rtmutex: Turn the plist into an rb-tree
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
aab03e05
DF
902 if (task_has_dl_policy(p))
903 prio = MAX_DL_PRIO-1;
904 else if (task_has_rt_policy(p))
b29739f9
IM
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
36c8b586 918static int effective_prio(struct task_struct *p)
b29739f9
IM
919{
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929}
930
1da177e4
LT
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
e69f6186
YB
934 *
935 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 936 */
36c8b586 937inline int task_curr(const struct task_struct *p)
1da177e4
LT
938{
939 return cpu_curr(task_cpu(p)) == p;
940}
941
cb469845
SR
942static inline void check_class_changed(struct rq *rq, struct task_struct *p,
943 const struct sched_class *prev_class,
da7a735e 944 int oldprio)
cb469845
SR
945{
946 if (prev_class != p->sched_class) {
947 if (prev_class->switched_from)
da7a735e
PZ
948 prev_class->switched_from(rq, p);
949 p->sched_class->switched_to(rq, p);
950 } else if (oldprio != p->prio)
951 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
952}
953
029632fb 954void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
955{
956 const struct sched_class *class;
957
958 if (p->sched_class == rq->curr->sched_class) {
959 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
960 } else {
961 for_each_class(class) {
962 if (class == rq->curr->sched_class)
963 break;
964 if (class == p->sched_class) {
965 resched_task(rq->curr);
966 break;
967 }
968 }
969 }
970
971 /*
972 * A queue event has occurred, and we're going to schedule. In
973 * this case, we can save a useless back to back clock update.
974 */
fd2f4419 975 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
976 rq->skip_clock_update = 1;
977}
978
1da177e4 979#ifdef CONFIG_SMP
dd41f596 980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 981{
e2912009
PZ
982#ifdef CONFIG_SCHED_DEBUG
983 /*
984 * We should never call set_task_cpu() on a blocked task,
985 * ttwu() will sort out the placement.
986 */
077614ee 987 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 988 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
989
990#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
991 /*
992 * The caller should hold either p->pi_lock or rq->lock, when changing
993 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
994 *
995 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 996 * see task_group().
6c6c54e1
PZ
997 *
998 * Furthermore, all task_rq users should acquire both locks, see
999 * task_rq_lock().
1000 */
0122ec5b
PZ
1001 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1002 lockdep_is_held(&task_rq(p)->lock)));
1003#endif
e2912009
PZ
1004#endif
1005
de1d7286 1006 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1007
0c69774e 1008 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1009 if (p->sched_class->migrate_task_rq)
1010 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1011 p->se.nr_migrations++;
a8b0ca17 1012 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1013 }
dd41f596
IM
1014
1015 __set_task_cpu(p, new_cpu);
c65cc870
IM
1016}
1017
ac66f547
PZ
1018static void __migrate_swap_task(struct task_struct *p, int cpu)
1019{
1020 if (p->on_rq) {
1021 struct rq *src_rq, *dst_rq;
1022
1023 src_rq = task_rq(p);
1024 dst_rq = cpu_rq(cpu);
1025
1026 deactivate_task(src_rq, p, 0);
1027 set_task_cpu(p, cpu);
1028 activate_task(dst_rq, p, 0);
1029 check_preempt_curr(dst_rq, p, 0);
1030 } else {
1031 /*
1032 * Task isn't running anymore; make it appear like we migrated
1033 * it before it went to sleep. This means on wakeup we make the
1034 * previous cpu our targer instead of where it really is.
1035 */
1036 p->wake_cpu = cpu;
1037 }
1038}
1039
1040struct migration_swap_arg {
1041 struct task_struct *src_task, *dst_task;
1042 int src_cpu, dst_cpu;
1043};
1044
1045static int migrate_swap_stop(void *data)
1046{
1047 struct migration_swap_arg *arg = data;
1048 struct rq *src_rq, *dst_rq;
1049 int ret = -EAGAIN;
1050
1051 src_rq = cpu_rq(arg->src_cpu);
1052 dst_rq = cpu_rq(arg->dst_cpu);
1053
74602315
PZ
1054 double_raw_lock(&arg->src_task->pi_lock,
1055 &arg->dst_task->pi_lock);
ac66f547
PZ
1056 double_rq_lock(src_rq, dst_rq);
1057 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1058 goto unlock;
1059
1060 if (task_cpu(arg->src_task) != arg->src_cpu)
1061 goto unlock;
1062
1063 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1064 goto unlock;
1065
1066 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1067 goto unlock;
1068
1069 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1070 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1071
1072 ret = 0;
1073
1074unlock:
1075 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1076 raw_spin_unlock(&arg->dst_task->pi_lock);
1077 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1078
1079 return ret;
1080}
1081
1082/*
1083 * Cross migrate two tasks
1084 */
1085int migrate_swap(struct task_struct *cur, struct task_struct *p)
1086{
1087 struct migration_swap_arg arg;
1088 int ret = -EINVAL;
1089
ac66f547
PZ
1090 arg = (struct migration_swap_arg){
1091 .src_task = cur,
1092 .src_cpu = task_cpu(cur),
1093 .dst_task = p,
1094 .dst_cpu = task_cpu(p),
1095 };
1096
1097 if (arg.src_cpu == arg.dst_cpu)
1098 goto out;
1099
6acce3ef
PZ
1100 /*
1101 * These three tests are all lockless; this is OK since all of them
1102 * will be re-checked with proper locks held further down the line.
1103 */
ac66f547
PZ
1104 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1105 goto out;
1106
1107 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1108 goto out;
1109
1110 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1111 goto out;
1112
1113 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1114
1115out:
ac66f547
PZ
1116 return ret;
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
aa00d89c
TC
1266 int nid = cpu_to_node(cpu);
1267 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1268 enum { cpuset, possible, fail } state = cpuset;
1269 int dest_cpu;
5da9a0fb 1270
aa00d89c
TC
1271 /*
1272 * If the node that the cpu is on has been offlined, cpu_to_node()
1273 * will return -1. There is no cpu on the node, and we should
1274 * select the cpu on the other node.
1275 */
1276 if (nid != -1) {
1277 nodemask = cpumask_of_node(nid);
1278
1279 /* Look for allowed, online CPU in same node. */
1280 for_each_cpu(dest_cpu, nodemask) {
1281 if (!cpu_online(dest_cpu))
1282 continue;
1283 if (!cpu_active(dest_cpu))
1284 continue;
1285 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1286 return dest_cpu;
1287 }
2baab4e9 1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 for (;;) {
1291 /* Any allowed, online CPU? */
e3831edd 1292 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1293 if (!cpu_online(dest_cpu))
1294 continue;
1295 if (!cpu_active(dest_cpu))
1296 continue;
1297 goto out;
1298 }
5da9a0fb 1299
2baab4e9
PZ
1300 switch (state) {
1301 case cpuset:
1302 /* No more Mr. Nice Guy. */
1303 cpuset_cpus_allowed_fallback(p);
1304 state = possible;
1305 break;
1306
1307 case possible:
1308 do_set_cpus_allowed(p, cpu_possible_mask);
1309 state = fail;
1310 break;
1311
1312 case fail:
1313 BUG();
1314 break;
1315 }
1316 }
1317
1318out:
1319 if (state != cpuset) {
1320 /*
1321 * Don't tell them about moving exiting tasks or
1322 * kernel threads (both mm NULL), since they never
1323 * leave kernel.
1324 */
1325 if (p->mm && printk_ratelimit()) {
1326 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1327 task_pid_nr(p), p->comm, cpu);
1328 }
5da9a0fb
PZ
1329 }
1330
1331 return dest_cpu;
1332}
1333
e2912009 1334/*
013fdb80 1335 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1336 */
970b13ba 1337static inline
ac66f547 1338int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1339{
ac66f547 1340 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1341
1342 /*
1343 * In order not to call set_task_cpu() on a blocking task we need
1344 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1345 * cpu.
1346 *
1347 * Since this is common to all placement strategies, this lives here.
1348 *
1349 * [ this allows ->select_task() to simply return task_cpu(p) and
1350 * not worry about this generic constraint ]
1351 */
fa17b507 1352 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1353 !cpu_online(cpu)))
5da9a0fb 1354 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1355
1356 return cpu;
970b13ba 1357}
09a40af5
MG
1358
1359static void update_avg(u64 *avg, u64 sample)
1360{
1361 s64 diff = sample - *avg;
1362 *avg += diff >> 3;
1363}
970b13ba
PZ
1364#endif
1365
d7c01d27 1366static void
b84cb5df 1367ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1368{
d7c01d27 1369#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1370 struct rq *rq = this_rq();
1371
d7c01d27
PZ
1372#ifdef CONFIG_SMP
1373 int this_cpu = smp_processor_id();
1374
1375 if (cpu == this_cpu) {
1376 schedstat_inc(rq, ttwu_local);
1377 schedstat_inc(p, se.statistics.nr_wakeups_local);
1378 } else {
1379 struct sched_domain *sd;
1380
1381 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1382 rcu_read_lock();
d7c01d27
PZ
1383 for_each_domain(this_cpu, sd) {
1384 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1385 schedstat_inc(sd, ttwu_wake_remote);
1386 break;
1387 }
1388 }
057f3fad 1389 rcu_read_unlock();
d7c01d27 1390 }
f339b9dc
PZ
1391
1392 if (wake_flags & WF_MIGRATED)
1393 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1394
d7c01d27
PZ
1395#endif /* CONFIG_SMP */
1396
1397 schedstat_inc(rq, ttwu_count);
9ed3811a 1398 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1399
1400 if (wake_flags & WF_SYNC)
9ed3811a 1401 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1402
d7c01d27
PZ
1403#endif /* CONFIG_SCHEDSTATS */
1404}
1405
1406static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1407{
9ed3811a 1408 activate_task(rq, p, en_flags);
fd2f4419 1409 p->on_rq = 1;
c2f7115e
PZ
1410
1411 /* if a worker is waking up, notify workqueue */
1412 if (p->flags & PF_WQ_WORKER)
1413 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1414}
1415
23f41eeb
PZ
1416/*
1417 * Mark the task runnable and perform wakeup-preemption.
1418 */
89363381 1419static void
23f41eeb 1420ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1421{
9ed3811a 1422 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1423 trace_sched_wakeup(p, true);
9ed3811a
TH
1424
1425 p->state = TASK_RUNNING;
1426#ifdef CONFIG_SMP
1427 if (p->sched_class->task_woken)
1428 p->sched_class->task_woken(rq, p);
1429
e69c6341 1430 if (rq->idle_stamp) {
78becc27 1431 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1432 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1433
abfafa54
JL
1434 update_avg(&rq->avg_idle, delta);
1435
1436 if (rq->avg_idle > max)
9ed3811a 1437 rq->avg_idle = max;
abfafa54 1438
9ed3811a
TH
1439 rq->idle_stamp = 0;
1440 }
1441#endif
1442}
1443
c05fbafb
PZ
1444static void
1445ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1446{
1447#ifdef CONFIG_SMP
1448 if (p->sched_contributes_to_load)
1449 rq->nr_uninterruptible--;
1450#endif
1451
1452 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1453 ttwu_do_wakeup(rq, p, wake_flags);
1454}
1455
1456/*
1457 * Called in case the task @p isn't fully descheduled from its runqueue,
1458 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1459 * since all we need to do is flip p->state to TASK_RUNNING, since
1460 * the task is still ->on_rq.
1461 */
1462static int ttwu_remote(struct task_struct *p, int wake_flags)
1463{
1464 struct rq *rq;
1465 int ret = 0;
1466
1467 rq = __task_rq_lock(p);
1468 if (p->on_rq) {
1ad4ec0d
FW
1469 /* check_preempt_curr() may use rq clock */
1470 update_rq_clock(rq);
c05fbafb
PZ
1471 ttwu_do_wakeup(rq, p, wake_flags);
1472 ret = 1;
1473 }
1474 __task_rq_unlock(rq);
1475
1476 return ret;
1477}
1478
317f3941 1479#ifdef CONFIG_SMP
fa14ff4a 1480static void sched_ttwu_pending(void)
317f3941
PZ
1481{
1482 struct rq *rq = this_rq();
fa14ff4a
PZ
1483 struct llist_node *llist = llist_del_all(&rq->wake_list);
1484 struct task_struct *p;
317f3941
PZ
1485
1486 raw_spin_lock(&rq->lock);
1487
fa14ff4a
PZ
1488 while (llist) {
1489 p = llist_entry(llist, struct task_struct, wake_entry);
1490 llist = llist_next(llist);
317f3941
PZ
1491 ttwu_do_activate(rq, p, 0);
1492 }
1493
1494 raw_spin_unlock(&rq->lock);
1495}
1496
1497void scheduler_ipi(void)
1498{
f27dde8d
PZ
1499 /*
1500 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1501 * TIF_NEED_RESCHED remotely (for the first time) will also send
1502 * this IPI.
1503 */
1504 if (tif_need_resched())
1505 set_preempt_need_resched();
1506
873b4c65
VG
1507 if (llist_empty(&this_rq()->wake_list)
1508 && !tick_nohz_full_cpu(smp_processor_id())
1509 && !got_nohz_idle_kick())
c5d753a5
PZ
1510 return;
1511
1512 /*
1513 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1514 * traditionally all their work was done from the interrupt return
1515 * path. Now that we actually do some work, we need to make sure
1516 * we do call them.
1517 *
1518 * Some archs already do call them, luckily irq_enter/exit nest
1519 * properly.
1520 *
1521 * Arguably we should visit all archs and update all handlers,
1522 * however a fair share of IPIs are still resched only so this would
1523 * somewhat pessimize the simple resched case.
1524 */
1525 irq_enter();
ff442c51 1526 tick_nohz_full_check();
fa14ff4a 1527 sched_ttwu_pending();
ca38062e
SS
1528
1529 /*
1530 * Check if someone kicked us for doing the nohz idle load balance.
1531 */
873b4c65 1532 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1533 this_rq()->idle_balance = 1;
ca38062e 1534 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1535 }
c5d753a5 1536 irq_exit();
317f3941
PZ
1537}
1538
1539static void ttwu_queue_remote(struct task_struct *p, int cpu)
1540{
fa14ff4a 1541 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1542 smp_send_reschedule(cpu);
1543}
d6aa8f85 1544
39be3501 1545bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1546{
1547 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1548}
d6aa8f85 1549#endif /* CONFIG_SMP */
317f3941 1550
c05fbafb
PZ
1551static void ttwu_queue(struct task_struct *p, int cpu)
1552{
1553 struct rq *rq = cpu_rq(cpu);
1554
17d9f311 1555#if defined(CONFIG_SMP)
39be3501 1556 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1557 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1558 ttwu_queue_remote(p, cpu);
1559 return;
1560 }
1561#endif
1562
c05fbafb
PZ
1563 raw_spin_lock(&rq->lock);
1564 ttwu_do_activate(rq, p, 0);
1565 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1566}
1567
1568/**
1da177e4 1569 * try_to_wake_up - wake up a thread
9ed3811a 1570 * @p: the thread to be awakened
1da177e4 1571 * @state: the mask of task states that can be woken
9ed3811a 1572 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1573 *
1574 * Put it on the run-queue if it's not already there. The "current"
1575 * thread is always on the run-queue (except when the actual
1576 * re-schedule is in progress), and as such you're allowed to do
1577 * the simpler "current->state = TASK_RUNNING" to mark yourself
1578 * runnable without the overhead of this.
1579 *
e69f6186 1580 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1581 * or @state didn't match @p's state.
1da177e4 1582 */
e4a52bcb
PZ
1583static int
1584try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1585{
1da177e4 1586 unsigned long flags;
c05fbafb 1587 int cpu, success = 0;
2398f2c6 1588
e0acd0a6
ON
1589 /*
1590 * If we are going to wake up a thread waiting for CONDITION we
1591 * need to ensure that CONDITION=1 done by the caller can not be
1592 * reordered with p->state check below. This pairs with mb() in
1593 * set_current_state() the waiting thread does.
1594 */
1595 smp_mb__before_spinlock();
013fdb80 1596 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1597 if (!(p->state & state))
1da177e4
LT
1598 goto out;
1599
c05fbafb 1600 success = 1; /* we're going to change ->state */
1da177e4 1601 cpu = task_cpu(p);
1da177e4 1602
c05fbafb
PZ
1603 if (p->on_rq && ttwu_remote(p, wake_flags))
1604 goto stat;
1da177e4 1605
1da177e4 1606#ifdef CONFIG_SMP
e9c84311 1607 /*
c05fbafb
PZ
1608 * If the owning (remote) cpu is still in the middle of schedule() with
1609 * this task as prev, wait until its done referencing the task.
e9c84311 1610 */
f3e94786 1611 while (p->on_cpu)
e4a52bcb 1612 cpu_relax();
0970d299 1613 /*
e4a52bcb 1614 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1615 */
e4a52bcb 1616 smp_rmb();
1da177e4 1617
a8e4f2ea 1618 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1619 p->state = TASK_WAKING;
e7693a36 1620
e4a52bcb 1621 if (p->sched_class->task_waking)
74f8e4b2 1622 p->sched_class->task_waking(p);
efbbd05a 1623
ac66f547 1624 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1625 if (task_cpu(p) != cpu) {
1626 wake_flags |= WF_MIGRATED;
e4a52bcb 1627 set_task_cpu(p, cpu);
f339b9dc 1628 }
1da177e4 1629#endif /* CONFIG_SMP */
1da177e4 1630
c05fbafb
PZ
1631 ttwu_queue(p, cpu);
1632stat:
b84cb5df 1633 ttwu_stat(p, cpu, wake_flags);
1da177e4 1634out:
013fdb80 1635 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1636
1637 return success;
1638}
1639
21aa9af0
TH
1640/**
1641 * try_to_wake_up_local - try to wake up a local task with rq lock held
1642 * @p: the thread to be awakened
1643 *
2acca55e 1644 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1645 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1646 * the current task.
21aa9af0
TH
1647 */
1648static void try_to_wake_up_local(struct task_struct *p)
1649{
1650 struct rq *rq = task_rq(p);
21aa9af0 1651
383efcd0
TH
1652 if (WARN_ON_ONCE(rq != this_rq()) ||
1653 WARN_ON_ONCE(p == current))
1654 return;
1655
21aa9af0
TH
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1681 * processes.
1682 *
1683 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1684 *
1685 * It may be assumed that this function implies a write memory barrier before
1686 * changing the task state if and only if any tasks are woken up.
1687 */
7ad5b3a5 1688int wake_up_process(struct task_struct *p)
1da177e4 1689{
9067ac85
ON
1690 WARN_ON(task_is_stopped_or_traced(p));
1691 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1692}
1da177e4
LT
1693EXPORT_SYMBOL(wake_up_process);
1694
7ad5b3a5 1695int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1696{
1697 return try_to_wake_up(p, state, 0);
1698}
1699
1da177e4
LT
1700/*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
dd41f596
IM
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
5e1576ed 1706static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1707{
fd2f4419
PZ
1708 p->on_rq = 0;
1709
1710 p->se.on_rq = 0;
dd41f596
IM
1711 p->se.exec_start = 0;
1712 p->se.sum_exec_runtime = 0;
f6cf891c 1713 p->se.prev_sum_exec_runtime = 0;
6c594c21 1714 p->se.nr_migrations = 0;
da7a735e 1715 p->se.vruntime = 0;
fd2f4419 1716 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1717
1718#ifdef CONFIG_SCHEDSTATS
41acab88 1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1720#endif
476d139c 1721
aab03e05
DF
1722 RB_CLEAR_NODE(&p->dl.rb_node);
1723 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1724 p->dl.dl_runtime = p->dl.runtime = 0;
1725 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1726 p->dl.dl_period = 0;
aab03e05
DF
1727 p->dl.flags = 0;
1728
fa717060 1729 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1730
e107be36
AK
1731#ifdef CONFIG_PREEMPT_NOTIFIERS
1732 INIT_HLIST_HEAD(&p->preempt_notifiers);
1733#endif
cbee9f88
PZ
1734
1735#ifdef CONFIG_NUMA_BALANCING
1736 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1737 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1738 p->mm->numa_scan_seq = 0;
1739 }
1740
5e1576ed
RR
1741 if (clone_flags & CLONE_VM)
1742 p->numa_preferred_nid = current->numa_preferred_nid;
1743 else
1744 p->numa_preferred_nid = -1;
1745
cbee9f88
PZ
1746 p->node_stamp = 0ULL;
1747 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1748 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1749 p->numa_work.next = &p->numa_work;
f809ca9a 1750 p->numa_faults = NULL;
745d6147 1751 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
cbee9f88 1755#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1756}
1757
1a687c2e 1758#ifdef CONFIG_NUMA_BALANCING
3105b86a 1759#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1760void set_numabalancing_state(bool enabled)
1761{
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766}
3105b86a
MG
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772 numabalancing_enabled = enabled;
dd41f596 1773}
3105b86a 1774#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1775#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1776
1777/*
1778 * fork()/clone()-time setup:
1779 */
aab03e05 1780int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1781{
0122ec5b 1782 unsigned long flags;
dd41f596
IM
1783 int cpu = get_cpu();
1784
5e1576ed 1785 __sched_fork(clone_flags, p);
06b83b5f 1786 /*
0017d735 1787 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1788 * nobody will actually run it, and a signal or other external
1789 * event cannot wake it up and insert it on the runqueue either.
1790 */
0017d735 1791 p->state = TASK_RUNNING;
dd41f596 1792
c350a04e
MG
1793 /*
1794 * Make sure we do not leak PI boosting priority to the child.
1795 */
1796 p->prio = current->normal_prio;
1797
b9dc29e7
MG
1798 /*
1799 * Revert to default priority/policy on fork if requested.
1800 */
1801 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1802 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1803 p->policy = SCHED_NORMAL;
6c697bdf 1804 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1805 p->rt_priority = 0;
1806 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1807 p->static_prio = NICE_TO_PRIO(0);
1808
1809 p->prio = p->normal_prio = __normal_prio(p);
1810 set_load_weight(p);
6c697bdf 1811
b9dc29e7
MG
1812 /*
1813 * We don't need the reset flag anymore after the fork. It has
1814 * fulfilled its duty:
1815 */
1816 p->sched_reset_on_fork = 0;
1817 }
ca94c442 1818
aab03e05
DF
1819 if (dl_prio(p->prio)) {
1820 put_cpu();
1821 return -EAGAIN;
1822 } else if (rt_prio(p->prio)) {
1823 p->sched_class = &rt_sched_class;
1824 } else {
2ddbf952 1825 p->sched_class = &fair_sched_class;
aab03e05 1826 }
b29739f9 1827
cd29fe6f
PZ
1828 if (p->sched_class->task_fork)
1829 p->sched_class->task_fork(p);
1830
86951599
PZ
1831 /*
1832 * The child is not yet in the pid-hash so no cgroup attach races,
1833 * and the cgroup is pinned to this child due to cgroup_fork()
1834 * is ran before sched_fork().
1835 *
1836 * Silence PROVE_RCU.
1837 */
0122ec5b 1838 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1839 set_task_cpu(p, cpu);
0122ec5b 1840 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1841
52f17b6c 1842#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1843 if (likely(sched_info_on()))
52f17b6c 1844 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1845#endif
3ca7a440
PZ
1846#if defined(CONFIG_SMP)
1847 p->on_cpu = 0;
4866cde0 1848#endif
01028747 1849 init_task_preempt_count(p);
806c09a7 1850#ifdef CONFIG_SMP
917b627d 1851 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1852 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1853#endif
917b627d 1854
476d139c 1855 put_cpu();
aab03e05 1856 return 0;
1da177e4
LT
1857}
1858
1859/*
1860 * wake_up_new_task - wake up a newly created task for the first time.
1861 *
1862 * This function will do some initial scheduler statistics housekeeping
1863 * that must be done for every newly created context, then puts the task
1864 * on the runqueue and wakes it.
1865 */
3e51e3ed 1866void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1867{
1868 unsigned long flags;
dd41f596 1869 struct rq *rq;
fabf318e 1870
ab2515c4 1871 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1872#ifdef CONFIG_SMP
1873 /*
1874 * Fork balancing, do it here and not earlier because:
1875 * - cpus_allowed can change in the fork path
1876 * - any previously selected cpu might disappear through hotplug
fabf318e 1877 */
ac66f547 1878 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1879#endif
1880
a75cdaa9
AS
1881 /* Initialize new task's runnable average */
1882 init_task_runnable_average(p);
ab2515c4 1883 rq = __task_rq_lock(p);
cd29fe6f 1884 activate_task(rq, p, 0);
fd2f4419 1885 p->on_rq = 1;
89363381 1886 trace_sched_wakeup_new(p, true);
a7558e01 1887 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1888#ifdef CONFIG_SMP
efbbd05a
PZ
1889 if (p->sched_class->task_woken)
1890 p->sched_class->task_woken(rq, p);
9a897c5a 1891#endif
0122ec5b 1892 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1893}
1894
e107be36
AK
1895#ifdef CONFIG_PREEMPT_NOTIFIERS
1896
1897/**
80dd99b3 1898 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1899 * @notifier: notifier struct to register
e107be36
AK
1900 */
1901void preempt_notifier_register(struct preempt_notifier *notifier)
1902{
1903 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1904}
1905EXPORT_SYMBOL_GPL(preempt_notifier_register);
1906
1907/**
1908 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1909 * @notifier: notifier struct to unregister
e107be36
AK
1910 *
1911 * This is safe to call from within a preemption notifier.
1912 */
1913void preempt_notifier_unregister(struct preempt_notifier *notifier)
1914{
1915 hlist_del(&notifier->link);
1916}
1917EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1918
1919static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1920{
1921 struct preempt_notifier *notifier;
e107be36 1922
b67bfe0d 1923 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1924 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1925}
1926
1927static void
1928fire_sched_out_preempt_notifiers(struct task_struct *curr,
1929 struct task_struct *next)
1930{
1931 struct preempt_notifier *notifier;
e107be36 1932
b67bfe0d 1933 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1934 notifier->ops->sched_out(notifier, next);
1935}
1936
6d6bc0ad 1937#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1938
1939static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1940{
1941}
1942
1943static void
1944fire_sched_out_preempt_notifiers(struct task_struct *curr,
1945 struct task_struct *next)
1946{
1947}
1948
6d6bc0ad 1949#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1950
4866cde0
NP
1951/**
1952 * prepare_task_switch - prepare to switch tasks
1953 * @rq: the runqueue preparing to switch
421cee29 1954 * @prev: the current task that is being switched out
4866cde0
NP
1955 * @next: the task we are going to switch to.
1956 *
1957 * This is called with the rq lock held and interrupts off. It must
1958 * be paired with a subsequent finish_task_switch after the context
1959 * switch.
1960 *
1961 * prepare_task_switch sets up locking and calls architecture specific
1962 * hooks.
1963 */
e107be36
AK
1964static inline void
1965prepare_task_switch(struct rq *rq, struct task_struct *prev,
1966 struct task_struct *next)
4866cde0 1967{
895dd92c 1968 trace_sched_switch(prev, next);
43148951 1969 sched_info_switch(rq, prev, next);
fe4b04fa 1970 perf_event_task_sched_out(prev, next);
e107be36 1971 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1972 prepare_lock_switch(rq, next);
1973 prepare_arch_switch(next);
1974}
1975
1da177e4
LT
1976/**
1977 * finish_task_switch - clean up after a task-switch
344babaa 1978 * @rq: runqueue associated with task-switch
1da177e4
LT
1979 * @prev: the thread we just switched away from.
1980 *
4866cde0
NP
1981 * finish_task_switch must be called after the context switch, paired
1982 * with a prepare_task_switch call before the context switch.
1983 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1984 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1985 *
1986 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1987 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1988 * with the lock held can cause deadlocks; see schedule() for
1989 * details.)
1990 */
a9957449 1991static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1992 __releases(rq->lock)
1993{
1da177e4 1994 struct mm_struct *mm = rq->prev_mm;
55a101f8 1995 long prev_state;
1da177e4
LT
1996
1997 rq->prev_mm = NULL;
1998
1999 /*
2000 * A task struct has one reference for the use as "current".
c394cc9f 2001 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2002 * schedule one last time. The schedule call will never return, and
2003 * the scheduled task must drop that reference.
c394cc9f 2004 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2005 * still held, otherwise prev could be scheduled on another cpu, die
2006 * there before we look at prev->state, and then the reference would
2007 * be dropped twice.
2008 * Manfred Spraul <manfred@colorfullife.com>
2009 */
55a101f8 2010 prev_state = prev->state;
bf9fae9f 2011 vtime_task_switch(prev);
4866cde0 2012 finish_arch_switch(prev);
a8d757ef 2013 perf_event_task_sched_in(prev, current);
4866cde0 2014 finish_lock_switch(rq, prev);
01f23e16 2015 finish_arch_post_lock_switch();
e8fa1362 2016
e107be36 2017 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2018 if (mm)
2019 mmdrop(mm);
c394cc9f 2020 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2021 task_numa_free(prev);
2022
e6c390f2
DF
2023 if (prev->sched_class->task_dead)
2024 prev->sched_class->task_dead(prev);
2025
c6fd91f0 2026 /*
2027 * Remove function-return probe instances associated with this
2028 * task and put them back on the free list.
9761eea8 2029 */
c6fd91f0 2030 kprobe_flush_task(prev);
1da177e4 2031 put_task_struct(prev);
c6fd91f0 2032 }
99e5ada9
FW
2033
2034 tick_nohz_task_switch(current);
1da177e4
LT
2035}
2036
3f029d3c
GH
2037#ifdef CONFIG_SMP
2038
2039/* assumes rq->lock is held */
2040static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2041{
2042 if (prev->sched_class->pre_schedule)
2043 prev->sched_class->pre_schedule(rq, prev);
2044}
2045
2046/* rq->lock is NOT held, but preemption is disabled */
2047static inline void post_schedule(struct rq *rq)
2048{
2049 if (rq->post_schedule) {
2050 unsigned long flags;
2051
05fa785c 2052 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2053 if (rq->curr->sched_class->post_schedule)
2054 rq->curr->sched_class->post_schedule(rq);
05fa785c 2055 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2056
2057 rq->post_schedule = 0;
2058 }
2059}
2060
2061#else
da19ab51 2062
3f029d3c
GH
2063static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2064{
2065}
2066
2067static inline void post_schedule(struct rq *rq)
2068{
1da177e4
LT
2069}
2070
3f029d3c
GH
2071#endif
2072
1da177e4
LT
2073/**
2074 * schedule_tail - first thing a freshly forked thread must call.
2075 * @prev: the thread we just switched away from.
2076 */
36c8b586 2077asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2078 __releases(rq->lock)
2079{
70b97a7f
IM
2080 struct rq *rq = this_rq();
2081
4866cde0 2082 finish_task_switch(rq, prev);
da19ab51 2083
3f029d3c
GH
2084 /*
2085 * FIXME: do we need to worry about rq being invalidated by the
2086 * task_switch?
2087 */
2088 post_schedule(rq);
70b97a7f 2089
4866cde0
NP
2090#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2091 /* In this case, finish_task_switch does not reenable preemption */
2092 preempt_enable();
2093#endif
1da177e4 2094 if (current->set_child_tid)
b488893a 2095 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2096}
2097
2098/*
2099 * context_switch - switch to the new MM and the new
2100 * thread's register state.
2101 */
dd41f596 2102static inline void
70b97a7f 2103context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2104 struct task_struct *next)
1da177e4 2105{
dd41f596 2106 struct mm_struct *mm, *oldmm;
1da177e4 2107
e107be36 2108 prepare_task_switch(rq, prev, next);
fe4b04fa 2109
dd41f596
IM
2110 mm = next->mm;
2111 oldmm = prev->active_mm;
9226d125
ZA
2112 /*
2113 * For paravirt, this is coupled with an exit in switch_to to
2114 * combine the page table reload and the switch backend into
2115 * one hypercall.
2116 */
224101ed 2117 arch_start_context_switch(prev);
9226d125 2118
31915ab4 2119 if (!mm) {
1da177e4
LT
2120 next->active_mm = oldmm;
2121 atomic_inc(&oldmm->mm_count);
2122 enter_lazy_tlb(oldmm, next);
2123 } else
2124 switch_mm(oldmm, mm, next);
2125
31915ab4 2126 if (!prev->mm) {
1da177e4 2127 prev->active_mm = NULL;
1da177e4
LT
2128 rq->prev_mm = oldmm;
2129 }
3a5f5e48
IM
2130 /*
2131 * Since the runqueue lock will be released by the next
2132 * task (which is an invalid locking op but in the case
2133 * of the scheduler it's an obvious special-case), so we
2134 * do an early lockdep release here:
2135 */
2136#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2137 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2138#endif
1da177e4 2139
91d1aa43 2140 context_tracking_task_switch(prev, next);
1da177e4
LT
2141 /* Here we just switch the register state and the stack. */
2142 switch_to(prev, next, prev);
2143
dd41f596
IM
2144 barrier();
2145 /*
2146 * this_rq must be evaluated again because prev may have moved
2147 * CPUs since it called schedule(), thus the 'rq' on its stack
2148 * frame will be invalid.
2149 */
2150 finish_task_switch(this_rq(), prev);
1da177e4
LT
2151}
2152
2153/*
1c3e8264 2154 * nr_running and nr_context_switches:
1da177e4
LT
2155 *
2156 * externally visible scheduler statistics: current number of runnable
1c3e8264 2157 * threads, total number of context switches performed since bootup.
1da177e4
LT
2158 */
2159unsigned long nr_running(void)
2160{
2161 unsigned long i, sum = 0;
2162
2163 for_each_online_cpu(i)
2164 sum += cpu_rq(i)->nr_running;
2165
2166 return sum;
f711f609 2167}
1da177e4 2168
1da177e4 2169unsigned long long nr_context_switches(void)
46cb4b7c 2170{
cc94abfc
SR
2171 int i;
2172 unsigned long long sum = 0;
46cb4b7c 2173
0a945022 2174 for_each_possible_cpu(i)
1da177e4 2175 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2176
1da177e4
LT
2177 return sum;
2178}
483b4ee6 2179
1da177e4
LT
2180unsigned long nr_iowait(void)
2181{
2182 unsigned long i, sum = 0;
483b4ee6 2183
0a945022 2184 for_each_possible_cpu(i)
1da177e4 2185 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2186
1da177e4
LT
2187 return sum;
2188}
483b4ee6 2189
8c215bd3 2190unsigned long nr_iowait_cpu(int cpu)
69d25870 2191{
8c215bd3 2192 struct rq *this = cpu_rq(cpu);
69d25870
AV
2193 return atomic_read(&this->nr_iowait);
2194}
46cb4b7c 2195
dd41f596 2196#ifdef CONFIG_SMP
8a0be9ef 2197
46cb4b7c 2198/*
38022906
PZ
2199 * sched_exec - execve() is a valuable balancing opportunity, because at
2200 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2201 */
38022906 2202void sched_exec(void)
46cb4b7c 2203{
38022906 2204 struct task_struct *p = current;
1da177e4 2205 unsigned long flags;
0017d735 2206 int dest_cpu;
46cb4b7c 2207
8f42ced9 2208 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2209 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2210 if (dest_cpu == smp_processor_id())
2211 goto unlock;
38022906 2212
8f42ced9 2213 if (likely(cpu_active(dest_cpu))) {
969c7921 2214 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2215
8f42ced9
PZ
2216 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2217 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2218 return;
2219 }
0017d735 2220unlock:
8f42ced9 2221 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2222}
dd41f596 2223
1da177e4
LT
2224#endif
2225
1da177e4 2226DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2227DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2228
2229EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2230EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2231
2232/*
c5f8d995 2233 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2234 * @p in case that task is currently running.
c5f8d995
HS
2235 *
2236 * Called with task_rq_lock() held on @rq.
1da177e4 2237 */
c5f8d995
HS
2238static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2239{
2240 u64 ns = 0;
2241
2242 if (task_current(rq, p)) {
2243 update_rq_clock(rq);
78becc27 2244 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2245 if ((s64)ns < 0)
2246 ns = 0;
2247 }
2248
2249 return ns;
2250}
2251
bb34d92f 2252unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2253{
1da177e4 2254 unsigned long flags;
41b86e9c 2255 struct rq *rq;
bb34d92f 2256 u64 ns = 0;
48f24c4d 2257
41b86e9c 2258 rq = task_rq_lock(p, &flags);
c5f8d995 2259 ns = do_task_delta_exec(p, rq);
0122ec5b 2260 task_rq_unlock(rq, p, &flags);
1508487e 2261
c5f8d995
HS
2262 return ns;
2263}
f06febc9 2264
c5f8d995
HS
2265/*
2266 * Return accounted runtime for the task.
2267 * In case the task is currently running, return the runtime plus current's
2268 * pending runtime that have not been accounted yet.
2269 */
2270unsigned long long task_sched_runtime(struct task_struct *p)
2271{
2272 unsigned long flags;
2273 struct rq *rq;
2274 u64 ns = 0;
2275
911b2898
PZ
2276#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2277 /*
2278 * 64-bit doesn't need locks to atomically read a 64bit value.
2279 * So we have a optimization chance when the task's delta_exec is 0.
2280 * Reading ->on_cpu is racy, but this is ok.
2281 *
2282 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2283 * If we race with it entering cpu, unaccounted time is 0. This is
2284 * indistinguishable from the read occurring a few cycles earlier.
2285 */
2286 if (!p->on_cpu)
2287 return p->se.sum_exec_runtime;
2288#endif
2289
c5f8d995
HS
2290 rq = task_rq_lock(p, &flags);
2291 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2292 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2293
2294 return ns;
2295}
48f24c4d 2296
7835b98b
CL
2297/*
2298 * This function gets called by the timer code, with HZ frequency.
2299 * We call it with interrupts disabled.
7835b98b
CL
2300 */
2301void scheduler_tick(void)
2302{
7835b98b
CL
2303 int cpu = smp_processor_id();
2304 struct rq *rq = cpu_rq(cpu);
dd41f596 2305 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2306
2307 sched_clock_tick();
dd41f596 2308
05fa785c 2309 raw_spin_lock(&rq->lock);
3e51f33f 2310 update_rq_clock(rq);
fa85ae24 2311 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2312 update_cpu_load_active(rq);
05fa785c 2313 raw_spin_unlock(&rq->lock);
7835b98b 2314
e9d2b064 2315 perf_event_task_tick();
e220d2dc 2316
e418e1c2 2317#ifdef CONFIG_SMP
6eb57e0d 2318 rq->idle_balance = idle_cpu(cpu);
dd41f596 2319 trigger_load_balance(rq, cpu);
e418e1c2 2320#endif
265f22a9 2321 rq_last_tick_reset(rq);
1da177e4
LT
2322}
2323
265f22a9
FW
2324#ifdef CONFIG_NO_HZ_FULL
2325/**
2326 * scheduler_tick_max_deferment
2327 *
2328 * Keep at least one tick per second when a single
2329 * active task is running because the scheduler doesn't
2330 * yet completely support full dynticks environment.
2331 *
2332 * This makes sure that uptime, CFS vruntime, load
2333 * balancing, etc... continue to move forward, even
2334 * with a very low granularity.
e69f6186
YB
2335 *
2336 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2337 */
2338u64 scheduler_tick_max_deferment(void)
2339{
2340 struct rq *rq = this_rq();
2341 unsigned long next, now = ACCESS_ONCE(jiffies);
2342
2343 next = rq->last_sched_tick + HZ;
2344
2345 if (time_before_eq(next, now))
2346 return 0;
2347
2348 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2349}
265f22a9 2350#endif
1da177e4 2351
132380a0 2352notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2353{
2354 if (in_lock_functions(addr)) {
2355 addr = CALLER_ADDR2;
2356 if (in_lock_functions(addr))
2357 addr = CALLER_ADDR3;
2358 }
2359 return addr;
2360}
1da177e4 2361
7e49fcce
SR
2362#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2363 defined(CONFIG_PREEMPT_TRACER))
2364
bdb43806 2365void __kprobes preempt_count_add(int val)
1da177e4 2366{
6cd8a4bb 2367#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2368 /*
2369 * Underflow?
2370 */
9a11b49a
IM
2371 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2372 return;
6cd8a4bb 2373#endif
bdb43806 2374 __preempt_count_add(val);
6cd8a4bb 2375#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2376 /*
2377 * Spinlock count overflowing soon?
2378 */
33859f7f
MOS
2379 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2380 PREEMPT_MASK - 10);
6cd8a4bb
SR
2381#endif
2382 if (preempt_count() == val)
2383 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2384}
bdb43806 2385EXPORT_SYMBOL(preempt_count_add);
1da177e4 2386
bdb43806 2387void __kprobes preempt_count_sub(int val)
1da177e4 2388{
6cd8a4bb 2389#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2390 /*
2391 * Underflow?
2392 */
01e3eb82 2393 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2394 return;
1da177e4
LT
2395 /*
2396 * Is the spinlock portion underflowing?
2397 */
9a11b49a
IM
2398 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2399 !(preempt_count() & PREEMPT_MASK)))
2400 return;
6cd8a4bb 2401#endif
9a11b49a 2402
6cd8a4bb
SR
2403 if (preempt_count() == val)
2404 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2405 __preempt_count_sub(val);
1da177e4 2406}
bdb43806 2407EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2408
2409#endif
2410
2411/*
dd41f596 2412 * Print scheduling while atomic bug:
1da177e4 2413 */
dd41f596 2414static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2415{
664dfa65
DJ
2416 if (oops_in_progress)
2417 return;
2418
3df0fc5b
PZ
2419 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2420 prev->comm, prev->pid, preempt_count());
838225b4 2421
dd41f596 2422 debug_show_held_locks(prev);
e21f5b15 2423 print_modules();
dd41f596
IM
2424 if (irqs_disabled())
2425 print_irqtrace_events(prev);
6135fc1e 2426 dump_stack();
373d4d09 2427 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2428}
1da177e4 2429
dd41f596
IM
2430/*
2431 * Various schedule()-time debugging checks and statistics:
2432 */
2433static inline void schedule_debug(struct task_struct *prev)
2434{
1da177e4 2435 /*
41a2d6cf 2436 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2437 * schedule() atomically, we ignore that path. Otherwise whine
2438 * if we are scheduling when we should not.
1da177e4 2439 */
192301e7 2440 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2441 __schedule_bug(prev);
b3fbab05 2442 rcu_sleep_check();
dd41f596 2443
1da177e4
LT
2444 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2445
2d72376b 2446 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2447}
2448
6cecd084 2449static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2450{
61eadef6 2451 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2452 update_rq_clock(rq);
6cecd084 2453 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2454}
2455
dd41f596
IM
2456/*
2457 * Pick up the highest-prio task:
2458 */
2459static inline struct task_struct *
b67802ea 2460pick_next_task(struct rq *rq)
dd41f596 2461{
5522d5d5 2462 const struct sched_class *class;
dd41f596 2463 struct task_struct *p;
1da177e4
LT
2464
2465 /*
dd41f596
IM
2466 * Optimization: we know that if all tasks are in
2467 * the fair class we can call that function directly:
1da177e4 2468 */
953bfcd1 2469 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2470 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2471 if (likely(p))
2472 return p;
1da177e4
LT
2473 }
2474
34f971f6 2475 for_each_class(class) {
fb8d4724 2476 p = class->pick_next_task(rq);
dd41f596
IM
2477 if (p)
2478 return p;
dd41f596 2479 }
34f971f6
PZ
2480
2481 BUG(); /* the idle class will always have a runnable task */
dd41f596 2482}
1da177e4 2483
dd41f596 2484/*
c259e01a 2485 * __schedule() is the main scheduler function.
edde96ea
PE
2486 *
2487 * The main means of driving the scheduler and thus entering this function are:
2488 *
2489 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2490 *
2491 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2492 * paths. For example, see arch/x86/entry_64.S.
2493 *
2494 * To drive preemption between tasks, the scheduler sets the flag in timer
2495 * interrupt handler scheduler_tick().
2496 *
2497 * 3. Wakeups don't really cause entry into schedule(). They add a
2498 * task to the run-queue and that's it.
2499 *
2500 * Now, if the new task added to the run-queue preempts the current
2501 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2502 * called on the nearest possible occasion:
2503 *
2504 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2505 *
2506 * - in syscall or exception context, at the next outmost
2507 * preempt_enable(). (this might be as soon as the wake_up()'s
2508 * spin_unlock()!)
2509 *
2510 * - in IRQ context, return from interrupt-handler to
2511 * preemptible context
2512 *
2513 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2514 * then at the next:
2515 *
2516 * - cond_resched() call
2517 * - explicit schedule() call
2518 * - return from syscall or exception to user-space
2519 * - return from interrupt-handler to user-space
dd41f596 2520 */
c259e01a 2521static void __sched __schedule(void)
dd41f596
IM
2522{
2523 struct task_struct *prev, *next;
67ca7bde 2524 unsigned long *switch_count;
dd41f596 2525 struct rq *rq;
31656519 2526 int cpu;
dd41f596 2527
ff743345
PZ
2528need_resched:
2529 preempt_disable();
dd41f596
IM
2530 cpu = smp_processor_id();
2531 rq = cpu_rq(cpu);
25502a6c 2532 rcu_note_context_switch(cpu);
dd41f596 2533 prev = rq->curr;
dd41f596 2534
dd41f596 2535 schedule_debug(prev);
1da177e4 2536
31656519 2537 if (sched_feat(HRTICK))
f333fdc9 2538 hrtick_clear(rq);
8f4d37ec 2539
e0acd0a6
ON
2540 /*
2541 * Make sure that signal_pending_state()->signal_pending() below
2542 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2543 * done by the caller to avoid the race with signal_wake_up().
2544 */
2545 smp_mb__before_spinlock();
05fa785c 2546 raw_spin_lock_irq(&rq->lock);
1da177e4 2547
246d86b5 2548 switch_count = &prev->nivcsw;
1da177e4 2549 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2550 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2551 prev->state = TASK_RUNNING;
21aa9af0 2552 } else {
2acca55e
PZ
2553 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2554 prev->on_rq = 0;
2555
21aa9af0 2556 /*
2acca55e
PZ
2557 * If a worker went to sleep, notify and ask workqueue
2558 * whether it wants to wake up a task to maintain
2559 * concurrency.
21aa9af0
TH
2560 */
2561 if (prev->flags & PF_WQ_WORKER) {
2562 struct task_struct *to_wakeup;
2563
2564 to_wakeup = wq_worker_sleeping(prev, cpu);
2565 if (to_wakeup)
2566 try_to_wake_up_local(to_wakeup);
2567 }
21aa9af0 2568 }
dd41f596 2569 switch_count = &prev->nvcsw;
1da177e4
LT
2570 }
2571
3f029d3c 2572 pre_schedule(rq, prev);
f65eda4f 2573
dd41f596 2574 if (unlikely(!rq->nr_running))
1da177e4 2575 idle_balance(cpu, rq);
1da177e4 2576
df1c99d4 2577 put_prev_task(rq, prev);
b67802ea 2578 next = pick_next_task(rq);
f26f9aff 2579 clear_tsk_need_resched(prev);
f27dde8d 2580 clear_preempt_need_resched();
f26f9aff 2581 rq->skip_clock_update = 0;
1da177e4 2582
1da177e4 2583 if (likely(prev != next)) {
1da177e4
LT
2584 rq->nr_switches++;
2585 rq->curr = next;
2586 ++*switch_count;
2587
dd41f596 2588 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2589 /*
246d86b5
ON
2590 * The context switch have flipped the stack from under us
2591 * and restored the local variables which were saved when
2592 * this task called schedule() in the past. prev == current
2593 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2594 */
2595 cpu = smp_processor_id();
2596 rq = cpu_rq(cpu);
1da177e4 2597 } else
05fa785c 2598 raw_spin_unlock_irq(&rq->lock);
1da177e4 2599
3f029d3c 2600 post_schedule(rq);
1da177e4 2601
ba74c144 2602 sched_preempt_enable_no_resched();
ff743345 2603 if (need_resched())
1da177e4
LT
2604 goto need_resched;
2605}
c259e01a 2606
9c40cef2
TG
2607static inline void sched_submit_work(struct task_struct *tsk)
2608{
3c7d5184 2609 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2610 return;
2611 /*
2612 * If we are going to sleep and we have plugged IO queued,
2613 * make sure to submit it to avoid deadlocks.
2614 */
2615 if (blk_needs_flush_plug(tsk))
2616 blk_schedule_flush_plug(tsk);
2617}
2618
6ebbe7a0 2619asmlinkage void __sched schedule(void)
c259e01a 2620{
9c40cef2
TG
2621 struct task_struct *tsk = current;
2622
2623 sched_submit_work(tsk);
c259e01a
TG
2624 __schedule();
2625}
1da177e4
LT
2626EXPORT_SYMBOL(schedule);
2627
91d1aa43 2628#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2629asmlinkage void __sched schedule_user(void)
2630{
2631 /*
2632 * If we come here after a random call to set_need_resched(),
2633 * or we have been woken up remotely but the IPI has not yet arrived,
2634 * we haven't yet exited the RCU idle mode. Do it here manually until
2635 * we find a better solution.
2636 */
91d1aa43 2637 user_exit();
20ab65e3 2638 schedule();
91d1aa43 2639 user_enter();
20ab65e3
FW
2640}
2641#endif
2642
c5491ea7
TG
2643/**
2644 * schedule_preempt_disabled - called with preemption disabled
2645 *
2646 * Returns with preemption disabled. Note: preempt_count must be 1
2647 */
2648void __sched schedule_preempt_disabled(void)
2649{
ba74c144 2650 sched_preempt_enable_no_resched();
c5491ea7
TG
2651 schedule();
2652 preempt_disable();
2653}
2654
1da177e4
LT
2655#ifdef CONFIG_PREEMPT
2656/*
2ed6e34f 2657 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2658 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2659 * occur there and call schedule directly.
2660 */
d1f74e20 2661asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2662{
1da177e4
LT
2663 /*
2664 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2665 * we do not want to preempt the current task. Just return..
1da177e4 2666 */
fbb00b56 2667 if (likely(!preemptible()))
1da177e4
LT
2668 return;
2669
3a5c359a 2670 do {
bdb43806 2671 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2672 __schedule();
bdb43806 2673 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2674
3a5c359a
AK
2675 /*
2676 * Check again in case we missed a preemption opportunity
2677 * between schedule and now.
2678 */
2679 barrier();
5ed0cec0 2680 } while (need_resched());
1da177e4 2681}
1da177e4 2682EXPORT_SYMBOL(preempt_schedule);
32e475d7 2683#endif /* CONFIG_PREEMPT */
1da177e4
LT
2684
2685/*
2ed6e34f 2686 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2687 * off of irq context.
2688 * Note, that this is called and return with irqs disabled. This will
2689 * protect us against recursive calling from irq.
2690 */
2691asmlinkage void __sched preempt_schedule_irq(void)
2692{
b22366cd 2693 enum ctx_state prev_state;
6478d880 2694
2ed6e34f 2695 /* Catch callers which need to be fixed */
f27dde8d 2696 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2697
b22366cd
FW
2698 prev_state = exception_enter();
2699
3a5c359a 2700 do {
bdb43806 2701 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2702 local_irq_enable();
c259e01a 2703 __schedule();
3a5c359a 2704 local_irq_disable();
bdb43806 2705 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2706
3a5c359a
AK
2707 /*
2708 * Check again in case we missed a preemption opportunity
2709 * between schedule and now.
2710 */
2711 barrier();
5ed0cec0 2712 } while (need_resched());
b22366cd
FW
2713
2714 exception_exit(prev_state);
1da177e4
LT
2715}
2716
63859d4f 2717int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2718 void *key)
1da177e4 2719{
63859d4f 2720 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2721}
1da177e4
LT
2722EXPORT_SYMBOL(default_wake_function);
2723
8cbbe86d
AK
2724static long __sched
2725sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2726{
0fec171c
IM
2727 unsigned long flags;
2728 wait_queue_t wait;
2729
2730 init_waitqueue_entry(&wait, current);
1da177e4 2731
8cbbe86d 2732 __set_current_state(state);
1da177e4 2733
8cbbe86d
AK
2734 spin_lock_irqsave(&q->lock, flags);
2735 __add_wait_queue(q, &wait);
2736 spin_unlock(&q->lock);
2737 timeout = schedule_timeout(timeout);
2738 spin_lock_irq(&q->lock);
2739 __remove_wait_queue(q, &wait);
2740 spin_unlock_irqrestore(&q->lock, flags);
2741
2742 return timeout;
2743}
2744
2745void __sched interruptible_sleep_on(wait_queue_head_t *q)
2746{
2747 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2748}
1da177e4
LT
2749EXPORT_SYMBOL(interruptible_sleep_on);
2750
0fec171c 2751long __sched
95cdf3b7 2752interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2753{
8cbbe86d 2754 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2755}
1da177e4
LT
2756EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2757
0fec171c 2758void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2759{
8cbbe86d 2760 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2761}
1da177e4
LT
2762EXPORT_SYMBOL(sleep_on);
2763
0fec171c 2764long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2765{
8cbbe86d 2766 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2767}
1da177e4
LT
2768EXPORT_SYMBOL(sleep_on_timeout);
2769
b29739f9
IM
2770#ifdef CONFIG_RT_MUTEXES
2771
2772/*
2773 * rt_mutex_setprio - set the current priority of a task
2774 * @p: task
2775 * @prio: prio value (kernel-internal form)
2776 *
2777 * This function changes the 'effective' priority of a task. It does
2778 * not touch ->normal_prio like __setscheduler().
2779 *
2780 * Used by the rt_mutex code to implement priority inheritance logic.
2781 */
36c8b586 2782void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2783{
83b699ed 2784 int oldprio, on_rq, running;
70b97a7f 2785 struct rq *rq;
83ab0aa0 2786 const struct sched_class *prev_class;
b29739f9 2787
aab03e05 2788 BUG_ON(prio > MAX_PRIO);
b29739f9 2789
0122ec5b 2790 rq = __task_rq_lock(p);
b29739f9 2791
1c4dd99b
TG
2792 /*
2793 * Idle task boosting is a nono in general. There is one
2794 * exception, when PREEMPT_RT and NOHZ is active:
2795 *
2796 * The idle task calls get_next_timer_interrupt() and holds
2797 * the timer wheel base->lock on the CPU and another CPU wants
2798 * to access the timer (probably to cancel it). We can safely
2799 * ignore the boosting request, as the idle CPU runs this code
2800 * with interrupts disabled and will complete the lock
2801 * protected section without being interrupted. So there is no
2802 * real need to boost.
2803 */
2804 if (unlikely(p == rq->idle)) {
2805 WARN_ON(p != rq->curr);
2806 WARN_ON(p->pi_blocked_on);
2807 goto out_unlock;
2808 }
2809
a8027073 2810 trace_sched_pi_setprio(p, prio);
d5f9f942 2811 oldprio = p->prio;
83ab0aa0 2812 prev_class = p->sched_class;
fd2f4419 2813 on_rq = p->on_rq;
051a1d1a 2814 running = task_current(rq, p);
0e1f3483 2815 if (on_rq)
69be72c1 2816 dequeue_task(rq, p, 0);
0e1f3483
HS
2817 if (running)
2818 p->sched_class->put_prev_task(rq, p);
dd41f596 2819
aab03e05
DF
2820 if (dl_prio(prio))
2821 p->sched_class = &dl_sched_class;
2822 else if (rt_prio(prio))
dd41f596
IM
2823 p->sched_class = &rt_sched_class;
2824 else
2825 p->sched_class = &fair_sched_class;
2826
b29739f9
IM
2827 p->prio = prio;
2828
0e1f3483
HS
2829 if (running)
2830 p->sched_class->set_curr_task(rq);
da7a735e 2831 if (on_rq)
371fd7e7 2832 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 2833
da7a735e 2834 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2835out_unlock:
0122ec5b 2836 __task_rq_unlock(rq);
b29739f9 2837}
b29739f9 2838#endif
d50dde5a 2839
36c8b586 2840void set_user_nice(struct task_struct *p, long nice)
1da177e4 2841{
dd41f596 2842 int old_prio, delta, on_rq;
1da177e4 2843 unsigned long flags;
70b97a7f 2844 struct rq *rq;
1da177e4
LT
2845
2846 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2847 return;
2848 /*
2849 * We have to be careful, if called from sys_setpriority(),
2850 * the task might be in the middle of scheduling on another CPU.
2851 */
2852 rq = task_rq_lock(p, &flags);
2853 /*
2854 * The RT priorities are set via sched_setscheduler(), but we still
2855 * allow the 'normal' nice value to be set - but as expected
2856 * it wont have any effect on scheduling until the task is
aab03e05 2857 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2858 */
aab03e05 2859 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2860 p->static_prio = NICE_TO_PRIO(nice);
2861 goto out_unlock;
2862 }
fd2f4419 2863 on_rq = p->on_rq;
c09595f6 2864 if (on_rq)
69be72c1 2865 dequeue_task(rq, p, 0);
1da177e4 2866
1da177e4 2867 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2868 set_load_weight(p);
b29739f9
IM
2869 old_prio = p->prio;
2870 p->prio = effective_prio(p);
2871 delta = p->prio - old_prio;
1da177e4 2872
dd41f596 2873 if (on_rq) {
371fd7e7 2874 enqueue_task(rq, p, 0);
1da177e4 2875 /*
d5f9f942
AM
2876 * If the task increased its priority or is running and
2877 * lowered its priority, then reschedule its CPU:
1da177e4 2878 */
d5f9f942 2879 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2880 resched_task(rq->curr);
2881 }
2882out_unlock:
0122ec5b 2883 task_rq_unlock(rq, p, &flags);
1da177e4 2884}
1da177e4
LT
2885EXPORT_SYMBOL(set_user_nice);
2886
e43379f1
MM
2887/*
2888 * can_nice - check if a task can reduce its nice value
2889 * @p: task
2890 * @nice: nice value
2891 */
36c8b586 2892int can_nice(const struct task_struct *p, const int nice)
e43379f1 2893{
024f4747
MM
2894 /* convert nice value [19,-20] to rlimit style value [1,40] */
2895 int nice_rlim = 20 - nice;
48f24c4d 2896
78d7d407 2897 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
2898 capable(CAP_SYS_NICE));
2899}
2900
1da177e4
LT
2901#ifdef __ARCH_WANT_SYS_NICE
2902
2903/*
2904 * sys_nice - change the priority of the current process.
2905 * @increment: priority increment
2906 *
2907 * sys_setpriority is a more generic, but much slower function that
2908 * does similar things.
2909 */
5add95d4 2910SYSCALL_DEFINE1(nice, int, increment)
1da177e4 2911{
48f24c4d 2912 long nice, retval;
1da177e4
LT
2913
2914 /*
2915 * Setpriority might change our priority at the same moment.
2916 * We don't have to worry. Conceptually one call occurs first
2917 * and we have a single winner.
2918 */
e43379f1
MM
2919 if (increment < -40)
2920 increment = -40;
1da177e4
LT
2921 if (increment > 40)
2922 increment = 40;
2923
2b8f836f 2924 nice = TASK_NICE(current) + increment;
1da177e4
LT
2925 if (nice < -20)
2926 nice = -20;
2927 if (nice > 19)
2928 nice = 19;
2929
e43379f1
MM
2930 if (increment < 0 && !can_nice(current, nice))
2931 return -EPERM;
2932
1da177e4
LT
2933 retval = security_task_setnice(current, nice);
2934 if (retval)
2935 return retval;
2936
2937 set_user_nice(current, nice);
2938 return 0;
2939}
2940
2941#endif
2942
2943/**
2944 * task_prio - return the priority value of a given task.
2945 * @p: the task in question.
2946 *
e69f6186 2947 * Return: The priority value as seen by users in /proc.
1da177e4
LT
2948 * RT tasks are offset by -200. Normal tasks are centered
2949 * around 0, value goes from -16 to +15.
2950 */
36c8b586 2951int task_prio(const struct task_struct *p)
1da177e4
LT
2952{
2953 return p->prio - MAX_RT_PRIO;
2954}
2955
2956/**
2957 * task_nice - return the nice value of a given task.
2958 * @p: the task in question.
e69f6186
YB
2959 *
2960 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 2961 */
36c8b586 2962int task_nice(const struct task_struct *p)
1da177e4
LT
2963{
2964 return TASK_NICE(p);
2965}
150d8bed 2966EXPORT_SYMBOL(task_nice);
1da177e4
LT
2967
2968/**
2969 * idle_cpu - is a given cpu idle currently?
2970 * @cpu: the processor in question.
e69f6186
YB
2971 *
2972 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
2973 */
2974int idle_cpu(int cpu)
2975{
908a3283
TG
2976 struct rq *rq = cpu_rq(cpu);
2977
2978 if (rq->curr != rq->idle)
2979 return 0;
2980
2981 if (rq->nr_running)
2982 return 0;
2983
2984#ifdef CONFIG_SMP
2985 if (!llist_empty(&rq->wake_list))
2986 return 0;
2987#endif
2988
2989 return 1;
1da177e4
LT
2990}
2991
1da177e4
LT
2992/**
2993 * idle_task - return the idle task for a given cpu.
2994 * @cpu: the processor in question.
e69f6186
YB
2995 *
2996 * Return: The idle task for the cpu @cpu.
1da177e4 2997 */
36c8b586 2998struct task_struct *idle_task(int cpu)
1da177e4
LT
2999{
3000 return cpu_rq(cpu)->idle;
3001}
3002
3003/**
3004 * find_process_by_pid - find a process with a matching PID value.
3005 * @pid: the pid in question.
e69f6186
YB
3006 *
3007 * The task of @pid, if found. %NULL otherwise.
1da177e4 3008 */
a9957449 3009static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3010{
228ebcbe 3011 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3012}
3013
aab03e05
DF
3014/*
3015 * This function initializes the sched_dl_entity of a newly becoming
3016 * SCHED_DEADLINE task.
3017 *
3018 * Only the static values are considered here, the actual runtime and the
3019 * absolute deadline will be properly calculated when the task is enqueued
3020 * for the first time with its new policy.
3021 */
3022static void
3023__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3024{
3025 struct sched_dl_entity *dl_se = &p->dl;
3026
3027 init_dl_task_timer(dl_se);
3028 dl_se->dl_runtime = attr->sched_runtime;
3029 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3030 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05
DF
3031 dl_se->flags = attr->sched_flags;
3032 dl_se->dl_throttled = 0;
3033 dl_se->dl_new = 1;
3034}
3035
d50dde5a
DF
3036/* Actually do priority change: must hold pi & rq lock. */
3037static void __setscheduler(struct rq *rq, struct task_struct *p,
3038 const struct sched_attr *attr)
1da177e4 3039{
d50dde5a
DF
3040 int policy = attr->sched_policy;
3041
1da177e4 3042 p->policy = policy;
d50dde5a 3043
aab03e05
DF
3044 if (dl_policy(policy))
3045 __setparam_dl(p, attr);
3046 else if (rt_policy(policy))
d50dde5a
DF
3047 p->rt_priority = attr->sched_priority;
3048 else
3049 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3050
b29739f9 3051 p->normal_prio = normal_prio(p);
b29739f9 3052 p->prio = rt_mutex_getprio(p);
d50dde5a 3053
aab03e05
DF
3054 if (dl_prio(p->prio))
3055 p->sched_class = &dl_sched_class;
3056 else if (rt_prio(p->prio))
ffd44db5
PZ
3057 p->sched_class = &rt_sched_class;
3058 else
3059 p->sched_class = &fair_sched_class;
d50dde5a 3060
2dd73a4f 3061 set_load_weight(p);
1da177e4 3062}
aab03e05
DF
3063
3064static void
3065__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3066{
3067 struct sched_dl_entity *dl_se = &p->dl;
3068
3069 attr->sched_priority = p->rt_priority;
3070 attr->sched_runtime = dl_se->dl_runtime;
3071 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3072 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3073 attr->sched_flags = dl_se->flags;
3074}
3075
3076/*
3077 * This function validates the new parameters of a -deadline task.
3078 * We ask for the deadline not being zero, and greater or equal
755378a4
HG
3079 * than the runtime, as well as the period of being zero or
3080 * greater than deadline.
aab03e05
DF
3081 */
3082static bool
3083__checkparam_dl(const struct sched_attr *attr)
3084{
3085 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3086 (attr->sched_period == 0 ||
3087 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3088 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0;
aab03e05
DF
3089}
3090
c69e8d9c
DH
3091/*
3092 * check the target process has a UID that matches the current process's
3093 */
3094static bool check_same_owner(struct task_struct *p)
3095{
3096 const struct cred *cred = current_cred(), *pcred;
3097 bool match;
3098
3099 rcu_read_lock();
3100 pcred = __task_cred(p);
9c806aa0
EB
3101 match = (uid_eq(cred->euid, pcred->euid) ||
3102 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3103 rcu_read_unlock();
3104 return match;
3105}
3106
d50dde5a
DF
3107static int __sched_setscheduler(struct task_struct *p,
3108 const struct sched_attr *attr,
3109 bool user)
1da177e4 3110{
83b699ed 3111 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3112 int policy = attr->sched_policy;
1da177e4 3113 unsigned long flags;
83ab0aa0 3114 const struct sched_class *prev_class;
70b97a7f 3115 struct rq *rq;
ca94c442 3116 int reset_on_fork;
1da177e4 3117
66e5393a
SR
3118 /* may grab non-irq protected spin_locks */
3119 BUG_ON(in_interrupt());
1da177e4
LT
3120recheck:
3121 /* double check policy once rq lock held */
ca94c442
LP
3122 if (policy < 0) {
3123 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3124 policy = oldpolicy = p->policy;
ca94c442
LP
3125 } else {
3126 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3127 policy &= ~SCHED_RESET_ON_FORK;
3128
aab03e05
DF
3129 if (policy != SCHED_DEADLINE &&
3130 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3131 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3132 policy != SCHED_IDLE)
3133 return -EINVAL;
3134 }
3135
1da177e4
LT
3136 /*
3137 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3138 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3139 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3140 */
d50dde5a
DF
3141 if (attr->sched_priority < 0 ||
3142 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3143 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3144 return -EINVAL;
aab03e05
DF
3145 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3146 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3147 return -EINVAL;
3148
37e4ab3f
OC
3149 /*
3150 * Allow unprivileged RT tasks to decrease priority:
3151 */
961ccddd 3152 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3153 if (fair_policy(policy)) {
3154 if (!can_nice(p, attr->sched_nice))
3155 return -EPERM;
3156 }
3157
e05606d3 3158 if (rt_policy(policy)) {
a44702e8
ON
3159 unsigned long rlim_rtprio =
3160 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3161
3162 /* can't set/change the rt policy */
3163 if (policy != p->policy && !rlim_rtprio)
3164 return -EPERM;
3165
3166 /* can't increase priority */
d50dde5a
DF
3167 if (attr->sched_priority > p->rt_priority &&
3168 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3169 return -EPERM;
3170 }
c02aa73b 3171
dd41f596 3172 /*
c02aa73b
DH
3173 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3174 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3175 */
c02aa73b
DH
3176 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3177 if (!can_nice(p, TASK_NICE(p)))
3178 return -EPERM;
3179 }
5fe1d75f 3180
37e4ab3f 3181 /* can't change other user's priorities */
c69e8d9c 3182 if (!check_same_owner(p))
37e4ab3f 3183 return -EPERM;
ca94c442
LP
3184
3185 /* Normal users shall not reset the sched_reset_on_fork flag */
3186 if (p->sched_reset_on_fork && !reset_on_fork)
3187 return -EPERM;
37e4ab3f 3188 }
1da177e4 3189
725aad24 3190 if (user) {
b0ae1981 3191 retval = security_task_setscheduler(p);
725aad24
JF
3192 if (retval)
3193 return retval;
3194 }
3195
b29739f9
IM
3196 /*
3197 * make sure no PI-waiters arrive (or leave) while we are
3198 * changing the priority of the task:
0122ec5b 3199 *
25985edc 3200 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3201 * runqueue lock must be held.
3202 */
0122ec5b 3203 rq = task_rq_lock(p, &flags);
dc61b1d6 3204
34f971f6
PZ
3205 /*
3206 * Changing the policy of the stop threads its a very bad idea
3207 */
3208 if (p == rq->stop) {
0122ec5b 3209 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3210 return -EINVAL;
3211 }
3212
a51e9198
DF
3213 /*
3214 * If not changing anything there's no need to proceed further:
3215 */
d50dde5a
DF
3216 if (unlikely(policy == p->policy)) {
3217 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3218 goto change;
3219 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3220 goto change;
aab03e05
DF
3221 if (dl_policy(policy))
3222 goto change;
d50dde5a 3223
45afb173 3224 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3225 return 0;
3226 }
d50dde5a 3227change:
a51e9198 3228
dc61b1d6
PZ
3229#ifdef CONFIG_RT_GROUP_SCHED
3230 if (user) {
3231 /*
3232 * Do not allow realtime tasks into groups that have no runtime
3233 * assigned.
3234 */
3235 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3236 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3237 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3238 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3239 return -EPERM;
3240 }
3241 }
3242#endif
3243
1da177e4
LT
3244 /* recheck policy now with rq lock held */
3245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3246 policy = oldpolicy = -1;
0122ec5b 3247 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3248 goto recheck;
3249 }
fd2f4419 3250 on_rq = p->on_rq;
051a1d1a 3251 running = task_current(rq, p);
0e1f3483 3252 if (on_rq)
4ca9b72b 3253 dequeue_task(rq, p, 0);
0e1f3483
HS
3254 if (running)
3255 p->sched_class->put_prev_task(rq, p);
f6b53205 3256
ca94c442
LP
3257 p->sched_reset_on_fork = reset_on_fork;
3258
1da177e4 3259 oldprio = p->prio;
83ab0aa0 3260 prev_class = p->sched_class;
d50dde5a 3261 __setscheduler(rq, p, attr);
f6b53205 3262
0e1f3483
HS
3263 if (running)
3264 p->sched_class->set_curr_task(rq);
da7a735e 3265 if (on_rq)
4ca9b72b 3266 enqueue_task(rq, p, 0);
cb469845 3267
da7a735e 3268 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3269 task_rq_unlock(rq, p, &flags);
b29739f9 3270
95e02ca9
TG
3271 rt_mutex_adjust_pi(p);
3272
1da177e4
LT
3273 return 0;
3274}
961ccddd
RR
3275
3276/**
3277 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3278 * @p: the task in question.
3279 * @policy: new policy.
3280 * @param: structure containing the new RT priority.
3281 *
e69f6186
YB
3282 * Return: 0 on success. An error code otherwise.
3283 *
961ccddd
RR
3284 * NOTE that the task may be already dead.
3285 */
3286int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3287 const struct sched_param *param)
961ccddd 3288{
d50dde5a
DF
3289 struct sched_attr attr = {
3290 .sched_policy = policy,
3291 .sched_priority = param->sched_priority
3292 };
3293 return __sched_setscheduler(p, &attr, true);
961ccddd 3294}
1da177e4
LT
3295EXPORT_SYMBOL_GPL(sched_setscheduler);
3296
d50dde5a
DF
3297int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3298{
3299 return __sched_setscheduler(p, attr, true);
3300}
3301EXPORT_SYMBOL_GPL(sched_setattr);
3302
961ccddd
RR
3303/**
3304 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3305 * @p: the task in question.
3306 * @policy: new policy.
3307 * @param: structure containing the new RT priority.
3308 *
3309 * Just like sched_setscheduler, only don't bother checking if the
3310 * current context has permission. For example, this is needed in
3311 * stop_machine(): we create temporary high priority worker threads,
3312 * but our caller might not have that capability.
e69f6186
YB
3313 *
3314 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3315 */
3316int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3317 const struct sched_param *param)
961ccddd 3318{
d50dde5a
DF
3319 struct sched_attr attr = {
3320 .sched_policy = policy,
3321 .sched_priority = param->sched_priority
3322 };
3323 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3324}
3325
95cdf3b7
IM
3326static int
3327do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3328{
1da177e4
LT
3329 struct sched_param lparam;
3330 struct task_struct *p;
36c8b586 3331 int retval;
1da177e4
LT
3332
3333 if (!param || pid < 0)
3334 return -EINVAL;
3335 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3336 return -EFAULT;
5fe1d75f
ON
3337
3338 rcu_read_lock();
3339 retval = -ESRCH;
1da177e4 3340 p = find_process_by_pid(pid);
5fe1d75f
ON
3341 if (p != NULL)
3342 retval = sched_setscheduler(p, policy, &lparam);
3343 rcu_read_unlock();
36c8b586 3344
1da177e4
LT
3345 return retval;
3346}
3347
d50dde5a
DF
3348/*
3349 * Mimics kernel/events/core.c perf_copy_attr().
3350 */
3351static int sched_copy_attr(struct sched_attr __user *uattr,
3352 struct sched_attr *attr)
3353{
3354 u32 size;
3355 int ret;
3356
3357 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3358 return -EFAULT;
3359
3360 /*
3361 * zero the full structure, so that a short copy will be nice.
3362 */
3363 memset(attr, 0, sizeof(*attr));
3364
3365 ret = get_user(size, &uattr->size);
3366 if (ret)
3367 return ret;
3368
3369 if (size > PAGE_SIZE) /* silly large */
3370 goto err_size;
3371
3372 if (!size) /* abi compat */
3373 size = SCHED_ATTR_SIZE_VER0;
3374
3375 if (size < SCHED_ATTR_SIZE_VER0)
3376 goto err_size;
3377
3378 /*
3379 * If we're handed a bigger struct than we know of,
3380 * ensure all the unknown bits are 0 - i.e. new
3381 * user-space does not rely on any kernel feature
3382 * extensions we dont know about yet.
3383 */
3384 if (size > sizeof(*attr)) {
3385 unsigned char __user *addr;
3386 unsigned char __user *end;
3387 unsigned char val;
3388
3389 addr = (void __user *)uattr + sizeof(*attr);
3390 end = (void __user *)uattr + size;
3391
3392 for (; addr < end; addr++) {
3393 ret = get_user(val, addr);
3394 if (ret)
3395 return ret;
3396 if (val)
3397 goto err_size;
3398 }
3399 size = sizeof(*attr);
3400 }
3401
3402 ret = copy_from_user(attr, uattr, size);
3403 if (ret)
3404 return -EFAULT;
3405
3406 /*
3407 * XXX: do we want to be lenient like existing syscalls; or do we want
3408 * to be strict and return an error on out-of-bounds values?
3409 */
3410 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3411
3412out:
3413 return ret;
3414
3415err_size:
3416 put_user(sizeof(*attr), &uattr->size);
3417 ret = -E2BIG;
3418 goto out;
3419}
3420
1da177e4
LT
3421/**
3422 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3423 * @pid: the pid in question.
3424 * @policy: new policy.
3425 * @param: structure containing the new RT priority.
e69f6186
YB
3426 *
3427 * Return: 0 on success. An error code otherwise.
1da177e4 3428 */
5add95d4
HC
3429SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3430 struct sched_param __user *, param)
1da177e4 3431{
c21761f1
JB
3432 /* negative values for policy are not valid */
3433 if (policy < 0)
3434 return -EINVAL;
3435
1da177e4
LT
3436 return do_sched_setscheduler(pid, policy, param);
3437}
3438
3439/**
3440 * sys_sched_setparam - set/change the RT priority of a thread
3441 * @pid: the pid in question.
3442 * @param: structure containing the new RT priority.
e69f6186
YB
3443 *
3444 * Return: 0 on success. An error code otherwise.
1da177e4 3445 */
5add95d4 3446SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3447{
3448 return do_sched_setscheduler(pid, -1, param);
3449}
3450
d50dde5a
DF
3451/**
3452 * sys_sched_setattr - same as above, but with extended sched_attr
3453 * @pid: the pid in question.
3454 * @attr: structure containing the extended parameters.
3455 */
3456SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3457{
3458 struct sched_attr attr;
3459 struct task_struct *p;
3460 int retval;
3461
3462 if (!uattr || pid < 0)
3463 return -EINVAL;
3464
3465 if (sched_copy_attr(uattr, &attr))
3466 return -EFAULT;
3467
3468 rcu_read_lock();
3469 retval = -ESRCH;
3470 p = find_process_by_pid(pid);
3471 if (p != NULL)
3472 retval = sched_setattr(p, &attr);
3473 rcu_read_unlock();
3474
3475 return retval;
3476}
3477
1da177e4
LT
3478/**
3479 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3480 * @pid: the pid in question.
e69f6186
YB
3481 *
3482 * Return: On success, the policy of the thread. Otherwise, a negative error
3483 * code.
1da177e4 3484 */
5add95d4 3485SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3486{
36c8b586 3487 struct task_struct *p;
3a5c359a 3488 int retval;
1da177e4
LT
3489
3490 if (pid < 0)
3a5c359a 3491 return -EINVAL;
1da177e4
LT
3492
3493 retval = -ESRCH;
5fe85be0 3494 rcu_read_lock();
1da177e4
LT
3495 p = find_process_by_pid(pid);
3496 if (p) {
3497 retval = security_task_getscheduler(p);
3498 if (!retval)
ca94c442
LP
3499 retval = p->policy
3500 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3501 }
5fe85be0 3502 rcu_read_unlock();
1da177e4
LT
3503 return retval;
3504}
3505
3506/**
ca94c442 3507 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3508 * @pid: the pid in question.
3509 * @param: structure containing the RT priority.
e69f6186
YB
3510 *
3511 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3512 * code.
1da177e4 3513 */
5add95d4 3514SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3515{
3516 struct sched_param lp;
36c8b586 3517 struct task_struct *p;
3a5c359a 3518 int retval;
1da177e4
LT
3519
3520 if (!param || pid < 0)
3a5c359a 3521 return -EINVAL;
1da177e4 3522
5fe85be0 3523 rcu_read_lock();
1da177e4
LT
3524 p = find_process_by_pid(pid);
3525 retval = -ESRCH;
3526 if (!p)
3527 goto out_unlock;
3528
3529 retval = security_task_getscheduler(p);
3530 if (retval)
3531 goto out_unlock;
3532
aab03e05
DF
3533 if (task_has_dl_policy(p)) {
3534 retval = -EINVAL;
3535 goto out_unlock;
3536 }
1da177e4 3537 lp.sched_priority = p->rt_priority;
5fe85be0 3538 rcu_read_unlock();
1da177e4
LT
3539
3540 /*
3541 * This one might sleep, we cannot do it with a spinlock held ...
3542 */
3543 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3544
1da177e4
LT
3545 return retval;
3546
3547out_unlock:
5fe85be0 3548 rcu_read_unlock();
1da177e4
LT
3549 return retval;
3550}
3551
d50dde5a
DF
3552static int sched_read_attr(struct sched_attr __user *uattr,
3553 struct sched_attr *attr,
3554 unsigned int usize)
3555{
3556 int ret;
3557
3558 if (!access_ok(VERIFY_WRITE, uattr, usize))
3559 return -EFAULT;
3560
3561 /*
3562 * If we're handed a smaller struct than we know of,
3563 * ensure all the unknown bits are 0 - i.e. old
3564 * user-space does not get uncomplete information.
3565 */
3566 if (usize < sizeof(*attr)) {
3567 unsigned char *addr;
3568 unsigned char *end;
3569
3570 addr = (void *)attr + usize;
3571 end = (void *)attr + sizeof(*attr);
3572
3573 for (; addr < end; addr++) {
3574 if (*addr)
3575 goto err_size;
3576 }
3577
3578 attr->size = usize;
3579 }
3580
3581 ret = copy_to_user(uattr, attr, usize);
3582 if (ret)
3583 return -EFAULT;
3584
3585out:
3586 return ret;
3587
3588err_size:
3589 ret = -E2BIG;
3590 goto out;
3591}
3592
3593/**
aab03e05 3594 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a
DF
3595 * @pid: the pid in question.
3596 * @attr: structure containing the extended parameters.
3597 * @size: sizeof(attr) for fwd/bwd comp.
3598 */
3599SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3600 unsigned int, size)
3601{
3602 struct sched_attr attr = {
3603 .size = sizeof(struct sched_attr),
3604 };
3605 struct task_struct *p;
3606 int retval;
3607
3608 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3609 size < SCHED_ATTR_SIZE_VER0)
3610 return -EINVAL;
3611
3612 rcu_read_lock();
3613 p = find_process_by_pid(pid);
3614 retval = -ESRCH;
3615 if (!p)
3616 goto out_unlock;
3617
3618 retval = security_task_getscheduler(p);
3619 if (retval)
3620 goto out_unlock;
3621
3622 attr.sched_policy = p->policy;
aab03e05
DF
3623 if (task_has_dl_policy(p))
3624 __getparam_dl(p, &attr);
3625 else if (task_has_rt_policy(p))
d50dde5a
DF
3626 attr.sched_priority = p->rt_priority;
3627 else
3628 attr.sched_nice = TASK_NICE(p);
3629
3630 rcu_read_unlock();
3631
3632 retval = sched_read_attr(uattr, &attr, size);
3633 return retval;
3634
3635out_unlock:
3636 rcu_read_unlock();
3637 return retval;
3638}
3639
96f874e2 3640long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3641{
5a16f3d3 3642 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3643 struct task_struct *p;
3644 int retval;
1da177e4 3645
23f5d142 3646 rcu_read_lock();
1da177e4
LT
3647
3648 p = find_process_by_pid(pid);
3649 if (!p) {
23f5d142 3650 rcu_read_unlock();
1da177e4
LT
3651 return -ESRCH;
3652 }
3653
23f5d142 3654 /* Prevent p going away */
1da177e4 3655 get_task_struct(p);
23f5d142 3656 rcu_read_unlock();
1da177e4 3657
14a40ffc
TH
3658 if (p->flags & PF_NO_SETAFFINITY) {
3659 retval = -EINVAL;
3660 goto out_put_task;
3661 }
5a16f3d3
RR
3662 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3663 retval = -ENOMEM;
3664 goto out_put_task;
3665 }
3666 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3667 retval = -ENOMEM;
3668 goto out_free_cpus_allowed;
3669 }
1da177e4 3670 retval = -EPERM;
4c44aaaf
EB
3671 if (!check_same_owner(p)) {
3672 rcu_read_lock();
3673 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3674 rcu_read_unlock();
3675 goto out_unlock;
3676 }
3677 rcu_read_unlock();
3678 }
1da177e4 3679
b0ae1981 3680 retval = security_task_setscheduler(p);
e7834f8f
DQ
3681 if (retval)
3682 goto out_unlock;
3683
5a16f3d3
RR
3684 cpuset_cpus_allowed(p, cpus_allowed);
3685 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3686again:
5a16f3d3 3687 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3688
8707d8b8 3689 if (!retval) {
5a16f3d3
RR
3690 cpuset_cpus_allowed(p, cpus_allowed);
3691 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3692 /*
3693 * We must have raced with a concurrent cpuset
3694 * update. Just reset the cpus_allowed to the
3695 * cpuset's cpus_allowed
3696 */
5a16f3d3 3697 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3698 goto again;
3699 }
3700 }
1da177e4 3701out_unlock:
5a16f3d3
RR
3702 free_cpumask_var(new_mask);
3703out_free_cpus_allowed:
3704 free_cpumask_var(cpus_allowed);
3705out_put_task:
1da177e4 3706 put_task_struct(p);
1da177e4
LT
3707 return retval;
3708}
3709
3710static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3711 struct cpumask *new_mask)
1da177e4 3712{
96f874e2
RR
3713 if (len < cpumask_size())
3714 cpumask_clear(new_mask);
3715 else if (len > cpumask_size())
3716 len = cpumask_size();
3717
1da177e4
LT
3718 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3719}
3720
3721/**
3722 * sys_sched_setaffinity - set the cpu affinity of a process
3723 * @pid: pid of the process
3724 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3725 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3726 *
3727 * Return: 0 on success. An error code otherwise.
1da177e4 3728 */
5add95d4
HC
3729SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3730 unsigned long __user *, user_mask_ptr)
1da177e4 3731{
5a16f3d3 3732 cpumask_var_t new_mask;
1da177e4
LT
3733 int retval;
3734
5a16f3d3
RR
3735 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3736 return -ENOMEM;
1da177e4 3737
5a16f3d3
RR
3738 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3739 if (retval == 0)
3740 retval = sched_setaffinity(pid, new_mask);
3741 free_cpumask_var(new_mask);
3742 return retval;
1da177e4
LT
3743}
3744
96f874e2 3745long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3746{
36c8b586 3747 struct task_struct *p;
31605683 3748 unsigned long flags;
1da177e4 3749 int retval;
1da177e4 3750
23f5d142 3751 rcu_read_lock();
1da177e4
LT
3752
3753 retval = -ESRCH;
3754 p = find_process_by_pid(pid);
3755 if (!p)
3756 goto out_unlock;
3757
e7834f8f
DQ
3758 retval = security_task_getscheduler(p);
3759 if (retval)
3760 goto out_unlock;
3761
013fdb80 3762 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3763 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3764 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3765
3766out_unlock:
23f5d142 3767 rcu_read_unlock();
1da177e4 3768
9531b62f 3769 return retval;
1da177e4
LT
3770}
3771
3772/**
3773 * sys_sched_getaffinity - get the cpu affinity of a process
3774 * @pid: pid of the process
3775 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3776 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3777 *
3778 * Return: 0 on success. An error code otherwise.
1da177e4 3779 */
5add95d4
HC
3780SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3781 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3782{
3783 int ret;
f17c8607 3784 cpumask_var_t mask;
1da177e4 3785
84fba5ec 3786 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3787 return -EINVAL;
3788 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3789 return -EINVAL;
3790
f17c8607
RR
3791 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3792 return -ENOMEM;
1da177e4 3793
f17c8607
RR
3794 ret = sched_getaffinity(pid, mask);
3795 if (ret == 0) {
8bc037fb 3796 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3797
3798 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3799 ret = -EFAULT;
3800 else
cd3d8031 3801 ret = retlen;
f17c8607
RR
3802 }
3803 free_cpumask_var(mask);
1da177e4 3804
f17c8607 3805 return ret;
1da177e4
LT
3806}
3807
3808/**
3809 * sys_sched_yield - yield the current processor to other threads.
3810 *
dd41f596
IM
3811 * This function yields the current CPU to other tasks. If there are no
3812 * other threads running on this CPU then this function will return.
e69f6186
YB
3813 *
3814 * Return: 0.
1da177e4 3815 */
5add95d4 3816SYSCALL_DEFINE0(sched_yield)
1da177e4 3817{
70b97a7f 3818 struct rq *rq = this_rq_lock();
1da177e4 3819
2d72376b 3820 schedstat_inc(rq, yld_count);
4530d7ab 3821 current->sched_class->yield_task(rq);
1da177e4
LT
3822
3823 /*
3824 * Since we are going to call schedule() anyway, there's
3825 * no need to preempt or enable interrupts:
3826 */
3827 __release(rq->lock);
8a25d5de 3828 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3829 do_raw_spin_unlock(&rq->lock);
ba74c144 3830 sched_preempt_enable_no_resched();
1da177e4
LT
3831
3832 schedule();
3833
3834 return 0;
3835}
3836
e7b38404 3837static void __cond_resched(void)
1da177e4 3838{
bdb43806 3839 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3840 __schedule();
bdb43806 3841 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3842}
3843
02b67cc3 3844int __sched _cond_resched(void)
1da177e4 3845{
d86ee480 3846 if (should_resched()) {
1da177e4
LT
3847 __cond_resched();
3848 return 1;
3849 }
3850 return 0;
3851}
02b67cc3 3852EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3853
3854/*
613afbf8 3855 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3856 * call schedule, and on return reacquire the lock.
3857 *
41a2d6cf 3858 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3859 * operations here to prevent schedule() from being called twice (once via
3860 * spin_unlock(), once by hand).
3861 */
613afbf8 3862int __cond_resched_lock(spinlock_t *lock)
1da177e4 3863{
d86ee480 3864 int resched = should_resched();
6df3cecb
JK
3865 int ret = 0;
3866
f607c668
PZ
3867 lockdep_assert_held(lock);
3868
95c354fe 3869 if (spin_needbreak(lock) || resched) {
1da177e4 3870 spin_unlock(lock);
d86ee480 3871 if (resched)
95c354fe
NP
3872 __cond_resched();
3873 else
3874 cpu_relax();
6df3cecb 3875 ret = 1;
1da177e4 3876 spin_lock(lock);
1da177e4 3877 }
6df3cecb 3878 return ret;
1da177e4 3879}
613afbf8 3880EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3881
613afbf8 3882int __sched __cond_resched_softirq(void)
1da177e4
LT
3883{
3884 BUG_ON(!in_softirq());
3885
d86ee480 3886 if (should_resched()) {
98d82567 3887 local_bh_enable();
1da177e4
LT
3888 __cond_resched();
3889 local_bh_disable();
3890 return 1;
3891 }
3892 return 0;
3893}
613afbf8 3894EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3895
1da177e4
LT
3896/**
3897 * yield - yield the current processor to other threads.
3898 *
8e3fabfd
PZ
3899 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3900 *
3901 * The scheduler is at all times free to pick the calling task as the most
3902 * eligible task to run, if removing the yield() call from your code breaks
3903 * it, its already broken.
3904 *
3905 * Typical broken usage is:
3906 *
3907 * while (!event)
3908 * yield();
3909 *
3910 * where one assumes that yield() will let 'the other' process run that will
3911 * make event true. If the current task is a SCHED_FIFO task that will never
3912 * happen. Never use yield() as a progress guarantee!!
3913 *
3914 * If you want to use yield() to wait for something, use wait_event().
3915 * If you want to use yield() to be 'nice' for others, use cond_resched().
3916 * If you still want to use yield(), do not!
1da177e4
LT
3917 */
3918void __sched yield(void)
3919{
3920 set_current_state(TASK_RUNNING);
3921 sys_sched_yield();
3922}
1da177e4
LT
3923EXPORT_SYMBOL(yield);
3924
d95f4122
MG
3925/**
3926 * yield_to - yield the current processor to another thread in
3927 * your thread group, or accelerate that thread toward the
3928 * processor it's on.
16addf95
RD
3929 * @p: target task
3930 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3931 *
3932 * It's the caller's job to ensure that the target task struct
3933 * can't go away on us before we can do any checks.
3934 *
e69f6186 3935 * Return:
7b270f60
PZ
3936 * true (>0) if we indeed boosted the target task.
3937 * false (0) if we failed to boost the target.
3938 * -ESRCH if there's no task to yield to.
d95f4122
MG
3939 */
3940bool __sched yield_to(struct task_struct *p, bool preempt)
3941{
3942 struct task_struct *curr = current;
3943 struct rq *rq, *p_rq;
3944 unsigned long flags;
c3c18640 3945 int yielded = 0;
d95f4122
MG
3946
3947 local_irq_save(flags);
3948 rq = this_rq();
3949
3950again:
3951 p_rq = task_rq(p);
7b270f60
PZ
3952 /*
3953 * If we're the only runnable task on the rq and target rq also
3954 * has only one task, there's absolutely no point in yielding.
3955 */
3956 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3957 yielded = -ESRCH;
3958 goto out_irq;
3959 }
3960
d95f4122 3961 double_rq_lock(rq, p_rq);
39e24d8f 3962 if (task_rq(p) != p_rq) {
d95f4122
MG
3963 double_rq_unlock(rq, p_rq);
3964 goto again;
3965 }
3966
3967 if (!curr->sched_class->yield_to_task)
7b270f60 3968 goto out_unlock;
d95f4122
MG
3969
3970 if (curr->sched_class != p->sched_class)
7b270f60 3971 goto out_unlock;
d95f4122
MG
3972
3973 if (task_running(p_rq, p) || p->state)
7b270f60 3974 goto out_unlock;
d95f4122
MG
3975
3976 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3977 if (yielded) {
d95f4122 3978 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3979 /*
3980 * Make p's CPU reschedule; pick_next_entity takes care of
3981 * fairness.
3982 */
3983 if (preempt && rq != p_rq)
3984 resched_task(p_rq->curr);
3985 }
d95f4122 3986
7b270f60 3987out_unlock:
d95f4122 3988 double_rq_unlock(rq, p_rq);
7b270f60 3989out_irq:
d95f4122
MG
3990 local_irq_restore(flags);
3991
7b270f60 3992 if (yielded > 0)
d95f4122
MG
3993 schedule();
3994
3995 return yielded;
3996}
3997EXPORT_SYMBOL_GPL(yield_to);
3998
1da177e4 3999/*
41a2d6cf 4000 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4001 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4002 */
4003void __sched io_schedule(void)
4004{
54d35f29 4005 struct rq *rq = raw_rq();
1da177e4 4006
0ff92245 4007 delayacct_blkio_start();
1da177e4 4008 atomic_inc(&rq->nr_iowait);
73c10101 4009 blk_flush_plug(current);
8f0dfc34 4010 current->in_iowait = 1;
1da177e4 4011 schedule();
8f0dfc34 4012 current->in_iowait = 0;
1da177e4 4013 atomic_dec(&rq->nr_iowait);
0ff92245 4014 delayacct_blkio_end();
1da177e4 4015}
1da177e4
LT
4016EXPORT_SYMBOL(io_schedule);
4017
4018long __sched io_schedule_timeout(long timeout)
4019{
54d35f29 4020 struct rq *rq = raw_rq();
1da177e4
LT
4021 long ret;
4022
0ff92245 4023 delayacct_blkio_start();
1da177e4 4024 atomic_inc(&rq->nr_iowait);
73c10101 4025 blk_flush_plug(current);
8f0dfc34 4026 current->in_iowait = 1;
1da177e4 4027 ret = schedule_timeout(timeout);
8f0dfc34 4028 current->in_iowait = 0;
1da177e4 4029 atomic_dec(&rq->nr_iowait);
0ff92245 4030 delayacct_blkio_end();
1da177e4
LT
4031 return ret;
4032}
4033
4034/**
4035 * sys_sched_get_priority_max - return maximum RT priority.
4036 * @policy: scheduling class.
4037 *
e69f6186
YB
4038 * Return: On success, this syscall returns the maximum
4039 * rt_priority that can be used by a given scheduling class.
4040 * On failure, a negative error code is returned.
1da177e4 4041 */
5add95d4 4042SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4043{
4044 int ret = -EINVAL;
4045
4046 switch (policy) {
4047 case SCHED_FIFO:
4048 case SCHED_RR:
4049 ret = MAX_USER_RT_PRIO-1;
4050 break;
aab03e05 4051 case SCHED_DEADLINE:
1da177e4 4052 case SCHED_NORMAL:
b0a9499c 4053 case SCHED_BATCH:
dd41f596 4054 case SCHED_IDLE:
1da177e4
LT
4055 ret = 0;
4056 break;
4057 }
4058 return ret;
4059}
4060
4061/**
4062 * sys_sched_get_priority_min - return minimum RT priority.
4063 * @policy: scheduling class.
4064 *
e69f6186
YB
4065 * Return: On success, this syscall returns the minimum
4066 * rt_priority that can be used by a given scheduling class.
4067 * On failure, a negative error code is returned.
1da177e4 4068 */
5add95d4 4069SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4070{
4071 int ret = -EINVAL;
4072
4073 switch (policy) {
4074 case SCHED_FIFO:
4075 case SCHED_RR:
4076 ret = 1;
4077 break;
aab03e05 4078 case SCHED_DEADLINE:
1da177e4 4079 case SCHED_NORMAL:
b0a9499c 4080 case SCHED_BATCH:
dd41f596 4081 case SCHED_IDLE:
1da177e4
LT
4082 ret = 0;
4083 }
4084 return ret;
4085}
4086
4087/**
4088 * sys_sched_rr_get_interval - return the default timeslice of a process.
4089 * @pid: pid of the process.
4090 * @interval: userspace pointer to the timeslice value.
4091 *
4092 * this syscall writes the default timeslice value of a given process
4093 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4094 *
4095 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4096 * an error code.
1da177e4 4097 */
17da2bd9 4098SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4099 struct timespec __user *, interval)
1da177e4 4100{
36c8b586 4101 struct task_struct *p;
a4ec24b4 4102 unsigned int time_slice;
dba091b9
TG
4103 unsigned long flags;
4104 struct rq *rq;
3a5c359a 4105 int retval;
1da177e4 4106 struct timespec t;
1da177e4
LT
4107
4108 if (pid < 0)
3a5c359a 4109 return -EINVAL;
1da177e4
LT
4110
4111 retval = -ESRCH;
1a551ae7 4112 rcu_read_lock();
1da177e4
LT
4113 p = find_process_by_pid(pid);
4114 if (!p)
4115 goto out_unlock;
4116
4117 retval = security_task_getscheduler(p);
4118 if (retval)
4119 goto out_unlock;
4120
dba091b9
TG
4121 rq = task_rq_lock(p, &flags);
4122 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4123 task_rq_unlock(rq, p, &flags);
a4ec24b4 4124
1a551ae7 4125 rcu_read_unlock();
a4ec24b4 4126 jiffies_to_timespec(time_slice, &t);
1da177e4 4127 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4128 return retval;
3a5c359a 4129
1da177e4 4130out_unlock:
1a551ae7 4131 rcu_read_unlock();
1da177e4
LT
4132 return retval;
4133}
4134
7c731e0a 4135static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4136
82a1fcb9 4137void sched_show_task(struct task_struct *p)
1da177e4 4138{
1da177e4 4139 unsigned long free = 0;
4e79752c 4140 int ppid;
36c8b586 4141 unsigned state;
1da177e4 4142
1da177e4 4143 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4144 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4145 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4146#if BITS_PER_LONG == 32
1da177e4 4147 if (state == TASK_RUNNING)
3df0fc5b 4148 printk(KERN_CONT " running ");
1da177e4 4149 else
3df0fc5b 4150 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4151#else
4152 if (state == TASK_RUNNING)
3df0fc5b 4153 printk(KERN_CONT " running task ");
1da177e4 4154 else
3df0fc5b 4155 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4156#endif
4157#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4158 free = stack_not_used(p);
1da177e4 4159#endif
4e79752c
PM
4160 rcu_read_lock();
4161 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4162 rcu_read_unlock();
3df0fc5b 4163 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4164 task_pid_nr(p), ppid,
aa47b7e0 4165 (unsigned long)task_thread_info(p)->flags);
1da177e4 4166
3d1cb205 4167 print_worker_info(KERN_INFO, p);
5fb5e6de 4168 show_stack(p, NULL);
1da177e4
LT
4169}
4170
e59e2ae2 4171void show_state_filter(unsigned long state_filter)
1da177e4 4172{
36c8b586 4173 struct task_struct *g, *p;
1da177e4 4174
4bd77321 4175#if BITS_PER_LONG == 32
3df0fc5b
PZ
4176 printk(KERN_INFO
4177 " task PC stack pid father\n");
1da177e4 4178#else
3df0fc5b
PZ
4179 printk(KERN_INFO
4180 " task PC stack pid father\n");
1da177e4 4181#endif
510f5acc 4182 rcu_read_lock();
1da177e4
LT
4183 do_each_thread(g, p) {
4184 /*
4185 * reset the NMI-timeout, listing all files on a slow
25985edc 4186 * console might take a lot of time:
1da177e4
LT
4187 */
4188 touch_nmi_watchdog();
39bc89fd 4189 if (!state_filter || (p->state & state_filter))
82a1fcb9 4190 sched_show_task(p);
1da177e4
LT
4191 } while_each_thread(g, p);
4192
04c9167f
JF
4193 touch_all_softlockup_watchdogs();
4194
dd41f596
IM
4195#ifdef CONFIG_SCHED_DEBUG
4196 sysrq_sched_debug_show();
4197#endif
510f5acc 4198 rcu_read_unlock();
e59e2ae2
IM
4199 /*
4200 * Only show locks if all tasks are dumped:
4201 */
93335a21 4202 if (!state_filter)
e59e2ae2 4203 debug_show_all_locks();
1da177e4
LT
4204}
4205
0db0628d 4206void init_idle_bootup_task(struct task_struct *idle)
1df21055 4207{
dd41f596 4208 idle->sched_class = &idle_sched_class;
1df21055
IM
4209}
4210
f340c0d1
IM
4211/**
4212 * init_idle - set up an idle thread for a given CPU
4213 * @idle: task in question
4214 * @cpu: cpu the idle task belongs to
4215 *
4216 * NOTE: this function does not set the idle thread's NEED_RESCHED
4217 * flag, to make booting more robust.
4218 */
0db0628d 4219void init_idle(struct task_struct *idle, int cpu)
1da177e4 4220{
70b97a7f 4221 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4222 unsigned long flags;
4223
05fa785c 4224 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4225
5e1576ed 4226 __sched_fork(0, idle);
06b83b5f 4227 idle->state = TASK_RUNNING;
dd41f596
IM
4228 idle->se.exec_start = sched_clock();
4229
1e1b6c51 4230 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4231 /*
4232 * We're having a chicken and egg problem, even though we are
4233 * holding rq->lock, the cpu isn't yet set to this cpu so the
4234 * lockdep check in task_group() will fail.
4235 *
4236 * Similar case to sched_fork(). / Alternatively we could
4237 * use task_rq_lock() here and obtain the other rq->lock.
4238 *
4239 * Silence PROVE_RCU
4240 */
4241 rcu_read_lock();
dd41f596 4242 __set_task_cpu(idle, cpu);
6506cf6c 4243 rcu_read_unlock();
1da177e4 4244
1da177e4 4245 rq->curr = rq->idle = idle;
3ca7a440
PZ
4246#if defined(CONFIG_SMP)
4247 idle->on_cpu = 1;
4866cde0 4248#endif
05fa785c 4249 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4250
4251 /* Set the preempt count _outside_ the spinlocks! */
01028747 4252 init_idle_preempt_count(idle, cpu);
55cd5340 4253
dd41f596
IM
4254 /*
4255 * The idle tasks have their own, simple scheduling class:
4256 */
4257 idle->sched_class = &idle_sched_class;
868baf07 4258 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4259 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4260#if defined(CONFIG_SMP)
4261 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4262#endif
19978ca6
IM
4263}
4264
1da177e4 4265#ifdef CONFIG_SMP
1e1b6c51
KM
4266void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4267{
4268 if (p->sched_class && p->sched_class->set_cpus_allowed)
4269 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4270
4271 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4272 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4273}
4274
1da177e4
LT
4275/*
4276 * This is how migration works:
4277 *
969c7921
TH
4278 * 1) we invoke migration_cpu_stop() on the target CPU using
4279 * stop_one_cpu().
4280 * 2) stopper starts to run (implicitly forcing the migrated thread
4281 * off the CPU)
4282 * 3) it checks whether the migrated task is still in the wrong runqueue.
4283 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4284 * it and puts it into the right queue.
969c7921
TH
4285 * 5) stopper completes and stop_one_cpu() returns and the migration
4286 * is done.
1da177e4
LT
4287 */
4288
4289/*
4290 * Change a given task's CPU affinity. Migrate the thread to a
4291 * proper CPU and schedule it away if the CPU it's executing on
4292 * is removed from the allowed bitmask.
4293 *
4294 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4295 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4296 * call is not atomic; no spinlocks may be held.
4297 */
96f874e2 4298int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4299{
4300 unsigned long flags;
70b97a7f 4301 struct rq *rq;
969c7921 4302 unsigned int dest_cpu;
48f24c4d 4303 int ret = 0;
1da177e4
LT
4304
4305 rq = task_rq_lock(p, &flags);
e2912009 4306
db44fc01
YZ
4307 if (cpumask_equal(&p->cpus_allowed, new_mask))
4308 goto out;
4309
6ad4c188 4310 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4311 ret = -EINVAL;
4312 goto out;
4313 }
4314
1e1b6c51 4315 do_set_cpus_allowed(p, new_mask);
73fe6aae 4316
1da177e4 4317 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4318 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4319 goto out;
4320
969c7921 4321 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4322 if (p->on_rq) {
969c7921 4323 struct migration_arg arg = { p, dest_cpu };
1da177e4 4324 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4325 task_rq_unlock(rq, p, &flags);
969c7921 4326 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4327 tlb_migrate_finish(p->mm);
4328 return 0;
4329 }
4330out:
0122ec5b 4331 task_rq_unlock(rq, p, &flags);
48f24c4d 4332
1da177e4
LT
4333 return ret;
4334}
cd8ba7cd 4335EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4336
4337/*
41a2d6cf 4338 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4339 * this because either it can't run here any more (set_cpus_allowed()
4340 * away from this CPU, or CPU going down), or because we're
4341 * attempting to rebalance this task on exec (sched_exec).
4342 *
4343 * So we race with normal scheduler movements, but that's OK, as long
4344 * as the task is no longer on this CPU.
efc30814
KK
4345 *
4346 * Returns non-zero if task was successfully migrated.
1da177e4 4347 */
efc30814 4348static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4349{
70b97a7f 4350 struct rq *rq_dest, *rq_src;
e2912009 4351 int ret = 0;
1da177e4 4352
e761b772 4353 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4354 return ret;
1da177e4
LT
4355
4356 rq_src = cpu_rq(src_cpu);
4357 rq_dest = cpu_rq(dest_cpu);
4358
0122ec5b 4359 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4360 double_rq_lock(rq_src, rq_dest);
4361 /* Already moved. */
4362 if (task_cpu(p) != src_cpu)
b1e38734 4363 goto done;
1da177e4 4364 /* Affinity changed (again). */
fa17b507 4365 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4366 goto fail;
1da177e4 4367
e2912009
PZ
4368 /*
4369 * If we're not on a rq, the next wake-up will ensure we're
4370 * placed properly.
4371 */
fd2f4419 4372 if (p->on_rq) {
4ca9b72b 4373 dequeue_task(rq_src, p, 0);
e2912009 4374 set_task_cpu(p, dest_cpu);
4ca9b72b 4375 enqueue_task(rq_dest, p, 0);
15afe09b 4376 check_preempt_curr(rq_dest, p, 0);
1da177e4 4377 }
b1e38734 4378done:
efc30814 4379 ret = 1;
b1e38734 4380fail:
1da177e4 4381 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4382 raw_spin_unlock(&p->pi_lock);
efc30814 4383 return ret;
1da177e4
LT
4384}
4385
e6628d5b
MG
4386#ifdef CONFIG_NUMA_BALANCING
4387/* Migrate current task p to target_cpu */
4388int migrate_task_to(struct task_struct *p, int target_cpu)
4389{
4390 struct migration_arg arg = { p, target_cpu };
4391 int curr_cpu = task_cpu(p);
4392
4393 if (curr_cpu == target_cpu)
4394 return 0;
4395
4396 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4397 return -EINVAL;
4398
4399 /* TODO: This is not properly updating schedstats */
4400
4401 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4402}
0ec8aa00
PZ
4403
4404/*
4405 * Requeue a task on a given node and accurately track the number of NUMA
4406 * tasks on the runqueues
4407 */
4408void sched_setnuma(struct task_struct *p, int nid)
4409{
4410 struct rq *rq;
4411 unsigned long flags;
4412 bool on_rq, running;
4413
4414 rq = task_rq_lock(p, &flags);
4415 on_rq = p->on_rq;
4416 running = task_current(rq, p);
4417
4418 if (on_rq)
4419 dequeue_task(rq, p, 0);
4420 if (running)
4421 p->sched_class->put_prev_task(rq, p);
4422
4423 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4424
4425 if (running)
4426 p->sched_class->set_curr_task(rq);
4427 if (on_rq)
4428 enqueue_task(rq, p, 0);
4429 task_rq_unlock(rq, p, &flags);
4430}
e6628d5b
MG
4431#endif
4432
1da177e4 4433/*
969c7921
TH
4434 * migration_cpu_stop - this will be executed by a highprio stopper thread
4435 * and performs thread migration by bumping thread off CPU then
4436 * 'pushing' onto another runqueue.
1da177e4 4437 */
969c7921 4438static int migration_cpu_stop(void *data)
1da177e4 4439{
969c7921 4440 struct migration_arg *arg = data;
f7b4cddc 4441
969c7921
TH
4442 /*
4443 * The original target cpu might have gone down and we might
4444 * be on another cpu but it doesn't matter.
4445 */
f7b4cddc 4446 local_irq_disable();
969c7921 4447 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4448 local_irq_enable();
1da177e4 4449 return 0;
f7b4cddc
ON
4450}
4451
1da177e4 4452#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4453
054b9108 4454/*
48c5ccae
PZ
4455 * Ensures that the idle task is using init_mm right before its cpu goes
4456 * offline.
054b9108 4457 */
48c5ccae 4458void idle_task_exit(void)
1da177e4 4459{
48c5ccae 4460 struct mm_struct *mm = current->active_mm;
e76bd8d9 4461
48c5ccae 4462 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4463
48c5ccae
PZ
4464 if (mm != &init_mm)
4465 switch_mm(mm, &init_mm, current);
4466 mmdrop(mm);
1da177e4
LT
4467}
4468
4469/*
5d180232
PZ
4470 * Since this CPU is going 'away' for a while, fold any nr_active delta
4471 * we might have. Assumes we're called after migrate_tasks() so that the
4472 * nr_active count is stable.
4473 *
4474 * Also see the comment "Global load-average calculations".
1da177e4 4475 */
5d180232 4476static void calc_load_migrate(struct rq *rq)
1da177e4 4477{
5d180232
PZ
4478 long delta = calc_load_fold_active(rq);
4479 if (delta)
4480 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4481}
4482
48f24c4d 4483/*
48c5ccae
PZ
4484 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4485 * try_to_wake_up()->select_task_rq().
4486 *
4487 * Called with rq->lock held even though we'er in stop_machine() and
4488 * there's no concurrency possible, we hold the required locks anyway
4489 * because of lock validation efforts.
1da177e4 4490 */
48c5ccae 4491static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4492{
70b97a7f 4493 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4494 struct task_struct *next, *stop = rq->stop;
4495 int dest_cpu;
1da177e4
LT
4496
4497 /*
48c5ccae
PZ
4498 * Fudge the rq selection such that the below task selection loop
4499 * doesn't get stuck on the currently eligible stop task.
4500 *
4501 * We're currently inside stop_machine() and the rq is either stuck
4502 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4503 * either way we should never end up calling schedule() until we're
4504 * done here.
1da177e4 4505 */
48c5ccae 4506 rq->stop = NULL;
48f24c4d 4507
77bd3970
FW
4508 /*
4509 * put_prev_task() and pick_next_task() sched
4510 * class method both need to have an up-to-date
4511 * value of rq->clock[_task]
4512 */
4513 update_rq_clock(rq);
4514
dd41f596 4515 for ( ; ; ) {
48c5ccae
PZ
4516 /*
4517 * There's this thread running, bail when that's the only
4518 * remaining thread.
4519 */
4520 if (rq->nr_running == 1)
dd41f596 4521 break;
48c5ccae 4522
b67802ea 4523 next = pick_next_task(rq);
48c5ccae 4524 BUG_ON(!next);
79c53799 4525 next->sched_class->put_prev_task(rq, next);
e692ab53 4526
48c5ccae
PZ
4527 /* Find suitable destination for @next, with force if needed. */
4528 dest_cpu = select_fallback_rq(dead_cpu, next);
4529 raw_spin_unlock(&rq->lock);
4530
4531 __migrate_task(next, dead_cpu, dest_cpu);
4532
4533 raw_spin_lock(&rq->lock);
1da177e4 4534 }
dce48a84 4535
48c5ccae 4536 rq->stop = stop;
dce48a84 4537}
48c5ccae 4538
1da177e4
LT
4539#endif /* CONFIG_HOTPLUG_CPU */
4540
e692ab53
NP
4541#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4542
4543static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4544 {
4545 .procname = "sched_domain",
c57baf1e 4546 .mode = 0555,
e0361851 4547 },
56992309 4548 {}
e692ab53
NP
4549};
4550
4551static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4552 {
4553 .procname = "kernel",
c57baf1e 4554 .mode = 0555,
e0361851
AD
4555 .child = sd_ctl_dir,
4556 },
56992309 4557 {}
e692ab53
NP
4558};
4559
4560static struct ctl_table *sd_alloc_ctl_entry(int n)
4561{
4562 struct ctl_table *entry =
5cf9f062 4563 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4564
e692ab53
NP
4565 return entry;
4566}
4567
6382bc90
MM
4568static void sd_free_ctl_entry(struct ctl_table **tablep)
4569{
cd790076 4570 struct ctl_table *entry;
6382bc90 4571
cd790076
MM
4572 /*
4573 * In the intermediate directories, both the child directory and
4574 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4575 * will always be set. In the lowest directory the names are
cd790076
MM
4576 * static strings and all have proc handlers.
4577 */
4578 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4579 if (entry->child)
4580 sd_free_ctl_entry(&entry->child);
cd790076
MM
4581 if (entry->proc_handler == NULL)
4582 kfree(entry->procname);
4583 }
6382bc90
MM
4584
4585 kfree(*tablep);
4586 *tablep = NULL;
4587}
4588
201c373e 4589static int min_load_idx = 0;
fd9b86d3 4590static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4591
e692ab53 4592static void
e0361851 4593set_table_entry(struct ctl_table *entry,
e692ab53 4594 const char *procname, void *data, int maxlen,
201c373e
NK
4595 umode_t mode, proc_handler *proc_handler,
4596 bool load_idx)
e692ab53 4597{
e692ab53
NP
4598 entry->procname = procname;
4599 entry->data = data;
4600 entry->maxlen = maxlen;
4601 entry->mode = mode;
4602 entry->proc_handler = proc_handler;
201c373e
NK
4603
4604 if (load_idx) {
4605 entry->extra1 = &min_load_idx;
4606 entry->extra2 = &max_load_idx;
4607 }
e692ab53
NP
4608}
4609
4610static struct ctl_table *
4611sd_alloc_ctl_domain_table(struct sched_domain *sd)
4612{
a5d8c348 4613 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4614
ad1cdc1d
MM
4615 if (table == NULL)
4616 return NULL;
4617
e0361851 4618 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4619 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4620 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4621 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4622 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4623 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4624 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4625 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4626 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4627 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4628 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4629 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4630 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4631 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4632 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4633 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4634 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4635 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4636 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4637 &sd->cache_nice_tries,
201c373e 4638 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4639 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4640 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4641 set_table_entry(&table[11], "name", sd->name,
201c373e 4642 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4643 /* &table[12] is terminator */
e692ab53
NP
4644
4645 return table;
4646}
4647
be7002e6 4648static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4649{
4650 struct ctl_table *entry, *table;
4651 struct sched_domain *sd;
4652 int domain_num = 0, i;
4653 char buf[32];
4654
4655 for_each_domain(cpu, sd)
4656 domain_num++;
4657 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4658 if (table == NULL)
4659 return NULL;
e692ab53
NP
4660
4661 i = 0;
4662 for_each_domain(cpu, sd) {
4663 snprintf(buf, 32, "domain%d", i);
e692ab53 4664 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4665 entry->mode = 0555;
e692ab53
NP
4666 entry->child = sd_alloc_ctl_domain_table(sd);
4667 entry++;
4668 i++;
4669 }
4670 return table;
4671}
4672
4673static struct ctl_table_header *sd_sysctl_header;
6382bc90 4674static void register_sched_domain_sysctl(void)
e692ab53 4675{
6ad4c188 4676 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4677 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4678 char buf[32];
4679
7378547f
MM
4680 WARN_ON(sd_ctl_dir[0].child);
4681 sd_ctl_dir[0].child = entry;
4682
ad1cdc1d
MM
4683 if (entry == NULL)
4684 return;
4685
6ad4c188 4686 for_each_possible_cpu(i) {
e692ab53 4687 snprintf(buf, 32, "cpu%d", i);
e692ab53 4688 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4689 entry->mode = 0555;
e692ab53 4690 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4691 entry++;
e692ab53 4692 }
7378547f
MM
4693
4694 WARN_ON(sd_sysctl_header);
e692ab53
NP
4695 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4696}
6382bc90 4697
7378547f 4698/* may be called multiple times per register */
6382bc90
MM
4699static void unregister_sched_domain_sysctl(void)
4700{
7378547f
MM
4701 if (sd_sysctl_header)
4702 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4703 sd_sysctl_header = NULL;
7378547f
MM
4704 if (sd_ctl_dir[0].child)
4705 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4706}
e692ab53 4707#else
6382bc90
MM
4708static void register_sched_domain_sysctl(void)
4709{
4710}
4711static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4712{
4713}
4714#endif
4715
1f11eb6a
GH
4716static void set_rq_online(struct rq *rq)
4717{
4718 if (!rq->online) {
4719 const struct sched_class *class;
4720
c6c4927b 4721 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4722 rq->online = 1;
4723
4724 for_each_class(class) {
4725 if (class->rq_online)
4726 class->rq_online(rq);
4727 }
4728 }
4729}
4730
4731static void set_rq_offline(struct rq *rq)
4732{
4733 if (rq->online) {
4734 const struct sched_class *class;
4735
4736 for_each_class(class) {
4737 if (class->rq_offline)
4738 class->rq_offline(rq);
4739 }
4740
c6c4927b 4741 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4742 rq->online = 0;
4743 }
4744}
4745
1da177e4
LT
4746/*
4747 * migration_call - callback that gets triggered when a CPU is added.
4748 * Here we can start up the necessary migration thread for the new CPU.
4749 */
0db0628d 4750static int
48f24c4d 4751migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4752{
48f24c4d 4753 int cpu = (long)hcpu;
1da177e4 4754 unsigned long flags;
969c7921 4755 struct rq *rq = cpu_rq(cpu);
1da177e4 4756
48c5ccae 4757 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4758
1da177e4 4759 case CPU_UP_PREPARE:
a468d389 4760 rq->calc_load_update = calc_load_update;
1da177e4 4761 break;
48f24c4d 4762
1da177e4 4763 case CPU_ONLINE:
1f94ef59 4764 /* Update our root-domain */
05fa785c 4765 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4766 if (rq->rd) {
c6c4927b 4767 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4768
4769 set_rq_online(rq);
1f94ef59 4770 }
05fa785c 4771 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4772 break;
48f24c4d 4773
1da177e4 4774#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4775 case CPU_DYING:
317f3941 4776 sched_ttwu_pending();
57d885fe 4777 /* Update our root-domain */
05fa785c 4778 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4779 if (rq->rd) {
c6c4927b 4780 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4781 set_rq_offline(rq);
57d885fe 4782 }
48c5ccae
PZ
4783 migrate_tasks(cpu);
4784 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4785 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4786 break;
48c5ccae 4787
5d180232 4788 case CPU_DEAD:
f319da0c 4789 calc_load_migrate(rq);
57d885fe 4790 break;
1da177e4
LT
4791#endif
4792 }
49c022e6
PZ
4793
4794 update_max_interval();
4795
1da177e4
LT
4796 return NOTIFY_OK;
4797}
4798
f38b0820
PM
4799/*
4800 * Register at high priority so that task migration (migrate_all_tasks)
4801 * happens before everything else. This has to be lower priority than
cdd6c482 4802 * the notifier in the perf_event subsystem, though.
1da177e4 4803 */
0db0628d 4804static struct notifier_block migration_notifier = {
1da177e4 4805 .notifier_call = migration_call,
50a323b7 4806 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4807};
4808
0db0628d 4809static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4810 unsigned long action, void *hcpu)
4811{
4812 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4813 case CPU_STARTING:
3a101d05
TH
4814 case CPU_DOWN_FAILED:
4815 set_cpu_active((long)hcpu, true);
4816 return NOTIFY_OK;
4817 default:
4818 return NOTIFY_DONE;
4819 }
4820}
4821
0db0628d 4822static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4823 unsigned long action, void *hcpu)
4824{
4825 switch (action & ~CPU_TASKS_FROZEN) {
4826 case CPU_DOWN_PREPARE:
4827 set_cpu_active((long)hcpu, false);
4828 return NOTIFY_OK;
4829 default:
4830 return NOTIFY_DONE;
4831 }
4832}
4833
7babe8db 4834static int __init migration_init(void)
1da177e4
LT
4835{
4836 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4837 int err;
48f24c4d 4838
3a101d05 4839 /* Initialize migration for the boot CPU */
07dccf33
AM
4840 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4841 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4842 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4843 register_cpu_notifier(&migration_notifier);
7babe8db 4844
3a101d05
TH
4845 /* Register cpu active notifiers */
4846 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4847 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4848
a004cd42 4849 return 0;
1da177e4 4850}
7babe8db 4851early_initcall(migration_init);
1da177e4
LT
4852#endif
4853
4854#ifdef CONFIG_SMP
476f3534 4855
4cb98839
PZ
4856static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4857
3e9830dc 4858#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4859
d039ac60 4860static __read_mostly int sched_debug_enabled;
f6630114 4861
d039ac60 4862static int __init sched_debug_setup(char *str)
f6630114 4863{
d039ac60 4864 sched_debug_enabled = 1;
f6630114
MT
4865
4866 return 0;
4867}
d039ac60
PZ
4868early_param("sched_debug", sched_debug_setup);
4869
4870static inline bool sched_debug(void)
4871{
4872 return sched_debug_enabled;
4873}
f6630114 4874
7c16ec58 4875static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4876 struct cpumask *groupmask)
1da177e4 4877{
4dcf6aff 4878 struct sched_group *group = sd->groups;
434d53b0 4879 char str[256];
1da177e4 4880
968ea6d8 4881 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4882 cpumask_clear(groupmask);
4dcf6aff
IM
4883
4884 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4885
4886 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4887 printk("does not load-balance\n");
4dcf6aff 4888 if (sd->parent)
3df0fc5b
PZ
4889 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4890 " has parent");
4dcf6aff 4891 return -1;
41c7ce9a
NP
4892 }
4893
3df0fc5b 4894 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4895
758b2cdc 4896 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4897 printk(KERN_ERR "ERROR: domain->span does not contain "
4898 "CPU%d\n", cpu);
4dcf6aff 4899 }
758b2cdc 4900 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4901 printk(KERN_ERR "ERROR: domain->groups does not contain"
4902 " CPU%d\n", cpu);
4dcf6aff 4903 }
1da177e4 4904
4dcf6aff 4905 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4906 do {
4dcf6aff 4907 if (!group) {
3df0fc5b
PZ
4908 printk("\n");
4909 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4910 break;
4911 }
4912
c3decf0d
PZ
4913 /*
4914 * Even though we initialize ->power to something semi-sane,
4915 * we leave power_orig unset. This allows us to detect if
4916 * domain iteration is still funny without causing /0 traps.
4917 */
4918 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4919 printk(KERN_CONT "\n");
4920 printk(KERN_ERR "ERROR: domain->cpu_power not "
4921 "set\n");
4dcf6aff
IM
4922 break;
4923 }
1da177e4 4924
758b2cdc 4925 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4926 printk(KERN_CONT "\n");
4927 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4928 break;
4929 }
1da177e4 4930
cb83b629
PZ
4931 if (!(sd->flags & SD_OVERLAP) &&
4932 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4933 printk(KERN_CONT "\n");
4934 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4935 break;
4936 }
1da177e4 4937
758b2cdc 4938 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4939
968ea6d8 4940 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4941
3df0fc5b 4942 printk(KERN_CONT " %s", str);
9c3f75cb 4943 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4944 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4945 group->sgp->power);
381512cf 4946 }
1da177e4 4947
4dcf6aff
IM
4948 group = group->next;
4949 } while (group != sd->groups);
3df0fc5b 4950 printk(KERN_CONT "\n");
1da177e4 4951
758b2cdc 4952 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4953 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4954
758b2cdc
RR
4955 if (sd->parent &&
4956 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4957 printk(KERN_ERR "ERROR: parent span is not a superset "
4958 "of domain->span\n");
4dcf6aff
IM
4959 return 0;
4960}
1da177e4 4961
4dcf6aff
IM
4962static void sched_domain_debug(struct sched_domain *sd, int cpu)
4963{
4964 int level = 0;
1da177e4 4965
d039ac60 4966 if (!sched_debug_enabled)
f6630114
MT
4967 return;
4968
4dcf6aff
IM
4969 if (!sd) {
4970 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4971 return;
4972 }
1da177e4 4973
4dcf6aff
IM
4974 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4975
4976 for (;;) {
4cb98839 4977 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4978 break;
1da177e4
LT
4979 level++;
4980 sd = sd->parent;
33859f7f 4981 if (!sd)
4dcf6aff
IM
4982 break;
4983 }
1da177e4 4984}
6d6bc0ad 4985#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4986# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4987static inline bool sched_debug(void)
4988{
4989 return false;
4990}
6d6bc0ad 4991#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4992
1a20ff27 4993static int sd_degenerate(struct sched_domain *sd)
245af2c7 4994{
758b2cdc 4995 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4996 return 1;
4997
4998 /* Following flags need at least 2 groups */
4999 if (sd->flags & (SD_LOAD_BALANCE |
5000 SD_BALANCE_NEWIDLE |
5001 SD_BALANCE_FORK |
89c4710e
SS
5002 SD_BALANCE_EXEC |
5003 SD_SHARE_CPUPOWER |
5004 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5005 if (sd->groups != sd->groups->next)
5006 return 0;
5007 }
5008
5009 /* Following flags don't use groups */
c88d5910 5010 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5011 return 0;
5012
5013 return 1;
5014}
5015
48f24c4d
IM
5016static int
5017sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5018{
5019 unsigned long cflags = sd->flags, pflags = parent->flags;
5020
5021 if (sd_degenerate(parent))
5022 return 1;
5023
758b2cdc 5024 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5025 return 0;
5026
245af2c7
SS
5027 /* Flags needing groups don't count if only 1 group in parent */
5028 if (parent->groups == parent->groups->next) {
5029 pflags &= ~(SD_LOAD_BALANCE |
5030 SD_BALANCE_NEWIDLE |
5031 SD_BALANCE_FORK |
89c4710e
SS
5032 SD_BALANCE_EXEC |
5033 SD_SHARE_CPUPOWER |
10866e62
PZ
5034 SD_SHARE_PKG_RESOURCES |
5035 SD_PREFER_SIBLING);
5436499e
KC
5036 if (nr_node_ids == 1)
5037 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5038 }
5039 if (~cflags & pflags)
5040 return 0;
5041
5042 return 1;
5043}
5044
dce840a0 5045static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5046{
dce840a0 5047 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5048
68e74568 5049 cpupri_cleanup(&rd->cpupri);
1baca4ce 5050 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5051 free_cpumask_var(rd->rto_mask);
5052 free_cpumask_var(rd->online);
5053 free_cpumask_var(rd->span);
5054 kfree(rd);
5055}
5056
57d885fe
GH
5057static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5058{
a0490fa3 5059 struct root_domain *old_rd = NULL;
57d885fe 5060 unsigned long flags;
57d885fe 5061
05fa785c 5062 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5063
5064 if (rq->rd) {
a0490fa3 5065 old_rd = rq->rd;
57d885fe 5066
c6c4927b 5067 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5068 set_rq_offline(rq);
57d885fe 5069
c6c4927b 5070 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5071
a0490fa3 5072 /*
0515973f 5073 * If we dont want to free the old_rd yet then
a0490fa3
IM
5074 * set old_rd to NULL to skip the freeing later
5075 * in this function:
5076 */
5077 if (!atomic_dec_and_test(&old_rd->refcount))
5078 old_rd = NULL;
57d885fe
GH
5079 }
5080
5081 atomic_inc(&rd->refcount);
5082 rq->rd = rd;
5083
c6c4927b 5084 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5085 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5086 set_rq_online(rq);
57d885fe 5087
05fa785c 5088 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5089
5090 if (old_rd)
dce840a0 5091 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5092}
5093
68c38fc3 5094static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5095{
5096 memset(rd, 0, sizeof(*rd));
5097
68c38fc3 5098 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5099 goto out;
68c38fc3 5100 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5101 goto free_span;
1baca4ce 5102 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5103 goto free_online;
1baca4ce
JL
5104 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5105 goto free_dlo_mask;
6e0534f2 5106
68c38fc3 5107 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5108 goto free_rto_mask;
c6c4927b 5109 return 0;
6e0534f2 5110
68e74568
RR
5111free_rto_mask:
5112 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5113free_dlo_mask:
5114 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5115free_online:
5116 free_cpumask_var(rd->online);
5117free_span:
5118 free_cpumask_var(rd->span);
0c910d28 5119out:
c6c4927b 5120 return -ENOMEM;
57d885fe
GH
5121}
5122
029632fb
PZ
5123/*
5124 * By default the system creates a single root-domain with all cpus as
5125 * members (mimicking the global state we have today).
5126 */
5127struct root_domain def_root_domain;
5128
57d885fe
GH
5129static void init_defrootdomain(void)
5130{
68c38fc3 5131 init_rootdomain(&def_root_domain);
c6c4927b 5132
57d885fe
GH
5133 atomic_set(&def_root_domain.refcount, 1);
5134}
5135
dc938520 5136static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5137{
5138 struct root_domain *rd;
5139
5140 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5141 if (!rd)
5142 return NULL;
5143
68c38fc3 5144 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5145 kfree(rd);
5146 return NULL;
5147 }
57d885fe
GH
5148
5149 return rd;
5150}
5151
e3589f6c
PZ
5152static void free_sched_groups(struct sched_group *sg, int free_sgp)
5153{
5154 struct sched_group *tmp, *first;
5155
5156 if (!sg)
5157 return;
5158
5159 first = sg;
5160 do {
5161 tmp = sg->next;
5162
5163 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5164 kfree(sg->sgp);
5165
5166 kfree(sg);
5167 sg = tmp;
5168 } while (sg != first);
5169}
5170
dce840a0
PZ
5171static void free_sched_domain(struct rcu_head *rcu)
5172{
5173 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5174
5175 /*
5176 * If its an overlapping domain it has private groups, iterate and
5177 * nuke them all.
5178 */
5179 if (sd->flags & SD_OVERLAP) {
5180 free_sched_groups(sd->groups, 1);
5181 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5182 kfree(sd->groups->sgp);
dce840a0 5183 kfree(sd->groups);
9c3f75cb 5184 }
dce840a0
PZ
5185 kfree(sd);
5186}
5187
5188static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5189{
5190 call_rcu(&sd->rcu, free_sched_domain);
5191}
5192
5193static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5194{
5195 for (; sd; sd = sd->parent)
5196 destroy_sched_domain(sd, cpu);
5197}
5198
518cd623
PZ
5199/*
5200 * Keep a special pointer to the highest sched_domain that has
5201 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5202 * allows us to avoid some pointer chasing select_idle_sibling().
5203 *
5204 * Also keep a unique ID per domain (we use the first cpu number in
5205 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5206 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5207 */
5208DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5209DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5210DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5211DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5212DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5213DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5214
5215static void update_top_cache_domain(int cpu)
5216{
5217 struct sched_domain *sd;
5d4cf996 5218 struct sched_domain *busy_sd = NULL;
518cd623 5219 int id = cpu;
7d9ffa89 5220 int size = 1;
518cd623
PZ
5221
5222 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5223 if (sd) {
518cd623 5224 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5225 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5226 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5227 }
5d4cf996 5228 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5229
5230 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5231 per_cpu(sd_llc_size, cpu) = size;
518cd623 5232 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5233
5234 sd = lowest_flag_domain(cpu, SD_NUMA);
5235 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5236
5237 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5238 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5239}
5240
1da177e4 5241/*
0eab9146 5242 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5243 * hold the hotplug lock.
5244 */
0eab9146
IM
5245static void
5246cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5247{
70b97a7f 5248 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5249 struct sched_domain *tmp;
5250
5251 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5252 for (tmp = sd; tmp; ) {
245af2c7
SS
5253 struct sched_domain *parent = tmp->parent;
5254 if (!parent)
5255 break;
f29c9b1c 5256
1a848870 5257 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5258 tmp->parent = parent->parent;
1a848870
SS
5259 if (parent->parent)
5260 parent->parent->child = tmp;
10866e62
PZ
5261 /*
5262 * Transfer SD_PREFER_SIBLING down in case of a
5263 * degenerate parent; the spans match for this
5264 * so the property transfers.
5265 */
5266 if (parent->flags & SD_PREFER_SIBLING)
5267 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5268 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5269 } else
5270 tmp = tmp->parent;
245af2c7
SS
5271 }
5272
1a848870 5273 if (sd && sd_degenerate(sd)) {
dce840a0 5274 tmp = sd;
245af2c7 5275 sd = sd->parent;
dce840a0 5276 destroy_sched_domain(tmp, cpu);
1a848870
SS
5277 if (sd)
5278 sd->child = NULL;
5279 }
1da177e4 5280
4cb98839 5281 sched_domain_debug(sd, cpu);
1da177e4 5282
57d885fe 5283 rq_attach_root(rq, rd);
dce840a0 5284 tmp = rq->sd;
674311d5 5285 rcu_assign_pointer(rq->sd, sd);
dce840a0 5286 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5287
5288 update_top_cache_domain(cpu);
1da177e4
LT
5289}
5290
5291/* cpus with isolated domains */
dcc30a35 5292static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5293
5294/* Setup the mask of cpus configured for isolated domains */
5295static int __init isolated_cpu_setup(char *str)
5296{
bdddd296 5297 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5298 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5299 return 1;
5300}
5301
8927f494 5302__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5303
d3081f52
PZ
5304static const struct cpumask *cpu_cpu_mask(int cpu)
5305{
5306 return cpumask_of_node(cpu_to_node(cpu));
5307}
5308
dce840a0
PZ
5309struct sd_data {
5310 struct sched_domain **__percpu sd;
5311 struct sched_group **__percpu sg;
9c3f75cb 5312 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5313};
5314
49a02c51 5315struct s_data {
21d42ccf 5316 struct sched_domain ** __percpu sd;
49a02c51
AH
5317 struct root_domain *rd;
5318};
5319
2109b99e 5320enum s_alloc {
2109b99e 5321 sa_rootdomain,
21d42ccf 5322 sa_sd,
dce840a0 5323 sa_sd_storage,
2109b99e
AH
5324 sa_none,
5325};
5326
54ab4ff4
PZ
5327struct sched_domain_topology_level;
5328
5329typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5330typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5331
e3589f6c
PZ
5332#define SDTL_OVERLAP 0x01
5333
eb7a74e6 5334struct sched_domain_topology_level {
2c402dc3
PZ
5335 sched_domain_init_f init;
5336 sched_domain_mask_f mask;
e3589f6c 5337 int flags;
cb83b629 5338 int numa_level;
54ab4ff4 5339 struct sd_data data;
eb7a74e6
PZ
5340};
5341
c1174876
PZ
5342/*
5343 * Build an iteration mask that can exclude certain CPUs from the upwards
5344 * domain traversal.
5345 *
5346 * Asymmetric node setups can result in situations where the domain tree is of
5347 * unequal depth, make sure to skip domains that already cover the entire
5348 * range.
5349 *
5350 * In that case build_sched_domains() will have terminated the iteration early
5351 * and our sibling sd spans will be empty. Domains should always include the
5352 * cpu they're built on, so check that.
5353 *
5354 */
5355static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5356{
5357 const struct cpumask *span = sched_domain_span(sd);
5358 struct sd_data *sdd = sd->private;
5359 struct sched_domain *sibling;
5360 int i;
5361
5362 for_each_cpu(i, span) {
5363 sibling = *per_cpu_ptr(sdd->sd, i);
5364 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5365 continue;
5366
5367 cpumask_set_cpu(i, sched_group_mask(sg));
5368 }
5369}
5370
5371/*
5372 * Return the canonical balance cpu for this group, this is the first cpu
5373 * of this group that's also in the iteration mask.
5374 */
5375int group_balance_cpu(struct sched_group *sg)
5376{
5377 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5378}
5379
e3589f6c
PZ
5380static int
5381build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5382{
5383 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5384 const struct cpumask *span = sched_domain_span(sd);
5385 struct cpumask *covered = sched_domains_tmpmask;
5386 struct sd_data *sdd = sd->private;
5387 struct sched_domain *child;
5388 int i;
5389
5390 cpumask_clear(covered);
5391
5392 for_each_cpu(i, span) {
5393 struct cpumask *sg_span;
5394
5395 if (cpumask_test_cpu(i, covered))
5396 continue;
5397
c1174876
PZ
5398 child = *per_cpu_ptr(sdd->sd, i);
5399
5400 /* See the comment near build_group_mask(). */
5401 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5402 continue;
5403
e3589f6c 5404 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5405 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5406
5407 if (!sg)
5408 goto fail;
5409
5410 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5411 if (child->child) {
5412 child = child->child;
5413 cpumask_copy(sg_span, sched_domain_span(child));
5414 } else
5415 cpumask_set_cpu(i, sg_span);
5416
5417 cpumask_or(covered, covered, sg_span);
5418
74a5ce20 5419 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5420 if (atomic_inc_return(&sg->sgp->ref) == 1)
5421 build_group_mask(sd, sg);
5422
c3decf0d
PZ
5423 /*
5424 * Initialize sgp->power such that even if we mess up the
5425 * domains and no possible iteration will get us here, we won't
5426 * die on a /0 trap.
5427 */
5428 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5429 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5430
c1174876
PZ
5431 /*
5432 * Make sure the first group of this domain contains the
5433 * canonical balance cpu. Otherwise the sched_domain iteration
5434 * breaks. See update_sg_lb_stats().
5435 */
74a5ce20 5436 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5437 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5438 groups = sg;
5439
5440 if (!first)
5441 first = sg;
5442 if (last)
5443 last->next = sg;
5444 last = sg;
5445 last->next = first;
5446 }
5447 sd->groups = groups;
5448
5449 return 0;
5450
5451fail:
5452 free_sched_groups(first, 0);
5453
5454 return -ENOMEM;
5455}
5456
dce840a0 5457static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5458{
dce840a0
PZ
5459 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5460 struct sched_domain *child = sd->child;
1da177e4 5461
dce840a0
PZ
5462 if (child)
5463 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5464
9c3f75cb 5465 if (sg) {
dce840a0 5466 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5467 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5468 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5469 }
dce840a0
PZ
5470
5471 return cpu;
1e9f28fa 5472}
1e9f28fa 5473
01a08546 5474/*
dce840a0
PZ
5475 * build_sched_groups will build a circular linked list of the groups
5476 * covered by the given span, and will set each group's ->cpumask correctly,
5477 * and ->cpu_power to 0.
e3589f6c
PZ
5478 *
5479 * Assumes the sched_domain tree is fully constructed
01a08546 5480 */
e3589f6c
PZ
5481static int
5482build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5483{
dce840a0
PZ
5484 struct sched_group *first = NULL, *last = NULL;
5485 struct sd_data *sdd = sd->private;
5486 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5487 struct cpumask *covered;
dce840a0 5488 int i;
9c1cfda2 5489
e3589f6c
PZ
5490 get_group(cpu, sdd, &sd->groups);
5491 atomic_inc(&sd->groups->ref);
5492
0936629f 5493 if (cpu != cpumask_first(span))
e3589f6c
PZ
5494 return 0;
5495
f96225fd
PZ
5496 lockdep_assert_held(&sched_domains_mutex);
5497 covered = sched_domains_tmpmask;
5498
dce840a0 5499 cpumask_clear(covered);
6711cab4 5500
dce840a0
PZ
5501 for_each_cpu(i, span) {
5502 struct sched_group *sg;
cd08e923 5503 int group, j;
6711cab4 5504
dce840a0
PZ
5505 if (cpumask_test_cpu(i, covered))
5506 continue;
6711cab4 5507
cd08e923 5508 group = get_group(i, sdd, &sg);
dce840a0 5509 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5510 sg->sgp->power = 0;
c1174876 5511 cpumask_setall(sched_group_mask(sg));
0601a88d 5512
dce840a0
PZ
5513 for_each_cpu(j, span) {
5514 if (get_group(j, sdd, NULL) != group)
5515 continue;
0601a88d 5516
dce840a0
PZ
5517 cpumask_set_cpu(j, covered);
5518 cpumask_set_cpu(j, sched_group_cpus(sg));
5519 }
0601a88d 5520
dce840a0
PZ
5521 if (!first)
5522 first = sg;
5523 if (last)
5524 last->next = sg;
5525 last = sg;
5526 }
5527 last->next = first;
e3589f6c
PZ
5528
5529 return 0;
0601a88d 5530}
51888ca2 5531
89c4710e
SS
5532/*
5533 * Initialize sched groups cpu_power.
5534 *
5535 * cpu_power indicates the capacity of sched group, which is used while
5536 * distributing the load between different sched groups in a sched domain.
5537 * Typically cpu_power for all the groups in a sched domain will be same unless
5538 * there are asymmetries in the topology. If there are asymmetries, group
5539 * having more cpu_power will pickup more load compared to the group having
5540 * less cpu_power.
89c4710e
SS
5541 */
5542static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5543{
e3589f6c 5544 struct sched_group *sg = sd->groups;
89c4710e 5545
94c95ba6 5546 WARN_ON(!sg);
e3589f6c
PZ
5547
5548 do {
5549 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5550 sg = sg->next;
5551 } while (sg != sd->groups);
89c4710e 5552
c1174876 5553 if (cpu != group_balance_cpu(sg))
e3589f6c 5554 return;
aae6d3dd 5555
d274cb30 5556 update_group_power(sd, cpu);
69e1e811 5557 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5558}
5559
029632fb
PZ
5560int __weak arch_sd_sibling_asym_packing(void)
5561{
5562 return 0*SD_ASYM_PACKING;
89c4710e
SS
5563}
5564
7c16ec58
MT
5565/*
5566 * Initializers for schedule domains
5567 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5568 */
5569
a5d8c348
IM
5570#ifdef CONFIG_SCHED_DEBUG
5571# define SD_INIT_NAME(sd, type) sd->name = #type
5572#else
5573# define SD_INIT_NAME(sd, type) do { } while (0)
5574#endif
5575
54ab4ff4
PZ
5576#define SD_INIT_FUNC(type) \
5577static noinline struct sched_domain * \
5578sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5579{ \
5580 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5581 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5582 SD_INIT_NAME(sd, type); \
5583 sd->private = &tl->data; \
5584 return sd; \
7c16ec58
MT
5585}
5586
5587SD_INIT_FUNC(CPU)
7c16ec58
MT
5588#ifdef CONFIG_SCHED_SMT
5589 SD_INIT_FUNC(SIBLING)
5590#endif
5591#ifdef CONFIG_SCHED_MC
5592 SD_INIT_FUNC(MC)
5593#endif
01a08546
HC
5594#ifdef CONFIG_SCHED_BOOK
5595 SD_INIT_FUNC(BOOK)
5596#endif
7c16ec58 5597
1d3504fc 5598static int default_relax_domain_level = -1;
60495e77 5599int sched_domain_level_max;
1d3504fc
HS
5600
5601static int __init setup_relax_domain_level(char *str)
5602{
a841f8ce
DS
5603 if (kstrtoint(str, 0, &default_relax_domain_level))
5604 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5605
1d3504fc
HS
5606 return 1;
5607}
5608__setup("relax_domain_level=", setup_relax_domain_level);
5609
5610static void set_domain_attribute(struct sched_domain *sd,
5611 struct sched_domain_attr *attr)
5612{
5613 int request;
5614
5615 if (!attr || attr->relax_domain_level < 0) {
5616 if (default_relax_domain_level < 0)
5617 return;
5618 else
5619 request = default_relax_domain_level;
5620 } else
5621 request = attr->relax_domain_level;
5622 if (request < sd->level) {
5623 /* turn off idle balance on this domain */
c88d5910 5624 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5625 } else {
5626 /* turn on idle balance on this domain */
c88d5910 5627 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5628 }
5629}
5630
54ab4ff4
PZ
5631static void __sdt_free(const struct cpumask *cpu_map);
5632static int __sdt_alloc(const struct cpumask *cpu_map);
5633
2109b99e
AH
5634static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5635 const struct cpumask *cpu_map)
5636{
5637 switch (what) {
2109b99e 5638 case sa_rootdomain:
822ff793
PZ
5639 if (!atomic_read(&d->rd->refcount))
5640 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5641 case sa_sd:
5642 free_percpu(d->sd); /* fall through */
dce840a0 5643 case sa_sd_storage:
54ab4ff4 5644 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5645 case sa_none:
5646 break;
5647 }
5648}
3404c8d9 5649
2109b99e
AH
5650static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5651 const struct cpumask *cpu_map)
5652{
dce840a0
PZ
5653 memset(d, 0, sizeof(*d));
5654
54ab4ff4
PZ
5655 if (__sdt_alloc(cpu_map))
5656 return sa_sd_storage;
dce840a0
PZ
5657 d->sd = alloc_percpu(struct sched_domain *);
5658 if (!d->sd)
5659 return sa_sd_storage;
2109b99e 5660 d->rd = alloc_rootdomain();
dce840a0 5661 if (!d->rd)
21d42ccf 5662 return sa_sd;
2109b99e
AH
5663 return sa_rootdomain;
5664}
57d885fe 5665
dce840a0
PZ
5666/*
5667 * NULL the sd_data elements we've used to build the sched_domain and
5668 * sched_group structure so that the subsequent __free_domain_allocs()
5669 * will not free the data we're using.
5670 */
5671static void claim_allocations(int cpu, struct sched_domain *sd)
5672{
5673 struct sd_data *sdd = sd->private;
dce840a0
PZ
5674
5675 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5676 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5677
e3589f6c 5678 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5679 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5680
5681 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5682 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5683}
5684
2c402dc3
PZ
5685#ifdef CONFIG_SCHED_SMT
5686static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5687{
2c402dc3 5688 return topology_thread_cpumask(cpu);
3bd65a80 5689}
2c402dc3 5690#endif
7f4588f3 5691
d069b916
PZ
5692/*
5693 * Topology list, bottom-up.
5694 */
2c402dc3 5695static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5696#ifdef CONFIG_SCHED_SMT
5697 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5698#endif
1e9f28fa 5699#ifdef CONFIG_SCHED_MC
2c402dc3 5700 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5701#endif
d069b916
PZ
5702#ifdef CONFIG_SCHED_BOOK
5703 { sd_init_BOOK, cpu_book_mask, },
5704#endif
5705 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5706 { NULL, },
5707};
5708
5709static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5710
27723a68
VK
5711#define for_each_sd_topology(tl) \
5712 for (tl = sched_domain_topology; tl->init; tl++)
5713
cb83b629
PZ
5714#ifdef CONFIG_NUMA
5715
5716static int sched_domains_numa_levels;
cb83b629
PZ
5717static int *sched_domains_numa_distance;
5718static struct cpumask ***sched_domains_numa_masks;
5719static int sched_domains_curr_level;
5720
cb83b629
PZ
5721static inline int sd_local_flags(int level)
5722{
10717dcd 5723 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5724 return 0;
5725
5726 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5727}
5728
5729static struct sched_domain *
5730sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5731{
5732 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5733 int level = tl->numa_level;
5734 int sd_weight = cpumask_weight(
5735 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5736
5737 *sd = (struct sched_domain){
5738 .min_interval = sd_weight,
5739 .max_interval = 2*sd_weight,
5740 .busy_factor = 32,
870a0bb5 5741 .imbalance_pct = 125,
cb83b629
PZ
5742 .cache_nice_tries = 2,
5743 .busy_idx = 3,
5744 .idle_idx = 2,
5745 .newidle_idx = 0,
5746 .wake_idx = 0,
5747 .forkexec_idx = 0,
5748
5749 .flags = 1*SD_LOAD_BALANCE
5750 | 1*SD_BALANCE_NEWIDLE
5751 | 0*SD_BALANCE_EXEC
5752 | 0*SD_BALANCE_FORK
5753 | 0*SD_BALANCE_WAKE
5754 | 0*SD_WAKE_AFFINE
cb83b629 5755 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5756 | 0*SD_SHARE_PKG_RESOURCES
5757 | 1*SD_SERIALIZE
5758 | 0*SD_PREFER_SIBLING
3a7053b3 5759 | 1*SD_NUMA
cb83b629
PZ
5760 | sd_local_flags(level)
5761 ,
5762 .last_balance = jiffies,
5763 .balance_interval = sd_weight,
5764 };
5765 SD_INIT_NAME(sd, NUMA);
5766 sd->private = &tl->data;
5767
5768 /*
5769 * Ugly hack to pass state to sd_numa_mask()...
5770 */
5771 sched_domains_curr_level = tl->numa_level;
5772
5773 return sd;
5774}
5775
5776static const struct cpumask *sd_numa_mask(int cpu)
5777{
5778 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5779}
5780
d039ac60
PZ
5781static void sched_numa_warn(const char *str)
5782{
5783 static int done = false;
5784 int i,j;
5785
5786 if (done)
5787 return;
5788
5789 done = true;
5790
5791 printk(KERN_WARNING "ERROR: %s\n\n", str);
5792
5793 for (i = 0; i < nr_node_ids; i++) {
5794 printk(KERN_WARNING " ");
5795 for (j = 0; j < nr_node_ids; j++)
5796 printk(KERN_CONT "%02d ", node_distance(i,j));
5797 printk(KERN_CONT "\n");
5798 }
5799 printk(KERN_WARNING "\n");
5800}
5801
5802static bool find_numa_distance(int distance)
5803{
5804 int i;
5805
5806 if (distance == node_distance(0, 0))
5807 return true;
5808
5809 for (i = 0; i < sched_domains_numa_levels; i++) {
5810 if (sched_domains_numa_distance[i] == distance)
5811 return true;
5812 }
5813
5814 return false;
5815}
5816
cb83b629
PZ
5817static void sched_init_numa(void)
5818{
5819 int next_distance, curr_distance = node_distance(0, 0);
5820 struct sched_domain_topology_level *tl;
5821 int level = 0;
5822 int i, j, k;
5823
cb83b629
PZ
5824 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5825 if (!sched_domains_numa_distance)
5826 return;
5827
5828 /*
5829 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5830 * unique distances in the node_distance() table.
5831 *
5832 * Assumes node_distance(0,j) includes all distances in
5833 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5834 */
5835 next_distance = curr_distance;
5836 for (i = 0; i < nr_node_ids; i++) {
5837 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5838 for (k = 0; k < nr_node_ids; k++) {
5839 int distance = node_distance(i, k);
5840
5841 if (distance > curr_distance &&
5842 (distance < next_distance ||
5843 next_distance == curr_distance))
5844 next_distance = distance;
5845
5846 /*
5847 * While not a strong assumption it would be nice to know
5848 * about cases where if node A is connected to B, B is not
5849 * equally connected to A.
5850 */
5851 if (sched_debug() && node_distance(k, i) != distance)
5852 sched_numa_warn("Node-distance not symmetric");
5853
5854 if (sched_debug() && i && !find_numa_distance(distance))
5855 sched_numa_warn("Node-0 not representative");
5856 }
5857 if (next_distance != curr_distance) {
5858 sched_domains_numa_distance[level++] = next_distance;
5859 sched_domains_numa_levels = level;
5860 curr_distance = next_distance;
5861 } else break;
cb83b629 5862 }
d039ac60
PZ
5863
5864 /*
5865 * In case of sched_debug() we verify the above assumption.
5866 */
5867 if (!sched_debug())
5868 break;
cb83b629
PZ
5869 }
5870 /*
5871 * 'level' contains the number of unique distances, excluding the
5872 * identity distance node_distance(i,i).
5873 *
28b4a521 5874 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5875 * numbers.
5876 */
5877
5f7865f3
TC
5878 /*
5879 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5880 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5881 * the array will contain less then 'level' members. This could be
5882 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5883 * in other functions.
5884 *
5885 * We reset it to 'level' at the end of this function.
5886 */
5887 sched_domains_numa_levels = 0;
5888
cb83b629
PZ
5889 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5890 if (!sched_domains_numa_masks)
5891 return;
5892
5893 /*
5894 * Now for each level, construct a mask per node which contains all
5895 * cpus of nodes that are that many hops away from us.
5896 */
5897 for (i = 0; i < level; i++) {
5898 sched_domains_numa_masks[i] =
5899 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5900 if (!sched_domains_numa_masks[i])
5901 return;
5902
5903 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5904 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5905 if (!mask)
5906 return;
5907
5908 sched_domains_numa_masks[i][j] = mask;
5909
5910 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5911 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5912 continue;
5913
5914 cpumask_or(mask, mask, cpumask_of_node(k));
5915 }
5916 }
5917 }
5918
5919 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5920 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5921 if (!tl)
5922 return;
5923
5924 /*
5925 * Copy the default topology bits..
5926 */
5927 for (i = 0; default_topology[i].init; i++)
5928 tl[i] = default_topology[i];
5929
5930 /*
5931 * .. and append 'j' levels of NUMA goodness.
5932 */
5933 for (j = 0; j < level; i++, j++) {
5934 tl[i] = (struct sched_domain_topology_level){
5935 .init = sd_numa_init,
5936 .mask = sd_numa_mask,
5937 .flags = SDTL_OVERLAP,
5938 .numa_level = j,
5939 };
5940 }
5941
5942 sched_domain_topology = tl;
5f7865f3
TC
5943
5944 sched_domains_numa_levels = level;
cb83b629 5945}
301a5cba
TC
5946
5947static void sched_domains_numa_masks_set(int cpu)
5948{
5949 int i, j;
5950 int node = cpu_to_node(cpu);
5951
5952 for (i = 0; i < sched_domains_numa_levels; i++) {
5953 for (j = 0; j < nr_node_ids; j++) {
5954 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5955 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5956 }
5957 }
5958}
5959
5960static void sched_domains_numa_masks_clear(int cpu)
5961{
5962 int i, j;
5963 for (i = 0; i < sched_domains_numa_levels; i++) {
5964 for (j = 0; j < nr_node_ids; j++)
5965 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5966 }
5967}
5968
5969/*
5970 * Update sched_domains_numa_masks[level][node] array when new cpus
5971 * are onlined.
5972 */
5973static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5974 unsigned long action,
5975 void *hcpu)
5976{
5977 int cpu = (long)hcpu;
5978
5979 switch (action & ~CPU_TASKS_FROZEN) {
5980 case CPU_ONLINE:
5981 sched_domains_numa_masks_set(cpu);
5982 break;
5983
5984 case CPU_DEAD:
5985 sched_domains_numa_masks_clear(cpu);
5986 break;
5987
5988 default:
5989 return NOTIFY_DONE;
5990 }
5991
5992 return NOTIFY_OK;
cb83b629
PZ
5993}
5994#else
5995static inline void sched_init_numa(void)
5996{
5997}
301a5cba
TC
5998
5999static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6000 unsigned long action,
6001 void *hcpu)
6002{
6003 return 0;
6004}
cb83b629
PZ
6005#endif /* CONFIG_NUMA */
6006
54ab4ff4
PZ
6007static int __sdt_alloc(const struct cpumask *cpu_map)
6008{
6009 struct sched_domain_topology_level *tl;
6010 int j;
6011
27723a68 6012 for_each_sd_topology(tl) {
54ab4ff4
PZ
6013 struct sd_data *sdd = &tl->data;
6014
6015 sdd->sd = alloc_percpu(struct sched_domain *);
6016 if (!sdd->sd)
6017 return -ENOMEM;
6018
6019 sdd->sg = alloc_percpu(struct sched_group *);
6020 if (!sdd->sg)
6021 return -ENOMEM;
6022
9c3f75cb
PZ
6023 sdd->sgp = alloc_percpu(struct sched_group_power *);
6024 if (!sdd->sgp)
6025 return -ENOMEM;
6026
54ab4ff4
PZ
6027 for_each_cpu(j, cpu_map) {
6028 struct sched_domain *sd;
6029 struct sched_group *sg;
9c3f75cb 6030 struct sched_group_power *sgp;
54ab4ff4
PZ
6031
6032 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6033 GFP_KERNEL, cpu_to_node(j));
6034 if (!sd)
6035 return -ENOMEM;
6036
6037 *per_cpu_ptr(sdd->sd, j) = sd;
6038
6039 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6040 GFP_KERNEL, cpu_to_node(j));
6041 if (!sg)
6042 return -ENOMEM;
6043
30b4e9eb
IM
6044 sg->next = sg;
6045
54ab4ff4 6046 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6047
c1174876 6048 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6049 GFP_KERNEL, cpu_to_node(j));
6050 if (!sgp)
6051 return -ENOMEM;
6052
6053 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6054 }
6055 }
6056
6057 return 0;
6058}
6059
6060static void __sdt_free(const struct cpumask *cpu_map)
6061{
6062 struct sched_domain_topology_level *tl;
6063 int j;
6064
27723a68 6065 for_each_sd_topology(tl) {
54ab4ff4
PZ
6066 struct sd_data *sdd = &tl->data;
6067
6068 for_each_cpu(j, cpu_map) {
fb2cf2c6 6069 struct sched_domain *sd;
6070
6071 if (sdd->sd) {
6072 sd = *per_cpu_ptr(sdd->sd, j);
6073 if (sd && (sd->flags & SD_OVERLAP))
6074 free_sched_groups(sd->groups, 0);
6075 kfree(*per_cpu_ptr(sdd->sd, j));
6076 }
6077
6078 if (sdd->sg)
6079 kfree(*per_cpu_ptr(sdd->sg, j));
6080 if (sdd->sgp)
6081 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6082 }
6083 free_percpu(sdd->sd);
fb2cf2c6 6084 sdd->sd = NULL;
54ab4ff4 6085 free_percpu(sdd->sg);
fb2cf2c6 6086 sdd->sg = NULL;
9c3f75cb 6087 free_percpu(sdd->sgp);
fb2cf2c6 6088 sdd->sgp = NULL;
54ab4ff4
PZ
6089 }
6090}
6091
2c402dc3 6092struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6093 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6094 struct sched_domain *child, int cpu)
2c402dc3 6095{
54ab4ff4 6096 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6097 if (!sd)
d069b916 6098 return child;
2c402dc3 6099
2c402dc3 6100 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6101 if (child) {
6102 sd->level = child->level + 1;
6103 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6104 child->parent = sd;
c75e0128 6105 sd->child = child;
60495e77 6106 }
a841f8ce 6107 set_domain_attribute(sd, attr);
2c402dc3
PZ
6108
6109 return sd;
6110}
6111
2109b99e
AH
6112/*
6113 * Build sched domains for a given set of cpus and attach the sched domains
6114 * to the individual cpus
6115 */
dce840a0
PZ
6116static int build_sched_domains(const struct cpumask *cpu_map,
6117 struct sched_domain_attr *attr)
2109b99e 6118{
1c632169 6119 enum s_alloc alloc_state;
dce840a0 6120 struct sched_domain *sd;
2109b99e 6121 struct s_data d;
822ff793 6122 int i, ret = -ENOMEM;
9c1cfda2 6123
2109b99e
AH
6124 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6125 if (alloc_state != sa_rootdomain)
6126 goto error;
9c1cfda2 6127
dce840a0 6128 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6129 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6130 struct sched_domain_topology_level *tl;
6131
3bd65a80 6132 sd = NULL;
27723a68 6133 for_each_sd_topology(tl) {
4a850cbe 6134 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6135 if (tl == sched_domain_topology)
6136 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6137 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6138 sd->flags |= SD_OVERLAP;
d110235d
PZ
6139 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6140 break;
e3589f6c 6141 }
dce840a0
PZ
6142 }
6143
6144 /* Build the groups for the domains */
6145 for_each_cpu(i, cpu_map) {
6146 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6147 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6148 if (sd->flags & SD_OVERLAP) {
6149 if (build_overlap_sched_groups(sd, i))
6150 goto error;
6151 } else {
6152 if (build_sched_groups(sd, i))
6153 goto error;
6154 }
1cf51902 6155 }
a06dadbe 6156 }
9c1cfda2 6157
1da177e4 6158 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6159 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6160 if (!cpumask_test_cpu(i, cpu_map))
6161 continue;
9c1cfda2 6162
dce840a0
PZ
6163 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6164 claim_allocations(i, sd);
cd4ea6ae 6165 init_sched_groups_power(i, sd);
dce840a0 6166 }
f712c0c7 6167 }
9c1cfda2 6168
1da177e4 6169 /* Attach the domains */
dce840a0 6170 rcu_read_lock();
abcd083a 6171 for_each_cpu(i, cpu_map) {
21d42ccf 6172 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6173 cpu_attach_domain(sd, d.rd, i);
1da177e4 6174 }
dce840a0 6175 rcu_read_unlock();
51888ca2 6176
822ff793 6177 ret = 0;
51888ca2 6178error:
2109b99e 6179 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6180 return ret;
1da177e4 6181}
029190c5 6182
acc3f5d7 6183static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6184static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6185static struct sched_domain_attr *dattr_cur;
6186 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6187
6188/*
6189 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6190 * cpumask) fails, then fallback to a single sched domain,
6191 * as determined by the single cpumask fallback_doms.
029190c5 6192 */
4212823f 6193static cpumask_var_t fallback_doms;
029190c5 6194
ee79d1bd
HC
6195/*
6196 * arch_update_cpu_topology lets virtualized architectures update the
6197 * cpu core maps. It is supposed to return 1 if the topology changed
6198 * or 0 if it stayed the same.
6199 */
6200int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6201{
ee79d1bd 6202 return 0;
22e52b07
HC
6203}
6204
acc3f5d7
RR
6205cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6206{
6207 int i;
6208 cpumask_var_t *doms;
6209
6210 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6211 if (!doms)
6212 return NULL;
6213 for (i = 0; i < ndoms; i++) {
6214 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6215 free_sched_domains(doms, i);
6216 return NULL;
6217 }
6218 }
6219 return doms;
6220}
6221
6222void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6223{
6224 unsigned int i;
6225 for (i = 0; i < ndoms; i++)
6226 free_cpumask_var(doms[i]);
6227 kfree(doms);
6228}
6229
1a20ff27 6230/*
41a2d6cf 6231 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6232 * For now this just excludes isolated cpus, but could be used to
6233 * exclude other special cases in the future.
1a20ff27 6234 */
c4a8849a 6235static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6236{
7378547f
MM
6237 int err;
6238
22e52b07 6239 arch_update_cpu_topology();
029190c5 6240 ndoms_cur = 1;
acc3f5d7 6241 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6242 if (!doms_cur)
acc3f5d7
RR
6243 doms_cur = &fallback_doms;
6244 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6245 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6246 register_sched_domain_sysctl();
7378547f
MM
6247
6248 return err;
1a20ff27
DG
6249}
6250
1a20ff27
DG
6251/*
6252 * Detach sched domains from a group of cpus specified in cpu_map
6253 * These cpus will now be attached to the NULL domain
6254 */
96f874e2 6255static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6256{
6257 int i;
6258
dce840a0 6259 rcu_read_lock();
abcd083a 6260 for_each_cpu(i, cpu_map)
57d885fe 6261 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6262 rcu_read_unlock();
1a20ff27
DG
6263}
6264
1d3504fc
HS
6265/* handle null as "default" */
6266static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6267 struct sched_domain_attr *new, int idx_new)
6268{
6269 struct sched_domain_attr tmp;
6270
6271 /* fast path */
6272 if (!new && !cur)
6273 return 1;
6274
6275 tmp = SD_ATTR_INIT;
6276 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6277 new ? (new + idx_new) : &tmp,
6278 sizeof(struct sched_domain_attr));
6279}
6280
029190c5
PJ
6281/*
6282 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6283 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6284 * doms_new[] to the current sched domain partitioning, doms_cur[].
6285 * It destroys each deleted domain and builds each new domain.
6286 *
acc3f5d7 6287 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6288 * The masks don't intersect (don't overlap.) We should setup one
6289 * sched domain for each mask. CPUs not in any of the cpumasks will
6290 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6291 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6292 * it as it is.
6293 *
acc3f5d7
RR
6294 * The passed in 'doms_new' should be allocated using
6295 * alloc_sched_domains. This routine takes ownership of it and will
6296 * free_sched_domains it when done with it. If the caller failed the
6297 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6298 * and partition_sched_domains() will fallback to the single partition
6299 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6300 *
96f874e2 6301 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6302 * ndoms_new == 0 is a special case for destroying existing domains,
6303 * and it will not create the default domain.
dfb512ec 6304 *
029190c5
PJ
6305 * Call with hotplug lock held
6306 */
acc3f5d7 6307void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6308 struct sched_domain_attr *dattr_new)
029190c5 6309{
dfb512ec 6310 int i, j, n;
d65bd5ec 6311 int new_topology;
029190c5 6312
712555ee 6313 mutex_lock(&sched_domains_mutex);
a1835615 6314
7378547f
MM
6315 /* always unregister in case we don't destroy any domains */
6316 unregister_sched_domain_sysctl();
6317
d65bd5ec
HC
6318 /* Let architecture update cpu core mappings. */
6319 new_topology = arch_update_cpu_topology();
6320
dfb512ec 6321 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6322
6323 /* Destroy deleted domains */
6324 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6325 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6326 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6327 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6328 goto match1;
6329 }
6330 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6331 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6332match1:
6333 ;
6334 }
6335
c8d2d47a 6336 n = ndoms_cur;
e761b772 6337 if (doms_new == NULL) {
c8d2d47a 6338 n = 0;
acc3f5d7 6339 doms_new = &fallback_doms;
6ad4c188 6340 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6341 WARN_ON_ONCE(dattr_new);
e761b772
MK
6342 }
6343
029190c5
PJ
6344 /* Build new domains */
6345 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6346 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6347 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6348 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6349 goto match2;
6350 }
6351 /* no match - add a new doms_new */
dce840a0 6352 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6353match2:
6354 ;
6355 }
6356
6357 /* Remember the new sched domains */
acc3f5d7
RR
6358 if (doms_cur != &fallback_doms)
6359 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6360 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6361 doms_cur = doms_new;
1d3504fc 6362 dattr_cur = dattr_new;
029190c5 6363 ndoms_cur = ndoms_new;
7378547f
MM
6364
6365 register_sched_domain_sysctl();
a1835615 6366
712555ee 6367 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6368}
6369
d35be8ba
SB
6370static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6371
1da177e4 6372/*
3a101d05
TH
6373 * Update cpusets according to cpu_active mask. If cpusets are
6374 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6375 * around partition_sched_domains().
d35be8ba
SB
6376 *
6377 * If we come here as part of a suspend/resume, don't touch cpusets because we
6378 * want to restore it back to its original state upon resume anyway.
1da177e4 6379 */
0b2e918a
TH
6380static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6381 void *hcpu)
e761b772 6382{
d35be8ba
SB
6383 switch (action) {
6384 case CPU_ONLINE_FROZEN:
6385 case CPU_DOWN_FAILED_FROZEN:
6386
6387 /*
6388 * num_cpus_frozen tracks how many CPUs are involved in suspend
6389 * resume sequence. As long as this is not the last online
6390 * operation in the resume sequence, just build a single sched
6391 * domain, ignoring cpusets.
6392 */
6393 num_cpus_frozen--;
6394 if (likely(num_cpus_frozen)) {
6395 partition_sched_domains(1, NULL, NULL);
6396 break;
6397 }
6398
6399 /*
6400 * This is the last CPU online operation. So fall through and
6401 * restore the original sched domains by considering the
6402 * cpuset configurations.
6403 */
6404
e761b772 6405 case CPU_ONLINE:
6ad4c188 6406 case CPU_DOWN_FAILED:
7ddf96b0 6407 cpuset_update_active_cpus(true);
d35be8ba 6408 break;
3a101d05
TH
6409 default:
6410 return NOTIFY_DONE;
6411 }
d35be8ba 6412 return NOTIFY_OK;
3a101d05 6413}
e761b772 6414
0b2e918a
TH
6415static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6416 void *hcpu)
3a101d05 6417{
d35be8ba 6418 switch (action) {
3a101d05 6419 case CPU_DOWN_PREPARE:
7ddf96b0 6420 cpuset_update_active_cpus(false);
d35be8ba
SB
6421 break;
6422 case CPU_DOWN_PREPARE_FROZEN:
6423 num_cpus_frozen++;
6424 partition_sched_domains(1, NULL, NULL);
6425 break;
e761b772
MK
6426 default:
6427 return NOTIFY_DONE;
6428 }
d35be8ba 6429 return NOTIFY_OK;
e761b772 6430}
e761b772 6431
1da177e4
LT
6432void __init sched_init_smp(void)
6433{
dcc30a35
RR
6434 cpumask_var_t non_isolated_cpus;
6435
6436 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6437 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6438
cb83b629
PZ
6439 sched_init_numa();
6440
6acce3ef
PZ
6441 /*
6442 * There's no userspace yet to cause hotplug operations; hence all the
6443 * cpu masks are stable and all blatant races in the below code cannot
6444 * happen.
6445 */
712555ee 6446 mutex_lock(&sched_domains_mutex);
c4a8849a 6447 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6448 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6449 if (cpumask_empty(non_isolated_cpus))
6450 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6451 mutex_unlock(&sched_domains_mutex);
e761b772 6452
301a5cba 6453 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6454 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6455 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6456
b328ca18 6457 init_hrtick();
5c1e1767
NP
6458
6459 /* Move init over to a non-isolated CPU */
dcc30a35 6460 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6461 BUG();
19978ca6 6462 sched_init_granularity();
dcc30a35 6463 free_cpumask_var(non_isolated_cpus);
4212823f 6464
0e3900e6 6465 init_sched_rt_class();
1baca4ce 6466 init_sched_dl_class();
1da177e4
LT
6467}
6468#else
6469void __init sched_init_smp(void)
6470{
19978ca6 6471 sched_init_granularity();
1da177e4
LT
6472}
6473#endif /* CONFIG_SMP */
6474
cd1bb94b
AB
6475const_debug unsigned int sysctl_timer_migration = 1;
6476
1da177e4
LT
6477int in_sched_functions(unsigned long addr)
6478{
1da177e4
LT
6479 return in_lock_functions(addr) ||
6480 (addr >= (unsigned long)__sched_text_start
6481 && addr < (unsigned long)__sched_text_end);
6482}
6483
029632fb 6484#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6485/*
6486 * Default task group.
6487 * Every task in system belongs to this group at bootup.
6488 */
029632fb 6489struct task_group root_task_group;
35cf4e50 6490LIST_HEAD(task_groups);
052f1dc7 6491#endif
6f505b16 6492
e6252c3e 6493DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6494
1da177e4
LT
6495void __init sched_init(void)
6496{
dd41f596 6497 int i, j;
434d53b0
MT
6498 unsigned long alloc_size = 0, ptr;
6499
6500#ifdef CONFIG_FAIR_GROUP_SCHED
6501 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6502#endif
6503#ifdef CONFIG_RT_GROUP_SCHED
6504 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6505#endif
df7c8e84 6506#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6507 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6508#endif
434d53b0 6509 if (alloc_size) {
36b7b6d4 6510 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6511
6512#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6513 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6514 ptr += nr_cpu_ids * sizeof(void **);
6515
07e06b01 6516 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6517 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6518
6d6bc0ad 6519#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6520#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6521 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6522 ptr += nr_cpu_ids * sizeof(void **);
6523
07e06b01 6524 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6525 ptr += nr_cpu_ids * sizeof(void **);
6526
6d6bc0ad 6527#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6528#ifdef CONFIG_CPUMASK_OFFSTACK
6529 for_each_possible_cpu(i) {
e6252c3e 6530 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6531 ptr += cpumask_size();
6532 }
6533#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6534 }
dd41f596 6535
57d885fe
GH
6536#ifdef CONFIG_SMP
6537 init_defrootdomain();
6538#endif
6539
d0b27fa7
PZ
6540 init_rt_bandwidth(&def_rt_bandwidth,
6541 global_rt_period(), global_rt_runtime());
6542
6543#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6544 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6545 global_rt_period(), global_rt_runtime());
6d6bc0ad 6546#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6547
7c941438 6548#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6549 list_add(&root_task_group.list, &task_groups);
6550 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6551 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6552 autogroup_init(&init_task);
54c707e9 6553
7c941438 6554#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6555
0a945022 6556 for_each_possible_cpu(i) {
70b97a7f 6557 struct rq *rq;
1da177e4
LT
6558
6559 rq = cpu_rq(i);
05fa785c 6560 raw_spin_lock_init(&rq->lock);
7897986b 6561 rq->nr_running = 0;
dce48a84
TG
6562 rq->calc_load_active = 0;
6563 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6564 init_cfs_rq(&rq->cfs);
6f505b16 6565 init_rt_rq(&rq->rt, rq);
aab03e05 6566 init_dl_rq(&rq->dl, rq);
dd41f596 6567#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6568 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6569 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6570 /*
07e06b01 6571 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6572 *
6573 * In case of task-groups formed thr' the cgroup filesystem, it
6574 * gets 100% of the cpu resources in the system. This overall
6575 * system cpu resource is divided among the tasks of
07e06b01 6576 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6577 * based on each entity's (task or task-group's) weight
6578 * (se->load.weight).
6579 *
07e06b01 6580 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6581 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6582 * then A0's share of the cpu resource is:
6583 *
0d905bca 6584 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6585 *
07e06b01
YZ
6586 * We achieve this by letting root_task_group's tasks sit
6587 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6588 */
ab84d31e 6589 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6590 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6591#endif /* CONFIG_FAIR_GROUP_SCHED */
6592
6593 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6594#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6595 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6596 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6597#endif
1da177e4 6598
dd41f596
IM
6599 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6600 rq->cpu_load[j] = 0;
fdf3e95d
VP
6601
6602 rq->last_load_update_tick = jiffies;
6603
1da177e4 6604#ifdef CONFIG_SMP
41c7ce9a 6605 rq->sd = NULL;
57d885fe 6606 rq->rd = NULL;
1399fa78 6607 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6608 rq->post_schedule = 0;
1da177e4 6609 rq->active_balance = 0;
dd41f596 6610 rq->next_balance = jiffies;
1da177e4 6611 rq->push_cpu = 0;
0a2966b4 6612 rq->cpu = i;
1f11eb6a 6613 rq->online = 0;
eae0c9df
MG
6614 rq->idle_stamp = 0;
6615 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6616 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6617
6618 INIT_LIST_HEAD(&rq->cfs_tasks);
6619
dc938520 6620 rq_attach_root(rq, &def_root_domain);
3451d024 6621#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6622 rq->nohz_flags = 0;
83cd4fe2 6623#endif
265f22a9
FW
6624#ifdef CONFIG_NO_HZ_FULL
6625 rq->last_sched_tick = 0;
6626#endif
1da177e4 6627#endif
8f4d37ec 6628 init_rq_hrtick(rq);
1da177e4 6629 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6630 }
6631
2dd73a4f 6632 set_load_weight(&init_task);
b50f60ce 6633
e107be36
AK
6634#ifdef CONFIG_PREEMPT_NOTIFIERS
6635 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6636#endif
6637
1da177e4
LT
6638 /*
6639 * The boot idle thread does lazy MMU switching as well:
6640 */
6641 atomic_inc(&init_mm.mm_count);
6642 enter_lazy_tlb(&init_mm, current);
6643
6644 /*
6645 * Make us the idle thread. Technically, schedule() should not be
6646 * called from this thread, however somewhere below it might be,
6647 * but because we are the idle thread, we just pick up running again
6648 * when this runqueue becomes "idle".
6649 */
6650 init_idle(current, smp_processor_id());
dce48a84
TG
6651
6652 calc_load_update = jiffies + LOAD_FREQ;
6653
dd41f596
IM
6654 /*
6655 * During early bootup we pretend to be a normal task:
6656 */
6657 current->sched_class = &fair_sched_class;
6892b75e 6658
bf4d83f6 6659#ifdef CONFIG_SMP
4cb98839 6660 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6661 /* May be allocated at isolcpus cmdline parse time */
6662 if (cpu_isolated_map == NULL)
6663 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6664 idle_thread_set_boot_cpu();
029632fb
PZ
6665#endif
6666 init_sched_fair_class();
6a7b3dc3 6667
6892b75e 6668 scheduler_running = 1;
1da177e4
LT
6669}
6670
d902db1e 6671#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6672static inline int preempt_count_equals(int preempt_offset)
6673{
234da7bc 6674 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6675
4ba8216c 6676 return (nested == preempt_offset);
e4aafea2
FW
6677}
6678
d894837f 6679void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6680{
1da177e4
LT
6681 static unsigned long prev_jiffy; /* ratelimiting */
6682
b3fbab05 6683 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6684 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6685 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6686 return;
6687 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6688 return;
6689 prev_jiffy = jiffies;
6690
3df0fc5b
PZ
6691 printk(KERN_ERR
6692 "BUG: sleeping function called from invalid context at %s:%d\n",
6693 file, line);
6694 printk(KERN_ERR
6695 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6696 in_atomic(), irqs_disabled(),
6697 current->pid, current->comm);
aef745fc
IM
6698
6699 debug_show_held_locks(current);
6700 if (irqs_disabled())
6701 print_irqtrace_events(current);
6702 dump_stack();
1da177e4
LT
6703}
6704EXPORT_SYMBOL(__might_sleep);
6705#endif
6706
6707#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6708static void normalize_task(struct rq *rq, struct task_struct *p)
6709{
da7a735e 6710 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6711 struct sched_attr attr = {
6712 .sched_policy = SCHED_NORMAL,
6713 };
da7a735e 6714 int old_prio = p->prio;
3a5e4dc1 6715 int on_rq;
3e51f33f 6716
fd2f4419 6717 on_rq = p->on_rq;
3a5e4dc1 6718 if (on_rq)
4ca9b72b 6719 dequeue_task(rq, p, 0);
d50dde5a 6720 __setscheduler(rq, p, &attr);
3a5e4dc1 6721 if (on_rq) {
4ca9b72b 6722 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6723 resched_task(rq->curr);
6724 }
da7a735e
PZ
6725
6726 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6727}
6728
1da177e4
LT
6729void normalize_rt_tasks(void)
6730{
a0f98a1c 6731 struct task_struct *g, *p;
1da177e4 6732 unsigned long flags;
70b97a7f 6733 struct rq *rq;
1da177e4 6734
4cf5d77a 6735 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6736 do_each_thread(g, p) {
178be793
IM
6737 /*
6738 * Only normalize user tasks:
6739 */
6740 if (!p->mm)
6741 continue;
6742
6cfb0d5d 6743 p->se.exec_start = 0;
6cfb0d5d 6744#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6745 p->se.statistics.wait_start = 0;
6746 p->se.statistics.sleep_start = 0;
6747 p->se.statistics.block_start = 0;
6cfb0d5d 6748#endif
dd41f596 6749
aab03e05 6750 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6751 /*
6752 * Renice negative nice level userspace
6753 * tasks back to 0:
6754 */
6755 if (TASK_NICE(p) < 0 && p->mm)
6756 set_user_nice(p, 0);
1da177e4 6757 continue;
dd41f596 6758 }
1da177e4 6759
1d615482 6760 raw_spin_lock(&p->pi_lock);
b29739f9 6761 rq = __task_rq_lock(p);
1da177e4 6762
178be793 6763 normalize_task(rq, p);
3a5e4dc1 6764
b29739f9 6765 __task_rq_unlock(rq);
1d615482 6766 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6767 } while_each_thread(g, p);
6768
4cf5d77a 6769 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6770}
6771
6772#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6773
67fc4e0c 6774#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6775/*
67fc4e0c 6776 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6777 *
6778 * They can only be called when the whole system has been
6779 * stopped - every CPU needs to be quiescent, and no scheduling
6780 * activity can take place. Using them for anything else would
6781 * be a serious bug, and as a result, they aren't even visible
6782 * under any other configuration.
6783 */
6784
6785/**
6786 * curr_task - return the current task for a given cpu.
6787 * @cpu: the processor in question.
6788 *
6789 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6790 *
6791 * Return: The current task for @cpu.
1df5c10a 6792 */
36c8b586 6793struct task_struct *curr_task(int cpu)
1df5c10a
LT
6794{
6795 return cpu_curr(cpu);
6796}
6797
67fc4e0c
JW
6798#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6799
6800#ifdef CONFIG_IA64
1df5c10a
LT
6801/**
6802 * set_curr_task - set the current task for a given cpu.
6803 * @cpu: the processor in question.
6804 * @p: the task pointer to set.
6805 *
6806 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6807 * are serviced on a separate stack. It allows the architecture to switch the
6808 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6809 * must be called with all CPU's synchronized, and interrupts disabled, the
6810 * and caller must save the original value of the current task (see
6811 * curr_task() above) and restore that value before reenabling interrupts and
6812 * re-starting the system.
6813 *
6814 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6815 */
36c8b586 6816void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6817{
6818 cpu_curr(cpu) = p;
6819}
6820
6821#endif
29f59db3 6822
7c941438 6823#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6824/* task_group_lock serializes the addition/removal of task groups */
6825static DEFINE_SPINLOCK(task_group_lock);
6826
bccbe08a
PZ
6827static void free_sched_group(struct task_group *tg)
6828{
6829 free_fair_sched_group(tg);
6830 free_rt_sched_group(tg);
e9aa1dd1 6831 autogroup_free(tg);
bccbe08a
PZ
6832 kfree(tg);
6833}
6834
6835/* allocate runqueue etc for a new task group */
ec7dc8ac 6836struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6837{
6838 struct task_group *tg;
bccbe08a
PZ
6839
6840 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6841 if (!tg)
6842 return ERR_PTR(-ENOMEM);
6843
ec7dc8ac 6844 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6845 goto err;
6846
ec7dc8ac 6847 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6848 goto err;
6849
ace783b9
LZ
6850 return tg;
6851
6852err:
6853 free_sched_group(tg);
6854 return ERR_PTR(-ENOMEM);
6855}
6856
6857void sched_online_group(struct task_group *tg, struct task_group *parent)
6858{
6859 unsigned long flags;
6860
8ed36996 6861 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6862 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6863
6864 WARN_ON(!parent); /* root should already exist */
6865
6866 tg->parent = parent;
f473aa5e 6867 INIT_LIST_HEAD(&tg->children);
09f2724a 6868 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6869 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6870}
6871
9b5b7751 6872/* rcu callback to free various structures associated with a task group */
6f505b16 6873static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6874{
29f59db3 6875 /* now it should be safe to free those cfs_rqs */
6f505b16 6876 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6877}
6878
9b5b7751 6879/* Destroy runqueue etc associated with a task group */
4cf86d77 6880void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6881{
6882 /* wait for possible concurrent references to cfs_rqs complete */
6883 call_rcu(&tg->rcu, free_sched_group_rcu);
6884}
6885
6886void sched_offline_group(struct task_group *tg)
29f59db3 6887{
8ed36996 6888 unsigned long flags;
9b5b7751 6889 int i;
29f59db3 6890
3d4b47b4
PZ
6891 /* end participation in shares distribution */
6892 for_each_possible_cpu(i)
bccbe08a 6893 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6894
6895 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6896 list_del_rcu(&tg->list);
f473aa5e 6897 list_del_rcu(&tg->siblings);
8ed36996 6898 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6899}
6900
9b5b7751 6901/* change task's runqueue when it moves between groups.
3a252015
IM
6902 * The caller of this function should have put the task in its new group
6903 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6904 * reflect its new group.
9b5b7751
SV
6905 */
6906void sched_move_task(struct task_struct *tsk)
29f59db3 6907{
8323f26c 6908 struct task_group *tg;
29f59db3
SV
6909 int on_rq, running;
6910 unsigned long flags;
6911 struct rq *rq;
6912
6913 rq = task_rq_lock(tsk, &flags);
6914
051a1d1a 6915 running = task_current(rq, tsk);
fd2f4419 6916 on_rq = tsk->on_rq;
29f59db3 6917
0e1f3483 6918 if (on_rq)
29f59db3 6919 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6920 if (unlikely(running))
6921 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6922
8af01f56 6923 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6924 lockdep_is_held(&tsk->sighand->siglock)),
6925 struct task_group, css);
6926 tg = autogroup_task_group(tsk, tg);
6927 tsk->sched_task_group = tg;
6928
810b3817 6929#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6930 if (tsk->sched_class->task_move_group)
6931 tsk->sched_class->task_move_group(tsk, on_rq);
6932 else
810b3817 6933#endif
b2b5ce02 6934 set_task_rq(tsk, task_cpu(tsk));
810b3817 6935
0e1f3483
HS
6936 if (unlikely(running))
6937 tsk->sched_class->set_curr_task(rq);
6938 if (on_rq)
371fd7e7 6939 enqueue_task(rq, tsk, 0);
29f59db3 6940
0122ec5b 6941 task_rq_unlock(rq, tsk, &flags);
29f59db3 6942}
7c941438 6943#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6944
a790de99 6945#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6946static unsigned long to_ratio(u64 period, u64 runtime)
6947{
6948 if (runtime == RUNTIME_INF)
9a7e0b18 6949 return 1ULL << 20;
9f0c1e56 6950
9a7e0b18 6951 return div64_u64(runtime << 20, period);
9f0c1e56 6952}
a790de99
PT
6953#endif
6954
6955#ifdef CONFIG_RT_GROUP_SCHED
6956/*
6957 * Ensure that the real time constraints are schedulable.
6958 */
6959static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6960
9a7e0b18
PZ
6961/* Must be called with tasklist_lock held */
6962static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6963{
9a7e0b18 6964 struct task_struct *g, *p;
b40b2e8e 6965
9a7e0b18 6966 do_each_thread(g, p) {
029632fb 6967 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6968 return 1;
6969 } while_each_thread(g, p);
b40b2e8e 6970
9a7e0b18
PZ
6971 return 0;
6972}
b40b2e8e 6973
9a7e0b18
PZ
6974struct rt_schedulable_data {
6975 struct task_group *tg;
6976 u64 rt_period;
6977 u64 rt_runtime;
6978};
b40b2e8e 6979
a790de99 6980static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6981{
6982 struct rt_schedulable_data *d = data;
6983 struct task_group *child;
6984 unsigned long total, sum = 0;
6985 u64 period, runtime;
b40b2e8e 6986
9a7e0b18
PZ
6987 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6988 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6989
9a7e0b18
PZ
6990 if (tg == d->tg) {
6991 period = d->rt_period;
6992 runtime = d->rt_runtime;
b40b2e8e 6993 }
b40b2e8e 6994
4653f803
PZ
6995 /*
6996 * Cannot have more runtime than the period.
6997 */
6998 if (runtime > period && runtime != RUNTIME_INF)
6999 return -EINVAL;
6f505b16 7000
4653f803
PZ
7001 /*
7002 * Ensure we don't starve existing RT tasks.
7003 */
9a7e0b18
PZ
7004 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7005 return -EBUSY;
6f505b16 7006
9a7e0b18 7007 total = to_ratio(period, runtime);
6f505b16 7008
4653f803
PZ
7009 /*
7010 * Nobody can have more than the global setting allows.
7011 */
7012 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7013 return -EINVAL;
6f505b16 7014
4653f803
PZ
7015 /*
7016 * The sum of our children's runtime should not exceed our own.
7017 */
9a7e0b18
PZ
7018 list_for_each_entry_rcu(child, &tg->children, siblings) {
7019 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7020 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7021
9a7e0b18
PZ
7022 if (child == d->tg) {
7023 period = d->rt_period;
7024 runtime = d->rt_runtime;
7025 }
6f505b16 7026
9a7e0b18 7027 sum += to_ratio(period, runtime);
9f0c1e56 7028 }
6f505b16 7029
9a7e0b18
PZ
7030 if (sum > total)
7031 return -EINVAL;
7032
7033 return 0;
6f505b16
PZ
7034}
7035
9a7e0b18 7036static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7037{
8277434e
PT
7038 int ret;
7039
9a7e0b18
PZ
7040 struct rt_schedulable_data data = {
7041 .tg = tg,
7042 .rt_period = period,
7043 .rt_runtime = runtime,
7044 };
7045
8277434e
PT
7046 rcu_read_lock();
7047 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7048 rcu_read_unlock();
7049
7050 return ret;
521f1a24
DG
7051}
7052
ab84d31e 7053static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7054 u64 rt_period, u64 rt_runtime)
6f505b16 7055{
ac086bc2 7056 int i, err = 0;
9f0c1e56 7057
9f0c1e56 7058 mutex_lock(&rt_constraints_mutex);
521f1a24 7059 read_lock(&tasklist_lock);
9a7e0b18
PZ
7060 err = __rt_schedulable(tg, rt_period, rt_runtime);
7061 if (err)
9f0c1e56 7062 goto unlock;
ac086bc2 7063
0986b11b 7064 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7065 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7066 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7067
7068 for_each_possible_cpu(i) {
7069 struct rt_rq *rt_rq = tg->rt_rq[i];
7070
0986b11b 7071 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7072 rt_rq->rt_runtime = rt_runtime;
0986b11b 7073 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7074 }
0986b11b 7075 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7076unlock:
521f1a24 7077 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7078 mutex_unlock(&rt_constraints_mutex);
7079
7080 return err;
6f505b16
PZ
7081}
7082
25cc7da7 7083static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7084{
7085 u64 rt_runtime, rt_period;
7086
7087 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7088 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7089 if (rt_runtime_us < 0)
7090 rt_runtime = RUNTIME_INF;
7091
ab84d31e 7092 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7093}
7094
25cc7da7 7095static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7096{
7097 u64 rt_runtime_us;
7098
d0b27fa7 7099 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7100 return -1;
7101
d0b27fa7 7102 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7103 do_div(rt_runtime_us, NSEC_PER_USEC);
7104 return rt_runtime_us;
7105}
d0b27fa7 7106
25cc7da7 7107static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7108{
7109 u64 rt_runtime, rt_period;
7110
7111 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7112 rt_runtime = tg->rt_bandwidth.rt_runtime;
7113
619b0488
R
7114 if (rt_period == 0)
7115 return -EINVAL;
7116
ab84d31e 7117 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7118}
7119
25cc7da7 7120static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7121{
7122 u64 rt_period_us;
7123
7124 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7125 do_div(rt_period_us, NSEC_PER_USEC);
7126 return rt_period_us;
7127}
7128
7129static int sched_rt_global_constraints(void)
7130{
4653f803 7131 u64 runtime, period;
d0b27fa7
PZ
7132 int ret = 0;
7133
ec5d4989
HS
7134 if (sysctl_sched_rt_period <= 0)
7135 return -EINVAL;
7136
4653f803
PZ
7137 runtime = global_rt_runtime();
7138 period = global_rt_period();
7139
7140 /*
7141 * Sanity check on the sysctl variables.
7142 */
7143 if (runtime > period && runtime != RUNTIME_INF)
7144 return -EINVAL;
10b612f4 7145
d0b27fa7 7146 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7147 read_lock(&tasklist_lock);
4653f803 7148 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7149 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7150 mutex_unlock(&rt_constraints_mutex);
7151
7152 return ret;
7153}
54e99124 7154
25cc7da7 7155static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7156{
7157 /* Don't accept realtime tasks when there is no way for them to run */
7158 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7159 return 0;
7160
7161 return 1;
7162}
7163
6d6bc0ad 7164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7165static int sched_rt_global_constraints(void)
7166{
ac086bc2
PZ
7167 unsigned long flags;
7168 int i;
7169
ec5d4989
HS
7170 if (sysctl_sched_rt_period <= 0)
7171 return -EINVAL;
7172
60aa605d
PZ
7173 /*
7174 * There's always some RT tasks in the root group
7175 * -- migration, kstopmachine etc..
7176 */
7177 if (sysctl_sched_rt_runtime == 0)
7178 return -EBUSY;
7179
0986b11b 7180 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7181 for_each_possible_cpu(i) {
7182 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7183
0986b11b 7184 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7185 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7186 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7187 }
0986b11b 7188 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7189
d0b27fa7
PZ
7190 return 0;
7191}
6d6bc0ad 7192#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7193
ce0dbbbb
CW
7194int sched_rr_handler(struct ctl_table *table, int write,
7195 void __user *buffer, size_t *lenp,
7196 loff_t *ppos)
7197{
7198 int ret;
7199 static DEFINE_MUTEX(mutex);
7200
7201 mutex_lock(&mutex);
7202 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7203 /* make sure that internally we keep jiffies */
7204 /* also, writing zero resets timeslice to default */
7205 if (!ret && write) {
7206 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7207 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7208 }
7209 mutex_unlock(&mutex);
7210 return ret;
7211}
7212
d0b27fa7 7213int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7214 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7215 loff_t *ppos)
7216{
7217 int ret;
7218 int old_period, old_runtime;
7219 static DEFINE_MUTEX(mutex);
7220
7221 mutex_lock(&mutex);
7222 old_period = sysctl_sched_rt_period;
7223 old_runtime = sysctl_sched_rt_runtime;
7224
8d65af78 7225 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7226
7227 if (!ret && write) {
7228 ret = sched_rt_global_constraints();
7229 if (ret) {
7230 sysctl_sched_rt_period = old_period;
7231 sysctl_sched_rt_runtime = old_runtime;
7232 } else {
7233 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7234 def_rt_bandwidth.rt_period =
7235 ns_to_ktime(global_rt_period());
7236 }
7237 }
7238 mutex_unlock(&mutex);
7239
7240 return ret;
7241}
68318b8e 7242
052f1dc7 7243#ifdef CONFIG_CGROUP_SCHED
68318b8e 7244
a7c6d554 7245static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7246{
a7c6d554 7247 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7248}
7249
eb95419b
TH
7250static struct cgroup_subsys_state *
7251cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7252{
eb95419b
TH
7253 struct task_group *parent = css_tg(parent_css);
7254 struct task_group *tg;
68318b8e 7255
eb95419b 7256 if (!parent) {
68318b8e 7257 /* This is early initialization for the top cgroup */
07e06b01 7258 return &root_task_group.css;
68318b8e
SV
7259 }
7260
ec7dc8ac 7261 tg = sched_create_group(parent);
68318b8e
SV
7262 if (IS_ERR(tg))
7263 return ERR_PTR(-ENOMEM);
7264
68318b8e
SV
7265 return &tg->css;
7266}
7267
eb95419b 7268static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7269{
eb95419b
TH
7270 struct task_group *tg = css_tg(css);
7271 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7272
63876986
TH
7273 if (parent)
7274 sched_online_group(tg, parent);
ace783b9
LZ
7275 return 0;
7276}
7277
eb95419b 7278static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7279{
eb95419b 7280 struct task_group *tg = css_tg(css);
68318b8e
SV
7281
7282 sched_destroy_group(tg);
7283}
7284
eb95419b 7285static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7286{
eb95419b 7287 struct task_group *tg = css_tg(css);
ace783b9
LZ
7288
7289 sched_offline_group(tg);
7290}
7291
eb95419b 7292static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7293 struct cgroup_taskset *tset)
68318b8e 7294{
bb9d97b6
TH
7295 struct task_struct *task;
7296
d99c8727 7297 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7298#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7299 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7300 return -EINVAL;
b68aa230 7301#else
bb9d97b6
TH
7302 /* We don't support RT-tasks being in separate groups */
7303 if (task->sched_class != &fair_sched_class)
7304 return -EINVAL;
b68aa230 7305#endif
bb9d97b6 7306 }
be367d09
BB
7307 return 0;
7308}
68318b8e 7309
eb95419b 7310static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7311 struct cgroup_taskset *tset)
68318b8e 7312{
bb9d97b6
TH
7313 struct task_struct *task;
7314
d99c8727 7315 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7316 sched_move_task(task);
68318b8e
SV
7317}
7318
eb95419b
TH
7319static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7320 struct cgroup_subsys_state *old_css,
7321 struct task_struct *task)
068c5cc5
PZ
7322{
7323 /*
7324 * cgroup_exit() is called in the copy_process() failure path.
7325 * Ignore this case since the task hasn't ran yet, this avoids
7326 * trying to poke a half freed task state from generic code.
7327 */
7328 if (!(task->flags & PF_EXITING))
7329 return;
7330
7331 sched_move_task(task);
7332}
7333
052f1dc7 7334#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7335static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7336 struct cftype *cftype, u64 shareval)
68318b8e 7337{
182446d0 7338 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7339}
7340
182446d0
TH
7341static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7342 struct cftype *cft)
68318b8e 7343{
182446d0 7344 struct task_group *tg = css_tg(css);
68318b8e 7345
c8b28116 7346 return (u64) scale_load_down(tg->shares);
68318b8e 7347}
ab84d31e
PT
7348
7349#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7350static DEFINE_MUTEX(cfs_constraints_mutex);
7351
ab84d31e
PT
7352const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7353const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7354
a790de99
PT
7355static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7356
ab84d31e
PT
7357static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7358{
56f570e5 7359 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7360 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7361
7362 if (tg == &root_task_group)
7363 return -EINVAL;
7364
7365 /*
7366 * Ensure we have at some amount of bandwidth every period. This is
7367 * to prevent reaching a state of large arrears when throttled via
7368 * entity_tick() resulting in prolonged exit starvation.
7369 */
7370 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7371 return -EINVAL;
7372
7373 /*
7374 * Likewise, bound things on the otherside by preventing insane quota
7375 * periods. This also allows us to normalize in computing quota
7376 * feasibility.
7377 */
7378 if (period > max_cfs_quota_period)
7379 return -EINVAL;
7380
a790de99
PT
7381 mutex_lock(&cfs_constraints_mutex);
7382 ret = __cfs_schedulable(tg, period, quota);
7383 if (ret)
7384 goto out_unlock;
7385
58088ad0 7386 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7387 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7388 /*
7389 * If we need to toggle cfs_bandwidth_used, off->on must occur
7390 * before making related changes, and on->off must occur afterwards
7391 */
7392 if (runtime_enabled && !runtime_was_enabled)
7393 cfs_bandwidth_usage_inc();
ab84d31e
PT
7394 raw_spin_lock_irq(&cfs_b->lock);
7395 cfs_b->period = ns_to_ktime(period);
7396 cfs_b->quota = quota;
58088ad0 7397
a9cf55b2 7398 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7399 /* restart the period timer (if active) to handle new period expiry */
7400 if (runtime_enabled && cfs_b->timer_active) {
7401 /* force a reprogram */
7402 cfs_b->timer_active = 0;
7403 __start_cfs_bandwidth(cfs_b);
7404 }
ab84d31e
PT
7405 raw_spin_unlock_irq(&cfs_b->lock);
7406
7407 for_each_possible_cpu(i) {
7408 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7409 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7410
7411 raw_spin_lock_irq(&rq->lock);
58088ad0 7412 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7413 cfs_rq->runtime_remaining = 0;
671fd9da 7414
029632fb 7415 if (cfs_rq->throttled)
671fd9da 7416 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7417 raw_spin_unlock_irq(&rq->lock);
7418 }
1ee14e6c
BS
7419 if (runtime_was_enabled && !runtime_enabled)
7420 cfs_bandwidth_usage_dec();
a790de99
PT
7421out_unlock:
7422 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7423
a790de99 7424 return ret;
ab84d31e
PT
7425}
7426
7427int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7428{
7429 u64 quota, period;
7430
029632fb 7431 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7432 if (cfs_quota_us < 0)
7433 quota = RUNTIME_INF;
7434 else
7435 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7436
7437 return tg_set_cfs_bandwidth(tg, period, quota);
7438}
7439
7440long tg_get_cfs_quota(struct task_group *tg)
7441{
7442 u64 quota_us;
7443
029632fb 7444 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7445 return -1;
7446
029632fb 7447 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7448 do_div(quota_us, NSEC_PER_USEC);
7449
7450 return quota_us;
7451}
7452
7453int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7454{
7455 u64 quota, period;
7456
7457 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7458 quota = tg->cfs_bandwidth.quota;
ab84d31e 7459
ab84d31e
PT
7460 return tg_set_cfs_bandwidth(tg, period, quota);
7461}
7462
7463long tg_get_cfs_period(struct task_group *tg)
7464{
7465 u64 cfs_period_us;
7466
029632fb 7467 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7468 do_div(cfs_period_us, NSEC_PER_USEC);
7469
7470 return cfs_period_us;
7471}
7472
182446d0
TH
7473static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7474 struct cftype *cft)
ab84d31e 7475{
182446d0 7476 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7477}
7478
182446d0
TH
7479static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7480 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7481{
182446d0 7482 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7483}
7484
182446d0
TH
7485static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7486 struct cftype *cft)
ab84d31e 7487{
182446d0 7488 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7489}
7490
182446d0
TH
7491static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7492 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7493{
182446d0 7494 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7495}
7496
a790de99
PT
7497struct cfs_schedulable_data {
7498 struct task_group *tg;
7499 u64 period, quota;
7500};
7501
7502/*
7503 * normalize group quota/period to be quota/max_period
7504 * note: units are usecs
7505 */
7506static u64 normalize_cfs_quota(struct task_group *tg,
7507 struct cfs_schedulable_data *d)
7508{
7509 u64 quota, period;
7510
7511 if (tg == d->tg) {
7512 period = d->period;
7513 quota = d->quota;
7514 } else {
7515 period = tg_get_cfs_period(tg);
7516 quota = tg_get_cfs_quota(tg);
7517 }
7518
7519 /* note: these should typically be equivalent */
7520 if (quota == RUNTIME_INF || quota == -1)
7521 return RUNTIME_INF;
7522
7523 return to_ratio(period, quota);
7524}
7525
7526static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7527{
7528 struct cfs_schedulable_data *d = data;
029632fb 7529 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7530 s64 quota = 0, parent_quota = -1;
7531
7532 if (!tg->parent) {
7533 quota = RUNTIME_INF;
7534 } else {
029632fb 7535 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7536
7537 quota = normalize_cfs_quota(tg, d);
7538 parent_quota = parent_b->hierarchal_quota;
7539
7540 /*
7541 * ensure max(child_quota) <= parent_quota, inherit when no
7542 * limit is set
7543 */
7544 if (quota == RUNTIME_INF)
7545 quota = parent_quota;
7546 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7547 return -EINVAL;
7548 }
7549 cfs_b->hierarchal_quota = quota;
7550
7551 return 0;
7552}
7553
7554static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7555{
8277434e 7556 int ret;
a790de99
PT
7557 struct cfs_schedulable_data data = {
7558 .tg = tg,
7559 .period = period,
7560 .quota = quota,
7561 };
7562
7563 if (quota != RUNTIME_INF) {
7564 do_div(data.period, NSEC_PER_USEC);
7565 do_div(data.quota, NSEC_PER_USEC);
7566 }
7567
8277434e
PT
7568 rcu_read_lock();
7569 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7570 rcu_read_unlock();
7571
7572 return ret;
a790de99 7573}
e8da1b18 7574
182446d0 7575static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7576 struct cgroup_map_cb *cb)
7577{
182446d0 7578 struct task_group *tg = css_tg(css);
029632fb 7579 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7580
7581 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7582 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7583 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7584
7585 return 0;
7586}
ab84d31e 7587#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7588#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7589
052f1dc7 7590#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7591static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7592 struct cftype *cft, s64 val)
6f505b16 7593{
182446d0 7594 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7595}
7596
182446d0
TH
7597static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7598 struct cftype *cft)
6f505b16 7599{
182446d0 7600 return sched_group_rt_runtime(css_tg(css));
6f505b16 7601}
d0b27fa7 7602
182446d0
TH
7603static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7604 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7605{
182446d0 7606 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7607}
7608
182446d0
TH
7609static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7610 struct cftype *cft)
d0b27fa7 7611{
182446d0 7612 return sched_group_rt_period(css_tg(css));
d0b27fa7 7613}
6d6bc0ad 7614#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7615
fe5c7cc2 7616static struct cftype cpu_files[] = {
052f1dc7 7617#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7618 {
7619 .name = "shares",
f4c753b7
PM
7620 .read_u64 = cpu_shares_read_u64,
7621 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7622 },
052f1dc7 7623#endif
ab84d31e
PT
7624#ifdef CONFIG_CFS_BANDWIDTH
7625 {
7626 .name = "cfs_quota_us",
7627 .read_s64 = cpu_cfs_quota_read_s64,
7628 .write_s64 = cpu_cfs_quota_write_s64,
7629 },
7630 {
7631 .name = "cfs_period_us",
7632 .read_u64 = cpu_cfs_period_read_u64,
7633 .write_u64 = cpu_cfs_period_write_u64,
7634 },
e8da1b18
NR
7635 {
7636 .name = "stat",
7637 .read_map = cpu_stats_show,
7638 },
ab84d31e 7639#endif
052f1dc7 7640#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7641 {
9f0c1e56 7642 .name = "rt_runtime_us",
06ecb27c
PM
7643 .read_s64 = cpu_rt_runtime_read,
7644 .write_s64 = cpu_rt_runtime_write,
6f505b16 7645 },
d0b27fa7
PZ
7646 {
7647 .name = "rt_period_us",
f4c753b7
PM
7648 .read_u64 = cpu_rt_period_read_uint,
7649 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7650 },
052f1dc7 7651#endif
4baf6e33 7652 { } /* terminate */
68318b8e
SV
7653};
7654
68318b8e 7655struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7656 .name = "cpu",
92fb9748
TH
7657 .css_alloc = cpu_cgroup_css_alloc,
7658 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7659 .css_online = cpu_cgroup_css_online,
7660 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7661 .can_attach = cpu_cgroup_can_attach,
7662 .attach = cpu_cgroup_attach,
068c5cc5 7663 .exit = cpu_cgroup_exit,
38605cae 7664 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7665 .base_cftypes = cpu_files,
68318b8e
SV
7666 .early_init = 1,
7667};
7668
052f1dc7 7669#endif /* CONFIG_CGROUP_SCHED */
d842de87 7670
b637a328
PM
7671void dump_cpu_task(int cpu)
7672{
7673 pr_info("Task dump for CPU %d:\n", cpu);
7674 sched_show_task(cpu_curr(cpu));
7675}
This page took 2.370432 seconds and 5 git commands to generate.