sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
332ac17e
DF
299/*
300 * Maximum bandwidth available for all -deadline tasks and groups
301 * (if group scheduling is configured) on each CPU.
302 *
303 * default: 5%
304 */
305unsigned int sysctl_sched_dl_period = 1000000;
306int sysctl_sched_dl_runtime = 50000;
307
fa85ae24 308
1da177e4 309
0970d299 310/*
0122ec5b 311 * __task_rq_lock - lock the rq @p resides on.
b29739f9 312 */
70b97a7f 313static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
314 __acquires(rq->lock)
315{
0970d299
PZ
316 struct rq *rq;
317
0122ec5b
PZ
318 lockdep_assert_held(&p->pi_lock);
319
3a5c359a 320 for (;;) {
0970d299 321 rq = task_rq(p);
05fa785c 322 raw_spin_lock(&rq->lock);
65cc8e48 323 if (likely(rq == task_rq(p)))
3a5c359a 324 return rq;
05fa785c 325 raw_spin_unlock(&rq->lock);
b29739f9 326 }
b29739f9
IM
327}
328
1da177e4 329/*
0122ec5b 330 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 331 */
70b97a7f 332static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 333 __acquires(p->pi_lock)
1da177e4
LT
334 __acquires(rq->lock)
335{
70b97a7f 336 struct rq *rq;
1da177e4 337
3a5c359a 338 for (;;) {
0122ec5b 339 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 340 rq = task_rq(p);
05fa785c 341 raw_spin_lock(&rq->lock);
65cc8e48 342 if (likely(rq == task_rq(p)))
3a5c359a 343 return rq;
0122ec5b
PZ
344 raw_spin_unlock(&rq->lock);
345 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 346 }
1da177e4
LT
347}
348
a9957449 349static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
350 __releases(rq->lock)
351{
05fa785c 352 raw_spin_unlock(&rq->lock);
b29739f9
IM
353}
354
0122ec5b
PZ
355static inline void
356task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 357 __releases(rq->lock)
0122ec5b 358 __releases(p->pi_lock)
1da177e4 359{
0122ec5b
PZ
360 raw_spin_unlock(&rq->lock);
361 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
362}
363
1da177e4 364/*
cc2a73b5 365 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 366 */
a9957449 367static struct rq *this_rq_lock(void)
1da177e4
LT
368 __acquires(rq->lock)
369{
70b97a7f 370 struct rq *rq;
1da177e4
LT
371
372 local_irq_disable();
373 rq = this_rq();
05fa785c 374 raw_spin_lock(&rq->lock);
1da177e4
LT
375
376 return rq;
377}
378
8f4d37ec
PZ
379#ifdef CONFIG_SCHED_HRTICK
380/*
381 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 382 */
8f4d37ec 383
8f4d37ec
PZ
384static void hrtick_clear(struct rq *rq)
385{
386 if (hrtimer_active(&rq->hrtick_timer))
387 hrtimer_cancel(&rq->hrtick_timer);
388}
389
8f4d37ec
PZ
390/*
391 * High-resolution timer tick.
392 * Runs from hardirq context with interrupts disabled.
393 */
394static enum hrtimer_restart hrtick(struct hrtimer *timer)
395{
396 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
397
398 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
399
05fa785c 400 raw_spin_lock(&rq->lock);
3e51f33f 401 update_rq_clock(rq);
8f4d37ec 402 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 403 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
404
405 return HRTIMER_NORESTART;
406}
407
95e904c7 408#ifdef CONFIG_SMP
971ee28c
PZ
409
410static int __hrtick_restart(struct rq *rq)
411{
412 struct hrtimer *timer = &rq->hrtick_timer;
413 ktime_t time = hrtimer_get_softexpires(timer);
414
415 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
416}
417
31656519
PZ
418/*
419 * called from hardirq (IPI) context
420 */
421static void __hrtick_start(void *arg)
b328ca18 422{
31656519 423 struct rq *rq = arg;
b328ca18 424
05fa785c 425 raw_spin_lock(&rq->lock);
971ee28c 426 __hrtick_restart(rq);
31656519 427 rq->hrtick_csd_pending = 0;
05fa785c 428 raw_spin_unlock(&rq->lock);
b328ca18
PZ
429}
430
31656519
PZ
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
029632fb 436void hrtick_start(struct rq *rq, u64 delay)
b328ca18 437{
31656519
PZ
438 struct hrtimer *timer = &rq->hrtick_timer;
439 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 440
cc584b21 441 hrtimer_set_expires(timer, time);
31656519
PZ
442
443 if (rq == this_rq()) {
971ee28c 444 __hrtick_restart(rq);
31656519 445 } else if (!rq->hrtick_csd_pending) {
6e275637 446 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
447 rq->hrtick_csd_pending = 1;
448 }
b328ca18
PZ
449}
450
451static int
452hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
453{
454 int cpu = (int)(long)hcpu;
455
456 switch (action) {
457 case CPU_UP_CANCELED:
458 case CPU_UP_CANCELED_FROZEN:
459 case CPU_DOWN_PREPARE:
460 case CPU_DOWN_PREPARE_FROZEN:
461 case CPU_DEAD:
462 case CPU_DEAD_FROZEN:
31656519 463 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
464 return NOTIFY_OK;
465 }
466
467 return NOTIFY_DONE;
468}
469
fa748203 470static __init void init_hrtick(void)
b328ca18
PZ
471{
472 hotcpu_notifier(hotplug_hrtick, 0);
473}
31656519
PZ
474#else
475/*
476 * Called to set the hrtick timer state.
477 *
478 * called with rq->lock held and irqs disabled
479 */
029632fb 480void hrtick_start(struct rq *rq, u64 delay)
31656519 481{
7f1e2ca9 482 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 483 HRTIMER_MODE_REL_PINNED, 0);
31656519 484}
b328ca18 485
006c75f1 486static inline void init_hrtick(void)
8f4d37ec 487{
8f4d37ec 488}
31656519 489#endif /* CONFIG_SMP */
8f4d37ec 490
31656519 491static void init_rq_hrtick(struct rq *rq)
8f4d37ec 492{
31656519
PZ
493#ifdef CONFIG_SMP
494 rq->hrtick_csd_pending = 0;
8f4d37ec 495
31656519
PZ
496 rq->hrtick_csd.flags = 0;
497 rq->hrtick_csd.func = __hrtick_start;
498 rq->hrtick_csd.info = rq;
499#endif
8f4d37ec 500
31656519
PZ
501 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
502 rq->hrtick_timer.function = hrtick;
8f4d37ec 503}
006c75f1 504#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
505static inline void hrtick_clear(struct rq *rq)
506{
507}
508
8f4d37ec
PZ
509static inline void init_rq_hrtick(struct rq *rq)
510{
511}
512
b328ca18
PZ
513static inline void init_hrtick(void)
514{
515}
006c75f1 516#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 517
c24d20db
IM
518/*
519 * resched_task - mark a task 'to be rescheduled now'.
520 *
521 * On UP this means the setting of the need_resched flag, on SMP it
522 * might also involve a cross-CPU call to trigger the scheduler on
523 * the target CPU.
524 */
029632fb 525void resched_task(struct task_struct *p)
c24d20db
IM
526{
527 int cpu;
528
b021fe3e 529 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 530
5ed0cec0 531 if (test_tsk_need_resched(p))
c24d20db
IM
532 return;
533
5ed0cec0 534 set_tsk_need_resched(p);
c24d20db
IM
535
536 cpu = task_cpu(p);
f27dde8d
PZ
537 if (cpu == smp_processor_id()) {
538 set_preempt_need_resched();
c24d20db 539 return;
f27dde8d 540 }
c24d20db
IM
541
542 /* NEED_RESCHED must be visible before we test polling */
543 smp_mb();
544 if (!tsk_is_polling(p))
545 smp_send_reschedule(cpu);
546}
547
029632fb 548void resched_cpu(int cpu)
c24d20db
IM
549{
550 struct rq *rq = cpu_rq(cpu);
551 unsigned long flags;
552
05fa785c 553 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
554 return;
555 resched_task(cpu_curr(cpu));
05fa785c 556 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 557}
06d8308c 558
b021fe3e 559#ifdef CONFIG_SMP
3451d024 560#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
561/*
562 * In the semi idle case, use the nearest busy cpu for migrating timers
563 * from an idle cpu. This is good for power-savings.
564 *
565 * We don't do similar optimization for completely idle system, as
566 * selecting an idle cpu will add more delays to the timers than intended
567 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
568 */
569int get_nohz_timer_target(void)
570{
571 int cpu = smp_processor_id();
572 int i;
573 struct sched_domain *sd;
574
057f3fad 575 rcu_read_lock();
83cd4fe2 576 for_each_domain(cpu, sd) {
057f3fad
PZ
577 for_each_cpu(i, sched_domain_span(sd)) {
578 if (!idle_cpu(i)) {
579 cpu = i;
580 goto unlock;
581 }
582 }
83cd4fe2 583 }
057f3fad
PZ
584unlock:
585 rcu_read_unlock();
83cd4fe2
VP
586 return cpu;
587}
06d8308c
TG
588/*
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
597 */
1c20091e 598static void wake_up_idle_cpu(int cpu)
06d8308c
TG
599{
600 struct rq *rq = cpu_rq(cpu);
601
602 if (cpu == smp_processor_id())
603 return;
604
605 /*
606 * This is safe, as this function is called with the timer
607 * wheel base lock of (cpu) held. When the CPU is on the way
608 * to idle and has not yet set rq->curr to idle then it will
609 * be serialized on the timer wheel base lock and take the new
610 * timer into account automatically.
611 */
612 if (rq->curr != rq->idle)
613 return;
45bf76df 614
45bf76df 615 /*
06d8308c
TG
616 * We can set TIF_RESCHED on the idle task of the other CPU
617 * lockless. The worst case is that the other CPU runs the
618 * idle task through an additional NOOP schedule()
45bf76df 619 */
5ed0cec0 620 set_tsk_need_resched(rq->idle);
45bf76df 621
06d8308c
TG
622 /* NEED_RESCHED must be visible before we test polling */
623 smp_mb();
624 if (!tsk_is_polling(rq->idle))
625 smp_send_reschedule(cpu);
45bf76df
IM
626}
627
c5bfece2 628static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 629{
c5bfece2 630 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
631 if (cpu != smp_processor_id() ||
632 tick_nohz_tick_stopped())
633 smp_send_reschedule(cpu);
634 return true;
635 }
636
637 return false;
638}
639
640void wake_up_nohz_cpu(int cpu)
641{
c5bfece2 642 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
643 wake_up_idle_cpu(cpu);
644}
645
ca38062e 646static inline bool got_nohz_idle_kick(void)
45bf76df 647{
1c792db7 648 int cpu = smp_processor_id();
873b4c65
VG
649
650 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
651 return false;
652
653 if (idle_cpu(cpu) && !need_resched())
654 return true;
655
656 /*
657 * We can't run Idle Load Balance on this CPU for this time so we
658 * cancel it and clear NOHZ_BALANCE_KICK
659 */
660 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
661 return false;
45bf76df
IM
662}
663
3451d024 664#else /* CONFIG_NO_HZ_COMMON */
45bf76df 665
ca38062e 666static inline bool got_nohz_idle_kick(void)
2069dd75 667{
ca38062e 668 return false;
2069dd75
PZ
669}
670
3451d024 671#endif /* CONFIG_NO_HZ_COMMON */
d842de87 672
ce831b38
FW
673#ifdef CONFIG_NO_HZ_FULL
674bool sched_can_stop_tick(void)
675{
676 struct rq *rq;
677
678 rq = this_rq();
679
680 /* Make sure rq->nr_running update is visible after the IPI */
681 smp_rmb();
682
683 /* More than one running task need preemption */
684 if (rq->nr_running > 1)
685 return false;
686
687 return true;
688}
689#endif /* CONFIG_NO_HZ_FULL */
d842de87 690
029632fb 691void sched_avg_update(struct rq *rq)
18d95a28 692{
e9e9250b
PZ
693 s64 period = sched_avg_period();
694
78becc27 695 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
696 /*
697 * Inline assembly required to prevent the compiler
698 * optimising this loop into a divmod call.
699 * See __iter_div_u64_rem() for another example of this.
700 */
701 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
702 rq->age_stamp += period;
703 rq->rt_avg /= 2;
704 }
18d95a28
PZ
705}
706
6d6bc0ad 707#endif /* CONFIG_SMP */
18d95a28 708
a790de99
PT
709#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
710 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 711/*
8277434e
PT
712 * Iterate task_group tree rooted at *from, calling @down when first entering a
713 * node and @up when leaving it for the final time.
714 *
715 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 716 */
029632fb 717int walk_tg_tree_from(struct task_group *from,
8277434e 718 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
719{
720 struct task_group *parent, *child;
eb755805 721 int ret;
c09595f6 722
8277434e
PT
723 parent = from;
724
c09595f6 725down:
eb755805
PZ
726 ret = (*down)(parent, data);
727 if (ret)
8277434e 728 goto out;
c09595f6
PZ
729 list_for_each_entry_rcu(child, &parent->children, siblings) {
730 parent = child;
731 goto down;
732
733up:
734 continue;
735 }
eb755805 736 ret = (*up)(parent, data);
8277434e
PT
737 if (ret || parent == from)
738 goto out;
c09595f6
PZ
739
740 child = parent;
741 parent = parent->parent;
742 if (parent)
743 goto up;
8277434e 744out:
eb755805 745 return ret;
c09595f6
PZ
746}
747
029632fb 748int tg_nop(struct task_group *tg, void *data)
eb755805 749{
e2b245f8 750 return 0;
eb755805 751}
18d95a28
PZ
752#endif
753
45bf76df
IM
754static void set_load_weight(struct task_struct *p)
755{
f05998d4
NR
756 int prio = p->static_prio - MAX_RT_PRIO;
757 struct load_weight *load = &p->se.load;
758
dd41f596
IM
759 /*
760 * SCHED_IDLE tasks get minimal weight:
761 */
762 if (p->policy == SCHED_IDLE) {
c8b28116 763 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 764 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
765 return;
766 }
71f8bd46 767
c8b28116 768 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 769 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
770}
771
371fd7e7 772static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 773{
a64692a3 774 update_rq_clock(rq);
43148951 775 sched_info_queued(rq, p);
371fd7e7 776 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
777}
778
371fd7e7 779static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 780{
a64692a3 781 update_rq_clock(rq);
43148951 782 sched_info_dequeued(rq, p);
371fd7e7 783 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
784}
785
029632fb 786void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
787{
788 if (task_contributes_to_load(p))
789 rq->nr_uninterruptible--;
790
371fd7e7 791 enqueue_task(rq, p, flags);
1e3c88bd
PZ
792}
793
029632fb 794void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
795{
796 if (task_contributes_to_load(p))
797 rq->nr_uninterruptible++;
798
371fd7e7 799 dequeue_task(rq, p, flags);
1e3c88bd
PZ
800}
801
fe44d621 802static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 803{
095c0aa8
GC
804/*
805 * In theory, the compile should just see 0 here, and optimize out the call
806 * to sched_rt_avg_update. But I don't trust it...
807 */
808#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
809 s64 steal = 0, irq_delta = 0;
810#endif
811#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 812 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
813
814 /*
815 * Since irq_time is only updated on {soft,}irq_exit, we might run into
816 * this case when a previous update_rq_clock() happened inside a
817 * {soft,}irq region.
818 *
819 * When this happens, we stop ->clock_task and only update the
820 * prev_irq_time stamp to account for the part that fit, so that a next
821 * update will consume the rest. This ensures ->clock_task is
822 * monotonic.
823 *
824 * It does however cause some slight miss-attribution of {soft,}irq
825 * time, a more accurate solution would be to update the irq_time using
826 * the current rq->clock timestamp, except that would require using
827 * atomic ops.
828 */
829 if (irq_delta > delta)
830 irq_delta = delta;
831
832 rq->prev_irq_time += irq_delta;
833 delta -= irq_delta;
095c0aa8
GC
834#endif
835#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 836 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
837 u64 st;
838
839 steal = paravirt_steal_clock(cpu_of(rq));
840 steal -= rq->prev_steal_time_rq;
841
842 if (unlikely(steal > delta))
843 steal = delta;
844
845 st = steal_ticks(steal);
846 steal = st * TICK_NSEC;
847
848 rq->prev_steal_time_rq += steal;
849
850 delta -= steal;
851 }
852#endif
853
fe44d621
PZ
854 rq->clock_task += delta;
855
095c0aa8
GC
856#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
857 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
858 sched_rt_avg_update(rq, irq_delta + steal);
859#endif
aa483808
VP
860}
861
34f971f6
PZ
862void sched_set_stop_task(int cpu, struct task_struct *stop)
863{
864 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
865 struct task_struct *old_stop = cpu_rq(cpu)->stop;
866
867 if (stop) {
868 /*
869 * Make it appear like a SCHED_FIFO task, its something
870 * userspace knows about and won't get confused about.
871 *
872 * Also, it will make PI more or less work without too
873 * much confusion -- but then, stop work should not
874 * rely on PI working anyway.
875 */
876 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
877
878 stop->sched_class = &stop_sched_class;
879 }
880
881 cpu_rq(cpu)->stop = stop;
882
883 if (old_stop) {
884 /*
885 * Reset it back to a normal scheduling class so that
886 * it can die in pieces.
887 */
888 old_stop->sched_class = &rt_sched_class;
889 }
890}
891
14531189 892/*
dd41f596 893 * __normal_prio - return the priority that is based on the static prio
14531189 894 */
14531189
IM
895static inline int __normal_prio(struct task_struct *p)
896{
dd41f596 897 return p->static_prio;
14531189
IM
898}
899
b29739f9
IM
900/*
901 * Calculate the expected normal priority: i.e. priority
902 * without taking RT-inheritance into account. Might be
903 * boosted by interactivity modifiers. Changes upon fork,
904 * setprio syscalls, and whenever the interactivity
905 * estimator recalculates.
906 */
36c8b586 907static inline int normal_prio(struct task_struct *p)
b29739f9
IM
908{
909 int prio;
910
aab03e05
DF
911 if (task_has_dl_policy(p))
912 prio = MAX_DL_PRIO-1;
913 else if (task_has_rt_policy(p))
b29739f9
IM
914 prio = MAX_RT_PRIO-1 - p->rt_priority;
915 else
916 prio = __normal_prio(p);
917 return prio;
918}
919
920/*
921 * Calculate the current priority, i.e. the priority
922 * taken into account by the scheduler. This value might
923 * be boosted by RT tasks, or might be boosted by
924 * interactivity modifiers. Will be RT if the task got
925 * RT-boosted. If not then it returns p->normal_prio.
926 */
36c8b586 927static int effective_prio(struct task_struct *p)
b29739f9
IM
928{
929 p->normal_prio = normal_prio(p);
930 /*
931 * If we are RT tasks or we were boosted to RT priority,
932 * keep the priority unchanged. Otherwise, update priority
933 * to the normal priority:
934 */
935 if (!rt_prio(p->prio))
936 return p->normal_prio;
937 return p->prio;
938}
939
1da177e4
LT
940/**
941 * task_curr - is this task currently executing on a CPU?
942 * @p: the task in question.
e69f6186
YB
943 *
944 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 945 */
36c8b586 946inline int task_curr(const struct task_struct *p)
1da177e4
LT
947{
948 return cpu_curr(task_cpu(p)) == p;
949}
950
cb469845
SR
951static inline void check_class_changed(struct rq *rq, struct task_struct *p,
952 const struct sched_class *prev_class,
da7a735e 953 int oldprio)
cb469845
SR
954{
955 if (prev_class != p->sched_class) {
956 if (prev_class->switched_from)
da7a735e
PZ
957 prev_class->switched_from(rq, p);
958 p->sched_class->switched_to(rq, p);
2d3d891d 959 } else if (oldprio != p->prio || dl_task(p))
da7a735e 960 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
961}
962
029632fb 963void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
964{
965 const struct sched_class *class;
966
967 if (p->sched_class == rq->curr->sched_class) {
968 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
969 } else {
970 for_each_class(class) {
971 if (class == rq->curr->sched_class)
972 break;
973 if (class == p->sched_class) {
974 resched_task(rq->curr);
975 break;
976 }
977 }
978 }
979
980 /*
981 * A queue event has occurred, and we're going to schedule. In
982 * this case, we can save a useless back to back clock update.
983 */
fd2f4419 984 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
985 rq->skip_clock_update = 1;
986}
987
1da177e4 988#ifdef CONFIG_SMP
dd41f596 989void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 990{
e2912009
PZ
991#ifdef CONFIG_SCHED_DEBUG
992 /*
993 * We should never call set_task_cpu() on a blocked task,
994 * ttwu() will sort out the placement.
995 */
077614ee 996 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 997 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
998
999#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1000 /*
1001 * The caller should hold either p->pi_lock or rq->lock, when changing
1002 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1003 *
1004 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1005 * see task_group().
6c6c54e1
PZ
1006 *
1007 * Furthermore, all task_rq users should acquire both locks, see
1008 * task_rq_lock().
1009 */
0122ec5b
PZ
1010 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1011 lockdep_is_held(&task_rq(p)->lock)));
1012#endif
e2912009
PZ
1013#endif
1014
de1d7286 1015 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1016
0c69774e 1017 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1018 if (p->sched_class->migrate_task_rq)
1019 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1020 p->se.nr_migrations++;
a8b0ca17 1021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1022 }
dd41f596
IM
1023
1024 __set_task_cpu(p, new_cpu);
c65cc870
IM
1025}
1026
ac66f547
PZ
1027static void __migrate_swap_task(struct task_struct *p, int cpu)
1028{
1029 if (p->on_rq) {
1030 struct rq *src_rq, *dst_rq;
1031
1032 src_rq = task_rq(p);
1033 dst_rq = cpu_rq(cpu);
1034
1035 deactivate_task(src_rq, p, 0);
1036 set_task_cpu(p, cpu);
1037 activate_task(dst_rq, p, 0);
1038 check_preempt_curr(dst_rq, p, 0);
1039 } else {
1040 /*
1041 * Task isn't running anymore; make it appear like we migrated
1042 * it before it went to sleep. This means on wakeup we make the
1043 * previous cpu our targer instead of where it really is.
1044 */
1045 p->wake_cpu = cpu;
1046 }
1047}
1048
1049struct migration_swap_arg {
1050 struct task_struct *src_task, *dst_task;
1051 int src_cpu, dst_cpu;
1052};
1053
1054static int migrate_swap_stop(void *data)
1055{
1056 struct migration_swap_arg *arg = data;
1057 struct rq *src_rq, *dst_rq;
1058 int ret = -EAGAIN;
1059
1060 src_rq = cpu_rq(arg->src_cpu);
1061 dst_rq = cpu_rq(arg->dst_cpu);
1062
74602315
PZ
1063 double_raw_lock(&arg->src_task->pi_lock,
1064 &arg->dst_task->pi_lock);
ac66f547
PZ
1065 double_rq_lock(src_rq, dst_rq);
1066 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1067 goto unlock;
1068
1069 if (task_cpu(arg->src_task) != arg->src_cpu)
1070 goto unlock;
1071
1072 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1073 goto unlock;
1074
1075 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1076 goto unlock;
1077
1078 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1079 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1080
1081 ret = 0;
1082
1083unlock:
1084 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1085 raw_spin_unlock(&arg->dst_task->pi_lock);
1086 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1087
1088 return ret;
1089}
1090
1091/*
1092 * Cross migrate two tasks
1093 */
1094int migrate_swap(struct task_struct *cur, struct task_struct *p)
1095{
1096 struct migration_swap_arg arg;
1097 int ret = -EINVAL;
1098
ac66f547
PZ
1099 arg = (struct migration_swap_arg){
1100 .src_task = cur,
1101 .src_cpu = task_cpu(cur),
1102 .dst_task = p,
1103 .dst_cpu = task_cpu(p),
1104 };
1105
1106 if (arg.src_cpu == arg.dst_cpu)
1107 goto out;
1108
6acce3ef
PZ
1109 /*
1110 * These three tests are all lockless; this is OK since all of them
1111 * will be re-checked with proper locks held further down the line.
1112 */
ac66f547
PZ
1113 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1114 goto out;
1115
1116 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1117 goto out;
1118
1119 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1120 goto out;
1121
1122 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1123
1124out:
ac66f547
PZ
1125 return ret;
1126}
1127
969c7921 1128struct migration_arg {
36c8b586 1129 struct task_struct *task;
1da177e4 1130 int dest_cpu;
70b97a7f 1131};
1da177e4 1132
969c7921
TH
1133static int migration_cpu_stop(void *data);
1134
1da177e4
LT
1135/*
1136 * wait_task_inactive - wait for a thread to unschedule.
1137 *
85ba2d86
RM
1138 * If @match_state is nonzero, it's the @p->state value just checked and
1139 * not expected to change. If it changes, i.e. @p might have woken up,
1140 * then return zero. When we succeed in waiting for @p to be off its CPU,
1141 * we return a positive number (its total switch count). If a second call
1142 * a short while later returns the same number, the caller can be sure that
1143 * @p has remained unscheduled the whole time.
1144 *
1da177e4
LT
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1150 */
85ba2d86 1151unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1152{
1153 unsigned long flags;
dd41f596 1154 int running, on_rq;
85ba2d86 1155 unsigned long ncsw;
70b97a7f 1156 struct rq *rq;
1da177e4 1157
3a5c359a
AK
1158 for (;;) {
1159 /*
1160 * We do the initial early heuristics without holding
1161 * any task-queue locks at all. We'll only try to get
1162 * the runqueue lock when things look like they will
1163 * work out!
1164 */
1165 rq = task_rq(p);
fa490cfd 1166
3a5c359a
AK
1167 /*
1168 * If the task is actively running on another CPU
1169 * still, just relax and busy-wait without holding
1170 * any locks.
1171 *
1172 * NOTE! Since we don't hold any locks, it's not
1173 * even sure that "rq" stays as the right runqueue!
1174 * But we don't care, since "task_running()" will
1175 * return false if the runqueue has changed and p
1176 * is actually now running somewhere else!
1177 */
85ba2d86
RM
1178 while (task_running(rq, p)) {
1179 if (match_state && unlikely(p->state != match_state))
1180 return 0;
3a5c359a 1181 cpu_relax();
85ba2d86 1182 }
fa490cfd 1183
3a5c359a
AK
1184 /*
1185 * Ok, time to look more closely! We need the rq
1186 * lock now, to be *sure*. If we're wrong, we'll
1187 * just go back and repeat.
1188 */
1189 rq = task_rq_lock(p, &flags);
27a9da65 1190 trace_sched_wait_task(p);
3a5c359a 1191 running = task_running(rq, p);
fd2f4419 1192 on_rq = p->on_rq;
85ba2d86 1193 ncsw = 0;
f31e11d8 1194 if (!match_state || p->state == match_state)
93dcf55f 1195 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1196 task_rq_unlock(rq, p, &flags);
fa490cfd 1197
85ba2d86
RM
1198 /*
1199 * If it changed from the expected state, bail out now.
1200 */
1201 if (unlikely(!ncsw))
1202 break;
1203
3a5c359a
AK
1204 /*
1205 * Was it really running after all now that we
1206 * checked with the proper locks actually held?
1207 *
1208 * Oops. Go back and try again..
1209 */
1210 if (unlikely(running)) {
1211 cpu_relax();
1212 continue;
1213 }
fa490cfd 1214
3a5c359a
AK
1215 /*
1216 * It's not enough that it's not actively running,
1217 * it must be off the runqueue _entirely_, and not
1218 * preempted!
1219 *
80dd99b3 1220 * So if it was still runnable (but just not actively
3a5c359a
AK
1221 * running right now), it's preempted, and we should
1222 * yield - it could be a while.
1223 */
1224 if (unlikely(on_rq)) {
8eb90c30
TG
1225 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1226
1227 set_current_state(TASK_UNINTERRUPTIBLE);
1228 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1229 continue;
1230 }
fa490cfd 1231
3a5c359a
AK
1232 /*
1233 * Ahh, all good. It wasn't running, and it wasn't
1234 * runnable, which means that it will never become
1235 * running in the future either. We're all done!
1236 */
1237 break;
1238 }
85ba2d86
RM
1239
1240 return ncsw;
1da177e4
LT
1241}
1242
1243/***
1244 * kick_process - kick a running thread to enter/exit the kernel
1245 * @p: the to-be-kicked thread
1246 *
1247 * Cause a process which is running on another CPU to enter
1248 * kernel-mode, without any delay. (to get signals handled.)
1249 *
25985edc 1250 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1251 * because all it wants to ensure is that the remote task enters
1252 * the kernel. If the IPI races and the task has been migrated
1253 * to another CPU then no harm is done and the purpose has been
1254 * achieved as well.
1255 */
36c8b586 1256void kick_process(struct task_struct *p)
1da177e4
LT
1257{
1258 int cpu;
1259
1260 preempt_disable();
1261 cpu = task_cpu(p);
1262 if ((cpu != smp_processor_id()) && task_curr(p))
1263 smp_send_reschedule(cpu);
1264 preempt_enable();
1265}
b43e3521 1266EXPORT_SYMBOL_GPL(kick_process);
476d139c 1267#endif /* CONFIG_SMP */
1da177e4 1268
970b13ba 1269#ifdef CONFIG_SMP
30da688e 1270/*
013fdb80 1271 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1272 */
5da9a0fb
PZ
1273static int select_fallback_rq(int cpu, struct task_struct *p)
1274{
aa00d89c
TC
1275 int nid = cpu_to_node(cpu);
1276 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1277 enum { cpuset, possible, fail } state = cpuset;
1278 int dest_cpu;
5da9a0fb 1279
aa00d89c
TC
1280 /*
1281 * If the node that the cpu is on has been offlined, cpu_to_node()
1282 * will return -1. There is no cpu on the node, and we should
1283 * select the cpu on the other node.
1284 */
1285 if (nid != -1) {
1286 nodemask = cpumask_of_node(nid);
1287
1288 /* Look for allowed, online CPU in same node. */
1289 for_each_cpu(dest_cpu, nodemask) {
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1295 return dest_cpu;
1296 }
2baab4e9 1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 for (;;) {
1300 /* Any allowed, online CPU? */
e3831edd 1301 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1302 if (!cpu_online(dest_cpu))
1303 continue;
1304 if (!cpu_active(dest_cpu))
1305 continue;
1306 goto out;
1307 }
5da9a0fb 1308
2baab4e9
PZ
1309 switch (state) {
1310 case cpuset:
1311 /* No more Mr. Nice Guy. */
1312 cpuset_cpus_allowed_fallback(p);
1313 state = possible;
1314 break;
1315
1316 case possible:
1317 do_set_cpus_allowed(p, cpu_possible_mask);
1318 state = fail;
1319 break;
1320
1321 case fail:
1322 BUG();
1323 break;
1324 }
1325 }
1326
1327out:
1328 if (state != cpuset) {
1329 /*
1330 * Don't tell them about moving exiting tasks or
1331 * kernel threads (both mm NULL), since they never
1332 * leave kernel.
1333 */
1334 if (p->mm && printk_ratelimit()) {
1335 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1336 task_pid_nr(p), p->comm, cpu);
1337 }
5da9a0fb
PZ
1338 }
1339
1340 return dest_cpu;
1341}
1342
e2912009 1343/*
013fdb80 1344 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1345 */
970b13ba 1346static inline
ac66f547 1347int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1348{
ac66f547 1349 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1350
1351 /*
1352 * In order not to call set_task_cpu() on a blocking task we need
1353 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1354 * cpu.
1355 *
1356 * Since this is common to all placement strategies, this lives here.
1357 *
1358 * [ this allows ->select_task() to simply return task_cpu(p) and
1359 * not worry about this generic constraint ]
1360 */
fa17b507 1361 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1362 !cpu_online(cpu)))
5da9a0fb 1363 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1364
1365 return cpu;
970b13ba 1366}
09a40af5
MG
1367
1368static void update_avg(u64 *avg, u64 sample)
1369{
1370 s64 diff = sample - *avg;
1371 *avg += diff >> 3;
1372}
970b13ba
PZ
1373#endif
1374
d7c01d27 1375static void
b84cb5df 1376ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1377{
d7c01d27 1378#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1379 struct rq *rq = this_rq();
1380
d7c01d27
PZ
1381#ifdef CONFIG_SMP
1382 int this_cpu = smp_processor_id();
1383
1384 if (cpu == this_cpu) {
1385 schedstat_inc(rq, ttwu_local);
1386 schedstat_inc(p, se.statistics.nr_wakeups_local);
1387 } else {
1388 struct sched_domain *sd;
1389
1390 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1391 rcu_read_lock();
d7c01d27
PZ
1392 for_each_domain(this_cpu, sd) {
1393 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1394 schedstat_inc(sd, ttwu_wake_remote);
1395 break;
1396 }
1397 }
057f3fad 1398 rcu_read_unlock();
d7c01d27 1399 }
f339b9dc
PZ
1400
1401 if (wake_flags & WF_MIGRATED)
1402 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1403
d7c01d27
PZ
1404#endif /* CONFIG_SMP */
1405
1406 schedstat_inc(rq, ttwu_count);
9ed3811a 1407 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1408
1409 if (wake_flags & WF_SYNC)
9ed3811a 1410 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1411
d7c01d27
PZ
1412#endif /* CONFIG_SCHEDSTATS */
1413}
1414
1415static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1416{
9ed3811a 1417 activate_task(rq, p, en_flags);
fd2f4419 1418 p->on_rq = 1;
c2f7115e
PZ
1419
1420 /* if a worker is waking up, notify workqueue */
1421 if (p->flags & PF_WQ_WORKER)
1422 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1423}
1424
23f41eeb
PZ
1425/*
1426 * Mark the task runnable and perform wakeup-preemption.
1427 */
89363381 1428static void
23f41eeb 1429ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1430{
9ed3811a 1431 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1432 trace_sched_wakeup(p, true);
9ed3811a
TH
1433
1434 p->state = TASK_RUNNING;
1435#ifdef CONFIG_SMP
1436 if (p->sched_class->task_woken)
1437 p->sched_class->task_woken(rq, p);
1438
e69c6341 1439 if (rq->idle_stamp) {
78becc27 1440 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1441 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1442
abfafa54
JL
1443 update_avg(&rq->avg_idle, delta);
1444
1445 if (rq->avg_idle > max)
9ed3811a 1446 rq->avg_idle = max;
abfafa54 1447
9ed3811a
TH
1448 rq->idle_stamp = 0;
1449 }
1450#endif
1451}
1452
c05fbafb
PZ
1453static void
1454ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1455{
1456#ifdef CONFIG_SMP
1457 if (p->sched_contributes_to_load)
1458 rq->nr_uninterruptible--;
1459#endif
1460
1461 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1462 ttwu_do_wakeup(rq, p, wake_flags);
1463}
1464
1465/*
1466 * Called in case the task @p isn't fully descheduled from its runqueue,
1467 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1468 * since all we need to do is flip p->state to TASK_RUNNING, since
1469 * the task is still ->on_rq.
1470 */
1471static int ttwu_remote(struct task_struct *p, int wake_flags)
1472{
1473 struct rq *rq;
1474 int ret = 0;
1475
1476 rq = __task_rq_lock(p);
1477 if (p->on_rq) {
1ad4ec0d
FW
1478 /* check_preempt_curr() may use rq clock */
1479 update_rq_clock(rq);
c05fbafb
PZ
1480 ttwu_do_wakeup(rq, p, wake_flags);
1481 ret = 1;
1482 }
1483 __task_rq_unlock(rq);
1484
1485 return ret;
1486}
1487
317f3941 1488#ifdef CONFIG_SMP
fa14ff4a 1489static void sched_ttwu_pending(void)
317f3941
PZ
1490{
1491 struct rq *rq = this_rq();
fa14ff4a
PZ
1492 struct llist_node *llist = llist_del_all(&rq->wake_list);
1493 struct task_struct *p;
317f3941
PZ
1494
1495 raw_spin_lock(&rq->lock);
1496
fa14ff4a
PZ
1497 while (llist) {
1498 p = llist_entry(llist, struct task_struct, wake_entry);
1499 llist = llist_next(llist);
317f3941
PZ
1500 ttwu_do_activate(rq, p, 0);
1501 }
1502
1503 raw_spin_unlock(&rq->lock);
1504}
1505
1506void scheduler_ipi(void)
1507{
f27dde8d
PZ
1508 /*
1509 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1510 * TIF_NEED_RESCHED remotely (for the first time) will also send
1511 * this IPI.
1512 */
1513 if (tif_need_resched())
1514 set_preempt_need_resched();
1515
873b4c65
VG
1516 if (llist_empty(&this_rq()->wake_list)
1517 && !tick_nohz_full_cpu(smp_processor_id())
1518 && !got_nohz_idle_kick())
c5d753a5
PZ
1519 return;
1520
1521 /*
1522 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1523 * traditionally all their work was done from the interrupt return
1524 * path. Now that we actually do some work, we need to make sure
1525 * we do call them.
1526 *
1527 * Some archs already do call them, luckily irq_enter/exit nest
1528 * properly.
1529 *
1530 * Arguably we should visit all archs and update all handlers,
1531 * however a fair share of IPIs are still resched only so this would
1532 * somewhat pessimize the simple resched case.
1533 */
1534 irq_enter();
ff442c51 1535 tick_nohz_full_check();
fa14ff4a 1536 sched_ttwu_pending();
ca38062e
SS
1537
1538 /*
1539 * Check if someone kicked us for doing the nohz idle load balance.
1540 */
873b4c65 1541 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1542 this_rq()->idle_balance = 1;
ca38062e 1543 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1544 }
c5d753a5 1545 irq_exit();
317f3941
PZ
1546}
1547
1548static void ttwu_queue_remote(struct task_struct *p, int cpu)
1549{
fa14ff4a 1550 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1551 smp_send_reschedule(cpu);
1552}
d6aa8f85 1553
39be3501 1554bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1555{
1556 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1557}
d6aa8f85 1558#endif /* CONFIG_SMP */
317f3941 1559
c05fbafb
PZ
1560static void ttwu_queue(struct task_struct *p, int cpu)
1561{
1562 struct rq *rq = cpu_rq(cpu);
1563
17d9f311 1564#if defined(CONFIG_SMP)
39be3501 1565 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1566 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1567 ttwu_queue_remote(p, cpu);
1568 return;
1569 }
1570#endif
1571
c05fbafb
PZ
1572 raw_spin_lock(&rq->lock);
1573 ttwu_do_activate(rq, p, 0);
1574 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1575}
1576
1577/**
1da177e4 1578 * try_to_wake_up - wake up a thread
9ed3811a 1579 * @p: the thread to be awakened
1da177e4 1580 * @state: the mask of task states that can be woken
9ed3811a 1581 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1582 *
1583 * Put it on the run-queue if it's not already there. The "current"
1584 * thread is always on the run-queue (except when the actual
1585 * re-schedule is in progress), and as such you're allowed to do
1586 * the simpler "current->state = TASK_RUNNING" to mark yourself
1587 * runnable without the overhead of this.
1588 *
e69f6186 1589 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1590 * or @state didn't match @p's state.
1da177e4 1591 */
e4a52bcb
PZ
1592static int
1593try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1594{
1da177e4 1595 unsigned long flags;
c05fbafb 1596 int cpu, success = 0;
2398f2c6 1597
e0acd0a6
ON
1598 /*
1599 * If we are going to wake up a thread waiting for CONDITION we
1600 * need to ensure that CONDITION=1 done by the caller can not be
1601 * reordered with p->state check below. This pairs with mb() in
1602 * set_current_state() the waiting thread does.
1603 */
1604 smp_mb__before_spinlock();
013fdb80 1605 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1606 if (!(p->state & state))
1da177e4
LT
1607 goto out;
1608
c05fbafb 1609 success = 1; /* we're going to change ->state */
1da177e4 1610 cpu = task_cpu(p);
1da177e4 1611
c05fbafb
PZ
1612 if (p->on_rq && ttwu_remote(p, wake_flags))
1613 goto stat;
1da177e4 1614
1da177e4 1615#ifdef CONFIG_SMP
e9c84311 1616 /*
c05fbafb
PZ
1617 * If the owning (remote) cpu is still in the middle of schedule() with
1618 * this task as prev, wait until its done referencing the task.
e9c84311 1619 */
f3e94786 1620 while (p->on_cpu)
e4a52bcb 1621 cpu_relax();
0970d299 1622 /*
e4a52bcb 1623 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1624 */
e4a52bcb 1625 smp_rmb();
1da177e4 1626
a8e4f2ea 1627 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1628 p->state = TASK_WAKING;
e7693a36 1629
e4a52bcb 1630 if (p->sched_class->task_waking)
74f8e4b2 1631 p->sched_class->task_waking(p);
efbbd05a 1632
ac66f547 1633 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1634 if (task_cpu(p) != cpu) {
1635 wake_flags |= WF_MIGRATED;
e4a52bcb 1636 set_task_cpu(p, cpu);
f339b9dc 1637 }
1da177e4 1638#endif /* CONFIG_SMP */
1da177e4 1639
c05fbafb
PZ
1640 ttwu_queue(p, cpu);
1641stat:
b84cb5df 1642 ttwu_stat(p, cpu, wake_flags);
1da177e4 1643out:
013fdb80 1644 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1645
1646 return success;
1647}
1648
21aa9af0
TH
1649/**
1650 * try_to_wake_up_local - try to wake up a local task with rq lock held
1651 * @p: the thread to be awakened
1652 *
2acca55e 1653 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1654 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1655 * the current task.
21aa9af0
TH
1656 */
1657static void try_to_wake_up_local(struct task_struct *p)
1658{
1659 struct rq *rq = task_rq(p);
21aa9af0 1660
383efcd0
TH
1661 if (WARN_ON_ONCE(rq != this_rq()) ||
1662 WARN_ON_ONCE(p == current))
1663 return;
1664
21aa9af0
TH
1665 lockdep_assert_held(&rq->lock);
1666
2acca55e
PZ
1667 if (!raw_spin_trylock(&p->pi_lock)) {
1668 raw_spin_unlock(&rq->lock);
1669 raw_spin_lock(&p->pi_lock);
1670 raw_spin_lock(&rq->lock);
1671 }
1672
21aa9af0 1673 if (!(p->state & TASK_NORMAL))
2acca55e 1674 goto out;
21aa9af0 1675
fd2f4419 1676 if (!p->on_rq)
d7c01d27
PZ
1677 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1678
23f41eeb 1679 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1680 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1681out:
1682 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1683}
1684
50fa610a
DH
1685/**
1686 * wake_up_process - Wake up a specific process
1687 * @p: The process to be woken up.
1688 *
1689 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1690 * processes.
1691 *
1692 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1693 *
1694 * It may be assumed that this function implies a write memory barrier before
1695 * changing the task state if and only if any tasks are woken up.
1696 */
7ad5b3a5 1697int wake_up_process(struct task_struct *p)
1da177e4 1698{
9067ac85
ON
1699 WARN_ON(task_is_stopped_or_traced(p));
1700 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1701}
1da177e4
LT
1702EXPORT_SYMBOL(wake_up_process);
1703
7ad5b3a5 1704int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1705{
1706 return try_to_wake_up(p, state, 0);
1707}
1708
1da177e4
LT
1709/*
1710 * Perform scheduler related setup for a newly forked process p.
1711 * p is forked by current.
dd41f596
IM
1712 *
1713 * __sched_fork() is basic setup used by init_idle() too:
1714 */
5e1576ed 1715static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1716{
fd2f4419
PZ
1717 p->on_rq = 0;
1718
1719 p->se.on_rq = 0;
dd41f596
IM
1720 p->se.exec_start = 0;
1721 p->se.sum_exec_runtime = 0;
f6cf891c 1722 p->se.prev_sum_exec_runtime = 0;
6c594c21 1723 p->se.nr_migrations = 0;
da7a735e 1724 p->se.vruntime = 0;
fd2f4419 1725 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1726
1727#ifdef CONFIG_SCHEDSTATS
41acab88 1728 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1729#endif
476d139c 1730
aab03e05
DF
1731 RB_CLEAR_NODE(&p->dl.rb_node);
1732 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1733 p->dl.dl_runtime = p->dl.runtime = 0;
1734 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1735 p->dl.dl_period = 0;
aab03e05
DF
1736 p->dl.flags = 0;
1737
fa717060 1738 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1739
e107be36
AK
1740#ifdef CONFIG_PREEMPT_NOTIFIERS
1741 INIT_HLIST_HEAD(&p->preempt_notifiers);
1742#endif
cbee9f88
PZ
1743
1744#ifdef CONFIG_NUMA_BALANCING
1745 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1746 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1747 p->mm->numa_scan_seq = 0;
1748 }
1749
5e1576ed
RR
1750 if (clone_flags & CLONE_VM)
1751 p->numa_preferred_nid = current->numa_preferred_nid;
1752 else
1753 p->numa_preferred_nid = -1;
1754
cbee9f88
PZ
1755 p->node_stamp = 0ULL;
1756 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1757 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1758 p->numa_work.next = &p->numa_work;
f809ca9a 1759 p->numa_faults = NULL;
745d6147 1760 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1761
1762 INIT_LIST_HEAD(&p->numa_entry);
1763 p->numa_group = NULL;
cbee9f88 1764#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1765}
1766
1a687c2e 1767#ifdef CONFIG_NUMA_BALANCING
3105b86a 1768#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1769void set_numabalancing_state(bool enabled)
1770{
1771 if (enabled)
1772 sched_feat_set("NUMA");
1773 else
1774 sched_feat_set("NO_NUMA");
1775}
3105b86a
MG
1776#else
1777__read_mostly bool numabalancing_enabled;
1778
1779void set_numabalancing_state(bool enabled)
1780{
1781 numabalancing_enabled = enabled;
dd41f596 1782}
3105b86a 1783#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1784#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1785
1786/*
1787 * fork()/clone()-time setup:
1788 */
aab03e05 1789int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1790{
0122ec5b 1791 unsigned long flags;
dd41f596
IM
1792 int cpu = get_cpu();
1793
5e1576ed 1794 __sched_fork(clone_flags, p);
06b83b5f 1795 /*
0017d735 1796 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1797 * nobody will actually run it, and a signal or other external
1798 * event cannot wake it up and insert it on the runqueue either.
1799 */
0017d735 1800 p->state = TASK_RUNNING;
dd41f596 1801
c350a04e
MG
1802 /*
1803 * Make sure we do not leak PI boosting priority to the child.
1804 */
1805 p->prio = current->normal_prio;
1806
b9dc29e7
MG
1807 /*
1808 * Revert to default priority/policy on fork if requested.
1809 */
1810 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1811 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1812 p->policy = SCHED_NORMAL;
6c697bdf 1813 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1814 p->rt_priority = 0;
1815 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1816 p->static_prio = NICE_TO_PRIO(0);
1817
1818 p->prio = p->normal_prio = __normal_prio(p);
1819 set_load_weight(p);
6c697bdf 1820
b9dc29e7
MG
1821 /*
1822 * We don't need the reset flag anymore after the fork. It has
1823 * fulfilled its duty:
1824 */
1825 p->sched_reset_on_fork = 0;
1826 }
ca94c442 1827
aab03e05
DF
1828 if (dl_prio(p->prio)) {
1829 put_cpu();
1830 return -EAGAIN;
1831 } else if (rt_prio(p->prio)) {
1832 p->sched_class = &rt_sched_class;
1833 } else {
2ddbf952 1834 p->sched_class = &fair_sched_class;
aab03e05 1835 }
b29739f9 1836
cd29fe6f
PZ
1837 if (p->sched_class->task_fork)
1838 p->sched_class->task_fork(p);
1839
86951599
PZ
1840 /*
1841 * The child is not yet in the pid-hash so no cgroup attach races,
1842 * and the cgroup is pinned to this child due to cgroup_fork()
1843 * is ran before sched_fork().
1844 *
1845 * Silence PROVE_RCU.
1846 */
0122ec5b 1847 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1848 set_task_cpu(p, cpu);
0122ec5b 1849 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1850
52f17b6c 1851#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1852 if (likely(sched_info_on()))
52f17b6c 1853 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1854#endif
3ca7a440
PZ
1855#if defined(CONFIG_SMP)
1856 p->on_cpu = 0;
4866cde0 1857#endif
01028747 1858 init_task_preempt_count(p);
806c09a7 1859#ifdef CONFIG_SMP
917b627d 1860 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1861 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1862#endif
917b627d 1863
476d139c 1864 put_cpu();
aab03e05 1865 return 0;
1da177e4
LT
1866}
1867
332ac17e
DF
1868unsigned long to_ratio(u64 period, u64 runtime)
1869{
1870 if (runtime == RUNTIME_INF)
1871 return 1ULL << 20;
1872
1873 /*
1874 * Doing this here saves a lot of checks in all
1875 * the calling paths, and returning zero seems
1876 * safe for them anyway.
1877 */
1878 if (period == 0)
1879 return 0;
1880
1881 return div64_u64(runtime << 20, period);
1882}
1883
1884#ifdef CONFIG_SMP
1885inline struct dl_bw *dl_bw_of(int i)
1886{
1887 return &cpu_rq(i)->rd->dl_bw;
1888}
1889
1890static inline int __dl_span_weight(struct rq *rq)
1891{
1892 return cpumask_weight(rq->rd->span);
1893}
1894#else
1895inline struct dl_bw *dl_bw_of(int i)
1896{
1897 return &cpu_rq(i)->dl.dl_bw;
1898}
1899
1900static inline int __dl_span_weight(struct rq *rq)
1901{
1902 return 1;
1903}
1904#endif
1905
1906static inline
1907void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1908{
1909 dl_b->total_bw -= tsk_bw;
1910}
1911
1912static inline
1913void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1914{
1915 dl_b->total_bw += tsk_bw;
1916}
1917
1918static inline
1919bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1920{
1921 return dl_b->bw != -1 &&
1922 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1923}
1924
1925/*
1926 * We must be sure that accepting a new task (or allowing changing the
1927 * parameters of an existing one) is consistent with the bandwidth
1928 * constraints. If yes, this function also accordingly updates the currently
1929 * allocated bandwidth to reflect the new situation.
1930 *
1931 * This function is called while holding p's rq->lock.
1932 */
1933static int dl_overflow(struct task_struct *p, int policy,
1934 const struct sched_attr *attr)
1935{
1936
1937 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1938 u64 period = attr->sched_period;
1939 u64 runtime = attr->sched_runtime;
1940 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1941 int cpus = __dl_span_weight(task_rq(p));
1942 int err = -1;
1943
1944 if (new_bw == p->dl.dl_bw)
1945 return 0;
1946
1947 /*
1948 * Either if a task, enters, leave, or stays -deadline but changes
1949 * its parameters, we may need to update accordingly the total
1950 * allocated bandwidth of the container.
1951 */
1952 raw_spin_lock(&dl_b->lock);
1953 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1954 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1955 __dl_add(dl_b, new_bw);
1956 err = 0;
1957 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1958 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1959 __dl_clear(dl_b, p->dl.dl_bw);
1960 __dl_add(dl_b, new_bw);
1961 err = 0;
1962 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1963 __dl_clear(dl_b, p->dl.dl_bw);
1964 err = 0;
1965 }
1966 raw_spin_unlock(&dl_b->lock);
1967
1968 return err;
1969}
1970
1971extern void init_dl_bw(struct dl_bw *dl_b);
1972
1da177e4
LT
1973/*
1974 * wake_up_new_task - wake up a newly created task for the first time.
1975 *
1976 * This function will do some initial scheduler statistics housekeeping
1977 * that must be done for every newly created context, then puts the task
1978 * on the runqueue and wakes it.
1979 */
3e51e3ed 1980void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1981{
1982 unsigned long flags;
dd41f596 1983 struct rq *rq;
fabf318e 1984
ab2515c4 1985 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1986#ifdef CONFIG_SMP
1987 /*
1988 * Fork balancing, do it here and not earlier because:
1989 * - cpus_allowed can change in the fork path
1990 * - any previously selected cpu might disappear through hotplug
fabf318e 1991 */
ac66f547 1992 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1993#endif
1994
a75cdaa9
AS
1995 /* Initialize new task's runnable average */
1996 init_task_runnable_average(p);
ab2515c4 1997 rq = __task_rq_lock(p);
cd29fe6f 1998 activate_task(rq, p, 0);
fd2f4419 1999 p->on_rq = 1;
89363381 2000 trace_sched_wakeup_new(p, true);
a7558e01 2001 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2002#ifdef CONFIG_SMP
efbbd05a
PZ
2003 if (p->sched_class->task_woken)
2004 p->sched_class->task_woken(rq, p);
9a897c5a 2005#endif
0122ec5b 2006 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2007}
2008
e107be36
AK
2009#ifdef CONFIG_PREEMPT_NOTIFIERS
2010
2011/**
80dd99b3 2012 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2013 * @notifier: notifier struct to register
e107be36
AK
2014 */
2015void preempt_notifier_register(struct preempt_notifier *notifier)
2016{
2017 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2018}
2019EXPORT_SYMBOL_GPL(preempt_notifier_register);
2020
2021/**
2022 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2023 * @notifier: notifier struct to unregister
e107be36
AK
2024 *
2025 * This is safe to call from within a preemption notifier.
2026 */
2027void preempt_notifier_unregister(struct preempt_notifier *notifier)
2028{
2029 hlist_del(&notifier->link);
2030}
2031EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2032
2033static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2034{
2035 struct preempt_notifier *notifier;
e107be36 2036
b67bfe0d 2037 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2038 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2039}
2040
2041static void
2042fire_sched_out_preempt_notifiers(struct task_struct *curr,
2043 struct task_struct *next)
2044{
2045 struct preempt_notifier *notifier;
e107be36 2046
b67bfe0d 2047 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2048 notifier->ops->sched_out(notifier, next);
2049}
2050
6d6bc0ad 2051#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2052
2053static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2054{
2055}
2056
2057static void
2058fire_sched_out_preempt_notifiers(struct task_struct *curr,
2059 struct task_struct *next)
2060{
2061}
2062
6d6bc0ad 2063#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2064
4866cde0
NP
2065/**
2066 * prepare_task_switch - prepare to switch tasks
2067 * @rq: the runqueue preparing to switch
421cee29 2068 * @prev: the current task that is being switched out
4866cde0
NP
2069 * @next: the task we are going to switch to.
2070 *
2071 * This is called with the rq lock held and interrupts off. It must
2072 * be paired with a subsequent finish_task_switch after the context
2073 * switch.
2074 *
2075 * prepare_task_switch sets up locking and calls architecture specific
2076 * hooks.
2077 */
e107be36
AK
2078static inline void
2079prepare_task_switch(struct rq *rq, struct task_struct *prev,
2080 struct task_struct *next)
4866cde0 2081{
895dd92c 2082 trace_sched_switch(prev, next);
43148951 2083 sched_info_switch(rq, prev, next);
fe4b04fa 2084 perf_event_task_sched_out(prev, next);
e107be36 2085 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2086 prepare_lock_switch(rq, next);
2087 prepare_arch_switch(next);
2088}
2089
1da177e4
LT
2090/**
2091 * finish_task_switch - clean up after a task-switch
344babaa 2092 * @rq: runqueue associated with task-switch
1da177e4
LT
2093 * @prev: the thread we just switched away from.
2094 *
4866cde0
NP
2095 * finish_task_switch must be called after the context switch, paired
2096 * with a prepare_task_switch call before the context switch.
2097 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2098 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2099 *
2100 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2101 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2102 * with the lock held can cause deadlocks; see schedule() for
2103 * details.)
2104 */
a9957449 2105static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2106 __releases(rq->lock)
2107{
1da177e4 2108 struct mm_struct *mm = rq->prev_mm;
55a101f8 2109 long prev_state;
1da177e4
LT
2110
2111 rq->prev_mm = NULL;
2112
2113 /*
2114 * A task struct has one reference for the use as "current".
c394cc9f 2115 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2116 * schedule one last time. The schedule call will never return, and
2117 * the scheduled task must drop that reference.
c394cc9f 2118 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2119 * still held, otherwise prev could be scheduled on another cpu, die
2120 * there before we look at prev->state, and then the reference would
2121 * be dropped twice.
2122 * Manfred Spraul <manfred@colorfullife.com>
2123 */
55a101f8 2124 prev_state = prev->state;
bf9fae9f 2125 vtime_task_switch(prev);
4866cde0 2126 finish_arch_switch(prev);
a8d757ef 2127 perf_event_task_sched_in(prev, current);
4866cde0 2128 finish_lock_switch(rq, prev);
01f23e16 2129 finish_arch_post_lock_switch();
e8fa1362 2130
e107be36 2131 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2132 if (mm)
2133 mmdrop(mm);
c394cc9f 2134 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2135 task_numa_free(prev);
2136
e6c390f2
DF
2137 if (prev->sched_class->task_dead)
2138 prev->sched_class->task_dead(prev);
2139
c6fd91f0 2140 /*
2141 * Remove function-return probe instances associated with this
2142 * task and put them back on the free list.
9761eea8 2143 */
c6fd91f0 2144 kprobe_flush_task(prev);
1da177e4 2145 put_task_struct(prev);
c6fd91f0 2146 }
99e5ada9
FW
2147
2148 tick_nohz_task_switch(current);
1da177e4
LT
2149}
2150
3f029d3c
GH
2151#ifdef CONFIG_SMP
2152
2153/* assumes rq->lock is held */
2154static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2155{
2156 if (prev->sched_class->pre_schedule)
2157 prev->sched_class->pre_schedule(rq, prev);
2158}
2159
2160/* rq->lock is NOT held, but preemption is disabled */
2161static inline void post_schedule(struct rq *rq)
2162{
2163 if (rq->post_schedule) {
2164 unsigned long flags;
2165
05fa785c 2166 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2167 if (rq->curr->sched_class->post_schedule)
2168 rq->curr->sched_class->post_schedule(rq);
05fa785c 2169 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2170
2171 rq->post_schedule = 0;
2172 }
2173}
2174
2175#else
da19ab51 2176
3f029d3c
GH
2177static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2178{
2179}
2180
2181static inline void post_schedule(struct rq *rq)
2182{
1da177e4
LT
2183}
2184
3f029d3c
GH
2185#endif
2186
1da177e4
LT
2187/**
2188 * schedule_tail - first thing a freshly forked thread must call.
2189 * @prev: the thread we just switched away from.
2190 */
36c8b586 2191asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2192 __releases(rq->lock)
2193{
70b97a7f
IM
2194 struct rq *rq = this_rq();
2195
4866cde0 2196 finish_task_switch(rq, prev);
da19ab51 2197
3f029d3c
GH
2198 /*
2199 * FIXME: do we need to worry about rq being invalidated by the
2200 * task_switch?
2201 */
2202 post_schedule(rq);
70b97a7f 2203
4866cde0
NP
2204#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2205 /* In this case, finish_task_switch does not reenable preemption */
2206 preempt_enable();
2207#endif
1da177e4 2208 if (current->set_child_tid)
b488893a 2209 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2210}
2211
2212/*
2213 * context_switch - switch to the new MM and the new
2214 * thread's register state.
2215 */
dd41f596 2216static inline void
70b97a7f 2217context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2218 struct task_struct *next)
1da177e4 2219{
dd41f596 2220 struct mm_struct *mm, *oldmm;
1da177e4 2221
e107be36 2222 prepare_task_switch(rq, prev, next);
fe4b04fa 2223
dd41f596
IM
2224 mm = next->mm;
2225 oldmm = prev->active_mm;
9226d125
ZA
2226 /*
2227 * For paravirt, this is coupled with an exit in switch_to to
2228 * combine the page table reload and the switch backend into
2229 * one hypercall.
2230 */
224101ed 2231 arch_start_context_switch(prev);
9226d125 2232
31915ab4 2233 if (!mm) {
1da177e4
LT
2234 next->active_mm = oldmm;
2235 atomic_inc(&oldmm->mm_count);
2236 enter_lazy_tlb(oldmm, next);
2237 } else
2238 switch_mm(oldmm, mm, next);
2239
31915ab4 2240 if (!prev->mm) {
1da177e4 2241 prev->active_mm = NULL;
1da177e4
LT
2242 rq->prev_mm = oldmm;
2243 }
3a5f5e48
IM
2244 /*
2245 * Since the runqueue lock will be released by the next
2246 * task (which is an invalid locking op but in the case
2247 * of the scheduler it's an obvious special-case), so we
2248 * do an early lockdep release here:
2249 */
2250#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2251 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2252#endif
1da177e4 2253
91d1aa43 2254 context_tracking_task_switch(prev, next);
1da177e4
LT
2255 /* Here we just switch the register state and the stack. */
2256 switch_to(prev, next, prev);
2257
dd41f596
IM
2258 barrier();
2259 /*
2260 * this_rq must be evaluated again because prev may have moved
2261 * CPUs since it called schedule(), thus the 'rq' on its stack
2262 * frame will be invalid.
2263 */
2264 finish_task_switch(this_rq(), prev);
1da177e4
LT
2265}
2266
2267/*
1c3e8264 2268 * nr_running and nr_context_switches:
1da177e4
LT
2269 *
2270 * externally visible scheduler statistics: current number of runnable
1c3e8264 2271 * threads, total number of context switches performed since bootup.
1da177e4
LT
2272 */
2273unsigned long nr_running(void)
2274{
2275 unsigned long i, sum = 0;
2276
2277 for_each_online_cpu(i)
2278 sum += cpu_rq(i)->nr_running;
2279
2280 return sum;
f711f609 2281}
1da177e4 2282
1da177e4 2283unsigned long long nr_context_switches(void)
46cb4b7c 2284{
cc94abfc
SR
2285 int i;
2286 unsigned long long sum = 0;
46cb4b7c 2287
0a945022 2288 for_each_possible_cpu(i)
1da177e4 2289 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2290
1da177e4
LT
2291 return sum;
2292}
483b4ee6 2293
1da177e4
LT
2294unsigned long nr_iowait(void)
2295{
2296 unsigned long i, sum = 0;
483b4ee6 2297
0a945022 2298 for_each_possible_cpu(i)
1da177e4 2299 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2300
1da177e4
LT
2301 return sum;
2302}
483b4ee6 2303
8c215bd3 2304unsigned long nr_iowait_cpu(int cpu)
69d25870 2305{
8c215bd3 2306 struct rq *this = cpu_rq(cpu);
69d25870
AV
2307 return atomic_read(&this->nr_iowait);
2308}
46cb4b7c 2309
dd41f596 2310#ifdef CONFIG_SMP
8a0be9ef 2311
46cb4b7c 2312/*
38022906
PZ
2313 * sched_exec - execve() is a valuable balancing opportunity, because at
2314 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2315 */
38022906 2316void sched_exec(void)
46cb4b7c 2317{
38022906 2318 struct task_struct *p = current;
1da177e4 2319 unsigned long flags;
0017d735 2320 int dest_cpu;
46cb4b7c 2321
8f42ced9 2322 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2323 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2324 if (dest_cpu == smp_processor_id())
2325 goto unlock;
38022906 2326
8f42ced9 2327 if (likely(cpu_active(dest_cpu))) {
969c7921 2328 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2329
8f42ced9
PZ
2330 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2331 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2332 return;
2333 }
0017d735 2334unlock:
8f42ced9 2335 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2336}
dd41f596 2337
1da177e4
LT
2338#endif
2339
1da177e4 2340DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2341DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2342
2343EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2344EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2345
2346/*
c5f8d995 2347 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2348 * @p in case that task is currently running.
c5f8d995
HS
2349 *
2350 * Called with task_rq_lock() held on @rq.
1da177e4 2351 */
c5f8d995
HS
2352static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2353{
2354 u64 ns = 0;
2355
2356 if (task_current(rq, p)) {
2357 update_rq_clock(rq);
78becc27 2358 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2359 if ((s64)ns < 0)
2360 ns = 0;
2361 }
2362
2363 return ns;
2364}
2365
bb34d92f 2366unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2367{
1da177e4 2368 unsigned long flags;
41b86e9c 2369 struct rq *rq;
bb34d92f 2370 u64 ns = 0;
48f24c4d 2371
41b86e9c 2372 rq = task_rq_lock(p, &flags);
c5f8d995 2373 ns = do_task_delta_exec(p, rq);
0122ec5b 2374 task_rq_unlock(rq, p, &flags);
1508487e 2375
c5f8d995
HS
2376 return ns;
2377}
f06febc9 2378
c5f8d995
HS
2379/*
2380 * Return accounted runtime for the task.
2381 * In case the task is currently running, return the runtime plus current's
2382 * pending runtime that have not been accounted yet.
2383 */
2384unsigned long long task_sched_runtime(struct task_struct *p)
2385{
2386 unsigned long flags;
2387 struct rq *rq;
2388 u64 ns = 0;
2389
911b2898
PZ
2390#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2391 /*
2392 * 64-bit doesn't need locks to atomically read a 64bit value.
2393 * So we have a optimization chance when the task's delta_exec is 0.
2394 * Reading ->on_cpu is racy, but this is ok.
2395 *
2396 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2397 * If we race with it entering cpu, unaccounted time is 0. This is
2398 * indistinguishable from the read occurring a few cycles earlier.
2399 */
2400 if (!p->on_cpu)
2401 return p->se.sum_exec_runtime;
2402#endif
2403
c5f8d995
HS
2404 rq = task_rq_lock(p, &flags);
2405 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2406 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2407
2408 return ns;
2409}
48f24c4d 2410
7835b98b
CL
2411/*
2412 * This function gets called by the timer code, with HZ frequency.
2413 * We call it with interrupts disabled.
7835b98b
CL
2414 */
2415void scheduler_tick(void)
2416{
7835b98b
CL
2417 int cpu = smp_processor_id();
2418 struct rq *rq = cpu_rq(cpu);
dd41f596 2419 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2420
2421 sched_clock_tick();
dd41f596 2422
05fa785c 2423 raw_spin_lock(&rq->lock);
3e51f33f 2424 update_rq_clock(rq);
fa85ae24 2425 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2426 update_cpu_load_active(rq);
05fa785c 2427 raw_spin_unlock(&rq->lock);
7835b98b 2428
e9d2b064 2429 perf_event_task_tick();
e220d2dc 2430
e418e1c2 2431#ifdef CONFIG_SMP
6eb57e0d 2432 rq->idle_balance = idle_cpu(cpu);
dd41f596 2433 trigger_load_balance(rq, cpu);
e418e1c2 2434#endif
265f22a9 2435 rq_last_tick_reset(rq);
1da177e4
LT
2436}
2437
265f22a9
FW
2438#ifdef CONFIG_NO_HZ_FULL
2439/**
2440 * scheduler_tick_max_deferment
2441 *
2442 * Keep at least one tick per second when a single
2443 * active task is running because the scheduler doesn't
2444 * yet completely support full dynticks environment.
2445 *
2446 * This makes sure that uptime, CFS vruntime, load
2447 * balancing, etc... continue to move forward, even
2448 * with a very low granularity.
e69f6186
YB
2449 *
2450 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2451 */
2452u64 scheduler_tick_max_deferment(void)
2453{
2454 struct rq *rq = this_rq();
2455 unsigned long next, now = ACCESS_ONCE(jiffies);
2456
2457 next = rq->last_sched_tick + HZ;
2458
2459 if (time_before_eq(next, now))
2460 return 0;
2461
2462 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2463}
265f22a9 2464#endif
1da177e4 2465
132380a0 2466notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2467{
2468 if (in_lock_functions(addr)) {
2469 addr = CALLER_ADDR2;
2470 if (in_lock_functions(addr))
2471 addr = CALLER_ADDR3;
2472 }
2473 return addr;
2474}
1da177e4 2475
7e49fcce
SR
2476#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2477 defined(CONFIG_PREEMPT_TRACER))
2478
bdb43806 2479void __kprobes preempt_count_add(int val)
1da177e4 2480{
6cd8a4bb 2481#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2482 /*
2483 * Underflow?
2484 */
9a11b49a
IM
2485 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2486 return;
6cd8a4bb 2487#endif
bdb43806 2488 __preempt_count_add(val);
6cd8a4bb 2489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2490 /*
2491 * Spinlock count overflowing soon?
2492 */
33859f7f
MOS
2493 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2494 PREEMPT_MASK - 10);
6cd8a4bb
SR
2495#endif
2496 if (preempt_count() == val)
2497 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2498}
bdb43806 2499EXPORT_SYMBOL(preempt_count_add);
1da177e4 2500
bdb43806 2501void __kprobes preempt_count_sub(int val)
1da177e4 2502{
6cd8a4bb 2503#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2504 /*
2505 * Underflow?
2506 */
01e3eb82 2507 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2508 return;
1da177e4
LT
2509 /*
2510 * Is the spinlock portion underflowing?
2511 */
9a11b49a
IM
2512 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2513 !(preempt_count() & PREEMPT_MASK)))
2514 return;
6cd8a4bb 2515#endif
9a11b49a 2516
6cd8a4bb
SR
2517 if (preempt_count() == val)
2518 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2519 __preempt_count_sub(val);
1da177e4 2520}
bdb43806 2521EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2522
2523#endif
2524
2525/*
dd41f596 2526 * Print scheduling while atomic bug:
1da177e4 2527 */
dd41f596 2528static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2529{
664dfa65
DJ
2530 if (oops_in_progress)
2531 return;
2532
3df0fc5b
PZ
2533 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2534 prev->comm, prev->pid, preempt_count());
838225b4 2535
dd41f596 2536 debug_show_held_locks(prev);
e21f5b15 2537 print_modules();
dd41f596
IM
2538 if (irqs_disabled())
2539 print_irqtrace_events(prev);
6135fc1e 2540 dump_stack();
373d4d09 2541 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2542}
1da177e4 2543
dd41f596
IM
2544/*
2545 * Various schedule()-time debugging checks and statistics:
2546 */
2547static inline void schedule_debug(struct task_struct *prev)
2548{
1da177e4 2549 /*
41a2d6cf 2550 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2551 * schedule() atomically, we ignore that path. Otherwise whine
2552 * if we are scheduling when we should not.
1da177e4 2553 */
192301e7 2554 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2555 __schedule_bug(prev);
b3fbab05 2556 rcu_sleep_check();
dd41f596 2557
1da177e4
LT
2558 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2559
2d72376b 2560 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2561}
2562
6cecd084 2563static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2564{
61eadef6 2565 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2566 update_rq_clock(rq);
6cecd084 2567 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2568}
2569
dd41f596
IM
2570/*
2571 * Pick up the highest-prio task:
2572 */
2573static inline struct task_struct *
b67802ea 2574pick_next_task(struct rq *rq)
dd41f596 2575{
5522d5d5 2576 const struct sched_class *class;
dd41f596 2577 struct task_struct *p;
1da177e4
LT
2578
2579 /*
dd41f596
IM
2580 * Optimization: we know that if all tasks are in
2581 * the fair class we can call that function directly:
1da177e4 2582 */
953bfcd1 2583 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2584 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2585 if (likely(p))
2586 return p;
1da177e4
LT
2587 }
2588
34f971f6 2589 for_each_class(class) {
fb8d4724 2590 p = class->pick_next_task(rq);
dd41f596
IM
2591 if (p)
2592 return p;
dd41f596 2593 }
34f971f6
PZ
2594
2595 BUG(); /* the idle class will always have a runnable task */
dd41f596 2596}
1da177e4 2597
dd41f596 2598/*
c259e01a 2599 * __schedule() is the main scheduler function.
edde96ea
PE
2600 *
2601 * The main means of driving the scheduler and thus entering this function are:
2602 *
2603 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2604 *
2605 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2606 * paths. For example, see arch/x86/entry_64.S.
2607 *
2608 * To drive preemption between tasks, the scheduler sets the flag in timer
2609 * interrupt handler scheduler_tick().
2610 *
2611 * 3. Wakeups don't really cause entry into schedule(). They add a
2612 * task to the run-queue and that's it.
2613 *
2614 * Now, if the new task added to the run-queue preempts the current
2615 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2616 * called on the nearest possible occasion:
2617 *
2618 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2619 *
2620 * - in syscall or exception context, at the next outmost
2621 * preempt_enable(). (this might be as soon as the wake_up()'s
2622 * spin_unlock()!)
2623 *
2624 * - in IRQ context, return from interrupt-handler to
2625 * preemptible context
2626 *
2627 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2628 * then at the next:
2629 *
2630 * - cond_resched() call
2631 * - explicit schedule() call
2632 * - return from syscall or exception to user-space
2633 * - return from interrupt-handler to user-space
dd41f596 2634 */
c259e01a 2635static void __sched __schedule(void)
dd41f596
IM
2636{
2637 struct task_struct *prev, *next;
67ca7bde 2638 unsigned long *switch_count;
dd41f596 2639 struct rq *rq;
31656519 2640 int cpu;
dd41f596 2641
ff743345
PZ
2642need_resched:
2643 preempt_disable();
dd41f596
IM
2644 cpu = smp_processor_id();
2645 rq = cpu_rq(cpu);
25502a6c 2646 rcu_note_context_switch(cpu);
dd41f596 2647 prev = rq->curr;
dd41f596 2648
dd41f596 2649 schedule_debug(prev);
1da177e4 2650
31656519 2651 if (sched_feat(HRTICK))
f333fdc9 2652 hrtick_clear(rq);
8f4d37ec 2653
e0acd0a6
ON
2654 /*
2655 * Make sure that signal_pending_state()->signal_pending() below
2656 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2657 * done by the caller to avoid the race with signal_wake_up().
2658 */
2659 smp_mb__before_spinlock();
05fa785c 2660 raw_spin_lock_irq(&rq->lock);
1da177e4 2661
246d86b5 2662 switch_count = &prev->nivcsw;
1da177e4 2663 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2664 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2665 prev->state = TASK_RUNNING;
21aa9af0 2666 } else {
2acca55e
PZ
2667 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2668 prev->on_rq = 0;
2669
21aa9af0 2670 /*
2acca55e
PZ
2671 * If a worker went to sleep, notify and ask workqueue
2672 * whether it wants to wake up a task to maintain
2673 * concurrency.
21aa9af0
TH
2674 */
2675 if (prev->flags & PF_WQ_WORKER) {
2676 struct task_struct *to_wakeup;
2677
2678 to_wakeup = wq_worker_sleeping(prev, cpu);
2679 if (to_wakeup)
2680 try_to_wake_up_local(to_wakeup);
2681 }
21aa9af0 2682 }
dd41f596 2683 switch_count = &prev->nvcsw;
1da177e4
LT
2684 }
2685
3f029d3c 2686 pre_schedule(rq, prev);
f65eda4f 2687
dd41f596 2688 if (unlikely(!rq->nr_running))
1da177e4 2689 idle_balance(cpu, rq);
1da177e4 2690
df1c99d4 2691 put_prev_task(rq, prev);
b67802ea 2692 next = pick_next_task(rq);
f26f9aff 2693 clear_tsk_need_resched(prev);
f27dde8d 2694 clear_preempt_need_resched();
f26f9aff 2695 rq->skip_clock_update = 0;
1da177e4 2696
1da177e4 2697 if (likely(prev != next)) {
1da177e4
LT
2698 rq->nr_switches++;
2699 rq->curr = next;
2700 ++*switch_count;
2701
dd41f596 2702 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2703 /*
246d86b5
ON
2704 * The context switch have flipped the stack from under us
2705 * and restored the local variables which were saved when
2706 * this task called schedule() in the past. prev == current
2707 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2708 */
2709 cpu = smp_processor_id();
2710 rq = cpu_rq(cpu);
1da177e4 2711 } else
05fa785c 2712 raw_spin_unlock_irq(&rq->lock);
1da177e4 2713
3f029d3c 2714 post_schedule(rq);
1da177e4 2715
ba74c144 2716 sched_preempt_enable_no_resched();
ff743345 2717 if (need_resched())
1da177e4
LT
2718 goto need_resched;
2719}
c259e01a 2720
9c40cef2
TG
2721static inline void sched_submit_work(struct task_struct *tsk)
2722{
3c7d5184 2723 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2724 return;
2725 /*
2726 * If we are going to sleep and we have plugged IO queued,
2727 * make sure to submit it to avoid deadlocks.
2728 */
2729 if (blk_needs_flush_plug(tsk))
2730 blk_schedule_flush_plug(tsk);
2731}
2732
6ebbe7a0 2733asmlinkage void __sched schedule(void)
c259e01a 2734{
9c40cef2
TG
2735 struct task_struct *tsk = current;
2736
2737 sched_submit_work(tsk);
c259e01a
TG
2738 __schedule();
2739}
1da177e4
LT
2740EXPORT_SYMBOL(schedule);
2741
91d1aa43 2742#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2743asmlinkage void __sched schedule_user(void)
2744{
2745 /*
2746 * If we come here after a random call to set_need_resched(),
2747 * or we have been woken up remotely but the IPI has not yet arrived,
2748 * we haven't yet exited the RCU idle mode. Do it here manually until
2749 * we find a better solution.
2750 */
91d1aa43 2751 user_exit();
20ab65e3 2752 schedule();
91d1aa43 2753 user_enter();
20ab65e3
FW
2754}
2755#endif
2756
c5491ea7
TG
2757/**
2758 * schedule_preempt_disabled - called with preemption disabled
2759 *
2760 * Returns with preemption disabled. Note: preempt_count must be 1
2761 */
2762void __sched schedule_preempt_disabled(void)
2763{
ba74c144 2764 sched_preempt_enable_no_resched();
c5491ea7
TG
2765 schedule();
2766 preempt_disable();
2767}
2768
1da177e4
LT
2769#ifdef CONFIG_PREEMPT
2770/*
2ed6e34f 2771 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2772 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2773 * occur there and call schedule directly.
2774 */
d1f74e20 2775asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2776{
1da177e4
LT
2777 /*
2778 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2779 * we do not want to preempt the current task. Just return..
1da177e4 2780 */
fbb00b56 2781 if (likely(!preemptible()))
1da177e4
LT
2782 return;
2783
3a5c359a 2784 do {
bdb43806 2785 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2786 __schedule();
bdb43806 2787 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2788
3a5c359a
AK
2789 /*
2790 * Check again in case we missed a preemption opportunity
2791 * between schedule and now.
2792 */
2793 barrier();
5ed0cec0 2794 } while (need_resched());
1da177e4 2795}
1da177e4 2796EXPORT_SYMBOL(preempt_schedule);
32e475d7 2797#endif /* CONFIG_PREEMPT */
1da177e4
LT
2798
2799/*
2ed6e34f 2800 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2801 * off of irq context.
2802 * Note, that this is called and return with irqs disabled. This will
2803 * protect us against recursive calling from irq.
2804 */
2805asmlinkage void __sched preempt_schedule_irq(void)
2806{
b22366cd 2807 enum ctx_state prev_state;
6478d880 2808
2ed6e34f 2809 /* Catch callers which need to be fixed */
f27dde8d 2810 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2811
b22366cd
FW
2812 prev_state = exception_enter();
2813
3a5c359a 2814 do {
bdb43806 2815 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2816 local_irq_enable();
c259e01a 2817 __schedule();
3a5c359a 2818 local_irq_disable();
bdb43806 2819 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2820
3a5c359a
AK
2821 /*
2822 * Check again in case we missed a preemption opportunity
2823 * between schedule and now.
2824 */
2825 barrier();
5ed0cec0 2826 } while (need_resched());
b22366cd
FW
2827
2828 exception_exit(prev_state);
1da177e4
LT
2829}
2830
63859d4f 2831int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2832 void *key)
1da177e4 2833{
63859d4f 2834 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2835}
1da177e4
LT
2836EXPORT_SYMBOL(default_wake_function);
2837
8cbbe86d
AK
2838static long __sched
2839sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2840{
0fec171c
IM
2841 unsigned long flags;
2842 wait_queue_t wait;
2843
2844 init_waitqueue_entry(&wait, current);
1da177e4 2845
8cbbe86d 2846 __set_current_state(state);
1da177e4 2847
8cbbe86d
AK
2848 spin_lock_irqsave(&q->lock, flags);
2849 __add_wait_queue(q, &wait);
2850 spin_unlock(&q->lock);
2851 timeout = schedule_timeout(timeout);
2852 spin_lock_irq(&q->lock);
2853 __remove_wait_queue(q, &wait);
2854 spin_unlock_irqrestore(&q->lock, flags);
2855
2856 return timeout;
2857}
2858
2859void __sched interruptible_sleep_on(wait_queue_head_t *q)
2860{
2861 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2862}
1da177e4
LT
2863EXPORT_SYMBOL(interruptible_sleep_on);
2864
0fec171c 2865long __sched
95cdf3b7 2866interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2867{
8cbbe86d 2868 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2869}
1da177e4
LT
2870EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2871
0fec171c 2872void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2873{
8cbbe86d 2874 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2875}
1da177e4
LT
2876EXPORT_SYMBOL(sleep_on);
2877
0fec171c 2878long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2879{
8cbbe86d 2880 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2881}
1da177e4
LT
2882EXPORT_SYMBOL(sleep_on_timeout);
2883
b29739f9
IM
2884#ifdef CONFIG_RT_MUTEXES
2885
2886/*
2887 * rt_mutex_setprio - set the current priority of a task
2888 * @p: task
2889 * @prio: prio value (kernel-internal form)
2890 *
2891 * This function changes the 'effective' priority of a task. It does
2892 * not touch ->normal_prio like __setscheduler().
2893 *
2894 * Used by the rt_mutex code to implement priority inheritance logic.
2895 */
36c8b586 2896void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2897{
2d3d891d 2898 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2899 struct rq *rq;
83ab0aa0 2900 const struct sched_class *prev_class;
b29739f9 2901
aab03e05 2902 BUG_ON(prio > MAX_PRIO);
b29739f9 2903
0122ec5b 2904 rq = __task_rq_lock(p);
b29739f9 2905
1c4dd99b
TG
2906 /*
2907 * Idle task boosting is a nono in general. There is one
2908 * exception, when PREEMPT_RT and NOHZ is active:
2909 *
2910 * The idle task calls get_next_timer_interrupt() and holds
2911 * the timer wheel base->lock on the CPU and another CPU wants
2912 * to access the timer (probably to cancel it). We can safely
2913 * ignore the boosting request, as the idle CPU runs this code
2914 * with interrupts disabled and will complete the lock
2915 * protected section without being interrupted. So there is no
2916 * real need to boost.
2917 */
2918 if (unlikely(p == rq->idle)) {
2919 WARN_ON(p != rq->curr);
2920 WARN_ON(p->pi_blocked_on);
2921 goto out_unlock;
2922 }
2923
a8027073 2924 trace_sched_pi_setprio(p, prio);
2d3d891d 2925 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2926 oldprio = p->prio;
83ab0aa0 2927 prev_class = p->sched_class;
fd2f4419 2928 on_rq = p->on_rq;
051a1d1a 2929 running = task_current(rq, p);
0e1f3483 2930 if (on_rq)
69be72c1 2931 dequeue_task(rq, p, 0);
0e1f3483
HS
2932 if (running)
2933 p->sched_class->put_prev_task(rq, p);
dd41f596 2934
2d3d891d
DF
2935 /*
2936 * Boosting condition are:
2937 * 1. -rt task is running and holds mutex A
2938 * --> -dl task blocks on mutex A
2939 *
2940 * 2. -dl task is running and holds mutex A
2941 * --> -dl task blocks on mutex A and could preempt the
2942 * running task
2943 */
2944 if (dl_prio(prio)) {
2945 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2946 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2947 p->dl.dl_boosted = 1;
2948 p->dl.dl_throttled = 0;
2949 enqueue_flag = ENQUEUE_REPLENISH;
2950 } else
2951 p->dl.dl_boosted = 0;
aab03e05 2952 p->sched_class = &dl_sched_class;
2d3d891d
DF
2953 } else if (rt_prio(prio)) {
2954 if (dl_prio(oldprio))
2955 p->dl.dl_boosted = 0;
2956 if (oldprio < prio)
2957 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2958 p->sched_class = &rt_sched_class;
2d3d891d
DF
2959 } else {
2960 if (dl_prio(oldprio))
2961 p->dl.dl_boosted = 0;
dd41f596 2962 p->sched_class = &fair_sched_class;
2d3d891d 2963 }
dd41f596 2964
b29739f9
IM
2965 p->prio = prio;
2966
0e1f3483
HS
2967 if (running)
2968 p->sched_class->set_curr_task(rq);
da7a735e 2969 if (on_rq)
2d3d891d 2970 enqueue_task(rq, p, enqueue_flag);
cb469845 2971
da7a735e 2972 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2973out_unlock:
0122ec5b 2974 __task_rq_unlock(rq);
b29739f9 2975}
b29739f9 2976#endif
d50dde5a 2977
36c8b586 2978void set_user_nice(struct task_struct *p, long nice)
1da177e4 2979{
dd41f596 2980 int old_prio, delta, on_rq;
1da177e4 2981 unsigned long flags;
70b97a7f 2982 struct rq *rq;
1da177e4
LT
2983
2984 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2985 return;
2986 /*
2987 * We have to be careful, if called from sys_setpriority(),
2988 * the task might be in the middle of scheduling on another CPU.
2989 */
2990 rq = task_rq_lock(p, &flags);
2991 /*
2992 * The RT priorities are set via sched_setscheduler(), but we still
2993 * allow the 'normal' nice value to be set - but as expected
2994 * it wont have any effect on scheduling until the task is
aab03e05 2995 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2996 */
aab03e05 2997 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2998 p->static_prio = NICE_TO_PRIO(nice);
2999 goto out_unlock;
3000 }
fd2f4419 3001 on_rq = p->on_rq;
c09595f6 3002 if (on_rq)
69be72c1 3003 dequeue_task(rq, p, 0);
1da177e4 3004
1da177e4 3005 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3006 set_load_weight(p);
b29739f9
IM
3007 old_prio = p->prio;
3008 p->prio = effective_prio(p);
3009 delta = p->prio - old_prio;
1da177e4 3010
dd41f596 3011 if (on_rq) {
371fd7e7 3012 enqueue_task(rq, p, 0);
1da177e4 3013 /*
d5f9f942
AM
3014 * If the task increased its priority or is running and
3015 * lowered its priority, then reschedule its CPU:
1da177e4 3016 */
d5f9f942 3017 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3018 resched_task(rq->curr);
3019 }
3020out_unlock:
0122ec5b 3021 task_rq_unlock(rq, p, &flags);
1da177e4 3022}
1da177e4
LT
3023EXPORT_SYMBOL(set_user_nice);
3024
e43379f1
MM
3025/*
3026 * can_nice - check if a task can reduce its nice value
3027 * @p: task
3028 * @nice: nice value
3029 */
36c8b586 3030int can_nice(const struct task_struct *p, const int nice)
e43379f1 3031{
024f4747
MM
3032 /* convert nice value [19,-20] to rlimit style value [1,40] */
3033 int nice_rlim = 20 - nice;
48f24c4d 3034
78d7d407 3035 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3036 capable(CAP_SYS_NICE));
3037}
3038
1da177e4
LT
3039#ifdef __ARCH_WANT_SYS_NICE
3040
3041/*
3042 * sys_nice - change the priority of the current process.
3043 * @increment: priority increment
3044 *
3045 * sys_setpriority is a more generic, but much slower function that
3046 * does similar things.
3047 */
5add95d4 3048SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3049{
48f24c4d 3050 long nice, retval;
1da177e4
LT
3051
3052 /*
3053 * Setpriority might change our priority at the same moment.
3054 * We don't have to worry. Conceptually one call occurs first
3055 * and we have a single winner.
3056 */
e43379f1
MM
3057 if (increment < -40)
3058 increment = -40;
1da177e4
LT
3059 if (increment > 40)
3060 increment = 40;
3061
2b8f836f 3062 nice = TASK_NICE(current) + increment;
1da177e4
LT
3063 if (nice < -20)
3064 nice = -20;
3065 if (nice > 19)
3066 nice = 19;
3067
e43379f1
MM
3068 if (increment < 0 && !can_nice(current, nice))
3069 return -EPERM;
3070
1da177e4
LT
3071 retval = security_task_setnice(current, nice);
3072 if (retval)
3073 return retval;
3074
3075 set_user_nice(current, nice);
3076 return 0;
3077}
3078
3079#endif
3080
3081/**
3082 * task_prio - return the priority value of a given task.
3083 * @p: the task in question.
3084 *
e69f6186 3085 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3086 * RT tasks are offset by -200. Normal tasks are centered
3087 * around 0, value goes from -16 to +15.
3088 */
36c8b586 3089int task_prio(const struct task_struct *p)
1da177e4
LT
3090{
3091 return p->prio - MAX_RT_PRIO;
3092}
3093
3094/**
3095 * task_nice - return the nice value of a given task.
3096 * @p: the task in question.
e69f6186
YB
3097 *
3098 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3099 */
36c8b586 3100int task_nice(const struct task_struct *p)
1da177e4
LT
3101{
3102 return TASK_NICE(p);
3103}
150d8bed 3104EXPORT_SYMBOL(task_nice);
1da177e4
LT
3105
3106/**
3107 * idle_cpu - is a given cpu idle currently?
3108 * @cpu: the processor in question.
e69f6186
YB
3109 *
3110 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3111 */
3112int idle_cpu(int cpu)
3113{
908a3283
TG
3114 struct rq *rq = cpu_rq(cpu);
3115
3116 if (rq->curr != rq->idle)
3117 return 0;
3118
3119 if (rq->nr_running)
3120 return 0;
3121
3122#ifdef CONFIG_SMP
3123 if (!llist_empty(&rq->wake_list))
3124 return 0;
3125#endif
3126
3127 return 1;
1da177e4
LT
3128}
3129
1da177e4
LT
3130/**
3131 * idle_task - return the idle task for a given cpu.
3132 * @cpu: the processor in question.
e69f6186
YB
3133 *
3134 * Return: The idle task for the cpu @cpu.
1da177e4 3135 */
36c8b586 3136struct task_struct *idle_task(int cpu)
1da177e4
LT
3137{
3138 return cpu_rq(cpu)->idle;
3139}
3140
3141/**
3142 * find_process_by_pid - find a process with a matching PID value.
3143 * @pid: the pid in question.
e69f6186
YB
3144 *
3145 * The task of @pid, if found. %NULL otherwise.
1da177e4 3146 */
a9957449 3147static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3148{
228ebcbe 3149 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3150}
3151
aab03e05
DF
3152/*
3153 * This function initializes the sched_dl_entity of a newly becoming
3154 * SCHED_DEADLINE task.
3155 *
3156 * Only the static values are considered here, the actual runtime and the
3157 * absolute deadline will be properly calculated when the task is enqueued
3158 * for the first time with its new policy.
3159 */
3160static void
3161__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3162{
3163 struct sched_dl_entity *dl_se = &p->dl;
3164
3165 init_dl_task_timer(dl_se);
3166 dl_se->dl_runtime = attr->sched_runtime;
3167 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3168 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3169 dl_se->flags = attr->sched_flags;
332ac17e 3170 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3171 dl_se->dl_throttled = 0;
3172 dl_se->dl_new = 1;
3173}
3174
d50dde5a
DF
3175/* Actually do priority change: must hold pi & rq lock. */
3176static void __setscheduler(struct rq *rq, struct task_struct *p,
3177 const struct sched_attr *attr)
1da177e4 3178{
d50dde5a
DF
3179 int policy = attr->sched_policy;
3180
1da177e4 3181 p->policy = policy;
d50dde5a 3182
aab03e05
DF
3183 if (dl_policy(policy))
3184 __setparam_dl(p, attr);
3185 else if (rt_policy(policy))
d50dde5a
DF
3186 p->rt_priority = attr->sched_priority;
3187 else
3188 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3189
b29739f9 3190 p->normal_prio = normal_prio(p);
b29739f9 3191 p->prio = rt_mutex_getprio(p);
d50dde5a 3192
aab03e05
DF
3193 if (dl_prio(p->prio))
3194 p->sched_class = &dl_sched_class;
3195 else if (rt_prio(p->prio))
ffd44db5
PZ
3196 p->sched_class = &rt_sched_class;
3197 else
3198 p->sched_class = &fair_sched_class;
d50dde5a 3199
2dd73a4f 3200 set_load_weight(p);
1da177e4 3201}
aab03e05
DF
3202
3203static void
3204__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3205{
3206 struct sched_dl_entity *dl_se = &p->dl;
3207
3208 attr->sched_priority = p->rt_priority;
3209 attr->sched_runtime = dl_se->dl_runtime;
3210 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3211 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3212 attr->sched_flags = dl_se->flags;
3213}
3214
3215/*
3216 * This function validates the new parameters of a -deadline task.
3217 * We ask for the deadline not being zero, and greater or equal
755378a4 3218 * than the runtime, as well as the period of being zero or
332ac17e
DF
3219 * greater than deadline. Furthermore, we have to be sure that
3220 * user parameters are above the internal resolution (1us); we
3221 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3222 */
3223static bool
3224__checkparam_dl(const struct sched_attr *attr)
3225{
3226 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3227 (attr->sched_period == 0 ||
3228 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3229 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3230 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3231}
3232
c69e8d9c
DH
3233/*
3234 * check the target process has a UID that matches the current process's
3235 */
3236static bool check_same_owner(struct task_struct *p)
3237{
3238 const struct cred *cred = current_cred(), *pcred;
3239 bool match;
3240
3241 rcu_read_lock();
3242 pcred = __task_cred(p);
9c806aa0
EB
3243 match = (uid_eq(cred->euid, pcred->euid) ||
3244 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3245 rcu_read_unlock();
3246 return match;
3247}
3248
d50dde5a
DF
3249static int __sched_setscheduler(struct task_struct *p,
3250 const struct sched_attr *attr,
3251 bool user)
1da177e4 3252{
83b699ed 3253 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3254 int policy = attr->sched_policy;
1da177e4 3255 unsigned long flags;
83ab0aa0 3256 const struct sched_class *prev_class;
70b97a7f 3257 struct rq *rq;
ca94c442 3258 int reset_on_fork;
1da177e4 3259
66e5393a
SR
3260 /* may grab non-irq protected spin_locks */
3261 BUG_ON(in_interrupt());
1da177e4
LT
3262recheck:
3263 /* double check policy once rq lock held */
ca94c442
LP
3264 if (policy < 0) {
3265 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3266 policy = oldpolicy = p->policy;
ca94c442
LP
3267 } else {
3268 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3269 policy &= ~SCHED_RESET_ON_FORK;
3270
aab03e05
DF
3271 if (policy != SCHED_DEADLINE &&
3272 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3273 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3274 policy != SCHED_IDLE)
3275 return -EINVAL;
3276 }
3277
1da177e4
LT
3278 /*
3279 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3280 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3281 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3282 */
d50dde5a
DF
3283 if (attr->sched_priority < 0 ||
3284 (p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3285 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3286 return -EINVAL;
aab03e05
DF
3287 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3288 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3289 return -EINVAL;
3290
37e4ab3f
OC
3291 /*
3292 * Allow unprivileged RT tasks to decrease priority:
3293 */
961ccddd 3294 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a
DF
3295 if (fair_policy(policy)) {
3296 if (!can_nice(p, attr->sched_nice))
3297 return -EPERM;
3298 }
3299
e05606d3 3300 if (rt_policy(policy)) {
a44702e8
ON
3301 unsigned long rlim_rtprio =
3302 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3303
3304 /* can't set/change the rt policy */
3305 if (policy != p->policy && !rlim_rtprio)
3306 return -EPERM;
3307
3308 /* can't increase priority */
d50dde5a
DF
3309 if (attr->sched_priority > p->rt_priority &&
3310 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3311 return -EPERM;
3312 }
c02aa73b 3313
dd41f596 3314 /*
c02aa73b
DH
3315 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3316 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3317 */
c02aa73b
DH
3318 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3319 if (!can_nice(p, TASK_NICE(p)))
3320 return -EPERM;
3321 }
5fe1d75f 3322
37e4ab3f 3323 /* can't change other user's priorities */
c69e8d9c 3324 if (!check_same_owner(p))
37e4ab3f 3325 return -EPERM;
ca94c442
LP
3326
3327 /* Normal users shall not reset the sched_reset_on_fork flag */
3328 if (p->sched_reset_on_fork && !reset_on_fork)
3329 return -EPERM;
37e4ab3f 3330 }
1da177e4 3331
725aad24 3332 if (user) {
b0ae1981 3333 retval = security_task_setscheduler(p);
725aad24
JF
3334 if (retval)
3335 return retval;
3336 }
3337
b29739f9
IM
3338 /*
3339 * make sure no PI-waiters arrive (or leave) while we are
3340 * changing the priority of the task:
0122ec5b 3341 *
25985edc 3342 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3343 * runqueue lock must be held.
3344 */
0122ec5b 3345 rq = task_rq_lock(p, &flags);
dc61b1d6 3346
34f971f6
PZ
3347 /*
3348 * Changing the policy of the stop threads its a very bad idea
3349 */
3350 if (p == rq->stop) {
0122ec5b 3351 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3352 return -EINVAL;
3353 }
3354
a51e9198
DF
3355 /*
3356 * If not changing anything there's no need to proceed further:
3357 */
d50dde5a
DF
3358 if (unlikely(policy == p->policy)) {
3359 if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p))
3360 goto change;
3361 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3362 goto change;
aab03e05
DF
3363 if (dl_policy(policy))
3364 goto change;
d50dde5a 3365
45afb173 3366 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3367 return 0;
3368 }
d50dde5a 3369change:
a51e9198 3370
dc61b1d6 3371 if (user) {
332ac17e 3372#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3373 /*
3374 * Do not allow realtime tasks into groups that have no runtime
3375 * assigned.
3376 */
3377 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3378 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3379 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3380 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3381 return -EPERM;
3382 }
dc61b1d6 3383#endif
332ac17e
DF
3384#ifdef CONFIG_SMP
3385 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3386 cpumask_t *span = rq->rd->span;
3387 cpumask_t act_affinity;
3388
3389 /*
3390 * cpus_allowed mask is statically initialized with
3391 * CPU_MASK_ALL, span is instead dynamic. Here we
3392 * compute the "dynamic" affinity of a task.
3393 */
3394 cpumask_and(&act_affinity, &p->cpus_allowed,
3395 cpu_active_mask);
3396
3397 /*
3398 * Don't allow tasks with an affinity mask smaller than
3399 * the entire root_domain to become SCHED_DEADLINE. We
3400 * will also fail if there's no bandwidth available.
3401 */
3402 if (!cpumask_equal(&act_affinity, span) ||
3403 rq->rd->dl_bw.bw == 0) {
3404 task_rq_unlock(rq, p, &flags);
3405 return -EPERM;
3406 }
3407 }
3408#endif
3409 }
dc61b1d6 3410
1da177e4
LT
3411 /* recheck policy now with rq lock held */
3412 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3413 policy = oldpolicy = -1;
0122ec5b 3414 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3415 goto recheck;
3416 }
332ac17e
DF
3417
3418 /*
3419 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3420 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3421 * is available.
3422 */
3423 if ((dl_policy(policy) || dl_task(p)) &&
3424 dl_overflow(p, policy, attr)) {
3425 task_rq_unlock(rq, p, &flags);
3426 return -EBUSY;
3427 }
3428
fd2f4419 3429 on_rq = p->on_rq;
051a1d1a 3430 running = task_current(rq, p);
0e1f3483 3431 if (on_rq)
4ca9b72b 3432 dequeue_task(rq, p, 0);
0e1f3483
HS
3433 if (running)
3434 p->sched_class->put_prev_task(rq, p);
f6b53205 3435
ca94c442
LP
3436 p->sched_reset_on_fork = reset_on_fork;
3437
1da177e4 3438 oldprio = p->prio;
83ab0aa0 3439 prev_class = p->sched_class;
d50dde5a 3440 __setscheduler(rq, p, attr);
f6b53205 3441
0e1f3483
HS
3442 if (running)
3443 p->sched_class->set_curr_task(rq);
da7a735e 3444 if (on_rq)
4ca9b72b 3445 enqueue_task(rq, p, 0);
cb469845 3446
da7a735e 3447 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3448 task_rq_unlock(rq, p, &flags);
b29739f9 3449
95e02ca9
TG
3450 rt_mutex_adjust_pi(p);
3451
1da177e4
LT
3452 return 0;
3453}
961ccddd
RR
3454
3455/**
3456 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3457 * @p: the task in question.
3458 * @policy: new policy.
3459 * @param: structure containing the new RT priority.
3460 *
e69f6186
YB
3461 * Return: 0 on success. An error code otherwise.
3462 *
961ccddd
RR
3463 * NOTE that the task may be already dead.
3464 */
3465int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3466 const struct sched_param *param)
961ccddd 3467{
d50dde5a
DF
3468 struct sched_attr attr = {
3469 .sched_policy = policy,
3470 .sched_priority = param->sched_priority
3471 };
3472 return __sched_setscheduler(p, &attr, true);
961ccddd 3473}
1da177e4
LT
3474EXPORT_SYMBOL_GPL(sched_setscheduler);
3475
d50dde5a
DF
3476int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3477{
3478 return __sched_setscheduler(p, attr, true);
3479}
3480EXPORT_SYMBOL_GPL(sched_setattr);
3481
961ccddd
RR
3482/**
3483 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3484 * @p: the task in question.
3485 * @policy: new policy.
3486 * @param: structure containing the new RT priority.
3487 *
3488 * Just like sched_setscheduler, only don't bother checking if the
3489 * current context has permission. For example, this is needed in
3490 * stop_machine(): we create temporary high priority worker threads,
3491 * but our caller might not have that capability.
e69f6186
YB
3492 *
3493 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3494 */
3495int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3496 const struct sched_param *param)
961ccddd 3497{
d50dde5a
DF
3498 struct sched_attr attr = {
3499 .sched_policy = policy,
3500 .sched_priority = param->sched_priority
3501 };
3502 return __sched_setscheduler(p, &attr, false);
961ccddd
RR
3503}
3504
95cdf3b7
IM
3505static int
3506do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3507{
1da177e4
LT
3508 struct sched_param lparam;
3509 struct task_struct *p;
36c8b586 3510 int retval;
1da177e4
LT
3511
3512 if (!param || pid < 0)
3513 return -EINVAL;
3514 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3515 return -EFAULT;
5fe1d75f
ON
3516
3517 rcu_read_lock();
3518 retval = -ESRCH;
1da177e4 3519 p = find_process_by_pid(pid);
5fe1d75f
ON
3520 if (p != NULL)
3521 retval = sched_setscheduler(p, policy, &lparam);
3522 rcu_read_unlock();
36c8b586 3523
1da177e4
LT
3524 return retval;
3525}
3526
d50dde5a
DF
3527/*
3528 * Mimics kernel/events/core.c perf_copy_attr().
3529 */
3530static int sched_copy_attr(struct sched_attr __user *uattr,
3531 struct sched_attr *attr)
3532{
3533 u32 size;
3534 int ret;
3535
3536 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3537 return -EFAULT;
3538
3539 /*
3540 * zero the full structure, so that a short copy will be nice.
3541 */
3542 memset(attr, 0, sizeof(*attr));
3543
3544 ret = get_user(size, &uattr->size);
3545 if (ret)
3546 return ret;
3547
3548 if (size > PAGE_SIZE) /* silly large */
3549 goto err_size;
3550
3551 if (!size) /* abi compat */
3552 size = SCHED_ATTR_SIZE_VER0;
3553
3554 if (size < SCHED_ATTR_SIZE_VER0)
3555 goto err_size;
3556
3557 /*
3558 * If we're handed a bigger struct than we know of,
3559 * ensure all the unknown bits are 0 - i.e. new
3560 * user-space does not rely on any kernel feature
3561 * extensions we dont know about yet.
3562 */
3563 if (size > sizeof(*attr)) {
3564 unsigned char __user *addr;
3565 unsigned char __user *end;
3566 unsigned char val;
3567
3568 addr = (void __user *)uattr + sizeof(*attr);
3569 end = (void __user *)uattr + size;
3570
3571 for (; addr < end; addr++) {
3572 ret = get_user(val, addr);
3573 if (ret)
3574 return ret;
3575 if (val)
3576 goto err_size;
3577 }
3578 size = sizeof(*attr);
3579 }
3580
3581 ret = copy_from_user(attr, uattr, size);
3582 if (ret)
3583 return -EFAULT;
3584
3585 /*
3586 * XXX: do we want to be lenient like existing syscalls; or do we want
3587 * to be strict and return an error on out-of-bounds values?
3588 */
3589 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3590
3591out:
3592 return ret;
3593
3594err_size:
3595 put_user(sizeof(*attr), &uattr->size);
3596 ret = -E2BIG;
3597 goto out;
3598}
3599
1da177e4
LT
3600/**
3601 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3602 * @pid: the pid in question.
3603 * @policy: new policy.
3604 * @param: structure containing the new RT priority.
e69f6186
YB
3605 *
3606 * Return: 0 on success. An error code otherwise.
1da177e4 3607 */
5add95d4
HC
3608SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3609 struct sched_param __user *, param)
1da177e4 3610{
c21761f1
JB
3611 /* negative values for policy are not valid */
3612 if (policy < 0)
3613 return -EINVAL;
3614
1da177e4
LT
3615 return do_sched_setscheduler(pid, policy, param);
3616}
3617
3618/**
3619 * sys_sched_setparam - set/change the RT priority of a thread
3620 * @pid: the pid in question.
3621 * @param: structure containing the new RT priority.
e69f6186
YB
3622 *
3623 * Return: 0 on success. An error code otherwise.
1da177e4 3624 */
5add95d4 3625SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3626{
3627 return do_sched_setscheduler(pid, -1, param);
3628}
3629
d50dde5a
DF
3630/**
3631 * sys_sched_setattr - same as above, but with extended sched_attr
3632 * @pid: the pid in question.
3633 * @attr: structure containing the extended parameters.
3634 */
3635SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3636{
3637 struct sched_attr attr;
3638 struct task_struct *p;
3639 int retval;
3640
3641 if (!uattr || pid < 0)
3642 return -EINVAL;
3643
3644 if (sched_copy_attr(uattr, &attr))
3645 return -EFAULT;
3646
3647 rcu_read_lock();
3648 retval = -ESRCH;
3649 p = find_process_by_pid(pid);
3650 if (p != NULL)
3651 retval = sched_setattr(p, &attr);
3652 rcu_read_unlock();
3653
3654 return retval;
3655}
3656
1da177e4
LT
3657/**
3658 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3659 * @pid: the pid in question.
e69f6186
YB
3660 *
3661 * Return: On success, the policy of the thread. Otherwise, a negative error
3662 * code.
1da177e4 3663 */
5add95d4 3664SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3665{
36c8b586 3666 struct task_struct *p;
3a5c359a 3667 int retval;
1da177e4
LT
3668
3669 if (pid < 0)
3a5c359a 3670 return -EINVAL;
1da177e4
LT
3671
3672 retval = -ESRCH;
5fe85be0 3673 rcu_read_lock();
1da177e4
LT
3674 p = find_process_by_pid(pid);
3675 if (p) {
3676 retval = security_task_getscheduler(p);
3677 if (!retval)
ca94c442
LP
3678 retval = p->policy
3679 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3680 }
5fe85be0 3681 rcu_read_unlock();
1da177e4
LT
3682 return retval;
3683}
3684
3685/**
ca94c442 3686 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3687 * @pid: the pid in question.
3688 * @param: structure containing the RT priority.
e69f6186
YB
3689 *
3690 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3691 * code.
1da177e4 3692 */
5add95d4 3693SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3694{
3695 struct sched_param lp;
36c8b586 3696 struct task_struct *p;
3a5c359a 3697 int retval;
1da177e4
LT
3698
3699 if (!param || pid < 0)
3a5c359a 3700 return -EINVAL;
1da177e4 3701
5fe85be0 3702 rcu_read_lock();
1da177e4
LT
3703 p = find_process_by_pid(pid);
3704 retval = -ESRCH;
3705 if (!p)
3706 goto out_unlock;
3707
3708 retval = security_task_getscheduler(p);
3709 if (retval)
3710 goto out_unlock;
3711
aab03e05
DF
3712 if (task_has_dl_policy(p)) {
3713 retval = -EINVAL;
3714 goto out_unlock;
3715 }
1da177e4 3716 lp.sched_priority = p->rt_priority;
5fe85be0 3717 rcu_read_unlock();
1da177e4
LT
3718
3719 /*
3720 * This one might sleep, we cannot do it with a spinlock held ...
3721 */
3722 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3723
1da177e4
LT
3724 return retval;
3725
3726out_unlock:
5fe85be0 3727 rcu_read_unlock();
1da177e4
LT
3728 return retval;
3729}
3730
d50dde5a
DF
3731static int sched_read_attr(struct sched_attr __user *uattr,
3732 struct sched_attr *attr,
3733 unsigned int usize)
3734{
3735 int ret;
3736
3737 if (!access_ok(VERIFY_WRITE, uattr, usize))
3738 return -EFAULT;
3739
3740 /*
3741 * If we're handed a smaller struct than we know of,
3742 * ensure all the unknown bits are 0 - i.e. old
3743 * user-space does not get uncomplete information.
3744 */
3745 if (usize < sizeof(*attr)) {
3746 unsigned char *addr;
3747 unsigned char *end;
3748
3749 addr = (void *)attr + usize;
3750 end = (void *)attr + sizeof(*attr);
3751
3752 for (; addr < end; addr++) {
3753 if (*addr)
3754 goto err_size;
3755 }
3756
3757 attr->size = usize;
3758 }
3759
3760 ret = copy_to_user(uattr, attr, usize);
3761 if (ret)
3762 return -EFAULT;
3763
3764out:
3765 return ret;
3766
3767err_size:
3768 ret = -E2BIG;
3769 goto out;
3770}
3771
3772/**
aab03e05 3773 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a
DF
3774 * @pid: the pid in question.
3775 * @attr: structure containing the extended parameters.
3776 * @size: sizeof(attr) for fwd/bwd comp.
3777 */
3778SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3779 unsigned int, size)
3780{
3781 struct sched_attr attr = {
3782 .size = sizeof(struct sched_attr),
3783 };
3784 struct task_struct *p;
3785 int retval;
3786
3787 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3788 size < SCHED_ATTR_SIZE_VER0)
3789 return -EINVAL;
3790
3791 rcu_read_lock();
3792 p = find_process_by_pid(pid);
3793 retval = -ESRCH;
3794 if (!p)
3795 goto out_unlock;
3796
3797 retval = security_task_getscheduler(p);
3798 if (retval)
3799 goto out_unlock;
3800
3801 attr.sched_policy = p->policy;
aab03e05
DF
3802 if (task_has_dl_policy(p))
3803 __getparam_dl(p, &attr);
3804 else if (task_has_rt_policy(p))
d50dde5a
DF
3805 attr.sched_priority = p->rt_priority;
3806 else
3807 attr.sched_nice = TASK_NICE(p);
3808
3809 rcu_read_unlock();
3810
3811 retval = sched_read_attr(uattr, &attr, size);
3812 return retval;
3813
3814out_unlock:
3815 rcu_read_unlock();
3816 return retval;
3817}
3818
96f874e2 3819long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3820{
5a16f3d3 3821 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3822 struct task_struct *p;
3823 int retval;
1da177e4 3824
23f5d142 3825 rcu_read_lock();
1da177e4
LT
3826
3827 p = find_process_by_pid(pid);
3828 if (!p) {
23f5d142 3829 rcu_read_unlock();
1da177e4
LT
3830 return -ESRCH;
3831 }
3832
23f5d142 3833 /* Prevent p going away */
1da177e4 3834 get_task_struct(p);
23f5d142 3835 rcu_read_unlock();
1da177e4 3836
14a40ffc
TH
3837 if (p->flags & PF_NO_SETAFFINITY) {
3838 retval = -EINVAL;
3839 goto out_put_task;
3840 }
5a16f3d3
RR
3841 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3842 retval = -ENOMEM;
3843 goto out_put_task;
3844 }
3845 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3846 retval = -ENOMEM;
3847 goto out_free_cpus_allowed;
3848 }
1da177e4 3849 retval = -EPERM;
4c44aaaf
EB
3850 if (!check_same_owner(p)) {
3851 rcu_read_lock();
3852 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3853 rcu_read_unlock();
3854 goto out_unlock;
3855 }
3856 rcu_read_unlock();
3857 }
1da177e4 3858
b0ae1981 3859 retval = security_task_setscheduler(p);
e7834f8f
DQ
3860 if (retval)
3861 goto out_unlock;
3862
332ac17e
DF
3863 /*
3864 * Since bandwidth control happens on root_domain basis,
3865 * if admission test is enabled, we only admit -deadline
3866 * tasks allowed to run on all the CPUs in the task's
3867 * root_domain.
3868 */
3869#ifdef CONFIG_SMP
3870 if (task_has_dl_policy(p)) {
3871 const struct cpumask *span = task_rq(p)->rd->span;
3872
3873 if (dl_bandwidth_enabled() &&
3874 !cpumask_equal(in_mask, span)) {
3875 retval = -EBUSY;
3876 goto out_unlock;
3877 }
3878 }
3879#endif
3880
5a16f3d3
RR
3881 cpuset_cpus_allowed(p, cpus_allowed);
3882 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3883again:
5a16f3d3 3884 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3885
8707d8b8 3886 if (!retval) {
5a16f3d3
RR
3887 cpuset_cpus_allowed(p, cpus_allowed);
3888 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3889 /*
3890 * We must have raced with a concurrent cpuset
3891 * update. Just reset the cpus_allowed to the
3892 * cpuset's cpus_allowed
3893 */
5a16f3d3 3894 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3895 goto again;
3896 }
3897 }
1da177e4 3898out_unlock:
5a16f3d3
RR
3899 free_cpumask_var(new_mask);
3900out_free_cpus_allowed:
3901 free_cpumask_var(cpus_allowed);
3902out_put_task:
1da177e4 3903 put_task_struct(p);
1da177e4
LT
3904 return retval;
3905}
3906
3907static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3908 struct cpumask *new_mask)
1da177e4 3909{
96f874e2
RR
3910 if (len < cpumask_size())
3911 cpumask_clear(new_mask);
3912 else if (len > cpumask_size())
3913 len = cpumask_size();
3914
1da177e4
LT
3915 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3916}
3917
3918/**
3919 * sys_sched_setaffinity - set the cpu affinity of a process
3920 * @pid: pid of the process
3921 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3922 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3923 *
3924 * Return: 0 on success. An error code otherwise.
1da177e4 3925 */
5add95d4
HC
3926SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3927 unsigned long __user *, user_mask_ptr)
1da177e4 3928{
5a16f3d3 3929 cpumask_var_t new_mask;
1da177e4
LT
3930 int retval;
3931
5a16f3d3
RR
3932 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3933 return -ENOMEM;
1da177e4 3934
5a16f3d3
RR
3935 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3936 if (retval == 0)
3937 retval = sched_setaffinity(pid, new_mask);
3938 free_cpumask_var(new_mask);
3939 return retval;
1da177e4
LT
3940}
3941
96f874e2 3942long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3943{
36c8b586 3944 struct task_struct *p;
31605683 3945 unsigned long flags;
1da177e4 3946 int retval;
1da177e4 3947
23f5d142 3948 rcu_read_lock();
1da177e4
LT
3949
3950 retval = -ESRCH;
3951 p = find_process_by_pid(pid);
3952 if (!p)
3953 goto out_unlock;
3954
e7834f8f
DQ
3955 retval = security_task_getscheduler(p);
3956 if (retval)
3957 goto out_unlock;
3958
013fdb80 3959 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3960 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3961 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3962
3963out_unlock:
23f5d142 3964 rcu_read_unlock();
1da177e4 3965
9531b62f 3966 return retval;
1da177e4
LT
3967}
3968
3969/**
3970 * sys_sched_getaffinity - get the cpu affinity of a process
3971 * @pid: pid of the process
3972 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3973 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3974 *
3975 * Return: 0 on success. An error code otherwise.
1da177e4 3976 */
5add95d4
HC
3977SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3978 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3979{
3980 int ret;
f17c8607 3981 cpumask_var_t mask;
1da177e4 3982
84fba5ec 3983 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3984 return -EINVAL;
3985 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3986 return -EINVAL;
3987
f17c8607
RR
3988 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3989 return -ENOMEM;
1da177e4 3990
f17c8607
RR
3991 ret = sched_getaffinity(pid, mask);
3992 if (ret == 0) {
8bc037fb 3993 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3994
3995 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3996 ret = -EFAULT;
3997 else
cd3d8031 3998 ret = retlen;
f17c8607
RR
3999 }
4000 free_cpumask_var(mask);
1da177e4 4001
f17c8607 4002 return ret;
1da177e4
LT
4003}
4004
4005/**
4006 * sys_sched_yield - yield the current processor to other threads.
4007 *
dd41f596
IM
4008 * This function yields the current CPU to other tasks. If there are no
4009 * other threads running on this CPU then this function will return.
e69f6186
YB
4010 *
4011 * Return: 0.
1da177e4 4012 */
5add95d4 4013SYSCALL_DEFINE0(sched_yield)
1da177e4 4014{
70b97a7f 4015 struct rq *rq = this_rq_lock();
1da177e4 4016
2d72376b 4017 schedstat_inc(rq, yld_count);
4530d7ab 4018 current->sched_class->yield_task(rq);
1da177e4
LT
4019
4020 /*
4021 * Since we are going to call schedule() anyway, there's
4022 * no need to preempt or enable interrupts:
4023 */
4024 __release(rq->lock);
8a25d5de 4025 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4026 do_raw_spin_unlock(&rq->lock);
ba74c144 4027 sched_preempt_enable_no_resched();
1da177e4
LT
4028
4029 schedule();
4030
4031 return 0;
4032}
4033
e7b38404 4034static void __cond_resched(void)
1da177e4 4035{
bdb43806 4036 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4037 __schedule();
bdb43806 4038 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4039}
4040
02b67cc3 4041int __sched _cond_resched(void)
1da177e4 4042{
d86ee480 4043 if (should_resched()) {
1da177e4
LT
4044 __cond_resched();
4045 return 1;
4046 }
4047 return 0;
4048}
02b67cc3 4049EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4050
4051/*
613afbf8 4052 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4053 * call schedule, and on return reacquire the lock.
4054 *
41a2d6cf 4055 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4056 * operations here to prevent schedule() from being called twice (once via
4057 * spin_unlock(), once by hand).
4058 */
613afbf8 4059int __cond_resched_lock(spinlock_t *lock)
1da177e4 4060{
d86ee480 4061 int resched = should_resched();
6df3cecb
JK
4062 int ret = 0;
4063
f607c668
PZ
4064 lockdep_assert_held(lock);
4065
95c354fe 4066 if (spin_needbreak(lock) || resched) {
1da177e4 4067 spin_unlock(lock);
d86ee480 4068 if (resched)
95c354fe
NP
4069 __cond_resched();
4070 else
4071 cpu_relax();
6df3cecb 4072 ret = 1;
1da177e4 4073 spin_lock(lock);
1da177e4 4074 }
6df3cecb 4075 return ret;
1da177e4 4076}
613afbf8 4077EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4078
613afbf8 4079int __sched __cond_resched_softirq(void)
1da177e4
LT
4080{
4081 BUG_ON(!in_softirq());
4082
d86ee480 4083 if (should_resched()) {
98d82567 4084 local_bh_enable();
1da177e4
LT
4085 __cond_resched();
4086 local_bh_disable();
4087 return 1;
4088 }
4089 return 0;
4090}
613afbf8 4091EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4092
1da177e4
LT
4093/**
4094 * yield - yield the current processor to other threads.
4095 *
8e3fabfd
PZ
4096 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4097 *
4098 * The scheduler is at all times free to pick the calling task as the most
4099 * eligible task to run, if removing the yield() call from your code breaks
4100 * it, its already broken.
4101 *
4102 * Typical broken usage is:
4103 *
4104 * while (!event)
4105 * yield();
4106 *
4107 * where one assumes that yield() will let 'the other' process run that will
4108 * make event true. If the current task is a SCHED_FIFO task that will never
4109 * happen. Never use yield() as a progress guarantee!!
4110 *
4111 * If you want to use yield() to wait for something, use wait_event().
4112 * If you want to use yield() to be 'nice' for others, use cond_resched().
4113 * If you still want to use yield(), do not!
1da177e4
LT
4114 */
4115void __sched yield(void)
4116{
4117 set_current_state(TASK_RUNNING);
4118 sys_sched_yield();
4119}
1da177e4
LT
4120EXPORT_SYMBOL(yield);
4121
d95f4122
MG
4122/**
4123 * yield_to - yield the current processor to another thread in
4124 * your thread group, or accelerate that thread toward the
4125 * processor it's on.
16addf95
RD
4126 * @p: target task
4127 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4128 *
4129 * It's the caller's job to ensure that the target task struct
4130 * can't go away on us before we can do any checks.
4131 *
e69f6186 4132 * Return:
7b270f60
PZ
4133 * true (>0) if we indeed boosted the target task.
4134 * false (0) if we failed to boost the target.
4135 * -ESRCH if there's no task to yield to.
d95f4122
MG
4136 */
4137bool __sched yield_to(struct task_struct *p, bool preempt)
4138{
4139 struct task_struct *curr = current;
4140 struct rq *rq, *p_rq;
4141 unsigned long flags;
c3c18640 4142 int yielded = 0;
d95f4122
MG
4143
4144 local_irq_save(flags);
4145 rq = this_rq();
4146
4147again:
4148 p_rq = task_rq(p);
7b270f60
PZ
4149 /*
4150 * If we're the only runnable task on the rq and target rq also
4151 * has only one task, there's absolutely no point in yielding.
4152 */
4153 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4154 yielded = -ESRCH;
4155 goto out_irq;
4156 }
4157
d95f4122 4158 double_rq_lock(rq, p_rq);
39e24d8f 4159 if (task_rq(p) != p_rq) {
d95f4122
MG
4160 double_rq_unlock(rq, p_rq);
4161 goto again;
4162 }
4163
4164 if (!curr->sched_class->yield_to_task)
7b270f60 4165 goto out_unlock;
d95f4122
MG
4166
4167 if (curr->sched_class != p->sched_class)
7b270f60 4168 goto out_unlock;
d95f4122
MG
4169
4170 if (task_running(p_rq, p) || p->state)
7b270f60 4171 goto out_unlock;
d95f4122
MG
4172
4173 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4174 if (yielded) {
d95f4122 4175 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4176 /*
4177 * Make p's CPU reschedule; pick_next_entity takes care of
4178 * fairness.
4179 */
4180 if (preempt && rq != p_rq)
4181 resched_task(p_rq->curr);
4182 }
d95f4122 4183
7b270f60 4184out_unlock:
d95f4122 4185 double_rq_unlock(rq, p_rq);
7b270f60 4186out_irq:
d95f4122
MG
4187 local_irq_restore(flags);
4188
7b270f60 4189 if (yielded > 0)
d95f4122
MG
4190 schedule();
4191
4192 return yielded;
4193}
4194EXPORT_SYMBOL_GPL(yield_to);
4195
1da177e4 4196/*
41a2d6cf 4197 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4198 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4199 */
4200void __sched io_schedule(void)
4201{
54d35f29 4202 struct rq *rq = raw_rq();
1da177e4 4203
0ff92245 4204 delayacct_blkio_start();
1da177e4 4205 atomic_inc(&rq->nr_iowait);
73c10101 4206 blk_flush_plug(current);
8f0dfc34 4207 current->in_iowait = 1;
1da177e4 4208 schedule();
8f0dfc34 4209 current->in_iowait = 0;
1da177e4 4210 atomic_dec(&rq->nr_iowait);
0ff92245 4211 delayacct_blkio_end();
1da177e4 4212}
1da177e4
LT
4213EXPORT_SYMBOL(io_schedule);
4214
4215long __sched io_schedule_timeout(long timeout)
4216{
54d35f29 4217 struct rq *rq = raw_rq();
1da177e4
LT
4218 long ret;
4219
0ff92245 4220 delayacct_blkio_start();
1da177e4 4221 atomic_inc(&rq->nr_iowait);
73c10101 4222 blk_flush_plug(current);
8f0dfc34 4223 current->in_iowait = 1;
1da177e4 4224 ret = schedule_timeout(timeout);
8f0dfc34 4225 current->in_iowait = 0;
1da177e4 4226 atomic_dec(&rq->nr_iowait);
0ff92245 4227 delayacct_blkio_end();
1da177e4
LT
4228 return ret;
4229}
4230
4231/**
4232 * sys_sched_get_priority_max - return maximum RT priority.
4233 * @policy: scheduling class.
4234 *
e69f6186
YB
4235 * Return: On success, this syscall returns the maximum
4236 * rt_priority that can be used by a given scheduling class.
4237 * On failure, a negative error code is returned.
1da177e4 4238 */
5add95d4 4239SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4240{
4241 int ret = -EINVAL;
4242
4243 switch (policy) {
4244 case SCHED_FIFO:
4245 case SCHED_RR:
4246 ret = MAX_USER_RT_PRIO-1;
4247 break;
aab03e05 4248 case SCHED_DEADLINE:
1da177e4 4249 case SCHED_NORMAL:
b0a9499c 4250 case SCHED_BATCH:
dd41f596 4251 case SCHED_IDLE:
1da177e4
LT
4252 ret = 0;
4253 break;
4254 }
4255 return ret;
4256}
4257
4258/**
4259 * sys_sched_get_priority_min - return minimum RT priority.
4260 * @policy: scheduling class.
4261 *
e69f6186
YB
4262 * Return: On success, this syscall returns the minimum
4263 * rt_priority that can be used by a given scheduling class.
4264 * On failure, a negative error code is returned.
1da177e4 4265 */
5add95d4 4266SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4267{
4268 int ret = -EINVAL;
4269
4270 switch (policy) {
4271 case SCHED_FIFO:
4272 case SCHED_RR:
4273 ret = 1;
4274 break;
aab03e05 4275 case SCHED_DEADLINE:
1da177e4 4276 case SCHED_NORMAL:
b0a9499c 4277 case SCHED_BATCH:
dd41f596 4278 case SCHED_IDLE:
1da177e4
LT
4279 ret = 0;
4280 }
4281 return ret;
4282}
4283
4284/**
4285 * sys_sched_rr_get_interval - return the default timeslice of a process.
4286 * @pid: pid of the process.
4287 * @interval: userspace pointer to the timeslice value.
4288 *
4289 * this syscall writes the default timeslice value of a given process
4290 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4291 *
4292 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4293 * an error code.
1da177e4 4294 */
17da2bd9 4295SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4296 struct timespec __user *, interval)
1da177e4 4297{
36c8b586 4298 struct task_struct *p;
a4ec24b4 4299 unsigned int time_slice;
dba091b9
TG
4300 unsigned long flags;
4301 struct rq *rq;
3a5c359a 4302 int retval;
1da177e4 4303 struct timespec t;
1da177e4
LT
4304
4305 if (pid < 0)
3a5c359a 4306 return -EINVAL;
1da177e4
LT
4307
4308 retval = -ESRCH;
1a551ae7 4309 rcu_read_lock();
1da177e4
LT
4310 p = find_process_by_pid(pid);
4311 if (!p)
4312 goto out_unlock;
4313
4314 retval = security_task_getscheduler(p);
4315 if (retval)
4316 goto out_unlock;
4317
dba091b9
TG
4318 rq = task_rq_lock(p, &flags);
4319 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4320 task_rq_unlock(rq, p, &flags);
a4ec24b4 4321
1a551ae7 4322 rcu_read_unlock();
a4ec24b4 4323 jiffies_to_timespec(time_slice, &t);
1da177e4 4324 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4325 return retval;
3a5c359a 4326
1da177e4 4327out_unlock:
1a551ae7 4328 rcu_read_unlock();
1da177e4
LT
4329 return retval;
4330}
4331
7c731e0a 4332static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4333
82a1fcb9 4334void sched_show_task(struct task_struct *p)
1da177e4 4335{
1da177e4 4336 unsigned long free = 0;
4e79752c 4337 int ppid;
36c8b586 4338 unsigned state;
1da177e4 4339
1da177e4 4340 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4341 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4342 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4343#if BITS_PER_LONG == 32
1da177e4 4344 if (state == TASK_RUNNING)
3df0fc5b 4345 printk(KERN_CONT " running ");
1da177e4 4346 else
3df0fc5b 4347 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4348#else
4349 if (state == TASK_RUNNING)
3df0fc5b 4350 printk(KERN_CONT " running task ");
1da177e4 4351 else
3df0fc5b 4352 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4353#endif
4354#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4355 free = stack_not_used(p);
1da177e4 4356#endif
4e79752c
PM
4357 rcu_read_lock();
4358 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4359 rcu_read_unlock();
3df0fc5b 4360 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4361 task_pid_nr(p), ppid,
aa47b7e0 4362 (unsigned long)task_thread_info(p)->flags);
1da177e4 4363
3d1cb205 4364 print_worker_info(KERN_INFO, p);
5fb5e6de 4365 show_stack(p, NULL);
1da177e4
LT
4366}
4367
e59e2ae2 4368void show_state_filter(unsigned long state_filter)
1da177e4 4369{
36c8b586 4370 struct task_struct *g, *p;
1da177e4 4371
4bd77321 4372#if BITS_PER_LONG == 32
3df0fc5b
PZ
4373 printk(KERN_INFO
4374 " task PC stack pid father\n");
1da177e4 4375#else
3df0fc5b
PZ
4376 printk(KERN_INFO
4377 " task PC stack pid father\n");
1da177e4 4378#endif
510f5acc 4379 rcu_read_lock();
1da177e4
LT
4380 do_each_thread(g, p) {
4381 /*
4382 * reset the NMI-timeout, listing all files on a slow
25985edc 4383 * console might take a lot of time:
1da177e4
LT
4384 */
4385 touch_nmi_watchdog();
39bc89fd 4386 if (!state_filter || (p->state & state_filter))
82a1fcb9 4387 sched_show_task(p);
1da177e4
LT
4388 } while_each_thread(g, p);
4389
04c9167f
JF
4390 touch_all_softlockup_watchdogs();
4391
dd41f596
IM
4392#ifdef CONFIG_SCHED_DEBUG
4393 sysrq_sched_debug_show();
4394#endif
510f5acc 4395 rcu_read_unlock();
e59e2ae2
IM
4396 /*
4397 * Only show locks if all tasks are dumped:
4398 */
93335a21 4399 if (!state_filter)
e59e2ae2 4400 debug_show_all_locks();
1da177e4
LT
4401}
4402
0db0628d 4403void init_idle_bootup_task(struct task_struct *idle)
1df21055 4404{
dd41f596 4405 idle->sched_class = &idle_sched_class;
1df21055
IM
4406}
4407
f340c0d1
IM
4408/**
4409 * init_idle - set up an idle thread for a given CPU
4410 * @idle: task in question
4411 * @cpu: cpu the idle task belongs to
4412 *
4413 * NOTE: this function does not set the idle thread's NEED_RESCHED
4414 * flag, to make booting more robust.
4415 */
0db0628d 4416void init_idle(struct task_struct *idle, int cpu)
1da177e4 4417{
70b97a7f 4418 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4419 unsigned long flags;
4420
05fa785c 4421 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4422
5e1576ed 4423 __sched_fork(0, idle);
06b83b5f 4424 idle->state = TASK_RUNNING;
dd41f596
IM
4425 idle->se.exec_start = sched_clock();
4426
1e1b6c51 4427 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4428 /*
4429 * We're having a chicken and egg problem, even though we are
4430 * holding rq->lock, the cpu isn't yet set to this cpu so the
4431 * lockdep check in task_group() will fail.
4432 *
4433 * Similar case to sched_fork(). / Alternatively we could
4434 * use task_rq_lock() here and obtain the other rq->lock.
4435 *
4436 * Silence PROVE_RCU
4437 */
4438 rcu_read_lock();
dd41f596 4439 __set_task_cpu(idle, cpu);
6506cf6c 4440 rcu_read_unlock();
1da177e4 4441
1da177e4 4442 rq->curr = rq->idle = idle;
3ca7a440
PZ
4443#if defined(CONFIG_SMP)
4444 idle->on_cpu = 1;
4866cde0 4445#endif
05fa785c 4446 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4447
4448 /* Set the preempt count _outside_ the spinlocks! */
01028747 4449 init_idle_preempt_count(idle, cpu);
55cd5340 4450
dd41f596
IM
4451 /*
4452 * The idle tasks have their own, simple scheduling class:
4453 */
4454 idle->sched_class = &idle_sched_class;
868baf07 4455 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4456 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4457#if defined(CONFIG_SMP)
4458 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4459#endif
19978ca6
IM
4460}
4461
1da177e4 4462#ifdef CONFIG_SMP
1e1b6c51
KM
4463void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4464{
4465 if (p->sched_class && p->sched_class->set_cpus_allowed)
4466 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4467
4468 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4469 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4470}
4471
1da177e4
LT
4472/*
4473 * This is how migration works:
4474 *
969c7921
TH
4475 * 1) we invoke migration_cpu_stop() on the target CPU using
4476 * stop_one_cpu().
4477 * 2) stopper starts to run (implicitly forcing the migrated thread
4478 * off the CPU)
4479 * 3) it checks whether the migrated task is still in the wrong runqueue.
4480 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4481 * it and puts it into the right queue.
969c7921
TH
4482 * 5) stopper completes and stop_one_cpu() returns and the migration
4483 * is done.
1da177e4
LT
4484 */
4485
4486/*
4487 * Change a given task's CPU affinity. Migrate the thread to a
4488 * proper CPU and schedule it away if the CPU it's executing on
4489 * is removed from the allowed bitmask.
4490 *
4491 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4492 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4493 * call is not atomic; no spinlocks may be held.
4494 */
96f874e2 4495int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4496{
4497 unsigned long flags;
70b97a7f 4498 struct rq *rq;
969c7921 4499 unsigned int dest_cpu;
48f24c4d 4500 int ret = 0;
1da177e4
LT
4501
4502 rq = task_rq_lock(p, &flags);
e2912009 4503
db44fc01
YZ
4504 if (cpumask_equal(&p->cpus_allowed, new_mask))
4505 goto out;
4506
6ad4c188 4507 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4508 ret = -EINVAL;
4509 goto out;
4510 }
4511
1e1b6c51 4512 do_set_cpus_allowed(p, new_mask);
73fe6aae 4513
1da177e4 4514 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4515 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4516 goto out;
4517
969c7921 4518 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4519 if (p->on_rq) {
969c7921 4520 struct migration_arg arg = { p, dest_cpu };
1da177e4 4521 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4522 task_rq_unlock(rq, p, &flags);
969c7921 4523 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4524 tlb_migrate_finish(p->mm);
4525 return 0;
4526 }
4527out:
0122ec5b 4528 task_rq_unlock(rq, p, &flags);
48f24c4d 4529
1da177e4
LT
4530 return ret;
4531}
cd8ba7cd 4532EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4 4533
332ac17e
DF
4534/*
4535 * When dealing with a -deadline task, we have to check if moving it to
4536 * a new CPU is possible or not. In fact, this is only true iff there
4537 * is enough bandwidth available on such CPU, otherwise we want the
4538 * whole migration progedure to fail over.
4539 */
4540static inline
4541bool set_task_cpu_dl(struct task_struct *p, unsigned int cpu)
4542{
4543 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4544 struct dl_bw *cpu_b = dl_bw_of(cpu);
4545 int ret = 1;
4546 u64 bw;
4547
4548 if (dl_b == cpu_b)
4549 return 1;
4550
4551 raw_spin_lock(&dl_b->lock);
4552 raw_spin_lock(&cpu_b->lock);
4553
4554 bw = cpu_b->bw * cpumask_weight(cpu_rq(cpu)->rd->span);
4555 if (dl_bandwidth_enabled() &&
4556 bw < cpu_b->total_bw + p->dl.dl_bw) {
4557 ret = 0;
4558 goto unlock;
4559 }
4560 dl_b->total_bw -= p->dl.dl_bw;
4561 cpu_b->total_bw += p->dl.dl_bw;
4562
4563unlock:
4564 raw_spin_unlock(&cpu_b->lock);
4565 raw_spin_unlock(&dl_b->lock);
4566
4567 return ret;
4568}
4569
1da177e4 4570/*
41a2d6cf 4571 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4572 * this because either it can't run here any more (set_cpus_allowed()
4573 * away from this CPU, or CPU going down), or because we're
4574 * attempting to rebalance this task on exec (sched_exec).
4575 *
4576 * So we race with normal scheduler movements, but that's OK, as long
4577 * as the task is no longer on this CPU.
efc30814
KK
4578 *
4579 * Returns non-zero if task was successfully migrated.
1da177e4 4580 */
efc30814 4581static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4582{
70b97a7f 4583 struct rq *rq_dest, *rq_src;
e2912009 4584 int ret = 0;
1da177e4 4585
e761b772 4586 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4587 return ret;
1da177e4
LT
4588
4589 rq_src = cpu_rq(src_cpu);
4590 rq_dest = cpu_rq(dest_cpu);
4591
0122ec5b 4592 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4593 double_rq_lock(rq_src, rq_dest);
4594 /* Already moved. */
4595 if (task_cpu(p) != src_cpu)
b1e38734 4596 goto done;
1da177e4 4597 /* Affinity changed (again). */
fa17b507 4598 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4599 goto fail;
1da177e4 4600
332ac17e
DF
4601 /*
4602 * If p is -deadline, proceed only if there is enough
4603 * bandwidth available on dest_cpu
4604 */
4605 if (unlikely(dl_task(p)) && !set_task_cpu_dl(p, dest_cpu))
4606 goto fail;
4607
e2912009
PZ
4608 /*
4609 * If we're not on a rq, the next wake-up will ensure we're
4610 * placed properly.
4611 */
fd2f4419 4612 if (p->on_rq) {
4ca9b72b 4613 dequeue_task(rq_src, p, 0);
e2912009 4614 set_task_cpu(p, dest_cpu);
4ca9b72b 4615 enqueue_task(rq_dest, p, 0);
15afe09b 4616 check_preempt_curr(rq_dest, p, 0);
1da177e4 4617 }
b1e38734 4618done:
efc30814 4619 ret = 1;
b1e38734 4620fail:
1da177e4 4621 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4622 raw_spin_unlock(&p->pi_lock);
efc30814 4623 return ret;
1da177e4
LT
4624}
4625
e6628d5b
MG
4626#ifdef CONFIG_NUMA_BALANCING
4627/* Migrate current task p to target_cpu */
4628int migrate_task_to(struct task_struct *p, int target_cpu)
4629{
4630 struct migration_arg arg = { p, target_cpu };
4631 int curr_cpu = task_cpu(p);
4632
4633 if (curr_cpu == target_cpu)
4634 return 0;
4635
4636 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4637 return -EINVAL;
4638
4639 /* TODO: This is not properly updating schedstats */
4640
4641 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4642}
0ec8aa00
PZ
4643
4644/*
4645 * Requeue a task on a given node and accurately track the number of NUMA
4646 * tasks on the runqueues
4647 */
4648void sched_setnuma(struct task_struct *p, int nid)
4649{
4650 struct rq *rq;
4651 unsigned long flags;
4652 bool on_rq, running;
4653
4654 rq = task_rq_lock(p, &flags);
4655 on_rq = p->on_rq;
4656 running = task_current(rq, p);
4657
4658 if (on_rq)
4659 dequeue_task(rq, p, 0);
4660 if (running)
4661 p->sched_class->put_prev_task(rq, p);
4662
4663 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4664
4665 if (running)
4666 p->sched_class->set_curr_task(rq);
4667 if (on_rq)
4668 enqueue_task(rq, p, 0);
4669 task_rq_unlock(rq, p, &flags);
4670}
e6628d5b
MG
4671#endif
4672
1da177e4 4673/*
969c7921
TH
4674 * migration_cpu_stop - this will be executed by a highprio stopper thread
4675 * and performs thread migration by bumping thread off CPU then
4676 * 'pushing' onto another runqueue.
1da177e4 4677 */
969c7921 4678static int migration_cpu_stop(void *data)
1da177e4 4679{
969c7921 4680 struct migration_arg *arg = data;
f7b4cddc 4681
969c7921
TH
4682 /*
4683 * The original target cpu might have gone down and we might
4684 * be on another cpu but it doesn't matter.
4685 */
f7b4cddc 4686 local_irq_disable();
969c7921 4687 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4688 local_irq_enable();
1da177e4 4689 return 0;
f7b4cddc
ON
4690}
4691
1da177e4 4692#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4693
054b9108 4694/*
48c5ccae
PZ
4695 * Ensures that the idle task is using init_mm right before its cpu goes
4696 * offline.
054b9108 4697 */
48c5ccae 4698void idle_task_exit(void)
1da177e4 4699{
48c5ccae 4700 struct mm_struct *mm = current->active_mm;
e76bd8d9 4701
48c5ccae 4702 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4703
48c5ccae
PZ
4704 if (mm != &init_mm)
4705 switch_mm(mm, &init_mm, current);
4706 mmdrop(mm);
1da177e4
LT
4707}
4708
4709/*
5d180232
PZ
4710 * Since this CPU is going 'away' for a while, fold any nr_active delta
4711 * we might have. Assumes we're called after migrate_tasks() so that the
4712 * nr_active count is stable.
4713 *
4714 * Also see the comment "Global load-average calculations".
1da177e4 4715 */
5d180232 4716static void calc_load_migrate(struct rq *rq)
1da177e4 4717{
5d180232
PZ
4718 long delta = calc_load_fold_active(rq);
4719 if (delta)
4720 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4721}
4722
48f24c4d 4723/*
48c5ccae
PZ
4724 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4725 * try_to_wake_up()->select_task_rq().
4726 *
4727 * Called with rq->lock held even though we'er in stop_machine() and
4728 * there's no concurrency possible, we hold the required locks anyway
4729 * because of lock validation efforts.
1da177e4 4730 */
48c5ccae 4731static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4732{
70b97a7f 4733 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4734 struct task_struct *next, *stop = rq->stop;
4735 int dest_cpu;
1da177e4
LT
4736
4737 /*
48c5ccae
PZ
4738 * Fudge the rq selection such that the below task selection loop
4739 * doesn't get stuck on the currently eligible stop task.
4740 *
4741 * We're currently inside stop_machine() and the rq is either stuck
4742 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4743 * either way we should never end up calling schedule() until we're
4744 * done here.
1da177e4 4745 */
48c5ccae 4746 rq->stop = NULL;
48f24c4d 4747
77bd3970
FW
4748 /*
4749 * put_prev_task() and pick_next_task() sched
4750 * class method both need to have an up-to-date
4751 * value of rq->clock[_task]
4752 */
4753 update_rq_clock(rq);
4754
dd41f596 4755 for ( ; ; ) {
48c5ccae
PZ
4756 /*
4757 * There's this thread running, bail when that's the only
4758 * remaining thread.
4759 */
4760 if (rq->nr_running == 1)
dd41f596 4761 break;
48c5ccae 4762
b67802ea 4763 next = pick_next_task(rq);
48c5ccae 4764 BUG_ON(!next);
79c53799 4765 next->sched_class->put_prev_task(rq, next);
e692ab53 4766
48c5ccae
PZ
4767 /* Find suitable destination for @next, with force if needed. */
4768 dest_cpu = select_fallback_rq(dead_cpu, next);
4769 raw_spin_unlock(&rq->lock);
4770
4771 __migrate_task(next, dead_cpu, dest_cpu);
4772
4773 raw_spin_lock(&rq->lock);
1da177e4 4774 }
dce48a84 4775
48c5ccae 4776 rq->stop = stop;
dce48a84 4777}
48c5ccae 4778
1da177e4
LT
4779#endif /* CONFIG_HOTPLUG_CPU */
4780
e692ab53
NP
4781#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4782
4783static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4784 {
4785 .procname = "sched_domain",
c57baf1e 4786 .mode = 0555,
e0361851 4787 },
56992309 4788 {}
e692ab53
NP
4789};
4790
4791static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4792 {
4793 .procname = "kernel",
c57baf1e 4794 .mode = 0555,
e0361851
AD
4795 .child = sd_ctl_dir,
4796 },
56992309 4797 {}
e692ab53
NP
4798};
4799
4800static struct ctl_table *sd_alloc_ctl_entry(int n)
4801{
4802 struct ctl_table *entry =
5cf9f062 4803 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4804
e692ab53
NP
4805 return entry;
4806}
4807
6382bc90
MM
4808static void sd_free_ctl_entry(struct ctl_table **tablep)
4809{
cd790076 4810 struct ctl_table *entry;
6382bc90 4811
cd790076
MM
4812 /*
4813 * In the intermediate directories, both the child directory and
4814 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4815 * will always be set. In the lowest directory the names are
cd790076
MM
4816 * static strings and all have proc handlers.
4817 */
4818 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4819 if (entry->child)
4820 sd_free_ctl_entry(&entry->child);
cd790076
MM
4821 if (entry->proc_handler == NULL)
4822 kfree(entry->procname);
4823 }
6382bc90
MM
4824
4825 kfree(*tablep);
4826 *tablep = NULL;
4827}
4828
201c373e 4829static int min_load_idx = 0;
fd9b86d3 4830static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4831
e692ab53 4832static void
e0361851 4833set_table_entry(struct ctl_table *entry,
e692ab53 4834 const char *procname, void *data, int maxlen,
201c373e
NK
4835 umode_t mode, proc_handler *proc_handler,
4836 bool load_idx)
e692ab53 4837{
e692ab53
NP
4838 entry->procname = procname;
4839 entry->data = data;
4840 entry->maxlen = maxlen;
4841 entry->mode = mode;
4842 entry->proc_handler = proc_handler;
201c373e
NK
4843
4844 if (load_idx) {
4845 entry->extra1 = &min_load_idx;
4846 entry->extra2 = &max_load_idx;
4847 }
e692ab53
NP
4848}
4849
4850static struct ctl_table *
4851sd_alloc_ctl_domain_table(struct sched_domain *sd)
4852{
a5d8c348 4853 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4854
ad1cdc1d
MM
4855 if (table == NULL)
4856 return NULL;
4857
e0361851 4858 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4859 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4860 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4861 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4862 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4863 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4864 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4865 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4866 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4867 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4868 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4869 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4870 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4871 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4872 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4873 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4874 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4875 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4876 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4877 &sd->cache_nice_tries,
201c373e 4878 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4879 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4880 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4881 set_table_entry(&table[11], "name", sd->name,
201c373e 4882 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4883 /* &table[12] is terminator */
e692ab53
NP
4884
4885 return table;
4886}
4887
be7002e6 4888static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4889{
4890 struct ctl_table *entry, *table;
4891 struct sched_domain *sd;
4892 int domain_num = 0, i;
4893 char buf[32];
4894
4895 for_each_domain(cpu, sd)
4896 domain_num++;
4897 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4898 if (table == NULL)
4899 return NULL;
e692ab53
NP
4900
4901 i = 0;
4902 for_each_domain(cpu, sd) {
4903 snprintf(buf, 32, "domain%d", i);
e692ab53 4904 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4905 entry->mode = 0555;
e692ab53
NP
4906 entry->child = sd_alloc_ctl_domain_table(sd);
4907 entry++;
4908 i++;
4909 }
4910 return table;
4911}
4912
4913static struct ctl_table_header *sd_sysctl_header;
6382bc90 4914static void register_sched_domain_sysctl(void)
e692ab53 4915{
6ad4c188 4916 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4917 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4918 char buf[32];
4919
7378547f
MM
4920 WARN_ON(sd_ctl_dir[0].child);
4921 sd_ctl_dir[0].child = entry;
4922
ad1cdc1d
MM
4923 if (entry == NULL)
4924 return;
4925
6ad4c188 4926 for_each_possible_cpu(i) {
e692ab53 4927 snprintf(buf, 32, "cpu%d", i);
e692ab53 4928 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4929 entry->mode = 0555;
e692ab53 4930 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4931 entry++;
e692ab53 4932 }
7378547f
MM
4933
4934 WARN_ON(sd_sysctl_header);
e692ab53
NP
4935 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4936}
6382bc90 4937
7378547f 4938/* may be called multiple times per register */
6382bc90
MM
4939static void unregister_sched_domain_sysctl(void)
4940{
7378547f
MM
4941 if (sd_sysctl_header)
4942 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4943 sd_sysctl_header = NULL;
7378547f
MM
4944 if (sd_ctl_dir[0].child)
4945 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4946}
e692ab53 4947#else
6382bc90
MM
4948static void register_sched_domain_sysctl(void)
4949{
4950}
4951static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4952{
4953}
4954#endif
4955
1f11eb6a
GH
4956static void set_rq_online(struct rq *rq)
4957{
4958 if (!rq->online) {
4959 const struct sched_class *class;
4960
c6c4927b 4961 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4962 rq->online = 1;
4963
4964 for_each_class(class) {
4965 if (class->rq_online)
4966 class->rq_online(rq);
4967 }
4968 }
4969}
4970
4971static void set_rq_offline(struct rq *rq)
4972{
4973 if (rq->online) {
4974 const struct sched_class *class;
4975
4976 for_each_class(class) {
4977 if (class->rq_offline)
4978 class->rq_offline(rq);
4979 }
4980
c6c4927b 4981 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4982 rq->online = 0;
4983 }
4984}
4985
1da177e4
LT
4986/*
4987 * migration_call - callback that gets triggered when a CPU is added.
4988 * Here we can start up the necessary migration thread for the new CPU.
4989 */
0db0628d 4990static int
48f24c4d 4991migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4992{
48f24c4d 4993 int cpu = (long)hcpu;
1da177e4 4994 unsigned long flags;
969c7921 4995 struct rq *rq = cpu_rq(cpu);
1da177e4 4996
48c5ccae 4997 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4998
1da177e4 4999 case CPU_UP_PREPARE:
a468d389 5000 rq->calc_load_update = calc_load_update;
1da177e4 5001 break;
48f24c4d 5002
1da177e4 5003 case CPU_ONLINE:
1f94ef59 5004 /* Update our root-domain */
05fa785c 5005 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5006 if (rq->rd) {
c6c4927b 5007 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5008
5009 set_rq_online(rq);
1f94ef59 5010 }
05fa785c 5011 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5012 break;
48f24c4d 5013
1da177e4 5014#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5015 case CPU_DYING:
317f3941 5016 sched_ttwu_pending();
57d885fe 5017 /* Update our root-domain */
05fa785c 5018 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5019 if (rq->rd) {
c6c4927b 5020 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5021 set_rq_offline(rq);
57d885fe 5022 }
48c5ccae
PZ
5023 migrate_tasks(cpu);
5024 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5025 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5026 break;
48c5ccae 5027
5d180232 5028 case CPU_DEAD:
f319da0c 5029 calc_load_migrate(rq);
57d885fe 5030 break;
1da177e4
LT
5031#endif
5032 }
49c022e6
PZ
5033
5034 update_max_interval();
5035
1da177e4
LT
5036 return NOTIFY_OK;
5037}
5038
f38b0820
PM
5039/*
5040 * Register at high priority so that task migration (migrate_all_tasks)
5041 * happens before everything else. This has to be lower priority than
cdd6c482 5042 * the notifier in the perf_event subsystem, though.
1da177e4 5043 */
0db0628d 5044static struct notifier_block migration_notifier = {
1da177e4 5045 .notifier_call = migration_call,
50a323b7 5046 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5047};
5048
0db0628d 5049static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5050 unsigned long action, void *hcpu)
5051{
5052 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5053 case CPU_STARTING:
3a101d05
TH
5054 case CPU_DOWN_FAILED:
5055 set_cpu_active((long)hcpu, true);
5056 return NOTIFY_OK;
5057 default:
5058 return NOTIFY_DONE;
5059 }
5060}
5061
0db0628d 5062static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5063 unsigned long action, void *hcpu)
5064{
5065 switch (action & ~CPU_TASKS_FROZEN) {
5066 case CPU_DOWN_PREPARE:
5067 set_cpu_active((long)hcpu, false);
5068 return NOTIFY_OK;
5069 default:
5070 return NOTIFY_DONE;
5071 }
5072}
5073
7babe8db 5074static int __init migration_init(void)
1da177e4
LT
5075{
5076 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5077 int err;
48f24c4d 5078
3a101d05 5079 /* Initialize migration for the boot CPU */
07dccf33
AM
5080 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5081 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5082 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5083 register_cpu_notifier(&migration_notifier);
7babe8db 5084
3a101d05
TH
5085 /* Register cpu active notifiers */
5086 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5087 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5088
a004cd42 5089 return 0;
1da177e4 5090}
7babe8db 5091early_initcall(migration_init);
1da177e4
LT
5092#endif
5093
5094#ifdef CONFIG_SMP
476f3534 5095
4cb98839
PZ
5096static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5097
3e9830dc 5098#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5099
d039ac60 5100static __read_mostly int sched_debug_enabled;
f6630114 5101
d039ac60 5102static int __init sched_debug_setup(char *str)
f6630114 5103{
d039ac60 5104 sched_debug_enabled = 1;
f6630114
MT
5105
5106 return 0;
5107}
d039ac60
PZ
5108early_param("sched_debug", sched_debug_setup);
5109
5110static inline bool sched_debug(void)
5111{
5112 return sched_debug_enabled;
5113}
f6630114 5114
7c16ec58 5115static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5116 struct cpumask *groupmask)
1da177e4 5117{
4dcf6aff 5118 struct sched_group *group = sd->groups;
434d53b0 5119 char str[256];
1da177e4 5120
968ea6d8 5121 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5122 cpumask_clear(groupmask);
4dcf6aff
IM
5123
5124 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5125
5126 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5127 printk("does not load-balance\n");
4dcf6aff 5128 if (sd->parent)
3df0fc5b
PZ
5129 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5130 " has parent");
4dcf6aff 5131 return -1;
41c7ce9a
NP
5132 }
5133
3df0fc5b 5134 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5135
758b2cdc 5136 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5137 printk(KERN_ERR "ERROR: domain->span does not contain "
5138 "CPU%d\n", cpu);
4dcf6aff 5139 }
758b2cdc 5140 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5141 printk(KERN_ERR "ERROR: domain->groups does not contain"
5142 " CPU%d\n", cpu);
4dcf6aff 5143 }
1da177e4 5144
4dcf6aff 5145 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5146 do {
4dcf6aff 5147 if (!group) {
3df0fc5b
PZ
5148 printk("\n");
5149 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5150 break;
5151 }
5152
c3decf0d
PZ
5153 /*
5154 * Even though we initialize ->power to something semi-sane,
5155 * we leave power_orig unset. This allows us to detect if
5156 * domain iteration is still funny without causing /0 traps.
5157 */
5158 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5159 printk(KERN_CONT "\n");
5160 printk(KERN_ERR "ERROR: domain->cpu_power not "
5161 "set\n");
4dcf6aff
IM
5162 break;
5163 }
1da177e4 5164
758b2cdc 5165 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5166 printk(KERN_CONT "\n");
5167 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5168 break;
5169 }
1da177e4 5170
cb83b629
PZ
5171 if (!(sd->flags & SD_OVERLAP) &&
5172 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5173 printk(KERN_CONT "\n");
5174 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5175 break;
5176 }
1da177e4 5177
758b2cdc 5178 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5179
968ea6d8 5180 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5181
3df0fc5b 5182 printk(KERN_CONT " %s", str);
9c3f75cb 5183 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5184 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5185 group->sgp->power);
381512cf 5186 }
1da177e4 5187
4dcf6aff
IM
5188 group = group->next;
5189 } while (group != sd->groups);
3df0fc5b 5190 printk(KERN_CONT "\n");
1da177e4 5191
758b2cdc 5192 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5193 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5194
758b2cdc
RR
5195 if (sd->parent &&
5196 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5197 printk(KERN_ERR "ERROR: parent span is not a superset "
5198 "of domain->span\n");
4dcf6aff
IM
5199 return 0;
5200}
1da177e4 5201
4dcf6aff
IM
5202static void sched_domain_debug(struct sched_domain *sd, int cpu)
5203{
5204 int level = 0;
1da177e4 5205
d039ac60 5206 if (!sched_debug_enabled)
f6630114
MT
5207 return;
5208
4dcf6aff
IM
5209 if (!sd) {
5210 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5211 return;
5212 }
1da177e4 5213
4dcf6aff
IM
5214 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5215
5216 for (;;) {
4cb98839 5217 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5218 break;
1da177e4
LT
5219 level++;
5220 sd = sd->parent;
33859f7f 5221 if (!sd)
4dcf6aff
IM
5222 break;
5223 }
1da177e4 5224}
6d6bc0ad 5225#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5226# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5227static inline bool sched_debug(void)
5228{
5229 return false;
5230}
6d6bc0ad 5231#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5232
1a20ff27 5233static int sd_degenerate(struct sched_domain *sd)
245af2c7 5234{
758b2cdc 5235 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5236 return 1;
5237
5238 /* Following flags need at least 2 groups */
5239 if (sd->flags & (SD_LOAD_BALANCE |
5240 SD_BALANCE_NEWIDLE |
5241 SD_BALANCE_FORK |
89c4710e
SS
5242 SD_BALANCE_EXEC |
5243 SD_SHARE_CPUPOWER |
5244 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5245 if (sd->groups != sd->groups->next)
5246 return 0;
5247 }
5248
5249 /* Following flags don't use groups */
c88d5910 5250 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5251 return 0;
5252
5253 return 1;
5254}
5255
48f24c4d
IM
5256static int
5257sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5258{
5259 unsigned long cflags = sd->flags, pflags = parent->flags;
5260
5261 if (sd_degenerate(parent))
5262 return 1;
5263
758b2cdc 5264 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5265 return 0;
5266
245af2c7
SS
5267 /* Flags needing groups don't count if only 1 group in parent */
5268 if (parent->groups == parent->groups->next) {
5269 pflags &= ~(SD_LOAD_BALANCE |
5270 SD_BALANCE_NEWIDLE |
5271 SD_BALANCE_FORK |
89c4710e
SS
5272 SD_BALANCE_EXEC |
5273 SD_SHARE_CPUPOWER |
10866e62
PZ
5274 SD_SHARE_PKG_RESOURCES |
5275 SD_PREFER_SIBLING);
5436499e
KC
5276 if (nr_node_ids == 1)
5277 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5278 }
5279 if (~cflags & pflags)
5280 return 0;
5281
5282 return 1;
5283}
5284
dce840a0 5285static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5286{
dce840a0 5287 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5288
68e74568 5289 cpupri_cleanup(&rd->cpupri);
1baca4ce 5290 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5291 free_cpumask_var(rd->rto_mask);
5292 free_cpumask_var(rd->online);
5293 free_cpumask_var(rd->span);
5294 kfree(rd);
5295}
5296
57d885fe
GH
5297static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5298{
a0490fa3 5299 struct root_domain *old_rd = NULL;
57d885fe 5300 unsigned long flags;
57d885fe 5301
05fa785c 5302 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5303
5304 if (rq->rd) {
a0490fa3 5305 old_rd = rq->rd;
57d885fe 5306
c6c4927b 5307 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5308 set_rq_offline(rq);
57d885fe 5309
c6c4927b 5310 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5311
a0490fa3 5312 /*
0515973f 5313 * If we dont want to free the old_rd yet then
a0490fa3
IM
5314 * set old_rd to NULL to skip the freeing later
5315 * in this function:
5316 */
5317 if (!atomic_dec_and_test(&old_rd->refcount))
5318 old_rd = NULL;
57d885fe
GH
5319 }
5320
5321 atomic_inc(&rd->refcount);
5322 rq->rd = rd;
5323
c6c4927b 5324 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5325 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5326 set_rq_online(rq);
57d885fe 5327
05fa785c 5328 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5329
5330 if (old_rd)
dce840a0 5331 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5332}
5333
68c38fc3 5334static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5335{
5336 memset(rd, 0, sizeof(*rd));
5337
68c38fc3 5338 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5339 goto out;
68c38fc3 5340 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5341 goto free_span;
1baca4ce 5342 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5343 goto free_online;
1baca4ce
JL
5344 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5345 goto free_dlo_mask;
6e0534f2 5346
332ac17e
DF
5347 init_dl_bw(&rd->dl_bw);
5348
68c38fc3 5349 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5350 goto free_rto_mask;
c6c4927b 5351 return 0;
6e0534f2 5352
68e74568
RR
5353free_rto_mask:
5354 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5355free_dlo_mask:
5356 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5357free_online:
5358 free_cpumask_var(rd->online);
5359free_span:
5360 free_cpumask_var(rd->span);
0c910d28 5361out:
c6c4927b 5362 return -ENOMEM;
57d885fe
GH
5363}
5364
029632fb
PZ
5365/*
5366 * By default the system creates a single root-domain with all cpus as
5367 * members (mimicking the global state we have today).
5368 */
5369struct root_domain def_root_domain;
5370
57d885fe
GH
5371static void init_defrootdomain(void)
5372{
68c38fc3 5373 init_rootdomain(&def_root_domain);
c6c4927b 5374
57d885fe
GH
5375 atomic_set(&def_root_domain.refcount, 1);
5376}
5377
dc938520 5378static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5379{
5380 struct root_domain *rd;
5381
5382 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5383 if (!rd)
5384 return NULL;
5385
68c38fc3 5386 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5387 kfree(rd);
5388 return NULL;
5389 }
57d885fe
GH
5390
5391 return rd;
5392}
5393
e3589f6c
PZ
5394static void free_sched_groups(struct sched_group *sg, int free_sgp)
5395{
5396 struct sched_group *tmp, *first;
5397
5398 if (!sg)
5399 return;
5400
5401 first = sg;
5402 do {
5403 tmp = sg->next;
5404
5405 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5406 kfree(sg->sgp);
5407
5408 kfree(sg);
5409 sg = tmp;
5410 } while (sg != first);
5411}
5412
dce840a0
PZ
5413static void free_sched_domain(struct rcu_head *rcu)
5414{
5415 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5416
5417 /*
5418 * If its an overlapping domain it has private groups, iterate and
5419 * nuke them all.
5420 */
5421 if (sd->flags & SD_OVERLAP) {
5422 free_sched_groups(sd->groups, 1);
5423 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5424 kfree(sd->groups->sgp);
dce840a0 5425 kfree(sd->groups);
9c3f75cb 5426 }
dce840a0
PZ
5427 kfree(sd);
5428}
5429
5430static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5431{
5432 call_rcu(&sd->rcu, free_sched_domain);
5433}
5434
5435static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5436{
5437 for (; sd; sd = sd->parent)
5438 destroy_sched_domain(sd, cpu);
5439}
5440
518cd623
PZ
5441/*
5442 * Keep a special pointer to the highest sched_domain that has
5443 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5444 * allows us to avoid some pointer chasing select_idle_sibling().
5445 *
5446 * Also keep a unique ID per domain (we use the first cpu number in
5447 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5448 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5449 */
5450DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5451DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5452DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5453DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5454DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5455DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5456
5457static void update_top_cache_domain(int cpu)
5458{
5459 struct sched_domain *sd;
5d4cf996 5460 struct sched_domain *busy_sd = NULL;
518cd623 5461 int id = cpu;
7d9ffa89 5462 int size = 1;
518cd623
PZ
5463
5464 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5465 if (sd) {
518cd623 5466 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5467 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5468 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5469 }
5d4cf996 5470 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5471
5472 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5473 per_cpu(sd_llc_size, cpu) = size;
518cd623 5474 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5475
5476 sd = lowest_flag_domain(cpu, SD_NUMA);
5477 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5478
5479 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5480 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5481}
5482
1da177e4 5483/*
0eab9146 5484 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5485 * hold the hotplug lock.
5486 */
0eab9146
IM
5487static void
5488cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5489{
70b97a7f 5490 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5491 struct sched_domain *tmp;
5492
5493 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5494 for (tmp = sd; tmp; ) {
245af2c7
SS
5495 struct sched_domain *parent = tmp->parent;
5496 if (!parent)
5497 break;
f29c9b1c 5498
1a848870 5499 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5500 tmp->parent = parent->parent;
1a848870
SS
5501 if (parent->parent)
5502 parent->parent->child = tmp;
10866e62
PZ
5503 /*
5504 * Transfer SD_PREFER_SIBLING down in case of a
5505 * degenerate parent; the spans match for this
5506 * so the property transfers.
5507 */
5508 if (parent->flags & SD_PREFER_SIBLING)
5509 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5510 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5511 } else
5512 tmp = tmp->parent;
245af2c7
SS
5513 }
5514
1a848870 5515 if (sd && sd_degenerate(sd)) {
dce840a0 5516 tmp = sd;
245af2c7 5517 sd = sd->parent;
dce840a0 5518 destroy_sched_domain(tmp, cpu);
1a848870
SS
5519 if (sd)
5520 sd->child = NULL;
5521 }
1da177e4 5522
4cb98839 5523 sched_domain_debug(sd, cpu);
1da177e4 5524
57d885fe 5525 rq_attach_root(rq, rd);
dce840a0 5526 tmp = rq->sd;
674311d5 5527 rcu_assign_pointer(rq->sd, sd);
dce840a0 5528 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5529
5530 update_top_cache_domain(cpu);
1da177e4
LT
5531}
5532
5533/* cpus with isolated domains */
dcc30a35 5534static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5535
5536/* Setup the mask of cpus configured for isolated domains */
5537static int __init isolated_cpu_setup(char *str)
5538{
bdddd296 5539 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5540 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5541 return 1;
5542}
5543
8927f494 5544__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5545
d3081f52
PZ
5546static const struct cpumask *cpu_cpu_mask(int cpu)
5547{
5548 return cpumask_of_node(cpu_to_node(cpu));
5549}
5550
dce840a0
PZ
5551struct sd_data {
5552 struct sched_domain **__percpu sd;
5553 struct sched_group **__percpu sg;
9c3f75cb 5554 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5555};
5556
49a02c51 5557struct s_data {
21d42ccf 5558 struct sched_domain ** __percpu sd;
49a02c51
AH
5559 struct root_domain *rd;
5560};
5561
2109b99e 5562enum s_alloc {
2109b99e 5563 sa_rootdomain,
21d42ccf 5564 sa_sd,
dce840a0 5565 sa_sd_storage,
2109b99e
AH
5566 sa_none,
5567};
5568
54ab4ff4
PZ
5569struct sched_domain_topology_level;
5570
5571typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5572typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5573
e3589f6c
PZ
5574#define SDTL_OVERLAP 0x01
5575
eb7a74e6 5576struct sched_domain_topology_level {
2c402dc3
PZ
5577 sched_domain_init_f init;
5578 sched_domain_mask_f mask;
e3589f6c 5579 int flags;
cb83b629 5580 int numa_level;
54ab4ff4 5581 struct sd_data data;
eb7a74e6
PZ
5582};
5583
c1174876
PZ
5584/*
5585 * Build an iteration mask that can exclude certain CPUs from the upwards
5586 * domain traversal.
5587 *
5588 * Asymmetric node setups can result in situations where the domain tree is of
5589 * unequal depth, make sure to skip domains that already cover the entire
5590 * range.
5591 *
5592 * In that case build_sched_domains() will have terminated the iteration early
5593 * and our sibling sd spans will be empty. Domains should always include the
5594 * cpu they're built on, so check that.
5595 *
5596 */
5597static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5598{
5599 const struct cpumask *span = sched_domain_span(sd);
5600 struct sd_data *sdd = sd->private;
5601 struct sched_domain *sibling;
5602 int i;
5603
5604 for_each_cpu(i, span) {
5605 sibling = *per_cpu_ptr(sdd->sd, i);
5606 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5607 continue;
5608
5609 cpumask_set_cpu(i, sched_group_mask(sg));
5610 }
5611}
5612
5613/*
5614 * Return the canonical balance cpu for this group, this is the first cpu
5615 * of this group that's also in the iteration mask.
5616 */
5617int group_balance_cpu(struct sched_group *sg)
5618{
5619 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5620}
5621
e3589f6c
PZ
5622static int
5623build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5624{
5625 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5626 const struct cpumask *span = sched_domain_span(sd);
5627 struct cpumask *covered = sched_domains_tmpmask;
5628 struct sd_data *sdd = sd->private;
5629 struct sched_domain *child;
5630 int i;
5631
5632 cpumask_clear(covered);
5633
5634 for_each_cpu(i, span) {
5635 struct cpumask *sg_span;
5636
5637 if (cpumask_test_cpu(i, covered))
5638 continue;
5639
c1174876
PZ
5640 child = *per_cpu_ptr(sdd->sd, i);
5641
5642 /* See the comment near build_group_mask(). */
5643 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5644 continue;
5645
e3589f6c 5646 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5647 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5648
5649 if (!sg)
5650 goto fail;
5651
5652 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5653 if (child->child) {
5654 child = child->child;
5655 cpumask_copy(sg_span, sched_domain_span(child));
5656 } else
5657 cpumask_set_cpu(i, sg_span);
5658
5659 cpumask_or(covered, covered, sg_span);
5660
74a5ce20 5661 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5662 if (atomic_inc_return(&sg->sgp->ref) == 1)
5663 build_group_mask(sd, sg);
5664
c3decf0d
PZ
5665 /*
5666 * Initialize sgp->power such that even if we mess up the
5667 * domains and no possible iteration will get us here, we won't
5668 * die on a /0 trap.
5669 */
5670 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5671 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5672
c1174876
PZ
5673 /*
5674 * Make sure the first group of this domain contains the
5675 * canonical balance cpu. Otherwise the sched_domain iteration
5676 * breaks. See update_sg_lb_stats().
5677 */
74a5ce20 5678 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5679 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5680 groups = sg;
5681
5682 if (!first)
5683 first = sg;
5684 if (last)
5685 last->next = sg;
5686 last = sg;
5687 last->next = first;
5688 }
5689 sd->groups = groups;
5690
5691 return 0;
5692
5693fail:
5694 free_sched_groups(first, 0);
5695
5696 return -ENOMEM;
5697}
5698
dce840a0 5699static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5700{
dce840a0
PZ
5701 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5702 struct sched_domain *child = sd->child;
1da177e4 5703
dce840a0
PZ
5704 if (child)
5705 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5706
9c3f75cb 5707 if (sg) {
dce840a0 5708 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5709 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5710 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5711 }
dce840a0
PZ
5712
5713 return cpu;
1e9f28fa 5714}
1e9f28fa 5715
01a08546 5716/*
dce840a0
PZ
5717 * build_sched_groups will build a circular linked list of the groups
5718 * covered by the given span, and will set each group's ->cpumask correctly,
5719 * and ->cpu_power to 0.
e3589f6c
PZ
5720 *
5721 * Assumes the sched_domain tree is fully constructed
01a08546 5722 */
e3589f6c
PZ
5723static int
5724build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5725{
dce840a0
PZ
5726 struct sched_group *first = NULL, *last = NULL;
5727 struct sd_data *sdd = sd->private;
5728 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5729 struct cpumask *covered;
dce840a0 5730 int i;
9c1cfda2 5731
e3589f6c
PZ
5732 get_group(cpu, sdd, &sd->groups);
5733 atomic_inc(&sd->groups->ref);
5734
0936629f 5735 if (cpu != cpumask_first(span))
e3589f6c
PZ
5736 return 0;
5737
f96225fd
PZ
5738 lockdep_assert_held(&sched_domains_mutex);
5739 covered = sched_domains_tmpmask;
5740
dce840a0 5741 cpumask_clear(covered);
6711cab4 5742
dce840a0
PZ
5743 for_each_cpu(i, span) {
5744 struct sched_group *sg;
cd08e923 5745 int group, j;
6711cab4 5746
dce840a0
PZ
5747 if (cpumask_test_cpu(i, covered))
5748 continue;
6711cab4 5749
cd08e923 5750 group = get_group(i, sdd, &sg);
dce840a0 5751 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5752 sg->sgp->power = 0;
c1174876 5753 cpumask_setall(sched_group_mask(sg));
0601a88d 5754
dce840a0
PZ
5755 for_each_cpu(j, span) {
5756 if (get_group(j, sdd, NULL) != group)
5757 continue;
0601a88d 5758
dce840a0
PZ
5759 cpumask_set_cpu(j, covered);
5760 cpumask_set_cpu(j, sched_group_cpus(sg));
5761 }
0601a88d 5762
dce840a0
PZ
5763 if (!first)
5764 first = sg;
5765 if (last)
5766 last->next = sg;
5767 last = sg;
5768 }
5769 last->next = first;
e3589f6c
PZ
5770
5771 return 0;
0601a88d 5772}
51888ca2 5773
89c4710e
SS
5774/*
5775 * Initialize sched groups cpu_power.
5776 *
5777 * cpu_power indicates the capacity of sched group, which is used while
5778 * distributing the load between different sched groups in a sched domain.
5779 * Typically cpu_power for all the groups in a sched domain will be same unless
5780 * there are asymmetries in the topology. If there are asymmetries, group
5781 * having more cpu_power will pickup more load compared to the group having
5782 * less cpu_power.
89c4710e
SS
5783 */
5784static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5785{
e3589f6c 5786 struct sched_group *sg = sd->groups;
89c4710e 5787
94c95ba6 5788 WARN_ON(!sg);
e3589f6c
PZ
5789
5790 do {
5791 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5792 sg = sg->next;
5793 } while (sg != sd->groups);
89c4710e 5794
c1174876 5795 if (cpu != group_balance_cpu(sg))
e3589f6c 5796 return;
aae6d3dd 5797
d274cb30 5798 update_group_power(sd, cpu);
69e1e811 5799 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5800}
5801
029632fb
PZ
5802int __weak arch_sd_sibling_asym_packing(void)
5803{
5804 return 0*SD_ASYM_PACKING;
89c4710e
SS
5805}
5806
7c16ec58
MT
5807/*
5808 * Initializers for schedule domains
5809 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5810 */
5811
a5d8c348
IM
5812#ifdef CONFIG_SCHED_DEBUG
5813# define SD_INIT_NAME(sd, type) sd->name = #type
5814#else
5815# define SD_INIT_NAME(sd, type) do { } while (0)
5816#endif
5817
54ab4ff4
PZ
5818#define SD_INIT_FUNC(type) \
5819static noinline struct sched_domain * \
5820sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5821{ \
5822 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5823 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5824 SD_INIT_NAME(sd, type); \
5825 sd->private = &tl->data; \
5826 return sd; \
7c16ec58
MT
5827}
5828
5829SD_INIT_FUNC(CPU)
7c16ec58
MT
5830#ifdef CONFIG_SCHED_SMT
5831 SD_INIT_FUNC(SIBLING)
5832#endif
5833#ifdef CONFIG_SCHED_MC
5834 SD_INIT_FUNC(MC)
5835#endif
01a08546
HC
5836#ifdef CONFIG_SCHED_BOOK
5837 SD_INIT_FUNC(BOOK)
5838#endif
7c16ec58 5839
1d3504fc 5840static int default_relax_domain_level = -1;
60495e77 5841int sched_domain_level_max;
1d3504fc
HS
5842
5843static int __init setup_relax_domain_level(char *str)
5844{
a841f8ce
DS
5845 if (kstrtoint(str, 0, &default_relax_domain_level))
5846 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5847
1d3504fc
HS
5848 return 1;
5849}
5850__setup("relax_domain_level=", setup_relax_domain_level);
5851
5852static void set_domain_attribute(struct sched_domain *sd,
5853 struct sched_domain_attr *attr)
5854{
5855 int request;
5856
5857 if (!attr || attr->relax_domain_level < 0) {
5858 if (default_relax_domain_level < 0)
5859 return;
5860 else
5861 request = default_relax_domain_level;
5862 } else
5863 request = attr->relax_domain_level;
5864 if (request < sd->level) {
5865 /* turn off idle balance on this domain */
c88d5910 5866 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5867 } else {
5868 /* turn on idle balance on this domain */
c88d5910 5869 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5870 }
5871}
5872
54ab4ff4
PZ
5873static void __sdt_free(const struct cpumask *cpu_map);
5874static int __sdt_alloc(const struct cpumask *cpu_map);
5875
2109b99e
AH
5876static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5877 const struct cpumask *cpu_map)
5878{
5879 switch (what) {
2109b99e 5880 case sa_rootdomain:
822ff793
PZ
5881 if (!atomic_read(&d->rd->refcount))
5882 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5883 case sa_sd:
5884 free_percpu(d->sd); /* fall through */
dce840a0 5885 case sa_sd_storage:
54ab4ff4 5886 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5887 case sa_none:
5888 break;
5889 }
5890}
3404c8d9 5891
2109b99e
AH
5892static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5893 const struct cpumask *cpu_map)
5894{
dce840a0
PZ
5895 memset(d, 0, sizeof(*d));
5896
54ab4ff4
PZ
5897 if (__sdt_alloc(cpu_map))
5898 return sa_sd_storage;
dce840a0
PZ
5899 d->sd = alloc_percpu(struct sched_domain *);
5900 if (!d->sd)
5901 return sa_sd_storage;
2109b99e 5902 d->rd = alloc_rootdomain();
dce840a0 5903 if (!d->rd)
21d42ccf 5904 return sa_sd;
2109b99e
AH
5905 return sa_rootdomain;
5906}
57d885fe 5907
dce840a0
PZ
5908/*
5909 * NULL the sd_data elements we've used to build the sched_domain and
5910 * sched_group structure so that the subsequent __free_domain_allocs()
5911 * will not free the data we're using.
5912 */
5913static void claim_allocations(int cpu, struct sched_domain *sd)
5914{
5915 struct sd_data *sdd = sd->private;
dce840a0
PZ
5916
5917 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5918 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5919
e3589f6c 5920 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5921 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5922
5923 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5924 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5925}
5926
2c402dc3
PZ
5927#ifdef CONFIG_SCHED_SMT
5928static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5929{
2c402dc3 5930 return topology_thread_cpumask(cpu);
3bd65a80 5931}
2c402dc3 5932#endif
7f4588f3 5933
d069b916
PZ
5934/*
5935 * Topology list, bottom-up.
5936 */
2c402dc3 5937static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5938#ifdef CONFIG_SCHED_SMT
5939 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5940#endif
1e9f28fa 5941#ifdef CONFIG_SCHED_MC
2c402dc3 5942 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5943#endif
d069b916
PZ
5944#ifdef CONFIG_SCHED_BOOK
5945 { sd_init_BOOK, cpu_book_mask, },
5946#endif
5947 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5948 { NULL, },
5949};
5950
5951static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5952
27723a68
VK
5953#define for_each_sd_topology(tl) \
5954 for (tl = sched_domain_topology; tl->init; tl++)
5955
cb83b629
PZ
5956#ifdef CONFIG_NUMA
5957
5958static int sched_domains_numa_levels;
cb83b629
PZ
5959static int *sched_domains_numa_distance;
5960static struct cpumask ***sched_domains_numa_masks;
5961static int sched_domains_curr_level;
5962
cb83b629
PZ
5963static inline int sd_local_flags(int level)
5964{
10717dcd 5965 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5966 return 0;
5967
5968 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5969}
5970
5971static struct sched_domain *
5972sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5973{
5974 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5975 int level = tl->numa_level;
5976 int sd_weight = cpumask_weight(
5977 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5978
5979 *sd = (struct sched_domain){
5980 .min_interval = sd_weight,
5981 .max_interval = 2*sd_weight,
5982 .busy_factor = 32,
870a0bb5 5983 .imbalance_pct = 125,
cb83b629
PZ
5984 .cache_nice_tries = 2,
5985 .busy_idx = 3,
5986 .idle_idx = 2,
5987 .newidle_idx = 0,
5988 .wake_idx = 0,
5989 .forkexec_idx = 0,
5990
5991 .flags = 1*SD_LOAD_BALANCE
5992 | 1*SD_BALANCE_NEWIDLE
5993 | 0*SD_BALANCE_EXEC
5994 | 0*SD_BALANCE_FORK
5995 | 0*SD_BALANCE_WAKE
5996 | 0*SD_WAKE_AFFINE
cb83b629 5997 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5998 | 0*SD_SHARE_PKG_RESOURCES
5999 | 1*SD_SERIALIZE
6000 | 0*SD_PREFER_SIBLING
3a7053b3 6001 | 1*SD_NUMA
cb83b629
PZ
6002 | sd_local_flags(level)
6003 ,
6004 .last_balance = jiffies,
6005 .balance_interval = sd_weight,
6006 };
6007 SD_INIT_NAME(sd, NUMA);
6008 sd->private = &tl->data;
6009
6010 /*
6011 * Ugly hack to pass state to sd_numa_mask()...
6012 */
6013 sched_domains_curr_level = tl->numa_level;
6014
6015 return sd;
6016}
6017
6018static const struct cpumask *sd_numa_mask(int cpu)
6019{
6020 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6021}
6022
d039ac60
PZ
6023static void sched_numa_warn(const char *str)
6024{
6025 static int done = false;
6026 int i,j;
6027
6028 if (done)
6029 return;
6030
6031 done = true;
6032
6033 printk(KERN_WARNING "ERROR: %s\n\n", str);
6034
6035 for (i = 0; i < nr_node_ids; i++) {
6036 printk(KERN_WARNING " ");
6037 for (j = 0; j < nr_node_ids; j++)
6038 printk(KERN_CONT "%02d ", node_distance(i,j));
6039 printk(KERN_CONT "\n");
6040 }
6041 printk(KERN_WARNING "\n");
6042}
6043
6044static bool find_numa_distance(int distance)
6045{
6046 int i;
6047
6048 if (distance == node_distance(0, 0))
6049 return true;
6050
6051 for (i = 0; i < sched_domains_numa_levels; i++) {
6052 if (sched_domains_numa_distance[i] == distance)
6053 return true;
6054 }
6055
6056 return false;
6057}
6058
cb83b629
PZ
6059static void sched_init_numa(void)
6060{
6061 int next_distance, curr_distance = node_distance(0, 0);
6062 struct sched_domain_topology_level *tl;
6063 int level = 0;
6064 int i, j, k;
6065
cb83b629
PZ
6066 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6067 if (!sched_domains_numa_distance)
6068 return;
6069
6070 /*
6071 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6072 * unique distances in the node_distance() table.
6073 *
6074 * Assumes node_distance(0,j) includes all distances in
6075 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6076 */
6077 next_distance = curr_distance;
6078 for (i = 0; i < nr_node_ids; i++) {
6079 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6080 for (k = 0; k < nr_node_ids; k++) {
6081 int distance = node_distance(i, k);
6082
6083 if (distance > curr_distance &&
6084 (distance < next_distance ||
6085 next_distance == curr_distance))
6086 next_distance = distance;
6087
6088 /*
6089 * While not a strong assumption it would be nice to know
6090 * about cases where if node A is connected to B, B is not
6091 * equally connected to A.
6092 */
6093 if (sched_debug() && node_distance(k, i) != distance)
6094 sched_numa_warn("Node-distance not symmetric");
6095
6096 if (sched_debug() && i && !find_numa_distance(distance))
6097 sched_numa_warn("Node-0 not representative");
6098 }
6099 if (next_distance != curr_distance) {
6100 sched_domains_numa_distance[level++] = next_distance;
6101 sched_domains_numa_levels = level;
6102 curr_distance = next_distance;
6103 } else break;
cb83b629 6104 }
d039ac60
PZ
6105
6106 /*
6107 * In case of sched_debug() we verify the above assumption.
6108 */
6109 if (!sched_debug())
6110 break;
cb83b629
PZ
6111 }
6112 /*
6113 * 'level' contains the number of unique distances, excluding the
6114 * identity distance node_distance(i,i).
6115 *
28b4a521 6116 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6117 * numbers.
6118 */
6119
5f7865f3
TC
6120 /*
6121 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6122 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6123 * the array will contain less then 'level' members. This could be
6124 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6125 * in other functions.
6126 *
6127 * We reset it to 'level' at the end of this function.
6128 */
6129 sched_domains_numa_levels = 0;
6130
cb83b629
PZ
6131 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6132 if (!sched_domains_numa_masks)
6133 return;
6134
6135 /*
6136 * Now for each level, construct a mask per node which contains all
6137 * cpus of nodes that are that many hops away from us.
6138 */
6139 for (i = 0; i < level; i++) {
6140 sched_domains_numa_masks[i] =
6141 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6142 if (!sched_domains_numa_masks[i])
6143 return;
6144
6145 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6146 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6147 if (!mask)
6148 return;
6149
6150 sched_domains_numa_masks[i][j] = mask;
6151
6152 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6153 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6154 continue;
6155
6156 cpumask_or(mask, mask, cpumask_of_node(k));
6157 }
6158 }
6159 }
6160
6161 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6162 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6163 if (!tl)
6164 return;
6165
6166 /*
6167 * Copy the default topology bits..
6168 */
6169 for (i = 0; default_topology[i].init; i++)
6170 tl[i] = default_topology[i];
6171
6172 /*
6173 * .. and append 'j' levels of NUMA goodness.
6174 */
6175 for (j = 0; j < level; i++, j++) {
6176 tl[i] = (struct sched_domain_topology_level){
6177 .init = sd_numa_init,
6178 .mask = sd_numa_mask,
6179 .flags = SDTL_OVERLAP,
6180 .numa_level = j,
6181 };
6182 }
6183
6184 sched_domain_topology = tl;
5f7865f3
TC
6185
6186 sched_domains_numa_levels = level;
cb83b629 6187}
301a5cba
TC
6188
6189static void sched_domains_numa_masks_set(int cpu)
6190{
6191 int i, j;
6192 int node = cpu_to_node(cpu);
6193
6194 for (i = 0; i < sched_domains_numa_levels; i++) {
6195 for (j = 0; j < nr_node_ids; j++) {
6196 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6197 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6198 }
6199 }
6200}
6201
6202static void sched_domains_numa_masks_clear(int cpu)
6203{
6204 int i, j;
6205 for (i = 0; i < sched_domains_numa_levels; i++) {
6206 for (j = 0; j < nr_node_ids; j++)
6207 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6208 }
6209}
6210
6211/*
6212 * Update sched_domains_numa_masks[level][node] array when new cpus
6213 * are onlined.
6214 */
6215static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6216 unsigned long action,
6217 void *hcpu)
6218{
6219 int cpu = (long)hcpu;
6220
6221 switch (action & ~CPU_TASKS_FROZEN) {
6222 case CPU_ONLINE:
6223 sched_domains_numa_masks_set(cpu);
6224 break;
6225
6226 case CPU_DEAD:
6227 sched_domains_numa_masks_clear(cpu);
6228 break;
6229
6230 default:
6231 return NOTIFY_DONE;
6232 }
6233
6234 return NOTIFY_OK;
cb83b629
PZ
6235}
6236#else
6237static inline void sched_init_numa(void)
6238{
6239}
301a5cba
TC
6240
6241static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6242 unsigned long action,
6243 void *hcpu)
6244{
6245 return 0;
6246}
cb83b629
PZ
6247#endif /* CONFIG_NUMA */
6248
54ab4ff4
PZ
6249static int __sdt_alloc(const struct cpumask *cpu_map)
6250{
6251 struct sched_domain_topology_level *tl;
6252 int j;
6253
27723a68 6254 for_each_sd_topology(tl) {
54ab4ff4
PZ
6255 struct sd_data *sdd = &tl->data;
6256
6257 sdd->sd = alloc_percpu(struct sched_domain *);
6258 if (!sdd->sd)
6259 return -ENOMEM;
6260
6261 sdd->sg = alloc_percpu(struct sched_group *);
6262 if (!sdd->sg)
6263 return -ENOMEM;
6264
9c3f75cb
PZ
6265 sdd->sgp = alloc_percpu(struct sched_group_power *);
6266 if (!sdd->sgp)
6267 return -ENOMEM;
6268
54ab4ff4
PZ
6269 for_each_cpu(j, cpu_map) {
6270 struct sched_domain *sd;
6271 struct sched_group *sg;
9c3f75cb 6272 struct sched_group_power *sgp;
54ab4ff4
PZ
6273
6274 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6275 GFP_KERNEL, cpu_to_node(j));
6276 if (!sd)
6277 return -ENOMEM;
6278
6279 *per_cpu_ptr(sdd->sd, j) = sd;
6280
6281 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6282 GFP_KERNEL, cpu_to_node(j));
6283 if (!sg)
6284 return -ENOMEM;
6285
30b4e9eb
IM
6286 sg->next = sg;
6287
54ab4ff4 6288 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6289
c1174876 6290 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6291 GFP_KERNEL, cpu_to_node(j));
6292 if (!sgp)
6293 return -ENOMEM;
6294
6295 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6296 }
6297 }
6298
6299 return 0;
6300}
6301
6302static void __sdt_free(const struct cpumask *cpu_map)
6303{
6304 struct sched_domain_topology_level *tl;
6305 int j;
6306
27723a68 6307 for_each_sd_topology(tl) {
54ab4ff4
PZ
6308 struct sd_data *sdd = &tl->data;
6309
6310 for_each_cpu(j, cpu_map) {
fb2cf2c6 6311 struct sched_domain *sd;
6312
6313 if (sdd->sd) {
6314 sd = *per_cpu_ptr(sdd->sd, j);
6315 if (sd && (sd->flags & SD_OVERLAP))
6316 free_sched_groups(sd->groups, 0);
6317 kfree(*per_cpu_ptr(sdd->sd, j));
6318 }
6319
6320 if (sdd->sg)
6321 kfree(*per_cpu_ptr(sdd->sg, j));
6322 if (sdd->sgp)
6323 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6324 }
6325 free_percpu(sdd->sd);
fb2cf2c6 6326 sdd->sd = NULL;
54ab4ff4 6327 free_percpu(sdd->sg);
fb2cf2c6 6328 sdd->sg = NULL;
9c3f75cb 6329 free_percpu(sdd->sgp);
fb2cf2c6 6330 sdd->sgp = NULL;
54ab4ff4
PZ
6331 }
6332}
6333
2c402dc3 6334struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6335 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6336 struct sched_domain *child, int cpu)
2c402dc3 6337{
54ab4ff4 6338 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6339 if (!sd)
d069b916 6340 return child;
2c402dc3 6341
2c402dc3 6342 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6343 if (child) {
6344 sd->level = child->level + 1;
6345 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6346 child->parent = sd;
c75e0128 6347 sd->child = child;
60495e77 6348 }
a841f8ce 6349 set_domain_attribute(sd, attr);
2c402dc3
PZ
6350
6351 return sd;
6352}
6353
2109b99e
AH
6354/*
6355 * Build sched domains for a given set of cpus and attach the sched domains
6356 * to the individual cpus
6357 */
dce840a0
PZ
6358static int build_sched_domains(const struct cpumask *cpu_map,
6359 struct sched_domain_attr *attr)
2109b99e 6360{
1c632169 6361 enum s_alloc alloc_state;
dce840a0 6362 struct sched_domain *sd;
2109b99e 6363 struct s_data d;
822ff793 6364 int i, ret = -ENOMEM;
9c1cfda2 6365
2109b99e
AH
6366 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6367 if (alloc_state != sa_rootdomain)
6368 goto error;
9c1cfda2 6369
dce840a0 6370 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6371 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6372 struct sched_domain_topology_level *tl;
6373
3bd65a80 6374 sd = NULL;
27723a68 6375 for_each_sd_topology(tl) {
4a850cbe 6376 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6377 if (tl == sched_domain_topology)
6378 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6379 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6380 sd->flags |= SD_OVERLAP;
d110235d
PZ
6381 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6382 break;
e3589f6c 6383 }
dce840a0
PZ
6384 }
6385
6386 /* Build the groups for the domains */
6387 for_each_cpu(i, cpu_map) {
6388 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6389 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6390 if (sd->flags & SD_OVERLAP) {
6391 if (build_overlap_sched_groups(sd, i))
6392 goto error;
6393 } else {
6394 if (build_sched_groups(sd, i))
6395 goto error;
6396 }
1cf51902 6397 }
a06dadbe 6398 }
9c1cfda2 6399
1da177e4 6400 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6401 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6402 if (!cpumask_test_cpu(i, cpu_map))
6403 continue;
9c1cfda2 6404
dce840a0
PZ
6405 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6406 claim_allocations(i, sd);
cd4ea6ae 6407 init_sched_groups_power(i, sd);
dce840a0 6408 }
f712c0c7 6409 }
9c1cfda2 6410
1da177e4 6411 /* Attach the domains */
dce840a0 6412 rcu_read_lock();
abcd083a 6413 for_each_cpu(i, cpu_map) {
21d42ccf 6414 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6415 cpu_attach_domain(sd, d.rd, i);
1da177e4 6416 }
dce840a0 6417 rcu_read_unlock();
51888ca2 6418
822ff793 6419 ret = 0;
51888ca2 6420error:
2109b99e 6421 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6422 return ret;
1da177e4 6423}
029190c5 6424
acc3f5d7 6425static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6426static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6427static struct sched_domain_attr *dattr_cur;
6428 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6429
6430/*
6431 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6432 * cpumask) fails, then fallback to a single sched domain,
6433 * as determined by the single cpumask fallback_doms.
029190c5 6434 */
4212823f 6435static cpumask_var_t fallback_doms;
029190c5 6436
ee79d1bd
HC
6437/*
6438 * arch_update_cpu_topology lets virtualized architectures update the
6439 * cpu core maps. It is supposed to return 1 if the topology changed
6440 * or 0 if it stayed the same.
6441 */
6442int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6443{
ee79d1bd 6444 return 0;
22e52b07
HC
6445}
6446
acc3f5d7
RR
6447cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6448{
6449 int i;
6450 cpumask_var_t *doms;
6451
6452 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6453 if (!doms)
6454 return NULL;
6455 for (i = 0; i < ndoms; i++) {
6456 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6457 free_sched_domains(doms, i);
6458 return NULL;
6459 }
6460 }
6461 return doms;
6462}
6463
6464void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6465{
6466 unsigned int i;
6467 for (i = 0; i < ndoms; i++)
6468 free_cpumask_var(doms[i]);
6469 kfree(doms);
6470}
6471
1a20ff27 6472/*
41a2d6cf 6473 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6474 * For now this just excludes isolated cpus, but could be used to
6475 * exclude other special cases in the future.
1a20ff27 6476 */
c4a8849a 6477static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6478{
7378547f
MM
6479 int err;
6480
22e52b07 6481 arch_update_cpu_topology();
029190c5 6482 ndoms_cur = 1;
acc3f5d7 6483 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6484 if (!doms_cur)
acc3f5d7
RR
6485 doms_cur = &fallback_doms;
6486 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6487 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6488 register_sched_domain_sysctl();
7378547f
MM
6489
6490 return err;
1a20ff27
DG
6491}
6492
1a20ff27
DG
6493/*
6494 * Detach sched domains from a group of cpus specified in cpu_map
6495 * These cpus will now be attached to the NULL domain
6496 */
96f874e2 6497static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6498{
6499 int i;
6500
dce840a0 6501 rcu_read_lock();
abcd083a 6502 for_each_cpu(i, cpu_map)
57d885fe 6503 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6504 rcu_read_unlock();
1a20ff27
DG
6505}
6506
1d3504fc
HS
6507/* handle null as "default" */
6508static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6509 struct sched_domain_attr *new, int idx_new)
6510{
6511 struct sched_domain_attr tmp;
6512
6513 /* fast path */
6514 if (!new && !cur)
6515 return 1;
6516
6517 tmp = SD_ATTR_INIT;
6518 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6519 new ? (new + idx_new) : &tmp,
6520 sizeof(struct sched_domain_attr));
6521}
6522
029190c5
PJ
6523/*
6524 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6525 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6526 * doms_new[] to the current sched domain partitioning, doms_cur[].
6527 * It destroys each deleted domain and builds each new domain.
6528 *
acc3f5d7 6529 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6530 * The masks don't intersect (don't overlap.) We should setup one
6531 * sched domain for each mask. CPUs not in any of the cpumasks will
6532 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6533 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6534 * it as it is.
6535 *
acc3f5d7
RR
6536 * The passed in 'doms_new' should be allocated using
6537 * alloc_sched_domains. This routine takes ownership of it and will
6538 * free_sched_domains it when done with it. If the caller failed the
6539 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6540 * and partition_sched_domains() will fallback to the single partition
6541 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6542 *
96f874e2 6543 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6544 * ndoms_new == 0 is a special case for destroying existing domains,
6545 * and it will not create the default domain.
dfb512ec 6546 *
029190c5
PJ
6547 * Call with hotplug lock held
6548 */
acc3f5d7 6549void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6550 struct sched_domain_attr *dattr_new)
029190c5 6551{
dfb512ec 6552 int i, j, n;
d65bd5ec 6553 int new_topology;
029190c5 6554
712555ee 6555 mutex_lock(&sched_domains_mutex);
a1835615 6556
7378547f
MM
6557 /* always unregister in case we don't destroy any domains */
6558 unregister_sched_domain_sysctl();
6559
d65bd5ec
HC
6560 /* Let architecture update cpu core mappings. */
6561 new_topology = arch_update_cpu_topology();
6562
dfb512ec 6563 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6564
6565 /* Destroy deleted domains */
6566 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6567 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6568 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6569 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6570 goto match1;
6571 }
6572 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6573 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6574match1:
6575 ;
6576 }
6577
c8d2d47a 6578 n = ndoms_cur;
e761b772 6579 if (doms_new == NULL) {
c8d2d47a 6580 n = 0;
acc3f5d7 6581 doms_new = &fallback_doms;
6ad4c188 6582 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6583 WARN_ON_ONCE(dattr_new);
e761b772
MK
6584 }
6585
029190c5
PJ
6586 /* Build new domains */
6587 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6588 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6589 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6590 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6591 goto match2;
6592 }
6593 /* no match - add a new doms_new */
dce840a0 6594 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6595match2:
6596 ;
6597 }
6598
6599 /* Remember the new sched domains */
acc3f5d7
RR
6600 if (doms_cur != &fallback_doms)
6601 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6602 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6603 doms_cur = doms_new;
1d3504fc 6604 dattr_cur = dattr_new;
029190c5 6605 ndoms_cur = ndoms_new;
7378547f
MM
6606
6607 register_sched_domain_sysctl();
a1835615 6608
712555ee 6609 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6610}
6611
d35be8ba
SB
6612static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6613
1da177e4 6614/*
3a101d05
TH
6615 * Update cpusets according to cpu_active mask. If cpusets are
6616 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6617 * around partition_sched_domains().
d35be8ba
SB
6618 *
6619 * If we come here as part of a suspend/resume, don't touch cpusets because we
6620 * want to restore it back to its original state upon resume anyway.
1da177e4 6621 */
0b2e918a
TH
6622static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6623 void *hcpu)
e761b772 6624{
d35be8ba
SB
6625 switch (action) {
6626 case CPU_ONLINE_FROZEN:
6627 case CPU_DOWN_FAILED_FROZEN:
6628
6629 /*
6630 * num_cpus_frozen tracks how many CPUs are involved in suspend
6631 * resume sequence. As long as this is not the last online
6632 * operation in the resume sequence, just build a single sched
6633 * domain, ignoring cpusets.
6634 */
6635 num_cpus_frozen--;
6636 if (likely(num_cpus_frozen)) {
6637 partition_sched_domains(1, NULL, NULL);
6638 break;
6639 }
6640
6641 /*
6642 * This is the last CPU online operation. So fall through and
6643 * restore the original sched domains by considering the
6644 * cpuset configurations.
6645 */
6646
e761b772 6647 case CPU_ONLINE:
6ad4c188 6648 case CPU_DOWN_FAILED:
7ddf96b0 6649 cpuset_update_active_cpus(true);
d35be8ba 6650 break;
3a101d05
TH
6651 default:
6652 return NOTIFY_DONE;
6653 }
d35be8ba 6654 return NOTIFY_OK;
3a101d05 6655}
e761b772 6656
0b2e918a
TH
6657static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6658 void *hcpu)
3a101d05 6659{
d35be8ba 6660 switch (action) {
3a101d05 6661 case CPU_DOWN_PREPARE:
7ddf96b0 6662 cpuset_update_active_cpus(false);
d35be8ba
SB
6663 break;
6664 case CPU_DOWN_PREPARE_FROZEN:
6665 num_cpus_frozen++;
6666 partition_sched_domains(1, NULL, NULL);
6667 break;
e761b772
MK
6668 default:
6669 return NOTIFY_DONE;
6670 }
d35be8ba 6671 return NOTIFY_OK;
e761b772 6672}
e761b772 6673
1da177e4
LT
6674void __init sched_init_smp(void)
6675{
dcc30a35
RR
6676 cpumask_var_t non_isolated_cpus;
6677
6678 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6679 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6680
cb83b629
PZ
6681 sched_init_numa();
6682
6acce3ef
PZ
6683 /*
6684 * There's no userspace yet to cause hotplug operations; hence all the
6685 * cpu masks are stable and all blatant races in the below code cannot
6686 * happen.
6687 */
712555ee 6688 mutex_lock(&sched_domains_mutex);
c4a8849a 6689 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6690 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6691 if (cpumask_empty(non_isolated_cpus))
6692 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6693 mutex_unlock(&sched_domains_mutex);
e761b772 6694
301a5cba 6695 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6696 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6697 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6698
b328ca18 6699 init_hrtick();
5c1e1767
NP
6700
6701 /* Move init over to a non-isolated CPU */
dcc30a35 6702 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6703 BUG();
19978ca6 6704 sched_init_granularity();
dcc30a35 6705 free_cpumask_var(non_isolated_cpus);
4212823f 6706
0e3900e6 6707 init_sched_rt_class();
1baca4ce 6708 init_sched_dl_class();
1da177e4
LT
6709}
6710#else
6711void __init sched_init_smp(void)
6712{
19978ca6 6713 sched_init_granularity();
1da177e4
LT
6714}
6715#endif /* CONFIG_SMP */
6716
cd1bb94b
AB
6717const_debug unsigned int sysctl_timer_migration = 1;
6718
1da177e4
LT
6719int in_sched_functions(unsigned long addr)
6720{
1da177e4
LT
6721 return in_lock_functions(addr) ||
6722 (addr >= (unsigned long)__sched_text_start
6723 && addr < (unsigned long)__sched_text_end);
6724}
6725
029632fb 6726#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6727/*
6728 * Default task group.
6729 * Every task in system belongs to this group at bootup.
6730 */
029632fb 6731struct task_group root_task_group;
35cf4e50 6732LIST_HEAD(task_groups);
052f1dc7 6733#endif
6f505b16 6734
e6252c3e 6735DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6736
1da177e4
LT
6737void __init sched_init(void)
6738{
dd41f596 6739 int i, j;
434d53b0
MT
6740 unsigned long alloc_size = 0, ptr;
6741
6742#ifdef CONFIG_FAIR_GROUP_SCHED
6743 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6744#endif
6745#ifdef CONFIG_RT_GROUP_SCHED
6746 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6747#endif
df7c8e84 6748#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6749 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6750#endif
434d53b0 6751 if (alloc_size) {
36b7b6d4 6752 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6753
6754#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6755 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6756 ptr += nr_cpu_ids * sizeof(void **);
6757
07e06b01 6758 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6759 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6760
6d6bc0ad 6761#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6762#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6763 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6764 ptr += nr_cpu_ids * sizeof(void **);
6765
07e06b01 6766 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6767 ptr += nr_cpu_ids * sizeof(void **);
6768
6d6bc0ad 6769#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6770#ifdef CONFIG_CPUMASK_OFFSTACK
6771 for_each_possible_cpu(i) {
e6252c3e 6772 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6773 ptr += cpumask_size();
6774 }
6775#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6776 }
dd41f596 6777
332ac17e
DF
6778 init_rt_bandwidth(&def_rt_bandwidth,
6779 global_rt_period(), global_rt_runtime());
6780 init_dl_bandwidth(&def_dl_bandwidth,
6781 global_dl_period(), global_dl_runtime());
6782
57d885fe
GH
6783#ifdef CONFIG_SMP
6784 init_defrootdomain();
6785#endif
6786
d0b27fa7 6787#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6788 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6789 global_rt_period(), global_rt_runtime());
6d6bc0ad 6790#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6791
7c941438 6792#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6793 list_add(&root_task_group.list, &task_groups);
6794 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6795 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6796 autogroup_init(&init_task);
54c707e9 6797
7c941438 6798#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6799
0a945022 6800 for_each_possible_cpu(i) {
70b97a7f 6801 struct rq *rq;
1da177e4
LT
6802
6803 rq = cpu_rq(i);
05fa785c 6804 raw_spin_lock_init(&rq->lock);
7897986b 6805 rq->nr_running = 0;
dce48a84
TG
6806 rq->calc_load_active = 0;
6807 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6808 init_cfs_rq(&rq->cfs);
6f505b16 6809 init_rt_rq(&rq->rt, rq);
aab03e05 6810 init_dl_rq(&rq->dl, rq);
dd41f596 6811#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6812 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6813 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6814 /*
07e06b01 6815 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6816 *
6817 * In case of task-groups formed thr' the cgroup filesystem, it
6818 * gets 100% of the cpu resources in the system. This overall
6819 * system cpu resource is divided among the tasks of
07e06b01 6820 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6821 * based on each entity's (task or task-group's) weight
6822 * (se->load.weight).
6823 *
07e06b01 6824 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6825 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6826 * then A0's share of the cpu resource is:
6827 *
0d905bca 6828 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6829 *
07e06b01
YZ
6830 * We achieve this by letting root_task_group's tasks sit
6831 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6832 */
ab84d31e 6833 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6834 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6835#endif /* CONFIG_FAIR_GROUP_SCHED */
6836
6837 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6838#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6839 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6840 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6841#endif
1da177e4 6842
dd41f596
IM
6843 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6844 rq->cpu_load[j] = 0;
fdf3e95d
VP
6845
6846 rq->last_load_update_tick = jiffies;
6847
1da177e4 6848#ifdef CONFIG_SMP
41c7ce9a 6849 rq->sd = NULL;
57d885fe 6850 rq->rd = NULL;
1399fa78 6851 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6852 rq->post_schedule = 0;
1da177e4 6853 rq->active_balance = 0;
dd41f596 6854 rq->next_balance = jiffies;
1da177e4 6855 rq->push_cpu = 0;
0a2966b4 6856 rq->cpu = i;
1f11eb6a 6857 rq->online = 0;
eae0c9df
MG
6858 rq->idle_stamp = 0;
6859 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6860 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6861
6862 INIT_LIST_HEAD(&rq->cfs_tasks);
6863
dc938520 6864 rq_attach_root(rq, &def_root_domain);
3451d024 6865#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6866 rq->nohz_flags = 0;
83cd4fe2 6867#endif
265f22a9
FW
6868#ifdef CONFIG_NO_HZ_FULL
6869 rq->last_sched_tick = 0;
6870#endif
1da177e4 6871#endif
8f4d37ec 6872 init_rq_hrtick(rq);
1da177e4 6873 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6874 }
6875
2dd73a4f 6876 set_load_weight(&init_task);
b50f60ce 6877
e107be36
AK
6878#ifdef CONFIG_PREEMPT_NOTIFIERS
6879 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6880#endif
6881
1da177e4
LT
6882 /*
6883 * The boot idle thread does lazy MMU switching as well:
6884 */
6885 atomic_inc(&init_mm.mm_count);
6886 enter_lazy_tlb(&init_mm, current);
6887
6888 /*
6889 * Make us the idle thread. Technically, schedule() should not be
6890 * called from this thread, however somewhere below it might be,
6891 * but because we are the idle thread, we just pick up running again
6892 * when this runqueue becomes "idle".
6893 */
6894 init_idle(current, smp_processor_id());
dce48a84
TG
6895
6896 calc_load_update = jiffies + LOAD_FREQ;
6897
dd41f596
IM
6898 /*
6899 * During early bootup we pretend to be a normal task:
6900 */
6901 current->sched_class = &fair_sched_class;
6892b75e 6902
bf4d83f6 6903#ifdef CONFIG_SMP
4cb98839 6904 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6905 /* May be allocated at isolcpus cmdline parse time */
6906 if (cpu_isolated_map == NULL)
6907 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6908 idle_thread_set_boot_cpu();
029632fb
PZ
6909#endif
6910 init_sched_fair_class();
6a7b3dc3 6911
6892b75e 6912 scheduler_running = 1;
1da177e4
LT
6913}
6914
d902db1e 6915#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6916static inline int preempt_count_equals(int preempt_offset)
6917{
234da7bc 6918 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6919
4ba8216c 6920 return (nested == preempt_offset);
e4aafea2
FW
6921}
6922
d894837f 6923void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6924{
1da177e4
LT
6925 static unsigned long prev_jiffy; /* ratelimiting */
6926
b3fbab05 6927 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6928 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6929 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6930 return;
6931 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6932 return;
6933 prev_jiffy = jiffies;
6934
3df0fc5b
PZ
6935 printk(KERN_ERR
6936 "BUG: sleeping function called from invalid context at %s:%d\n",
6937 file, line);
6938 printk(KERN_ERR
6939 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6940 in_atomic(), irqs_disabled(),
6941 current->pid, current->comm);
aef745fc
IM
6942
6943 debug_show_held_locks(current);
6944 if (irqs_disabled())
6945 print_irqtrace_events(current);
6946 dump_stack();
1da177e4
LT
6947}
6948EXPORT_SYMBOL(__might_sleep);
6949#endif
6950
6951#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6952static void normalize_task(struct rq *rq, struct task_struct *p)
6953{
da7a735e 6954 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6955 struct sched_attr attr = {
6956 .sched_policy = SCHED_NORMAL,
6957 };
da7a735e 6958 int old_prio = p->prio;
3a5e4dc1 6959 int on_rq;
3e51f33f 6960
fd2f4419 6961 on_rq = p->on_rq;
3a5e4dc1 6962 if (on_rq)
4ca9b72b 6963 dequeue_task(rq, p, 0);
d50dde5a 6964 __setscheduler(rq, p, &attr);
3a5e4dc1 6965 if (on_rq) {
4ca9b72b 6966 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6967 resched_task(rq->curr);
6968 }
da7a735e
PZ
6969
6970 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6971}
6972
1da177e4
LT
6973void normalize_rt_tasks(void)
6974{
a0f98a1c 6975 struct task_struct *g, *p;
1da177e4 6976 unsigned long flags;
70b97a7f 6977 struct rq *rq;
1da177e4 6978
4cf5d77a 6979 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6980 do_each_thread(g, p) {
178be793
IM
6981 /*
6982 * Only normalize user tasks:
6983 */
6984 if (!p->mm)
6985 continue;
6986
6cfb0d5d 6987 p->se.exec_start = 0;
6cfb0d5d 6988#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6989 p->se.statistics.wait_start = 0;
6990 p->se.statistics.sleep_start = 0;
6991 p->se.statistics.block_start = 0;
6cfb0d5d 6992#endif
dd41f596 6993
aab03e05 6994 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
6995 /*
6996 * Renice negative nice level userspace
6997 * tasks back to 0:
6998 */
6999 if (TASK_NICE(p) < 0 && p->mm)
7000 set_user_nice(p, 0);
1da177e4 7001 continue;
dd41f596 7002 }
1da177e4 7003
1d615482 7004 raw_spin_lock(&p->pi_lock);
b29739f9 7005 rq = __task_rq_lock(p);
1da177e4 7006
178be793 7007 normalize_task(rq, p);
3a5e4dc1 7008
b29739f9 7009 __task_rq_unlock(rq);
1d615482 7010 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7011 } while_each_thread(g, p);
7012
4cf5d77a 7013 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7014}
7015
7016#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7017
67fc4e0c 7018#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7019/*
67fc4e0c 7020 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7021 *
7022 * They can only be called when the whole system has been
7023 * stopped - every CPU needs to be quiescent, and no scheduling
7024 * activity can take place. Using them for anything else would
7025 * be a serious bug, and as a result, they aren't even visible
7026 * under any other configuration.
7027 */
7028
7029/**
7030 * curr_task - return the current task for a given cpu.
7031 * @cpu: the processor in question.
7032 *
7033 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7034 *
7035 * Return: The current task for @cpu.
1df5c10a 7036 */
36c8b586 7037struct task_struct *curr_task(int cpu)
1df5c10a
LT
7038{
7039 return cpu_curr(cpu);
7040}
7041
67fc4e0c
JW
7042#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7043
7044#ifdef CONFIG_IA64
1df5c10a
LT
7045/**
7046 * set_curr_task - set the current task for a given cpu.
7047 * @cpu: the processor in question.
7048 * @p: the task pointer to set.
7049 *
7050 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7051 * are serviced on a separate stack. It allows the architecture to switch the
7052 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7053 * must be called with all CPU's synchronized, and interrupts disabled, the
7054 * and caller must save the original value of the current task (see
7055 * curr_task() above) and restore that value before reenabling interrupts and
7056 * re-starting the system.
7057 *
7058 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7059 */
36c8b586 7060void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7061{
7062 cpu_curr(cpu) = p;
7063}
7064
7065#endif
29f59db3 7066
7c941438 7067#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7068/* task_group_lock serializes the addition/removal of task groups */
7069static DEFINE_SPINLOCK(task_group_lock);
7070
bccbe08a
PZ
7071static void free_sched_group(struct task_group *tg)
7072{
7073 free_fair_sched_group(tg);
7074 free_rt_sched_group(tg);
e9aa1dd1 7075 autogroup_free(tg);
bccbe08a
PZ
7076 kfree(tg);
7077}
7078
7079/* allocate runqueue etc for a new task group */
ec7dc8ac 7080struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7081{
7082 struct task_group *tg;
bccbe08a
PZ
7083
7084 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7085 if (!tg)
7086 return ERR_PTR(-ENOMEM);
7087
ec7dc8ac 7088 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7089 goto err;
7090
ec7dc8ac 7091 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7092 goto err;
7093
ace783b9
LZ
7094 return tg;
7095
7096err:
7097 free_sched_group(tg);
7098 return ERR_PTR(-ENOMEM);
7099}
7100
7101void sched_online_group(struct task_group *tg, struct task_group *parent)
7102{
7103 unsigned long flags;
7104
8ed36996 7105 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7106 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7107
7108 WARN_ON(!parent); /* root should already exist */
7109
7110 tg->parent = parent;
f473aa5e 7111 INIT_LIST_HEAD(&tg->children);
09f2724a 7112 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7113 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7114}
7115
9b5b7751 7116/* rcu callback to free various structures associated with a task group */
6f505b16 7117static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7118{
29f59db3 7119 /* now it should be safe to free those cfs_rqs */
6f505b16 7120 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7121}
7122
9b5b7751 7123/* Destroy runqueue etc associated with a task group */
4cf86d77 7124void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7125{
7126 /* wait for possible concurrent references to cfs_rqs complete */
7127 call_rcu(&tg->rcu, free_sched_group_rcu);
7128}
7129
7130void sched_offline_group(struct task_group *tg)
29f59db3 7131{
8ed36996 7132 unsigned long flags;
9b5b7751 7133 int i;
29f59db3 7134
3d4b47b4
PZ
7135 /* end participation in shares distribution */
7136 for_each_possible_cpu(i)
bccbe08a 7137 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7138
7139 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7140 list_del_rcu(&tg->list);
f473aa5e 7141 list_del_rcu(&tg->siblings);
8ed36996 7142 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7143}
7144
9b5b7751 7145/* change task's runqueue when it moves between groups.
3a252015
IM
7146 * The caller of this function should have put the task in its new group
7147 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7148 * reflect its new group.
9b5b7751
SV
7149 */
7150void sched_move_task(struct task_struct *tsk)
29f59db3 7151{
8323f26c 7152 struct task_group *tg;
29f59db3
SV
7153 int on_rq, running;
7154 unsigned long flags;
7155 struct rq *rq;
7156
7157 rq = task_rq_lock(tsk, &flags);
7158
051a1d1a 7159 running = task_current(rq, tsk);
fd2f4419 7160 on_rq = tsk->on_rq;
29f59db3 7161
0e1f3483 7162 if (on_rq)
29f59db3 7163 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7164 if (unlikely(running))
7165 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7166
8af01f56 7167 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7168 lockdep_is_held(&tsk->sighand->siglock)),
7169 struct task_group, css);
7170 tg = autogroup_task_group(tsk, tg);
7171 tsk->sched_task_group = tg;
7172
810b3817 7173#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7174 if (tsk->sched_class->task_move_group)
7175 tsk->sched_class->task_move_group(tsk, on_rq);
7176 else
810b3817 7177#endif
b2b5ce02 7178 set_task_rq(tsk, task_cpu(tsk));
810b3817 7179
0e1f3483
HS
7180 if (unlikely(running))
7181 tsk->sched_class->set_curr_task(rq);
7182 if (on_rq)
371fd7e7 7183 enqueue_task(rq, tsk, 0);
29f59db3 7184
0122ec5b 7185 task_rq_unlock(rq, tsk, &flags);
29f59db3 7186}
7c941438 7187#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7188
a790de99
PT
7189#ifdef CONFIG_RT_GROUP_SCHED
7190/*
7191 * Ensure that the real time constraints are schedulable.
7192 */
7193static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7194
9a7e0b18
PZ
7195/* Must be called with tasklist_lock held */
7196static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7197{
9a7e0b18 7198 struct task_struct *g, *p;
b40b2e8e 7199
9a7e0b18 7200 do_each_thread(g, p) {
029632fb 7201 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7202 return 1;
7203 } while_each_thread(g, p);
b40b2e8e 7204
9a7e0b18
PZ
7205 return 0;
7206}
b40b2e8e 7207
9a7e0b18
PZ
7208struct rt_schedulable_data {
7209 struct task_group *tg;
7210 u64 rt_period;
7211 u64 rt_runtime;
7212};
b40b2e8e 7213
a790de99 7214static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7215{
7216 struct rt_schedulable_data *d = data;
7217 struct task_group *child;
7218 unsigned long total, sum = 0;
7219 u64 period, runtime;
b40b2e8e 7220
9a7e0b18
PZ
7221 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7222 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7223
9a7e0b18
PZ
7224 if (tg == d->tg) {
7225 period = d->rt_period;
7226 runtime = d->rt_runtime;
b40b2e8e 7227 }
b40b2e8e 7228
4653f803
PZ
7229 /*
7230 * Cannot have more runtime than the period.
7231 */
7232 if (runtime > period && runtime != RUNTIME_INF)
7233 return -EINVAL;
6f505b16 7234
4653f803
PZ
7235 /*
7236 * Ensure we don't starve existing RT tasks.
7237 */
9a7e0b18
PZ
7238 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7239 return -EBUSY;
6f505b16 7240
9a7e0b18 7241 total = to_ratio(period, runtime);
6f505b16 7242
4653f803
PZ
7243 /*
7244 * Nobody can have more than the global setting allows.
7245 */
7246 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7247 return -EINVAL;
6f505b16 7248
4653f803
PZ
7249 /*
7250 * The sum of our children's runtime should not exceed our own.
7251 */
9a7e0b18
PZ
7252 list_for_each_entry_rcu(child, &tg->children, siblings) {
7253 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7254 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7255
9a7e0b18
PZ
7256 if (child == d->tg) {
7257 period = d->rt_period;
7258 runtime = d->rt_runtime;
7259 }
6f505b16 7260
9a7e0b18 7261 sum += to_ratio(period, runtime);
9f0c1e56 7262 }
6f505b16 7263
9a7e0b18
PZ
7264 if (sum > total)
7265 return -EINVAL;
7266
7267 return 0;
6f505b16
PZ
7268}
7269
9a7e0b18 7270static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7271{
8277434e
PT
7272 int ret;
7273
9a7e0b18
PZ
7274 struct rt_schedulable_data data = {
7275 .tg = tg,
7276 .rt_period = period,
7277 .rt_runtime = runtime,
7278 };
7279
8277434e
PT
7280 rcu_read_lock();
7281 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7282 rcu_read_unlock();
7283
7284 return ret;
521f1a24
DG
7285}
7286
ab84d31e 7287static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7288 u64 rt_period, u64 rt_runtime)
6f505b16 7289{
ac086bc2 7290 int i, err = 0;
9f0c1e56 7291
9f0c1e56 7292 mutex_lock(&rt_constraints_mutex);
521f1a24 7293 read_lock(&tasklist_lock);
9a7e0b18
PZ
7294 err = __rt_schedulable(tg, rt_period, rt_runtime);
7295 if (err)
9f0c1e56 7296 goto unlock;
ac086bc2 7297
0986b11b 7298 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7299 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7300 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7301
7302 for_each_possible_cpu(i) {
7303 struct rt_rq *rt_rq = tg->rt_rq[i];
7304
0986b11b 7305 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7306 rt_rq->rt_runtime = rt_runtime;
0986b11b 7307 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7308 }
0986b11b 7309 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7310unlock:
521f1a24 7311 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7312 mutex_unlock(&rt_constraints_mutex);
7313
7314 return err;
6f505b16
PZ
7315}
7316
25cc7da7 7317static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7318{
7319 u64 rt_runtime, rt_period;
7320
7321 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7322 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7323 if (rt_runtime_us < 0)
7324 rt_runtime = RUNTIME_INF;
7325
ab84d31e 7326 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7327}
7328
25cc7da7 7329static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7330{
7331 u64 rt_runtime_us;
7332
d0b27fa7 7333 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7334 return -1;
7335
d0b27fa7 7336 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7337 do_div(rt_runtime_us, NSEC_PER_USEC);
7338 return rt_runtime_us;
7339}
d0b27fa7 7340
25cc7da7 7341static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7342{
7343 u64 rt_runtime, rt_period;
7344
7345 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7346 rt_runtime = tg->rt_bandwidth.rt_runtime;
7347
619b0488
R
7348 if (rt_period == 0)
7349 return -EINVAL;
7350
ab84d31e 7351 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7352}
7353
25cc7da7 7354static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7355{
7356 u64 rt_period_us;
7357
7358 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7359 do_div(rt_period_us, NSEC_PER_USEC);
7360 return rt_period_us;
7361}
332ac17e 7362#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7363
332ac17e
DF
7364/*
7365 * Coupling of -rt and -deadline bandwidth.
7366 *
7367 * Here we check if the new -rt bandwidth value is consistent
7368 * with the system settings for the bandwidth available
7369 * to -deadline tasks.
7370 *
7371 * IOW, we want to enforce that
7372 *
7373 * rt_bandwidth + dl_bandwidth <= 100%
7374 *
7375 * is always true.
7376 */
7377static bool __sched_rt_dl_global_constraints(u64 rt_bw)
7378{
7379 unsigned long flags;
7380 u64 dl_bw;
7381 bool ret;
7382
7383 raw_spin_lock_irqsave(&def_dl_bandwidth.dl_runtime_lock, flags);
7384 if (global_rt_runtime() == RUNTIME_INF ||
7385 global_dl_runtime() == RUNTIME_INF) {
7386 ret = true;
7387 goto unlock;
7388 }
7389
7390 dl_bw = to_ratio(def_dl_bandwidth.dl_period,
7391 def_dl_bandwidth.dl_runtime);
7392
7393 ret = rt_bw + dl_bw <= to_ratio(RUNTIME_INF, RUNTIME_INF);
7394unlock:
7395 raw_spin_unlock_irqrestore(&def_dl_bandwidth.dl_runtime_lock, flags);
7396
7397 return ret;
7398}
7399
7400#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7401static int sched_rt_global_constraints(void)
7402{
332ac17e 7403 u64 runtime, period, bw;
d0b27fa7
PZ
7404 int ret = 0;
7405
ec5d4989
HS
7406 if (sysctl_sched_rt_period <= 0)
7407 return -EINVAL;
7408
4653f803
PZ
7409 runtime = global_rt_runtime();
7410 period = global_rt_period();
7411
7412 /*
7413 * Sanity check on the sysctl variables.
7414 */
7415 if (runtime > period && runtime != RUNTIME_INF)
7416 return -EINVAL;
10b612f4 7417
332ac17e
DF
7418 bw = to_ratio(period, runtime);
7419 if (!__sched_rt_dl_global_constraints(bw))
7420 return -EINVAL;
7421
d0b27fa7 7422 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7423 read_lock(&tasklist_lock);
4653f803 7424 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7425 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7426 mutex_unlock(&rt_constraints_mutex);
7427
7428 return ret;
7429}
54e99124 7430
25cc7da7 7431static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7432{
7433 /* Don't accept realtime tasks when there is no way for them to run */
7434 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7435 return 0;
7436
7437 return 1;
7438}
7439
6d6bc0ad 7440#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7441static int sched_rt_global_constraints(void)
7442{
ac086bc2 7443 unsigned long flags;
332ac17e
DF
7444 int i, ret = 0;
7445 u64 bw;
ac086bc2 7446
ec5d4989
HS
7447 if (sysctl_sched_rt_period <= 0)
7448 return -EINVAL;
7449
0986b11b 7450 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
332ac17e
DF
7451 bw = to_ratio(global_rt_period(), global_rt_runtime());
7452 if (!__sched_rt_dl_global_constraints(bw)) {
7453 ret = -EINVAL;
7454 goto unlock;
7455 }
7456
ac086bc2
PZ
7457 for_each_possible_cpu(i) {
7458 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7459
0986b11b 7460 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7461 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7462 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7463 }
332ac17e 7464unlock:
0986b11b 7465 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7466
332ac17e 7467 return ret;
d0b27fa7 7468}
6d6bc0ad 7469#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7470
332ac17e
DF
7471/*
7472 * Coupling of -dl and -rt bandwidth.
7473 *
7474 * Here we check, while setting the system wide bandwidth available
7475 * for -dl tasks and groups, if the new values are consistent with
7476 * the system settings for the bandwidth available to -rt entities.
7477 *
7478 * IOW, we want to enforce that
7479 *
7480 * rt_bandwidth + dl_bandwidth <= 100%
7481 *
7482 * is always true.
7483 */
7484static bool __sched_dl_rt_global_constraints(u64 dl_bw)
7485{
7486 u64 rt_bw;
7487 bool ret;
7488
7489 raw_spin_lock(&def_rt_bandwidth.rt_runtime_lock);
7490 if (global_dl_runtime() == RUNTIME_INF ||
7491 global_rt_runtime() == RUNTIME_INF) {
7492 ret = true;
7493 goto unlock;
7494 }
7495
7496 rt_bw = to_ratio(ktime_to_ns(def_rt_bandwidth.rt_period),
7497 def_rt_bandwidth.rt_runtime);
7498
7499 ret = rt_bw + dl_bw <= to_ratio(RUNTIME_INF, RUNTIME_INF);
7500unlock:
7501 raw_spin_unlock(&def_rt_bandwidth.rt_runtime_lock);
7502
7503 return ret;
7504}
7505
7506static bool __sched_dl_global_constraints(u64 runtime, u64 period)
7507{
7508 if (!period || (runtime != RUNTIME_INF && runtime > period))
7509 return -EINVAL;
7510
7511 return 0;
7512}
7513
7514static int sched_dl_global_constraints(void)
7515{
7516 u64 runtime = global_dl_runtime();
7517 u64 period = global_dl_period();
7518 u64 new_bw = to_ratio(period, runtime);
7519 int ret, i;
7520
7521 ret = __sched_dl_global_constraints(runtime, period);
7522 if (ret)
7523 return ret;
7524
7525 if (!__sched_dl_rt_global_constraints(new_bw))
7526 return -EINVAL;
7527
7528 /*
7529 * Here we want to check the bandwidth not being set to some
7530 * value smaller than the currently allocated bandwidth in
7531 * any of the root_domains.
7532 *
7533 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7534 * cycling on root_domains... Discussion on different/better
7535 * solutions is welcome!
7536 */
7537 for_each_possible_cpu(i) {
7538 struct dl_bw *dl_b = dl_bw_of(i);
7539
7540 raw_spin_lock(&dl_b->lock);
7541 if (new_bw < dl_b->total_bw) {
7542 raw_spin_unlock(&dl_b->lock);
7543 return -EBUSY;
7544 }
7545 raw_spin_unlock(&dl_b->lock);
7546 }
7547
7548 return 0;
7549}
7550
ce0dbbbb
CW
7551int sched_rr_handler(struct ctl_table *table, int write,
7552 void __user *buffer, size_t *lenp,
7553 loff_t *ppos)
7554{
7555 int ret;
7556 static DEFINE_MUTEX(mutex);
7557
7558 mutex_lock(&mutex);
7559 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7560 /* make sure that internally we keep jiffies */
7561 /* also, writing zero resets timeslice to default */
7562 if (!ret && write) {
7563 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7564 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7565 }
7566 mutex_unlock(&mutex);
7567 return ret;
7568}
7569
d0b27fa7 7570int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7571 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7572 loff_t *ppos)
7573{
7574 int ret;
7575 int old_period, old_runtime;
7576 static DEFINE_MUTEX(mutex);
7577
7578 mutex_lock(&mutex);
7579 old_period = sysctl_sched_rt_period;
7580 old_runtime = sysctl_sched_rt_runtime;
7581
8d65af78 7582 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7583
7584 if (!ret && write) {
7585 ret = sched_rt_global_constraints();
7586 if (ret) {
7587 sysctl_sched_rt_period = old_period;
7588 sysctl_sched_rt_runtime = old_runtime;
7589 } else {
7590 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7591 def_rt_bandwidth.rt_period =
7592 ns_to_ktime(global_rt_period());
7593 }
7594 }
7595 mutex_unlock(&mutex);
7596
7597 return ret;
7598}
68318b8e 7599
332ac17e
DF
7600int sched_dl_handler(struct ctl_table *table, int write,
7601 void __user *buffer, size_t *lenp,
7602 loff_t *ppos)
7603{
7604 int ret;
7605 int old_period, old_runtime;
7606 static DEFINE_MUTEX(mutex);
7607 unsigned long flags;
7608
7609 mutex_lock(&mutex);
7610 old_period = sysctl_sched_dl_period;
7611 old_runtime = sysctl_sched_dl_runtime;
7612
7613 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7614
7615 if (!ret && write) {
7616 raw_spin_lock_irqsave(&def_dl_bandwidth.dl_runtime_lock,
7617 flags);
7618
7619 ret = sched_dl_global_constraints();
7620 if (ret) {
7621 sysctl_sched_dl_period = old_period;
7622 sysctl_sched_dl_runtime = old_runtime;
7623 } else {
7624 u64 new_bw;
7625 int i;
7626
7627 def_dl_bandwidth.dl_period = global_dl_period();
7628 def_dl_bandwidth.dl_runtime = global_dl_runtime();
7629 if (global_dl_runtime() == RUNTIME_INF)
7630 new_bw = -1;
7631 else
7632 new_bw = to_ratio(global_dl_period(),
7633 global_dl_runtime());
7634 /*
7635 * FIXME: As above...
7636 */
7637 for_each_possible_cpu(i) {
7638 struct dl_bw *dl_b = dl_bw_of(i);
7639
7640 raw_spin_lock(&dl_b->lock);
7641 dl_b->bw = new_bw;
7642 raw_spin_unlock(&dl_b->lock);
7643 }
7644 }
7645
7646 raw_spin_unlock_irqrestore(&def_dl_bandwidth.dl_runtime_lock,
7647 flags);
7648 }
7649 mutex_unlock(&mutex);
7650
7651 return ret;
7652}
7653
052f1dc7 7654#ifdef CONFIG_CGROUP_SCHED
68318b8e 7655
a7c6d554 7656static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7657{
a7c6d554 7658 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7659}
7660
eb95419b
TH
7661static struct cgroup_subsys_state *
7662cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7663{
eb95419b
TH
7664 struct task_group *parent = css_tg(parent_css);
7665 struct task_group *tg;
68318b8e 7666
eb95419b 7667 if (!parent) {
68318b8e 7668 /* This is early initialization for the top cgroup */
07e06b01 7669 return &root_task_group.css;
68318b8e
SV
7670 }
7671
ec7dc8ac 7672 tg = sched_create_group(parent);
68318b8e
SV
7673 if (IS_ERR(tg))
7674 return ERR_PTR(-ENOMEM);
7675
68318b8e
SV
7676 return &tg->css;
7677}
7678
eb95419b 7679static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7680{
eb95419b
TH
7681 struct task_group *tg = css_tg(css);
7682 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7683
63876986
TH
7684 if (parent)
7685 sched_online_group(tg, parent);
ace783b9
LZ
7686 return 0;
7687}
7688
eb95419b 7689static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7690{
eb95419b 7691 struct task_group *tg = css_tg(css);
68318b8e
SV
7692
7693 sched_destroy_group(tg);
7694}
7695
eb95419b 7696static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7697{
eb95419b 7698 struct task_group *tg = css_tg(css);
ace783b9
LZ
7699
7700 sched_offline_group(tg);
7701}
7702
eb95419b 7703static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7704 struct cgroup_taskset *tset)
68318b8e 7705{
bb9d97b6
TH
7706 struct task_struct *task;
7707
d99c8727 7708 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7709#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7710 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7711 return -EINVAL;
b68aa230 7712#else
bb9d97b6
TH
7713 /* We don't support RT-tasks being in separate groups */
7714 if (task->sched_class != &fair_sched_class)
7715 return -EINVAL;
b68aa230 7716#endif
bb9d97b6 7717 }
be367d09
BB
7718 return 0;
7719}
68318b8e 7720
eb95419b 7721static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7722 struct cgroup_taskset *tset)
68318b8e 7723{
bb9d97b6
TH
7724 struct task_struct *task;
7725
d99c8727 7726 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7727 sched_move_task(task);
68318b8e
SV
7728}
7729
eb95419b
TH
7730static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7731 struct cgroup_subsys_state *old_css,
7732 struct task_struct *task)
068c5cc5
PZ
7733{
7734 /*
7735 * cgroup_exit() is called in the copy_process() failure path.
7736 * Ignore this case since the task hasn't ran yet, this avoids
7737 * trying to poke a half freed task state from generic code.
7738 */
7739 if (!(task->flags & PF_EXITING))
7740 return;
7741
7742 sched_move_task(task);
7743}
7744
052f1dc7 7745#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7746static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7747 struct cftype *cftype, u64 shareval)
68318b8e 7748{
182446d0 7749 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7750}
7751
182446d0
TH
7752static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7753 struct cftype *cft)
68318b8e 7754{
182446d0 7755 struct task_group *tg = css_tg(css);
68318b8e 7756
c8b28116 7757 return (u64) scale_load_down(tg->shares);
68318b8e 7758}
ab84d31e
PT
7759
7760#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7761static DEFINE_MUTEX(cfs_constraints_mutex);
7762
ab84d31e
PT
7763const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7764const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7765
a790de99
PT
7766static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7767
ab84d31e
PT
7768static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7769{
56f570e5 7770 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7771 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7772
7773 if (tg == &root_task_group)
7774 return -EINVAL;
7775
7776 /*
7777 * Ensure we have at some amount of bandwidth every period. This is
7778 * to prevent reaching a state of large arrears when throttled via
7779 * entity_tick() resulting in prolonged exit starvation.
7780 */
7781 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7782 return -EINVAL;
7783
7784 /*
7785 * Likewise, bound things on the otherside by preventing insane quota
7786 * periods. This also allows us to normalize in computing quota
7787 * feasibility.
7788 */
7789 if (period > max_cfs_quota_period)
7790 return -EINVAL;
7791
a790de99
PT
7792 mutex_lock(&cfs_constraints_mutex);
7793 ret = __cfs_schedulable(tg, period, quota);
7794 if (ret)
7795 goto out_unlock;
7796
58088ad0 7797 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7798 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7799 /*
7800 * If we need to toggle cfs_bandwidth_used, off->on must occur
7801 * before making related changes, and on->off must occur afterwards
7802 */
7803 if (runtime_enabled && !runtime_was_enabled)
7804 cfs_bandwidth_usage_inc();
ab84d31e
PT
7805 raw_spin_lock_irq(&cfs_b->lock);
7806 cfs_b->period = ns_to_ktime(period);
7807 cfs_b->quota = quota;
58088ad0 7808
a9cf55b2 7809 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7810 /* restart the period timer (if active) to handle new period expiry */
7811 if (runtime_enabled && cfs_b->timer_active) {
7812 /* force a reprogram */
7813 cfs_b->timer_active = 0;
7814 __start_cfs_bandwidth(cfs_b);
7815 }
ab84d31e
PT
7816 raw_spin_unlock_irq(&cfs_b->lock);
7817
7818 for_each_possible_cpu(i) {
7819 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7820 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7821
7822 raw_spin_lock_irq(&rq->lock);
58088ad0 7823 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7824 cfs_rq->runtime_remaining = 0;
671fd9da 7825
029632fb 7826 if (cfs_rq->throttled)
671fd9da 7827 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7828 raw_spin_unlock_irq(&rq->lock);
7829 }
1ee14e6c
BS
7830 if (runtime_was_enabled && !runtime_enabled)
7831 cfs_bandwidth_usage_dec();
a790de99
PT
7832out_unlock:
7833 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7834
a790de99 7835 return ret;
ab84d31e
PT
7836}
7837
7838int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7839{
7840 u64 quota, period;
7841
029632fb 7842 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7843 if (cfs_quota_us < 0)
7844 quota = RUNTIME_INF;
7845 else
7846 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7847
7848 return tg_set_cfs_bandwidth(tg, period, quota);
7849}
7850
7851long tg_get_cfs_quota(struct task_group *tg)
7852{
7853 u64 quota_us;
7854
029632fb 7855 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7856 return -1;
7857
029632fb 7858 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7859 do_div(quota_us, NSEC_PER_USEC);
7860
7861 return quota_us;
7862}
7863
7864int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7865{
7866 u64 quota, period;
7867
7868 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7869 quota = tg->cfs_bandwidth.quota;
ab84d31e 7870
ab84d31e
PT
7871 return tg_set_cfs_bandwidth(tg, period, quota);
7872}
7873
7874long tg_get_cfs_period(struct task_group *tg)
7875{
7876 u64 cfs_period_us;
7877
029632fb 7878 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7879 do_div(cfs_period_us, NSEC_PER_USEC);
7880
7881 return cfs_period_us;
7882}
7883
182446d0
TH
7884static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7885 struct cftype *cft)
ab84d31e 7886{
182446d0 7887 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7888}
7889
182446d0
TH
7890static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7891 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7892{
182446d0 7893 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7894}
7895
182446d0
TH
7896static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7897 struct cftype *cft)
ab84d31e 7898{
182446d0 7899 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7900}
7901
182446d0
TH
7902static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7903 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7904{
182446d0 7905 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7906}
7907
a790de99
PT
7908struct cfs_schedulable_data {
7909 struct task_group *tg;
7910 u64 period, quota;
7911};
7912
7913/*
7914 * normalize group quota/period to be quota/max_period
7915 * note: units are usecs
7916 */
7917static u64 normalize_cfs_quota(struct task_group *tg,
7918 struct cfs_schedulable_data *d)
7919{
7920 u64 quota, period;
7921
7922 if (tg == d->tg) {
7923 period = d->period;
7924 quota = d->quota;
7925 } else {
7926 period = tg_get_cfs_period(tg);
7927 quota = tg_get_cfs_quota(tg);
7928 }
7929
7930 /* note: these should typically be equivalent */
7931 if (quota == RUNTIME_INF || quota == -1)
7932 return RUNTIME_INF;
7933
7934 return to_ratio(period, quota);
7935}
7936
7937static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7938{
7939 struct cfs_schedulable_data *d = data;
029632fb 7940 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7941 s64 quota = 0, parent_quota = -1;
7942
7943 if (!tg->parent) {
7944 quota = RUNTIME_INF;
7945 } else {
029632fb 7946 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7947
7948 quota = normalize_cfs_quota(tg, d);
7949 parent_quota = parent_b->hierarchal_quota;
7950
7951 /*
7952 * ensure max(child_quota) <= parent_quota, inherit when no
7953 * limit is set
7954 */
7955 if (quota == RUNTIME_INF)
7956 quota = parent_quota;
7957 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7958 return -EINVAL;
7959 }
7960 cfs_b->hierarchal_quota = quota;
7961
7962 return 0;
7963}
7964
7965static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7966{
8277434e 7967 int ret;
a790de99
PT
7968 struct cfs_schedulable_data data = {
7969 .tg = tg,
7970 .period = period,
7971 .quota = quota,
7972 };
7973
7974 if (quota != RUNTIME_INF) {
7975 do_div(data.period, NSEC_PER_USEC);
7976 do_div(data.quota, NSEC_PER_USEC);
7977 }
7978
8277434e
PT
7979 rcu_read_lock();
7980 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7981 rcu_read_unlock();
7982
7983 return ret;
a790de99 7984}
e8da1b18 7985
182446d0 7986static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7987 struct cgroup_map_cb *cb)
7988{
182446d0 7989 struct task_group *tg = css_tg(css);
029632fb 7990 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7991
7992 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7993 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7994 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7995
7996 return 0;
7997}
ab84d31e 7998#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7999#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8000
052f1dc7 8001#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8002static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8003 struct cftype *cft, s64 val)
6f505b16 8004{
182446d0 8005 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8006}
8007
182446d0
TH
8008static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8009 struct cftype *cft)
6f505b16 8010{
182446d0 8011 return sched_group_rt_runtime(css_tg(css));
6f505b16 8012}
d0b27fa7 8013
182446d0
TH
8014static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8015 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8016{
182446d0 8017 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8018}
8019
182446d0
TH
8020static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8021 struct cftype *cft)
d0b27fa7 8022{
182446d0 8023 return sched_group_rt_period(css_tg(css));
d0b27fa7 8024}
6d6bc0ad 8025#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8026
fe5c7cc2 8027static struct cftype cpu_files[] = {
052f1dc7 8028#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8029 {
8030 .name = "shares",
f4c753b7
PM
8031 .read_u64 = cpu_shares_read_u64,
8032 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8033 },
052f1dc7 8034#endif
ab84d31e
PT
8035#ifdef CONFIG_CFS_BANDWIDTH
8036 {
8037 .name = "cfs_quota_us",
8038 .read_s64 = cpu_cfs_quota_read_s64,
8039 .write_s64 = cpu_cfs_quota_write_s64,
8040 },
8041 {
8042 .name = "cfs_period_us",
8043 .read_u64 = cpu_cfs_period_read_u64,
8044 .write_u64 = cpu_cfs_period_write_u64,
8045 },
e8da1b18
NR
8046 {
8047 .name = "stat",
8048 .read_map = cpu_stats_show,
8049 },
ab84d31e 8050#endif
052f1dc7 8051#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8052 {
9f0c1e56 8053 .name = "rt_runtime_us",
06ecb27c
PM
8054 .read_s64 = cpu_rt_runtime_read,
8055 .write_s64 = cpu_rt_runtime_write,
6f505b16 8056 },
d0b27fa7
PZ
8057 {
8058 .name = "rt_period_us",
f4c753b7
PM
8059 .read_u64 = cpu_rt_period_read_uint,
8060 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8061 },
052f1dc7 8062#endif
4baf6e33 8063 { } /* terminate */
68318b8e
SV
8064};
8065
68318b8e 8066struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 8067 .name = "cpu",
92fb9748
TH
8068 .css_alloc = cpu_cgroup_css_alloc,
8069 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8070 .css_online = cpu_cgroup_css_online,
8071 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8072 .can_attach = cpu_cgroup_can_attach,
8073 .attach = cpu_cgroup_attach,
068c5cc5 8074 .exit = cpu_cgroup_exit,
38605cae 8075 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8076 .base_cftypes = cpu_files,
68318b8e
SV
8077 .early_init = 1,
8078};
8079
052f1dc7 8080#endif /* CONFIG_CGROUP_SCHED */
d842de87 8081
b637a328
PM
8082void dump_cpu_task(int cpu)
8083{
8084 pr_info("Task dump for CPU %d:\n", cpu);
8085 sched_show_task(cpu_curr(cpu));
8086}
This page took 2.607201 seconds and 5 git commands to generate.