sched: Fix updating rq->max_idle_balance_cost and rq->next_balance in idle_balance()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
61eadef6 122 if (rq->skip_clock_update > 0)
f26f9aff 123 return;
aa483808 124
fe44d621
PZ
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
3e51f33f
PZ
128}
129
bf5c91ba
IM
130/*
131 * Debugging: various feature bits
132 */
f00b45c1 133
f00b45c1
PZ
134#define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
bf5c91ba 137const_debug unsigned int sysctl_sched_features =
391e43da 138#include "features.h"
f00b45c1
PZ
139 0;
140
141#undef SCHED_FEAT
142
143#ifdef CONFIG_SCHED_DEBUG
144#define SCHED_FEAT(name, enabled) \
145 #name ,
146
1292531f 147static const char * const sched_feat_names[] = {
391e43da 148#include "features.h"
f00b45c1
PZ
149};
150
151#undef SCHED_FEAT
152
34f3a814 153static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 154{
f00b45c1
PZ
155 int i;
156
f8b6d1cc 157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 161 }
34f3a814 162 seq_puts(m, "\n");
f00b45c1 163
34f3a814 164 return 0;
f00b45c1
PZ
165}
166
f8b6d1cc
PZ
167#ifdef HAVE_JUMP_LABEL
168
c5905afb
IM
169#define jump_label_key__true STATIC_KEY_INIT_TRUE
170#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
171
172#define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
c5905afb 175struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
176#include "features.h"
177};
178
179#undef SCHED_FEAT
180
181static void sched_feat_disable(int i)
182{
c5905afb
IM
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
185}
186
187static void sched_feat_enable(int i)
188{
c5905afb
IM
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
191}
192#else
193static void sched_feat_disable(int i) { };
194static void sched_feat_enable(int i) { };
195#endif /* HAVE_JUMP_LABEL */
196
1a687c2e 197static int sched_feat_set(char *cmp)
f00b45c1 198{
f00b45c1 199 int i;
1a687c2e 200 int neg = 0;
f00b45c1 201
524429c3 202 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
203 neg = 1;
204 cmp += 3;
205 }
206
f8b6d1cc 207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 209 if (neg) {
f00b45c1 210 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
211 sched_feat_disable(i);
212 } else {
f00b45c1 213 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
214 sched_feat_enable(i);
215 }
f00b45c1
PZ
216 break;
217 }
218 }
219
1a687c2e
MG
220 return i;
221}
222
223static ssize_t
224sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226{
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
f8b6d1cc 241 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
242 return -EINVAL;
243
42994724 244 *ppos += cnt;
f00b45c1
PZ
245
246 return cnt;
247}
248
34f3a814
LZ
249static int sched_feat_open(struct inode *inode, struct file *filp)
250{
251 return single_open(filp, sched_feat_show, NULL);
252}
253
828c0950 254static const struct file_operations sched_feat_fops = {
34f3a814
LZ
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
f00b45c1
PZ
260};
261
262static __init int sched_init_debug(void)
263{
f00b45c1
PZ
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268}
269late_initcall(sched_init_debug);
f8b6d1cc 270#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 271
b82d9fdd
PZ
272/*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
e9e9250b
PZ
278/*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
fa85ae24 286/*
9f0c1e56 287 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
288 * default: 1s
289 */
9f0c1e56 290unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 291
029632fb 292__read_mostly int scheduler_running;
6892b75e 293
9f0c1e56
PZ
294/*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298int sysctl_sched_rt_runtime = 950000;
fa85ae24 299
0970d299 300/*
0122ec5b 301 * __task_rq_lock - lock the rq @p resides on.
b29739f9 302 */
70b97a7f 303static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
304 __acquires(rq->lock)
305{
0970d299
PZ
306 struct rq *rq;
307
0122ec5b
PZ
308 lockdep_assert_held(&p->pi_lock);
309
3a5c359a 310 for (;;) {
0970d299 311 rq = task_rq(p);
05fa785c 312 raw_spin_lock(&rq->lock);
65cc8e48 313 if (likely(rq == task_rq(p)))
3a5c359a 314 return rq;
05fa785c 315 raw_spin_unlock(&rq->lock);
b29739f9 316 }
b29739f9
IM
317}
318
1da177e4 319/*
0122ec5b 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 321 */
70b97a7f 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 323 __acquires(p->pi_lock)
1da177e4
LT
324 __acquires(rq->lock)
325{
70b97a7f 326 struct rq *rq;
1da177e4 327
3a5c359a 328 for (;;) {
0122ec5b 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 330 rq = task_rq(p);
05fa785c 331 raw_spin_lock(&rq->lock);
65cc8e48 332 if (likely(rq == task_rq(p)))
3a5c359a 333 return rq;
0122ec5b
PZ
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 336 }
1da177e4
LT
337}
338
a9957449 339static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
340 __releases(rq->lock)
341{
05fa785c 342 raw_spin_unlock(&rq->lock);
b29739f9
IM
343}
344
0122ec5b
PZ
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 347 __releases(rq->lock)
0122ec5b 348 __releases(p->pi_lock)
1da177e4 349{
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
352}
353
1da177e4 354/*
cc2a73b5 355 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 356 */
a9957449 357static struct rq *this_rq_lock(void)
1da177e4
LT
358 __acquires(rq->lock)
359{
70b97a7f 360 struct rq *rq;
1da177e4
LT
361
362 local_irq_disable();
363 rq = this_rq();
05fa785c 364 raw_spin_lock(&rq->lock);
1da177e4
LT
365
366 return rq;
367}
368
8f4d37ec
PZ
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 372 */
8f4d37ec 373
8f4d37ec
PZ
374static void hrtick_clear(struct rq *rq)
375{
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378}
379
8f4d37ec
PZ
380/*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384static enum hrtimer_restart hrtick(struct hrtimer *timer)
385{
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
05fa785c 390 raw_spin_lock(&rq->lock);
3e51f33f 391 update_rq_clock(rq);
8f4d37ec 392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 393 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
394
395 return HRTIMER_NORESTART;
396}
397
95e904c7 398#ifdef CONFIG_SMP
971ee28c
PZ
399
400static int __hrtick_restart(struct rq *rq)
401{
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406}
407
31656519
PZ
408/*
409 * called from hardirq (IPI) context
410 */
411static void __hrtick_start(void *arg)
b328ca18 412{
31656519 413 struct rq *rq = arg;
b328ca18 414
05fa785c 415 raw_spin_lock(&rq->lock);
971ee28c 416 __hrtick_restart(rq);
31656519 417 rq->hrtick_csd_pending = 0;
05fa785c 418 raw_spin_unlock(&rq->lock);
b328ca18
PZ
419}
420
31656519
PZ
421/*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
029632fb 426void hrtick_start(struct rq *rq, u64 delay)
b328ca18 427{
31656519
PZ
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 430
cc584b21 431 hrtimer_set_expires(timer, time);
31656519
PZ
432
433 if (rq == this_rq()) {
971ee28c 434 __hrtick_restart(rq);
31656519 435 } else if (!rq->hrtick_csd_pending) {
c46fff2a 436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
437 rq->hrtick_csd_pending = 1;
438 }
b328ca18
PZ
439}
440
441static int
442hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443{
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
31656519 453 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458}
459
fa748203 460static __init void init_hrtick(void)
b328ca18
PZ
461{
462 hotcpu_notifier(hotplug_hrtick, 0);
463}
31656519
PZ
464#else
465/*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
029632fb 470void hrtick_start(struct rq *rq, u64 delay)
31656519 471{
7f1e2ca9 472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 473 HRTIMER_MODE_REL_PINNED, 0);
31656519 474}
b328ca18 475
006c75f1 476static inline void init_hrtick(void)
8f4d37ec 477{
8f4d37ec 478}
31656519 479#endif /* CONFIG_SMP */
8f4d37ec 480
31656519 481static void init_rq_hrtick(struct rq *rq)
8f4d37ec 482{
31656519
PZ
483#ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
8f4d37ec 485
31656519
PZ
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489#endif
8f4d37ec 490
31656519
PZ
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
8f4d37ec 493}
006c75f1 494#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
495static inline void hrtick_clear(struct rq *rq)
496{
497}
498
8f4d37ec
PZ
499static inline void init_rq_hrtick(struct rq *rq)
500{
501}
502
b328ca18
PZ
503static inline void init_hrtick(void)
504{
505}
006c75f1 506#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 507
c24d20db
IM
508/*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
029632fb 515void resched_task(struct task_struct *p)
c24d20db
IM
516{
517 int cpu;
518
b021fe3e 519 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 520
5ed0cec0 521 if (test_tsk_need_resched(p))
c24d20db
IM
522 return;
523
5ed0cec0 524 set_tsk_need_resched(p);
c24d20db
IM
525
526 cpu = task_cpu(p);
f27dde8d
PZ
527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched();
c24d20db 529 return;
f27dde8d 530 }
c24d20db
IM
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536}
537
029632fb 538void resched_cpu(int cpu)
c24d20db
IM
539{
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
05fa785c 543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
544 return;
545 resched_task(cpu_curr(cpu));
05fa785c 546 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 547}
06d8308c 548
b021fe3e 549#ifdef CONFIG_SMP
3451d024 550#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
551/*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
6201b4d6 559int get_nohz_timer_target(int pinned)
83cd4fe2
VP
560{
561 int cpu = smp_processor_id();
562 int i;
563 struct sched_domain *sd;
564
6201b4d6
VK
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu;
567
057f3fad 568 rcu_read_lock();
83cd4fe2 569 for_each_domain(cpu, sd) {
057f3fad
PZ
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
83cd4fe2 576 }
057f3fad
PZ
577unlock:
578 rcu_read_unlock();
83cd4fe2
VP
579 return cpu;
580}
06d8308c
TG
581/*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
1c20091e 591static void wake_up_idle_cpu(int cpu)
06d8308c
TG
592{
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 /*
599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically.
604 */
605 if (rq->curr != rq->idle)
606 return;
45bf76df 607
45bf76df 608 /*
06d8308c
TG
609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule()
45bf76df 612 */
5ed0cec0 613 set_tsk_need_resched(rq->idle);
45bf76df 614
06d8308c
TG
615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb();
617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu);
45bf76df
IM
619}
620
c5bfece2 621static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 622{
c5bfece2 623 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu);
627 return true;
628 }
629
630 return false;
631}
632
633void wake_up_nohz_cpu(int cpu)
634{
c5bfece2 635 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
636 wake_up_idle_cpu(cpu);
637}
638
ca38062e 639static inline bool got_nohz_idle_kick(void)
45bf76df 640{
1c792db7 641 int cpu = smp_processor_id();
873b4c65
VG
642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false;
645
646 if (idle_cpu(cpu) && !need_resched())
647 return true;
648
649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK
652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false;
45bf76df
IM
655}
656
3451d024 657#else /* CONFIG_NO_HZ_COMMON */
45bf76df 658
ca38062e 659static inline bool got_nohz_idle_kick(void)
2069dd75 660{
ca38062e 661 return false;
2069dd75
PZ
662}
663
3451d024 664#endif /* CONFIG_NO_HZ_COMMON */
d842de87 665
ce831b38
FW
666#ifdef CONFIG_NO_HZ_FULL
667bool sched_can_stop_tick(void)
668{
669 struct rq *rq;
670
671 rq = this_rq();
672
673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb();
675
676 /* More than one running task need preemption */
677 if (rq->nr_running > 1)
678 return false;
679
680 return true;
681}
682#endif /* CONFIG_NO_HZ_FULL */
d842de87 683
029632fb 684void sched_avg_update(struct rq *rq)
18d95a28 685{
e9e9250b
PZ
686 s64 period = sched_avg_period();
687
78becc27 688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
689 /*
690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this.
693 */
694 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
695 rq->age_stamp += period;
696 rq->rt_avg /= 2;
697 }
18d95a28
PZ
698}
699
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
45bf76df
IM
747static void set_load_weight(struct task_struct *p)
748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
758 return;
759 }
71f8bd46 760
c8b28116 761 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 762 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
763}
764
371fd7e7 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 766{
a64692a3 767 update_rq_clock(rq);
43148951 768 sched_info_queued(rq, p);
371fd7e7 769 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
770}
771
371fd7e7 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 773{
a64692a3 774 update_rq_clock(rq);
43148951 775 sched_info_dequeued(rq, p);
371fd7e7 776 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
777}
778
029632fb 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
371fd7e7 784 enqueue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
029632fb 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
371fd7e7 792 dequeue_task(rq, p, flags);
1e3c88bd
PZ
793}
794
fe44d621 795static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 796{
095c0aa8
GC
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
095c0aa8
GC
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 829 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
095c0aa8 836 rq->prev_steal_time_rq += steal;
095c0aa8
GC
837 delta -= steal;
838 }
839#endif
840
fe44d621
PZ
841 rq->clock_task += delta;
842
095c0aa8
GC
843#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal);
846#endif
aa483808
VP
847}
848
34f971f6
PZ
849void sched_set_stop_task(int cpu, struct task_struct *stop)
850{
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854 if (stop) {
855 /*
856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about.
858 *
859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway.
862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865 stop->sched_class = &stop_sched_class;
866 }
867
868 cpu_rq(cpu)->stop = stop;
869
870 if (old_stop) {
871 /*
872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces.
874 */
875 old_stop->sched_class = &rt_sched_class;
876 }
877}
878
14531189 879/*
dd41f596 880 * __normal_prio - return the priority that is based on the static prio
14531189 881 */
14531189
IM
882static inline int __normal_prio(struct task_struct *p)
883{
dd41f596 884 return p->static_prio;
14531189
IM
885}
886
b29739f9
IM
887/*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
36c8b586 894static inline int normal_prio(struct task_struct *p)
b29739f9
IM
895{
896 int prio;
897
aab03e05
DF
898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p))
b29739f9
IM
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905}
906
907/*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
36c8b586 914static int effective_prio(struct task_struct *p)
b29739f9
IM
915{
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925}
926
1da177e4
LT
927/**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
e69f6186
YB
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 932 */
36c8b586 933inline int task_curr(const struct task_struct *p)
1da177e4
LT
934{
935 return cpu_curr(task_cpu(p)) == p;
936}
937
cb469845
SR
938static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
da7a735e 940 int oldprio)
cb469845
SR
941{
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
da7a735e
PZ
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
fd2f4419 971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
972 rq->skip_clock_update = 1;
973}
974
1da177e4 975#ifdef CONFIG_SMP
dd41f596 976void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 977{
e2912009
PZ
978#ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
077614ee 983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
985
986#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 992 * see task_group().
6c6c54e1
PZ
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
0122ec5b
PZ
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999#endif
e2912009
PZ
1000#endif
1001
de1d7286 1002 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1003
0c69774e 1004 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1007 p->se.nr_migrations++;
a8b0ca17 1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1009 }
dd41f596
IM
1010
1011 __set_task_cpu(p, new_cpu);
c65cc870
IM
1012}
1013
ac66f547
PZ
1014static void __migrate_swap_task(struct task_struct *p, int cpu)
1015{
1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq;
1018
1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu);
1021
1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0);
1026 } else {
1027 /*
1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is.
1031 */
1032 p->wake_cpu = cpu;
1033 }
1034}
1035
1036struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu;
1039};
1040
1041static int migrate_swap_stop(void *data)
1042{
1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN;
1046
1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu);
1049
74602315
PZ
1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock);
ac66f547
PZ
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070unlock:
1071 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1074
1075 return ret;
1076}
1077
1078/*
1079 * Cross migrate two tasks
1080 */
1081int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082{
1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL;
1085
ac66f547
PZ
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
6acce3ef
PZ
1096 /*
1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line.
1099 */
ac66f547
PZ
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
286549dc 1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112out:
ac66f547
PZ
1113 return ret;
1114}
1115
969c7921 1116struct migration_arg {
36c8b586 1117 struct task_struct *task;
1da177e4 1118 int dest_cpu;
70b97a7f 1119};
1da177e4 1120
969c7921
TH
1121static int migration_cpu_stop(void *data);
1122
1da177e4
LT
1123/*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
85ba2d86
RM
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1da177e4
LT
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
85ba2d86 1139unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1140{
1141 unsigned long flags;
dd41f596 1142 int running, on_rq;
85ba2d86 1143 unsigned long ncsw;
70b97a7f 1144 struct rq *rq;
1da177e4 1145
3a5c359a
AK
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
fa490cfd 1154
3a5c359a
AK
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
85ba2d86
RM
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
3a5c359a 1169 cpu_relax();
85ba2d86 1170 }
fa490cfd 1171
3a5c359a
AK
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
27a9da65 1178 trace_sched_wait_task(p);
3a5c359a 1179 running = task_running(rq, p);
fd2f4419 1180 on_rq = p->on_rq;
85ba2d86 1181 ncsw = 0;
f31e11d8 1182 if (!match_state || p->state == match_state)
93dcf55f 1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1184 task_rq_unlock(rq, p, &flags);
fa490cfd 1185
85ba2d86
RM
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
3a5c359a
AK
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
fa490cfd 1202
3a5c359a
AK
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
80dd99b3 1208 * So if it was still runnable (but just not actively
3a5c359a
AK
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
8eb90c30
TG
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1217 continue;
1218 }
fa490cfd 1219
3a5c359a
AK
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
85ba2d86
RM
1227
1228 return ncsw;
1da177e4
LT
1229}
1230
1231/***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
25985edc 1238 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
36c8b586 1244void kick_process(struct task_struct *p)
1da177e4
LT
1245{
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253}
b43e3521 1254EXPORT_SYMBOL_GPL(kick_process);
476d139c 1255#endif /* CONFIG_SMP */
1da177e4 1256
970b13ba 1257#ifdef CONFIG_SMP
30da688e 1258/*
013fdb80 1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1260 */
5da9a0fb
PZ
1261static int select_fallback_rq(int cpu, struct task_struct *p)
1262{
aa00d89c
TC
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
5da9a0fb 1267
aa00d89c
TC
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
2baab4e9 1285 }
5da9a0fb 1286
2baab4e9
PZ
1287 for (;;) {
1288 /* Any allowed, online CPU? */
e3831edd 1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
5da9a0fb 1296
2baab4e9
PZ
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
5da9a0fb
PZ
1326 }
1327
1328 return dest_cpu;
1329}
1330
e2912009 1331/*
013fdb80 1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1333 */
970b13ba 1334static inline
ac66f547 1335int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1336{
ac66f547 1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
fa17b507 1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1350 !cpu_online(cpu)))
5da9a0fb 1351 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1352
1353 return cpu;
970b13ba 1354}
09a40af5
MG
1355
1356static void update_avg(u64 *avg, u64 sample)
1357{
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360}
970b13ba
PZ
1361#endif
1362
d7c01d27 1363static void
b84cb5df 1364ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1365{
d7c01d27 1366#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1367 struct rq *rq = this_rq();
1368
d7c01d27
PZ
1369#ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1379 rcu_read_lock();
d7c01d27
PZ
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
057f3fad 1386 rcu_read_unlock();
d7c01d27 1387 }
f339b9dc
PZ
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
d7c01d27
PZ
1392#endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
9ed3811a 1395 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1396
1397 if (wake_flags & WF_SYNC)
9ed3811a 1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1399
d7c01d27
PZ
1400#endif /* CONFIG_SCHEDSTATS */
1401}
1402
1403static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404{
9ed3811a 1405 activate_task(rq, p, en_flags);
fd2f4419 1406 p->on_rq = 1;
c2f7115e
PZ
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1411}
1412
23f41eeb
PZ
1413/*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
89363381 1416static void
23f41eeb 1417ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1418{
9ed3811a 1419 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1420 trace_sched_wakeup(p, true);
9ed3811a
TH
1421
1422 p->state = TASK_RUNNING;
1423#ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
e69c6341 1427 if (rq->idle_stamp) {
78becc27 1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1429 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1430
abfafa54
JL
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
9ed3811a 1434 rq->avg_idle = max;
abfafa54 1435
9ed3811a
TH
1436 rq->idle_stamp = 0;
1437 }
1438#endif
1439}
1440
c05fbafb
PZ
1441static void
1442ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443{
1444#ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447#endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451}
1452
1453/*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459static int ttwu_remote(struct task_struct *p, int wake_flags)
1460{
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1ad4ec0d
FW
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
c05fbafb
PZ
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474}
1475
317f3941 1476#ifdef CONFIG_SMP
fa14ff4a 1477static void sched_ttwu_pending(void)
317f3941
PZ
1478{
1479 struct rq *rq = this_rq();
fa14ff4a
PZ
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
317f3941
PZ
1482
1483 raw_spin_lock(&rq->lock);
1484
fa14ff4a
PZ
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
317f3941
PZ
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492}
1493
1494void scheduler_ipi(void)
1495{
f27dde8d
PZ
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
8cb75e0c 1501 preempt_fold_need_resched();
f27dde8d 1502
873b4c65
VG
1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick())
c5d753a5
PZ
1506 return;
1507
1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them.
1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly.
1516 *
1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case.
1520 */
1521 irq_enter();
ff442c51 1522 tick_nohz_full_check();
fa14ff4a 1523 sched_ttwu_pending();
ca38062e
SS
1524
1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */
873b4c65 1528 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1529 this_rq()->idle_balance = 1;
ca38062e 1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1531 }
c5d753a5 1532 irq_exit();
317f3941
PZ
1533}
1534
1535static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536{
fa14ff4a 1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1538 smp_send_reschedule(cpu);
1539}
d6aa8f85 1540
39be3501 1541bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1542{
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544}
d6aa8f85 1545#endif /* CONFIG_SMP */
317f3941 1546
c05fbafb
PZ
1547static void ttwu_queue(struct task_struct *p, int cpu)
1548{
1549 struct rq *rq = cpu_rq(cpu);
1550
17d9f311 1551#if defined(CONFIG_SMP)
39be3501 1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557#endif
1558
c05fbafb
PZ
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1562}
1563
1564/**
1da177e4 1565 * try_to_wake_up - wake up a thread
9ed3811a 1566 * @p: the thread to be awakened
1da177e4 1567 * @state: the mask of task states that can be woken
9ed3811a 1568 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
e69f6186 1576 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1577 * or @state didn't match @p's state.
1da177e4 1578 */
e4a52bcb
PZ
1579static int
1580try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1581{
1da177e4 1582 unsigned long flags;
c05fbafb 1583 int cpu, success = 0;
2398f2c6 1584
e0acd0a6
ON
1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does.
1590 */
1591 smp_mb__before_spinlock();
013fdb80 1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1593 if (!(p->state & state))
1da177e4
LT
1594 goto out;
1595
c05fbafb 1596 success = 1; /* we're going to change ->state */
1da177e4 1597 cpu = task_cpu(p);
1da177e4 1598
c05fbafb
PZ
1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat;
1da177e4 1601
1da177e4 1602#ifdef CONFIG_SMP
e9c84311 1603 /*
c05fbafb
PZ
1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task.
e9c84311 1606 */
f3e94786 1607 while (p->on_cpu)
e4a52bcb 1608 cpu_relax();
0970d299 1609 /*
e4a52bcb 1610 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1611 */
e4a52bcb 1612 smp_rmb();
1da177e4 1613
a8e4f2ea 1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1615 p->state = TASK_WAKING;
e7693a36 1616
e4a52bcb 1617 if (p->sched_class->task_waking)
74f8e4b2 1618 p->sched_class->task_waking(p);
efbbd05a 1619
ac66f547 1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED;
e4a52bcb 1623 set_task_cpu(p, cpu);
f339b9dc 1624 }
1da177e4 1625#endif /* CONFIG_SMP */
1da177e4 1626
c05fbafb
PZ
1627 ttwu_queue(p, cpu);
1628stat:
b84cb5df 1629 ttwu_stat(p, cpu, wake_flags);
1da177e4 1630out:
013fdb80 1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1632
1633 return success;
1634}
1635
21aa9af0
TH
1636/**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
2acca55e 1640 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1642 * the current task.
21aa9af0
TH
1643 */
1644static void try_to_wake_up_local(struct task_struct *p)
1645{
1646 struct rq *rq = task_rq(p);
21aa9af0 1647
383efcd0
TH
1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current))
1650 return;
1651
21aa9af0
TH
1652 lockdep_assert_held(&rq->lock);
1653
2acca55e
PZ
1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock);
1658 }
1659
21aa9af0 1660 if (!(p->state & TASK_NORMAL))
2acca55e 1661 goto out;
21aa9af0 1662
fd2f4419 1663 if (!p->on_rq)
d7c01d27
PZ
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
23f41eeb 1666 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1667 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1668out:
1669 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1670}
1671
50fa610a
DH
1672/**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
7ad5b3a5 1684int wake_up_process(struct task_struct *p)
1da177e4 1685{
9067ac85
ON
1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1688}
1da177e4
LT
1689EXPORT_SYMBOL(wake_up_process);
1690
7ad5b3a5 1691int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1692{
1693 return try_to_wake_up(p, state, 0);
1694}
1695
1da177e4
LT
1696/*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
dd41f596
IM
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
5e1576ed 1702static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1703{
fd2f4419
PZ
1704 p->on_rq = 0;
1705
1706 p->se.on_rq = 0;
dd41f596
IM
1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0;
f6cf891c 1709 p->se.prev_sum_exec_runtime = 0;
6c594c21 1710 p->se.nr_migrations = 0;
da7a735e 1711 p->se.vruntime = 0;
fd2f4419 1712 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1713
1714#ifdef CONFIG_SCHEDSTATS
41acab88 1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1716#endif
476d139c 1717
aab03e05
DF
1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1722 p->dl.dl_period = 0;
aab03e05
DF
1723 p->dl.flags = 0;
1724
fa717060 1725 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1726
e107be36
AK
1727#ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729#endif
cbee9f88
PZ
1730
1731#ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1734 p->mm->numa_scan_seq = 0;
1735 }
1736
5e1576ed
RR
1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else
1740 p->numa_preferred_nid = -1;
1741
cbee9f88
PZ
1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1745 p->numa_work.next = &p->numa_work;
ff1df896
RR
1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
cbee9f88 1753#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1754}
1755
1a687c2e 1756#ifdef CONFIG_NUMA_BALANCING
3105b86a 1757#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1758void set_numabalancing_state(bool enabled)
1759{
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764}
3105b86a
MG
1765#else
1766__read_mostly bool numabalancing_enabled;
1767
1768void set_numabalancing_state(bool enabled)
1769{
1770 numabalancing_enabled = enabled;
dd41f596 1771}
3105b86a 1772#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1773
1774#ifdef CONFIG_PROC_SYSCTL
1775int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777{
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793}
1794#endif
1795#endif
dd41f596
IM
1796
1797/*
1798 * fork()/clone()-time setup:
1799 */
aab03e05 1800int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1801{
0122ec5b 1802 unsigned long flags;
dd41f596
IM
1803 int cpu = get_cpu();
1804
5e1576ed 1805 __sched_fork(clone_flags, p);
06b83b5f 1806 /*
0017d735 1807 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
0017d735 1811 p->state = TASK_RUNNING;
dd41f596 1812
c350a04e
MG
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
b9dc29e7
MG
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1823 p->policy = SCHED_NORMAL;
6c697bdf 1824 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
6c697bdf 1831
b9dc29e7
MG
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
ca94c442 1838
aab03e05
DF
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
2ddbf952 1845 p->sched_class = &fair_sched_class;
aab03e05 1846 }
b29739f9 1847
cd29fe6f
PZ
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
86951599
PZ
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
0122ec5b 1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1859 set_task_cpu(p, cpu);
0122ec5b 1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1861
52f17b6c 1862#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1863 if (likely(sched_info_on()))
52f17b6c 1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1865#endif
3ca7a440
PZ
1866#if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
4866cde0 1868#endif
01028747 1869 init_task_preempt_count(p);
806c09a7 1870#ifdef CONFIG_SMP
917b627d 1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1873#endif
917b627d 1874
476d139c 1875 put_cpu();
aab03e05 1876 return 0;
1da177e4
LT
1877}
1878
332ac17e
DF
1879unsigned long to_ratio(u64 period, u64 runtime)
1880{
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893}
1894
1895#ifdef CONFIG_SMP
1896inline struct dl_bw *dl_bw_of(int i)
1897{
1898 return &cpu_rq(i)->rd->dl_bw;
1899}
1900
de212f18 1901static inline int dl_bw_cpus(int i)
332ac17e 1902{
de212f18
PZ
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
332ac17e
DF
1910}
1911#else
1912inline struct dl_bw *dl_bw_of(int i)
1913{
1914 return &cpu_rq(i)->dl.dl_bw;
1915}
1916
de212f18 1917static inline int dl_bw_cpus(int i)
332ac17e
DF
1918{
1919 return 1;
1920}
1921#endif
1922
1923static inline
1924void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925{
1926 dl_b->total_bw -= tsk_bw;
1927}
1928
1929static inline
1930void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931{
1932 dl_b->total_bw += tsk_bw;
1933}
1934
1935static inline
1936bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937{
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940}
1941
1942/*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952{
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 1955 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1958 int cpus, err = -1;
332ac17e
DF
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
de212f18 1969 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986}
1987
1988extern void init_dl_bw(struct dl_bw *dl_b);
1989
1da177e4
LT
1990/*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
3e51e3ed 1997void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1998{
1999 unsigned long flags;
dd41f596 2000 struct rq *rq;
fabf318e 2001
ab2515c4 2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2003#ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
fabf318e 2008 */
ac66f547 2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2010#endif
2011
a75cdaa9
AS
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
ab2515c4 2014 rq = __task_rq_lock(p);
cd29fe6f 2015 activate_task(rq, p, 0);
fd2f4419 2016 p->on_rq = 1;
89363381 2017 trace_sched_wakeup_new(p, true);
a7558e01 2018 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2019#ifdef CONFIG_SMP
efbbd05a
PZ
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
9a897c5a 2022#endif
0122ec5b 2023 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2024}
2025
e107be36
AK
2026#ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028/**
80dd99b3 2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2030 * @notifier: notifier struct to register
e107be36
AK
2031 */
2032void preempt_notifier_register(struct preempt_notifier *notifier)
2033{
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035}
2036EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038/**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2040 * @notifier: notifier struct to unregister
e107be36
AK
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045{
2046 hlist_del(&notifier->link);
2047}
2048EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051{
2052 struct preempt_notifier *notifier;
e107be36 2053
b67bfe0d 2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056}
2057
2058static void
2059fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061{
2062 struct preempt_notifier *notifier;
e107be36 2063
b67bfe0d 2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2065 notifier->ops->sched_out(notifier, next);
2066}
2067
6d6bc0ad 2068#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2069
2070static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071{
2072}
2073
2074static void
2075fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077{
2078}
2079
6d6bc0ad 2080#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2081
4866cde0
NP
2082/**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
421cee29 2085 * @prev: the current task that is being switched out
4866cde0
NP
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
e107be36
AK
2095static inline void
2096prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
4866cde0 2098{
895dd92c 2099 trace_sched_switch(prev, next);
43148951 2100 sched_info_switch(rq, prev, next);
fe4b04fa 2101 perf_event_task_sched_out(prev, next);
e107be36 2102 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105}
2106
1da177e4
LT
2107/**
2108 * finish_task_switch - clean up after a task-switch
344babaa 2109 * @rq: runqueue associated with task-switch
1da177e4
LT
2110 * @prev: the thread we just switched away from.
2111 *
4866cde0
NP
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2118 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
a9957449 2122static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2123 __releases(rq->lock)
2124{
1da177e4 2125 struct mm_struct *mm = rq->prev_mm;
55a101f8 2126 long prev_state;
1da177e4
LT
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
c394cc9f 2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
c394cc9f 2135 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
55a101f8 2141 prev_state = prev->state;
bf9fae9f 2142 vtime_task_switch(prev);
4866cde0 2143 finish_arch_switch(prev);
a8d757ef 2144 perf_event_task_sched_in(prev, current);
4866cde0 2145 finish_lock_switch(rq, prev);
01f23e16 2146 finish_arch_post_lock_switch();
e8fa1362 2147
e107be36 2148 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2149 if (mm)
2150 mmdrop(mm);
c394cc9f 2151 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev);
2154
c6fd91f0 2155 /*
2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list.
9761eea8 2158 */
c6fd91f0 2159 kprobe_flush_task(prev);
1da177e4 2160 put_task_struct(prev);
c6fd91f0 2161 }
99e5ada9
FW
2162
2163 tick_nohz_task_switch(current);
1da177e4
LT
2164}
2165
3f029d3c
GH
2166#ifdef CONFIG_SMP
2167
3f029d3c
GH
2168/* rq->lock is NOT held, but preemption is disabled */
2169static inline void post_schedule(struct rq *rq)
2170{
2171 if (rq->post_schedule) {
2172 unsigned long flags;
2173
05fa785c 2174 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq);
05fa785c 2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2178
2179 rq->post_schedule = 0;
2180 }
2181}
2182
2183#else
da19ab51 2184
3f029d3c
GH
2185static inline void post_schedule(struct rq *rq)
2186{
1da177e4
LT
2187}
2188
3f029d3c
GH
2189#endif
2190
1da177e4
LT
2191/**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
36c8b586 2195asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2196 __releases(rq->lock)
2197{
70b97a7f
IM
2198 struct rq *rq = this_rq();
2199
4866cde0 2200 finish_task_switch(rq, prev);
da19ab51 2201
3f029d3c
GH
2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch?
2205 */
2206 post_schedule(rq);
70b97a7f 2207
4866cde0
NP
2208#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable();
2211#endif
1da177e4 2212 if (current->set_child_tid)
b488893a 2213 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2214}
2215
2216/*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
dd41f596 2220static inline void
70b97a7f 2221context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2222 struct task_struct *next)
1da177e4 2223{
dd41f596 2224 struct mm_struct *mm, *oldmm;
1da177e4 2225
e107be36 2226 prepare_task_switch(rq, prev, next);
fe4b04fa 2227
dd41f596
IM
2228 mm = next->mm;
2229 oldmm = prev->active_mm;
9226d125
ZA
2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into
2233 * one hypercall.
2234 */
224101ed 2235 arch_start_context_switch(prev);
9226d125 2236
31915ab4 2237 if (!mm) {
1da177e4
LT
2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next);
2241 } else
2242 switch_mm(oldmm, mm, next);
2243
31915ab4 2244 if (!prev->mm) {
1da177e4 2245 prev->active_mm = NULL;
1da177e4
LT
2246 rq->prev_mm = oldmm;
2247 }
3a5f5e48
IM
2248 /*
2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here:
2253 */
2254#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2256#endif
1da177e4 2257
91d1aa43 2258 context_tracking_task_switch(prev, next);
1da177e4
LT
2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev);
2261
dd41f596
IM
2262 barrier();
2263 /*
2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid.
2267 */
2268 finish_task_switch(this_rq(), prev);
1da177e4
LT
2269}
2270
2271/*
1c3e8264 2272 * nr_running and nr_context_switches:
1da177e4
LT
2273 *
2274 * externally visible scheduler statistics: current number of runnable
1c3e8264 2275 * threads, total number of context switches performed since bootup.
1da177e4
LT
2276 */
2277unsigned long nr_running(void)
2278{
2279 unsigned long i, sum = 0;
2280
2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running;
2283
2284 return sum;
f711f609 2285}
1da177e4 2286
1da177e4 2287unsigned long long nr_context_switches(void)
46cb4b7c 2288{
cc94abfc
SR
2289 int i;
2290 unsigned long long sum = 0;
46cb4b7c 2291
0a945022 2292 for_each_possible_cpu(i)
1da177e4 2293 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2294
1da177e4
LT
2295 return sum;
2296}
483b4ee6 2297
1da177e4
LT
2298unsigned long nr_iowait(void)
2299{
2300 unsigned long i, sum = 0;
483b4ee6 2301
0a945022 2302 for_each_possible_cpu(i)
1da177e4 2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2304
1da177e4
LT
2305 return sum;
2306}
483b4ee6 2307
8c215bd3 2308unsigned long nr_iowait_cpu(int cpu)
69d25870 2309{
8c215bd3 2310 struct rq *this = cpu_rq(cpu);
69d25870
AV
2311 return atomic_read(&this->nr_iowait);
2312}
46cb4b7c 2313
dd41f596 2314#ifdef CONFIG_SMP
8a0be9ef 2315
46cb4b7c 2316/*
38022906
PZ
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2319 */
38022906 2320void sched_exec(void)
46cb4b7c 2321{
38022906 2322 struct task_struct *p = current;
1da177e4 2323 unsigned long flags;
0017d735 2324 int dest_cpu;
46cb4b7c 2325
8f42ced9 2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2328 if (dest_cpu == smp_processor_id())
2329 goto unlock;
38022906 2330
8f42ced9 2331 if (likely(cpu_active(dest_cpu))) {
969c7921 2332 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2333
8f42ced9
PZ
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2336 return;
2337 }
0017d735 2338unlock:
8f42ced9 2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2340}
dd41f596 2341
1da177e4
LT
2342#endif
2343
1da177e4 2344DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2345DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2346
2347EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2348EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2349
2350/*
c5f8d995 2351 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2352 * @p in case that task is currently running.
c5f8d995
HS
2353 *
2354 * Called with task_rq_lock() held on @rq.
1da177e4 2355 */
c5f8d995
HS
2356static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357{
2358 u64 ns = 0;
2359
2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq);
78becc27 2362 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2363 if ((s64)ns < 0)
2364 ns = 0;
2365 }
2366
2367 return ns;
2368}
2369
bb34d92f 2370unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2371{
1da177e4 2372 unsigned long flags;
41b86e9c 2373 struct rq *rq;
bb34d92f 2374 u64 ns = 0;
48f24c4d 2375
41b86e9c 2376 rq = task_rq_lock(p, &flags);
c5f8d995 2377 ns = do_task_delta_exec(p, rq);
0122ec5b 2378 task_rq_unlock(rq, p, &flags);
1508487e 2379
c5f8d995
HS
2380 return ns;
2381}
f06febc9 2382
c5f8d995
HS
2383/*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388unsigned long long task_sched_runtime(struct task_struct *p)
2389{
2390 unsigned long flags;
2391 struct rq *rq;
2392 u64 ns = 0;
2393
911b2898
PZ
2394#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok.
2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */
2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime;
2406#endif
2407
c5f8d995
HS
2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2410 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2411
2412 return ns;
2413}
48f24c4d 2414
7835b98b
CL
2415/*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
7835b98b
CL
2418 */
2419void scheduler_tick(void)
2420{
7835b98b
CL
2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu);
dd41f596 2423 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2424
2425 sched_clock_tick();
dd41f596 2426
05fa785c 2427 raw_spin_lock(&rq->lock);
3e51f33f 2428 update_rq_clock(rq);
fa85ae24 2429 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2430 update_cpu_load_active(rq);
05fa785c 2431 raw_spin_unlock(&rq->lock);
7835b98b 2432
e9d2b064 2433 perf_event_task_tick();
e220d2dc 2434
e418e1c2 2435#ifdef CONFIG_SMP
6eb57e0d 2436 rq->idle_balance = idle_cpu(cpu);
7caff66f 2437 trigger_load_balance(rq);
e418e1c2 2438#endif
265f22a9 2439 rq_last_tick_reset(rq);
1da177e4
LT
2440}
2441
265f22a9
FW
2442#ifdef CONFIG_NO_HZ_FULL
2443/**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
e69f6186
YB
2453 *
2454 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2455 */
2456u64 scheduler_tick_max_deferment(void)
2457{
2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461 next = rq->last_sched_tick + HZ;
2462
2463 if (time_before_eq(next, now))
2464 return 0;
2465
8fe8ff09 2466 return jiffies_to_nsecs(next - now);
1da177e4 2467}
265f22a9 2468#endif
1da177e4 2469
132380a0 2470notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2471{
2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3;
2476 }
2477 return addr;
2478}
1da177e4 2479
7e49fcce
SR
2480#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER))
2482
bdb43806 2483void __kprobes preempt_count_add(int val)
1da177e4 2484{
6cd8a4bb 2485#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2486 /*
2487 * Underflow?
2488 */
9a11b49a
IM
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return;
6cd8a4bb 2491#endif
bdb43806 2492 __preempt_count_add(val);
6cd8a4bb 2493#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2494 /*
2495 * Spinlock count overflowing soon?
2496 */
33859f7f
MOS
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10);
6cd8a4bb 2499#endif
8f47b187
TG
2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502#ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip;
2504#endif
2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 }
1da177e4 2507}
bdb43806 2508EXPORT_SYMBOL(preempt_count_add);
1da177e4 2509
bdb43806 2510void __kprobes preempt_count_sub(int val)
1da177e4 2511{
6cd8a4bb 2512#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2513 /*
2514 * Underflow?
2515 */
01e3eb82 2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2517 return;
1da177e4
LT
2518 /*
2519 * Is the spinlock portion underflowing?
2520 */
9a11b49a
IM
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK)))
2523 return;
6cd8a4bb 2524#endif
9a11b49a 2525
6cd8a4bb
SR
2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2528 __preempt_count_sub(val);
1da177e4 2529}
bdb43806 2530EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2531
2532#endif
2533
2534/*
dd41f596 2535 * Print scheduling while atomic bug:
1da177e4 2536 */
dd41f596 2537static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2538{
664dfa65
DJ
2539 if (oops_in_progress)
2540 return;
2541
3df0fc5b
PZ
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count());
838225b4 2544
dd41f596 2545 debug_show_held_locks(prev);
e21f5b15 2546 print_modules();
dd41f596
IM
2547 if (irqs_disabled())
2548 print_irqtrace_events(prev);
8f47b187
TG
2549#ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n");
2554 }
2555#endif
6135fc1e 2556 dump_stack();
373d4d09 2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2558}
1da177e4 2559
dd41f596
IM
2560/*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563static inline void schedule_debug(struct task_struct *prev)
2564{
1da177e4 2565 /*
41a2d6cf 2566 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not.
1da177e4 2569 */
192301e7 2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2571 __schedule_bug(prev);
b3fbab05 2572 rcu_sleep_check();
dd41f596 2573
1da177e4
LT
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2d72376b 2576 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2577}
2578
2579/*
2580 * Pick up the highest-prio task:
2581 */
2582static inline struct task_struct *
606dba2e 2583pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2584{
37e117c0 2585 const struct sched_class *class = &fair_sched_class;
dd41f596 2586 struct task_struct *p;
1da177e4
LT
2587
2588 /*
dd41f596
IM
2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly:
1da177e4 2591 */
37e117c0 2592 if (likely(prev->sched_class == class &&
38033c37 2593 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2594 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2595 if (unlikely(p == RETRY_TASK))
2596 goto again;
2597
2598 /* assumes fair_sched_class->next == idle_sched_class */
2599 if (unlikely(!p))
2600 p = idle_sched_class.pick_next_task(rq, prev);
2601
2602 return p;
1da177e4
LT
2603 }
2604
37e117c0 2605again:
34f971f6 2606 for_each_class(class) {
606dba2e 2607 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2608 if (p) {
2609 if (unlikely(p == RETRY_TASK))
2610 goto again;
dd41f596 2611 return p;
37e117c0 2612 }
dd41f596 2613 }
34f971f6
PZ
2614
2615 BUG(); /* the idle class will always have a runnable task */
dd41f596 2616}
1da177e4 2617
dd41f596 2618/*
c259e01a 2619 * __schedule() is the main scheduler function.
edde96ea
PE
2620 *
2621 * The main means of driving the scheduler and thus entering this function are:
2622 *
2623 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2624 *
2625 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2626 * paths. For example, see arch/x86/entry_64.S.
2627 *
2628 * To drive preemption between tasks, the scheduler sets the flag in timer
2629 * interrupt handler scheduler_tick().
2630 *
2631 * 3. Wakeups don't really cause entry into schedule(). They add a
2632 * task to the run-queue and that's it.
2633 *
2634 * Now, if the new task added to the run-queue preempts the current
2635 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2636 * called on the nearest possible occasion:
2637 *
2638 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2639 *
2640 * - in syscall or exception context, at the next outmost
2641 * preempt_enable(). (this might be as soon as the wake_up()'s
2642 * spin_unlock()!)
2643 *
2644 * - in IRQ context, return from interrupt-handler to
2645 * preemptible context
2646 *
2647 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2648 * then at the next:
2649 *
2650 * - cond_resched() call
2651 * - explicit schedule() call
2652 * - return from syscall or exception to user-space
2653 * - return from interrupt-handler to user-space
dd41f596 2654 */
c259e01a 2655static void __sched __schedule(void)
dd41f596
IM
2656{
2657 struct task_struct *prev, *next;
67ca7bde 2658 unsigned long *switch_count;
dd41f596 2659 struct rq *rq;
31656519 2660 int cpu;
dd41f596 2661
ff743345
PZ
2662need_resched:
2663 preempt_disable();
dd41f596
IM
2664 cpu = smp_processor_id();
2665 rq = cpu_rq(cpu);
25502a6c 2666 rcu_note_context_switch(cpu);
dd41f596 2667 prev = rq->curr;
dd41f596 2668
dd41f596 2669 schedule_debug(prev);
1da177e4 2670
31656519 2671 if (sched_feat(HRTICK))
f333fdc9 2672 hrtick_clear(rq);
8f4d37ec 2673
e0acd0a6
ON
2674 /*
2675 * Make sure that signal_pending_state()->signal_pending() below
2676 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2677 * done by the caller to avoid the race with signal_wake_up().
2678 */
2679 smp_mb__before_spinlock();
05fa785c 2680 raw_spin_lock_irq(&rq->lock);
1da177e4 2681
246d86b5 2682 switch_count = &prev->nivcsw;
1da177e4 2683 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2684 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2685 prev->state = TASK_RUNNING;
21aa9af0 2686 } else {
2acca55e
PZ
2687 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2688 prev->on_rq = 0;
2689
21aa9af0 2690 /*
2acca55e
PZ
2691 * If a worker went to sleep, notify and ask workqueue
2692 * whether it wants to wake up a task to maintain
2693 * concurrency.
21aa9af0
TH
2694 */
2695 if (prev->flags & PF_WQ_WORKER) {
2696 struct task_struct *to_wakeup;
2697
2698 to_wakeup = wq_worker_sleeping(prev, cpu);
2699 if (to_wakeup)
2700 try_to_wake_up_local(to_wakeup);
2701 }
21aa9af0 2702 }
dd41f596 2703 switch_count = &prev->nvcsw;
1da177e4
LT
2704 }
2705
606dba2e
PZ
2706 if (prev->on_rq || rq->skip_clock_update < 0)
2707 update_rq_clock(rq);
2708
2709 next = pick_next_task(rq, prev);
f26f9aff 2710 clear_tsk_need_resched(prev);
f27dde8d 2711 clear_preempt_need_resched();
f26f9aff 2712 rq->skip_clock_update = 0;
1da177e4 2713
1da177e4 2714 if (likely(prev != next)) {
1da177e4
LT
2715 rq->nr_switches++;
2716 rq->curr = next;
2717 ++*switch_count;
2718
dd41f596 2719 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2720 /*
246d86b5
ON
2721 * The context switch have flipped the stack from under us
2722 * and restored the local variables which were saved when
2723 * this task called schedule() in the past. prev == current
2724 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2725 */
2726 cpu = smp_processor_id();
2727 rq = cpu_rq(cpu);
1da177e4 2728 } else
05fa785c 2729 raw_spin_unlock_irq(&rq->lock);
1da177e4 2730
3f029d3c 2731 post_schedule(rq);
1da177e4 2732
ba74c144 2733 sched_preempt_enable_no_resched();
ff743345 2734 if (need_resched())
1da177e4
LT
2735 goto need_resched;
2736}
c259e01a 2737
9c40cef2
TG
2738static inline void sched_submit_work(struct task_struct *tsk)
2739{
3c7d5184 2740 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2741 return;
2742 /*
2743 * If we are going to sleep and we have plugged IO queued,
2744 * make sure to submit it to avoid deadlocks.
2745 */
2746 if (blk_needs_flush_plug(tsk))
2747 blk_schedule_flush_plug(tsk);
2748}
2749
6ebbe7a0 2750asmlinkage void __sched schedule(void)
c259e01a 2751{
9c40cef2
TG
2752 struct task_struct *tsk = current;
2753
2754 sched_submit_work(tsk);
c259e01a
TG
2755 __schedule();
2756}
1da177e4
LT
2757EXPORT_SYMBOL(schedule);
2758
91d1aa43 2759#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2760asmlinkage void __sched schedule_user(void)
2761{
2762 /*
2763 * If we come here after a random call to set_need_resched(),
2764 * or we have been woken up remotely but the IPI has not yet arrived,
2765 * we haven't yet exited the RCU idle mode. Do it here manually until
2766 * we find a better solution.
2767 */
91d1aa43 2768 user_exit();
20ab65e3 2769 schedule();
91d1aa43 2770 user_enter();
20ab65e3
FW
2771}
2772#endif
2773
c5491ea7
TG
2774/**
2775 * schedule_preempt_disabled - called with preemption disabled
2776 *
2777 * Returns with preemption disabled. Note: preempt_count must be 1
2778 */
2779void __sched schedule_preempt_disabled(void)
2780{
ba74c144 2781 sched_preempt_enable_no_resched();
c5491ea7
TG
2782 schedule();
2783 preempt_disable();
2784}
2785
1da177e4
LT
2786#ifdef CONFIG_PREEMPT
2787/*
2ed6e34f 2788 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2789 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2790 * occur there and call schedule directly.
2791 */
d1f74e20 2792asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2793{
1da177e4
LT
2794 /*
2795 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2796 * we do not want to preempt the current task. Just return..
1da177e4 2797 */
fbb00b56 2798 if (likely(!preemptible()))
1da177e4
LT
2799 return;
2800
3a5c359a 2801 do {
bdb43806 2802 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2803 __schedule();
bdb43806 2804 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2805
3a5c359a
AK
2806 /*
2807 * Check again in case we missed a preemption opportunity
2808 * between schedule and now.
2809 */
2810 barrier();
5ed0cec0 2811 } while (need_resched());
1da177e4 2812}
1da177e4 2813EXPORT_SYMBOL(preempt_schedule);
32e475d7 2814#endif /* CONFIG_PREEMPT */
1da177e4
LT
2815
2816/*
2ed6e34f 2817 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2818 * off of irq context.
2819 * Note, that this is called and return with irqs disabled. This will
2820 * protect us against recursive calling from irq.
2821 */
2822asmlinkage void __sched preempt_schedule_irq(void)
2823{
b22366cd 2824 enum ctx_state prev_state;
6478d880 2825
2ed6e34f 2826 /* Catch callers which need to be fixed */
f27dde8d 2827 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2828
b22366cd
FW
2829 prev_state = exception_enter();
2830
3a5c359a 2831 do {
bdb43806 2832 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2833 local_irq_enable();
c259e01a 2834 __schedule();
3a5c359a 2835 local_irq_disable();
bdb43806 2836 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2837
3a5c359a
AK
2838 /*
2839 * Check again in case we missed a preemption opportunity
2840 * between schedule and now.
2841 */
2842 barrier();
5ed0cec0 2843 } while (need_resched());
b22366cd
FW
2844
2845 exception_exit(prev_state);
1da177e4
LT
2846}
2847
63859d4f 2848int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2849 void *key)
1da177e4 2850{
63859d4f 2851 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2852}
1da177e4
LT
2853EXPORT_SYMBOL(default_wake_function);
2854
b29739f9
IM
2855#ifdef CONFIG_RT_MUTEXES
2856
2857/*
2858 * rt_mutex_setprio - set the current priority of a task
2859 * @p: task
2860 * @prio: prio value (kernel-internal form)
2861 *
2862 * This function changes the 'effective' priority of a task. It does
2863 * not touch ->normal_prio like __setscheduler().
2864 *
c365c292
TG
2865 * Used by the rt_mutex code to implement priority inheritance
2866 * logic. Call site only calls if the priority of the task changed.
b29739f9 2867 */
36c8b586 2868void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2869{
2d3d891d 2870 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2871 struct rq *rq;
83ab0aa0 2872 const struct sched_class *prev_class;
b29739f9 2873
aab03e05 2874 BUG_ON(prio > MAX_PRIO);
b29739f9 2875
0122ec5b 2876 rq = __task_rq_lock(p);
b29739f9 2877
1c4dd99b
TG
2878 /*
2879 * Idle task boosting is a nono in general. There is one
2880 * exception, when PREEMPT_RT and NOHZ is active:
2881 *
2882 * The idle task calls get_next_timer_interrupt() and holds
2883 * the timer wheel base->lock on the CPU and another CPU wants
2884 * to access the timer (probably to cancel it). We can safely
2885 * ignore the boosting request, as the idle CPU runs this code
2886 * with interrupts disabled and will complete the lock
2887 * protected section without being interrupted. So there is no
2888 * real need to boost.
2889 */
2890 if (unlikely(p == rq->idle)) {
2891 WARN_ON(p != rq->curr);
2892 WARN_ON(p->pi_blocked_on);
2893 goto out_unlock;
2894 }
2895
a8027073 2896 trace_sched_pi_setprio(p, prio);
2d3d891d 2897 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2898 oldprio = p->prio;
83ab0aa0 2899 prev_class = p->sched_class;
fd2f4419 2900 on_rq = p->on_rq;
051a1d1a 2901 running = task_current(rq, p);
0e1f3483 2902 if (on_rq)
69be72c1 2903 dequeue_task(rq, p, 0);
0e1f3483
HS
2904 if (running)
2905 p->sched_class->put_prev_task(rq, p);
dd41f596 2906
2d3d891d
DF
2907 /*
2908 * Boosting condition are:
2909 * 1. -rt task is running and holds mutex A
2910 * --> -dl task blocks on mutex A
2911 *
2912 * 2. -dl task is running and holds mutex A
2913 * --> -dl task blocks on mutex A and could preempt the
2914 * running task
2915 */
2916 if (dl_prio(prio)) {
2917 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2918 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2919 p->dl.dl_boosted = 1;
2920 p->dl.dl_throttled = 0;
2921 enqueue_flag = ENQUEUE_REPLENISH;
2922 } else
2923 p->dl.dl_boosted = 0;
aab03e05 2924 p->sched_class = &dl_sched_class;
2d3d891d
DF
2925 } else if (rt_prio(prio)) {
2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0;
2928 if (oldprio < prio)
2929 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2930 p->sched_class = &rt_sched_class;
2d3d891d
DF
2931 } else {
2932 if (dl_prio(oldprio))
2933 p->dl.dl_boosted = 0;
dd41f596 2934 p->sched_class = &fair_sched_class;
2d3d891d 2935 }
dd41f596 2936
b29739f9
IM
2937 p->prio = prio;
2938
0e1f3483
HS
2939 if (running)
2940 p->sched_class->set_curr_task(rq);
da7a735e 2941 if (on_rq)
2d3d891d 2942 enqueue_task(rq, p, enqueue_flag);
cb469845 2943
da7a735e 2944 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2945out_unlock:
0122ec5b 2946 __task_rq_unlock(rq);
b29739f9 2947}
b29739f9 2948#endif
d50dde5a 2949
36c8b586 2950void set_user_nice(struct task_struct *p, long nice)
1da177e4 2951{
dd41f596 2952 int old_prio, delta, on_rq;
1da177e4 2953 unsigned long flags;
70b97a7f 2954 struct rq *rq;
1da177e4 2955
75e45d51 2956 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2957 return;
2958 /*
2959 * We have to be careful, if called from sys_setpriority(),
2960 * the task might be in the middle of scheduling on another CPU.
2961 */
2962 rq = task_rq_lock(p, &flags);
2963 /*
2964 * The RT priorities are set via sched_setscheduler(), but we still
2965 * allow the 'normal' nice value to be set - but as expected
2966 * it wont have any effect on scheduling until the task is
aab03e05 2967 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 2968 */
aab03e05 2969 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
2970 p->static_prio = NICE_TO_PRIO(nice);
2971 goto out_unlock;
2972 }
fd2f4419 2973 on_rq = p->on_rq;
c09595f6 2974 if (on_rq)
69be72c1 2975 dequeue_task(rq, p, 0);
1da177e4 2976
1da177e4 2977 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2978 set_load_weight(p);
b29739f9
IM
2979 old_prio = p->prio;
2980 p->prio = effective_prio(p);
2981 delta = p->prio - old_prio;
1da177e4 2982
dd41f596 2983 if (on_rq) {
371fd7e7 2984 enqueue_task(rq, p, 0);
1da177e4 2985 /*
d5f9f942
AM
2986 * If the task increased its priority or is running and
2987 * lowered its priority, then reschedule its CPU:
1da177e4 2988 */
d5f9f942 2989 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2990 resched_task(rq->curr);
2991 }
2992out_unlock:
0122ec5b 2993 task_rq_unlock(rq, p, &flags);
1da177e4 2994}
1da177e4
LT
2995EXPORT_SYMBOL(set_user_nice);
2996
e43379f1
MM
2997/*
2998 * can_nice - check if a task can reduce its nice value
2999 * @p: task
3000 * @nice: nice value
3001 */
36c8b586 3002int can_nice(const struct task_struct *p, const int nice)
e43379f1 3003{
024f4747
MM
3004 /* convert nice value [19,-20] to rlimit style value [1,40] */
3005 int nice_rlim = 20 - nice;
48f24c4d 3006
78d7d407 3007 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3008 capable(CAP_SYS_NICE));
3009}
3010
1da177e4
LT
3011#ifdef __ARCH_WANT_SYS_NICE
3012
3013/*
3014 * sys_nice - change the priority of the current process.
3015 * @increment: priority increment
3016 *
3017 * sys_setpriority is a more generic, but much slower function that
3018 * does similar things.
3019 */
5add95d4 3020SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3021{
48f24c4d 3022 long nice, retval;
1da177e4
LT
3023
3024 /*
3025 * Setpriority might change our priority at the same moment.
3026 * We don't have to worry. Conceptually one call occurs first
3027 * and we have a single winner.
3028 */
e43379f1
MM
3029 if (increment < -40)
3030 increment = -40;
1da177e4
LT
3031 if (increment > 40)
3032 increment = 40;
3033
d0ea0268 3034 nice = task_nice(current) + increment;
75e45d51
DY
3035 if (nice < MIN_NICE)
3036 nice = MIN_NICE;
3037 if (nice > MAX_NICE)
3038 nice = MAX_NICE;
1da177e4 3039
e43379f1
MM
3040 if (increment < 0 && !can_nice(current, nice))
3041 return -EPERM;
3042
1da177e4
LT
3043 retval = security_task_setnice(current, nice);
3044 if (retval)
3045 return retval;
3046
3047 set_user_nice(current, nice);
3048 return 0;
3049}
3050
3051#endif
3052
3053/**
3054 * task_prio - return the priority value of a given task.
3055 * @p: the task in question.
3056 *
e69f6186 3057 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3058 * RT tasks are offset by -200. Normal tasks are centered
3059 * around 0, value goes from -16 to +15.
3060 */
36c8b586 3061int task_prio(const struct task_struct *p)
1da177e4
LT
3062{
3063 return p->prio - MAX_RT_PRIO;
3064}
3065
1da177e4
LT
3066/**
3067 * idle_cpu - is a given cpu idle currently?
3068 * @cpu: the processor in question.
e69f6186
YB
3069 *
3070 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3071 */
3072int idle_cpu(int cpu)
3073{
908a3283
TG
3074 struct rq *rq = cpu_rq(cpu);
3075
3076 if (rq->curr != rq->idle)
3077 return 0;
3078
3079 if (rq->nr_running)
3080 return 0;
3081
3082#ifdef CONFIG_SMP
3083 if (!llist_empty(&rq->wake_list))
3084 return 0;
3085#endif
3086
3087 return 1;
1da177e4
LT
3088}
3089
1da177e4
LT
3090/**
3091 * idle_task - return the idle task for a given cpu.
3092 * @cpu: the processor in question.
e69f6186
YB
3093 *
3094 * Return: The idle task for the cpu @cpu.
1da177e4 3095 */
36c8b586 3096struct task_struct *idle_task(int cpu)
1da177e4
LT
3097{
3098 return cpu_rq(cpu)->idle;
3099}
3100
3101/**
3102 * find_process_by_pid - find a process with a matching PID value.
3103 * @pid: the pid in question.
e69f6186
YB
3104 *
3105 * The task of @pid, if found. %NULL otherwise.
1da177e4 3106 */
a9957449 3107static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3108{
228ebcbe 3109 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3110}
3111
aab03e05
DF
3112/*
3113 * This function initializes the sched_dl_entity of a newly becoming
3114 * SCHED_DEADLINE task.
3115 *
3116 * Only the static values are considered here, the actual runtime and the
3117 * absolute deadline will be properly calculated when the task is enqueued
3118 * for the first time with its new policy.
3119 */
3120static void
3121__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3122{
3123 struct sched_dl_entity *dl_se = &p->dl;
3124
3125 init_dl_task_timer(dl_se);
3126 dl_se->dl_runtime = attr->sched_runtime;
3127 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3128 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3129 dl_se->flags = attr->sched_flags;
332ac17e 3130 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3131 dl_se->dl_throttled = 0;
3132 dl_se->dl_new = 1;
5bfd126e 3133 dl_se->dl_yielded = 0;
aab03e05
DF
3134}
3135
c365c292
TG
3136static void __setscheduler_params(struct task_struct *p,
3137 const struct sched_attr *attr)
1da177e4 3138{
d50dde5a
DF
3139 int policy = attr->sched_policy;
3140
39fd8fd2
PZ
3141 if (policy == -1) /* setparam */
3142 policy = p->policy;
3143
1da177e4 3144 p->policy = policy;
d50dde5a 3145
aab03e05
DF
3146 if (dl_policy(policy))
3147 __setparam_dl(p, attr);
39fd8fd2 3148 else if (fair_policy(policy))
d50dde5a
DF
3149 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3150
39fd8fd2
PZ
3151 /*
3152 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3153 * !rt_policy. Always setting this ensures that things like
3154 * getparam()/getattr() don't report silly values for !rt tasks.
3155 */
3156 p->rt_priority = attr->sched_priority;
383afd09 3157 p->normal_prio = normal_prio(p);
c365c292
TG
3158 set_load_weight(p);
3159}
39fd8fd2 3160
c365c292
TG
3161/* Actually do priority change: must hold pi & rq lock. */
3162static void __setscheduler(struct rq *rq, struct task_struct *p,
3163 const struct sched_attr *attr)
3164{
3165 __setscheduler_params(p, attr);
d50dde5a 3166
383afd09
SR
3167 /*
3168 * If we get here, there was no pi waiters boosting the
3169 * task. It is safe to use the normal prio.
3170 */
3171 p->prio = normal_prio(p);
3172
aab03e05
DF
3173 if (dl_prio(p->prio))
3174 p->sched_class = &dl_sched_class;
3175 else if (rt_prio(p->prio))
ffd44db5
PZ
3176 p->sched_class = &rt_sched_class;
3177 else
3178 p->sched_class = &fair_sched_class;
1da177e4 3179}
aab03e05
DF
3180
3181static void
3182__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3183{
3184 struct sched_dl_entity *dl_se = &p->dl;
3185
3186 attr->sched_priority = p->rt_priority;
3187 attr->sched_runtime = dl_se->dl_runtime;
3188 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3189 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3190 attr->sched_flags = dl_se->flags;
3191}
3192
3193/*
3194 * This function validates the new parameters of a -deadline task.
3195 * We ask for the deadline not being zero, and greater or equal
755378a4 3196 * than the runtime, as well as the period of being zero or
332ac17e
DF
3197 * greater than deadline. Furthermore, we have to be sure that
3198 * user parameters are above the internal resolution (1us); we
3199 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3200 */
3201static bool
3202__checkparam_dl(const struct sched_attr *attr)
3203{
3204 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3205 (attr->sched_period == 0 ||
3206 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3207 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3208 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3209}
3210
c69e8d9c
DH
3211/*
3212 * check the target process has a UID that matches the current process's
3213 */
3214static bool check_same_owner(struct task_struct *p)
3215{
3216 const struct cred *cred = current_cred(), *pcred;
3217 bool match;
3218
3219 rcu_read_lock();
3220 pcred = __task_cred(p);
9c806aa0
EB
3221 match = (uid_eq(cred->euid, pcred->euid) ||
3222 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3223 rcu_read_unlock();
3224 return match;
3225}
3226
d50dde5a
DF
3227static int __sched_setscheduler(struct task_struct *p,
3228 const struct sched_attr *attr,
3229 bool user)
1da177e4 3230{
383afd09
SR
3231 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3232 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3233 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3234 int policy = attr->sched_policy;
1da177e4 3235 unsigned long flags;
83ab0aa0 3236 const struct sched_class *prev_class;
70b97a7f 3237 struct rq *rq;
ca94c442 3238 int reset_on_fork;
1da177e4 3239
66e5393a
SR
3240 /* may grab non-irq protected spin_locks */
3241 BUG_ON(in_interrupt());
1da177e4
LT
3242recheck:
3243 /* double check policy once rq lock held */
ca94c442
LP
3244 if (policy < 0) {
3245 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3246 policy = oldpolicy = p->policy;
ca94c442 3247 } else {
7479f3c9 3248 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3249
aab03e05
DF
3250 if (policy != SCHED_DEADLINE &&
3251 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3252 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3253 policy != SCHED_IDLE)
3254 return -EINVAL;
3255 }
3256
7479f3c9
PZ
3257 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3258 return -EINVAL;
3259
1da177e4
LT
3260 /*
3261 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3263 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3264 */
0bb040a4 3265 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3266 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3267 return -EINVAL;
aab03e05
DF
3268 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3269 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3270 return -EINVAL;
3271
37e4ab3f
OC
3272 /*
3273 * Allow unprivileged RT tasks to decrease priority:
3274 */
961ccddd 3275 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3276 if (fair_policy(policy)) {
d0ea0268 3277 if (attr->sched_nice < task_nice(p) &&
eaad4513 3278 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3279 return -EPERM;
3280 }
3281
e05606d3 3282 if (rt_policy(policy)) {
a44702e8
ON
3283 unsigned long rlim_rtprio =
3284 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3285
3286 /* can't set/change the rt policy */
3287 if (policy != p->policy && !rlim_rtprio)
3288 return -EPERM;
3289
3290 /* can't increase priority */
d50dde5a
DF
3291 if (attr->sched_priority > p->rt_priority &&
3292 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3293 return -EPERM;
3294 }
c02aa73b 3295
d44753b8
JL
3296 /*
3297 * Can't set/change SCHED_DEADLINE policy at all for now
3298 * (safest behavior); in the future we would like to allow
3299 * unprivileged DL tasks to increase their relative deadline
3300 * or reduce their runtime (both ways reducing utilization)
3301 */
3302 if (dl_policy(policy))
3303 return -EPERM;
3304
dd41f596 3305 /*
c02aa73b
DH
3306 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3307 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3308 */
c02aa73b 3309 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3310 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3311 return -EPERM;
3312 }
5fe1d75f 3313
37e4ab3f 3314 /* can't change other user's priorities */
c69e8d9c 3315 if (!check_same_owner(p))
37e4ab3f 3316 return -EPERM;
ca94c442
LP
3317
3318 /* Normal users shall not reset the sched_reset_on_fork flag */
3319 if (p->sched_reset_on_fork && !reset_on_fork)
3320 return -EPERM;
37e4ab3f 3321 }
1da177e4 3322
725aad24 3323 if (user) {
b0ae1981 3324 retval = security_task_setscheduler(p);
725aad24
JF
3325 if (retval)
3326 return retval;
3327 }
3328
b29739f9
IM
3329 /*
3330 * make sure no PI-waiters arrive (or leave) while we are
3331 * changing the priority of the task:
0122ec5b 3332 *
25985edc 3333 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3334 * runqueue lock must be held.
3335 */
0122ec5b 3336 rq = task_rq_lock(p, &flags);
dc61b1d6 3337
34f971f6
PZ
3338 /*
3339 * Changing the policy of the stop threads its a very bad idea
3340 */
3341 if (p == rq->stop) {
0122ec5b 3342 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3343 return -EINVAL;
3344 }
3345
a51e9198 3346 /*
d6b1e911
TG
3347 * If not changing anything there's no need to proceed further,
3348 * but store a possible modification of reset_on_fork.
a51e9198 3349 */
d50dde5a 3350 if (unlikely(policy == p->policy)) {
d0ea0268 3351 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3352 goto change;
3353 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3354 goto change;
aab03e05
DF
3355 if (dl_policy(policy))
3356 goto change;
d50dde5a 3357
d6b1e911 3358 p->sched_reset_on_fork = reset_on_fork;
45afb173 3359 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3360 return 0;
3361 }
d50dde5a 3362change:
a51e9198 3363
dc61b1d6 3364 if (user) {
332ac17e 3365#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3366 /*
3367 * Do not allow realtime tasks into groups that have no runtime
3368 * assigned.
3369 */
3370 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3371 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3372 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3373 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3374 return -EPERM;
3375 }
dc61b1d6 3376#endif
332ac17e
DF
3377#ifdef CONFIG_SMP
3378 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3379 cpumask_t *span = rq->rd->span;
332ac17e
DF
3380
3381 /*
3382 * Don't allow tasks with an affinity mask smaller than
3383 * the entire root_domain to become SCHED_DEADLINE. We
3384 * will also fail if there's no bandwidth available.
3385 */
e4099a5e
PZ
3386 if (!cpumask_subset(span, &p->cpus_allowed) ||
3387 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3388 task_rq_unlock(rq, p, &flags);
3389 return -EPERM;
3390 }
3391 }
3392#endif
3393 }
dc61b1d6 3394
1da177e4
LT
3395 /* recheck policy now with rq lock held */
3396 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3397 policy = oldpolicy = -1;
0122ec5b 3398 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3399 goto recheck;
3400 }
332ac17e
DF
3401
3402 /*
3403 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3404 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3405 * is available.
3406 */
e4099a5e 3407 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3408 task_rq_unlock(rq, p, &flags);
3409 return -EBUSY;
3410 }
3411
c365c292
TG
3412 p->sched_reset_on_fork = reset_on_fork;
3413 oldprio = p->prio;
3414
3415 /*
3416 * Special case for priority boosted tasks.
3417 *
3418 * If the new priority is lower or equal (user space view)
3419 * than the current (boosted) priority, we just store the new
3420 * normal parameters and do not touch the scheduler class and
3421 * the runqueue. This will be done when the task deboost
3422 * itself.
3423 */
3424 if (rt_mutex_check_prio(p, newprio)) {
3425 __setscheduler_params(p, attr);
3426 task_rq_unlock(rq, p, &flags);
3427 return 0;
3428 }
3429
fd2f4419 3430 on_rq = p->on_rq;
051a1d1a 3431 running = task_current(rq, p);
0e1f3483 3432 if (on_rq)
4ca9b72b 3433 dequeue_task(rq, p, 0);
0e1f3483
HS
3434 if (running)
3435 p->sched_class->put_prev_task(rq, p);
f6b53205 3436
83ab0aa0 3437 prev_class = p->sched_class;
d50dde5a 3438 __setscheduler(rq, p, attr);
f6b53205 3439
0e1f3483
HS
3440 if (running)
3441 p->sched_class->set_curr_task(rq);
81a44c54
TG
3442 if (on_rq) {
3443 /*
3444 * We enqueue to tail when the priority of a task is
3445 * increased (user space view).
3446 */
3447 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3448 }
cb469845 3449
da7a735e 3450 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3451 task_rq_unlock(rq, p, &flags);
b29739f9 3452
95e02ca9
TG
3453 rt_mutex_adjust_pi(p);
3454
1da177e4
LT
3455 return 0;
3456}
961ccddd 3457
7479f3c9
PZ
3458static int _sched_setscheduler(struct task_struct *p, int policy,
3459 const struct sched_param *param, bool check)
3460{
3461 struct sched_attr attr = {
3462 .sched_policy = policy,
3463 .sched_priority = param->sched_priority,
3464 .sched_nice = PRIO_TO_NICE(p->static_prio),
3465 };
3466
3467 /*
3468 * Fixup the legacy SCHED_RESET_ON_FORK hack
3469 */
3470 if (policy & SCHED_RESET_ON_FORK) {
3471 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3472 policy &= ~SCHED_RESET_ON_FORK;
3473 attr.sched_policy = policy;
3474 }
3475
3476 return __sched_setscheduler(p, &attr, check);
3477}
961ccddd
RR
3478/**
3479 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3480 * @p: the task in question.
3481 * @policy: new policy.
3482 * @param: structure containing the new RT priority.
3483 *
e69f6186
YB
3484 * Return: 0 on success. An error code otherwise.
3485 *
961ccddd
RR
3486 * NOTE that the task may be already dead.
3487 */
3488int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3489 const struct sched_param *param)
961ccddd 3490{
7479f3c9 3491 return _sched_setscheduler(p, policy, param, true);
961ccddd 3492}
1da177e4
LT
3493EXPORT_SYMBOL_GPL(sched_setscheduler);
3494
d50dde5a
DF
3495int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3496{
3497 return __sched_setscheduler(p, attr, true);
3498}
3499EXPORT_SYMBOL_GPL(sched_setattr);
3500
961ccddd
RR
3501/**
3502 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3503 * @p: the task in question.
3504 * @policy: new policy.
3505 * @param: structure containing the new RT priority.
3506 *
3507 * Just like sched_setscheduler, only don't bother checking if the
3508 * current context has permission. For example, this is needed in
3509 * stop_machine(): we create temporary high priority worker threads,
3510 * but our caller might not have that capability.
e69f6186
YB
3511 *
3512 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3513 */
3514int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3515 const struct sched_param *param)
961ccddd 3516{
7479f3c9 3517 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3518}
3519
95cdf3b7
IM
3520static int
3521do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3522{
1da177e4
LT
3523 struct sched_param lparam;
3524 struct task_struct *p;
36c8b586 3525 int retval;
1da177e4
LT
3526
3527 if (!param || pid < 0)
3528 return -EINVAL;
3529 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3530 return -EFAULT;
5fe1d75f
ON
3531
3532 rcu_read_lock();
3533 retval = -ESRCH;
1da177e4 3534 p = find_process_by_pid(pid);
5fe1d75f
ON
3535 if (p != NULL)
3536 retval = sched_setscheduler(p, policy, &lparam);
3537 rcu_read_unlock();
36c8b586 3538
1da177e4
LT
3539 return retval;
3540}
3541
d50dde5a
DF
3542/*
3543 * Mimics kernel/events/core.c perf_copy_attr().
3544 */
3545static int sched_copy_attr(struct sched_attr __user *uattr,
3546 struct sched_attr *attr)
3547{
3548 u32 size;
3549 int ret;
3550
3551 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3552 return -EFAULT;
3553
3554 /*
3555 * zero the full structure, so that a short copy will be nice.
3556 */
3557 memset(attr, 0, sizeof(*attr));
3558
3559 ret = get_user(size, &uattr->size);
3560 if (ret)
3561 return ret;
3562
3563 if (size > PAGE_SIZE) /* silly large */
3564 goto err_size;
3565
3566 if (!size) /* abi compat */
3567 size = SCHED_ATTR_SIZE_VER0;
3568
3569 if (size < SCHED_ATTR_SIZE_VER0)
3570 goto err_size;
3571
3572 /*
3573 * If we're handed a bigger struct than we know of,
3574 * ensure all the unknown bits are 0 - i.e. new
3575 * user-space does not rely on any kernel feature
3576 * extensions we dont know about yet.
3577 */
3578 if (size > sizeof(*attr)) {
3579 unsigned char __user *addr;
3580 unsigned char __user *end;
3581 unsigned char val;
3582
3583 addr = (void __user *)uattr + sizeof(*attr);
3584 end = (void __user *)uattr + size;
3585
3586 for (; addr < end; addr++) {
3587 ret = get_user(val, addr);
3588 if (ret)
3589 return ret;
3590 if (val)
3591 goto err_size;
3592 }
3593 size = sizeof(*attr);
3594 }
3595
3596 ret = copy_from_user(attr, uattr, size);
3597 if (ret)
3598 return -EFAULT;
3599
3600 /*
3601 * XXX: do we want to be lenient like existing syscalls; or do we want
3602 * to be strict and return an error on out-of-bounds values?
3603 */
75e45d51 3604 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a
DF
3605
3606out:
3607 return ret;
3608
3609err_size:
3610 put_user(sizeof(*attr), &uattr->size);
3611 ret = -E2BIG;
3612 goto out;
3613}
3614
1da177e4
LT
3615/**
3616 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3617 * @pid: the pid in question.
3618 * @policy: new policy.
3619 * @param: structure containing the new RT priority.
e69f6186
YB
3620 *
3621 * Return: 0 on success. An error code otherwise.
1da177e4 3622 */
5add95d4
HC
3623SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3624 struct sched_param __user *, param)
1da177e4 3625{
c21761f1
JB
3626 /* negative values for policy are not valid */
3627 if (policy < 0)
3628 return -EINVAL;
3629
1da177e4
LT
3630 return do_sched_setscheduler(pid, policy, param);
3631}
3632
3633/**
3634 * sys_sched_setparam - set/change the RT priority of a thread
3635 * @pid: the pid in question.
3636 * @param: structure containing the new RT priority.
e69f6186
YB
3637 *
3638 * Return: 0 on success. An error code otherwise.
1da177e4 3639 */
5add95d4 3640SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3641{
3642 return do_sched_setscheduler(pid, -1, param);
3643}
3644
d50dde5a
DF
3645/**
3646 * sys_sched_setattr - same as above, but with extended sched_attr
3647 * @pid: the pid in question.
5778fccf 3648 * @uattr: structure containing the extended parameters.
db66d756 3649 * @flags: for future extension.
d50dde5a 3650 */
6d35ab48
PZ
3651SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3652 unsigned int, flags)
d50dde5a
DF
3653{
3654 struct sched_attr attr;
3655 struct task_struct *p;
3656 int retval;
3657
6d35ab48 3658 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3659 return -EINVAL;
3660
3661 if (sched_copy_attr(uattr, &attr))
3662 return -EFAULT;
3663
3664 rcu_read_lock();
3665 retval = -ESRCH;
3666 p = find_process_by_pid(pid);
3667 if (p != NULL)
3668 retval = sched_setattr(p, &attr);
3669 rcu_read_unlock();
3670
3671 return retval;
3672}
3673
1da177e4
LT
3674/**
3675 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3676 * @pid: the pid in question.
e69f6186
YB
3677 *
3678 * Return: On success, the policy of the thread. Otherwise, a negative error
3679 * code.
1da177e4 3680 */
5add95d4 3681SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3682{
36c8b586 3683 struct task_struct *p;
3a5c359a 3684 int retval;
1da177e4
LT
3685
3686 if (pid < 0)
3a5c359a 3687 return -EINVAL;
1da177e4
LT
3688
3689 retval = -ESRCH;
5fe85be0 3690 rcu_read_lock();
1da177e4
LT
3691 p = find_process_by_pid(pid);
3692 if (p) {
3693 retval = security_task_getscheduler(p);
3694 if (!retval)
ca94c442
LP
3695 retval = p->policy
3696 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3697 }
5fe85be0 3698 rcu_read_unlock();
1da177e4
LT
3699 return retval;
3700}
3701
3702/**
ca94c442 3703 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3704 * @pid: the pid in question.
3705 * @param: structure containing the RT priority.
e69f6186
YB
3706 *
3707 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3708 * code.
1da177e4 3709 */
5add95d4 3710SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3711{
3712 struct sched_param lp;
36c8b586 3713 struct task_struct *p;
3a5c359a 3714 int retval;
1da177e4
LT
3715
3716 if (!param || pid < 0)
3a5c359a 3717 return -EINVAL;
1da177e4 3718
5fe85be0 3719 rcu_read_lock();
1da177e4
LT
3720 p = find_process_by_pid(pid);
3721 retval = -ESRCH;
3722 if (!p)
3723 goto out_unlock;
3724
3725 retval = security_task_getscheduler(p);
3726 if (retval)
3727 goto out_unlock;
3728
aab03e05
DF
3729 if (task_has_dl_policy(p)) {
3730 retval = -EINVAL;
3731 goto out_unlock;
3732 }
1da177e4 3733 lp.sched_priority = p->rt_priority;
5fe85be0 3734 rcu_read_unlock();
1da177e4
LT
3735
3736 /*
3737 * This one might sleep, we cannot do it with a spinlock held ...
3738 */
3739 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3740
1da177e4
LT
3741 return retval;
3742
3743out_unlock:
5fe85be0 3744 rcu_read_unlock();
1da177e4
LT
3745 return retval;
3746}
3747
d50dde5a
DF
3748static int sched_read_attr(struct sched_attr __user *uattr,
3749 struct sched_attr *attr,
3750 unsigned int usize)
3751{
3752 int ret;
3753
3754 if (!access_ok(VERIFY_WRITE, uattr, usize))
3755 return -EFAULT;
3756
3757 /*
3758 * If we're handed a smaller struct than we know of,
3759 * ensure all the unknown bits are 0 - i.e. old
3760 * user-space does not get uncomplete information.
3761 */
3762 if (usize < sizeof(*attr)) {
3763 unsigned char *addr;
3764 unsigned char *end;
3765
3766 addr = (void *)attr + usize;
3767 end = (void *)attr + sizeof(*attr);
3768
3769 for (; addr < end; addr++) {
3770 if (*addr)
3771 goto err_size;
3772 }
3773
3774 attr->size = usize;
3775 }
3776
4efbc454 3777 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3778 if (ret)
3779 return -EFAULT;
3780
3781out:
3782 return ret;
3783
3784err_size:
3785 ret = -E2BIG;
3786 goto out;
3787}
3788
3789/**
aab03e05 3790 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3791 * @pid: the pid in question.
5778fccf 3792 * @uattr: structure containing the extended parameters.
d50dde5a 3793 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3794 * @flags: for future extension.
d50dde5a 3795 */
6d35ab48
PZ
3796SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3797 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3798{
3799 struct sched_attr attr = {
3800 .size = sizeof(struct sched_attr),
3801 };
3802 struct task_struct *p;
3803 int retval;
3804
3805 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3806 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3807 return -EINVAL;
3808
3809 rcu_read_lock();
3810 p = find_process_by_pid(pid);
3811 retval = -ESRCH;
3812 if (!p)
3813 goto out_unlock;
3814
3815 retval = security_task_getscheduler(p);
3816 if (retval)
3817 goto out_unlock;
3818
3819 attr.sched_policy = p->policy;
7479f3c9
PZ
3820 if (p->sched_reset_on_fork)
3821 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3822 if (task_has_dl_policy(p))
3823 __getparam_dl(p, &attr);
3824 else if (task_has_rt_policy(p))
d50dde5a
DF
3825 attr.sched_priority = p->rt_priority;
3826 else
d0ea0268 3827 attr.sched_nice = task_nice(p);
d50dde5a
DF
3828
3829 rcu_read_unlock();
3830
3831 retval = sched_read_attr(uattr, &attr, size);
3832 return retval;
3833
3834out_unlock:
3835 rcu_read_unlock();
3836 return retval;
3837}
3838
96f874e2 3839long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3840{
5a16f3d3 3841 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3842 struct task_struct *p;
3843 int retval;
1da177e4 3844
23f5d142 3845 rcu_read_lock();
1da177e4
LT
3846
3847 p = find_process_by_pid(pid);
3848 if (!p) {
23f5d142 3849 rcu_read_unlock();
1da177e4
LT
3850 return -ESRCH;
3851 }
3852
23f5d142 3853 /* Prevent p going away */
1da177e4 3854 get_task_struct(p);
23f5d142 3855 rcu_read_unlock();
1da177e4 3856
14a40ffc
TH
3857 if (p->flags & PF_NO_SETAFFINITY) {
3858 retval = -EINVAL;
3859 goto out_put_task;
3860 }
5a16f3d3
RR
3861 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3862 retval = -ENOMEM;
3863 goto out_put_task;
3864 }
3865 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3866 retval = -ENOMEM;
3867 goto out_free_cpus_allowed;
3868 }
1da177e4 3869 retval = -EPERM;
4c44aaaf
EB
3870 if (!check_same_owner(p)) {
3871 rcu_read_lock();
3872 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3873 rcu_read_unlock();
3874 goto out_unlock;
3875 }
3876 rcu_read_unlock();
3877 }
1da177e4 3878
b0ae1981 3879 retval = security_task_setscheduler(p);
e7834f8f
DQ
3880 if (retval)
3881 goto out_unlock;
3882
e4099a5e
PZ
3883
3884 cpuset_cpus_allowed(p, cpus_allowed);
3885 cpumask_and(new_mask, in_mask, cpus_allowed);
3886
332ac17e
DF
3887 /*
3888 * Since bandwidth control happens on root_domain basis,
3889 * if admission test is enabled, we only admit -deadline
3890 * tasks allowed to run on all the CPUs in the task's
3891 * root_domain.
3892 */
3893#ifdef CONFIG_SMP
3894 if (task_has_dl_policy(p)) {
3895 const struct cpumask *span = task_rq(p)->rd->span;
3896
e4099a5e 3897 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3898 retval = -EBUSY;
3899 goto out_unlock;
3900 }
3901 }
3902#endif
49246274 3903again:
5a16f3d3 3904 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3905
8707d8b8 3906 if (!retval) {
5a16f3d3
RR
3907 cpuset_cpus_allowed(p, cpus_allowed);
3908 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3909 /*
3910 * We must have raced with a concurrent cpuset
3911 * update. Just reset the cpus_allowed to the
3912 * cpuset's cpus_allowed
3913 */
5a16f3d3 3914 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3915 goto again;
3916 }
3917 }
1da177e4 3918out_unlock:
5a16f3d3
RR
3919 free_cpumask_var(new_mask);
3920out_free_cpus_allowed:
3921 free_cpumask_var(cpus_allowed);
3922out_put_task:
1da177e4 3923 put_task_struct(p);
1da177e4
LT
3924 return retval;
3925}
3926
3927static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3928 struct cpumask *new_mask)
1da177e4 3929{
96f874e2
RR
3930 if (len < cpumask_size())
3931 cpumask_clear(new_mask);
3932 else if (len > cpumask_size())
3933 len = cpumask_size();
3934
1da177e4
LT
3935 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3936}
3937
3938/**
3939 * sys_sched_setaffinity - set the cpu affinity of a process
3940 * @pid: pid of the process
3941 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3942 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3943 *
3944 * Return: 0 on success. An error code otherwise.
1da177e4 3945 */
5add95d4
HC
3946SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3947 unsigned long __user *, user_mask_ptr)
1da177e4 3948{
5a16f3d3 3949 cpumask_var_t new_mask;
1da177e4
LT
3950 int retval;
3951
5a16f3d3
RR
3952 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3953 return -ENOMEM;
1da177e4 3954
5a16f3d3
RR
3955 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3956 if (retval == 0)
3957 retval = sched_setaffinity(pid, new_mask);
3958 free_cpumask_var(new_mask);
3959 return retval;
1da177e4
LT
3960}
3961
96f874e2 3962long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3963{
36c8b586 3964 struct task_struct *p;
31605683 3965 unsigned long flags;
1da177e4 3966 int retval;
1da177e4 3967
23f5d142 3968 rcu_read_lock();
1da177e4
LT
3969
3970 retval = -ESRCH;
3971 p = find_process_by_pid(pid);
3972 if (!p)
3973 goto out_unlock;
3974
e7834f8f
DQ
3975 retval = security_task_getscheduler(p);
3976 if (retval)
3977 goto out_unlock;
3978
013fdb80 3979 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3980 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3981 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3982
3983out_unlock:
23f5d142 3984 rcu_read_unlock();
1da177e4 3985
9531b62f 3986 return retval;
1da177e4
LT
3987}
3988
3989/**
3990 * sys_sched_getaffinity - get the cpu affinity of a process
3991 * @pid: pid of the process
3992 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3993 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3994 *
3995 * Return: 0 on success. An error code otherwise.
1da177e4 3996 */
5add95d4
HC
3997SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3998 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3999{
4000 int ret;
f17c8607 4001 cpumask_var_t mask;
1da177e4 4002
84fba5ec 4003 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4004 return -EINVAL;
4005 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4006 return -EINVAL;
4007
f17c8607
RR
4008 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4009 return -ENOMEM;
1da177e4 4010
f17c8607
RR
4011 ret = sched_getaffinity(pid, mask);
4012 if (ret == 0) {
8bc037fb 4013 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4014
4015 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4016 ret = -EFAULT;
4017 else
cd3d8031 4018 ret = retlen;
f17c8607
RR
4019 }
4020 free_cpumask_var(mask);
1da177e4 4021
f17c8607 4022 return ret;
1da177e4
LT
4023}
4024
4025/**
4026 * sys_sched_yield - yield the current processor to other threads.
4027 *
dd41f596
IM
4028 * This function yields the current CPU to other tasks. If there are no
4029 * other threads running on this CPU then this function will return.
e69f6186
YB
4030 *
4031 * Return: 0.
1da177e4 4032 */
5add95d4 4033SYSCALL_DEFINE0(sched_yield)
1da177e4 4034{
70b97a7f 4035 struct rq *rq = this_rq_lock();
1da177e4 4036
2d72376b 4037 schedstat_inc(rq, yld_count);
4530d7ab 4038 current->sched_class->yield_task(rq);
1da177e4
LT
4039
4040 /*
4041 * Since we are going to call schedule() anyway, there's
4042 * no need to preempt or enable interrupts:
4043 */
4044 __release(rq->lock);
8a25d5de 4045 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4046 do_raw_spin_unlock(&rq->lock);
ba74c144 4047 sched_preempt_enable_no_resched();
1da177e4
LT
4048
4049 schedule();
4050
4051 return 0;
4052}
4053
e7b38404 4054static void __cond_resched(void)
1da177e4 4055{
bdb43806 4056 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4057 __schedule();
bdb43806 4058 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4059}
4060
02b67cc3 4061int __sched _cond_resched(void)
1da177e4 4062{
d86ee480 4063 if (should_resched()) {
1da177e4
LT
4064 __cond_resched();
4065 return 1;
4066 }
4067 return 0;
4068}
02b67cc3 4069EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4070
4071/*
613afbf8 4072 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4073 * call schedule, and on return reacquire the lock.
4074 *
41a2d6cf 4075 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4076 * operations here to prevent schedule() from being called twice (once via
4077 * spin_unlock(), once by hand).
4078 */
613afbf8 4079int __cond_resched_lock(spinlock_t *lock)
1da177e4 4080{
d86ee480 4081 int resched = should_resched();
6df3cecb
JK
4082 int ret = 0;
4083
f607c668
PZ
4084 lockdep_assert_held(lock);
4085
95c354fe 4086 if (spin_needbreak(lock) || resched) {
1da177e4 4087 spin_unlock(lock);
d86ee480 4088 if (resched)
95c354fe
NP
4089 __cond_resched();
4090 else
4091 cpu_relax();
6df3cecb 4092 ret = 1;
1da177e4 4093 spin_lock(lock);
1da177e4 4094 }
6df3cecb 4095 return ret;
1da177e4 4096}
613afbf8 4097EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4098
613afbf8 4099int __sched __cond_resched_softirq(void)
1da177e4
LT
4100{
4101 BUG_ON(!in_softirq());
4102
d86ee480 4103 if (should_resched()) {
98d82567 4104 local_bh_enable();
1da177e4
LT
4105 __cond_resched();
4106 local_bh_disable();
4107 return 1;
4108 }
4109 return 0;
4110}
613afbf8 4111EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4112
1da177e4
LT
4113/**
4114 * yield - yield the current processor to other threads.
4115 *
8e3fabfd
PZ
4116 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4117 *
4118 * The scheduler is at all times free to pick the calling task as the most
4119 * eligible task to run, if removing the yield() call from your code breaks
4120 * it, its already broken.
4121 *
4122 * Typical broken usage is:
4123 *
4124 * while (!event)
4125 * yield();
4126 *
4127 * where one assumes that yield() will let 'the other' process run that will
4128 * make event true. If the current task is a SCHED_FIFO task that will never
4129 * happen. Never use yield() as a progress guarantee!!
4130 *
4131 * If you want to use yield() to wait for something, use wait_event().
4132 * If you want to use yield() to be 'nice' for others, use cond_resched().
4133 * If you still want to use yield(), do not!
1da177e4
LT
4134 */
4135void __sched yield(void)
4136{
4137 set_current_state(TASK_RUNNING);
4138 sys_sched_yield();
4139}
1da177e4
LT
4140EXPORT_SYMBOL(yield);
4141
d95f4122
MG
4142/**
4143 * yield_to - yield the current processor to another thread in
4144 * your thread group, or accelerate that thread toward the
4145 * processor it's on.
16addf95
RD
4146 * @p: target task
4147 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4148 *
4149 * It's the caller's job to ensure that the target task struct
4150 * can't go away on us before we can do any checks.
4151 *
e69f6186 4152 * Return:
7b270f60
PZ
4153 * true (>0) if we indeed boosted the target task.
4154 * false (0) if we failed to boost the target.
4155 * -ESRCH if there's no task to yield to.
d95f4122
MG
4156 */
4157bool __sched yield_to(struct task_struct *p, bool preempt)
4158{
4159 struct task_struct *curr = current;
4160 struct rq *rq, *p_rq;
4161 unsigned long flags;
c3c18640 4162 int yielded = 0;
d95f4122
MG
4163
4164 local_irq_save(flags);
4165 rq = this_rq();
4166
4167again:
4168 p_rq = task_rq(p);
7b270f60
PZ
4169 /*
4170 * If we're the only runnable task on the rq and target rq also
4171 * has only one task, there's absolutely no point in yielding.
4172 */
4173 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4174 yielded = -ESRCH;
4175 goto out_irq;
4176 }
4177
d95f4122 4178 double_rq_lock(rq, p_rq);
39e24d8f 4179 if (task_rq(p) != p_rq) {
d95f4122
MG
4180 double_rq_unlock(rq, p_rq);
4181 goto again;
4182 }
4183
4184 if (!curr->sched_class->yield_to_task)
7b270f60 4185 goto out_unlock;
d95f4122
MG
4186
4187 if (curr->sched_class != p->sched_class)
7b270f60 4188 goto out_unlock;
d95f4122
MG
4189
4190 if (task_running(p_rq, p) || p->state)
7b270f60 4191 goto out_unlock;
d95f4122
MG
4192
4193 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4194 if (yielded) {
d95f4122 4195 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4196 /*
4197 * Make p's CPU reschedule; pick_next_entity takes care of
4198 * fairness.
4199 */
4200 if (preempt && rq != p_rq)
4201 resched_task(p_rq->curr);
4202 }
d95f4122 4203
7b270f60 4204out_unlock:
d95f4122 4205 double_rq_unlock(rq, p_rq);
7b270f60 4206out_irq:
d95f4122
MG
4207 local_irq_restore(flags);
4208
7b270f60 4209 if (yielded > 0)
d95f4122
MG
4210 schedule();
4211
4212 return yielded;
4213}
4214EXPORT_SYMBOL_GPL(yield_to);
4215
1da177e4 4216/*
41a2d6cf 4217 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4218 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4219 */
4220void __sched io_schedule(void)
4221{
54d35f29 4222 struct rq *rq = raw_rq();
1da177e4 4223
0ff92245 4224 delayacct_blkio_start();
1da177e4 4225 atomic_inc(&rq->nr_iowait);
73c10101 4226 blk_flush_plug(current);
8f0dfc34 4227 current->in_iowait = 1;
1da177e4 4228 schedule();
8f0dfc34 4229 current->in_iowait = 0;
1da177e4 4230 atomic_dec(&rq->nr_iowait);
0ff92245 4231 delayacct_blkio_end();
1da177e4 4232}
1da177e4
LT
4233EXPORT_SYMBOL(io_schedule);
4234
4235long __sched io_schedule_timeout(long timeout)
4236{
54d35f29 4237 struct rq *rq = raw_rq();
1da177e4
LT
4238 long ret;
4239
0ff92245 4240 delayacct_blkio_start();
1da177e4 4241 atomic_inc(&rq->nr_iowait);
73c10101 4242 blk_flush_plug(current);
8f0dfc34 4243 current->in_iowait = 1;
1da177e4 4244 ret = schedule_timeout(timeout);
8f0dfc34 4245 current->in_iowait = 0;
1da177e4 4246 atomic_dec(&rq->nr_iowait);
0ff92245 4247 delayacct_blkio_end();
1da177e4
LT
4248 return ret;
4249}
4250
4251/**
4252 * sys_sched_get_priority_max - return maximum RT priority.
4253 * @policy: scheduling class.
4254 *
e69f6186
YB
4255 * Return: On success, this syscall returns the maximum
4256 * rt_priority that can be used by a given scheduling class.
4257 * On failure, a negative error code is returned.
1da177e4 4258 */
5add95d4 4259SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4260{
4261 int ret = -EINVAL;
4262
4263 switch (policy) {
4264 case SCHED_FIFO:
4265 case SCHED_RR:
4266 ret = MAX_USER_RT_PRIO-1;
4267 break;
aab03e05 4268 case SCHED_DEADLINE:
1da177e4 4269 case SCHED_NORMAL:
b0a9499c 4270 case SCHED_BATCH:
dd41f596 4271 case SCHED_IDLE:
1da177e4
LT
4272 ret = 0;
4273 break;
4274 }
4275 return ret;
4276}
4277
4278/**
4279 * sys_sched_get_priority_min - return minimum RT priority.
4280 * @policy: scheduling class.
4281 *
e69f6186
YB
4282 * Return: On success, this syscall returns the minimum
4283 * rt_priority that can be used by a given scheduling class.
4284 * On failure, a negative error code is returned.
1da177e4 4285 */
5add95d4 4286SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4287{
4288 int ret = -EINVAL;
4289
4290 switch (policy) {
4291 case SCHED_FIFO:
4292 case SCHED_RR:
4293 ret = 1;
4294 break;
aab03e05 4295 case SCHED_DEADLINE:
1da177e4 4296 case SCHED_NORMAL:
b0a9499c 4297 case SCHED_BATCH:
dd41f596 4298 case SCHED_IDLE:
1da177e4
LT
4299 ret = 0;
4300 }
4301 return ret;
4302}
4303
4304/**
4305 * sys_sched_rr_get_interval - return the default timeslice of a process.
4306 * @pid: pid of the process.
4307 * @interval: userspace pointer to the timeslice value.
4308 *
4309 * this syscall writes the default timeslice value of a given process
4310 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4311 *
4312 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4313 * an error code.
1da177e4 4314 */
17da2bd9 4315SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4316 struct timespec __user *, interval)
1da177e4 4317{
36c8b586 4318 struct task_struct *p;
a4ec24b4 4319 unsigned int time_slice;
dba091b9
TG
4320 unsigned long flags;
4321 struct rq *rq;
3a5c359a 4322 int retval;
1da177e4 4323 struct timespec t;
1da177e4
LT
4324
4325 if (pid < 0)
3a5c359a 4326 return -EINVAL;
1da177e4
LT
4327
4328 retval = -ESRCH;
1a551ae7 4329 rcu_read_lock();
1da177e4
LT
4330 p = find_process_by_pid(pid);
4331 if (!p)
4332 goto out_unlock;
4333
4334 retval = security_task_getscheduler(p);
4335 if (retval)
4336 goto out_unlock;
4337
dba091b9 4338 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4339 time_slice = 0;
4340 if (p->sched_class->get_rr_interval)
4341 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4342 task_rq_unlock(rq, p, &flags);
a4ec24b4 4343
1a551ae7 4344 rcu_read_unlock();
a4ec24b4 4345 jiffies_to_timespec(time_slice, &t);
1da177e4 4346 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4347 return retval;
3a5c359a 4348
1da177e4 4349out_unlock:
1a551ae7 4350 rcu_read_unlock();
1da177e4
LT
4351 return retval;
4352}
4353
7c731e0a 4354static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4355
82a1fcb9 4356void sched_show_task(struct task_struct *p)
1da177e4 4357{
1da177e4 4358 unsigned long free = 0;
4e79752c 4359 int ppid;
36c8b586 4360 unsigned state;
1da177e4 4361
1da177e4 4362 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4363 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4364 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4365#if BITS_PER_LONG == 32
1da177e4 4366 if (state == TASK_RUNNING)
3df0fc5b 4367 printk(KERN_CONT " running ");
1da177e4 4368 else
3df0fc5b 4369 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4370#else
4371 if (state == TASK_RUNNING)
3df0fc5b 4372 printk(KERN_CONT " running task ");
1da177e4 4373 else
3df0fc5b 4374 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4375#endif
4376#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4377 free = stack_not_used(p);
1da177e4 4378#endif
4e79752c
PM
4379 rcu_read_lock();
4380 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4381 rcu_read_unlock();
3df0fc5b 4382 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4383 task_pid_nr(p), ppid,
aa47b7e0 4384 (unsigned long)task_thread_info(p)->flags);
1da177e4 4385
3d1cb205 4386 print_worker_info(KERN_INFO, p);
5fb5e6de 4387 show_stack(p, NULL);
1da177e4
LT
4388}
4389
e59e2ae2 4390void show_state_filter(unsigned long state_filter)
1da177e4 4391{
36c8b586 4392 struct task_struct *g, *p;
1da177e4 4393
4bd77321 4394#if BITS_PER_LONG == 32
3df0fc5b
PZ
4395 printk(KERN_INFO
4396 " task PC stack pid father\n");
1da177e4 4397#else
3df0fc5b
PZ
4398 printk(KERN_INFO
4399 " task PC stack pid father\n");
1da177e4 4400#endif
510f5acc 4401 rcu_read_lock();
1da177e4
LT
4402 do_each_thread(g, p) {
4403 /*
4404 * reset the NMI-timeout, listing all files on a slow
25985edc 4405 * console might take a lot of time:
1da177e4
LT
4406 */
4407 touch_nmi_watchdog();
39bc89fd 4408 if (!state_filter || (p->state & state_filter))
82a1fcb9 4409 sched_show_task(p);
1da177e4
LT
4410 } while_each_thread(g, p);
4411
04c9167f
JF
4412 touch_all_softlockup_watchdogs();
4413
dd41f596
IM
4414#ifdef CONFIG_SCHED_DEBUG
4415 sysrq_sched_debug_show();
4416#endif
510f5acc 4417 rcu_read_unlock();
e59e2ae2
IM
4418 /*
4419 * Only show locks if all tasks are dumped:
4420 */
93335a21 4421 if (!state_filter)
e59e2ae2 4422 debug_show_all_locks();
1da177e4
LT
4423}
4424
0db0628d 4425void init_idle_bootup_task(struct task_struct *idle)
1df21055 4426{
dd41f596 4427 idle->sched_class = &idle_sched_class;
1df21055
IM
4428}
4429
f340c0d1
IM
4430/**
4431 * init_idle - set up an idle thread for a given CPU
4432 * @idle: task in question
4433 * @cpu: cpu the idle task belongs to
4434 *
4435 * NOTE: this function does not set the idle thread's NEED_RESCHED
4436 * flag, to make booting more robust.
4437 */
0db0628d 4438void init_idle(struct task_struct *idle, int cpu)
1da177e4 4439{
70b97a7f 4440 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4441 unsigned long flags;
4442
05fa785c 4443 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4444
5e1576ed 4445 __sched_fork(0, idle);
06b83b5f 4446 idle->state = TASK_RUNNING;
dd41f596
IM
4447 idle->se.exec_start = sched_clock();
4448
1e1b6c51 4449 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4450 /*
4451 * We're having a chicken and egg problem, even though we are
4452 * holding rq->lock, the cpu isn't yet set to this cpu so the
4453 * lockdep check in task_group() will fail.
4454 *
4455 * Similar case to sched_fork(). / Alternatively we could
4456 * use task_rq_lock() here and obtain the other rq->lock.
4457 *
4458 * Silence PROVE_RCU
4459 */
4460 rcu_read_lock();
dd41f596 4461 __set_task_cpu(idle, cpu);
6506cf6c 4462 rcu_read_unlock();
1da177e4 4463
1da177e4 4464 rq->curr = rq->idle = idle;
77177856 4465 idle->on_rq = 1;
3ca7a440
PZ
4466#if defined(CONFIG_SMP)
4467 idle->on_cpu = 1;
4866cde0 4468#endif
05fa785c 4469 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4470
4471 /* Set the preempt count _outside_ the spinlocks! */
01028747 4472 init_idle_preempt_count(idle, cpu);
55cd5340 4473
dd41f596
IM
4474 /*
4475 * The idle tasks have their own, simple scheduling class:
4476 */
4477 idle->sched_class = &idle_sched_class;
868baf07 4478 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4479 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4480#if defined(CONFIG_SMP)
4481 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4482#endif
19978ca6
IM
4483}
4484
1da177e4 4485#ifdef CONFIG_SMP
1e1b6c51
KM
4486void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4487{
4488 if (p->sched_class && p->sched_class->set_cpus_allowed)
4489 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4490
4491 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4492 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4493}
4494
1da177e4
LT
4495/*
4496 * This is how migration works:
4497 *
969c7921
TH
4498 * 1) we invoke migration_cpu_stop() on the target CPU using
4499 * stop_one_cpu().
4500 * 2) stopper starts to run (implicitly forcing the migrated thread
4501 * off the CPU)
4502 * 3) it checks whether the migrated task is still in the wrong runqueue.
4503 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4504 * it and puts it into the right queue.
969c7921
TH
4505 * 5) stopper completes and stop_one_cpu() returns and the migration
4506 * is done.
1da177e4
LT
4507 */
4508
4509/*
4510 * Change a given task's CPU affinity. Migrate the thread to a
4511 * proper CPU and schedule it away if the CPU it's executing on
4512 * is removed from the allowed bitmask.
4513 *
4514 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4515 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4516 * call is not atomic; no spinlocks may be held.
4517 */
96f874e2 4518int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4519{
4520 unsigned long flags;
70b97a7f 4521 struct rq *rq;
969c7921 4522 unsigned int dest_cpu;
48f24c4d 4523 int ret = 0;
1da177e4
LT
4524
4525 rq = task_rq_lock(p, &flags);
e2912009 4526
db44fc01
YZ
4527 if (cpumask_equal(&p->cpus_allowed, new_mask))
4528 goto out;
4529
6ad4c188 4530 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4531 ret = -EINVAL;
4532 goto out;
4533 }
4534
1e1b6c51 4535 do_set_cpus_allowed(p, new_mask);
73fe6aae 4536
1da177e4 4537 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4538 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4539 goto out;
4540
969c7921 4541 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4542 if (p->on_rq) {
969c7921 4543 struct migration_arg arg = { p, dest_cpu };
1da177e4 4544 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4545 task_rq_unlock(rq, p, &flags);
969c7921 4546 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4547 tlb_migrate_finish(p->mm);
4548 return 0;
4549 }
4550out:
0122ec5b 4551 task_rq_unlock(rq, p, &flags);
48f24c4d 4552
1da177e4
LT
4553 return ret;
4554}
cd8ba7cd 4555EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4556
4557/*
41a2d6cf 4558 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4559 * this because either it can't run here any more (set_cpus_allowed()
4560 * away from this CPU, or CPU going down), or because we're
4561 * attempting to rebalance this task on exec (sched_exec).
4562 *
4563 * So we race with normal scheduler movements, but that's OK, as long
4564 * as the task is no longer on this CPU.
efc30814
KK
4565 *
4566 * Returns non-zero if task was successfully migrated.
1da177e4 4567 */
efc30814 4568static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4569{
70b97a7f 4570 struct rq *rq_dest, *rq_src;
e2912009 4571 int ret = 0;
1da177e4 4572
e761b772 4573 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4574 return ret;
1da177e4
LT
4575
4576 rq_src = cpu_rq(src_cpu);
4577 rq_dest = cpu_rq(dest_cpu);
4578
0122ec5b 4579 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4580 double_rq_lock(rq_src, rq_dest);
4581 /* Already moved. */
4582 if (task_cpu(p) != src_cpu)
b1e38734 4583 goto done;
1da177e4 4584 /* Affinity changed (again). */
fa17b507 4585 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4586 goto fail;
1da177e4 4587
e2912009
PZ
4588 /*
4589 * If we're not on a rq, the next wake-up will ensure we're
4590 * placed properly.
4591 */
fd2f4419 4592 if (p->on_rq) {
4ca9b72b 4593 dequeue_task(rq_src, p, 0);
e2912009 4594 set_task_cpu(p, dest_cpu);
4ca9b72b 4595 enqueue_task(rq_dest, p, 0);
15afe09b 4596 check_preempt_curr(rq_dest, p, 0);
1da177e4 4597 }
b1e38734 4598done:
efc30814 4599 ret = 1;
b1e38734 4600fail:
1da177e4 4601 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4602 raw_spin_unlock(&p->pi_lock);
efc30814 4603 return ret;
1da177e4
LT
4604}
4605
e6628d5b
MG
4606#ifdef CONFIG_NUMA_BALANCING
4607/* Migrate current task p to target_cpu */
4608int migrate_task_to(struct task_struct *p, int target_cpu)
4609{
4610 struct migration_arg arg = { p, target_cpu };
4611 int curr_cpu = task_cpu(p);
4612
4613 if (curr_cpu == target_cpu)
4614 return 0;
4615
4616 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4617 return -EINVAL;
4618
4619 /* TODO: This is not properly updating schedstats */
4620
286549dc 4621 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4622 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4623}
0ec8aa00
PZ
4624
4625/*
4626 * Requeue a task on a given node and accurately track the number of NUMA
4627 * tasks on the runqueues
4628 */
4629void sched_setnuma(struct task_struct *p, int nid)
4630{
4631 struct rq *rq;
4632 unsigned long flags;
4633 bool on_rq, running;
4634
4635 rq = task_rq_lock(p, &flags);
4636 on_rq = p->on_rq;
4637 running = task_current(rq, p);
4638
4639 if (on_rq)
4640 dequeue_task(rq, p, 0);
4641 if (running)
4642 p->sched_class->put_prev_task(rq, p);
4643
4644 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4645
4646 if (running)
4647 p->sched_class->set_curr_task(rq);
4648 if (on_rq)
4649 enqueue_task(rq, p, 0);
4650 task_rq_unlock(rq, p, &flags);
4651}
e6628d5b
MG
4652#endif
4653
1da177e4 4654/*
969c7921
TH
4655 * migration_cpu_stop - this will be executed by a highprio stopper thread
4656 * and performs thread migration by bumping thread off CPU then
4657 * 'pushing' onto another runqueue.
1da177e4 4658 */
969c7921 4659static int migration_cpu_stop(void *data)
1da177e4 4660{
969c7921 4661 struct migration_arg *arg = data;
f7b4cddc 4662
969c7921
TH
4663 /*
4664 * The original target cpu might have gone down and we might
4665 * be on another cpu but it doesn't matter.
4666 */
f7b4cddc 4667 local_irq_disable();
969c7921 4668 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4669 local_irq_enable();
1da177e4 4670 return 0;
f7b4cddc
ON
4671}
4672
1da177e4 4673#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4674
054b9108 4675/*
48c5ccae
PZ
4676 * Ensures that the idle task is using init_mm right before its cpu goes
4677 * offline.
054b9108 4678 */
48c5ccae 4679void idle_task_exit(void)
1da177e4 4680{
48c5ccae 4681 struct mm_struct *mm = current->active_mm;
e76bd8d9 4682
48c5ccae 4683 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4684
a53efe5f 4685 if (mm != &init_mm) {
48c5ccae 4686 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4687 finish_arch_post_lock_switch();
4688 }
48c5ccae 4689 mmdrop(mm);
1da177e4
LT
4690}
4691
4692/*
5d180232
PZ
4693 * Since this CPU is going 'away' for a while, fold any nr_active delta
4694 * we might have. Assumes we're called after migrate_tasks() so that the
4695 * nr_active count is stable.
4696 *
4697 * Also see the comment "Global load-average calculations".
1da177e4 4698 */
5d180232 4699static void calc_load_migrate(struct rq *rq)
1da177e4 4700{
5d180232
PZ
4701 long delta = calc_load_fold_active(rq);
4702 if (delta)
4703 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4704}
4705
3f1d2a31
PZ
4706static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4707{
4708}
4709
4710static const struct sched_class fake_sched_class = {
4711 .put_prev_task = put_prev_task_fake,
4712};
4713
4714static struct task_struct fake_task = {
4715 /*
4716 * Avoid pull_{rt,dl}_task()
4717 */
4718 .prio = MAX_PRIO + 1,
4719 .sched_class = &fake_sched_class,
4720};
4721
48f24c4d 4722/*
48c5ccae
PZ
4723 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4724 * try_to_wake_up()->select_task_rq().
4725 *
4726 * Called with rq->lock held even though we'er in stop_machine() and
4727 * there's no concurrency possible, we hold the required locks anyway
4728 * because of lock validation efforts.
1da177e4 4729 */
48c5ccae 4730static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4731{
70b97a7f 4732 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4733 struct task_struct *next, *stop = rq->stop;
4734 int dest_cpu;
1da177e4
LT
4735
4736 /*
48c5ccae
PZ
4737 * Fudge the rq selection such that the below task selection loop
4738 * doesn't get stuck on the currently eligible stop task.
4739 *
4740 * We're currently inside stop_machine() and the rq is either stuck
4741 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4742 * either way we should never end up calling schedule() until we're
4743 * done here.
1da177e4 4744 */
48c5ccae 4745 rq->stop = NULL;
48f24c4d 4746
77bd3970
FW
4747 /*
4748 * put_prev_task() and pick_next_task() sched
4749 * class method both need to have an up-to-date
4750 * value of rq->clock[_task]
4751 */
4752 update_rq_clock(rq);
4753
dd41f596 4754 for ( ; ; ) {
48c5ccae
PZ
4755 /*
4756 * There's this thread running, bail when that's the only
4757 * remaining thread.
4758 */
4759 if (rq->nr_running == 1)
dd41f596 4760 break;
48c5ccae 4761
3f1d2a31 4762 next = pick_next_task(rq, &fake_task);
48c5ccae 4763 BUG_ON(!next);
79c53799 4764 next->sched_class->put_prev_task(rq, next);
e692ab53 4765
48c5ccae
PZ
4766 /* Find suitable destination for @next, with force if needed. */
4767 dest_cpu = select_fallback_rq(dead_cpu, next);
4768 raw_spin_unlock(&rq->lock);
4769
4770 __migrate_task(next, dead_cpu, dest_cpu);
4771
4772 raw_spin_lock(&rq->lock);
1da177e4 4773 }
dce48a84 4774
48c5ccae 4775 rq->stop = stop;
dce48a84 4776}
48c5ccae 4777
1da177e4
LT
4778#endif /* CONFIG_HOTPLUG_CPU */
4779
e692ab53
NP
4780#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4781
4782static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4783 {
4784 .procname = "sched_domain",
c57baf1e 4785 .mode = 0555,
e0361851 4786 },
56992309 4787 {}
e692ab53
NP
4788};
4789
4790static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4791 {
4792 .procname = "kernel",
c57baf1e 4793 .mode = 0555,
e0361851
AD
4794 .child = sd_ctl_dir,
4795 },
56992309 4796 {}
e692ab53
NP
4797};
4798
4799static struct ctl_table *sd_alloc_ctl_entry(int n)
4800{
4801 struct ctl_table *entry =
5cf9f062 4802 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4803
e692ab53
NP
4804 return entry;
4805}
4806
6382bc90
MM
4807static void sd_free_ctl_entry(struct ctl_table **tablep)
4808{
cd790076 4809 struct ctl_table *entry;
6382bc90 4810
cd790076
MM
4811 /*
4812 * In the intermediate directories, both the child directory and
4813 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4814 * will always be set. In the lowest directory the names are
cd790076
MM
4815 * static strings and all have proc handlers.
4816 */
4817 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4818 if (entry->child)
4819 sd_free_ctl_entry(&entry->child);
cd790076
MM
4820 if (entry->proc_handler == NULL)
4821 kfree(entry->procname);
4822 }
6382bc90
MM
4823
4824 kfree(*tablep);
4825 *tablep = NULL;
4826}
4827
201c373e 4828static int min_load_idx = 0;
fd9b86d3 4829static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4830
e692ab53 4831static void
e0361851 4832set_table_entry(struct ctl_table *entry,
e692ab53 4833 const char *procname, void *data, int maxlen,
201c373e
NK
4834 umode_t mode, proc_handler *proc_handler,
4835 bool load_idx)
e692ab53 4836{
e692ab53
NP
4837 entry->procname = procname;
4838 entry->data = data;
4839 entry->maxlen = maxlen;
4840 entry->mode = mode;
4841 entry->proc_handler = proc_handler;
201c373e
NK
4842
4843 if (load_idx) {
4844 entry->extra1 = &min_load_idx;
4845 entry->extra2 = &max_load_idx;
4846 }
e692ab53
NP
4847}
4848
4849static struct ctl_table *
4850sd_alloc_ctl_domain_table(struct sched_domain *sd)
4851{
37e6bae8 4852 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4853
ad1cdc1d
MM
4854 if (table == NULL)
4855 return NULL;
4856
e0361851 4857 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4858 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4859 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4860 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4861 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4862 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4863 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4864 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4865 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4866 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4867 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4868 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4869 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4870 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4871 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4872 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4873 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4874 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4875 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4876 &sd->cache_nice_tries,
201c373e 4877 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4878 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4879 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4880 set_table_entry(&table[11], "max_newidle_lb_cost",
4881 &sd->max_newidle_lb_cost,
4882 sizeof(long), 0644, proc_doulongvec_minmax, false);
4883 set_table_entry(&table[12], "name", sd->name,
201c373e 4884 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4885 /* &table[13] is terminator */
e692ab53
NP
4886
4887 return table;
4888}
4889
be7002e6 4890static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4891{
4892 struct ctl_table *entry, *table;
4893 struct sched_domain *sd;
4894 int domain_num = 0, i;
4895 char buf[32];
4896
4897 for_each_domain(cpu, sd)
4898 domain_num++;
4899 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4900 if (table == NULL)
4901 return NULL;
e692ab53
NP
4902
4903 i = 0;
4904 for_each_domain(cpu, sd) {
4905 snprintf(buf, 32, "domain%d", i);
e692ab53 4906 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4907 entry->mode = 0555;
e692ab53
NP
4908 entry->child = sd_alloc_ctl_domain_table(sd);
4909 entry++;
4910 i++;
4911 }
4912 return table;
4913}
4914
4915static struct ctl_table_header *sd_sysctl_header;
6382bc90 4916static void register_sched_domain_sysctl(void)
e692ab53 4917{
6ad4c188 4918 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4919 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4920 char buf[32];
4921
7378547f
MM
4922 WARN_ON(sd_ctl_dir[0].child);
4923 sd_ctl_dir[0].child = entry;
4924
ad1cdc1d
MM
4925 if (entry == NULL)
4926 return;
4927
6ad4c188 4928 for_each_possible_cpu(i) {
e692ab53 4929 snprintf(buf, 32, "cpu%d", i);
e692ab53 4930 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4931 entry->mode = 0555;
e692ab53 4932 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4933 entry++;
e692ab53 4934 }
7378547f
MM
4935
4936 WARN_ON(sd_sysctl_header);
e692ab53
NP
4937 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4938}
6382bc90 4939
7378547f 4940/* may be called multiple times per register */
6382bc90
MM
4941static void unregister_sched_domain_sysctl(void)
4942{
7378547f
MM
4943 if (sd_sysctl_header)
4944 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4945 sd_sysctl_header = NULL;
7378547f
MM
4946 if (sd_ctl_dir[0].child)
4947 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4948}
e692ab53 4949#else
6382bc90
MM
4950static void register_sched_domain_sysctl(void)
4951{
4952}
4953static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4954{
4955}
4956#endif
4957
1f11eb6a
GH
4958static void set_rq_online(struct rq *rq)
4959{
4960 if (!rq->online) {
4961 const struct sched_class *class;
4962
c6c4927b 4963 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4964 rq->online = 1;
4965
4966 for_each_class(class) {
4967 if (class->rq_online)
4968 class->rq_online(rq);
4969 }
4970 }
4971}
4972
4973static void set_rq_offline(struct rq *rq)
4974{
4975 if (rq->online) {
4976 const struct sched_class *class;
4977
4978 for_each_class(class) {
4979 if (class->rq_offline)
4980 class->rq_offline(rq);
4981 }
4982
c6c4927b 4983 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4984 rq->online = 0;
4985 }
4986}
4987
1da177e4
LT
4988/*
4989 * migration_call - callback that gets triggered when a CPU is added.
4990 * Here we can start up the necessary migration thread for the new CPU.
4991 */
0db0628d 4992static int
48f24c4d 4993migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4994{
48f24c4d 4995 int cpu = (long)hcpu;
1da177e4 4996 unsigned long flags;
969c7921 4997 struct rq *rq = cpu_rq(cpu);
1da177e4 4998
48c5ccae 4999 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5000
1da177e4 5001 case CPU_UP_PREPARE:
a468d389 5002 rq->calc_load_update = calc_load_update;
1da177e4 5003 break;
48f24c4d 5004
1da177e4 5005 case CPU_ONLINE:
1f94ef59 5006 /* Update our root-domain */
05fa785c 5007 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5008 if (rq->rd) {
c6c4927b 5009 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5010
5011 set_rq_online(rq);
1f94ef59 5012 }
05fa785c 5013 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5014 break;
48f24c4d 5015
1da177e4 5016#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5017 case CPU_DYING:
317f3941 5018 sched_ttwu_pending();
57d885fe 5019 /* Update our root-domain */
05fa785c 5020 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5021 if (rq->rd) {
c6c4927b 5022 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5023 set_rq_offline(rq);
57d885fe 5024 }
48c5ccae
PZ
5025 migrate_tasks(cpu);
5026 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5027 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5028 break;
48c5ccae 5029
5d180232 5030 case CPU_DEAD:
f319da0c 5031 calc_load_migrate(rq);
57d885fe 5032 break;
1da177e4
LT
5033#endif
5034 }
49c022e6
PZ
5035
5036 update_max_interval();
5037
1da177e4
LT
5038 return NOTIFY_OK;
5039}
5040
f38b0820
PM
5041/*
5042 * Register at high priority so that task migration (migrate_all_tasks)
5043 * happens before everything else. This has to be lower priority than
cdd6c482 5044 * the notifier in the perf_event subsystem, though.
1da177e4 5045 */
0db0628d 5046static struct notifier_block migration_notifier = {
1da177e4 5047 .notifier_call = migration_call,
50a323b7 5048 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5049};
5050
0db0628d 5051static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5052 unsigned long action, void *hcpu)
5053{
5054 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5055 case CPU_STARTING:
3a101d05
TH
5056 case CPU_DOWN_FAILED:
5057 set_cpu_active((long)hcpu, true);
5058 return NOTIFY_OK;
5059 default:
5060 return NOTIFY_DONE;
5061 }
5062}
5063
0db0628d 5064static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5065 unsigned long action, void *hcpu)
5066{
de212f18
PZ
5067 unsigned long flags;
5068 long cpu = (long)hcpu;
5069
3a101d05
TH
5070 switch (action & ~CPU_TASKS_FROZEN) {
5071 case CPU_DOWN_PREPARE:
de212f18
PZ
5072 set_cpu_active(cpu, false);
5073
5074 /* explicitly allow suspend */
5075 if (!(action & CPU_TASKS_FROZEN)) {
5076 struct dl_bw *dl_b = dl_bw_of(cpu);
5077 bool overflow;
5078 int cpus;
5079
5080 raw_spin_lock_irqsave(&dl_b->lock, flags);
5081 cpus = dl_bw_cpus(cpu);
5082 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5083 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5084
5085 if (overflow)
5086 return notifier_from_errno(-EBUSY);
5087 }
3a101d05 5088 return NOTIFY_OK;
3a101d05 5089 }
de212f18
PZ
5090
5091 return NOTIFY_DONE;
3a101d05
TH
5092}
5093
7babe8db 5094static int __init migration_init(void)
1da177e4
LT
5095{
5096 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5097 int err;
48f24c4d 5098
3a101d05 5099 /* Initialize migration for the boot CPU */
07dccf33
AM
5100 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5101 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5102 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5103 register_cpu_notifier(&migration_notifier);
7babe8db 5104
3a101d05
TH
5105 /* Register cpu active notifiers */
5106 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5107 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5108
a004cd42 5109 return 0;
1da177e4 5110}
7babe8db 5111early_initcall(migration_init);
1da177e4
LT
5112#endif
5113
5114#ifdef CONFIG_SMP
476f3534 5115
4cb98839
PZ
5116static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5117
3e9830dc 5118#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5119
d039ac60 5120static __read_mostly int sched_debug_enabled;
f6630114 5121
d039ac60 5122static int __init sched_debug_setup(char *str)
f6630114 5123{
d039ac60 5124 sched_debug_enabled = 1;
f6630114
MT
5125
5126 return 0;
5127}
d039ac60
PZ
5128early_param("sched_debug", sched_debug_setup);
5129
5130static inline bool sched_debug(void)
5131{
5132 return sched_debug_enabled;
5133}
f6630114 5134
7c16ec58 5135static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5136 struct cpumask *groupmask)
1da177e4 5137{
4dcf6aff 5138 struct sched_group *group = sd->groups;
434d53b0 5139 char str[256];
1da177e4 5140
968ea6d8 5141 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5142 cpumask_clear(groupmask);
4dcf6aff
IM
5143
5144 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5145
5146 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5147 printk("does not load-balance\n");
4dcf6aff 5148 if (sd->parent)
3df0fc5b
PZ
5149 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5150 " has parent");
4dcf6aff 5151 return -1;
41c7ce9a
NP
5152 }
5153
3df0fc5b 5154 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5155
758b2cdc 5156 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5157 printk(KERN_ERR "ERROR: domain->span does not contain "
5158 "CPU%d\n", cpu);
4dcf6aff 5159 }
758b2cdc 5160 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5161 printk(KERN_ERR "ERROR: domain->groups does not contain"
5162 " CPU%d\n", cpu);
4dcf6aff 5163 }
1da177e4 5164
4dcf6aff 5165 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5166 do {
4dcf6aff 5167 if (!group) {
3df0fc5b
PZ
5168 printk("\n");
5169 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5170 break;
5171 }
5172
c3decf0d
PZ
5173 /*
5174 * Even though we initialize ->power to something semi-sane,
5175 * we leave power_orig unset. This allows us to detect if
5176 * domain iteration is still funny without causing /0 traps.
5177 */
5178 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5179 printk(KERN_CONT "\n");
5180 printk(KERN_ERR "ERROR: domain->cpu_power not "
5181 "set\n");
4dcf6aff
IM
5182 break;
5183 }
1da177e4 5184
758b2cdc 5185 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5186 printk(KERN_CONT "\n");
5187 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5188 break;
5189 }
1da177e4 5190
cb83b629
PZ
5191 if (!(sd->flags & SD_OVERLAP) &&
5192 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5193 printk(KERN_CONT "\n");
5194 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5195 break;
5196 }
1da177e4 5197
758b2cdc 5198 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5199
968ea6d8 5200 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5201
3df0fc5b 5202 printk(KERN_CONT " %s", str);
9c3f75cb 5203 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5204 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5205 group->sgp->power);
381512cf 5206 }
1da177e4 5207
4dcf6aff
IM
5208 group = group->next;
5209 } while (group != sd->groups);
3df0fc5b 5210 printk(KERN_CONT "\n");
1da177e4 5211
758b2cdc 5212 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5213 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5214
758b2cdc
RR
5215 if (sd->parent &&
5216 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5217 printk(KERN_ERR "ERROR: parent span is not a superset "
5218 "of domain->span\n");
4dcf6aff
IM
5219 return 0;
5220}
1da177e4 5221
4dcf6aff
IM
5222static void sched_domain_debug(struct sched_domain *sd, int cpu)
5223{
5224 int level = 0;
1da177e4 5225
d039ac60 5226 if (!sched_debug_enabled)
f6630114
MT
5227 return;
5228
4dcf6aff
IM
5229 if (!sd) {
5230 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5231 return;
5232 }
1da177e4 5233
4dcf6aff
IM
5234 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5235
5236 for (;;) {
4cb98839 5237 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5238 break;
1da177e4
LT
5239 level++;
5240 sd = sd->parent;
33859f7f 5241 if (!sd)
4dcf6aff
IM
5242 break;
5243 }
1da177e4 5244}
6d6bc0ad 5245#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5246# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5247static inline bool sched_debug(void)
5248{
5249 return false;
5250}
6d6bc0ad 5251#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5252
1a20ff27 5253static int sd_degenerate(struct sched_domain *sd)
245af2c7 5254{
758b2cdc 5255 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5256 return 1;
5257
5258 /* Following flags need at least 2 groups */
5259 if (sd->flags & (SD_LOAD_BALANCE |
5260 SD_BALANCE_NEWIDLE |
5261 SD_BALANCE_FORK |
89c4710e
SS
5262 SD_BALANCE_EXEC |
5263 SD_SHARE_CPUPOWER |
5264 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5265 if (sd->groups != sd->groups->next)
5266 return 0;
5267 }
5268
5269 /* Following flags don't use groups */
c88d5910 5270 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5271 return 0;
5272
5273 return 1;
5274}
5275
48f24c4d
IM
5276static int
5277sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5278{
5279 unsigned long cflags = sd->flags, pflags = parent->flags;
5280
5281 if (sd_degenerate(parent))
5282 return 1;
5283
758b2cdc 5284 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5285 return 0;
5286
245af2c7
SS
5287 /* Flags needing groups don't count if only 1 group in parent */
5288 if (parent->groups == parent->groups->next) {
5289 pflags &= ~(SD_LOAD_BALANCE |
5290 SD_BALANCE_NEWIDLE |
5291 SD_BALANCE_FORK |
89c4710e
SS
5292 SD_BALANCE_EXEC |
5293 SD_SHARE_CPUPOWER |
10866e62
PZ
5294 SD_SHARE_PKG_RESOURCES |
5295 SD_PREFER_SIBLING);
5436499e
KC
5296 if (nr_node_ids == 1)
5297 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5298 }
5299 if (~cflags & pflags)
5300 return 0;
5301
5302 return 1;
5303}
5304
dce840a0 5305static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5306{
dce840a0 5307 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5308
68e74568 5309 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5310 cpudl_cleanup(&rd->cpudl);
1baca4ce 5311 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5312 free_cpumask_var(rd->rto_mask);
5313 free_cpumask_var(rd->online);
5314 free_cpumask_var(rd->span);
5315 kfree(rd);
5316}
5317
57d885fe
GH
5318static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5319{
a0490fa3 5320 struct root_domain *old_rd = NULL;
57d885fe 5321 unsigned long flags;
57d885fe 5322
05fa785c 5323 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5324
5325 if (rq->rd) {
a0490fa3 5326 old_rd = rq->rd;
57d885fe 5327
c6c4927b 5328 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5329 set_rq_offline(rq);
57d885fe 5330
c6c4927b 5331 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5332
a0490fa3 5333 /*
0515973f 5334 * If we dont want to free the old_rd yet then
a0490fa3
IM
5335 * set old_rd to NULL to skip the freeing later
5336 * in this function:
5337 */
5338 if (!atomic_dec_and_test(&old_rd->refcount))
5339 old_rd = NULL;
57d885fe
GH
5340 }
5341
5342 atomic_inc(&rd->refcount);
5343 rq->rd = rd;
5344
c6c4927b 5345 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5346 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5347 set_rq_online(rq);
57d885fe 5348
05fa785c 5349 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5350
5351 if (old_rd)
dce840a0 5352 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5353}
5354
68c38fc3 5355static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5356{
5357 memset(rd, 0, sizeof(*rd));
5358
68c38fc3 5359 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5360 goto out;
68c38fc3 5361 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5362 goto free_span;
1baca4ce 5363 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5364 goto free_online;
1baca4ce
JL
5365 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5366 goto free_dlo_mask;
6e0534f2 5367
332ac17e 5368 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5369 if (cpudl_init(&rd->cpudl) != 0)
5370 goto free_dlo_mask;
332ac17e 5371
68c38fc3 5372 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5373 goto free_rto_mask;
c6c4927b 5374 return 0;
6e0534f2 5375
68e74568
RR
5376free_rto_mask:
5377 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5378free_dlo_mask:
5379 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5380free_online:
5381 free_cpumask_var(rd->online);
5382free_span:
5383 free_cpumask_var(rd->span);
0c910d28 5384out:
c6c4927b 5385 return -ENOMEM;
57d885fe
GH
5386}
5387
029632fb
PZ
5388/*
5389 * By default the system creates a single root-domain with all cpus as
5390 * members (mimicking the global state we have today).
5391 */
5392struct root_domain def_root_domain;
5393
57d885fe
GH
5394static void init_defrootdomain(void)
5395{
68c38fc3 5396 init_rootdomain(&def_root_domain);
c6c4927b 5397
57d885fe
GH
5398 atomic_set(&def_root_domain.refcount, 1);
5399}
5400
dc938520 5401static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5402{
5403 struct root_domain *rd;
5404
5405 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5406 if (!rd)
5407 return NULL;
5408
68c38fc3 5409 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5410 kfree(rd);
5411 return NULL;
5412 }
57d885fe
GH
5413
5414 return rd;
5415}
5416
e3589f6c
PZ
5417static void free_sched_groups(struct sched_group *sg, int free_sgp)
5418{
5419 struct sched_group *tmp, *first;
5420
5421 if (!sg)
5422 return;
5423
5424 first = sg;
5425 do {
5426 tmp = sg->next;
5427
5428 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5429 kfree(sg->sgp);
5430
5431 kfree(sg);
5432 sg = tmp;
5433 } while (sg != first);
5434}
5435
dce840a0
PZ
5436static void free_sched_domain(struct rcu_head *rcu)
5437{
5438 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5439
5440 /*
5441 * If its an overlapping domain it has private groups, iterate and
5442 * nuke them all.
5443 */
5444 if (sd->flags & SD_OVERLAP) {
5445 free_sched_groups(sd->groups, 1);
5446 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5447 kfree(sd->groups->sgp);
dce840a0 5448 kfree(sd->groups);
9c3f75cb 5449 }
dce840a0
PZ
5450 kfree(sd);
5451}
5452
5453static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5454{
5455 call_rcu(&sd->rcu, free_sched_domain);
5456}
5457
5458static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5459{
5460 for (; sd; sd = sd->parent)
5461 destroy_sched_domain(sd, cpu);
5462}
5463
518cd623
PZ
5464/*
5465 * Keep a special pointer to the highest sched_domain that has
5466 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5467 * allows us to avoid some pointer chasing select_idle_sibling().
5468 *
5469 * Also keep a unique ID per domain (we use the first cpu number in
5470 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5471 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5472 */
5473DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5474DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5475DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5476DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5477DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5478DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5479
5480static void update_top_cache_domain(int cpu)
5481{
5482 struct sched_domain *sd;
5d4cf996 5483 struct sched_domain *busy_sd = NULL;
518cd623 5484 int id = cpu;
7d9ffa89 5485 int size = 1;
518cd623
PZ
5486
5487 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5488 if (sd) {
518cd623 5489 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5490 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5491 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5492 }
5d4cf996 5493 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5494
5495 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5496 per_cpu(sd_llc_size, cpu) = size;
518cd623 5497 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5498
5499 sd = lowest_flag_domain(cpu, SD_NUMA);
5500 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5501
5502 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5503 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5504}
5505
1da177e4 5506/*
0eab9146 5507 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5508 * hold the hotplug lock.
5509 */
0eab9146
IM
5510static void
5511cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5512{
70b97a7f 5513 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5514 struct sched_domain *tmp;
5515
5516 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5517 for (tmp = sd; tmp; ) {
245af2c7
SS
5518 struct sched_domain *parent = tmp->parent;
5519 if (!parent)
5520 break;
f29c9b1c 5521
1a848870 5522 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5523 tmp->parent = parent->parent;
1a848870
SS
5524 if (parent->parent)
5525 parent->parent->child = tmp;
10866e62
PZ
5526 /*
5527 * Transfer SD_PREFER_SIBLING down in case of a
5528 * degenerate parent; the spans match for this
5529 * so the property transfers.
5530 */
5531 if (parent->flags & SD_PREFER_SIBLING)
5532 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5533 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5534 } else
5535 tmp = tmp->parent;
245af2c7
SS
5536 }
5537
1a848870 5538 if (sd && sd_degenerate(sd)) {
dce840a0 5539 tmp = sd;
245af2c7 5540 sd = sd->parent;
dce840a0 5541 destroy_sched_domain(tmp, cpu);
1a848870
SS
5542 if (sd)
5543 sd->child = NULL;
5544 }
1da177e4 5545
4cb98839 5546 sched_domain_debug(sd, cpu);
1da177e4 5547
57d885fe 5548 rq_attach_root(rq, rd);
dce840a0 5549 tmp = rq->sd;
674311d5 5550 rcu_assign_pointer(rq->sd, sd);
dce840a0 5551 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5552
5553 update_top_cache_domain(cpu);
1da177e4
LT
5554}
5555
5556/* cpus with isolated domains */
dcc30a35 5557static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5558
5559/* Setup the mask of cpus configured for isolated domains */
5560static int __init isolated_cpu_setup(char *str)
5561{
bdddd296 5562 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5563 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5564 return 1;
5565}
5566
8927f494 5567__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5568
d3081f52
PZ
5569static const struct cpumask *cpu_cpu_mask(int cpu)
5570{
5571 return cpumask_of_node(cpu_to_node(cpu));
5572}
5573
dce840a0
PZ
5574struct sd_data {
5575 struct sched_domain **__percpu sd;
5576 struct sched_group **__percpu sg;
9c3f75cb 5577 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5578};
5579
49a02c51 5580struct s_data {
21d42ccf 5581 struct sched_domain ** __percpu sd;
49a02c51
AH
5582 struct root_domain *rd;
5583};
5584
2109b99e 5585enum s_alloc {
2109b99e 5586 sa_rootdomain,
21d42ccf 5587 sa_sd,
dce840a0 5588 sa_sd_storage,
2109b99e
AH
5589 sa_none,
5590};
5591
54ab4ff4
PZ
5592struct sched_domain_topology_level;
5593
5594typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5595typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5596
e3589f6c
PZ
5597#define SDTL_OVERLAP 0x01
5598
eb7a74e6 5599struct sched_domain_topology_level {
2c402dc3
PZ
5600 sched_domain_init_f init;
5601 sched_domain_mask_f mask;
e3589f6c 5602 int flags;
cb83b629 5603 int numa_level;
54ab4ff4 5604 struct sd_data data;
eb7a74e6
PZ
5605};
5606
c1174876
PZ
5607/*
5608 * Build an iteration mask that can exclude certain CPUs from the upwards
5609 * domain traversal.
5610 *
5611 * Asymmetric node setups can result in situations where the domain tree is of
5612 * unequal depth, make sure to skip domains that already cover the entire
5613 * range.
5614 *
5615 * In that case build_sched_domains() will have terminated the iteration early
5616 * and our sibling sd spans will be empty. Domains should always include the
5617 * cpu they're built on, so check that.
5618 *
5619 */
5620static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5621{
5622 const struct cpumask *span = sched_domain_span(sd);
5623 struct sd_data *sdd = sd->private;
5624 struct sched_domain *sibling;
5625 int i;
5626
5627 for_each_cpu(i, span) {
5628 sibling = *per_cpu_ptr(sdd->sd, i);
5629 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5630 continue;
5631
5632 cpumask_set_cpu(i, sched_group_mask(sg));
5633 }
5634}
5635
5636/*
5637 * Return the canonical balance cpu for this group, this is the first cpu
5638 * of this group that's also in the iteration mask.
5639 */
5640int group_balance_cpu(struct sched_group *sg)
5641{
5642 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5643}
5644
e3589f6c
PZ
5645static int
5646build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5647{
5648 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5649 const struct cpumask *span = sched_domain_span(sd);
5650 struct cpumask *covered = sched_domains_tmpmask;
5651 struct sd_data *sdd = sd->private;
5652 struct sched_domain *child;
5653 int i;
5654
5655 cpumask_clear(covered);
5656
5657 for_each_cpu(i, span) {
5658 struct cpumask *sg_span;
5659
5660 if (cpumask_test_cpu(i, covered))
5661 continue;
5662
c1174876
PZ
5663 child = *per_cpu_ptr(sdd->sd, i);
5664
5665 /* See the comment near build_group_mask(). */
5666 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5667 continue;
5668
e3589f6c 5669 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5670 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5671
5672 if (!sg)
5673 goto fail;
5674
5675 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5676 if (child->child) {
5677 child = child->child;
5678 cpumask_copy(sg_span, sched_domain_span(child));
5679 } else
5680 cpumask_set_cpu(i, sg_span);
5681
5682 cpumask_or(covered, covered, sg_span);
5683
74a5ce20 5684 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5685 if (atomic_inc_return(&sg->sgp->ref) == 1)
5686 build_group_mask(sd, sg);
5687
c3decf0d
PZ
5688 /*
5689 * Initialize sgp->power such that even if we mess up the
5690 * domains and no possible iteration will get us here, we won't
5691 * die on a /0 trap.
5692 */
5693 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5694 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5695
c1174876
PZ
5696 /*
5697 * Make sure the first group of this domain contains the
5698 * canonical balance cpu. Otherwise the sched_domain iteration
5699 * breaks. See update_sg_lb_stats().
5700 */
74a5ce20 5701 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5702 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5703 groups = sg;
5704
5705 if (!first)
5706 first = sg;
5707 if (last)
5708 last->next = sg;
5709 last = sg;
5710 last->next = first;
5711 }
5712 sd->groups = groups;
5713
5714 return 0;
5715
5716fail:
5717 free_sched_groups(first, 0);
5718
5719 return -ENOMEM;
5720}
5721
dce840a0 5722static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5723{
dce840a0
PZ
5724 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5725 struct sched_domain *child = sd->child;
1da177e4 5726
dce840a0
PZ
5727 if (child)
5728 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5729
9c3f75cb 5730 if (sg) {
dce840a0 5731 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5732 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5733 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5734 }
dce840a0
PZ
5735
5736 return cpu;
1e9f28fa 5737}
1e9f28fa 5738
01a08546 5739/*
dce840a0
PZ
5740 * build_sched_groups will build a circular linked list of the groups
5741 * covered by the given span, and will set each group's ->cpumask correctly,
5742 * and ->cpu_power to 0.
e3589f6c
PZ
5743 *
5744 * Assumes the sched_domain tree is fully constructed
01a08546 5745 */
e3589f6c
PZ
5746static int
5747build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5748{
dce840a0
PZ
5749 struct sched_group *first = NULL, *last = NULL;
5750 struct sd_data *sdd = sd->private;
5751 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5752 struct cpumask *covered;
dce840a0 5753 int i;
9c1cfda2 5754
e3589f6c
PZ
5755 get_group(cpu, sdd, &sd->groups);
5756 atomic_inc(&sd->groups->ref);
5757
0936629f 5758 if (cpu != cpumask_first(span))
e3589f6c
PZ
5759 return 0;
5760
f96225fd
PZ
5761 lockdep_assert_held(&sched_domains_mutex);
5762 covered = sched_domains_tmpmask;
5763
dce840a0 5764 cpumask_clear(covered);
6711cab4 5765
dce840a0
PZ
5766 for_each_cpu(i, span) {
5767 struct sched_group *sg;
cd08e923 5768 int group, j;
6711cab4 5769
dce840a0
PZ
5770 if (cpumask_test_cpu(i, covered))
5771 continue;
6711cab4 5772
cd08e923 5773 group = get_group(i, sdd, &sg);
dce840a0 5774 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5775 sg->sgp->power = 0;
c1174876 5776 cpumask_setall(sched_group_mask(sg));
0601a88d 5777
dce840a0
PZ
5778 for_each_cpu(j, span) {
5779 if (get_group(j, sdd, NULL) != group)
5780 continue;
0601a88d 5781
dce840a0
PZ
5782 cpumask_set_cpu(j, covered);
5783 cpumask_set_cpu(j, sched_group_cpus(sg));
5784 }
0601a88d 5785
dce840a0
PZ
5786 if (!first)
5787 first = sg;
5788 if (last)
5789 last->next = sg;
5790 last = sg;
5791 }
5792 last->next = first;
e3589f6c
PZ
5793
5794 return 0;
0601a88d 5795}
51888ca2 5796
89c4710e
SS
5797/*
5798 * Initialize sched groups cpu_power.
5799 *
5800 * cpu_power indicates the capacity of sched group, which is used while
5801 * distributing the load between different sched groups in a sched domain.
5802 * Typically cpu_power for all the groups in a sched domain will be same unless
5803 * there are asymmetries in the topology. If there are asymmetries, group
5804 * having more cpu_power will pickup more load compared to the group having
5805 * less cpu_power.
89c4710e
SS
5806 */
5807static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5808{
e3589f6c 5809 struct sched_group *sg = sd->groups;
89c4710e 5810
94c95ba6 5811 WARN_ON(!sg);
e3589f6c
PZ
5812
5813 do {
5814 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5815 sg = sg->next;
5816 } while (sg != sd->groups);
89c4710e 5817
c1174876 5818 if (cpu != group_balance_cpu(sg))
e3589f6c 5819 return;
aae6d3dd 5820
d274cb30 5821 update_group_power(sd, cpu);
69e1e811 5822 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5823}
5824
029632fb
PZ
5825int __weak arch_sd_sibling_asym_packing(void)
5826{
5827 return 0*SD_ASYM_PACKING;
89c4710e
SS
5828}
5829
7c16ec58
MT
5830/*
5831 * Initializers for schedule domains
5832 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5833 */
5834
a5d8c348
IM
5835#ifdef CONFIG_SCHED_DEBUG
5836# define SD_INIT_NAME(sd, type) sd->name = #type
5837#else
5838# define SD_INIT_NAME(sd, type) do { } while (0)
5839#endif
5840
54ab4ff4
PZ
5841#define SD_INIT_FUNC(type) \
5842static noinline struct sched_domain * \
5843sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5844{ \
5845 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5846 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5847 SD_INIT_NAME(sd, type); \
5848 sd->private = &tl->data; \
5849 return sd; \
7c16ec58
MT
5850}
5851
5852SD_INIT_FUNC(CPU)
7c16ec58
MT
5853#ifdef CONFIG_SCHED_SMT
5854 SD_INIT_FUNC(SIBLING)
5855#endif
5856#ifdef CONFIG_SCHED_MC
5857 SD_INIT_FUNC(MC)
5858#endif
01a08546
HC
5859#ifdef CONFIG_SCHED_BOOK
5860 SD_INIT_FUNC(BOOK)
5861#endif
7c16ec58 5862
1d3504fc 5863static int default_relax_domain_level = -1;
60495e77 5864int sched_domain_level_max;
1d3504fc
HS
5865
5866static int __init setup_relax_domain_level(char *str)
5867{
a841f8ce
DS
5868 if (kstrtoint(str, 0, &default_relax_domain_level))
5869 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5870
1d3504fc
HS
5871 return 1;
5872}
5873__setup("relax_domain_level=", setup_relax_domain_level);
5874
5875static void set_domain_attribute(struct sched_domain *sd,
5876 struct sched_domain_attr *attr)
5877{
5878 int request;
5879
5880 if (!attr || attr->relax_domain_level < 0) {
5881 if (default_relax_domain_level < 0)
5882 return;
5883 else
5884 request = default_relax_domain_level;
5885 } else
5886 request = attr->relax_domain_level;
5887 if (request < sd->level) {
5888 /* turn off idle balance on this domain */
c88d5910 5889 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5890 } else {
5891 /* turn on idle balance on this domain */
c88d5910 5892 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5893 }
5894}
5895
54ab4ff4
PZ
5896static void __sdt_free(const struct cpumask *cpu_map);
5897static int __sdt_alloc(const struct cpumask *cpu_map);
5898
2109b99e
AH
5899static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5900 const struct cpumask *cpu_map)
5901{
5902 switch (what) {
2109b99e 5903 case sa_rootdomain:
822ff793
PZ
5904 if (!atomic_read(&d->rd->refcount))
5905 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5906 case sa_sd:
5907 free_percpu(d->sd); /* fall through */
dce840a0 5908 case sa_sd_storage:
54ab4ff4 5909 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5910 case sa_none:
5911 break;
5912 }
5913}
3404c8d9 5914
2109b99e
AH
5915static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5916 const struct cpumask *cpu_map)
5917{
dce840a0
PZ
5918 memset(d, 0, sizeof(*d));
5919
54ab4ff4
PZ
5920 if (__sdt_alloc(cpu_map))
5921 return sa_sd_storage;
dce840a0
PZ
5922 d->sd = alloc_percpu(struct sched_domain *);
5923 if (!d->sd)
5924 return sa_sd_storage;
2109b99e 5925 d->rd = alloc_rootdomain();
dce840a0 5926 if (!d->rd)
21d42ccf 5927 return sa_sd;
2109b99e
AH
5928 return sa_rootdomain;
5929}
57d885fe 5930
dce840a0
PZ
5931/*
5932 * NULL the sd_data elements we've used to build the sched_domain and
5933 * sched_group structure so that the subsequent __free_domain_allocs()
5934 * will not free the data we're using.
5935 */
5936static void claim_allocations(int cpu, struct sched_domain *sd)
5937{
5938 struct sd_data *sdd = sd->private;
dce840a0
PZ
5939
5940 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5941 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5942
e3589f6c 5943 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5944 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5945
5946 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5947 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5948}
5949
2c402dc3
PZ
5950#ifdef CONFIG_SCHED_SMT
5951static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5952{
2c402dc3 5953 return topology_thread_cpumask(cpu);
3bd65a80 5954}
2c402dc3 5955#endif
7f4588f3 5956
d069b916
PZ
5957/*
5958 * Topology list, bottom-up.
5959 */
2c402dc3 5960static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5961#ifdef CONFIG_SCHED_SMT
5962 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5963#endif
1e9f28fa 5964#ifdef CONFIG_SCHED_MC
2c402dc3 5965 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5966#endif
d069b916
PZ
5967#ifdef CONFIG_SCHED_BOOK
5968 { sd_init_BOOK, cpu_book_mask, },
5969#endif
5970 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5971 { NULL, },
5972};
5973
5974static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5975
27723a68
VK
5976#define for_each_sd_topology(tl) \
5977 for (tl = sched_domain_topology; tl->init; tl++)
5978
cb83b629
PZ
5979#ifdef CONFIG_NUMA
5980
5981static int sched_domains_numa_levels;
cb83b629
PZ
5982static int *sched_domains_numa_distance;
5983static struct cpumask ***sched_domains_numa_masks;
5984static int sched_domains_curr_level;
5985
cb83b629
PZ
5986static inline int sd_local_flags(int level)
5987{
10717dcd 5988 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5989 return 0;
5990
5991 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5992}
5993
5994static struct sched_domain *
5995sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5996{
5997 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5998 int level = tl->numa_level;
5999 int sd_weight = cpumask_weight(
6000 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6001
6002 *sd = (struct sched_domain){
6003 .min_interval = sd_weight,
6004 .max_interval = 2*sd_weight,
6005 .busy_factor = 32,
870a0bb5 6006 .imbalance_pct = 125,
cb83b629
PZ
6007 .cache_nice_tries = 2,
6008 .busy_idx = 3,
6009 .idle_idx = 2,
6010 .newidle_idx = 0,
6011 .wake_idx = 0,
6012 .forkexec_idx = 0,
6013
6014 .flags = 1*SD_LOAD_BALANCE
6015 | 1*SD_BALANCE_NEWIDLE
6016 | 0*SD_BALANCE_EXEC
6017 | 0*SD_BALANCE_FORK
6018 | 0*SD_BALANCE_WAKE
6019 | 0*SD_WAKE_AFFINE
cb83b629 6020 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6021 | 0*SD_SHARE_PKG_RESOURCES
6022 | 1*SD_SERIALIZE
6023 | 0*SD_PREFER_SIBLING
3a7053b3 6024 | 1*SD_NUMA
cb83b629
PZ
6025 | sd_local_flags(level)
6026 ,
6027 .last_balance = jiffies,
6028 .balance_interval = sd_weight,
6029 };
6030 SD_INIT_NAME(sd, NUMA);
6031 sd->private = &tl->data;
6032
6033 /*
6034 * Ugly hack to pass state to sd_numa_mask()...
6035 */
6036 sched_domains_curr_level = tl->numa_level;
6037
6038 return sd;
6039}
6040
6041static const struct cpumask *sd_numa_mask(int cpu)
6042{
6043 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6044}
6045
d039ac60
PZ
6046static void sched_numa_warn(const char *str)
6047{
6048 static int done = false;
6049 int i,j;
6050
6051 if (done)
6052 return;
6053
6054 done = true;
6055
6056 printk(KERN_WARNING "ERROR: %s\n\n", str);
6057
6058 for (i = 0; i < nr_node_ids; i++) {
6059 printk(KERN_WARNING " ");
6060 for (j = 0; j < nr_node_ids; j++)
6061 printk(KERN_CONT "%02d ", node_distance(i,j));
6062 printk(KERN_CONT "\n");
6063 }
6064 printk(KERN_WARNING "\n");
6065}
6066
6067static bool find_numa_distance(int distance)
6068{
6069 int i;
6070
6071 if (distance == node_distance(0, 0))
6072 return true;
6073
6074 for (i = 0; i < sched_domains_numa_levels; i++) {
6075 if (sched_domains_numa_distance[i] == distance)
6076 return true;
6077 }
6078
6079 return false;
6080}
6081
cb83b629
PZ
6082static void sched_init_numa(void)
6083{
6084 int next_distance, curr_distance = node_distance(0, 0);
6085 struct sched_domain_topology_level *tl;
6086 int level = 0;
6087 int i, j, k;
6088
cb83b629
PZ
6089 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6090 if (!sched_domains_numa_distance)
6091 return;
6092
6093 /*
6094 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6095 * unique distances in the node_distance() table.
6096 *
6097 * Assumes node_distance(0,j) includes all distances in
6098 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6099 */
6100 next_distance = curr_distance;
6101 for (i = 0; i < nr_node_ids; i++) {
6102 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6103 for (k = 0; k < nr_node_ids; k++) {
6104 int distance = node_distance(i, k);
6105
6106 if (distance > curr_distance &&
6107 (distance < next_distance ||
6108 next_distance == curr_distance))
6109 next_distance = distance;
6110
6111 /*
6112 * While not a strong assumption it would be nice to know
6113 * about cases where if node A is connected to B, B is not
6114 * equally connected to A.
6115 */
6116 if (sched_debug() && node_distance(k, i) != distance)
6117 sched_numa_warn("Node-distance not symmetric");
6118
6119 if (sched_debug() && i && !find_numa_distance(distance))
6120 sched_numa_warn("Node-0 not representative");
6121 }
6122 if (next_distance != curr_distance) {
6123 sched_domains_numa_distance[level++] = next_distance;
6124 sched_domains_numa_levels = level;
6125 curr_distance = next_distance;
6126 } else break;
cb83b629 6127 }
d039ac60
PZ
6128
6129 /*
6130 * In case of sched_debug() we verify the above assumption.
6131 */
6132 if (!sched_debug())
6133 break;
cb83b629
PZ
6134 }
6135 /*
6136 * 'level' contains the number of unique distances, excluding the
6137 * identity distance node_distance(i,i).
6138 *
28b4a521 6139 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6140 * numbers.
6141 */
6142
5f7865f3
TC
6143 /*
6144 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6145 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6146 * the array will contain less then 'level' members. This could be
6147 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6148 * in other functions.
6149 *
6150 * We reset it to 'level' at the end of this function.
6151 */
6152 sched_domains_numa_levels = 0;
6153
cb83b629
PZ
6154 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6155 if (!sched_domains_numa_masks)
6156 return;
6157
6158 /*
6159 * Now for each level, construct a mask per node which contains all
6160 * cpus of nodes that are that many hops away from us.
6161 */
6162 for (i = 0; i < level; i++) {
6163 sched_domains_numa_masks[i] =
6164 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6165 if (!sched_domains_numa_masks[i])
6166 return;
6167
6168 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6169 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6170 if (!mask)
6171 return;
6172
6173 sched_domains_numa_masks[i][j] = mask;
6174
6175 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6176 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6177 continue;
6178
6179 cpumask_or(mask, mask, cpumask_of_node(k));
6180 }
6181 }
6182 }
6183
6184 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6185 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6186 if (!tl)
6187 return;
6188
6189 /*
6190 * Copy the default topology bits..
6191 */
6192 for (i = 0; default_topology[i].init; i++)
6193 tl[i] = default_topology[i];
6194
6195 /*
6196 * .. and append 'j' levels of NUMA goodness.
6197 */
6198 for (j = 0; j < level; i++, j++) {
6199 tl[i] = (struct sched_domain_topology_level){
6200 .init = sd_numa_init,
6201 .mask = sd_numa_mask,
6202 .flags = SDTL_OVERLAP,
6203 .numa_level = j,
6204 };
6205 }
6206
6207 sched_domain_topology = tl;
5f7865f3
TC
6208
6209 sched_domains_numa_levels = level;
cb83b629 6210}
301a5cba
TC
6211
6212static void sched_domains_numa_masks_set(int cpu)
6213{
6214 int i, j;
6215 int node = cpu_to_node(cpu);
6216
6217 for (i = 0; i < sched_domains_numa_levels; i++) {
6218 for (j = 0; j < nr_node_ids; j++) {
6219 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6220 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6221 }
6222 }
6223}
6224
6225static void sched_domains_numa_masks_clear(int cpu)
6226{
6227 int i, j;
6228 for (i = 0; i < sched_domains_numa_levels; i++) {
6229 for (j = 0; j < nr_node_ids; j++)
6230 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6231 }
6232}
6233
6234/*
6235 * Update sched_domains_numa_masks[level][node] array when new cpus
6236 * are onlined.
6237 */
6238static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6239 unsigned long action,
6240 void *hcpu)
6241{
6242 int cpu = (long)hcpu;
6243
6244 switch (action & ~CPU_TASKS_FROZEN) {
6245 case CPU_ONLINE:
6246 sched_domains_numa_masks_set(cpu);
6247 break;
6248
6249 case CPU_DEAD:
6250 sched_domains_numa_masks_clear(cpu);
6251 break;
6252
6253 default:
6254 return NOTIFY_DONE;
6255 }
6256
6257 return NOTIFY_OK;
cb83b629
PZ
6258}
6259#else
6260static inline void sched_init_numa(void)
6261{
6262}
301a5cba
TC
6263
6264static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6265 unsigned long action,
6266 void *hcpu)
6267{
6268 return 0;
6269}
cb83b629
PZ
6270#endif /* CONFIG_NUMA */
6271
54ab4ff4
PZ
6272static int __sdt_alloc(const struct cpumask *cpu_map)
6273{
6274 struct sched_domain_topology_level *tl;
6275 int j;
6276
27723a68 6277 for_each_sd_topology(tl) {
54ab4ff4
PZ
6278 struct sd_data *sdd = &tl->data;
6279
6280 sdd->sd = alloc_percpu(struct sched_domain *);
6281 if (!sdd->sd)
6282 return -ENOMEM;
6283
6284 sdd->sg = alloc_percpu(struct sched_group *);
6285 if (!sdd->sg)
6286 return -ENOMEM;
6287
9c3f75cb
PZ
6288 sdd->sgp = alloc_percpu(struct sched_group_power *);
6289 if (!sdd->sgp)
6290 return -ENOMEM;
6291
54ab4ff4
PZ
6292 for_each_cpu(j, cpu_map) {
6293 struct sched_domain *sd;
6294 struct sched_group *sg;
9c3f75cb 6295 struct sched_group_power *sgp;
54ab4ff4
PZ
6296
6297 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6298 GFP_KERNEL, cpu_to_node(j));
6299 if (!sd)
6300 return -ENOMEM;
6301
6302 *per_cpu_ptr(sdd->sd, j) = sd;
6303
6304 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sg)
6307 return -ENOMEM;
6308
30b4e9eb
IM
6309 sg->next = sg;
6310
54ab4ff4 6311 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6312
c1174876 6313 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6314 GFP_KERNEL, cpu_to_node(j));
6315 if (!sgp)
6316 return -ENOMEM;
6317
6318 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6319 }
6320 }
6321
6322 return 0;
6323}
6324
6325static void __sdt_free(const struct cpumask *cpu_map)
6326{
6327 struct sched_domain_topology_level *tl;
6328 int j;
6329
27723a68 6330 for_each_sd_topology(tl) {
54ab4ff4
PZ
6331 struct sd_data *sdd = &tl->data;
6332
6333 for_each_cpu(j, cpu_map) {
fb2cf2c6 6334 struct sched_domain *sd;
6335
6336 if (sdd->sd) {
6337 sd = *per_cpu_ptr(sdd->sd, j);
6338 if (sd && (sd->flags & SD_OVERLAP))
6339 free_sched_groups(sd->groups, 0);
6340 kfree(*per_cpu_ptr(sdd->sd, j));
6341 }
6342
6343 if (sdd->sg)
6344 kfree(*per_cpu_ptr(sdd->sg, j));
6345 if (sdd->sgp)
6346 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6347 }
6348 free_percpu(sdd->sd);
fb2cf2c6 6349 sdd->sd = NULL;
54ab4ff4 6350 free_percpu(sdd->sg);
fb2cf2c6 6351 sdd->sg = NULL;
9c3f75cb 6352 free_percpu(sdd->sgp);
fb2cf2c6 6353 sdd->sgp = NULL;
54ab4ff4
PZ
6354 }
6355}
6356
2c402dc3 6357struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6358 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6359 struct sched_domain *child, int cpu)
2c402dc3 6360{
54ab4ff4 6361 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6362 if (!sd)
d069b916 6363 return child;
2c402dc3 6364
2c402dc3 6365 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6366 if (child) {
6367 sd->level = child->level + 1;
6368 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6369 child->parent = sd;
c75e0128 6370 sd->child = child;
60495e77 6371 }
a841f8ce 6372 set_domain_attribute(sd, attr);
2c402dc3
PZ
6373
6374 return sd;
6375}
6376
2109b99e
AH
6377/*
6378 * Build sched domains for a given set of cpus and attach the sched domains
6379 * to the individual cpus
6380 */
dce840a0
PZ
6381static int build_sched_domains(const struct cpumask *cpu_map,
6382 struct sched_domain_attr *attr)
2109b99e 6383{
1c632169 6384 enum s_alloc alloc_state;
dce840a0 6385 struct sched_domain *sd;
2109b99e 6386 struct s_data d;
822ff793 6387 int i, ret = -ENOMEM;
9c1cfda2 6388
2109b99e
AH
6389 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6390 if (alloc_state != sa_rootdomain)
6391 goto error;
9c1cfda2 6392
dce840a0 6393 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6394 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6395 struct sched_domain_topology_level *tl;
6396
3bd65a80 6397 sd = NULL;
27723a68 6398 for_each_sd_topology(tl) {
4a850cbe 6399 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6400 if (tl == sched_domain_topology)
6401 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6402 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6403 sd->flags |= SD_OVERLAP;
d110235d
PZ
6404 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6405 break;
e3589f6c 6406 }
dce840a0
PZ
6407 }
6408
6409 /* Build the groups for the domains */
6410 for_each_cpu(i, cpu_map) {
6411 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6412 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6413 if (sd->flags & SD_OVERLAP) {
6414 if (build_overlap_sched_groups(sd, i))
6415 goto error;
6416 } else {
6417 if (build_sched_groups(sd, i))
6418 goto error;
6419 }
1cf51902 6420 }
a06dadbe 6421 }
9c1cfda2 6422
1da177e4 6423 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6424 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6425 if (!cpumask_test_cpu(i, cpu_map))
6426 continue;
9c1cfda2 6427
dce840a0
PZ
6428 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6429 claim_allocations(i, sd);
cd4ea6ae 6430 init_sched_groups_power(i, sd);
dce840a0 6431 }
f712c0c7 6432 }
9c1cfda2 6433
1da177e4 6434 /* Attach the domains */
dce840a0 6435 rcu_read_lock();
abcd083a 6436 for_each_cpu(i, cpu_map) {
21d42ccf 6437 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6438 cpu_attach_domain(sd, d.rd, i);
1da177e4 6439 }
dce840a0 6440 rcu_read_unlock();
51888ca2 6441
822ff793 6442 ret = 0;
51888ca2 6443error:
2109b99e 6444 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6445 return ret;
1da177e4 6446}
029190c5 6447
acc3f5d7 6448static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6449static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6450static struct sched_domain_attr *dattr_cur;
6451 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6452
6453/*
6454 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6455 * cpumask) fails, then fallback to a single sched domain,
6456 * as determined by the single cpumask fallback_doms.
029190c5 6457 */
4212823f 6458static cpumask_var_t fallback_doms;
029190c5 6459
ee79d1bd
HC
6460/*
6461 * arch_update_cpu_topology lets virtualized architectures update the
6462 * cpu core maps. It is supposed to return 1 if the topology changed
6463 * or 0 if it stayed the same.
6464 */
52f5684c 6465int __weak arch_update_cpu_topology(void)
22e52b07 6466{
ee79d1bd 6467 return 0;
22e52b07
HC
6468}
6469
acc3f5d7
RR
6470cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6471{
6472 int i;
6473 cpumask_var_t *doms;
6474
6475 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6476 if (!doms)
6477 return NULL;
6478 for (i = 0; i < ndoms; i++) {
6479 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6480 free_sched_domains(doms, i);
6481 return NULL;
6482 }
6483 }
6484 return doms;
6485}
6486
6487void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6488{
6489 unsigned int i;
6490 for (i = 0; i < ndoms; i++)
6491 free_cpumask_var(doms[i]);
6492 kfree(doms);
6493}
6494
1a20ff27 6495/*
41a2d6cf 6496 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6497 * For now this just excludes isolated cpus, but could be used to
6498 * exclude other special cases in the future.
1a20ff27 6499 */
c4a8849a 6500static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6501{
7378547f
MM
6502 int err;
6503
22e52b07 6504 arch_update_cpu_topology();
029190c5 6505 ndoms_cur = 1;
acc3f5d7 6506 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6507 if (!doms_cur)
acc3f5d7
RR
6508 doms_cur = &fallback_doms;
6509 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6510 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6511 register_sched_domain_sysctl();
7378547f
MM
6512
6513 return err;
1a20ff27
DG
6514}
6515
1a20ff27
DG
6516/*
6517 * Detach sched domains from a group of cpus specified in cpu_map
6518 * These cpus will now be attached to the NULL domain
6519 */
96f874e2 6520static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6521{
6522 int i;
6523
dce840a0 6524 rcu_read_lock();
abcd083a 6525 for_each_cpu(i, cpu_map)
57d885fe 6526 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6527 rcu_read_unlock();
1a20ff27
DG
6528}
6529
1d3504fc
HS
6530/* handle null as "default" */
6531static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6532 struct sched_domain_attr *new, int idx_new)
6533{
6534 struct sched_domain_attr tmp;
6535
6536 /* fast path */
6537 if (!new && !cur)
6538 return 1;
6539
6540 tmp = SD_ATTR_INIT;
6541 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6542 new ? (new + idx_new) : &tmp,
6543 sizeof(struct sched_domain_attr));
6544}
6545
029190c5
PJ
6546/*
6547 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6548 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6549 * doms_new[] to the current sched domain partitioning, doms_cur[].
6550 * It destroys each deleted domain and builds each new domain.
6551 *
acc3f5d7 6552 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6553 * The masks don't intersect (don't overlap.) We should setup one
6554 * sched domain for each mask. CPUs not in any of the cpumasks will
6555 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6556 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6557 * it as it is.
6558 *
acc3f5d7
RR
6559 * The passed in 'doms_new' should be allocated using
6560 * alloc_sched_domains. This routine takes ownership of it and will
6561 * free_sched_domains it when done with it. If the caller failed the
6562 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6563 * and partition_sched_domains() will fallback to the single partition
6564 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6565 *
96f874e2 6566 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6567 * ndoms_new == 0 is a special case for destroying existing domains,
6568 * and it will not create the default domain.
dfb512ec 6569 *
029190c5
PJ
6570 * Call with hotplug lock held
6571 */
acc3f5d7 6572void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6573 struct sched_domain_attr *dattr_new)
029190c5 6574{
dfb512ec 6575 int i, j, n;
d65bd5ec 6576 int new_topology;
029190c5 6577
712555ee 6578 mutex_lock(&sched_domains_mutex);
a1835615 6579
7378547f
MM
6580 /* always unregister in case we don't destroy any domains */
6581 unregister_sched_domain_sysctl();
6582
d65bd5ec
HC
6583 /* Let architecture update cpu core mappings. */
6584 new_topology = arch_update_cpu_topology();
6585
dfb512ec 6586 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6587
6588 /* Destroy deleted domains */
6589 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6590 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6591 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6592 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6593 goto match1;
6594 }
6595 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6596 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6597match1:
6598 ;
6599 }
6600
c8d2d47a 6601 n = ndoms_cur;
e761b772 6602 if (doms_new == NULL) {
c8d2d47a 6603 n = 0;
acc3f5d7 6604 doms_new = &fallback_doms;
6ad4c188 6605 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6606 WARN_ON_ONCE(dattr_new);
e761b772
MK
6607 }
6608
029190c5
PJ
6609 /* Build new domains */
6610 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6611 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6612 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6613 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6614 goto match2;
6615 }
6616 /* no match - add a new doms_new */
dce840a0 6617 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6618match2:
6619 ;
6620 }
6621
6622 /* Remember the new sched domains */
acc3f5d7
RR
6623 if (doms_cur != &fallback_doms)
6624 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6625 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6626 doms_cur = doms_new;
1d3504fc 6627 dattr_cur = dattr_new;
029190c5 6628 ndoms_cur = ndoms_new;
7378547f
MM
6629
6630 register_sched_domain_sysctl();
a1835615 6631
712555ee 6632 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6633}
6634
d35be8ba
SB
6635static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6636
1da177e4 6637/*
3a101d05
TH
6638 * Update cpusets according to cpu_active mask. If cpusets are
6639 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6640 * around partition_sched_domains().
d35be8ba
SB
6641 *
6642 * If we come here as part of a suspend/resume, don't touch cpusets because we
6643 * want to restore it back to its original state upon resume anyway.
1da177e4 6644 */
0b2e918a
TH
6645static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6646 void *hcpu)
e761b772 6647{
d35be8ba
SB
6648 switch (action) {
6649 case CPU_ONLINE_FROZEN:
6650 case CPU_DOWN_FAILED_FROZEN:
6651
6652 /*
6653 * num_cpus_frozen tracks how many CPUs are involved in suspend
6654 * resume sequence. As long as this is not the last online
6655 * operation in the resume sequence, just build a single sched
6656 * domain, ignoring cpusets.
6657 */
6658 num_cpus_frozen--;
6659 if (likely(num_cpus_frozen)) {
6660 partition_sched_domains(1, NULL, NULL);
6661 break;
6662 }
6663
6664 /*
6665 * This is the last CPU online operation. So fall through and
6666 * restore the original sched domains by considering the
6667 * cpuset configurations.
6668 */
6669
e761b772 6670 case CPU_ONLINE:
6ad4c188 6671 case CPU_DOWN_FAILED:
7ddf96b0 6672 cpuset_update_active_cpus(true);
d35be8ba 6673 break;
3a101d05
TH
6674 default:
6675 return NOTIFY_DONE;
6676 }
d35be8ba 6677 return NOTIFY_OK;
3a101d05 6678}
e761b772 6679
0b2e918a
TH
6680static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6681 void *hcpu)
3a101d05 6682{
d35be8ba 6683 switch (action) {
3a101d05 6684 case CPU_DOWN_PREPARE:
7ddf96b0 6685 cpuset_update_active_cpus(false);
d35be8ba
SB
6686 break;
6687 case CPU_DOWN_PREPARE_FROZEN:
6688 num_cpus_frozen++;
6689 partition_sched_domains(1, NULL, NULL);
6690 break;
e761b772
MK
6691 default:
6692 return NOTIFY_DONE;
6693 }
d35be8ba 6694 return NOTIFY_OK;
e761b772 6695}
e761b772 6696
1da177e4
LT
6697void __init sched_init_smp(void)
6698{
dcc30a35
RR
6699 cpumask_var_t non_isolated_cpus;
6700
6701 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6702 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6703
cb83b629
PZ
6704 sched_init_numa();
6705
6acce3ef
PZ
6706 /*
6707 * There's no userspace yet to cause hotplug operations; hence all the
6708 * cpu masks are stable and all blatant races in the below code cannot
6709 * happen.
6710 */
712555ee 6711 mutex_lock(&sched_domains_mutex);
c4a8849a 6712 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6713 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6714 if (cpumask_empty(non_isolated_cpus))
6715 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6716 mutex_unlock(&sched_domains_mutex);
e761b772 6717
301a5cba 6718 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6719 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6720 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6721
b328ca18 6722 init_hrtick();
5c1e1767
NP
6723
6724 /* Move init over to a non-isolated CPU */
dcc30a35 6725 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6726 BUG();
19978ca6 6727 sched_init_granularity();
dcc30a35 6728 free_cpumask_var(non_isolated_cpus);
4212823f 6729
0e3900e6 6730 init_sched_rt_class();
1baca4ce 6731 init_sched_dl_class();
1da177e4
LT
6732}
6733#else
6734void __init sched_init_smp(void)
6735{
19978ca6 6736 sched_init_granularity();
1da177e4
LT
6737}
6738#endif /* CONFIG_SMP */
6739
cd1bb94b
AB
6740const_debug unsigned int sysctl_timer_migration = 1;
6741
1da177e4
LT
6742int in_sched_functions(unsigned long addr)
6743{
1da177e4
LT
6744 return in_lock_functions(addr) ||
6745 (addr >= (unsigned long)__sched_text_start
6746 && addr < (unsigned long)__sched_text_end);
6747}
6748
029632fb 6749#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6750/*
6751 * Default task group.
6752 * Every task in system belongs to this group at bootup.
6753 */
029632fb 6754struct task_group root_task_group;
35cf4e50 6755LIST_HEAD(task_groups);
052f1dc7 6756#endif
6f505b16 6757
e6252c3e 6758DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6759
1da177e4
LT
6760void __init sched_init(void)
6761{
dd41f596 6762 int i, j;
434d53b0
MT
6763 unsigned long alloc_size = 0, ptr;
6764
6765#ifdef CONFIG_FAIR_GROUP_SCHED
6766 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6767#endif
6768#ifdef CONFIG_RT_GROUP_SCHED
6769 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6770#endif
df7c8e84 6771#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6772 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6773#endif
434d53b0 6774 if (alloc_size) {
36b7b6d4 6775 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6776
6777#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6778 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6779 ptr += nr_cpu_ids * sizeof(void **);
6780
07e06b01 6781 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6782 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6783
6d6bc0ad 6784#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6785#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6786 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6787 ptr += nr_cpu_ids * sizeof(void **);
6788
07e06b01 6789 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6790 ptr += nr_cpu_ids * sizeof(void **);
6791
6d6bc0ad 6792#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6793#ifdef CONFIG_CPUMASK_OFFSTACK
6794 for_each_possible_cpu(i) {
e6252c3e 6795 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6796 ptr += cpumask_size();
6797 }
6798#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6799 }
dd41f596 6800
332ac17e
DF
6801 init_rt_bandwidth(&def_rt_bandwidth,
6802 global_rt_period(), global_rt_runtime());
6803 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6804 global_rt_period(), global_rt_runtime());
332ac17e 6805
57d885fe
GH
6806#ifdef CONFIG_SMP
6807 init_defrootdomain();
6808#endif
6809
d0b27fa7 6810#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6811 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6812 global_rt_period(), global_rt_runtime());
6d6bc0ad 6813#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6814
7c941438 6815#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6816 list_add(&root_task_group.list, &task_groups);
6817 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6818 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6819 autogroup_init(&init_task);
54c707e9 6820
7c941438 6821#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6822
0a945022 6823 for_each_possible_cpu(i) {
70b97a7f 6824 struct rq *rq;
1da177e4
LT
6825
6826 rq = cpu_rq(i);
05fa785c 6827 raw_spin_lock_init(&rq->lock);
7897986b 6828 rq->nr_running = 0;
dce48a84
TG
6829 rq->calc_load_active = 0;
6830 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6831 init_cfs_rq(&rq->cfs);
6f505b16 6832 init_rt_rq(&rq->rt, rq);
aab03e05 6833 init_dl_rq(&rq->dl, rq);
dd41f596 6834#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6835 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6836 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6837 /*
07e06b01 6838 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6839 *
6840 * In case of task-groups formed thr' the cgroup filesystem, it
6841 * gets 100% of the cpu resources in the system. This overall
6842 * system cpu resource is divided among the tasks of
07e06b01 6843 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6844 * based on each entity's (task or task-group's) weight
6845 * (se->load.weight).
6846 *
07e06b01 6847 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6848 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6849 * then A0's share of the cpu resource is:
6850 *
0d905bca 6851 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6852 *
07e06b01
YZ
6853 * We achieve this by letting root_task_group's tasks sit
6854 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6855 */
ab84d31e 6856 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6857 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6858#endif /* CONFIG_FAIR_GROUP_SCHED */
6859
6860 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6861#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6862 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6863#endif
1da177e4 6864
dd41f596
IM
6865 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6866 rq->cpu_load[j] = 0;
fdf3e95d
VP
6867
6868 rq->last_load_update_tick = jiffies;
6869
1da177e4 6870#ifdef CONFIG_SMP
41c7ce9a 6871 rq->sd = NULL;
57d885fe 6872 rq->rd = NULL;
1399fa78 6873 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6874 rq->post_schedule = 0;
1da177e4 6875 rq->active_balance = 0;
dd41f596 6876 rq->next_balance = jiffies;
1da177e4 6877 rq->push_cpu = 0;
0a2966b4 6878 rq->cpu = i;
1f11eb6a 6879 rq->online = 0;
eae0c9df
MG
6880 rq->idle_stamp = 0;
6881 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6882 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6883
6884 INIT_LIST_HEAD(&rq->cfs_tasks);
6885
dc938520 6886 rq_attach_root(rq, &def_root_domain);
3451d024 6887#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6888 rq->nohz_flags = 0;
83cd4fe2 6889#endif
265f22a9
FW
6890#ifdef CONFIG_NO_HZ_FULL
6891 rq->last_sched_tick = 0;
6892#endif
1da177e4 6893#endif
8f4d37ec 6894 init_rq_hrtick(rq);
1da177e4 6895 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6896 }
6897
2dd73a4f 6898 set_load_weight(&init_task);
b50f60ce 6899
e107be36
AK
6900#ifdef CONFIG_PREEMPT_NOTIFIERS
6901 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6902#endif
6903
1da177e4
LT
6904 /*
6905 * The boot idle thread does lazy MMU switching as well:
6906 */
6907 atomic_inc(&init_mm.mm_count);
6908 enter_lazy_tlb(&init_mm, current);
6909
6910 /*
6911 * Make us the idle thread. Technically, schedule() should not be
6912 * called from this thread, however somewhere below it might be,
6913 * but because we are the idle thread, we just pick up running again
6914 * when this runqueue becomes "idle".
6915 */
6916 init_idle(current, smp_processor_id());
dce48a84
TG
6917
6918 calc_load_update = jiffies + LOAD_FREQ;
6919
dd41f596
IM
6920 /*
6921 * During early bootup we pretend to be a normal task:
6922 */
6923 current->sched_class = &fair_sched_class;
6892b75e 6924
bf4d83f6 6925#ifdef CONFIG_SMP
4cb98839 6926 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6927 /* May be allocated at isolcpus cmdline parse time */
6928 if (cpu_isolated_map == NULL)
6929 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6930 idle_thread_set_boot_cpu();
029632fb
PZ
6931#endif
6932 init_sched_fair_class();
6a7b3dc3 6933
6892b75e 6934 scheduler_running = 1;
1da177e4
LT
6935}
6936
d902db1e 6937#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6938static inline int preempt_count_equals(int preempt_offset)
6939{
234da7bc 6940 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6941
4ba8216c 6942 return (nested == preempt_offset);
e4aafea2
FW
6943}
6944
d894837f 6945void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6946{
1da177e4
LT
6947 static unsigned long prev_jiffy; /* ratelimiting */
6948
b3fbab05 6949 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
6950 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6951 !is_idle_task(current)) ||
e4aafea2 6952 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6953 return;
6954 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6955 return;
6956 prev_jiffy = jiffies;
6957
3df0fc5b
PZ
6958 printk(KERN_ERR
6959 "BUG: sleeping function called from invalid context at %s:%d\n",
6960 file, line);
6961 printk(KERN_ERR
6962 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6963 in_atomic(), irqs_disabled(),
6964 current->pid, current->comm);
aef745fc
IM
6965
6966 debug_show_held_locks(current);
6967 if (irqs_disabled())
6968 print_irqtrace_events(current);
8f47b187
TG
6969#ifdef CONFIG_DEBUG_PREEMPT
6970 if (!preempt_count_equals(preempt_offset)) {
6971 pr_err("Preemption disabled at:");
6972 print_ip_sym(current->preempt_disable_ip);
6973 pr_cont("\n");
6974 }
6975#endif
aef745fc 6976 dump_stack();
1da177e4
LT
6977}
6978EXPORT_SYMBOL(__might_sleep);
6979#endif
6980
6981#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6982static void normalize_task(struct rq *rq, struct task_struct *p)
6983{
da7a735e 6984 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
6985 struct sched_attr attr = {
6986 .sched_policy = SCHED_NORMAL,
6987 };
da7a735e 6988 int old_prio = p->prio;
3a5e4dc1 6989 int on_rq;
3e51f33f 6990
fd2f4419 6991 on_rq = p->on_rq;
3a5e4dc1 6992 if (on_rq)
4ca9b72b 6993 dequeue_task(rq, p, 0);
d50dde5a 6994 __setscheduler(rq, p, &attr);
3a5e4dc1 6995 if (on_rq) {
4ca9b72b 6996 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6997 resched_task(rq->curr);
6998 }
da7a735e
PZ
6999
7000 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7001}
7002
1da177e4
LT
7003void normalize_rt_tasks(void)
7004{
a0f98a1c 7005 struct task_struct *g, *p;
1da177e4 7006 unsigned long flags;
70b97a7f 7007 struct rq *rq;
1da177e4 7008
4cf5d77a 7009 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7010 do_each_thread(g, p) {
178be793
IM
7011 /*
7012 * Only normalize user tasks:
7013 */
7014 if (!p->mm)
7015 continue;
7016
6cfb0d5d 7017 p->se.exec_start = 0;
6cfb0d5d 7018#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7019 p->se.statistics.wait_start = 0;
7020 p->se.statistics.sleep_start = 0;
7021 p->se.statistics.block_start = 0;
6cfb0d5d 7022#endif
dd41f596 7023
aab03e05 7024 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7025 /*
7026 * Renice negative nice level userspace
7027 * tasks back to 0:
7028 */
d0ea0268 7029 if (task_nice(p) < 0 && p->mm)
dd41f596 7030 set_user_nice(p, 0);
1da177e4 7031 continue;
dd41f596 7032 }
1da177e4 7033
1d615482 7034 raw_spin_lock(&p->pi_lock);
b29739f9 7035 rq = __task_rq_lock(p);
1da177e4 7036
178be793 7037 normalize_task(rq, p);
3a5e4dc1 7038
b29739f9 7039 __task_rq_unlock(rq);
1d615482 7040 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7041 } while_each_thread(g, p);
7042
4cf5d77a 7043 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7044}
7045
7046#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7047
67fc4e0c 7048#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7049/*
67fc4e0c 7050 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7051 *
7052 * They can only be called when the whole system has been
7053 * stopped - every CPU needs to be quiescent, and no scheduling
7054 * activity can take place. Using them for anything else would
7055 * be a serious bug, and as a result, they aren't even visible
7056 * under any other configuration.
7057 */
7058
7059/**
7060 * curr_task - return the current task for a given cpu.
7061 * @cpu: the processor in question.
7062 *
7063 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7064 *
7065 * Return: The current task for @cpu.
1df5c10a 7066 */
36c8b586 7067struct task_struct *curr_task(int cpu)
1df5c10a
LT
7068{
7069 return cpu_curr(cpu);
7070}
7071
67fc4e0c
JW
7072#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7073
7074#ifdef CONFIG_IA64
1df5c10a
LT
7075/**
7076 * set_curr_task - set the current task for a given cpu.
7077 * @cpu: the processor in question.
7078 * @p: the task pointer to set.
7079 *
7080 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7081 * are serviced on a separate stack. It allows the architecture to switch the
7082 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7083 * must be called with all CPU's synchronized, and interrupts disabled, the
7084 * and caller must save the original value of the current task (see
7085 * curr_task() above) and restore that value before reenabling interrupts and
7086 * re-starting the system.
7087 *
7088 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7089 */
36c8b586 7090void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7091{
7092 cpu_curr(cpu) = p;
7093}
7094
7095#endif
29f59db3 7096
7c941438 7097#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7098/* task_group_lock serializes the addition/removal of task groups */
7099static DEFINE_SPINLOCK(task_group_lock);
7100
bccbe08a
PZ
7101static void free_sched_group(struct task_group *tg)
7102{
7103 free_fair_sched_group(tg);
7104 free_rt_sched_group(tg);
e9aa1dd1 7105 autogroup_free(tg);
bccbe08a
PZ
7106 kfree(tg);
7107}
7108
7109/* allocate runqueue etc for a new task group */
ec7dc8ac 7110struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7111{
7112 struct task_group *tg;
bccbe08a
PZ
7113
7114 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7115 if (!tg)
7116 return ERR_PTR(-ENOMEM);
7117
ec7dc8ac 7118 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7119 goto err;
7120
ec7dc8ac 7121 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7122 goto err;
7123
ace783b9
LZ
7124 return tg;
7125
7126err:
7127 free_sched_group(tg);
7128 return ERR_PTR(-ENOMEM);
7129}
7130
7131void sched_online_group(struct task_group *tg, struct task_group *parent)
7132{
7133 unsigned long flags;
7134
8ed36996 7135 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7136 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7137
7138 WARN_ON(!parent); /* root should already exist */
7139
7140 tg->parent = parent;
f473aa5e 7141 INIT_LIST_HEAD(&tg->children);
09f2724a 7142 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7143 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7144}
7145
9b5b7751 7146/* rcu callback to free various structures associated with a task group */
6f505b16 7147static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7148{
29f59db3 7149 /* now it should be safe to free those cfs_rqs */
6f505b16 7150 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7151}
7152
9b5b7751 7153/* Destroy runqueue etc associated with a task group */
4cf86d77 7154void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7155{
7156 /* wait for possible concurrent references to cfs_rqs complete */
7157 call_rcu(&tg->rcu, free_sched_group_rcu);
7158}
7159
7160void sched_offline_group(struct task_group *tg)
29f59db3 7161{
8ed36996 7162 unsigned long flags;
9b5b7751 7163 int i;
29f59db3 7164
3d4b47b4
PZ
7165 /* end participation in shares distribution */
7166 for_each_possible_cpu(i)
bccbe08a 7167 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7168
7169 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7170 list_del_rcu(&tg->list);
f473aa5e 7171 list_del_rcu(&tg->siblings);
8ed36996 7172 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7173}
7174
9b5b7751 7175/* change task's runqueue when it moves between groups.
3a252015
IM
7176 * The caller of this function should have put the task in its new group
7177 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7178 * reflect its new group.
9b5b7751
SV
7179 */
7180void sched_move_task(struct task_struct *tsk)
29f59db3 7181{
8323f26c 7182 struct task_group *tg;
29f59db3
SV
7183 int on_rq, running;
7184 unsigned long flags;
7185 struct rq *rq;
7186
7187 rq = task_rq_lock(tsk, &flags);
7188
051a1d1a 7189 running = task_current(rq, tsk);
fd2f4419 7190 on_rq = tsk->on_rq;
29f59db3 7191
0e1f3483 7192 if (on_rq)
29f59db3 7193 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7194 if (unlikely(running))
7195 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7196
073219e9 7197 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7198 lockdep_is_held(&tsk->sighand->siglock)),
7199 struct task_group, css);
7200 tg = autogroup_task_group(tsk, tg);
7201 tsk->sched_task_group = tg;
7202
810b3817 7203#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7204 if (tsk->sched_class->task_move_group)
7205 tsk->sched_class->task_move_group(tsk, on_rq);
7206 else
810b3817 7207#endif
b2b5ce02 7208 set_task_rq(tsk, task_cpu(tsk));
810b3817 7209
0e1f3483
HS
7210 if (unlikely(running))
7211 tsk->sched_class->set_curr_task(rq);
7212 if (on_rq)
371fd7e7 7213 enqueue_task(rq, tsk, 0);
29f59db3 7214
0122ec5b 7215 task_rq_unlock(rq, tsk, &flags);
29f59db3 7216}
7c941438 7217#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7218
a790de99
PT
7219#ifdef CONFIG_RT_GROUP_SCHED
7220/*
7221 * Ensure that the real time constraints are schedulable.
7222 */
7223static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7224
9a7e0b18
PZ
7225/* Must be called with tasklist_lock held */
7226static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7227{
9a7e0b18 7228 struct task_struct *g, *p;
b40b2e8e 7229
9a7e0b18 7230 do_each_thread(g, p) {
029632fb 7231 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7232 return 1;
7233 } while_each_thread(g, p);
b40b2e8e 7234
9a7e0b18
PZ
7235 return 0;
7236}
b40b2e8e 7237
9a7e0b18
PZ
7238struct rt_schedulable_data {
7239 struct task_group *tg;
7240 u64 rt_period;
7241 u64 rt_runtime;
7242};
b40b2e8e 7243
a790de99 7244static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7245{
7246 struct rt_schedulable_data *d = data;
7247 struct task_group *child;
7248 unsigned long total, sum = 0;
7249 u64 period, runtime;
b40b2e8e 7250
9a7e0b18
PZ
7251 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7252 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7253
9a7e0b18
PZ
7254 if (tg == d->tg) {
7255 period = d->rt_period;
7256 runtime = d->rt_runtime;
b40b2e8e 7257 }
b40b2e8e 7258
4653f803
PZ
7259 /*
7260 * Cannot have more runtime than the period.
7261 */
7262 if (runtime > period && runtime != RUNTIME_INF)
7263 return -EINVAL;
6f505b16 7264
4653f803
PZ
7265 /*
7266 * Ensure we don't starve existing RT tasks.
7267 */
9a7e0b18
PZ
7268 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7269 return -EBUSY;
6f505b16 7270
9a7e0b18 7271 total = to_ratio(period, runtime);
6f505b16 7272
4653f803
PZ
7273 /*
7274 * Nobody can have more than the global setting allows.
7275 */
7276 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7277 return -EINVAL;
6f505b16 7278
4653f803
PZ
7279 /*
7280 * The sum of our children's runtime should not exceed our own.
7281 */
9a7e0b18
PZ
7282 list_for_each_entry_rcu(child, &tg->children, siblings) {
7283 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7284 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7285
9a7e0b18
PZ
7286 if (child == d->tg) {
7287 period = d->rt_period;
7288 runtime = d->rt_runtime;
7289 }
6f505b16 7290
9a7e0b18 7291 sum += to_ratio(period, runtime);
9f0c1e56 7292 }
6f505b16 7293
9a7e0b18
PZ
7294 if (sum > total)
7295 return -EINVAL;
7296
7297 return 0;
6f505b16
PZ
7298}
7299
9a7e0b18 7300static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7301{
8277434e
PT
7302 int ret;
7303
9a7e0b18
PZ
7304 struct rt_schedulable_data data = {
7305 .tg = tg,
7306 .rt_period = period,
7307 .rt_runtime = runtime,
7308 };
7309
8277434e
PT
7310 rcu_read_lock();
7311 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7312 rcu_read_unlock();
7313
7314 return ret;
521f1a24
DG
7315}
7316
ab84d31e 7317static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7318 u64 rt_period, u64 rt_runtime)
6f505b16 7319{
ac086bc2 7320 int i, err = 0;
9f0c1e56 7321
9f0c1e56 7322 mutex_lock(&rt_constraints_mutex);
521f1a24 7323 read_lock(&tasklist_lock);
9a7e0b18
PZ
7324 err = __rt_schedulable(tg, rt_period, rt_runtime);
7325 if (err)
9f0c1e56 7326 goto unlock;
ac086bc2 7327
0986b11b 7328 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7329 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7330 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7331
7332 for_each_possible_cpu(i) {
7333 struct rt_rq *rt_rq = tg->rt_rq[i];
7334
0986b11b 7335 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7336 rt_rq->rt_runtime = rt_runtime;
0986b11b 7337 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7338 }
0986b11b 7339 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7340unlock:
521f1a24 7341 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7342 mutex_unlock(&rt_constraints_mutex);
7343
7344 return err;
6f505b16
PZ
7345}
7346
25cc7da7 7347static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7348{
7349 u64 rt_runtime, rt_period;
7350
7351 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7352 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7353 if (rt_runtime_us < 0)
7354 rt_runtime = RUNTIME_INF;
7355
ab84d31e 7356 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7357}
7358
25cc7da7 7359static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7360{
7361 u64 rt_runtime_us;
7362
d0b27fa7 7363 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7364 return -1;
7365
d0b27fa7 7366 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7367 do_div(rt_runtime_us, NSEC_PER_USEC);
7368 return rt_runtime_us;
7369}
d0b27fa7 7370
25cc7da7 7371static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7372{
7373 u64 rt_runtime, rt_period;
7374
7375 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7376 rt_runtime = tg->rt_bandwidth.rt_runtime;
7377
619b0488
R
7378 if (rt_period == 0)
7379 return -EINVAL;
7380
ab84d31e 7381 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7382}
7383
25cc7da7 7384static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7385{
7386 u64 rt_period_us;
7387
7388 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7389 do_div(rt_period_us, NSEC_PER_USEC);
7390 return rt_period_us;
7391}
332ac17e 7392#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7393
332ac17e 7394#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7395static int sched_rt_global_constraints(void)
7396{
7397 int ret = 0;
7398
7399 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7400 read_lock(&tasklist_lock);
4653f803 7401 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7402 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7403 mutex_unlock(&rt_constraints_mutex);
7404
7405 return ret;
7406}
54e99124 7407
25cc7da7 7408static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7409{
7410 /* Don't accept realtime tasks when there is no way for them to run */
7411 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7412 return 0;
7413
7414 return 1;
7415}
7416
6d6bc0ad 7417#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7418static int sched_rt_global_constraints(void)
7419{
ac086bc2 7420 unsigned long flags;
332ac17e 7421 int i, ret = 0;
ec5d4989 7422
0986b11b 7423 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7424 for_each_possible_cpu(i) {
7425 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7426
0986b11b 7427 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7428 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7429 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7430 }
0986b11b 7431 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7432
332ac17e 7433 return ret;
d0b27fa7 7434}
6d6bc0ad 7435#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7436
332ac17e
DF
7437static int sched_dl_global_constraints(void)
7438{
1724813d
PZ
7439 u64 runtime = global_rt_runtime();
7440 u64 period = global_rt_period();
332ac17e 7441 u64 new_bw = to_ratio(period, runtime);
1724813d 7442 int cpu, ret = 0;
49516342 7443 unsigned long flags;
332ac17e
DF
7444
7445 /*
7446 * Here we want to check the bandwidth not being set to some
7447 * value smaller than the currently allocated bandwidth in
7448 * any of the root_domains.
7449 *
7450 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7451 * cycling on root_domains... Discussion on different/better
7452 * solutions is welcome!
7453 */
1724813d
PZ
7454 for_each_possible_cpu(cpu) {
7455 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7456
49516342 7457 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7458 if (new_bw < dl_b->total_bw)
7459 ret = -EBUSY;
49516342 7460 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7461
7462 if (ret)
7463 break;
332ac17e
DF
7464 }
7465
1724813d 7466 return ret;
332ac17e
DF
7467}
7468
1724813d 7469static void sched_dl_do_global(void)
ce0dbbbb 7470{
1724813d
PZ
7471 u64 new_bw = -1;
7472 int cpu;
49516342 7473 unsigned long flags;
ce0dbbbb 7474
1724813d
PZ
7475 def_dl_bandwidth.dl_period = global_rt_period();
7476 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7477
7478 if (global_rt_runtime() != RUNTIME_INF)
7479 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7480
7481 /*
7482 * FIXME: As above...
7483 */
7484 for_each_possible_cpu(cpu) {
7485 struct dl_bw *dl_b = dl_bw_of(cpu);
7486
49516342 7487 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7488 dl_b->bw = new_bw;
49516342 7489 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7490 }
1724813d
PZ
7491}
7492
7493static int sched_rt_global_validate(void)
7494{
7495 if (sysctl_sched_rt_period <= 0)
7496 return -EINVAL;
7497
e9e7cb38
JL
7498 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7499 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7500 return -EINVAL;
7501
7502 return 0;
7503}
7504
7505static void sched_rt_do_global(void)
7506{
7507 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7508 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7509}
7510
d0b27fa7 7511int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7512 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7513 loff_t *ppos)
7514{
d0b27fa7
PZ
7515 int old_period, old_runtime;
7516 static DEFINE_MUTEX(mutex);
1724813d 7517 int ret;
d0b27fa7
PZ
7518
7519 mutex_lock(&mutex);
7520 old_period = sysctl_sched_rt_period;
7521 old_runtime = sysctl_sched_rt_runtime;
7522
8d65af78 7523 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7524
7525 if (!ret && write) {
1724813d
PZ
7526 ret = sched_rt_global_validate();
7527 if (ret)
7528 goto undo;
7529
d0b27fa7 7530 ret = sched_rt_global_constraints();
1724813d
PZ
7531 if (ret)
7532 goto undo;
7533
7534 ret = sched_dl_global_constraints();
7535 if (ret)
7536 goto undo;
7537
7538 sched_rt_do_global();
7539 sched_dl_do_global();
7540 }
7541 if (0) {
7542undo:
7543 sysctl_sched_rt_period = old_period;
7544 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7545 }
7546 mutex_unlock(&mutex);
7547
7548 return ret;
7549}
68318b8e 7550
1724813d 7551int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7552 void __user *buffer, size_t *lenp,
7553 loff_t *ppos)
7554{
7555 int ret;
332ac17e 7556 static DEFINE_MUTEX(mutex);
332ac17e
DF
7557
7558 mutex_lock(&mutex);
332ac17e 7559 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7560 /* make sure that internally we keep jiffies */
7561 /* also, writing zero resets timeslice to default */
332ac17e 7562 if (!ret && write) {
1724813d
PZ
7563 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7564 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7565 }
7566 mutex_unlock(&mutex);
332ac17e
DF
7567 return ret;
7568}
7569
052f1dc7 7570#ifdef CONFIG_CGROUP_SCHED
68318b8e 7571
a7c6d554 7572static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7573{
a7c6d554 7574 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7575}
7576
eb95419b
TH
7577static struct cgroup_subsys_state *
7578cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7579{
eb95419b
TH
7580 struct task_group *parent = css_tg(parent_css);
7581 struct task_group *tg;
68318b8e 7582
eb95419b 7583 if (!parent) {
68318b8e 7584 /* This is early initialization for the top cgroup */
07e06b01 7585 return &root_task_group.css;
68318b8e
SV
7586 }
7587
ec7dc8ac 7588 tg = sched_create_group(parent);
68318b8e
SV
7589 if (IS_ERR(tg))
7590 return ERR_PTR(-ENOMEM);
7591
68318b8e
SV
7592 return &tg->css;
7593}
7594
eb95419b 7595static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7596{
eb95419b
TH
7597 struct task_group *tg = css_tg(css);
7598 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7599
63876986
TH
7600 if (parent)
7601 sched_online_group(tg, parent);
ace783b9
LZ
7602 return 0;
7603}
7604
eb95419b 7605static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7606{
eb95419b 7607 struct task_group *tg = css_tg(css);
68318b8e
SV
7608
7609 sched_destroy_group(tg);
7610}
7611
eb95419b 7612static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7613{
eb95419b 7614 struct task_group *tg = css_tg(css);
ace783b9
LZ
7615
7616 sched_offline_group(tg);
7617}
7618
eb95419b 7619static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7620 struct cgroup_taskset *tset)
68318b8e 7621{
bb9d97b6
TH
7622 struct task_struct *task;
7623
924f0d9a 7624 cgroup_taskset_for_each(task, tset) {
b68aa230 7625#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7626 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7627 return -EINVAL;
b68aa230 7628#else
bb9d97b6
TH
7629 /* We don't support RT-tasks being in separate groups */
7630 if (task->sched_class != &fair_sched_class)
7631 return -EINVAL;
b68aa230 7632#endif
bb9d97b6 7633 }
be367d09
BB
7634 return 0;
7635}
68318b8e 7636
eb95419b 7637static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7638 struct cgroup_taskset *tset)
68318b8e 7639{
bb9d97b6
TH
7640 struct task_struct *task;
7641
924f0d9a 7642 cgroup_taskset_for_each(task, tset)
bb9d97b6 7643 sched_move_task(task);
68318b8e
SV
7644}
7645
eb95419b
TH
7646static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7647 struct cgroup_subsys_state *old_css,
7648 struct task_struct *task)
068c5cc5
PZ
7649{
7650 /*
7651 * cgroup_exit() is called in the copy_process() failure path.
7652 * Ignore this case since the task hasn't ran yet, this avoids
7653 * trying to poke a half freed task state from generic code.
7654 */
7655 if (!(task->flags & PF_EXITING))
7656 return;
7657
7658 sched_move_task(task);
7659}
7660
052f1dc7 7661#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7662static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7663 struct cftype *cftype, u64 shareval)
68318b8e 7664{
182446d0 7665 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7666}
7667
182446d0
TH
7668static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7669 struct cftype *cft)
68318b8e 7670{
182446d0 7671 struct task_group *tg = css_tg(css);
68318b8e 7672
c8b28116 7673 return (u64) scale_load_down(tg->shares);
68318b8e 7674}
ab84d31e
PT
7675
7676#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7677static DEFINE_MUTEX(cfs_constraints_mutex);
7678
ab84d31e
PT
7679const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7680const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7681
a790de99
PT
7682static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7683
ab84d31e
PT
7684static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7685{
56f570e5 7686 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7687 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7688
7689 if (tg == &root_task_group)
7690 return -EINVAL;
7691
7692 /*
7693 * Ensure we have at some amount of bandwidth every period. This is
7694 * to prevent reaching a state of large arrears when throttled via
7695 * entity_tick() resulting in prolonged exit starvation.
7696 */
7697 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7698 return -EINVAL;
7699
7700 /*
7701 * Likewise, bound things on the otherside by preventing insane quota
7702 * periods. This also allows us to normalize in computing quota
7703 * feasibility.
7704 */
7705 if (period > max_cfs_quota_period)
7706 return -EINVAL;
7707
a790de99
PT
7708 mutex_lock(&cfs_constraints_mutex);
7709 ret = __cfs_schedulable(tg, period, quota);
7710 if (ret)
7711 goto out_unlock;
7712
58088ad0 7713 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7714 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7715 /*
7716 * If we need to toggle cfs_bandwidth_used, off->on must occur
7717 * before making related changes, and on->off must occur afterwards
7718 */
7719 if (runtime_enabled && !runtime_was_enabled)
7720 cfs_bandwidth_usage_inc();
ab84d31e
PT
7721 raw_spin_lock_irq(&cfs_b->lock);
7722 cfs_b->period = ns_to_ktime(period);
7723 cfs_b->quota = quota;
58088ad0 7724
a9cf55b2 7725 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7726 /* restart the period timer (if active) to handle new period expiry */
7727 if (runtime_enabled && cfs_b->timer_active) {
7728 /* force a reprogram */
7729 cfs_b->timer_active = 0;
7730 __start_cfs_bandwidth(cfs_b);
7731 }
ab84d31e
PT
7732 raw_spin_unlock_irq(&cfs_b->lock);
7733
7734 for_each_possible_cpu(i) {
7735 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7736 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7737
7738 raw_spin_lock_irq(&rq->lock);
58088ad0 7739 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7740 cfs_rq->runtime_remaining = 0;
671fd9da 7741
029632fb 7742 if (cfs_rq->throttled)
671fd9da 7743 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7744 raw_spin_unlock_irq(&rq->lock);
7745 }
1ee14e6c
BS
7746 if (runtime_was_enabled && !runtime_enabled)
7747 cfs_bandwidth_usage_dec();
a790de99
PT
7748out_unlock:
7749 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7750
a790de99 7751 return ret;
ab84d31e
PT
7752}
7753
7754int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7755{
7756 u64 quota, period;
7757
029632fb 7758 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7759 if (cfs_quota_us < 0)
7760 quota = RUNTIME_INF;
7761 else
7762 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7763
7764 return tg_set_cfs_bandwidth(tg, period, quota);
7765}
7766
7767long tg_get_cfs_quota(struct task_group *tg)
7768{
7769 u64 quota_us;
7770
029632fb 7771 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7772 return -1;
7773
029632fb 7774 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7775 do_div(quota_us, NSEC_PER_USEC);
7776
7777 return quota_us;
7778}
7779
7780int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7781{
7782 u64 quota, period;
7783
7784 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7785 quota = tg->cfs_bandwidth.quota;
ab84d31e 7786
ab84d31e
PT
7787 return tg_set_cfs_bandwidth(tg, period, quota);
7788}
7789
7790long tg_get_cfs_period(struct task_group *tg)
7791{
7792 u64 cfs_period_us;
7793
029632fb 7794 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7795 do_div(cfs_period_us, NSEC_PER_USEC);
7796
7797 return cfs_period_us;
7798}
7799
182446d0
TH
7800static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7801 struct cftype *cft)
ab84d31e 7802{
182446d0 7803 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7804}
7805
182446d0
TH
7806static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7807 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7808{
182446d0 7809 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7810}
7811
182446d0
TH
7812static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7813 struct cftype *cft)
ab84d31e 7814{
182446d0 7815 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7816}
7817
182446d0
TH
7818static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7819 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7820{
182446d0 7821 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7822}
7823
a790de99
PT
7824struct cfs_schedulable_data {
7825 struct task_group *tg;
7826 u64 period, quota;
7827};
7828
7829/*
7830 * normalize group quota/period to be quota/max_period
7831 * note: units are usecs
7832 */
7833static u64 normalize_cfs_quota(struct task_group *tg,
7834 struct cfs_schedulable_data *d)
7835{
7836 u64 quota, period;
7837
7838 if (tg == d->tg) {
7839 period = d->period;
7840 quota = d->quota;
7841 } else {
7842 period = tg_get_cfs_period(tg);
7843 quota = tg_get_cfs_quota(tg);
7844 }
7845
7846 /* note: these should typically be equivalent */
7847 if (quota == RUNTIME_INF || quota == -1)
7848 return RUNTIME_INF;
7849
7850 return to_ratio(period, quota);
7851}
7852
7853static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7854{
7855 struct cfs_schedulable_data *d = data;
029632fb 7856 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7857 s64 quota = 0, parent_quota = -1;
7858
7859 if (!tg->parent) {
7860 quota = RUNTIME_INF;
7861 } else {
029632fb 7862 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7863
7864 quota = normalize_cfs_quota(tg, d);
7865 parent_quota = parent_b->hierarchal_quota;
7866
7867 /*
7868 * ensure max(child_quota) <= parent_quota, inherit when no
7869 * limit is set
7870 */
7871 if (quota == RUNTIME_INF)
7872 quota = parent_quota;
7873 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7874 return -EINVAL;
7875 }
7876 cfs_b->hierarchal_quota = quota;
7877
7878 return 0;
7879}
7880
7881static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7882{
8277434e 7883 int ret;
a790de99
PT
7884 struct cfs_schedulable_data data = {
7885 .tg = tg,
7886 .period = period,
7887 .quota = quota,
7888 };
7889
7890 if (quota != RUNTIME_INF) {
7891 do_div(data.period, NSEC_PER_USEC);
7892 do_div(data.quota, NSEC_PER_USEC);
7893 }
7894
8277434e
PT
7895 rcu_read_lock();
7896 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7897 rcu_read_unlock();
7898
7899 return ret;
a790de99 7900}
e8da1b18 7901
2da8ca82 7902static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7903{
2da8ca82 7904 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7905 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7906
44ffc75b
TH
7907 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7908 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7909 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7910
7911 return 0;
7912}
ab84d31e 7913#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7914#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7915
052f1dc7 7916#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7917static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7918 struct cftype *cft, s64 val)
6f505b16 7919{
182446d0 7920 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7921}
7922
182446d0
TH
7923static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7924 struct cftype *cft)
6f505b16 7925{
182446d0 7926 return sched_group_rt_runtime(css_tg(css));
6f505b16 7927}
d0b27fa7 7928
182446d0
TH
7929static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7930 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7931{
182446d0 7932 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7933}
7934
182446d0
TH
7935static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7936 struct cftype *cft)
d0b27fa7 7937{
182446d0 7938 return sched_group_rt_period(css_tg(css));
d0b27fa7 7939}
6d6bc0ad 7940#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7941
fe5c7cc2 7942static struct cftype cpu_files[] = {
052f1dc7 7943#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7944 {
7945 .name = "shares",
f4c753b7
PM
7946 .read_u64 = cpu_shares_read_u64,
7947 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7948 },
052f1dc7 7949#endif
ab84d31e
PT
7950#ifdef CONFIG_CFS_BANDWIDTH
7951 {
7952 .name = "cfs_quota_us",
7953 .read_s64 = cpu_cfs_quota_read_s64,
7954 .write_s64 = cpu_cfs_quota_write_s64,
7955 },
7956 {
7957 .name = "cfs_period_us",
7958 .read_u64 = cpu_cfs_period_read_u64,
7959 .write_u64 = cpu_cfs_period_write_u64,
7960 },
e8da1b18
NR
7961 {
7962 .name = "stat",
2da8ca82 7963 .seq_show = cpu_stats_show,
e8da1b18 7964 },
ab84d31e 7965#endif
052f1dc7 7966#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7967 {
9f0c1e56 7968 .name = "rt_runtime_us",
06ecb27c
PM
7969 .read_s64 = cpu_rt_runtime_read,
7970 .write_s64 = cpu_rt_runtime_write,
6f505b16 7971 },
d0b27fa7
PZ
7972 {
7973 .name = "rt_period_us",
f4c753b7
PM
7974 .read_u64 = cpu_rt_period_read_uint,
7975 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7976 },
052f1dc7 7977#endif
4baf6e33 7978 { } /* terminate */
68318b8e
SV
7979};
7980
073219e9 7981struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
7982 .css_alloc = cpu_cgroup_css_alloc,
7983 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7984 .css_online = cpu_cgroup_css_online,
7985 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7986 .can_attach = cpu_cgroup_can_attach,
7987 .attach = cpu_cgroup_attach,
068c5cc5 7988 .exit = cpu_cgroup_exit,
4baf6e33 7989 .base_cftypes = cpu_files,
68318b8e
SV
7990 .early_init = 1,
7991};
7992
052f1dc7 7993#endif /* CONFIG_CGROUP_SCHED */
d842de87 7994
b637a328
PM
7995void dump_cpu_task(int cpu)
7996{
7997 pr_info("Task dump for CPU %d:\n", cpu);
7998 sched_show_task(cpu_curr(cpu));
7999}
This page took 2.415143 seconds and 5 git commands to generate.