sched: Queue RT tasks to head when prio drops
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
ff1df896
RR
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
cbee9f88 1755#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1756}
1757
1a687c2e 1758#ifdef CONFIG_NUMA_BALANCING
3105b86a 1759#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1760void set_numabalancing_state(bool enabled)
1761{
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766}
3105b86a
MG
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772 numabalancing_enabled = enabled;
dd41f596 1773}
3105b86a 1774#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795}
1796#endif
1797#endif
dd41f596
IM
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
aab03e05 1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1803{
0122ec5b 1804 unsigned long flags;
dd41f596
IM
1805 int cpu = get_cpu();
1806
5e1576ed 1807 __sched_fork(clone_flags, p);
06b83b5f 1808 /*
0017d735 1809 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
0017d735 1813 p->state = TASK_RUNNING;
dd41f596 1814
c350a04e
MG
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
b9dc29e7
MG
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1825 p->policy = SCHED_NORMAL;
6c697bdf 1826 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
6c697bdf 1833
b9dc29e7
MG
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
ca94c442 1840
aab03e05
DF
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
2ddbf952 1847 p->sched_class = &fair_sched_class;
aab03e05 1848 }
b29739f9 1849
cd29fe6f
PZ
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
86951599
PZ
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
0122ec5b 1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1861 set_task_cpu(p, cpu);
0122ec5b 1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1863
52f17b6c 1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1865 if (likely(sched_info_on()))
52f17b6c 1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1867#endif
3ca7a440
PZ
1868#if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
4866cde0 1870#endif
01028747 1871 init_task_preempt_count(p);
806c09a7 1872#ifdef CONFIG_SMP
917b627d 1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1875#endif
917b627d 1876
476d139c 1877 put_cpu();
aab03e05 1878 return 0;
1da177e4
LT
1879}
1880
332ac17e
DF
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900 return &cpu_rq(i)->rd->dl_bw;
1901}
1902
de212f18 1903static inline int dl_bw_cpus(int i)
332ac17e 1904{
de212f18
PZ
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
332ac17e
DF
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916 return &cpu_rq(i)->dl.dl_bw;
1917}
1918
de212f18 1919static inline int dl_bw_cpus(int i)
332ac17e
DF
1920{
1921 return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928 dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934 dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954{
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1960 int cpus, err = -1;
332ac17e
DF
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
de212f18 1971 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1da177e4
LT
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
3e51e3ed 1999void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2000{
2001 unsigned long flags;
dd41f596 2002 struct rq *rq;
fabf318e 2003
ab2515c4 2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2005#ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
fabf318e 2010 */
ac66f547 2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2012#endif
2013
a75cdaa9
AS
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
ab2515c4 2016 rq = __task_rq_lock(p);
cd29fe6f 2017 activate_task(rq, p, 0);
fd2f4419 2018 p->on_rq = 1;
89363381 2019 trace_sched_wakeup_new(p, true);
a7558e01 2020 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2021#ifdef CONFIG_SMP
efbbd05a
PZ
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
9a897c5a 2024#endif
0122ec5b 2025 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2026}
2027
e107be36
AK
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
80dd99b3 2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2032 * @notifier: notifier struct to register
e107be36
AK
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2042 * @notifier: notifier struct to unregister
e107be36
AK
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048 hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054 struct preempt_notifier *notifier;
e107be36 2055
b67bfe0d 2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063{
2064 struct preempt_notifier *notifier;
e107be36 2065
b67bfe0d 2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2067 notifier->ops->sched_out(notifier, next);
2068}
2069
6d6bc0ad 2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079{
2080}
2081
6d6bc0ad 2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2083
4866cde0
NP
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
421cee29 2087 * @prev: the current task that is being switched out
4866cde0
NP
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
e107be36
AK
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
4866cde0 2100{
895dd92c 2101 trace_sched_switch(prev, next);
43148951 2102 sched_info_switch(rq, prev, next);
fe4b04fa 2103 perf_event_task_sched_out(prev, next);
e107be36 2104 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107}
2108
1da177e4
LT
2109/**
2110 * finish_task_switch - clean up after a task-switch
344babaa 2111 * @rq: runqueue associated with task-switch
1da177e4
LT
2112 * @prev: the thread we just switched away from.
2113 *
4866cde0
NP
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2120 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
a9957449 2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2125 __releases(rq->lock)
2126{
1da177e4 2127 struct mm_struct *mm = rq->prev_mm;
55a101f8 2128 long prev_state;
1da177e4
LT
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
c394cc9f 2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
c394cc9f 2137 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
55a101f8 2143 prev_state = prev->state;
bf9fae9f 2144 vtime_task_switch(prev);
4866cde0 2145 finish_arch_switch(prev);
a8d757ef 2146 perf_event_task_sched_in(prev, current);
4866cde0 2147 finish_lock_switch(rq, prev);
01f23e16 2148 finish_arch_post_lock_switch();
e8fa1362 2149
e107be36 2150 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2151 if (mm)
2152 mmdrop(mm);
c394cc9f 2153 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2154 task_numa_free(prev);
2155
e6c390f2
DF
2156 if (prev->sched_class->task_dead)
2157 prev->sched_class->task_dead(prev);
2158
c6fd91f0 2159 /*
2160 * Remove function-return probe instances associated with this
2161 * task and put them back on the free list.
9761eea8 2162 */
c6fd91f0 2163 kprobe_flush_task(prev);
1da177e4 2164 put_task_struct(prev);
c6fd91f0 2165 }
99e5ada9
FW
2166
2167 tick_nohz_task_switch(current);
1da177e4
LT
2168}
2169
3f029d3c
GH
2170#ifdef CONFIG_SMP
2171
3f029d3c
GH
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175 if (rq->post_schedule) {
2176 unsigned long flags;
2177
05fa785c 2178 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2179 if (rq->curr->sched_class->post_schedule)
2180 rq->curr->sched_class->post_schedule(rq);
05fa785c 2181 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2182
2183 rq->post_schedule = 0;
2184 }
2185}
2186
2187#else
da19ab51 2188
3f029d3c
GH
2189static inline void post_schedule(struct rq *rq)
2190{
1da177e4
LT
2191}
2192
3f029d3c
GH
2193#endif
2194
1da177e4
LT
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
36c8b586 2199asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2200 __releases(rq->lock)
2201{
70b97a7f
IM
2202 struct rq *rq = this_rq();
2203
4866cde0 2204 finish_task_switch(rq, prev);
da19ab51 2205
3f029d3c
GH
2206 /*
2207 * FIXME: do we need to worry about rq being invalidated by the
2208 * task_switch?
2209 */
2210 post_schedule(rq);
70b97a7f 2211
4866cde0
NP
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213 /* In this case, finish_task_switch does not reenable preemption */
2214 preempt_enable();
2215#endif
1da177e4 2216 if (current->set_child_tid)
b488893a 2217 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
dd41f596 2224static inline void
70b97a7f 2225context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2226 struct task_struct *next)
1da177e4 2227{
dd41f596 2228 struct mm_struct *mm, *oldmm;
1da177e4 2229
e107be36 2230 prepare_task_switch(rq, prev, next);
fe4b04fa 2231
dd41f596
IM
2232 mm = next->mm;
2233 oldmm = prev->active_mm;
9226d125
ZA
2234 /*
2235 * For paravirt, this is coupled with an exit in switch_to to
2236 * combine the page table reload and the switch backend into
2237 * one hypercall.
2238 */
224101ed 2239 arch_start_context_switch(prev);
9226d125 2240
31915ab4 2241 if (!mm) {
1da177e4
LT
2242 next->active_mm = oldmm;
2243 atomic_inc(&oldmm->mm_count);
2244 enter_lazy_tlb(oldmm, next);
2245 } else
2246 switch_mm(oldmm, mm, next);
2247
31915ab4 2248 if (!prev->mm) {
1da177e4 2249 prev->active_mm = NULL;
1da177e4
LT
2250 rq->prev_mm = oldmm;
2251 }
3a5f5e48
IM
2252 /*
2253 * Since the runqueue lock will be released by the next
2254 * task (which is an invalid locking op but in the case
2255 * of the scheduler it's an obvious special-case), so we
2256 * do an early lockdep release here:
2257 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2259 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2260#endif
1da177e4 2261
91d1aa43 2262 context_tracking_task_switch(prev, next);
1da177e4
LT
2263 /* Here we just switch the register state and the stack. */
2264 switch_to(prev, next, prev);
2265
dd41f596
IM
2266 barrier();
2267 /*
2268 * this_rq must be evaluated again because prev may have moved
2269 * CPUs since it called schedule(), thus the 'rq' on its stack
2270 * frame will be invalid.
2271 */
2272 finish_task_switch(this_rq(), prev);
1da177e4
LT
2273}
2274
2275/*
1c3e8264 2276 * nr_running and nr_context_switches:
1da177e4
LT
2277 *
2278 * externally visible scheduler statistics: current number of runnable
1c3e8264 2279 * threads, total number of context switches performed since bootup.
1da177e4
LT
2280 */
2281unsigned long nr_running(void)
2282{
2283 unsigned long i, sum = 0;
2284
2285 for_each_online_cpu(i)
2286 sum += cpu_rq(i)->nr_running;
2287
2288 return sum;
f711f609 2289}
1da177e4 2290
1da177e4 2291unsigned long long nr_context_switches(void)
46cb4b7c 2292{
cc94abfc
SR
2293 int i;
2294 unsigned long long sum = 0;
46cb4b7c 2295
0a945022 2296 for_each_possible_cpu(i)
1da177e4 2297 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2298
1da177e4
LT
2299 return sum;
2300}
483b4ee6 2301
1da177e4
LT
2302unsigned long nr_iowait(void)
2303{
2304 unsigned long i, sum = 0;
483b4ee6 2305
0a945022 2306 for_each_possible_cpu(i)
1da177e4 2307 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2308
1da177e4
LT
2309 return sum;
2310}
483b4ee6 2311
8c215bd3 2312unsigned long nr_iowait_cpu(int cpu)
69d25870 2313{
8c215bd3 2314 struct rq *this = cpu_rq(cpu);
69d25870
AV
2315 return atomic_read(&this->nr_iowait);
2316}
46cb4b7c 2317
dd41f596 2318#ifdef CONFIG_SMP
8a0be9ef 2319
46cb4b7c 2320/*
38022906
PZ
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2323 */
38022906 2324void sched_exec(void)
46cb4b7c 2325{
38022906 2326 struct task_struct *p = current;
1da177e4 2327 unsigned long flags;
0017d735 2328 int dest_cpu;
46cb4b7c 2329
8f42ced9 2330 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2331 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2332 if (dest_cpu == smp_processor_id())
2333 goto unlock;
38022906 2334
8f42ced9 2335 if (likely(cpu_active(dest_cpu))) {
969c7921 2336 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2337
8f42ced9
PZ
2338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2340 return;
2341 }
0017d735 2342unlock:
8f42ced9 2343 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2344}
dd41f596 2345
1da177e4
LT
2346#endif
2347
1da177e4 2348DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2353
2354/*
c5f8d995 2355 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2356 * @p in case that task is currently running.
c5f8d995
HS
2357 *
2358 * Called with task_rq_lock() held on @rq.
1da177e4 2359 */
c5f8d995
HS
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362 u64 ns = 0;
2363
2364 if (task_current(rq, p)) {
2365 update_rq_clock(rq);
78becc27 2366 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2367 if ((s64)ns < 0)
2368 ns = 0;
2369 }
2370
2371 return ns;
2372}
2373
bb34d92f 2374unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2375{
1da177e4 2376 unsigned long flags;
41b86e9c 2377 struct rq *rq;
bb34d92f 2378 u64 ns = 0;
48f24c4d 2379
41b86e9c 2380 rq = task_rq_lock(p, &flags);
c5f8d995 2381 ns = do_task_delta_exec(p, rq);
0122ec5b 2382 task_rq_unlock(rq, p, &flags);
1508487e 2383
c5f8d995
HS
2384 return ns;
2385}
f06febc9 2386
c5f8d995
HS
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394 unsigned long flags;
2395 struct rq *rq;
2396 u64 ns = 0;
2397
911b2898
PZ
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399 /*
2400 * 64-bit doesn't need locks to atomically read a 64bit value.
2401 * So we have a optimization chance when the task's delta_exec is 0.
2402 * Reading ->on_cpu is racy, but this is ok.
2403 *
2404 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405 * If we race with it entering cpu, unaccounted time is 0. This is
2406 * indistinguishable from the read occurring a few cycles earlier.
2407 */
2408 if (!p->on_cpu)
2409 return p->se.sum_exec_runtime;
2410#endif
2411
c5f8d995
HS
2412 rq = task_rq_lock(p, &flags);
2413 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2414 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2415
2416 return ns;
2417}
48f24c4d 2418
7835b98b
CL
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
7835b98b
CL
2422 */
2423void scheduler_tick(void)
2424{
7835b98b
CL
2425 int cpu = smp_processor_id();
2426 struct rq *rq = cpu_rq(cpu);
dd41f596 2427 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2428
2429 sched_clock_tick();
dd41f596 2430
05fa785c 2431 raw_spin_lock(&rq->lock);
3e51f33f 2432 update_rq_clock(rq);
fa85ae24 2433 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2434 update_cpu_load_active(rq);
05fa785c 2435 raw_spin_unlock(&rq->lock);
7835b98b 2436
e9d2b064 2437 perf_event_task_tick();
e220d2dc 2438
e418e1c2 2439#ifdef CONFIG_SMP
6eb57e0d 2440 rq->idle_balance = idle_cpu(cpu);
7caff66f 2441 trigger_load_balance(rq);
e418e1c2 2442#endif
265f22a9 2443 rq_last_tick_reset(rq);
1da177e4
LT
2444}
2445
265f22a9
FW
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
e69f6186
YB
2457 *
2458 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462 struct rq *rq = this_rq();
2463 unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465 next = rq->last_sched_tick + HZ;
2466
2467 if (time_before_eq(next, now))
2468 return 0;
2469
8fe8ff09 2470 return jiffies_to_nsecs(next - now);
1da177e4 2471}
265f22a9 2472#endif
1da177e4 2473
132380a0 2474notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2475{
2476 if (in_lock_functions(addr)) {
2477 addr = CALLER_ADDR2;
2478 if (in_lock_functions(addr))
2479 addr = CALLER_ADDR3;
2480 }
2481 return addr;
2482}
1da177e4 2483
7e49fcce
SR
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485 defined(CONFIG_PREEMPT_TRACER))
2486
bdb43806 2487void __kprobes preempt_count_add(int val)
1da177e4 2488{
6cd8a4bb 2489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2490 /*
2491 * Underflow?
2492 */
9a11b49a
IM
2493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494 return;
6cd8a4bb 2495#endif
bdb43806 2496 __preempt_count_add(val);
6cd8a4bb 2497#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2498 /*
2499 * Spinlock count overflowing soon?
2500 */
33859f7f
MOS
2501 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502 PREEMPT_MASK - 10);
6cd8a4bb 2503#endif
8f47b187
TG
2504 if (preempt_count() == val) {
2505 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507 current->preempt_disable_ip = ip;
2508#endif
2509 trace_preempt_off(CALLER_ADDR0, ip);
2510 }
1da177e4 2511}
bdb43806 2512EXPORT_SYMBOL(preempt_count_add);
1da177e4 2513
bdb43806 2514void __kprobes preempt_count_sub(int val)
1da177e4 2515{
6cd8a4bb 2516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2517 /*
2518 * Underflow?
2519 */
01e3eb82 2520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2521 return;
1da177e4
LT
2522 /*
2523 * Is the spinlock portion underflowing?
2524 */
9a11b49a
IM
2525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2526 !(preempt_count() & PREEMPT_MASK)))
2527 return;
6cd8a4bb 2528#endif
9a11b49a 2529
6cd8a4bb
SR
2530 if (preempt_count() == val)
2531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2532 __preempt_count_sub(val);
1da177e4 2533}
bdb43806 2534EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2535
2536#endif
2537
2538/*
dd41f596 2539 * Print scheduling while atomic bug:
1da177e4 2540 */
dd41f596 2541static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2542{
664dfa65
DJ
2543 if (oops_in_progress)
2544 return;
2545
3df0fc5b
PZ
2546 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2547 prev->comm, prev->pid, preempt_count());
838225b4 2548
dd41f596 2549 debug_show_held_locks(prev);
e21f5b15 2550 print_modules();
dd41f596
IM
2551 if (irqs_disabled())
2552 print_irqtrace_events(prev);
8f47b187
TG
2553#ifdef CONFIG_DEBUG_PREEMPT
2554 if (in_atomic_preempt_off()) {
2555 pr_err("Preemption disabled at:");
2556 print_ip_sym(current->preempt_disable_ip);
2557 pr_cont("\n");
2558 }
2559#endif
6135fc1e 2560 dump_stack();
373d4d09 2561 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2562}
1da177e4 2563
dd41f596
IM
2564/*
2565 * Various schedule()-time debugging checks and statistics:
2566 */
2567static inline void schedule_debug(struct task_struct *prev)
2568{
1da177e4 2569 /*
41a2d6cf 2570 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2571 * schedule() atomically, we ignore that path. Otherwise whine
2572 * if we are scheduling when we should not.
1da177e4 2573 */
192301e7 2574 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2575 __schedule_bug(prev);
b3fbab05 2576 rcu_sleep_check();
dd41f596 2577
1da177e4
LT
2578 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2579
2d72376b 2580 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2581}
2582
2583/*
2584 * Pick up the highest-prio task:
2585 */
2586static inline struct task_struct *
606dba2e 2587pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2588{
5522d5d5 2589 const struct sched_class *class;
dd41f596 2590 struct task_struct *p;
1da177e4
LT
2591
2592 /*
dd41f596
IM
2593 * Optimization: we know that if all tasks are in
2594 * the fair class we can call that function directly:
1da177e4 2595 */
38033c37
PZ
2596 if (likely(prev->sched_class == &fair_sched_class &&
2597 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2598 p = fair_sched_class.pick_next_task(rq, prev);
dd41f596
IM
2599 if (likely(p))
2600 return p;
1da177e4
LT
2601 }
2602
34f971f6 2603 for_each_class(class) {
606dba2e 2604 p = class->pick_next_task(rq, prev);
dd41f596
IM
2605 if (p)
2606 return p;
dd41f596 2607 }
34f971f6
PZ
2608
2609 BUG(); /* the idle class will always have a runnable task */
dd41f596 2610}
1da177e4 2611
dd41f596 2612/*
c259e01a 2613 * __schedule() is the main scheduler function.
edde96ea
PE
2614 *
2615 * The main means of driving the scheduler and thus entering this function are:
2616 *
2617 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 *
2619 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620 * paths. For example, see arch/x86/entry_64.S.
2621 *
2622 * To drive preemption between tasks, the scheduler sets the flag in timer
2623 * interrupt handler scheduler_tick().
2624 *
2625 * 3. Wakeups don't really cause entry into schedule(). They add a
2626 * task to the run-queue and that's it.
2627 *
2628 * Now, if the new task added to the run-queue preempts the current
2629 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630 * called on the nearest possible occasion:
2631 *
2632 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 *
2634 * - in syscall or exception context, at the next outmost
2635 * preempt_enable(). (this might be as soon as the wake_up()'s
2636 * spin_unlock()!)
2637 *
2638 * - in IRQ context, return from interrupt-handler to
2639 * preemptible context
2640 *
2641 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642 * then at the next:
2643 *
2644 * - cond_resched() call
2645 * - explicit schedule() call
2646 * - return from syscall or exception to user-space
2647 * - return from interrupt-handler to user-space
dd41f596 2648 */
c259e01a 2649static void __sched __schedule(void)
dd41f596
IM
2650{
2651 struct task_struct *prev, *next;
67ca7bde 2652 unsigned long *switch_count;
dd41f596 2653 struct rq *rq;
31656519 2654 int cpu;
dd41f596 2655
ff743345
PZ
2656need_resched:
2657 preempt_disable();
dd41f596
IM
2658 cpu = smp_processor_id();
2659 rq = cpu_rq(cpu);
25502a6c 2660 rcu_note_context_switch(cpu);
dd41f596 2661 prev = rq->curr;
dd41f596 2662
dd41f596 2663 schedule_debug(prev);
1da177e4 2664
31656519 2665 if (sched_feat(HRTICK))
f333fdc9 2666 hrtick_clear(rq);
8f4d37ec 2667
e0acd0a6
ON
2668 /*
2669 * Make sure that signal_pending_state()->signal_pending() below
2670 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671 * done by the caller to avoid the race with signal_wake_up().
2672 */
2673 smp_mb__before_spinlock();
05fa785c 2674 raw_spin_lock_irq(&rq->lock);
1da177e4 2675
246d86b5 2676 switch_count = &prev->nivcsw;
1da177e4 2677 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2678 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2679 prev->state = TASK_RUNNING;
21aa9af0 2680 } else {
2acca55e
PZ
2681 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682 prev->on_rq = 0;
2683
21aa9af0 2684 /*
2acca55e
PZ
2685 * If a worker went to sleep, notify and ask workqueue
2686 * whether it wants to wake up a task to maintain
2687 * concurrency.
21aa9af0
TH
2688 */
2689 if (prev->flags & PF_WQ_WORKER) {
2690 struct task_struct *to_wakeup;
2691
2692 to_wakeup = wq_worker_sleeping(prev, cpu);
2693 if (to_wakeup)
2694 try_to_wake_up_local(to_wakeup);
2695 }
21aa9af0 2696 }
dd41f596 2697 switch_count = &prev->nvcsw;
1da177e4
LT
2698 }
2699
606dba2e
PZ
2700 if (prev->on_rq || rq->skip_clock_update < 0)
2701 update_rq_clock(rq);
2702
2703 next = pick_next_task(rq, prev);
f26f9aff 2704 clear_tsk_need_resched(prev);
f27dde8d 2705 clear_preempt_need_resched();
f26f9aff 2706 rq->skip_clock_update = 0;
1da177e4 2707
1da177e4 2708 if (likely(prev != next)) {
1da177e4
LT
2709 rq->nr_switches++;
2710 rq->curr = next;
2711 ++*switch_count;
2712
dd41f596 2713 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2714 /*
246d86b5
ON
2715 * The context switch have flipped the stack from under us
2716 * and restored the local variables which were saved when
2717 * this task called schedule() in the past. prev == current
2718 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2719 */
2720 cpu = smp_processor_id();
2721 rq = cpu_rq(cpu);
1da177e4 2722 } else
05fa785c 2723 raw_spin_unlock_irq(&rq->lock);
1da177e4 2724
3f029d3c 2725 post_schedule(rq);
1da177e4 2726
ba74c144 2727 sched_preempt_enable_no_resched();
ff743345 2728 if (need_resched())
1da177e4
LT
2729 goto need_resched;
2730}
c259e01a 2731
9c40cef2
TG
2732static inline void sched_submit_work(struct task_struct *tsk)
2733{
3c7d5184 2734 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2735 return;
2736 /*
2737 * If we are going to sleep and we have plugged IO queued,
2738 * make sure to submit it to avoid deadlocks.
2739 */
2740 if (blk_needs_flush_plug(tsk))
2741 blk_schedule_flush_plug(tsk);
2742}
2743
6ebbe7a0 2744asmlinkage void __sched schedule(void)
c259e01a 2745{
9c40cef2
TG
2746 struct task_struct *tsk = current;
2747
2748 sched_submit_work(tsk);
c259e01a
TG
2749 __schedule();
2750}
1da177e4
LT
2751EXPORT_SYMBOL(schedule);
2752
91d1aa43 2753#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2754asmlinkage void __sched schedule_user(void)
2755{
2756 /*
2757 * If we come here after a random call to set_need_resched(),
2758 * or we have been woken up remotely but the IPI has not yet arrived,
2759 * we haven't yet exited the RCU idle mode. Do it here manually until
2760 * we find a better solution.
2761 */
91d1aa43 2762 user_exit();
20ab65e3 2763 schedule();
91d1aa43 2764 user_enter();
20ab65e3
FW
2765}
2766#endif
2767
c5491ea7
TG
2768/**
2769 * schedule_preempt_disabled - called with preemption disabled
2770 *
2771 * Returns with preemption disabled. Note: preempt_count must be 1
2772 */
2773void __sched schedule_preempt_disabled(void)
2774{
ba74c144 2775 sched_preempt_enable_no_resched();
c5491ea7
TG
2776 schedule();
2777 preempt_disable();
2778}
2779
1da177e4
LT
2780#ifdef CONFIG_PREEMPT
2781/*
2ed6e34f 2782 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2783 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2784 * occur there and call schedule directly.
2785 */
d1f74e20 2786asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2787{
1da177e4
LT
2788 /*
2789 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2790 * we do not want to preempt the current task. Just return..
1da177e4 2791 */
fbb00b56 2792 if (likely(!preemptible()))
1da177e4
LT
2793 return;
2794
3a5c359a 2795 do {
bdb43806 2796 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2797 __schedule();
bdb43806 2798 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2799
3a5c359a
AK
2800 /*
2801 * Check again in case we missed a preemption opportunity
2802 * between schedule and now.
2803 */
2804 barrier();
5ed0cec0 2805 } while (need_resched());
1da177e4 2806}
1da177e4 2807EXPORT_SYMBOL(preempt_schedule);
32e475d7 2808#endif /* CONFIG_PREEMPT */
1da177e4
LT
2809
2810/*
2ed6e34f 2811 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2812 * off of irq context.
2813 * Note, that this is called and return with irqs disabled. This will
2814 * protect us against recursive calling from irq.
2815 */
2816asmlinkage void __sched preempt_schedule_irq(void)
2817{
b22366cd 2818 enum ctx_state prev_state;
6478d880 2819
2ed6e34f 2820 /* Catch callers which need to be fixed */
f27dde8d 2821 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2822
b22366cd
FW
2823 prev_state = exception_enter();
2824
3a5c359a 2825 do {
bdb43806 2826 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2827 local_irq_enable();
c259e01a 2828 __schedule();
3a5c359a 2829 local_irq_disable();
bdb43806 2830 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2831
3a5c359a
AK
2832 /*
2833 * Check again in case we missed a preemption opportunity
2834 * between schedule and now.
2835 */
2836 barrier();
5ed0cec0 2837 } while (need_resched());
b22366cd
FW
2838
2839 exception_exit(prev_state);
1da177e4
LT
2840}
2841
63859d4f 2842int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2843 void *key)
1da177e4 2844{
63859d4f 2845 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2846}
1da177e4
LT
2847EXPORT_SYMBOL(default_wake_function);
2848
8cbbe86d
AK
2849static long __sched
2850sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2851{
0fec171c
IM
2852 unsigned long flags;
2853 wait_queue_t wait;
2854
2855 init_waitqueue_entry(&wait, current);
1da177e4 2856
8cbbe86d 2857 __set_current_state(state);
1da177e4 2858
8cbbe86d
AK
2859 spin_lock_irqsave(&q->lock, flags);
2860 __add_wait_queue(q, &wait);
2861 spin_unlock(&q->lock);
2862 timeout = schedule_timeout(timeout);
2863 spin_lock_irq(&q->lock);
2864 __remove_wait_queue(q, &wait);
2865 spin_unlock_irqrestore(&q->lock, flags);
2866
2867 return timeout;
2868}
2869
2870void __sched interruptible_sleep_on(wait_queue_head_t *q)
2871{
2872 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2873}
1da177e4
LT
2874EXPORT_SYMBOL(interruptible_sleep_on);
2875
0fec171c 2876long __sched
95cdf3b7 2877interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2878{
8cbbe86d 2879 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2880}
1da177e4
LT
2881EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2882
0fec171c 2883void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2884{
8cbbe86d 2885 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2886}
1da177e4
LT
2887EXPORT_SYMBOL(sleep_on);
2888
0fec171c 2889long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2890{
8cbbe86d 2891 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2892}
1da177e4
LT
2893EXPORT_SYMBOL(sleep_on_timeout);
2894
b29739f9
IM
2895#ifdef CONFIG_RT_MUTEXES
2896
2897/*
2898 * rt_mutex_setprio - set the current priority of a task
2899 * @p: task
2900 * @prio: prio value (kernel-internal form)
2901 *
2902 * This function changes the 'effective' priority of a task. It does
2903 * not touch ->normal_prio like __setscheduler().
2904 *
2905 * Used by the rt_mutex code to implement priority inheritance logic.
2906 */
36c8b586 2907void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2908{
2d3d891d 2909 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2910 struct rq *rq;
83ab0aa0 2911 const struct sched_class *prev_class;
b29739f9 2912
aab03e05 2913 BUG_ON(prio > MAX_PRIO);
b29739f9 2914
0122ec5b 2915 rq = __task_rq_lock(p);
b29739f9 2916
1c4dd99b
TG
2917 /*
2918 * Idle task boosting is a nono in general. There is one
2919 * exception, when PREEMPT_RT and NOHZ is active:
2920 *
2921 * The idle task calls get_next_timer_interrupt() and holds
2922 * the timer wheel base->lock on the CPU and another CPU wants
2923 * to access the timer (probably to cancel it). We can safely
2924 * ignore the boosting request, as the idle CPU runs this code
2925 * with interrupts disabled and will complete the lock
2926 * protected section without being interrupted. So there is no
2927 * real need to boost.
2928 */
2929 if (unlikely(p == rq->idle)) {
2930 WARN_ON(p != rq->curr);
2931 WARN_ON(p->pi_blocked_on);
2932 goto out_unlock;
2933 }
2934
a8027073 2935 trace_sched_pi_setprio(p, prio);
2d3d891d 2936 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2937 oldprio = p->prio;
83ab0aa0 2938 prev_class = p->sched_class;
fd2f4419 2939 on_rq = p->on_rq;
051a1d1a 2940 running = task_current(rq, p);
0e1f3483 2941 if (on_rq)
69be72c1 2942 dequeue_task(rq, p, 0);
0e1f3483
HS
2943 if (running)
2944 p->sched_class->put_prev_task(rq, p);
dd41f596 2945
2d3d891d
DF
2946 /*
2947 * Boosting condition are:
2948 * 1. -rt task is running and holds mutex A
2949 * --> -dl task blocks on mutex A
2950 *
2951 * 2. -dl task is running and holds mutex A
2952 * --> -dl task blocks on mutex A and could preempt the
2953 * running task
2954 */
2955 if (dl_prio(prio)) {
2956 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2957 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2958 p->dl.dl_boosted = 1;
2959 p->dl.dl_throttled = 0;
2960 enqueue_flag = ENQUEUE_REPLENISH;
2961 } else
2962 p->dl.dl_boosted = 0;
aab03e05 2963 p->sched_class = &dl_sched_class;
2d3d891d
DF
2964 } else if (rt_prio(prio)) {
2965 if (dl_prio(oldprio))
2966 p->dl.dl_boosted = 0;
2967 if (oldprio < prio)
2968 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2969 p->sched_class = &rt_sched_class;
2d3d891d
DF
2970 } else {
2971 if (dl_prio(oldprio))
2972 p->dl.dl_boosted = 0;
dd41f596 2973 p->sched_class = &fair_sched_class;
2d3d891d 2974 }
dd41f596 2975
b29739f9
IM
2976 p->prio = prio;
2977
0e1f3483
HS
2978 if (running)
2979 p->sched_class->set_curr_task(rq);
da7a735e 2980 if (on_rq)
2d3d891d 2981 enqueue_task(rq, p, enqueue_flag);
cb469845 2982
da7a735e 2983 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2984out_unlock:
0122ec5b 2985 __task_rq_unlock(rq);
b29739f9 2986}
b29739f9 2987#endif
d50dde5a 2988
36c8b586 2989void set_user_nice(struct task_struct *p, long nice)
1da177e4 2990{
dd41f596 2991 int old_prio, delta, on_rq;
1da177e4 2992 unsigned long flags;
70b97a7f 2993 struct rq *rq;
1da177e4 2994
d0ea0268 2995 if (task_nice(p) == nice || nice < -20 || nice > 19)
1da177e4
LT
2996 return;
2997 /*
2998 * We have to be careful, if called from sys_setpriority(),
2999 * the task might be in the middle of scheduling on another CPU.
3000 */
3001 rq = task_rq_lock(p, &flags);
3002 /*
3003 * The RT priorities are set via sched_setscheduler(), but we still
3004 * allow the 'normal' nice value to be set - but as expected
3005 * it wont have any effect on scheduling until the task is
aab03e05 3006 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3007 */
aab03e05 3008 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3009 p->static_prio = NICE_TO_PRIO(nice);
3010 goto out_unlock;
3011 }
fd2f4419 3012 on_rq = p->on_rq;
c09595f6 3013 if (on_rq)
69be72c1 3014 dequeue_task(rq, p, 0);
1da177e4 3015
1da177e4 3016 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3017 set_load_weight(p);
b29739f9
IM
3018 old_prio = p->prio;
3019 p->prio = effective_prio(p);
3020 delta = p->prio - old_prio;
1da177e4 3021
dd41f596 3022 if (on_rq) {
371fd7e7 3023 enqueue_task(rq, p, 0);
1da177e4 3024 /*
d5f9f942
AM
3025 * If the task increased its priority or is running and
3026 * lowered its priority, then reschedule its CPU:
1da177e4 3027 */
d5f9f942 3028 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3029 resched_task(rq->curr);
3030 }
3031out_unlock:
0122ec5b 3032 task_rq_unlock(rq, p, &flags);
1da177e4 3033}
1da177e4
LT
3034EXPORT_SYMBOL(set_user_nice);
3035
e43379f1
MM
3036/*
3037 * can_nice - check if a task can reduce its nice value
3038 * @p: task
3039 * @nice: nice value
3040 */
36c8b586 3041int can_nice(const struct task_struct *p, const int nice)
e43379f1 3042{
024f4747
MM
3043 /* convert nice value [19,-20] to rlimit style value [1,40] */
3044 int nice_rlim = 20 - nice;
48f24c4d 3045
78d7d407 3046 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3047 capable(CAP_SYS_NICE));
3048}
3049
1da177e4
LT
3050#ifdef __ARCH_WANT_SYS_NICE
3051
3052/*
3053 * sys_nice - change the priority of the current process.
3054 * @increment: priority increment
3055 *
3056 * sys_setpriority is a more generic, but much slower function that
3057 * does similar things.
3058 */
5add95d4 3059SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3060{
48f24c4d 3061 long nice, retval;
1da177e4
LT
3062
3063 /*
3064 * Setpriority might change our priority at the same moment.
3065 * We don't have to worry. Conceptually one call occurs first
3066 * and we have a single winner.
3067 */
e43379f1
MM
3068 if (increment < -40)
3069 increment = -40;
1da177e4
LT
3070 if (increment > 40)
3071 increment = 40;
3072
d0ea0268 3073 nice = task_nice(current) + increment;
1da177e4
LT
3074 if (nice < -20)
3075 nice = -20;
3076 if (nice > 19)
3077 nice = 19;
3078
e43379f1
MM
3079 if (increment < 0 && !can_nice(current, nice))
3080 return -EPERM;
3081
1da177e4
LT
3082 retval = security_task_setnice(current, nice);
3083 if (retval)
3084 return retval;
3085
3086 set_user_nice(current, nice);
3087 return 0;
3088}
3089
3090#endif
3091
3092/**
3093 * task_prio - return the priority value of a given task.
3094 * @p: the task in question.
3095 *
e69f6186 3096 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3097 * RT tasks are offset by -200. Normal tasks are centered
3098 * around 0, value goes from -16 to +15.
3099 */
36c8b586 3100int task_prio(const struct task_struct *p)
1da177e4
LT
3101{
3102 return p->prio - MAX_RT_PRIO;
3103}
3104
1da177e4
LT
3105/**
3106 * idle_cpu - is a given cpu idle currently?
3107 * @cpu: the processor in question.
e69f6186
YB
3108 *
3109 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3110 */
3111int idle_cpu(int cpu)
3112{
908a3283
TG
3113 struct rq *rq = cpu_rq(cpu);
3114
3115 if (rq->curr != rq->idle)
3116 return 0;
3117
3118 if (rq->nr_running)
3119 return 0;
3120
3121#ifdef CONFIG_SMP
3122 if (!llist_empty(&rq->wake_list))
3123 return 0;
3124#endif
3125
3126 return 1;
1da177e4
LT
3127}
3128
1da177e4
LT
3129/**
3130 * idle_task - return the idle task for a given cpu.
3131 * @cpu: the processor in question.
e69f6186
YB
3132 *
3133 * Return: The idle task for the cpu @cpu.
1da177e4 3134 */
36c8b586 3135struct task_struct *idle_task(int cpu)
1da177e4
LT
3136{
3137 return cpu_rq(cpu)->idle;
3138}
3139
3140/**
3141 * find_process_by_pid - find a process with a matching PID value.
3142 * @pid: the pid in question.
e69f6186
YB
3143 *
3144 * The task of @pid, if found. %NULL otherwise.
1da177e4 3145 */
a9957449 3146static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3147{
228ebcbe 3148 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3149}
3150
aab03e05
DF
3151/*
3152 * This function initializes the sched_dl_entity of a newly becoming
3153 * SCHED_DEADLINE task.
3154 *
3155 * Only the static values are considered here, the actual runtime and the
3156 * absolute deadline will be properly calculated when the task is enqueued
3157 * for the first time with its new policy.
3158 */
3159static void
3160__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3161{
3162 struct sched_dl_entity *dl_se = &p->dl;
3163
3164 init_dl_task_timer(dl_se);
3165 dl_se->dl_runtime = attr->sched_runtime;
3166 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3167 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3168 dl_se->flags = attr->sched_flags;
332ac17e 3169 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3170 dl_se->dl_throttled = 0;
3171 dl_se->dl_new = 1;
3172}
3173
d50dde5a
DF
3174/* Actually do priority change: must hold pi & rq lock. */
3175static void __setscheduler(struct rq *rq, struct task_struct *p,
3176 const struct sched_attr *attr)
1da177e4 3177{
d50dde5a
DF
3178 int policy = attr->sched_policy;
3179
39fd8fd2
PZ
3180 if (policy == -1) /* setparam */
3181 policy = p->policy;
3182
1da177e4 3183 p->policy = policy;
d50dde5a 3184
aab03e05
DF
3185 if (dl_policy(policy))
3186 __setparam_dl(p, attr);
39fd8fd2 3187 else if (fair_policy(policy))
d50dde5a
DF
3188 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3189
39fd8fd2
PZ
3190 /*
3191 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3192 * !rt_policy. Always setting this ensures that things like
3193 * getparam()/getattr() don't report silly values for !rt tasks.
3194 */
3195 p->rt_priority = attr->sched_priority;
3196
b29739f9 3197 p->normal_prio = normal_prio(p);
b29739f9 3198 p->prio = rt_mutex_getprio(p);
d50dde5a 3199
aab03e05
DF
3200 if (dl_prio(p->prio))
3201 p->sched_class = &dl_sched_class;
3202 else if (rt_prio(p->prio))
ffd44db5
PZ
3203 p->sched_class = &rt_sched_class;
3204 else
3205 p->sched_class = &fair_sched_class;
d50dde5a 3206
2dd73a4f 3207 set_load_weight(p);
1da177e4 3208}
aab03e05
DF
3209
3210static void
3211__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3212{
3213 struct sched_dl_entity *dl_se = &p->dl;
3214
3215 attr->sched_priority = p->rt_priority;
3216 attr->sched_runtime = dl_se->dl_runtime;
3217 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3218 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3219 attr->sched_flags = dl_se->flags;
3220}
3221
3222/*
3223 * This function validates the new parameters of a -deadline task.
3224 * We ask for the deadline not being zero, and greater or equal
755378a4 3225 * than the runtime, as well as the period of being zero or
332ac17e
DF
3226 * greater than deadline. Furthermore, we have to be sure that
3227 * user parameters are above the internal resolution (1us); we
3228 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3229 */
3230static bool
3231__checkparam_dl(const struct sched_attr *attr)
3232{
3233 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3234 (attr->sched_period == 0 ||
3235 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3236 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3237 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3238}
3239
c69e8d9c
DH
3240/*
3241 * check the target process has a UID that matches the current process's
3242 */
3243static bool check_same_owner(struct task_struct *p)
3244{
3245 const struct cred *cred = current_cred(), *pcred;
3246 bool match;
3247
3248 rcu_read_lock();
3249 pcred = __task_cred(p);
9c806aa0
EB
3250 match = (uid_eq(cred->euid, pcred->euid) ||
3251 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3252 rcu_read_unlock();
3253 return match;
3254}
3255
d50dde5a
DF
3256static int __sched_setscheduler(struct task_struct *p,
3257 const struct sched_attr *attr,
3258 bool user)
1da177e4 3259{
83b699ed 3260 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3261 int policy = attr->sched_policy;
1da177e4 3262 unsigned long flags;
83ab0aa0 3263 const struct sched_class *prev_class;
70b97a7f 3264 struct rq *rq;
ca94c442 3265 int reset_on_fork;
1da177e4 3266
66e5393a
SR
3267 /* may grab non-irq protected spin_locks */
3268 BUG_ON(in_interrupt());
1da177e4
LT
3269recheck:
3270 /* double check policy once rq lock held */
ca94c442
LP
3271 if (policy < 0) {
3272 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3273 policy = oldpolicy = p->policy;
ca94c442 3274 } else {
7479f3c9 3275 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3276
aab03e05
DF
3277 if (policy != SCHED_DEADLINE &&
3278 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3279 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3280 policy != SCHED_IDLE)
3281 return -EINVAL;
3282 }
3283
7479f3c9
PZ
3284 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3285 return -EINVAL;
3286
1da177e4
LT
3287 /*
3288 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3289 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3290 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3291 */
0bb040a4 3292 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3293 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3294 return -EINVAL;
aab03e05
DF
3295 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3296 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3297 return -EINVAL;
3298
37e4ab3f
OC
3299 /*
3300 * Allow unprivileged RT tasks to decrease priority:
3301 */
961ccddd 3302 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3303 if (fair_policy(policy)) {
d0ea0268 3304 if (attr->sched_nice < task_nice(p) &&
eaad4513 3305 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3306 return -EPERM;
3307 }
3308
e05606d3 3309 if (rt_policy(policy)) {
a44702e8
ON
3310 unsigned long rlim_rtprio =
3311 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3312
3313 /* can't set/change the rt policy */
3314 if (policy != p->policy && !rlim_rtprio)
3315 return -EPERM;
3316
3317 /* can't increase priority */
d50dde5a
DF
3318 if (attr->sched_priority > p->rt_priority &&
3319 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3320 return -EPERM;
3321 }
c02aa73b 3322
dd41f596 3323 /*
c02aa73b
DH
3324 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3325 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3326 */
c02aa73b 3327 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3328 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3329 return -EPERM;
3330 }
5fe1d75f 3331
37e4ab3f 3332 /* can't change other user's priorities */
c69e8d9c 3333 if (!check_same_owner(p))
37e4ab3f 3334 return -EPERM;
ca94c442
LP
3335
3336 /* Normal users shall not reset the sched_reset_on_fork flag */
3337 if (p->sched_reset_on_fork && !reset_on_fork)
3338 return -EPERM;
37e4ab3f 3339 }
1da177e4 3340
725aad24 3341 if (user) {
b0ae1981 3342 retval = security_task_setscheduler(p);
725aad24
JF
3343 if (retval)
3344 return retval;
3345 }
3346
b29739f9
IM
3347 /*
3348 * make sure no PI-waiters arrive (or leave) while we are
3349 * changing the priority of the task:
0122ec5b 3350 *
25985edc 3351 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3352 * runqueue lock must be held.
3353 */
0122ec5b 3354 rq = task_rq_lock(p, &flags);
dc61b1d6 3355
34f971f6
PZ
3356 /*
3357 * Changing the policy of the stop threads its a very bad idea
3358 */
3359 if (p == rq->stop) {
0122ec5b 3360 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3361 return -EINVAL;
3362 }
3363
a51e9198 3364 /*
d6b1e911
TG
3365 * If not changing anything there's no need to proceed further,
3366 * but store a possible modification of reset_on_fork.
a51e9198 3367 */
d50dde5a 3368 if (unlikely(policy == p->policy)) {
d0ea0268 3369 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3370 goto change;
3371 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3372 goto change;
aab03e05
DF
3373 if (dl_policy(policy))
3374 goto change;
d50dde5a 3375
d6b1e911 3376 p->sched_reset_on_fork = reset_on_fork;
45afb173 3377 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3378 return 0;
3379 }
d50dde5a 3380change:
a51e9198 3381
dc61b1d6 3382 if (user) {
332ac17e 3383#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3384 /*
3385 * Do not allow realtime tasks into groups that have no runtime
3386 * assigned.
3387 */
3388 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3389 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3390 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3391 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3392 return -EPERM;
3393 }
dc61b1d6 3394#endif
332ac17e
DF
3395#ifdef CONFIG_SMP
3396 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3397 cpumask_t *span = rq->rd->span;
332ac17e
DF
3398
3399 /*
3400 * Don't allow tasks with an affinity mask smaller than
3401 * the entire root_domain to become SCHED_DEADLINE. We
3402 * will also fail if there's no bandwidth available.
3403 */
e4099a5e
PZ
3404 if (!cpumask_subset(span, &p->cpus_allowed) ||
3405 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3406 task_rq_unlock(rq, p, &flags);
3407 return -EPERM;
3408 }
3409 }
3410#endif
3411 }
dc61b1d6 3412
1da177e4
LT
3413 /* recheck policy now with rq lock held */
3414 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3415 policy = oldpolicy = -1;
0122ec5b 3416 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3417 goto recheck;
3418 }
332ac17e
DF
3419
3420 /*
3421 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3422 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3423 * is available.
3424 */
e4099a5e 3425 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3426 task_rq_unlock(rq, p, &flags);
3427 return -EBUSY;
3428 }
3429
fd2f4419 3430 on_rq = p->on_rq;
051a1d1a 3431 running = task_current(rq, p);
0e1f3483 3432 if (on_rq)
4ca9b72b 3433 dequeue_task(rq, p, 0);
0e1f3483
HS
3434 if (running)
3435 p->sched_class->put_prev_task(rq, p);
f6b53205 3436
ca94c442
LP
3437 p->sched_reset_on_fork = reset_on_fork;
3438
1da177e4 3439 oldprio = p->prio;
83ab0aa0 3440 prev_class = p->sched_class;
d50dde5a 3441 __setscheduler(rq, p, attr);
f6b53205 3442
0e1f3483
HS
3443 if (running)
3444 p->sched_class->set_curr_task(rq);
81a44c54
TG
3445 if (on_rq) {
3446 /*
3447 * We enqueue to tail when the priority of a task is
3448 * increased (user space view).
3449 */
3450 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3451 }
cb469845 3452
da7a735e 3453 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3454 task_rq_unlock(rq, p, &flags);
b29739f9 3455
95e02ca9
TG
3456 rt_mutex_adjust_pi(p);
3457
1da177e4
LT
3458 return 0;
3459}
961ccddd 3460
7479f3c9
PZ
3461static int _sched_setscheduler(struct task_struct *p, int policy,
3462 const struct sched_param *param, bool check)
3463{
3464 struct sched_attr attr = {
3465 .sched_policy = policy,
3466 .sched_priority = param->sched_priority,
3467 .sched_nice = PRIO_TO_NICE(p->static_prio),
3468 };
3469
3470 /*
3471 * Fixup the legacy SCHED_RESET_ON_FORK hack
3472 */
3473 if (policy & SCHED_RESET_ON_FORK) {
3474 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3475 policy &= ~SCHED_RESET_ON_FORK;
3476 attr.sched_policy = policy;
3477 }
3478
3479 return __sched_setscheduler(p, &attr, check);
3480}
961ccddd
RR
3481/**
3482 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3483 * @p: the task in question.
3484 * @policy: new policy.
3485 * @param: structure containing the new RT priority.
3486 *
e69f6186
YB
3487 * Return: 0 on success. An error code otherwise.
3488 *
961ccddd
RR
3489 * NOTE that the task may be already dead.
3490 */
3491int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3492 const struct sched_param *param)
961ccddd 3493{
7479f3c9 3494 return _sched_setscheduler(p, policy, param, true);
961ccddd 3495}
1da177e4
LT
3496EXPORT_SYMBOL_GPL(sched_setscheduler);
3497
d50dde5a
DF
3498int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3499{
3500 return __sched_setscheduler(p, attr, true);
3501}
3502EXPORT_SYMBOL_GPL(sched_setattr);
3503
961ccddd
RR
3504/**
3505 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3506 * @p: the task in question.
3507 * @policy: new policy.
3508 * @param: structure containing the new RT priority.
3509 *
3510 * Just like sched_setscheduler, only don't bother checking if the
3511 * current context has permission. For example, this is needed in
3512 * stop_machine(): we create temporary high priority worker threads,
3513 * but our caller might not have that capability.
e69f6186
YB
3514 *
3515 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3516 */
3517int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3518 const struct sched_param *param)
961ccddd 3519{
7479f3c9 3520 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3521}
3522
95cdf3b7
IM
3523static int
3524do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3525{
1da177e4
LT
3526 struct sched_param lparam;
3527 struct task_struct *p;
36c8b586 3528 int retval;
1da177e4
LT
3529
3530 if (!param || pid < 0)
3531 return -EINVAL;
3532 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3533 return -EFAULT;
5fe1d75f
ON
3534
3535 rcu_read_lock();
3536 retval = -ESRCH;
1da177e4 3537 p = find_process_by_pid(pid);
5fe1d75f
ON
3538 if (p != NULL)
3539 retval = sched_setscheduler(p, policy, &lparam);
3540 rcu_read_unlock();
36c8b586 3541
1da177e4
LT
3542 return retval;
3543}
3544
d50dde5a
DF
3545/*
3546 * Mimics kernel/events/core.c perf_copy_attr().
3547 */
3548static int sched_copy_attr(struct sched_attr __user *uattr,
3549 struct sched_attr *attr)
3550{
3551 u32 size;
3552 int ret;
3553
3554 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3555 return -EFAULT;
3556
3557 /*
3558 * zero the full structure, so that a short copy will be nice.
3559 */
3560 memset(attr, 0, sizeof(*attr));
3561
3562 ret = get_user(size, &uattr->size);
3563 if (ret)
3564 return ret;
3565
3566 if (size > PAGE_SIZE) /* silly large */
3567 goto err_size;
3568
3569 if (!size) /* abi compat */
3570 size = SCHED_ATTR_SIZE_VER0;
3571
3572 if (size < SCHED_ATTR_SIZE_VER0)
3573 goto err_size;
3574
3575 /*
3576 * If we're handed a bigger struct than we know of,
3577 * ensure all the unknown bits are 0 - i.e. new
3578 * user-space does not rely on any kernel feature
3579 * extensions we dont know about yet.
3580 */
3581 if (size > sizeof(*attr)) {
3582 unsigned char __user *addr;
3583 unsigned char __user *end;
3584 unsigned char val;
3585
3586 addr = (void __user *)uattr + sizeof(*attr);
3587 end = (void __user *)uattr + size;
3588
3589 for (; addr < end; addr++) {
3590 ret = get_user(val, addr);
3591 if (ret)
3592 return ret;
3593 if (val)
3594 goto err_size;
3595 }
3596 size = sizeof(*attr);
3597 }
3598
3599 ret = copy_from_user(attr, uattr, size);
3600 if (ret)
3601 return -EFAULT;
3602
3603 /*
3604 * XXX: do we want to be lenient like existing syscalls; or do we want
3605 * to be strict and return an error on out-of-bounds values?
3606 */
3607 attr->sched_nice = clamp(attr->sched_nice, -20, 19);
3608
3609out:
3610 return ret;
3611
3612err_size:
3613 put_user(sizeof(*attr), &uattr->size);
3614 ret = -E2BIG;
3615 goto out;
3616}
3617
1da177e4
LT
3618/**
3619 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3620 * @pid: the pid in question.
3621 * @policy: new policy.
3622 * @param: structure containing the new RT priority.
e69f6186
YB
3623 *
3624 * Return: 0 on success. An error code otherwise.
1da177e4 3625 */
5add95d4
HC
3626SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3627 struct sched_param __user *, param)
1da177e4 3628{
c21761f1
JB
3629 /* negative values for policy are not valid */
3630 if (policy < 0)
3631 return -EINVAL;
3632
1da177e4
LT
3633 return do_sched_setscheduler(pid, policy, param);
3634}
3635
3636/**
3637 * sys_sched_setparam - set/change the RT priority of a thread
3638 * @pid: the pid in question.
3639 * @param: structure containing the new RT priority.
e69f6186
YB
3640 *
3641 * Return: 0 on success. An error code otherwise.
1da177e4 3642 */
5add95d4 3643SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3644{
3645 return do_sched_setscheduler(pid, -1, param);
3646}
3647
d50dde5a
DF
3648/**
3649 * sys_sched_setattr - same as above, but with extended sched_attr
3650 * @pid: the pid in question.
5778fccf 3651 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3652 */
3653SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3654{
3655 struct sched_attr attr;
3656 struct task_struct *p;
3657 int retval;
3658
3659 if (!uattr || pid < 0)
3660 return -EINVAL;
3661
3662 if (sched_copy_attr(uattr, &attr))
3663 return -EFAULT;
3664
3665 rcu_read_lock();
3666 retval = -ESRCH;
3667 p = find_process_by_pid(pid);
3668 if (p != NULL)
3669 retval = sched_setattr(p, &attr);
3670 rcu_read_unlock();
3671
3672 return retval;
3673}
3674
1da177e4
LT
3675/**
3676 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3677 * @pid: the pid in question.
e69f6186
YB
3678 *
3679 * Return: On success, the policy of the thread. Otherwise, a negative error
3680 * code.
1da177e4 3681 */
5add95d4 3682SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3683{
36c8b586 3684 struct task_struct *p;
3a5c359a 3685 int retval;
1da177e4
LT
3686
3687 if (pid < 0)
3a5c359a 3688 return -EINVAL;
1da177e4
LT
3689
3690 retval = -ESRCH;
5fe85be0 3691 rcu_read_lock();
1da177e4
LT
3692 p = find_process_by_pid(pid);
3693 if (p) {
3694 retval = security_task_getscheduler(p);
3695 if (!retval)
ca94c442
LP
3696 retval = p->policy
3697 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3698 }
5fe85be0 3699 rcu_read_unlock();
1da177e4
LT
3700 return retval;
3701}
3702
3703/**
ca94c442 3704 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3705 * @pid: the pid in question.
3706 * @param: structure containing the RT priority.
e69f6186
YB
3707 *
3708 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3709 * code.
1da177e4 3710 */
5add95d4 3711SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3712{
3713 struct sched_param lp;
36c8b586 3714 struct task_struct *p;
3a5c359a 3715 int retval;
1da177e4
LT
3716
3717 if (!param || pid < 0)
3a5c359a 3718 return -EINVAL;
1da177e4 3719
5fe85be0 3720 rcu_read_lock();
1da177e4
LT
3721 p = find_process_by_pid(pid);
3722 retval = -ESRCH;
3723 if (!p)
3724 goto out_unlock;
3725
3726 retval = security_task_getscheduler(p);
3727 if (retval)
3728 goto out_unlock;
3729
aab03e05
DF
3730 if (task_has_dl_policy(p)) {
3731 retval = -EINVAL;
3732 goto out_unlock;
3733 }
1da177e4 3734 lp.sched_priority = p->rt_priority;
5fe85be0 3735 rcu_read_unlock();
1da177e4
LT
3736
3737 /*
3738 * This one might sleep, we cannot do it with a spinlock held ...
3739 */
3740 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3741
1da177e4
LT
3742 return retval;
3743
3744out_unlock:
5fe85be0 3745 rcu_read_unlock();
1da177e4
LT
3746 return retval;
3747}
3748
d50dde5a
DF
3749static int sched_read_attr(struct sched_attr __user *uattr,
3750 struct sched_attr *attr,
3751 unsigned int usize)
3752{
3753 int ret;
3754
3755 if (!access_ok(VERIFY_WRITE, uattr, usize))
3756 return -EFAULT;
3757
3758 /*
3759 * If we're handed a smaller struct than we know of,
3760 * ensure all the unknown bits are 0 - i.e. old
3761 * user-space does not get uncomplete information.
3762 */
3763 if (usize < sizeof(*attr)) {
3764 unsigned char *addr;
3765 unsigned char *end;
3766
3767 addr = (void *)attr + usize;
3768 end = (void *)attr + sizeof(*attr);
3769
3770 for (; addr < end; addr++) {
3771 if (*addr)
3772 goto err_size;
3773 }
3774
3775 attr->size = usize;
3776 }
3777
3778 ret = copy_to_user(uattr, attr, usize);
3779 if (ret)
3780 return -EFAULT;
3781
3782out:
3783 return ret;
3784
3785err_size:
3786 ret = -E2BIG;
3787 goto out;
3788}
3789
3790/**
aab03e05 3791 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3792 * @pid: the pid in question.
5778fccf 3793 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3794 * @size: sizeof(attr) for fwd/bwd comp.
3795 */
3796SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3797 unsigned int, size)
3798{
3799 struct sched_attr attr = {
3800 .size = sizeof(struct sched_attr),
3801 };
3802 struct task_struct *p;
3803 int retval;
3804
3805 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3806 size < SCHED_ATTR_SIZE_VER0)
3807 return -EINVAL;
3808
3809 rcu_read_lock();
3810 p = find_process_by_pid(pid);
3811 retval = -ESRCH;
3812 if (!p)
3813 goto out_unlock;
3814
3815 retval = security_task_getscheduler(p);
3816 if (retval)
3817 goto out_unlock;
3818
3819 attr.sched_policy = p->policy;
7479f3c9
PZ
3820 if (p->sched_reset_on_fork)
3821 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3822 if (task_has_dl_policy(p))
3823 __getparam_dl(p, &attr);
3824 else if (task_has_rt_policy(p))
d50dde5a
DF
3825 attr.sched_priority = p->rt_priority;
3826 else
d0ea0268 3827 attr.sched_nice = task_nice(p);
d50dde5a
DF
3828
3829 rcu_read_unlock();
3830
3831 retval = sched_read_attr(uattr, &attr, size);
3832 return retval;
3833
3834out_unlock:
3835 rcu_read_unlock();
3836 return retval;
3837}
3838
96f874e2 3839long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3840{
5a16f3d3 3841 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3842 struct task_struct *p;
3843 int retval;
1da177e4 3844
23f5d142 3845 rcu_read_lock();
1da177e4
LT
3846
3847 p = find_process_by_pid(pid);
3848 if (!p) {
23f5d142 3849 rcu_read_unlock();
1da177e4
LT
3850 return -ESRCH;
3851 }
3852
23f5d142 3853 /* Prevent p going away */
1da177e4 3854 get_task_struct(p);
23f5d142 3855 rcu_read_unlock();
1da177e4 3856
14a40ffc
TH
3857 if (p->flags & PF_NO_SETAFFINITY) {
3858 retval = -EINVAL;
3859 goto out_put_task;
3860 }
5a16f3d3
RR
3861 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3862 retval = -ENOMEM;
3863 goto out_put_task;
3864 }
3865 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3866 retval = -ENOMEM;
3867 goto out_free_cpus_allowed;
3868 }
1da177e4 3869 retval = -EPERM;
4c44aaaf
EB
3870 if (!check_same_owner(p)) {
3871 rcu_read_lock();
3872 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3873 rcu_read_unlock();
3874 goto out_unlock;
3875 }
3876 rcu_read_unlock();
3877 }
1da177e4 3878
b0ae1981 3879 retval = security_task_setscheduler(p);
e7834f8f
DQ
3880 if (retval)
3881 goto out_unlock;
3882
e4099a5e
PZ
3883
3884 cpuset_cpus_allowed(p, cpus_allowed);
3885 cpumask_and(new_mask, in_mask, cpus_allowed);
3886
332ac17e
DF
3887 /*
3888 * Since bandwidth control happens on root_domain basis,
3889 * if admission test is enabled, we only admit -deadline
3890 * tasks allowed to run on all the CPUs in the task's
3891 * root_domain.
3892 */
3893#ifdef CONFIG_SMP
3894 if (task_has_dl_policy(p)) {
3895 const struct cpumask *span = task_rq(p)->rd->span;
3896
e4099a5e 3897 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3898 retval = -EBUSY;
3899 goto out_unlock;
3900 }
3901 }
3902#endif
49246274 3903again:
5a16f3d3 3904 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3905
8707d8b8 3906 if (!retval) {
5a16f3d3
RR
3907 cpuset_cpus_allowed(p, cpus_allowed);
3908 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3909 /*
3910 * We must have raced with a concurrent cpuset
3911 * update. Just reset the cpus_allowed to the
3912 * cpuset's cpus_allowed
3913 */
5a16f3d3 3914 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3915 goto again;
3916 }
3917 }
1da177e4 3918out_unlock:
5a16f3d3
RR
3919 free_cpumask_var(new_mask);
3920out_free_cpus_allowed:
3921 free_cpumask_var(cpus_allowed);
3922out_put_task:
1da177e4 3923 put_task_struct(p);
1da177e4
LT
3924 return retval;
3925}
3926
3927static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3928 struct cpumask *new_mask)
1da177e4 3929{
96f874e2
RR
3930 if (len < cpumask_size())
3931 cpumask_clear(new_mask);
3932 else if (len > cpumask_size())
3933 len = cpumask_size();
3934
1da177e4
LT
3935 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3936}
3937
3938/**
3939 * sys_sched_setaffinity - set the cpu affinity of a process
3940 * @pid: pid of the process
3941 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3942 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3943 *
3944 * Return: 0 on success. An error code otherwise.
1da177e4 3945 */
5add95d4
HC
3946SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3947 unsigned long __user *, user_mask_ptr)
1da177e4 3948{
5a16f3d3 3949 cpumask_var_t new_mask;
1da177e4
LT
3950 int retval;
3951
5a16f3d3
RR
3952 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3953 return -ENOMEM;
1da177e4 3954
5a16f3d3
RR
3955 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3956 if (retval == 0)
3957 retval = sched_setaffinity(pid, new_mask);
3958 free_cpumask_var(new_mask);
3959 return retval;
1da177e4
LT
3960}
3961
96f874e2 3962long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3963{
36c8b586 3964 struct task_struct *p;
31605683 3965 unsigned long flags;
1da177e4 3966 int retval;
1da177e4 3967
23f5d142 3968 rcu_read_lock();
1da177e4
LT
3969
3970 retval = -ESRCH;
3971 p = find_process_by_pid(pid);
3972 if (!p)
3973 goto out_unlock;
3974
e7834f8f
DQ
3975 retval = security_task_getscheduler(p);
3976 if (retval)
3977 goto out_unlock;
3978
013fdb80 3979 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3980 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3981 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3982
3983out_unlock:
23f5d142 3984 rcu_read_unlock();
1da177e4 3985
9531b62f 3986 return retval;
1da177e4
LT
3987}
3988
3989/**
3990 * sys_sched_getaffinity - get the cpu affinity of a process
3991 * @pid: pid of the process
3992 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3993 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3994 *
3995 * Return: 0 on success. An error code otherwise.
1da177e4 3996 */
5add95d4
HC
3997SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3998 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3999{
4000 int ret;
f17c8607 4001 cpumask_var_t mask;
1da177e4 4002
84fba5ec 4003 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4004 return -EINVAL;
4005 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4006 return -EINVAL;
4007
f17c8607
RR
4008 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4009 return -ENOMEM;
1da177e4 4010
f17c8607
RR
4011 ret = sched_getaffinity(pid, mask);
4012 if (ret == 0) {
8bc037fb 4013 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4014
4015 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4016 ret = -EFAULT;
4017 else
cd3d8031 4018 ret = retlen;
f17c8607
RR
4019 }
4020 free_cpumask_var(mask);
1da177e4 4021
f17c8607 4022 return ret;
1da177e4
LT
4023}
4024
4025/**
4026 * sys_sched_yield - yield the current processor to other threads.
4027 *
dd41f596
IM
4028 * This function yields the current CPU to other tasks. If there are no
4029 * other threads running on this CPU then this function will return.
e69f6186
YB
4030 *
4031 * Return: 0.
1da177e4 4032 */
5add95d4 4033SYSCALL_DEFINE0(sched_yield)
1da177e4 4034{
70b97a7f 4035 struct rq *rq = this_rq_lock();
1da177e4 4036
2d72376b 4037 schedstat_inc(rq, yld_count);
4530d7ab 4038 current->sched_class->yield_task(rq);
1da177e4
LT
4039
4040 /*
4041 * Since we are going to call schedule() anyway, there's
4042 * no need to preempt or enable interrupts:
4043 */
4044 __release(rq->lock);
8a25d5de 4045 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4046 do_raw_spin_unlock(&rq->lock);
ba74c144 4047 sched_preempt_enable_no_resched();
1da177e4
LT
4048
4049 schedule();
4050
4051 return 0;
4052}
4053
e7b38404 4054static void __cond_resched(void)
1da177e4 4055{
bdb43806 4056 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4057 __schedule();
bdb43806 4058 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4059}
4060
02b67cc3 4061int __sched _cond_resched(void)
1da177e4 4062{
d86ee480 4063 if (should_resched()) {
1da177e4
LT
4064 __cond_resched();
4065 return 1;
4066 }
4067 return 0;
4068}
02b67cc3 4069EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4070
4071/*
613afbf8 4072 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4073 * call schedule, and on return reacquire the lock.
4074 *
41a2d6cf 4075 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4076 * operations here to prevent schedule() from being called twice (once via
4077 * spin_unlock(), once by hand).
4078 */
613afbf8 4079int __cond_resched_lock(spinlock_t *lock)
1da177e4 4080{
d86ee480 4081 int resched = should_resched();
6df3cecb
JK
4082 int ret = 0;
4083
f607c668
PZ
4084 lockdep_assert_held(lock);
4085
95c354fe 4086 if (spin_needbreak(lock) || resched) {
1da177e4 4087 spin_unlock(lock);
d86ee480 4088 if (resched)
95c354fe
NP
4089 __cond_resched();
4090 else
4091 cpu_relax();
6df3cecb 4092 ret = 1;
1da177e4 4093 spin_lock(lock);
1da177e4 4094 }
6df3cecb 4095 return ret;
1da177e4 4096}
613afbf8 4097EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4098
613afbf8 4099int __sched __cond_resched_softirq(void)
1da177e4
LT
4100{
4101 BUG_ON(!in_softirq());
4102
d86ee480 4103 if (should_resched()) {
98d82567 4104 local_bh_enable();
1da177e4
LT
4105 __cond_resched();
4106 local_bh_disable();
4107 return 1;
4108 }
4109 return 0;
4110}
613afbf8 4111EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4112
1da177e4
LT
4113/**
4114 * yield - yield the current processor to other threads.
4115 *
8e3fabfd
PZ
4116 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4117 *
4118 * The scheduler is at all times free to pick the calling task as the most
4119 * eligible task to run, if removing the yield() call from your code breaks
4120 * it, its already broken.
4121 *
4122 * Typical broken usage is:
4123 *
4124 * while (!event)
4125 * yield();
4126 *
4127 * where one assumes that yield() will let 'the other' process run that will
4128 * make event true. If the current task is a SCHED_FIFO task that will never
4129 * happen. Never use yield() as a progress guarantee!!
4130 *
4131 * If you want to use yield() to wait for something, use wait_event().
4132 * If you want to use yield() to be 'nice' for others, use cond_resched().
4133 * If you still want to use yield(), do not!
1da177e4
LT
4134 */
4135void __sched yield(void)
4136{
4137 set_current_state(TASK_RUNNING);
4138 sys_sched_yield();
4139}
1da177e4
LT
4140EXPORT_SYMBOL(yield);
4141
d95f4122
MG
4142/**
4143 * yield_to - yield the current processor to another thread in
4144 * your thread group, or accelerate that thread toward the
4145 * processor it's on.
16addf95
RD
4146 * @p: target task
4147 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4148 *
4149 * It's the caller's job to ensure that the target task struct
4150 * can't go away on us before we can do any checks.
4151 *
e69f6186 4152 * Return:
7b270f60
PZ
4153 * true (>0) if we indeed boosted the target task.
4154 * false (0) if we failed to boost the target.
4155 * -ESRCH if there's no task to yield to.
d95f4122
MG
4156 */
4157bool __sched yield_to(struct task_struct *p, bool preempt)
4158{
4159 struct task_struct *curr = current;
4160 struct rq *rq, *p_rq;
4161 unsigned long flags;
c3c18640 4162 int yielded = 0;
d95f4122
MG
4163
4164 local_irq_save(flags);
4165 rq = this_rq();
4166
4167again:
4168 p_rq = task_rq(p);
7b270f60
PZ
4169 /*
4170 * If we're the only runnable task on the rq and target rq also
4171 * has only one task, there's absolutely no point in yielding.
4172 */
4173 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4174 yielded = -ESRCH;
4175 goto out_irq;
4176 }
4177
d95f4122 4178 double_rq_lock(rq, p_rq);
39e24d8f 4179 if (task_rq(p) != p_rq) {
d95f4122
MG
4180 double_rq_unlock(rq, p_rq);
4181 goto again;
4182 }
4183
4184 if (!curr->sched_class->yield_to_task)
7b270f60 4185 goto out_unlock;
d95f4122
MG
4186
4187 if (curr->sched_class != p->sched_class)
7b270f60 4188 goto out_unlock;
d95f4122
MG
4189
4190 if (task_running(p_rq, p) || p->state)
7b270f60 4191 goto out_unlock;
d95f4122
MG
4192
4193 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4194 if (yielded) {
d95f4122 4195 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4196 /*
4197 * Make p's CPU reschedule; pick_next_entity takes care of
4198 * fairness.
4199 */
4200 if (preempt && rq != p_rq)
4201 resched_task(p_rq->curr);
4202 }
d95f4122 4203
7b270f60 4204out_unlock:
d95f4122 4205 double_rq_unlock(rq, p_rq);
7b270f60 4206out_irq:
d95f4122
MG
4207 local_irq_restore(flags);
4208
7b270f60 4209 if (yielded > 0)
d95f4122
MG
4210 schedule();
4211
4212 return yielded;
4213}
4214EXPORT_SYMBOL_GPL(yield_to);
4215
1da177e4 4216/*
41a2d6cf 4217 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4218 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4219 */
4220void __sched io_schedule(void)
4221{
54d35f29 4222 struct rq *rq = raw_rq();
1da177e4 4223
0ff92245 4224 delayacct_blkio_start();
1da177e4 4225 atomic_inc(&rq->nr_iowait);
73c10101 4226 blk_flush_plug(current);
8f0dfc34 4227 current->in_iowait = 1;
1da177e4 4228 schedule();
8f0dfc34 4229 current->in_iowait = 0;
1da177e4 4230 atomic_dec(&rq->nr_iowait);
0ff92245 4231 delayacct_blkio_end();
1da177e4 4232}
1da177e4
LT
4233EXPORT_SYMBOL(io_schedule);
4234
4235long __sched io_schedule_timeout(long timeout)
4236{
54d35f29 4237 struct rq *rq = raw_rq();
1da177e4
LT
4238 long ret;
4239
0ff92245 4240 delayacct_blkio_start();
1da177e4 4241 atomic_inc(&rq->nr_iowait);
73c10101 4242 blk_flush_plug(current);
8f0dfc34 4243 current->in_iowait = 1;
1da177e4 4244 ret = schedule_timeout(timeout);
8f0dfc34 4245 current->in_iowait = 0;
1da177e4 4246 atomic_dec(&rq->nr_iowait);
0ff92245 4247 delayacct_blkio_end();
1da177e4
LT
4248 return ret;
4249}
4250
4251/**
4252 * sys_sched_get_priority_max - return maximum RT priority.
4253 * @policy: scheduling class.
4254 *
e69f6186
YB
4255 * Return: On success, this syscall returns the maximum
4256 * rt_priority that can be used by a given scheduling class.
4257 * On failure, a negative error code is returned.
1da177e4 4258 */
5add95d4 4259SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4260{
4261 int ret = -EINVAL;
4262
4263 switch (policy) {
4264 case SCHED_FIFO:
4265 case SCHED_RR:
4266 ret = MAX_USER_RT_PRIO-1;
4267 break;
aab03e05 4268 case SCHED_DEADLINE:
1da177e4 4269 case SCHED_NORMAL:
b0a9499c 4270 case SCHED_BATCH:
dd41f596 4271 case SCHED_IDLE:
1da177e4
LT
4272 ret = 0;
4273 break;
4274 }
4275 return ret;
4276}
4277
4278/**
4279 * sys_sched_get_priority_min - return minimum RT priority.
4280 * @policy: scheduling class.
4281 *
e69f6186
YB
4282 * Return: On success, this syscall returns the minimum
4283 * rt_priority that can be used by a given scheduling class.
4284 * On failure, a negative error code is returned.
1da177e4 4285 */
5add95d4 4286SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4287{
4288 int ret = -EINVAL;
4289
4290 switch (policy) {
4291 case SCHED_FIFO:
4292 case SCHED_RR:
4293 ret = 1;
4294 break;
aab03e05 4295 case SCHED_DEADLINE:
1da177e4 4296 case SCHED_NORMAL:
b0a9499c 4297 case SCHED_BATCH:
dd41f596 4298 case SCHED_IDLE:
1da177e4
LT
4299 ret = 0;
4300 }
4301 return ret;
4302}
4303
4304/**
4305 * sys_sched_rr_get_interval - return the default timeslice of a process.
4306 * @pid: pid of the process.
4307 * @interval: userspace pointer to the timeslice value.
4308 *
4309 * this syscall writes the default timeslice value of a given process
4310 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4311 *
4312 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4313 * an error code.
1da177e4 4314 */
17da2bd9 4315SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4316 struct timespec __user *, interval)
1da177e4 4317{
36c8b586 4318 struct task_struct *p;
a4ec24b4 4319 unsigned int time_slice;
dba091b9
TG
4320 unsigned long flags;
4321 struct rq *rq;
3a5c359a 4322 int retval;
1da177e4 4323 struct timespec t;
1da177e4
LT
4324
4325 if (pid < 0)
3a5c359a 4326 return -EINVAL;
1da177e4
LT
4327
4328 retval = -ESRCH;
1a551ae7 4329 rcu_read_lock();
1da177e4
LT
4330 p = find_process_by_pid(pid);
4331 if (!p)
4332 goto out_unlock;
4333
4334 retval = security_task_getscheduler(p);
4335 if (retval)
4336 goto out_unlock;
4337
dba091b9 4338 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4339 time_slice = 0;
4340 if (p->sched_class->get_rr_interval)
4341 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4342 task_rq_unlock(rq, p, &flags);
a4ec24b4 4343
1a551ae7 4344 rcu_read_unlock();
a4ec24b4 4345 jiffies_to_timespec(time_slice, &t);
1da177e4 4346 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4347 return retval;
3a5c359a 4348
1da177e4 4349out_unlock:
1a551ae7 4350 rcu_read_unlock();
1da177e4
LT
4351 return retval;
4352}
4353
7c731e0a 4354static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4355
82a1fcb9 4356void sched_show_task(struct task_struct *p)
1da177e4 4357{
1da177e4 4358 unsigned long free = 0;
4e79752c 4359 int ppid;
36c8b586 4360 unsigned state;
1da177e4 4361
1da177e4 4362 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4363 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4364 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4365#if BITS_PER_LONG == 32
1da177e4 4366 if (state == TASK_RUNNING)
3df0fc5b 4367 printk(KERN_CONT " running ");
1da177e4 4368 else
3df0fc5b 4369 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4370#else
4371 if (state == TASK_RUNNING)
3df0fc5b 4372 printk(KERN_CONT " running task ");
1da177e4 4373 else
3df0fc5b 4374 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4375#endif
4376#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4377 free = stack_not_used(p);
1da177e4 4378#endif
4e79752c
PM
4379 rcu_read_lock();
4380 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4381 rcu_read_unlock();
3df0fc5b 4382 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4383 task_pid_nr(p), ppid,
aa47b7e0 4384 (unsigned long)task_thread_info(p)->flags);
1da177e4 4385
3d1cb205 4386 print_worker_info(KERN_INFO, p);
5fb5e6de 4387 show_stack(p, NULL);
1da177e4
LT
4388}
4389
e59e2ae2 4390void show_state_filter(unsigned long state_filter)
1da177e4 4391{
36c8b586 4392 struct task_struct *g, *p;
1da177e4 4393
4bd77321 4394#if BITS_PER_LONG == 32
3df0fc5b
PZ
4395 printk(KERN_INFO
4396 " task PC stack pid father\n");
1da177e4 4397#else
3df0fc5b
PZ
4398 printk(KERN_INFO
4399 " task PC stack pid father\n");
1da177e4 4400#endif
510f5acc 4401 rcu_read_lock();
1da177e4
LT
4402 do_each_thread(g, p) {
4403 /*
4404 * reset the NMI-timeout, listing all files on a slow
25985edc 4405 * console might take a lot of time:
1da177e4
LT
4406 */
4407 touch_nmi_watchdog();
39bc89fd 4408 if (!state_filter || (p->state & state_filter))
82a1fcb9 4409 sched_show_task(p);
1da177e4
LT
4410 } while_each_thread(g, p);
4411
04c9167f
JF
4412 touch_all_softlockup_watchdogs();
4413
dd41f596
IM
4414#ifdef CONFIG_SCHED_DEBUG
4415 sysrq_sched_debug_show();
4416#endif
510f5acc 4417 rcu_read_unlock();
e59e2ae2
IM
4418 /*
4419 * Only show locks if all tasks are dumped:
4420 */
93335a21 4421 if (!state_filter)
e59e2ae2 4422 debug_show_all_locks();
1da177e4
LT
4423}
4424
0db0628d 4425void init_idle_bootup_task(struct task_struct *idle)
1df21055 4426{
dd41f596 4427 idle->sched_class = &idle_sched_class;
1df21055
IM
4428}
4429
f340c0d1
IM
4430/**
4431 * init_idle - set up an idle thread for a given CPU
4432 * @idle: task in question
4433 * @cpu: cpu the idle task belongs to
4434 *
4435 * NOTE: this function does not set the idle thread's NEED_RESCHED
4436 * flag, to make booting more robust.
4437 */
0db0628d 4438void init_idle(struct task_struct *idle, int cpu)
1da177e4 4439{
70b97a7f 4440 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4441 unsigned long flags;
4442
05fa785c 4443 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4444
5e1576ed 4445 __sched_fork(0, idle);
06b83b5f 4446 idle->state = TASK_RUNNING;
dd41f596
IM
4447 idle->se.exec_start = sched_clock();
4448
1e1b6c51 4449 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4450 /*
4451 * We're having a chicken and egg problem, even though we are
4452 * holding rq->lock, the cpu isn't yet set to this cpu so the
4453 * lockdep check in task_group() will fail.
4454 *
4455 * Similar case to sched_fork(). / Alternatively we could
4456 * use task_rq_lock() here and obtain the other rq->lock.
4457 *
4458 * Silence PROVE_RCU
4459 */
4460 rcu_read_lock();
dd41f596 4461 __set_task_cpu(idle, cpu);
6506cf6c 4462 rcu_read_unlock();
1da177e4 4463
1da177e4 4464 rq->curr = rq->idle = idle;
77177856 4465 idle->on_rq = 1;
3ca7a440
PZ
4466#if defined(CONFIG_SMP)
4467 idle->on_cpu = 1;
4866cde0 4468#endif
05fa785c 4469 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4470
4471 /* Set the preempt count _outside_ the spinlocks! */
01028747 4472 init_idle_preempt_count(idle, cpu);
55cd5340 4473
dd41f596
IM
4474 /*
4475 * The idle tasks have their own, simple scheduling class:
4476 */
4477 idle->sched_class = &idle_sched_class;
868baf07 4478 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4479 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4480#if defined(CONFIG_SMP)
4481 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4482#endif
19978ca6
IM
4483}
4484
1da177e4 4485#ifdef CONFIG_SMP
1e1b6c51
KM
4486void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4487{
4488 if (p->sched_class && p->sched_class->set_cpus_allowed)
4489 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4490
4491 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4492 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4493}
4494
1da177e4
LT
4495/*
4496 * This is how migration works:
4497 *
969c7921
TH
4498 * 1) we invoke migration_cpu_stop() on the target CPU using
4499 * stop_one_cpu().
4500 * 2) stopper starts to run (implicitly forcing the migrated thread
4501 * off the CPU)
4502 * 3) it checks whether the migrated task is still in the wrong runqueue.
4503 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4504 * it and puts it into the right queue.
969c7921
TH
4505 * 5) stopper completes and stop_one_cpu() returns and the migration
4506 * is done.
1da177e4
LT
4507 */
4508
4509/*
4510 * Change a given task's CPU affinity. Migrate the thread to a
4511 * proper CPU and schedule it away if the CPU it's executing on
4512 * is removed from the allowed bitmask.
4513 *
4514 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4515 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4516 * call is not atomic; no spinlocks may be held.
4517 */
96f874e2 4518int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4519{
4520 unsigned long flags;
70b97a7f 4521 struct rq *rq;
969c7921 4522 unsigned int dest_cpu;
48f24c4d 4523 int ret = 0;
1da177e4
LT
4524
4525 rq = task_rq_lock(p, &flags);
e2912009 4526
db44fc01
YZ
4527 if (cpumask_equal(&p->cpus_allowed, new_mask))
4528 goto out;
4529
6ad4c188 4530 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4531 ret = -EINVAL;
4532 goto out;
4533 }
4534
1e1b6c51 4535 do_set_cpus_allowed(p, new_mask);
73fe6aae 4536
1da177e4 4537 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4538 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4539 goto out;
4540
969c7921 4541 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4542 if (p->on_rq) {
969c7921 4543 struct migration_arg arg = { p, dest_cpu };
1da177e4 4544 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4545 task_rq_unlock(rq, p, &flags);
969c7921 4546 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4547 tlb_migrate_finish(p->mm);
4548 return 0;
4549 }
4550out:
0122ec5b 4551 task_rq_unlock(rq, p, &flags);
48f24c4d 4552
1da177e4
LT
4553 return ret;
4554}
cd8ba7cd 4555EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4556
4557/*
41a2d6cf 4558 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4559 * this because either it can't run here any more (set_cpus_allowed()
4560 * away from this CPU, or CPU going down), or because we're
4561 * attempting to rebalance this task on exec (sched_exec).
4562 *
4563 * So we race with normal scheduler movements, but that's OK, as long
4564 * as the task is no longer on this CPU.
efc30814
KK
4565 *
4566 * Returns non-zero if task was successfully migrated.
1da177e4 4567 */
efc30814 4568static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4569{
70b97a7f 4570 struct rq *rq_dest, *rq_src;
e2912009 4571 int ret = 0;
1da177e4 4572
e761b772 4573 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4574 return ret;
1da177e4
LT
4575
4576 rq_src = cpu_rq(src_cpu);
4577 rq_dest = cpu_rq(dest_cpu);
4578
0122ec5b 4579 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4580 double_rq_lock(rq_src, rq_dest);
4581 /* Already moved. */
4582 if (task_cpu(p) != src_cpu)
b1e38734 4583 goto done;
1da177e4 4584 /* Affinity changed (again). */
fa17b507 4585 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4586 goto fail;
1da177e4 4587
e2912009
PZ
4588 /*
4589 * If we're not on a rq, the next wake-up will ensure we're
4590 * placed properly.
4591 */
fd2f4419 4592 if (p->on_rq) {
4ca9b72b 4593 dequeue_task(rq_src, p, 0);
e2912009 4594 set_task_cpu(p, dest_cpu);
4ca9b72b 4595 enqueue_task(rq_dest, p, 0);
15afe09b 4596 check_preempt_curr(rq_dest, p, 0);
1da177e4 4597 }
b1e38734 4598done:
efc30814 4599 ret = 1;
b1e38734 4600fail:
1da177e4 4601 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4602 raw_spin_unlock(&p->pi_lock);
efc30814 4603 return ret;
1da177e4
LT
4604}
4605
e6628d5b
MG
4606#ifdef CONFIG_NUMA_BALANCING
4607/* Migrate current task p to target_cpu */
4608int migrate_task_to(struct task_struct *p, int target_cpu)
4609{
4610 struct migration_arg arg = { p, target_cpu };
4611 int curr_cpu = task_cpu(p);
4612
4613 if (curr_cpu == target_cpu)
4614 return 0;
4615
4616 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4617 return -EINVAL;
4618
4619 /* TODO: This is not properly updating schedstats */
4620
286549dc 4621 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4622 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4623}
0ec8aa00
PZ
4624
4625/*
4626 * Requeue a task on a given node and accurately track the number of NUMA
4627 * tasks on the runqueues
4628 */
4629void sched_setnuma(struct task_struct *p, int nid)
4630{
4631 struct rq *rq;
4632 unsigned long flags;
4633 bool on_rq, running;
4634
4635 rq = task_rq_lock(p, &flags);
4636 on_rq = p->on_rq;
4637 running = task_current(rq, p);
4638
4639 if (on_rq)
4640 dequeue_task(rq, p, 0);
4641 if (running)
4642 p->sched_class->put_prev_task(rq, p);
4643
4644 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4645
4646 if (running)
4647 p->sched_class->set_curr_task(rq);
4648 if (on_rq)
4649 enqueue_task(rq, p, 0);
4650 task_rq_unlock(rq, p, &flags);
4651}
e6628d5b
MG
4652#endif
4653
1da177e4 4654/*
969c7921
TH
4655 * migration_cpu_stop - this will be executed by a highprio stopper thread
4656 * and performs thread migration by bumping thread off CPU then
4657 * 'pushing' onto another runqueue.
1da177e4 4658 */
969c7921 4659static int migration_cpu_stop(void *data)
1da177e4 4660{
969c7921 4661 struct migration_arg *arg = data;
f7b4cddc 4662
969c7921
TH
4663 /*
4664 * The original target cpu might have gone down and we might
4665 * be on another cpu but it doesn't matter.
4666 */
f7b4cddc 4667 local_irq_disable();
969c7921 4668 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4669 local_irq_enable();
1da177e4 4670 return 0;
f7b4cddc
ON
4671}
4672
1da177e4 4673#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4674
054b9108 4675/*
48c5ccae
PZ
4676 * Ensures that the idle task is using init_mm right before its cpu goes
4677 * offline.
054b9108 4678 */
48c5ccae 4679void idle_task_exit(void)
1da177e4 4680{
48c5ccae 4681 struct mm_struct *mm = current->active_mm;
e76bd8d9 4682
48c5ccae 4683 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4684
48c5ccae
PZ
4685 if (mm != &init_mm)
4686 switch_mm(mm, &init_mm, current);
4687 mmdrop(mm);
1da177e4
LT
4688}
4689
4690/*
5d180232
PZ
4691 * Since this CPU is going 'away' for a while, fold any nr_active delta
4692 * we might have. Assumes we're called after migrate_tasks() so that the
4693 * nr_active count is stable.
4694 *
4695 * Also see the comment "Global load-average calculations".
1da177e4 4696 */
5d180232 4697static void calc_load_migrate(struct rq *rq)
1da177e4 4698{
5d180232
PZ
4699 long delta = calc_load_fold_active(rq);
4700 if (delta)
4701 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4702}
4703
3f1d2a31
PZ
4704static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4705{
4706}
4707
4708static const struct sched_class fake_sched_class = {
4709 .put_prev_task = put_prev_task_fake,
4710};
4711
4712static struct task_struct fake_task = {
4713 /*
4714 * Avoid pull_{rt,dl}_task()
4715 */
4716 .prio = MAX_PRIO + 1,
4717 .sched_class = &fake_sched_class,
4718};
4719
48f24c4d 4720/*
48c5ccae
PZ
4721 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4722 * try_to_wake_up()->select_task_rq().
4723 *
4724 * Called with rq->lock held even though we'er in stop_machine() and
4725 * there's no concurrency possible, we hold the required locks anyway
4726 * because of lock validation efforts.
1da177e4 4727 */
48c5ccae 4728static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4729{
70b97a7f 4730 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4731 struct task_struct *next, *stop = rq->stop;
4732 int dest_cpu;
1da177e4
LT
4733
4734 /*
48c5ccae
PZ
4735 * Fudge the rq selection such that the below task selection loop
4736 * doesn't get stuck on the currently eligible stop task.
4737 *
4738 * We're currently inside stop_machine() and the rq is either stuck
4739 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4740 * either way we should never end up calling schedule() until we're
4741 * done here.
1da177e4 4742 */
48c5ccae 4743 rq->stop = NULL;
48f24c4d 4744
77bd3970
FW
4745 /*
4746 * put_prev_task() and pick_next_task() sched
4747 * class method both need to have an up-to-date
4748 * value of rq->clock[_task]
4749 */
4750 update_rq_clock(rq);
4751
dd41f596 4752 for ( ; ; ) {
48c5ccae
PZ
4753 /*
4754 * There's this thread running, bail when that's the only
4755 * remaining thread.
4756 */
4757 if (rq->nr_running == 1)
dd41f596 4758 break;
48c5ccae 4759
3f1d2a31 4760 next = pick_next_task(rq, &fake_task);
48c5ccae 4761 BUG_ON(!next);
79c53799 4762 next->sched_class->put_prev_task(rq, next);
e692ab53 4763
48c5ccae
PZ
4764 /* Find suitable destination for @next, with force if needed. */
4765 dest_cpu = select_fallback_rq(dead_cpu, next);
4766 raw_spin_unlock(&rq->lock);
4767
4768 __migrate_task(next, dead_cpu, dest_cpu);
4769
4770 raw_spin_lock(&rq->lock);
1da177e4 4771 }
dce48a84 4772
48c5ccae 4773 rq->stop = stop;
dce48a84 4774}
48c5ccae 4775
1da177e4
LT
4776#endif /* CONFIG_HOTPLUG_CPU */
4777
e692ab53
NP
4778#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4779
4780static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4781 {
4782 .procname = "sched_domain",
c57baf1e 4783 .mode = 0555,
e0361851 4784 },
56992309 4785 {}
e692ab53
NP
4786};
4787
4788static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4789 {
4790 .procname = "kernel",
c57baf1e 4791 .mode = 0555,
e0361851
AD
4792 .child = sd_ctl_dir,
4793 },
56992309 4794 {}
e692ab53
NP
4795};
4796
4797static struct ctl_table *sd_alloc_ctl_entry(int n)
4798{
4799 struct ctl_table *entry =
5cf9f062 4800 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4801
e692ab53
NP
4802 return entry;
4803}
4804
6382bc90
MM
4805static void sd_free_ctl_entry(struct ctl_table **tablep)
4806{
cd790076 4807 struct ctl_table *entry;
6382bc90 4808
cd790076
MM
4809 /*
4810 * In the intermediate directories, both the child directory and
4811 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4812 * will always be set. In the lowest directory the names are
cd790076
MM
4813 * static strings and all have proc handlers.
4814 */
4815 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4816 if (entry->child)
4817 sd_free_ctl_entry(&entry->child);
cd790076
MM
4818 if (entry->proc_handler == NULL)
4819 kfree(entry->procname);
4820 }
6382bc90
MM
4821
4822 kfree(*tablep);
4823 *tablep = NULL;
4824}
4825
201c373e 4826static int min_load_idx = 0;
fd9b86d3 4827static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4828
e692ab53 4829static void
e0361851 4830set_table_entry(struct ctl_table *entry,
e692ab53 4831 const char *procname, void *data, int maxlen,
201c373e
NK
4832 umode_t mode, proc_handler *proc_handler,
4833 bool load_idx)
e692ab53 4834{
e692ab53
NP
4835 entry->procname = procname;
4836 entry->data = data;
4837 entry->maxlen = maxlen;
4838 entry->mode = mode;
4839 entry->proc_handler = proc_handler;
201c373e
NK
4840
4841 if (load_idx) {
4842 entry->extra1 = &min_load_idx;
4843 entry->extra2 = &max_load_idx;
4844 }
e692ab53
NP
4845}
4846
4847static struct ctl_table *
4848sd_alloc_ctl_domain_table(struct sched_domain *sd)
4849{
37e6bae8 4850 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4851
ad1cdc1d
MM
4852 if (table == NULL)
4853 return NULL;
4854
e0361851 4855 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4856 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4857 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4858 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4859 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4860 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4861 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4862 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4863 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4864 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4865 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4866 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4867 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4868 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4869 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4870 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4871 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4872 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4873 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4874 &sd->cache_nice_tries,
201c373e 4875 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4876 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4877 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4878 set_table_entry(&table[11], "max_newidle_lb_cost",
4879 &sd->max_newidle_lb_cost,
4880 sizeof(long), 0644, proc_doulongvec_minmax, false);
4881 set_table_entry(&table[12], "name", sd->name,
201c373e 4882 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4883 /* &table[13] is terminator */
e692ab53
NP
4884
4885 return table;
4886}
4887
be7002e6 4888static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4889{
4890 struct ctl_table *entry, *table;
4891 struct sched_domain *sd;
4892 int domain_num = 0, i;
4893 char buf[32];
4894
4895 for_each_domain(cpu, sd)
4896 domain_num++;
4897 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4898 if (table == NULL)
4899 return NULL;
e692ab53
NP
4900
4901 i = 0;
4902 for_each_domain(cpu, sd) {
4903 snprintf(buf, 32, "domain%d", i);
e692ab53 4904 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4905 entry->mode = 0555;
e692ab53
NP
4906 entry->child = sd_alloc_ctl_domain_table(sd);
4907 entry++;
4908 i++;
4909 }
4910 return table;
4911}
4912
4913static struct ctl_table_header *sd_sysctl_header;
6382bc90 4914static void register_sched_domain_sysctl(void)
e692ab53 4915{
6ad4c188 4916 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4917 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4918 char buf[32];
4919
7378547f
MM
4920 WARN_ON(sd_ctl_dir[0].child);
4921 sd_ctl_dir[0].child = entry;
4922
ad1cdc1d
MM
4923 if (entry == NULL)
4924 return;
4925
6ad4c188 4926 for_each_possible_cpu(i) {
e692ab53 4927 snprintf(buf, 32, "cpu%d", i);
e692ab53 4928 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4929 entry->mode = 0555;
e692ab53 4930 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4931 entry++;
e692ab53 4932 }
7378547f
MM
4933
4934 WARN_ON(sd_sysctl_header);
e692ab53
NP
4935 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4936}
6382bc90 4937
7378547f 4938/* may be called multiple times per register */
6382bc90
MM
4939static void unregister_sched_domain_sysctl(void)
4940{
7378547f
MM
4941 if (sd_sysctl_header)
4942 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4943 sd_sysctl_header = NULL;
7378547f
MM
4944 if (sd_ctl_dir[0].child)
4945 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4946}
e692ab53 4947#else
6382bc90
MM
4948static void register_sched_domain_sysctl(void)
4949{
4950}
4951static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4952{
4953}
4954#endif
4955
1f11eb6a
GH
4956static void set_rq_online(struct rq *rq)
4957{
4958 if (!rq->online) {
4959 const struct sched_class *class;
4960
c6c4927b 4961 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4962 rq->online = 1;
4963
4964 for_each_class(class) {
4965 if (class->rq_online)
4966 class->rq_online(rq);
4967 }
4968 }
4969}
4970
4971static void set_rq_offline(struct rq *rq)
4972{
4973 if (rq->online) {
4974 const struct sched_class *class;
4975
4976 for_each_class(class) {
4977 if (class->rq_offline)
4978 class->rq_offline(rq);
4979 }
4980
c6c4927b 4981 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4982 rq->online = 0;
4983 }
4984}
4985
1da177e4
LT
4986/*
4987 * migration_call - callback that gets triggered when a CPU is added.
4988 * Here we can start up the necessary migration thread for the new CPU.
4989 */
0db0628d 4990static int
48f24c4d 4991migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4992{
48f24c4d 4993 int cpu = (long)hcpu;
1da177e4 4994 unsigned long flags;
969c7921 4995 struct rq *rq = cpu_rq(cpu);
1da177e4 4996
48c5ccae 4997 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4998
1da177e4 4999 case CPU_UP_PREPARE:
a468d389 5000 rq->calc_load_update = calc_load_update;
1da177e4 5001 break;
48f24c4d 5002
1da177e4 5003 case CPU_ONLINE:
1f94ef59 5004 /* Update our root-domain */
05fa785c 5005 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5006 if (rq->rd) {
c6c4927b 5007 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5008
5009 set_rq_online(rq);
1f94ef59 5010 }
05fa785c 5011 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5012 break;
48f24c4d 5013
1da177e4 5014#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5015 case CPU_DYING:
317f3941 5016 sched_ttwu_pending();
57d885fe 5017 /* Update our root-domain */
05fa785c 5018 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5019 if (rq->rd) {
c6c4927b 5020 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5021 set_rq_offline(rq);
57d885fe 5022 }
48c5ccae
PZ
5023 migrate_tasks(cpu);
5024 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5025 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5026 break;
48c5ccae 5027
5d180232 5028 case CPU_DEAD:
f319da0c 5029 calc_load_migrate(rq);
57d885fe 5030 break;
1da177e4
LT
5031#endif
5032 }
49c022e6
PZ
5033
5034 update_max_interval();
5035
1da177e4
LT
5036 return NOTIFY_OK;
5037}
5038
f38b0820
PM
5039/*
5040 * Register at high priority so that task migration (migrate_all_tasks)
5041 * happens before everything else. This has to be lower priority than
cdd6c482 5042 * the notifier in the perf_event subsystem, though.
1da177e4 5043 */
0db0628d 5044static struct notifier_block migration_notifier = {
1da177e4 5045 .notifier_call = migration_call,
50a323b7 5046 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5047};
5048
0db0628d 5049static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5050 unsigned long action, void *hcpu)
5051{
5052 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5053 case CPU_STARTING:
3a101d05
TH
5054 case CPU_DOWN_FAILED:
5055 set_cpu_active((long)hcpu, true);
5056 return NOTIFY_OK;
5057 default:
5058 return NOTIFY_DONE;
5059 }
5060}
5061
0db0628d 5062static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5063 unsigned long action, void *hcpu)
5064{
de212f18
PZ
5065 unsigned long flags;
5066 long cpu = (long)hcpu;
5067
3a101d05
TH
5068 switch (action & ~CPU_TASKS_FROZEN) {
5069 case CPU_DOWN_PREPARE:
de212f18
PZ
5070 set_cpu_active(cpu, false);
5071
5072 /* explicitly allow suspend */
5073 if (!(action & CPU_TASKS_FROZEN)) {
5074 struct dl_bw *dl_b = dl_bw_of(cpu);
5075 bool overflow;
5076 int cpus;
5077
5078 raw_spin_lock_irqsave(&dl_b->lock, flags);
5079 cpus = dl_bw_cpus(cpu);
5080 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5081 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5082
5083 if (overflow)
5084 return notifier_from_errno(-EBUSY);
5085 }
3a101d05 5086 return NOTIFY_OK;
3a101d05 5087 }
de212f18
PZ
5088
5089 return NOTIFY_DONE;
3a101d05
TH
5090}
5091
7babe8db 5092static int __init migration_init(void)
1da177e4
LT
5093{
5094 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5095 int err;
48f24c4d 5096
3a101d05 5097 /* Initialize migration for the boot CPU */
07dccf33
AM
5098 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5099 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5100 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5101 register_cpu_notifier(&migration_notifier);
7babe8db 5102
3a101d05
TH
5103 /* Register cpu active notifiers */
5104 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5105 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5106
a004cd42 5107 return 0;
1da177e4 5108}
7babe8db 5109early_initcall(migration_init);
1da177e4
LT
5110#endif
5111
5112#ifdef CONFIG_SMP
476f3534 5113
4cb98839
PZ
5114static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5115
3e9830dc 5116#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5117
d039ac60 5118static __read_mostly int sched_debug_enabled;
f6630114 5119
d039ac60 5120static int __init sched_debug_setup(char *str)
f6630114 5121{
d039ac60 5122 sched_debug_enabled = 1;
f6630114
MT
5123
5124 return 0;
5125}
d039ac60
PZ
5126early_param("sched_debug", sched_debug_setup);
5127
5128static inline bool sched_debug(void)
5129{
5130 return sched_debug_enabled;
5131}
f6630114 5132
7c16ec58 5133static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5134 struct cpumask *groupmask)
1da177e4 5135{
4dcf6aff 5136 struct sched_group *group = sd->groups;
434d53b0 5137 char str[256];
1da177e4 5138
968ea6d8 5139 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5140 cpumask_clear(groupmask);
4dcf6aff
IM
5141
5142 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5143
5144 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5145 printk("does not load-balance\n");
4dcf6aff 5146 if (sd->parent)
3df0fc5b
PZ
5147 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5148 " has parent");
4dcf6aff 5149 return -1;
41c7ce9a
NP
5150 }
5151
3df0fc5b 5152 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5153
758b2cdc 5154 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5155 printk(KERN_ERR "ERROR: domain->span does not contain "
5156 "CPU%d\n", cpu);
4dcf6aff 5157 }
758b2cdc 5158 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5159 printk(KERN_ERR "ERROR: domain->groups does not contain"
5160 " CPU%d\n", cpu);
4dcf6aff 5161 }
1da177e4 5162
4dcf6aff 5163 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5164 do {
4dcf6aff 5165 if (!group) {
3df0fc5b
PZ
5166 printk("\n");
5167 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5168 break;
5169 }
5170
c3decf0d
PZ
5171 /*
5172 * Even though we initialize ->power to something semi-sane,
5173 * we leave power_orig unset. This allows us to detect if
5174 * domain iteration is still funny without causing /0 traps.
5175 */
5176 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5177 printk(KERN_CONT "\n");
5178 printk(KERN_ERR "ERROR: domain->cpu_power not "
5179 "set\n");
4dcf6aff
IM
5180 break;
5181 }
1da177e4 5182
758b2cdc 5183 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5184 printk(KERN_CONT "\n");
5185 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5186 break;
5187 }
1da177e4 5188
cb83b629
PZ
5189 if (!(sd->flags & SD_OVERLAP) &&
5190 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5191 printk(KERN_CONT "\n");
5192 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5193 break;
5194 }
1da177e4 5195
758b2cdc 5196 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5197
968ea6d8 5198 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5199
3df0fc5b 5200 printk(KERN_CONT " %s", str);
9c3f75cb 5201 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5202 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5203 group->sgp->power);
381512cf 5204 }
1da177e4 5205
4dcf6aff
IM
5206 group = group->next;
5207 } while (group != sd->groups);
3df0fc5b 5208 printk(KERN_CONT "\n");
1da177e4 5209
758b2cdc 5210 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5211 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5212
758b2cdc
RR
5213 if (sd->parent &&
5214 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5215 printk(KERN_ERR "ERROR: parent span is not a superset "
5216 "of domain->span\n");
4dcf6aff
IM
5217 return 0;
5218}
1da177e4 5219
4dcf6aff
IM
5220static void sched_domain_debug(struct sched_domain *sd, int cpu)
5221{
5222 int level = 0;
1da177e4 5223
d039ac60 5224 if (!sched_debug_enabled)
f6630114
MT
5225 return;
5226
4dcf6aff
IM
5227 if (!sd) {
5228 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5229 return;
5230 }
1da177e4 5231
4dcf6aff
IM
5232 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5233
5234 for (;;) {
4cb98839 5235 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5236 break;
1da177e4
LT
5237 level++;
5238 sd = sd->parent;
33859f7f 5239 if (!sd)
4dcf6aff
IM
5240 break;
5241 }
1da177e4 5242}
6d6bc0ad 5243#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5244# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5245static inline bool sched_debug(void)
5246{
5247 return false;
5248}
6d6bc0ad 5249#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5250
1a20ff27 5251static int sd_degenerate(struct sched_domain *sd)
245af2c7 5252{
758b2cdc 5253 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5254 return 1;
5255
5256 /* Following flags need at least 2 groups */
5257 if (sd->flags & (SD_LOAD_BALANCE |
5258 SD_BALANCE_NEWIDLE |
5259 SD_BALANCE_FORK |
89c4710e
SS
5260 SD_BALANCE_EXEC |
5261 SD_SHARE_CPUPOWER |
5262 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5263 if (sd->groups != sd->groups->next)
5264 return 0;
5265 }
5266
5267 /* Following flags don't use groups */
c88d5910 5268 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5269 return 0;
5270
5271 return 1;
5272}
5273
48f24c4d
IM
5274static int
5275sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5276{
5277 unsigned long cflags = sd->flags, pflags = parent->flags;
5278
5279 if (sd_degenerate(parent))
5280 return 1;
5281
758b2cdc 5282 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5283 return 0;
5284
245af2c7
SS
5285 /* Flags needing groups don't count if only 1 group in parent */
5286 if (parent->groups == parent->groups->next) {
5287 pflags &= ~(SD_LOAD_BALANCE |
5288 SD_BALANCE_NEWIDLE |
5289 SD_BALANCE_FORK |
89c4710e
SS
5290 SD_BALANCE_EXEC |
5291 SD_SHARE_CPUPOWER |
10866e62
PZ
5292 SD_SHARE_PKG_RESOURCES |
5293 SD_PREFER_SIBLING);
5436499e
KC
5294 if (nr_node_ids == 1)
5295 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5296 }
5297 if (~cflags & pflags)
5298 return 0;
5299
5300 return 1;
5301}
5302
dce840a0 5303static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5304{
dce840a0 5305 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5306
68e74568 5307 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5308 cpudl_cleanup(&rd->cpudl);
1baca4ce 5309 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5310 free_cpumask_var(rd->rto_mask);
5311 free_cpumask_var(rd->online);
5312 free_cpumask_var(rd->span);
5313 kfree(rd);
5314}
5315
57d885fe
GH
5316static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5317{
a0490fa3 5318 struct root_domain *old_rd = NULL;
57d885fe 5319 unsigned long flags;
57d885fe 5320
05fa785c 5321 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5322
5323 if (rq->rd) {
a0490fa3 5324 old_rd = rq->rd;
57d885fe 5325
c6c4927b 5326 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5327 set_rq_offline(rq);
57d885fe 5328
c6c4927b 5329 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5330
a0490fa3 5331 /*
0515973f 5332 * If we dont want to free the old_rd yet then
a0490fa3
IM
5333 * set old_rd to NULL to skip the freeing later
5334 * in this function:
5335 */
5336 if (!atomic_dec_and_test(&old_rd->refcount))
5337 old_rd = NULL;
57d885fe
GH
5338 }
5339
5340 atomic_inc(&rd->refcount);
5341 rq->rd = rd;
5342
c6c4927b 5343 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5344 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5345 set_rq_online(rq);
57d885fe 5346
05fa785c 5347 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5348
5349 if (old_rd)
dce840a0 5350 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5351}
5352
68c38fc3 5353static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5354{
5355 memset(rd, 0, sizeof(*rd));
5356
68c38fc3 5357 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5358 goto out;
68c38fc3 5359 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5360 goto free_span;
1baca4ce 5361 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5362 goto free_online;
1baca4ce
JL
5363 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5364 goto free_dlo_mask;
6e0534f2 5365
332ac17e 5366 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5367 if (cpudl_init(&rd->cpudl) != 0)
5368 goto free_dlo_mask;
332ac17e 5369
68c38fc3 5370 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5371 goto free_rto_mask;
c6c4927b 5372 return 0;
6e0534f2 5373
68e74568
RR
5374free_rto_mask:
5375 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5376free_dlo_mask:
5377 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5378free_online:
5379 free_cpumask_var(rd->online);
5380free_span:
5381 free_cpumask_var(rd->span);
0c910d28 5382out:
c6c4927b 5383 return -ENOMEM;
57d885fe
GH
5384}
5385
029632fb
PZ
5386/*
5387 * By default the system creates a single root-domain with all cpus as
5388 * members (mimicking the global state we have today).
5389 */
5390struct root_domain def_root_domain;
5391
57d885fe
GH
5392static void init_defrootdomain(void)
5393{
68c38fc3 5394 init_rootdomain(&def_root_domain);
c6c4927b 5395
57d885fe
GH
5396 atomic_set(&def_root_domain.refcount, 1);
5397}
5398
dc938520 5399static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5400{
5401 struct root_domain *rd;
5402
5403 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5404 if (!rd)
5405 return NULL;
5406
68c38fc3 5407 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5408 kfree(rd);
5409 return NULL;
5410 }
57d885fe
GH
5411
5412 return rd;
5413}
5414
e3589f6c
PZ
5415static void free_sched_groups(struct sched_group *sg, int free_sgp)
5416{
5417 struct sched_group *tmp, *first;
5418
5419 if (!sg)
5420 return;
5421
5422 first = sg;
5423 do {
5424 tmp = sg->next;
5425
5426 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5427 kfree(sg->sgp);
5428
5429 kfree(sg);
5430 sg = tmp;
5431 } while (sg != first);
5432}
5433
dce840a0
PZ
5434static void free_sched_domain(struct rcu_head *rcu)
5435{
5436 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5437
5438 /*
5439 * If its an overlapping domain it has private groups, iterate and
5440 * nuke them all.
5441 */
5442 if (sd->flags & SD_OVERLAP) {
5443 free_sched_groups(sd->groups, 1);
5444 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5445 kfree(sd->groups->sgp);
dce840a0 5446 kfree(sd->groups);
9c3f75cb 5447 }
dce840a0
PZ
5448 kfree(sd);
5449}
5450
5451static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5452{
5453 call_rcu(&sd->rcu, free_sched_domain);
5454}
5455
5456static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5457{
5458 for (; sd; sd = sd->parent)
5459 destroy_sched_domain(sd, cpu);
5460}
5461
518cd623
PZ
5462/*
5463 * Keep a special pointer to the highest sched_domain that has
5464 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5465 * allows us to avoid some pointer chasing select_idle_sibling().
5466 *
5467 * Also keep a unique ID per domain (we use the first cpu number in
5468 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5469 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5470 */
5471DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5472DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5473DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5474DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5475DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5476DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5477
5478static void update_top_cache_domain(int cpu)
5479{
5480 struct sched_domain *sd;
5d4cf996 5481 struct sched_domain *busy_sd = NULL;
518cd623 5482 int id = cpu;
7d9ffa89 5483 int size = 1;
518cd623
PZ
5484
5485 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5486 if (sd) {
518cd623 5487 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5488 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5489 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5490 }
5d4cf996 5491 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5492
5493 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5494 per_cpu(sd_llc_size, cpu) = size;
518cd623 5495 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5496
5497 sd = lowest_flag_domain(cpu, SD_NUMA);
5498 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5499
5500 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5501 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5502}
5503
1da177e4 5504/*
0eab9146 5505 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5506 * hold the hotplug lock.
5507 */
0eab9146
IM
5508static void
5509cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5510{
70b97a7f 5511 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5512 struct sched_domain *tmp;
5513
5514 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5515 for (tmp = sd; tmp; ) {
245af2c7
SS
5516 struct sched_domain *parent = tmp->parent;
5517 if (!parent)
5518 break;
f29c9b1c 5519
1a848870 5520 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5521 tmp->parent = parent->parent;
1a848870
SS
5522 if (parent->parent)
5523 parent->parent->child = tmp;
10866e62
PZ
5524 /*
5525 * Transfer SD_PREFER_SIBLING down in case of a
5526 * degenerate parent; the spans match for this
5527 * so the property transfers.
5528 */
5529 if (parent->flags & SD_PREFER_SIBLING)
5530 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5531 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5532 } else
5533 tmp = tmp->parent;
245af2c7
SS
5534 }
5535
1a848870 5536 if (sd && sd_degenerate(sd)) {
dce840a0 5537 tmp = sd;
245af2c7 5538 sd = sd->parent;
dce840a0 5539 destroy_sched_domain(tmp, cpu);
1a848870
SS
5540 if (sd)
5541 sd->child = NULL;
5542 }
1da177e4 5543
4cb98839 5544 sched_domain_debug(sd, cpu);
1da177e4 5545
57d885fe 5546 rq_attach_root(rq, rd);
dce840a0 5547 tmp = rq->sd;
674311d5 5548 rcu_assign_pointer(rq->sd, sd);
dce840a0 5549 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5550
5551 update_top_cache_domain(cpu);
1da177e4
LT
5552}
5553
5554/* cpus with isolated domains */
dcc30a35 5555static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5556
5557/* Setup the mask of cpus configured for isolated domains */
5558static int __init isolated_cpu_setup(char *str)
5559{
bdddd296 5560 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5561 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5562 return 1;
5563}
5564
8927f494 5565__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5566
d3081f52
PZ
5567static const struct cpumask *cpu_cpu_mask(int cpu)
5568{
5569 return cpumask_of_node(cpu_to_node(cpu));
5570}
5571
dce840a0
PZ
5572struct sd_data {
5573 struct sched_domain **__percpu sd;
5574 struct sched_group **__percpu sg;
9c3f75cb 5575 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5576};
5577
49a02c51 5578struct s_data {
21d42ccf 5579 struct sched_domain ** __percpu sd;
49a02c51
AH
5580 struct root_domain *rd;
5581};
5582
2109b99e 5583enum s_alloc {
2109b99e 5584 sa_rootdomain,
21d42ccf 5585 sa_sd,
dce840a0 5586 sa_sd_storage,
2109b99e
AH
5587 sa_none,
5588};
5589
54ab4ff4
PZ
5590struct sched_domain_topology_level;
5591
5592typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5593typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5594
e3589f6c
PZ
5595#define SDTL_OVERLAP 0x01
5596
eb7a74e6 5597struct sched_domain_topology_level {
2c402dc3
PZ
5598 sched_domain_init_f init;
5599 sched_domain_mask_f mask;
e3589f6c 5600 int flags;
cb83b629 5601 int numa_level;
54ab4ff4 5602 struct sd_data data;
eb7a74e6
PZ
5603};
5604
c1174876
PZ
5605/*
5606 * Build an iteration mask that can exclude certain CPUs from the upwards
5607 * domain traversal.
5608 *
5609 * Asymmetric node setups can result in situations where the domain tree is of
5610 * unequal depth, make sure to skip domains that already cover the entire
5611 * range.
5612 *
5613 * In that case build_sched_domains() will have terminated the iteration early
5614 * and our sibling sd spans will be empty. Domains should always include the
5615 * cpu they're built on, so check that.
5616 *
5617 */
5618static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5619{
5620 const struct cpumask *span = sched_domain_span(sd);
5621 struct sd_data *sdd = sd->private;
5622 struct sched_domain *sibling;
5623 int i;
5624
5625 for_each_cpu(i, span) {
5626 sibling = *per_cpu_ptr(sdd->sd, i);
5627 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5628 continue;
5629
5630 cpumask_set_cpu(i, sched_group_mask(sg));
5631 }
5632}
5633
5634/*
5635 * Return the canonical balance cpu for this group, this is the first cpu
5636 * of this group that's also in the iteration mask.
5637 */
5638int group_balance_cpu(struct sched_group *sg)
5639{
5640 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5641}
5642
e3589f6c
PZ
5643static int
5644build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5645{
5646 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5647 const struct cpumask *span = sched_domain_span(sd);
5648 struct cpumask *covered = sched_domains_tmpmask;
5649 struct sd_data *sdd = sd->private;
5650 struct sched_domain *child;
5651 int i;
5652
5653 cpumask_clear(covered);
5654
5655 for_each_cpu(i, span) {
5656 struct cpumask *sg_span;
5657
5658 if (cpumask_test_cpu(i, covered))
5659 continue;
5660
c1174876
PZ
5661 child = *per_cpu_ptr(sdd->sd, i);
5662
5663 /* See the comment near build_group_mask(). */
5664 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5665 continue;
5666
e3589f6c 5667 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5668 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5669
5670 if (!sg)
5671 goto fail;
5672
5673 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5674 if (child->child) {
5675 child = child->child;
5676 cpumask_copy(sg_span, sched_domain_span(child));
5677 } else
5678 cpumask_set_cpu(i, sg_span);
5679
5680 cpumask_or(covered, covered, sg_span);
5681
74a5ce20 5682 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5683 if (atomic_inc_return(&sg->sgp->ref) == 1)
5684 build_group_mask(sd, sg);
5685
c3decf0d
PZ
5686 /*
5687 * Initialize sgp->power such that even if we mess up the
5688 * domains and no possible iteration will get us here, we won't
5689 * die on a /0 trap.
5690 */
5691 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5692 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5693
c1174876
PZ
5694 /*
5695 * Make sure the first group of this domain contains the
5696 * canonical balance cpu. Otherwise the sched_domain iteration
5697 * breaks. See update_sg_lb_stats().
5698 */
74a5ce20 5699 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5700 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5701 groups = sg;
5702
5703 if (!first)
5704 first = sg;
5705 if (last)
5706 last->next = sg;
5707 last = sg;
5708 last->next = first;
5709 }
5710 sd->groups = groups;
5711
5712 return 0;
5713
5714fail:
5715 free_sched_groups(first, 0);
5716
5717 return -ENOMEM;
5718}
5719
dce840a0 5720static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5721{
dce840a0
PZ
5722 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5723 struct sched_domain *child = sd->child;
1da177e4 5724
dce840a0
PZ
5725 if (child)
5726 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5727
9c3f75cb 5728 if (sg) {
dce840a0 5729 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5730 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5731 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5732 }
dce840a0
PZ
5733
5734 return cpu;
1e9f28fa 5735}
1e9f28fa 5736
01a08546 5737/*
dce840a0
PZ
5738 * build_sched_groups will build a circular linked list of the groups
5739 * covered by the given span, and will set each group's ->cpumask correctly,
5740 * and ->cpu_power to 0.
e3589f6c
PZ
5741 *
5742 * Assumes the sched_domain tree is fully constructed
01a08546 5743 */
e3589f6c
PZ
5744static int
5745build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5746{
dce840a0
PZ
5747 struct sched_group *first = NULL, *last = NULL;
5748 struct sd_data *sdd = sd->private;
5749 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5750 struct cpumask *covered;
dce840a0 5751 int i;
9c1cfda2 5752
e3589f6c
PZ
5753 get_group(cpu, sdd, &sd->groups);
5754 atomic_inc(&sd->groups->ref);
5755
0936629f 5756 if (cpu != cpumask_first(span))
e3589f6c
PZ
5757 return 0;
5758
f96225fd
PZ
5759 lockdep_assert_held(&sched_domains_mutex);
5760 covered = sched_domains_tmpmask;
5761
dce840a0 5762 cpumask_clear(covered);
6711cab4 5763
dce840a0
PZ
5764 for_each_cpu(i, span) {
5765 struct sched_group *sg;
cd08e923 5766 int group, j;
6711cab4 5767
dce840a0
PZ
5768 if (cpumask_test_cpu(i, covered))
5769 continue;
6711cab4 5770
cd08e923 5771 group = get_group(i, sdd, &sg);
dce840a0 5772 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5773 sg->sgp->power = 0;
c1174876 5774 cpumask_setall(sched_group_mask(sg));
0601a88d 5775
dce840a0
PZ
5776 for_each_cpu(j, span) {
5777 if (get_group(j, sdd, NULL) != group)
5778 continue;
0601a88d 5779
dce840a0
PZ
5780 cpumask_set_cpu(j, covered);
5781 cpumask_set_cpu(j, sched_group_cpus(sg));
5782 }
0601a88d 5783
dce840a0
PZ
5784 if (!first)
5785 first = sg;
5786 if (last)
5787 last->next = sg;
5788 last = sg;
5789 }
5790 last->next = first;
e3589f6c
PZ
5791
5792 return 0;
0601a88d 5793}
51888ca2 5794
89c4710e
SS
5795/*
5796 * Initialize sched groups cpu_power.
5797 *
5798 * cpu_power indicates the capacity of sched group, which is used while
5799 * distributing the load between different sched groups in a sched domain.
5800 * Typically cpu_power for all the groups in a sched domain will be same unless
5801 * there are asymmetries in the topology. If there are asymmetries, group
5802 * having more cpu_power will pickup more load compared to the group having
5803 * less cpu_power.
89c4710e
SS
5804 */
5805static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5806{
e3589f6c 5807 struct sched_group *sg = sd->groups;
89c4710e 5808
94c95ba6 5809 WARN_ON(!sg);
e3589f6c
PZ
5810
5811 do {
5812 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5813 sg = sg->next;
5814 } while (sg != sd->groups);
89c4710e 5815
c1174876 5816 if (cpu != group_balance_cpu(sg))
e3589f6c 5817 return;
aae6d3dd 5818
d274cb30 5819 update_group_power(sd, cpu);
69e1e811 5820 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5821}
5822
029632fb
PZ
5823int __weak arch_sd_sibling_asym_packing(void)
5824{
5825 return 0*SD_ASYM_PACKING;
89c4710e
SS
5826}
5827
7c16ec58
MT
5828/*
5829 * Initializers for schedule domains
5830 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5831 */
5832
a5d8c348
IM
5833#ifdef CONFIG_SCHED_DEBUG
5834# define SD_INIT_NAME(sd, type) sd->name = #type
5835#else
5836# define SD_INIT_NAME(sd, type) do { } while (0)
5837#endif
5838
54ab4ff4
PZ
5839#define SD_INIT_FUNC(type) \
5840static noinline struct sched_domain * \
5841sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5842{ \
5843 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5844 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5845 SD_INIT_NAME(sd, type); \
5846 sd->private = &tl->data; \
5847 return sd; \
7c16ec58
MT
5848}
5849
5850SD_INIT_FUNC(CPU)
7c16ec58
MT
5851#ifdef CONFIG_SCHED_SMT
5852 SD_INIT_FUNC(SIBLING)
5853#endif
5854#ifdef CONFIG_SCHED_MC
5855 SD_INIT_FUNC(MC)
5856#endif
01a08546
HC
5857#ifdef CONFIG_SCHED_BOOK
5858 SD_INIT_FUNC(BOOK)
5859#endif
7c16ec58 5860
1d3504fc 5861static int default_relax_domain_level = -1;
60495e77 5862int sched_domain_level_max;
1d3504fc
HS
5863
5864static int __init setup_relax_domain_level(char *str)
5865{
a841f8ce
DS
5866 if (kstrtoint(str, 0, &default_relax_domain_level))
5867 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5868
1d3504fc
HS
5869 return 1;
5870}
5871__setup("relax_domain_level=", setup_relax_domain_level);
5872
5873static void set_domain_attribute(struct sched_domain *sd,
5874 struct sched_domain_attr *attr)
5875{
5876 int request;
5877
5878 if (!attr || attr->relax_domain_level < 0) {
5879 if (default_relax_domain_level < 0)
5880 return;
5881 else
5882 request = default_relax_domain_level;
5883 } else
5884 request = attr->relax_domain_level;
5885 if (request < sd->level) {
5886 /* turn off idle balance on this domain */
c88d5910 5887 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5888 } else {
5889 /* turn on idle balance on this domain */
c88d5910 5890 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5891 }
5892}
5893
54ab4ff4
PZ
5894static void __sdt_free(const struct cpumask *cpu_map);
5895static int __sdt_alloc(const struct cpumask *cpu_map);
5896
2109b99e
AH
5897static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5898 const struct cpumask *cpu_map)
5899{
5900 switch (what) {
2109b99e 5901 case sa_rootdomain:
822ff793
PZ
5902 if (!atomic_read(&d->rd->refcount))
5903 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5904 case sa_sd:
5905 free_percpu(d->sd); /* fall through */
dce840a0 5906 case sa_sd_storage:
54ab4ff4 5907 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5908 case sa_none:
5909 break;
5910 }
5911}
3404c8d9 5912
2109b99e
AH
5913static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5914 const struct cpumask *cpu_map)
5915{
dce840a0
PZ
5916 memset(d, 0, sizeof(*d));
5917
54ab4ff4
PZ
5918 if (__sdt_alloc(cpu_map))
5919 return sa_sd_storage;
dce840a0
PZ
5920 d->sd = alloc_percpu(struct sched_domain *);
5921 if (!d->sd)
5922 return sa_sd_storage;
2109b99e 5923 d->rd = alloc_rootdomain();
dce840a0 5924 if (!d->rd)
21d42ccf 5925 return sa_sd;
2109b99e
AH
5926 return sa_rootdomain;
5927}
57d885fe 5928
dce840a0
PZ
5929/*
5930 * NULL the sd_data elements we've used to build the sched_domain and
5931 * sched_group structure so that the subsequent __free_domain_allocs()
5932 * will not free the data we're using.
5933 */
5934static void claim_allocations(int cpu, struct sched_domain *sd)
5935{
5936 struct sd_data *sdd = sd->private;
dce840a0
PZ
5937
5938 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5939 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5940
e3589f6c 5941 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5942 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5943
5944 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5945 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5946}
5947
2c402dc3
PZ
5948#ifdef CONFIG_SCHED_SMT
5949static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5950{
2c402dc3 5951 return topology_thread_cpumask(cpu);
3bd65a80 5952}
2c402dc3 5953#endif
7f4588f3 5954
d069b916
PZ
5955/*
5956 * Topology list, bottom-up.
5957 */
2c402dc3 5958static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5959#ifdef CONFIG_SCHED_SMT
5960 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5961#endif
1e9f28fa 5962#ifdef CONFIG_SCHED_MC
2c402dc3 5963 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5964#endif
d069b916
PZ
5965#ifdef CONFIG_SCHED_BOOK
5966 { sd_init_BOOK, cpu_book_mask, },
5967#endif
5968 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5969 { NULL, },
5970};
5971
5972static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5973
27723a68
VK
5974#define for_each_sd_topology(tl) \
5975 for (tl = sched_domain_topology; tl->init; tl++)
5976
cb83b629
PZ
5977#ifdef CONFIG_NUMA
5978
5979static int sched_domains_numa_levels;
cb83b629
PZ
5980static int *sched_domains_numa_distance;
5981static struct cpumask ***sched_domains_numa_masks;
5982static int sched_domains_curr_level;
5983
cb83b629
PZ
5984static inline int sd_local_flags(int level)
5985{
10717dcd 5986 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5987 return 0;
5988
5989 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5990}
5991
5992static struct sched_domain *
5993sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5994{
5995 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5996 int level = tl->numa_level;
5997 int sd_weight = cpumask_weight(
5998 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5999
6000 *sd = (struct sched_domain){
6001 .min_interval = sd_weight,
6002 .max_interval = 2*sd_weight,
6003 .busy_factor = 32,
870a0bb5 6004 .imbalance_pct = 125,
cb83b629
PZ
6005 .cache_nice_tries = 2,
6006 .busy_idx = 3,
6007 .idle_idx = 2,
6008 .newidle_idx = 0,
6009 .wake_idx = 0,
6010 .forkexec_idx = 0,
6011
6012 .flags = 1*SD_LOAD_BALANCE
6013 | 1*SD_BALANCE_NEWIDLE
6014 | 0*SD_BALANCE_EXEC
6015 | 0*SD_BALANCE_FORK
6016 | 0*SD_BALANCE_WAKE
6017 | 0*SD_WAKE_AFFINE
cb83b629 6018 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6019 | 0*SD_SHARE_PKG_RESOURCES
6020 | 1*SD_SERIALIZE
6021 | 0*SD_PREFER_SIBLING
3a7053b3 6022 | 1*SD_NUMA
cb83b629
PZ
6023 | sd_local_flags(level)
6024 ,
6025 .last_balance = jiffies,
6026 .balance_interval = sd_weight,
6027 };
6028 SD_INIT_NAME(sd, NUMA);
6029 sd->private = &tl->data;
6030
6031 /*
6032 * Ugly hack to pass state to sd_numa_mask()...
6033 */
6034 sched_domains_curr_level = tl->numa_level;
6035
6036 return sd;
6037}
6038
6039static const struct cpumask *sd_numa_mask(int cpu)
6040{
6041 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6042}
6043
d039ac60
PZ
6044static void sched_numa_warn(const char *str)
6045{
6046 static int done = false;
6047 int i,j;
6048
6049 if (done)
6050 return;
6051
6052 done = true;
6053
6054 printk(KERN_WARNING "ERROR: %s\n\n", str);
6055
6056 for (i = 0; i < nr_node_ids; i++) {
6057 printk(KERN_WARNING " ");
6058 for (j = 0; j < nr_node_ids; j++)
6059 printk(KERN_CONT "%02d ", node_distance(i,j));
6060 printk(KERN_CONT "\n");
6061 }
6062 printk(KERN_WARNING "\n");
6063}
6064
6065static bool find_numa_distance(int distance)
6066{
6067 int i;
6068
6069 if (distance == node_distance(0, 0))
6070 return true;
6071
6072 for (i = 0; i < sched_domains_numa_levels; i++) {
6073 if (sched_domains_numa_distance[i] == distance)
6074 return true;
6075 }
6076
6077 return false;
6078}
6079
cb83b629
PZ
6080static void sched_init_numa(void)
6081{
6082 int next_distance, curr_distance = node_distance(0, 0);
6083 struct sched_domain_topology_level *tl;
6084 int level = 0;
6085 int i, j, k;
6086
cb83b629
PZ
6087 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6088 if (!sched_domains_numa_distance)
6089 return;
6090
6091 /*
6092 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6093 * unique distances in the node_distance() table.
6094 *
6095 * Assumes node_distance(0,j) includes all distances in
6096 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6097 */
6098 next_distance = curr_distance;
6099 for (i = 0; i < nr_node_ids; i++) {
6100 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6101 for (k = 0; k < nr_node_ids; k++) {
6102 int distance = node_distance(i, k);
6103
6104 if (distance > curr_distance &&
6105 (distance < next_distance ||
6106 next_distance == curr_distance))
6107 next_distance = distance;
6108
6109 /*
6110 * While not a strong assumption it would be nice to know
6111 * about cases where if node A is connected to B, B is not
6112 * equally connected to A.
6113 */
6114 if (sched_debug() && node_distance(k, i) != distance)
6115 sched_numa_warn("Node-distance not symmetric");
6116
6117 if (sched_debug() && i && !find_numa_distance(distance))
6118 sched_numa_warn("Node-0 not representative");
6119 }
6120 if (next_distance != curr_distance) {
6121 sched_domains_numa_distance[level++] = next_distance;
6122 sched_domains_numa_levels = level;
6123 curr_distance = next_distance;
6124 } else break;
cb83b629 6125 }
d039ac60
PZ
6126
6127 /*
6128 * In case of sched_debug() we verify the above assumption.
6129 */
6130 if (!sched_debug())
6131 break;
cb83b629
PZ
6132 }
6133 /*
6134 * 'level' contains the number of unique distances, excluding the
6135 * identity distance node_distance(i,i).
6136 *
28b4a521 6137 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6138 * numbers.
6139 */
6140
5f7865f3
TC
6141 /*
6142 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6143 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6144 * the array will contain less then 'level' members. This could be
6145 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6146 * in other functions.
6147 *
6148 * We reset it to 'level' at the end of this function.
6149 */
6150 sched_domains_numa_levels = 0;
6151
cb83b629
PZ
6152 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6153 if (!sched_domains_numa_masks)
6154 return;
6155
6156 /*
6157 * Now for each level, construct a mask per node which contains all
6158 * cpus of nodes that are that many hops away from us.
6159 */
6160 for (i = 0; i < level; i++) {
6161 sched_domains_numa_masks[i] =
6162 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6163 if (!sched_domains_numa_masks[i])
6164 return;
6165
6166 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6167 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6168 if (!mask)
6169 return;
6170
6171 sched_domains_numa_masks[i][j] = mask;
6172
6173 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6174 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6175 continue;
6176
6177 cpumask_or(mask, mask, cpumask_of_node(k));
6178 }
6179 }
6180 }
6181
6182 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6183 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6184 if (!tl)
6185 return;
6186
6187 /*
6188 * Copy the default topology bits..
6189 */
6190 for (i = 0; default_topology[i].init; i++)
6191 tl[i] = default_topology[i];
6192
6193 /*
6194 * .. and append 'j' levels of NUMA goodness.
6195 */
6196 for (j = 0; j < level; i++, j++) {
6197 tl[i] = (struct sched_domain_topology_level){
6198 .init = sd_numa_init,
6199 .mask = sd_numa_mask,
6200 .flags = SDTL_OVERLAP,
6201 .numa_level = j,
6202 };
6203 }
6204
6205 sched_domain_topology = tl;
5f7865f3
TC
6206
6207 sched_domains_numa_levels = level;
cb83b629 6208}
301a5cba
TC
6209
6210static void sched_domains_numa_masks_set(int cpu)
6211{
6212 int i, j;
6213 int node = cpu_to_node(cpu);
6214
6215 for (i = 0; i < sched_domains_numa_levels; i++) {
6216 for (j = 0; j < nr_node_ids; j++) {
6217 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6218 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6219 }
6220 }
6221}
6222
6223static void sched_domains_numa_masks_clear(int cpu)
6224{
6225 int i, j;
6226 for (i = 0; i < sched_domains_numa_levels; i++) {
6227 for (j = 0; j < nr_node_ids; j++)
6228 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6229 }
6230}
6231
6232/*
6233 * Update sched_domains_numa_masks[level][node] array when new cpus
6234 * are onlined.
6235 */
6236static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6237 unsigned long action,
6238 void *hcpu)
6239{
6240 int cpu = (long)hcpu;
6241
6242 switch (action & ~CPU_TASKS_FROZEN) {
6243 case CPU_ONLINE:
6244 sched_domains_numa_masks_set(cpu);
6245 break;
6246
6247 case CPU_DEAD:
6248 sched_domains_numa_masks_clear(cpu);
6249 break;
6250
6251 default:
6252 return NOTIFY_DONE;
6253 }
6254
6255 return NOTIFY_OK;
cb83b629
PZ
6256}
6257#else
6258static inline void sched_init_numa(void)
6259{
6260}
301a5cba
TC
6261
6262static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6263 unsigned long action,
6264 void *hcpu)
6265{
6266 return 0;
6267}
cb83b629
PZ
6268#endif /* CONFIG_NUMA */
6269
54ab4ff4
PZ
6270static int __sdt_alloc(const struct cpumask *cpu_map)
6271{
6272 struct sched_domain_topology_level *tl;
6273 int j;
6274
27723a68 6275 for_each_sd_topology(tl) {
54ab4ff4
PZ
6276 struct sd_data *sdd = &tl->data;
6277
6278 sdd->sd = alloc_percpu(struct sched_domain *);
6279 if (!sdd->sd)
6280 return -ENOMEM;
6281
6282 sdd->sg = alloc_percpu(struct sched_group *);
6283 if (!sdd->sg)
6284 return -ENOMEM;
6285
9c3f75cb
PZ
6286 sdd->sgp = alloc_percpu(struct sched_group_power *);
6287 if (!sdd->sgp)
6288 return -ENOMEM;
6289
54ab4ff4
PZ
6290 for_each_cpu(j, cpu_map) {
6291 struct sched_domain *sd;
6292 struct sched_group *sg;
9c3f75cb 6293 struct sched_group_power *sgp;
54ab4ff4
PZ
6294
6295 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6296 GFP_KERNEL, cpu_to_node(j));
6297 if (!sd)
6298 return -ENOMEM;
6299
6300 *per_cpu_ptr(sdd->sd, j) = sd;
6301
6302 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6303 GFP_KERNEL, cpu_to_node(j));
6304 if (!sg)
6305 return -ENOMEM;
6306
30b4e9eb
IM
6307 sg->next = sg;
6308
54ab4ff4 6309 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6310
c1174876 6311 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6312 GFP_KERNEL, cpu_to_node(j));
6313 if (!sgp)
6314 return -ENOMEM;
6315
6316 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6317 }
6318 }
6319
6320 return 0;
6321}
6322
6323static void __sdt_free(const struct cpumask *cpu_map)
6324{
6325 struct sched_domain_topology_level *tl;
6326 int j;
6327
27723a68 6328 for_each_sd_topology(tl) {
54ab4ff4
PZ
6329 struct sd_data *sdd = &tl->data;
6330
6331 for_each_cpu(j, cpu_map) {
fb2cf2c6 6332 struct sched_domain *sd;
6333
6334 if (sdd->sd) {
6335 sd = *per_cpu_ptr(sdd->sd, j);
6336 if (sd && (sd->flags & SD_OVERLAP))
6337 free_sched_groups(sd->groups, 0);
6338 kfree(*per_cpu_ptr(sdd->sd, j));
6339 }
6340
6341 if (sdd->sg)
6342 kfree(*per_cpu_ptr(sdd->sg, j));
6343 if (sdd->sgp)
6344 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6345 }
6346 free_percpu(sdd->sd);
fb2cf2c6 6347 sdd->sd = NULL;
54ab4ff4 6348 free_percpu(sdd->sg);
fb2cf2c6 6349 sdd->sg = NULL;
9c3f75cb 6350 free_percpu(sdd->sgp);
fb2cf2c6 6351 sdd->sgp = NULL;
54ab4ff4
PZ
6352 }
6353}
6354
2c402dc3 6355struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6356 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6357 struct sched_domain *child, int cpu)
2c402dc3 6358{
54ab4ff4 6359 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6360 if (!sd)
d069b916 6361 return child;
2c402dc3 6362
2c402dc3 6363 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6364 if (child) {
6365 sd->level = child->level + 1;
6366 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6367 child->parent = sd;
c75e0128 6368 sd->child = child;
60495e77 6369 }
a841f8ce 6370 set_domain_attribute(sd, attr);
2c402dc3
PZ
6371
6372 return sd;
6373}
6374
2109b99e
AH
6375/*
6376 * Build sched domains for a given set of cpus and attach the sched domains
6377 * to the individual cpus
6378 */
dce840a0
PZ
6379static int build_sched_domains(const struct cpumask *cpu_map,
6380 struct sched_domain_attr *attr)
2109b99e 6381{
1c632169 6382 enum s_alloc alloc_state;
dce840a0 6383 struct sched_domain *sd;
2109b99e 6384 struct s_data d;
822ff793 6385 int i, ret = -ENOMEM;
9c1cfda2 6386
2109b99e
AH
6387 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6388 if (alloc_state != sa_rootdomain)
6389 goto error;
9c1cfda2 6390
dce840a0 6391 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6392 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6393 struct sched_domain_topology_level *tl;
6394
3bd65a80 6395 sd = NULL;
27723a68 6396 for_each_sd_topology(tl) {
4a850cbe 6397 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6398 if (tl == sched_domain_topology)
6399 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6400 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6401 sd->flags |= SD_OVERLAP;
d110235d
PZ
6402 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6403 break;
e3589f6c 6404 }
dce840a0
PZ
6405 }
6406
6407 /* Build the groups for the domains */
6408 for_each_cpu(i, cpu_map) {
6409 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6410 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6411 if (sd->flags & SD_OVERLAP) {
6412 if (build_overlap_sched_groups(sd, i))
6413 goto error;
6414 } else {
6415 if (build_sched_groups(sd, i))
6416 goto error;
6417 }
1cf51902 6418 }
a06dadbe 6419 }
9c1cfda2 6420
1da177e4 6421 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6422 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6423 if (!cpumask_test_cpu(i, cpu_map))
6424 continue;
9c1cfda2 6425
dce840a0
PZ
6426 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6427 claim_allocations(i, sd);
cd4ea6ae 6428 init_sched_groups_power(i, sd);
dce840a0 6429 }
f712c0c7 6430 }
9c1cfda2 6431
1da177e4 6432 /* Attach the domains */
dce840a0 6433 rcu_read_lock();
abcd083a 6434 for_each_cpu(i, cpu_map) {
21d42ccf 6435 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6436 cpu_attach_domain(sd, d.rd, i);
1da177e4 6437 }
dce840a0 6438 rcu_read_unlock();
51888ca2 6439
822ff793 6440 ret = 0;
51888ca2 6441error:
2109b99e 6442 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6443 return ret;
1da177e4 6444}
029190c5 6445
acc3f5d7 6446static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6447static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6448static struct sched_domain_attr *dattr_cur;
6449 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6450
6451/*
6452 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6453 * cpumask) fails, then fallback to a single sched domain,
6454 * as determined by the single cpumask fallback_doms.
029190c5 6455 */
4212823f 6456static cpumask_var_t fallback_doms;
029190c5 6457
ee79d1bd
HC
6458/*
6459 * arch_update_cpu_topology lets virtualized architectures update the
6460 * cpu core maps. It is supposed to return 1 if the topology changed
6461 * or 0 if it stayed the same.
6462 */
6463int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6464{
ee79d1bd 6465 return 0;
22e52b07
HC
6466}
6467
acc3f5d7
RR
6468cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6469{
6470 int i;
6471 cpumask_var_t *doms;
6472
6473 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6474 if (!doms)
6475 return NULL;
6476 for (i = 0; i < ndoms; i++) {
6477 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6478 free_sched_domains(doms, i);
6479 return NULL;
6480 }
6481 }
6482 return doms;
6483}
6484
6485void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6486{
6487 unsigned int i;
6488 for (i = 0; i < ndoms; i++)
6489 free_cpumask_var(doms[i]);
6490 kfree(doms);
6491}
6492
1a20ff27 6493/*
41a2d6cf 6494 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6495 * For now this just excludes isolated cpus, but could be used to
6496 * exclude other special cases in the future.
1a20ff27 6497 */
c4a8849a 6498static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6499{
7378547f
MM
6500 int err;
6501
22e52b07 6502 arch_update_cpu_topology();
029190c5 6503 ndoms_cur = 1;
acc3f5d7 6504 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6505 if (!doms_cur)
acc3f5d7
RR
6506 doms_cur = &fallback_doms;
6507 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6508 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6509 register_sched_domain_sysctl();
7378547f
MM
6510
6511 return err;
1a20ff27
DG
6512}
6513
1a20ff27
DG
6514/*
6515 * Detach sched domains from a group of cpus specified in cpu_map
6516 * These cpus will now be attached to the NULL domain
6517 */
96f874e2 6518static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6519{
6520 int i;
6521
dce840a0 6522 rcu_read_lock();
abcd083a 6523 for_each_cpu(i, cpu_map)
57d885fe 6524 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6525 rcu_read_unlock();
1a20ff27
DG
6526}
6527
1d3504fc
HS
6528/* handle null as "default" */
6529static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6530 struct sched_domain_attr *new, int idx_new)
6531{
6532 struct sched_domain_attr tmp;
6533
6534 /* fast path */
6535 if (!new && !cur)
6536 return 1;
6537
6538 tmp = SD_ATTR_INIT;
6539 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6540 new ? (new + idx_new) : &tmp,
6541 sizeof(struct sched_domain_attr));
6542}
6543
029190c5
PJ
6544/*
6545 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6546 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6547 * doms_new[] to the current sched domain partitioning, doms_cur[].
6548 * It destroys each deleted domain and builds each new domain.
6549 *
acc3f5d7 6550 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6551 * The masks don't intersect (don't overlap.) We should setup one
6552 * sched domain for each mask. CPUs not in any of the cpumasks will
6553 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6554 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6555 * it as it is.
6556 *
acc3f5d7
RR
6557 * The passed in 'doms_new' should be allocated using
6558 * alloc_sched_domains. This routine takes ownership of it and will
6559 * free_sched_domains it when done with it. If the caller failed the
6560 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6561 * and partition_sched_domains() will fallback to the single partition
6562 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6563 *
96f874e2 6564 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6565 * ndoms_new == 0 is a special case for destroying existing domains,
6566 * and it will not create the default domain.
dfb512ec 6567 *
029190c5
PJ
6568 * Call with hotplug lock held
6569 */
acc3f5d7 6570void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6571 struct sched_domain_attr *dattr_new)
029190c5 6572{
dfb512ec 6573 int i, j, n;
d65bd5ec 6574 int new_topology;
029190c5 6575
712555ee 6576 mutex_lock(&sched_domains_mutex);
a1835615 6577
7378547f
MM
6578 /* always unregister in case we don't destroy any domains */
6579 unregister_sched_domain_sysctl();
6580
d65bd5ec
HC
6581 /* Let architecture update cpu core mappings. */
6582 new_topology = arch_update_cpu_topology();
6583
dfb512ec 6584 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6585
6586 /* Destroy deleted domains */
6587 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6588 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6589 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6590 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6591 goto match1;
6592 }
6593 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6594 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6595match1:
6596 ;
6597 }
6598
c8d2d47a 6599 n = ndoms_cur;
e761b772 6600 if (doms_new == NULL) {
c8d2d47a 6601 n = 0;
acc3f5d7 6602 doms_new = &fallback_doms;
6ad4c188 6603 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6604 WARN_ON_ONCE(dattr_new);
e761b772
MK
6605 }
6606
029190c5
PJ
6607 /* Build new domains */
6608 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6609 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6610 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6611 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6612 goto match2;
6613 }
6614 /* no match - add a new doms_new */
dce840a0 6615 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6616match2:
6617 ;
6618 }
6619
6620 /* Remember the new sched domains */
acc3f5d7
RR
6621 if (doms_cur != &fallback_doms)
6622 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6623 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6624 doms_cur = doms_new;
1d3504fc 6625 dattr_cur = dattr_new;
029190c5 6626 ndoms_cur = ndoms_new;
7378547f
MM
6627
6628 register_sched_domain_sysctl();
a1835615 6629
712555ee 6630 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6631}
6632
d35be8ba
SB
6633static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6634
1da177e4 6635/*
3a101d05
TH
6636 * Update cpusets according to cpu_active mask. If cpusets are
6637 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6638 * around partition_sched_domains().
d35be8ba
SB
6639 *
6640 * If we come here as part of a suspend/resume, don't touch cpusets because we
6641 * want to restore it back to its original state upon resume anyway.
1da177e4 6642 */
0b2e918a
TH
6643static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6644 void *hcpu)
e761b772 6645{
d35be8ba
SB
6646 switch (action) {
6647 case CPU_ONLINE_FROZEN:
6648 case CPU_DOWN_FAILED_FROZEN:
6649
6650 /*
6651 * num_cpus_frozen tracks how many CPUs are involved in suspend
6652 * resume sequence. As long as this is not the last online
6653 * operation in the resume sequence, just build a single sched
6654 * domain, ignoring cpusets.
6655 */
6656 num_cpus_frozen--;
6657 if (likely(num_cpus_frozen)) {
6658 partition_sched_domains(1, NULL, NULL);
6659 break;
6660 }
6661
6662 /*
6663 * This is the last CPU online operation. So fall through and
6664 * restore the original sched domains by considering the
6665 * cpuset configurations.
6666 */
6667
e761b772 6668 case CPU_ONLINE:
6ad4c188 6669 case CPU_DOWN_FAILED:
7ddf96b0 6670 cpuset_update_active_cpus(true);
d35be8ba 6671 break;
3a101d05
TH
6672 default:
6673 return NOTIFY_DONE;
6674 }
d35be8ba 6675 return NOTIFY_OK;
3a101d05 6676}
e761b772 6677
0b2e918a
TH
6678static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6679 void *hcpu)
3a101d05 6680{
d35be8ba 6681 switch (action) {
3a101d05 6682 case CPU_DOWN_PREPARE:
7ddf96b0 6683 cpuset_update_active_cpus(false);
d35be8ba
SB
6684 break;
6685 case CPU_DOWN_PREPARE_FROZEN:
6686 num_cpus_frozen++;
6687 partition_sched_domains(1, NULL, NULL);
6688 break;
e761b772
MK
6689 default:
6690 return NOTIFY_DONE;
6691 }
d35be8ba 6692 return NOTIFY_OK;
e761b772 6693}
e761b772 6694
1da177e4
LT
6695void __init sched_init_smp(void)
6696{
dcc30a35
RR
6697 cpumask_var_t non_isolated_cpus;
6698
6699 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6700 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6701
cb83b629
PZ
6702 sched_init_numa();
6703
6acce3ef
PZ
6704 /*
6705 * There's no userspace yet to cause hotplug operations; hence all the
6706 * cpu masks are stable and all blatant races in the below code cannot
6707 * happen.
6708 */
712555ee 6709 mutex_lock(&sched_domains_mutex);
c4a8849a 6710 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6711 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6712 if (cpumask_empty(non_isolated_cpus))
6713 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6714 mutex_unlock(&sched_domains_mutex);
e761b772 6715
301a5cba 6716 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6717 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6718 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6719
b328ca18 6720 init_hrtick();
5c1e1767
NP
6721
6722 /* Move init over to a non-isolated CPU */
dcc30a35 6723 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6724 BUG();
19978ca6 6725 sched_init_granularity();
dcc30a35 6726 free_cpumask_var(non_isolated_cpus);
4212823f 6727
0e3900e6 6728 init_sched_rt_class();
1baca4ce 6729 init_sched_dl_class();
1da177e4
LT
6730}
6731#else
6732void __init sched_init_smp(void)
6733{
19978ca6 6734 sched_init_granularity();
1da177e4
LT
6735}
6736#endif /* CONFIG_SMP */
6737
cd1bb94b
AB
6738const_debug unsigned int sysctl_timer_migration = 1;
6739
1da177e4
LT
6740int in_sched_functions(unsigned long addr)
6741{
1da177e4
LT
6742 return in_lock_functions(addr) ||
6743 (addr >= (unsigned long)__sched_text_start
6744 && addr < (unsigned long)__sched_text_end);
6745}
6746
029632fb 6747#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6748/*
6749 * Default task group.
6750 * Every task in system belongs to this group at bootup.
6751 */
029632fb 6752struct task_group root_task_group;
35cf4e50 6753LIST_HEAD(task_groups);
052f1dc7 6754#endif
6f505b16 6755
e6252c3e 6756DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6757
1da177e4
LT
6758void __init sched_init(void)
6759{
dd41f596 6760 int i, j;
434d53b0
MT
6761 unsigned long alloc_size = 0, ptr;
6762
6763#ifdef CONFIG_FAIR_GROUP_SCHED
6764 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6765#endif
6766#ifdef CONFIG_RT_GROUP_SCHED
6767 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6768#endif
df7c8e84 6769#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6770 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6771#endif
434d53b0 6772 if (alloc_size) {
36b7b6d4 6773 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6774
6775#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6776 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6777 ptr += nr_cpu_ids * sizeof(void **);
6778
07e06b01 6779 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6780 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6781
6d6bc0ad 6782#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6783#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6784 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6785 ptr += nr_cpu_ids * sizeof(void **);
6786
07e06b01 6787 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6788 ptr += nr_cpu_ids * sizeof(void **);
6789
6d6bc0ad 6790#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6791#ifdef CONFIG_CPUMASK_OFFSTACK
6792 for_each_possible_cpu(i) {
e6252c3e 6793 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6794 ptr += cpumask_size();
6795 }
6796#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6797 }
dd41f596 6798
332ac17e
DF
6799 init_rt_bandwidth(&def_rt_bandwidth,
6800 global_rt_period(), global_rt_runtime());
6801 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6802 global_rt_period(), global_rt_runtime());
332ac17e 6803
57d885fe
GH
6804#ifdef CONFIG_SMP
6805 init_defrootdomain();
6806#endif
6807
d0b27fa7 6808#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6809 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6810 global_rt_period(), global_rt_runtime());
6d6bc0ad 6811#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6812
7c941438 6813#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6814 list_add(&root_task_group.list, &task_groups);
6815 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6816 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6817 autogroup_init(&init_task);
54c707e9 6818
7c941438 6819#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6820
0a945022 6821 for_each_possible_cpu(i) {
70b97a7f 6822 struct rq *rq;
1da177e4
LT
6823
6824 rq = cpu_rq(i);
05fa785c 6825 raw_spin_lock_init(&rq->lock);
7897986b 6826 rq->nr_running = 0;
dce48a84
TG
6827 rq->calc_load_active = 0;
6828 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6829 init_cfs_rq(&rq->cfs);
6f505b16 6830 init_rt_rq(&rq->rt, rq);
aab03e05 6831 init_dl_rq(&rq->dl, rq);
dd41f596 6832#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6833 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6834 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6835 /*
07e06b01 6836 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6837 *
6838 * In case of task-groups formed thr' the cgroup filesystem, it
6839 * gets 100% of the cpu resources in the system. This overall
6840 * system cpu resource is divided among the tasks of
07e06b01 6841 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6842 * based on each entity's (task or task-group's) weight
6843 * (se->load.weight).
6844 *
07e06b01 6845 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6846 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6847 * then A0's share of the cpu resource is:
6848 *
0d905bca 6849 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6850 *
07e06b01
YZ
6851 * We achieve this by letting root_task_group's tasks sit
6852 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6853 */
ab84d31e 6854 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6855 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6856#endif /* CONFIG_FAIR_GROUP_SCHED */
6857
6858 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6859#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6860 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6861 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6862#endif
1da177e4 6863
dd41f596
IM
6864 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6865 rq->cpu_load[j] = 0;
fdf3e95d
VP
6866
6867 rq->last_load_update_tick = jiffies;
6868
1da177e4 6869#ifdef CONFIG_SMP
41c7ce9a 6870 rq->sd = NULL;
57d885fe 6871 rq->rd = NULL;
1399fa78 6872 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6873 rq->post_schedule = 0;
1da177e4 6874 rq->active_balance = 0;
dd41f596 6875 rq->next_balance = jiffies;
1da177e4 6876 rq->push_cpu = 0;
0a2966b4 6877 rq->cpu = i;
1f11eb6a 6878 rq->online = 0;
eae0c9df
MG
6879 rq->idle_stamp = 0;
6880 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6881 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6882
6883 INIT_LIST_HEAD(&rq->cfs_tasks);
6884
dc938520 6885 rq_attach_root(rq, &def_root_domain);
3451d024 6886#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6887 rq->nohz_flags = 0;
83cd4fe2 6888#endif
265f22a9
FW
6889#ifdef CONFIG_NO_HZ_FULL
6890 rq->last_sched_tick = 0;
6891#endif
1da177e4 6892#endif
8f4d37ec 6893 init_rq_hrtick(rq);
1da177e4 6894 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6895 }
6896
2dd73a4f 6897 set_load_weight(&init_task);
b50f60ce 6898
e107be36
AK
6899#ifdef CONFIG_PREEMPT_NOTIFIERS
6900 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6901#endif
6902
1da177e4
LT
6903 /*
6904 * The boot idle thread does lazy MMU switching as well:
6905 */
6906 atomic_inc(&init_mm.mm_count);
6907 enter_lazy_tlb(&init_mm, current);
6908
6909 /*
6910 * Make us the idle thread. Technically, schedule() should not be
6911 * called from this thread, however somewhere below it might be,
6912 * but because we are the idle thread, we just pick up running again
6913 * when this runqueue becomes "idle".
6914 */
6915 init_idle(current, smp_processor_id());
dce48a84
TG
6916
6917 calc_load_update = jiffies + LOAD_FREQ;
6918
dd41f596
IM
6919 /*
6920 * During early bootup we pretend to be a normal task:
6921 */
6922 current->sched_class = &fair_sched_class;
6892b75e 6923
bf4d83f6 6924#ifdef CONFIG_SMP
4cb98839 6925 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6926 /* May be allocated at isolcpus cmdline parse time */
6927 if (cpu_isolated_map == NULL)
6928 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6929 idle_thread_set_boot_cpu();
029632fb
PZ
6930#endif
6931 init_sched_fair_class();
6a7b3dc3 6932
6892b75e 6933 scheduler_running = 1;
1da177e4
LT
6934}
6935
d902db1e 6936#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6937static inline int preempt_count_equals(int preempt_offset)
6938{
234da7bc 6939 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6940
4ba8216c 6941 return (nested == preempt_offset);
e4aafea2
FW
6942}
6943
d894837f 6944void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6945{
1da177e4
LT
6946 static unsigned long prev_jiffy; /* ratelimiting */
6947
b3fbab05 6948 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
6949 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6950 !is_idle_task(current)) ||
e4aafea2 6951 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6952 return;
6953 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6954 return;
6955 prev_jiffy = jiffies;
6956
3df0fc5b
PZ
6957 printk(KERN_ERR
6958 "BUG: sleeping function called from invalid context at %s:%d\n",
6959 file, line);
6960 printk(KERN_ERR
6961 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6962 in_atomic(), irqs_disabled(),
6963 current->pid, current->comm);
aef745fc
IM
6964
6965 debug_show_held_locks(current);
6966 if (irqs_disabled())
6967 print_irqtrace_events(current);
8f47b187
TG
6968#ifdef CONFIG_DEBUG_PREEMPT
6969 if (!preempt_count_equals(preempt_offset)) {
6970 pr_err("Preemption disabled at:");
6971 print_ip_sym(current->preempt_disable_ip);
6972 pr_cont("\n");
6973 }
6974#endif
aef745fc 6975 dump_stack();
1da177e4
LT
6976}
6977EXPORT_SYMBOL(__might_sleep);
6978#endif
6979
6980#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6981static void normalize_task(struct rq *rq, struct task_struct *p)
6982{
da7a735e 6983 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6984 struct sched_attr attr = {
6985 .sched_policy = SCHED_NORMAL,
6986 };
da7a735e 6987 int old_prio = p->prio;
3a5e4dc1 6988 int on_rq;
3e51f33f 6989
fd2f4419 6990 on_rq = p->on_rq;
3a5e4dc1 6991 if (on_rq)
4ca9b72b 6992 dequeue_task(rq, p, 0);
d50dde5a 6993 __setscheduler(rq, p, &attr);
3a5e4dc1 6994 if (on_rq) {
4ca9b72b 6995 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6996 resched_task(rq->curr);
6997 }
da7a735e
PZ
6998
6999 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7000}
7001
1da177e4
LT
7002void normalize_rt_tasks(void)
7003{
a0f98a1c 7004 struct task_struct *g, *p;
1da177e4 7005 unsigned long flags;
70b97a7f 7006 struct rq *rq;
1da177e4 7007
4cf5d77a 7008 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7009 do_each_thread(g, p) {
178be793
IM
7010 /*
7011 * Only normalize user tasks:
7012 */
7013 if (!p->mm)
7014 continue;
7015
6cfb0d5d 7016 p->se.exec_start = 0;
6cfb0d5d 7017#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7018 p->se.statistics.wait_start = 0;
7019 p->se.statistics.sleep_start = 0;
7020 p->se.statistics.block_start = 0;
6cfb0d5d 7021#endif
dd41f596 7022
aab03e05 7023 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7024 /*
7025 * Renice negative nice level userspace
7026 * tasks back to 0:
7027 */
d0ea0268 7028 if (task_nice(p) < 0 && p->mm)
dd41f596 7029 set_user_nice(p, 0);
1da177e4 7030 continue;
dd41f596 7031 }
1da177e4 7032
1d615482 7033 raw_spin_lock(&p->pi_lock);
b29739f9 7034 rq = __task_rq_lock(p);
1da177e4 7035
178be793 7036 normalize_task(rq, p);
3a5e4dc1 7037
b29739f9 7038 __task_rq_unlock(rq);
1d615482 7039 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7040 } while_each_thread(g, p);
7041
4cf5d77a 7042 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7043}
7044
7045#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7046
67fc4e0c 7047#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7048/*
67fc4e0c 7049 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7050 *
7051 * They can only be called when the whole system has been
7052 * stopped - every CPU needs to be quiescent, and no scheduling
7053 * activity can take place. Using them for anything else would
7054 * be a serious bug, and as a result, they aren't even visible
7055 * under any other configuration.
7056 */
7057
7058/**
7059 * curr_task - return the current task for a given cpu.
7060 * @cpu: the processor in question.
7061 *
7062 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7063 *
7064 * Return: The current task for @cpu.
1df5c10a 7065 */
36c8b586 7066struct task_struct *curr_task(int cpu)
1df5c10a
LT
7067{
7068 return cpu_curr(cpu);
7069}
7070
67fc4e0c
JW
7071#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7072
7073#ifdef CONFIG_IA64
1df5c10a
LT
7074/**
7075 * set_curr_task - set the current task for a given cpu.
7076 * @cpu: the processor in question.
7077 * @p: the task pointer to set.
7078 *
7079 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7080 * are serviced on a separate stack. It allows the architecture to switch the
7081 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7082 * must be called with all CPU's synchronized, and interrupts disabled, the
7083 * and caller must save the original value of the current task (see
7084 * curr_task() above) and restore that value before reenabling interrupts and
7085 * re-starting the system.
7086 *
7087 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7088 */
36c8b586 7089void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7090{
7091 cpu_curr(cpu) = p;
7092}
7093
7094#endif
29f59db3 7095
7c941438 7096#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7097/* task_group_lock serializes the addition/removal of task groups */
7098static DEFINE_SPINLOCK(task_group_lock);
7099
bccbe08a
PZ
7100static void free_sched_group(struct task_group *tg)
7101{
7102 free_fair_sched_group(tg);
7103 free_rt_sched_group(tg);
e9aa1dd1 7104 autogroup_free(tg);
bccbe08a
PZ
7105 kfree(tg);
7106}
7107
7108/* allocate runqueue etc for a new task group */
ec7dc8ac 7109struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7110{
7111 struct task_group *tg;
bccbe08a
PZ
7112
7113 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7114 if (!tg)
7115 return ERR_PTR(-ENOMEM);
7116
ec7dc8ac 7117 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7118 goto err;
7119
ec7dc8ac 7120 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7121 goto err;
7122
ace783b9
LZ
7123 return tg;
7124
7125err:
7126 free_sched_group(tg);
7127 return ERR_PTR(-ENOMEM);
7128}
7129
7130void sched_online_group(struct task_group *tg, struct task_group *parent)
7131{
7132 unsigned long flags;
7133
8ed36996 7134 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7135 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7136
7137 WARN_ON(!parent); /* root should already exist */
7138
7139 tg->parent = parent;
f473aa5e 7140 INIT_LIST_HEAD(&tg->children);
09f2724a 7141 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7142 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7143}
7144
9b5b7751 7145/* rcu callback to free various structures associated with a task group */
6f505b16 7146static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7147{
29f59db3 7148 /* now it should be safe to free those cfs_rqs */
6f505b16 7149 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7150}
7151
9b5b7751 7152/* Destroy runqueue etc associated with a task group */
4cf86d77 7153void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7154{
7155 /* wait for possible concurrent references to cfs_rqs complete */
7156 call_rcu(&tg->rcu, free_sched_group_rcu);
7157}
7158
7159void sched_offline_group(struct task_group *tg)
29f59db3 7160{
8ed36996 7161 unsigned long flags;
9b5b7751 7162 int i;
29f59db3 7163
3d4b47b4
PZ
7164 /* end participation in shares distribution */
7165 for_each_possible_cpu(i)
bccbe08a 7166 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7167
7168 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7169 list_del_rcu(&tg->list);
f473aa5e 7170 list_del_rcu(&tg->siblings);
8ed36996 7171 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7172}
7173
9b5b7751 7174/* change task's runqueue when it moves between groups.
3a252015
IM
7175 * The caller of this function should have put the task in its new group
7176 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7177 * reflect its new group.
9b5b7751
SV
7178 */
7179void sched_move_task(struct task_struct *tsk)
29f59db3 7180{
8323f26c 7181 struct task_group *tg;
29f59db3
SV
7182 int on_rq, running;
7183 unsigned long flags;
7184 struct rq *rq;
7185
7186 rq = task_rq_lock(tsk, &flags);
7187
051a1d1a 7188 running = task_current(rq, tsk);
fd2f4419 7189 on_rq = tsk->on_rq;
29f59db3 7190
0e1f3483 7191 if (on_rq)
29f59db3 7192 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7193 if (unlikely(running))
7194 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7195
8af01f56 7196 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7197 lockdep_is_held(&tsk->sighand->siglock)),
7198 struct task_group, css);
7199 tg = autogroup_task_group(tsk, tg);
7200 tsk->sched_task_group = tg;
7201
810b3817 7202#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7203 if (tsk->sched_class->task_move_group)
7204 tsk->sched_class->task_move_group(tsk, on_rq);
7205 else
810b3817 7206#endif
b2b5ce02 7207 set_task_rq(tsk, task_cpu(tsk));
810b3817 7208
0e1f3483
HS
7209 if (unlikely(running))
7210 tsk->sched_class->set_curr_task(rq);
7211 if (on_rq)
371fd7e7 7212 enqueue_task(rq, tsk, 0);
29f59db3 7213
0122ec5b 7214 task_rq_unlock(rq, tsk, &flags);
29f59db3 7215}
7c941438 7216#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7217
a790de99
PT
7218#ifdef CONFIG_RT_GROUP_SCHED
7219/*
7220 * Ensure that the real time constraints are schedulable.
7221 */
7222static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7223
9a7e0b18
PZ
7224/* Must be called with tasklist_lock held */
7225static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7226{
9a7e0b18 7227 struct task_struct *g, *p;
b40b2e8e 7228
9a7e0b18 7229 do_each_thread(g, p) {
029632fb 7230 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7231 return 1;
7232 } while_each_thread(g, p);
b40b2e8e 7233
9a7e0b18
PZ
7234 return 0;
7235}
b40b2e8e 7236
9a7e0b18
PZ
7237struct rt_schedulable_data {
7238 struct task_group *tg;
7239 u64 rt_period;
7240 u64 rt_runtime;
7241};
b40b2e8e 7242
a790de99 7243static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7244{
7245 struct rt_schedulable_data *d = data;
7246 struct task_group *child;
7247 unsigned long total, sum = 0;
7248 u64 period, runtime;
b40b2e8e 7249
9a7e0b18
PZ
7250 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7251 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7252
9a7e0b18
PZ
7253 if (tg == d->tg) {
7254 period = d->rt_period;
7255 runtime = d->rt_runtime;
b40b2e8e 7256 }
b40b2e8e 7257
4653f803
PZ
7258 /*
7259 * Cannot have more runtime than the period.
7260 */
7261 if (runtime > period && runtime != RUNTIME_INF)
7262 return -EINVAL;
6f505b16 7263
4653f803
PZ
7264 /*
7265 * Ensure we don't starve existing RT tasks.
7266 */
9a7e0b18
PZ
7267 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7268 return -EBUSY;
6f505b16 7269
9a7e0b18 7270 total = to_ratio(period, runtime);
6f505b16 7271
4653f803
PZ
7272 /*
7273 * Nobody can have more than the global setting allows.
7274 */
7275 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7276 return -EINVAL;
6f505b16 7277
4653f803
PZ
7278 /*
7279 * The sum of our children's runtime should not exceed our own.
7280 */
9a7e0b18
PZ
7281 list_for_each_entry_rcu(child, &tg->children, siblings) {
7282 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7283 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7284
9a7e0b18
PZ
7285 if (child == d->tg) {
7286 period = d->rt_period;
7287 runtime = d->rt_runtime;
7288 }
6f505b16 7289
9a7e0b18 7290 sum += to_ratio(period, runtime);
9f0c1e56 7291 }
6f505b16 7292
9a7e0b18
PZ
7293 if (sum > total)
7294 return -EINVAL;
7295
7296 return 0;
6f505b16
PZ
7297}
7298
9a7e0b18 7299static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7300{
8277434e
PT
7301 int ret;
7302
9a7e0b18
PZ
7303 struct rt_schedulable_data data = {
7304 .tg = tg,
7305 .rt_period = period,
7306 .rt_runtime = runtime,
7307 };
7308
8277434e
PT
7309 rcu_read_lock();
7310 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7311 rcu_read_unlock();
7312
7313 return ret;
521f1a24
DG
7314}
7315
ab84d31e 7316static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7317 u64 rt_period, u64 rt_runtime)
6f505b16 7318{
ac086bc2 7319 int i, err = 0;
9f0c1e56 7320
9f0c1e56 7321 mutex_lock(&rt_constraints_mutex);
521f1a24 7322 read_lock(&tasklist_lock);
9a7e0b18
PZ
7323 err = __rt_schedulable(tg, rt_period, rt_runtime);
7324 if (err)
9f0c1e56 7325 goto unlock;
ac086bc2 7326
0986b11b 7327 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7328 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7329 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7330
7331 for_each_possible_cpu(i) {
7332 struct rt_rq *rt_rq = tg->rt_rq[i];
7333
0986b11b 7334 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7335 rt_rq->rt_runtime = rt_runtime;
0986b11b 7336 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7337 }
0986b11b 7338 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7339unlock:
521f1a24 7340 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7341 mutex_unlock(&rt_constraints_mutex);
7342
7343 return err;
6f505b16
PZ
7344}
7345
25cc7da7 7346static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7347{
7348 u64 rt_runtime, rt_period;
7349
7350 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7351 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7352 if (rt_runtime_us < 0)
7353 rt_runtime = RUNTIME_INF;
7354
ab84d31e 7355 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7356}
7357
25cc7da7 7358static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7359{
7360 u64 rt_runtime_us;
7361
d0b27fa7 7362 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7363 return -1;
7364
d0b27fa7 7365 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7366 do_div(rt_runtime_us, NSEC_PER_USEC);
7367 return rt_runtime_us;
7368}
d0b27fa7 7369
25cc7da7 7370static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7371{
7372 u64 rt_runtime, rt_period;
7373
7374 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7375 rt_runtime = tg->rt_bandwidth.rt_runtime;
7376
619b0488
R
7377 if (rt_period == 0)
7378 return -EINVAL;
7379
ab84d31e 7380 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7381}
7382
25cc7da7 7383static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7384{
7385 u64 rt_period_us;
7386
7387 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7388 do_div(rt_period_us, NSEC_PER_USEC);
7389 return rt_period_us;
7390}
332ac17e 7391#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7392
332ac17e 7393#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7394static int sched_rt_global_constraints(void)
7395{
7396 int ret = 0;
7397
7398 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7399 read_lock(&tasklist_lock);
4653f803 7400 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7401 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7402 mutex_unlock(&rt_constraints_mutex);
7403
7404 return ret;
7405}
54e99124 7406
25cc7da7 7407static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7408{
7409 /* Don't accept realtime tasks when there is no way for them to run */
7410 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7411 return 0;
7412
7413 return 1;
7414}
7415
6d6bc0ad 7416#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7417static int sched_rt_global_constraints(void)
7418{
ac086bc2 7419 unsigned long flags;
332ac17e 7420 int i, ret = 0;
ec5d4989 7421
0986b11b 7422 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7423 for_each_possible_cpu(i) {
7424 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7425
0986b11b 7426 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7427 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7428 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7429 }
0986b11b 7430 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7431
332ac17e 7432 return ret;
d0b27fa7 7433}
6d6bc0ad 7434#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7435
332ac17e
DF
7436static int sched_dl_global_constraints(void)
7437{
1724813d
PZ
7438 u64 runtime = global_rt_runtime();
7439 u64 period = global_rt_period();
332ac17e 7440 u64 new_bw = to_ratio(period, runtime);
1724813d 7441 int cpu, ret = 0;
332ac17e
DF
7442
7443 /*
7444 * Here we want to check the bandwidth not being set to some
7445 * value smaller than the currently allocated bandwidth in
7446 * any of the root_domains.
7447 *
7448 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7449 * cycling on root_domains... Discussion on different/better
7450 * solutions is welcome!
7451 */
1724813d
PZ
7452 for_each_possible_cpu(cpu) {
7453 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7454
7455 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7456 if (new_bw < dl_b->total_bw)
7457 ret = -EBUSY;
332ac17e 7458 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7459
7460 if (ret)
7461 break;
332ac17e
DF
7462 }
7463
1724813d 7464 return ret;
332ac17e
DF
7465}
7466
1724813d 7467static void sched_dl_do_global(void)
ce0dbbbb 7468{
1724813d
PZ
7469 u64 new_bw = -1;
7470 int cpu;
ce0dbbbb 7471
1724813d
PZ
7472 def_dl_bandwidth.dl_period = global_rt_period();
7473 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7474
7475 if (global_rt_runtime() != RUNTIME_INF)
7476 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7477
7478 /*
7479 * FIXME: As above...
7480 */
7481 for_each_possible_cpu(cpu) {
7482 struct dl_bw *dl_b = dl_bw_of(cpu);
7483
7484 raw_spin_lock(&dl_b->lock);
7485 dl_b->bw = new_bw;
7486 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7487 }
1724813d
PZ
7488}
7489
7490static int sched_rt_global_validate(void)
7491{
7492 if (sysctl_sched_rt_period <= 0)
7493 return -EINVAL;
7494
7495 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7496 return -EINVAL;
7497
7498 return 0;
7499}
7500
7501static void sched_rt_do_global(void)
7502{
7503 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7504 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7505}
7506
d0b27fa7 7507int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7508 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7509 loff_t *ppos)
7510{
d0b27fa7
PZ
7511 int old_period, old_runtime;
7512 static DEFINE_MUTEX(mutex);
1724813d 7513 int ret;
d0b27fa7
PZ
7514
7515 mutex_lock(&mutex);
7516 old_period = sysctl_sched_rt_period;
7517 old_runtime = sysctl_sched_rt_runtime;
7518
8d65af78 7519 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7520
7521 if (!ret && write) {
1724813d
PZ
7522 ret = sched_rt_global_validate();
7523 if (ret)
7524 goto undo;
7525
d0b27fa7 7526 ret = sched_rt_global_constraints();
1724813d
PZ
7527 if (ret)
7528 goto undo;
7529
7530 ret = sched_dl_global_constraints();
7531 if (ret)
7532 goto undo;
7533
7534 sched_rt_do_global();
7535 sched_dl_do_global();
7536 }
7537 if (0) {
7538undo:
7539 sysctl_sched_rt_period = old_period;
7540 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7541 }
7542 mutex_unlock(&mutex);
7543
7544 return ret;
7545}
68318b8e 7546
1724813d 7547int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7548 void __user *buffer, size_t *lenp,
7549 loff_t *ppos)
7550{
7551 int ret;
332ac17e 7552 static DEFINE_MUTEX(mutex);
332ac17e
DF
7553
7554 mutex_lock(&mutex);
332ac17e 7555 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7556 /* make sure that internally we keep jiffies */
7557 /* also, writing zero resets timeslice to default */
332ac17e 7558 if (!ret && write) {
1724813d
PZ
7559 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7560 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7561 }
7562 mutex_unlock(&mutex);
332ac17e
DF
7563 return ret;
7564}
7565
052f1dc7 7566#ifdef CONFIG_CGROUP_SCHED
68318b8e 7567
a7c6d554 7568static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7569{
a7c6d554 7570 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7571}
7572
eb95419b
TH
7573static struct cgroup_subsys_state *
7574cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7575{
eb95419b
TH
7576 struct task_group *parent = css_tg(parent_css);
7577 struct task_group *tg;
68318b8e 7578
eb95419b 7579 if (!parent) {
68318b8e 7580 /* This is early initialization for the top cgroup */
07e06b01 7581 return &root_task_group.css;
68318b8e
SV
7582 }
7583
ec7dc8ac 7584 tg = sched_create_group(parent);
68318b8e
SV
7585 if (IS_ERR(tg))
7586 return ERR_PTR(-ENOMEM);
7587
68318b8e
SV
7588 return &tg->css;
7589}
7590
eb95419b 7591static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7592{
eb95419b
TH
7593 struct task_group *tg = css_tg(css);
7594 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7595
63876986
TH
7596 if (parent)
7597 sched_online_group(tg, parent);
ace783b9
LZ
7598 return 0;
7599}
7600
eb95419b 7601static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7602{
eb95419b 7603 struct task_group *tg = css_tg(css);
68318b8e
SV
7604
7605 sched_destroy_group(tg);
7606}
7607
eb95419b 7608static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7609{
eb95419b 7610 struct task_group *tg = css_tg(css);
ace783b9
LZ
7611
7612 sched_offline_group(tg);
7613}
7614
eb95419b 7615static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7616 struct cgroup_taskset *tset)
68318b8e 7617{
bb9d97b6
TH
7618 struct task_struct *task;
7619
d99c8727 7620 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7621#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7622 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7623 return -EINVAL;
b68aa230 7624#else
bb9d97b6
TH
7625 /* We don't support RT-tasks being in separate groups */
7626 if (task->sched_class != &fair_sched_class)
7627 return -EINVAL;
b68aa230 7628#endif
bb9d97b6 7629 }
be367d09
BB
7630 return 0;
7631}
68318b8e 7632
eb95419b 7633static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7634 struct cgroup_taskset *tset)
68318b8e 7635{
bb9d97b6
TH
7636 struct task_struct *task;
7637
d99c8727 7638 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7639 sched_move_task(task);
68318b8e
SV
7640}
7641
eb95419b
TH
7642static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7643 struct cgroup_subsys_state *old_css,
7644 struct task_struct *task)
068c5cc5
PZ
7645{
7646 /*
7647 * cgroup_exit() is called in the copy_process() failure path.
7648 * Ignore this case since the task hasn't ran yet, this avoids
7649 * trying to poke a half freed task state from generic code.
7650 */
7651 if (!(task->flags & PF_EXITING))
7652 return;
7653
7654 sched_move_task(task);
7655}
7656
052f1dc7 7657#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7658static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7659 struct cftype *cftype, u64 shareval)
68318b8e 7660{
182446d0 7661 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7662}
7663
182446d0
TH
7664static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7665 struct cftype *cft)
68318b8e 7666{
182446d0 7667 struct task_group *tg = css_tg(css);
68318b8e 7668
c8b28116 7669 return (u64) scale_load_down(tg->shares);
68318b8e 7670}
ab84d31e
PT
7671
7672#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7673static DEFINE_MUTEX(cfs_constraints_mutex);
7674
ab84d31e
PT
7675const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7676const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7677
a790de99
PT
7678static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7679
ab84d31e
PT
7680static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7681{
56f570e5 7682 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7683 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7684
7685 if (tg == &root_task_group)
7686 return -EINVAL;
7687
7688 /*
7689 * Ensure we have at some amount of bandwidth every period. This is
7690 * to prevent reaching a state of large arrears when throttled via
7691 * entity_tick() resulting in prolonged exit starvation.
7692 */
7693 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7694 return -EINVAL;
7695
7696 /*
7697 * Likewise, bound things on the otherside by preventing insane quota
7698 * periods. This also allows us to normalize in computing quota
7699 * feasibility.
7700 */
7701 if (period > max_cfs_quota_period)
7702 return -EINVAL;
7703
a790de99
PT
7704 mutex_lock(&cfs_constraints_mutex);
7705 ret = __cfs_schedulable(tg, period, quota);
7706 if (ret)
7707 goto out_unlock;
7708
58088ad0 7709 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7710 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7711 /*
7712 * If we need to toggle cfs_bandwidth_used, off->on must occur
7713 * before making related changes, and on->off must occur afterwards
7714 */
7715 if (runtime_enabled && !runtime_was_enabled)
7716 cfs_bandwidth_usage_inc();
ab84d31e
PT
7717 raw_spin_lock_irq(&cfs_b->lock);
7718 cfs_b->period = ns_to_ktime(period);
7719 cfs_b->quota = quota;
58088ad0 7720
a9cf55b2 7721 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7722 /* restart the period timer (if active) to handle new period expiry */
7723 if (runtime_enabled && cfs_b->timer_active) {
7724 /* force a reprogram */
7725 cfs_b->timer_active = 0;
7726 __start_cfs_bandwidth(cfs_b);
7727 }
ab84d31e
PT
7728 raw_spin_unlock_irq(&cfs_b->lock);
7729
7730 for_each_possible_cpu(i) {
7731 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7732 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7733
7734 raw_spin_lock_irq(&rq->lock);
58088ad0 7735 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7736 cfs_rq->runtime_remaining = 0;
671fd9da 7737
029632fb 7738 if (cfs_rq->throttled)
671fd9da 7739 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7740 raw_spin_unlock_irq(&rq->lock);
7741 }
1ee14e6c
BS
7742 if (runtime_was_enabled && !runtime_enabled)
7743 cfs_bandwidth_usage_dec();
a790de99
PT
7744out_unlock:
7745 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7746
a790de99 7747 return ret;
ab84d31e
PT
7748}
7749
7750int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7751{
7752 u64 quota, period;
7753
029632fb 7754 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7755 if (cfs_quota_us < 0)
7756 quota = RUNTIME_INF;
7757 else
7758 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7759
7760 return tg_set_cfs_bandwidth(tg, period, quota);
7761}
7762
7763long tg_get_cfs_quota(struct task_group *tg)
7764{
7765 u64 quota_us;
7766
029632fb 7767 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7768 return -1;
7769
029632fb 7770 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7771 do_div(quota_us, NSEC_PER_USEC);
7772
7773 return quota_us;
7774}
7775
7776int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7777{
7778 u64 quota, period;
7779
7780 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7781 quota = tg->cfs_bandwidth.quota;
ab84d31e 7782
ab84d31e
PT
7783 return tg_set_cfs_bandwidth(tg, period, quota);
7784}
7785
7786long tg_get_cfs_period(struct task_group *tg)
7787{
7788 u64 cfs_period_us;
7789
029632fb 7790 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7791 do_div(cfs_period_us, NSEC_PER_USEC);
7792
7793 return cfs_period_us;
7794}
7795
182446d0
TH
7796static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7797 struct cftype *cft)
ab84d31e 7798{
182446d0 7799 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7800}
7801
182446d0
TH
7802static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7803 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7804{
182446d0 7805 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7806}
7807
182446d0
TH
7808static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7809 struct cftype *cft)
ab84d31e 7810{
182446d0 7811 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7812}
7813
182446d0
TH
7814static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7815 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7816{
182446d0 7817 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7818}
7819
a790de99
PT
7820struct cfs_schedulable_data {
7821 struct task_group *tg;
7822 u64 period, quota;
7823};
7824
7825/*
7826 * normalize group quota/period to be quota/max_period
7827 * note: units are usecs
7828 */
7829static u64 normalize_cfs_quota(struct task_group *tg,
7830 struct cfs_schedulable_data *d)
7831{
7832 u64 quota, period;
7833
7834 if (tg == d->tg) {
7835 period = d->period;
7836 quota = d->quota;
7837 } else {
7838 period = tg_get_cfs_period(tg);
7839 quota = tg_get_cfs_quota(tg);
7840 }
7841
7842 /* note: these should typically be equivalent */
7843 if (quota == RUNTIME_INF || quota == -1)
7844 return RUNTIME_INF;
7845
7846 return to_ratio(period, quota);
7847}
7848
7849static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7850{
7851 struct cfs_schedulable_data *d = data;
029632fb 7852 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7853 s64 quota = 0, parent_quota = -1;
7854
7855 if (!tg->parent) {
7856 quota = RUNTIME_INF;
7857 } else {
029632fb 7858 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7859
7860 quota = normalize_cfs_quota(tg, d);
7861 parent_quota = parent_b->hierarchal_quota;
7862
7863 /*
7864 * ensure max(child_quota) <= parent_quota, inherit when no
7865 * limit is set
7866 */
7867 if (quota == RUNTIME_INF)
7868 quota = parent_quota;
7869 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7870 return -EINVAL;
7871 }
7872 cfs_b->hierarchal_quota = quota;
7873
7874 return 0;
7875}
7876
7877static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7878{
8277434e 7879 int ret;
a790de99
PT
7880 struct cfs_schedulable_data data = {
7881 .tg = tg,
7882 .period = period,
7883 .quota = quota,
7884 };
7885
7886 if (quota != RUNTIME_INF) {
7887 do_div(data.period, NSEC_PER_USEC);
7888 do_div(data.quota, NSEC_PER_USEC);
7889 }
7890
8277434e
PT
7891 rcu_read_lock();
7892 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7893 rcu_read_unlock();
7894
7895 return ret;
a790de99 7896}
e8da1b18 7897
2da8ca82 7898static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7899{
2da8ca82 7900 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7901 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7902
44ffc75b
TH
7903 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7904 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7905 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7906
7907 return 0;
7908}
ab84d31e 7909#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7910#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7911
052f1dc7 7912#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7913static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7914 struct cftype *cft, s64 val)
6f505b16 7915{
182446d0 7916 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7917}
7918
182446d0
TH
7919static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7920 struct cftype *cft)
6f505b16 7921{
182446d0 7922 return sched_group_rt_runtime(css_tg(css));
6f505b16 7923}
d0b27fa7 7924
182446d0
TH
7925static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7926 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7927{
182446d0 7928 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7929}
7930
182446d0
TH
7931static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7932 struct cftype *cft)
d0b27fa7 7933{
182446d0 7934 return sched_group_rt_period(css_tg(css));
d0b27fa7 7935}
6d6bc0ad 7936#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7937
fe5c7cc2 7938static struct cftype cpu_files[] = {
052f1dc7 7939#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7940 {
7941 .name = "shares",
f4c753b7
PM
7942 .read_u64 = cpu_shares_read_u64,
7943 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7944 },
052f1dc7 7945#endif
ab84d31e
PT
7946#ifdef CONFIG_CFS_BANDWIDTH
7947 {
7948 .name = "cfs_quota_us",
7949 .read_s64 = cpu_cfs_quota_read_s64,
7950 .write_s64 = cpu_cfs_quota_write_s64,
7951 },
7952 {
7953 .name = "cfs_period_us",
7954 .read_u64 = cpu_cfs_period_read_u64,
7955 .write_u64 = cpu_cfs_period_write_u64,
7956 },
e8da1b18
NR
7957 {
7958 .name = "stat",
2da8ca82 7959 .seq_show = cpu_stats_show,
e8da1b18 7960 },
ab84d31e 7961#endif
052f1dc7 7962#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7963 {
9f0c1e56 7964 .name = "rt_runtime_us",
06ecb27c
PM
7965 .read_s64 = cpu_rt_runtime_read,
7966 .write_s64 = cpu_rt_runtime_write,
6f505b16 7967 },
d0b27fa7
PZ
7968 {
7969 .name = "rt_period_us",
f4c753b7
PM
7970 .read_u64 = cpu_rt_period_read_uint,
7971 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7972 },
052f1dc7 7973#endif
4baf6e33 7974 { } /* terminate */
68318b8e
SV
7975};
7976
68318b8e 7977struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7978 .name = "cpu",
92fb9748
TH
7979 .css_alloc = cpu_cgroup_css_alloc,
7980 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7981 .css_online = cpu_cgroup_css_online,
7982 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7983 .can_attach = cpu_cgroup_can_attach,
7984 .attach = cpu_cgroup_attach,
068c5cc5 7985 .exit = cpu_cgroup_exit,
38605cae 7986 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7987 .base_cftypes = cpu_files,
68318b8e
SV
7988 .early_init = 1,
7989};
7990
052f1dc7 7991#endif /* CONFIG_CGROUP_SCHED */
d842de87 7992
b637a328
PM
7993void dump_cpu_task(int cpu)
7994{
7995 pr_info("Task dump for CPU %d:\n", cpu);
7996 sched_show_task(cpu_curr(cpu));
7997}
This page took 2.499377 seconds and 5 git commands to generate.