drm/i915: Pass an atomic state to modeset_global_resources() functions
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c
MR
48/* Primary plane formats supported by all gen */
49#define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55/* Primary plane formats for gen <= 3 */
56static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60};
61
62/* Primary plane formats for gen >= 4 */
63static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71};
72
3d7d6510
MR
73/* Cursor formats */
74static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76};
77
6b383a7f 78static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 79
f1f644dc 80static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 81 struct intel_crtc_state *pipe_config);
18442d08 82static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 83 struct intel_crtc_state *pipe_config);
f1f644dc 84
e7457a9a 85static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
83a57153
ACO
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
eb1bfe80
JB
88static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
5b18e57c
DV
92static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 94static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
29407aab 97static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
98static void haswell_set_pipeconf(struct drm_crtc *crtc);
99static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 100static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
d288f65f 102static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 103 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
104static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 106
0e32b39c
DA
107static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108{
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113}
114
79e53945 115typedef struct {
0206e353 116 int min, max;
79e53945
JB
117} intel_range_t;
118
119typedef struct {
0206e353
AJ
120 int dot_limit;
121 int p2_slow, p2_fast;
79e53945
JB
122} intel_p2_t;
123
d4906093
ML
124typedef struct intel_limit intel_limit_t;
125struct intel_limit {
0206e353
AJ
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
d4906093 128};
79e53945 129
d2acd215
DV
130int
131intel_pch_rawclk(struct drm_device *dev)
132{
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138}
139
021357ac
CW
140static inline u32 /* units of 100MHz */
141intel_fdi_link_freq(struct drm_device *dev)
142{
8b99e68c
CW
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
021357ac
CW
148}
149
5d536e28 150static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 151 .dot = { .min = 25000, .max = 350000 },
9c333719 152 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 153 .n = { .min = 2, .max = 16 },
0206e353
AJ
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
161};
162
5d536e28
DV
163static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
9c333719 165 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 166 .n = { .min = 2, .max = 16 },
5d536e28
DV
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174};
175
e4b36699 176static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 177 .dot = { .min = 25000, .max = 350000 },
9c333719 178 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 179 .n = { .min = 2, .max = 16 },
0206e353
AJ
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
e4b36699 187};
273e27ca 188
e4b36699 189static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
200};
201
202static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
213};
214
273e27ca 215
e4b36699 216static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
044c7c41 228 },
e4b36699
KP
229};
230
231static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
242};
243
244static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
044c7c41 255 },
e4b36699
KP
256};
257
258static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
044c7c41 269 },
e4b36699
KP
270};
271
f2b115e6 272static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 275 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
273e27ca 278 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
285};
286
f2b115e6 287static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
298};
299
273e27ca
EA
300/* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
b91ad0ec 305static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
316};
317
b91ad0ec 318static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
329};
330
331static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
342};
343
273e27ca 344/* LVDS 100mhz refclk limits. */
b91ad0ec 345static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
0206e353 353 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
356};
357
358static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
0206e353 366 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
369};
370
dc730512 371static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 379 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 380 .n = { .min = 1, .max = 7 },
a0c4da24
JB
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
b99ab663 383 .p1 = { .min = 2, .max = 3 },
5fdc9c49 384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
385};
386
ef9348c8
CML
387static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 395 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401};
402
6b4bf1c4
VS
403static void vlv_clock(int refclk, intel_clock_t *clock)
404{
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
fb03ac01
VS
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
411}
412
e0638cdf
PZ
413/**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
4093561b 416bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 417{
409ee761 418 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
419 struct intel_encoder *encoder;
420
409ee761 421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
422 if (encoder->type == type)
423 return true;
424
425 return false;
426}
427
d0737e1d
ACO
428/**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
434static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
435{
436 struct drm_device *dev = crtc->base.dev;
437 struct intel_encoder *encoder;
438
439 for_each_intel_encoder(dev, encoder)
440 if (encoder->new_crtc == crtc && encoder->type == type)
441 return true;
442
443 return false;
444}
445
409ee761 446static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 447 int refclk)
2c07245f 448{
409ee761 449 struct drm_device *dev = crtc->base.dev;
2c07245f 450 const intel_limit_t *limit;
b91ad0ec 451
d0737e1d 452 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 453 if (intel_is_dual_link_lvds(dev)) {
1b894b59 454 if (refclk == 100000)
b91ad0ec
ZW
455 limit = &intel_limits_ironlake_dual_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_dual_lvds;
458 } else {
1b894b59 459 if (refclk == 100000)
b91ad0ec
ZW
460 limit = &intel_limits_ironlake_single_lvds_100m;
461 else
462 limit = &intel_limits_ironlake_single_lvds;
463 }
c6bb3538 464 } else
b91ad0ec 465 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
466
467 return limit;
468}
469
409ee761 470static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 471{
409ee761 472 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
473 const intel_limit_t *limit;
474
d0737e1d 475 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 476 if (intel_is_dual_link_lvds(dev))
e4b36699 477 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 478 else
e4b36699 479 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
480 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
481 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 482 limit = &intel_limits_g4x_hdmi;
d0737e1d 483 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 484 limit = &intel_limits_g4x_sdvo;
044c7c41 485 } else /* The option is for other outputs */
e4b36699 486 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
487
488 return limit;
489}
490
409ee761 491static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 492{
409ee761 493 struct drm_device *dev = crtc->base.dev;
79e53945
JB
494 const intel_limit_t *limit;
495
bad720ff 496 if (HAS_PCH_SPLIT(dev))
1b894b59 497 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 498 else if (IS_G4X(dev)) {
044c7c41 499 limit = intel_g4x_limit(crtc);
f2b115e6 500 } else if (IS_PINEVIEW(dev)) {
d0737e1d 501 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 502 limit = &intel_limits_pineview_lvds;
2177832f 503 else
f2b115e6 504 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
505 } else if (IS_CHERRYVIEW(dev)) {
506 limit = &intel_limits_chv;
a0c4da24 507 } else if (IS_VALLEYVIEW(dev)) {
dc730512 508 limit = &intel_limits_vlv;
a6c45cf0 509 } else if (!IS_GEN2(dev)) {
d0737e1d 510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
511 limit = &intel_limits_i9xx_lvds;
512 else
513 limit = &intel_limits_i9xx_sdvo;
79e53945 514 } else {
d0737e1d 515 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 516 limit = &intel_limits_i8xx_lvds;
d0737e1d 517 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 518 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
519 else
520 limit = &intel_limits_i8xx_dac;
79e53945
JB
521 }
522 return limit;
523}
524
f2b115e6
AJ
525/* m1 is reserved as 0 in Pineview, n is a ring counter */
526static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 527{
2177832f
SL
528 clock->m = clock->m2 + 2;
529 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
530 if (WARN_ON(clock->n == 0 || clock->p == 0))
531 return;
fb03ac01
VS
532 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
533 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
534}
535
7429e9d4
DV
536static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
537{
538 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
539}
540
ac58c3f0 541static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 542{
7429e9d4 543 clock->m = i9xx_dpll_compute_m(clock);
79e53945 544 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
545 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
546 return;
fb03ac01
VS
547 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
548 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
549}
550
ef9348c8
CML
551static void chv_clock(int refclk, intel_clock_t *clock)
552{
553 clock->m = clock->m1 * clock->m2;
554 clock->p = clock->p1 * clock->p2;
555 if (WARN_ON(clock->n == 0 || clock->p == 0))
556 return;
557 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
558 clock->n << 22);
559 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
560}
561
7c04d1d9 562#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
563/**
564 * Returns whether the given set of divisors are valid for a given refclk with
565 * the given connectors.
566 */
567
1b894b59
CW
568static bool intel_PLL_is_valid(struct drm_device *dev,
569 const intel_limit_t *limit,
570 const intel_clock_t *clock)
79e53945 571{
f01b7962
VS
572 if (clock->n < limit->n.min || limit->n.max < clock->n)
573 INTELPllInvalid("n out of range\n");
79e53945 574 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 575 INTELPllInvalid("p1 out of range\n");
79e53945 576 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 577 INTELPllInvalid("m2 out of range\n");
79e53945 578 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 579 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
580
581 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
582 if (clock->m1 <= clock->m2)
583 INTELPllInvalid("m1 <= m2\n");
584
585 if (!IS_VALLEYVIEW(dev)) {
586 if (clock->p < limit->p.min || limit->p.max < clock->p)
587 INTELPllInvalid("p out of range\n");
588 if (clock->m < limit->m.min || limit->m.max < clock->m)
589 INTELPllInvalid("m out of range\n");
590 }
591
79e53945 592 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 593 INTELPllInvalid("vco out of range\n");
79e53945
JB
594 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
595 * connector, etc., rather than just a single range.
596 */
597 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 598 INTELPllInvalid("dot out of range\n");
79e53945
JB
599
600 return true;
601}
602
d4906093 603static bool
a919ff14 604i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
605 int target, int refclk, intel_clock_t *match_clock,
606 intel_clock_t *best_clock)
79e53945 607{
a919ff14 608 struct drm_device *dev = crtc->base.dev;
79e53945 609 intel_clock_t clock;
79e53945
JB
610 int err = target;
611
d0737e1d 612 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 613 /*
a210b028
DV
614 * For LVDS just rely on its current settings for dual-channel.
615 * We haven't figured out how to reliably set up different
616 * single/dual channel state, if we even can.
79e53945 617 */
1974cad0 618 if (intel_is_dual_link_lvds(dev))
79e53945
JB
619 clock.p2 = limit->p2.p2_fast;
620 else
621 clock.p2 = limit->p2.p2_slow;
622 } else {
623 if (target < limit->p2.dot_limit)
624 clock.p2 = limit->p2.p2_slow;
625 else
626 clock.p2 = limit->p2.p2_fast;
627 }
628
0206e353 629 memset(best_clock, 0, sizeof(*best_clock));
79e53945 630
42158660
ZY
631 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632 clock.m1++) {
633 for (clock.m2 = limit->m2.min;
634 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 635 if (clock.m2 >= clock.m1)
42158660
ZY
636 break;
637 for (clock.n = limit->n.min;
638 clock.n <= limit->n.max; clock.n++) {
639 for (clock.p1 = limit->p1.min;
640 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
641 int this_err;
642
ac58c3f0
DV
643 i9xx_clock(refclk, &clock);
644 if (!intel_PLL_is_valid(dev, limit,
645 &clock))
646 continue;
647 if (match_clock &&
648 clock.p != match_clock->p)
649 continue;
650
651 this_err = abs(clock.dot - target);
652 if (this_err < err) {
653 *best_clock = clock;
654 err = this_err;
655 }
656 }
657 }
658 }
659 }
660
661 return (err != target);
662}
663
664static bool
a919ff14 665pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
666 int target, int refclk, intel_clock_t *match_clock,
667 intel_clock_t *best_clock)
79e53945 668{
a919ff14 669 struct drm_device *dev = crtc->base.dev;
79e53945 670 intel_clock_t clock;
79e53945
JB
671 int err = target;
672
d0737e1d 673 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 674 /*
a210b028
DV
675 * For LVDS just rely on its current settings for dual-channel.
676 * We haven't figured out how to reliably set up different
677 * single/dual channel state, if we even can.
79e53945 678 */
1974cad0 679 if (intel_is_dual_link_lvds(dev))
79e53945
JB
680 clock.p2 = limit->p2.p2_fast;
681 else
682 clock.p2 = limit->p2.p2_slow;
683 } else {
684 if (target < limit->p2.dot_limit)
685 clock.p2 = limit->p2.p2_slow;
686 else
687 clock.p2 = limit->p2.p2_fast;
688 }
689
0206e353 690 memset(best_clock, 0, sizeof(*best_clock));
79e53945 691
42158660
ZY
692 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
693 clock.m1++) {
694 for (clock.m2 = limit->m2.min;
695 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
696 for (clock.n = limit->n.min;
697 clock.n <= limit->n.max; clock.n++) {
698 for (clock.p1 = limit->p1.min;
699 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
700 int this_err;
701
ac58c3f0 702 pineview_clock(refclk, &clock);
1b894b59
CW
703 if (!intel_PLL_is_valid(dev, limit,
704 &clock))
79e53945 705 continue;
cec2f356
SP
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
79e53945
JB
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721}
722
d4906093 723static bool
a919ff14 724g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
725 int target, int refclk, intel_clock_t *match_clock,
726 intel_clock_t *best_clock)
d4906093 727{
a919ff14 728 struct drm_device *dev = crtc->base.dev;
d4906093
ML
729 intel_clock_t clock;
730 int max_n;
731 bool found;
6ba770dc
AJ
732 /* approximately equals target * 0.00585 */
733 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
734 found = false;
735
d0737e1d 736 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 737 if (intel_is_dual_link_lvds(dev))
d4906093
ML
738 clock.p2 = limit->p2.p2_fast;
739 else
740 clock.p2 = limit->p2.p2_slow;
741 } else {
742 if (target < limit->p2.dot_limit)
743 clock.p2 = limit->p2.p2_slow;
744 else
745 clock.p2 = limit->p2.p2_fast;
746 }
747
748 memset(best_clock, 0, sizeof(*best_clock));
749 max_n = limit->n.max;
f77f13e2 750 /* based on hardware requirement, prefer smaller n to precision */
d4906093 751 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 752 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
753 for (clock.m1 = limit->m1.max;
754 clock.m1 >= limit->m1.min; clock.m1--) {
755 for (clock.m2 = limit->m2.max;
756 clock.m2 >= limit->m2.min; clock.m2--) {
757 for (clock.p1 = limit->p1.max;
758 clock.p1 >= limit->p1.min; clock.p1--) {
759 int this_err;
760
ac58c3f0 761 i9xx_clock(refclk, &clock);
1b894b59
CW
762 if (!intel_PLL_is_valid(dev, limit,
763 &clock))
d4906093 764 continue;
1b894b59
CW
765
766 this_err = abs(clock.dot - target);
d4906093
ML
767 if (this_err < err_most) {
768 *best_clock = clock;
769 err_most = this_err;
770 max_n = clock.n;
771 found = true;
772 }
773 }
774 }
775 }
776 }
2c07245f
ZW
777 return found;
778}
779
d5dd62bd
ID
780/*
781 * Check if the calculated PLL configuration is more optimal compared to the
782 * best configuration and error found so far. Return the calculated error.
783 */
784static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
785 const intel_clock_t *calculated_clock,
786 const intel_clock_t *best_clock,
787 unsigned int best_error_ppm,
788 unsigned int *error_ppm)
789{
9ca3ba01
ID
790 /*
791 * For CHV ignore the error and consider only the P value.
792 * Prefer a bigger P value based on HW requirements.
793 */
794 if (IS_CHERRYVIEW(dev)) {
795 *error_ppm = 0;
796
797 return calculated_clock->p > best_clock->p;
798 }
799
24be4e46
ID
800 if (WARN_ON_ONCE(!target_freq))
801 return false;
802
d5dd62bd
ID
803 *error_ppm = div_u64(1000000ULL *
804 abs(target_freq - calculated_clock->dot),
805 target_freq);
806 /*
807 * Prefer a better P value over a better (smaller) error if the error
808 * is small. Ensure this preference for future configurations too by
809 * setting the error to 0.
810 */
811 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
812 *error_ppm = 0;
813
814 return true;
815 }
816
817 return *error_ppm + 10 < best_error_ppm;
818}
819
a0c4da24 820static bool
a919ff14 821vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
822 int target, int refclk, intel_clock_t *match_clock,
823 intel_clock_t *best_clock)
a0c4da24 824{
a919ff14 825 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 826 intel_clock_t clock;
69e4f900 827 unsigned int bestppm = 1000000;
27e639bf
VS
828 /* min update 19.2 MHz */
829 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 830 bool found = false;
a0c4da24 831
6b4bf1c4
VS
832 target *= 5; /* fast clock */
833
834 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
835
836 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 837 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 838 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 839 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 841 clock.p = clock.p1 * clock.p2;
a0c4da24 842 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 843 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 844 unsigned int ppm;
69e4f900 845
6b4bf1c4
VS
846 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
847 refclk * clock.m1);
848
849 vlv_clock(refclk, &clock);
43b0ac53 850
f01b7962
VS
851 if (!intel_PLL_is_valid(dev, limit,
852 &clock))
43b0ac53
VS
853 continue;
854
d5dd62bd
ID
855 if (!vlv_PLL_is_optimal(dev, target,
856 &clock,
857 best_clock,
858 bestppm, &ppm))
859 continue;
6b4bf1c4 860
d5dd62bd
ID
861 *best_clock = clock;
862 bestppm = ppm;
863 found = true;
a0c4da24
JB
864 }
865 }
866 }
867 }
a0c4da24 868
49e497ef 869 return found;
a0c4da24 870}
a4fc5ed6 871
ef9348c8 872static bool
a919ff14 873chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
874 int target, int refclk, intel_clock_t *match_clock,
875 intel_clock_t *best_clock)
876{
a919ff14 877 struct drm_device *dev = crtc->base.dev;
9ca3ba01 878 unsigned int best_error_ppm;
ef9348c8
CML
879 intel_clock_t clock;
880 uint64_t m2;
881 int found = false;
882
883 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 884 best_error_ppm = 1000000;
ef9348c8
CML
885
886 /*
887 * Based on hardware doc, the n always set to 1, and m1 always
888 * set to 2. If requires to support 200Mhz refclk, we need to
889 * revisit this because n may not 1 anymore.
890 */
891 clock.n = 1, clock.m1 = 2;
892 target *= 5; /* fast clock */
893
894 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895 for (clock.p2 = limit->p2.p2_fast;
896 clock.p2 >= limit->p2.p2_slow;
897 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 898 unsigned int error_ppm;
ef9348c8
CML
899
900 clock.p = clock.p1 * clock.p2;
901
902 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
903 clock.n) << 22, refclk * clock.m1);
904
905 if (m2 > INT_MAX/clock.m1)
906 continue;
907
908 clock.m2 = m2;
909
910 chv_clock(refclk, &clock);
911
912 if (!intel_PLL_is_valid(dev, limit, &clock))
913 continue;
914
9ca3ba01
ID
915 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
916 best_error_ppm, &error_ppm))
917 continue;
918
919 *best_clock = clock;
920 best_error_ppm = error_ppm;
921 found = true;
ef9348c8
CML
922 }
923 }
924
925 return found;
926}
927
20ddf665
VS
928bool intel_crtc_active(struct drm_crtc *crtc)
929{
930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
931
932 /* Be paranoid as we can arrive here with only partial
933 * state retrieved from the hardware during setup.
934 *
241bfc38 935 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
936 * as Haswell has gained clock readout/fastboot support.
937 *
66e514c1 938 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 939 * properly reconstruct framebuffers.
c3d1f436
MR
940 *
941 * FIXME: The intel_crtc->active here should be switched to
942 * crtc->state->active once we have proper CRTC states wired up
943 * for atomic.
20ddf665 944 */
c3d1f436 945 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 946 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
947}
948
a5c961d1
PZ
949enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
950 enum pipe pipe)
951{
952 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
954
6e3c9717 955 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
956}
957
fbf49ea2
VS
958static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
959{
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 reg = PIPEDSL(pipe);
962 u32 line1, line2;
963 u32 line_mask;
964
965 if (IS_GEN2(dev))
966 line_mask = DSL_LINEMASK_GEN2;
967 else
968 line_mask = DSL_LINEMASK_GEN3;
969
970 line1 = I915_READ(reg) & line_mask;
971 mdelay(5);
972 line2 = I915_READ(reg) & line_mask;
973
974 return line1 == line2;
975}
976
ab7ad7f6
KP
977/*
978 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 979 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
980 *
981 * After disabling a pipe, we can't wait for vblank in the usual way,
982 * spinning on the vblank interrupt status bit, since we won't actually
983 * see an interrupt when the pipe is disabled.
984 *
ab7ad7f6
KP
985 * On Gen4 and above:
986 * wait for the pipe register state bit to turn off
987 *
988 * Otherwise:
989 * wait for the display line value to settle (it usually
990 * ends up stopping at the start of the next frame).
58e10eb9 991 *
9d0498a2 992 */
575f7ab7 993static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 994{
575f7ab7 995 struct drm_device *dev = crtc->base.dev;
9d0498a2 996 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 997 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 998 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
999
1000 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1001 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1002
1003 /* Wait for the Pipe State to go off */
58e10eb9
CW
1004 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1005 100))
284637d9 1006 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1007 } else {
ab7ad7f6 1008 /* Wait for the display line to settle */
fbf49ea2 1009 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1010 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1011 }
79e53945
JB
1012}
1013
b0ea7d37
DL
1014/*
1015 * ibx_digital_port_connected - is the specified port connected?
1016 * @dev_priv: i915 private structure
1017 * @port: the port to test
1018 *
1019 * Returns true if @port is connected, false otherwise.
1020 */
1021bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1022 struct intel_digital_port *port)
1023{
1024 u32 bit;
1025
c36346e3 1026 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1027 switch (port->port) {
c36346e3
DL
1028 case PORT_B:
1029 bit = SDE_PORTB_HOTPLUG;
1030 break;
1031 case PORT_C:
1032 bit = SDE_PORTC_HOTPLUG;
1033 break;
1034 case PORT_D:
1035 bit = SDE_PORTD_HOTPLUG;
1036 break;
1037 default:
1038 return true;
1039 }
1040 } else {
eba905b2 1041 switch (port->port) {
c36346e3
DL
1042 case PORT_B:
1043 bit = SDE_PORTB_HOTPLUG_CPT;
1044 break;
1045 case PORT_C:
1046 bit = SDE_PORTC_HOTPLUG_CPT;
1047 break;
1048 case PORT_D:
1049 bit = SDE_PORTD_HOTPLUG_CPT;
1050 break;
1051 default:
1052 return true;
1053 }
b0ea7d37
DL
1054 }
1055
1056 return I915_READ(SDEISR) & bit;
1057}
1058
b24e7179
JB
1059static const char *state_string(bool enabled)
1060{
1061 return enabled ? "on" : "off";
1062}
1063
1064/* Only for pre-ILK configs */
55607e8a
DV
1065void assert_pll(struct drm_i915_private *dev_priv,
1066 enum pipe pipe, bool state)
b24e7179
JB
1067{
1068 int reg;
1069 u32 val;
1070 bool cur_state;
1071
1072 reg = DPLL(pipe);
1073 val = I915_READ(reg);
1074 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1075 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1076 "PLL state assertion failure (expected %s, current %s)\n",
1077 state_string(state), state_string(cur_state));
1078}
b24e7179 1079
23538ef1
JN
1080/* XXX: the dsi pll is shared between MIPI DSI ports */
1081static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1082{
1083 u32 val;
1084 bool cur_state;
1085
1086 mutex_lock(&dev_priv->dpio_lock);
1087 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1088 mutex_unlock(&dev_priv->dpio_lock);
1089
1090 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1091 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1092 "DSI PLL state assertion failure (expected %s, current %s)\n",
1093 state_string(state), state_string(cur_state));
1094}
1095#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1096#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1097
55607e8a 1098struct intel_shared_dpll *
e2b78267
DV
1099intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1100{
1101 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1102
6e3c9717 1103 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1104 return NULL;
1105
6e3c9717 1106 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1107}
1108
040484af 1109/* For ILK+ */
55607e8a
DV
1110void assert_shared_dpll(struct drm_i915_private *dev_priv,
1111 struct intel_shared_dpll *pll,
1112 bool state)
040484af 1113{
040484af 1114 bool cur_state;
5358901f 1115 struct intel_dpll_hw_state hw_state;
040484af 1116
92b27b08 1117 if (WARN (!pll,
46edb027 1118 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1119 return;
ee7b9f93 1120
5358901f 1121 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1122 I915_STATE_WARN(cur_state != state,
5358901f
DV
1123 "%s assertion failure (expected %s, current %s)\n",
1124 pll->name, state_string(state), state_string(cur_state));
040484af 1125}
040484af
JB
1126
1127static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1128 enum pipe pipe, bool state)
1129{
1130 int reg;
1131 u32 val;
1132 bool cur_state;
ad80a810
PZ
1133 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1134 pipe);
040484af 1135
affa9354
PZ
1136 if (HAS_DDI(dev_priv->dev)) {
1137 /* DDI does not have a specific FDI_TX register */
ad80a810 1138 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1139 val = I915_READ(reg);
ad80a810 1140 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1141 } else {
1142 reg = FDI_TX_CTL(pipe);
1143 val = I915_READ(reg);
1144 cur_state = !!(val & FDI_TX_ENABLE);
1145 }
e2c719b7 1146 I915_STATE_WARN(cur_state != state,
040484af
JB
1147 "FDI TX state assertion failure (expected %s, current %s)\n",
1148 state_string(state), state_string(cur_state));
1149}
1150#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1151#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1152
1153static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1154 enum pipe pipe, bool state)
1155{
1156 int reg;
1157 u32 val;
1158 bool cur_state;
1159
d63fa0dc
PZ
1160 reg = FDI_RX_CTL(pipe);
1161 val = I915_READ(reg);
1162 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1163 I915_STATE_WARN(cur_state != state,
040484af
JB
1164 "FDI RX state assertion failure (expected %s, current %s)\n",
1165 state_string(state), state_string(cur_state));
1166}
1167#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1168#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1169
1170static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1171 enum pipe pipe)
1172{
1173 int reg;
1174 u32 val;
1175
1176 /* ILK FDI PLL is always enabled */
3d13ef2e 1177 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1178 return;
1179
bf507ef7 1180 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1181 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1182 return;
1183
040484af
JB
1184 reg = FDI_TX_CTL(pipe);
1185 val = I915_READ(reg);
e2c719b7 1186 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1187}
1188
55607e8a
DV
1189void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1190 enum pipe pipe, bool state)
040484af
JB
1191{
1192 int reg;
1193 u32 val;
55607e8a 1194 bool cur_state;
040484af
JB
1195
1196 reg = FDI_RX_CTL(pipe);
1197 val = I915_READ(reg);
55607e8a 1198 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1199 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1200 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1201 state_string(state), state_string(cur_state));
040484af
JB
1202}
1203
b680c37a
DV
1204void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1205 enum pipe pipe)
ea0760cf 1206{
bedd4dba
JN
1207 struct drm_device *dev = dev_priv->dev;
1208 int pp_reg;
ea0760cf
JB
1209 u32 val;
1210 enum pipe panel_pipe = PIPE_A;
0de3b485 1211 bool locked = true;
ea0760cf 1212
bedd4dba
JN
1213 if (WARN_ON(HAS_DDI(dev)))
1214 return;
1215
1216 if (HAS_PCH_SPLIT(dev)) {
1217 u32 port_sel;
1218
ea0760cf 1219 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1220 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1221
1222 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1223 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
1225 /* XXX: else fix for eDP */
1226 } else if (IS_VALLEYVIEW(dev)) {
1227 /* presumably write lock depends on pipe, not port select */
1228 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1229 panel_pipe = pipe;
ea0760cf
JB
1230 } else {
1231 pp_reg = PP_CONTROL;
bedd4dba
JN
1232 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1233 panel_pipe = PIPE_B;
ea0760cf
JB
1234 }
1235
1236 val = I915_READ(pp_reg);
1237 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1238 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1239 locked = false;
1240
e2c719b7 1241 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1242 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1243 pipe_name(pipe));
ea0760cf
JB
1244}
1245
93ce0ba6
JN
1246static void assert_cursor(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, bool state)
1248{
1249 struct drm_device *dev = dev_priv->dev;
1250 bool cur_state;
1251
d9d82081 1252 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1253 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1254 else
5efb3e28 1255 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1256
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1258 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1259 pipe_name(pipe), state_string(state), state_string(cur_state));
1260}
1261#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1262#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1263
b840d907
JB
1264void assert_pipe(struct drm_i915_private *dev_priv,
1265 enum pipe pipe, bool state)
b24e7179
JB
1266{
1267 int reg;
1268 u32 val;
63d7bbe9 1269 bool cur_state;
702e7a56
PZ
1270 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1271 pipe);
b24e7179 1272
b6b5d049
VS
1273 /* if we need the pipe quirk it must be always on */
1274 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1275 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1276 state = true;
1277
f458ebbc 1278 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1279 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1280 cur_state = false;
1281 } else {
1282 reg = PIPECONF(cpu_transcoder);
1283 val = I915_READ(reg);
1284 cur_state = !!(val & PIPECONF_ENABLE);
1285 }
1286
e2c719b7 1287 I915_STATE_WARN(cur_state != state,
63d7bbe9 1288 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1289 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1290}
1291
931872fc
CW
1292static void assert_plane(struct drm_i915_private *dev_priv,
1293 enum plane plane, bool state)
b24e7179
JB
1294{
1295 int reg;
1296 u32 val;
931872fc 1297 bool cur_state;
b24e7179
JB
1298
1299 reg = DSPCNTR(plane);
1300 val = I915_READ(reg);
931872fc 1301 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1302 I915_STATE_WARN(cur_state != state,
931872fc
CW
1303 "plane %c assertion failure (expected %s, current %s)\n",
1304 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1305}
1306
931872fc
CW
1307#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1308#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1309
b24e7179
JB
1310static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312{
653e1026 1313 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1314 int reg, i;
1315 u32 val;
1316 int cur_pipe;
1317
653e1026
VS
1318 /* Primary planes are fixed to pipes on gen4+ */
1319 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1320 reg = DSPCNTR(pipe);
1321 val = I915_READ(reg);
e2c719b7 1322 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1323 "plane %c assertion failure, should be disabled but not\n",
1324 plane_name(pipe));
19ec1358 1325 return;
28c05794 1326 }
19ec1358 1327
b24e7179 1328 /* Need to check both planes against the pipe */
055e393f 1329 for_each_pipe(dev_priv, i) {
b24e7179
JB
1330 reg = DSPCNTR(i);
1331 val = I915_READ(reg);
1332 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1333 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1334 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1335 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1336 plane_name(i), pipe_name(pipe));
b24e7179
JB
1337 }
1338}
1339
19332d7a
JB
1340static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe)
1342{
20674eef 1343 struct drm_device *dev = dev_priv->dev;
1fe47785 1344 int reg, sprite;
19332d7a
JB
1345 u32 val;
1346
7feb8b88 1347 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1348 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1349 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1350 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1351 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1352 sprite, pipe_name(pipe));
1353 }
1354 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1355 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1356 reg = SPCNTR(pipe, sprite);
20674eef 1357 val = I915_READ(reg);
e2c719b7 1358 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1359 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1360 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1361 }
1362 } else if (INTEL_INFO(dev)->gen >= 7) {
1363 reg = SPRCTL(pipe);
19332d7a 1364 val = I915_READ(reg);
e2c719b7 1365 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1366 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1367 plane_name(pipe), pipe_name(pipe));
1368 } else if (INTEL_INFO(dev)->gen >= 5) {
1369 reg = DVSCNTR(pipe);
19332d7a 1370 val = I915_READ(reg);
e2c719b7 1371 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1372 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1373 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1374 }
1375}
1376
08c71e5e
VS
1377static void assert_vblank_disabled(struct drm_crtc *crtc)
1378{
e2c719b7 1379 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1380 drm_crtc_vblank_put(crtc);
1381}
1382
89eff4be 1383static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1384{
1385 u32 val;
1386 bool enabled;
1387
e2c719b7 1388 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1389
92f2584a
JB
1390 val = I915_READ(PCH_DREF_CONTROL);
1391 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1392 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1393 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1394}
1395
ab9412ba
DV
1396static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe)
92f2584a
JB
1398{
1399 int reg;
1400 u32 val;
1401 bool enabled;
1402
ab9412ba 1403 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1404 val = I915_READ(reg);
1405 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1406 I915_STATE_WARN(enabled,
9db4a9c7
JB
1407 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1408 pipe_name(pipe));
92f2584a
JB
1409}
1410
4e634389
KP
1411static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1413{
1414 if ((val & DP_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv->dev)) {
1418 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1419 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1420 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421 return false;
44f37d1f
CML
1422 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1423 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424 return false;
f0575e92
KP
1425 } else {
1426 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427 return false;
1428 }
1429 return true;
1430}
1431
1519b995
KP
1432static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433 enum pipe pipe, u32 val)
1434{
dc0fa718 1435 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1436 return false;
1437
1438 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1439 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1440 return false;
44f37d1f
CML
1441 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1442 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443 return false;
1519b995 1444 } else {
dc0fa718 1445 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1446 return false;
1447 }
1448 return true;
1449}
1450
1451static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453{
1454 if ((val & LVDS_PORT_EN) == 0)
1455 return false;
1456
1457 if (HAS_PCH_CPT(dev_priv->dev)) {
1458 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459 return false;
1460 } else {
1461 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462 return false;
1463 }
1464 return true;
1465}
1466
1467static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468 enum pipe pipe, u32 val)
1469{
1470 if ((val & ADPA_DAC_ENABLE) == 0)
1471 return false;
1472 if (HAS_PCH_CPT(dev_priv->dev)) {
1473 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474 return false;
1475 } else {
1476 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477 return false;
1478 }
1479 return true;
1480}
1481
291906f1 1482static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1483 enum pipe pipe, int reg, u32 port_sel)
291906f1 1484{
47a05eca 1485 u32 val = I915_READ(reg);
e2c719b7 1486 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1487 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1488 reg, pipe_name(pipe));
de9a35ab 1489
e2c719b7 1490 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1491 && (val & DP_PIPEB_SELECT),
de9a35ab 1492 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1493}
1494
1495static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, int reg)
1497{
47a05eca 1498 u32 val = I915_READ(reg);
e2c719b7 1499 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1500 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1501 reg, pipe_name(pipe));
de9a35ab 1502
e2c719b7 1503 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1504 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1505 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1506}
1507
1508static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe)
1510{
1511 int reg;
1512 u32 val;
291906f1 1513
f0575e92
KP
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1517
1518 reg = PCH_ADPA;
1519 val = I915_READ(reg);
e2c719b7 1520 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1521 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1522 pipe_name(pipe));
291906f1
JB
1523
1524 reg = PCH_LVDS;
1525 val = I915_READ(reg);
e2c719b7 1526 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1527 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1528 pipe_name(pipe));
291906f1 1529
e2debe91
PZ
1530 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1531 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1532 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1533}
1534
40e9cf64
JB
1535static void intel_init_dpio(struct drm_device *dev)
1536{
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538
1539 if (!IS_VALLEYVIEW(dev))
1540 return;
1541
a09caddd
CML
1542 /*
1543 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1544 * CHV x1 PHY (DP/HDMI D)
1545 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1546 */
1547 if (IS_CHERRYVIEW(dev)) {
1548 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1549 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1550 } else {
1551 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1552 }
5382f5f3
JB
1553}
1554
d288f65f 1555static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1556 const struct intel_crtc_state *pipe_config)
87442f73 1557{
426115cf
DV
1558 struct drm_device *dev = crtc->base.dev;
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560 int reg = DPLL(crtc->pipe);
d288f65f 1561 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1562
426115cf 1563 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1564
1565 /* No really, not for ILK+ */
1566 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1567
1568 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1569 if (IS_MOBILE(dev_priv->dev))
426115cf 1570 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1571
426115cf
DV
1572 I915_WRITE(reg, dpll);
1573 POSTING_READ(reg);
1574 udelay(150);
1575
1576 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1577 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1578
d288f65f 1579 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1580 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1581
1582 /* We do this three times for luck */
426115cf 1583 I915_WRITE(reg, dpll);
87442f73
DV
1584 POSTING_READ(reg);
1585 udelay(150); /* wait for warmup */
426115cf 1586 I915_WRITE(reg, dpll);
87442f73
DV
1587 POSTING_READ(reg);
1588 udelay(150); /* wait for warmup */
426115cf 1589 I915_WRITE(reg, dpll);
87442f73
DV
1590 POSTING_READ(reg);
1591 udelay(150); /* wait for warmup */
1592}
1593
d288f65f 1594static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1595 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1596{
1597 struct drm_device *dev = crtc->base.dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 int pipe = crtc->pipe;
1600 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1601 u32 tmp;
1602
1603 assert_pipe_disabled(dev_priv, crtc->pipe);
1604
1605 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1606
1607 mutex_lock(&dev_priv->dpio_lock);
1608
1609 /* Enable back the 10bit clock to display controller */
1610 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1611 tmp |= DPIO_DCLKP_EN;
1612 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1613
1614 /*
1615 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1616 */
1617 udelay(1);
1618
1619 /* Enable PLL */
d288f65f 1620 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1621
1622 /* Check PLL is locked */
a11b0703 1623 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1624 DRM_ERROR("PLL %d failed to lock\n", pipe);
1625
a11b0703 1626 /* not sure when this should be written */
d288f65f 1627 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1628 POSTING_READ(DPLL_MD(pipe));
1629
9d556c99
CML
1630 mutex_unlock(&dev_priv->dpio_lock);
1631}
1632
1c4e0274
VS
1633static int intel_num_dvo_pipes(struct drm_device *dev)
1634{
1635 struct intel_crtc *crtc;
1636 int count = 0;
1637
1638 for_each_intel_crtc(dev, crtc)
1639 count += crtc->active &&
409ee761 1640 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1641
1642 return count;
1643}
1644
66e3d5c0 1645static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1646{
66e3d5c0
DV
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int reg = DPLL(crtc->pipe);
6e3c9717 1650 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1651
66e3d5c0 1652 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1653
63d7bbe9 1654 /* No really, not for ILK+ */
3d13ef2e 1655 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1656
1657 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1658 if (IS_MOBILE(dev) && !IS_I830(dev))
1659 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1660
1c4e0274
VS
1661 /* Enable DVO 2x clock on both PLLs if necessary */
1662 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1663 /*
1664 * It appears to be important that we don't enable this
1665 * for the current pipe before otherwise configuring the
1666 * PLL. No idea how this should be handled if multiple
1667 * DVO outputs are enabled simultaneosly.
1668 */
1669 dpll |= DPLL_DVO_2X_MODE;
1670 I915_WRITE(DPLL(!crtc->pipe),
1671 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1672 }
66e3d5c0
DV
1673
1674 /* Wait for the clocks to stabilize. */
1675 POSTING_READ(reg);
1676 udelay(150);
1677
1678 if (INTEL_INFO(dev)->gen >= 4) {
1679 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1680 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1681 } else {
1682 /* The pixel multiplier can only be updated once the
1683 * DPLL is enabled and the clocks are stable.
1684 *
1685 * So write it again.
1686 */
1687 I915_WRITE(reg, dpll);
1688 }
63d7bbe9
JB
1689
1690 /* We do this three times for luck */
66e3d5c0 1691 I915_WRITE(reg, dpll);
63d7bbe9
JB
1692 POSTING_READ(reg);
1693 udelay(150); /* wait for warmup */
66e3d5c0 1694 I915_WRITE(reg, dpll);
63d7bbe9
JB
1695 POSTING_READ(reg);
1696 udelay(150); /* wait for warmup */
66e3d5c0 1697 I915_WRITE(reg, dpll);
63d7bbe9
JB
1698 POSTING_READ(reg);
1699 udelay(150); /* wait for warmup */
1700}
1701
1702/**
50b44a44 1703 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1704 * @dev_priv: i915 private structure
1705 * @pipe: pipe PLL to disable
1706 *
1707 * Disable the PLL for @pipe, making sure the pipe is off first.
1708 *
1709 * Note! This is for pre-ILK only.
1710 */
1c4e0274 1711static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1712{
1c4e0274
VS
1713 struct drm_device *dev = crtc->base.dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 enum pipe pipe = crtc->pipe;
1716
1717 /* Disable DVO 2x clock on both PLLs if necessary */
1718 if (IS_I830(dev) &&
409ee761 1719 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1720 intel_num_dvo_pipes(dev) == 1) {
1721 I915_WRITE(DPLL(PIPE_B),
1722 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1723 I915_WRITE(DPLL(PIPE_A),
1724 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1725 }
1726
b6b5d049
VS
1727 /* Don't disable pipe or pipe PLLs if needed */
1728 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1729 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1730 return;
1731
1732 /* Make sure the pipe isn't still relying on us */
1733 assert_pipe_disabled(dev_priv, pipe);
1734
50b44a44
DV
1735 I915_WRITE(DPLL(pipe), 0);
1736 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1737}
1738
f6071166
JB
1739static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740{
1741 u32 val = 0;
1742
1743 /* Make sure the pipe isn't still relying on us */
1744 assert_pipe_disabled(dev_priv, pipe);
1745
e5cbfbfb
ID
1746 /*
1747 * Leave integrated clock source and reference clock enabled for pipe B.
1748 * The latter is needed for VGA hotplug / manual detection.
1749 */
f6071166 1750 if (pipe == PIPE_B)
e5cbfbfb 1751 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1752 I915_WRITE(DPLL(pipe), val);
1753 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1754
1755}
1756
1757static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1758{
d752048d 1759 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1760 u32 val;
1761
a11b0703
VS
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1764
a11b0703 1765 /* Set PLL en = 0 */
d17ec4ce 1766 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1767 if (pipe != PIPE_A)
1768 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1769 I915_WRITE(DPLL(pipe), val);
1770 POSTING_READ(DPLL(pipe));
d752048d
VS
1771
1772 mutex_lock(&dev_priv->dpio_lock);
1773
1774 /* Disable 10bit clock to display controller */
1775 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1776 val &= ~DPIO_DCLKP_EN;
1777 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1778
61407f6d
VS
1779 /* disable left/right clock distribution */
1780 if (pipe != PIPE_B) {
1781 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1782 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1783 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1784 } else {
1785 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1786 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1787 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1788 }
1789
d752048d 1790 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1791}
1792
e4607fcf
CML
1793void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1794 struct intel_digital_port *dport)
89b667f8
JB
1795{
1796 u32 port_mask;
00fc31b7 1797 int dpll_reg;
89b667f8 1798
e4607fcf
CML
1799 switch (dport->port) {
1800 case PORT_B:
89b667f8 1801 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1802 dpll_reg = DPLL(0);
e4607fcf
CML
1803 break;
1804 case PORT_C:
89b667f8 1805 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1806 dpll_reg = DPLL(0);
1807 break;
1808 case PORT_D:
1809 port_mask = DPLL_PORTD_READY_MASK;
1810 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1811 break;
1812 default:
1813 BUG();
1814 }
89b667f8 1815
00fc31b7 1816 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1817 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1818 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1819}
1820
b14b1055
DV
1821static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1822{
1823 struct drm_device *dev = crtc->base.dev;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1826
be19f0ff
CW
1827 if (WARN_ON(pll == NULL))
1828 return;
1829
3e369b76 1830 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1831 if (pll->active == 0) {
1832 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1833 WARN_ON(pll->on);
1834 assert_shared_dpll_disabled(dev_priv, pll);
1835
1836 pll->mode_set(dev_priv, pll);
1837 }
1838}
1839
92f2584a 1840/**
85b3894f 1841 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1842 * @dev_priv: i915 private structure
1843 * @pipe: pipe PLL to enable
1844 *
1845 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1846 * drives the transcoder clock.
1847 */
85b3894f 1848static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1849{
3d13ef2e
DL
1850 struct drm_device *dev = crtc->base.dev;
1851 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1852 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1853
87a875bb 1854 if (WARN_ON(pll == NULL))
48da64a8
CW
1855 return;
1856
3e369b76 1857 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1858 return;
ee7b9f93 1859
74dd6928 1860 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1861 pll->name, pll->active, pll->on,
e2b78267 1862 crtc->base.base.id);
92f2584a 1863
cdbd2316
DV
1864 if (pll->active++) {
1865 WARN_ON(!pll->on);
e9d6944e 1866 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1867 return;
1868 }
f4a091c7 1869 WARN_ON(pll->on);
ee7b9f93 1870
bd2bb1b9
PZ
1871 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1872
46edb027 1873 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1874 pll->enable(dev_priv, pll);
ee7b9f93 1875 pll->on = true;
92f2584a
JB
1876}
1877
f6daaec2 1878static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1879{
3d13ef2e
DL
1880 struct drm_device *dev = crtc->base.dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1882 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1883
92f2584a 1884 /* PCH only available on ILK+ */
3d13ef2e 1885 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1886 if (WARN_ON(pll == NULL))
ee7b9f93 1887 return;
92f2584a 1888
3e369b76 1889 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1890 return;
7a419866 1891
46edb027
DV
1892 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1893 pll->name, pll->active, pll->on,
e2b78267 1894 crtc->base.base.id);
7a419866 1895
48da64a8 1896 if (WARN_ON(pll->active == 0)) {
e9d6944e 1897 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1898 return;
1899 }
1900
e9d6944e 1901 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1902 WARN_ON(!pll->on);
cdbd2316 1903 if (--pll->active)
7a419866 1904 return;
ee7b9f93 1905
46edb027 1906 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1907 pll->disable(dev_priv, pll);
ee7b9f93 1908 pll->on = false;
bd2bb1b9
PZ
1909
1910 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1911}
1912
b8a4f404
PZ
1913static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1914 enum pipe pipe)
040484af 1915{
23670b32 1916 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1917 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1919 uint32_t reg, val, pipeconf_val;
040484af
JB
1920
1921 /* PCH only available on ILK+ */
55522f37 1922 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1923
1924 /* Make sure PCH DPLL is enabled */
e72f9fbf 1925 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1926 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1927
1928 /* FDI must be feeding us bits for PCH ports */
1929 assert_fdi_tx_enabled(dev_priv, pipe);
1930 assert_fdi_rx_enabled(dev_priv, pipe);
1931
23670b32
DV
1932 if (HAS_PCH_CPT(dev)) {
1933 /* Workaround: Set the timing override bit before enabling the
1934 * pch transcoder. */
1935 reg = TRANS_CHICKEN2(pipe);
1936 val = I915_READ(reg);
1937 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1938 I915_WRITE(reg, val);
59c859d6 1939 }
23670b32 1940
ab9412ba 1941 reg = PCH_TRANSCONF(pipe);
040484af 1942 val = I915_READ(reg);
5f7f726d 1943 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1944
1945 if (HAS_PCH_IBX(dev_priv->dev)) {
1946 /*
1947 * make the BPC in transcoder be consistent with
1948 * that in pipeconf reg.
1949 */
dfd07d72
DV
1950 val &= ~PIPECONF_BPC_MASK;
1951 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1952 }
5f7f726d
PZ
1953
1954 val &= ~TRANS_INTERLACE_MASK;
1955 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1956 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1957 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1958 val |= TRANS_LEGACY_INTERLACED_ILK;
1959 else
1960 val |= TRANS_INTERLACED;
5f7f726d
PZ
1961 else
1962 val |= TRANS_PROGRESSIVE;
1963
040484af
JB
1964 I915_WRITE(reg, val | TRANS_ENABLE);
1965 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1966 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1967}
1968
8fb033d7 1969static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1970 enum transcoder cpu_transcoder)
040484af 1971{
8fb033d7 1972 u32 val, pipeconf_val;
8fb033d7
PZ
1973
1974 /* PCH only available on ILK+ */
55522f37 1975 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1976
8fb033d7 1977 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1978 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1979 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1980
223a6fdf
PZ
1981 /* Workaround: set timing override bit. */
1982 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1983 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1984 I915_WRITE(_TRANSA_CHICKEN2, val);
1985
25f3ef11 1986 val = TRANS_ENABLE;
937bb610 1987 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1988
9a76b1c6
PZ
1989 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1990 PIPECONF_INTERLACED_ILK)
a35f2679 1991 val |= TRANS_INTERLACED;
8fb033d7
PZ
1992 else
1993 val |= TRANS_PROGRESSIVE;
1994
ab9412ba
DV
1995 I915_WRITE(LPT_TRANSCONF, val);
1996 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1997 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1998}
1999
b8a4f404
PZ
2000static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2001 enum pipe pipe)
040484af 2002{
23670b32
DV
2003 struct drm_device *dev = dev_priv->dev;
2004 uint32_t reg, val;
040484af
JB
2005
2006 /* FDI relies on the transcoder */
2007 assert_fdi_tx_disabled(dev_priv, pipe);
2008 assert_fdi_rx_disabled(dev_priv, pipe);
2009
291906f1
JB
2010 /* Ports must be off as well */
2011 assert_pch_ports_disabled(dev_priv, pipe);
2012
ab9412ba 2013 reg = PCH_TRANSCONF(pipe);
040484af
JB
2014 val = I915_READ(reg);
2015 val &= ~TRANS_ENABLE;
2016 I915_WRITE(reg, val);
2017 /* wait for PCH transcoder off, transcoder state */
2018 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2019 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2020
2021 if (!HAS_PCH_IBX(dev)) {
2022 /* Workaround: Clear the timing override chicken bit again. */
2023 reg = TRANS_CHICKEN2(pipe);
2024 val = I915_READ(reg);
2025 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026 I915_WRITE(reg, val);
2027 }
040484af
JB
2028}
2029
ab4d966c 2030static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2031{
8fb033d7
PZ
2032 u32 val;
2033
ab9412ba 2034 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2035 val &= ~TRANS_ENABLE;
ab9412ba 2036 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2037 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2038 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2039 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2040
2041 /* Workaround: clear timing override bit. */
2042 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2043 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2044 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2045}
2046
b24e7179 2047/**
309cfea8 2048 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2049 * @crtc: crtc responsible for the pipe
b24e7179 2050 *
0372264a 2051 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2052 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2053 */
e1fdc473 2054static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2055{
0372264a
PZ
2056 struct drm_device *dev = crtc->base.dev;
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2059 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2060 pipe);
1a240d4d 2061 enum pipe pch_transcoder;
b24e7179
JB
2062 int reg;
2063 u32 val;
2064
58c6eaa2 2065 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2066 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2067 assert_sprites_disabled(dev_priv, pipe);
2068
681e5811 2069 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2070 pch_transcoder = TRANSCODER_A;
2071 else
2072 pch_transcoder = pipe;
2073
b24e7179
JB
2074 /*
2075 * A pipe without a PLL won't actually be able to drive bits from
2076 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2077 * need the check.
2078 */
2079 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2080 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2081 assert_dsi_pll_enabled(dev_priv);
2082 else
2083 assert_pll_enabled(dev_priv, pipe);
040484af 2084 else {
6e3c9717 2085 if (crtc->config->has_pch_encoder) {
040484af 2086 /* if driving the PCH, we need FDI enabled */
cc391bbb 2087 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2088 assert_fdi_tx_pll_enabled(dev_priv,
2089 (enum pipe) cpu_transcoder);
040484af
JB
2090 }
2091 /* FIXME: assert CPU port conditions for SNB+ */
2092 }
b24e7179 2093
702e7a56 2094 reg = PIPECONF(cpu_transcoder);
b24e7179 2095 val = I915_READ(reg);
7ad25d48 2096 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2097 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2098 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2099 return;
7ad25d48 2100 }
00d70b15
CW
2101
2102 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2103 POSTING_READ(reg);
b24e7179
JB
2104}
2105
2106/**
309cfea8 2107 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2108 * @crtc: crtc whose pipes is to be disabled
b24e7179 2109 *
575f7ab7
VS
2110 * Disable the pipe of @crtc, making sure that various hardware
2111 * specific requirements are met, if applicable, e.g. plane
2112 * disabled, panel fitter off, etc.
b24e7179
JB
2113 *
2114 * Will wait until the pipe has shut down before returning.
2115 */
575f7ab7 2116static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2117{
575f7ab7 2118 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2119 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2120 enum pipe pipe = crtc->pipe;
b24e7179
JB
2121 int reg;
2122 u32 val;
2123
2124 /*
2125 * Make sure planes won't keep trying to pump pixels to us,
2126 * or we might hang the display.
2127 */
2128 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2129 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2130 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2131
702e7a56 2132 reg = PIPECONF(cpu_transcoder);
b24e7179 2133 val = I915_READ(reg);
00d70b15
CW
2134 if ((val & PIPECONF_ENABLE) == 0)
2135 return;
2136
67adc644
VS
2137 /*
2138 * Double wide has implications for planes
2139 * so best keep it disabled when not needed.
2140 */
6e3c9717 2141 if (crtc->config->double_wide)
67adc644
VS
2142 val &= ~PIPECONF_DOUBLE_WIDE;
2143
2144 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2145 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2146 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2147 val &= ~PIPECONF_ENABLE;
2148
2149 I915_WRITE(reg, val);
2150 if ((val & PIPECONF_ENABLE) == 0)
2151 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2152}
2153
d74362c9
KP
2154/*
2155 * Plane regs are double buffered, going from enabled->disabled needs a
2156 * trigger in order to latch. The display address reg provides this.
2157 */
1dba99f4
VS
2158void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2159 enum plane plane)
d74362c9 2160{
3d13ef2e
DL
2161 struct drm_device *dev = dev_priv->dev;
2162 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2163
2164 I915_WRITE(reg, I915_READ(reg));
2165 POSTING_READ(reg);
d74362c9
KP
2166}
2167
b24e7179 2168/**
262ca2b0 2169 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2170 * @plane: plane to be enabled
2171 * @crtc: crtc for the plane
b24e7179 2172 *
fdd508a6 2173 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2174 */
fdd508a6
VS
2175static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2176 struct drm_crtc *crtc)
b24e7179 2177{
fdd508a6
VS
2178 struct drm_device *dev = plane->dev;
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2181
2182 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2183 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2184
98ec7739
VS
2185 if (intel_crtc->primary_enabled)
2186 return;
0037f71c 2187
4c445e0e 2188 intel_crtc->primary_enabled = true;
939c2fe8 2189
fdd508a6
VS
2190 dev_priv->display.update_primary_plane(crtc, plane->fb,
2191 crtc->x, crtc->y);
33c3b0d1
VS
2192
2193 /*
2194 * BDW signals flip done immediately if the plane
2195 * is disabled, even if the plane enable is already
2196 * armed to occur at the next vblank :(
2197 */
2198 if (IS_BROADWELL(dev))
2199 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2200}
2201
b24e7179 2202/**
262ca2b0 2203 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2204 * @plane: plane to be disabled
2205 * @crtc: crtc for the plane
b24e7179 2206 *
fdd508a6 2207 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2208 */
fdd508a6
VS
2209static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2210 struct drm_crtc *crtc)
b24e7179 2211{
fdd508a6
VS
2212 struct drm_device *dev = plane->dev;
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2215
32b7eeec
MR
2216 if (WARN_ON(!intel_crtc->active))
2217 return;
b24e7179 2218
98ec7739
VS
2219 if (!intel_crtc->primary_enabled)
2220 return;
0037f71c 2221
4c445e0e 2222 intel_crtc->primary_enabled = false;
939c2fe8 2223
fdd508a6
VS
2224 dev_priv->display.update_primary_plane(crtc, plane->fb,
2225 crtc->x, crtc->y);
b24e7179
JB
2226}
2227
693db184
CW
2228static bool need_vtd_wa(struct drm_device *dev)
2229{
2230#ifdef CONFIG_INTEL_IOMMU
2231 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2232 return true;
2233#endif
2234 return false;
2235}
2236
50470bb0 2237unsigned int
6761dd31
TU
2238intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2239 uint64_t fb_format_modifier)
a57ce0b2 2240{
6761dd31
TU
2241 unsigned int tile_height;
2242 uint32_t pixel_bytes;
a57ce0b2 2243
b5d0e9bf
DL
2244 switch (fb_format_modifier) {
2245 case DRM_FORMAT_MOD_NONE:
2246 tile_height = 1;
2247 break;
2248 case I915_FORMAT_MOD_X_TILED:
2249 tile_height = IS_GEN2(dev) ? 16 : 8;
2250 break;
2251 case I915_FORMAT_MOD_Y_TILED:
2252 tile_height = 32;
2253 break;
2254 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2255 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2256 switch (pixel_bytes) {
b5d0e9bf 2257 default:
6761dd31 2258 case 1:
b5d0e9bf
DL
2259 tile_height = 64;
2260 break;
6761dd31
TU
2261 case 2:
2262 case 4:
b5d0e9bf
DL
2263 tile_height = 32;
2264 break;
6761dd31 2265 case 8:
b5d0e9bf
DL
2266 tile_height = 16;
2267 break;
6761dd31 2268 case 16:
b5d0e9bf
DL
2269 WARN_ONCE(1,
2270 "128-bit pixels are not supported for display!");
2271 tile_height = 16;
2272 break;
2273 }
2274 break;
2275 default:
2276 MISSING_CASE(fb_format_modifier);
2277 tile_height = 1;
2278 break;
2279 }
091df6cb 2280
6761dd31
TU
2281 return tile_height;
2282}
2283
2284unsigned int
2285intel_fb_align_height(struct drm_device *dev, unsigned int height,
2286 uint32_t pixel_format, uint64_t fb_format_modifier)
2287{
2288 return ALIGN(height, intel_tile_height(dev, pixel_format,
2289 fb_format_modifier));
a57ce0b2
JB
2290}
2291
f64b98cd
TU
2292static int
2293intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2294 const struct drm_plane_state *plane_state)
2295{
50470bb0
TU
2296 struct intel_rotation_info *info = &view->rotation_info;
2297 static const struct i915_ggtt_view rotated_view =
2298 { .type = I915_GGTT_VIEW_ROTATED };
2299
f64b98cd
TU
2300 *view = i915_ggtt_view_normal;
2301
50470bb0
TU
2302 if (!plane_state)
2303 return 0;
2304
121920fa 2305 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2306 return 0;
2307
2308 *view = rotated_view;
2309
2310 info->height = fb->height;
2311 info->pixel_format = fb->pixel_format;
2312 info->pitch = fb->pitches[0];
2313 info->fb_modifier = fb->modifier[0];
2314
2315 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2316 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2317 DRM_DEBUG_KMS(
2318 "Y or Yf tiling is needed for 90/270 rotation!\n");
2319 return -EINVAL;
2320 }
2321
f64b98cd
TU
2322 return 0;
2323}
2324
127bd2ac 2325int
850c4cdc
TU
2326intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327 struct drm_framebuffer *fb,
82bc3b2d 2328 const struct drm_plane_state *plane_state,
a4872ba6 2329 struct intel_engine_cs *pipelined)
6b95a207 2330{
850c4cdc 2331 struct drm_device *dev = fb->dev;
ce453d81 2332 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2333 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2334 struct i915_ggtt_view view;
6b95a207
KH
2335 u32 alignment;
2336 int ret;
2337
ebcdd39e
MR
2338 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2339
7b911adc
TU
2340 switch (fb->modifier[0]) {
2341 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2342 if (INTEL_INFO(dev)->gen >= 9)
2343 alignment = 256 * 1024;
2344 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2345 alignment = 128 * 1024;
a6c45cf0 2346 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2347 alignment = 4 * 1024;
2348 else
2349 alignment = 64 * 1024;
6b95a207 2350 break;
7b911adc 2351 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2352 if (INTEL_INFO(dev)->gen >= 9)
2353 alignment = 256 * 1024;
2354 else {
2355 /* pin() will align the object as required by fence */
2356 alignment = 0;
2357 }
6b95a207 2358 break;
7b911adc 2359 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2360 case I915_FORMAT_MOD_Yf_TILED:
2361 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2362 "Y tiling bo slipped through, driver bug!\n"))
2363 return -EINVAL;
2364 alignment = 1 * 1024 * 1024;
2365 break;
6b95a207 2366 default:
7b911adc
TU
2367 MISSING_CASE(fb->modifier[0]);
2368 return -EINVAL;
6b95a207
KH
2369 }
2370
f64b98cd
TU
2371 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2372 if (ret)
2373 return ret;
2374
693db184
CW
2375 /* Note that the w/a also requires 64 PTE of padding following the
2376 * bo. We currently fill all unused PTE with the shadow page and so
2377 * we should always have valid PTE following the scanout preventing
2378 * the VT-d warning.
2379 */
2380 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2381 alignment = 256 * 1024;
2382
d6dd6843
PZ
2383 /*
2384 * Global gtt pte registers are special registers which actually forward
2385 * writes to a chunk of system memory. Which means that there is no risk
2386 * that the register values disappear as soon as we call
2387 * intel_runtime_pm_put(), so it is correct to wrap only the
2388 * pin/unpin/fence and not more.
2389 */
2390 intel_runtime_pm_get(dev_priv);
2391
ce453d81 2392 dev_priv->mm.interruptible = false;
e6617330 2393 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2394 &view);
48b956c5 2395 if (ret)
ce453d81 2396 goto err_interruptible;
6b95a207
KH
2397
2398 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2399 * fence, whereas 965+ only requires a fence if using
2400 * framebuffer compression. For simplicity, we always install
2401 * a fence as the cost is not that onerous.
2402 */
06d98131 2403 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2404 if (ret)
2405 goto err_unpin;
1690e1eb 2406
9a5a53b3 2407 i915_gem_object_pin_fence(obj);
6b95a207 2408
ce453d81 2409 dev_priv->mm.interruptible = true;
d6dd6843 2410 intel_runtime_pm_put(dev_priv);
6b95a207 2411 return 0;
48b956c5
CW
2412
2413err_unpin:
f64b98cd 2414 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2415err_interruptible:
2416 dev_priv->mm.interruptible = true;
d6dd6843 2417 intel_runtime_pm_put(dev_priv);
48b956c5 2418 return ret;
6b95a207
KH
2419}
2420
82bc3b2d
TU
2421static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2422 const struct drm_plane_state *plane_state)
1690e1eb 2423{
82bc3b2d 2424 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2425 struct i915_ggtt_view view;
2426 int ret;
82bc3b2d 2427
ebcdd39e
MR
2428 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2429
f64b98cd
TU
2430 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2431 WARN_ONCE(ret, "Couldn't get view from plane state!");
2432
1690e1eb 2433 i915_gem_object_unpin_fence(obj);
f64b98cd 2434 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2435}
2436
c2c75131
DV
2437/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2438 * is assumed to be a power-of-two. */
bc752862
CW
2439unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2440 unsigned int tiling_mode,
2441 unsigned int cpp,
2442 unsigned int pitch)
c2c75131 2443{
bc752862
CW
2444 if (tiling_mode != I915_TILING_NONE) {
2445 unsigned int tile_rows, tiles;
c2c75131 2446
bc752862
CW
2447 tile_rows = *y / 8;
2448 *y %= 8;
c2c75131 2449
bc752862
CW
2450 tiles = *x / (512/cpp);
2451 *x %= 512/cpp;
2452
2453 return tile_rows * pitch * 8 + tiles * 4096;
2454 } else {
2455 unsigned int offset;
2456
2457 offset = *y * pitch + *x * cpp;
2458 *y = 0;
2459 *x = (offset & 4095) / cpp;
2460 return offset & -4096;
2461 }
c2c75131
DV
2462}
2463
b35d63fa 2464static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2465{
2466 switch (format) {
2467 case DISPPLANE_8BPP:
2468 return DRM_FORMAT_C8;
2469 case DISPPLANE_BGRX555:
2470 return DRM_FORMAT_XRGB1555;
2471 case DISPPLANE_BGRX565:
2472 return DRM_FORMAT_RGB565;
2473 default:
2474 case DISPPLANE_BGRX888:
2475 return DRM_FORMAT_XRGB8888;
2476 case DISPPLANE_RGBX888:
2477 return DRM_FORMAT_XBGR8888;
2478 case DISPPLANE_BGRX101010:
2479 return DRM_FORMAT_XRGB2101010;
2480 case DISPPLANE_RGBX101010:
2481 return DRM_FORMAT_XBGR2101010;
2482 }
2483}
2484
bc8d7dff
DL
2485static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2486{
2487 switch (format) {
2488 case PLANE_CTL_FORMAT_RGB_565:
2489 return DRM_FORMAT_RGB565;
2490 default:
2491 case PLANE_CTL_FORMAT_XRGB_8888:
2492 if (rgb_order) {
2493 if (alpha)
2494 return DRM_FORMAT_ABGR8888;
2495 else
2496 return DRM_FORMAT_XBGR8888;
2497 } else {
2498 if (alpha)
2499 return DRM_FORMAT_ARGB8888;
2500 else
2501 return DRM_FORMAT_XRGB8888;
2502 }
2503 case PLANE_CTL_FORMAT_XRGB_2101010:
2504 if (rgb_order)
2505 return DRM_FORMAT_XBGR2101010;
2506 else
2507 return DRM_FORMAT_XRGB2101010;
2508 }
2509}
2510
5724dbd1 2511static bool
f6936e29
DV
2512intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2513 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2514{
2515 struct drm_device *dev = crtc->base.dev;
2516 struct drm_i915_gem_object *obj = NULL;
2517 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2518 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2519 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2520 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2521 PAGE_SIZE);
2522
2523 size_aligned -= base_aligned;
46f297fb 2524
ff2652ea
CW
2525 if (plane_config->size == 0)
2526 return false;
2527
f37b5c2b
DV
2528 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2529 base_aligned,
2530 base_aligned,
2531 size_aligned);
46f297fb 2532 if (!obj)
484b41dd 2533 return false;
46f297fb 2534
49af449b
DL
2535 obj->tiling_mode = plane_config->tiling;
2536 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2537 obj->stride = fb->pitches[0];
46f297fb 2538
6bf129df
DL
2539 mode_cmd.pixel_format = fb->pixel_format;
2540 mode_cmd.width = fb->width;
2541 mode_cmd.height = fb->height;
2542 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2543 mode_cmd.modifier[0] = fb->modifier[0];
2544 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2545
2546 mutex_lock(&dev->struct_mutex);
6bf129df 2547 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2548 &mode_cmd, obj)) {
46f297fb
JB
2549 DRM_DEBUG_KMS("intel fb init failed\n");
2550 goto out_unref_obj;
2551 }
46f297fb 2552 mutex_unlock(&dev->struct_mutex);
484b41dd 2553
f6936e29 2554 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2555 return true;
46f297fb
JB
2556
2557out_unref_obj:
2558 drm_gem_object_unreference(&obj->base);
2559 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2560 return false;
2561}
2562
afd65eb4
MR
2563/* Update plane->state->fb to match plane->fb after driver-internal updates */
2564static void
2565update_state_fb(struct drm_plane *plane)
2566{
2567 if (plane->fb == plane->state->fb)
2568 return;
2569
2570 if (plane->state->fb)
2571 drm_framebuffer_unreference(plane->state->fb);
2572 plane->state->fb = plane->fb;
2573 if (plane->state->fb)
2574 drm_framebuffer_reference(plane->state->fb);
2575}
2576
5724dbd1 2577static void
f6936e29
DV
2578intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2579 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2580{
2581 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2582 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2583 struct drm_crtc *c;
2584 struct intel_crtc *i;
2ff8fde1 2585 struct drm_i915_gem_object *obj;
88595ac9
DV
2586 struct drm_plane *primary = intel_crtc->base.primary;
2587 struct drm_framebuffer *fb;
484b41dd 2588
2d14030b 2589 if (!plane_config->fb)
484b41dd
JB
2590 return;
2591
f6936e29 2592 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2593 fb = &plane_config->fb->base;
2594 goto valid_fb;
f55548b5 2595 }
484b41dd 2596
2d14030b 2597 kfree(plane_config->fb);
484b41dd
JB
2598
2599 /*
2600 * Failed to alloc the obj, check to see if we should share
2601 * an fb with another CRTC instead
2602 */
70e1e0ec 2603 for_each_crtc(dev, c) {
484b41dd
JB
2604 i = to_intel_crtc(c);
2605
2606 if (c == &intel_crtc->base)
2607 continue;
2608
2ff8fde1
MR
2609 if (!i->active)
2610 continue;
2611
88595ac9
DV
2612 fb = c->primary->fb;
2613 if (!fb)
484b41dd
JB
2614 continue;
2615
88595ac9 2616 obj = intel_fb_obj(fb);
2ff8fde1 2617 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2618 drm_framebuffer_reference(fb);
2619 goto valid_fb;
484b41dd
JB
2620 }
2621 }
88595ac9
DV
2622
2623 return;
2624
2625valid_fb:
2626 obj = intel_fb_obj(fb);
2627 if (obj->tiling_mode != I915_TILING_NONE)
2628 dev_priv->preserve_bios_swizzle = true;
2629
2630 primary->fb = fb;
2631 primary->state->crtc = &intel_crtc->base;
2632 primary->crtc = &intel_crtc->base;
2633 update_state_fb(primary);
2634 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2635}
2636
29b9bde6
DV
2637static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2638 struct drm_framebuffer *fb,
2639 int x, int y)
81255565
JB
2640{
2641 struct drm_device *dev = crtc->dev;
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2644 struct drm_i915_gem_object *obj;
81255565 2645 int plane = intel_crtc->plane;
e506a0c6 2646 unsigned long linear_offset;
81255565 2647 u32 dspcntr;
f45651ba 2648 u32 reg = DSPCNTR(plane);
48404c1e 2649 int pixel_size;
f45651ba 2650
fdd508a6
VS
2651 if (!intel_crtc->primary_enabled) {
2652 I915_WRITE(reg, 0);
2653 if (INTEL_INFO(dev)->gen >= 4)
2654 I915_WRITE(DSPSURF(plane), 0);
2655 else
2656 I915_WRITE(DSPADDR(plane), 0);
2657 POSTING_READ(reg);
2658 return;
2659 }
2660
c9ba6fad
VS
2661 obj = intel_fb_obj(fb);
2662 if (WARN_ON(obj == NULL))
2663 return;
2664
2665 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
f45651ba
VS
2667 dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
fdd508a6 2669 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2670
2671 if (INTEL_INFO(dev)->gen < 4) {
2672 if (intel_crtc->pipe == PIPE_B)
2673 dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675 /* pipesrc and dspsize control the size that is scaled from,
2676 * which should always be the user's requested size.
2677 */
2678 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2679 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2681 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2682 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2684 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2686 I915_WRITE(PRIMPOS(plane), 0);
2687 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2688 }
81255565 2689
57779d06
VS
2690 switch (fb->pixel_format) {
2691 case DRM_FORMAT_C8:
81255565
JB
2692 dspcntr |= DISPPLANE_8BPP;
2693 break;
57779d06
VS
2694 case DRM_FORMAT_XRGB1555:
2695 case DRM_FORMAT_ARGB1555:
2696 dspcntr |= DISPPLANE_BGRX555;
81255565 2697 break;
57779d06
VS
2698 case DRM_FORMAT_RGB565:
2699 dspcntr |= DISPPLANE_BGRX565;
2700 break;
2701 case DRM_FORMAT_XRGB8888:
2702 case DRM_FORMAT_ARGB8888:
2703 dspcntr |= DISPPLANE_BGRX888;
2704 break;
2705 case DRM_FORMAT_XBGR8888:
2706 case DRM_FORMAT_ABGR8888:
2707 dspcntr |= DISPPLANE_RGBX888;
2708 break;
2709 case DRM_FORMAT_XRGB2101010:
2710 case DRM_FORMAT_ARGB2101010:
2711 dspcntr |= DISPPLANE_BGRX101010;
2712 break;
2713 case DRM_FORMAT_XBGR2101010:
2714 case DRM_FORMAT_ABGR2101010:
2715 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2716 break;
2717 default:
baba133a 2718 BUG();
81255565 2719 }
57779d06 2720
f45651ba
VS
2721 if (INTEL_INFO(dev)->gen >= 4 &&
2722 obj->tiling_mode != I915_TILING_NONE)
2723 dspcntr |= DISPPLANE_TILED;
81255565 2724
de1aa629
VS
2725 if (IS_G4X(dev))
2726 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2727
b9897127 2728 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2729
c2c75131
DV
2730 if (INTEL_INFO(dev)->gen >= 4) {
2731 intel_crtc->dspaddr_offset =
bc752862 2732 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2733 pixel_size,
bc752862 2734 fb->pitches[0]);
c2c75131
DV
2735 linear_offset -= intel_crtc->dspaddr_offset;
2736 } else {
e506a0c6 2737 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2738 }
e506a0c6 2739
8e7d688b 2740 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2741 dspcntr |= DISPPLANE_ROTATE_180;
2742
6e3c9717
ACO
2743 x += (intel_crtc->config->pipe_src_w - 1);
2744 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2745
2746 /* Finding the last pixel of the last line of the display
2747 data and adding to linear_offset*/
2748 linear_offset +=
6e3c9717
ACO
2749 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2751 }
2752
2753 I915_WRITE(reg, dspcntr);
2754
01f2c773 2755 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2756 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2757 I915_WRITE(DSPSURF(plane),
2758 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2759 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2760 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2761 } else
f343c5f6 2762 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2763 POSTING_READ(reg);
17638cd6
JB
2764}
2765
29b9bde6
DV
2766static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767 struct drm_framebuffer *fb,
2768 int x, int y)
17638cd6
JB
2769{
2770 struct drm_device *dev = crtc->dev;
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2773 struct drm_i915_gem_object *obj;
17638cd6 2774 int plane = intel_crtc->plane;
e506a0c6 2775 unsigned long linear_offset;
17638cd6 2776 u32 dspcntr;
f45651ba 2777 u32 reg = DSPCNTR(plane);
48404c1e 2778 int pixel_size;
f45651ba 2779
fdd508a6
VS
2780 if (!intel_crtc->primary_enabled) {
2781 I915_WRITE(reg, 0);
2782 I915_WRITE(DSPSURF(plane), 0);
2783 POSTING_READ(reg);
2784 return;
2785 }
2786
c9ba6fad
VS
2787 obj = intel_fb_obj(fb);
2788 if (WARN_ON(obj == NULL))
2789 return;
2790
2791 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2792
f45651ba
VS
2793 dspcntr = DISPPLANE_GAMMA_ENABLE;
2794
fdd508a6 2795 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2796
2797 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2798 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2799
57779d06
VS
2800 switch (fb->pixel_format) {
2801 case DRM_FORMAT_C8:
17638cd6
JB
2802 dspcntr |= DISPPLANE_8BPP;
2803 break;
57779d06
VS
2804 case DRM_FORMAT_RGB565:
2805 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2806 break;
57779d06
VS
2807 case DRM_FORMAT_XRGB8888:
2808 case DRM_FORMAT_ARGB8888:
2809 dspcntr |= DISPPLANE_BGRX888;
2810 break;
2811 case DRM_FORMAT_XBGR8888:
2812 case DRM_FORMAT_ABGR8888:
2813 dspcntr |= DISPPLANE_RGBX888;
2814 break;
2815 case DRM_FORMAT_XRGB2101010:
2816 case DRM_FORMAT_ARGB2101010:
2817 dspcntr |= DISPPLANE_BGRX101010;
2818 break;
2819 case DRM_FORMAT_XBGR2101010:
2820 case DRM_FORMAT_ABGR2101010:
2821 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2822 break;
2823 default:
baba133a 2824 BUG();
17638cd6
JB
2825 }
2826
2827 if (obj->tiling_mode != I915_TILING_NONE)
2828 dspcntr |= DISPPLANE_TILED;
17638cd6 2829
f45651ba 2830 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2831 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2832
b9897127 2833 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2834 intel_crtc->dspaddr_offset =
bc752862 2835 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2836 pixel_size,
bc752862 2837 fb->pitches[0]);
c2c75131 2838 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2839 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2840 dspcntr |= DISPPLANE_ROTATE_180;
2841
2842 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2843 x += (intel_crtc->config->pipe_src_w - 1);
2844 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2845
2846 /* Finding the last pixel of the last line of the display
2847 data and adding to linear_offset*/
2848 linear_offset +=
6e3c9717
ACO
2849 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2850 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2851 }
2852 }
2853
2854 I915_WRITE(reg, dspcntr);
17638cd6 2855
01f2c773 2856 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2857 I915_WRITE(DSPSURF(plane),
2858 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2859 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2860 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2861 } else {
2862 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2863 I915_WRITE(DSPLINOFF(plane), linear_offset);
2864 }
17638cd6 2865 POSTING_READ(reg);
17638cd6
JB
2866}
2867
b321803d
DL
2868u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2869 uint32_t pixel_format)
2870{
2871 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2872
2873 /*
2874 * The stride is either expressed as a multiple of 64 bytes
2875 * chunks for linear buffers or in number of tiles for tiled
2876 * buffers.
2877 */
2878 switch (fb_modifier) {
2879 case DRM_FORMAT_MOD_NONE:
2880 return 64;
2881 case I915_FORMAT_MOD_X_TILED:
2882 if (INTEL_INFO(dev)->gen == 2)
2883 return 128;
2884 return 512;
2885 case I915_FORMAT_MOD_Y_TILED:
2886 /* No need to check for old gens and Y tiling since this is
2887 * about the display engine and those will be blocked before
2888 * we get here.
2889 */
2890 return 128;
2891 case I915_FORMAT_MOD_Yf_TILED:
2892 if (bits_per_pixel == 8)
2893 return 64;
2894 else
2895 return 128;
2896 default:
2897 MISSING_CASE(fb_modifier);
2898 return 64;
2899 }
2900}
2901
121920fa
TU
2902unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2903 struct drm_i915_gem_object *obj)
2904{
2905 enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2906
2907 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908 view = I915_GGTT_VIEW_ROTATED;
2909
2910 return i915_gem_obj_ggtt_offset_view(obj, view);
2911}
2912
70d21f0e
DL
2913static void skylake_update_primary_plane(struct drm_crtc *crtc,
2914 struct drm_framebuffer *fb,
2915 int x, int y)
2916{
2917 struct drm_device *dev = crtc->dev;
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
70d21f0e
DL
2920 struct drm_i915_gem_object *obj;
2921 int pipe = intel_crtc->pipe;
b321803d 2922 u32 plane_ctl, stride_div;
121920fa 2923 unsigned long surf_addr;
70d21f0e
DL
2924
2925 if (!intel_crtc->primary_enabled) {
2926 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2927 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2928 POSTING_READ(PLANE_CTL(pipe, 0));
2929 return;
2930 }
2931
2932 plane_ctl = PLANE_CTL_ENABLE |
2933 PLANE_CTL_PIPE_GAMMA_ENABLE |
2934 PLANE_CTL_PIPE_CSC_ENABLE;
2935
2936 switch (fb->pixel_format) {
2937 case DRM_FORMAT_RGB565:
2938 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2939 break;
2940 case DRM_FORMAT_XRGB8888:
2941 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2942 break;
f75fb42a
JN
2943 case DRM_FORMAT_ARGB8888:
2944 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2945 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946 break;
70d21f0e
DL
2947 case DRM_FORMAT_XBGR8888:
2948 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2949 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2950 break;
f75fb42a
JN
2951 case DRM_FORMAT_ABGR8888:
2952 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2953 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2954 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955 break;
70d21f0e
DL
2956 case DRM_FORMAT_XRGB2101010:
2957 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2958 break;
2959 case DRM_FORMAT_XBGR2101010:
2960 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2961 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2962 break;
2963 default:
2964 BUG();
2965 }
2966
30af77c4
DV
2967 switch (fb->modifier[0]) {
2968 case DRM_FORMAT_MOD_NONE:
70d21f0e 2969 break;
30af77c4 2970 case I915_FORMAT_MOD_X_TILED:
70d21f0e 2971 plane_ctl |= PLANE_CTL_TILED_X;
b321803d
DL
2972 break;
2973 case I915_FORMAT_MOD_Y_TILED:
2974 plane_ctl |= PLANE_CTL_TILED_Y;
2975 break;
2976 case I915_FORMAT_MOD_Yf_TILED:
2977 plane_ctl |= PLANE_CTL_TILED_YF;
70d21f0e
DL
2978 break;
2979 default:
b321803d 2980 MISSING_CASE(fb->modifier[0]);
70d21f0e
DL
2981 }
2982
2983 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2984 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2985 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e 2986
b321803d
DL
2987 obj = intel_fb_obj(fb);
2988 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2989 fb->pixel_format);
121920fa 2990 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
b321803d 2991
70d21f0e 2992 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
70d21f0e
DL
2993 I915_WRITE(PLANE_POS(pipe, 0), 0);
2994 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2995 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2996 (intel_crtc->config->pipe_src_h - 1) << 16 |
2997 (intel_crtc->config->pipe_src_w - 1));
b321803d 2998 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
121920fa 2999 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3000
3001 POSTING_READ(PLANE_SURF(pipe, 0));
3002}
3003
17638cd6
JB
3004/* Assume fb object is pinned & idle & fenced and just update base pointers */
3005static int
3006intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3007 int x, int y, enum mode_set_atomic state)
3008{
3009 struct drm_device *dev = crtc->dev;
3010 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3011
6b8e6ed0
CW
3012 if (dev_priv->display.disable_fbc)
3013 dev_priv->display.disable_fbc(dev);
81255565 3014
29b9bde6
DV
3015 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3016
3017 return 0;
81255565
JB
3018}
3019
7514747d 3020static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3021{
96a02917
VS
3022 struct drm_crtc *crtc;
3023
70e1e0ec 3024 for_each_crtc(dev, crtc) {
96a02917
VS
3025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026 enum plane plane = intel_crtc->plane;
3027
3028 intel_prepare_page_flip(dev, plane);
3029 intel_finish_page_flip_plane(dev, plane);
3030 }
7514747d
VS
3031}
3032
3033static void intel_update_primary_planes(struct drm_device *dev)
3034{
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 struct drm_crtc *crtc;
96a02917 3037
70e1e0ec 3038 for_each_crtc(dev, crtc) {
96a02917
VS
3039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
51fd371b 3041 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3042 /*
3043 * FIXME: Once we have proper support for primary planes (and
3044 * disabling them without disabling the entire crtc) allow again
66e514c1 3045 * a NULL crtc->primary->fb.
947fdaad 3046 */
f4510a27 3047 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3048 dev_priv->display.update_primary_plane(crtc,
66e514c1 3049 crtc->primary->fb,
262ca2b0
MR
3050 crtc->x,
3051 crtc->y);
51fd371b 3052 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3053 }
3054}
3055
7514747d
VS
3056void intel_prepare_reset(struct drm_device *dev)
3057{
f98ce92f
VS
3058 struct drm_i915_private *dev_priv = to_i915(dev);
3059 struct intel_crtc *crtc;
3060
7514747d
VS
3061 /* no reset support for gen2 */
3062 if (IS_GEN2(dev))
3063 return;
3064
3065 /* reset doesn't touch the display */
3066 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3067 return;
3068
3069 drm_modeset_lock_all(dev);
f98ce92f
VS
3070
3071 /*
3072 * Disabling the crtcs gracefully seems nicer. Also the
3073 * g33 docs say we should at least disable all the planes.
3074 */
3075 for_each_intel_crtc(dev, crtc) {
3076 if (crtc->active)
3077 dev_priv->display.crtc_disable(&crtc->base);
3078 }
7514747d
VS
3079}
3080
3081void intel_finish_reset(struct drm_device *dev)
3082{
3083 struct drm_i915_private *dev_priv = to_i915(dev);
3084
3085 /*
3086 * Flips in the rings will be nuked by the reset,
3087 * so complete all pending flips so that user space
3088 * will get its events and not get stuck.
3089 */
3090 intel_complete_page_flips(dev);
3091
3092 /* no reset support for gen2 */
3093 if (IS_GEN2(dev))
3094 return;
3095
3096 /* reset doesn't touch the display */
3097 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3098 /*
3099 * Flips in the rings have been nuked by the reset,
3100 * so update the base address of all primary
3101 * planes to the the last fb to make sure we're
3102 * showing the correct fb after a reset.
3103 */
3104 intel_update_primary_planes(dev);
3105 return;
3106 }
3107
3108 /*
3109 * The display has been reset as well,
3110 * so need a full re-initialization.
3111 */
3112 intel_runtime_pm_disable_interrupts(dev_priv);
3113 intel_runtime_pm_enable_interrupts(dev_priv);
3114
3115 intel_modeset_init_hw(dev);
3116
3117 spin_lock_irq(&dev_priv->irq_lock);
3118 if (dev_priv->display.hpd_irq_setup)
3119 dev_priv->display.hpd_irq_setup(dev);
3120 spin_unlock_irq(&dev_priv->irq_lock);
3121
3122 intel_modeset_setup_hw_state(dev, true);
3123
3124 intel_hpd_init(dev_priv);
3125
3126 drm_modeset_unlock_all(dev);
3127}
3128
14667a4b
CW
3129static int
3130intel_finish_fb(struct drm_framebuffer *old_fb)
3131{
2ff8fde1 3132 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
3133 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134 bool was_interruptible = dev_priv->mm.interruptible;
3135 int ret;
3136
14667a4b
CW
3137 /* Big Hammer, we also need to ensure that any pending
3138 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3139 * current scanout is retired before unpinning the old
3140 * framebuffer.
3141 *
3142 * This should only fail upon a hung GPU, in which case we
3143 * can safely continue.
3144 */
3145 dev_priv->mm.interruptible = false;
3146 ret = i915_gem_object_finish_gpu(obj);
3147 dev_priv->mm.interruptible = was_interruptible;
3148
3149 return ret;
3150}
3151
7d5e3799
CW
3152static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3153{
3154 struct drm_device *dev = crtc->dev;
3155 struct drm_i915_private *dev_priv = dev->dev_private;
3156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3157 bool pending;
3158
3159 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3160 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3161 return false;
3162
5e2d7afc 3163 spin_lock_irq(&dev->event_lock);
7d5e3799 3164 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3165 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3166
3167 return pending;
3168}
3169
e30e8f75
GP
3170static void intel_update_pipe_size(struct intel_crtc *crtc)
3171{
3172 struct drm_device *dev = crtc->base.dev;
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 const struct drm_display_mode *adjusted_mode;
3175
3176 if (!i915.fastboot)
3177 return;
3178
3179 /*
3180 * Update pipe size and adjust fitter if needed: the reason for this is
3181 * that in compute_mode_changes we check the native mode (not the pfit
3182 * mode) to see if we can flip rather than do a full mode set. In the
3183 * fastboot case, we'll flip, but if we don't update the pipesrc and
3184 * pfit state, we'll end up with a big fb scanned out into the wrong
3185 * sized surface.
3186 *
3187 * To fix this properly, we need to hoist the checks up into
3188 * compute_mode_changes (or above), check the actual pfit state and
3189 * whether the platform allows pfit disable with pipe active, and only
3190 * then update the pipesrc and pfit state, even on the flip path.
3191 */
3192
6e3c9717 3193 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3194
3195 I915_WRITE(PIPESRC(crtc->pipe),
3196 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3197 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3198 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3199 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3200 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3201 I915_WRITE(PF_CTL(crtc->pipe), 0);
3202 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3203 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3204 }
6e3c9717
ACO
3205 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3206 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3207}
3208
5e84e1a4
ZW
3209static void intel_fdi_normal_train(struct drm_crtc *crtc)
3210{
3211 struct drm_device *dev = crtc->dev;
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 int pipe = intel_crtc->pipe;
3215 u32 reg, temp;
3216
3217 /* enable normal train */
3218 reg = FDI_TX_CTL(pipe);
3219 temp = I915_READ(reg);
61e499bf 3220 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3221 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3222 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3223 } else {
3224 temp &= ~FDI_LINK_TRAIN_NONE;
3225 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3226 }
5e84e1a4
ZW
3227 I915_WRITE(reg, temp);
3228
3229 reg = FDI_RX_CTL(pipe);
3230 temp = I915_READ(reg);
3231 if (HAS_PCH_CPT(dev)) {
3232 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3233 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3234 } else {
3235 temp &= ~FDI_LINK_TRAIN_NONE;
3236 temp |= FDI_LINK_TRAIN_NONE;
3237 }
3238 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3239
3240 /* wait one idle pattern time */
3241 POSTING_READ(reg);
3242 udelay(1000);
357555c0
JB
3243
3244 /* IVB wants error correction enabled */
3245 if (IS_IVYBRIDGE(dev))
3246 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3247 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3248}
3249
8db9d77b
ZW
3250/* The FDI link training functions for ILK/Ibexpeak. */
3251static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3252{
3253 struct drm_device *dev = crtc->dev;
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 int pipe = intel_crtc->pipe;
5eddb70b 3257 u32 reg, temp, tries;
8db9d77b 3258
1c8562f6 3259 /* FDI needs bits from pipe first */
0fc932b8 3260 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3261
e1a44743
AJ
3262 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3263 for train result */
5eddb70b
CW
3264 reg = FDI_RX_IMR(pipe);
3265 temp = I915_READ(reg);
e1a44743
AJ
3266 temp &= ~FDI_RX_SYMBOL_LOCK;
3267 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3268 I915_WRITE(reg, temp);
3269 I915_READ(reg);
e1a44743
AJ
3270 udelay(150);
3271
8db9d77b 3272 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3273 reg = FDI_TX_CTL(pipe);
3274 temp = I915_READ(reg);
627eb5a3 3275 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3276 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3277 temp &= ~FDI_LINK_TRAIN_NONE;
3278 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3279 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3280
5eddb70b
CW
3281 reg = FDI_RX_CTL(pipe);
3282 temp = I915_READ(reg);
8db9d77b
ZW
3283 temp &= ~FDI_LINK_TRAIN_NONE;
3284 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3285 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3286
3287 POSTING_READ(reg);
8db9d77b
ZW
3288 udelay(150);
3289
5b2adf89 3290 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3291 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3292 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3293 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3294
5eddb70b 3295 reg = FDI_RX_IIR(pipe);
e1a44743 3296 for (tries = 0; tries < 5; tries++) {
5eddb70b 3297 temp = I915_READ(reg);
8db9d77b
ZW
3298 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3299
3300 if ((temp & FDI_RX_BIT_LOCK)) {
3301 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3302 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3303 break;
3304 }
8db9d77b 3305 }
e1a44743 3306 if (tries == 5)
5eddb70b 3307 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3308
3309 /* Train 2 */
5eddb70b
CW
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
8db9d77b
ZW
3312 temp &= ~FDI_LINK_TRAIN_NONE;
3313 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3314 I915_WRITE(reg, temp);
8db9d77b 3315
5eddb70b
CW
3316 reg = FDI_RX_CTL(pipe);
3317 temp = I915_READ(reg);
8db9d77b
ZW
3318 temp &= ~FDI_LINK_TRAIN_NONE;
3319 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3320 I915_WRITE(reg, temp);
8db9d77b 3321
5eddb70b
CW
3322 POSTING_READ(reg);
3323 udelay(150);
8db9d77b 3324
5eddb70b 3325 reg = FDI_RX_IIR(pipe);
e1a44743 3326 for (tries = 0; tries < 5; tries++) {
5eddb70b 3327 temp = I915_READ(reg);
8db9d77b
ZW
3328 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3331 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3332 DRM_DEBUG_KMS("FDI train 2 done.\n");
3333 break;
3334 }
8db9d77b 3335 }
e1a44743 3336 if (tries == 5)
5eddb70b 3337 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3338
3339 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3340
8db9d77b
ZW
3341}
3342
0206e353 3343static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3344 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3345 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3346 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3347 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3348};
3349
3350/* The FDI link training functions for SNB/Cougarpoint. */
3351static void gen6_fdi_link_train(struct drm_crtc *crtc)
3352{
3353 struct drm_device *dev = crtc->dev;
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356 int pipe = intel_crtc->pipe;
fa37d39e 3357 u32 reg, temp, i, retry;
8db9d77b 3358
e1a44743
AJ
3359 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3360 for train result */
5eddb70b
CW
3361 reg = FDI_RX_IMR(pipe);
3362 temp = I915_READ(reg);
e1a44743
AJ
3363 temp &= ~FDI_RX_SYMBOL_LOCK;
3364 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3365 I915_WRITE(reg, temp);
3366
3367 POSTING_READ(reg);
e1a44743
AJ
3368 udelay(150);
3369
8db9d77b 3370 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3371 reg = FDI_TX_CTL(pipe);
3372 temp = I915_READ(reg);
627eb5a3 3373 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3374 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_PATTERN_1;
3377 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3378 /* SNB-B */
3379 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3380 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3381
d74cf324
DV
3382 I915_WRITE(FDI_RX_MISC(pipe),
3383 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3384
5eddb70b
CW
3385 reg = FDI_RX_CTL(pipe);
3386 temp = I915_READ(reg);
8db9d77b
ZW
3387 if (HAS_PCH_CPT(dev)) {
3388 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3389 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3390 } else {
3391 temp &= ~FDI_LINK_TRAIN_NONE;
3392 temp |= FDI_LINK_TRAIN_PATTERN_1;
3393 }
5eddb70b
CW
3394 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3395
3396 POSTING_READ(reg);
8db9d77b
ZW
3397 udelay(150);
3398
0206e353 3399 for (i = 0; i < 4; i++) {
5eddb70b
CW
3400 reg = FDI_TX_CTL(pipe);
3401 temp = I915_READ(reg);
8db9d77b
ZW
3402 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3403 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3404 I915_WRITE(reg, temp);
3405
3406 POSTING_READ(reg);
8db9d77b
ZW
3407 udelay(500);
3408
fa37d39e
SP
3409 for (retry = 0; retry < 5; retry++) {
3410 reg = FDI_RX_IIR(pipe);
3411 temp = I915_READ(reg);
3412 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413 if (temp & FDI_RX_BIT_LOCK) {
3414 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3415 DRM_DEBUG_KMS("FDI train 1 done.\n");
3416 break;
3417 }
3418 udelay(50);
8db9d77b 3419 }
fa37d39e
SP
3420 if (retry < 5)
3421 break;
8db9d77b
ZW
3422 }
3423 if (i == 4)
5eddb70b 3424 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3425
3426 /* Train 2 */
5eddb70b
CW
3427 reg = FDI_TX_CTL(pipe);
3428 temp = I915_READ(reg);
8db9d77b
ZW
3429 temp &= ~FDI_LINK_TRAIN_NONE;
3430 temp |= FDI_LINK_TRAIN_PATTERN_2;
3431 if (IS_GEN6(dev)) {
3432 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3433 /* SNB-B */
3434 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3435 }
5eddb70b 3436 I915_WRITE(reg, temp);
8db9d77b 3437
5eddb70b
CW
3438 reg = FDI_RX_CTL(pipe);
3439 temp = I915_READ(reg);
8db9d77b
ZW
3440 if (HAS_PCH_CPT(dev)) {
3441 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3442 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3443 } else {
3444 temp &= ~FDI_LINK_TRAIN_NONE;
3445 temp |= FDI_LINK_TRAIN_PATTERN_2;
3446 }
5eddb70b
CW
3447 I915_WRITE(reg, temp);
3448
3449 POSTING_READ(reg);
8db9d77b
ZW
3450 udelay(150);
3451
0206e353 3452 for (i = 0; i < 4; i++) {
5eddb70b
CW
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
8db9d77b
ZW
3455 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3456 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3457 I915_WRITE(reg, temp);
3458
3459 POSTING_READ(reg);
8db9d77b
ZW
3460 udelay(500);
3461
fa37d39e
SP
3462 for (retry = 0; retry < 5; retry++) {
3463 reg = FDI_RX_IIR(pipe);
3464 temp = I915_READ(reg);
3465 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466 if (temp & FDI_RX_SYMBOL_LOCK) {
3467 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3468 DRM_DEBUG_KMS("FDI train 2 done.\n");
3469 break;
3470 }
3471 udelay(50);
8db9d77b 3472 }
fa37d39e
SP
3473 if (retry < 5)
3474 break;
8db9d77b
ZW
3475 }
3476 if (i == 4)
5eddb70b 3477 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3478
3479 DRM_DEBUG_KMS("FDI train done.\n");
3480}
3481
357555c0
JB
3482/* Manual link training for Ivy Bridge A0 parts */
3483static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3484{
3485 struct drm_device *dev = crtc->dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 int pipe = intel_crtc->pipe;
139ccd3f 3489 u32 reg, temp, i, j;
357555c0
JB
3490
3491 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3492 for train result */
3493 reg = FDI_RX_IMR(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~FDI_RX_SYMBOL_LOCK;
3496 temp &= ~FDI_RX_BIT_LOCK;
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
3500 udelay(150);
3501
01a415fd
DV
3502 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3503 I915_READ(FDI_RX_IIR(pipe)));
3504
139ccd3f
JB
3505 /* Try each vswing and preemphasis setting twice before moving on */
3506 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3507 /* disable first in case we need to retry */
3508 reg = FDI_TX_CTL(pipe);
3509 temp = I915_READ(reg);
3510 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3511 temp &= ~FDI_TX_ENABLE;
3512 I915_WRITE(reg, temp);
357555c0 3513
139ccd3f
JB
3514 reg = FDI_RX_CTL(pipe);
3515 temp = I915_READ(reg);
3516 temp &= ~FDI_LINK_TRAIN_AUTO;
3517 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518 temp &= ~FDI_RX_ENABLE;
3519 I915_WRITE(reg, temp);
357555c0 3520
139ccd3f 3521 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3522 reg = FDI_TX_CTL(pipe);
3523 temp = I915_READ(reg);
139ccd3f 3524 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3525 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3526 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3528 temp |= snb_b_fdi_train_param[j/2];
3529 temp |= FDI_COMPOSITE_SYNC;
3530 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3531
139ccd3f
JB
3532 I915_WRITE(FDI_RX_MISC(pipe),
3533 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3534
139ccd3f 3535 reg = FDI_RX_CTL(pipe);
357555c0 3536 temp = I915_READ(reg);
139ccd3f
JB
3537 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3538 temp |= FDI_COMPOSITE_SYNC;
3539 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3540
139ccd3f
JB
3541 POSTING_READ(reg);
3542 udelay(1); /* should be 0.5us */
357555c0 3543
139ccd3f
JB
3544 for (i = 0; i < 4; i++) {
3545 reg = FDI_RX_IIR(pipe);
3546 temp = I915_READ(reg);
3547 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3548
139ccd3f
JB
3549 if (temp & FDI_RX_BIT_LOCK ||
3550 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3551 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3553 i);
3554 break;
3555 }
3556 udelay(1); /* should be 0.5us */
3557 }
3558 if (i == 4) {
3559 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3560 continue;
3561 }
357555c0 3562
139ccd3f 3563 /* Train 2 */
357555c0
JB
3564 reg = FDI_TX_CTL(pipe);
3565 temp = I915_READ(reg);
139ccd3f
JB
3566 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3567 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3568 I915_WRITE(reg, temp);
3569
3570 reg = FDI_RX_CTL(pipe);
3571 temp = I915_READ(reg);
3572 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3573 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3574 I915_WRITE(reg, temp);
3575
3576 POSTING_READ(reg);
139ccd3f 3577 udelay(2); /* should be 1.5us */
357555c0 3578
139ccd3f
JB
3579 for (i = 0; i < 4; i++) {
3580 reg = FDI_RX_IIR(pipe);
3581 temp = I915_READ(reg);
3582 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3583
139ccd3f
JB
3584 if (temp & FDI_RX_SYMBOL_LOCK ||
3585 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3586 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3587 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3588 i);
3589 goto train_done;
3590 }
3591 udelay(2); /* should be 1.5us */
357555c0 3592 }
139ccd3f
JB
3593 if (i == 4)
3594 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3595 }
357555c0 3596
139ccd3f 3597train_done:
357555c0
JB
3598 DRM_DEBUG_KMS("FDI train done.\n");
3599}
3600
88cefb6c 3601static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3602{
88cefb6c 3603 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3604 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3605 int pipe = intel_crtc->pipe;
5eddb70b 3606 u32 reg, temp;
79e53945 3607
c64e311e 3608
c98e9dcf 3609 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3610 reg = FDI_RX_CTL(pipe);
3611 temp = I915_READ(reg);
627eb5a3 3612 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3613 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3614 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3615 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3616
3617 POSTING_READ(reg);
c98e9dcf
JB
3618 udelay(200);
3619
3620 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3621 temp = I915_READ(reg);
3622 I915_WRITE(reg, temp | FDI_PCDCLK);
3623
3624 POSTING_READ(reg);
c98e9dcf
JB
3625 udelay(200);
3626
20749730
PZ
3627 /* Enable CPU FDI TX PLL, always on for Ironlake */
3628 reg = FDI_TX_CTL(pipe);
3629 temp = I915_READ(reg);
3630 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3631 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3632
20749730
PZ
3633 POSTING_READ(reg);
3634 udelay(100);
6be4a607 3635 }
0e23b99d
JB
3636}
3637
88cefb6c
DV
3638static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3639{
3640 struct drm_device *dev = intel_crtc->base.dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 int pipe = intel_crtc->pipe;
3643 u32 reg, temp;
3644
3645 /* Switch from PCDclk to Rawclk */
3646 reg = FDI_RX_CTL(pipe);
3647 temp = I915_READ(reg);
3648 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3649
3650 /* Disable CPU FDI TX PLL */
3651 reg = FDI_TX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3654
3655 POSTING_READ(reg);
3656 udelay(100);
3657
3658 reg = FDI_RX_CTL(pipe);
3659 temp = I915_READ(reg);
3660 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3661
3662 /* Wait for the clocks to turn off. */
3663 POSTING_READ(reg);
3664 udelay(100);
3665}
3666
0fc932b8
JB
3667static void ironlake_fdi_disable(struct drm_crtc *crtc)
3668{
3669 struct drm_device *dev = crtc->dev;
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3672 int pipe = intel_crtc->pipe;
3673 u32 reg, temp;
3674
3675 /* disable CPU FDI tx and PCH FDI rx */
3676 reg = FDI_TX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3679 POSTING_READ(reg);
3680
3681 reg = FDI_RX_CTL(pipe);
3682 temp = I915_READ(reg);
3683 temp &= ~(0x7 << 16);
dfd07d72 3684 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3685 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3686
3687 POSTING_READ(reg);
3688 udelay(100);
3689
3690 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3691 if (HAS_PCH_IBX(dev))
6f06ce18 3692 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3693
3694 /* still set train pattern 1 */
3695 reg = FDI_TX_CTL(pipe);
3696 temp = I915_READ(reg);
3697 temp &= ~FDI_LINK_TRAIN_NONE;
3698 temp |= FDI_LINK_TRAIN_PATTERN_1;
3699 I915_WRITE(reg, temp);
3700
3701 reg = FDI_RX_CTL(pipe);
3702 temp = I915_READ(reg);
3703 if (HAS_PCH_CPT(dev)) {
3704 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3705 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3706 } else {
3707 temp &= ~FDI_LINK_TRAIN_NONE;
3708 temp |= FDI_LINK_TRAIN_PATTERN_1;
3709 }
3710 /* BPC in FDI rx is consistent with that in PIPECONF */
3711 temp &= ~(0x07 << 16);
dfd07d72 3712 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3713 I915_WRITE(reg, temp);
3714
3715 POSTING_READ(reg);
3716 udelay(100);
3717}
3718
5dce5b93
CW
3719bool intel_has_pending_fb_unpin(struct drm_device *dev)
3720{
3721 struct intel_crtc *crtc;
3722
3723 /* Note that we don't need to be called with mode_config.lock here
3724 * as our list of CRTC objects is static for the lifetime of the
3725 * device and so cannot disappear as we iterate. Similarly, we can
3726 * happily treat the predicates as racy, atomic checks as userspace
3727 * cannot claim and pin a new fb without at least acquring the
3728 * struct_mutex and so serialising with us.
3729 */
d3fcc808 3730 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3731 if (atomic_read(&crtc->unpin_work_count) == 0)
3732 continue;
3733
3734 if (crtc->unpin_work)
3735 intel_wait_for_vblank(dev, crtc->pipe);
3736
3737 return true;
3738 }
3739
3740 return false;
3741}
3742
d6bbafa1
CW
3743static void page_flip_completed(struct intel_crtc *intel_crtc)
3744{
3745 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3746 struct intel_unpin_work *work = intel_crtc->unpin_work;
3747
3748 /* ensure that the unpin work is consistent wrt ->pending. */
3749 smp_rmb();
3750 intel_crtc->unpin_work = NULL;
3751
3752 if (work->event)
3753 drm_send_vblank_event(intel_crtc->base.dev,
3754 intel_crtc->pipe,
3755 work->event);
3756
3757 drm_crtc_vblank_put(&intel_crtc->base);
3758
3759 wake_up_all(&dev_priv->pending_flip_queue);
3760 queue_work(dev_priv->wq, &work->work);
3761
3762 trace_i915_flip_complete(intel_crtc->plane,
3763 work->pending_flip_obj);
3764}
3765
46a55d30 3766void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3767{
0f91128d 3768 struct drm_device *dev = crtc->dev;
5bb61643 3769 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3770
2c10d571 3771 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3772 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3773 !intel_crtc_has_pending_flip(crtc),
3774 60*HZ) == 0)) {
3775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3776
5e2d7afc 3777 spin_lock_irq(&dev->event_lock);
9c787942
CW
3778 if (intel_crtc->unpin_work) {
3779 WARN_ONCE(1, "Removing stuck page flip\n");
3780 page_flip_completed(intel_crtc);
3781 }
5e2d7afc 3782 spin_unlock_irq(&dev->event_lock);
9c787942 3783 }
5bb61643 3784
975d568a
CW
3785 if (crtc->primary->fb) {
3786 mutex_lock(&dev->struct_mutex);
3787 intel_finish_fb(crtc->primary->fb);
3788 mutex_unlock(&dev->struct_mutex);
3789 }
e6c3a2a6
CW
3790}
3791
e615efe4
ED
3792/* Program iCLKIP clock to the desired frequency */
3793static void lpt_program_iclkip(struct drm_crtc *crtc)
3794{
3795 struct drm_device *dev = crtc->dev;
3796 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3797 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3798 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3799 u32 temp;
3800
09153000
DV
3801 mutex_lock(&dev_priv->dpio_lock);
3802
e615efe4
ED
3803 /* It is necessary to ungate the pixclk gate prior to programming
3804 * the divisors, and gate it back when it is done.
3805 */
3806 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3807
3808 /* Disable SSCCTL */
3809 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3810 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3811 SBI_SSCCTL_DISABLE,
3812 SBI_ICLK);
e615efe4
ED
3813
3814 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3815 if (clock == 20000) {
e615efe4
ED
3816 auxdiv = 1;
3817 divsel = 0x41;
3818 phaseinc = 0x20;
3819 } else {
3820 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3821 * but the adjusted_mode->crtc_clock in in KHz. To get the
3822 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3823 * convert the virtual clock precision to KHz here for higher
3824 * precision.
3825 */
3826 u32 iclk_virtual_root_freq = 172800 * 1000;
3827 u32 iclk_pi_range = 64;
3828 u32 desired_divisor, msb_divisor_value, pi_value;
3829
12d7ceed 3830 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3831 msb_divisor_value = desired_divisor / iclk_pi_range;
3832 pi_value = desired_divisor % iclk_pi_range;
3833
3834 auxdiv = 0;
3835 divsel = msb_divisor_value - 2;
3836 phaseinc = pi_value;
3837 }
3838
3839 /* This should not happen with any sane values */
3840 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3841 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3842 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3843 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3844
3845 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3846 clock,
e615efe4
ED
3847 auxdiv,
3848 divsel,
3849 phasedir,
3850 phaseinc);
3851
3852 /* Program SSCDIVINTPHASE6 */
988d6ee8 3853 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3854 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3855 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3856 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3857 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3858 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3859 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3860 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3861
3862 /* Program SSCAUXDIV */
988d6ee8 3863 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3864 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3865 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3866 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3867
3868 /* Enable modulator and associated divider */
988d6ee8 3869 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3870 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3871 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3872
3873 /* Wait for initialization time */
3874 udelay(24);
3875
3876 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3877
3878 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3879}
3880
275f01b2
DV
3881static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3882 enum pipe pch_transcoder)
3883{
3884 struct drm_device *dev = crtc->base.dev;
3885 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3886 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3887
3888 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3889 I915_READ(HTOTAL(cpu_transcoder)));
3890 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3891 I915_READ(HBLANK(cpu_transcoder)));
3892 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3893 I915_READ(HSYNC(cpu_transcoder)));
3894
3895 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3896 I915_READ(VTOTAL(cpu_transcoder)));
3897 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3898 I915_READ(VBLANK(cpu_transcoder)));
3899 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3900 I915_READ(VSYNC(cpu_transcoder)));
3901 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3902 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3903}
3904
003632d9 3905static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
3906{
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908 uint32_t temp;
3909
3910 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 3911 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
3912 return;
3913
3914 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3915 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3916
003632d9
ACO
3917 temp &= ~FDI_BC_BIFURCATION_SELECT;
3918 if (enable)
3919 temp |= FDI_BC_BIFURCATION_SELECT;
3920
3921 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
3922 I915_WRITE(SOUTH_CHICKEN1, temp);
3923 POSTING_READ(SOUTH_CHICKEN1);
3924}
3925
3926static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3927{
3928 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
3929
3930 switch (intel_crtc->pipe) {
3931 case PIPE_A:
3932 break;
3933 case PIPE_B:
6e3c9717 3934 if (intel_crtc->config->fdi_lanes > 2)
003632d9 3935 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 3936 else
003632d9 3937 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3938
3939 break;
3940 case PIPE_C:
003632d9 3941 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
3942
3943 break;
3944 default:
3945 BUG();
3946 }
3947}
3948
f67a559d
JB
3949/*
3950 * Enable PCH resources required for PCH ports:
3951 * - PCH PLLs
3952 * - FDI training & RX/TX
3953 * - update transcoder timings
3954 * - DP transcoding bits
3955 * - transcoder
3956 */
3957static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3958{
3959 struct drm_device *dev = crtc->dev;
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3962 int pipe = intel_crtc->pipe;
ee7b9f93 3963 u32 reg, temp;
2c07245f 3964
ab9412ba 3965 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3966
1fbc0d78
DV
3967 if (IS_IVYBRIDGE(dev))
3968 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3969
cd986abb
DV
3970 /* Write the TU size bits before fdi link training, so that error
3971 * detection works. */
3972 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3973 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3974
c98e9dcf 3975 /* For PCH output, training FDI link */
674cf967 3976 dev_priv->display.fdi_link_train(crtc);
2c07245f 3977
3ad8a208
DV
3978 /* We need to program the right clock selection before writing the pixel
3979 * mutliplier into the DPLL. */
303b81e0 3980 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3981 u32 sel;
4b645f14 3982
c98e9dcf 3983 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3984 temp |= TRANS_DPLL_ENABLE(pipe);
3985 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3986 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3987 temp |= sel;
3988 else
3989 temp &= ~sel;
c98e9dcf 3990 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3991 }
5eddb70b 3992
3ad8a208
DV
3993 /* XXX: pch pll's can be enabled any time before we enable the PCH
3994 * transcoder, and we actually should do this to not upset any PCH
3995 * transcoder that already use the clock when we share it.
3996 *
3997 * Note that enable_shared_dpll tries to do the right thing, but
3998 * get_shared_dpll unconditionally resets the pll - we need that to have
3999 * the right LVDS enable sequence. */
85b3894f 4000 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4001
d9b6cb56
JB
4002 /* set transcoder timing, panel must allow it */
4003 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4004 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4005
303b81e0 4006 intel_fdi_normal_train(crtc);
5e84e1a4 4007
c98e9dcf 4008 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4009 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4010 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4011 reg = TRANS_DP_CTL(pipe);
4012 temp = I915_READ(reg);
4013 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4014 TRANS_DP_SYNC_MASK |
4015 TRANS_DP_BPC_MASK);
5eddb70b
CW
4016 temp |= (TRANS_DP_OUTPUT_ENABLE |
4017 TRANS_DP_ENH_FRAMING);
9325c9f0 4018 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4019
4020 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4021 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4022 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4023 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4024
4025 switch (intel_trans_dp_port_sel(crtc)) {
4026 case PCH_DP_B:
5eddb70b 4027 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4028 break;
4029 case PCH_DP_C:
5eddb70b 4030 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4031 break;
4032 case PCH_DP_D:
5eddb70b 4033 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4034 break;
4035 default:
e95d41e1 4036 BUG();
32f9d658 4037 }
2c07245f 4038
5eddb70b 4039 I915_WRITE(reg, temp);
6be4a607 4040 }
b52eb4dc 4041
b8a4f404 4042 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4043}
4044
1507e5bd
PZ
4045static void lpt_pch_enable(struct drm_crtc *crtc)
4046{
4047 struct drm_device *dev = crtc->dev;
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4050 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4051
ab9412ba 4052 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4053
8c52b5e8 4054 lpt_program_iclkip(crtc);
1507e5bd 4055
0540e488 4056 /* Set transcoder timing. */
275f01b2 4057 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4058
937bb610 4059 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4060}
4061
716c2e55 4062void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4063{
e2b78267 4064 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4065
4066 if (pll == NULL)
4067 return;
4068
3e369b76 4069 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4070 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4071 return;
4072 }
4073
3e369b76
ACO
4074 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4075 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4076 WARN_ON(pll->on);
4077 WARN_ON(pll->active);
4078 }
4079
6e3c9717 4080 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4081}
4082
190f68c5
ACO
4083struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4084 struct intel_crtc_state *crtc_state)
ee7b9f93 4085{
e2b78267 4086 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4087 struct intel_shared_dpll *pll;
e2b78267 4088 enum intel_dpll_id i;
ee7b9f93 4089
98b6bd99
DV
4090 if (HAS_PCH_IBX(dev_priv->dev)) {
4091 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4092 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4093 pll = &dev_priv->shared_dplls[i];
98b6bd99 4094
46edb027
DV
4095 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4096 crtc->base.base.id, pll->name);
98b6bd99 4097
8bd31e67 4098 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4099
98b6bd99
DV
4100 goto found;
4101 }
4102
e72f9fbf
DV
4103 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4104 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4105
4106 /* Only want to check enabled timings first */
8bd31e67 4107 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4108 continue;
4109
190f68c5 4110 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4111 &pll->new_config->hw_state,
4112 sizeof(pll->new_config->hw_state)) == 0) {
4113 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4114 crtc->base.base.id, pll->name,
8bd31e67
ACO
4115 pll->new_config->crtc_mask,
4116 pll->active);
ee7b9f93
JB
4117 goto found;
4118 }
4119 }
4120
4121 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4122 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4123 pll = &dev_priv->shared_dplls[i];
8bd31e67 4124 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4125 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4126 crtc->base.base.id, pll->name);
ee7b9f93
JB
4127 goto found;
4128 }
4129 }
4130
4131 return NULL;
4132
4133found:
8bd31e67 4134 if (pll->new_config->crtc_mask == 0)
190f68c5 4135 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4136
190f68c5 4137 crtc_state->shared_dpll = i;
46edb027
DV
4138 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4139 pipe_name(crtc->pipe));
ee7b9f93 4140
8bd31e67 4141 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4142
ee7b9f93
JB
4143 return pll;
4144}
4145
8bd31e67
ACO
4146/**
4147 * intel_shared_dpll_start_config - start a new PLL staged config
4148 * @dev_priv: DRM device
4149 * @clear_pipes: mask of pipes that will have their PLLs freed
4150 *
4151 * Starts a new PLL staged config, copying the current config but
4152 * releasing the references of pipes specified in clear_pipes.
4153 */
4154static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4155 unsigned clear_pipes)
4156{
4157 struct intel_shared_dpll *pll;
4158 enum intel_dpll_id i;
4159
4160 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4161 pll = &dev_priv->shared_dplls[i];
4162
4163 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4164 GFP_KERNEL);
4165 if (!pll->new_config)
4166 goto cleanup;
4167
4168 pll->new_config->crtc_mask &= ~clear_pipes;
4169 }
4170
4171 return 0;
4172
4173cleanup:
4174 while (--i >= 0) {
4175 pll = &dev_priv->shared_dplls[i];
f354d733 4176 kfree(pll->new_config);
8bd31e67
ACO
4177 pll->new_config = NULL;
4178 }
4179
4180 return -ENOMEM;
4181}
4182
4183static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4184{
4185 struct intel_shared_dpll *pll;
4186 enum intel_dpll_id i;
4187
4188 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4189 pll = &dev_priv->shared_dplls[i];
4190
4191 WARN_ON(pll->new_config == &pll->config);
4192
4193 pll->config = *pll->new_config;
4194 kfree(pll->new_config);
4195 pll->new_config = NULL;
4196 }
4197}
4198
4199static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4200{
4201 struct intel_shared_dpll *pll;
4202 enum intel_dpll_id i;
4203
4204 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4205 pll = &dev_priv->shared_dplls[i];
4206
4207 WARN_ON(pll->new_config == &pll->config);
4208
4209 kfree(pll->new_config);
4210 pll->new_config = NULL;
4211 }
4212}
4213
a1520318 4214static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4215{
4216 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4217 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4218 u32 temp;
4219
4220 temp = I915_READ(dslreg);
4221 udelay(500);
4222 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4223 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4224 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4225 }
4226}
4227
bd2e244f
JB
4228static void skylake_pfit_enable(struct intel_crtc *crtc)
4229{
4230 struct drm_device *dev = crtc->base.dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 int pipe = crtc->pipe;
4233
6e3c9717 4234 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4235 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4236 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4237 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4238 }
4239}
4240
b074cec8
JB
4241static void ironlake_pfit_enable(struct intel_crtc *crtc)
4242{
4243 struct drm_device *dev = crtc->base.dev;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 int pipe = crtc->pipe;
4246
6e3c9717 4247 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4248 /* Force use of hard-coded filter coefficients
4249 * as some pre-programmed values are broken,
4250 * e.g. x201.
4251 */
4252 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4253 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4254 PF_PIPE_SEL_IVB(pipe));
4255 else
4256 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4257 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4258 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4259 }
4260}
4261
4a3b8769 4262static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4263{
4264 struct drm_device *dev = crtc->dev;
4265 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4266 struct drm_plane *plane;
bb53d4ae
VS
4267 struct intel_plane *intel_plane;
4268
af2b653b
MR
4269 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4270 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4271 if (intel_plane->pipe == pipe)
4272 intel_plane_restore(&intel_plane->base);
af2b653b 4273 }
bb53d4ae
VS
4274}
4275
0d703d4e
MR
4276/*
4277 * Disable a plane internally without actually modifying the plane's state.
4278 * This will allow us to easily restore the plane later by just reprogramming
4279 * its state.
4280 */
4281static void disable_plane_internal(struct drm_plane *plane)
4282{
4283 struct intel_plane *intel_plane = to_intel_plane(plane);
4284 struct drm_plane_state *state =
4285 plane->funcs->atomic_duplicate_state(plane);
4286 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4287
4288 intel_state->visible = false;
4289 intel_plane->commit_plane(plane, intel_state);
4290
4291 intel_plane_destroy_state(plane, state);
4292}
4293
4a3b8769 4294static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4295{
4296 struct drm_device *dev = crtc->dev;
4297 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4298 struct drm_plane *plane;
bb53d4ae
VS
4299 struct intel_plane *intel_plane;
4300
af2b653b
MR
4301 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4302 intel_plane = to_intel_plane(plane);
0d703d4e
MR
4303 if (plane->fb && intel_plane->pipe == pipe)
4304 disable_plane_internal(plane);
af2b653b 4305 }
bb53d4ae
VS
4306}
4307
20bc8673 4308void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4309{
cea165c3
VS
4310 struct drm_device *dev = crtc->base.dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4312
6e3c9717 4313 if (!crtc->config->ips_enabled)
d77e4531
PZ
4314 return;
4315
cea165c3
VS
4316 /* We can only enable IPS after we enable a plane and wait for a vblank */
4317 intel_wait_for_vblank(dev, crtc->pipe);
4318
d77e4531 4319 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4320 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4321 mutex_lock(&dev_priv->rps.hw_lock);
4322 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4323 mutex_unlock(&dev_priv->rps.hw_lock);
4324 /* Quoting Art Runyan: "its not safe to expect any particular
4325 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4326 * mailbox." Moreover, the mailbox may return a bogus state,
4327 * so we need to just enable it and continue on.
2a114cc1
BW
4328 */
4329 } else {
4330 I915_WRITE(IPS_CTL, IPS_ENABLE);
4331 /* The bit only becomes 1 in the next vblank, so this wait here
4332 * is essentially intel_wait_for_vblank. If we don't have this
4333 * and don't wait for vblanks until the end of crtc_enable, then
4334 * the HW state readout code will complain that the expected
4335 * IPS_CTL value is not the one we read. */
4336 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4337 DRM_ERROR("Timed out waiting for IPS enable\n");
4338 }
d77e4531
PZ
4339}
4340
20bc8673 4341void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4342{
4343 struct drm_device *dev = crtc->base.dev;
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345
6e3c9717 4346 if (!crtc->config->ips_enabled)
d77e4531
PZ
4347 return;
4348
4349 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4350 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4351 mutex_lock(&dev_priv->rps.hw_lock);
4352 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4353 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4354 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4355 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4356 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4357 } else {
2a114cc1 4358 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4359 POSTING_READ(IPS_CTL);
4360 }
d77e4531
PZ
4361
4362 /* We need to wait for a vblank before we can disable the plane. */
4363 intel_wait_for_vblank(dev, crtc->pipe);
4364}
4365
4366/** Loads the palette/gamma unit for the CRTC with the prepared values */
4367static void intel_crtc_load_lut(struct drm_crtc *crtc)
4368{
4369 struct drm_device *dev = crtc->dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372 enum pipe pipe = intel_crtc->pipe;
4373 int palreg = PALETTE(pipe);
4374 int i;
4375 bool reenable_ips = false;
4376
4377 /* The clocks have to be on to load the palette. */
83d65738 4378 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4379 return;
4380
4381 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4382 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4383 assert_dsi_pll_enabled(dev_priv);
4384 else
4385 assert_pll_enabled(dev_priv, pipe);
4386 }
4387
4388 /* use legacy palette for Ironlake */
7a1db49a 4389 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4390 palreg = LGC_PALETTE(pipe);
4391
4392 /* Workaround : Do not read or write the pipe palette/gamma data while
4393 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4394 */
6e3c9717 4395 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4396 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4397 GAMMA_MODE_MODE_SPLIT)) {
4398 hsw_disable_ips(intel_crtc);
4399 reenable_ips = true;
4400 }
4401
4402 for (i = 0; i < 256; i++) {
4403 I915_WRITE(palreg + 4 * i,
4404 (intel_crtc->lut_r[i] << 16) |
4405 (intel_crtc->lut_g[i] << 8) |
4406 intel_crtc->lut_b[i]);
4407 }
4408
4409 if (reenable_ips)
4410 hsw_enable_ips(intel_crtc);
4411}
4412
d3eedb1a
VS
4413static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4414{
4415 if (!enable && intel_crtc->overlay) {
4416 struct drm_device *dev = intel_crtc->base.dev;
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418
4419 mutex_lock(&dev->struct_mutex);
4420 dev_priv->mm.interruptible = false;
4421 (void) intel_overlay_switch_off(intel_crtc->overlay);
4422 dev_priv->mm.interruptible = true;
4423 mutex_unlock(&dev->struct_mutex);
4424 }
4425
4426 /* Let userspace switch the overlay on again. In most cases userspace
4427 * has to recompute where to put it anyway.
4428 */
4429}
4430
d3eedb1a 4431static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4432{
4433 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435 int pipe = intel_crtc->pipe;
a5c4d7bc 4436
fdd508a6 4437 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4438 intel_enable_sprite_planes(crtc);
a5c4d7bc 4439 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4440 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4441
4442 hsw_enable_ips(intel_crtc);
4443
4444 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4445 intel_fbc_update(dev);
a5c4d7bc 4446 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4447
4448 /*
4449 * FIXME: Once we grow proper nuclear flip support out of this we need
4450 * to compute the mask of flip planes precisely. For the time being
4451 * consider this a flip from a NULL plane.
4452 */
4453 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4454}
4455
d3eedb1a 4456static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4457{
4458 struct drm_device *dev = crtc->dev;
4459 struct drm_i915_private *dev_priv = dev->dev_private;
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461 int pipe = intel_crtc->pipe;
a5c4d7bc
VS
4462
4463 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc 4464
e35fef21 4465 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4466 intel_fbc_disable(dev);
a5c4d7bc
VS
4467
4468 hsw_disable_ips(intel_crtc);
4469
d3eedb1a 4470 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4471 intel_crtc_update_cursor(crtc, false);
4a3b8769 4472 intel_disable_sprite_planes(crtc);
fdd508a6 4473 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4474
f99d7069
DV
4475 /*
4476 * FIXME: Once we grow proper nuclear flip support out of this we need
4477 * to compute the mask of flip planes precisely. For the time being
4478 * consider this a flip to a NULL plane.
4479 */
4480 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4481}
4482
f67a559d
JB
4483static void ironlake_crtc_enable(struct drm_crtc *crtc)
4484{
4485 struct drm_device *dev = crtc->dev;
4486 struct drm_i915_private *dev_priv = dev->dev_private;
4487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4488 struct intel_encoder *encoder;
f67a559d 4489 int pipe = intel_crtc->pipe;
f67a559d 4490
83d65738 4491 WARN_ON(!crtc->state->enable);
08a48469 4492
f67a559d
JB
4493 if (intel_crtc->active)
4494 return;
4495
6e3c9717 4496 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4497 intel_prepare_shared_dpll(intel_crtc);
4498
6e3c9717 4499 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4500 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4501
4502 intel_set_pipe_timings(intel_crtc);
4503
6e3c9717 4504 if (intel_crtc->config->has_pch_encoder) {
29407aab 4505 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4506 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4507 }
4508
4509 ironlake_set_pipeconf(crtc);
4510
f67a559d 4511 intel_crtc->active = true;
8664281b 4512
a72e4c9f
DV
4513 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4514 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4515
f6736a1a 4516 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4517 if (encoder->pre_enable)
4518 encoder->pre_enable(encoder);
f67a559d 4519
6e3c9717 4520 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4521 /* Note: FDI PLL enabling _must_ be done before we enable the
4522 * cpu pipes, hence this is separate from all the other fdi/pch
4523 * enabling. */
88cefb6c 4524 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4525 } else {
4526 assert_fdi_tx_disabled(dev_priv, pipe);
4527 assert_fdi_rx_disabled(dev_priv, pipe);
4528 }
f67a559d 4529
b074cec8 4530 ironlake_pfit_enable(intel_crtc);
f67a559d 4531
9c54c0dd
JB
4532 /*
4533 * On ILK+ LUT must be loaded before the pipe is running but with
4534 * clocks enabled
4535 */
4536 intel_crtc_load_lut(crtc);
4537
f37fcc2a 4538 intel_update_watermarks(crtc);
e1fdc473 4539 intel_enable_pipe(intel_crtc);
f67a559d 4540
6e3c9717 4541 if (intel_crtc->config->has_pch_encoder)
f67a559d 4542 ironlake_pch_enable(crtc);
c98e9dcf 4543
f9b61ff6
DV
4544 assert_vblank_disabled(crtc);
4545 drm_crtc_vblank_on(crtc);
4546
fa5c73b1
DV
4547 for_each_encoder_on_crtc(dev, crtc, encoder)
4548 encoder->enable(encoder);
61b77ddd
DV
4549
4550 if (HAS_PCH_CPT(dev))
a1520318 4551 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4552
d3eedb1a 4553 intel_crtc_enable_planes(crtc);
6be4a607
JB
4554}
4555
42db64ef
PZ
4556/* IPS only exists on ULT machines and is tied to pipe A. */
4557static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4558{
f5adf94e 4559 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4560}
4561
e4916946
PZ
4562/*
4563 * This implements the workaround described in the "notes" section of the mode
4564 * set sequence documentation. When going from no pipes or single pipe to
4565 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4566 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4567 */
4568static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4569{
4570 struct drm_device *dev = crtc->base.dev;
4571 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4572
4573 /* We want to get the other_active_crtc only if there's only 1 other
4574 * active crtc. */
d3fcc808 4575 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4576 if (!crtc_it->active || crtc_it == crtc)
4577 continue;
4578
4579 if (other_active_crtc)
4580 return;
4581
4582 other_active_crtc = crtc_it;
4583 }
4584 if (!other_active_crtc)
4585 return;
4586
4587 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4588 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4589}
4590
4f771f10
PZ
4591static void haswell_crtc_enable(struct drm_crtc *crtc)
4592{
4593 struct drm_device *dev = crtc->dev;
4594 struct drm_i915_private *dev_priv = dev->dev_private;
4595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4596 struct intel_encoder *encoder;
4597 int pipe = intel_crtc->pipe;
4f771f10 4598
83d65738 4599 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4600
4601 if (intel_crtc->active)
4602 return;
4603
df8ad70c
DV
4604 if (intel_crtc_to_shared_dpll(intel_crtc))
4605 intel_enable_shared_dpll(intel_crtc);
4606
6e3c9717 4607 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4608 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4609
4610 intel_set_pipe_timings(intel_crtc);
4611
6e3c9717
ACO
4612 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4613 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4614 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4615 }
4616
6e3c9717 4617 if (intel_crtc->config->has_pch_encoder) {
229fca97 4618 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4619 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4620 }
4621
4622 haswell_set_pipeconf(crtc);
4623
4624 intel_set_pipe_csc(crtc);
4625
4f771f10 4626 intel_crtc->active = true;
8664281b 4627
a72e4c9f 4628 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4629 for_each_encoder_on_crtc(dev, crtc, encoder)
4630 if (encoder->pre_enable)
4631 encoder->pre_enable(encoder);
4632
6e3c9717 4633 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4634 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4635 true);
4fe9467d
ID
4636 dev_priv->display.fdi_link_train(crtc);
4637 }
4638
1f544388 4639 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4640
bd2e244f
JB
4641 if (IS_SKYLAKE(dev))
4642 skylake_pfit_enable(intel_crtc);
4643 else
4644 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4645
4646 /*
4647 * On ILK+ LUT must be loaded before the pipe is running but with
4648 * clocks enabled
4649 */
4650 intel_crtc_load_lut(crtc);
4651
1f544388 4652 intel_ddi_set_pipe_settings(crtc);
8228c251 4653 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4654
f37fcc2a 4655 intel_update_watermarks(crtc);
e1fdc473 4656 intel_enable_pipe(intel_crtc);
42db64ef 4657
6e3c9717 4658 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4659 lpt_pch_enable(crtc);
4f771f10 4660
6e3c9717 4661 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4662 intel_ddi_set_vc_payload_alloc(crtc, true);
4663
f9b61ff6
DV
4664 assert_vblank_disabled(crtc);
4665 drm_crtc_vblank_on(crtc);
4666
8807e55b 4667 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4668 encoder->enable(encoder);
8807e55b
JN
4669 intel_opregion_notify_encoder(encoder, true);
4670 }
4f771f10 4671
e4916946
PZ
4672 /* If we change the relative order between pipe/planes enabling, we need
4673 * to change the workaround. */
4674 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4675 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4676}
4677
bd2e244f
JB
4678static void skylake_pfit_disable(struct intel_crtc *crtc)
4679{
4680 struct drm_device *dev = crtc->base.dev;
4681 struct drm_i915_private *dev_priv = dev->dev_private;
4682 int pipe = crtc->pipe;
4683
4684 /* To avoid upsetting the power well on haswell only disable the pfit if
4685 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4686 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4687 I915_WRITE(PS_CTL(pipe), 0);
4688 I915_WRITE(PS_WIN_POS(pipe), 0);
4689 I915_WRITE(PS_WIN_SZ(pipe), 0);
4690 }
4691}
4692
3f8dce3a
DV
4693static void ironlake_pfit_disable(struct intel_crtc *crtc)
4694{
4695 struct drm_device *dev = crtc->base.dev;
4696 struct drm_i915_private *dev_priv = dev->dev_private;
4697 int pipe = crtc->pipe;
4698
4699 /* To avoid upsetting the power well on haswell only disable the pfit if
4700 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4701 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4702 I915_WRITE(PF_CTL(pipe), 0);
4703 I915_WRITE(PF_WIN_POS(pipe), 0);
4704 I915_WRITE(PF_WIN_SZ(pipe), 0);
4705 }
4706}
4707
6be4a607
JB
4708static void ironlake_crtc_disable(struct drm_crtc *crtc)
4709{
4710 struct drm_device *dev = crtc->dev;
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4713 struct intel_encoder *encoder;
6be4a607 4714 int pipe = intel_crtc->pipe;
5eddb70b 4715 u32 reg, temp;
b52eb4dc 4716
f7abfe8b
CW
4717 if (!intel_crtc->active)
4718 return;
4719
d3eedb1a 4720 intel_crtc_disable_planes(crtc);
a5c4d7bc 4721
ea9d758d
DV
4722 for_each_encoder_on_crtc(dev, crtc, encoder)
4723 encoder->disable(encoder);
4724
f9b61ff6
DV
4725 drm_crtc_vblank_off(crtc);
4726 assert_vblank_disabled(crtc);
4727
6e3c9717 4728 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4729 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4730
575f7ab7 4731 intel_disable_pipe(intel_crtc);
32f9d658 4732
3f8dce3a 4733 ironlake_pfit_disable(intel_crtc);
2c07245f 4734
bf49ec8c
DV
4735 for_each_encoder_on_crtc(dev, crtc, encoder)
4736 if (encoder->post_disable)
4737 encoder->post_disable(encoder);
2c07245f 4738
6e3c9717 4739 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4740 ironlake_fdi_disable(crtc);
913d8d11 4741
d925c59a 4742 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4743
d925c59a
DV
4744 if (HAS_PCH_CPT(dev)) {
4745 /* disable TRANS_DP_CTL */
4746 reg = TRANS_DP_CTL(pipe);
4747 temp = I915_READ(reg);
4748 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4749 TRANS_DP_PORT_SEL_MASK);
4750 temp |= TRANS_DP_PORT_SEL_NONE;
4751 I915_WRITE(reg, temp);
4752
4753 /* disable DPLL_SEL */
4754 temp = I915_READ(PCH_DPLL_SEL);
11887397 4755 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4756 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4757 }
e3421a18 4758
d925c59a 4759 /* disable PCH DPLL */
e72f9fbf 4760 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4761
d925c59a
DV
4762 ironlake_fdi_pll_disable(intel_crtc);
4763 }
6b383a7f 4764
f7abfe8b 4765 intel_crtc->active = false;
46ba614c 4766 intel_update_watermarks(crtc);
d1ebd816
BW
4767
4768 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4769 intel_fbc_update(dev);
d1ebd816 4770 mutex_unlock(&dev->struct_mutex);
6be4a607 4771}
1b3c7a47 4772
4f771f10 4773static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4774{
4f771f10
PZ
4775 struct drm_device *dev = crtc->dev;
4776 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4778 struct intel_encoder *encoder;
6e3c9717 4779 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4780
4f771f10
PZ
4781 if (!intel_crtc->active)
4782 return;
4783
d3eedb1a 4784 intel_crtc_disable_planes(crtc);
dda9a66a 4785
8807e55b
JN
4786 for_each_encoder_on_crtc(dev, crtc, encoder) {
4787 intel_opregion_notify_encoder(encoder, false);
4f771f10 4788 encoder->disable(encoder);
8807e55b 4789 }
4f771f10 4790
f9b61ff6
DV
4791 drm_crtc_vblank_off(crtc);
4792 assert_vblank_disabled(crtc);
4793
6e3c9717 4794 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4795 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4796 false);
575f7ab7 4797 intel_disable_pipe(intel_crtc);
4f771f10 4798
6e3c9717 4799 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4800 intel_ddi_set_vc_payload_alloc(crtc, false);
4801
ad80a810 4802 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4803
bd2e244f
JB
4804 if (IS_SKYLAKE(dev))
4805 skylake_pfit_disable(intel_crtc);
4806 else
4807 ironlake_pfit_disable(intel_crtc);
4f771f10 4808
1f544388 4809 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4810
6e3c9717 4811 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4812 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4813 intel_ddi_fdi_disable(crtc);
83616634 4814 }
4f771f10 4815
97b040aa
ID
4816 for_each_encoder_on_crtc(dev, crtc, encoder)
4817 if (encoder->post_disable)
4818 encoder->post_disable(encoder);
4819
4f771f10 4820 intel_crtc->active = false;
46ba614c 4821 intel_update_watermarks(crtc);
4f771f10
PZ
4822
4823 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4824 intel_fbc_update(dev);
4f771f10 4825 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4826
4827 if (intel_crtc_to_shared_dpll(intel_crtc))
4828 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4829}
4830
ee7b9f93
JB
4831static void ironlake_crtc_off(struct drm_crtc *crtc)
4832{
4833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4834 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4835}
4836
6441ab5f 4837
2dd24552
JB
4838static void i9xx_pfit_enable(struct intel_crtc *crtc)
4839{
4840 struct drm_device *dev = crtc->base.dev;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4842 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4843
681a8504 4844 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4845 return;
4846
2dd24552 4847 /*
c0b03411
DV
4848 * The panel fitter should only be adjusted whilst the pipe is disabled,
4849 * according to register description and PRM.
2dd24552 4850 */
c0b03411
DV
4851 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4852 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4853
b074cec8
JB
4854 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4855 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4856
4857 /* Border color in case we don't scale up to the full screen. Black by
4858 * default, change to something else for debugging. */
4859 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4860}
4861
d05410f9
DA
4862static enum intel_display_power_domain port_to_power_domain(enum port port)
4863{
4864 switch (port) {
4865 case PORT_A:
4866 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4867 case PORT_B:
4868 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4869 case PORT_C:
4870 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4871 case PORT_D:
4872 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4873 default:
4874 WARN_ON_ONCE(1);
4875 return POWER_DOMAIN_PORT_OTHER;
4876 }
4877}
4878
77d22dca
ID
4879#define for_each_power_domain(domain, mask) \
4880 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4881 if ((1 << (domain)) & (mask))
4882
319be8ae
ID
4883enum intel_display_power_domain
4884intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4885{
4886 struct drm_device *dev = intel_encoder->base.dev;
4887 struct intel_digital_port *intel_dig_port;
4888
4889 switch (intel_encoder->type) {
4890 case INTEL_OUTPUT_UNKNOWN:
4891 /* Only DDI platforms should ever use this output type */
4892 WARN_ON_ONCE(!HAS_DDI(dev));
4893 case INTEL_OUTPUT_DISPLAYPORT:
4894 case INTEL_OUTPUT_HDMI:
4895 case INTEL_OUTPUT_EDP:
4896 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4897 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4898 case INTEL_OUTPUT_DP_MST:
4899 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4900 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4901 case INTEL_OUTPUT_ANALOG:
4902 return POWER_DOMAIN_PORT_CRT;
4903 case INTEL_OUTPUT_DSI:
4904 return POWER_DOMAIN_PORT_DSI;
4905 default:
4906 return POWER_DOMAIN_PORT_OTHER;
4907 }
4908}
4909
4910static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4911{
319be8ae
ID
4912 struct drm_device *dev = crtc->dev;
4913 struct intel_encoder *intel_encoder;
4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4916 unsigned long mask;
4917 enum transcoder transcoder;
4918
4919 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4920
4921 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4922 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4923 if (intel_crtc->config->pch_pfit.enabled ||
4924 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4925 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4926
319be8ae
ID
4927 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4928 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4929
77d22dca
ID
4930 return mask;
4931}
4932
679dacd4 4933static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 4934{
679dacd4 4935 struct drm_device *dev = state->dev;
77d22dca
ID
4936 struct drm_i915_private *dev_priv = dev->dev_private;
4937 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4938 struct intel_crtc *crtc;
4939
4940 /*
4941 * First get all needed power domains, then put all unneeded, to avoid
4942 * any unnecessary toggling of the power wells.
4943 */
d3fcc808 4944 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4945 enum intel_display_power_domain domain;
4946
83d65738 4947 if (!crtc->base.state->enable)
77d22dca
ID
4948 continue;
4949
319be8ae 4950 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4951
4952 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4953 intel_display_power_get(dev_priv, domain);
4954 }
4955
50f6e502 4956 if (dev_priv->display.modeset_global_resources)
679dacd4 4957 dev_priv->display.modeset_global_resources(state);
50f6e502 4958
d3fcc808 4959 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4960 enum intel_display_power_domain domain;
4961
4962 for_each_power_domain(domain, crtc->enabled_power_domains)
4963 intel_display_power_put(dev_priv, domain);
4964
4965 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4966 }
4967
4968 intel_display_set_init_power(dev_priv, false);
4969}
4970
dfcab17e 4971/* returns HPLL frequency in kHz */
f8bf63fd 4972static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4973{
586f49dc 4974 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4975
586f49dc
JB
4976 /* Obtain SKU information */
4977 mutex_lock(&dev_priv->dpio_lock);
4978 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4979 CCK_FUSE_HPLL_FREQ_MASK;
4980 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4981
dfcab17e 4982 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4983}
4984
f8bf63fd
VS
4985static void vlv_update_cdclk(struct drm_device *dev)
4986{
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988
4989 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4990 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4991 dev_priv->vlv_cdclk_freq);
4992
4993 /*
4994 * Program the gmbus_freq based on the cdclk frequency.
4995 * BSpec erroneously claims we should aim for 4MHz, but
4996 * in fact 1MHz is the correct frequency.
4997 */
6be1e3d3 4998 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4999}
5000
30a970c6
JB
5001/* Adjust CDclk dividers to allow high res or save power if possible */
5002static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5003{
5004 struct drm_i915_private *dev_priv = dev->dev_private;
5005 u32 val, cmd;
5006
d197b7d3 5007 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 5008
dfcab17e 5009 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5010 cmd = 2;
dfcab17e 5011 else if (cdclk == 266667)
30a970c6
JB
5012 cmd = 1;
5013 else
5014 cmd = 0;
5015
5016 mutex_lock(&dev_priv->rps.hw_lock);
5017 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5018 val &= ~DSPFREQGUAR_MASK;
5019 val |= (cmd << DSPFREQGUAR_SHIFT);
5020 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5021 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5022 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5023 50)) {
5024 DRM_ERROR("timed out waiting for CDclk change\n");
5025 }
5026 mutex_unlock(&dev_priv->rps.hw_lock);
5027
dfcab17e 5028 if (cdclk == 400000) {
6bcda4f0 5029 u32 divider;
30a970c6 5030
6bcda4f0 5031 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
5032
5033 mutex_lock(&dev_priv->dpio_lock);
5034 /* adjust cdclk divider */
5035 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5036 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5037 val |= divider;
5038 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5039
5040 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5041 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5042 50))
5043 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5044 mutex_unlock(&dev_priv->dpio_lock);
5045 }
5046
5047 mutex_lock(&dev_priv->dpio_lock);
5048 /* adjust self-refresh exit latency value */
5049 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5050 val &= ~0x7f;
5051
5052 /*
5053 * For high bandwidth configs, we set a higher latency in the bunit
5054 * so that the core display fetch happens in time to avoid underruns.
5055 */
dfcab17e 5056 if (cdclk == 400000)
30a970c6
JB
5057 val |= 4500 / 250; /* 4.5 usec */
5058 else
5059 val |= 3000 / 250; /* 3.0 usec */
5060 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5061 mutex_unlock(&dev_priv->dpio_lock);
5062
f8bf63fd 5063 vlv_update_cdclk(dev);
30a970c6
JB
5064}
5065
383c5a6a
VS
5066static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5067{
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 u32 val, cmd;
5070
5071 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5072
5073 switch (cdclk) {
383c5a6a
VS
5074 case 333333:
5075 case 320000:
383c5a6a 5076 case 266667:
383c5a6a 5077 case 200000:
383c5a6a
VS
5078 break;
5079 default:
5f77eeb0 5080 MISSING_CASE(cdclk);
383c5a6a
VS
5081 return;
5082 }
5083
9d0d3fda
VS
5084 /*
5085 * Specs are full of misinformation, but testing on actual
5086 * hardware has shown that we just need to write the desired
5087 * CCK divider into the Punit register.
5088 */
5089 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5090
383c5a6a
VS
5091 mutex_lock(&dev_priv->rps.hw_lock);
5092 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5093 val &= ~DSPFREQGUAR_MASK_CHV;
5094 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5095 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5096 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5097 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5098 50)) {
5099 DRM_ERROR("timed out waiting for CDclk change\n");
5100 }
5101 mutex_unlock(&dev_priv->rps.hw_lock);
5102
5103 vlv_update_cdclk(dev);
5104}
5105
30a970c6
JB
5106static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5107 int max_pixclk)
5108{
6bcda4f0 5109 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5110 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5111
30a970c6
JB
5112 /*
5113 * Really only a few cases to deal with, as only 4 CDclks are supported:
5114 * 200MHz
5115 * 267MHz
29dc7ef3 5116 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5117 * 400MHz (VLV only)
5118 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5119 * of the lower bin and adjust if needed.
e37c67a1
VS
5120 *
5121 * We seem to get an unstable or solid color picture at 200MHz.
5122 * Not sure what's wrong. For now use 200MHz only when all pipes
5123 * are off.
30a970c6 5124 */
6cca3195
VS
5125 if (!IS_CHERRYVIEW(dev_priv) &&
5126 max_pixclk > freq_320*limit/100)
dfcab17e 5127 return 400000;
6cca3195 5128 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5129 return freq_320;
e37c67a1 5130 else if (max_pixclk > 0)
dfcab17e 5131 return 266667;
e37c67a1
VS
5132 else
5133 return 200000;
30a970c6
JB
5134}
5135
2f2d7aa1
VS
5136/* compute the max pixel clock for new configuration */
5137static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
5138{
5139 struct drm_device *dev = dev_priv->dev;
5140 struct intel_crtc *intel_crtc;
5141 int max_pixclk = 0;
5142
d3fcc808 5143 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 5144 if (intel_crtc->new_enabled)
30a970c6 5145 max_pixclk = max(max_pixclk,
2d112de7 5146 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
5147 }
5148
5149 return max_pixclk;
5150}
5151
5152static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 5153 unsigned *prepare_pipes)
30a970c6
JB
5154{
5155 struct drm_i915_private *dev_priv = dev->dev_private;
5156 struct intel_crtc *intel_crtc;
2f2d7aa1 5157 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 5158
d60c4473
ID
5159 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5160 dev_priv->vlv_cdclk_freq)
30a970c6
JB
5161 return;
5162
2f2d7aa1 5163 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 5164 for_each_intel_crtc(dev, intel_crtc)
83d65738 5165 if (intel_crtc->base.state->enable)
30a970c6
JB
5166 *prepare_pipes |= (1 << intel_crtc->pipe);
5167}
5168
1e69cd74
VS
5169static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5170{
5171 unsigned int credits, default_credits;
5172
5173 if (IS_CHERRYVIEW(dev_priv))
5174 default_credits = PFI_CREDIT(12);
5175 else
5176 default_credits = PFI_CREDIT(8);
5177
5178 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5179 /* CHV suggested value is 31 or 63 */
5180 if (IS_CHERRYVIEW(dev_priv))
5181 credits = PFI_CREDIT_31;
5182 else
5183 credits = PFI_CREDIT(15);
5184 } else {
5185 credits = default_credits;
5186 }
5187
5188 /*
5189 * WA - write default credits before re-programming
5190 * FIXME: should we also set the resend bit here?
5191 */
5192 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5193 default_credits);
5194
5195 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5196 credits | PFI_CREDIT_RESEND);
5197
5198 /*
5199 * FIXME is this guaranteed to clear
5200 * immediately or should we poll for it?
5201 */
5202 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5203}
5204
679dacd4 5205static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
30a970c6 5206{
679dacd4 5207 struct drm_device *dev = state->dev;
30a970c6 5208 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 5209 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
5210 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5211
383c5a6a 5212 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
5213 /*
5214 * FIXME: We can end up here with all power domains off, yet
5215 * with a CDCLK frequency other than the minimum. To account
5216 * for this take the PIPE-A power domain, which covers the HW
5217 * blocks needed for the following programming. This can be
5218 * removed once it's guaranteed that we get here either with
5219 * the minimum CDCLK set, or the required power domains
5220 * enabled.
5221 */
5222 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5223
383c5a6a
VS
5224 if (IS_CHERRYVIEW(dev))
5225 cherryview_set_cdclk(dev, req_cdclk);
5226 else
5227 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 5228
1e69cd74
VS
5229 vlv_program_pfi_credits(dev_priv);
5230
738c05c0 5231 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 5232 }
30a970c6
JB
5233}
5234
89b667f8
JB
5235static void valleyview_crtc_enable(struct drm_crtc *crtc)
5236{
5237 struct drm_device *dev = crtc->dev;
a72e4c9f 5238 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
5239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240 struct intel_encoder *encoder;
5241 int pipe = intel_crtc->pipe;
23538ef1 5242 bool is_dsi;
89b667f8 5243
83d65738 5244 WARN_ON(!crtc->state->enable);
89b667f8
JB
5245
5246 if (intel_crtc->active)
5247 return;
5248
409ee761 5249 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5250
1ae0d137
VS
5251 if (!is_dsi) {
5252 if (IS_CHERRYVIEW(dev))
6e3c9717 5253 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5254 else
6e3c9717 5255 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5256 }
5b18e57c 5257
6e3c9717 5258 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5259 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5260
5261 intel_set_pipe_timings(intel_crtc);
5262
c14b0485
VS
5263 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5267 I915_WRITE(CHV_CANVAS(pipe), 0);
5268 }
5269
5b18e57c
DV
5270 i9xx_set_pipeconf(intel_crtc);
5271
89b667f8 5272 intel_crtc->active = true;
89b667f8 5273
a72e4c9f 5274 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5275
89b667f8
JB
5276 for_each_encoder_on_crtc(dev, crtc, encoder)
5277 if (encoder->pre_pll_enable)
5278 encoder->pre_pll_enable(encoder);
5279
9d556c99
CML
5280 if (!is_dsi) {
5281 if (IS_CHERRYVIEW(dev))
6e3c9717 5282 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5283 else
6e3c9717 5284 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5285 }
89b667f8
JB
5286
5287 for_each_encoder_on_crtc(dev, crtc, encoder)
5288 if (encoder->pre_enable)
5289 encoder->pre_enable(encoder);
5290
2dd24552
JB
5291 i9xx_pfit_enable(intel_crtc);
5292
63cbb074
VS
5293 intel_crtc_load_lut(crtc);
5294
f37fcc2a 5295 intel_update_watermarks(crtc);
e1fdc473 5296 intel_enable_pipe(intel_crtc);
be6a6f8e 5297
4b3a9526
VS
5298 assert_vblank_disabled(crtc);
5299 drm_crtc_vblank_on(crtc);
5300
f9b61ff6
DV
5301 for_each_encoder_on_crtc(dev, crtc, encoder)
5302 encoder->enable(encoder);
5303
9ab0460b 5304 intel_crtc_enable_planes(crtc);
d40d9187 5305
56b80e1f 5306 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5307 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5308}
5309
f13c2ef3
DV
5310static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5311{
5312 struct drm_device *dev = crtc->base.dev;
5313 struct drm_i915_private *dev_priv = dev->dev_private;
5314
6e3c9717
ACO
5315 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5316 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5317}
5318
0b8765c6 5319static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5320{
5321 struct drm_device *dev = crtc->dev;
a72e4c9f 5322 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5324 struct intel_encoder *encoder;
79e53945 5325 int pipe = intel_crtc->pipe;
79e53945 5326
83d65738 5327 WARN_ON(!crtc->state->enable);
08a48469 5328
f7abfe8b
CW
5329 if (intel_crtc->active)
5330 return;
5331
f13c2ef3
DV
5332 i9xx_set_pll_dividers(intel_crtc);
5333
6e3c9717 5334 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5335 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
5336
5337 intel_set_pipe_timings(intel_crtc);
5338
5b18e57c
DV
5339 i9xx_set_pipeconf(intel_crtc);
5340
f7abfe8b 5341 intel_crtc->active = true;
6b383a7f 5342
4a3436e8 5343 if (!IS_GEN2(dev))
a72e4c9f 5344 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5345
9d6d9f19
MK
5346 for_each_encoder_on_crtc(dev, crtc, encoder)
5347 if (encoder->pre_enable)
5348 encoder->pre_enable(encoder);
5349
f6736a1a
DV
5350 i9xx_enable_pll(intel_crtc);
5351
2dd24552
JB
5352 i9xx_pfit_enable(intel_crtc);
5353
63cbb074
VS
5354 intel_crtc_load_lut(crtc);
5355
f37fcc2a 5356 intel_update_watermarks(crtc);
e1fdc473 5357 intel_enable_pipe(intel_crtc);
be6a6f8e 5358
4b3a9526
VS
5359 assert_vblank_disabled(crtc);
5360 drm_crtc_vblank_on(crtc);
5361
f9b61ff6
DV
5362 for_each_encoder_on_crtc(dev, crtc, encoder)
5363 encoder->enable(encoder);
5364
9ab0460b 5365 intel_crtc_enable_planes(crtc);
d40d9187 5366
4a3436e8
VS
5367 /*
5368 * Gen2 reports pipe underruns whenever all planes are disabled.
5369 * So don't enable underrun reporting before at least some planes
5370 * are enabled.
5371 * FIXME: Need to fix the logic to work when we turn off all planes
5372 * but leave the pipe running.
5373 */
5374 if (IS_GEN2(dev))
a72e4c9f 5375 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5376
56b80e1f 5377 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5378 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5379}
79e53945 5380
87476d63
DV
5381static void i9xx_pfit_disable(struct intel_crtc *crtc)
5382{
5383 struct drm_device *dev = crtc->base.dev;
5384 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5385
6e3c9717 5386 if (!crtc->config->gmch_pfit.control)
328d8e82 5387 return;
87476d63 5388
328d8e82 5389 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5390
328d8e82
DV
5391 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5392 I915_READ(PFIT_CONTROL));
5393 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5394}
5395
0b8765c6
JB
5396static void i9xx_crtc_disable(struct drm_crtc *crtc)
5397{
5398 struct drm_device *dev = crtc->dev;
5399 struct drm_i915_private *dev_priv = dev->dev_private;
5400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5401 struct intel_encoder *encoder;
0b8765c6 5402 int pipe = intel_crtc->pipe;
ef9c3aee 5403
f7abfe8b
CW
5404 if (!intel_crtc->active)
5405 return;
5406
4a3436e8
VS
5407 /*
5408 * Gen2 reports pipe underruns whenever all planes are disabled.
5409 * So diasble underrun reporting before all the planes get disabled.
5410 * FIXME: Need to fix the logic to work when we turn off all planes
5411 * but leave the pipe running.
5412 */
5413 if (IS_GEN2(dev))
a72e4c9f 5414 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5415
564ed191
ID
5416 /*
5417 * Vblank time updates from the shadow to live plane control register
5418 * are blocked if the memory self-refresh mode is active at that
5419 * moment. So to make sure the plane gets truly disabled, disable
5420 * first the self-refresh mode. The self-refresh enable bit in turn
5421 * will be checked/applied by the HW only at the next frame start
5422 * event which is after the vblank start event, so we need to have a
5423 * wait-for-vblank between disabling the plane and the pipe.
5424 */
5425 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5426 intel_crtc_disable_planes(crtc);
5427
6304cd91
VS
5428 /*
5429 * On gen2 planes are double buffered but the pipe isn't, so we must
5430 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5431 * We also need to wait on all gmch platforms because of the
5432 * self-refresh mode constraint explained above.
6304cd91 5433 */
564ed191 5434 intel_wait_for_vblank(dev, pipe);
6304cd91 5435
4b3a9526
VS
5436 for_each_encoder_on_crtc(dev, crtc, encoder)
5437 encoder->disable(encoder);
5438
f9b61ff6
DV
5439 drm_crtc_vblank_off(crtc);
5440 assert_vblank_disabled(crtc);
5441
575f7ab7 5442 intel_disable_pipe(intel_crtc);
24a1f16d 5443
87476d63 5444 i9xx_pfit_disable(intel_crtc);
24a1f16d 5445
89b667f8
JB
5446 for_each_encoder_on_crtc(dev, crtc, encoder)
5447 if (encoder->post_disable)
5448 encoder->post_disable(encoder);
5449
409ee761 5450 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5451 if (IS_CHERRYVIEW(dev))
5452 chv_disable_pll(dev_priv, pipe);
5453 else if (IS_VALLEYVIEW(dev))
5454 vlv_disable_pll(dev_priv, pipe);
5455 else
1c4e0274 5456 i9xx_disable_pll(intel_crtc);
076ed3b2 5457 }
0b8765c6 5458
4a3436e8 5459 if (!IS_GEN2(dev))
a72e4c9f 5460 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5461
f7abfe8b 5462 intel_crtc->active = false;
46ba614c 5463 intel_update_watermarks(crtc);
f37fcc2a 5464
efa9624e 5465 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5466 intel_fbc_update(dev);
efa9624e 5467 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5468}
5469
ee7b9f93
JB
5470static void i9xx_crtc_off(struct drm_crtc *crtc)
5471{
5472}
5473
b04c5bd6
BF
5474/* Master function to enable/disable CRTC and corresponding power wells */
5475void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5476{
5477 struct drm_device *dev = crtc->dev;
5478 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5480 enum intel_display_power_domain domain;
5481 unsigned long domains;
976f8a20 5482
0e572fe7
DV
5483 if (enable) {
5484 if (!intel_crtc->active) {
e1e9fb84
DV
5485 domains = get_crtc_power_domains(crtc);
5486 for_each_power_domain(domain, domains)
5487 intel_display_power_get(dev_priv, domain);
5488 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5489
5490 dev_priv->display.crtc_enable(crtc);
5491 }
5492 } else {
5493 if (intel_crtc->active) {
5494 dev_priv->display.crtc_disable(crtc);
5495
e1e9fb84
DV
5496 domains = intel_crtc->enabled_power_domains;
5497 for_each_power_domain(domain, domains)
5498 intel_display_power_put(dev_priv, domain);
5499 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5500 }
5501 }
b04c5bd6
BF
5502}
5503
5504/**
5505 * Sets the power management mode of the pipe and plane.
5506 */
5507void intel_crtc_update_dpms(struct drm_crtc *crtc)
5508{
5509 struct drm_device *dev = crtc->dev;
5510 struct intel_encoder *intel_encoder;
5511 bool enable = false;
5512
5513 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5514 enable |= intel_encoder->connectors_active;
5515
5516 intel_crtc_control(crtc, enable);
976f8a20
DV
5517}
5518
cdd59983
CW
5519static void intel_crtc_disable(struct drm_crtc *crtc)
5520{
cdd59983 5521 struct drm_device *dev = crtc->dev;
976f8a20 5522 struct drm_connector *connector;
ee7b9f93 5523 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5524
976f8a20 5525 /* crtc should still be enabled when we disable it. */
83d65738 5526 WARN_ON(!crtc->state->enable);
976f8a20
DV
5527
5528 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5529 dev_priv->display.off(crtc);
5530
455a6808 5531 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5532
5533 /* Update computed state. */
5534 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5535 if (!connector->encoder || !connector->encoder->crtc)
5536 continue;
5537
5538 if (connector->encoder->crtc != crtc)
5539 continue;
5540
5541 connector->dpms = DRM_MODE_DPMS_OFF;
5542 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5543 }
5544}
5545
ea5b213a 5546void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5547{
4ef69c7a 5548 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5549
ea5b213a
CW
5550 drm_encoder_cleanup(encoder);
5551 kfree(intel_encoder);
7e7d76c3
JB
5552}
5553
9237329d 5554/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5555 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5556 * state of the entire output pipe. */
9237329d 5557static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5558{
5ab432ef
DV
5559 if (mode == DRM_MODE_DPMS_ON) {
5560 encoder->connectors_active = true;
5561
b2cabb0e 5562 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5563 } else {
5564 encoder->connectors_active = false;
5565
b2cabb0e 5566 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5567 }
79e53945
JB
5568}
5569
0a91ca29
DV
5570/* Cross check the actual hw state with our own modeset state tracking (and it's
5571 * internal consistency). */
b980514c 5572static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5573{
0a91ca29
DV
5574 if (connector->get_hw_state(connector)) {
5575 struct intel_encoder *encoder = connector->encoder;
5576 struct drm_crtc *crtc;
5577 bool encoder_enabled;
5578 enum pipe pipe;
5579
5580 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5581 connector->base.base.id,
c23cc417 5582 connector->base.name);
0a91ca29 5583
0e32b39c
DA
5584 /* there is no real hw state for MST connectors */
5585 if (connector->mst_port)
5586 return;
5587
e2c719b7 5588 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5589 "wrong connector dpms state\n");
e2c719b7 5590 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5591 "active connector not linked to encoder\n");
0a91ca29 5592
36cd7444 5593 if (encoder) {
e2c719b7 5594 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5595 "encoder->connectors_active not set\n");
5596
5597 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5598 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5599 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5600 return;
0a91ca29 5601
36cd7444 5602 crtc = encoder->base.crtc;
0a91ca29 5603
83d65738
MR
5604 I915_STATE_WARN(!crtc->state->enable,
5605 "crtc not enabled\n");
e2c719b7
RC
5606 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5607 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5608 "encoder active on the wrong pipe\n");
5609 }
0a91ca29 5610 }
79e53945
JB
5611}
5612
5ab432ef
DV
5613/* Even simpler default implementation, if there's really no special case to
5614 * consider. */
5615void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5616{
5ab432ef
DV
5617 /* All the simple cases only support two dpms states. */
5618 if (mode != DRM_MODE_DPMS_ON)
5619 mode = DRM_MODE_DPMS_OFF;
d4270e57 5620
5ab432ef
DV
5621 if (mode == connector->dpms)
5622 return;
5623
5624 connector->dpms = mode;
5625
5626 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5627 if (connector->encoder)
5628 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5629
b980514c 5630 intel_modeset_check_state(connector->dev);
79e53945
JB
5631}
5632
f0947c37
DV
5633/* Simple connector->get_hw_state implementation for encoders that support only
5634 * one connector and no cloning and hence the encoder state determines the state
5635 * of the connector. */
5636bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5637{
24929352 5638 enum pipe pipe = 0;
f0947c37 5639 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5640
f0947c37 5641 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5642}
5643
d272ddfa
VS
5644static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5645{
5646 struct intel_crtc *crtc =
5647 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5648
5649 if (crtc->base.state->enable &&
5650 crtc->config->has_pch_encoder)
5651 return crtc->config->fdi_lanes;
5652
5653 return 0;
5654}
5655
1857e1da 5656static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5657 struct intel_crtc_state *pipe_config)
1857e1da 5658{
1857e1da
DV
5659 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5660 pipe_name(pipe), pipe_config->fdi_lanes);
5661 if (pipe_config->fdi_lanes > 4) {
5662 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5663 pipe_name(pipe), pipe_config->fdi_lanes);
5664 return false;
5665 }
5666
bafb6553 5667 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5668 if (pipe_config->fdi_lanes > 2) {
5669 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5670 pipe_config->fdi_lanes);
5671 return false;
5672 } else {
5673 return true;
5674 }
5675 }
5676
5677 if (INTEL_INFO(dev)->num_pipes == 2)
5678 return true;
5679
5680 /* Ivybridge 3 pipe is really complicated */
5681 switch (pipe) {
5682 case PIPE_A:
5683 return true;
5684 case PIPE_B:
d272ddfa
VS
5685 if (pipe_config->fdi_lanes > 2 &&
5686 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
1857e1da
DV
5687 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5688 pipe_name(pipe), pipe_config->fdi_lanes);
5689 return false;
5690 }
5691 return true;
5692 case PIPE_C:
251cc67c
VS
5693 if (pipe_config->fdi_lanes > 2) {
5694 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5695 pipe_name(pipe), pipe_config->fdi_lanes);
5696 return false;
5697 }
d272ddfa 5698 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
1857e1da
DV
5699 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5700 return false;
5701 }
5702 return true;
5703 default:
5704 BUG();
5705 }
5706}
5707
e29c22c0
DV
5708#define RETRY 1
5709static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5710 struct intel_crtc_state *pipe_config)
877d48d5 5711{
1857e1da 5712 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5713 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5714 int lane, link_bw, fdi_dotclock;
e29c22c0 5715 bool setup_ok, needs_recompute = false;
877d48d5 5716
e29c22c0 5717retry:
877d48d5
DV
5718 /* FDI is a binary signal running at ~2.7GHz, encoding
5719 * each output octet as 10 bits. The actual frequency
5720 * is stored as a divider into a 100MHz clock, and the
5721 * mode pixel clock is stored in units of 1KHz.
5722 * Hence the bw of each lane in terms of the mode signal
5723 * is:
5724 */
5725 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5726
241bfc38 5727 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5728
2bd89a07 5729 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5730 pipe_config->pipe_bpp);
5731
5732 pipe_config->fdi_lanes = lane;
5733
2bd89a07 5734 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5735 link_bw, &pipe_config->fdi_m_n);
1857e1da 5736
e29c22c0
DV
5737 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5738 intel_crtc->pipe, pipe_config);
5739 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5740 pipe_config->pipe_bpp -= 2*3;
5741 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5742 pipe_config->pipe_bpp);
5743 needs_recompute = true;
5744 pipe_config->bw_constrained = true;
5745
5746 goto retry;
5747 }
5748
5749 if (needs_recompute)
5750 return RETRY;
5751
5752 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5753}
5754
42db64ef 5755static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5756 struct intel_crtc_state *pipe_config)
42db64ef 5757{
d330a953 5758 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5759 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5760 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5761}
5762
a43f6e0f 5763static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5764 struct intel_crtc_state *pipe_config)
79e53945 5765{
a43f6e0f 5766 struct drm_device *dev = crtc->base.dev;
8bd31e67 5767 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5768 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5769
ad3a4479 5770 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5771 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5772 int clock_limit =
5773 dev_priv->display.get_display_clock_speed(dev);
5774
5775 /*
5776 * Enable pixel doubling when the dot clock
5777 * is > 90% of the (display) core speed.
5778 *
b397c96b
VS
5779 * GDG double wide on either pipe,
5780 * otherwise pipe A only.
cf532bb2 5781 */
b397c96b 5782 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5783 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5784 clock_limit *= 2;
cf532bb2 5785 pipe_config->double_wide = true;
ad3a4479
VS
5786 }
5787
241bfc38 5788 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5789 return -EINVAL;
2c07245f 5790 }
89749350 5791
1d1d0e27
VS
5792 /*
5793 * Pipe horizontal size must be even in:
5794 * - DVO ganged mode
5795 * - LVDS dual channel mode
5796 * - Double wide pipe
5797 */
b4f2bf4c 5798 if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5799 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5800 pipe_config->pipe_src_w &= ~1;
5801
8693a824
DL
5802 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5803 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5804 */
5805 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5806 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5807 return -EINVAL;
44f46b42 5808
bd080ee5 5809 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5810 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5811 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5812 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5813 * for lvds. */
5814 pipe_config->pipe_bpp = 8*3;
5815 }
5816
f5adf94e 5817 if (HAS_IPS(dev))
a43f6e0f
DV
5818 hsw_compute_ips_config(crtc, pipe_config);
5819
877d48d5 5820 if (pipe_config->has_pch_encoder)
a43f6e0f 5821 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5822
e29c22c0 5823 return 0;
79e53945
JB
5824}
5825
25eb05fc
JB
5826static int valleyview_get_display_clock_speed(struct drm_device *dev)
5827{
d197b7d3 5828 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5829 u32 val;
5830 int divider;
5831
6bcda4f0
VS
5832 if (dev_priv->hpll_freq == 0)
5833 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5834
d197b7d3
VS
5835 mutex_lock(&dev_priv->dpio_lock);
5836 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5837 mutex_unlock(&dev_priv->dpio_lock);
5838
5839 divider = val & DISPLAY_FREQUENCY_VALUES;
5840
7d007f40
VS
5841 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5842 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5843 "cdclk change in progress\n");
5844
6bcda4f0 5845 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5846}
5847
e70236a8
JB
5848static int i945_get_display_clock_speed(struct drm_device *dev)
5849{
5850 return 400000;
5851}
79e53945 5852
e70236a8 5853static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5854{
e70236a8
JB
5855 return 333000;
5856}
79e53945 5857
e70236a8
JB
5858static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5859{
5860 return 200000;
5861}
79e53945 5862
257a7ffc
DV
5863static int pnv_get_display_clock_speed(struct drm_device *dev)
5864{
5865 u16 gcfgc = 0;
5866
5867 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5868
5869 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5870 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5871 return 267000;
5872 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5873 return 333000;
5874 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5875 return 444000;
5876 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5877 return 200000;
5878 default:
5879 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5880 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5881 return 133000;
5882 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5883 return 167000;
5884 }
5885}
5886
e70236a8
JB
5887static int i915gm_get_display_clock_speed(struct drm_device *dev)
5888{
5889 u16 gcfgc = 0;
79e53945 5890
e70236a8
JB
5891 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5892
5893 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5894 return 133000;
5895 else {
5896 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5897 case GC_DISPLAY_CLOCK_333_MHZ:
5898 return 333000;
5899 default:
5900 case GC_DISPLAY_CLOCK_190_200_MHZ:
5901 return 190000;
79e53945 5902 }
e70236a8
JB
5903 }
5904}
5905
5906static int i865_get_display_clock_speed(struct drm_device *dev)
5907{
5908 return 266000;
5909}
5910
5911static int i855_get_display_clock_speed(struct drm_device *dev)
5912{
5913 u16 hpllcc = 0;
5914 /* Assume that the hardware is in the high speed state. This
5915 * should be the default.
5916 */
5917 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5918 case GC_CLOCK_133_200:
5919 case GC_CLOCK_100_200:
5920 return 200000;
5921 case GC_CLOCK_166_250:
5922 return 250000;
5923 case GC_CLOCK_100_133:
79e53945 5924 return 133000;
e70236a8 5925 }
79e53945 5926
e70236a8
JB
5927 /* Shouldn't happen */
5928 return 0;
5929}
79e53945 5930
e70236a8
JB
5931static int i830_get_display_clock_speed(struct drm_device *dev)
5932{
5933 return 133000;
79e53945
JB
5934}
5935
2c07245f 5936static void
a65851af 5937intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5938{
a65851af
VS
5939 while (*num > DATA_LINK_M_N_MASK ||
5940 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5941 *num >>= 1;
5942 *den >>= 1;
5943 }
5944}
5945
a65851af
VS
5946static void compute_m_n(unsigned int m, unsigned int n,
5947 uint32_t *ret_m, uint32_t *ret_n)
5948{
5949 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5950 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5951 intel_reduce_m_n_ratio(ret_m, ret_n);
5952}
5953
e69d0bc1
DV
5954void
5955intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5956 int pixel_clock, int link_clock,
5957 struct intel_link_m_n *m_n)
2c07245f 5958{
e69d0bc1 5959 m_n->tu = 64;
a65851af
VS
5960
5961 compute_m_n(bits_per_pixel * pixel_clock,
5962 link_clock * nlanes * 8,
5963 &m_n->gmch_m, &m_n->gmch_n);
5964
5965 compute_m_n(pixel_clock, link_clock,
5966 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5967}
5968
a7615030
CW
5969static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5970{
d330a953
JN
5971 if (i915.panel_use_ssc >= 0)
5972 return i915.panel_use_ssc != 0;
41aa3448 5973 return dev_priv->vbt.lvds_use_ssc
435793df 5974 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5975}
5976
409ee761 5977static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5978{
409ee761 5979 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5980 struct drm_i915_private *dev_priv = dev->dev_private;
5981 int refclk;
5982
a0c4da24 5983 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5984 refclk = 100000;
d0737e1d 5985 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5986 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5987 refclk = dev_priv->vbt.lvds_ssc_freq;
5988 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5989 } else if (!IS_GEN2(dev)) {
5990 refclk = 96000;
5991 } else {
5992 refclk = 48000;
5993 }
5994
5995 return refclk;
5996}
5997
7429e9d4 5998static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5999{
7df00d7a 6000 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 6001}
f47709a9 6002
7429e9d4
DV
6003static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6004{
6005 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6006}
6007
f47709a9 6008static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6009 struct intel_crtc_state *crtc_state,
a7516a05
JB
6010 intel_clock_t *reduced_clock)
6011{
f47709a9 6012 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6013 u32 fp, fp2 = 0;
6014
6015 if (IS_PINEVIEW(dev)) {
190f68c5 6016 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6017 if (reduced_clock)
7429e9d4 6018 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6019 } else {
190f68c5 6020 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6021 if (reduced_clock)
7429e9d4 6022 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6023 }
6024
190f68c5 6025 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6026
f47709a9 6027 crtc->lowfreq_avail = false;
e1f234bd 6028 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
ab585dea 6029 reduced_clock) {
190f68c5 6030 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6031 crtc->lowfreq_avail = true;
a7516a05 6032 } else {
190f68c5 6033 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6034 }
6035}
6036
5e69f97f
CML
6037static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6038 pipe)
89b667f8
JB
6039{
6040 u32 reg_val;
6041
6042 /*
6043 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6044 * and set it to a reasonable value instead.
6045 */
ab3c759a 6046 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6047 reg_val &= 0xffffff00;
6048 reg_val |= 0x00000030;
ab3c759a 6049 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6050
ab3c759a 6051 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6052 reg_val &= 0x8cffffff;
6053 reg_val = 0x8c000000;
ab3c759a 6054 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6055
ab3c759a 6056 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6057 reg_val &= 0xffffff00;
ab3c759a 6058 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6059
ab3c759a 6060 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6061 reg_val &= 0x00ffffff;
6062 reg_val |= 0xb0000000;
ab3c759a 6063 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6064}
6065
b551842d
DV
6066static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6067 struct intel_link_m_n *m_n)
6068{
6069 struct drm_device *dev = crtc->base.dev;
6070 struct drm_i915_private *dev_priv = dev->dev_private;
6071 int pipe = crtc->pipe;
6072
e3b95f1e
DV
6073 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6074 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6075 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6076 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
6077}
6078
6079static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
6080 struct intel_link_m_n *m_n,
6081 struct intel_link_m_n *m2_n2)
b551842d
DV
6082{
6083 struct drm_device *dev = crtc->base.dev;
6084 struct drm_i915_private *dev_priv = dev->dev_private;
6085 int pipe = crtc->pipe;
6e3c9717 6086 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
6087
6088 if (INTEL_INFO(dev)->gen >= 5) {
6089 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6090 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6091 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6092 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
6093 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6094 * for gen < 8) and if DRRS is supported (to make sure the
6095 * registers are not unnecessarily accessed).
6096 */
44395bfe 6097 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 6098 crtc->config->has_drrs) {
f769cd24
VK
6099 I915_WRITE(PIPE_DATA_M2(transcoder),
6100 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6101 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6102 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6103 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6104 }
b551842d 6105 } else {
e3b95f1e
DV
6106 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6107 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6108 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6109 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
6110 }
6111}
6112
fe3cd48d 6113void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 6114{
fe3cd48d
R
6115 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6116
6117 if (m_n == M1_N1) {
6118 dp_m_n = &crtc->config->dp_m_n;
6119 dp_m2_n2 = &crtc->config->dp_m2_n2;
6120 } else if (m_n == M2_N2) {
6121
6122 /*
6123 * M2_N2 registers are not supported. Hence m2_n2 divider value
6124 * needs to be programmed into M1_N1.
6125 */
6126 dp_m_n = &crtc->config->dp_m2_n2;
6127 } else {
6128 DRM_ERROR("Unsupported divider value\n");
6129 return;
6130 }
6131
6e3c9717
ACO
6132 if (crtc->config->has_pch_encoder)
6133 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 6134 else
fe3cd48d 6135 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
6136}
6137
d288f65f 6138static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 6139 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
6140{
6141 u32 dpll, dpll_md;
6142
6143 /*
6144 * Enable DPIO clock input. We should never disable the reference
6145 * clock for pipe B, since VGA hotplug / manual detection depends
6146 * on it.
6147 */
6148 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6149 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6150 /* We should never disable this, set it here for state tracking */
6151 if (crtc->pipe == PIPE_B)
6152 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6153 dpll |= DPLL_VCO_ENABLE;
d288f65f 6154 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 6155
d288f65f 6156 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 6157 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 6158 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
6159}
6160
d288f65f 6161static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6162 const struct intel_crtc_state *pipe_config)
a0c4da24 6163{
f47709a9 6164 struct drm_device *dev = crtc->base.dev;
a0c4da24 6165 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 6166 int pipe = crtc->pipe;
bdd4b6a6 6167 u32 mdiv;
a0c4da24 6168 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 6169 u32 coreclk, reg_val;
a0c4da24 6170
09153000
DV
6171 mutex_lock(&dev_priv->dpio_lock);
6172
d288f65f
VS
6173 bestn = pipe_config->dpll.n;
6174 bestm1 = pipe_config->dpll.m1;
6175 bestm2 = pipe_config->dpll.m2;
6176 bestp1 = pipe_config->dpll.p1;
6177 bestp2 = pipe_config->dpll.p2;
a0c4da24 6178
89b667f8
JB
6179 /* See eDP HDMI DPIO driver vbios notes doc */
6180
6181 /* PLL B needs special handling */
bdd4b6a6 6182 if (pipe == PIPE_B)
5e69f97f 6183 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
6184
6185 /* Set up Tx target for periodic Rcomp update */
ab3c759a 6186 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
6187
6188 /* Disable target IRef on PLL */
ab3c759a 6189 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 6190 reg_val &= 0x00ffffff;
ab3c759a 6191 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
6192
6193 /* Disable fast lock */
ab3c759a 6194 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
6195
6196 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
6197 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6198 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6199 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 6200 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
6201
6202 /*
6203 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6204 * but we don't support that).
6205 * Note: don't use the DAC post divider as it seems unstable.
6206 */
6207 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 6208 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6209
a0c4da24 6210 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 6211 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 6212
89b667f8 6213 /* Set HBR and RBR LPF coefficients */
d288f65f 6214 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
6215 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6216 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 6217 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 6218 0x009f0003);
89b667f8 6219 else
ab3c759a 6220 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
6221 0x00d0000f);
6222
681a8504 6223 if (pipe_config->has_dp_encoder) {
89b667f8 6224 /* Use SSC source */
bdd4b6a6 6225 if (pipe == PIPE_A)
ab3c759a 6226 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6227 0x0df40000);
6228 else
ab3c759a 6229 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6230 0x0df70000);
6231 } else { /* HDMI or VGA */
6232 /* Use bend source */
bdd4b6a6 6233 if (pipe == PIPE_A)
ab3c759a 6234 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6235 0x0df70000);
6236 else
ab3c759a 6237 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
6238 0x0df40000);
6239 }
a0c4da24 6240
ab3c759a 6241 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 6242 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
6243 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6244 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 6245 coreclk |= 0x01000000;
ab3c759a 6246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 6247
ab3c759a 6248 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 6249 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
6250}
6251
d288f65f 6252static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 6253 struct intel_crtc_state *pipe_config)
1ae0d137 6254{
d288f65f 6255 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
6256 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6257 DPLL_VCO_ENABLE;
6258 if (crtc->pipe != PIPE_A)
d288f65f 6259 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 6260
d288f65f
VS
6261 pipe_config->dpll_hw_state.dpll_md =
6262 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6263}
6264
d288f65f 6265static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6266 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6267{
6268 struct drm_device *dev = crtc->base.dev;
6269 struct drm_i915_private *dev_priv = dev->dev_private;
6270 int pipe = crtc->pipe;
6271 int dpll_reg = DPLL(crtc->pipe);
6272 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 6273 u32 loopfilter, tribuf_calcntr;
9d556c99 6274 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 6275 u32 dpio_val;
9cbe40c1 6276 int vco;
9d556c99 6277
d288f65f
VS
6278 bestn = pipe_config->dpll.n;
6279 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6280 bestm1 = pipe_config->dpll.m1;
6281 bestm2 = pipe_config->dpll.m2 >> 22;
6282 bestp1 = pipe_config->dpll.p1;
6283 bestp2 = pipe_config->dpll.p2;
9cbe40c1 6284 vco = pipe_config->dpll.vco;
a945ce7e 6285 dpio_val = 0;
9cbe40c1 6286 loopfilter = 0;
9d556c99
CML
6287
6288 /*
6289 * Enable Refclk and SSC
6290 */
a11b0703 6291 I915_WRITE(dpll_reg,
d288f65f 6292 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6293
6294 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6295
9d556c99
CML
6296 /* p1 and p2 divider */
6297 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6298 5 << DPIO_CHV_S1_DIV_SHIFT |
6299 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6300 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6301 1 << DPIO_CHV_K_DIV_SHIFT);
6302
6303 /* Feedback post-divider - m2 */
6304 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6305
6306 /* Feedback refclk divider - n and m1 */
6307 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6308 DPIO_CHV_M1_DIV_BY_2 |
6309 1 << DPIO_CHV_N_DIV_SHIFT);
6310
6311 /* M2 fraction division */
a945ce7e
VP
6312 if (bestm2_frac)
6313 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
6314
6315 /* M2 fraction division enable */
a945ce7e
VP
6316 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6317 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6318 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6319 if (bestm2_frac)
6320 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6321 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 6322
de3a0fde
VP
6323 /* Program digital lock detect threshold */
6324 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6325 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6326 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6327 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6328 if (!bestm2_frac)
6329 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6330 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6331
9d556c99 6332 /* Loop filter */
9cbe40c1
VP
6333 if (vco == 5400000) {
6334 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6335 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6336 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6337 tribuf_calcntr = 0x9;
6338 } else if (vco <= 6200000) {
6339 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6340 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6341 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6342 tribuf_calcntr = 0x9;
6343 } else if (vco <= 6480000) {
6344 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6345 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6346 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6347 tribuf_calcntr = 0x8;
6348 } else {
6349 /* Not supported. Apply the same limits as in the max case */
6350 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6351 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6352 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6353 tribuf_calcntr = 0;
6354 }
9d556c99
CML
6355 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6356
968040b2 6357 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
6358 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6359 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6360 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6361
9d556c99
CML
6362 /* AFC Recal */
6363 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6364 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6365 DPIO_AFC_RECAL);
6366
6367 mutex_unlock(&dev_priv->dpio_lock);
6368}
6369
d288f65f
VS
6370/**
6371 * vlv_force_pll_on - forcibly enable just the PLL
6372 * @dev_priv: i915 private structure
6373 * @pipe: pipe PLL to enable
6374 * @dpll: PLL configuration
6375 *
6376 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6377 * in cases where we need the PLL enabled even when @pipe is not going to
6378 * be enabled.
6379 */
6380void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6381 const struct dpll *dpll)
6382{
6383 struct intel_crtc *crtc =
6384 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6385 struct intel_crtc_state pipe_config = {
d288f65f
VS
6386 .pixel_multiplier = 1,
6387 .dpll = *dpll,
6388 };
6389
6390 if (IS_CHERRYVIEW(dev)) {
6391 chv_update_pll(crtc, &pipe_config);
6392 chv_prepare_pll(crtc, &pipe_config);
6393 chv_enable_pll(crtc, &pipe_config);
6394 } else {
6395 vlv_update_pll(crtc, &pipe_config);
6396 vlv_prepare_pll(crtc, &pipe_config);
6397 vlv_enable_pll(crtc, &pipe_config);
6398 }
6399}
6400
6401/**
6402 * vlv_force_pll_off - forcibly disable just the PLL
6403 * @dev_priv: i915 private structure
6404 * @pipe: pipe PLL to disable
6405 *
6406 * Disable the PLL for @pipe. To be used in cases where we need
6407 * the PLL enabled even when @pipe is not going to be enabled.
6408 */
6409void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6410{
6411 if (IS_CHERRYVIEW(dev))
6412 chv_disable_pll(to_i915(dev), pipe);
6413 else
6414 vlv_disable_pll(to_i915(dev), pipe);
6415}
6416
f47709a9 6417static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6418 struct intel_crtc_state *crtc_state,
f47709a9 6419 intel_clock_t *reduced_clock,
eb1cbe48
DV
6420 int num_connectors)
6421{
f47709a9 6422 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6423 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6424 u32 dpll;
6425 bool is_sdvo;
190f68c5 6426 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6427
190f68c5 6428 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6429
d0737e1d
ACO
6430 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6431 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6432
6433 dpll = DPLL_VGA_MODE_DIS;
6434
d0737e1d 6435 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6436 dpll |= DPLLB_MODE_LVDS;
6437 else
6438 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6439
ef1b460d 6440 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6441 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6442 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6443 }
198a037f
DV
6444
6445 if (is_sdvo)
4a33e48d 6446 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6447
190f68c5 6448 if (crtc_state->has_dp_encoder)
4a33e48d 6449 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6450
6451 /* compute bitmask from p1 value */
6452 if (IS_PINEVIEW(dev))
6453 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6454 else {
6455 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6456 if (IS_G4X(dev) && reduced_clock)
6457 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6458 }
6459 switch (clock->p2) {
6460 case 5:
6461 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6462 break;
6463 case 7:
6464 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6465 break;
6466 case 10:
6467 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6468 break;
6469 case 14:
6470 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6471 break;
6472 }
6473 if (INTEL_INFO(dev)->gen >= 4)
6474 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6475
190f68c5 6476 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6477 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6478 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6479 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6480 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6481 else
6482 dpll |= PLL_REF_INPUT_DREFCLK;
6483
6484 dpll |= DPLL_VCO_ENABLE;
190f68c5 6485 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6486
eb1cbe48 6487 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6488 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6489 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6490 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6491 }
6492}
6493
f47709a9 6494static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6495 struct intel_crtc_state *crtc_state,
f47709a9 6496 intel_clock_t *reduced_clock,
eb1cbe48
DV
6497 int num_connectors)
6498{
f47709a9 6499 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6500 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6501 u32 dpll;
190f68c5 6502 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6503
190f68c5 6504 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6505
eb1cbe48
DV
6506 dpll = DPLL_VGA_MODE_DIS;
6507
d0737e1d 6508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6509 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6510 } else {
6511 if (clock->p1 == 2)
6512 dpll |= PLL_P1_DIVIDE_BY_TWO;
6513 else
6514 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6515 if (clock->p2 == 4)
6516 dpll |= PLL_P2_DIVIDE_BY_4;
6517 }
6518
d0737e1d 6519 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6520 dpll |= DPLL_DVO_2X_MODE;
6521
d0737e1d 6522 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6523 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6524 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6525 else
6526 dpll |= PLL_REF_INPUT_DREFCLK;
6527
6528 dpll |= DPLL_VCO_ENABLE;
190f68c5 6529 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6530}
6531
8a654f3b 6532static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6533{
6534 struct drm_device *dev = intel_crtc->base.dev;
6535 struct drm_i915_private *dev_priv = dev->dev_private;
6536 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6537 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6538 struct drm_display_mode *adjusted_mode =
6e3c9717 6539 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6540 uint32_t crtc_vtotal, crtc_vblank_end;
6541 int vsyncshift = 0;
4d8a62ea
DV
6542
6543 /* We need to be careful not to changed the adjusted mode, for otherwise
6544 * the hw state checker will get angry at the mismatch. */
6545 crtc_vtotal = adjusted_mode->crtc_vtotal;
6546 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6547
609aeaca 6548 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6549 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6550 crtc_vtotal -= 1;
6551 crtc_vblank_end -= 1;
609aeaca 6552
409ee761 6553 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6554 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6555 else
6556 vsyncshift = adjusted_mode->crtc_hsync_start -
6557 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6558 if (vsyncshift < 0)
6559 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6560 }
6561
6562 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6563 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6564
fe2b8f9d 6565 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6566 (adjusted_mode->crtc_hdisplay - 1) |
6567 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6568 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6569 (adjusted_mode->crtc_hblank_start - 1) |
6570 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6571 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6572 (adjusted_mode->crtc_hsync_start - 1) |
6573 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6574
fe2b8f9d 6575 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6576 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6577 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6578 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6579 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6580 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6581 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6582 (adjusted_mode->crtc_vsync_start - 1) |
6583 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6584
b5e508d4
PZ
6585 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6586 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6587 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6588 * bits. */
6589 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6590 (pipe == PIPE_B || pipe == PIPE_C))
6591 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6592
b0e77b9c
PZ
6593 /* pipesrc controls the size that is scaled from, which should
6594 * always be the user's requested size.
6595 */
6596 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6597 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6598 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6599}
6600
1bd1bd80 6601static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6602 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6603{
6604 struct drm_device *dev = crtc->base.dev;
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6607 uint32_t tmp;
6608
6609 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6610 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6611 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6612 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6613 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6614 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6615 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6616 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6617 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6618
6619 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6620 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6621 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6622 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6623 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6624 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6625 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6626 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6627 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6628
6629 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6630 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6631 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6632 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6633 }
6634
6635 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6636 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6637 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6638
2d112de7
ACO
6639 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6640 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6641}
6642
f6a83288 6643void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6644 struct intel_crtc_state *pipe_config)
babea61d 6645{
2d112de7
ACO
6646 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6647 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6648 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6649 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6650
2d112de7
ACO
6651 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6652 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6653 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6654 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6655
2d112de7 6656 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6657
2d112de7
ACO
6658 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6659 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6660}
6661
84b046f3
DV
6662static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6663{
6664 struct drm_device *dev = intel_crtc->base.dev;
6665 struct drm_i915_private *dev_priv = dev->dev_private;
6666 uint32_t pipeconf;
6667
9f11a9e4 6668 pipeconf = 0;
84b046f3 6669
b6b5d049
VS
6670 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6671 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6672 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6673
6e3c9717 6674 if (intel_crtc->config->double_wide)
cf532bb2 6675 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6676
ff9ce46e
DV
6677 /* only g4x and later have fancy bpc/dither controls */
6678 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6679 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6680 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6681 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6682 PIPECONF_DITHER_TYPE_SP;
84b046f3 6683
6e3c9717 6684 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6685 case 18:
6686 pipeconf |= PIPECONF_6BPC;
6687 break;
6688 case 24:
6689 pipeconf |= PIPECONF_8BPC;
6690 break;
6691 case 30:
6692 pipeconf |= PIPECONF_10BPC;
6693 break;
6694 default:
6695 /* Case prevented by intel_choose_pipe_bpp_dither. */
6696 BUG();
84b046f3
DV
6697 }
6698 }
6699
6700 if (HAS_PIPE_CXSR(dev)) {
6701 if (intel_crtc->lowfreq_avail) {
6702 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6703 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6704 } else {
6705 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6706 }
6707 }
6708
6e3c9717 6709 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6710 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6711 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6712 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6713 else
6714 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6715 } else
84b046f3
DV
6716 pipeconf |= PIPECONF_PROGRESSIVE;
6717
6e3c9717 6718 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6719 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6720
84b046f3
DV
6721 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6722 POSTING_READ(PIPECONF(intel_crtc->pipe));
6723}
6724
190f68c5
ACO
6725static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6726 struct intel_crtc_state *crtc_state)
79e53945 6727{
c7653199 6728 struct drm_device *dev = crtc->base.dev;
79e53945 6729 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6730 int refclk, num_connectors = 0;
652c393a 6731 intel_clock_t clock, reduced_clock;
a16af721 6732 bool ok, has_reduced_clock = false;
e9fd1c02 6733 bool is_lvds = false, is_dsi = false;
5eddb70b 6734 struct intel_encoder *encoder;
d4906093 6735 const intel_limit_t *limit;
79e53945 6736
d0737e1d
ACO
6737 for_each_intel_encoder(dev, encoder) {
6738 if (encoder->new_crtc != crtc)
6739 continue;
6740
5eddb70b 6741 switch (encoder->type) {
79e53945
JB
6742 case INTEL_OUTPUT_LVDS:
6743 is_lvds = true;
6744 break;
e9fd1c02
JN
6745 case INTEL_OUTPUT_DSI:
6746 is_dsi = true;
6747 break;
6847d71b
PZ
6748 default:
6749 break;
79e53945 6750 }
43565a06 6751
c751ce4f 6752 num_connectors++;
79e53945
JB
6753 }
6754
f2335330 6755 if (is_dsi)
5b18e57c 6756 return 0;
f2335330 6757
190f68c5 6758 if (!crtc_state->clock_set) {
409ee761 6759 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6760
e9fd1c02
JN
6761 /*
6762 * Returns a set of divisors for the desired target clock with
6763 * the given refclk, or FALSE. The returned values represent
6764 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6765 * 2) / p1 / p2.
6766 */
409ee761 6767 limit = intel_limit(crtc, refclk);
c7653199 6768 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6769 crtc_state->port_clock,
e9fd1c02 6770 refclk, NULL, &clock);
f2335330 6771 if (!ok) {
e9fd1c02
JN
6772 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6773 return -EINVAL;
6774 }
79e53945 6775
f2335330
JN
6776 if (is_lvds && dev_priv->lvds_downclock_avail) {
6777 /*
6778 * Ensure we match the reduced clock's P to the target
6779 * clock. If the clocks don't match, we can't switch
6780 * the display clock by using the FP0/FP1. In such case
6781 * we will disable the LVDS downclock feature.
6782 */
6783 has_reduced_clock =
c7653199 6784 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6785 dev_priv->lvds_downclock,
6786 refclk, &clock,
6787 &reduced_clock);
6788 }
6789 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6790 crtc_state->dpll.n = clock.n;
6791 crtc_state->dpll.m1 = clock.m1;
6792 crtc_state->dpll.m2 = clock.m2;
6793 crtc_state->dpll.p1 = clock.p1;
6794 crtc_state->dpll.p2 = clock.p2;
f47709a9 6795 }
7026d4ac 6796
e9fd1c02 6797 if (IS_GEN2(dev)) {
190f68c5 6798 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6799 has_reduced_clock ? &reduced_clock : NULL,
6800 num_connectors);
9d556c99 6801 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6802 chv_update_pll(crtc, crtc_state);
e9fd1c02 6803 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6804 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6805 } else {
190f68c5 6806 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6807 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6808 num_connectors);
e9fd1c02 6809 }
79e53945 6810
c8f7a0db 6811 return 0;
f564048e
EA
6812}
6813
2fa2fe9a 6814static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6815 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6816{
6817 struct drm_device *dev = crtc->base.dev;
6818 struct drm_i915_private *dev_priv = dev->dev_private;
6819 uint32_t tmp;
6820
dc9e7dec
VS
6821 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6822 return;
6823
2fa2fe9a 6824 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6825 if (!(tmp & PFIT_ENABLE))
6826 return;
2fa2fe9a 6827
06922821 6828 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6829 if (INTEL_INFO(dev)->gen < 4) {
6830 if (crtc->pipe != PIPE_B)
6831 return;
2fa2fe9a
DV
6832 } else {
6833 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6834 return;
6835 }
6836
06922821 6837 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6838 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6839 if (INTEL_INFO(dev)->gen < 5)
6840 pipe_config->gmch_pfit.lvds_border_bits =
6841 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6842}
6843
acbec814 6844static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6845 struct intel_crtc_state *pipe_config)
acbec814
JB
6846{
6847 struct drm_device *dev = crtc->base.dev;
6848 struct drm_i915_private *dev_priv = dev->dev_private;
6849 int pipe = pipe_config->cpu_transcoder;
6850 intel_clock_t clock;
6851 u32 mdiv;
662c6ecb 6852 int refclk = 100000;
acbec814 6853
f573de5a
SK
6854 /* In case of MIPI DPLL will not even be used */
6855 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6856 return;
6857
acbec814 6858 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6859 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6860 mutex_unlock(&dev_priv->dpio_lock);
6861
6862 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6863 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6864 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6865 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6866 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6867
f646628b 6868 vlv_clock(refclk, &clock);
acbec814 6869
f646628b
VS
6870 /* clock.dot is the fast clock */
6871 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6872}
6873
5724dbd1
DL
6874static void
6875i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6876 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6877{
6878 struct drm_device *dev = crtc->base.dev;
6879 struct drm_i915_private *dev_priv = dev->dev_private;
6880 u32 val, base, offset;
6881 int pipe = crtc->pipe, plane = crtc->plane;
6882 int fourcc, pixel_format;
6761dd31 6883 unsigned int aligned_height;
b113d5ee 6884 struct drm_framebuffer *fb;
1b842c89 6885 struct intel_framebuffer *intel_fb;
1ad292b5 6886
42a7b088
DL
6887 val = I915_READ(DSPCNTR(plane));
6888 if (!(val & DISPLAY_PLANE_ENABLE))
6889 return;
6890
d9806c9f 6891 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6892 if (!intel_fb) {
1ad292b5
JB
6893 DRM_DEBUG_KMS("failed to alloc fb\n");
6894 return;
6895 }
6896
1b842c89
DL
6897 fb = &intel_fb->base;
6898
18c5247e
DV
6899 if (INTEL_INFO(dev)->gen >= 4) {
6900 if (val & DISPPLANE_TILED) {
49af449b 6901 plane_config->tiling = I915_TILING_X;
18c5247e
DV
6902 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6903 }
6904 }
1ad292b5
JB
6905
6906 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6907 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6908 fb->pixel_format = fourcc;
6909 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6910
6911 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6912 if (plane_config->tiling)
1ad292b5
JB
6913 offset = I915_READ(DSPTILEOFF(plane));
6914 else
6915 offset = I915_READ(DSPLINOFF(plane));
6916 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6917 } else {
6918 base = I915_READ(DSPADDR(plane));
6919 }
6920 plane_config->base = base;
6921
6922 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6923 fb->width = ((val >> 16) & 0xfff) + 1;
6924 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6925
6926 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6927 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6928
b113d5ee 6929 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
6930 fb->pixel_format,
6931 fb->modifier[0]);
1ad292b5 6932
f37b5c2b 6933 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 6934
2844a921
DL
6935 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6936 pipe_name(pipe), plane, fb->width, fb->height,
6937 fb->bits_per_pixel, base, fb->pitches[0],
6938 plane_config->size);
1ad292b5 6939
2d14030b 6940 plane_config->fb = intel_fb;
1ad292b5
JB
6941}
6942
70b23a98 6943static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6944 struct intel_crtc_state *pipe_config)
70b23a98
VS
6945{
6946 struct drm_device *dev = crtc->base.dev;
6947 struct drm_i915_private *dev_priv = dev->dev_private;
6948 int pipe = pipe_config->cpu_transcoder;
6949 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6950 intel_clock_t clock;
6951 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6952 int refclk = 100000;
6953
6954 mutex_lock(&dev_priv->dpio_lock);
6955 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6956 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6957 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6958 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6959 mutex_unlock(&dev_priv->dpio_lock);
6960
6961 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6962 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6963 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6964 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6965 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6966
6967 chv_clock(refclk, &clock);
6968
6969 /* clock.dot is the fast clock */
6970 pipe_config->port_clock = clock.dot / 5;
6971}
6972
0e8ffe1b 6973static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6974 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6975{
6976 struct drm_device *dev = crtc->base.dev;
6977 struct drm_i915_private *dev_priv = dev->dev_private;
6978 uint32_t tmp;
6979
f458ebbc
DV
6980 if (!intel_display_power_is_enabled(dev_priv,
6981 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6982 return false;
6983
e143a21c 6984 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6985 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6986
0e8ffe1b
DV
6987 tmp = I915_READ(PIPECONF(crtc->pipe));
6988 if (!(tmp & PIPECONF_ENABLE))
6989 return false;
6990
42571aef
VS
6991 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6992 switch (tmp & PIPECONF_BPC_MASK) {
6993 case PIPECONF_6BPC:
6994 pipe_config->pipe_bpp = 18;
6995 break;
6996 case PIPECONF_8BPC:
6997 pipe_config->pipe_bpp = 24;
6998 break;
6999 case PIPECONF_10BPC:
7000 pipe_config->pipe_bpp = 30;
7001 break;
7002 default:
7003 break;
7004 }
7005 }
7006
b5a9fa09
DV
7007 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7008 pipe_config->limited_color_range = true;
7009
282740f7
VS
7010 if (INTEL_INFO(dev)->gen < 4)
7011 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7012
1bd1bd80
DV
7013 intel_get_pipe_timings(crtc, pipe_config);
7014
2fa2fe9a
DV
7015 i9xx_get_pfit_config(crtc, pipe_config);
7016
6c49f241
DV
7017 if (INTEL_INFO(dev)->gen >= 4) {
7018 tmp = I915_READ(DPLL_MD(crtc->pipe));
7019 pipe_config->pixel_multiplier =
7020 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7021 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7022 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7023 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7024 tmp = I915_READ(DPLL(crtc->pipe));
7025 pipe_config->pixel_multiplier =
7026 ((tmp & SDVO_MULTIPLIER_MASK)
7027 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7028 } else {
7029 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7030 * port and will be fixed up in the encoder->get_config
7031 * function. */
7032 pipe_config->pixel_multiplier = 1;
7033 }
8bcc2795
DV
7034 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7035 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7036 /*
7037 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7038 * on 830. Filter it out here so that we don't
7039 * report errors due to that.
7040 */
7041 if (IS_I830(dev))
7042 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7043
8bcc2795
DV
7044 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7045 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7046 } else {
7047 /* Mask out read-only status bits. */
7048 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7049 DPLL_PORTC_READY_MASK |
7050 DPLL_PORTB_READY_MASK);
8bcc2795 7051 }
6c49f241 7052
70b23a98
VS
7053 if (IS_CHERRYVIEW(dev))
7054 chv_crtc_clock_get(crtc, pipe_config);
7055 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7056 vlv_crtc_clock_get(crtc, pipe_config);
7057 else
7058 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 7059
0e8ffe1b
DV
7060 return true;
7061}
7062
dde86e2d 7063static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
7064{
7065 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 7066 struct intel_encoder *encoder;
74cfd7ac 7067 u32 val, final;
13d83a67 7068 bool has_lvds = false;
199e5d79 7069 bool has_cpu_edp = false;
199e5d79 7070 bool has_panel = false;
99eb6a01
KP
7071 bool has_ck505 = false;
7072 bool can_ssc = false;
13d83a67
JB
7073
7074 /* We need to take the global config into account */
b2784e15 7075 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
7076 switch (encoder->type) {
7077 case INTEL_OUTPUT_LVDS:
7078 has_panel = true;
7079 has_lvds = true;
7080 break;
7081 case INTEL_OUTPUT_EDP:
7082 has_panel = true;
2de6905f 7083 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
7084 has_cpu_edp = true;
7085 break;
6847d71b
PZ
7086 default:
7087 break;
13d83a67
JB
7088 }
7089 }
7090
99eb6a01 7091 if (HAS_PCH_IBX(dev)) {
41aa3448 7092 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
7093 can_ssc = has_ck505;
7094 } else {
7095 has_ck505 = false;
7096 can_ssc = true;
7097 }
7098
2de6905f
ID
7099 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7100 has_panel, has_lvds, has_ck505);
13d83a67
JB
7101
7102 /* Ironlake: try to setup display ref clock before DPLL
7103 * enabling. This is only under driver's control after
7104 * PCH B stepping, previous chipset stepping should be
7105 * ignoring this setting.
7106 */
74cfd7ac
CW
7107 val = I915_READ(PCH_DREF_CONTROL);
7108
7109 /* As we must carefully and slowly disable/enable each source in turn,
7110 * compute the final state we want first and check if we need to
7111 * make any changes at all.
7112 */
7113 final = val;
7114 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7115 if (has_ck505)
7116 final |= DREF_NONSPREAD_CK505_ENABLE;
7117 else
7118 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7119
7120 final &= ~DREF_SSC_SOURCE_MASK;
7121 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7122 final &= ~DREF_SSC1_ENABLE;
7123
7124 if (has_panel) {
7125 final |= DREF_SSC_SOURCE_ENABLE;
7126
7127 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7128 final |= DREF_SSC1_ENABLE;
7129
7130 if (has_cpu_edp) {
7131 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7132 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7133 else
7134 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7135 } else
7136 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7137 } else {
7138 final |= DREF_SSC_SOURCE_DISABLE;
7139 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7140 }
7141
7142 if (final == val)
7143 return;
7144
13d83a67 7145 /* Always enable nonspread source */
74cfd7ac 7146 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 7147
99eb6a01 7148 if (has_ck505)
74cfd7ac 7149 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 7150 else
74cfd7ac 7151 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 7152
199e5d79 7153 if (has_panel) {
74cfd7ac
CW
7154 val &= ~DREF_SSC_SOURCE_MASK;
7155 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 7156
199e5d79 7157 /* SSC must be turned on before enabling the CPU output */
99eb6a01 7158 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7159 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 7160 val |= DREF_SSC1_ENABLE;
e77166b5 7161 } else
74cfd7ac 7162 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
7163
7164 /* Get SSC going before enabling the outputs */
74cfd7ac 7165 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7166 POSTING_READ(PCH_DREF_CONTROL);
7167 udelay(200);
7168
74cfd7ac 7169 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
7170
7171 /* Enable CPU source on CPU attached eDP */
199e5d79 7172 if (has_cpu_edp) {
99eb6a01 7173 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 7174 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 7175 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 7176 } else
74cfd7ac 7177 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 7178 } else
74cfd7ac 7179 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7180
74cfd7ac 7181 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7182 POSTING_READ(PCH_DREF_CONTROL);
7183 udelay(200);
7184 } else {
7185 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7186
74cfd7ac 7187 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
7188
7189 /* Turn off CPU output */
74cfd7ac 7190 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 7191
74cfd7ac 7192 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
7193 POSTING_READ(PCH_DREF_CONTROL);
7194 udelay(200);
7195
7196 /* Turn off the SSC source */
74cfd7ac
CW
7197 val &= ~DREF_SSC_SOURCE_MASK;
7198 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
7199
7200 /* Turn off SSC1 */
74cfd7ac 7201 val &= ~DREF_SSC1_ENABLE;
199e5d79 7202
74cfd7ac 7203 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
7204 POSTING_READ(PCH_DREF_CONTROL);
7205 udelay(200);
7206 }
74cfd7ac
CW
7207
7208 BUG_ON(val != final);
13d83a67
JB
7209}
7210
f31f2d55 7211static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 7212{
f31f2d55 7213 uint32_t tmp;
dde86e2d 7214
0ff066a9
PZ
7215 tmp = I915_READ(SOUTH_CHICKEN2);
7216 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7217 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7218
0ff066a9
PZ
7219 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7220 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7221 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 7222
0ff066a9
PZ
7223 tmp = I915_READ(SOUTH_CHICKEN2);
7224 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7225 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 7226
0ff066a9
PZ
7227 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7228 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7229 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
7230}
7231
7232/* WaMPhyProgramming:hsw */
7233static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7234{
7235 uint32_t tmp;
dde86e2d
PZ
7236
7237 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7238 tmp &= ~(0xFF << 24);
7239 tmp |= (0x12 << 24);
7240 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7241
dde86e2d
PZ
7242 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7243 tmp |= (1 << 11);
7244 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7245
7246 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7247 tmp |= (1 << 11);
7248 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7249
dde86e2d
PZ
7250 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7251 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7252 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7253
7254 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7255 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7256 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7257
0ff066a9
PZ
7258 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7259 tmp &= ~(7 << 13);
7260 tmp |= (5 << 13);
7261 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 7262
0ff066a9
PZ
7263 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7264 tmp &= ~(7 << 13);
7265 tmp |= (5 << 13);
7266 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
7267
7268 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7269 tmp &= ~0xFF;
7270 tmp |= 0x1C;
7271 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7272
7273 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7274 tmp &= ~0xFF;
7275 tmp |= 0x1C;
7276 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7277
7278 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7279 tmp &= ~(0xFF << 16);
7280 tmp |= (0x1C << 16);
7281 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7282
7283 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7284 tmp &= ~(0xFF << 16);
7285 tmp |= (0x1C << 16);
7286 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7287
0ff066a9
PZ
7288 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7289 tmp |= (1 << 27);
7290 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 7291
0ff066a9
PZ
7292 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7293 tmp |= (1 << 27);
7294 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 7295
0ff066a9
PZ
7296 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7297 tmp &= ~(0xF << 28);
7298 tmp |= (4 << 28);
7299 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 7300
0ff066a9
PZ
7301 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7302 tmp &= ~(0xF << 28);
7303 tmp |= (4 << 28);
7304 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7305}
7306
2fa86a1f
PZ
7307/* Implements 3 different sequences from BSpec chapter "Display iCLK
7308 * Programming" based on the parameters passed:
7309 * - Sequence to enable CLKOUT_DP
7310 * - Sequence to enable CLKOUT_DP without spread
7311 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7312 */
7313static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7314 bool with_fdi)
f31f2d55
PZ
7315{
7316 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7317 uint32_t reg, tmp;
7318
7319 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7320 with_spread = true;
7321 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7322 with_fdi, "LP PCH doesn't have FDI\n"))
7323 with_fdi = false;
f31f2d55
PZ
7324
7325 mutex_lock(&dev_priv->dpio_lock);
7326
7327 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7328 tmp &= ~SBI_SSCCTL_DISABLE;
7329 tmp |= SBI_SSCCTL_PATHALT;
7330 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7331
7332 udelay(24);
7333
2fa86a1f
PZ
7334 if (with_spread) {
7335 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7336 tmp &= ~SBI_SSCCTL_PATHALT;
7337 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7338
2fa86a1f
PZ
7339 if (with_fdi) {
7340 lpt_reset_fdi_mphy(dev_priv);
7341 lpt_program_fdi_mphy(dev_priv);
7342 }
7343 }
dde86e2d 7344
2fa86a1f
PZ
7345 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7346 SBI_GEN0 : SBI_DBUFF0;
7347 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7348 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7349 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7350
7351 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7352}
7353
47701c3b
PZ
7354/* Sequence to disable CLKOUT_DP */
7355static void lpt_disable_clkout_dp(struct drm_device *dev)
7356{
7357 struct drm_i915_private *dev_priv = dev->dev_private;
7358 uint32_t reg, tmp;
7359
7360 mutex_lock(&dev_priv->dpio_lock);
7361
7362 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7363 SBI_GEN0 : SBI_DBUFF0;
7364 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7365 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7366 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7367
7368 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7369 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7370 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7371 tmp |= SBI_SSCCTL_PATHALT;
7372 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7373 udelay(32);
7374 }
7375 tmp |= SBI_SSCCTL_DISABLE;
7376 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7377 }
7378
7379 mutex_unlock(&dev_priv->dpio_lock);
7380}
7381
bf8fa3d3
PZ
7382static void lpt_init_pch_refclk(struct drm_device *dev)
7383{
bf8fa3d3
PZ
7384 struct intel_encoder *encoder;
7385 bool has_vga = false;
7386
b2784e15 7387 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7388 switch (encoder->type) {
7389 case INTEL_OUTPUT_ANALOG:
7390 has_vga = true;
7391 break;
6847d71b
PZ
7392 default:
7393 break;
bf8fa3d3
PZ
7394 }
7395 }
7396
47701c3b
PZ
7397 if (has_vga)
7398 lpt_enable_clkout_dp(dev, true, true);
7399 else
7400 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7401}
7402
dde86e2d
PZ
7403/*
7404 * Initialize reference clocks when the driver loads
7405 */
7406void intel_init_pch_refclk(struct drm_device *dev)
7407{
7408 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7409 ironlake_init_pch_refclk(dev);
7410 else if (HAS_PCH_LPT(dev))
7411 lpt_init_pch_refclk(dev);
7412}
7413
d9d444cb
JB
7414static int ironlake_get_refclk(struct drm_crtc *crtc)
7415{
7416 struct drm_device *dev = crtc->dev;
7417 struct drm_i915_private *dev_priv = dev->dev_private;
7418 struct intel_encoder *encoder;
d9d444cb
JB
7419 int num_connectors = 0;
7420 bool is_lvds = false;
7421
d0737e1d
ACO
7422 for_each_intel_encoder(dev, encoder) {
7423 if (encoder->new_crtc != to_intel_crtc(crtc))
7424 continue;
7425
d9d444cb
JB
7426 switch (encoder->type) {
7427 case INTEL_OUTPUT_LVDS:
7428 is_lvds = true;
7429 break;
6847d71b
PZ
7430 default:
7431 break;
d9d444cb
JB
7432 }
7433 num_connectors++;
7434 }
7435
7436 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7437 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7438 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7439 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7440 }
7441
7442 return 120000;
7443}
7444
6ff93609 7445static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7446{
c8203565 7447 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7449 int pipe = intel_crtc->pipe;
c8203565
PZ
7450 uint32_t val;
7451
78114071 7452 val = 0;
c8203565 7453
6e3c9717 7454 switch (intel_crtc->config->pipe_bpp) {
c8203565 7455 case 18:
dfd07d72 7456 val |= PIPECONF_6BPC;
c8203565
PZ
7457 break;
7458 case 24:
dfd07d72 7459 val |= PIPECONF_8BPC;
c8203565
PZ
7460 break;
7461 case 30:
dfd07d72 7462 val |= PIPECONF_10BPC;
c8203565
PZ
7463 break;
7464 case 36:
dfd07d72 7465 val |= PIPECONF_12BPC;
c8203565
PZ
7466 break;
7467 default:
cc769b62
PZ
7468 /* Case prevented by intel_choose_pipe_bpp_dither. */
7469 BUG();
c8203565
PZ
7470 }
7471
6e3c9717 7472 if (intel_crtc->config->dither)
c8203565
PZ
7473 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7474
6e3c9717 7475 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7476 val |= PIPECONF_INTERLACED_ILK;
7477 else
7478 val |= PIPECONF_PROGRESSIVE;
7479
6e3c9717 7480 if (intel_crtc->config->limited_color_range)
3685a8f3 7481 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7482
c8203565
PZ
7483 I915_WRITE(PIPECONF(pipe), val);
7484 POSTING_READ(PIPECONF(pipe));
7485}
7486
86d3efce
VS
7487/*
7488 * Set up the pipe CSC unit.
7489 *
7490 * Currently only full range RGB to limited range RGB conversion
7491 * is supported, but eventually this should handle various
7492 * RGB<->YCbCr scenarios as well.
7493 */
50f3b016 7494static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7495{
7496 struct drm_device *dev = crtc->dev;
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7499 int pipe = intel_crtc->pipe;
7500 uint16_t coeff = 0x7800; /* 1.0 */
7501
7502 /*
7503 * TODO: Check what kind of values actually come out of the pipe
7504 * with these coeff/postoff values and adjust to get the best
7505 * accuracy. Perhaps we even need to take the bpc value into
7506 * consideration.
7507 */
7508
6e3c9717 7509 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7510 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7511
7512 /*
7513 * GY/GU and RY/RU should be the other way around according
7514 * to BSpec, but reality doesn't agree. Just set them up in
7515 * a way that results in the correct picture.
7516 */
7517 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7518 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7519
7520 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7521 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7522
7523 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7524 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7525
7526 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7527 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7528 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7529
7530 if (INTEL_INFO(dev)->gen > 6) {
7531 uint16_t postoff = 0;
7532
6e3c9717 7533 if (intel_crtc->config->limited_color_range)
32cf0cb0 7534 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7535
7536 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7537 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7538 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7539
7540 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7541 } else {
7542 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7543
6e3c9717 7544 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7545 mode |= CSC_BLACK_SCREEN_OFFSET;
7546
7547 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7548 }
7549}
7550
6ff93609 7551static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7552{
756f85cf
PZ
7553 struct drm_device *dev = crtc->dev;
7554 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7556 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7557 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7558 uint32_t val;
7559
3eff4faa 7560 val = 0;
ee2b0b38 7561
6e3c9717 7562 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7563 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7564
6e3c9717 7565 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7566 val |= PIPECONF_INTERLACED_ILK;
7567 else
7568 val |= PIPECONF_PROGRESSIVE;
7569
702e7a56
PZ
7570 I915_WRITE(PIPECONF(cpu_transcoder), val);
7571 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7572
7573 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7574 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7575
3cdf122c 7576 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7577 val = 0;
7578
6e3c9717 7579 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7580 case 18:
7581 val |= PIPEMISC_DITHER_6_BPC;
7582 break;
7583 case 24:
7584 val |= PIPEMISC_DITHER_8_BPC;
7585 break;
7586 case 30:
7587 val |= PIPEMISC_DITHER_10_BPC;
7588 break;
7589 case 36:
7590 val |= PIPEMISC_DITHER_12_BPC;
7591 break;
7592 default:
7593 /* Case prevented by pipe_config_set_bpp. */
7594 BUG();
7595 }
7596
6e3c9717 7597 if (intel_crtc->config->dither)
756f85cf
PZ
7598 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7599
7600 I915_WRITE(PIPEMISC(pipe), val);
7601 }
ee2b0b38
PZ
7602}
7603
6591c6e4 7604static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7605 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7606 intel_clock_t *clock,
7607 bool *has_reduced_clock,
7608 intel_clock_t *reduced_clock)
7609{
7610 struct drm_device *dev = crtc->dev;
7611 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7613 int refclk;
d4906093 7614 const intel_limit_t *limit;
a16af721 7615 bool ret, is_lvds = false;
79e53945 7616
d0737e1d 7617 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7618
d9d444cb 7619 refclk = ironlake_get_refclk(crtc);
79e53945 7620
d4906093
ML
7621 /*
7622 * Returns a set of divisors for the desired target clock with the given
7623 * refclk, or FALSE. The returned values represent the clock equation:
7624 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7625 */
409ee761 7626 limit = intel_limit(intel_crtc, refclk);
a919ff14 7627 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7628 crtc_state->port_clock,
ee9300bb 7629 refclk, NULL, clock);
6591c6e4
PZ
7630 if (!ret)
7631 return false;
cda4b7d3 7632
ddc9003c 7633 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7634 /*
7635 * Ensure we match the reduced clock's P to the target clock.
7636 * If the clocks don't match, we can't switch the display clock
7637 * by using the FP0/FP1. In such case we will disable the LVDS
7638 * downclock feature.
7639 */
ee9300bb 7640 *has_reduced_clock =
a919ff14 7641 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7642 dev_priv->lvds_downclock,
7643 refclk, clock,
7644 reduced_clock);
652c393a 7645 }
61e9653f 7646
6591c6e4
PZ
7647 return true;
7648}
7649
d4b1931c
PZ
7650int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7651{
7652 /*
7653 * Account for spread spectrum to avoid
7654 * oversubscribing the link. Max center spread
7655 * is 2.5%; use 5% for safety's sake.
7656 */
7657 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7658 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7659}
7660
7429e9d4 7661static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7662{
7429e9d4 7663 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7664}
7665
de13a2e3 7666static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7667 struct intel_crtc_state *crtc_state,
7429e9d4 7668 u32 *fp,
9a7c7890 7669 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7670{
de13a2e3 7671 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7672 struct drm_device *dev = crtc->dev;
7673 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7674 struct intel_encoder *intel_encoder;
7675 uint32_t dpll;
6cc5f341 7676 int factor, num_connectors = 0;
09ede541 7677 bool is_lvds = false, is_sdvo = false;
79e53945 7678
d0737e1d
ACO
7679 for_each_intel_encoder(dev, intel_encoder) {
7680 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7681 continue;
7682
de13a2e3 7683 switch (intel_encoder->type) {
79e53945
JB
7684 case INTEL_OUTPUT_LVDS:
7685 is_lvds = true;
7686 break;
7687 case INTEL_OUTPUT_SDVO:
7d57382e 7688 case INTEL_OUTPUT_HDMI:
79e53945 7689 is_sdvo = true;
79e53945 7690 break;
6847d71b
PZ
7691 default:
7692 break;
79e53945 7693 }
43565a06 7694
c751ce4f 7695 num_connectors++;
79e53945 7696 }
79e53945 7697
c1858123 7698 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7699 factor = 21;
7700 if (is_lvds) {
7701 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7702 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7703 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7704 factor = 25;
190f68c5 7705 } else if (crtc_state->sdvo_tv_clock)
8febb297 7706 factor = 20;
c1858123 7707
190f68c5 7708 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7709 *fp |= FP_CB_TUNE;
2c07245f 7710
9a7c7890
DV
7711 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7712 *fp2 |= FP_CB_TUNE;
7713
5eddb70b 7714 dpll = 0;
2c07245f 7715
a07d6787
EA
7716 if (is_lvds)
7717 dpll |= DPLLB_MODE_LVDS;
7718 else
7719 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7720
190f68c5 7721 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7722 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7723
7724 if (is_sdvo)
4a33e48d 7725 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7726 if (crtc_state->has_dp_encoder)
4a33e48d 7727 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7728
a07d6787 7729 /* compute bitmask from p1 value */
190f68c5 7730 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7731 /* also FPA1 */
190f68c5 7732 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7733
190f68c5 7734 switch (crtc_state->dpll.p2) {
a07d6787
EA
7735 case 5:
7736 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7737 break;
7738 case 7:
7739 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7740 break;
7741 case 10:
7742 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7743 break;
7744 case 14:
7745 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7746 break;
79e53945
JB
7747 }
7748
b4c09f3b 7749 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7750 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7751 else
7752 dpll |= PLL_REF_INPUT_DREFCLK;
7753
959e16d6 7754 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7755}
7756
190f68c5
ACO
7757static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7758 struct intel_crtc_state *crtc_state)
de13a2e3 7759{
c7653199 7760 struct drm_device *dev = crtc->base.dev;
de13a2e3 7761 intel_clock_t clock, reduced_clock;
cbbab5bd 7762 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7763 bool ok, has_reduced_clock = false;
8b47047b 7764 bool is_lvds = false;
e2b78267 7765 struct intel_shared_dpll *pll;
de13a2e3 7766
409ee761 7767 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7768
5dc5298b
PZ
7769 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7770 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7771
190f68c5 7772 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7773 &has_reduced_clock, &reduced_clock);
190f68c5 7774 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7775 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7776 return -EINVAL;
79e53945 7777 }
f47709a9 7778 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7779 if (!crtc_state->clock_set) {
7780 crtc_state->dpll.n = clock.n;
7781 crtc_state->dpll.m1 = clock.m1;
7782 crtc_state->dpll.m2 = clock.m2;
7783 crtc_state->dpll.p1 = clock.p1;
7784 crtc_state->dpll.p2 = clock.p2;
f47709a9 7785 }
79e53945 7786
5dc5298b 7787 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7788 if (crtc_state->has_pch_encoder) {
7789 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7790 if (has_reduced_clock)
7429e9d4 7791 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7792
190f68c5 7793 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7794 &fp, &reduced_clock,
7795 has_reduced_clock ? &fp2 : NULL);
7796
190f68c5
ACO
7797 crtc_state->dpll_hw_state.dpll = dpll;
7798 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7799 if (has_reduced_clock)
190f68c5 7800 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7801 else
190f68c5 7802 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7803
190f68c5 7804 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7805 if (pll == NULL) {
84f44ce7 7806 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7807 pipe_name(crtc->pipe));
4b645f14
JB
7808 return -EINVAL;
7809 }
3fb37703 7810 }
79e53945 7811
ab585dea 7812 if (is_lvds && has_reduced_clock)
c7653199 7813 crtc->lowfreq_avail = true;
bcd644e0 7814 else
c7653199 7815 crtc->lowfreq_avail = false;
e2b78267 7816
c8f7a0db 7817 return 0;
79e53945
JB
7818}
7819
eb14cb74
VS
7820static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7821 struct intel_link_m_n *m_n)
7822{
7823 struct drm_device *dev = crtc->base.dev;
7824 struct drm_i915_private *dev_priv = dev->dev_private;
7825 enum pipe pipe = crtc->pipe;
7826
7827 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7828 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7829 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7830 & ~TU_SIZE_MASK;
7831 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7832 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7833 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7834}
7835
7836static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7837 enum transcoder transcoder,
b95af8be
VK
7838 struct intel_link_m_n *m_n,
7839 struct intel_link_m_n *m2_n2)
72419203
DV
7840{
7841 struct drm_device *dev = crtc->base.dev;
7842 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7843 enum pipe pipe = crtc->pipe;
72419203 7844
eb14cb74
VS
7845 if (INTEL_INFO(dev)->gen >= 5) {
7846 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7847 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7848 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7849 & ~TU_SIZE_MASK;
7850 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7851 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7852 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7853 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7854 * gen < 8) and if DRRS is supported (to make sure the
7855 * registers are not unnecessarily read).
7856 */
7857 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7858 crtc->config->has_drrs) {
b95af8be
VK
7859 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7860 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7861 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7862 & ~TU_SIZE_MASK;
7863 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7864 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7865 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7866 }
eb14cb74
VS
7867 } else {
7868 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7869 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7870 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7871 & ~TU_SIZE_MASK;
7872 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7873 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7874 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7875 }
7876}
7877
7878void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7879 struct intel_crtc_state *pipe_config)
eb14cb74 7880{
681a8504 7881 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7882 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7883 else
7884 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7885 &pipe_config->dp_m_n,
7886 &pipe_config->dp_m2_n2);
eb14cb74 7887}
72419203 7888
eb14cb74 7889static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7890 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7891{
7892 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7893 &pipe_config->fdi_m_n, NULL);
72419203
DV
7894}
7895
bd2e244f 7896static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7897 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7898{
7899 struct drm_device *dev = crtc->base.dev;
7900 struct drm_i915_private *dev_priv = dev->dev_private;
7901 uint32_t tmp;
7902
7903 tmp = I915_READ(PS_CTL(crtc->pipe));
7904
7905 if (tmp & PS_ENABLE) {
7906 pipe_config->pch_pfit.enabled = true;
7907 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7908 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7909 }
7910}
7911
5724dbd1
DL
7912static void
7913skylake_get_initial_plane_config(struct intel_crtc *crtc,
7914 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7915{
7916 struct drm_device *dev = crtc->base.dev;
7917 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 7918 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
7919 int pipe = crtc->pipe;
7920 int fourcc, pixel_format;
6761dd31 7921 unsigned int aligned_height;
bc8d7dff 7922 struct drm_framebuffer *fb;
1b842c89 7923 struct intel_framebuffer *intel_fb;
bc8d7dff 7924
d9806c9f 7925 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7926 if (!intel_fb) {
bc8d7dff
DL
7927 DRM_DEBUG_KMS("failed to alloc fb\n");
7928 return;
7929 }
7930
1b842c89
DL
7931 fb = &intel_fb->base;
7932
bc8d7dff 7933 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
7934 if (!(val & PLANE_CTL_ENABLE))
7935 goto error;
7936
bc8d7dff
DL
7937 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7938 fourcc = skl_format_to_fourcc(pixel_format,
7939 val & PLANE_CTL_ORDER_RGBX,
7940 val & PLANE_CTL_ALPHA_MASK);
7941 fb->pixel_format = fourcc;
7942 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7943
40f46283
DL
7944 tiling = val & PLANE_CTL_TILED_MASK;
7945 switch (tiling) {
7946 case PLANE_CTL_TILED_LINEAR:
7947 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7948 break;
7949 case PLANE_CTL_TILED_X:
7950 plane_config->tiling = I915_TILING_X;
7951 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7952 break;
7953 case PLANE_CTL_TILED_Y:
7954 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7955 break;
7956 case PLANE_CTL_TILED_YF:
7957 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7958 break;
7959 default:
7960 MISSING_CASE(tiling);
7961 goto error;
7962 }
7963
bc8d7dff
DL
7964 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7965 plane_config->base = base;
7966
7967 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7968
7969 val = I915_READ(PLANE_SIZE(pipe, 0));
7970 fb->height = ((val >> 16) & 0xfff) + 1;
7971 fb->width = ((val >> 0) & 0x1fff) + 1;
7972
7973 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
7974 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7975 fb->pixel_format);
bc8d7dff
DL
7976 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7977
7978 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7979 fb->pixel_format,
7980 fb->modifier[0]);
bc8d7dff 7981
f37b5c2b 7982 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
7983
7984 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7985 pipe_name(pipe), fb->width, fb->height,
7986 fb->bits_per_pixel, base, fb->pitches[0],
7987 plane_config->size);
7988
2d14030b 7989 plane_config->fb = intel_fb;
bc8d7dff
DL
7990 return;
7991
7992error:
7993 kfree(fb);
7994}
7995
2fa2fe9a 7996static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7997 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7998{
7999 struct drm_device *dev = crtc->base.dev;
8000 struct drm_i915_private *dev_priv = dev->dev_private;
8001 uint32_t tmp;
8002
8003 tmp = I915_READ(PF_CTL(crtc->pipe));
8004
8005 if (tmp & PF_ENABLE) {
fd4daa9c 8006 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8007 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8008 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8009
8010 /* We currently do not free assignements of panel fitters on
8011 * ivb/hsw (since we don't use the higher upscaling modes which
8012 * differentiates them) so just WARN about this case for now. */
8013 if (IS_GEN7(dev)) {
8014 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8015 PF_PIPE_SEL_IVB(crtc->pipe));
8016 }
2fa2fe9a 8017 }
79e53945
JB
8018}
8019
5724dbd1
DL
8020static void
8021ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8022 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8023{
8024 struct drm_device *dev = crtc->base.dev;
8025 struct drm_i915_private *dev_priv = dev->dev_private;
8026 u32 val, base, offset;
aeee5a49 8027 int pipe = crtc->pipe;
4c6baa59 8028 int fourcc, pixel_format;
6761dd31 8029 unsigned int aligned_height;
b113d5ee 8030 struct drm_framebuffer *fb;
1b842c89 8031 struct intel_framebuffer *intel_fb;
4c6baa59 8032
42a7b088
DL
8033 val = I915_READ(DSPCNTR(pipe));
8034 if (!(val & DISPLAY_PLANE_ENABLE))
8035 return;
8036
d9806c9f 8037 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8038 if (!intel_fb) {
4c6baa59
JB
8039 DRM_DEBUG_KMS("failed to alloc fb\n");
8040 return;
8041 }
8042
1b842c89
DL
8043 fb = &intel_fb->base;
8044
18c5247e
DV
8045 if (INTEL_INFO(dev)->gen >= 4) {
8046 if (val & DISPPLANE_TILED) {
49af449b 8047 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8048 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8049 }
8050 }
4c6baa59
JB
8051
8052 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8053 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8054 fb->pixel_format = fourcc;
8055 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 8056
aeee5a49 8057 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 8058 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 8059 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 8060 } else {
49af449b 8061 if (plane_config->tiling)
aeee5a49 8062 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 8063 else
aeee5a49 8064 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
8065 }
8066 plane_config->base = base;
8067
8068 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8069 fb->width = ((val >> 16) & 0xfff) + 1;
8070 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
8071
8072 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8073 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 8074
b113d5ee 8075 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8076 fb->pixel_format,
8077 fb->modifier[0]);
4c6baa59 8078
f37b5c2b 8079 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 8080
2844a921
DL
8081 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8082 pipe_name(pipe), fb->width, fb->height,
8083 fb->bits_per_pixel, base, fb->pitches[0],
8084 plane_config->size);
b113d5ee 8085
2d14030b 8086 plane_config->fb = intel_fb;
4c6baa59
JB
8087}
8088
0e8ffe1b 8089static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8090 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8091{
8092 struct drm_device *dev = crtc->base.dev;
8093 struct drm_i915_private *dev_priv = dev->dev_private;
8094 uint32_t tmp;
8095
f458ebbc
DV
8096 if (!intel_display_power_is_enabled(dev_priv,
8097 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
8098 return false;
8099
e143a21c 8100 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8101 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8102
0e8ffe1b
DV
8103 tmp = I915_READ(PIPECONF(crtc->pipe));
8104 if (!(tmp & PIPECONF_ENABLE))
8105 return false;
8106
42571aef
VS
8107 switch (tmp & PIPECONF_BPC_MASK) {
8108 case PIPECONF_6BPC:
8109 pipe_config->pipe_bpp = 18;
8110 break;
8111 case PIPECONF_8BPC:
8112 pipe_config->pipe_bpp = 24;
8113 break;
8114 case PIPECONF_10BPC:
8115 pipe_config->pipe_bpp = 30;
8116 break;
8117 case PIPECONF_12BPC:
8118 pipe_config->pipe_bpp = 36;
8119 break;
8120 default:
8121 break;
8122 }
8123
b5a9fa09
DV
8124 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8125 pipe_config->limited_color_range = true;
8126
ab9412ba 8127 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
8128 struct intel_shared_dpll *pll;
8129
88adfff1
DV
8130 pipe_config->has_pch_encoder = true;
8131
627eb5a3
DV
8132 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8133 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8134 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
8135
8136 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 8137
c0d43d62 8138 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
8139 pipe_config->shared_dpll =
8140 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
8141 } else {
8142 tmp = I915_READ(PCH_DPLL_SEL);
8143 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8144 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8145 else
8146 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8147 }
66e985c0
DV
8148
8149 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8150
8151 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8152 &pipe_config->dpll_hw_state));
c93f54cf
DV
8153
8154 tmp = pipe_config->dpll_hw_state.dpll;
8155 pipe_config->pixel_multiplier =
8156 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8157 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
8158
8159 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
8160 } else {
8161 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
8162 }
8163
1bd1bd80
DV
8164 intel_get_pipe_timings(crtc, pipe_config);
8165
2fa2fe9a
DV
8166 ironlake_get_pfit_config(crtc, pipe_config);
8167
0e8ffe1b
DV
8168 return true;
8169}
8170
be256dc7
PZ
8171static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8172{
8173 struct drm_device *dev = dev_priv->dev;
be256dc7 8174 struct intel_crtc *crtc;
be256dc7 8175
d3fcc808 8176 for_each_intel_crtc(dev, crtc)
e2c719b7 8177 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
8178 pipe_name(crtc->pipe));
8179
e2c719b7
RC
8180 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8181 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8182 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8183 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8184 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8185 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 8186 "CPU PWM1 enabled\n");
c5107b87 8187 if (IS_HASWELL(dev))
e2c719b7 8188 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 8189 "CPU PWM2 enabled\n");
e2c719b7 8190 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 8191 "PCH PWM1 enabled\n");
e2c719b7 8192 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 8193 "Utility pin enabled\n");
e2c719b7 8194 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 8195
9926ada1
PZ
8196 /*
8197 * In theory we can still leave IRQs enabled, as long as only the HPD
8198 * interrupts remain enabled. We used to check for that, but since it's
8199 * gen-specific and since we only disable LCPLL after we fully disable
8200 * the interrupts, the check below should be enough.
8201 */
e2c719b7 8202 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
8203}
8204
9ccd5aeb
PZ
8205static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8206{
8207 struct drm_device *dev = dev_priv->dev;
8208
8209 if (IS_HASWELL(dev))
8210 return I915_READ(D_COMP_HSW);
8211 else
8212 return I915_READ(D_COMP_BDW);
8213}
8214
3c4c9b81
PZ
8215static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8216{
8217 struct drm_device *dev = dev_priv->dev;
8218
8219 if (IS_HASWELL(dev)) {
8220 mutex_lock(&dev_priv->rps.hw_lock);
8221 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8222 val))
f475dadf 8223 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
8224 mutex_unlock(&dev_priv->rps.hw_lock);
8225 } else {
9ccd5aeb
PZ
8226 I915_WRITE(D_COMP_BDW, val);
8227 POSTING_READ(D_COMP_BDW);
3c4c9b81 8228 }
be256dc7
PZ
8229}
8230
8231/*
8232 * This function implements pieces of two sequences from BSpec:
8233 * - Sequence for display software to disable LCPLL
8234 * - Sequence for display software to allow package C8+
8235 * The steps implemented here are just the steps that actually touch the LCPLL
8236 * register. Callers should take care of disabling all the display engine
8237 * functions, doing the mode unset, fixing interrupts, etc.
8238 */
6ff58d53
PZ
8239static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8240 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
8241{
8242 uint32_t val;
8243
8244 assert_can_disable_lcpll(dev_priv);
8245
8246 val = I915_READ(LCPLL_CTL);
8247
8248 if (switch_to_fclk) {
8249 val |= LCPLL_CD_SOURCE_FCLK;
8250 I915_WRITE(LCPLL_CTL, val);
8251
8252 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8253 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8254 DRM_ERROR("Switching to FCLK failed\n");
8255
8256 val = I915_READ(LCPLL_CTL);
8257 }
8258
8259 val |= LCPLL_PLL_DISABLE;
8260 I915_WRITE(LCPLL_CTL, val);
8261 POSTING_READ(LCPLL_CTL);
8262
8263 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8264 DRM_ERROR("LCPLL still locked\n");
8265
9ccd5aeb 8266 val = hsw_read_dcomp(dev_priv);
be256dc7 8267 val |= D_COMP_COMP_DISABLE;
3c4c9b81 8268 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8269 ndelay(100);
8270
9ccd5aeb
PZ
8271 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8272 1))
be256dc7
PZ
8273 DRM_ERROR("D_COMP RCOMP still in progress\n");
8274
8275 if (allow_power_down) {
8276 val = I915_READ(LCPLL_CTL);
8277 val |= LCPLL_POWER_DOWN_ALLOW;
8278 I915_WRITE(LCPLL_CTL, val);
8279 POSTING_READ(LCPLL_CTL);
8280 }
8281}
8282
8283/*
8284 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8285 * source.
8286 */
6ff58d53 8287static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
8288{
8289 uint32_t val;
8290
8291 val = I915_READ(LCPLL_CTL);
8292
8293 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8294 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8295 return;
8296
a8a8bd54
PZ
8297 /*
8298 * Make sure we're not on PC8 state before disabling PC8, otherwise
8299 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 8300 */
59bad947 8301 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 8302
be256dc7
PZ
8303 if (val & LCPLL_POWER_DOWN_ALLOW) {
8304 val &= ~LCPLL_POWER_DOWN_ALLOW;
8305 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 8306 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
8307 }
8308
9ccd5aeb 8309 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
8310 val |= D_COMP_COMP_FORCE;
8311 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 8312 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
8313
8314 val = I915_READ(LCPLL_CTL);
8315 val &= ~LCPLL_PLL_DISABLE;
8316 I915_WRITE(LCPLL_CTL, val);
8317
8318 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8319 DRM_ERROR("LCPLL not locked yet\n");
8320
8321 if (val & LCPLL_CD_SOURCE_FCLK) {
8322 val = I915_READ(LCPLL_CTL);
8323 val &= ~LCPLL_CD_SOURCE_FCLK;
8324 I915_WRITE(LCPLL_CTL, val);
8325
8326 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8327 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8328 DRM_ERROR("Switching back to LCPLL failed\n");
8329 }
215733fa 8330
59bad947 8331 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8332}
8333
765dab67
PZ
8334/*
8335 * Package states C8 and deeper are really deep PC states that can only be
8336 * reached when all the devices on the system allow it, so even if the graphics
8337 * device allows PC8+, it doesn't mean the system will actually get to these
8338 * states. Our driver only allows PC8+ when going into runtime PM.
8339 *
8340 * The requirements for PC8+ are that all the outputs are disabled, the power
8341 * well is disabled and most interrupts are disabled, and these are also
8342 * requirements for runtime PM. When these conditions are met, we manually do
8343 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8344 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8345 * hang the machine.
8346 *
8347 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8348 * the state of some registers, so when we come back from PC8+ we need to
8349 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8350 * need to take care of the registers kept by RC6. Notice that this happens even
8351 * if we don't put the device in PCI D3 state (which is what currently happens
8352 * because of the runtime PM support).
8353 *
8354 * For more, read "Display Sequences for Package C8" on the hardware
8355 * documentation.
8356 */
a14cb6fc 8357void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8358{
c67a470b
PZ
8359 struct drm_device *dev = dev_priv->dev;
8360 uint32_t val;
8361
c67a470b
PZ
8362 DRM_DEBUG_KMS("Enabling package C8+\n");
8363
c67a470b
PZ
8364 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8365 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8366 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8367 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8368 }
8369
8370 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8371 hsw_disable_lcpll(dev_priv, true, true);
8372}
8373
a14cb6fc 8374void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8375{
8376 struct drm_device *dev = dev_priv->dev;
8377 uint32_t val;
8378
c67a470b
PZ
8379 DRM_DEBUG_KMS("Disabling package C8+\n");
8380
8381 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8382 lpt_init_pch_refclk(dev);
8383
8384 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8385 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8386 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8387 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8388 }
8389
8390 intel_prepare_ddi(dev);
c67a470b
PZ
8391}
8392
190f68c5
ACO
8393static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8394 struct intel_crtc_state *crtc_state)
09b4ddf9 8395{
190f68c5 8396 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8397 return -EINVAL;
716c2e55 8398
c7653199 8399 crtc->lowfreq_avail = false;
644cef34 8400
c8f7a0db 8401 return 0;
79e53945
JB
8402}
8403
96b7dfb7
S
8404static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8405 enum port port,
5cec258b 8406 struct intel_crtc_state *pipe_config)
96b7dfb7 8407{
3148ade7 8408 u32 temp, dpll_ctl1;
96b7dfb7
S
8409
8410 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8411 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8412
8413 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8414 case SKL_DPLL0:
8415 /*
8416 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8417 * of the shared DPLL framework and thus needs to be read out
8418 * separately
8419 */
8420 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8421 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8422 break;
96b7dfb7
S
8423 case SKL_DPLL1:
8424 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8425 break;
8426 case SKL_DPLL2:
8427 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8428 break;
8429 case SKL_DPLL3:
8430 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8431 break;
96b7dfb7
S
8432 }
8433}
8434
7d2c8175
DL
8435static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8436 enum port port,
5cec258b 8437 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8438{
8439 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8440
8441 switch (pipe_config->ddi_pll_sel) {
8442 case PORT_CLK_SEL_WRPLL1:
8443 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8444 break;
8445 case PORT_CLK_SEL_WRPLL2:
8446 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8447 break;
8448 }
8449}
8450
26804afd 8451static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8452 struct intel_crtc_state *pipe_config)
26804afd
DV
8453{
8454 struct drm_device *dev = crtc->base.dev;
8455 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8456 struct intel_shared_dpll *pll;
26804afd
DV
8457 enum port port;
8458 uint32_t tmp;
8459
8460 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8461
8462 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8463
96b7dfb7
S
8464 if (IS_SKYLAKE(dev))
8465 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8466 else
8467 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8468
d452c5b6
DV
8469 if (pipe_config->shared_dpll >= 0) {
8470 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8471
8472 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8473 &pipe_config->dpll_hw_state));
8474 }
8475
26804afd
DV
8476 /*
8477 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8478 * DDI E. So just check whether this pipe is wired to DDI E and whether
8479 * the PCH transcoder is on.
8480 */
ca370455
DL
8481 if (INTEL_INFO(dev)->gen < 9 &&
8482 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8483 pipe_config->has_pch_encoder = true;
8484
8485 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8486 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8487 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8488
8489 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8490 }
8491}
8492
0e8ffe1b 8493static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8494 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8495{
8496 struct drm_device *dev = crtc->base.dev;
8497 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8498 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8499 uint32_t tmp;
8500
f458ebbc 8501 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8502 POWER_DOMAIN_PIPE(crtc->pipe)))
8503 return false;
8504
e143a21c 8505 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8506 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8507
eccb140b
DV
8508 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8509 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8510 enum pipe trans_edp_pipe;
8511 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8512 default:
8513 WARN(1, "unknown pipe linked to edp transcoder\n");
8514 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8515 case TRANS_DDI_EDP_INPUT_A_ON:
8516 trans_edp_pipe = PIPE_A;
8517 break;
8518 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8519 trans_edp_pipe = PIPE_B;
8520 break;
8521 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8522 trans_edp_pipe = PIPE_C;
8523 break;
8524 }
8525
8526 if (trans_edp_pipe == crtc->pipe)
8527 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8528 }
8529
f458ebbc 8530 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8531 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8532 return false;
8533
eccb140b 8534 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8535 if (!(tmp & PIPECONF_ENABLE))
8536 return false;
8537
26804afd 8538 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8539
1bd1bd80
DV
8540 intel_get_pipe_timings(crtc, pipe_config);
8541
2fa2fe9a 8542 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8543 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8544 if (IS_SKYLAKE(dev))
8545 skylake_get_pfit_config(crtc, pipe_config);
8546 else
8547 ironlake_get_pfit_config(crtc, pipe_config);
8548 }
88adfff1 8549
e59150dc
JB
8550 if (IS_HASWELL(dev))
8551 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8552 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8553
ebb69c95
CT
8554 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8555 pipe_config->pixel_multiplier =
8556 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8557 } else {
8558 pipe_config->pixel_multiplier = 1;
8559 }
6c49f241 8560
0e8ffe1b
DV
8561 return true;
8562}
8563
560b85bb
CW
8564static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8565{
8566 struct drm_device *dev = crtc->dev;
8567 struct drm_i915_private *dev_priv = dev->dev_private;
8568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8569 uint32_t cntl = 0, size = 0;
560b85bb 8570
dc41c154 8571 if (base) {
3dd512fb
MR
8572 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8573 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
8574 unsigned int stride = roundup_pow_of_two(width) * 4;
8575
8576 switch (stride) {
8577 default:
8578 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8579 width, stride);
8580 stride = 256;
8581 /* fallthrough */
8582 case 256:
8583 case 512:
8584 case 1024:
8585 case 2048:
8586 break;
4b0e333e
CW
8587 }
8588
dc41c154
VS
8589 cntl |= CURSOR_ENABLE |
8590 CURSOR_GAMMA_ENABLE |
8591 CURSOR_FORMAT_ARGB |
8592 CURSOR_STRIDE(stride);
8593
8594 size = (height << 12) | width;
4b0e333e 8595 }
560b85bb 8596
dc41c154
VS
8597 if (intel_crtc->cursor_cntl != 0 &&
8598 (intel_crtc->cursor_base != base ||
8599 intel_crtc->cursor_size != size ||
8600 intel_crtc->cursor_cntl != cntl)) {
8601 /* On these chipsets we can only modify the base/size/stride
8602 * whilst the cursor is disabled.
8603 */
8604 I915_WRITE(_CURACNTR, 0);
4b0e333e 8605 POSTING_READ(_CURACNTR);
dc41c154 8606 intel_crtc->cursor_cntl = 0;
4b0e333e 8607 }
560b85bb 8608
99d1f387 8609 if (intel_crtc->cursor_base != base) {
9db4a9c7 8610 I915_WRITE(_CURABASE, base);
99d1f387
VS
8611 intel_crtc->cursor_base = base;
8612 }
4726e0b0 8613
dc41c154
VS
8614 if (intel_crtc->cursor_size != size) {
8615 I915_WRITE(CURSIZE, size);
8616 intel_crtc->cursor_size = size;
4b0e333e 8617 }
560b85bb 8618
4b0e333e 8619 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8620 I915_WRITE(_CURACNTR, cntl);
8621 POSTING_READ(_CURACNTR);
4b0e333e 8622 intel_crtc->cursor_cntl = cntl;
560b85bb 8623 }
560b85bb
CW
8624}
8625
560b85bb 8626static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8627{
8628 struct drm_device *dev = crtc->dev;
8629 struct drm_i915_private *dev_priv = dev->dev_private;
8630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8631 int pipe = intel_crtc->pipe;
4b0e333e
CW
8632 uint32_t cntl;
8633
8634 cntl = 0;
8635 if (base) {
8636 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 8637 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
8638 case 64:
8639 cntl |= CURSOR_MODE_64_ARGB_AX;
8640 break;
8641 case 128:
8642 cntl |= CURSOR_MODE_128_ARGB_AX;
8643 break;
8644 case 256:
8645 cntl |= CURSOR_MODE_256_ARGB_AX;
8646 break;
8647 default:
3dd512fb 8648 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 8649 return;
65a21cd6 8650 }
4b0e333e 8651 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8652
8653 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8654 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8655 }
65a21cd6 8656
8e7d688b 8657 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8658 cntl |= CURSOR_ROTATE_180;
8659
4b0e333e
CW
8660 if (intel_crtc->cursor_cntl != cntl) {
8661 I915_WRITE(CURCNTR(pipe), cntl);
8662 POSTING_READ(CURCNTR(pipe));
8663 intel_crtc->cursor_cntl = cntl;
65a21cd6 8664 }
4b0e333e 8665
65a21cd6 8666 /* and commit changes on next vblank */
5efb3e28
VS
8667 I915_WRITE(CURBASE(pipe), base);
8668 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8669
8670 intel_crtc->cursor_base = base;
65a21cd6
JB
8671}
8672
cda4b7d3 8673/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8674static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8675 bool on)
cda4b7d3
CW
8676{
8677 struct drm_device *dev = crtc->dev;
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8680 int pipe = intel_crtc->pipe;
3d7d6510
MR
8681 int x = crtc->cursor_x;
8682 int y = crtc->cursor_y;
d6e4db15 8683 u32 base = 0, pos = 0;
cda4b7d3 8684
d6e4db15 8685 if (on)
cda4b7d3 8686 base = intel_crtc->cursor_addr;
cda4b7d3 8687
6e3c9717 8688 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8689 base = 0;
8690
6e3c9717 8691 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8692 base = 0;
8693
8694 if (x < 0) {
3dd512fb 8695 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
8696 base = 0;
8697
8698 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8699 x = -x;
8700 }
8701 pos |= x << CURSOR_X_SHIFT;
8702
8703 if (y < 0) {
3dd512fb 8704 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
8705 base = 0;
8706
8707 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8708 y = -y;
8709 }
8710 pos |= y << CURSOR_Y_SHIFT;
8711
4b0e333e 8712 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8713 return;
8714
5efb3e28
VS
8715 I915_WRITE(CURPOS(pipe), pos);
8716
4398ad45
VS
8717 /* ILK+ do this automagically */
8718 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8719 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
8720 base += (intel_crtc->base.cursor->state->crtc_h *
8721 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
8722 }
8723
8ac54669 8724 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8725 i845_update_cursor(crtc, base);
8726 else
8727 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8728}
8729
dc41c154
VS
8730static bool cursor_size_ok(struct drm_device *dev,
8731 uint32_t width, uint32_t height)
8732{
8733 if (width == 0 || height == 0)
8734 return false;
8735
8736 /*
8737 * 845g/865g are special in that they are only limited by
8738 * the width of their cursors, the height is arbitrary up to
8739 * the precision of the register. Everything else requires
8740 * square cursors, limited to a few power-of-two sizes.
8741 */
8742 if (IS_845G(dev) || IS_I865G(dev)) {
8743 if ((width & 63) != 0)
8744 return false;
8745
8746 if (width > (IS_845G(dev) ? 64 : 512))
8747 return false;
8748
8749 if (height > 1023)
8750 return false;
8751 } else {
8752 switch (width | height) {
8753 case 256:
8754 case 128:
8755 if (IS_GEN2(dev))
8756 return false;
8757 case 64:
8758 break;
8759 default:
8760 return false;
8761 }
8762 }
8763
8764 return true;
8765}
8766
79e53945 8767static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8768 u16 *blue, uint32_t start, uint32_t size)
79e53945 8769{
7203425a 8770 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8772
7203425a 8773 for (i = start; i < end; i++) {
79e53945
JB
8774 intel_crtc->lut_r[i] = red[i] >> 8;
8775 intel_crtc->lut_g[i] = green[i] >> 8;
8776 intel_crtc->lut_b[i] = blue[i] >> 8;
8777 }
8778
8779 intel_crtc_load_lut(crtc);
8780}
8781
79e53945
JB
8782/* VESA 640x480x72Hz mode to set on the pipe */
8783static struct drm_display_mode load_detect_mode = {
8784 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8785 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8786};
8787
a8bb6818
DV
8788struct drm_framebuffer *
8789__intel_framebuffer_create(struct drm_device *dev,
8790 struct drm_mode_fb_cmd2 *mode_cmd,
8791 struct drm_i915_gem_object *obj)
d2dff872
CW
8792{
8793 struct intel_framebuffer *intel_fb;
8794 int ret;
8795
8796 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8797 if (!intel_fb) {
6ccb81f2 8798 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8799 return ERR_PTR(-ENOMEM);
8800 }
8801
8802 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8803 if (ret)
8804 goto err;
d2dff872
CW
8805
8806 return &intel_fb->base;
dd4916c5 8807err:
6ccb81f2 8808 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8809 kfree(intel_fb);
8810
8811 return ERR_PTR(ret);
d2dff872
CW
8812}
8813
b5ea642a 8814static struct drm_framebuffer *
a8bb6818
DV
8815intel_framebuffer_create(struct drm_device *dev,
8816 struct drm_mode_fb_cmd2 *mode_cmd,
8817 struct drm_i915_gem_object *obj)
8818{
8819 struct drm_framebuffer *fb;
8820 int ret;
8821
8822 ret = i915_mutex_lock_interruptible(dev);
8823 if (ret)
8824 return ERR_PTR(ret);
8825 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8826 mutex_unlock(&dev->struct_mutex);
8827
8828 return fb;
8829}
8830
d2dff872
CW
8831static u32
8832intel_framebuffer_pitch_for_width(int width, int bpp)
8833{
8834 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8835 return ALIGN(pitch, 64);
8836}
8837
8838static u32
8839intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8840{
8841 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8842 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8843}
8844
8845static struct drm_framebuffer *
8846intel_framebuffer_create_for_mode(struct drm_device *dev,
8847 struct drm_display_mode *mode,
8848 int depth, int bpp)
8849{
8850 struct drm_i915_gem_object *obj;
0fed39bd 8851 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8852
8853 obj = i915_gem_alloc_object(dev,
8854 intel_framebuffer_size_for_mode(mode, bpp));
8855 if (obj == NULL)
8856 return ERR_PTR(-ENOMEM);
8857
8858 mode_cmd.width = mode->hdisplay;
8859 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8860 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8861 bpp);
5ca0c34a 8862 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8863
8864 return intel_framebuffer_create(dev, &mode_cmd, obj);
8865}
8866
8867static struct drm_framebuffer *
8868mode_fits_in_fbdev(struct drm_device *dev,
8869 struct drm_display_mode *mode)
8870{
4520f53a 8871#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8872 struct drm_i915_private *dev_priv = dev->dev_private;
8873 struct drm_i915_gem_object *obj;
8874 struct drm_framebuffer *fb;
8875
4c0e5528 8876 if (!dev_priv->fbdev)
d2dff872
CW
8877 return NULL;
8878
4c0e5528 8879 if (!dev_priv->fbdev->fb)
d2dff872
CW
8880 return NULL;
8881
4c0e5528
DV
8882 obj = dev_priv->fbdev->fb->obj;
8883 BUG_ON(!obj);
8884
8bcd4553 8885 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8886 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8887 fb->bits_per_pixel))
d2dff872
CW
8888 return NULL;
8889
01f2c773 8890 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8891 return NULL;
8892
8893 return fb;
4520f53a
DV
8894#else
8895 return NULL;
8896#endif
d2dff872
CW
8897}
8898
d2434ab7 8899bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8900 struct drm_display_mode *mode,
51fd371b
RC
8901 struct intel_load_detect_pipe *old,
8902 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8903{
8904 struct intel_crtc *intel_crtc;
d2434ab7
DV
8905 struct intel_encoder *intel_encoder =
8906 intel_attached_encoder(connector);
79e53945 8907 struct drm_crtc *possible_crtc;
4ef69c7a 8908 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8909 struct drm_crtc *crtc = NULL;
8910 struct drm_device *dev = encoder->dev;
94352cf9 8911 struct drm_framebuffer *fb;
51fd371b 8912 struct drm_mode_config *config = &dev->mode_config;
83a57153 8913 struct drm_atomic_state *state = NULL;
944b0c76 8914 struct drm_connector_state *connector_state;
51fd371b 8915 int ret, i = -1;
79e53945 8916
d2dff872 8917 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8918 connector->base.id, connector->name,
8e329a03 8919 encoder->base.id, encoder->name);
d2dff872 8920
51fd371b
RC
8921retry:
8922 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8923 if (ret)
8924 goto fail_unlock;
6e9f798d 8925
79e53945
JB
8926 /*
8927 * Algorithm gets a little messy:
7a5e4805 8928 *
79e53945
JB
8929 * - if the connector already has an assigned crtc, use it (but make
8930 * sure it's on first)
7a5e4805 8931 *
79e53945
JB
8932 * - try to find the first unused crtc that can drive this connector,
8933 * and use that if we find one
79e53945
JB
8934 */
8935
8936 /* See if we already have a CRTC for this connector */
8937 if (encoder->crtc) {
8938 crtc = encoder->crtc;
8261b191 8939
51fd371b 8940 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8941 if (ret)
8942 goto fail_unlock;
8943 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8944 if (ret)
8945 goto fail_unlock;
7b24056b 8946
24218aac 8947 old->dpms_mode = connector->dpms;
8261b191
CW
8948 old->load_detect_temp = false;
8949
8950 /* Make sure the crtc and connector are running */
24218aac
DV
8951 if (connector->dpms != DRM_MODE_DPMS_ON)
8952 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8953
7173188d 8954 return true;
79e53945
JB
8955 }
8956
8957 /* Find an unused one (if possible) */
70e1e0ec 8958 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8959 i++;
8960 if (!(encoder->possible_crtcs & (1 << i)))
8961 continue;
83d65738 8962 if (possible_crtc->state->enable)
a459249c
VS
8963 continue;
8964 /* This can occur when applying the pipe A quirk on resume. */
8965 if (to_intel_crtc(possible_crtc)->new_enabled)
8966 continue;
8967
8968 crtc = possible_crtc;
8969 break;
79e53945
JB
8970 }
8971
8972 /*
8973 * If we didn't find an unused CRTC, don't use any.
8974 */
8975 if (!crtc) {
7173188d 8976 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8977 goto fail_unlock;
79e53945
JB
8978 }
8979
51fd371b
RC
8980 ret = drm_modeset_lock(&crtc->mutex, ctx);
8981 if (ret)
4d02e2de
DV
8982 goto fail_unlock;
8983 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8984 if (ret)
51fd371b 8985 goto fail_unlock;
fc303101
DV
8986 intel_encoder->new_crtc = to_intel_crtc(crtc);
8987 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8988
8989 intel_crtc = to_intel_crtc(crtc);
412b61d8 8990 intel_crtc->new_enabled = true;
6e3c9717 8991 intel_crtc->new_config = intel_crtc->config;
24218aac 8992 old->dpms_mode = connector->dpms;
8261b191 8993 old->load_detect_temp = true;
d2dff872 8994 old->release_fb = NULL;
79e53945 8995
83a57153
ACO
8996 state = drm_atomic_state_alloc(dev);
8997 if (!state)
8998 return false;
8999
9000 state->acquire_ctx = ctx;
9001
944b0c76
ACO
9002 connector_state = drm_atomic_get_connector_state(state, connector);
9003 if (IS_ERR(connector_state)) {
9004 ret = PTR_ERR(connector_state);
9005 goto fail;
9006 }
9007
9008 connector_state->crtc = crtc;
9009 connector_state->best_encoder = &intel_encoder->base;
9010
6492711d
CW
9011 if (!mode)
9012 mode = &load_detect_mode;
79e53945 9013
d2dff872
CW
9014 /* We need a framebuffer large enough to accommodate all accesses
9015 * that the plane may generate whilst we perform load detection.
9016 * We can not rely on the fbcon either being present (we get called
9017 * during its initialisation to detect all boot displays, or it may
9018 * not even exist) or that it is large enough to satisfy the
9019 * requested mode.
9020 */
94352cf9
DV
9021 fb = mode_fits_in_fbdev(dev, mode);
9022 if (fb == NULL) {
d2dff872 9023 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
9024 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9025 old->release_fb = fb;
d2dff872
CW
9026 } else
9027 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 9028 if (IS_ERR(fb)) {
d2dff872 9029 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 9030 goto fail;
79e53945 9031 }
79e53945 9032
83a57153 9033 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
6492711d 9034 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
9035 if (old->release_fb)
9036 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 9037 goto fail;
79e53945 9038 }
9128b040 9039 crtc->primary->crtc = crtc;
7173188d 9040
79e53945 9041 /* let the connector get through one full cycle before testing */
9d0498a2 9042 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 9043 return true;
412b61d8
VS
9044
9045 fail:
83d65738 9046 intel_crtc->new_enabled = crtc->state->enable;
412b61d8 9047 if (intel_crtc->new_enabled)
6e3c9717 9048 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
9049 else
9050 intel_crtc->new_config = NULL;
51fd371b 9051fail_unlock:
83a57153
ACO
9052 if (state) {
9053 drm_atomic_state_free(state);
9054 state = NULL;
9055 }
9056
51fd371b
RC
9057 if (ret == -EDEADLK) {
9058 drm_modeset_backoff(ctx);
9059 goto retry;
9060 }
9061
412b61d8 9062 return false;
79e53945
JB
9063}
9064
d2434ab7 9065void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
9066 struct intel_load_detect_pipe *old,
9067 struct drm_modeset_acquire_ctx *ctx)
79e53945 9068{
83a57153 9069 struct drm_device *dev = connector->dev;
d2434ab7
DV
9070 struct intel_encoder *intel_encoder =
9071 intel_attached_encoder(connector);
4ef69c7a 9072 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 9073 struct drm_crtc *crtc = encoder->crtc;
412b61d8 9074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 9075 struct drm_atomic_state *state;
944b0c76 9076 struct drm_connector_state *connector_state;
79e53945 9077
d2dff872 9078 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9079 connector->base.id, connector->name,
8e329a03 9080 encoder->base.id, encoder->name);
d2dff872 9081
8261b191 9082 if (old->load_detect_temp) {
83a57153 9083 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
9084 if (!state)
9085 goto fail;
83a57153
ACO
9086
9087 state->acquire_ctx = ctx;
9088
944b0c76
ACO
9089 connector_state = drm_atomic_get_connector_state(state, connector);
9090 if (IS_ERR(connector_state))
9091 goto fail;
9092
fc303101
DV
9093 to_intel_connector(connector)->new_encoder = NULL;
9094 intel_encoder->new_crtc = NULL;
412b61d8
VS
9095 intel_crtc->new_enabled = false;
9096 intel_crtc->new_config = NULL;
944b0c76
ACO
9097
9098 connector_state->best_encoder = NULL;
9099 connector_state->crtc = NULL;
9100
83a57153
ACO
9101 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9102
9103 drm_atomic_state_free(state);
d2dff872 9104
36206361
DV
9105 if (old->release_fb) {
9106 drm_framebuffer_unregister_private(old->release_fb);
9107 drm_framebuffer_unreference(old->release_fb);
9108 }
d2dff872 9109
0622a53c 9110 return;
79e53945
JB
9111 }
9112
c751ce4f 9113 /* Switch crtc and encoder back off if necessary */
24218aac
DV
9114 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9115 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
9116
9117 return;
9118fail:
9119 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9120 drm_atomic_state_free(state);
79e53945
JB
9121}
9122
da4a1efa 9123static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 9124 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
9125{
9126 struct drm_i915_private *dev_priv = dev->dev_private;
9127 u32 dpll = pipe_config->dpll_hw_state.dpll;
9128
9129 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 9130 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
9131 else if (HAS_PCH_SPLIT(dev))
9132 return 120000;
9133 else if (!IS_GEN2(dev))
9134 return 96000;
9135 else
9136 return 48000;
9137}
9138
79e53945 9139/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 9140static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 9141 struct intel_crtc_state *pipe_config)
79e53945 9142{
f1f644dc 9143 struct drm_device *dev = crtc->base.dev;
79e53945 9144 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 9145 int pipe = pipe_config->cpu_transcoder;
293623f7 9146 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
9147 u32 fp;
9148 intel_clock_t clock;
da4a1efa 9149 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
9150
9151 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 9152 fp = pipe_config->dpll_hw_state.fp0;
79e53945 9153 else
293623f7 9154 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
9155
9156 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
9157 if (IS_PINEVIEW(dev)) {
9158 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9159 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
9160 } else {
9161 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9162 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9163 }
9164
a6c45cf0 9165 if (!IS_GEN2(dev)) {
f2b115e6
AJ
9166 if (IS_PINEVIEW(dev))
9167 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9168 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
9169 else
9170 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
9171 DPLL_FPA01_P1_POST_DIV_SHIFT);
9172
9173 switch (dpll & DPLL_MODE_MASK) {
9174 case DPLLB_MODE_DAC_SERIAL:
9175 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9176 5 : 10;
9177 break;
9178 case DPLLB_MODE_LVDS:
9179 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9180 7 : 14;
9181 break;
9182 default:
28c97730 9183 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 9184 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 9185 return;
79e53945
JB
9186 }
9187
ac58c3f0 9188 if (IS_PINEVIEW(dev))
da4a1efa 9189 pineview_clock(refclk, &clock);
ac58c3f0 9190 else
da4a1efa 9191 i9xx_clock(refclk, &clock);
79e53945 9192 } else {
0fb58223 9193 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 9194 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
9195
9196 if (is_lvds) {
9197 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9198 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
9199
9200 if (lvds & LVDS_CLKB_POWER_UP)
9201 clock.p2 = 7;
9202 else
9203 clock.p2 = 14;
79e53945
JB
9204 } else {
9205 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9206 clock.p1 = 2;
9207 else {
9208 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9209 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9210 }
9211 if (dpll & PLL_P2_DIVIDE_BY_4)
9212 clock.p2 = 4;
9213 else
9214 clock.p2 = 2;
79e53945 9215 }
da4a1efa
VS
9216
9217 i9xx_clock(refclk, &clock);
79e53945
JB
9218 }
9219
18442d08
VS
9220 /*
9221 * This value includes pixel_multiplier. We will use
241bfc38 9222 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
9223 * encoder's get_config() function.
9224 */
9225 pipe_config->port_clock = clock.dot;
f1f644dc
JB
9226}
9227
6878da05
VS
9228int intel_dotclock_calculate(int link_freq,
9229 const struct intel_link_m_n *m_n)
f1f644dc 9230{
f1f644dc
JB
9231 /*
9232 * The calculation for the data clock is:
1041a02f 9233 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 9234 * But we want to avoid losing precison if possible, so:
1041a02f 9235 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
9236 *
9237 * and the link clock is simpler:
1041a02f 9238 * link_clock = (m * link_clock) / n
f1f644dc
JB
9239 */
9240
6878da05
VS
9241 if (!m_n->link_n)
9242 return 0;
f1f644dc 9243
6878da05
VS
9244 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9245}
f1f644dc 9246
18442d08 9247static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 9248 struct intel_crtc_state *pipe_config)
6878da05
VS
9249{
9250 struct drm_device *dev = crtc->base.dev;
79e53945 9251
18442d08
VS
9252 /* read out port_clock from the DPLL */
9253 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 9254
f1f644dc 9255 /*
18442d08 9256 * This value does not include pixel_multiplier.
241bfc38 9257 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
9258 * agree once we know their relationship in the encoder's
9259 * get_config() function.
79e53945 9260 */
2d112de7 9261 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
9262 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9263 &pipe_config->fdi_m_n);
79e53945
JB
9264}
9265
9266/** Returns the currently programmed mode of the given pipe. */
9267struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9268 struct drm_crtc *crtc)
9269{
548f245b 9270 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 9272 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 9273 struct drm_display_mode *mode;
5cec258b 9274 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
9275 int htot = I915_READ(HTOTAL(cpu_transcoder));
9276 int hsync = I915_READ(HSYNC(cpu_transcoder));
9277 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9278 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9279 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9280
9281 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9282 if (!mode)
9283 return NULL;
9284
f1f644dc
JB
9285 /*
9286 * Construct a pipe_config sufficient for getting the clock info
9287 * back out of crtc_clock_get.
9288 *
9289 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9290 * to use a real value here instead.
9291 */
293623f7 9292 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9293 pipe_config.pixel_multiplier = 1;
293623f7
VS
9294 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9295 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9296 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9297 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9298
773ae034 9299 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9300 mode->hdisplay = (htot & 0xffff) + 1;
9301 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9302 mode->hsync_start = (hsync & 0xffff) + 1;
9303 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9304 mode->vdisplay = (vtot & 0xffff) + 1;
9305 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9306 mode->vsync_start = (vsync & 0xffff) + 1;
9307 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9308
9309 drm_mode_set_name(mode);
79e53945
JB
9310
9311 return mode;
9312}
9313
652c393a
JB
9314static void intel_decrease_pllclock(struct drm_crtc *crtc)
9315{
9316 struct drm_device *dev = crtc->dev;
fbee40df 9317 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9319
baff296c 9320 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9321 return;
9322
9323 if (!dev_priv->lvds_downclock_avail)
9324 return;
9325
9326 /*
9327 * Since this is called by a timer, we should never get here in
9328 * the manual case.
9329 */
9330 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9331 int pipe = intel_crtc->pipe;
9332 int dpll_reg = DPLL(pipe);
9333 int dpll;
f6e5b160 9334
44d98a61 9335 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9336
8ac5a6d5 9337 assert_panel_unlocked(dev_priv, pipe);
652c393a 9338
dc257cf1 9339 dpll = I915_READ(dpll_reg);
652c393a
JB
9340 dpll |= DISPLAY_RATE_SELECT_FPA1;
9341 I915_WRITE(dpll_reg, dpll);
9d0498a2 9342 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9343 dpll = I915_READ(dpll_reg);
9344 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9345 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9346 }
9347
9348}
9349
f047e395
CW
9350void intel_mark_busy(struct drm_device *dev)
9351{
c67a470b
PZ
9352 struct drm_i915_private *dev_priv = dev->dev_private;
9353
f62a0076
CW
9354 if (dev_priv->mm.busy)
9355 return;
9356
43694d69 9357 intel_runtime_pm_get(dev_priv);
c67a470b 9358 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
9359 if (INTEL_INFO(dev)->gen >= 6)
9360 gen6_rps_busy(dev_priv);
f62a0076 9361 dev_priv->mm.busy = true;
f047e395
CW
9362}
9363
9364void intel_mark_idle(struct drm_device *dev)
652c393a 9365{
c67a470b 9366 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9367 struct drm_crtc *crtc;
652c393a 9368
f62a0076
CW
9369 if (!dev_priv->mm.busy)
9370 return;
9371
9372 dev_priv->mm.busy = false;
9373
70e1e0ec 9374 for_each_crtc(dev, crtc) {
f4510a27 9375 if (!crtc->primary->fb)
652c393a
JB
9376 continue;
9377
725a5b54 9378 intel_decrease_pllclock(crtc);
652c393a 9379 }
b29c19b6 9380
3d13ef2e 9381 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9382 gen6_rps_idle(dev->dev_private);
bb4cdd53 9383
43694d69 9384 intel_runtime_pm_put(dev_priv);
652c393a
JB
9385}
9386
f5de6e07
ACO
9387static void intel_crtc_set_state(struct intel_crtc *crtc,
9388 struct intel_crtc_state *crtc_state)
9389{
9390 kfree(crtc->config);
9391 crtc->config = crtc_state;
16f3f658 9392 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9393}
9394
79e53945
JB
9395static void intel_crtc_destroy(struct drm_crtc *crtc)
9396{
9397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9398 struct drm_device *dev = crtc->dev;
9399 struct intel_unpin_work *work;
67e77c5a 9400
5e2d7afc 9401 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9402 work = intel_crtc->unpin_work;
9403 intel_crtc->unpin_work = NULL;
5e2d7afc 9404 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9405
9406 if (work) {
9407 cancel_work_sync(&work->work);
9408 kfree(work);
9409 }
79e53945 9410
f5de6e07 9411 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9412 drm_crtc_cleanup(crtc);
67e77c5a 9413
79e53945
JB
9414 kfree(intel_crtc);
9415}
9416
6b95a207
KH
9417static void intel_unpin_work_fn(struct work_struct *__work)
9418{
9419 struct intel_unpin_work *work =
9420 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9421 struct drm_device *dev = work->crtc->dev;
f99d7069 9422 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9423
b4a98e57 9424 mutex_lock(&dev->struct_mutex);
82bc3b2d 9425 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 9426 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 9427
7ff0ebcc 9428 intel_fbc_update(dev);
f06cc1b9
JH
9429
9430 if (work->flip_queued_req)
146d84f0 9431 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9432 mutex_unlock(&dev->struct_mutex);
9433
f99d7069 9434 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 9435 drm_framebuffer_unreference(work->old_fb);
f99d7069 9436
b4a98e57
CW
9437 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9438 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9439
6b95a207
KH
9440 kfree(work);
9441}
9442
1afe3e9d 9443static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9444 struct drm_crtc *crtc)
6b95a207 9445{
6b95a207
KH
9446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9447 struct intel_unpin_work *work;
6b95a207
KH
9448 unsigned long flags;
9449
9450 /* Ignore early vblank irqs */
9451 if (intel_crtc == NULL)
9452 return;
9453
f326038a
DV
9454 /*
9455 * This is called both by irq handlers and the reset code (to complete
9456 * lost pageflips) so needs the full irqsave spinlocks.
9457 */
6b95a207
KH
9458 spin_lock_irqsave(&dev->event_lock, flags);
9459 work = intel_crtc->unpin_work;
e7d841ca
CW
9460
9461 /* Ensure we don't miss a work->pending update ... */
9462 smp_rmb();
9463
9464 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9465 spin_unlock_irqrestore(&dev->event_lock, flags);
9466 return;
9467 }
9468
d6bbafa1 9469 page_flip_completed(intel_crtc);
0af7e4df 9470
6b95a207 9471 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9472}
9473
1afe3e9d
JB
9474void intel_finish_page_flip(struct drm_device *dev, int pipe)
9475{
fbee40df 9476 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9477 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9478
49b14a5c 9479 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9480}
9481
9482void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9483{
fbee40df 9484 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9485 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9486
49b14a5c 9487 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9488}
9489
75f7f3ec
VS
9490/* Is 'a' after or equal to 'b'? */
9491static bool g4x_flip_count_after_eq(u32 a, u32 b)
9492{
9493 return !((a - b) & 0x80000000);
9494}
9495
9496static bool page_flip_finished(struct intel_crtc *crtc)
9497{
9498 struct drm_device *dev = crtc->base.dev;
9499 struct drm_i915_private *dev_priv = dev->dev_private;
9500
bdfa7542
VS
9501 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9502 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9503 return true;
9504
75f7f3ec
VS
9505 /*
9506 * The relevant registers doen't exist on pre-ctg.
9507 * As the flip done interrupt doesn't trigger for mmio
9508 * flips on gmch platforms, a flip count check isn't
9509 * really needed there. But since ctg has the registers,
9510 * include it in the check anyway.
9511 */
9512 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9513 return true;
9514
9515 /*
9516 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9517 * used the same base address. In that case the mmio flip might
9518 * have completed, but the CS hasn't even executed the flip yet.
9519 *
9520 * A flip count check isn't enough as the CS might have updated
9521 * the base address just after start of vblank, but before we
9522 * managed to process the interrupt. This means we'd complete the
9523 * CS flip too soon.
9524 *
9525 * Combining both checks should get us a good enough result. It may
9526 * still happen that the CS flip has been executed, but has not
9527 * yet actually completed. But in case the base address is the same
9528 * anyway, we don't really care.
9529 */
9530 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9531 crtc->unpin_work->gtt_offset &&
9532 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9533 crtc->unpin_work->flip_count);
9534}
9535
6b95a207
KH
9536void intel_prepare_page_flip(struct drm_device *dev, int plane)
9537{
fbee40df 9538 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9539 struct intel_crtc *intel_crtc =
9540 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9541 unsigned long flags;
9542
f326038a
DV
9543
9544 /*
9545 * This is called both by irq handlers and the reset code (to complete
9546 * lost pageflips) so needs the full irqsave spinlocks.
9547 *
9548 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9549 * generate a page-flip completion irq, i.e. every modeset
9550 * is also accompanied by a spurious intel_prepare_page_flip().
9551 */
6b95a207 9552 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9553 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9554 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9555 spin_unlock_irqrestore(&dev->event_lock, flags);
9556}
9557
eba905b2 9558static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9559{
9560 /* Ensure that the work item is consistent when activating it ... */
9561 smp_wmb();
9562 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9563 /* and that it is marked active as soon as the irq could fire. */
9564 smp_wmb();
9565}
9566
8c9f3aaf
JB
9567static int intel_gen2_queue_flip(struct drm_device *dev,
9568 struct drm_crtc *crtc,
9569 struct drm_framebuffer *fb,
ed8d1975 9570 struct drm_i915_gem_object *obj,
a4872ba6 9571 struct intel_engine_cs *ring,
ed8d1975 9572 uint32_t flags)
8c9f3aaf 9573{
8c9f3aaf 9574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9575 u32 flip_mask;
9576 int ret;
9577
6d90c952 9578 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9579 if (ret)
4fa62c89 9580 return ret;
8c9f3aaf
JB
9581
9582 /* Can't queue multiple flips, so wait for the previous
9583 * one to finish before executing the next.
9584 */
9585 if (intel_crtc->plane)
9586 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9587 else
9588 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9589 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9590 intel_ring_emit(ring, MI_NOOP);
9591 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9592 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9593 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9594 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9595 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9596
9597 intel_mark_page_flip_active(intel_crtc);
09246732 9598 __intel_ring_advance(ring);
83d4092b 9599 return 0;
8c9f3aaf
JB
9600}
9601
9602static int intel_gen3_queue_flip(struct drm_device *dev,
9603 struct drm_crtc *crtc,
9604 struct drm_framebuffer *fb,
ed8d1975 9605 struct drm_i915_gem_object *obj,
a4872ba6 9606 struct intel_engine_cs *ring,
ed8d1975 9607 uint32_t flags)
8c9f3aaf 9608{
8c9f3aaf 9609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9610 u32 flip_mask;
9611 int ret;
9612
6d90c952 9613 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9614 if (ret)
4fa62c89 9615 return ret;
8c9f3aaf
JB
9616
9617 if (intel_crtc->plane)
9618 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9619 else
9620 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9621 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9622 intel_ring_emit(ring, MI_NOOP);
9623 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9624 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9625 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9626 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9627 intel_ring_emit(ring, MI_NOOP);
9628
e7d841ca 9629 intel_mark_page_flip_active(intel_crtc);
09246732 9630 __intel_ring_advance(ring);
83d4092b 9631 return 0;
8c9f3aaf
JB
9632}
9633
9634static int intel_gen4_queue_flip(struct drm_device *dev,
9635 struct drm_crtc *crtc,
9636 struct drm_framebuffer *fb,
ed8d1975 9637 struct drm_i915_gem_object *obj,
a4872ba6 9638 struct intel_engine_cs *ring,
ed8d1975 9639 uint32_t flags)
8c9f3aaf
JB
9640{
9641 struct drm_i915_private *dev_priv = dev->dev_private;
9642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9643 uint32_t pf, pipesrc;
9644 int ret;
9645
6d90c952 9646 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9647 if (ret)
4fa62c89 9648 return ret;
8c9f3aaf
JB
9649
9650 /* i965+ uses the linear or tiled offsets from the
9651 * Display Registers (which do not change across a page-flip)
9652 * so we need only reprogram the base address.
9653 */
6d90c952
DV
9654 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9655 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9656 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9657 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9658 obj->tiling_mode);
8c9f3aaf
JB
9659
9660 /* XXX Enabling the panel-fitter across page-flip is so far
9661 * untested on non-native modes, so ignore it for now.
9662 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9663 */
9664 pf = 0;
9665 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9666 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9667
9668 intel_mark_page_flip_active(intel_crtc);
09246732 9669 __intel_ring_advance(ring);
83d4092b 9670 return 0;
8c9f3aaf
JB
9671}
9672
9673static int intel_gen6_queue_flip(struct drm_device *dev,
9674 struct drm_crtc *crtc,
9675 struct drm_framebuffer *fb,
ed8d1975 9676 struct drm_i915_gem_object *obj,
a4872ba6 9677 struct intel_engine_cs *ring,
ed8d1975 9678 uint32_t flags)
8c9f3aaf
JB
9679{
9680 struct drm_i915_private *dev_priv = dev->dev_private;
9681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9682 uint32_t pf, pipesrc;
9683 int ret;
9684
6d90c952 9685 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9686 if (ret)
4fa62c89 9687 return ret;
8c9f3aaf 9688
6d90c952
DV
9689 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9690 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9691 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9692 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9693
dc257cf1
DV
9694 /* Contrary to the suggestions in the documentation,
9695 * "Enable Panel Fitter" does not seem to be required when page
9696 * flipping with a non-native mode, and worse causes a normal
9697 * modeset to fail.
9698 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9699 */
9700 pf = 0;
8c9f3aaf 9701 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9702 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9703
9704 intel_mark_page_flip_active(intel_crtc);
09246732 9705 __intel_ring_advance(ring);
83d4092b 9706 return 0;
8c9f3aaf
JB
9707}
9708
7c9017e5
JB
9709static int intel_gen7_queue_flip(struct drm_device *dev,
9710 struct drm_crtc *crtc,
9711 struct drm_framebuffer *fb,
ed8d1975 9712 struct drm_i915_gem_object *obj,
a4872ba6 9713 struct intel_engine_cs *ring,
ed8d1975 9714 uint32_t flags)
7c9017e5 9715{
7c9017e5 9716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9717 uint32_t plane_bit = 0;
ffe74d75
CW
9718 int len, ret;
9719
eba905b2 9720 switch (intel_crtc->plane) {
cb05d8de
DV
9721 case PLANE_A:
9722 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9723 break;
9724 case PLANE_B:
9725 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9726 break;
9727 case PLANE_C:
9728 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9729 break;
9730 default:
9731 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9732 return -ENODEV;
cb05d8de
DV
9733 }
9734
ffe74d75 9735 len = 4;
f476828a 9736 if (ring->id == RCS) {
ffe74d75 9737 len += 6;
f476828a
DL
9738 /*
9739 * On Gen 8, SRM is now taking an extra dword to accommodate
9740 * 48bits addresses, and we need a NOOP for the batch size to
9741 * stay even.
9742 */
9743 if (IS_GEN8(dev))
9744 len += 2;
9745 }
ffe74d75 9746
f66fab8e
VS
9747 /*
9748 * BSpec MI_DISPLAY_FLIP for IVB:
9749 * "The full packet must be contained within the same cache line."
9750 *
9751 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9752 * cacheline, if we ever start emitting more commands before
9753 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9754 * then do the cacheline alignment, and finally emit the
9755 * MI_DISPLAY_FLIP.
9756 */
9757 ret = intel_ring_cacheline_align(ring);
9758 if (ret)
4fa62c89 9759 return ret;
f66fab8e 9760
ffe74d75 9761 ret = intel_ring_begin(ring, len);
7c9017e5 9762 if (ret)
4fa62c89 9763 return ret;
7c9017e5 9764
ffe74d75
CW
9765 /* Unmask the flip-done completion message. Note that the bspec says that
9766 * we should do this for both the BCS and RCS, and that we must not unmask
9767 * more than one flip event at any time (or ensure that one flip message
9768 * can be sent by waiting for flip-done prior to queueing new flips).
9769 * Experimentation says that BCS works despite DERRMR masking all
9770 * flip-done completion events and that unmasking all planes at once
9771 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9772 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9773 */
9774 if (ring->id == RCS) {
9775 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9776 intel_ring_emit(ring, DERRMR);
9777 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9778 DERRMR_PIPEB_PRI_FLIP_DONE |
9779 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9780 if (IS_GEN8(dev))
9781 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9782 MI_SRM_LRM_GLOBAL_GTT);
9783 else
9784 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9785 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9786 intel_ring_emit(ring, DERRMR);
9787 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9788 if (IS_GEN8(dev)) {
9789 intel_ring_emit(ring, 0);
9790 intel_ring_emit(ring, MI_NOOP);
9791 }
ffe74d75
CW
9792 }
9793
cb05d8de 9794 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9795 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9796 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9797 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9798
9799 intel_mark_page_flip_active(intel_crtc);
09246732 9800 __intel_ring_advance(ring);
83d4092b 9801 return 0;
7c9017e5
JB
9802}
9803
84c33a64
SG
9804static bool use_mmio_flip(struct intel_engine_cs *ring,
9805 struct drm_i915_gem_object *obj)
9806{
9807 /*
9808 * This is not being used for older platforms, because
9809 * non-availability of flip done interrupt forces us to use
9810 * CS flips. Older platforms derive flip done using some clever
9811 * tricks involving the flip_pending status bits and vblank irqs.
9812 * So using MMIO flips there would disrupt this mechanism.
9813 */
9814
8e09bf83
CW
9815 if (ring == NULL)
9816 return true;
9817
84c33a64
SG
9818 if (INTEL_INFO(ring->dev)->gen < 5)
9819 return false;
9820
9821 if (i915.use_mmio_flip < 0)
9822 return false;
9823 else if (i915.use_mmio_flip > 0)
9824 return true;
14bf993e
OM
9825 else if (i915.enable_execlists)
9826 return true;
84c33a64 9827 else
41c52415 9828 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9829}
9830
ff944564
DL
9831static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9832{
9833 struct drm_device *dev = intel_crtc->base.dev;
9834 struct drm_i915_private *dev_priv = dev->dev_private;
9835 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9836 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9837 struct drm_i915_gem_object *obj = intel_fb->obj;
9838 const enum pipe pipe = intel_crtc->pipe;
9839 u32 ctl, stride;
9840
9841 ctl = I915_READ(PLANE_CTL(pipe, 0));
9842 ctl &= ~PLANE_CTL_TILED_MASK;
9843 if (obj->tiling_mode == I915_TILING_X)
9844 ctl |= PLANE_CTL_TILED_X;
9845
9846 /*
9847 * The stride is either expressed as a multiple of 64 bytes chunks for
9848 * linear buffers or in number of tiles for tiled buffers.
9849 */
9850 stride = fb->pitches[0] >> 6;
9851 if (obj->tiling_mode == I915_TILING_X)
9852 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9853
9854 /*
9855 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9856 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9857 */
9858 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9859 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9860
9861 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9862 POSTING_READ(PLANE_SURF(pipe, 0));
9863}
9864
9865static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9866{
9867 struct drm_device *dev = intel_crtc->base.dev;
9868 struct drm_i915_private *dev_priv = dev->dev_private;
9869 struct intel_framebuffer *intel_fb =
9870 to_intel_framebuffer(intel_crtc->base.primary->fb);
9871 struct drm_i915_gem_object *obj = intel_fb->obj;
9872 u32 dspcntr;
9873 u32 reg;
9874
84c33a64
SG
9875 reg = DSPCNTR(intel_crtc->plane);
9876 dspcntr = I915_READ(reg);
9877
c5d97472
DL
9878 if (obj->tiling_mode != I915_TILING_NONE)
9879 dspcntr |= DISPPLANE_TILED;
9880 else
9881 dspcntr &= ~DISPPLANE_TILED;
9882
84c33a64
SG
9883 I915_WRITE(reg, dspcntr);
9884
9885 I915_WRITE(DSPSURF(intel_crtc->plane),
9886 intel_crtc->unpin_work->gtt_offset);
9887 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9888
ff944564
DL
9889}
9890
9891/*
9892 * XXX: This is the temporary way to update the plane registers until we get
9893 * around to using the usual plane update functions for MMIO flips
9894 */
9895static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9896{
9897 struct drm_device *dev = intel_crtc->base.dev;
9898 bool atomic_update;
9899 u32 start_vbl_count;
9900
9901 intel_mark_page_flip_active(intel_crtc);
9902
9903 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9904
9905 if (INTEL_INFO(dev)->gen >= 9)
9906 skl_do_mmio_flip(intel_crtc);
9907 else
9908 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9909 ilk_do_mmio_flip(intel_crtc);
9910
9362c7c5
ACO
9911 if (atomic_update)
9912 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9913}
9914
9362c7c5 9915static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9916{
cc8c4cc2 9917 struct intel_crtc *crtc =
9362c7c5 9918 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9919 struct intel_mmio_flip *mmio_flip;
84c33a64 9920
cc8c4cc2
JH
9921 mmio_flip = &crtc->mmio_flip;
9922 if (mmio_flip->req)
9c654818
JH
9923 WARN_ON(__i915_wait_request(mmio_flip->req,
9924 crtc->reset_counter,
9925 false, NULL, NULL) != 0);
84c33a64 9926
cc8c4cc2
JH
9927 intel_do_mmio_flip(crtc);
9928 if (mmio_flip->req) {
9929 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9930 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9931 mutex_unlock(&crtc->base.dev->struct_mutex);
9932 }
84c33a64
SG
9933}
9934
9935static int intel_queue_mmio_flip(struct drm_device *dev,
9936 struct drm_crtc *crtc,
9937 struct drm_framebuffer *fb,
9938 struct drm_i915_gem_object *obj,
9939 struct intel_engine_cs *ring,
9940 uint32_t flags)
9941{
84c33a64 9942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9943
cc8c4cc2
JH
9944 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9945 obj->last_write_req);
536f5b5e
ACO
9946
9947 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9948
84c33a64
SG
9949 return 0;
9950}
9951
8c9f3aaf
JB
9952static int intel_default_queue_flip(struct drm_device *dev,
9953 struct drm_crtc *crtc,
9954 struct drm_framebuffer *fb,
ed8d1975 9955 struct drm_i915_gem_object *obj,
a4872ba6 9956 struct intel_engine_cs *ring,
ed8d1975 9957 uint32_t flags)
8c9f3aaf
JB
9958{
9959 return -ENODEV;
9960}
9961
d6bbafa1
CW
9962static bool __intel_pageflip_stall_check(struct drm_device *dev,
9963 struct drm_crtc *crtc)
9964{
9965 struct drm_i915_private *dev_priv = dev->dev_private;
9966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9967 struct intel_unpin_work *work = intel_crtc->unpin_work;
9968 u32 addr;
9969
9970 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9971 return true;
9972
9973 if (!work->enable_stall_check)
9974 return false;
9975
9976 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9977 if (work->flip_queued_req &&
9978 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9979 return false;
9980
1e3feefd 9981 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
9982 }
9983
1e3feefd 9984 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
9985 return false;
9986
9987 /* Potential stall - if we see that the flip has happened,
9988 * assume a missed interrupt. */
9989 if (INTEL_INFO(dev)->gen >= 4)
9990 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9991 else
9992 addr = I915_READ(DSPADDR(intel_crtc->plane));
9993
9994 /* There is a potential issue here with a false positive after a flip
9995 * to the same address. We could address this by checking for a
9996 * non-incrementing frame counter.
9997 */
9998 return addr == work->gtt_offset;
9999}
10000
10001void intel_check_page_flip(struct drm_device *dev, int pipe)
10002{
10003 struct drm_i915_private *dev_priv = dev->dev_private;
10004 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a 10006
6c51d46f 10007 WARN_ON(!in_interrupt());
d6bbafa1
CW
10008
10009 if (crtc == NULL)
10010 return;
10011
f326038a 10012 spin_lock(&dev->event_lock);
d6bbafa1
CW
10013 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10014 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
1e3feefd
DV
10015 intel_crtc->unpin_work->flip_queued_vblank,
10016 drm_vblank_count(dev, pipe));
d6bbafa1
CW
10017 page_flip_completed(intel_crtc);
10018 }
f326038a 10019 spin_unlock(&dev->event_lock);
d6bbafa1
CW
10020}
10021
6b95a207
KH
10022static int intel_crtc_page_flip(struct drm_crtc *crtc,
10023 struct drm_framebuffer *fb,
ed8d1975
KP
10024 struct drm_pending_vblank_event *event,
10025 uint32_t page_flip_flags)
6b95a207
KH
10026{
10027 struct drm_device *dev = crtc->dev;
10028 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 10029 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 10030 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 10031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 10032 struct drm_plane *primary = crtc->primary;
a071fa00 10033 enum pipe pipe = intel_crtc->pipe;
6b95a207 10034 struct intel_unpin_work *work;
a4872ba6 10035 struct intel_engine_cs *ring;
52e68630 10036 int ret;
6b95a207 10037
2ff8fde1
MR
10038 /*
10039 * drm_mode_page_flip_ioctl() should already catch this, but double
10040 * check to be safe. In the future we may enable pageflipping from
10041 * a disabled primary plane.
10042 */
10043 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10044 return -EBUSY;
10045
e6a595d2 10046 /* Can't change pixel format via MI display flips. */
f4510a27 10047 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
10048 return -EINVAL;
10049
10050 /*
10051 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10052 * Note that pitch changes could also affect these register.
10053 */
10054 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10055 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10056 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10057 return -EINVAL;
10058
f900db47
CW
10059 if (i915_terminally_wedged(&dev_priv->gpu_error))
10060 goto out_hang;
10061
b14c5679 10062 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10063 if (work == NULL)
10064 return -ENOMEM;
10065
6b95a207 10066 work->event = event;
b4a98e57 10067 work->crtc = crtc;
ab8d6675 10068 work->old_fb = old_fb;
6b95a207
KH
10069 INIT_WORK(&work->work, intel_unpin_work_fn);
10070
87b6b101 10071 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10072 if (ret)
10073 goto free_work;
10074
6b95a207 10075 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 10076 spin_lock_irq(&dev->event_lock);
6b95a207 10077 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10078 /* Before declaring the flip queue wedged, check if
10079 * the hardware completed the operation behind our backs.
10080 */
10081 if (__intel_pageflip_stall_check(dev, crtc)) {
10082 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10083 page_flip_completed(intel_crtc);
10084 } else {
10085 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 10086 spin_unlock_irq(&dev->event_lock);
468f0b44 10087
d6bbafa1
CW
10088 drm_crtc_vblank_put(crtc);
10089 kfree(work);
10090 return -EBUSY;
10091 }
6b95a207
KH
10092 }
10093 intel_crtc->unpin_work = work;
5e2d7afc 10094 spin_unlock_irq(&dev->event_lock);
6b95a207 10095
b4a98e57
CW
10096 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10097 flush_workqueue(dev_priv->wq);
10098
75dfca80 10099 /* Reference the objects for the scheduled work. */
ab8d6675 10100 drm_framebuffer_reference(work->old_fb);
05394f39 10101 drm_gem_object_reference(&obj->base);
6b95a207 10102
f4510a27 10103 crtc->primary->fb = fb;
afd65eb4 10104 update_state_fb(crtc->primary);
1ed1f968 10105
e1f99ce6 10106 work->pending_flip_obj = obj;
e1f99ce6 10107
89ed88ba
CW
10108 ret = i915_mutex_lock_interruptible(dev);
10109 if (ret)
10110 goto cleanup;
10111
b4a98e57 10112 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10113 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10114
75f7f3ec 10115 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10116 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10117
4fa62c89
VS
10118 if (IS_VALLEYVIEW(dev)) {
10119 ring = &dev_priv->ring[BCS];
ab8d6675 10120 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
10121 /* vlv: DISPLAY_FLIP fails to change tiling */
10122 ring = NULL;
48bf5b2d 10123 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 10124 ring = &dev_priv->ring[BCS];
4fa62c89 10125 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 10126 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
10127 if (ring == NULL || ring->id != RCS)
10128 ring = &dev_priv->ring[BCS];
10129 } else {
10130 ring = &dev_priv->ring[RCS];
10131 }
10132
82bc3b2d
TU
10133 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10134 crtc->primary->state, ring);
8c9f3aaf
JB
10135 if (ret)
10136 goto cleanup_pending;
6b95a207 10137
121920fa
TU
10138 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10139 + intel_crtc->dspaddr_offset;
4fa62c89 10140
d6bbafa1 10141 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10142 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10143 page_flip_flags);
d6bbafa1
CW
10144 if (ret)
10145 goto cleanup_unpin;
10146
f06cc1b9
JH
10147 i915_gem_request_assign(&work->flip_queued_req,
10148 obj->last_write_req);
d6bbafa1 10149 } else {
84c33a64 10150 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10151 page_flip_flags);
10152 if (ret)
10153 goto cleanup_unpin;
10154
f06cc1b9
JH
10155 i915_gem_request_assign(&work->flip_queued_req,
10156 intel_ring_get_request(ring));
d6bbafa1
CW
10157 }
10158
1e3feefd 10159 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 10160 work->enable_stall_check = true;
4fa62c89 10161
ab8d6675 10162 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
10163 INTEL_FRONTBUFFER_PRIMARY(pipe));
10164
7ff0ebcc 10165 intel_fbc_disable(dev);
f99d7069 10166 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10167 mutex_unlock(&dev->struct_mutex);
10168
e5510fac
JB
10169 trace_i915_flip_request(intel_crtc->plane, obj);
10170
6b95a207 10171 return 0;
96b099fd 10172
4fa62c89 10173cleanup_unpin:
82bc3b2d 10174 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 10175cleanup_pending:
b4a98e57 10176 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
10177 mutex_unlock(&dev->struct_mutex);
10178cleanup:
f4510a27 10179 crtc->primary->fb = old_fb;
afd65eb4 10180 update_state_fb(crtc->primary);
89ed88ba
CW
10181
10182 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 10183 drm_framebuffer_unreference(work->old_fb);
96b099fd 10184
5e2d7afc 10185 spin_lock_irq(&dev->event_lock);
96b099fd 10186 intel_crtc->unpin_work = NULL;
5e2d7afc 10187 spin_unlock_irq(&dev->event_lock);
96b099fd 10188
87b6b101 10189 drm_crtc_vblank_put(crtc);
7317c75e 10190free_work:
96b099fd
CW
10191 kfree(work);
10192
f900db47
CW
10193 if (ret == -EIO) {
10194out_hang:
53a366b9 10195 ret = intel_plane_restore(primary);
f0d3dad3 10196 if (ret == 0 && event) {
5e2d7afc 10197 spin_lock_irq(&dev->event_lock);
a071fa00 10198 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 10199 spin_unlock_irq(&dev->event_lock);
f0d3dad3 10200 }
f900db47 10201 }
96b099fd 10202 return ret;
6b95a207
KH
10203}
10204
f6e5b160 10205static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10206 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10207 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
10208 .atomic_begin = intel_begin_crtc_commit,
10209 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
10210};
10211
9a935856
DV
10212/**
10213 * intel_modeset_update_staged_output_state
10214 *
10215 * Updates the staged output configuration state, e.g. after we've read out the
10216 * current hw state.
10217 */
10218static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10219{
7668851f 10220 struct intel_crtc *crtc;
9a935856
DV
10221 struct intel_encoder *encoder;
10222 struct intel_connector *connector;
f6e5b160 10223
3a3371ff 10224 for_each_intel_connector(dev, connector) {
9a935856
DV
10225 connector->new_encoder =
10226 to_intel_encoder(connector->base.encoder);
10227 }
f6e5b160 10228
b2784e15 10229 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10230 encoder->new_crtc =
10231 to_intel_crtc(encoder->base.crtc);
10232 }
7668851f 10233
d3fcc808 10234 for_each_intel_crtc(dev, crtc) {
83d65738 10235 crtc->new_enabled = crtc->base.state->enable;
7bd0a8e7
VS
10236
10237 if (crtc->new_enabled)
6e3c9717 10238 crtc->new_config = crtc->config;
7bd0a8e7
VS
10239 else
10240 crtc->new_config = NULL;
7668851f 10241 }
f6e5b160
CW
10242}
10243
d29b2f9d
ACO
10244/* Transitional helper to copy current connector/encoder state to
10245 * connector->state. This is needed so that code that is partially
10246 * converted to atomic does the right thing.
10247 */
10248static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10249{
10250 struct intel_connector *connector;
10251
10252 for_each_intel_connector(dev, connector) {
10253 if (connector->base.encoder) {
10254 connector->base.state->best_encoder =
10255 connector->base.encoder;
10256 connector->base.state->crtc =
10257 connector->base.encoder->crtc;
10258 } else {
10259 connector->base.state->best_encoder = NULL;
10260 connector->base.state->crtc = NULL;
10261 }
10262 }
10263}
10264
9a935856
DV
10265/**
10266 * intel_modeset_commit_output_state
10267 *
10268 * This function copies the stage display pipe configuration to the real one.
10269 */
10270static void intel_modeset_commit_output_state(struct drm_device *dev)
10271{
7668851f 10272 struct intel_crtc *crtc;
9a935856
DV
10273 struct intel_encoder *encoder;
10274 struct intel_connector *connector;
f6e5b160 10275
3a3371ff 10276 for_each_intel_connector(dev, connector) {
9a935856
DV
10277 connector->base.encoder = &connector->new_encoder->base;
10278 }
f6e5b160 10279
b2784e15 10280 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10281 encoder->base.crtc = &encoder->new_crtc->base;
10282 }
7668851f 10283
d3fcc808 10284 for_each_intel_crtc(dev, crtc) {
83d65738 10285 crtc->base.state->enable = crtc->new_enabled;
7668851f
VS
10286 crtc->base.enabled = crtc->new_enabled;
10287 }
d29b2f9d
ACO
10288
10289 intel_modeset_update_connector_atomic_state(dev);
9a935856
DV
10290}
10291
050f7aeb 10292static void
eba905b2 10293connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 10294 struct intel_crtc_state *pipe_config)
050f7aeb
DV
10295{
10296 int bpp = pipe_config->pipe_bpp;
10297
10298 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10299 connector->base.base.id,
c23cc417 10300 connector->base.name);
050f7aeb
DV
10301
10302 /* Don't use an invalid EDID bpc value */
10303 if (connector->base.display_info.bpc &&
10304 connector->base.display_info.bpc * 3 < bpp) {
10305 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10306 bpp, connector->base.display_info.bpc*3);
10307 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10308 }
10309
10310 /* Clamp bpp to 8 on screens without EDID 1.4 */
10311 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10312 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10313 bpp);
10314 pipe_config->pipe_bpp = 24;
10315 }
10316}
10317
4e53c2e0 10318static int
050f7aeb
DV
10319compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10320 struct drm_framebuffer *fb,
5cec258b 10321 struct intel_crtc_state *pipe_config)
4e53c2e0 10322{
050f7aeb 10323 struct drm_device *dev = crtc->base.dev;
1486017f 10324 struct drm_atomic_state *state;
050f7aeb 10325 struct intel_connector *connector;
1486017f 10326 int bpp, i;
4e53c2e0 10327
d42264b1
DV
10328 switch (fb->pixel_format) {
10329 case DRM_FORMAT_C8:
4e53c2e0
DV
10330 bpp = 8*3; /* since we go through a colormap */
10331 break;
d42264b1
DV
10332 case DRM_FORMAT_XRGB1555:
10333 case DRM_FORMAT_ARGB1555:
10334 /* checked in intel_framebuffer_init already */
10335 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10336 return -EINVAL;
10337 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10338 bpp = 6*3; /* min is 18bpp */
10339 break;
d42264b1
DV
10340 case DRM_FORMAT_XBGR8888:
10341 case DRM_FORMAT_ABGR8888:
10342 /* checked in intel_framebuffer_init already */
10343 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10344 return -EINVAL;
10345 case DRM_FORMAT_XRGB8888:
10346 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10347 bpp = 8*3;
10348 break;
d42264b1
DV
10349 case DRM_FORMAT_XRGB2101010:
10350 case DRM_FORMAT_ARGB2101010:
10351 case DRM_FORMAT_XBGR2101010:
10352 case DRM_FORMAT_ABGR2101010:
10353 /* checked in intel_framebuffer_init already */
10354 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10355 return -EINVAL;
4e53c2e0
DV
10356 bpp = 10*3;
10357 break;
baba133a 10358 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10359 default:
10360 DRM_DEBUG_KMS("unsupported depth\n");
10361 return -EINVAL;
10362 }
10363
4e53c2e0
DV
10364 pipe_config->pipe_bpp = bpp;
10365
1486017f
ACO
10366 state = pipe_config->base.state;
10367
4e53c2e0 10368 /* Clamp display bpp to EDID value */
1486017f
ACO
10369 for (i = 0; i < state->num_connector; i++) {
10370 if (!state->connectors[i])
10371 continue;
10372
10373 connector = to_intel_connector(state->connectors[i]);
10374 if (state->connector_states[i]->crtc != &crtc->base)
4e53c2e0
DV
10375 continue;
10376
050f7aeb 10377 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10378 }
10379
10380 return bpp;
10381}
10382
644db711
DV
10383static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10384{
10385 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10386 "type: 0x%x flags: 0x%x\n",
1342830c 10387 mode->crtc_clock,
644db711
DV
10388 mode->crtc_hdisplay, mode->crtc_hsync_start,
10389 mode->crtc_hsync_end, mode->crtc_htotal,
10390 mode->crtc_vdisplay, mode->crtc_vsync_start,
10391 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10392}
10393
c0b03411 10394static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10395 struct intel_crtc_state *pipe_config,
c0b03411
DV
10396 const char *context)
10397{
10398 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10399 context, pipe_name(crtc->pipe));
10400
10401 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10402 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10403 pipe_config->pipe_bpp, pipe_config->dither);
10404 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10405 pipe_config->has_pch_encoder,
10406 pipe_config->fdi_lanes,
10407 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10408 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10409 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10410 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10411 pipe_config->has_dp_encoder,
10412 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10413 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10414 pipe_config->dp_m_n.tu);
b95af8be
VK
10415
10416 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10417 pipe_config->has_dp_encoder,
10418 pipe_config->dp_m2_n2.gmch_m,
10419 pipe_config->dp_m2_n2.gmch_n,
10420 pipe_config->dp_m2_n2.link_m,
10421 pipe_config->dp_m2_n2.link_n,
10422 pipe_config->dp_m2_n2.tu);
10423
55072d19
DV
10424 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10425 pipe_config->has_audio,
10426 pipe_config->has_infoframe);
10427
c0b03411 10428 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10429 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10430 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10431 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10432 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10433 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10434 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10435 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10436 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10437 pipe_config->gmch_pfit.control,
10438 pipe_config->gmch_pfit.pgm_ratios,
10439 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10440 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10441 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10442 pipe_config->pch_pfit.size,
10443 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10444 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10445 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10446}
10447
bc079e8b
VS
10448static bool encoders_cloneable(const struct intel_encoder *a,
10449 const struct intel_encoder *b)
accfc0c5 10450{
bc079e8b
VS
10451 /* masks could be asymmetric, so check both ways */
10452 return a == b || (a->cloneable & (1 << b->type) &&
10453 b->cloneable & (1 << a->type));
10454}
10455
10456static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10457 struct intel_encoder *encoder)
10458{
10459 struct drm_device *dev = crtc->base.dev;
10460 struct intel_encoder *source_encoder;
10461
b2784e15 10462 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10463 if (source_encoder->new_crtc != crtc)
10464 continue;
10465
10466 if (!encoders_cloneable(encoder, source_encoder))
10467 return false;
10468 }
10469
10470 return true;
10471}
10472
10473static bool check_encoder_cloning(struct intel_crtc *crtc)
10474{
10475 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10476 struct intel_encoder *encoder;
10477
b2784e15 10478 for_each_intel_encoder(dev, encoder) {
bc079e8b 10479 if (encoder->new_crtc != crtc)
accfc0c5
DV
10480 continue;
10481
bc079e8b
VS
10482 if (!check_single_encoder_cloning(crtc, encoder))
10483 return false;
accfc0c5
DV
10484 }
10485
bc079e8b 10486 return true;
accfc0c5
DV
10487}
10488
00f0b378
VS
10489static bool check_digital_port_conflicts(struct drm_device *dev)
10490{
10491 struct intel_connector *connector;
10492 unsigned int used_ports = 0;
10493
10494 /*
10495 * Walk the connector list instead of the encoder
10496 * list to detect the problem on ddi platforms
10497 * where there's just one encoder per digital port.
10498 */
3a3371ff 10499 for_each_intel_connector(dev, connector) {
00f0b378
VS
10500 struct intel_encoder *encoder = connector->new_encoder;
10501
10502 if (!encoder)
10503 continue;
10504
10505 WARN_ON(!encoder->new_crtc);
10506
10507 switch (encoder->type) {
10508 unsigned int port_mask;
10509 case INTEL_OUTPUT_UNKNOWN:
10510 if (WARN_ON(!HAS_DDI(dev)))
10511 break;
10512 case INTEL_OUTPUT_DISPLAYPORT:
10513 case INTEL_OUTPUT_HDMI:
10514 case INTEL_OUTPUT_EDP:
10515 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10516
10517 /* the same port mustn't appear more than once */
10518 if (used_ports & port_mask)
10519 return false;
10520
10521 used_ports |= port_mask;
10522 default:
10523 break;
10524 }
10525 }
10526
10527 return true;
10528}
10529
83a57153
ACO
10530static void
10531clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10532{
10533 struct drm_crtc_state tmp_state;
10534
10535 /* Clear only the intel specific part of the crtc state */
10536 tmp_state = crtc_state->base;
10537 memset(crtc_state, 0, sizeof *crtc_state);
10538 crtc_state->base = tmp_state;
10539}
10540
5cec258b 10541static struct intel_crtc_state *
b8cecdf5 10542intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10543 struct drm_framebuffer *fb,
83a57153
ACO
10544 struct drm_display_mode *mode,
10545 struct drm_atomic_state *state)
ee7b9f93 10546{
7758a113 10547 struct drm_device *dev = crtc->dev;
7758a113 10548 struct intel_encoder *encoder;
0b901879
ACO
10549 struct intel_connector *connector;
10550 struct drm_connector_state *connector_state;
5cec258b 10551 struct intel_crtc_state *pipe_config;
e29c22c0 10552 int plane_bpp, ret = -EINVAL;
0b901879 10553 int i;
e29c22c0 10554 bool retry = true;
ee7b9f93 10555
bc079e8b 10556 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10557 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10558 return ERR_PTR(-EINVAL);
10559 }
10560
00f0b378
VS
10561 if (!check_digital_port_conflicts(dev)) {
10562 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10563 return ERR_PTR(-EINVAL);
10564 }
10565
83a57153
ACO
10566 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10567 if (IS_ERR(pipe_config))
10568 return pipe_config;
10569
10570 clear_intel_crtc_state(pipe_config);
7758a113 10571
07878248 10572 pipe_config->base.crtc = crtc;
2d112de7
ACO
10573 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10574 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10575
e143a21c
DV
10576 pipe_config->cpu_transcoder =
10577 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10578 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10579
2960bc9c
ID
10580 /*
10581 * Sanitize sync polarity flags based on requested ones. If neither
10582 * positive or negative polarity is requested, treat this as meaning
10583 * negative polarity.
10584 */
2d112de7 10585 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10586 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10587 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10588
2d112de7 10589 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10590 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10591 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10592
050f7aeb
DV
10593 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10594 * plane pixel format and any sink constraints into account. Returns the
10595 * source plane bpp so that dithering can be selected on mismatches
10596 * after encoders and crtc also have had their say. */
10597 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10598 fb, pipe_config);
4e53c2e0
DV
10599 if (plane_bpp < 0)
10600 goto fail;
10601
e41a56be
VS
10602 /*
10603 * Determine the real pipe dimensions. Note that stereo modes can
10604 * increase the actual pipe size due to the frame doubling and
10605 * insertion of additional space for blanks between the frame. This
10606 * is stored in the crtc timings. We use the requested mode to do this
10607 * computation to clearly distinguish it from the adjusted mode, which
10608 * can be changed by the connectors in the below retry loop.
10609 */
2d112de7 10610 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10611 &pipe_config->pipe_src_w,
10612 &pipe_config->pipe_src_h);
e41a56be 10613
e29c22c0 10614encoder_retry:
ef1b460d 10615 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10616 pipe_config->port_clock = 0;
ef1b460d 10617 pipe_config->pixel_multiplier = 1;
ff9a6750 10618
135c81b8 10619 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10620 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10621 CRTC_STEREO_DOUBLE);
135c81b8 10622
7758a113
DV
10623 /* Pass our mode to the connectors and the CRTC to give them a chance to
10624 * adjust it according to limitations or connector properties, and also
10625 * a chance to reject the mode entirely.
47f1c6c9 10626 */
0b901879
ACO
10627 for (i = 0; i < state->num_connector; i++) {
10628 connector = to_intel_connector(state->connectors[i]);
10629 if (!connector)
10630 continue;
47f1c6c9 10631
0b901879
ACO
10632 connector_state = state->connector_states[i];
10633 if (connector_state->crtc != crtc)
7758a113 10634 continue;
7ae89233 10635
0b901879
ACO
10636 encoder = to_intel_encoder(connector_state->best_encoder);
10637
efea6e8e
DV
10638 if (!(encoder->compute_config(encoder, pipe_config))) {
10639 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10640 goto fail;
10641 }
ee7b9f93 10642 }
47f1c6c9 10643
ff9a6750
DV
10644 /* Set default port clock if not overwritten by the encoder. Needs to be
10645 * done afterwards in case the encoder adjusts the mode. */
10646 if (!pipe_config->port_clock)
2d112de7 10647 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10648 * pipe_config->pixel_multiplier;
ff9a6750 10649
a43f6e0f 10650 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10651 if (ret < 0) {
7758a113
DV
10652 DRM_DEBUG_KMS("CRTC fixup failed\n");
10653 goto fail;
ee7b9f93 10654 }
e29c22c0
DV
10655
10656 if (ret == RETRY) {
10657 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10658 ret = -EINVAL;
10659 goto fail;
10660 }
10661
10662 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10663 retry = false;
10664 goto encoder_retry;
10665 }
10666
4e53c2e0
DV
10667 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10668 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10669 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10670
b8cecdf5 10671 return pipe_config;
7758a113 10672fail:
e29c22c0 10673 return ERR_PTR(ret);
ee7b9f93 10674}
47f1c6c9 10675
e2e1ed41
DV
10676/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10677 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10678static void
10679intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10680 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10681{
10682 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10683 struct drm_device *dev = crtc->dev;
10684 struct intel_encoder *encoder;
10685 struct intel_connector *connector;
10686 struct drm_crtc *tmp_crtc;
79e53945 10687
e2e1ed41 10688 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10689
e2e1ed41
DV
10690 /* Check which crtcs have changed outputs connected to them, these need
10691 * to be part of the prepare_pipes mask. We don't (yet) support global
10692 * modeset across multiple crtcs, so modeset_pipes will only have one
10693 * bit set at most. */
3a3371ff 10694 for_each_intel_connector(dev, connector) {
e2e1ed41
DV
10695 if (connector->base.encoder == &connector->new_encoder->base)
10696 continue;
79e53945 10697
e2e1ed41
DV
10698 if (connector->base.encoder) {
10699 tmp_crtc = connector->base.encoder->crtc;
10700
10701 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10702 }
10703
10704 if (connector->new_encoder)
10705 *prepare_pipes |=
10706 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10707 }
10708
b2784e15 10709 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10710 if (encoder->base.crtc == &encoder->new_crtc->base)
10711 continue;
10712
10713 if (encoder->base.crtc) {
10714 tmp_crtc = encoder->base.crtc;
10715
10716 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10717 }
10718
10719 if (encoder->new_crtc)
10720 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10721 }
10722
7668851f 10723 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10724 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10725 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
e2e1ed41 10726 continue;
7e7d76c3 10727
7668851f 10728 if (!intel_crtc->new_enabled)
e2e1ed41 10729 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10730 else
10731 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10732 }
10733
e2e1ed41
DV
10734
10735 /* set_mode is also used to update properties on life display pipes. */
10736 intel_crtc = to_intel_crtc(crtc);
7668851f 10737 if (intel_crtc->new_enabled)
e2e1ed41
DV
10738 *prepare_pipes |= 1 << intel_crtc->pipe;
10739
b6c5164d
DV
10740 /*
10741 * For simplicity do a full modeset on any pipe where the output routing
10742 * changed. We could be more clever, but that would require us to be
10743 * more careful with calling the relevant encoder->mode_set functions.
10744 */
e2e1ed41
DV
10745 if (*prepare_pipes)
10746 *modeset_pipes = *prepare_pipes;
10747
10748 /* ... and mask these out. */
10749 *modeset_pipes &= ~(*disable_pipes);
10750 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10751
10752 /*
10753 * HACK: We don't (yet) fully support global modesets. intel_set_config
10754 * obies this rule, but the modeset restore mode of
10755 * intel_modeset_setup_hw_state does not.
10756 */
10757 *modeset_pipes &= 1 << intel_crtc->pipe;
10758 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10759
10760 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10761 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10762}
79e53945 10763
ea9d758d 10764static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10765{
ea9d758d 10766 struct drm_encoder *encoder;
f6e5b160 10767 struct drm_device *dev = crtc->dev;
f6e5b160 10768
ea9d758d
DV
10769 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10770 if (encoder->crtc == crtc)
10771 return true;
10772
10773 return false;
10774}
10775
10776static void
10777intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10778{
ba41c0de 10779 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10780 struct intel_encoder *intel_encoder;
10781 struct intel_crtc *intel_crtc;
10782 struct drm_connector *connector;
10783
ba41c0de
DV
10784 intel_shared_dpll_commit(dev_priv);
10785
b2784e15 10786 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10787 if (!intel_encoder->base.crtc)
10788 continue;
10789
10790 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10791
10792 if (prepare_pipes & (1 << intel_crtc->pipe))
10793 intel_encoder->connectors_active = false;
10794 }
10795
10796 intel_modeset_commit_output_state(dev);
10797
7668851f 10798 /* Double check state. */
d3fcc808 10799 for_each_intel_crtc(dev, intel_crtc) {
83d65738 10800 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10801 WARN_ON(intel_crtc->new_config &&
6e3c9717 10802 intel_crtc->new_config != intel_crtc->config);
83d65738 10803 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
ea9d758d
DV
10804 }
10805
10806 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10807 if (!connector->encoder || !connector->encoder->crtc)
10808 continue;
10809
10810 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10811
10812 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10813 struct drm_property *dpms_property =
10814 dev->mode_config.dpms_property;
10815
ea9d758d 10816 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10817 drm_object_property_set_value(&connector->base,
68d34720
DV
10818 dpms_property,
10819 DRM_MODE_DPMS_ON);
ea9d758d
DV
10820
10821 intel_encoder = to_intel_encoder(connector->encoder);
10822 intel_encoder->connectors_active = true;
10823 }
10824 }
10825
10826}
10827
3bd26263 10828static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10829{
3bd26263 10830 int diff;
f1f644dc
JB
10831
10832 if (clock1 == clock2)
10833 return true;
10834
10835 if (!clock1 || !clock2)
10836 return false;
10837
10838 diff = abs(clock1 - clock2);
10839
10840 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10841 return true;
10842
10843 return false;
10844}
10845
25c5b266
DV
10846#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10847 list_for_each_entry((intel_crtc), \
10848 &(dev)->mode_config.crtc_list, \
10849 base.head) \
0973f18f 10850 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10851
0e8ffe1b 10852static bool
2fa2fe9a 10853intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10854 struct intel_crtc_state *current_config,
10855 struct intel_crtc_state *pipe_config)
0e8ffe1b 10856{
66e985c0
DV
10857#define PIPE_CONF_CHECK_X(name) \
10858 if (current_config->name != pipe_config->name) { \
10859 DRM_ERROR("mismatch in " #name " " \
10860 "(expected 0x%08x, found 0x%08x)\n", \
10861 current_config->name, \
10862 pipe_config->name); \
10863 return false; \
10864 }
10865
08a24034
DV
10866#define PIPE_CONF_CHECK_I(name) \
10867 if (current_config->name != pipe_config->name) { \
10868 DRM_ERROR("mismatch in " #name " " \
10869 "(expected %i, found %i)\n", \
10870 current_config->name, \
10871 pipe_config->name); \
10872 return false; \
88adfff1
DV
10873 }
10874
b95af8be
VK
10875/* This is required for BDW+ where there is only one set of registers for
10876 * switching between high and low RR.
10877 * This macro can be used whenever a comparison has to be made between one
10878 * hw state and multiple sw state variables.
10879 */
10880#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10881 if ((current_config->name != pipe_config->name) && \
10882 (current_config->alt_name != pipe_config->name)) { \
10883 DRM_ERROR("mismatch in " #name " " \
10884 "(expected %i or %i, found %i)\n", \
10885 current_config->name, \
10886 current_config->alt_name, \
10887 pipe_config->name); \
10888 return false; \
10889 }
10890
1bd1bd80
DV
10891#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10892 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10893 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10894 "(expected %i, found %i)\n", \
10895 current_config->name & (mask), \
10896 pipe_config->name & (mask)); \
10897 return false; \
10898 }
10899
5e550656
VS
10900#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10901 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10902 DRM_ERROR("mismatch in " #name " " \
10903 "(expected %i, found %i)\n", \
10904 current_config->name, \
10905 pipe_config->name); \
10906 return false; \
10907 }
10908
bb760063
DV
10909#define PIPE_CONF_QUIRK(quirk) \
10910 ((current_config->quirks | pipe_config->quirks) & (quirk))
10911
eccb140b
DV
10912 PIPE_CONF_CHECK_I(cpu_transcoder);
10913
08a24034
DV
10914 PIPE_CONF_CHECK_I(has_pch_encoder);
10915 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10916 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10917 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10918 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10919 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10920 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10921
eb14cb74 10922 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10923
10924 if (INTEL_INFO(dev)->gen < 8) {
10925 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10926 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10927 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10928 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10929 PIPE_CONF_CHECK_I(dp_m_n.tu);
10930
10931 if (current_config->has_drrs) {
10932 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10933 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10934 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10935 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10936 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10937 }
10938 } else {
10939 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10940 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10941 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10942 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10943 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10944 }
eb14cb74 10945
2d112de7
ACO
10946 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10947 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10948 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10949 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10950 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10951 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10952
2d112de7
ACO
10953 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10954 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10955 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10956 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10957 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10958 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10959
c93f54cf 10960 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10961 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10962 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10963 IS_VALLEYVIEW(dev))
10964 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10965 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10966
9ed109a7
DV
10967 PIPE_CONF_CHECK_I(has_audio);
10968
2d112de7 10969 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10970 DRM_MODE_FLAG_INTERLACE);
10971
bb760063 10972 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10973 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10974 DRM_MODE_FLAG_PHSYNC);
2d112de7 10975 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10976 DRM_MODE_FLAG_NHSYNC);
2d112de7 10977 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10978 DRM_MODE_FLAG_PVSYNC);
2d112de7 10979 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10980 DRM_MODE_FLAG_NVSYNC);
10981 }
045ac3b5 10982
37327abd
VS
10983 PIPE_CONF_CHECK_I(pipe_src_w);
10984 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10985
9953599b
DV
10986 /*
10987 * FIXME: BIOS likes to set up a cloned config with lvds+external
10988 * screen. Since we don't yet re-compute the pipe config when moving
10989 * just the lvds port away to another pipe the sw tracking won't match.
10990 *
10991 * Proper atomic modesets with recomputed global state will fix this.
10992 * Until then just don't check gmch state for inherited modes.
10993 */
10994 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10995 PIPE_CONF_CHECK_I(gmch_pfit.control);
10996 /* pfit ratios are autocomputed by the hw on gen4+ */
10997 if (INTEL_INFO(dev)->gen < 4)
10998 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10999 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11000 }
11001
fd4daa9c
CW
11002 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11003 if (current_config->pch_pfit.enabled) {
11004 PIPE_CONF_CHECK_I(pch_pfit.pos);
11005 PIPE_CONF_CHECK_I(pch_pfit.size);
11006 }
2fa2fe9a 11007
e59150dc
JB
11008 /* BDW+ don't expose a synchronous way to read the state */
11009 if (IS_HASWELL(dev))
11010 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 11011
282740f7
VS
11012 PIPE_CONF_CHECK_I(double_wide);
11013
26804afd
DV
11014 PIPE_CONF_CHECK_X(ddi_pll_sel);
11015
c0d43d62 11016 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 11017 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 11018 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
11019 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11020 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 11021 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
11022 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11023 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11024 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 11025
42571aef
VS
11026 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11027 PIPE_CONF_CHECK_I(pipe_bpp);
11028
2d112de7 11029 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 11030 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 11031
66e985c0 11032#undef PIPE_CONF_CHECK_X
08a24034 11033#undef PIPE_CONF_CHECK_I
b95af8be 11034#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 11035#undef PIPE_CONF_CHECK_FLAGS
5e550656 11036#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 11037#undef PIPE_CONF_QUIRK
88adfff1 11038
0e8ffe1b
DV
11039 return true;
11040}
11041
08db6652
DL
11042static void check_wm_state(struct drm_device *dev)
11043{
11044 struct drm_i915_private *dev_priv = dev->dev_private;
11045 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11046 struct intel_crtc *intel_crtc;
11047 int plane;
11048
11049 if (INTEL_INFO(dev)->gen < 9)
11050 return;
11051
11052 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11053 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11054
11055 for_each_intel_crtc(dev, intel_crtc) {
11056 struct skl_ddb_entry *hw_entry, *sw_entry;
11057 const enum pipe pipe = intel_crtc->pipe;
11058
11059 if (!intel_crtc->active)
11060 continue;
11061
11062 /* planes */
dd740780 11063 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
11064 hw_entry = &hw_ddb.plane[pipe][plane];
11065 sw_entry = &sw_ddb->plane[pipe][plane];
11066
11067 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11068 continue;
11069
11070 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11071 "(expected (%u,%u), found (%u,%u))\n",
11072 pipe_name(pipe), plane + 1,
11073 sw_entry->start, sw_entry->end,
11074 hw_entry->start, hw_entry->end);
11075 }
11076
11077 /* cursor */
11078 hw_entry = &hw_ddb.cursor[pipe];
11079 sw_entry = &sw_ddb->cursor[pipe];
11080
11081 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11082 continue;
11083
11084 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11085 "(expected (%u,%u), found (%u,%u))\n",
11086 pipe_name(pipe),
11087 sw_entry->start, sw_entry->end,
11088 hw_entry->start, hw_entry->end);
11089 }
11090}
11091
91d1b4bd
DV
11092static void
11093check_connector_state(struct drm_device *dev)
8af6cf88 11094{
8af6cf88
DV
11095 struct intel_connector *connector;
11096
3a3371ff 11097 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11098 /* This also checks the encoder/connector hw state with the
11099 * ->get_hw_state callbacks. */
11100 intel_connector_check_state(connector);
11101
e2c719b7 11102 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
11103 "connector's staged encoder doesn't match current encoder\n");
11104 }
91d1b4bd
DV
11105}
11106
11107static void
11108check_encoder_state(struct drm_device *dev)
11109{
11110 struct intel_encoder *encoder;
11111 struct intel_connector *connector;
8af6cf88 11112
b2784e15 11113 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11114 bool enabled = false;
11115 bool active = false;
11116 enum pipe pipe, tracked_pipe;
11117
11118 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11119 encoder->base.base.id,
8e329a03 11120 encoder->base.name);
8af6cf88 11121
e2c719b7 11122 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 11123 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 11124 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
11125 "encoder's active_connectors set, but no crtc\n");
11126
3a3371ff 11127 for_each_intel_connector(dev, connector) {
8af6cf88
DV
11128 if (connector->base.encoder != &encoder->base)
11129 continue;
11130 enabled = true;
11131 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11132 active = true;
11133 }
0e32b39c
DA
11134 /*
11135 * for MST connectors if we unplug the connector is gone
11136 * away but the encoder is still connected to a crtc
11137 * until a modeset happens in response to the hotplug.
11138 */
11139 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11140 continue;
11141
e2c719b7 11142 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
11143 "encoder's enabled state mismatch "
11144 "(expected %i, found %i)\n",
11145 !!encoder->base.crtc, enabled);
e2c719b7 11146 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
11147 "active encoder with no crtc\n");
11148
e2c719b7 11149 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
11150 "encoder's computed active state doesn't match tracked active state "
11151 "(expected %i, found %i)\n", active, encoder->connectors_active);
11152
11153 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 11154 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
11155 "encoder's hw state doesn't match sw tracking "
11156 "(expected %i, found %i)\n",
11157 encoder->connectors_active, active);
11158
11159 if (!encoder->base.crtc)
11160 continue;
11161
11162 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 11163 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
11164 "active encoder's pipe doesn't match"
11165 "(expected %i, found %i)\n",
11166 tracked_pipe, pipe);
11167
11168 }
91d1b4bd
DV
11169}
11170
11171static void
11172check_crtc_state(struct drm_device *dev)
11173{
fbee40df 11174 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11175 struct intel_crtc *crtc;
11176 struct intel_encoder *encoder;
5cec258b 11177 struct intel_crtc_state pipe_config;
8af6cf88 11178
d3fcc808 11179 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
11180 bool enabled = false;
11181 bool active = false;
11182
045ac3b5
JB
11183 memset(&pipe_config, 0, sizeof(pipe_config));
11184
8af6cf88
DV
11185 DRM_DEBUG_KMS("[CRTC:%d]\n",
11186 crtc->base.base.id);
11187
83d65738 11188 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
11189 "active crtc, but not enabled in sw tracking\n");
11190
b2784e15 11191 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
11192 if (encoder->base.crtc != &crtc->base)
11193 continue;
11194 enabled = true;
11195 if (encoder->connectors_active)
11196 active = true;
11197 }
6c49f241 11198
e2c719b7 11199 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
11200 "crtc's computed active state doesn't match tracked active state "
11201 "(expected %i, found %i)\n", active, crtc->active);
83d65738 11202 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 11203 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
11204 "(expected %i, found %i)\n", enabled,
11205 crtc->base.state->enable);
8af6cf88 11206
0e8ffe1b
DV
11207 active = dev_priv->display.get_pipe_config(crtc,
11208 &pipe_config);
d62cf62a 11209
b6b5d049
VS
11210 /* hw state is inconsistent with the pipe quirk */
11211 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11212 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
11213 active = crtc->active;
11214
b2784e15 11215 for_each_intel_encoder(dev, encoder) {
3eaba51c 11216 enum pipe pipe;
6c49f241
DV
11217 if (encoder->base.crtc != &crtc->base)
11218 continue;
1d37b689 11219 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
11220 encoder->get_config(encoder, &pipe_config);
11221 }
11222
e2c719b7 11223 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
11224 "crtc active state doesn't match with hw state "
11225 "(expected %i, found %i)\n", crtc->active, active);
11226
c0b03411 11227 if (active &&
6e3c9717 11228 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 11229 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
11230 intel_dump_pipe_config(crtc, &pipe_config,
11231 "[hw state]");
6e3c9717 11232 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
11233 "[sw state]");
11234 }
8af6cf88
DV
11235 }
11236}
11237
91d1b4bd
DV
11238static void
11239check_shared_dpll_state(struct drm_device *dev)
11240{
fbee40df 11241 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11242 struct intel_crtc *crtc;
11243 struct intel_dpll_hw_state dpll_hw_state;
11244 int i;
5358901f
DV
11245
11246 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11247 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11248 int enabled_crtcs = 0, active_crtcs = 0;
11249 bool active;
11250
11251 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11252
11253 DRM_DEBUG_KMS("%s\n", pll->name);
11254
11255 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11256
e2c719b7 11257 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 11258 "more active pll users than references: %i vs %i\n",
3e369b76 11259 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 11260 I915_STATE_WARN(pll->active && !pll->on,
5358901f 11261 "pll in active use but not on in sw tracking\n");
e2c719b7 11262 I915_STATE_WARN(pll->on && !pll->active,
35c95375 11263 "pll in on but not on in use in sw tracking\n");
e2c719b7 11264 I915_STATE_WARN(pll->on != active,
5358901f
DV
11265 "pll on state mismatch (expected %i, found %i)\n",
11266 pll->on, active);
11267
d3fcc808 11268 for_each_intel_crtc(dev, crtc) {
83d65738 11269 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
11270 enabled_crtcs++;
11271 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11272 active_crtcs++;
11273 }
e2c719b7 11274 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
11275 "pll active crtcs mismatch (expected %i, found %i)\n",
11276 pll->active, active_crtcs);
e2c719b7 11277 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 11278 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 11279 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 11280
e2c719b7 11281 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
11282 sizeof(dpll_hw_state)),
11283 "pll hw state mismatch\n");
5358901f 11284 }
8af6cf88
DV
11285}
11286
91d1b4bd
DV
11287void
11288intel_modeset_check_state(struct drm_device *dev)
11289{
08db6652 11290 check_wm_state(dev);
91d1b4bd
DV
11291 check_connector_state(dev);
11292 check_encoder_state(dev);
11293 check_crtc_state(dev);
11294 check_shared_dpll_state(dev);
11295}
11296
5cec258b 11297void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
11298 int dotclock)
11299{
11300 /*
11301 * FDI already provided one idea for the dotclock.
11302 * Yell if the encoder disagrees.
11303 */
2d112de7 11304 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 11305 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 11306 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11307}
11308
80715b2f
VS
11309static void update_scanline_offset(struct intel_crtc *crtc)
11310{
11311 struct drm_device *dev = crtc->base.dev;
11312
11313 /*
11314 * The scanline counter increments at the leading edge of hsync.
11315 *
11316 * On most platforms it starts counting from vtotal-1 on the
11317 * first active line. That means the scanline counter value is
11318 * always one less than what we would expect. Ie. just after
11319 * start of vblank, which also occurs at start of hsync (on the
11320 * last active line), the scanline counter will read vblank_start-1.
11321 *
11322 * On gen2 the scanline counter starts counting from 1 instead
11323 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11324 * to keep the value positive), instead of adding one.
11325 *
11326 * On HSW+ the behaviour of the scanline counter depends on the output
11327 * type. For DP ports it behaves like most other platforms, but on HDMI
11328 * there's an extra 1 line difference. So we need to add two instead of
11329 * one to the value.
11330 */
11331 if (IS_GEN2(dev)) {
6e3c9717 11332 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
11333 int vtotal;
11334
11335 vtotal = mode->crtc_vtotal;
11336 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11337 vtotal /= 2;
11338
11339 crtc->scanline_offset = vtotal - 1;
11340 } else if (HAS_DDI(dev) &&
409ee761 11341 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
11342 crtc->scanline_offset = 2;
11343 } else
11344 crtc->scanline_offset = 1;
11345}
11346
5cec258b 11347static struct intel_crtc_state *
7f27126e
JB
11348intel_modeset_compute_config(struct drm_crtc *crtc,
11349 struct drm_display_mode *mode,
11350 struct drm_framebuffer *fb,
83a57153 11351 struct drm_atomic_state *state,
7f27126e
JB
11352 unsigned *modeset_pipes,
11353 unsigned *prepare_pipes,
11354 unsigned *disable_pipes)
11355{
db7542dd 11356 struct drm_device *dev = crtc->dev;
5cec258b 11357 struct intel_crtc_state *pipe_config = NULL;
db7542dd 11358 struct intel_crtc *intel_crtc;
0b901879
ACO
11359 int ret = 0;
11360
11361 ret = drm_atomic_add_affected_connectors(state, crtc);
11362 if (ret)
11363 return ERR_PTR(ret);
7f27126e
JB
11364
11365 intel_modeset_affected_pipes(crtc, modeset_pipes,
11366 prepare_pipes, disable_pipes);
11367
db7542dd
ACO
11368 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11369 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11370 if (IS_ERR(pipe_config))
11371 return pipe_config;
11372
11373 pipe_config->base.enable = false;
11374 }
7f27126e
JB
11375
11376 /*
11377 * Note this needs changes when we start tracking multiple modes
11378 * and crtcs. At that point we'll need to compute the whole config
11379 * (i.e. one pipe_config for each crtc) rather than just the one
11380 * for this crtc.
11381 */
db7542dd
ACO
11382 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11383 /* FIXME: For now we still expect modeset_pipes has at most
11384 * one bit set. */
11385 if (WARN_ON(&intel_crtc->base != crtc))
11386 continue;
83a57153 11387
db7542dd
ACO
11388 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11389 if (IS_ERR(pipe_config))
11390 return pipe_config;
7f27126e 11391
db7542dd
ACO
11392 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11393 "[modeset]");
11394 }
11395
11396 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
7f27126e
JB
11397}
11398
ed6739ef
ACO
11399static int __intel_set_mode_setup_plls(struct drm_device *dev,
11400 unsigned modeset_pipes,
11401 unsigned disable_pipes)
11402{
11403 struct drm_i915_private *dev_priv = to_i915(dev);
11404 unsigned clear_pipes = modeset_pipes | disable_pipes;
11405 struct intel_crtc *intel_crtc;
11406 int ret = 0;
11407
11408 if (!dev_priv->display.crtc_compute_clock)
11409 return 0;
11410
11411 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11412 if (ret)
11413 goto done;
11414
11415 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11416 struct intel_crtc_state *state = intel_crtc->new_config;
11417 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11418 state);
11419 if (ret) {
11420 intel_shared_dpll_abort_config(dev_priv);
11421 goto done;
11422 }
11423 }
11424
11425done:
11426 return ret;
11427}
11428
f30da187
DV
11429static int __intel_set_mode(struct drm_crtc *crtc,
11430 struct drm_display_mode *mode,
7f27126e 11431 int x, int y, struct drm_framebuffer *fb,
5cec258b 11432 struct intel_crtc_state *pipe_config,
7f27126e
JB
11433 unsigned modeset_pipes,
11434 unsigned prepare_pipes,
11435 unsigned disable_pipes)
a6778b3c
DV
11436{
11437 struct drm_device *dev = crtc->dev;
fbee40df 11438 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11439 struct drm_display_mode *saved_mode;
83a57153 11440 struct intel_crtc_state *crtc_state_copy = NULL;
25c5b266 11441 struct intel_crtc *intel_crtc;
c0c36b94 11442 int ret = 0;
a6778b3c 11443
4b4b9238 11444 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11445 if (!saved_mode)
11446 return -ENOMEM;
a6778b3c 11447
83a57153
ACO
11448 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11449 if (!crtc_state_copy) {
11450 ret = -ENOMEM;
11451 goto done;
11452 }
11453
3ac18232 11454 *saved_mode = crtc->mode;
a6778b3c 11455
b9950a13
VS
11456 if (modeset_pipes)
11457 to_intel_crtc(crtc)->new_config = pipe_config;
11458
30a970c6
JB
11459 /*
11460 * See if the config requires any additional preparation, e.g.
11461 * to adjust global state with pipes off. We need to do this
11462 * here so we can get the modeset_pipe updated config for the new
11463 * mode set on this crtc. For other crtcs we need to use the
11464 * adjusted_mode bits in the crtc directly.
11465 */
c164f833 11466 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11467 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11468
c164f833
VS
11469 /* may have added more to prepare_pipes than we should */
11470 prepare_pipes &= ~disable_pipes;
11471 }
11472
ed6739ef
ACO
11473 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11474 if (ret)
11475 goto done;
8bd31e67 11476
460da916
DV
11477 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11478 intel_crtc_disable(&intel_crtc->base);
11479
ea9d758d 11480 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
83d65738 11481 if (intel_crtc->base.state->enable)
ea9d758d
DV
11482 dev_priv->display.crtc_disable(&intel_crtc->base);
11483 }
a6778b3c 11484
6c4c86f5
DV
11485 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11486 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11487 *
11488 * Note we'll need to fix this up when we start tracking multiple
11489 * pipes; here we assume a single modeset_pipe and only track the
11490 * single crtc and mode.
f6e5b160 11491 */
b8cecdf5 11492 if (modeset_pipes) {
25c5b266 11493 crtc->mode = *mode;
b8cecdf5
DV
11494 /* mode_set/enable/disable functions rely on a correct pipe
11495 * config. */
f5de6e07 11496 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11497
11498 /*
11499 * Calculate and store various constants which
11500 * are later needed by vblank and swap-completion
11501 * timestamping. They are derived from true hwmode.
11502 */
11503 drm_calc_timestamping_constants(crtc,
2d112de7 11504 &pipe_config->base.adjusted_mode);
b8cecdf5 11505 }
7758a113 11506
ea9d758d
DV
11507 /* Only after disabling all output pipelines that will be changed can we
11508 * update the the output configuration. */
11509 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11510
679dacd4 11511 modeset_update_crtc_power_domains(pipe_config->base.state);
47fab737 11512
a6778b3c
DV
11513 /* Set up the DPLL and any encoders state that needs to adjust or depend
11514 * on the DPLL.
f6e5b160 11515 */
25c5b266 11516 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11517 struct drm_plane *primary = intel_crtc->base.primary;
11518 int vdisplay, hdisplay;
4c10794f 11519
455a6808
GP
11520 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11521 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11522 fb, 0, 0,
11523 hdisplay, vdisplay,
11524 x << 16, y << 16,
11525 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11526 }
11527
11528 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11529 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11530 update_scanline_offset(intel_crtc);
11531
25c5b266 11532 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11533 }
a6778b3c 11534
a6778b3c
DV
11535 /* FIXME: add subpixel order */
11536done:
83d65738 11537 if (ret && crtc->state->enable)
3ac18232 11538 crtc->mode = *saved_mode;
a6778b3c 11539
83a57153
ACO
11540 if (ret == 0 && pipe_config) {
11541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11542
11543 /* The pipe_config will be freed with the atomic state, so
11544 * make a copy. */
11545 memcpy(crtc_state_copy, intel_crtc->config,
11546 sizeof *crtc_state_copy);
11547 intel_crtc->config = crtc_state_copy;
11548 intel_crtc->base.state = &crtc_state_copy->base;
11549
11550 if (modeset_pipes)
11551 intel_crtc->new_config = intel_crtc->config;
11552 } else {
11553 kfree(crtc_state_copy);
11554 }
11555
3ac18232 11556 kfree(saved_mode);
a6778b3c 11557 return ret;
f6e5b160
CW
11558}
11559
7f27126e
JB
11560static int intel_set_mode_pipes(struct drm_crtc *crtc,
11561 struct drm_display_mode *mode,
11562 int x, int y, struct drm_framebuffer *fb,
5cec258b 11563 struct intel_crtc_state *pipe_config,
7f27126e
JB
11564 unsigned modeset_pipes,
11565 unsigned prepare_pipes,
11566 unsigned disable_pipes)
f30da187
DV
11567{
11568 int ret;
11569
7f27126e
JB
11570 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11571 prepare_pipes, disable_pipes);
f30da187
DV
11572
11573 if (ret == 0)
11574 intel_modeset_check_state(crtc->dev);
11575
11576 return ret;
11577}
11578
7f27126e
JB
11579static int intel_set_mode(struct drm_crtc *crtc,
11580 struct drm_display_mode *mode,
83a57153
ACO
11581 int x, int y, struct drm_framebuffer *fb,
11582 struct drm_atomic_state *state)
7f27126e 11583{
5cec258b 11584 struct intel_crtc_state *pipe_config;
7f27126e 11585 unsigned modeset_pipes, prepare_pipes, disable_pipes;
83a57153 11586 int ret = 0;
7f27126e 11587
83a57153 11588 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
7f27126e
JB
11589 &modeset_pipes,
11590 &prepare_pipes,
11591 &disable_pipes);
11592
83a57153
ACO
11593 if (IS_ERR(pipe_config)) {
11594 ret = PTR_ERR(pipe_config);
11595 goto out;
11596 }
11597
11598 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11599 modeset_pipes, prepare_pipes,
11600 disable_pipes);
11601 if (ret)
11602 goto out;
7f27126e 11603
83a57153
ACO
11604out:
11605 return ret;
7f27126e
JB
11606}
11607
c0c36b94
CW
11608void intel_crtc_restore_mode(struct drm_crtc *crtc)
11609{
83a57153
ACO
11610 struct drm_device *dev = crtc->dev;
11611 struct drm_atomic_state *state;
11612 struct intel_encoder *encoder;
11613 struct intel_connector *connector;
11614 struct drm_connector_state *connector_state;
11615
11616 state = drm_atomic_state_alloc(dev);
11617 if (!state) {
11618 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11619 crtc->base.id);
11620 return;
11621 }
11622
11623 state->acquire_ctx = dev->mode_config.acquire_ctx;
11624
11625 /* The force restore path in the HW readout code relies on the staged
11626 * config still keeping the user requested config while the actual
11627 * state has been overwritten by the configuration read from HW. We
11628 * need to copy the staged config to the atomic state, otherwise the
11629 * mode set will just reapply the state the HW is already in. */
11630 for_each_intel_encoder(dev, encoder) {
11631 if (&encoder->new_crtc->base != crtc)
11632 continue;
11633
11634 for_each_intel_connector(dev, connector) {
11635 if (connector->new_encoder != encoder)
11636 continue;
11637
11638 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11639 if (IS_ERR(connector_state)) {
11640 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11641 connector->base.base.id,
11642 connector->base.name,
11643 PTR_ERR(connector_state));
11644 continue;
11645 }
11646
11647 connector_state->crtc = crtc;
11648 connector_state->best_encoder = &encoder->base;
11649 }
11650 }
11651
11652 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11653 state);
11654
11655 drm_atomic_state_free(state);
c0c36b94
CW
11656}
11657
25c5b266
DV
11658#undef for_each_intel_crtc_masked
11659
d9e55608
DV
11660static void intel_set_config_free(struct intel_set_config *config)
11661{
11662 if (!config)
11663 return;
11664
1aa4b628
DV
11665 kfree(config->save_connector_encoders);
11666 kfree(config->save_encoder_crtcs);
7668851f 11667 kfree(config->save_crtc_enabled);
d9e55608
DV
11668 kfree(config);
11669}
11670
85f9eb71
DV
11671static int intel_set_config_save_state(struct drm_device *dev,
11672 struct intel_set_config *config)
11673{
7668851f 11674 struct drm_crtc *crtc;
85f9eb71
DV
11675 struct drm_encoder *encoder;
11676 struct drm_connector *connector;
11677 int count;
11678
7668851f
VS
11679 config->save_crtc_enabled =
11680 kcalloc(dev->mode_config.num_crtc,
11681 sizeof(bool), GFP_KERNEL);
11682 if (!config->save_crtc_enabled)
11683 return -ENOMEM;
11684
1aa4b628
DV
11685 config->save_encoder_crtcs =
11686 kcalloc(dev->mode_config.num_encoder,
11687 sizeof(struct drm_crtc *), GFP_KERNEL);
11688 if (!config->save_encoder_crtcs)
85f9eb71
DV
11689 return -ENOMEM;
11690
1aa4b628
DV
11691 config->save_connector_encoders =
11692 kcalloc(dev->mode_config.num_connector,
11693 sizeof(struct drm_encoder *), GFP_KERNEL);
11694 if (!config->save_connector_encoders)
85f9eb71
DV
11695 return -ENOMEM;
11696
11697 /* Copy data. Note that driver private data is not affected.
11698 * Should anything bad happen only the expected state is
11699 * restored, not the drivers personal bookkeeping.
11700 */
7668851f 11701 count = 0;
70e1e0ec 11702 for_each_crtc(dev, crtc) {
83d65738 11703 config->save_crtc_enabled[count++] = crtc->state->enable;
7668851f
VS
11704 }
11705
85f9eb71
DV
11706 count = 0;
11707 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11708 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11709 }
11710
11711 count = 0;
11712 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11713 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11714 }
11715
11716 return 0;
11717}
11718
11719static void intel_set_config_restore_state(struct drm_device *dev,
11720 struct intel_set_config *config)
11721{
7668851f 11722 struct intel_crtc *crtc;
9a935856
DV
11723 struct intel_encoder *encoder;
11724 struct intel_connector *connector;
85f9eb71
DV
11725 int count;
11726
7668851f 11727 count = 0;
d3fcc808 11728 for_each_intel_crtc(dev, crtc) {
7668851f 11729 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11730
11731 if (crtc->new_enabled)
6e3c9717 11732 crtc->new_config = crtc->config;
7bd0a8e7
VS
11733 else
11734 crtc->new_config = NULL;
7668851f
VS
11735 }
11736
85f9eb71 11737 count = 0;
b2784e15 11738 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11739 encoder->new_crtc =
11740 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11741 }
11742
11743 count = 0;
3a3371ff 11744 for_each_intel_connector(dev, connector) {
9a935856
DV
11745 connector->new_encoder =
11746 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11747 }
11748}
11749
e3de42b6 11750static bool
2e57f47d 11751is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11752{
11753 int i;
11754
2e57f47d
CW
11755 if (set->num_connectors == 0)
11756 return false;
11757
11758 if (WARN_ON(set->connectors == NULL))
11759 return false;
11760
11761 for (i = 0; i < set->num_connectors; i++)
11762 if (set->connectors[i]->encoder &&
11763 set->connectors[i]->encoder->crtc == set->crtc &&
11764 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11765 return true;
11766
11767 return false;
11768}
11769
5e2b584e
DV
11770static void
11771intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11772 struct intel_set_config *config)
11773{
11774
11775 /* We should be able to check here if the fb has the same properties
11776 * and then just flip_or_move it */
2e57f47d
CW
11777 if (is_crtc_connector_off(set)) {
11778 config->mode_changed = true;
f4510a27 11779 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11780 /*
11781 * If we have no fb, we can only flip as long as the crtc is
11782 * active, otherwise we need a full mode set. The crtc may
11783 * be active if we've only disabled the primary plane, or
11784 * in fastboot situations.
11785 */
f4510a27 11786 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11787 struct intel_crtc *intel_crtc =
11788 to_intel_crtc(set->crtc);
11789
3b150f08 11790 if (intel_crtc->active) {
319d9827
JB
11791 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11792 config->fb_changed = true;
11793 } else {
11794 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11795 config->mode_changed = true;
11796 }
5e2b584e
DV
11797 } else if (set->fb == NULL) {
11798 config->mode_changed = true;
72f4901e 11799 } else if (set->fb->pixel_format !=
f4510a27 11800 set->crtc->primary->fb->pixel_format) {
5e2b584e 11801 config->mode_changed = true;
e3de42b6 11802 } else {
5e2b584e 11803 config->fb_changed = true;
e3de42b6 11804 }
5e2b584e
DV
11805 }
11806
835c5873 11807 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11808 config->fb_changed = true;
11809
11810 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11811 DRM_DEBUG_KMS("modes are different, full mode set\n");
11812 drm_mode_debug_printmodeline(&set->crtc->mode);
11813 drm_mode_debug_printmodeline(set->mode);
11814 config->mode_changed = true;
11815 }
a1d95703
CW
11816
11817 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11818 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11819}
11820
2e431051 11821static int
9a935856
DV
11822intel_modeset_stage_output_state(struct drm_device *dev,
11823 struct drm_mode_set *set,
944b0c76
ACO
11824 struct intel_set_config *config,
11825 struct drm_atomic_state *state)
50f56119 11826{
9a935856 11827 struct intel_connector *connector;
944b0c76 11828 struct drm_connector_state *connector_state;
9a935856 11829 struct intel_encoder *encoder;
7668851f 11830 struct intel_crtc *crtc;
f3f08572 11831 int ro;
50f56119 11832
9abdda74 11833 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11834 * of connectors. For paranoia, double-check this. */
11835 WARN_ON(!set->fb && (set->num_connectors != 0));
11836 WARN_ON(set->fb && (set->num_connectors == 0));
11837
3a3371ff 11838 for_each_intel_connector(dev, connector) {
9a935856
DV
11839 /* Otherwise traverse passed in connector list and get encoders
11840 * for them. */
50f56119 11841 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11842 if (set->connectors[ro] == &connector->base) {
0e32b39c 11843 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11844 break;
11845 }
11846 }
11847
9a935856
DV
11848 /* If we disable the crtc, disable all its connectors. Also, if
11849 * the connector is on the changing crtc but not on the new
11850 * connector list, disable it. */
11851 if ((!set->fb || ro == set->num_connectors) &&
11852 connector->base.encoder &&
11853 connector->base.encoder->crtc == set->crtc) {
11854 connector->new_encoder = NULL;
11855
11856 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11857 connector->base.base.id,
c23cc417 11858 connector->base.name);
9a935856
DV
11859 }
11860
11861
11862 if (&connector->new_encoder->base != connector->base.encoder) {
10634189
ACO
11863 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11864 connector->base.base.id,
11865 connector->base.name);
5e2b584e 11866 config->mode_changed = true;
50f56119
DV
11867 }
11868 }
9a935856 11869 /* connector->new_encoder is now updated for all connectors. */
50f56119 11870
9a935856 11871 /* Update crtc of enabled connectors. */
3a3371ff 11872 for_each_intel_connector(dev, connector) {
7668851f
VS
11873 struct drm_crtc *new_crtc;
11874
9a935856 11875 if (!connector->new_encoder)
50f56119
DV
11876 continue;
11877
9a935856 11878 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11879
11880 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11881 if (set->connectors[ro] == &connector->base)
50f56119
DV
11882 new_crtc = set->crtc;
11883 }
11884
11885 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11886 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11887 new_crtc)) {
5e2b584e 11888 return -EINVAL;
50f56119 11889 }
0e32b39c 11890 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856 11891
944b0c76
ACO
11892 connector_state =
11893 drm_atomic_get_connector_state(state, &connector->base);
11894 if (IS_ERR(connector_state))
11895 return PTR_ERR(connector_state);
11896
11897 connector_state->crtc = new_crtc;
11898 connector_state->best_encoder = &connector->new_encoder->base;
11899
9a935856
DV
11900 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11901 connector->base.base.id,
c23cc417 11902 connector->base.name,
9a935856
DV
11903 new_crtc->base.id);
11904 }
11905
11906 /* Check for any encoders that needs to be disabled. */
b2784e15 11907 for_each_intel_encoder(dev, encoder) {
5a65f358 11908 int num_connectors = 0;
3a3371ff 11909 for_each_intel_connector(dev, connector) {
9a935856
DV
11910 if (connector->new_encoder == encoder) {
11911 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11912 num_connectors++;
9a935856
DV
11913 }
11914 }
5a65f358
PZ
11915
11916 if (num_connectors == 0)
11917 encoder->new_crtc = NULL;
11918 else if (num_connectors > 1)
11919 return -EINVAL;
11920
9a935856
DV
11921 /* Only now check for crtc changes so we don't miss encoders
11922 * that will be disabled. */
11923 if (&encoder->new_crtc->base != encoder->base.crtc) {
10634189
ACO
11924 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11925 encoder->base.base.id,
11926 encoder->base.name);
5e2b584e 11927 config->mode_changed = true;
50f56119
DV
11928 }
11929 }
9a935856 11930 /* Now we've also updated encoder->new_crtc for all encoders. */
3a3371ff 11931 for_each_intel_connector(dev, connector) {
944b0c76
ACO
11932 connector_state =
11933 drm_atomic_get_connector_state(state, &connector->base);
11934
11935 if (connector->new_encoder) {
0e32b39c
DA
11936 if (connector->new_encoder != connector->encoder)
11937 connector->encoder = connector->new_encoder;
944b0c76
ACO
11938 } else {
11939 connector_state->crtc = NULL;
11940 }
0e32b39c 11941 }
d3fcc808 11942 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11943 crtc->new_enabled = false;
11944
b2784e15 11945 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11946 if (encoder->new_crtc == crtc) {
11947 crtc->new_enabled = true;
11948 break;
11949 }
11950 }
11951
83d65738 11952 if (crtc->new_enabled != crtc->base.state->enable) {
10634189
ACO
11953 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11954 crtc->base.base.id,
7668851f
VS
11955 crtc->new_enabled ? "en" : "dis");
11956 config->mode_changed = true;
11957 }
7bd0a8e7
VS
11958
11959 if (crtc->new_enabled)
6e3c9717 11960 crtc->new_config = crtc->config;
7bd0a8e7
VS
11961 else
11962 crtc->new_config = NULL;
7668851f
VS
11963 }
11964
2e431051
DV
11965 return 0;
11966}
11967
7d00a1f5
VS
11968static void disable_crtc_nofb(struct intel_crtc *crtc)
11969{
11970 struct drm_device *dev = crtc->base.dev;
11971 struct intel_encoder *encoder;
11972 struct intel_connector *connector;
11973
11974 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11975 pipe_name(crtc->pipe));
11976
3a3371ff 11977 for_each_intel_connector(dev, connector) {
7d00a1f5
VS
11978 if (connector->new_encoder &&
11979 connector->new_encoder->new_crtc == crtc)
11980 connector->new_encoder = NULL;
11981 }
11982
b2784e15 11983 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11984 if (encoder->new_crtc == crtc)
11985 encoder->new_crtc = NULL;
11986 }
11987
11988 crtc->new_enabled = false;
7bd0a8e7 11989 crtc->new_config = NULL;
7d00a1f5
VS
11990}
11991
2e431051
DV
11992static int intel_crtc_set_config(struct drm_mode_set *set)
11993{
11994 struct drm_device *dev;
2e431051 11995 struct drm_mode_set save_set;
83a57153 11996 struct drm_atomic_state *state = NULL;
2e431051 11997 struct intel_set_config *config;
5cec258b 11998 struct intel_crtc_state *pipe_config;
50f52756 11999 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 12000 int ret;
2e431051 12001
8d3e375e
DV
12002 BUG_ON(!set);
12003 BUG_ON(!set->crtc);
12004 BUG_ON(!set->crtc->helper_private);
2e431051 12005
7e53f3a4
DV
12006 /* Enforce sane interface api - has been abused by the fb helper. */
12007 BUG_ON(!set->mode && set->fb);
12008 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 12009
2e431051
DV
12010 if (set->fb) {
12011 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12012 set->crtc->base.id, set->fb->base.id,
12013 (int)set->num_connectors, set->x, set->y);
12014 } else {
12015 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
12016 }
12017
12018 dev = set->crtc->dev;
12019
12020 ret = -ENOMEM;
12021 config = kzalloc(sizeof(*config), GFP_KERNEL);
12022 if (!config)
12023 goto out_config;
12024
12025 ret = intel_set_config_save_state(dev, config);
12026 if (ret)
12027 goto out_config;
12028
12029 save_set.crtc = set->crtc;
12030 save_set.mode = &set->crtc->mode;
12031 save_set.x = set->crtc->x;
12032 save_set.y = set->crtc->y;
f4510a27 12033 save_set.fb = set->crtc->primary->fb;
2e431051
DV
12034
12035 /* Compute whether we need a full modeset, only an fb base update or no
12036 * change at all. In the future we might also check whether only the
12037 * mode changed, e.g. for LVDS where we only change the panel fitter in
12038 * such cases. */
12039 intel_set_config_compute_mode_changes(set, config);
12040
83a57153
ACO
12041 state = drm_atomic_state_alloc(dev);
12042 if (!state) {
12043 ret = -ENOMEM;
12044 goto out_config;
12045 }
12046
12047 state->acquire_ctx = dev->mode_config.acquire_ctx;
12048
944b0c76 12049 ret = intel_modeset_stage_output_state(dev, set, config, state);
2e431051
DV
12050 if (ret)
12051 goto fail;
12052
50f52756 12053 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
83a57153 12054 set->fb, state,
50f52756
JB
12055 &modeset_pipes,
12056 &prepare_pipes,
12057 &disable_pipes);
20664591 12058 if (IS_ERR(pipe_config)) {
6ac0483b 12059 ret = PTR_ERR(pipe_config);
50f52756 12060 goto fail;
20664591 12061 } else if (pipe_config) {
b9950a13 12062 if (pipe_config->has_audio !=
6e3c9717 12063 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
12064 config->mode_changed = true;
12065
af15d2ce
JB
12066 /*
12067 * Note we have an issue here with infoframes: current code
12068 * only updates them on the full mode set path per hw
12069 * requirements. So here we should be checking for any
12070 * required changes and forcing a mode set.
12071 */
20664591 12072 }
50f52756 12073
1f9954d0
JB
12074 intel_update_pipe_size(to_intel_crtc(set->crtc));
12075
5e2b584e 12076 if (config->mode_changed) {
50f52756
JB
12077 ret = intel_set_mode_pipes(set->crtc, set->mode,
12078 set->x, set->y, set->fb, pipe_config,
12079 modeset_pipes, prepare_pipes,
12080 disable_pipes);
5e2b584e 12081 } else if (config->fb_changed) {
3b150f08 12082 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
12083 struct drm_plane *primary = set->crtc->primary;
12084 int vdisplay, hdisplay;
3b150f08 12085
455a6808
GP
12086 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12087 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12088 0, 0, hdisplay, vdisplay,
12089 set->x << 16, set->y << 16,
12090 hdisplay << 16, vdisplay << 16);
3b150f08
MR
12091
12092 /*
12093 * We need to make sure the primary plane is re-enabled if it
12094 * has previously been turned off.
12095 */
12096 if (!intel_crtc->primary_enabled && ret == 0) {
12097 WARN_ON(!intel_crtc->active);
fdd508a6 12098 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
12099 }
12100
7ca51a3a
JB
12101 /*
12102 * In the fastboot case this may be our only check of the
12103 * state after boot. It would be better to only do it on
12104 * the first update, but we don't have a nice way of doing that
12105 * (and really, set_config isn't used much for high freq page
12106 * flipping, so increasing its cost here shouldn't be a big
12107 * deal).
12108 */
d330a953 12109 if (i915.fastboot && ret == 0)
7ca51a3a 12110 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
12111 }
12112
2d05eae1 12113 if (ret) {
bf67dfeb
DV
12114 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12115 set->crtc->base.id, ret);
50f56119 12116fail:
2d05eae1 12117 intel_set_config_restore_state(dev, config);
50f56119 12118
83a57153
ACO
12119 drm_atomic_state_clear(state);
12120
7d00a1f5
VS
12121 /*
12122 * HACK: if the pipe was on, but we didn't have a framebuffer,
12123 * force the pipe off to avoid oopsing in the modeset code
12124 * due to fb==NULL. This should only happen during boot since
12125 * we don't yet reconstruct the FB from the hardware state.
12126 */
12127 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12128 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12129
2d05eae1
CW
12130 /* Try to restore the config */
12131 if (config->mode_changed &&
12132 intel_set_mode(save_set.crtc, save_set.mode,
83a57153
ACO
12133 save_set.x, save_set.y, save_set.fb,
12134 state))
2d05eae1
CW
12135 DRM_ERROR("failed to restore config after modeset failure\n");
12136 }
50f56119 12137
d9e55608 12138out_config:
83a57153
ACO
12139 if (state)
12140 drm_atomic_state_free(state);
12141
d9e55608 12142 intel_set_config_free(config);
50f56119
DV
12143 return ret;
12144}
f6e5b160
CW
12145
12146static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 12147 .gamma_set = intel_crtc_gamma_set,
50f56119 12148 .set_config = intel_crtc_set_config,
f6e5b160
CW
12149 .destroy = intel_crtc_destroy,
12150 .page_flip = intel_crtc_page_flip,
1356837e
MR
12151 .atomic_duplicate_state = intel_crtc_duplicate_state,
12152 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
12153};
12154
5358901f
DV
12155static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12156 struct intel_shared_dpll *pll,
12157 struct intel_dpll_hw_state *hw_state)
ee7b9f93 12158{
5358901f 12159 uint32_t val;
ee7b9f93 12160
f458ebbc 12161 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
12162 return false;
12163
5358901f 12164 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
12165 hw_state->dpll = val;
12166 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12167 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
12168
12169 return val & DPLL_VCO_ENABLE;
12170}
12171
15bdd4cf
DV
12172static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12173 struct intel_shared_dpll *pll)
12174{
3e369b76
ACO
12175 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12176 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
12177}
12178
e7b903d2
DV
12179static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12180 struct intel_shared_dpll *pll)
12181{
e7b903d2 12182 /* PCH refclock must be enabled first */
89eff4be 12183 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 12184
3e369b76 12185 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
12186
12187 /* Wait for the clocks to stabilize. */
12188 POSTING_READ(PCH_DPLL(pll->id));
12189 udelay(150);
12190
12191 /* The pixel multiplier can only be updated once the
12192 * DPLL is enabled and the clocks are stable.
12193 *
12194 * So write it again.
12195 */
3e369b76 12196 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 12197 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12198 udelay(200);
12199}
12200
12201static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12202 struct intel_shared_dpll *pll)
12203{
12204 struct drm_device *dev = dev_priv->dev;
12205 struct intel_crtc *crtc;
e7b903d2
DV
12206
12207 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 12208 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
12209 if (intel_crtc_to_shared_dpll(crtc) == pll)
12210 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
12211 }
12212
15bdd4cf
DV
12213 I915_WRITE(PCH_DPLL(pll->id), 0);
12214 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
12215 udelay(200);
12216}
12217
46edb027
DV
12218static char *ibx_pch_dpll_names[] = {
12219 "PCH DPLL A",
12220 "PCH DPLL B",
12221};
12222
7c74ade1 12223static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 12224{
e7b903d2 12225 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
12226 int i;
12227
7c74ade1 12228 dev_priv->num_shared_dpll = 2;
ee7b9f93 12229
e72f9fbf 12230 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
12231 dev_priv->shared_dplls[i].id = i;
12232 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 12233 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
12234 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12235 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
12236 dev_priv->shared_dplls[i].get_hw_state =
12237 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
12238 }
12239}
12240
7c74ade1
DV
12241static void intel_shared_dpll_init(struct drm_device *dev)
12242{
e7b903d2 12243 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 12244
9cd86933
DV
12245 if (HAS_DDI(dev))
12246 intel_ddi_pll_init(dev);
12247 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
12248 ibx_pch_dpll_init(dev);
12249 else
12250 dev_priv->num_shared_dpll = 0;
12251
12252 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
12253}
12254
1fc0a8f7
TU
12255/**
12256 * intel_wm_need_update - Check whether watermarks need updating
12257 * @plane: drm plane
12258 * @state: new plane state
12259 *
12260 * Check current plane state versus the new one to determine whether
12261 * watermarks need to be recalculated.
12262 *
12263 * Returns true or false.
12264 */
12265bool intel_wm_need_update(struct drm_plane *plane,
12266 struct drm_plane_state *state)
12267{
12268 /* Update watermarks on tiling changes. */
12269 if (!plane->state->fb || !state->fb ||
12270 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12271 plane->state->rotation != state->rotation)
12272 return true;
12273
12274 return false;
12275}
12276
6beb8c23
MR
12277/**
12278 * intel_prepare_plane_fb - Prepare fb for usage on plane
12279 * @plane: drm plane to prepare for
12280 * @fb: framebuffer to prepare for presentation
12281 *
12282 * Prepares a framebuffer for usage on a display plane. Generally this
12283 * involves pinning the underlying object and updating the frontbuffer tracking
12284 * bits. Some older platforms need special physical address handling for
12285 * cursor planes.
12286 *
12287 * Returns 0 on success, negative error code on failure.
12288 */
12289int
12290intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
12291 struct drm_framebuffer *fb,
12292 const struct drm_plane_state *new_state)
465c120c
MR
12293{
12294 struct drm_device *dev = plane->dev;
6beb8c23
MR
12295 struct intel_plane *intel_plane = to_intel_plane(plane);
12296 enum pipe pipe = intel_plane->pipe;
12297 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12298 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12299 unsigned frontbuffer_bits = 0;
12300 int ret = 0;
465c120c 12301
ea2c67bb 12302 if (!obj)
465c120c
MR
12303 return 0;
12304
6beb8c23
MR
12305 switch (plane->type) {
12306 case DRM_PLANE_TYPE_PRIMARY:
12307 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12308 break;
12309 case DRM_PLANE_TYPE_CURSOR:
12310 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12311 break;
12312 case DRM_PLANE_TYPE_OVERLAY:
12313 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12314 break;
12315 }
465c120c 12316
6beb8c23 12317 mutex_lock(&dev->struct_mutex);
465c120c 12318
6beb8c23
MR
12319 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12320 INTEL_INFO(dev)->cursor_needs_physical) {
12321 int align = IS_I830(dev) ? 16 * 1024 : 256;
12322 ret = i915_gem_object_attach_phys(obj, align);
12323 if (ret)
12324 DRM_DEBUG_KMS("failed to attach phys object\n");
12325 } else {
82bc3b2d 12326 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 12327 }
465c120c 12328
6beb8c23
MR
12329 if (ret == 0)
12330 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 12331
4c34574f 12332 mutex_unlock(&dev->struct_mutex);
465c120c 12333
6beb8c23
MR
12334 return ret;
12335}
12336
38f3ce3a
MR
12337/**
12338 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12339 * @plane: drm plane to clean up for
12340 * @fb: old framebuffer that was on plane
12341 *
12342 * Cleans up a framebuffer that has just been removed from a plane.
12343 */
12344void
12345intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
12346 struct drm_framebuffer *fb,
12347 const struct drm_plane_state *old_state)
38f3ce3a
MR
12348{
12349 struct drm_device *dev = plane->dev;
12350 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12351
12352 if (WARN_ON(!obj))
12353 return;
12354
12355 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12356 !INTEL_INFO(dev)->cursor_needs_physical) {
12357 mutex_lock(&dev->struct_mutex);
82bc3b2d 12358 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
12359 mutex_unlock(&dev->struct_mutex);
12360 }
465c120c
MR
12361}
12362
12363static int
3c692a41
GP
12364intel_check_primary_plane(struct drm_plane *plane,
12365 struct intel_plane_state *state)
12366{
32b7eeec
MR
12367 struct drm_device *dev = plane->dev;
12368 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 12369 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12370 struct intel_crtc *intel_crtc;
2b875c22 12371 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
12372 struct drm_rect *dest = &state->dst;
12373 struct drm_rect *src = &state->src;
12374 const struct drm_rect *clip = &state->clip;
465c120c
MR
12375 int ret;
12376
ea2c67bb
MR
12377 crtc = crtc ? crtc : plane->crtc;
12378 intel_crtc = to_intel_crtc(crtc);
12379
c59cb179
MR
12380 ret = drm_plane_helper_check_update(plane, crtc, fb,
12381 src, dest, clip,
12382 DRM_PLANE_HELPER_NO_SCALING,
12383 DRM_PLANE_HELPER_NO_SCALING,
12384 false, true, &state->visible);
12385 if (ret)
12386 return ret;
465c120c 12387
32b7eeec
MR
12388 if (intel_crtc->active) {
12389 intel_crtc->atomic.wait_for_flips = true;
12390
12391 /*
12392 * FBC does not work on some platforms for rotated
12393 * planes, so disable it when rotation is not 0 and
12394 * update it when rotation is set back to 0.
12395 *
12396 * FIXME: This is redundant with the fbc update done in
12397 * the primary plane enable function except that that
12398 * one is done too late. We eventually need to unify
12399 * this.
12400 */
12401 if (intel_crtc->primary_enabled &&
12402 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 12403 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 12404 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
12405 intel_crtc->atomic.disable_fbc = true;
12406 }
12407
12408 if (state->visible) {
12409 /*
12410 * BDW signals flip done immediately if the plane
12411 * is disabled, even if the plane enable is already
12412 * armed to occur at the next vblank :(
12413 */
12414 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12415 intel_crtc->atomic.wait_vblank = true;
12416 }
12417
12418 intel_crtc->atomic.fb_bits |=
12419 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12420
12421 intel_crtc->atomic.update_fbc = true;
0fda6568 12422
1fc0a8f7 12423 if (intel_wm_need_update(plane, &state->base))
0fda6568 12424 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
12425 }
12426
14af293f
GP
12427 return 0;
12428}
12429
12430static void
12431intel_commit_primary_plane(struct drm_plane *plane,
12432 struct intel_plane_state *state)
12433{
2b875c22
MR
12434 struct drm_crtc *crtc = state->base.crtc;
12435 struct drm_framebuffer *fb = state->base.fb;
12436 struct drm_device *dev = plane->dev;
14af293f 12437 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 12438 struct intel_crtc *intel_crtc;
14af293f
GP
12439 struct drm_rect *src = &state->src;
12440
ea2c67bb
MR
12441 crtc = crtc ? crtc : plane->crtc;
12442 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
12443
12444 plane->fb = fb;
9dc806fc
MR
12445 crtc->x = src->x1 >> 16;
12446 crtc->y = src->y1 >> 16;
ccc759dc 12447
ccc759dc 12448 if (intel_crtc->active) {
ccc759dc 12449 if (state->visible) {
ccc759dc
GP
12450 /* FIXME: kill this fastboot hack */
12451 intel_update_pipe_size(intel_crtc);
465c120c 12452
ccc759dc 12453 intel_crtc->primary_enabled = true;
465c120c 12454
ccc759dc
GP
12455 dev_priv->display.update_primary_plane(crtc, plane->fb,
12456 crtc->x, crtc->y);
ccc759dc
GP
12457 } else {
12458 /*
12459 * If clipping results in a non-visible primary plane,
12460 * we'll disable the primary plane. Note that this is
12461 * a bit different than what happens if userspace
12462 * explicitly disables the plane by passing fb=0
12463 * because plane->fb still gets set and pinned.
12464 */
12465 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 12466 }
ccc759dc 12467 }
465c120c
MR
12468}
12469
32b7eeec 12470static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 12471{
32b7eeec 12472 struct drm_device *dev = crtc->dev;
140fd38d 12473 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 12474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
12475 struct intel_plane *intel_plane;
12476 struct drm_plane *p;
12477 unsigned fb_bits = 0;
12478
12479 /* Track fb's for any planes being disabled */
12480 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12481 intel_plane = to_intel_plane(p);
12482
12483 if (intel_crtc->atomic.disabled_planes &
12484 (1 << drm_plane_index(p))) {
12485 switch (p->type) {
12486 case DRM_PLANE_TYPE_PRIMARY:
12487 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12488 break;
12489 case DRM_PLANE_TYPE_CURSOR:
12490 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12491 break;
12492 case DRM_PLANE_TYPE_OVERLAY:
12493 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12494 break;
12495 }
3c692a41 12496
ea2c67bb
MR
12497 mutex_lock(&dev->struct_mutex);
12498 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12499 mutex_unlock(&dev->struct_mutex);
12500 }
12501 }
3c692a41 12502
32b7eeec
MR
12503 if (intel_crtc->atomic.wait_for_flips)
12504 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12505
32b7eeec
MR
12506 if (intel_crtc->atomic.disable_fbc)
12507 intel_fbc_disable(dev);
3c692a41 12508
32b7eeec
MR
12509 if (intel_crtc->atomic.pre_disable_primary)
12510 intel_pre_disable_primary(crtc);
3c692a41 12511
32b7eeec
MR
12512 if (intel_crtc->atomic.update_wm)
12513 intel_update_watermarks(crtc);
3c692a41 12514
32b7eeec 12515 intel_runtime_pm_get(dev_priv);
3c692a41 12516
c34c9ee4
MR
12517 /* Perform vblank evasion around commit operation */
12518 if (intel_crtc->active)
12519 intel_crtc->atomic.evade =
12520 intel_pipe_update_start(intel_crtc,
12521 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12522}
12523
12524static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12525{
12526 struct drm_device *dev = crtc->dev;
12527 struct drm_i915_private *dev_priv = dev->dev_private;
12528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12529 struct drm_plane *p;
12530
c34c9ee4
MR
12531 if (intel_crtc->atomic.evade)
12532 intel_pipe_update_end(intel_crtc,
12533 intel_crtc->atomic.start_vbl_count);
3c692a41 12534
140fd38d 12535 intel_runtime_pm_put(dev_priv);
3c692a41 12536
32b7eeec
MR
12537 if (intel_crtc->atomic.wait_vblank)
12538 intel_wait_for_vblank(dev, intel_crtc->pipe);
12539
12540 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12541
12542 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12543 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12544 intel_fbc_update(dev);
ccc759dc 12545 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12546 }
3c692a41 12547
32b7eeec
MR
12548 if (intel_crtc->atomic.post_enable_primary)
12549 intel_post_enable_primary(crtc);
3c692a41 12550
32b7eeec
MR
12551 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12552 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12553 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12554 false, false);
12555
12556 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12557}
12558
cf4c7c12 12559/**
4a3b8769
MR
12560 * intel_plane_destroy - destroy a plane
12561 * @plane: plane to destroy
cf4c7c12 12562 *
4a3b8769
MR
12563 * Common destruction function for all types of planes (primary, cursor,
12564 * sprite).
cf4c7c12 12565 */
4a3b8769 12566void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12567{
12568 struct intel_plane *intel_plane = to_intel_plane(plane);
12569 drm_plane_cleanup(plane);
12570 kfree(intel_plane);
12571}
12572
65a3fea0 12573const struct drm_plane_funcs intel_plane_funcs = {
ff42e093
DV
12574 .update_plane = drm_plane_helper_update,
12575 .disable_plane = drm_plane_helper_disable,
3d7d6510 12576 .destroy = intel_plane_destroy,
c196e1d6 12577 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12578 .atomic_get_property = intel_plane_atomic_get_property,
12579 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12580 .atomic_duplicate_state = intel_plane_duplicate_state,
12581 .atomic_destroy_state = intel_plane_destroy_state,
12582
465c120c
MR
12583};
12584
12585static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12586 int pipe)
12587{
12588 struct intel_plane *primary;
8e7d688b 12589 struct intel_plane_state *state;
465c120c
MR
12590 const uint32_t *intel_primary_formats;
12591 int num_formats;
12592
12593 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12594 if (primary == NULL)
12595 return NULL;
12596
8e7d688b
MR
12597 state = intel_create_plane_state(&primary->base);
12598 if (!state) {
ea2c67bb
MR
12599 kfree(primary);
12600 return NULL;
12601 }
8e7d688b 12602 primary->base.state = &state->base;
ea2c67bb 12603
465c120c
MR
12604 primary->can_scale = false;
12605 primary->max_downscale = 1;
12606 primary->pipe = pipe;
12607 primary->plane = pipe;
c59cb179
MR
12608 primary->check_plane = intel_check_primary_plane;
12609 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12610 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12611 primary->plane = !pipe;
12612
12613 if (INTEL_INFO(dev)->gen <= 3) {
12614 intel_primary_formats = intel_primary_formats_gen2;
12615 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12616 } else {
12617 intel_primary_formats = intel_primary_formats_gen4;
12618 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12619 }
12620
12621 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12622 &intel_plane_funcs,
465c120c
MR
12623 intel_primary_formats, num_formats,
12624 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12625
12626 if (INTEL_INFO(dev)->gen >= 4) {
12627 if (!dev->mode_config.rotation_property)
12628 dev->mode_config.rotation_property =
12629 drm_mode_create_rotation_property(dev,
12630 BIT(DRM_ROTATE_0) |
12631 BIT(DRM_ROTATE_180));
12632 if (dev->mode_config.rotation_property)
12633 drm_object_attach_property(&primary->base.base,
12634 dev->mode_config.rotation_property,
8e7d688b 12635 state->base.rotation);
48404c1e
SJ
12636 }
12637
ea2c67bb
MR
12638 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12639
465c120c
MR
12640 return &primary->base;
12641}
12642
3d7d6510 12643static int
852e787c
GP
12644intel_check_cursor_plane(struct drm_plane *plane,
12645 struct intel_plane_state *state)
3d7d6510 12646{
2b875c22 12647 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12648 struct drm_device *dev = plane->dev;
2b875c22 12649 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12650 struct drm_rect *dest = &state->dst;
12651 struct drm_rect *src = &state->src;
12652 const struct drm_rect *clip = &state->clip;
757f9a3e 12653 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12654 struct intel_crtc *intel_crtc;
757f9a3e
GP
12655 unsigned stride;
12656 int ret;
3d7d6510 12657
ea2c67bb
MR
12658 crtc = crtc ? crtc : plane->crtc;
12659 intel_crtc = to_intel_crtc(crtc);
12660
757f9a3e 12661 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12662 src, dest, clip,
3d7d6510
MR
12663 DRM_PLANE_HELPER_NO_SCALING,
12664 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12665 true, true, &state->visible);
757f9a3e
GP
12666 if (ret)
12667 return ret;
12668
12669
12670 /* if we want to turn off the cursor ignore width and height */
12671 if (!obj)
32b7eeec 12672 goto finish;
757f9a3e 12673
757f9a3e 12674 /* Check for which cursor types we support */
ea2c67bb
MR
12675 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12676 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12677 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12678 return -EINVAL;
12679 }
12680
ea2c67bb
MR
12681 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12682 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12683 DRM_DEBUG_KMS("buffer is too small\n");
12684 return -ENOMEM;
12685 }
12686
3a656b54 12687 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
12688 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12689 ret = -EINVAL;
12690 }
757f9a3e 12691
32b7eeec
MR
12692finish:
12693 if (intel_crtc->active) {
3749f463 12694 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
12695 intel_crtc->atomic.update_wm = true;
12696
12697 intel_crtc->atomic.fb_bits |=
12698 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12699 }
12700
757f9a3e 12701 return ret;
852e787c 12702}
3d7d6510 12703
f4a2cf29 12704static void
852e787c
GP
12705intel_commit_cursor_plane(struct drm_plane *plane,
12706 struct intel_plane_state *state)
12707{
2b875c22 12708 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12709 struct drm_device *dev = plane->dev;
12710 struct intel_crtc *intel_crtc;
2b875c22 12711 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12712 uint32_t addr;
852e787c 12713
ea2c67bb
MR
12714 crtc = crtc ? crtc : plane->crtc;
12715 intel_crtc = to_intel_crtc(crtc);
12716
2b875c22 12717 plane->fb = state->base.fb;
ea2c67bb
MR
12718 crtc->cursor_x = state->base.crtc_x;
12719 crtc->cursor_y = state->base.crtc_y;
12720
a912f12f
GP
12721 if (intel_crtc->cursor_bo == obj)
12722 goto update;
4ed91096 12723
f4a2cf29 12724 if (!obj)
a912f12f 12725 addr = 0;
f4a2cf29 12726 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12727 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12728 else
a912f12f 12729 addr = obj->phys_handle->busaddr;
852e787c 12730
a912f12f
GP
12731 intel_crtc->cursor_addr = addr;
12732 intel_crtc->cursor_bo = obj;
12733update:
852e787c 12734
32b7eeec 12735 if (intel_crtc->active)
a912f12f 12736 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12737}
12738
3d7d6510
MR
12739static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12740 int pipe)
12741{
12742 struct intel_plane *cursor;
8e7d688b 12743 struct intel_plane_state *state;
3d7d6510
MR
12744
12745 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12746 if (cursor == NULL)
12747 return NULL;
12748
8e7d688b
MR
12749 state = intel_create_plane_state(&cursor->base);
12750 if (!state) {
ea2c67bb
MR
12751 kfree(cursor);
12752 return NULL;
12753 }
8e7d688b 12754 cursor->base.state = &state->base;
ea2c67bb 12755
3d7d6510
MR
12756 cursor->can_scale = false;
12757 cursor->max_downscale = 1;
12758 cursor->pipe = pipe;
12759 cursor->plane = pipe;
c59cb179
MR
12760 cursor->check_plane = intel_check_cursor_plane;
12761 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12762
12763 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12764 &intel_plane_funcs,
3d7d6510
MR
12765 intel_cursor_formats,
12766 ARRAY_SIZE(intel_cursor_formats),
12767 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12768
12769 if (INTEL_INFO(dev)->gen >= 4) {
12770 if (!dev->mode_config.rotation_property)
12771 dev->mode_config.rotation_property =
12772 drm_mode_create_rotation_property(dev,
12773 BIT(DRM_ROTATE_0) |
12774 BIT(DRM_ROTATE_180));
12775 if (dev->mode_config.rotation_property)
12776 drm_object_attach_property(&cursor->base.base,
12777 dev->mode_config.rotation_property,
8e7d688b 12778 state->base.rotation);
4398ad45
VS
12779 }
12780
ea2c67bb
MR
12781 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12782
3d7d6510
MR
12783 return &cursor->base;
12784}
12785
b358d0a6 12786static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12787{
fbee40df 12788 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12789 struct intel_crtc *intel_crtc;
f5de6e07 12790 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12791 struct drm_plane *primary = NULL;
12792 struct drm_plane *cursor = NULL;
465c120c 12793 int i, ret;
79e53945 12794
955382f3 12795 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12796 if (intel_crtc == NULL)
12797 return;
12798
f5de6e07
ACO
12799 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12800 if (!crtc_state)
12801 goto fail;
12802 intel_crtc_set_state(intel_crtc, crtc_state);
07878248 12803 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 12804
465c120c 12805 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12806 if (!primary)
12807 goto fail;
12808
12809 cursor = intel_cursor_plane_create(dev, pipe);
12810 if (!cursor)
12811 goto fail;
12812
465c120c 12813 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12814 cursor, &intel_crtc_funcs);
12815 if (ret)
12816 goto fail;
79e53945
JB
12817
12818 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12819 for (i = 0; i < 256; i++) {
12820 intel_crtc->lut_r[i] = i;
12821 intel_crtc->lut_g[i] = i;
12822 intel_crtc->lut_b[i] = i;
12823 }
12824
1f1c2e24
VS
12825 /*
12826 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12827 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12828 */
80824003
JB
12829 intel_crtc->pipe = pipe;
12830 intel_crtc->plane = pipe;
3a77c4c4 12831 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12832 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12833 intel_crtc->plane = !pipe;
80824003
JB
12834 }
12835
4b0e333e
CW
12836 intel_crtc->cursor_base = ~0;
12837 intel_crtc->cursor_cntl = ~0;
dc41c154 12838 intel_crtc->cursor_size = ~0;
8d7849db 12839
22fd0fab
JB
12840 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12841 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12842 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12843 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12844
9362c7c5
ACO
12845 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12846
79e53945 12847 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12848
12849 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12850 return;
12851
12852fail:
12853 if (primary)
12854 drm_plane_cleanup(primary);
12855 if (cursor)
12856 drm_plane_cleanup(cursor);
f5de6e07 12857 kfree(crtc_state);
3d7d6510 12858 kfree(intel_crtc);
79e53945
JB
12859}
12860
752aa88a
JB
12861enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12862{
12863 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12864 struct drm_device *dev = connector->base.dev;
752aa88a 12865
51fd371b 12866 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12867
d3babd3f 12868 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12869 return INVALID_PIPE;
12870
12871 return to_intel_crtc(encoder->crtc)->pipe;
12872}
12873
08d7b3d1 12874int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12875 struct drm_file *file)
08d7b3d1 12876{
08d7b3d1 12877 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12878 struct drm_crtc *drmmode_crtc;
c05422d5 12879 struct intel_crtc *crtc;
08d7b3d1 12880
7707e653 12881 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12882
7707e653 12883 if (!drmmode_crtc) {
08d7b3d1 12884 DRM_ERROR("no such CRTC id\n");
3f2c2057 12885 return -ENOENT;
08d7b3d1
CW
12886 }
12887
7707e653 12888 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12889 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12890
c05422d5 12891 return 0;
08d7b3d1
CW
12892}
12893
66a9278e 12894static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12895{
66a9278e
DV
12896 struct drm_device *dev = encoder->base.dev;
12897 struct intel_encoder *source_encoder;
79e53945 12898 int index_mask = 0;
79e53945
JB
12899 int entry = 0;
12900
b2784e15 12901 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12902 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12903 index_mask |= (1 << entry);
12904
79e53945
JB
12905 entry++;
12906 }
4ef69c7a 12907
79e53945
JB
12908 return index_mask;
12909}
12910
4d302442
CW
12911static bool has_edp_a(struct drm_device *dev)
12912{
12913 struct drm_i915_private *dev_priv = dev->dev_private;
12914
12915 if (!IS_MOBILE(dev))
12916 return false;
12917
12918 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12919 return false;
12920
e3589908 12921 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12922 return false;
12923
12924 return true;
12925}
12926
84b4e042
JB
12927static bool intel_crt_present(struct drm_device *dev)
12928{
12929 struct drm_i915_private *dev_priv = dev->dev_private;
12930
884497ed
DL
12931 if (INTEL_INFO(dev)->gen >= 9)
12932 return false;
12933
cf404ce4 12934 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12935 return false;
12936
12937 if (IS_CHERRYVIEW(dev))
12938 return false;
12939
12940 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12941 return false;
12942
12943 return true;
12944}
12945
79e53945
JB
12946static void intel_setup_outputs(struct drm_device *dev)
12947{
725e30ad 12948 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12949 struct intel_encoder *encoder;
c6f95f27 12950 struct drm_connector *connector;
cb0953d7 12951 bool dpd_is_edp = false;
79e53945 12952
c9093354 12953 intel_lvds_init(dev);
79e53945 12954
84b4e042 12955 if (intel_crt_present(dev))
79935fca 12956 intel_crt_init(dev);
cb0953d7 12957
affa9354 12958 if (HAS_DDI(dev)) {
0e72a5b5
ED
12959 int found;
12960
de31facd
JB
12961 /*
12962 * Haswell uses DDI functions to detect digital outputs.
12963 * On SKL pre-D0 the strap isn't connected, so we assume
12964 * it's there.
12965 */
0e72a5b5 12966 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
12967 /* WaIgnoreDDIAStrap: skl */
12968 if (found ||
12969 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
12970 intel_ddi_init(dev, PORT_A);
12971
12972 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12973 * register */
12974 found = I915_READ(SFUSE_STRAP);
12975
12976 if (found & SFUSE_STRAP_DDIB_DETECTED)
12977 intel_ddi_init(dev, PORT_B);
12978 if (found & SFUSE_STRAP_DDIC_DETECTED)
12979 intel_ddi_init(dev, PORT_C);
12980 if (found & SFUSE_STRAP_DDID_DETECTED)
12981 intel_ddi_init(dev, PORT_D);
12982 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12983 int found;
5d8a7752 12984 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12985
12986 if (has_edp_a(dev))
12987 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12988
dc0fa718 12989 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12990 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12991 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12992 if (!found)
e2debe91 12993 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12994 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12995 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12996 }
12997
dc0fa718 12998 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12999 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 13000
dc0fa718 13001 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 13002 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 13003
5eb08b69 13004 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 13005 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 13006
270b3042 13007 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 13008 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 13009 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
13010 /*
13011 * The DP_DETECTED bit is the latched state of the DDC
13012 * SDA pin at boot. However since eDP doesn't require DDC
13013 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13014 * eDP ports may have been muxed to an alternate function.
13015 * Thus we can't rely on the DP_DETECTED bit alone to detect
13016 * eDP ports. Consult the VBT as well as DP_DETECTED to
13017 * detect eDP ports.
13018 */
d2182a66
VS
13019 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13020 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
13021 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13022 PORT_B);
e17ac6db
VS
13023 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13024 intel_dp_is_edp(dev, PORT_B))
13025 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 13026
d2182a66
VS
13027 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13028 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
13029 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13030 PORT_C);
e17ac6db
VS
13031 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13032 intel_dp_is_edp(dev, PORT_C))
13033 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 13034
9418c1f1 13035 if (IS_CHERRYVIEW(dev)) {
e17ac6db 13036 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
13037 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13038 PORT_D);
e17ac6db
VS
13039 /* eDP not supported on port D, so don't check VBT */
13040 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13041 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
13042 }
13043
3cfca973 13044 intel_dsi_init(dev);
103a196f 13045 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 13046 bool found = false;
7d57382e 13047
e2debe91 13048 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13049 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 13050 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
13051 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13052 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 13053 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 13054 }
27185ae1 13055
e7281eab 13056 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13057 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 13058 }
13520b05
KH
13059
13060 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 13061
e2debe91 13062 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 13063 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 13064 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 13065 }
27185ae1 13066
e2debe91 13067 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 13068
b01f2c3a
JB
13069 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13070 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 13071 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 13072 }
e7281eab 13073 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 13074 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 13075 }
27185ae1 13076
b01f2c3a 13077 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 13078 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 13079 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 13080 } else if (IS_GEN2(dev))
79e53945
JB
13081 intel_dvo_init(dev);
13082
103a196f 13083 if (SUPPORTS_TV(dev))
79e53945
JB
13084 intel_tv_init(dev);
13085
c6f95f27
MR
13086 /*
13087 * FIXME: We don't have full atomic support yet, but we want to be
13088 * able to enable/test plane updates via the atomic interface in the
13089 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
13090 * will take some atomic codepaths to lookup properties during
13091 * drmModeGetConnector() that unconditionally dereference
13092 * connector->state.
13093 *
13094 * We create a dummy connector state here for each connector to ensure
13095 * the DRM core doesn't try to dereference a NULL connector->state.
13096 * The actual connector properties will never be updated or contain
13097 * useful information, but since we're doing this specifically for
13098 * testing/debug of the plane operations (and only when a specific
13099 * kernel module option is given), that shouldn't really matter.
13100 *
d29b2f9d
ACO
13101 * We are also relying on these states to convert the legacy mode set
13102 * to use a drm_atomic_state struct. The states are kept consistent
13103 * with actual state, so that it is safe to rely on that instead of
13104 * the staged config.
13105 *
c6f95f27
MR
13106 * Once atomic support for crtc's + connectors lands, this loop should
13107 * be removed since we'll be setting up real connector state, which
13108 * will contain Intel-specific properties.
13109 */
d29b2f9d
ACO
13110 list_for_each_entry(connector,
13111 &dev->mode_config.connector_list,
13112 head) {
13113 if (!WARN_ON(connector->state)) {
13114 connector->state = kzalloc(sizeof(*connector->state),
13115 GFP_KERNEL);
c6f95f27
MR
13116 }
13117 }
13118
0bc12bcb 13119 intel_psr_init(dev);
7c8f8a70 13120
b2784e15 13121 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
13122 encoder->base.possible_crtcs = encoder->crtc_mask;
13123 encoder->base.possible_clones =
66a9278e 13124 intel_encoder_clones(encoder);
79e53945 13125 }
47356eb6 13126
dde86e2d 13127 intel_init_pch_refclk(dev);
270b3042
DV
13128
13129 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
13130}
13131
13132static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13133{
60a5ca01 13134 struct drm_device *dev = fb->dev;
79e53945 13135 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 13136
ef2d633e 13137 drm_framebuffer_cleanup(fb);
60a5ca01 13138 mutex_lock(&dev->struct_mutex);
ef2d633e 13139 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
13140 drm_gem_object_unreference(&intel_fb->obj->base);
13141 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13142 kfree(intel_fb);
13143}
13144
13145static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 13146 struct drm_file *file,
79e53945
JB
13147 unsigned int *handle)
13148{
13149 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 13150 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 13151
05394f39 13152 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
13153}
13154
13155static const struct drm_framebuffer_funcs intel_fb_funcs = {
13156 .destroy = intel_user_framebuffer_destroy,
13157 .create_handle = intel_user_framebuffer_create_handle,
13158};
13159
b321803d
DL
13160static
13161u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13162 uint32_t pixel_format)
13163{
13164 u32 gen = INTEL_INFO(dev)->gen;
13165
13166 if (gen >= 9) {
13167 /* "The stride in bytes must not exceed the of the size of 8K
13168 * pixels and 32K bytes."
13169 */
13170 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13171 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13172 return 32*1024;
13173 } else if (gen >= 4) {
13174 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13175 return 16*1024;
13176 else
13177 return 32*1024;
13178 } else if (gen >= 3) {
13179 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13180 return 8*1024;
13181 else
13182 return 16*1024;
13183 } else {
13184 /* XXX DSPC is limited to 4k tiled */
13185 return 8*1024;
13186 }
13187}
13188
b5ea642a
DV
13189static int intel_framebuffer_init(struct drm_device *dev,
13190 struct intel_framebuffer *intel_fb,
13191 struct drm_mode_fb_cmd2 *mode_cmd,
13192 struct drm_i915_gem_object *obj)
79e53945 13193{
6761dd31 13194 unsigned int aligned_height;
79e53945 13195 int ret;
b321803d 13196 u32 pitch_limit, stride_alignment;
79e53945 13197
dd4916c5
DV
13198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13199
2a80eada
DV
13200 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13201 /* Enforce that fb modifier and tiling mode match, but only for
13202 * X-tiled. This is needed for FBC. */
13203 if (!!(obj->tiling_mode == I915_TILING_X) !=
13204 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13205 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13206 return -EINVAL;
13207 }
13208 } else {
13209 if (obj->tiling_mode == I915_TILING_X)
13210 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13211 else if (obj->tiling_mode == I915_TILING_Y) {
13212 DRM_DEBUG("No Y tiling for legacy addfb\n");
13213 return -EINVAL;
13214 }
13215 }
13216
9a8f0a12
TU
13217 /* Passed in modifier sanity checking. */
13218 switch (mode_cmd->modifier[0]) {
13219 case I915_FORMAT_MOD_Y_TILED:
13220 case I915_FORMAT_MOD_Yf_TILED:
13221 if (INTEL_INFO(dev)->gen < 9) {
13222 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13223 mode_cmd->modifier[0]);
13224 return -EINVAL;
13225 }
13226 case DRM_FORMAT_MOD_NONE:
13227 case I915_FORMAT_MOD_X_TILED:
13228 break;
13229 default:
c0f40428
JB
13230 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13231 mode_cmd->modifier[0]);
57cd6508 13232 return -EINVAL;
c16ed4be 13233 }
57cd6508 13234
b321803d
DL
13235 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13236 mode_cmd->pixel_format);
13237 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13238 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13239 mode_cmd->pitches[0], stride_alignment);
57cd6508 13240 return -EINVAL;
c16ed4be 13241 }
57cd6508 13242
b321803d
DL
13243 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13244 mode_cmd->pixel_format);
a35cdaa0 13245 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
13246 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13247 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 13248 "tiled" : "linear",
a35cdaa0 13249 mode_cmd->pitches[0], pitch_limit);
5d7bd705 13250 return -EINVAL;
c16ed4be 13251 }
5d7bd705 13252
2a80eada 13253 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
13254 mode_cmd->pitches[0] != obj->stride) {
13255 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13256 mode_cmd->pitches[0], obj->stride);
5d7bd705 13257 return -EINVAL;
c16ed4be 13258 }
5d7bd705 13259
57779d06 13260 /* Reject formats not supported by any plane early. */
308e5bcb 13261 switch (mode_cmd->pixel_format) {
57779d06 13262 case DRM_FORMAT_C8:
04b3924d
VS
13263 case DRM_FORMAT_RGB565:
13264 case DRM_FORMAT_XRGB8888:
13265 case DRM_FORMAT_ARGB8888:
57779d06
VS
13266 break;
13267 case DRM_FORMAT_XRGB1555:
13268 case DRM_FORMAT_ARGB1555:
c16ed4be 13269 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
13270 DRM_DEBUG("unsupported pixel format: %s\n",
13271 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13272 return -EINVAL;
c16ed4be 13273 }
57779d06
VS
13274 break;
13275 case DRM_FORMAT_XBGR8888:
13276 case DRM_FORMAT_ABGR8888:
04b3924d
VS
13277 case DRM_FORMAT_XRGB2101010:
13278 case DRM_FORMAT_ARGB2101010:
57779d06
VS
13279 case DRM_FORMAT_XBGR2101010:
13280 case DRM_FORMAT_ABGR2101010:
c16ed4be 13281 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
13282 DRM_DEBUG("unsupported pixel format: %s\n",
13283 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13284 return -EINVAL;
c16ed4be 13285 }
b5626747 13286 break;
04b3924d
VS
13287 case DRM_FORMAT_YUYV:
13288 case DRM_FORMAT_UYVY:
13289 case DRM_FORMAT_YVYU:
13290 case DRM_FORMAT_VYUY:
c16ed4be 13291 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
13292 DRM_DEBUG("unsupported pixel format: %s\n",
13293 drm_get_format_name(mode_cmd->pixel_format));
57779d06 13294 return -EINVAL;
c16ed4be 13295 }
57cd6508
CW
13296 break;
13297 default:
4ee62c76
VS
13298 DRM_DEBUG("unsupported pixel format: %s\n",
13299 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
13300 return -EINVAL;
13301 }
13302
90f9a336
VS
13303 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13304 if (mode_cmd->offsets[0] != 0)
13305 return -EINVAL;
13306
ec2c981e 13307 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
13308 mode_cmd->pixel_format,
13309 mode_cmd->modifier[0]);
53155c0a
DV
13310 /* FIXME drm helper for size checks (especially planar formats)? */
13311 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13312 return -EINVAL;
13313
c7d73f6a
DV
13314 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13315 intel_fb->obj = obj;
80075d49 13316 intel_fb->obj->framebuffer_references++;
c7d73f6a 13317
79e53945
JB
13318 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13319 if (ret) {
13320 DRM_ERROR("framebuffer init failed %d\n", ret);
13321 return ret;
13322 }
13323
79e53945
JB
13324 return 0;
13325}
13326
79e53945
JB
13327static struct drm_framebuffer *
13328intel_user_framebuffer_create(struct drm_device *dev,
13329 struct drm_file *filp,
308e5bcb 13330 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 13331{
05394f39 13332 struct drm_i915_gem_object *obj;
79e53945 13333
308e5bcb
JB
13334 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13335 mode_cmd->handles[0]));
c8725226 13336 if (&obj->base == NULL)
cce13ff7 13337 return ERR_PTR(-ENOENT);
79e53945 13338
d2dff872 13339 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
13340}
13341
4520f53a 13342#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 13343static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
13344{
13345}
13346#endif
13347
79e53945 13348static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 13349 .fb_create = intel_user_framebuffer_create,
0632fef6 13350 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
13351 .atomic_check = intel_atomic_check,
13352 .atomic_commit = intel_atomic_commit,
79e53945
JB
13353};
13354
e70236a8
JB
13355/* Set up chip specific display functions */
13356static void intel_init_display(struct drm_device *dev)
13357{
13358 struct drm_i915_private *dev_priv = dev->dev_private;
13359
ee9300bb
DV
13360 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13361 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
13362 else if (IS_CHERRYVIEW(dev))
13363 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
13364 else if (IS_VALLEYVIEW(dev))
13365 dev_priv->display.find_dpll = vlv_find_best_dpll;
13366 else if (IS_PINEVIEW(dev))
13367 dev_priv->display.find_dpll = pnv_find_best_dpll;
13368 else
13369 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13370
bc8d7dff
DL
13371 if (INTEL_INFO(dev)->gen >= 9) {
13372 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13373 dev_priv->display.get_initial_plane_config =
13374 skylake_get_initial_plane_config;
bc8d7dff
DL
13375 dev_priv->display.crtc_compute_clock =
13376 haswell_crtc_compute_clock;
13377 dev_priv->display.crtc_enable = haswell_crtc_enable;
13378 dev_priv->display.crtc_disable = haswell_crtc_disable;
13379 dev_priv->display.off = ironlake_crtc_off;
13380 dev_priv->display.update_primary_plane =
13381 skylake_update_primary_plane;
13382 } else if (HAS_DDI(dev)) {
0e8ffe1b 13383 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
13384 dev_priv->display.get_initial_plane_config =
13385 ironlake_get_initial_plane_config;
797d0259
ACO
13386 dev_priv->display.crtc_compute_clock =
13387 haswell_crtc_compute_clock;
4f771f10
PZ
13388 dev_priv->display.crtc_enable = haswell_crtc_enable;
13389 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 13390 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
13391 dev_priv->display.update_primary_plane =
13392 ironlake_update_primary_plane;
09b4ddf9 13393 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 13394 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
13395 dev_priv->display.get_initial_plane_config =
13396 ironlake_get_initial_plane_config;
3fb37703
ACO
13397 dev_priv->display.crtc_compute_clock =
13398 ironlake_crtc_compute_clock;
76e5a89c
DV
13399 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13400 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 13401 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
13402 dev_priv->display.update_primary_plane =
13403 ironlake_update_primary_plane;
89b667f8
JB
13404 } else if (IS_VALLEYVIEW(dev)) {
13405 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13406 dev_priv->display.get_initial_plane_config =
13407 i9xx_get_initial_plane_config;
d6dfee7a 13408 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
13409 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13410 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13411 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13412 dev_priv->display.update_primary_plane =
13413 i9xx_update_primary_plane;
f564048e 13414 } else {
0e8ffe1b 13415 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
13416 dev_priv->display.get_initial_plane_config =
13417 i9xx_get_initial_plane_config;
d6dfee7a 13418 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
13419 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13420 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 13421 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
13422 dev_priv->display.update_primary_plane =
13423 i9xx_update_primary_plane;
f564048e 13424 }
e70236a8 13425
e70236a8 13426 /* Returns the core display clock speed */
25eb05fc
JB
13427 if (IS_VALLEYVIEW(dev))
13428 dev_priv->display.get_display_clock_speed =
13429 valleyview_get_display_clock_speed;
13430 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
13431 dev_priv->display.get_display_clock_speed =
13432 i945_get_display_clock_speed;
13433 else if (IS_I915G(dev))
13434 dev_priv->display.get_display_clock_speed =
13435 i915_get_display_clock_speed;
257a7ffc 13436 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
13437 dev_priv->display.get_display_clock_speed =
13438 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
13439 else if (IS_PINEVIEW(dev))
13440 dev_priv->display.get_display_clock_speed =
13441 pnv_get_display_clock_speed;
e70236a8
JB
13442 else if (IS_I915GM(dev))
13443 dev_priv->display.get_display_clock_speed =
13444 i915gm_get_display_clock_speed;
13445 else if (IS_I865G(dev))
13446 dev_priv->display.get_display_clock_speed =
13447 i865_get_display_clock_speed;
f0f8a9ce 13448 else if (IS_I85X(dev))
e70236a8
JB
13449 dev_priv->display.get_display_clock_speed =
13450 i855_get_display_clock_speed;
13451 else /* 852, 830 */
13452 dev_priv->display.get_display_clock_speed =
13453 i830_get_display_clock_speed;
13454
7c10a2b5 13455 if (IS_GEN5(dev)) {
3bb11b53 13456 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
13457 } else if (IS_GEN6(dev)) {
13458 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
13459 } else if (IS_IVYBRIDGE(dev)) {
13460 /* FIXME: detect B0+ stepping and use auto training */
13461 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 13462 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 13463 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
13464 } else if (IS_VALLEYVIEW(dev)) {
13465 dev_priv->display.modeset_global_resources =
13466 valleyview_modeset_global_resources;
e70236a8 13467 }
8c9f3aaf 13468
8c9f3aaf
JB
13469 switch (INTEL_INFO(dev)->gen) {
13470 case 2:
13471 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13472 break;
13473
13474 case 3:
13475 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13476 break;
13477
13478 case 4:
13479 case 5:
13480 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13481 break;
13482
13483 case 6:
13484 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13485 break;
7c9017e5 13486 case 7:
4e0bbc31 13487 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
13488 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13489 break;
830c81db 13490 case 9:
ba343e02
TU
13491 /* Drop through - unsupported since execlist only. */
13492 default:
13493 /* Default just returns -ENODEV to indicate unsupported */
13494 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 13495 }
7bd688cd
JN
13496
13497 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
13498
13499 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
13500}
13501
b690e96c
JB
13502/*
13503 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13504 * resume, or other times. This quirk makes sure that's the case for
13505 * affected systems.
13506 */
0206e353 13507static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
13508{
13509 struct drm_i915_private *dev_priv = dev->dev_private;
13510
13511 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 13512 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
13513}
13514
b6b5d049
VS
13515static void quirk_pipeb_force(struct drm_device *dev)
13516{
13517 struct drm_i915_private *dev_priv = dev->dev_private;
13518
13519 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13520 DRM_INFO("applying pipe b force quirk\n");
13521}
13522
435793df
KP
13523/*
13524 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13525 */
13526static void quirk_ssc_force_disable(struct drm_device *dev)
13527{
13528 struct drm_i915_private *dev_priv = dev->dev_private;
13529 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 13530 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
13531}
13532
4dca20ef 13533/*
5a15ab5b
CE
13534 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13535 * brightness value
4dca20ef
CE
13536 */
13537static void quirk_invert_brightness(struct drm_device *dev)
13538{
13539 struct drm_i915_private *dev_priv = dev->dev_private;
13540 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13541 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13542}
13543
9c72cc6f
SD
13544/* Some VBT's incorrectly indicate no backlight is present */
13545static void quirk_backlight_present(struct drm_device *dev)
13546{
13547 struct drm_i915_private *dev_priv = dev->dev_private;
13548 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13549 DRM_INFO("applying backlight present quirk\n");
13550}
13551
b690e96c
JB
13552struct intel_quirk {
13553 int device;
13554 int subsystem_vendor;
13555 int subsystem_device;
13556 void (*hook)(struct drm_device *dev);
13557};
13558
5f85f176
EE
13559/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13560struct intel_dmi_quirk {
13561 void (*hook)(struct drm_device *dev);
13562 const struct dmi_system_id (*dmi_id_list)[];
13563};
13564
13565static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13566{
13567 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13568 return 1;
13569}
13570
13571static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13572 {
13573 .dmi_id_list = &(const struct dmi_system_id[]) {
13574 {
13575 .callback = intel_dmi_reverse_brightness,
13576 .ident = "NCR Corporation",
13577 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13578 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13579 },
13580 },
13581 { } /* terminating entry */
13582 },
13583 .hook = quirk_invert_brightness,
13584 },
13585};
13586
c43b5634 13587static struct intel_quirk intel_quirks[] = {
b690e96c 13588 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13589 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13590
b690e96c
JB
13591 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13592 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13593
b690e96c
JB
13594 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13595 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13596
5f080c0f
VS
13597 /* 830 needs to leave pipe A & dpll A up */
13598 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13599
b6b5d049
VS
13600 /* 830 needs to leave pipe B & dpll B up */
13601 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13602
435793df
KP
13603 /* Lenovo U160 cannot use SSC on LVDS */
13604 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13605
13606 /* Sony Vaio Y cannot use SSC on LVDS */
13607 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13608
be505f64
AH
13609 /* Acer Aspire 5734Z must invert backlight brightness */
13610 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13611
13612 /* Acer/eMachines G725 */
13613 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13614
13615 /* Acer/eMachines e725 */
13616 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13617
13618 /* Acer/Packard Bell NCL20 */
13619 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13620
13621 /* Acer Aspire 4736Z */
13622 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13623
13624 /* Acer Aspire 5336 */
13625 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13626
13627 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13628 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13629
dfb3d47b
SD
13630 /* Acer C720 Chromebook (Core i3 4005U) */
13631 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13632
b2a9601c 13633 /* Apple Macbook 2,1 (Core 2 T7400) */
13634 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13635
d4967d8c
SD
13636 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13637 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13638
13639 /* HP Chromebook 14 (Celeron 2955U) */
13640 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
13641
13642 /* Dell Chromebook 11 */
13643 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
13644};
13645
13646static void intel_init_quirks(struct drm_device *dev)
13647{
13648 struct pci_dev *d = dev->pdev;
13649 int i;
13650
13651 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13652 struct intel_quirk *q = &intel_quirks[i];
13653
13654 if (d->device == q->device &&
13655 (d->subsystem_vendor == q->subsystem_vendor ||
13656 q->subsystem_vendor == PCI_ANY_ID) &&
13657 (d->subsystem_device == q->subsystem_device ||
13658 q->subsystem_device == PCI_ANY_ID))
13659 q->hook(dev);
13660 }
5f85f176
EE
13661 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13662 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13663 intel_dmi_quirks[i].hook(dev);
13664 }
b690e96c
JB
13665}
13666
9cce37f4
JB
13667/* Disable the VGA plane that we never use */
13668static void i915_disable_vga(struct drm_device *dev)
13669{
13670 struct drm_i915_private *dev_priv = dev->dev_private;
13671 u8 sr1;
766aa1c4 13672 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13673
2b37c616 13674 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13675 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13676 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13677 sr1 = inb(VGA_SR_DATA);
13678 outb(sr1 | 1<<5, VGA_SR_DATA);
13679 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13680 udelay(300);
13681
01f5a626 13682 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13683 POSTING_READ(vga_reg);
13684}
13685
f817586c
DV
13686void intel_modeset_init_hw(struct drm_device *dev)
13687{
a8f78b58
ED
13688 intel_prepare_ddi(dev);
13689
f8bf63fd
VS
13690 if (IS_VALLEYVIEW(dev))
13691 vlv_update_cdclk(dev);
13692
f817586c
DV
13693 intel_init_clock_gating(dev);
13694
8090c6b9 13695 intel_enable_gt_powersave(dev);
f817586c
DV
13696}
13697
79e53945
JB
13698void intel_modeset_init(struct drm_device *dev)
13699{
652c393a 13700 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13701 int sprite, ret;
8cc87b75 13702 enum pipe pipe;
46f297fb 13703 struct intel_crtc *crtc;
79e53945
JB
13704
13705 drm_mode_config_init(dev);
13706
13707 dev->mode_config.min_width = 0;
13708 dev->mode_config.min_height = 0;
13709
019d96cb
DA
13710 dev->mode_config.preferred_depth = 24;
13711 dev->mode_config.prefer_shadow = 1;
13712
25bab385
TU
13713 dev->mode_config.allow_fb_modifiers = true;
13714
e6ecefaa 13715 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13716
b690e96c
JB
13717 intel_init_quirks(dev);
13718
1fa61106
ED
13719 intel_init_pm(dev);
13720
e3c74757
BW
13721 if (INTEL_INFO(dev)->num_pipes == 0)
13722 return;
13723
e70236a8 13724 intel_init_display(dev);
7c10a2b5 13725 intel_init_audio(dev);
e70236a8 13726
a6c45cf0
CW
13727 if (IS_GEN2(dev)) {
13728 dev->mode_config.max_width = 2048;
13729 dev->mode_config.max_height = 2048;
13730 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13731 dev->mode_config.max_width = 4096;
13732 dev->mode_config.max_height = 4096;
79e53945 13733 } else {
a6c45cf0
CW
13734 dev->mode_config.max_width = 8192;
13735 dev->mode_config.max_height = 8192;
79e53945 13736 }
068be561 13737
dc41c154
VS
13738 if (IS_845G(dev) || IS_I865G(dev)) {
13739 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13740 dev->mode_config.cursor_height = 1023;
13741 } else if (IS_GEN2(dev)) {
068be561
DL
13742 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13743 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13744 } else {
13745 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13746 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13747 }
13748
5d4545ae 13749 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13750
28c97730 13751 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13752 INTEL_INFO(dev)->num_pipes,
13753 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13754
055e393f 13755 for_each_pipe(dev_priv, pipe) {
8cc87b75 13756 intel_crtc_init(dev, pipe);
3bdcfc0c 13757 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 13758 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13759 if (ret)
06da8da2 13760 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13761 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13762 }
79e53945
JB
13763 }
13764
f42bb70d
JB
13765 intel_init_dpio(dev);
13766
e72f9fbf 13767 intel_shared_dpll_init(dev);
ee7b9f93 13768
9cce37f4
JB
13769 /* Just disable it once at startup */
13770 i915_disable_vga(dev);
79e53945 13771 intel_setup_outputs(dev);
11be49eb
CW
13772
13773 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13774 intel_fbc_disable(dev);
fa9fa083 13775
6e9f798d 13776 drm_modeset_lock_all(dev);
fa9fa083 13777 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13778 drm_modeset_unlock_all(dev);
46f297fb 13779
d3fcc808 13780 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13781 if (!crtc->active)
13782 continue;
13783
46f297fb 13784 /*
46f297fb
JB
13785 * Note that reserving the BIOS fb up front prevents us
13786 * from stuffing other stolen allocations like the ring
13787 * on top. This prevents some ugliness at boot time, and
13788 * can even allow for smooth boot transitions if the BIOS
13789 * fb is large enough for the active pipe configuration.
13790 */
5724dbd1
DL
13791 if (dev_priv->display.get_initial_plane_config) {
13792 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13793 &crtc->plane_config);
13794 /*
13795 * If the fb is shared between multiple heads, we'll
13796 * just get the first one.
13797 */
f6936e29 13798 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 13799 }
46f297fb 13800 }
2c7111db
CW
13801}
13802
7fad798e
DV
13803static void intel_enable_pipe_a(struct drm_device *dev)
13804{
13805 struct intel_connector *connector;
13806 struct drm_connector *crt = NULL;
13807 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13808 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13809
13810 /* We can't just switch on the pipe A, we need to set things up with a
13811 * proper mode and output configuration. As a gross hack, enable pipe A
13812 * by enabling the load detect pipe once. */
3a3371ff 13813 for_each_intel_connector(dev, connector) {
7fad798e
DV
13814 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13815 crt = &connector->base;
13816 break;
13817 }
13818 }
13819
13820 if (!crt)
13821 return;
13822
208bf9fd 13823 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 13824 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
13825}
13826
fa555837
DV
13827static bool
13828intel_check_plane_mapping(struct intel_crtc *crtc)
13829{
7eb552ae
BW
13830 struct drm_device *dev = crtc->base.dev;
13831 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13832 u32 reg, val;
13833
7eb552ae 13834 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13835 return true;
13836
13837 reg = DSPCNTR(!crtc->plane);
13838 val = I915_READ(reg);
13839
13840 if ((val & DISPLAY_PLANE_ENABLE) &&
13841 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13842 return false;
13843
13844 return true;
13845}
13846
24929352
DV
13847static void intel_sanitize_crtc(struct intel_crtc *crtc)
13848{
13849 struct drm_device *dev = crtc->base.dev;
13850 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13851 u32 reg;
24929352 13852
24929352 13853 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13854 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13855 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13856
d3eaf884 13857 /* restore vblank interrupts to correct state */
9625604c 13858 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
13859 if (crtc->active) {
13860 update_scanline_offset(crtc);
9625604c
DV
13861 drm_crtc_vblank_on(&crtc->base);
13862 }
d3eaf884 13863
24929352 13864 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13865 * disable the crtc (and hence change the state) if it is wrong. Note
13866 * that gen4+ has a fixed plane -> pipe mapping. */
13867 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13868 struct intel_connector *connector;
13869 bool plane;
13870
24929352
DV
13871 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13872 crtc->base.base.id);
13873
13874 /* Pipe has the wrong plane attached and the plane is active.
13875 * Temporarily change the plane mapping and disable everything
13876 * ... */
13877 plane = crtc->plane;
13878 crtc->plane = !plane;
9c8958bc 13879 crtc->primary_enabled = true;
24929352
DV
13880 dev_priv->display.crtc_disable(&crtc->base);
13881 crtc->plane = plane;
13882
13883 /* ... and break all links. */
3a3371ff 13884 for_each_intel_connector(dev, connector) {
24929352
DV
13885 if (connector->encoder->base.crtc != &crtc->base)
13886 continue;
13887
7f1950fb
EE
13888 connector->base.dpms = DRM_MODE_DPMS_OFF;
13889 connector->base.encoder = NULL;
24929352 13890 }
7f1950fb
EE
13891 /* multiple connectors may have the same encoder:
13892 * handle them and break crtc link separately */
3a3371ff 13893 for_each_intel_connector(dev, connector)
7f1950fb
EE
13894 if (connector->encoder->base.crtc == &crtc->base) {
13895 connector->encoder->base.crtc = NULL;
13896 connector->encoder->connectors_active = false;
13897 }
24929352
DV
13898
13899 WARN_ON(crtc->active);
83d65738 13900 crtc->base.state->enable = false;
24929352
DV
13901 crtc->base.enabled = false;
13902 }
24929352 13903
7fad798e
DV
13904 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13905 crtc->pipe == PIPE_A && !crtc->active) {
13906 /* BIOS forgot to enable pipe A, this mostly happens after
13907 * resume. Force-enable the pipe to fix this, the update_dpms
13908 * call below we restore the pipe to the right state, but leave
13909 * the required bits on. */
13910 intel_enable_pipe_a(dev);
13911 }
13912
24929352
DV
13913 /* Adjust the state of the output pipe according to whether we
13914 * have active connectors/encoders. */
13915 intel_crtc_update_dpms(&crtc->base);
13916
83d65738 13917 if (crtc->active != crtc->base.state->enable) {
24929352
DV
13918 struct intel_encoder *encoder;
13919
13920 /* This can happen either due to bugs in the get_hw_state
13921 * functions or because the pipe is force-enabled due to the
13922 * pipe A quirk. */
13923 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13924 crtc->base.base.id,
83d65738 13925 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
13926 crtc->active ? "enabled" : "disabled");
13927
83d65738 13928 crtc->base.state->enable = crtc->active;
24929352
DV
13929 crtc->base.enabled = crtc->active;
13930
13931 /* Because we only establish the connector -> encoder ->
13932 * crtc links if something is active, this means the
13933 * crtc is now deactivated. Break the links. connector
13934 * -> encoder links are only establish when things are
13935 * actually up, hence no need to break them. */
13936 WARN_ON(crtc->active);
13937
13938 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13939 WARN_ON(encoder->connectors_active);
13940 encoder->base.crtc = NULL;
13941 }
13942 }
c5ab3bc0 13943
a3ed6aad 13944 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13945 /*
13946 * We start out with underrun reporting disabled to avoid races.
13947 * For correct bookkeeping mark this on active crtcs.
13948 *
c5ab3bc0
DV
13949 * Also on gmch platforms we dont have any hardware bits to
13950 * disable the underrun reporting. Which means we need to start
13951 * out with underrun reporting disabled also on inactive pipes,
13952 * since otherwise we'll complain about the garbage we read when
13953 * e.g. coming up after runtime pm.
13954 *
4cc31489
DV
13955 * No protection against concurrent access is required - at
13956 * worst a fifo underrun happens which also sets this to false.
13957 */
13958 crtc->cpu_fifo_underrun_disabled = true;
13959 crtc->pch_fifo_underrun_disabled = true;
13960 }
24929352
DV
13961}
13962
13963static void intel_sanitize_encoder(struct intel_encoder *encoder)
13964{
13965 struct intel_connector *connector;
13966 struct drm_device *dev = encoder->base.dev;
13967
13968 /* We need to check both for a crtc link (meaning that the
13969 * encoder is active and trying to read from a pipe) and the
13970 * pipe itself being active. */
13971 bool has_active_crtc = encoder->base.crtc &&
13972 to_intel_crtc(encoder->base.crtc)->active;
13973
13974 if (encoder->connectors_active && !has_active_crtc) {
13975 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13976 encoder->base.base.id,
8e329a03 13977 encoder->base.name);
24929352
DV
13978
13979 /* Connector is active, but has no active pipe. This is
13980 * fallout from our resume register restoring. Disable
13981 * the encoder manually again. */
13982 if (encoder->base.crtc) {
13983 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13984 encoder->base.base.id,
8e329a03 13985 encoder->base.name);
24929352 13986 encoder->disable(encoder);
a62d1497
VS
13987 if (encoder->post_disable)
13988 encoder->post_disable(encoder);
24929352 13989 }
7f1950fb
EE
13990 encoder->base.crtc = NULL;
13991 encoder->connectors_active = false;
24929352
DV
13992
13993 /* Inconsistent output/port/pipe state happens presumably due to
13994 * a bug in one of the get_hw_state functions. Or someplace else
13995 * in our code, like the register restore mess on resume. Clamp
13996 * things to off as a safer default. */
3a3371ff 13997 for_each_intel_connector(dev, connector) {
24929352
DV
13998 if (connector->encoder != encoder)
13999 continue;
7f1950fb
EE
14000 connector->base.dpms = DRM_MODE_DPMS_OFF;
14001 connector->base.encoder = NULL;
24929352
DV
14002 }
14003 }
14004 /* Enabled encoders without active connectors will be fixed in
14005 * the crtc fixup. */
14006}
14007
04098753 14008void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
14009{
14010 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 14011 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 14012
04098753
ID
14013 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14014 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14015 i915_disable_vga(dev);
14016 }
14017}
14018
14019void i915_redisable_vga(struct drm_device *dev)
14020{
14021 struct drm_i915_private *dev_priv = dev->dev_private;
14022
8dc8a27c
PZ
14023 /* This function can be called both from intel_modeset_setup_hw_state or
14024 * at a very early point in our resume sequence, where the power well
14025 * structures are not yet restored. Since this function is at a very
14026 * paranoid "someone might have enabled VGA while we were not looking"
14027 * level, just check if the power well is enabled instead of trying to
14028 * follow the "don't touch the power well if we don't need it" policy
14029 * the rest of the driver uses. */
f458ebbc 14030 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
14031 return;
14032
04098753 14033 i915_redisable_vga_power_on(dev);
0fde901f
KM
14034}
14035
98ec7739
VS
14036static bool primary_get_hw_state(struct intel_crtc *crtc)
14037{
14038 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14039
14040 if (!crtc->active)
14041 return false;
14042
14043 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14044}
14045
30e984df 14046static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
14047{
14048 struct drm_i915_private *dev_priv = dev->dev_private;
14049 enum pipe pipe;
24929352
DV
14050 struct intel_crtc *crtc;
14051 struct intel_encoder *encoder;
14052 struct intel_connector *connector;
5358901f 14053 int i;
24929352 14054
d3fcc808 14055 for_each_intel_crtc(dev, crtc) {
6e3c9717 14056 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 14057
6e3c9717 14058 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 14059
0e8ffe1b 14060 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 14061 crtc->config);
24929352 14062
83d65738 14063 crtc->base.state->enable = crtc->active;
24929352 14064 crtc->base.enabled = crtc->active;
98ec7739 14065 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
14066
14067 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14068 crtc->base.base.id,
14069 crtc->active ? "enabled" : "disabled");
14070 }
14071
5358901f
DV
14072 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14073 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14074
3e369b76
ACO
14075 pll->on = pll->get_hw_state(dev_priv, pll,
14076 &pll->config.hw_state);
5358901f 14077 pll->active = 0;
3e369b76 14078 pll->config.crtc_mask = 0;
d3fcc808 14079 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 14080 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 14081 pll->active++;
3e369b76 14082 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 14083 }
5358901f 14084 }
5358901f 14085
1e6f2ddc 14086 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 14087 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 14088
3e369b76 14089 if (pll->config.crtc_mask)
bd2bb1b9 14090 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
14091 }
14092
b2784e15 14093 for_each_intel_encoder(dev, encoder) {
24929352
DV
14094 pipe = 0;
14095
14096 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
14097 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14098 encoder->base.crtc = &crtc->base;
6e3c9717 14099 encoder->get_config(encoder, crtc->config);
24929352
DV
14100 } else {
14101 encoder->base.crtc = NULL;
14102 }
14103
14104 encoder->connectors_active = false;
6f2bcceb 14105 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 14106 encoder->base.base.id,
8e329a03 14107 encoder->base.name,
24929352 14108 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 14109 pipe_name(pipe));
24929352
DV
14110 }
14111
3a3371ff 14112 for_each_intel_connector(dev, connector) {
24929352
DV
14113 if (connector->get_hw_state(connector)) {
14114 connector->base.dpms = DRM_MODE_DPMS_ON;
14115 connector->encoder->connectors_active = true;
14116 connector->base.encoder = &connector->encoder->base;
14117 } else {
14118 connector->base.dpms = DRM_MODE_DPMS_OFF;
14119 connector->base.encoder = NULL;
14120 }
14121 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14122 connector->base.base.id,
c23cc417 14123 connector->base.name,
24929352
DV
14124 connector->base.encoder ? "enabled" : "disabled");
14125 }
30e984df
DV
14126}
14127
14128/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14129 * and i915 state tracking structures. */
14130void intel_modeset_setup_hw_state(struct drm_device *dev,
14131 bool force_restore)
14132{
14133 struct drm_i915_private *dev_priv = dev->dev_private;
14134 enum pipe pipe;
30e984df
DV
14135 struct intel_crtc *crtc;
14136 struct intel_encoder *encoder;
35c95375 14137 int i;
30e984df
DV
14138
14139 intel_modeset_readout_hw_state(dev);
24929352 14140
babea61d
JB
14141 /*
14142 * Now that we have the config, copy it to each CRTC struct
14143 * Note that this could go away if we move to using crtc_config
14144 * checking everywhere.
14145 */
d3fcc808 14146 for_each_intel_crtc(dev, crtc) {
d330a953 14147 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
14148 intel_mode_from_pipe_config(&crtc->base.mode,
14149 crtc->config);
babea61d
JB
14150 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14151 crtc->base.base.id);
14152 drm_mode_debug_printmodeline(&crtc->base.mode);
14153 }
14154 }
14155
24929352 14156 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 14157 for_each_intel_encoder(dev, encoder) {
24929352
DV
14158 intel_sanitize_encoder(encoder);
14159 }
14160
055e393f 14161 for_each_pipe(dev_priv, pipe) {
24929352
DV
14162 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14163 intel_sanitize_crtc(crtc);
6e3c9717
ACO
14164 intel_dump_pipe_config(crtc, crtc->config,
14165 "[setup_hw_state]");
24929352 14166 }
9a935856 14167
d29b2f9d
ACO
14168 intel_modeset_update_connector_atomic_state(dev);
14169
35c95375
DV
14170 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14171 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14172
14173 if (!pll->on || pll->active)
14174 continue;
14175
14176 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14177
14178 pll->disable(dev_priv, pll);
14179 pll->on = false;
14180 }
14181
3078999f
PB
14182 if (IS_GEN9(dev))
14183 skl_wm_get_hw_state(dev);
14184 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
14185 ilk_wm_get_hw_state(dev);
14186
45e2b5f6 14187 if (force_restore) {
7d0bc1ea
VS
14188 i915_redisable_vga(dev);
14189
f30da187
DV
14190 /*
14191 * We need to use raw interfaces for restoring state to avoid
14192 * checking (bogus) intermediate states.
14193 */
055e393f 14194 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
14195 struct drm_crtc *crtc =
14196 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 14197
83a57153 14198 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
14199 }
14200 } else {
14201 intel_modeset_update_staged_output_state(dev);
14202 }
8af6cf88
DV
14203
14204 intel_modeset_check_state(dev);
2c7111db
CW
14205}
14206
14207void intel_modeset_gem_init(struct drm_device *dev)
14208{
92122789 14209 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 14210 struct drm_crtc *c;
2ff8fde1 14211 struct drm_i915_gem_object *obj;
484b41dd 14212
ae48434c
ID
14213 mutex_lock(&dev->struct_mutex);
14214 intel_init_gt_powersave(dev);
14215 mutex_unlock(&dev->struct_mutex);
14216
92122789
JB
14217 /*
14218 * There may be no VBT; and if the BIOS enabled SSC we can
14219 * just keep using it to avoid unnecessary flicker. Whereas if the
14220 * BIOS isn't using it, don't assume it will work even if the VBT
14221 * indicates as much.
14222 */
14223 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14224 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14225 DREF_SSC1_ENABLE);
14226
1833b134 14227 intel_modeset_init_hw(dev);
02e792fb
DV
14228
14229 intel_setup_overlay(dev);
484b41dd
JB
14230
14231 /*
14232 * Make sure any fbs we allocated at startup are properly
14233 * pinned & fenced. When we do the allocation it's too early
14234 * for this.
14235 */
14236 mutex_lock(&dev->struct_mutex);
70e1e0ec 14237 for_each_crtc(dev, c) {
2ff8fde1
MR
14238 obj = intel_fb_obj(c->primary->fb);
14239 if (obj == NULL)
484b41dd
JB
14240 continue;
14241
850c4cdc
TU
14242 if (intel_pin_and_fence_fb_obj(c->primary,
14243 c->primary->fb,
82bc3b2d 14244 c->primary->state,
850c4cdc 14245 NULL)) {
484b41dd
JB
14246 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14247 to_intel_crtc(c)->pipe);
66e514c1
DA
14248 drm_framebuffer_unreference(c->primary->fb);
14249 c->primary->fb = NULL;
afd65eb4 14250 update_state_fb(c->primary);
484b41dd
JB
14251 }
14252 }
14253 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
14254
14255 intel_backlight_register(dev);
79e53945
JB
14256}
14257
4932e2c3
ID
14258void intel_connector_unregister(struct intel_connector *intel_connector)
14259{
14260 struct drm_connector *connector = &intel_connector->base;
14261
14262 intel_panel_destroy_backlight(connector);
34ea3d38 14263 drm_connector_unregister(connector);
4932e2c3
ID
14264}
14265
79e53945
JB
14266void intel_modeset_cleanup(struct drm_device *dev)
14267{
652c393a 14268 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 14269 struct drm_connector *connector;
652c393a 14270
2eb5252e
ID
14271 intel_disable_gt_powersave(dev);
14272
0962c3c9
VS
14273 intel_backlight_unregister(dev);
14274
fd0c0642
DV
14275 /*
14276 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 14277 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
14278 * experience fancy races otherwise.
14279 */
2aeb7d3a 14280 intel_irq_uninstall(dev_priv);
eb21b92b 14281
fd0c0642
DV
14282 /*
14283 * Due to the hpd irq storm handling the hotplug work can re-arm the
14284 * poll handlers. Hence disable polling after hpd handling is shut down.
14285 */
f87ea761 14286 drm_kms_helper_poll_fini(dev);
fd0c0642 14287
652c393a
JB
14288 mutex_lock(&dev->struct_mutex);
14289
723bfd70
JB
14290 intel_unregister_dsm_handler();
14291
7ff0ebcc 14292 intel_fbc_disable(dev);
e70236a8 14293
69341a5e
KH
14294 mutex_unlock(&dev->struct_mutex);
14295
1630fe75
CW
14296 /* flush any delayed tasks or pending work */
14297 flush_scheduled_work();
14298
db31af1d
JN
14299 /* destroy the backlight and sysfs files before encoders/connectors */
14300 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
14301 struct intel_connector *intel_connector;
14302
14303 intel_connector = to_intel_connector(connector);
14304 intel_connector->unregister(intel_connector);
db31af1d 14305 }
d9255d57 14306
79e53945 14307 drm_mode_config_cleanup(dev);
4d7bb011
DV
14308
14309 intel_cleanup_overlay(dev);
ae48434c
ID
14310
14311 mutex_lock(&dev->struct_mutex);
14312 intel_cleanup_gt_powersave(dev);
14313 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14314}
14315
f1c79df3
ZW
14316/*
14317 * Return which encoder is currently attached for connector.
14318 */
df0e9248 14319struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 14320{
df0e9248
CW
14321 return &intel_attached_encoder(connector)->base;
14322}
f1c79df3 14323
df0e9248
CW
14324void intel_connector_attach_encoder(struct intel_connector *connector,
14325 struct intel_encoder *encoder)
14326{
14327 connector->encoder = encoder;
14328 drm_mode_connector_attach_encoder(&connector->base,
14329 &encoder->base);
79e53945 14330}
28d52043
DA
14331
14332/*
14333 * set vga decode state - true == enable VGA decode
14334 */
14335int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14336{
14337 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 14338 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
14339 u16 gmch_ctrl;
14340
75fa041d
CW
14341 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14342 DRM_ERROR("failed to read control word\n");
14343 return -EIO;
14344 }
14345
c0cc8a55
CW
14346 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14347 return 0;
14348
28d52043
DA
14349 if (state)
14350 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14351 else
14352 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
14353
14354 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14355 DRM_ERROR("failed to write control word\n");
14356 return -EIO;
14357 }
14358
28d52043
DA
14359 return 0;
14360}
c4a1d9e4 14361
c4a1d9e4 14362struct intel_display_error_state {
ff57f1b0
PZ
14363
14364 u32 power_well_driver;
14365
63b66e5b
CW
14366 int num_transcoders;
14367
c4a1d9e4
CW
14368 struct intel_cursor_error_state {
14369 u32 control;
14370 u32 position;
14371 u32 base;
14372 u32 size;
52331309 14373 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
14374
14375 struct intel_pipe_error_state {
ddf9c536 14376 bool power_domain_on;
c4a1d9e4 14377 u32 source;
f301b1e1 14378 u32 stat;
52331309 14379 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
14380
14381 struct intel_plane_error_state {
14382 u32 control;
14383 u32 stride;
14384 u32 size;
14385 u32 pos;
14386 u32 addr;
14387 u32 surface;
14388 u32 tile_offset;
52331309 14389 } plane[I915_MAX_PIPES];
63b66e5b
CW
14390
14391 struct intel_transcoder_error_state {
ddf9c536 14392 bool power_domain_on;
63b66e5b
CW
14393 enum transcoder cpu_transcoder;
14394
14395 u32 conf;
14396
14397 u32 htotal;
14398 u32 hblank;
14399 u32 hsync;
14400 u32 vtotal;
14401 u32 vblank;
14402 u32 vsync;
14403 } transcoder[4];
c4a1d9e4
CW
14404};
14405
14406struct intel_display_error_state *
14407intel_display_capture_error_state(struct drm_device *dev)
14408{
fbee40df 14409 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 14410 struct intel_display_error_state *error;
63b66e5b
CW
14411 int transcoders[] = {
14412 TRANSCODER_A,
14413 TRANSCODER_B,
14414 TRANSCODER_C,
14415 TRANSCODER_EDP,
14416 };
c4a1d9e4
CW
14417 int i;
14418
63b66e5b
CW
14419 if (INTEL_INFO(dev)->num_pipes == 0)
14420 return NULL;
14421
9d1cb914 14422 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
14423 if (error == NULL)
14424 return NULL;
14425
190be112 14426 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
14427 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14428
055e393f 14429 for_each_pipe(dev_priv, i) {
ddf9c536 14430 error->pipe[i].power_domain_on =
f458ebbc
DV
14431 __intel_display_power_is_enabled(dev_priv,
14432 POWER_DOMAIN_PIPE(i));
ddf9c536 14433 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
14434 continue;
14435
5efb3e28
VS
14436 error->cursor[i].control = I915_READ(CURCNTR(i));
14437 error->cursor[i].position = I915_READ(CURPOS(i));
14438 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
14439
14440 error->plane[i].control = I915_READ(DSPCNTR(i));
14441 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 14442 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 14443 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
14444 error->plane[i].pos = I915_READ(DSPPOS(i));
14445 }
ca291363
PZ
14446 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14447 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
14448 if (INTEL_INFO(dev)->gen >= 4) {
14449 error->plane[i].surface = I915_READ(DSPSURF(i));
14450 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14451 }
14452
c4a1d9e4 14453 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 14454
3abfce77 14455 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 14456 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
14457 }
14458
14459 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14460 if (HAS_DDI(dev_priv->dev))
14461 error->num_transcoders++; /* Account for eDP. */
14462
14463 for (i = 0; i < error->num_transcoders; i++) {
14464 enum transcoder cpu_transcoder = transcoders[i];
14465
ddf9c536 14466 error->transcoder[i].power_domain_on =
f458ebbc 14467 __intel_display_power_is_enabled(dev_priv,
38cc1daf 14468 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 14469 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
14470 continue;
14471
63b66e5b
CW
14472 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14473
14474 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14475 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14476 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14477 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14478 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14479 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14480 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
14481 }
14482
14483 return error;
14484}
14485
edc3d884
MK
14486#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14487
c4a1d9e4 14488void
edc3d884 14489intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
14490 struct drm_device *dev,
14491 struct intel_display_error_state *error)
14492{
055e393f 14493 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
14494 int i;
14495
63b66e5b
CW
14496 if (!error)
14497 return;
14498
edc3d884 14499 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 14500 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 14501 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 14502 error->power_well_driver);
055e393f 14503 for_each_pipe(dev_priv, i) {
edc3d884 14504 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
14505 err_printf(m, " Power: %s\n",
14506 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 14507 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 14508 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
14509
14510 err_printf(m, "Plane [%d]:\n", i);
14511 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14512 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 14513 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
14514 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14515 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 14516 }
4b71a570 14517 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 14518 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 14519 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
14520 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14521 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
14522 }
14523
edc3d884
MK
14524 err_printf(m, "Cursor [%d]:\n", i);
14525 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14526 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14527 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 14528 }
63b66e5b
CW
14529
14530 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 14531 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 14532 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
14533 err_printf(m, " Power: %s\n",
14534 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
14535 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14536 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14537 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14538 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14539 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14540 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14541 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14542 }
c4a1d9e4 14543}
e2fcdaa9
VS
14544
14545void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14546{
14547 struct intel_crtc *crtc;
14548
14549 for_each_intel_crtc(dev, crtc) {
14550 struct intel_unpin_work *work;
e2fcdaa9 14551
5e2d7afc 14552 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14553
14554 work = crtc->unpin_work;
14555
14556 if (work && work->event &&
14557 work->event->base.file_priv == file) {
14558 kfree(work->event);
14559 work->event = NULL;
14560 }
14561
5e2d7afc 14562 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14563 }
14564}
This page took 2.708593 seconds and 5 git commands to generate.