plane_atomic_get_property,
12086 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12087 .atomic_duplicate_state = intel_plane_duplicate_state,
12088 .atomic_destroy_state = intel_plane_destroy_state,
12089
465c120c
MR
12090};
12091
12092static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12093 int pipe)
12094{
12095 struct intel_plane *primary;
8e7d688b 12096 struct intel_plane_state *state;
465c120c
MR
12097 const uint32_t *intel_primary_formats;
12098 int num_formats;
12099
12100 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12101 if (primary == NULL)
12102 return NULL;
12103
8e7d688b
MR
12104 state = intel_create_plane_state(&primary->base);
12105 if (!state) {
ea2c67bb
MR
12106 kfree(primary);
12107 return NULL;
12108 }
8e7d688b 12109 primary->base.state = &state->base;
ea2c67bb 12110
465c120c
MR
12111 primary->can_scale = false;
12112 primary->max_downscale = 1;
12113 primary->pipe = pipe;
12114 primary->plane = pipe;
c59cb179
MR
12115 primary->check_plane = intel_check_primary_plane;
12116 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12117 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12118 primary->plane = !pipe;
12119
12120 if (INTEL_INFO(dev)->gen <= 3) {
12121 intel_primary_formats = intel_primary_formats_gen2;
12122 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12123 } else {
12124 intel_primary_formats = intel_primary_formats_gen4;
12125 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12126 }
12127
12128 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12129 &intel_plane_funcs,
465c120c
MR
12130 intel_primary_formats, num_formats,
12131 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12132
12133 if (INTEL_INFO(dev)->gen >= 4) {
12134 if (!dev->mode_config.rotation_property)
12135 dev->mode_config.rotation_property =
12136 drm_mode_create_rotation_property(dev,
12137 BIT(DRM_ROTATE_0) |
12138 BIT(DRM_ROTATE_180));
12139 if (dev->mode_config.rotation_property)
12140 drm_object_attach_property(&primary->base.base,
12141 dev->mode_config.rotation_property,
8e7d688b 12142 state->base.rotation);
48404c1e
SJ
12143 }
12144
ea2c67bb
MR
12145 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12146
465c120c
MR
12147 return &primary->base;
12148}
12149
3d7d6510 12150static int
852e787c
GP
12151intel_check_cursor_plane(struct drm_plane *plane,
12152 struct intel_plane_state *state)
3d7d6510 12153{
2b875c22 12154 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12155 struct drm_device *dev = plane->dev;
2b875c22 12156 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12157 struct drm_rect *dest = &state->dst;
12158 struct drm_rect *src = &state->src;
12159 const struct drm_rect *clip = &state->clip;
757f9a3e 12160 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12161 struct intel_crtc *intel_crtc;
757f9a3e
GP
12162 unsigned stride;
12163 int ret;
3d7d6510 12164
ea2c67bb
MR
12165 crtc = crtc ? crtc : plane->crtc;
12166 intel_crtc = to_intel_crtc(crtc);
12167
757f9a3e 12168 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12169 src, dest, clip,
3d7d6510
MR
12170 DRM_PLANE_HELPER_NO_SCALING,
12171 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12172 true, true, &state->visible);
757f9a3e
GP
12173 if (ret)
12174 return ret;
12175
12176
12177 /* if we want to turn off the cursor ignore width and height */
12178 if (!obj)
32b7eeec 12179 goto finish;
757f9a3e 12180
757f9a3e 12181 /* Check for which cursor types we support */
ea2c67bb
MR
12182 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12183 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12184 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12185 return -EINVAL;
12186 }
12187
ea2c67bb
MR
12188 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12189 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12190 DRM_DEBUG_KMS("buffer is too small\n");
12191 return -ENOMEM;
12192 }
12193
e391ea88
GP
12194 if (fb == crtc->cursor->fb)
12195 return 0;
12196
757f9a3e
GP
12197 /* we only need to pin inside GTT if cursor is non-phy */
12198 mutex_lock(&dev->struct_mutex);
12199 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12200 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12201 ret = -EINVAL;
12202 }
12203 mutex_unlock(&dev->struct_mutex);
12204
32b7eeec
MR
12205finish:
12206 if (intel_crtc->active) {
ea2c67bb 12207 if (intel_crtc->cursor_width != state->base.crtc_w)
32b7eeec
MR
12208 intel_crtc->atomic.update_wm = true;
12209
12210 intel_crtc->atomic.fb_bits |=
12211 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12212 }
12213
757f9a3e 12214 return ret;
852e787c 12215}
3d7d6510 12216
f4a2cf29 12217static void
852e787c
GP
12218intel_commit_cursor_plane(struct drm_plane *plane,
12219 struct intel_plane_state *state)
12220{
2b875c22 12221 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12222 struct drm_device *dev = plane->dev;
12223 struct intel_crtc *intel_crtc;
a919db90 12224 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 12225 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12226 uint32_t addr;
852e787c 12227
ea2c67bb
MR
12228 crtc = crtc ? crtc : plane->crtc;
12229 intel_crtc = to_intel_crtc(crtc);
12230
2b875c22 12231 plane->fb = state->base.fb;
ea2c67bb
MR
12232 crtc->cursor_x = state->base.crtc_x;
12233 crtc->cursor_y = state->base.crtc_y;
12234
a919db90
SJ
12235 intel_plane->obj = obj;
12236
a912f12f
GP
12237 if (intel_crtc->cursor_bo == obj)
12238 goto update;
4ed91096 12239
f4a2cf29 12240 if (!obj)
a912f12f 12241 addr = 0;
f4a2cf29 12242 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12243 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12244 else
a912f12f 12245 addr = obj->phys_handle->busaddr;
852e787c 12246
a912f12f
GP
12247 intel_crtc->cursor_addr = addr;
12248 intel_crtc->cursor_bo = obj;
12249update:
ea2c67bb
MR
12250 intel_crtc->cursor_width = state->base.crtc_w;
12251 intel_crtc->cursor_height = state->base.crtc_h;
852e787c 12252
32b7eeec 12253 if (intel_crtc->active)
a912f12f 12254 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12255}
12256
3d7d6510
MR
12257static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12258 int pipe)
12259{
12260 struct intel_plane *cursor;
8e7d688b 12261 struct intel_plane_state *state;
3d7d6510
MR
12262
12263 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12264 if (cursor == NULL)
12265 return NULL;
12266
8e7d688b
MR
12267 state = intel_create_plane_state(&cursor->base);
12268 if (!state) {
ea2c67bb
MR
12269 kfree(cursor);
12270 return NULL;
12271 }
8e7d688b 12272 cursor->base.state = &state->base;
ea2c67bb 12273
3d7d6510
MR
12274 cursor->can_scale = false;
12275 cursor->max_downscale = 1;
12276 cursor->pipe = pipe;
12277 cursor->plane = pipe;
c59cb179
MR
12278 cursor->check_plane = intel_check_cursor_plane;
12279 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12280
12281 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12282 &intel_plane_funcs,
3d7d6510
MR
12283 intel_cursor_formats,
12284 ARRAY_SIZE(intel_cursor_formats),
12285 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12286
12287 if (INTEL_INFO(dev)->gen >= 4) {
12288 if (!dev->mode_config.rotation_property)
12289 dev->mode_config.rotation_property =
12290 drm_mode_create_rotation_property(dev,
12291 BIT(DRM_ROTATE_0) |
12292 BIT(DRM_ROTATE_180));
12293 if (dev->mode_config.rotation_property)
12294 drm_object_attach_property(&cursor->base.base,
12295 dev->mode_config.rotation_property,
8e7d688b 12296 state->base.rotation);
4398ad45
VS
12297 }
12298
ea2c67bb
MR
12299 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12300
3d7d6510
MR
12301 return &cursor->base;
12302}
12303
b358d0a6 12304static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12305{
fbee40df 12306 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12307 struct intel_crtc *intel_crtc;
f5de6e07 12308 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12309 struct drm_plane *primary = NULL;
12310 struct drm_plane *cursor = NULL;
465c120c 12311 int i, ret;
79e53945 12312
955382f3 12313 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12314 if (intel_crtc == NULL)
12315 return;
12316
f5de6e07
ACO
12317 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12318 if (!crtc_state)
12319 goto fail;
12320 intel_crtc_set_state(intel_crtc, crtc_state);
12321
465c120c 12322 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12323 if (!primary)
12324 goto fail;
12325
12326 cursor = intel_cursor_plane_create(dev, pipe);
12327 if (!cursor)
12328 goto fail;
12329
465c120c 12330 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12331 cursor, &intel_crtc_funcs);
12332 if (ret)
12333 goto fail;
79e53945
JB
12334
12335 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12336 for (i = 0; i < 256; i++) {
12337 intel_crtc->lut_r[i] = i;
12338 intel_crtc->lut_g[i] = i;
12339 intel_crtc->lut_b[i] = i;
12340 }
12341
1f1c2e24
VS
12342 /*
12343 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12344 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12345 */
80824003
JB
12346 intel_crtc->pipe = pipe;
12347 intel_crtc->plane = pipe;
3a77c4c4 12348 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12349 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12350 intel_crtc->plane = !pipe;
80824003
JB
12351 }
12352
4b0e333e
CW
12353 intel_crtc->cursor_base = ~0;
12354 intel_crtc->cursor_cntl = ~0;
dc41c154 12355 intel_crtc->cursor_size = ~0;
8d7849db 12356
22fd0fab
JB
12357 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12358 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12359 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12360 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12361
9362c7c5
ACO
12362 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12363
79e53945 12364 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12365
12366 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12367 return;
12368
12369fail:
12370 if (primary)
12371 drm_plane_cleanup(primary);
12372 if (cursor)
12373 drm_plane_cleanup(cursor);
f5de6e07 12374 kfree(crtc_state);
3d7d6510 12375 kfree(intel_crtc);
79e53945
JB
12376}
12377
752aa88a
JB
12378enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12379{
12380 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12381 struct drm_device *dev = connector->base.dev;
752aa88a 12382
51fd371b 12383 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12384
d3babd3f 12385 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12386 return INVALID_PIPE;
12387
12388 return to_intel_crtc(encoder->crtc)->pipe;
12389}
12390
08d7b3d1 12391int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12392 struct drm_file *file)
08d7b3d1 12393{
08d7b3d1 12394 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12395 struct drm_crtc *drmmode_crtc;
c05422d5 12396 struct intel_crtc *crtc;
08d7b3d1 12397
1cff8f6b
DV
12398 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12399 return -ENODEV;
08d7b3d1 12400
7707e653 12401 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12402
7707e653 12403 if (!drmmode_crtc) {
08d7b3d1 12404 DRM_ERROR("no such CRTC id\n");
3f2c2057 12405 return -ENOENT;
08d7b3d1
CW
12406 }
12407
7707e653 12408 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12409 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12410
c05422d5 12411 return 0;
08d7b3d1
CW
12412}
12413
66a9278e 12414static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12415{
66a9278e
DV
12416 struct drm_device *dev = encoder->base.dev;
12417 struct intel_encoder *source_encoder;
79e53945 12418 int index_mask = 0;
79e53945
JB
12419 int entry = 0;
12420
b2784e15 12421 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12422 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12423 index_mask |= (1 << entry);
12424
79e53945
JB
12425 entry++;
12426 }
4ef69c7a 12427
79e53945
JB
12428 return index_mask;
12429}
12430
4d302442
CW
12431static bool has_edp_a(struct drm_device *dev)
12432{
12433 struct drm_i915_private *dev_priv = dev->dev_private;
12434
12435 if (!IS_MOBILE(dev))
12436 return false;
12437
12438 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12439 return false;
12440
e3589908 12441 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12442 return false;
12443
12444 return true;
12445}
12446
84b4e042
JB
12447static bool intel_crt_present(struct drm_device *dev)
12448{
12449 struct drm_i915_private *dev_priv = dev->dev_private;
12450
884497ed
DL
12451 if (INTEL_INFO(dev)->gen >= 9)
12452 return false;
12453
cf404ce4 12454 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12455 return false;
12456
12457 if (IS_CHERRYVIEW(dev))
12458 return false;
12459
12460 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12461 return false;
12462
12463 return true;
12464}
12465
79e53945
JB
12466static void intel_setup_outputs(struct drm_device *dev)
12467{
725e30ad 12468 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12469 struct intel_encoder *encoder;
c6f95f27 12470 struct drm_connector *connector;
cb0953d7 12471 bool dpd_is_edp = false;
79e53945 12472
c9093354 12473 intel_lvds_init(dev);
79e53945 12474
84b4e042 12475 if (intel_crt_present(dev))
79935fca 12476 intel_crt_init(dev);
cb0953d7 12477
affa9354 12478 if (HAS_DDI(dev)) {
0e72a5b5
ED
12479 int found;
12480
12481 /* Haswell uses DDI functions to detect digital outputs */
12482 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12483 /* DDI A only supports eDP */
12484 if (found)
12485 intel_ddi_init(dev, PORT_A);
12486
12487 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12488 * register */
12489 found = I915_READ(SFUSE_STRAP);
12490
12491 if (found & SFUSE_STRAP_DDIB_DETECTED)
12492 intel_ddi_init(dev, PORT_B);
12493 if (found & SFUSE_STRAP_DDIC_DETECTED)
12494 intel_ddi_init(dev, PORT_C);
12495 if (found & SFUSE_STRAP_DDID_DETECTED)
12496 intel_ddi_init(dev, PORT_D);
12497 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12498 int found;
5d8a7752 12499 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12500
12501 if (has_edp_a(dev))
12502 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12503
dc0fa718 12504 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12505 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12506 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12507 if (!found)
e2debe91 12508 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12509 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12510 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12511 }
12512
dc0fa718 12513 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12514 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12515
dc0fa718 12516 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12517 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12518
5eb08b69 12519 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12520 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12521
270b3042 12522 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12523 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12524 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12525 /*
12526 * The DP_DETECTED bit is the latched state of the DDC
12527 * SDA pin at boot. However since eDP doesn't require DDC
12528 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12529 * eDP ports may have been muxed to an alternate function.
12530 * Thus we can't rely on the DP_DETECTED bit alone to detect
12531 * eDP ports. Consult the VBT as well as DP_DETECTED to
12532 * detect eDP ports.
12533 */
d2182a66
VS
12534 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12535 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12536 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12537 PORT_B);
e17ac6db
VS
12538 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12539 intel_dp_is_edp(dev, PORT_B))
12540 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12541
d2182a66
VS
12542 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12543 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12544 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12545 PORT_C);
e17ac6db
VS
12546 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12547 intel_dp_is_edp(dev, PORT_C))
12548 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12549
9418c1f1 12550 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12551 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12552 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12553 PORT_D);
e17ac6db
VS
12554 /* eDP not supported on port D, so don't check VBT */
12555 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12556 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12557 }
12558
3cfca973 12559 intel_dsi_init(dev);
103a196f 12560 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12561 bool found = false;
7d57382e 12562
e2debe91 12563 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12564 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12565 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12566 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12567 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12568 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12569 }
27185ae1 12570
e7281eab 12571 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12572 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12573 }
13520b05
KH
12574
12575 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12576
e2debe91 12577 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12578 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12579 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12580 }
27185ae1 12581
e2debe91 12582 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12583
b01f2c3a
JB
12584 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12585 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12586 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12587 }
e7281eab 12588 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12589 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12590 }
27185ae1 12591
b01f2c3a 12592 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12593 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12594 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12595 } else if (IS_GEN2(dev))
79e53945
JB
12596 intel_dvo_init(dev);
12597
103a196f 12598 if (SUPPORTS_TV(dev))
79e53945
JB
12599 intel_tv_init(dev);
12600
c6f95f27
MR
12601 /*
12602 * FIXME: We don't have full atomic support yet, but we want to be
12603 * able to enable/test plane updates via the atomic interface in the
12604 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12605 * will take some atomic codepaths to lookup properties during
12606 * drmModeGetConnector() that unconditionally dereference
12607 * connector->state.
12608 *
12609 * We create a dummy connector state here for each connector to ensure
12610 * the DRM core doesn't try to dereference a NULL connector->state.
12611 * The actual connector properties will never be updated or contain
12612 * useful information, but since we're doing this specifically for
12613 * testing/debug of the plane operations (and only when a specific
12614 * kernel module option is given), that shouldn't really matter.
12615 *
12616 * Once atomic support for crtc's + connectors lands, this loop should
12617 * be removed since we'll be setting up real connector state, which
12618 * will contain Intel-specific properties.
12619 */
12620 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12621 list_for_each_entry(connector,
12622 &dev->mode_config.connector_list,
12623 head) {
12624 if (!WARN_ON(connector->state)) {
12625 connector->state =
12626 kzalloc(sizeof(*connector->state),
12627 GFP_KERNEL);
12628 }
12629 }
12630 }
12631
0bc12bcb 12632 intel_psr_init(dev);
7c8f8a70 12633
b2784e15 12634 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12635 encoder->base.possible_crtcs = encoder->crtc_mask;
12636 encoder->base.possible_clones =
66a9278e 12637 intel_encoder_clones(encoder);
79e53945 12638 }
47356eb6 12639
dde86e2d 12640 intel_init_pch_refclk(dev);
270b3042
DV
12641
12642 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12643}
12644
12645static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12646{
60a5ca01 12647 struct drm_device *dev = fb->dev;
79e53945 12648 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12649
ef2d633e 12650 drm_framebuffer_cleanup(fb);
60a5ca01 12651 mutex_lock(&dev->struct_mutex);
ef2d633e 12652 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12653 drm_gem_object_unreference(&intel_fb->obj->base);
12654 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12655 kfree(intel_fb);
12656}
12657
12658static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12659 struct drm_file *file,
79e53945
JB
12660 unsigned int *handle)
12661{
12662 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12663 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12664
05394f39 12665 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12666}
12667
12668static const struct drm_framebuffer_funcs intel_fb_funcs = {
12669 .destroy = intel_user_framebuffer_destroy,
12670 .create_handle = intel_user_framebuffer_create_handle,
12671};
12672
b5ea642a
DV
12673static int intel_framebuffer_init(struct drm_device *dev,
12674 struct intel_framebuffer *intel_fb,
12675 struct drm_mode_fb_cmd2 *mode_cmd,
12676 struct drm_i915_gem_object *obj)
79e53945 12677{
a57ce0b2 12678 int aligned_height;
a35cdaa0 12679 int pitch_limit;
79e53945
JB
12680 int ret;
12681
dd4916c5
DV
12682 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12683
c16ed4be
CW
12684 if (obj->tiling_mode == I915_TILING_Y) {
12685 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12686 return -EINVAL;
c16ed4be 12687 }
57cd6508 12688
c16ed4be
CW
12689 if (mode_cmd->pitches[0] & 63) {
12690 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12691 mode_cmd->pitches[0]);
57cd6508 12692 return -EINVAL;
c16ed4be 12693 }
57cd6508 12694
a35cdaa0
CW
12695 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12696 pitch_limit = 32*1024;
12697 } else if (INTEL_INFO(dev)->gen >= 4) {
12698 if (obj->tiling_mode)
12699 pitch_limit = 16*1024;
12700 else
12701 pitch_limit = 32*1024;
12702 } else if (INTEL_INFO(dev)->gen >= 3) {
12703 if (obj->tiling_mode)
12704 pitch_limit = 8*1024;
12705 else
12706 pitch_limit = 16*1024;
12707 } else
12708 /* XXX DSPC is limited to 4k tiled */
12709 pitch_limit = 8*1024;
12710
12711 if (mode_cmd->pitches[0] > pitch_limit) {
12712 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12713 obj->tiling_mode ? "tiled" : "linear",
12714 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12715 return -EINVAL;
c16ed4be 12716 }
5d7bd705
VS
12717
12718 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12719 mode_cmd->pitches[0] != obj->stride) {
12720 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12721 mode_cmd->pitches[0], obj->stride);
5d7bd705 12722 return -EINVAL;
c16ed4be 12723 }
5d7bd705 12724
57779d06 12725 /* Reject formats not supported by any plane early. */
308e5bcb 12726 switch (mode_cmd->pixel_format) {
57779d06 12727 case DRM_FORMAT_C8:
04b3924d
VS
12728 case DRM_FORMAT_RGB565:
12729 case DRM_FORMAT_XRGB8888:
12730 case DRM_FORMAT_ARGB8888:
57779d06
VS
12731 break;
12732 case DRM_FORMAT_XRGB1555:
12733 case DRM_FORMAT_ARGB1555:
c16ed4be 12734 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12735 DRM_DEBUG("unsupported pixel format: %s\n",
12736 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12737 return -EINVAL;
c16ed4be 12738 }
57779d06
VS
12739 break;
12740 case DRM_FORMAT_XBGR8888:
12741 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12742 case DRM_FORMAT_XRGB2101010:
12743 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12744 case DRM_FORMAT_XBGR2101010:
12745 case DRM_FORMAT_ABGR2101010:
c16ed4be 12746 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12747 DRM_DEBUG("unsupported pixel format: %s\n",
12748 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12749 return -EINVAL;
c16ed4be 12750 }
b5626747 12751 break;
04b3924d
VS
12752 case DRM_FORMAT_YUYV:
12753 case DRM_FORMAT_UYVY:
12754 case DRM_FORMAT_YVYU:
12755 case DRM_FORMAT_VYUY:
c16ed4be 12756 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12757 DRM_DEBUG("unsupported pixel format: %s\n",
12758 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12759 return -EINVAL;
c16ed4be 12760 }
57cd6508
CW
12761 break;
12762 default:
4ee62c76
VS
12763 DRM_DEBUG("unsupported pixel format: %s\n",
12764 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12765 return -EINVAL;
12766 }
12767
90f9a336
VS
12768 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12769 if (mode_cmd->offsets[0] != 0)
12770 return -EINVAL;
12771
ec2c981e
DL
12772 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12773 obj->tiling_mode);
53155c0a
DV
12774 /* FIXME drm helper for size checks (especially planar formats)? */
12775 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12776 return -EINVAL;
12777
c7d73f6a
DV
12778 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12779 intel_fb->obj = obj;
80075d49 12780 intel_fb->obj->framebuffer_references++;
c7d73f6a 12781
79e53945
JB
12782 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12783 if (ret) {
12784 DRM_ERROR("framebuffer init failed %d\n", ret);
12785 return ret;
12786 }
12787
79e53945
JB
12788 return 0;
12789}
12790
79e53945
JB
12791static struct drm_framebuffer *
12792intel_user_framebuffer_create(struct drm_device *dev,
12793 struct drm_file *filp,
308e5bcb 12794 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12795{
05394f39 12796 struct drm_i915_gem_object *obj;
79e53945 12797
308e5bcb
JB
12798 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12799 mode_cmd->handles[0]));
c8725226 12800 if (&obj->base == NULL)
cce13ff7 12801 return ERR_PTR(-ENOENT);
79e53945 12802
d2dff872 12803 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12804}
12805
4520f53a 12806#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12807static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12808{
12809}
12810#endif
12811
79e53945 12812static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12813 .fb_create = intel_user_framebuffer_create,
0632fef6 12814 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
12815 .atomic_check = intel_atomic_check,
12816 .atomic_commit = intel_atomic_commit,
79e53945
JB
12817};
12818
e70236a8
JB
12819/* Set up chip specific display functions */
12820static void intel_init_display(struct drm_device *dev)
12821{
12822 struct drm_i915_private *dev_priv = dev->dev_private;
12823
ee9300bb
DV
12824 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12825 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12826 else if (IS_CHERRYVIEW(dev))
12827 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12828 else if (IS_VALLEYVIEW(dev))
12829 dev_priv->display.find_dpll = vlv_find_best_dpll;
12830 else if (IS_PINEVIEW(dev))
12831 dev_priv->display.find_dpll = pnv_find_best_dpll;
12832 else
12833 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12834
bc8d7dff
DL
12835 if (INTEL_INFO(dev)->gen >= 9) {
12836 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12837 dev_priv->display.get_initial_plane_config =
12838 skylake_get_initial_plane_config;
bc8d7dff
DL
12839 dev_priv->display.crtc_compute_clock =
12840 haswell_crtc_compute_clock;
12841 dev_priv->display.crtc_enable = haswell_crtc_enable;
12842 dev_priv->display.crtc_disable = haswell_crtc_disable;
12843 dev_priv->display.off = ironlake_crtc_off;
12844 dev_priv->display.update_primary_plane =
12845 skylake_update_primary_plane;
12846 } else if (HAS_DDI(dev)) {
0e8ffe1b 12847 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12848 dev_priv->display.get_initial_plane_config =
12849 ironlake_get_initial_plane_config;
797d0259
ACO
12850 dev_priv->display.crtc_compute_clock =
12851 haswell_crtc_compute_clock;
4f771f10
PZ
12852 dev_priv->display.crtc_enable = haswell_crtc_enable;
12853 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12854 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
12855 dev_priv->display.update_primary_plane =
12856 ironlake_update_primary_plane;
09b4ddf9 12857 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12858 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
12859 dev_priv->display.get_initial_plane_config =
12860 ironlake_get_initial_plane_config;
3fb37703
ACO
12861 dev_priv->display.crtc_compute_clock =
12862 ironlake_crtc_compute_clock;
76e5a89c
DV
12863 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12864 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12865 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12866 dev_priv->display.update_primary_plane =
12867 ironlake_update_primary_plane;
89b667f8
JB
12868 } else if (IS_VALLEYVIEW(dev)) {
12869 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12870 dev_priv->display.get_initial_plane_config =
12871 i9xx_get_initial_plane_config;
d6dfee7a 12872 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12873 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12874 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12875 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12876 dev_priv->display.update_primary_plane =
12877 i9xx_update_primary_plane;
f564048e 12878 } else {
0e8ffe1b 12879 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12880 dev_priv->display.get_initial_plane_config =
12881 i9xx_get_initial_plane_config;
d6dfee7a 12882 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12883 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12884 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12885 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12886 dev_priv->display.update_primary_plane =
12887 i9xx_update_primary_plane;
f564048e 12888 }
e70236a8 12889
e70236a8 12890 /* Returns the core display clock speed */
25eb05fc
JB
12891 if (IS_VALLEYVIEW(dev))
12892 dev_priv->display.get_display_clock_speed =
12893 valleyview_get_display_clock_speed;
12894 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12895 dev_priv->display.get_display_clock_speed =
12896 i945_get_display_clock_speed;
12897 else if (IS_I915G(dev))
12898 dev_priv->display.get_display_clock_speed =
12899 i915_get_display_clock_speed;
257a7ffc 12900 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12901 dev_priv->display.get_display_clock_speed =
12902 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12903 else if (IS_PINEVIEW(dev))
12904 dev_priv->display.get_display_clock_speed =
12905 pnv_get_display_clock_speed;
e70236a8
JB
12906 else if (IS_I915GM(dev))
12907 dev_priv->display.get_display_clock_speed =
12908 i915gm_get_display_clock_speed;
12909 else if (IS_I865G(dev))
12910 dev_priv->display.get_display_clock_speed =
12911 i865_get_display_clock_speed;
f0f8a9ce 12912 else if (IS_I85X(dev))
e70236a8
JB
12913 dev_priv->display.get_display_clock_speed =
12914 i855_get_display_clock_speed;
12915 else /* 852, 830 */
12916 dev_priv->display.get_display_clock_speed =
12917 i830_get_display_clock_speed;
12918
7c10a2b5 12919 if (IS_GEN5(dev)) {
3bb11b53 12920 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12921 } else if (IS_GEN6(dev)) {
12922 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12923 } else if (IS_IVYBRIDGE(dev)) {
12924 /* FIXME: detect B0+ stepping and use auto training */
12925 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12926 dev_priv->display.modeset_global_resources =
12927 ivb_modeset_global_resources;
059b2fe9 12928 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12929 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12930 } else if (IS_VALLEYVIEW(dev)) {
12931 dev_priv->display.modeset_global_resources =
12932 valleyview_modeset_global_resources;
e70236a8 12933 }
8c9f3aaf
JB
12934
12935 /* Default just returns -ENODEV to indicate unsupported */
12936 dev_priv->display.queue_flip = intel_default_queue_flip;
12937
12938 switch (INTEL_INFO(dev)->gen) {
12939 case 2:
12940 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12941 break;
12942
12943 case 3:
12944 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12945 break;
12946
12947 case 4:
12948 case 5:
12949 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12950 break;
12951
12952 case 6:
12953 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12954 break;
7c9017e5 12955 case 7:
4e0bbc31 12956 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12957 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12958 break;
830c81db
DL
12959 case 9:
12960 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12961 break;
8c9f3aaf 12962 }
7bd688cd
JN
12963
12964 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12965
12966 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12967}
12968
b690e96c
JB
12969/*
12970 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12971 * resume, or other times. This quirk makes sure that's the case for
12972 * affected systems.
12973 */
0206e353 12974static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12975{
12976 struct drm_i915_private *dev_priv = dev->dev_private;
12977
12978 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12979 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12980}
12981
b6b5d049
VS
12982static void quirk_pipeb_force(struct drm_device *dev)
12983{
12984 struct drm_i915_private *dev_priv = dev->dev_private;
12985
12986 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12987 DRM_INFO("applying pipe b force quirk\n");
12988}
12989
435793df
KP
12990/*
12991 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12992 */
12993static void quirk_ssc_force_disable(struct drm_device *dev)
12994{
12995 struct drm_i915_private *dev_priv = dev->dev_private;
12996 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12997 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12998}
12999
4dca20ef 13000/*
5a15ab5b
CE
13001 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13002 * brightness value
4dca20ef
CE
13003 */
13004static void quirk_invert_brightness(struct drm_device *dev)
13005{
13006 struct drm_i915_private *dev_priv = dev->dev_private;
13007 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13008 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13009}
13010
9c72cc6f
SD
13011/* Some VBT's incorrectly indicate no backlight is present */
13012static void quirk_backlight_present(struct drm_device *dev)
13013{
13014 struct drm_i915_private *dev_priv = dev->dev_private;
13015 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13016 DRM_INFO("applying backlight present quirk\n");
13017}
13018
b690e96c
JB
13019struct intel_quirk {
13020 int device;
13021 int subsystem_vendor;
13022 int subsystem_device;
13023 void (*hook)(struct drm_device *dev);
13024};
13025
5f85f176
EE
13026/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13027struct intel_dmi_quirk {
13028 void (*hook)(struct drm_device *dev);
13029 const struct dmi_system_id (*dmi_id_list)[];
13030};
13031
13032static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13033{
13034 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13035 return 1;
13036}
13037
13038static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13039 {
13040 .dmi_id_list = &(const struct dmi_system_id[]) {
13041 {
13042 .callback = intel_dmi_reverse_brightness,
13043 .ident = "NCR Corporation",
13044 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13045 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13046 },
13047 },
13048 { } /* terminating entry */
13049 },
13050 .hook = quirk_invert_brightness,
13051 },
13052};
13053
c43b5634 13054static struct intel_quirk intel_quirks[] = {
b690e96c 13055 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13056 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13057
b690e96c
JB
13058 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13059 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13060
b690e96c
JB
13061 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13062 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13063
5f080c0f
VS
13064 /* 830 needs to leave pipe A & dpll A up */
13065 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13066
b6b5d049
VS
13067 /* 830 needs to leave pipe B & dpll B up */
13068 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13069
435793df
KP
13070 /* Lenovo U160 cannot use SSC on LVDS */
13071 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13072
13073 /* Sony Vaio Y cannot use SSC on LVDS */
13074 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13075
be505f64
AH
13076 /* Acer Aspire 5734Z must invert backlight brightness */
13077 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13078
13079 /* Acer/eMachines G725 */
13080 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13081
13082 /* Acer/eMachines e725 */
13083 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13084
13085 /* Acer/Packard Bell NCL20 */
13086 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13087
13088 /* Acer Aspire 4736Z */
13089 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13090
13091 /* Acer Aspire 5336 */
13092 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13093
13094 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13095 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13096
dfb3d47b
SD
13097 /* Acer C720 Chromebook (Core i3 4005U) */
13098 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13099
b2a9601c 13100 /* Apple Macbook 2,1 (Core 2 T7400) */
13101 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13102
d4967d8c
SD
13103 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13104 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13105
13106 /* HP Chromebook 14 (Celeron 2955U) */
13107 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
13108
13109 /* Dell Chromebook 11 */
13110 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
13111};
13112
13113static void intel_init_quirks(struct drm_device *dev)
13114{
13115 struct pci_dev *d = dev->pdev;
13116 int i;
13117
13118 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13119 struct intel_quirk *q = &intel_quirks[i];
13120
13121 if (d->device == q->device &&
13122 (d->subsystem_vendor == q->subsystem_vendor ||
13123 q->subsystem_vendor == PCI_ANY_ID) &&
13124 (d->subsystem_device == q->subsystem_device ||
13125 q->subsystem_device == PCI_ANY_ID))
13126 q->hook(dev);
13127 }
5f85f176
EE
13128 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13129 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13130 intel_dmi_quirks[i].hook(dev);
13131 }
b690e96c
JB
13132}
13133
9cce37f4
JB
13134/* Disable the VGA plane that we never use */
13135static void i915_disable_vga(struct drm_device *dev)
13136{
13137 struct drm_i915_private *dev_priv = dev->dev_private;
13138 u8 sr1;
766aa1c4 13139 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13140
2b37c616 13141 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13142 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13143 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13144 sr1 = inb(VGA_SR_DATA);
13145 outb(sr1 | 1<<5, VGA_SR_DATA);
13146 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13147 udelay(300);
13148
01f5a626 13149 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13150 POSTING_READ(vga_reg);
13151}
13152
f817586c
DV
13153void intel_modeset_init_hw(struct drm_device *dev)
13154{
a8f78b58
ED
13155 intel_prepare_ddi(dev);
13156
f8bf63fd
VS
13157 if (IS_VALLEYVIEW(dev))
13158 vlv_update_cdclk(dev);
13159
f817586c
DV
13160 intel_init_clock_gating(dev);
13161
8090c6b9 13162 intel_enable_gt_powersave(dev);
f817586c
DV
13163}
13164
79e53945
JB
13165void intel_modeset_init(struct drm_device *dev)
13166{
652c393a 13167 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13168 int sprite, ret;
8cc87b75 13169 enum pipe pipe;
46f297fb 13170 struct intel_crtc *crtc;
79e53945
JB
13171
13172 drm_mode_config_init(dev);
13173
13174 dev->mode_config.min_width = 0;
13175 dev->mode_config.min_height = 0;
13176
019d96cb
DA
13177 dev->mode_config.preferred_depth = 24;
13178 dev->mode_config.prefer_shadow = 1;
13179
e6ecefaa 13180 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13181
b690e96c
JB
13182 intel_init_quirks(dev);
13183
1fa61106
ED
13184 intel_init_pm(dev);
13185
e3c74757
BW
13186 if (INTEL_INFO(dev)->num_pipes == 0)
13187 return;
13188
e70236a8 13189 intel_init_display(dev);
7c10a2b5 13190 intel_init_audio(dev);
e70236a8 13191
a6c45cf0
CW
13192 if (IS_GEN2(dev)) {
13193 dev->mode_config.max_width = 2048;
13194 dev->mode_config.max_height = 2048;
13195 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13196 dev->mode_config.max_width = 4096;
13197 dev->mode_config.max_height = 4096;
79e53945 13198 } else {
a6c45cf0
CW
13199 dev->mode_config.max_width = 8192;
13200 dev->mode_config.max_height = 8192;
79e53945 13201 }
068be561 13202
dc41c154
VS
13203 if (IS_845G(dev) || IS_I865G(dev)) {
13204 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13205 dev->mode_config.cursor_height = 1023;
13206 } else if (IS_GEN2(dev)) {
068be561
DL
13207 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13208 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13209 } else {
13210 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13211 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13212 }
13213
5d4545ae 13214 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13215
28c97730 13216 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13217 INTEL_INFO(dev)->num_pipes,
13218 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13219
055e393f 13220 for_each_pipe(dev_priv, pipe) {
8cc87b75 13221 intel_crtc_init(dev, pipe);
1fe47785
DL
13222 for_each_sprite(pipe, sprite) {
13223 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13224 if (ret)
06da8da2 13225 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13226 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13227 }
79e53945
JB
13228 }
13229
f42bb70d
JB
13230 intel_init_dpio(dev);
13231
e72f9fbf 13232 intel_shared_dpll_init(dev);
ee7b9f93 13233
9cce37f4
JB
13234 /* Just disable it once at startup */
13235 i915_disable_vga(dev);
79e53945 13236 intel_setup_outputs(dev);
11be49eb
CW
13237
13238 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13239 intel_fbc_disable(dev);
fa9fa083 13240
6e9f798d 13241 drm_modeset_lock_all(dev);
fa9fa083 13242 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13243 drm_modeset_unlock_all(dev);
46f297fb 13244
d3fcc808 13245 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13246 if (!crtc->active)
13247 continue;
13248
46f297fb 13249 /*
46f297fb
JB
13250 * Note that reserving the BIOS fb up front prevents us
13251 * from stuffing other stolen allocations like the ring
13252 * on top. This prevents some ugliness at boot time, and
13253 * can even allow for smooth boot transitions if the BIOS
13254 * fb is large enough for the active pipe configuration.
13255 */
5724dbd1
DL
13256 if (dev_priv->display.get_initial_plane_config) {
13257 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13258 &crtc->plane_config);
13259 /*
13260 * If the fb is shared between multiple heads, we'll
13261 * just get the first one.
13262 */
484b41dd 13263 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13264 }
46f297fb 13265 }
2c7111db
CW
13266}
13267
7fad798e
DV
13268static void intel_enable_pipe_a(struct drm_device *dev)
13269{
13270 struct intel_connector *connector;
13271 struct drm_connector *crt = NULL;
13272 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13273 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13274
13275 /* We can't just switch on the pipe A, we need to set things up with a
13276 * proper mode and output configuration. As a gross hack, enable pipe A
13277 * by enabling the load detect pipe once. */
13278 list_for_each_entry(connector,
13279 &dev->mode_config.connector_list,
13280 base.head) {
13281 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13282 crt = &connector->base;
13283 break;
13284 }
13285 }
13286
13287 if (!crt)
13288 return;
13289
208bf9fd
VS
13290 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13291 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13292}
13293
fa555837
DV
13294static bool
13295intel_check_plane_mapping(struct intel_crtc *crtc)
13296{
7eb552ae
BW
13297 struct drm_device *dev = crtc->base.dev;
13298 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13299 u32 reg, val;
13300
7eb552ae 13301 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13302 return true;
13303
13304 reg = DSPCNTR(!crtc->plane);
13305 val = I915_READ(reg);
13306
13307 if ((val & DISPLAY_PLANE_ENABLE) &&
13308 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13309 return false;
13310
13311 return true;
13312}
13313
24929352
DV
13314static void intel_sanitize_crtc(struct intel_crtc *crtc)
13315{
13316 struct drm_device *dev = crtc->base.dev;
13317 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13318 u32 reg;
24929352 13319
24929352 13320 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13321 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13322 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13323
d3eaf884 13324 /* restore vblank interrupts to correct state */
d297e103
VS
13325 if (crtc->active) {
13326 update_scanline_offset(crtc);
d3eaf884 13327 drm_vblank_on(dev, crtc->pipe);
d297e103 13328 } else
d3eaf884
VS
13329 drm_vblank_off(dev, crtc->pipe);
13330
24929352 13331 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13332 * disable the crtc (and hence change the state) if it is wrong. Note
13333 * that gen4+ has a fixed plane -> pipe mapping. */
13334 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13335 struct intel_connector *connector;
13336 bool plane;
13337
24929352
DV
13338 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13339 crtc->base.base.id);
13340
13341 /* Pipe has the wrong plane attached and the plane is active.
13342 * Temporarily change the plane mapping and disable everything
13343 * ... */
13344 plane = crtc->plane;
13345 crtc->plane = !plane;
9c8958bc 13346 crtc->primary_enabled = true;
24929352
DV
13347 dev_priv->display.crtc_disable(&crtc->base);
13348 crtc->plane = plane;
13349
13350 /* ... and break all links. */
13351 list_for_each_entry(connector, &dev->mode_config.connector_list,
13352 base.head) {
13353 if (connector->encoder->base.crtc != &crtc->base)
13354 continue;
13355
7f1950fb
EE
13356 connector->base.dpms = DRM_MODE_DPMS_OFF;
13357 connector->base.encoder = NULL;
24929352 13358 }
7f1950fb
EE
13359 /* multiple connectors may have the same encoder:
13360 * handle them and break crtc link separately */
13361 list_for_each_entry(connector, &dev->mode_config.connector_list,
13362 base.head)
13363 if (connector->encoder->base.crtc == &crtc->base) {
13364 connector->encoder->base.crtc = NULL;
13365 connector->encoder->connectors_active = false;
13366 }
24929352
DV
13367
13368 WARN_ON(crtc->active);
13369 crtc->base.enabled = false;
13370 }
24929352 13371
7fad798e
DV
13372 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13373 crtc->pipe == PIPE_A && !crtc->active) {
13374 /* BIOS forgot to enable pipe A, this mostly happens after
13375 * resume. Force-enable the pipe to fix this, the update_dpms
13376 * call below we restore the pipe to the right state, but leave
13377 * the required bits on. */
13378 intel_enable_pipe_a(dev);
13379 }
13380
24929352
DV
13381 /* Adjust the state of the output pipe according to whether we
13382 * have active connectors/encoders. */
13383 intel_crtc_update_dpms(&crtc->base);
13384
13385 if (crtc->active != crtc->base.enabled) {
13386 struct intel_encoder *encoder;
13387
13388 /* This can happen either due to bugs in the get_hw_state
13389 * functions or because the pipe is force-enabled due to the
13390 * pipe A quirk. */
13391 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13392 crtc->base.base.id,
13393 crtc->base.enabled ? "enabled" : "disabled",
13394 crtc->active ? "enabled" : "disabled");
13395
13396 crtc->base.enabled = crtc->active;
13397
13398 /* Because we only establish the connector -> encoder ->
13399 * crtc links if something is active, this means the
13400 * crtc is now deactivated. Break the links. connector
13401 * -> encoder links are only establish when things are
13402 * actually up, hence no need to break them. */
13403 WARN_ON(crtc->active);
13404
13405 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13406 WARN_ON(encoder->connectors_active);
13407 encoder->base.crtc = NULL;
13408 }
13409 }
c5ab3bc0 13410
a3ed6aad 13411 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13412 /*
13413 * We start out with underrun reporting disabled to avoid races.
13414 * For correct bookkeeping mark this on active crtcs.
13415 *
c5ab3bc0
DV
13416 * Also on gmch platforms we dont have any hardware bits to
13417 * disable the underrun reporting. Which means we need to start
13418 * out with underrun reporting disabled also on inactive pipes,
13419 * since otherwise we'll complain about the garbage we read when
13420 * e.g. coming up after runtime pm.
13421 *
4cc31489
DV
13422 * No protection against concurrent access is required - at
13423 * worst a fifo underrun happens which also sets this to false.
13424 */
13425 crtc->cpu_fifo_underrun_disabled = true;
13426 crtc->pch_fifo_underrun_disabled = true;
13427 }
24929352
DV
13428}
13429
13430static void intel_sanitize_encoder(struct intel_encoder *encoder)
13431{
13432 struct intel_connector *connector;
13433 struct drm_device *dev = encoder->base.dev;
13434
13435 /* We need to check both for a crtc link (meaning that the
13436 * encoder is active and trying to read from a pipe) and the
13437 * pipe itself being active. */
13438 bool has_active_crtc = encoder->base.crtc &&
13439 to_intel_crtc(encoder->base.crtc)->active;
13440
13441 if (encoder->connectors_active && !has_active_crtc) {
13442 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13443 encoder->base.base.id,
8e329a03 13444 encoder->base.name);
24929352
DV
13445
13446 /* Connector is active, but has no active pipe. This is
13447 * fallout from our resume register restoring. Disable
13448 * the encoder manually again. */
13449 if (encoder->base.crtc) {
13450 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13451 encoder->base.base.id,
8e329a03 13452 encoder->base.name);
24929352 13453 encoder->disable(encoder);
a62d1497
VS
13454 if (encoder->post_disable)
13455 encoder->post_disable(encoder);
24929352 13456 }
7f1950fb
EE
13457 encoder->base.crtc = NULL;
13458 encoder->connectors_active = false;
24929352
DV
13459
13460 /* Inconsistent output/port/pipe state happens presumably due to
13461 * a bug in one of the get_hw_state functions. Or someplace else
13462 * in our code, like the register restore mess on resume. Clamp
13463 * things to off as a safer default. */
13464 list_for_each_entry(connector,
13465 &dev->mode_config.connector_list,
13466 base.head) {
13467 if (connector->encoder != encoder)
13468 continue;
7f1950fb
EE
13469 connector->base.dpms = DRM_MODE_DPMS_OFF;
13470 connector->base.encoder = NULL;
24929352
DV
13471 }
13472 }
13473 /* Enabled encoders without active connectors will be fixed in
13474 * the crtc fixup. */
13475}
13476
04098753 13477void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13478{
13479 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13480 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13481
04098753
ID
13482 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13483 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13484 i915_disable_vga(dev);
13485 }
13486}
13487
13488void i915_redisable_vga(struct drm_device *dev)
13489{
13490 struct drm_i915_private *dev_priv = dev->dev_private;
13491
8dc8a27c
PZ
13492 /* This function can be called both from intel_modeset_setup_hw_state or
13493 * at a very early point in our resume sequence, where the power well
13494 * structures are not yet restored. Since this function is at a very
13495 * paranoid "someone might have enabled VGA while we were not looking"
13496 * level, just check if the power well is enabled instead of trying to
13497 * follow the "don't touch the power well if we don't need it" policy
13498 * the rest of the driver uses. */
f458ebbc 13499 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13500 return;
13501
04098753 13502 i915_redisable_vga_power_on(dev);
0fde901f
KM
13503}
13504
98ec7739
VS
13505static bool primary_get_hw_state(struct intel_crtc *crtc)
13506{
13507 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13508
13509 if (!crtc->active)
13510 return false;
13511
13512 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13513}
13514
30e984df 13515static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13516{
13517 struct drm_i915_private *dev_priv = dev->dev_private;
13518 enum pipe pipe;
24929352
DV
13519 struct intel_crtc *crtc;
13520 struct intel_encoder *encoder;
13521 struct intel_connector *connector;
5358901f 13522 int i;
24929352 13523
d3fcc808 13524 for_each_intel_crtc(dev, crtc) {
6e3c9717 13525 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13526
6e3c9717 13527 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13528
0e8ffe1b 13529 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13530 crtc->config);
24929352
DV
13531
13532 crtc->base.enabled = crtc->active;
98ec7739 13533 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13534
13535 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13536 crtc->base.base.id,
13537 crtc->active ? "enabled" : "disabled");
13538 }
13539
5358901f
DV
13540 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13541 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13542
3e369b76
ACO
13543 pll->on = pll->get_hw_state(dev_priv, pll,
13544 &pll->config.hw_state);
5358901f 13545 pll->active = 0;
3e369b76 13546 pll->config.crtc_mask = 0;
d3fcc808 13547 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13548 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13549 pll->active++;
3e369b76 13550 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13551 }
5358901f 13552 }
5358901f 13553
1e6f2ddc 13554 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13555 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13556
3e369b76 13557 if (pll->config.crtc_mask)
bd2bb1b9 13558 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13559 }
13560
b2784e15 13561 for_each_intel_encoder(dev, encoder) {
24929352
DV
13562 pipe = 0;
13563
13564 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13565 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13566 encoder->base.crtc = &crtc->base;
6e3c9717 13567 encoder->get_config(encoder, crtc->config);
24929352
DV
13568 } else {
13569 encoder->base.crtc = NULL;
13570 }
13571
13572 encoder->connectors_active = false;
6f2bcceb 13573 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13574 encoder->base.base.id,
8e329a03 13575 encoder->base.name,
24929352 13576 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13577 pipe_name(pipe));
24929352
DV
13578 }
13579
13580 list_for_each_entry(connector, &dev->mode_config.connector_list,
13581 base.head) {
13582 if (connector->get_hw_state(connector)) {
13583 connector->base.dpms = DRM_MODE_DPMS_ON;
13584 connector->encoder->connectors_active = true;
13585 connector->base.encoder = &connector->encoder->base;
13586 } else {
13587 connector->base.dpms = DRM_MODE_DPMS_OFF;
13588 connector->base.encoder = NULL;
13589 }
13590 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13591 connector->base.base.id,
c23cc417 13592 connector->base.name,
24929352
DV
13593 connector->base.encoder ? "enabled" : "disabled");
13594 }
30e984df
DV
13595}
13596
13597/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13598 * and i915 state tracking structures. */
13599void intel_modeset_setup_hw_state(struct drm_device *dev,
13600 bool force_restore)
13601{
13602 struct drm_i915_private *dev_priv = dev->dev_private;
13603 enum pipe pipe;
30e984df
DV
13604 struct intel_crtc *crtc;
13605 struct intel_encoder *encoder;
35c95375 13606 int i;
30e984df
DV
13607
13608 intel_modeset_readout_hw_state(dev);
24929352 13609
babea61d
JB
13610 /*
13611 * Now that we have the config, copy it to each CRTC struct
13612 * Note that this could go away if we move to using crtc_config
13613 * checking everywhere.
13614 */
d3fcc808 13615 for_each_intel_crtc(dev, crtc) {
d330a953 13616 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13617 intel_mode_from_pipe_config(&crtc->base.mode,
13618 crtc->config);
babea61d
JB
13619 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13620 crtc->base.base.id);
13621 drm_mode_debug_printmodeline(&crtc->base.mode);
13622 }
13623 }
13624
24929352 13625 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13626 for_each_intel_encoder(dev, encoder) {
24929352
DV
13627 intel_sanitize_encoder(encoder);
13628 }
13629
055e393f 13630 for_each_pipe(dev_priv, pipe) {
24929352
DV
13631 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13632 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13633 intel_dump_pipe_config(crtc, crtc->config,
13634 "[setup_hw_state]");
24929352 13635 }
9a935856 13636
35c95375
DV
13637 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13638 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13639
13640 if (!pll->on || pll->active)
13641 continue;
13642
13643 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13644
13645 pll->disable(dev_priv, pll);
13646 pll->on = false;
13647 }
13648
3078999f
PB
13649 if (IS_GEN9(dev))
13650 skl_wm_get_hw_state(dev);
13651 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13652 ilk_wm_get_hw_state(dev);
13653
45e2b5f6 13654 if (force_restore) {
7d0bc1ea
VS
13655 i915_redisable_vga(dev);
13656
f30da187
DV
13657 /*
13658 * We need to use raw interfaces for restoring state to avoid
13659 * checking (bogus) intermediate states.
13660 */
055e393f 13661 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13662 struct drm_crtc *crtc =
13663 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13664
7f27126e
JB
13665 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13666 crtc->primary->fb);
45e2b5f6
DV
13667 }
13668 } else {
13669 intel_modeset_update_staged_output_state(dev);
13670 }
8af6cf88
DV
13671
13672 intel_modeset_check_state(dev);
2c7111db
CW
13673}
13674
13675void intel_modeset_gem_init(struct drm_device *dev)
13676{
92122789 13677 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13678 struct drm_crtc *c;
2ff8fde1 13679 struct drm_i915_gem_object *obj;
484b41dd 13680
ae48434c
ID
13681 mutex_lock(&dev->struct_mutex);
13682 intel_init_gt_powersave(dev);
13683 mutex_unlock(&dev->struct_mutex);
13684
92122789
JB
13685 /*
13686 * There may be no VBT; and if the BIOS enabled SSC we can
13687 * just keep using it to avoid unnecessary flicker. Whereas if the
13688 * BIOS isn't using it, don't assume it will work even if the VBT
13689 * indicates as much.
13690 */
13691 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13692 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13693 DREF_SSC1_ENABLE);
13694
1833b134 13695 intel_modeset_init_hw(dev);
02e792fb
DV
13696
13697 intel_setup_overlay(dev);
484b41dd
JB
13698
13699 /*
13700 * Make sure any fbs we allocated at startup are properly
13701 * pinned & fenced. When we do the allocation it's too early
13702 * for this.
13703 */
13704 mutex_lock(&dev->struct_mutex);
70e1e0ec 13705 for_each_crtc(dev, c) {
2ff8fde1
MR
13706 obj = intel_fb_obj(c->primary->fb);
13707 if (obj == NULL)
484b41dd
JB
13708 continue;
13709
850c4cdc
TU
13710 if (intel_pin_and_fence_fb_obj(c->primary,
13711 c->primary->fb,
13712 NULL)) {
484b41dd
JB
13713 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13714 to_intel_crtc(c)->pipe);
66e514c1
DA
13715 drm_framebuffer_unreference(c->primary->fb);
13716 c->primary->fb = NULL;
484b41dd
JB
13717 }
13718 }
13719 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13720
13721 intel_backlight_register(dev);
79e53945
JB
13722}
13723
4932e2c3
ID
13724void intel_connector_unregister(struct intel_connector *intel_connector)
13725{
13726 struct drm_connector *connector = &intel_connector->base;
13727
13728 intel_panel_destroy_backlight(connector);
34ea3d38 13729 drm_connector_unregister(connector);
4932e2c3
ID
13730}
13731
79e53945
JB
13732void intel_modeset_cleanup(struct drm_device *dev)
13733{
652c393a 13734 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13735 struct drm_connector *connector;
652c393a 13736
2eb5252e
ID
13737 intel_disable_gt_powersave(dev);
13738
0962c3c9
VS
13739 intel_backlight_unregister(dev);
13740
fd0c0642
DV
13741 /*
13742 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13743 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13744 * experience fancy races otherwise.
13745 */
2aeb7d3a 13746 intel_irq_uninstall(dev_priv);
eb21b92b 13747
fd0c0642
DV
13748 /*
13749 * Due to the hpd irq storm handling the hotplug work can re-arm the
13750 * poll handlers. Hence disable polling after hpd handling is shut down.
13751 */
f87ea761 13752 drm_kms_helper_poll_fini(dev);
fd0c0642 13753
652c393a
JB
13754 mutex_lock(&dev->struct_mutex);
13755
723bfd70
JB
13756 intel_unregister_dsm_handler();
13757
7ff0ebcc 13758 intel_fbc_disable(dev);
e70236a8 13759
930ebb46
DV
13760 ironlake_teardown_rc6(dev);
13761
69341a5e
KH
13762 mutex_unlock(&dev->struct_mutex);
13763
1630fe75
CW
13764 /* flush any delayed tasks or pending work */
13765 flush_scheduled_work();
13766
db31af1d
JN
13767 /* destroy the backlight and sysfs files before encoders/connectors */
13768 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13769 struct intel_connector *intel_connector;
13770
13771 intel_connector = to_intel_connector(connector);
13772 intel_connector->unregister(intel_connector);
db31af1d 13773 }
d9255d57 13774
79e53945 13775 drm_mode_config_cleanup(dev);
4d7bb011
DV
13776
13777 intel_cleanup_overlay(dev);
ae48434c
ID
13778
13779 mutex_lock(&dev->struct_mutex);
13780 intel_cleanup_gt_powersave(dev);
13781 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13782}
13783
f1c79df3
ZW
13784/*
13785 * Return which encoder is currently attached for connector.
13786 */
df0e9248 13787struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13788{
df0e9248
CW
13789 return &intel_attached_encoder(connector)->base;
13790}
f1c79df3 13791
df0e9248
CW
13792void intel_connector_attach_encoder(struct intel_connector *connector,
13793 struct intel_encoder *encoder)
13794{
13795 connector->encoder = encoder;
13796 drm_mode_connector_attach_encoder(&connector->base,
13797 &encoder->base);
79e53945 13798}
28d52043
DA
13799
13800/*
13801 * set vga decode state - true == enable VGA decode
13802 */
13803int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13804{
13805 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13806 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13807 u16 gmch_ctrl;
13808
75fa041d
CW
13809 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13810 DRM_ERROR("failed to read control word\n");
13811 return -EIO;
13812 }
13813
c0cc8a55
CW
13814 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13815 return 0;
13816
28d52043
DA
13817 if (state)
13818 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13819 else
13820 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13821
13822 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13823 DRM_ERROR("failed to write control word\n");
13824 return -EIO;
13825 }
13826
28d52043
DA
13827 return 0;
13828}
c4a1d9e4 13829
c4a1d9e4 13830struct intel_display_error_state {
ff57f1b0
PZ
13831
13832 u32 power_well_driver;
13833
63b66e5b
CW
13834 int num_transcoders;
13835
c4a1d9e4
CW
13836 struct intel_cursor_error_state {
13837 u32 control;
13838 u32 position;
13839 u32 base;
13840 u32 size;
52331309 13841 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13842
13843 struct intel_pipe_error_state {
ddf9c536 13844 bool power_domain_on;
c4a1d9e4 13845 u32 source;
f301b1e1 13846 u32 stat;
52331309 13847 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13848
13849 struct intel_plane_error_state {
13850 u32 control;
13851 u32 stride;
13852 u32 size;
13853 u32 pos;
13854 u32 addr;
13855 u32 surface;
13856 u32 tile_offset;
52331309 13857 } plane[I915_MAX_PIPES];
63b66e5b
CW
13858
13859 struct intel_transcoder_error_state {
ddf9c536 13860 bool power_domain_on;
63b66e5b
CW
13861 enum transcoder cpu_transcoder;
13862
13863 u32 conf;
13864
13865 u32 htotal;
13866 u32 hblank;
13867 u32 hsync;
13868 u32 vtotal;
13869 u32 vblank;
13870 u32 vsync;
13871 } transcoder[4];
c4a1d9e4
CW
13872};
13873
13874struct intel_display_error_state *
13875intel_display_capture_error_state(struct drm_device *dev)
13876{
fbee40df 13877 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13878 struct intel_display_error_state *error;
63b66e5b
CW
13879 int transcoders[] = {
13880 TRANSCODER_A,
13881 TRANSCODER_B,
13882 TRANSCODER_C,
13883 TRANSCODER_EDP,
13884 };
c4a1d9e4
CW
13885 int i;
13886
63b66e5b
CW
13887 if (INTEL_INFO(dev)->num_pipes == 0)
13888 return NULL;
13889
9d1cb914 13890 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13891 if (error == NULL)
13892 return NULL;
13893
190be112 13894 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13895 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13896
055e393f 13897 for_each_pipe(dev_priv, i) {
ddf9c536 13898 error->pipe[i].power_domain_on =
f458ebbc
DV
13899 __intel_display_power_is_enabled(dev_priv,
13900 POWER_DOMAIN_PIPE(i));
ddf9c536 13901 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13902 continue;
13903
5efb3e28
VS
13904 error->cursor[i].control = I915_READ(CURCNTR(i));
13905 error->cursor[i].position = I915_READ(CURPOS(i));
13906 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13907
13908 error->plane[i].control = I915_READ(DSPCNTR(i));
13909 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13910 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13911 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13912 error->plane[i].pos = I915_READ(DSPPOS(i));
13913 }
ca291363
PZ
13914 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13915 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13916 if (INTEL_INFO(dev)->gen >= 4) {
13917 error->plane[i].surface = I915_READ(DSPSURF(i));
13918 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13919 }
13920
c4a1d9e4 13921 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13922
3abfce77 13923 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13924 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13925 }
13926
13927 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13928 if (HAS_DDI(dev_priv->dev))
13929 error->num_transcoders++; /* Account for eDP. */
13930
13931 for (i = 0; i < error->num_transcoders; i++) {
13932 enum transcoder cpu_transcoder = transcoders[i];
13933
ddf9c536 13934 error->transcoder[i].power_domain_on =
f458ebbc 13935 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13936 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13937 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13938 continue;
13939
63b66e5b
CW
13940 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13941
13942 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13943 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13944 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13945 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13946 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13947 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13948 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13949 }
13950
13951 return error;
13952}
13953
edc3d884
MK
13954#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13955
c4a1d9e4 13956void
edc3d884 13957intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13958 struct drm_device *dev,
13959 struct intel_display_error_state *error)
13960{
055e393f 13961 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13962 int i;
13963
63b66e5b
CW
13964 if (!error)
13965 return;
13966
edc3d884 13967 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13968 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13969 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13970 error->power_well_driver);
055e393f 13971 for_each_pipe(dev_priv, i) {
edc3d884 13972 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13973 err_printf(m, " Power: %s\n",
13974 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13975 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13976 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13977
13978 err_printf(m, "Plane [%d]:\n", i);
13979 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13980 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13981 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13982 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13983 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13984 }
4b71a570 13985 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13986 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13987 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13988 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13989 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13990 }
13991
edc3d884
MK
13992 err_printf(m, "Cursor [%d]:\n", i);
13993 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13994 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13995 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13996 }
63b66e5b
CW
13997
13998 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13999 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 14000 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
14001 err_printf(m, " Power: %s\n",
14002 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
14003 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14004 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14005 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14006 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14007 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14008 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14009 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14010 }
c4a1d9e4 14011}
e2fcdaa9
VS
14012
14013void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14014{
14015 struct intel_crtc *crtc;
14016
14017 for_each_intel_crtc(dev, crtc) {
14018 struct intel_unpin_work *work;
e2fcdaa9 14019
5e2d7afc 14020 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14021
14022 work = crtc->unpin_work;
14023
14024 if (work && work->event &&
14025 work->event->base.file_priv == file) {
14026 kfree(work->event);
14027 work->event = NULL;
14028 }
14029
5e2d7afc 14030 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14031 }
14032}
This page took 2.53601 seconds and 5 git commands to generate.